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Abstract

Glioblastomas (GBMs) are the most aggressive primary brain tumours and have

no known cure. Each individual tumour comprises multiple sub-populations of

genetically-distinct cells that may respond differently to targeted therapies and

may contribute to disappointing clinical trial results. Image-localized biopsy tech-

niques allow multiple biopsies to be taken during surgery and provide information

that identifies regions where particular sub-populations occur within an individ-

ual GBM, thus providing insight into their regional genetic variability. These

sub-populations may also interact with one another in some way; it is impor-

tant to ascertain the nature of these interactions, as they may have implications

for responses to targeted therapies. In this work, we combine genetic informa-

tion from image-localised biopsies with a mechanistic model of interacting GBM

sub-populations to characterise the nature of interactions between two commonly

occurring GBM sub-populations, those with EGFR and PDGFRA genes ampli-

fied.

Firstly, we develop a mathematical model using a PDE-based formalism and ex-

plore the dynamics of our model under a variety of interaction types (Chapter 2).

Following on from this, we study population levels found across image-localized

biopsy data from an initial cohort of patients and compare this to model outputs

under competitive, cooperative and neutral interaction assumptions (Chapter 3).

We explore other factors affecting the observed simulated sub-populations, such

as selection advantages and phylogenetic ordering of mutations, and conduct a

sensitivity analysis, as these factors may also contribute to the levels of EGFR

and PDGFRA amplified populations observed in biopsy data.

The patient dataset is then expanded to include image-localised biopsies from

additional patients and we examine the intra- and inter-tumoural heterogeneity

in EGFR and PDGFRA amplification observed in this data (Chapter 4). We

then proceed to explore the inferability of the model parameters using synthetic

datasets. Finally, we perform inference for the patient dataset, where we are able

to gain some insights into the dynamics of and nature of interactions between

these amplified sub-populations.
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Chapter 1

Introduction and Background

Glioblastomas (GBMs) are the most common primary brain tumour occurring in

adults and are a particularly aggressive form of cancer [56, 57]. Despite aggres-

sive treatment protocols, there is no known cure and survival times for patients

diagnosed with these tumours are poor at less than 15 months on average [111].

Clinicians are faced with several challenges when treating patients with GBMs,

a key one being the intra-tumoural heterogeneity exhibited by these tumours.

GBMs are known to be comprised of multiple genetically distinct tumour cells

harbouring a variety of genetic mutations, which is thought to contribute to the

failure of therapies, possibly through the survival of therapy-resistant tumour

cells or the cooperation of sub-populations to evade therapy [5, 12, 72, 123]. Two

sub-populations of interest in GBMs are those with amplification in the EGFR

and PDGFRA genes.

In this thesis, we aim to characterise these sub-populations and gain insight

into whether they may be interacting with one another in a cooperative man-

ner. We present information from image-localised biopsies that provides insight

into the distribution and co-occurrence of EGFR and PDGFRA amplified sub-

populations throughout GBM tumours in a cohort of patients. While this pro-

vides important genetic and spatial information, this information is static and so

it is difficult to extract any dynamic information about these tumour cells and

any interactions that may be occurring between them. Mathematical modelling

could be a useful tool in this scenario, as models can be used to enhance current

knowledge and provide insight into complex biological processes. Therefore, we

propose a novel mathematical model of interacting sub-populations and conduct

in silico investigations and inference using patient image-localised biopsy data,

with the aim of characterising the dynamics and nature of interactions of EGFR

1



1.1. Glioblastoma 2

and PDGFRA amplified sub-populations in GBMs.

Before moving onto this work, however, we provide some more detailed back-

ground information in this chapter. In Section 1.1, we begin by presenting an

overview of GBMs and current treatment approaches and challenges, before dis-

cussing the heterogeneous nature of these tumours and efforts to characterise

this through novel biopsy sampling techniques and the emerging field of radio-

genomics. We then consider EGFR and PDGFRA amplification in GBMs and

discuss their importance and why they are of particular interest in this work. In

Section 1.2, we review the literature surrounding existing approaches to modelling

GBMs and, finally, we summarise the key objectives and structure of this thesis

in Section 1.3.

1.1 Glioblastoma

Glioblastomas are a type of glioma, a tumour arising from the cells surrounding

neurons in the brain, called glial cells [37]. They are the most common primary

brain tumour occurring in adults and are classed by the World Health Organisa-

tion as a grade IV glioma [56, 57], the most aggressive type, with a median survival

time of a mere 4 months if left untreated [70]. Since its publication in 2005 [113],

the Stupp Protocol has become the standard of care treatment for GBMs, which

consists of maximal safe resection of the tumour, followed by radiation and the

chemotherapy temozolomide. Despite this aggressive treatment, recurrent disease

is inevitable and median survival times remain at just 14.6 months [111].

One of the primary reasons this treatment protocol ultimately fails is due

to the diffuse nature of the disease; tumour cells infiltrate extensively through-

out healthy brain tissue, far beyond the edge of the bulk tumour observed by

magnetic resonance imaging (MRI) [37]. Tumour cells have been cultured from

apparently healthy brain tissue as far as 4cm from the location of the bulk tu-

mour [98]; Fig. 1.1 shows a schematic representation of tumour cells infiltrating

far from the main bulk of the GBM. As a result of this, the region infiltrated

by tumour cells is much larger than possible to remove during surgery or target

with radiotherapy and, consequently, recurrence is inevitable as tumour cells are

always left behind to proliferate and repopulate; recurrence has even occurred

after hemispherectomies, the drastic removal of half of the brain [24, 31].

MRI is considered the “gold standard” for imaging brain tumours [92], how-

ever the true extent of infiltrative invasion of glioblastoma is often underestimated

[17]. Figure 1.2 shows MRI scans for a patient showing an initial “complete” resec-
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Figure 1.1: (a) Schematic diagram showing the infiltrative nature of GBMs; tu-
mour cells are shown in blue, neurons in green (b) and vessels in red. (c) Tumour
cells migrate across the corpus callosum (yellow arrow) to the other hemisphere
of the brain. (d) The dark grey area shows a region of necrosis surrounded by
tumour cells. Image from [17].

tion of the bulk tumour, followed by recurrence six months later and a subsequent

second surgical removal, with the tumour recurring again three months later [37].

In spite of this inevitable failure of surgical resection, it is still often used as a

treatment for GBM since it generally increases survival and quality of life [37],

while more novel therapies for treating this disease are being investigated.

One of the novel approaches to treating patients with glioblastoma is targeted

therapy, treatment that targets specific genes and proteins involved in the growth

and survival of cancer cells. One such example is anti-angiogenic therapies tar-

geting vascular endothelial growth factor (VEGF) [39]. VEGF is a protein that

stimulates the formation of new blood vessels and has been found at high levels

in GBM tumours [39, 43]; its overproduction is thought to partly explain damage

to the blood brain barrier, oedema and regions of haemorrhage in GBMs [9, 39].

Therapies targeting VEGF have been tested extensively during various clinical

trials, but have unfortunately not shown an improvement in overall survival (OS)

of glioblastoma patients [39]. Other therapies have targeted various intracellular

signalling pathways, inhibition of growth factor receptors [90, 126] and inhibition

of integrins [34, 91, 112], all of which showed minimal or no efficacy [39]. Fail-

ure of these therapies could be due to the blood brain barrier preventing these

agents targeting their pathways in GBM effectively if they are unable to reach

their destination in sufficient concentrations [39].

While the ability of drugs to cross the blood brain barrier is a known challenge

with treating GBMs—many research efforts are working to overcome this by

developing novel techniques for delivery to the brain (see reference [106], for

example)—some drugs, such as temozolomide, do still prove to be beneficial in



1.1. Glioblastoma 4

Figure 1.2: MRI scans of a patient showing recurrence after treatment. Scans
taken in the coronal plane: (A) Pre-treatment scan showing GBM (arrow), (B)
post-surgery scan showing clear resection cavity (arrow), (C) scan six months af-
ter surgery shows two recurrence sites (two arrows) and (D) scan shows resection
cavities after second surgery. Final scan (E), taken three months later, shows
tumour recurrence at the edge of the resection cavity and across the corpus cal-
losum to the other hemisphere (arrow). Image from [37].

the treatment of these tumours [111]. Another major challenge in treating GBM

is its genetic heterogeneity, which is thought to be an underlying cause for the

failure of many targeted therapies [85, 108].

1.1.1 Genetic heterogeneity in glioblastomas

Glioblastoma is a disease characterised by inter- and intra-tumoural heterogene-

ity; each tumour is known to be comprised of several genotypically and phenotyp-

ically distinct sub-populations of tumour cells, with the sub-populations present

varying both between patients and regions of the same tumour [12]. This hetero-

geneity is thought to contribute to the range of responses to therapies observed as

different sub-populations may respond to a given therapy differently, with some

tumours responding well, others to a lesser extent or partially and some not at all

[103]. For example, sub-population ratios in tumour spheroids comprising multi-

ple genetically distinct GBM cell lines were shown to change following treatment

with various drugs, indicating that particular sub-populations were sensitive to

some therapies, while others were not [102]. Further to this, the intra-tumoural

heterogeneity of glioblastoma is thought to result in the failure of some therapies,

as resistant sub-populations may be present within the tumour or different pop-

ulations of tumour cells may cooperate to evade the therapy [5, 12, 72, 123]. As

these scenarios would ultimately give rise to the therapy failing, it is important

to gain a deeper understanding of the the sub-populations present in GBMs and
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their implications for therapy, with the hope of being able to identify new targets

for therapy and subgroups of patients whose tumours are likely to elicit the best

response to particular therapies.

Over recent years, advances in biopsy sampling techniques have been helping

to characterize this inter- and intra-tumoural genetic heterogeneity exhibited by

GBMs. Treatment decisions are typically based on the biomarkers present within

a single biopsy specimen, which may only be representative of a small part of

the tumour. This means that clinical decisions made based on this knowledge

may not be the optimal therapeutic strategy to target the majority of cancerous

cells composing the rest of the tumour, which may have different genetic fea-

tures and respond better to another treatment option. Therefore, in order to

gain more understanding of the genetic heterogeneity across the tumour region,

image-localized multiple biopsy sampling techniques have been developed, allow-

ing surgeons to collect multiple tissue samples from an individual during surgery

and record information about the location in the tumour from where the sample

was taken. Subsequent tissue analysis then identifies how the genetic profile of

these samples differs from one region of the tumour to another, providing spatial

and genetic information that gives insight into the inter- and intra-tumoural het-

erogeneity present in these complex tumours; examples of such techniques being

employed can be found in [41, 105, 108].

A further area of active research with regards to glioblastoma characterisa-

tion is the field of radiogenomics, where correlations between MRI patterns and

genetic and cellular features of GBMs are analysed [23]; for a more detailed de-

scription of radiogenomics, the reader is referred to reference [44]. Various studies

have shown that MR images of glioblastomas are influenced by the underlying

genetic and cellular features of the tumour [8, 23], a simplified example of this

would be the association of a given MRI texture feature with the presence of

a particular tumour cell sub-population. This knowledge has led to the devel-

opment of machine-learning models which are trained using genetic information

from biopsies and sets of corresponding MRI features in an attempt to predict

genetic or cellular features of a tumour from a patient’s MRI scans. For exam-

ple, until recently, IDH (isocitrate dehydrogenase) mutation status could only be

determined from a biopsy sample taken during surgery. However, Zhang et al.

were able to use a machine learning algorithm to predict IDH genotype in GBMs

from pre-treatment clinical MRI features [134]. The ability to predict this non-

invasively has potential prognostic utility, since mutations in this gene have been

associated with longer overall survival in GBM patients compared to those with
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the wildtype version [7, 83, 134]. Meanwhile, a study found that certain measures

of texture analysis on pre-treatment MRIs to assess tumour heterogeneity were

predictors of survival in a group of patients diagnosed with GBM [67], further

highlighting the potential clinical utility of this field.

Furthermore, various work is being undertaken to characterise the regional

heterogeneity in GBMs using radiogenomic techniques. For example, using ge-

netic data from multiple image-guided biopsies from 13 GBM tumours, Hu et

al. [40] were able to identify imaging correlations for 6 common driver genes found

in GBMs. Using this information, they were able to produce models to predict

amplification, i.e. an increase in the number of copies, of some of the driver genes

in different regions of a tumour with high accuracies [40]. Following on from this

work, they were able to produce radiogenomic maps showing predicted regions

of amplification in the EGFR gene [42], a common driver gene found to be am-

plified in GBMs; more detail about the importance of this gene will be given in

the following section. An example of these maps are shown in Fig. 1.3 overlaid

on two MRI slices, where the maps were found to correctly predict the amplifi-

cation status of image-localised biopsies [42]. The radigenomic maps shown in

this example also predict heterogeneity in EGFR amplification status across the

tumour region. The ability to quantify which parts of the tumour have specific

gene alterations could help to determine how well regions of the tumour respond

to targeted therapies [40]; in this example, the radiogenomic maps could help to

determine how well regions of the tumour amplified in EGFR respond to EGFR

targeted therapies. It is hoped that further research in this area will be able to

identify a broader range of genetic alterations in GBMs and their intra-tumoural

heterogeneity, thus helping to understand more about these complex tumours.

While the exact mechanism by which such genetic heterogeneity arises in

GBMs is currently unknown, several possible theories have been proposed to

explain this. These include the theory of clonal evolution, where tumours are

thought to evolve through a process of acquiring mutations and natural selection;

the cancer stem cell (CSC) model, in which a small population of CSCs give rise

to and maintain the tumour through self-renewal and producing phenotypically

diverse daughter cells; or possibly some complementary combination of these two

theories [12]. In addition to understanding how genetic heterogeneity arises in

GBMs and other types of cancer, further understanding of how such heterogeneity

is maintained is also needed. One suggested mechanism of heterogeneity main-

tenance is called interclonal cooperativity, where interactions between different

tumour cell populations are thought to be important; the theory suggests that
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Figure 1.3: Two pairs of MRI slices are shown for an individual patient diagnosed
with primary GBM. The location of two image-localised biopsies are shown, one
on each of the slices, and the outline of the tumour burden observed through
two different MRI modalities (T1 contrast enhanced and T2 weighted) are shown
in dark and light green. On the right MRI of each pair, a radiogenomic map is
overlaid showing predicted regions where the EGFR gene is amplified (red) and
not amplified (blue). The maps were found to correctly predict the amplification
status of each of the biopsies with a high certainty. Image reproduced from [42].

some cells may acquire mutations that result in the promotion of other tumour

cell sub-populations in some way [12, 58]. One consequence of this could be that

a small population of genetically-distinct tumour cells plays an important role in

tumour progression and, thus, targeting such a sub-population of cells may have

additional negative effects on the rest of the tumour cell population. Therefore,

identifying such genetically distinct tumour cell sub-populations and understand-

ing their interplay with other cell populations may have important implications

for the success of therapies.

1.1.2 EGFR and PDGFRA amplification in glioblastomas

Two such populations of interest are those with amplification of the Epidermal

Growth Factor Receptor (EGFR) and the Platelet-Derived Growth Factor Re-

ceptor Alpha (PDGFRA) genes, i.e., cells with an increased number of copies of

the genes encoding each protein. While amplification status relates to the num-

ber of copies of a particular gene that a cell has in its DNA, its copy number

aberration, it also induces overexpression of these genes in tumour cells [55]. The

EGFR and PDGFRA proteins are both members of the Receptor Tyrosine Kinase

(RTK) family of cell surface receptors which bind to a variety of growth factors,
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cytokines and hormones and play a crucial role in the regulation of the signalling

that controls cell proliferation, metabolism and survival [30]. Specifically, EGFR

is a receptor that, upon binding, results in the activation of pathways that lead

to cell proliferation, DNA synthesis and the expression of certain oncogenes [129]

and its amplification has been shown to promote invasion in GBMs [81, 124] and

be an unfavourable predictor for patient survival [97]. Meanwhile, PDGFRA is a

receptor that, when bound, activates signalling pathways that promote oncogen-

esis [1, 11]. Due to the prevalence of EGFR and PDGFRA amplified tumour cells

in GBMs—occurring in 41% and 10% of GBM samples in The Cancer Genome

Atlas (TCGA) database, respectively [125]—these sub-populations have become

prime molecular targets for therapies and a number of inhibitor drugs have been

developed for this purpose [72]. These therapies targeting EGFR and PDGFRA

amplified cells, however, have had limited success in GBMs in clinical trials so

far [72].

Several possible mechanisms of chemoresistance to these drugs in GBMs are

discussed by Nakada et al. [72]. However, one possible mechanism of chemore-

sistance to EGFR and PDGFRA targeted therapies of interest is through the

interaction of cell sub-populations with amplification of these genes; these cells

may interact in a cooperative way that facilitates their survival or, conversely,

competitively, such that the targeting of one population with therapy benefits

the other by removing its competitor. While the interactions between EGFR and

PDGFRA amplified sub-populations are currently not well understood, it has

been suggested that these cell populations may be interacting in a cooperative

manner. For example, in experiments by Szerlip et al. [123] a form of cooperativ-

ity was observed between these cell populations, as combined inhibition of both

receptors was needed to block activity of the PI3 kinase pathway—a pathway

involved in the regulation of cell proliferation, apoptosis and migration [53]—in a

mixed population of EGFR and PDGFRA amplified cells in vitro. In addition to

this, Snuderl et al. [107] observed coexistence of these amplified sub-populations

and suggested that they may co-evolve with similar fitness levels rather than

compete during tumour evolution; the authors further suggest the possibility

that these sub-populations cooperate to achieve a higher fitness level than each

of the sub-populations individually [16, 107]. Little et al. [54] also observed simi-

lar co-existence patterns of distinct tumour cell sub-populations amplified in the

EGFR and PDGFRA genes in GBM specimens, with each gene predominating

in different areas of the same tumour specimen.

These observations about EGFR and PDGFRA amplified sub-populations
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lead to questions about how such co-existence arises and what the possible im-

plications for disease progression and treatment responses are. While suggestions

of cooperative behaviour between EGFR and PDGFRA amplified tumour cells

in GBMs have been proposed, the nature of any interactions between these sub-

populations remains poorly understood and requires further study; in this thesis,

we aim to use mathematical modelling approaches to gain an insight into possible

interactions occurring between EGFR and PDGFRA amplified sub-populations

in GBMs.

1.2 Existing approaches to modelling GBMs

It has been identified that new approaches to bring together existing clinical and

scientific knowledge of GBMs are desperately needed as prognoses for patients

with GBMs remain especially poor, despite the wealth of research in this area.

Mathematical oncology has a role to play here, as models can be used to en-

hance current technologies and provide deeper insight. The term “mathematical

oncology” here broadly means mathematically describing cancer using in silico

models; these are models that use computers to simulate results and can re-

produce the behaviour of a system using information obtained from clinical and

experimental data [89]. Although a wide variety of models have been proposed

to model glioblastoma [3], they generally fall into 2 categories: some describe

tumour growth on the macroscopic scale, while others focus on tumour growth at

the cellular level [89]. A recent comprehensive review of mathematical approaches

to modelling GBMs is given by Alfonso et al. in [3], while Protopappa et al. pro-

vide a critical review from a clinician’s perspective in [89] and an overview of

mathematical modelling of cancer in general is given in [4]. Here we highlight

some key approaches to modelling glioblastomas.

1.2.1 The PI Model

Over recent years, numerous papers on GBM modelling have been published

by Kristin Swanson and her group at the Mayo Clinic in the USA. They have

proposed a number of models of GBMs, the first—and most well-known—being

the so called Proliferation-Invasion (PI) model [115, 116, 117, 118, 120, 121]. This

model takes the form of a single equation, which is given by

∂u

∂t
= ∇ · (D∇u) + ρu

(
1− u

K

)
, (1.1)
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where u = u(x, t) denotes the concentration of tumour cells, K denotes the

maximum concentration andD and ρ are the diffusion coefficient and proliferation

rate of the cells, respectively.

The model takes the form of the well known Fisher-KPP equation [28, 51]

based on the simplified definition of cancer as “uncontrolled proliferation of cells

with the ability to invade” [115] and uses the hypothesis that the “two final

common pathways”, proliferation and invasion, govern glioblastoma growth and

capture the effects of any genetic-metabolic abnormalities occurring further up-

stream [115]. Although many more complex models of GBM growth exist, the

real power of the PI model lies in its simplicity; it only has two model param-

eters which can be estimated from individual patient pre-treatment MRI scans

[116, 118], enabling each patient with a glioblastoma to have an equation with

their own parameter set that captures the growth kinetics of their particular

tumour.

These model parameters, ρ and D, are estimated using three pre-treatment

MRI scans—a T1Gd and a T2 weighted MRI taken at the same time, plus an

additional scan of either type taken at a later time point. The “gradient” be-

tween this first pair of MRI scans can then be related to the ratio ρ/D [115] using

observations that the circumference of tumour observed on a T1Gd weighted im-

age represents the edge of solid tumour and the circumference observed on a T2

weighted MRI indicates a region of malignant cells existing at a lower concentra-

tion [49, 50]; these are hypothesized to correspond to tumour cell concentrations

of 80% and 16% of the maximum concentration (K), respectively [115]. The third

pre-treatment MRI scan taken at a later time point is then used to calculate the

velocity of tumour radius expansion and Fisher’s approximation, namely that the

speed of front propagation tends asymptotically to 2
√
ρD, is utilized to obtain

individual values of the parameters.

The model parameters, ρ and D, have been shown to be significantly associ-

ated with prognosis [130] and, using the PI model, Swanson et al. were able to

make accurate survival predictions for patients following a range of surgical inter-

ventions [116] and identify retrospectively whether a given patient’s tumour was

sensitive or resistant to radiotherapy [115]. Furthermore, Baldock et al. found

that a patient-specific metric of invasiveness derived from the PI model, given by

ρ/D, predicts the survival benefit of gross total resection for GBM patients [6] and

also the mutation status of the IDH1 gene in patients’ tumours [7]. More recently,

it has been shown that this patient-specific metric, ρ/D, also predicts overall sur-

vival following upfront radiotherapy with concurrent temozolomide [63].
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Another application of the PI model has led to the creation of the Days Gained

metric [73, 74]. By using the PI model to produce patient-specific simulations

of untreated tumour growth, sometimes termed an “untreated virtual control

(UVC)” [73], the “Days Gained” value is found as the difference in time between

the post-treatment MRI scan and the time at which the UVC is predicted to have

the same radius [4, 74]. This effectively compares the tumour size after treatment

to the expected size of the tumour as if it had been left untreated [73]; Fig. 1.4

illustrates how the Days Gained score relates to the UVC and actual tumour size

in a patient after receiving radiation therapy [74]. Unlike other response metrics,

such as the Response Evaluation Criteria in Solid Tumours (RECIST) [26] and

the Response Assessment in Neuro-Oncology (RANO)[132], Days Gained takes

into account the variability in patients’ tumour growth rates before treatment

by using the PI model to determine patient-specific tumour growth rates. This

enables the Days Gained metric to provide a more personalised assessment of

treatment response, which other response metrics fail to do [73]. For example,

a patient with a fast-growing glioblastoma that responds well to a therapy may

show a pre-treatment-to-post-treatment change in tumour size on MRI that is

similar to a patient with a slow-growing GBM that responds less well [73].

Figure 1.4: An illustration of the Days Gained score for a patient after receiving
radiation therapy. Image reproduced from [74].

Neal et al. [73] also found that, using the Days Gained metric, they were able

to distinguish true progression from pseudoprogression after radiation therapy;

pseudoprogression is a “post-treatment radiation effect” where brain cells injured

by the radiation cause a contrast-enhancing lesion to be visible on T1Gd MRI

that looks like the tumour has recurred when it hasn’t yet [84]. The Days Gained

metric was also found to be prognostic for overall survival and progression free

survival of glioblastoma patients [21, 74]. More recently, Days Gained has re-
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portedly been shown to discriminate survival in patients receiving bevacizumab

[21, 100], an anti-angiogenic drug, and gamma knife radiotherapy [21, 101], a

treatment that enables clinicians to deliver intense radiation doses to a target

area without damaging the surrounding tissue. Due to these results and the ease

of use of the Days Gained metric, it is hoped that Days Gained scores will be used

in a clinical setting in the future and help aid oncologists with clinical decision

making [21].

1.2.2 The PIRT and PIHNA Models

Further to the PI model, Swanson’s group have also published the PIRT

(Proliferation-Invasion-Radiation-Therapy) and PIHNA (Proliferation-Invasion-

Hypoxia-Necrosis-Angiogenesis) models of glioblastoma growth. The PIRT model

incorporates the effects of radiotherapy into the patient-specific PI model and was

used by Rockne et al. to predict radiation response in a cohort of patients with

high accuracy [93]. Meanwhile, Corwin et al. used the PIRT model along with an

multi-objective evolutionary algorithm to generate an optimized “patient-specific,

biologically-guided” radiotherapy dose plan [19]. Upon comparison of this opti-

mized dose plan with the standard of care, they demonstrated the potential to

reduce the dose delivered to healthy brain tissue and produce a significant im-

provement in Days Gained scores for simulated tumour growths with treatment

responses [19, 89].

The PIHNA model is an extension of the PI model that incorporates other

micro-environmental factors, such as diffusible angiogenic factors, and multiple

cell-type compartments, i.e. hypoxic, normoxic and necrotic cells. It was pro-

posed with the aim of quantifying the role of angiogenesis in the progression of

low-grade gliomas to high-grade, i.e. glioblastomas [122]. Swanson et al. found

that the model described patterns of glioma growth dynamics visualised through

MR imaging well and that the accumulation of genetic mutations in glioma cells

were not necessary for progression from low- to high-grade [122]. A drawback of

this more complex model, however, is the lack of patient-specificity due to the

increased number of model parameters [122]. In spite of this, Gu et al. were

able to produce patient-specific predictions of hypoxia throughout the tumour

micro-environment by simulating FMISO-PET images, a type of imaging used to

assess regions of low oxygen levels [35]; Fig. 1.5 shows a patient’s FSIMO-PET

image compared to the simulated version using the PIHNA model’s prediction of

hypoxia distribution [35].
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Figure 1.5: Patient FMISO-PET image compared with a simulated image using
hypoxia regions predicted by the PIHNA model. Image reproduced from [35].

1.2.3 Other Patient-Specific GBM Modelling

Although all of the patient-specific glioblastoma modelling discussed so far has

been published by Kristin Swanson and the Mathematical NeuroOncology Lab

and collaborators, others are focussing their research on this area of modelling as

well. A recent paper by Swan et al. [114] saw the application of the anisotropic

diffusion model of Painter and Hillen [76] to a cohort of 10 glioma patients. This

model is similar to the PI model, but, instead of considering isotropic diffusion

(as in [116]), the authors derive patient specific anisotropic diffusion tensors in-

formed by patient diffusion tensor images (DTIs) [114] to account for the known

preferential migration of glioma cells along white matter tracts [86], the matter

found deep in the brain that contains nerve fibres. By comparing Jaccard in-

dices that measure the similarity between each of the patient-specific simulated

tumour shapes (from the Painter and Hillen model and the PI model) and the

shape of the actual tumour, it was found that incorporating anisotropic diffu-

sion provided a slight improvement, but for patients with low anisotropy, the two

models produced similar results as expected [114].

A model of glioma growth with anisotropic diffusion was also proposed by

Jbabdi et al. [46], however only DTI data from a healthy individual was used

so the diffusion tensor image derived didn’t represent individual patients’ brain

architectures. Further to this, Patel and Hathout published a model that incor-

porated anisotropic diffusion and necrosis into a model of glioblastoma growth

[86]; the diffusion tensor used was that derived by Jbabdi et al. [46] but scaled so

the mean matches the patient-specific diffusion coefficient derived by Swanson et

al. for the PI model in [116, 118]. The necrosis threshold and necrosis rate they

use are defined from patient MRI scans based on the width of the enhancing rim

of tumour surrounding the necrotic region [86]—a common feature of GBMs ob-
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served on contrast enhanced T1 weighted MRIs—although it is not clear exactly

how they assign these values. Using a mutual information metric, they conclude

that their model produced improved simulated tumour progression profiles over

previous models by Jbabdi et al. [46], which includes only anisotropic diffusion

(with no necrosis), and the model by Woodward et al. [133] which includes neither

anisotropic diffusion nor necrosis.

Another approach that utilises the width of the enhancing rim of tumour

surrounding the necrotic region with the aim of personalising a mathematical

model of GBM growth is by Pérez-Beteta et al. [88]. Their model consists of

two coupled PDEs that reduce to the PI model [115] at tumour cell densities

below a threshold and above which cell death is induced and necrosis forms [88].

They found that the enhancing rim width correlated negatively with survival,

consistent with other studies. In their in silico investigations they find that the

rim width correlates with tumour growth speed and hypothesize that the growth

speed can be obtained by calculating the enhancing rim width from pre-treatment

T1 weighted MRI scans of patients with GBM [88].

Hormuth et al. [38] also used multiple MRI scans to calibrate a family of

reaction-diffusion models of high-grade glioma growth. In their work, they cali-

brated model parameters using imaging data for nine patients and used these to

forecast spatially-mapped individual tumour response to chemo- and radiation-

therapy at future imaging visits. They found that a novel two-species model

describing the enhancing and non-enhancing tumour regions balanced model fit

and complexity the best. This model was then used to predict future tumour

growth and response at visits 3 and 5 months after radiotherapy, where they

were able to predict the enhancing tumour volume with a low error at 3 months

post-treatment.

1.2.4 Models of tumour heterogeneity and adaptive

therapies

While models such as the PIHNA model [122] incorporate a form of tumour cell

heterogeneity into the model formulation through considering populations of hy-

poxic, normoxic and necrotic cells, for example, they do not consider distinct

sub-populations of cells with different phenotypes. Several modelling attempts

have been made over recent years in order to capture the effects of intra-tumoural

heterogeneity in glioblastoma on its growth and invasion dynamics and responses

to therapy. For example, in order to explore the impact of clonal heterogeneity
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on patterns of glioma growth, a 3D multi-scale agent-based model was proposed

by Zhang et al. [135]. Incorporated in their model is a simple tumour progression

pathway that leads to the emergence of 5 distinct tumour cell clones, each with

different densities of EGFR (epidermal growth factor receptor) per cell. Addition-

ally, they allow micro-environmental conditions to lead to different phenotypes

of the clones, migratory, proliferative, apoptotic and quiescent, with the clone

phenotype being determined by an EGFR gene-protein interaction [3]. Their re-

sults demonstrated that higher EGFR expression leads to faster expansion of the

tumour region harbouring more aggressive cells due to a temporary competitive

advantage, leading to asymmetric growth patterns similar to those observed clin-

ically [3, 135]; Fig. 1.6 shows tumour cell clones migrating towards the nutrient

source at different rates.

Figure 1.6: Snapshots of the simulated tumour growth, using the 3D multi-scale
model proposed by Zhang et al. [135], at three different time points shows the
tumour expanding and cells migrating towards the nutrient source (red circle).
Each of the five colours green, blue, yellow, purple and red represent a different
tumour cell clone. The light and dark grey colours represent cells in the quiescent
and apoptosis states, respectively. Image reproduced from [135].

Frieboes et al. [29] proposed a 3D multi-scale model of tumour growth that

incorporated several aspects of the tumour environment and two distinct tumour

cell sub-populations; an original population and a mutated one. They explored

the effects of different phenotypes of the mutated tumour cell population on the

patterns of tumour growth. They found that an aggressive phenotype, charac-

terised through increased substrate uptake and proliferation, led to the mutated

cell population forming a ring surrounding the original tumour cell population
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and a necrotic region. They also found that heterogeneity of oxygen, cell nutri-

ents, and metabolites in the tumour microenvironment led to increased tumour

instability leading to increased infiltration of surrounding healthy tissue. While

not specifically modelling GBM tumours, this approach provides an interesting

insight into possible links between heterogeneity in the tumour sub-populations

and the tumour microenvironment with clinically observed tumour growth and

invasion.

Whilst more understanding of intra-tumoural genetic heterogeneity in GBMs

is needed, it is hoped that patterns of heterogeneity may be identified in the

future and used to determine appropriate multi-modal therapeutic strategies on

an individualised basis [108]. Several in silico mathematical modelling studies

have explored what such a therapeutic strategy may look like. For example,

Cunningham et al. [20] propose an experimental evolutionary therapy, which

involves administering two therapies sequentially, with the idea being this will

cause tumour cells to acquire specific adaptations leaving them vulnerable to the

second therapy [20]. Another study used a model of two tumour cell populations,

one drug-sensitive and the other resistant, to explore the effects of competition for

space during adaptive therapy [110]. Using their model, Strobl et al. were able

to visualise and quantify how treatment breaks during adaptive therapy increase

the competitive inhibition of resistant cells. In particular, they examined how

the spatial distribution of resistant and sensitive cells impacted the success of the

adaptive therapy, where they found that it was most effective when resistant cells

were clustered in a single location and surrounded by sensitive cells. They found

that this was because inter-specific competition could be leveraged at the edge

of the resistant colony to intra-specific competition between resistant cells at the

core could be maximised [110]. Whilst these studies use in silico mathematical

modelling, they serve as an example of how improved knowledge of intra-tumour

heterogeneity has the potential to lead to improved GBM survival times through

the development of novel approaches to treatment.

As mentioned previously, the approaches to modelling GBM mentioned here

are just a few of the many works published and more comprehensive reviews are

given in [3], [61] and [89]. However, it is clear from this brief overview that mathe-

matical modelling has helped to provide some useful insights into the mechanisms

underlying the complex disease that is glioblastoma. It is hoped that further

modelling work will continue to bring together understanding behind clinical and

experimental observations of GBMs and help to identify novel therapy targets

[3], with the ultimate goal of finding an effective treatment for this disease.
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1.3 Thesis overview and structure

As stated previously, if EGFR and PDGFRA amplified sub-populations are in-

deed interacting in GBMs, this will have implications for therapies targeting these

cells and so it is important to gain more understanding of the nature of any in-

teractions. The goal of this work, therefore, is to use mathematical modelling

and inference to characterise the dynamics of these amplified sub-populations in

GBMs and gain understanding of any interactions between them.

To this end, in Chapter 2, we present a novel mathematical model describing

the growth of three distinct tumour cell sub-populations in GBMs; these are a

population amplified in the EGFR gene, another amplified in the PDGFRA gene

and a third sub-population amplified in neither gene. In our model, the two gene-

amplified sub-populations interact with one another and we discuss the various

different types of interactions that can occur. We then present a derivation of the

terms in our model that describe the ability of each cell type to invade and discuss

other approaches to modelling the invasion of GBM cell populations. Finally, we

explore the dynamics of the model through conducting a phase plane analysis

and studying the existence of travelling wave solutions.

In Chapter 3, we present information from image-localized biopsies that pro-

vides insight into the distribution and co-occurrence of EGFR and PDGFRA

amplified sub-populations throughout GBM tumours in an initial cohort of pa-

tients. Using our mathematical model of interacting GBM sub-populations, we

investigate the effects of different interaction assumptions, namely cooperative,

competitive and neutral (no) interactions, on the population level occurrence of

EGFR and PDGFRA amplified cells in silico. We study population levels found

across the image-localized biopsy data from a cohort of patients and compare this

to model outputs under these different interaction assumptions. We explore addi-

tional factors affecting the patterns observed in our simulations, such as selection

advantages and phylogenetic ordering of mutations, which may also contribute to

the levels of EGFR and PDGFRA amplified populations observed in biopsy data.

Finally, we conduct a sensitivity analysis of our model and discuss our results and

the insight they provide into the evolution of these biologically complex tumours.

We begin Chapter 4 by expanding the image-localised biopsy dataset to in-

clude data from additional patients and discussing the data in further detail. We

provide a patient example, illustrating the heterogeneity in amplification of the

EGFR and PDGFRA genes throughout this individual’s tumour and present a

summary of the dataset. We then discuss the need to introduce stochasticity

into our model formulation, in order to reflect the variation in amplification lev-
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els of EGFR and PDGFRA observed across the patient dataset. We do this by

assuming that a subset of the model parameters have an associated probability

distribution and explore the effect that this has on the variety of amplification

patterns observed in a simulated cohort of GBMs. Following on from this, we

create synthetic datasets and test whether we are able to infer the true model

parameters and discuss a number of challenges relating to this. Finally, we in-

fer the model parameters for the patient dataset in the hope that this will shed

some light on the type of interactions occurring between EGFR and PDGFRA

amplified sub-populations in GBMs and we discuss the possible implications of

our findings.

The conclusions drawn from these investigations are summarised in Chapter

5, where we discuss the main findings of this work and suggest directions for

future investigations.



Chapter 2

Modelling glioblastomas with

multiple interacting

sub-populations

This chapter begins by presenting a novel model of interacting sub-populations

in glioblastomas. We briefly discuss different approaches to modelling the inva-

sion of multiple GBM cell sub-populations, before presenting the derivation of

the movement term included in our model. Following on from this, we study

the spatially homogenous steady states of the model and present a phase plane

analysis, before studying travelling wave solutions to the model.

2.1 AModel of Interacting EGFR and PDGFRA

amplified sub-populations in Glioblastomas

Over recent years numerous different approaches have been taken to modelling

the growth of GBM; such approaches include multiscale, lattice-based or stochas-

tic models, with each having a focus on capturing particular properties of these

complex tumours; a recent comprehensive review of mathematical approaches to

modelling GBMs is given by Alfonso et al. in [3]. The approach we follow here,

however, is inspired by the “Proliferation-Invasion” (PI) model, which takes the

form of the well-known Fisher-KPP equation [115, 116, 117, 119, 120, 121]. The

PI model is a minimal model of glioblastoma growth based on the simplified def-

inition of cancer as “uncontrolled proliferation of cells with the ability to invade”

[115]; two phenomena that GBMs are well-known to exhibit aggressively. The

real power of the PI model lies in its simplicity as model parameters can be esti-

19
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mated from patient MRI scans, allowing patient-specific predictions to be made

and inform clinical practice [6, 45, 116, 130]. For this reason, we choose to adopt

a similar minimal approach to modelling the growth of EGFR and PDGFRA

amplified sub-populations in GBMs.

Our model, therefore, takes the form of an extended PI model to account for

the growth of three genetically-distinct sub-populations defined as tumour cells

with the genes encoding for EGFR (E), PDGFRA (P ) and neither (N) protein

amplified. The model is given by:

∂E

∂t
=∇ ·

(
DE

(
1− P +N

K

)
∇E +DE

E

K
(∇P +∇N)

)
+ fE(E,P,N), (2.1)

∂P

∂t
=∇ ·

(
DP

(
1− E +N

K

)
∇P +DP

P

K
(∇E +∇N)

)
+ fP (E,P,N), (2.2)
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(
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(
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K

)
∇N +DN

N

K
(∇E +∇P )

)
+ fN(E,P,N). (2.3)

We consider this model on a one-dimensional cartesian domain, x ∈ [0, L],

with zero flux boundary conditions at x = 0, L, and the initial conditions given

by,

E(x, 0) = E0(x), P (x, 0) = P0(x) and N(x, 0) = N0(x), (2.4)

whereE, P andN are the concentrations of each of the tumour cell sub-populations

(cells/mm3) and E0, P0 and N0 are suitable functions defining their spatial dis-

tributions at time t = 0.

Similarly to the PI model, our model essentially consists of two terms to model

the evolution of each cell sub-population. One of these models the uncontrolled

proliferation of each tumour cell sub-population, given by the terms fE, fP and

fN , which take the form:

fE(E,P,N) =ρEE

(
1 + αPE

P

K

)(
1− E + P +N

K

)
, (2.5)

fP (E,P,N) =ρPP

(
1 + αEP

E

K

)(
1− E + P +N

K

)
, (2.6)

fN(E,P,N) =ρNN

(
1− E + P +N

K

)
. (2.7)

These proliferative terms include a joint logistic growth factor, where we assume

there are plenty of other resources such as oxygen and nutrients available and

the proliferation of each population is limited only by the availability of space,

such that no net proliferation occurs once the maximum carrying capacity (K),
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defined as the maximum number of cells that can fill a given volume, is reached.

We derive an approximate value for K (as in [122]) by assuming that all sub-

populations have cells of the same size with a radius of 10µm, yielding a volume

of approximately 4.189 × 103µm3. Thus, we have a maximum carrying capacity

of

K =
1 cell

4.189× 103µm3

(
103µm

1mm

)3

= 2.39× 105
cells

mm3
. (2.8)

The other factors in the above proliferation terms can be thought of as mod-

ified net proliferation rates, where the parameters ρE, ρP and ρN represent the

intrinsic net proliferation rates of each population (1/year). The parameters αEP

and αPE measure the effect of sub-population E on sub-population P and vice

versa. For example, if αEP > 0 in Eq. (2.6), then the presence of the EGFR

amplified (EGFRamp) population, E, promotes proliferation of the PDGFRA

amplified (PDGFRAamp) population, P ; this could be due to secretion of a

growth factor that PDGFRAamp cells are sensitive to, for example. Alterna-

tively, if αEP < 0, then the net proliferation of PDGFRAamp cells reduces as

the density of the EGFRamp population increases and the PDGFRAamp cells

are negatively affected. Furthermore, if αEP = 0, then sub-population E has no

effect on the net proliferation of P . The parameter αPE is defined analogously

and we note that if both αEP and αPE are zero, then there are no additional

interactions between the two populations, only competition for space. We define

the types of interactions that can occur between EGFR and PDGFR amplified

sub-populations in our model and summarise them in Table 2.1.

Table 2.1: The definitions of interactions that can occur between sub-populations
E and P in our mathematical model as determined by the signs of αEP and αPE.

αEP αPE Interaction Type
0 0 Neutralism

< 0 0 Amensalism: E negatively affects P
0 < 0 Amensalism: P negatively affects E

< 0 < 0 Competition
> 0 0 Commensalism: E positively affects P
0 > 0 Commensalism: P positively affects E

> 0 > 0 Cooperation
> 0 < 0 Parasitism: of P on E
< 0 > 0 Parasitism: of E on P

Meanwhile, the remaining term on the right hand side of Eq.s (2.1)-(2.3)

models the ability of each cell type to invade. Each of these terms model the net

migration of each population as a form of diffusion, where the parameters DE,
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DP and DN represent their diffusion coefficients (mm2/year). This non-linear

form of diffusion is termed cross-diffusion and is characterised by a gradient of

one population inducing a flux of the other [59]. We choose to incorporate this

form of diffusion in our model since we expect the migration of tumour cell sub-

populations to be affected by the presence of other tumour cells and we derive

these terms following the volume-filling approach of Painter and Hillen [78] in

Section 2.2.1. This approach is based on the assumption that a finite number of

cells, the maximum carrying capacity (K), can fill a given volume and cells will

continue to fill that space until this capacity is reached; we assume this number of

cells, K, to be the same for each of the cell populations E, P and N , as previously

derived.

Before moving on, we observe briefly that under the assumption that the

EGFR and PDGFRA amplified sub-populations do not interact with one an-

other, i.e. αEP = αPE = 0, and all three sub-populations diffuse and proliferate

at the same rates, i.e. DE = DP = DN and ρE = ρP = ρN , then the system

can be reduced to a single equation governing the total population of tumour

cells, T = E + P + N ; this equation is the well-known, clinically significant

Proliferation-Invasion (PI) model that describes the evolution of a single homo-

geneous population of GBM tumour cells mentioned at the start of this section.

Therefore, we note that our model is consistent with the PI model when used to

model a single homogeneous population T .

In the following section, we discuss some alternative approaches to modelling

the migration and invasion of multiple GBM tumour cell sub-populations, before

proceeding to present the derivation of the cross-diffusion terms that arise in our

model, given by Eq.s (2.1)-(2.3).

2.2 Modelling the invasion of GBM cell popu-

lations

Over recent years, many mathematical models have been proposed in an attempt

to replicate patterns of GBM invasion observed in vivo and in vitro. In a re-

cent review by Alfonso et al. [3], a wide variety of such models are discussed,

taking a range of forms including cellular automaton, lattice-gas cellular automa-

ton, cellular Potts models, partial differential equations, agent-based models and

evolutionary game theory models; a list of relevant references can be found in

[3]. Here, however, we focus on partial differential equation (PDE) models, as we

wish to focus our attention on extending the patient-specific PI model framework
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in this and future work.

Within the class of PDE models, several different approaches to modelling

the spread of GBMs have been published. Perhaps the most well-known of these

is the PI model by Swanson et al. [115, 116, 117, 118, 120, 121]. The PI model

consists of a single equation governing the evolution of the tumour cell population,

u, given by
∂u

∂t
= ∇ · (D∇u) + ρu

(
1− u

K

)
; (2.9)

a more in depth discussion of this model and its clinical relevance can be found in

Section 1.2.1. We highlight here, however, the term modelling the net migration

of the tumour cells, that is ∇·(D∇u). This term models the movement of cells as

isotropic diffusion, where the parameterD is either a constant diffusion coefficient

[115, 116, 118] or is assigned different values in grey and white matter, allowing

for a greater motility coefficient in the white matter of the brain, as observed

biologically [117, 119, 120, 121]. In spite of the relative simplicity of the PI

model, the patient-specific image driven nature of Swanson et al.’s approach has

led to it being found to be prognostically significant in several instances [6, 45, 74].

Adding to this work, several groups have modelled cell migration as anisotropic

diffusion by incorporating a diffusion tensor in their models to account for the

preferential migration of tumour cells along white matter tracts [46, 76, 114]. A

diffusion tensor image (DTI) can be used to map white matter tracts throughout

the brain, since water molecules can move more freely along these fibres com-

pared to perpendicular movement [2, 47, 114]. To this end, Jbabdi et al. [46]

derive a diffusion tensor from a DTI scan of a healthy individual and model the

migration of cells using a “Fickian” form of diffusion, i.e. ∇ · (D∇u), where D

is a three-dimensional diffusion tensor, and the results were compared visually

to real gliomas. Swan et al. [114] note, on the other hand, that the relation be-

tween the diffusion tensor and DTI data is not well justified in this work, along

with others taking a similar approach [18, 52, 69]; in their work [46], Jbabdi et

al. artificially increase the anisotropy of the DTI data by some unknown factor

and it is also unclear how the measured water diffusion tensors are scaled to cell

movement anisotropies. Alternatively, Swan et al. adopt a cell-based approach to

connect the DTI to an effective tumour diffusion tensor D developed by Painter

and Hillen [76]. The model of cell movement the authors use takes the form of the

less well known “Fokker-Planck” diffusion, ∇∇ : (Du), where the colon denotes
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the contraction of two tensors [114], given by

∇∇ : (Du) =
n∑

i=1

n∑
j=1

∂

∂xi

∂

∂xj

(Diju). (2.10)

This form of diffusion has been derived in other biologically relevant contexts

[76, 109] and we observe that upon expansion,

∇∇ : (Du) = ∇ · (D∇u) +∇ · ((∇TD)u),

we obtain a Fickian diffusion term plus advection. The advective term in this

model directs cell movement according to the spatially varying anisotropy, given

by D, which results in increased migration of cells in the direction of white matter

tracts, while slowing invasion in orthogonal directions [76]. The authors proceed

to compare simulations using their anisotropic model to those produced using the

PI model and found that in nine out of ten cases their model provided a better

fit [114].

While the models discussed here all describe the spatial and temporal evolu-

tion of a single population of tumour cells, GBMs are known to consist of multiple

genetically and phenotypically distinct subclones [82] and the question of how to

model a population comprised of multiple distinct sub-populations remains. It

may be reasonable to assume movement is independent of other cells if the pop-

ulations are highly dispersed, for an example see reference [96]. On the other

hand, for denser tissues, such as GBMs, contacts between cells of different popu-

lations are likely and they may compete with one another for space and resources

or perhaps form a mutualistic or cooperative relationship. The nature of these

interactions are modelled through reaction terms in our work and will be inves-

tigated in Chapters 3 and 4; we ask here, however, how simply the presence of

other tumour sub-populations may affect how a given sub-population migrates

and discuss some approaches to modelling this using PDEs.

In the PIHNA model, which was discussed briefly in Section 1.2.2, Swanson

et al. [122] incorporate three distinct glioma cellular compartments (normoxic,

hypoxic, and necrotic), along with a vascular compartment and diffusible angio-

genic factors. In this model it is assumed that cells migrate by a Fickian form of

diffusion, but also compete with other neighbouring cells for space; this is mod-

elled by introducing a density-dependent diffusion coefficient, which effectively

decreases to zero as the total cell density approaches some finite carrying capac-

ity. Papadogiorgaki et al. [79] use this same form of diffusion in their model of
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glioma invasion, which is an extension to the PIHNA model to include an extra

compartment for hypoglycemic cells.

An alternative form of model of GBM growth, termed “reaction-cross-diffusion

systems” [15], are characterised by a gradient of one population inducing a flux

of the other. An example of such a model was derived by Gerlee et al. [32, 33]

to analyse effects of the “go-or-grow” hypothesis on macroscopic tumour growth;

this hypothesis says that glioma cells have the ability to switch between prolifer-

ative and migratory phenotypes in response to micro-environmental changes and

local cell density [3]. The authors first propose an individual-based stochastic

model, in which cells are either in proliferative or migratory states, and pro-

ceed to derive a continuum approximation in the form of a coupled system of

reaction-cross-diffusion equations for the two species, given by

∂p

∂t
=Dα(1− p−m)

∂2p

∂x2
+ αp(1− p−m)− (qm + µ)p+ qpm, (2.11)

∂m

∂t
=Dν

(
(1− p)

∂2m

∂x2
+m

∂2p

∂x2

)
− (qp + µ)m+ qmp, (2.12)

where p(x, t) and m(x, t) denote the densities of proliferating and migratory cells,

respectively. In this model, p cells proliferate at the rate α and the diffusion

coefficient Dα = α/2 captures tumour expansion driven by this proliferation.

Meanwhile, the diffusion coefficient, Dν , comes from the random movement of

the migratory, m, cells. The parameter µ represents the rate at which all tumour

cells die through apoptosis and qp is the rate at which m cells switch to become

p cells and qm is defined analogously.

The resulting migration terms in this model differ somewhat between the two

phenotypes of cells; the proliferative cells diffuse with some density dependence,

whereas the movement of migratory cells is dependent on the second derivative of

both species [32], which is typically found in two species size exclusion processes

[14]. This model has been found to admit travelling wave solutions, which have

been analysed in detail in [33].

Such cross-diffusion systems have also arisen outside the field of GBM mod-

elling in the context of chemotaxis models [77] and can be derived using the

volume-filling approach detailed by Painter and Hillen [78], which we now demon-

strate by deriving a model of multiple interacting sub-populations.
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2.2.1 Derivation of a Multiple Species Cross-Diffusion

Model

In this section, the derivation of a cross-diffusion model is presented. This model

is derived based on the volume-filling approach of Painter and Hillen [78], which

assumes that cells move based on the space available for them to move into

and will continue to do so until the space becomes “full” and cells are tightly

packed. Unlike most tissues that have closely regulated cell densities to prevent

cells becoming tightly packed and the resulting depletion of resources and regions

of necrosis (dead tissue), GBMs are characterised by such regions of high cell

density and a necrotic tumour core [17]. Thus, in order to allow such tight cell

packing to occur in our model of GBM evolution, we choose to derive the invasion

terms in our model (Eq.s (2.1)-(2.3)) based on this volume-filling approach.

The derivation presented here also uses the approach of Othmer and Stevens

[109], wherein a continuous-time discrete-space master equation is considered

before arriving at a system of partial differential equations, upon reinterpreting

space as a continuous variable. We note that both the approaches of Painter

and Hillen [78] and Othmer and Stevens [109] are presented in the context of

chemotaxis modelling, however we neglect chemotaxis terms in this case. We also

neglect reaction and proliferation terms for simplicity, i.e. fE = fP = fN = 0,

and present the derivation in one spatial dimension, with the result being easily

extended to include higher dimensions.

We begin by assuming that the tissue is composed of three different cell types,

E, P and N , defined on a 1D lattice with uniform spacing h. We define Ei(t)

to be the density of cell type E at lattice point i at time t and define Pi(t)

and Ni(t) similarly. We assume that cell movement occurs by individuals moving

freely into neighbouring unoccupied space and that the change in cell density at a

lattice point i, therefore, evolves according to the continuous-time discrete-space

equation given by,

∂Ei

∂t
= T +

i−1,EEi−1 + T −
i+1,EEi+1 − (T +

i,E + T −
i,E)Ei. (2.13)

In the above equation, the T ±
i,E define the transition probabilities per unit time of

a one-step jump of type E cells to lattice point i ± 1. We make the assumption

that the three cell types, E, P and N , move in the same way and obtain analogous

expressions that govern populations P and N .

At this stage, the form of the transition probabilities plays an important role

in the type of equation that we proceed to derive. In previous work by Painter &
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Hillen [78], the authors assume that cells move chemo-sensitively and, therefore,

that the transition probabilities depend on the gradient of an external chemotac-

tic gradient, leading to the derivation of the “classical chemotaxis model” as in

previous work by Patlak [87] and Keller & Segel [48]. In [78], the authors then

proceed to derive a chemotaxis model for a single population of cells whilst incor-

porating volume-filling effects. This is the approach we follow here, however we

neglect chemo-sensitive movement and include two additional cell populations.

Therefore, we choose the transition probabilities to be of the form

T ±
i,E = αq(Ei±1, Pi±1, Ni±1), (2.14)

where q(·) is the probability of cells finding space at their neighbouring locations

and α is some constant. We note that in this instance we assume the probabilities

depend only on the space jumped to and not the starting point; an example of

some work where different assumptions on the form of the transitional probabili-

ties are used is discussed later in this section. We also assume that the transition

probabilities for populations E and P take the same form, but that the rate at

which the transitions take place may differ between the populations. Thus, we

assume T ±
i,P = βT ±

i,E and T ±
i,N = γT ±

i,E, where β and γ are some constants.

Assuming that there exists a finite number, K, of cells which can occupy each

lattice site, we require q to satisfy the following conditions:

q(E,P,N) = 0, when E + P +N = K (2.15)

and

q(E,P,N) ≥ 0, for all (E,P,N) such that 0 ≤ E + P +N ≤ K. (2.16)

Next, substituting expression (2.14) into Eq. (2.13) and rearranging yields the

continuous-time discrete-space master equation governing population E given by

∂Ei

∂t
= αq(Ei, Pi, Ni)Ei−1 + αq(Ei, Pi, Ni)Ei+1

− α(q(Ei+1, Pi+1, Ni+1) + q(Ei−1, Pi−1, Ni−1))Ei

= αq(Ei, Pi, Ni)(Ei+1 − 2Ei + Ei−1)− αEi(q(Ei+1, Pi+1, Ni+1)

− 2q(Ei, Pi, Ni) + q(Ei−1, Pi−1, Ni−1))

(2.17)

and we obtain analogous expressions for the P and N populations of cells.

Defining x = ih and reinterpreting x as a continuous variable, we use Taylor’s
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Theorem to expand the terms inside each of the brackets on the right hand side

(RHS) of Eq. (2.17), to find that

q(Ei+1, Pi+1, Ni+1)−2q(Ei, Pi, Ni)+q(Ei−1, Pi−1, Ni−1) = h2∂
2q(Ei, Pi, Ni)

∂x2
+O(h4)

(2.18)

and

Ei+1 − 2Ei + Ei−1 = h2∂
2Ei

∂x2
+O(h4). (2.19)

As we change the spatial scale, h, the probability of jumping to a neighbouring

location should also depend on that scale and we assume, therefore, that they

satisfy

T ±
h =

µ

h2
T ±,

for each population, where µ is a scaling constant. In this way,

T ±
h,E,i =

µα

h2
q(Ei, Pi, Ni)

and upon updating the master equation accordingly, substituting in the above

expressions and taking the limit as h→ 0, we find that

∂E

∂t
= DEq

∂2E

∂x2
−DEE

∂2q

∂x2
, (2.20)

assuming that µα = DE. Following the same process for the P and N populations

of cells and assuming µαβ = DP and µαγ = DN , we find analogous governing

equations.

By carefully expanding the derivatives on the RHS of Eq. (2.20), it can be

written in divergence form as

∂E

∂t
=

∂

∂x

(
DEq

∂E

∂x
−DEE

(
qE

∂E

∂x
+ qP

∂P

∂x
+ qN

∂N

∂x

))
, (2.21)

where qE = ∂q/∂E and qP and qN are similarly defined. As mentioned previ-

ously, the derivation can easily be extended to two or three spatial dimensions by

assuming a von Neumann neighbourhood, i.e. cells can move to their four and six

nearest neighbours on square and cubic lattices, respectively. Thus, the general

volume-filling model can be written as
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∂E

∂t
= ∇ · (DEq∇E −DEE(qE∇E + qP∇P + qN∇N)) , (2.22)

∂P

∂t
= ∇ · (DP q∇P −DPP (qE∇E + qP∇P + qN∇N)) , (2.23)

∂N

∂t
= ∇ · (DNq∇N −DNN(qE∇E + qP∇P + qN∇N)) , (2.24)

where ∇ is the appropriate differential operator, e.g. ∇ = (∂/∂x, ∂/∂y) in two

spatial dimensions. We note that the derivation outlined above can be easily be

extended to account for M ∈ N distinct populations to obtain a system of M

coupled reaction-cross-diffusion equations, with the general form given by

∂uk

∂t
= ∇ ·

(
Dukq∇uk −Dukuk

M∑
j=1

quj∇uj

)
, for k = 1, ...,M, (2.25)

where ui and Dui denote the density and diffusion coefficient of sub-population

i, respectively, q = q(u1, ..., uM) and qui denotes the derivative of the function q

with respect to the variable ui.

Finally, it remains to choose a suitable form of q(·), the function defining

the probability of cells finding space at their neighbouring locations. In [78], the

authors discuss possible forms for this function, suggesting various linear and non-

linear options to incorporate various cellular processes. In this instance, however,

we choose q to be given by

q(E,P,N) = 1− E + P +N

K
, (2.26)

which simply states that the probability of a cell moving to a lattice point de-

creases linearly with the total density of cells at that point. We note that this

satisfies conditions (2.15) and (2.16) and, upon substituting into Eq.s (2.22)-

(2.24), we obtain the model equations:

∂E

∂t
= ∇ ·

(
DE

(
1− P +N

K

)
∇E +DE

E

K
(∇P +∇N)

)
, (2.27)

∂P

∂t
= ∇ ·

(
DP

(
1− E +N

K

)
∇P +DP

P

K
(∇E +∇N)

)
, (2.28)

∂N

∂t
= ∇ ·

(
DN

(
1− E + P

K

)
∇N +DN

N

K
(∇E +∇P )

)
. (2.29)

We mentioned previously that we wanted our model to take the form of an
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extended PI model for three populations of cells. While this derived movement

equation looks much more complicated than the type of movement modelled by

the PI model, that is Fickian diffusion, we note that in the analogous single

species model for cell population u1 (i.e. Eq. (2.25) with N = 1), choosing q to

be of an analogous linear form, that is

q(u1) = 1− u1

K
, (2.30)

yields the standard Fickian diffusion equation. Thus, the terms used to model

the invasion of tumour cells in our model provide a natural extension to the cell

movement term employed in the PI model in a three-species setting.

We note that other cross-diffusion models have also been proposed. Ostrander

[75] derived a cross-diffusion model for two interacting populations using a similar

approach to Painter and Hillen [78], but argued that the transition probabilities,

T ±
i,u and T ±

i,v, should depend on the desire of each species to leave a lattice point

i along with the favourableness of moving to the neighbouring point i± 1. Thus,

the transition probabilities used depend on the population densities at the lattice

point i as well as i±1 and do not satisfy the same conditions that we imposed on

the function q in our derivation, which was based on a volume-filling assumption.

The author also allowed the transition probabilities to be composed of different

functions for each species [75]; in the above derivation we assumed that the three

populations move in the same way and that the transition probabilities, therefore,

differ only by some scaling constant, that is T ±
i,v = βT ±

i,u. However, this could

easily be altered in our derivation if biological evidence becomes available to

suggest otherwise.

A second model incorporating cross-diffusion terms arose in a paper by Painter

[77], where a chemotaxis model describing a heterogeneous tissue comprising two

distinct populations of motile cells was derived. The aim of this work was to ex-

plore the capacity for differential chemotaxis to drive sorting/patterning of a het-

erogeneous tissue. The model derived in this paper consisted of a coupled system

of PDEs, which included cross-diffusion terms analogous to those derived in Eq.s

(2.27)–(2.29) as well as the relevant terms corresponding to chemotactic move-

ment. This model also included another term describing cell movement, which

arose by assuming cells not only move unimpeded into neighbouring unoccupied

space, but also by an “active” cell (i.e., one that pulls forward) displacing a “pas-

sive” cell (i.e., one that is pulled back) and moving into neighbouring occupied

space via a process of “location-swapping” [77]. Following this approach yields



2.3. Travelling waves in the model of interacting sub-populations 31

similar equations to those derived in Eq.s (2.27)–(2.29), but with an additional

term corresponding to the movement by cells “swapping locations”. This ap-

proach could be another suitable candidate to describe the movement of multiple

sub-populations in GBMs, however, it increases model complexity and introduces

more parameters that will need to be estimated. Thus, we leave the incorporation

of “location swapping” terms into our model as a consideration for future work.

2.3 Travelling waves in the model of interacting

sub-populations

We are interested in the patterns of invasion exhibited in glioblastomas and the

distribution of EGFR and PDGFRA amplified tumour sub-populations within

them; for example, whether they co-exist or occupy distinct tumour regions or

whether one cell-type is typically present at the invading front and the other in the

tumour core or both invade simultaneously. Therefore, in this section we study

the behaviour of our model in more detail and the effect that different types of

interactions between the amplified sub-populations has on the distributions and

patterns of co-occurrence of cell-types that we observe. We begin by presenting a

phase plane analysis, followed by studying the travelling waves exhibited by our

model.

2.3.1 Phase Plane Analysis

To find the spatially homogeneous steady states of the model, we set the functions

fE, fP and fN , defined by equations (2.5)-(2.7), equal to zero. Thus, we find the

following spatially homogeneous steady states:

(Ē, P̄ , N̄) = (0, 0, 0), (−K/αEP ,−K/αPE, 0), (K, 0, 0), (0, K, 0), (0, 0, K),

and the continuum of co-existence steady states (Ē, P̄ , N̄) = (E∗, P ∗, N∗), where

E∗ + P ∗ + N∗ = K and 0 < E∗, P ∗, N∗ < K. We note that the steady state

(Ē, P̄ , N̄) = (−K/αEP ,−K/αPE, 0) only exists and is biologically relevant when

populations E and P are interacting with one another with sufficiently strong

competition, that is αEP , αPE < 0 such that 1 + 1/αEP + 1/αPE ≥ 0, in order to

ensure the conditions E,P > 0 and E + P ≤ K are satisfied.

First we consider the special case where only the interacting EGFR and

PDGFRA amplified sub-populations are present by setting N ≡ 0 throughout
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the following analysis. We note that the steady states of the reduced system are

(Ē, P̄ ) = (0, 0), (−K/αEP ,−K/αPE), (K, 0), (0, K),

and a continuum of co-existence steady states (Ē, P̄ ) = (E∗, P ∗), where E∗+P ∗ =

K and 0 < E∗, P ∗ < K.

In this case, the Jacobian of the spatially homogeneous system is given by,

J(E,P ) =

 ∂fE
∂E

∂fE
∂P

∂fP
∂E

∂fP
∂P

 (2.31)

where,

∂fE
∂E

=ρE

(
1 + αPE

P

K

)(
1− 2E + P

K

)
, (2.32)

∂fE
∂P

=αPEρE
E

K

(
1− E + P

K

)
− ρE

E

K

(
1 + αPE

P

K

)
, (2.33)

∂fP
∂E

=αEPρP
P

K

(
1− E + P

K

)
− ρP

P

K

(
1 + αEP

E

K

)
, (2.34)

∂fP
∂P

=ρP

(
1 + αEP

E

K

)(
1− E + 2P

K

)
. (2.35)

The zero steady state, (Ē, P̄ ) = (0, 0), is unstable since the eigenvalues of matrix

(2.31) are λ1 = ρE and λ2 = ρP and ρE,P > 0. At the competition co-existence

steady state, (Ē, P̄ ) = (−K/αEP ,−K/αPE), we have

J(Ē, P̄ ) =

 0 −αPE
αEP

ρE

(
1 + 1

αEP
+ 1

αPE

)
−αEP
αPE

ρP

(
1 + 1

αEP
+ 1

αPE

)
0

 ,

with eigenvalues given by

λ1,2 = ±
√
ρEρP

(
1 +

1

αEP

+
1

αPE

)
. (2.36)

These are both real and of opposite sign, thus, the spatially homogeneous steady

state (Ē, P̄ ) = (−K/αEP ,−K/αPE) is a saddle node when it exists (i.e. αEP , αPE <

0 and 1 + 1/αEP + 1/αPE ≥ 0).

The remaining steady states, namely (Ē, P̄ ) = (0, K), (K,O) and (E∗, P ∗)

where E∗ + P ∗ = K and 0 < E∗, P ∗ < K, are all non-hyperbolic since the

Jacobian matrix (defined by (2.31)-(2.35)) has a zero eigenvalue in each case. For
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the two steady states where one population is extinct and the other is at carrying

capacity, (0, K) and (K, 0), these are λ1 = 0 and λ2 = −ρP or −ρE respectively.

These steady states each have a stable one dimensional manifold associated with

a negative real eigenvalue of the Jacobian. Meanwhile, the sign of the non-

identically-zero eigenvalue associated with the continuum of coexistence states,

(Ē, P̄ ) = (E∗, P ∗) where 0 < E∗, P ∗ < K, depends on the model parameters and

the values of E∗ and P ∗ and is given by

λ = −ρE
E∗

K

(
1 + αPE

P ∗

K

)
− ρP

P ∗

K

(
1 + αEP

E∗

K

)
. (2.37)

We note that this eigenvalue is real for each (E∗, P ∗) pair and may be positive

and, thus, unstable under certain parameter regimes where at least one of αEP

and αPE are negative; we note that such possible parameter regimes are limited

to the interaction types of amensalism, cooperation and parasitism, as defined in

Table 2.1.

Plots of the phase planes of the spatially homogeneous model given by

dE

dt
= fE and

dP

dt
= fP , (2.38)

where fE and fP are defined by (2.5) and (2.6), respectively, withN = 0 are shown

in Fig. 2.1 for example sets of parameters over the region of biologically relevant

solutions, that is 0 ≤ E,P ≤ K and E + P ≤ K so that only concentrations of

populations that are non-negative and do not exceed that carrying capacity are

considered. In each plot, the model parameters ρE, ρP and K are kept the same

and the parameters αEP and αPE are changed to illustrate how the phase space

plots change according to the type of interaction between populations E and

P . The interaction types shown are defined in Table 2.1 and are as follows: (a)

neutralism; (b) amensalism, where population E negatively affects population P ;

(c) competition; (d) commensalism, where E positively affects P ; (e) cooperation;

and, finally (f) parasitism of E on P . We note that not all of the interactions

given in Table 2.1 are shown in these plots since they are analogous to cases

already shown, e.g. amensalism where P negatively affects E is analogous to the

case where E negatively affects P . Trajectories of the model are also shown for

a range of initial conditions, E(0) = E0 and P (0) = P0.

We observe that the cases of neutralism, commensalism and cooperation in

Fig.s 2.1a, 2.1d and 2.1e look qualitatively similar, with the trajectories of popu-

lations E and P monotonically increasing until a steady state (E∗, P ∗) along the

line E∗ + P ∗ = K is reached. The position along this line and, thus, proportion
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1
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Figure 2.1: (See previous page for figure.) Plots showing E- and P -nullclines (blue
and red dashed lines, respectively) and trajectories (green curves) of the model
given by (2.38) (with N = 0) in E − P phase space under different interaction
types: (a) Neutralism, αEP = 0, αPE = 0; (b) Amensalism, αEP = −5, αPE = 0;
(c) Competition, αEP = −5, αPE = −5; (d) Commensalism, αEP = 5, αPE = 0;
(e) Cooperation, αEP = 5, αPE = 5; (e) Parasitism, αEP = −5, αPE = 5. Other
model parameters used are ρE = ρP = 15years−1 and K = 2.39× 105cells/mm3.
The initial conditions of the trajectories in each plot are: ∗ E0 = 0.6K, P0 =
0.1K; □□□ E0 = 0.4K, P0 = 0.55K; ⋄ E0 = 0.1K, P0 = 0.6K; ◦ E0 = 0.1K,
P0 = 0.1K; + E0 = 0.55K, P0 = 0.4K. Simulations were produced using a
Forward-Euler time stepping scheme for t = 0 to 2 years and a time-step of
0.0005 years.

of the populations E and P in the final state depend on the initial condition and

type of interaction used in that simulation. We note that the proliferation rates

ρE and ρP also affect this, but are kept constant in these examples; an example

where these parameters are varied will be provided later.

Unlike the previous three cases where the model trajectories monotonically

increase in E and P , this is not the case for the amensalism, competition and

parasitism interaction types. In each of these scenarios at least one of αEP and

αPE are negative resulting in regions of phase space where fE < 0, fP < 0 or

both. These regions are divided by nullclines, shown by the blue and red dashed

lines in Fig. 2.1. For example, in the amensalism case, the trajectories with initial

conditions ◦ and ⋄ begin with both E and P increasing in a region where both

fE, fP > 0 before crossing the P -nullcline into the region where the E population

is large enough so that fP becomes negative and P decreases. Furthermore,

we previously noted that in each of these interaction scenarios it is possible for

the non-zero eigenvalue, given by Eq. (2.37), associated with the continuum of

steady states (E∗, P ∗), such that E∗ + P ∗ = K, to be positive and therefore

unstable in that direction. We observe that there are regions where this is the

case and find that the eigenvalue is positive for 0.276K < E∗ < 0.724K and

0.053K < E∗ < 0.947 in the amensalism and competition examples given in Fig.s

2.1b and 2.1c, respectively.

Finally, we observe that the only trajectory where a steady state (E∗, P ∗)

with E∗ + P ∗ = K is not reached in these examples is in the competition case

with initial condition ◦, E0 = P0 = 0.1K; in this case we see that the tra-

jectory instead approaches the competition co-existence steady state, (Ē, P̄ ) =

(−K/αEP ,−K/αPE), along its stable manifold. This steady state is a saddle

node and when it exists, as it does in this example (since 1+1/αEP +1/αPE ≥ 0
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and both αEP and αPE are negative), a separatrix divides phase space into regions

separating different modes of behaviour of the dynamical system. Although the

separatrix is not explicitly shown in Fig. 2.1c, we can see the difference between

the trajectories initialised in different regions; for example, the trajectory with

initial condition + approaches a steady state with population E high and P low,

whereas the trajectory with □ initial condition approaches a steady state with the

opposite. A trajectory will only approach a saddle node following a path along

the separatrix, which we see is the case for the trajectory with initial condition ◦
in Fig. 2.1c. Separatrices are often difficult to find, but in this case can be found

easily.

To find the equation of the separatrix, we look for solutions to the model

that pass through the saddle node. We note that there are two solutions that

fulfill this criteria: those that travel along the stable manifold of the saddle

node, or the separatrix, towards the saddle node; and those that the travel away

from the saddle node along its unstable manifold. We know that the stable

manifold is tangent to the eigenvector, v1, associated with the negative eigenvalue

at the saddle node, while the unstable manifold is tangent to the eigenvector, v2,

associated with the positive eigenvalue. These are given by,

v1 =

 1
αPE
αEP

√
ρE
ρP


and

v2 =

 1

−αPE
αEP

√
ρE
ρP

 .

Therefore, we know that the separatrix will have a positive gradient at the

saddle node, whereas the gradient of the unstable manifold will be negative.

Dividing the first equation of system (2.38) by the second, we find

Ė

Ṗ
=

fE(E,P, 0)

fP (E,P, 0)

=
ρE(1 + αPEP/K)

ρE(1 + αEPE/K)
,

(2.39)

where Ė notation denotes differentiation with respect to t. Rearranging, we find

that

1

ρE

(
Ė

E
+

αEP

K
Ė

)
=

1

ρP

(
Ṗ

P
+

αPE

K
Ṗ

)
. (2.40)
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Integrating with respect to t and rearranging, we find that

1

ρE

(
lnE +

αEP

K
E
)
− 1

ρP

(
lnP +

αPE

K
P
)
= C, (2.41)

where C is a constant. For different values of C, this equation gives the trajecto-

ries of the system in E-P space and, since trajectories along the separatrix must

approach the saddle node, we can find the equation of the separatrix by requiring

that

lim
t→∞

E(t) =
−K
αEP

and lim
t→∞

P (t) =
−K
αPE

(2.42)

to find the value of C in Eq. 2.41 that corresponds to the separatrix. Thus, we

find the separatrix is given by,

1

ρE

(
ln

(
−αEPE

K

)
+

αEP

K
E + 1

)
− 1

ρP

(
ln

(
−αPEP

K

)
+

αPE

K
P + 1

)
= 0.

(2.43)

We note this equation is only defined when αEP and αPE are negative, which

corresponds to the competition case and the existence of the competition co-

existence state, (Ē, P̄ ) = (−K/αEP ,−K/αPE).

Figure 2.2 shows the phase portrait of the dynamical system with a com-

petitive interaction type for an example parameter set (as in Fig. 2.1c) with the

solution curves of Eq. (2.43) shown in light blue. From this we see that there

are, indeed two solution trajectories that pass through the saddle node given

by Eq. (2.43): one defining the separatrix which corresponds to the stable one-

dimensional manifold of the saddle node, along which solutions approach the

saddle node; and the other corresponding to the one-dimensional unstable mani-

fold, along which solutions move away from the saddle node. Since we know that

the separatrix has a positive gradient at the saddle node, from Fig. 2.2, we see

that the separatrix is the straight line E = P for this example set of parameters,

while the other pale blue curve given by solving Eq.(2.43) defines the unstable

manifold. It is also clear from the phase portrait which curve represents the sep-

aratrix (stable manifold) and which the unstable manifold, as we see trajectories

close to the separatrix moving towards the saddle node and then moving away as

they become close to the unstable manifold.

Showing the separatrix explicitly in Fig. 2.2 clearly divides phase space into

regions where trajectories behave differently; for example, the two trajectories

with initial conditions lying to the left of the separatrix (the straight line E = P

in this case), + and ∗, approach steady states with population E high and P

low, whereas those lying to the right, □ and ⋄, approach steady states with the
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Figure 2.2: Phase portrait of the model given by (2.38) (with N = 0) in E − P
phase space under a competition interaction type, αEP = −5 and αPE = −5
(as in Fig. 2.1c) with solutions to Eq.(2.43), defining the stable and unstable
manifolds, shown as light blue curves. All other information is the same as in
Fig. 2.1c.

opposite. Since the trajectory with initial condition ◦ lies on the separatrix, we

see this trajectory approaching the saddle node steady state along the separatrix,

as expected.

Fig. 2.2 shows the special case of a phase portrait with a competitive in-

teraction type where the parameters for each population are the same, that is

αEP = αPE and ρE = ρP . Since Eq. (2.43) defining the separatrix depends on

these parameters, the separatrix curve may change as we vary these parame-

ters, some examples of which are shown in Fig. 2.3. In the first two of these,

Fig.s 2.3a and 2.3b, the two populations have equal proliferation rates (ρE = ρP )

and different interaction parameters (αEP ̸= αPE). In this case, the straight line

E =
αPE

αEP

P (2.44)

solves Eq. (2.43) and defines the separatrix. Fig. 2.3a shows an example phase

portrait with a competitive interaction type where population P is more com-

petitive than population E, that is αPE < αEP < 0. In this example we see the

separatrix shift so that more trajectories reach a steady state with P high and E

low compared to when the competition parameters were equal, with four of the

five example trajectories shown (green curves) now approaching a steady state of

this type compared to only two out of five (see Figs 2.3a and 2.2, respectively).

Similarly, when the competitive ability of P is reduced so that αEP < αPE < 0,

we see in Fig. 2.3b that more trajectories approach steady states with E high and

P low. This intuitively makes sense, since we expect a higher competitive abil-
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(a) (b)

(c) (d)

Figure 2.3: Plots showing the separatrix and unstable manifold (light blue lines)
and example trajectories (green curves) of the model given by (2.38) (with N = 0)
in E − P phase space under a competition interaction type. In each plot ρE =
15years−1 and αEP = −5, while the competitiveness and proliferative ability of
population P is varied by changing the values of αPE and ρP . These take the
values (a) αPE = 2αEP and ρP = ρE, (b) αPE = αEP/2 and ρP = ρE, (c) αPE =
αEP and ρP = 3ρE, and (d) αPE = αEP and ρP = ρE/3. E- and P -nullclines are
shown (blue and red dashed lines, respectively). All other information used to
produce these plots are the same as in Fig. 2.1.

ity to be advantageous for a population over a less competitive one, resulting in

the system approaching a steady state comprising more of the more competitive

population.

It may also be reasonable to expect a higher proliferative ability to have a

similar effect, however in Figs 2.3c and 2.3d we see that in the competitive case

this is not necessarily the case. In these two examples the two populations are

both equally competitive (αPE and αEP both negative and equal to one another),
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while their relative proliferative ability is varied. Fig. 2.3c shows an example phase

portrait where ρP > ρE, that is population P has a proliferative advantage over

population E. In this case we see that only two of the five example trajectories

shown approach steady states with P high and E low, with the remaining three

approaching a steady state comprised mostly of population E. Of particular

interest from these is the trajectory with initial condition □. This trajectory

begins with a higher proportion of the more proliferative population P present

than the less proliferative population E, yet approaches a steady state comprised

of only population E. This may seem counter intuitive, but upon examining the

model equations (given by Eq.s (2.5), (2.6) (with N ≡ 0) and (2.38)) we see that

dE/dt and dP/dt are both negative when E and P are large enough (but still such

that E + P < K) in a competitive scenario due to the (1 + αEPE/K) and (1 +

αPEP/K) terms. Thus, increasing the proliferation rate of population P makes

dP/dt more negative in this instance so that this population decreases in size

at a faster rate and eventually results in E becoming the dominant population,

i.e. E comprises most of the final steady state of the system. We see a similar

effect occurring with the trajectory with initial condition + in Fig. 2.3d when

the proliferative ability of P is decreased so that E is the more proliferative

population. These two examples illustrate that a proliferative advantage is not

always advantageous for a tumour cell population and there are scenarios where

the less aggressive tumour cell population will become the dominant one.

We briefly note that, in general, Eq. (2.43) is not defined when E and P are

zero due to the logarithmic terms. However, we have seen that in the case where

the proliferation rates, ρE and ρP , are equal, then Eq. (2.43) is solved by the

straight line given by Eq. (2.44). Thus, the separatrix is exists when E = P = 0

in this instance. In the more general case when ρE ̸= ρP , this not true and the

separatrix is undefined at E = P = 0. From Fig.s 2.3c and 2.3d, however, we see

that through solving Eq. (2.43) using MatLab and plotting the solution close to

zero, the separatrix approaches the point (E,P ) = (0, 0).

Returning to the full system of equations with the non-amplified population

of tumour cells, N , present, we can conduct a stability analysis of the spatially

homogeneous steady states of the full model, given at the beginning of this section,

in the same way. In this case, the Jacobian of the spatially homogeneous system

is a 3× 3 matrix defined analogously to that given by the 2× 2 matrix (2.31) for

the case with only two populations present. The eigenvalues of this matrix are

calculated at each of the steady states to determine stability and are summarized

as follows:
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� (Ē, P̄ , N̄) = (0, 0, 0) is an unstable steady state, since all eigenvalues are

positive; λ1 = ρE, λ2 = ρP and λ3 = ρN .

� (Ē, P̄ , N̄) = (−K/αEP ,−K/αPE, 0) is an unstable steady state, with two

positive and one negative eigenvalues; λ1,2 = ±
√
ρEρP (1+1/αEP +1/αPE).

� (Ē, P̄ , N̄) = (K, 0, 0), (0, K, 0) and (0, 0, K) are non-hyperbolic steady

states with one negative eigenvalue, λ1 = −ρE, −ρP and −ρN , respectively,
and the other two equal to zero.

� The continuum of steady states (Ē, P̄ , N̄) = (E∗, P ∗, N∗), where E∗+P ∗+

N∗ = K and 0 < E∗, P ∗, N∗ < K have two zero eigenvalues and the third

is given by

λ3 = −ρE
E∗

K

(
1 + αPE

P ∗

K

)
− ρP

P ∗

K

(
1 + αEP

E∗

K

)
− ρN

N∗

K
.

This eigenvalue can be positive and, thus, a given steady state (E∗, P ∗, N∗)

can be unstable under certain parameter regimes where at least one of αEP

and αPE are negative.

Figure 2.4 shows example phase portraits of the spatially homogeneous three

population model for cooperative and competitive interaction types. In the co-

operative case, Fig. 2.4a, each population increases and all model trajectories

approach a steady state on the surface E + P + N = K comprised of differ-

ent proportions of each population depending on the initial conditions; this be-

haviour is similar to that observed in the two population case. In the competitive

example, Fig. 2.4b, all trajectories, again, approach a steady state on the sur-

face E + P + N = K. The trajectories with initial conditions ∗, ⋄ and ◦ each

begin with a high proportion of one population present and approach a steady

state comprised mostly of that same population. The other two trajectories be-

have slightly differently due to the competitive interactions. Recalling that the

separatrix is the line E = P when αEP = αPE < 0 and ρE = ρP in the ab-

sence of N cells and since E0 = P0 for the + and △ initial conditions, each

trajectory would move along the separatrix towards the competition co-existence

steady state ((Ē, P̄ ) = (−K/αEP ,−K/αPE)) if N0 = 0 as found previously (see

Fig. 2.2). Instead, N0 > 0 in this case so that as E and P approach −K/αEP

and −K/αPE, the N population increases, such that the system moves towards

a steady state comprising mostly N cells.

Thus, we find that the behaviour of the spatially homogeneous model when

non-amplified (N) tumour cells are present is similar to when this population is
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(a)

(b)

Figure 2.4: Phase portraits of the model given by dE/dt = fE, dP/dt = fP
and dN/dt = fN in E − P − N phase space under (a) cooperation (αEP =
αPE = 5) and (b) competition (αEP = αPE = −5) interaction types. In each
plot ρE = ρP = ρN = 15years−1. Model trajectories are plotted as green curves
with initial conditions: ∗ E0 = 0.6K, P0 = 0.1K, N0 = 0.1K; △ E0 = 0.48K,
P0 = 0.48K, N0 = 0.01K; ⋄ E0 = 0.1K, P0 = 0.6K, N0 = 0.1K; ◦ E0 = 0.1K,
P0 = 0.1K, N0 = 0.6K; + E0 = 0.05K, P0 = 0.05K, N0 = 0.05K. The
nullcine E + P +N = K is shown in cyan and the nullclines E = −K/αEP and
P = −K/αPE are shown (red and blue dashed lines, respectively) projected onto
the E−P plane. Simulations were produced using a Forward-Euler time stepping
scheme for t = 0 to 2 years and a time-step of 0.0005 years.

absent. This is because the non-amplified population of cells does not directly

interact with the two amplified populations, only passively through competition

for resources in the logistic growth term, whereas the more interesting model

dynamics arise through interactions between the E and P populations of cells.



2.3. Travelling waves in the model of interacting sub-populations 43

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Plots showing solutions to the model converging to a range of trav-
elling waves under different example parameter regimes on a one-dimensional
domain, x ∈ [0, 400]mm. In each plot DE = DP = DN = 20 mm2year−1

and ρP = ρN = 15 years−1, while the interaction types and proliferative abil-
ity of the E population were varied: (a) αEP = αPE = 0 (neutralism) and
ρE = 15 years−1; (b) αEP = 10, αPE = 2 (cooperation) and ρE = 15 years−1; (c)
αEP = −5, αPE = −2 (competition) and ρE = 15 years−1; (d) αEP = αPE = 0
and ρE = 16 years−1 (population E has a proliferative advantage over P and N
cells); (e) αEP = 10, αPE = 2 and ρE = 16 years−1; (f) αEP = −5, αPE = −2
and ρE = 16 years−1. The initial conditions are given by Eq. (2.45). Each plot
is shown at time t = 9 years. Simulations were produced using a Forward-Euler
time stepping scheme with a time-step of 0.0005 years and finite differences with
a spatial mesh size of 0.25 mm.
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2.3.2 Travelling Wave Analysis

Simulations show that the model of interacting GBM sub-populations given by

System (2.1)-(2.7) exhibits a variety of travelling wave fronts, the properties of

these depending on the model parameters and initial conditions. Figure 2.5 shows

some examples of fronts that can emerge from simulations with a variety of pa-

rameter values, but the same initial conditions, given by

E0(x) = P0(x) = N0(x) =

K/3, for x ∈ [0, 10]

0, for x > 10.
(2.45)

In Fig. 2.5a the diffusion coefficients and proliferation rates of each population

are the same, that is DE = DP = DN = D and ρE = ρP = ρN = ρ, and there are

no interactions between the amplified sub-populations, since αEP = αPE = 0. As

mentioned earlier in this chapter, the system can be reduced to a single equation

governing the total population of cells, T = E+P +N , in this case, which is the

well-known PI model or Fisher-KPP equation. Travelling wave solutions of this

model have been widely studied over the years and, thus, we know the speed of

the travelling front of the total population of cells is given by 2
√
ρD. Similarly,

in Figs 2.5d and 2.5f the type of interactions and increased proliferation rate of

population E allow these cells to dominate at the travelling front with the other

two populations absent; this problem is effectively described by a single Fisher-

KPP equation again, so that this invading front has speed 2
√
ρEDE. Validation

of these wavefront speeds are shown in Fig. B.1 in Appendix B.

The examples in Fig. 2.5 all exhibit a single travelling front comprising dif-

ferent proportions of each sub-population of cells that depend on the initial con-

ditions and parameter values used. In addition to these types of waves, there

are some instances where a second travelling front can emerge behind the leading

invading front.

The plots in Fig. 2.6 show an example where two travelling fronts emerge

from the initial conditions,

E0(x) =

K/2, for x ∈ [0, 10]

0, for x > 10
(2.46)

P0(x) =


K/2, for x ∈ [0, 10]

K, for x ∈ (10, 20]

0, for x > 20

(2.47)
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(a) (b)

(c) (d)

Figure 2.6: Plots showing a wave of E cells invading behind a front of the P
population. (a) Plot showing the initial conditions given by Eq.s (2.46)-(2.48).
(b) Plot showing the model solution at t = 8 years, where we can see a wave
of E invading behind the travelling front of P cells. Plots (c) and (d) show E-
P phase portraits with separatrices and nullclines shown as previously and the
(c) initial conditions and (d) model solution at t = 8 years overlaid in green.
The parameters used were: DE = 25 and DP = 20 mm2year−1; ρE = 15 and
ρP = 16 years−1; and αEP = −15 and αPE = −3. Simulations were produced
using a Forward-Euler time stepping scheme with a time-step of 0.0005 years and
finite differences with a spatial mesh size of 0.25 mm.

and

N0(x) = 0, for all x, (2.48)

with one front invading behind the other. In this example, the E population of

cells forms a travelling wave that invades space already occupied by the P popu-

lation, despite the P cells having a higher proliferative ability. This phenomenon

occurs due to the competitive interactions between these two populations and the

choice of initial conditions. Two separate regions emerge from the initial condi-

tions, one occupied by population E and the other by P , and we see that at the

interface of these two regions the total population does not reach K as we might
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expect. From Fig. 2.6d, we see that steady states along the line E + P = K

are unstable in this case meaning the trajectory connecting the steady states

(E,P ) = (K, 0) and (0, K) remains below this line and the strong competitive

effect of E on population P drives the solution in this region towards the steady

state where E dominates, allowing the front of E cells to advance.

The variety of travelling waves arising in simulations of our model and the

observation that these emerging waves depend on the initial conditions, could be

used to inform the design in vitro experiments. For example, different proportions

of populations of EGFR and PDGFRA amplified glioblastoma cells could be

seeded in invasion assays or cell cultures in various spatial configurations and the

patterns of invasion that emerge could then be studied. Such experimental results

could provide information about the type of interaction occurring between these

amplified sub-populations and also be used to validate our model.

After observing this variety of travelling waves in our model simulations, we

are interested in studying them further. For simplicity, we study in 1D and

restrict our analysis to the case where only the E and P populations are present

and the N population of cells is absent and fix N ≡ 0. Introducing the travelling

wave coordinate, z = x − ct, where c is the wave speed, which we assume to

satisfy c > 0, and substituting E(x, t) = E(x− ct) = Ē(z), we have

∂E
∂t

= −cĒ ′ and ∂2E
∂x2 = Ē ′′,

where ′ notation denotes differentiation with respect to the travelling wave co-

ordinate z. Repeating this for the P population of cells and dropping the bar

notation for simplicity, we find Eq.s (2.1)-(2.2) (with N = 0) are transformed to

−cE ′ = DE

(
1− P

K

)
E ′′ +DE

E

K
P ′′ + fE(E,P ), (2.49)

−cP ′ = DP

(
1− E

K

)
P ′′ +DP

P

K
E ′′ + fP (E,P ). (2.50)

According to the types of travelling waves identified in our simulations, these

equations are to be solved according to the following boundary conditions:

� Case 1: E → 0, P → 0 as z →∞, that is the wave propagates into space

where no other tumour cells are present, and E → E∗, P → P ∗, where

E∗ + P ∗ = K and 0 ≥ E∗, P ∗ ≤ K as z → −∞, the population densities

relax to spatially uniform values that sum to the carrying capacity after the

wave has passed.
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� Case 2: E → 0, P → 0 as z →∞, that is the wave propagates into space

where no other tumour cells are present, and E → −K/αEP , P → −K/αPE

as z → −∞, the population densities relax to the competition co-existence

state after the wave has passed.

� Case 3: E → 0, P → K as z →∞, that is the wave propagates into space

occupied by the P population of cells, and E → K, P → 0 as z → −∞,

population E occupies the space after the wave has passed. We note that

the opposite is possible, but we only consider this case.

Rearranging and introducing E1 = dE/dz and P1 = dP/dz, we have a system

of four travelling wave ordinary differential equations (ODEs):

d

dz


E

E1

P

P1

 =


E1

g1(E,E1, P, P1)

P1

g2(E,E1, P, P1)

 , (2.51)

where,

g1(E,E1, P, P1) =
1

DEDP (K − P − E)
(DEE(cP1 + fP )

−DP (K − E)(cE1 + fE)), (2.52)

g2(E,E1, P, P1) =
1

DEDP (K − P − E)
(DPP (cE1 + fE)

−DE(K − P )(cP1 + fP )). (2.53)

First we look at case 2, which can be treated in the usual way (as detailed in

[71]) by linearising about the point (E,E1, P, P1) = (0, 0, 0, 0), that is, the steady

state (E,P ) = (0, 0) and determining the eigenvalues. These are the roots of∣∣∣∣∣∣∣∣∣∣∣

− c
DE
− λ − ρE

DE
0 0

1 −λ 0 0

0 0 − c
DP
− λ − ρP

DP

0 0 1 −λ

∣∣∣∣∣∣∣∣∣∣∣
= 0,

which are,

λ1,2 =
−c±

√
c2 − 4ρEDE

2DE
and λ3,4 =

−c±
√

c2 − 4ρPDP

2DP
.

These eigenvalues all have negative real part, since c > 0 by assumption. As the
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populations must remain non-negative, we require that

c2 − 4ρEDE ≥ 0 and c2 − 4ρPDP ≥ 0

to ensure a spiral approach around the point (0, 0, 0, 0) does not occur. Thus, the

only possibility for a travelling wave to exist with non-negative E and P is if

c ≥ max
{
2
√

ρEDE, 2
√

ρPDP

}
. (2.54)

Following a similar approach, linearising about the point (E,E1, P, P1) =

(−K/αEP , 0,−K/αPE, 0), we find that the eigenvalues, λ, are the roots of the

equation,

p(λ) = −λ4 + Aλ3 +Bλ2 + Cλ+D, (2.55)

where,

A =
c(DPαPE(1 + αEP ) +DEαEP (1 + αPE))

DEDP (αEPαPE + αEP + αPE)
, (2.56)

B =
−c2αEPαPE

DEDP (αEPαPE + αEP + αPE)
+

ρE
DEαEP

+
ρP

DPαPE

, (2.57)

C =
c(1 + αEP )(1 + αPE)

αEPαPE + αEP + αPE

(
ρE

D2
EαEP

+
ρP

D2
PαPE

)
, (2.58)

D =
ρEρP (1 + (1 + αEP )(1 + αPE))

DEDPαEPαPE

. (2.59)

This equation is difficult (or may not be possible) to solve analytically and find

an explicit expression for the roots in terms of the model parameters. However,

we note that p(0) > 0 since αEP and αPE are both negative and satisfy 1 +

1/αEP +1/αPE > 0 when the competition co-existence state exists and the other

parameters must all be positive. Thus, as p(λ) → −∞ as λ → ±∞, at least

one eigenvalue must be real and negative, while at least one must be real and

positive. Therefore, the point (E,E1, P, P1) = (−K/αEP , 0,−K/αPE, 0) will be

a saddle-like node, depending on the other eigenvalues. Through plotting the

graph of p(λ) for various parameter values, we deduce that the other two roots of

Eq. (2.55) are either both real and negative or complex. We find that there exists

a critical wavespeed c∗, where values of c > c∗ mean that both eigenvalues are

real, negative and distinct, values of c < c∗ mean they are complex and if c = c∗

then they are real and equal to one another. Fig.2.55 shows plots of p(λ) for

a set of parameters and three different wavespeeds, where we observe the roots

varying as c is varied. Thus, the wavespeed must satisfy c > c∗ and condition
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Figure 2.7: Plots of Eq. 2.55 with parameter values ρE = ρP = 10 years−1,
DE = DP = 15 mm2years−1 and αEP = αPE = −3. The values of c used were 0
(blue), 14.495 (red) and 18.495 (yellow).

(2.54) in order for a trajectory connecting the points (E,E1, P, P1) = (0, 0, 0, 0)

and (−K/αEP , 0,−K/αPE, 0) to exist.

We note that System (2.51) has a singularity whenever E + P = K, thus

solving the system with boundary conditions given in cases 1 and 3 requires more

care. The singularity can be removed by following a coordinate transformation

similarly to [94, 95]. We introduce the coordinate transformation ξ = ξ(z) such

that

ξ =

∫
1

K − P (z)− E(z)
dz. (2.60)

Defining E(z) ≡ E(ξ(z)), E1(z) ≡ E(ξ(z)), P (z) ≡ P (ξ(z)) and P1(z) ≡
P1(ξ(z)), we find that

dE

dξ
= (K − P − E)

dE

dz
, (2.61)

along with analogous relations for the other variables. Thus, the original System

(2.51) can be re-written as the following non-singular system

d

dξ


E

E1

P

P1

 =


(K − E − P )E1

1
DEDP

(DEE(cP1 + fP )−DP (K − E)(cE1 + fE))

(K − E − P )P1

1
DEDP

(DPP (cE1 + fE)−DE(K − P )(cP1 + fP ))

 ,

(2.62)

together with the conditions

0 ≤ E(ξ), P (ξ) ≤ K ∀ ξ ∈ (−∞,∞). (2.63)
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First we observe that this transformed system has the following steady states;

the steady states from the original system,

(E,E1, P, P1) =(0, 0, 0, 0), (0, 0, K, 0), (K, 0, 0, 0),(
− K

αEP

, 0,− K

αPE

, 0

)
for − 1

αEP

− 1

αPE

≤ 1,

(E∗, 0, K − E∗, 0) for all E∗ ∈ (0, K);

(2.64)

as well as some additional steady states,

(E,E1, P, P1) =(K,E∗
1 , 0, 0), (0, 0, K, P ∗

1 ),(
E∗, E∗

1 , K − E∗,
DP (K − E∗)

DEE∗ E∗
1

)
for all E∗ ∈ (0, K).

(2.65)

To determine the stability of these steady states, we find the Jacobian matrix of

System (2.62), which is given by J(E,E1, P, P1) =

−E1
K 1− E + P

K −E1
K 0

∂
∂E

(
dE1
dξ

)
− c
DE

(
1− E

K

)
∂
∂P

(
dE1
dξ

)
cE

DPK

−P1
K 0 −P1

K 1− E + P
K

∂
∂E

(
dP1
dξ

)
cP

DEK
∂
∂P

(
dP1
dξ

)
− c
DP

(
1− P

K

)


, (2.66)

where

∂

∂E

(
dE1

dξ

)
=

1

KDEDP

(
DE

(
cP1 + fP + E

∂fP
∂E

)
(2.67)

+DP

(
cE1 + fE − (K − E)

∂fE
∂E

))
,

∂

∂P

(
dE1

dξ

)
=

1

KDEDP

(
DEE

∂fP
∂P
−DP (K − E)

∂fE
∂P

)
, (2.68)

∂

∂E

(
dP1

dξ

)
=

1

KDEDP

(
DPP

∂fE
∂E
−DE(K − P )

∂fP
∂E

)
, (2.69)

∂

∂P

(
dP1

dξ

)
=

1

KDEDP

(
DP

(
cE1 + fE + P

∂fE
∂P

)
(2.70)

+DP

(
cP1 + fP − (K − E)

∂fP
∂P

))
.

We can now explore the existence of travelling waves in cases 1 and 3 in turn.

Case 1: At (E,E1, P, P1) = (0, 0, 0, 0) the eigenvalues of the Jacobian matrix
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are

λ1,2 =
−c±

√
c2 − 4ρEDE

2DE
and λ3,4 =

−c±
√

c2 − 4ρPDP

2DP
,

so the wavespeed must satisfy the condition

c ≥ max
{
2
√
ρEDE, 2

√
ρPDP

}
, (2.71)

for a travelling wave to exist with E and P remaining non-negative, as found

previously. At (E,E1, P, P1) = (E∗, 0, P ∗, 0), where E∗+P ∗ = K and E∗, P ∗ > 0,

three eigenvalues are zero and the fourth is negative and is given by

λ = −c
[

1

DE

(
1− E∗

K

)
+

1

DP

(
1− P ∗

K

)]
. (2.72)

As three eigenvalues are zero, the steady state (E∗, 0, P ∗, 0) is non-hyperbolic

and the linear system will not be enough to learn about the local behaviour around

this point. Further non-linear analysis would need to be conducted, which we

leave as an open problem in this work. Instead, we explore the behaviour of the

system using numerical simulations. Figure 2.8 shows the two types of travelling

wave fronts that occur in this case. Fig. 2.8a shows a solution of System (2.62)

with the condition on c not satisfied, that is c < max
{
2
√
ρEDE, 2

√
ρPDP

}
.

In this example, E + P = K behind the wave and (E,P ) approach (0, 0) in

an oscillatory manner, highlighted in Fig. 2.8c. Meanwhile, in Fig. 2.8b c =

max
{
2
√
ρEDE, 2

√
ρPDP

}
and the two steady states are connected without any

oscillations and E and P both remain non-negative.

Case 3: At (E,E1, P, P1) = (0, 0, K, 0) and (K, 0, 0, 0), three eigenvalues of

the Jacobian matrix are zero and the fourth is negative in both instances and

given by

λ = − c
DP

and − c
DE

,

respectively.

Figure 2.9 shows the types of travelling wave fronts that occur with these

boundary conditions. Fig. 2.9a shows the solution to System (2.62), for a given

value of the wave speed c, starting at values of (E1, E, , P1, P ) close to the steady

state (0, K, 0, 0), the values used were estimated from close to the top of the

travelling wave in simulations of the model given by Eq.s (2.1)-(2.2) (with N = 0)

and were:
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(a) (b)

(c) (d)

Figure 2.8: Simulations of System (2.62) for two different values of c: (a) and
(c) c = 10; and (b) and (d) c = 30. Each of (a) and (b) shows plots of E1,
E, P1 and P over ξ ∈ [0, 400], whereas (c) and (d) show zoomed in portions of
these graphs. The parameters used were ρE = ρP = 15 years−1, DE = DP =
15 mm2year−1, αEP = 10 and αPE = 2. Simulations were producing ODE45 in
MatLab with initial conditions estimated from simulations of the model given by
Eq.s (2.1)-(2.2) (with N = 0) and were: E1(0) = −342.8044, E(0) = 4.013× 104,
P1(0) = −1.7052× 103 and P (0) = 1.9664× 105.

E1(0) = −1.6267× 103, (2.73)

E(0) = 2.3674× 105, (2.74)

P1(0) = 8.2597× 10−4, (2.75)

P (0) = 0.0015. (2.76)

This trajectory then approaches the steady state (0, 0, 0, K) before spiralling

towards (0, 0, 0, 0). Increasing c we find a critical value of the wave speed, where a

trajectory connects the steady states (E1, E, P1, P ) = (0, K, 0, 0) and (0, 0, 0, K)

in Fig. 2.9b. This type of trajectory corresponds to a travelling wave solution
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(a)

(b)

(c)

Figure 2.9: Simulations of system (2.62) for three different values of c: (a) c =
9.738, (b) c = 9.838 and (c) c = 9.938. Each shows plots of E1, E, P1 and
P over ξ ∈ [0, 400], with (a) also showing a zoomed in portion of the graph.
The parameters used were ρE = ρP = 15 years−1, DE = DP = 15 mm2year−1,
αEP = −20 and αPE = −2. Simulations were produced using ODE45 in MatLab
with initial conditions (2.73)-(2.76).

of the type shown through numerical simulation of the PDE model in Fig. 2.6.

Increasing the wave speed above this critical value, we find a family of sharp-
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fronted travelling waves connecting (E1, E, P1, P ) = (0, K, 0, 0) to (E∗
1 , 0, P

∗
1 , K),

where E∗
1 and P ∗

1 are non-zero; an example of such a solution is shown in Fig. 2.9c.

2.4 Summary

In this chapter, we have presented a novel mathematical model of the co-evolution

of three distinct tumour cell sub-populations to investigate the nature of inter-

actions between cells with two common mutations occurring in GBMs, namely

amplification of the genes encoding the EGFR and PDGFRA proteins. We have

used a PDE-based formalism, which reduces to the well known PI model [115] -

[121] if we assume that these genetic differences do not change the phenotype of

the cell populations and instead compose a single phenotypically homogeneous

population of cancerous cells. Our model describes the movement of the sub-

populations through cross-diffusion terms, where the diffusion of one population

is affected by the presence of the other two populations. In Section 2.2.1, we

presented a derivation of these movement terms and provided a generalisation to

include M populations of distinct cell sub-populations. We also briefly discussed

the incorporation of different forms of cross-diffusion into other examples of mod-

els comprising two distinct cell populations and the differences to the approach

taken in our work.

In our model, the growth terms, fE, fP and fN , are given by Eq.s (2.5)-

(2.7). The particular forms of these terms were chosen to allow us to explore the

effects of various interactions between different cell types on the growth of GBMs

comprised of three distinct sub-populations of cells. We incorporated one factor,

namely the joint logistic growth factor, that models the competition for space

between all three cell sub-populations and a second factor that models additional

interactions between the EGFR and PDGFRA amplified sub-populations. We

separated the interactions in this way to highlight that they are distinct and

to allow us to clearly explore the impact of a range of types of the additional

interactions between the EGFR and PDGFRA amplified sub-populations, while

assuming that the cells continue to compete for space in the same way. An

alternative approach would be to incorporate our interaction parameters, αEP

and αPE, into the joint logistic growth term instead and remove the (1+αPEP/K)

and (1+αEPE/K) factors from Eq.s (2.5)-(2.6). For example, candidate growth
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terms could be given by

fE(E,P,N) = ρEE

(
1− E + αPEP +N

K

)
, (2.77)

fP (E,P,N) = ρPP

(
1− αEPE + P +N

K

)
, (2.78)

with the equation for fN remaining unchanged, given by Eq. (2.7). Modelling the

interactions in this way would lead to potentially quite different model dynamics,

as the system would exhibit some different spatially homogeneous steady states

(depending on the model parameters) and it would be interesting to explore the

model behaviour with these growth terms.

Following on from this, in Section 2.3.1, we studied the dynamics of the

spatially homogeneous model system through conducting a phase plane analysis.

We began by exploring the dynamics when only the two amplified tumour cell

sub-populations were present and explored the effect of various interaction types

on the trajectories observed. We examined the competition case in more detail,

where we were able to find the equation of the separatrix dividing phase space

when the competition co-existence state exists. In Fig. 2.3, we explored how

varying the model parameters affects the shape of the separatrix and results in

different trajectories of the model with various initial conditions. In particular,

we found that a proliferative advantage is not always advantageous for a tumour

cell population and there are scenarios where the less aggressive tumour cell

population will become the dominant one. We then proceeded to study the

spatially homogenous system when all three tumour cell types are present and

found that the behaviour is similar to when the non-amplified tumour cells are

absent; this is because the more interesting dynamics in our model arise through

interactions between the two amplified cell sub-populations.

In Section 2.3.2, we then explored the travelling waves exhibited in simula-

tions of our model, where we found a variety of different waves, some examples of

these are shown in Fig.s 2.5 and 2.6. We also conducted a travelling wave analysis

for the model when only the two amplified sub-populations are present and found

conditions for the various travelling wave solutions to exist. Our results show that

the patterns of invasion that occur depend on the model parameters, where we

demonstrated that different travelling waves emerge under different types of inter-

actions between the EGFR and PDGFRA amplified sub-populations. Therefore,

studying the type of cells present at the invasive edge of glioblastomas could pro-

vide an insight into whether these amplified sub-populations are cooperating or

competing with each other, for example. Further to this, we also found that the
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travelling waves that emerge are dependent on the initial conditions in our model.

This means that the type of cells present when a tumour starts growing and the

occurrence of any later mutations will result in different patterns of cell invasion,

resulting in a variety of amplification patterns observed in GBMs. While this

is clearly a complex problem to understand with many factors influencing the

invasion of cells and the resulting tumour, the results from our exploration of

travelling wave solutions to our model could be used to inform the design of in

vitro experiments. Such experiments could consist of studying invasion assays or

cell cultures of EGFR and PDGFRA amplified cells seeded in different propor-

tions and spatial configurations. Such experiments could provide validation of

our model and information about the type of interaction occurring between these

amplified GBM sub-populations.



Chapter 3

Preliminary patient data and in

silico investigations

3.1 Introduction

In this chapter, we use our novel mathematical model of interacting GBM sub-

populations to investigate the effects of different interaction assumptions—namely,

cooperative, competitive and neutral (no) interactions—on the population level

occurrence of EGFR and PDGFRA amplified cells in silico.

This chapter begins by describing the process of biopsy collection and analy-

sis for an initial cohort of GBM patients, where we then study population levels

found across the data. Next, we introduce terms into the model through which

the EGFR and PDGFRA amplified populations arise, as we assume that each tu-

mour comprises only non-amplified tumour cells initially and mutations leading

to these sub-populations occur at later times. We then compare the popula-

tion levels observed across the patient data to model outputs under different

interaction assumptions and explore factors affecting the patterns observed in

our simulations, such as selection advantages and phylogenetic ordering of muta-

tions, which may also contribute to the levels of EGFR and PDGFRA amplified

populations observed in biopsy data. Finally, we conduct a sensitivity analysis of

our model and discuss our results and the insight they provide into the evolution

of these biologically complex tumours.

The work in this chapter is published in Morris et al. [68].

57
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3.2 A preliminary dataset of image-localised

biopsies

Here, details of the image-localised biopsy collection protocol and analysis process

are given, as carried out by our collaborators at the Mayo Clinic. We then detail

the CNA threshold that we use to determine amplification of a gene in a biopsy

in this work and present the data from an initial cohort of GBM patients.

Patients with clinically suspected GBM undergoing preoperative MRI for

surgical resection were recruited and the absence of previous treatment was con-

firmed. Institutional review board approval was obtained, along with written

and informed consent from each participant prior to enrollment. During surgery,

the surgical team collected an average of 4–5 tissue specimens from each tumour

and typically selected targets separated by ≥ 1 cm from different regions of the

tumour based on clinical feasibility (e.g., accessibility of the target site, overly-

ing vessels, areas of the brain that directly control function). The location of

each biopsy was also recorded by the surgical team to allow for subsequent co-

registration with multiparametric magnetic resonance imaging (MRI) datasets.

More detail of the biopsy collection protocol can be found in [41].

To determine whether a biopsy sample contains tumour cells with the EGFR

and PDGFRA genes amplified, copy number aberration (CNA) values associated

with these genes were determined for all tissue samples using array comparative

genomic hybridization (aCGH) as described in references [13, 41]. Each tissue

sample was then classified as being amplified in a given gene if the corresponding

CNA value was greater than a given threshold and not amplified in that gene

when below or equal to that threshold. Each biopsy sample, however, is likely to

contain a mixture of healthy non-cancerous cells and tumour cells without and

with varying degrees of gene amplification. Thus, the CNA value will be based

on a mixed signal from a sample containing a mixture of cells with potentially

different numbers of copies of the genes of interest and it is unclear what an

appropriate threshold should be to determine the gene amplification status, which

is a topic widely discussed in the literature [55, 65].

In this work, we choose to use a CNA threshold of 2.2; this threshold is

chosen based on some prior knowledge and some assumptions about the levels of

EGFR and PDGFRA amplification that we expect to see in our tissue samples.

Firstly, diploid cells that are not EGFR or PDGFRA gene amplified will have

an associated CNA value equal to 2 [55, 65], which applies to the healthy cells

and non-amplified tumour cells in the tissue samples. Secondly, we assume that
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the EGFR and PDGFRA amplified cell sub-populations are homogeneous with

respect to their gene copy numbers and, therefore, all cells in each of these sub-

populations have the same CNA value associated to each of these genes, which

we choose to equal 4; this corresponds to each of the alleles in an EGFR amplified

cell containing an extra copy of the EGFR gene and similarly for the PDGFRA

amplified population. Finally, since the neurosurgeons collect biopsy samples

from various regions of each tumour, including the invasive edge where tumour

cell density is low, we choose the CNA threshold in a way that will be sensitive

to such low densities of EGFR and PDGFRA amplified cell sub-populations;

we choose this low density threshold to be 10% of the tissue in a sample and

assume that if a biopsy sample consists of 10% or less of either amplified cell sub-

population, then the signal will be too low to be detectable in the corresponding

CNA value and this sample will not be classed as being amplified in this gene.

Therefore, the CNA threshold of 2.2 is derived as follows:

CNA value of
tissue sample =

(
Non-amp fraction

of sample × CNA value of
non-amp cells

)
+
(
Amp fraction
of sample × CNA value of

amp cells

)
=(0.9× 2) + (0.1× 4)

=2.2

We note that tumour cells can exhibit varying degrees of gene amplification;

for example, an EGFR amplified cell sub-population is likely to consist of cells

containing a variety of copy numbers of the EGFR gene, with cells containing

more than 100 copies in some cases [55]. This means that using a low CNA

threshold to determine gene amplification status of a tissue sample in this way

could classify a sample containing a very low fraction of “highly amplified” cells

as being gene amplified. However, we expect such cases to be rare and choose this

CNA threshold to avoid excluding samples that contain cells that are amplified

to lower levels.

In this preliminary dataset, a total of 120 biopsies were collected from 25 pa-

tients with clinically suspected GBM, with 2–14 collected from each individual.

Of these biopsies, 95 samples from 25 patients contained adequate tumour and/or

DNA content for EGFR and PDGFRA amplification status to be determined suc-

cessfully through aCGH analysis. EGFR amplification was the more commonly

observed genetic alteration, with 73/95 samples having a CNA value associated

with EGFR amplification, whereas 28/95 were determined to be PDGFRA ampli-

fied. Of these amplified samples, 22 were found to have amplification of both the
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(a) (b)

Figure 3.1: (a) A box plot summarising the proportion of each individual’s biop-
sies that were determined to be amplified in neither gene (Neither), only the
EGFR gene (Only EGFR Amp), only the PDGFRA gene (Only PDGFRA Amp)
and both of the EGFR and PDGFRA genes (Both Amp) for the 25 patients.
Each of the blue circles overlaid on the box plot represents the relevant propor-
tion of an individual’s biopsies for each category. The means of these proportions
across the 25 patients are shown in (b).

EGFR and PDGFRA genes. For each patient, we then determined the proportion

of their biopsies that were found to be amplified in neither gene, only the EGFR

gene, only the PDGFRA gene and, finally, both of the EGFR and PDGFRA

genes simultaneously. The proportions calculated for each of the 25 patients are

summarised as a box plot in Figure 3.1a, where we observe the heterogeneity of

amplification patterns observed across the patient cohort. The means of these

proportions are shown as a spider plot in Figure 3.1b. Here, we see that the

highest mean proportion of biopsies are those amplified in the EGFR gene only,

while the means of those amplified in neither and both genes are lower at similar

levels. Finally, the mean proportion of biopsies amplified in only the PDGFRA

gene is close to zero.

3.3 Introducing EGFR and PDGFRA amplified

sub-populations into model simulations

In this work, we assume that each simulated tumour begins as a small population

of non-amplified tumour cells (N) and amplification of the EGFR and PDGFRA

genes arises via mutations at later times, consistent with a recent phylogenetic

study of glioblastomas [108]. Thus, we introduce two new terms, mE and mP

into the equations for fE and fP , through which the sub-populations, E and P ,
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arise in the model. The modified definitions of the terms fE and fP are now,

fE(E,P,N) =ρEE

(
1 + αPE

P

K

)(
1− E + P +N

K

)
+mE, (3.1)

fP (E,P,N) =ρPP

(
1 + αEP

E

K

)(
1− E + P +N

K

)
+mP , (3.2)

and the term fN remains unchanged as defined by Eq. (2.7). While these mutation

events lead to the creation of a single EGFR or PDGFRA amplified cell and

there are likely to be many such events occurring during the growth of a GBM,

we assume that each of the EGFR and PDGFRA amplified sub-populations only

become established within the tumour at most once. Furthermore, since we are

using a PDE model more suited to modelling events on the macroscopic scale

rather than single cell events, we account for these successful mutation events by

introducing a small population of the mutated cells as a distribution. This means

that the mutated cell population actually started growing a small amount of time

before being introduced in our model. However, we assume that this will not have

affected the other tumour cell populations present and they only begin interacting

and competing for space and resources once the population is of a certain size.

We, therefore, choose mE = mE(x, t,N,NE) and mP = mP (x, t,N,NP ) to be of

the following form,

mE(x, t,N,NE) =
100√
π
δ(t− t∗E(N,NE))e

−|x− x∗
E|2 , (3.3)

mP (x, t,N,NP ) =
100√
π
δ(t− t∗P (N,NP ))e

−|x− x∗
P |2 , (3.4)

where δ(·) is the Dirac delta function, t∗E(N,NE) and t∗P (N,NP ) are the times

at which populations of EGFR and PDGFRA amplified cells, E and P , are

introduced as Gaussian distributions centred at x∗
E and x∗

P , respectively. The

introduction times, t∗E(N,NE) and t∗P (N,NP ), are defined as

t∗E(N,NE) = inf

{
t > 0

∣∣∣∣∫ L

0

N(x, t) dx = NE

}
, (3.5)

t∗P (N,NP ) = inf

{
t > 0

∣∣∣∣∫ L

0

N(x, t) dx = NP

}
, (3.6)

so that each sub-population is introduced when the non-amplified tumour popula-

tion (N(x, t)) has grown to a chosen total size, NE orNP (measured in cells/mm2).

Our choices for NE or NP are discussed further in Section 3.4.2. Although we

have used Gaussian distributions, the specific form of distribution does not sig-
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nificantly change our model simulations, as long as they were chosen consistently,

due to the smoothing effects of diffusion in the model.

Throughout this work, we continue to consider the model—now defined by

Equations (2.1)-(2.3), (2.7) and (3.1)-(3.6)—on a one-dimensional cartesian do-

main, x ∈ [0, L], with zero flux boundary conditions at x = 0 and L. We use the

initial conditions given by,

E(x, 0) = 0, P (x, 0) = 0 and N(x, 0) = 100√
π
e−|x− x∗

N |2 , (3.7)

whereE, P andN are the concentrations of each of the tumour cell sub-populations

(cells/mm3) and x∗
N defines the centre of the initial distribution of type N tumour

cells. Thus, we initiate our simulations with no E or P cells present and a small

population of type N cells.

For the remainder of this thesis, we consider a domain length of L = 200 mm.

Since we are only interested in running simulations to a biologically relevant size

(discussed further in Section 3.4.2), and all populations are introduced close to

its centre, this domain is sufficiently large that tumour growth remains far from

the boundaries, hence avoiding boundary condition artefacts. All simulations are

produced using MatLab R2017a to implement a finite difference scheme in space

(uniform mesh size of 0.25 mm) and a Forward Euler time step of 1/1500 years.

3.4 Results

3.4.1 Our model predicts that distinct competing sub-

populations of tumour cells can coexist in the same

tumour region

Intuitively, we expect that cell populations actively competing with one another

may be less likely to coexist within the same region of a tumour and that their

coexistence may indicate a cooperative relationship, as Snuderl et al. [107] sug-

gest after finding intermingled sub-populations of EGFR and PDGFRA amplified

sub-populations in a small number of GBM samples. In our model, however, we

find that EGFR and PDGFRA amplified sub-populations can be found to coexist

in areas of the tumour region despite actively competing with one another; we

find that any Ē, P̄ , N̄ ≥ 0 satisfying Ē + P̄ + N̄ = K is a spatially homogeneous

steady state and can be connected to other spatially homogeneous steady states

satisfying the same condition, or the trivial steady state Ē = P̄ = N̄ = 0, by
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(a) (b)

(c)

T = E + P + N

E

P

N

Figure 3.2: Simulations in 1D of the model given by Eq.s (2.1)–(2.3), (2.7) and
(3.1)–(3.6) and initial conditions (3.7) using the finite difference scheme described
in Section 3.3 with parameters: ρE = 35.4, ρP = 33 and ρN = 30 /year; DE =
DP = DN = 30 mm2/year; K∗

E = K∗
P = K∗

N = K = 2.39 × 105 cells/mm3;
x∗
E = x∗

P = x∗
N = 100 mm; t∗E = 0.027, t∗P = 0.001 years. The interactions in each

simulation are chosen to be (a) competition, αEP = αPE = −5, (b) cooperation,
αEP = αPE = 5 and (c) neutralism, αEP = αPE = 0. Each simulation is plotted
at t = 0.7 years.

travelling wave-like solutions expanding outwards from the origin of the tumour.

Indeed, such co-occurrence of EGFR and PDGFRA amplified cell sub-populations

can be observed with competitive, cooperative or neutral interactions; an exam-

ple of simulations with different αEP and αPE values to represent each of these

interaction types is shown in Figure 3.2, where such co-occurrence is observed.

While this demonstrates that the coexistence of EGFR and PDGFRA ampli-

fied cell populations in one known region of a tumour can occur when they are

competing, cooperating and evolving neutrally, it highlights the need for more

information to determine the nature of such interactions between co-occurring

cells in vivo. In this chapter, we hope to shed some light on this by studying
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amplification patterns observed across image-localized biopsies from the initial

cohort of patients and the patterns that emerge in simulations of our model—

given by Eq.s (2.1)–(2.3), (2.7) and (3.1)–(3.6) and initial conditions (3.7)—under

different interaction assumptions.

3.4.2 Simulation results

We begin by assuming that amplification of the EGFR or PDGFRA gene does

not result in either sub-population, E or P in the model, acquiring any selective

advantages over non-amplified cells. In other words, we choose all proliferation

and invasion parameters to be the same for each population, i.e., ρE = ρP = ρN =

ρ and DE = DP = DN = D. Since the biopsy data (Figure 3.1b) is the mean of

a cohort containing 25 individual tumours, which will vary in their proliferative

and invasive potential (quantified by ρ and ρ/D in the PI model [6]), we use a

variety of ρ and D pairs to reflect the heterogeneity seen in the patient cohort.

We therefore produce four simulations using two values for each of ρ and D to

mirror the range of parameters observed in unpublished patient databases and

assume this cohort are similarly distributed; to represent high parameter values

we use ρ = 30/year and D = 30mm2/year and for low values we use ρ = 3/year

and D = 3mm2/year as in [36]. We also assume that any interactions between

the EGFR and PDGFRA amplified cells affect each sub-population to the same

degree, i.e., αEP = αPE = α. To represent competition and cooperation, we

simulate with α = −5 and 5, respectively, while for neutralism α = 0. For

now, we assume that all populations, E, P and N , are introduced at the centre

of the domain (x∗
E = x∗

P = x∗
N = 100mm) and that the mutation events for

the introduction of EGFR and PDGFRA amplified sub-populations occur at the

same time (t∗E = t∗P , i.e., NE = NP ). Recall that the introduction times depend

on the size of the non-amplified tumour population (N), through Eq.s (3.5) and

(3.6). Since the time to reach a specific tumour size depends on ρ, rather than

introduce these populations at a specified point in time, we introduce them after

a given number of proliferation events have occurred, i.e., a specified stage in the

evolution of the tumours. In this case we introduce the amplified populations after

the tumour has grown to six times its initial size, that is NE = NP = 6NI , where

NI =
∫ L

0
N(x, 0) dx. While this may seem particularly early in the evolution of

our simulated tumours, it is necessary to be able to investigate the amplification

patterns we observe under different interactions in our model simulations; if we

introduce the mutated populations later, e.g., when the N population has grown

to 11NI , we do not see them growing to detectable levels in our simulations.
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In order to test whether neutral, competitive or cooperative interactions be-

tween EGFR and PDGFRA amplified sub-populations best describe the patterns

observed in the biopsy data, we run numerical simulations of the model—given

by Eq.s (2.1)–(2.3), (2.7) and (3.1)–(3.6) and initial conditions (3.7) using the

finite difference scheme described in Section 3.3—to a biologically relevant size

and compare the outputs to the mean proportions of biopsies amplified in neither

gene, only the EGFR gene, only the PDGFRA gene and both of the EGFR and

PDGFRA genes shown in Figure 3.1b.

We choose a biologically relevant size to represent a typical size of a GBM

tumour at the time of diagnosis, shortly after which patients will usually undergo

surgery to remove as much of the tumour as feasible, with biopsy samples being

collected at this time. One way to measure the typical size of a GBM at diagnosis

is to segment the tumour volume visible on a T1-weighted MRI with gadolinium

contrast (T1Gd MRI), a type of scan that shows the most dense area of the

tumour and is typically used in the process of diagnosing a patient with a GBM.

From this, the diameter of the volume-equivalent sphere can then be computed

and used as a measure to indicate the size of the tumour lesion, with the average

diameter at diagnosis being 36.2 mm in unpublished data. Following Swanson et

al. [116], we relate the tumour volume visible on a T1Gd MRI to the volume of

tumour that has a tumour cell density greater than 80% of the carrying capacity.

Therefore, we choose to run simulations until the width of the total tumour cell

population, T = E + P +N , above the 0.8K threshold is 36.2 mm and use this

as a proxy for the size of a tumour at the time of diagnosis.

We then run the numerical simulations until they reach this biologically rel-

evant size with the parameter sets described above. Since the patient data is for

the proportions of biopsies containing EGFR and PDGFRA amplified cells above

a given density threshold, which we chose to be 10% of the tissue sample, we

define an equivalent measure for each simulated tumour by integrating solutions

across the whole tissue domain. For example, the proportion of the tumour with

only EGFR amplified, AE, is calculated as

AE(t) =

∫ L

0

H(E(x, t)− 0.1K)H(0.1K − P (x, t)) dx∫ L

0

H(E(x, t) + P (x, t) +N(x, t)− 0.1K) dx

,

≈ Number of mesh points with E > 0.1K and P < 0.1K

Number of mesh points with T > 0.1K
,

(3.8)



3.4. Results 66

(a) (b)

Figure 3.3: (a) Schematic illustrating the biologically relevant size that tumours
are simulated to and area (shaded in grey) indicating the points with the total
tumour cell population (purple curve) above the threshold of 10% of the carrying
capacity. Other curves represent the individual tumour cell populations; E (blue),
P (red) and N (yellow). (b) Plot showing the mean proportions of simulations
with neither gene (Neither Amp), only the EGFR gene (Only EGFR Amp),
only the PDGFRA gene (Only PDGFRA Amp) and both genes (Both Amp)
amplified under different interactions when we assume that the sub-populations
are dynamically the same, i.e., all populations have the same proliferation and
invasion parameters, ρ = ρE = ρP = ρN and D = DE = DP = DN , and E and
P populations are introduced at the same position and time, x∗

E = x∗
P = x∗

N =
100mm and NE = NP = 6NI , as described in Section 3.4.2.

where H(·) is the Heaviside step function. The proportions with neither gene,

only the PDGFRA gene and both genes amplified, AN(t), AP (t) and AB(t),

are defined and calculated in a similar way. We illustrate this schematically in

Figure 3.3a.

The mean proportions from the simulations run using each of the four ρ and

D pairs with the different cases of competition, cooperation and neutralism are

shown in Figure 3.3b. From this plot, we see that all simulations are classed as

neither gene amplified in the competitive case and this proportion decreases as

we move through the neutralism case to the cooperative case and the proportion

with both genes amplified increases, which is as we would intuitively expect to

see. We notice that in all three cases the proportions of simulations with only

one of the genes amplified are zero; again, this is expected as populations E and

P have the same proliferation and invasion parameters (ρ and D) and are both

introduced at the same time and place and, thus, are effectively the same so we

expect to see them together (or not at all in the competitive case).

Clearly, the patterns of neither, only EGFR, only PDGFRA and both am-

plified proportions we see in these simulations do not reflect the patterns of am-
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plification we see in the biopsy data in Figure 3.1b; one obvious difference is the

proportion of only EGFR amplified biopsies, which is above 0.5 in the data and is

0 in the simulations shown in Figure 3.3b. Since EGFR and PDGFRA amplified

cells are not exclusively found in the same biopsies in the patient data and the

proportions of biopsies with only one gene amplified also differ, this indicates

the two populations must differ in their dynamics in some way. There are sev-

eral possible ways that differences between the EGFR and PDGFRA amplified

sub-populations can occur in our model: by giving them a selective advantage

(changing ρE, ρP , DE or DP ); by changing the phylogenetic ordering of mutations

(changing t∗E or t∗P ); by changing the location that mutations arise in the evolving

tumour (changing x∗
E or x∗

P ); by changing the strength of interaction felt by each

population (changing αEP or αPE); or, finally, by changing any combination of

these factors.

Selection advantages

The amplification of EGFR and PDGFRA genes are often considered to be among

the key mutations driving oncogenesis and tumour growth [16, 107]. Since these

genes are both members of the RTK family of cell surface receptors that play an

important role in the regulation of cell proliferation, metabolism and survival [30]

and tumours identified to be EGFR amplified have shown to be more invasive

[123, 124], it is reasonable to consider that amplification of these genes may drive

the growth of tumours through increasing the intrinsic proliferative and invasive

abilities of these cell sub-populations. We can explore the effects of this by

giving the EGFR and PDGFRA amplified sub-populations in our model different

selection advantages through changing the appropriate parameters, namely ρE,

ρP , DE and DP .

As we see a much higher proportion of biopsies with only EGFR amplified

in the patient data (Figure 3.1b), this could indicate that EGFR amplified cells

have a selective advantage over the PDGFRA amplified cells and those with nei-

ther gene amplified. Thus, we explore the effects of giving EGFR amplified cells

invasive and proliferative advantages; in Figure 3.4, plots are produced from simu-

lation results in the same way as previously described, but with (a) a 50% invasive

advantage for the EGFR amplified cells and (b) additionally with a proliferative

advantage. In both of these cases, there are now large proportions of simulations

with EGFR amplified and without PDGFRA amplified cells present, particularly

in the competitive and neutral cases. In both competitive cases in Figures 3.4a

and 3.4b, we observe nowhere where both of the EGFR and PDGFRA genes
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(a) (b)

(c) (d)

Figure 3.4: Plot showing the mean proportions of simulations with neither gene
(Neither Amp), only the EGFR gene (Only EGFR Amp), only the PDGFRA
gene (Only PDGFRA Amp) and both genes (Both Amp) amplified under different
interactions when the E and P sub-populations are given various selection advan-
tages: (a) EGFR 50% invasive advantage (DE = 1.5DN , DP = DN); (b) EGFR
50% proliferative and invasive advantage (ρE = 1.5ρN , ρP = ρN , DE = 1.5DN

and DP = DN); (c) EGFR 50% proliferative and invasive advantage, PDGFRA
50% invasive advantage (ρE = 1.5ρN , ρP = ρN , DE = 1.5DN and DP = 1.5DN);
(d) EGFR 50% proliferative and invasive advantage, PDGFRA 50% proliferative
advantage (ρE = 1.5ρN , ρP = 1.5ρN , DE = 1.5DN and DP = DN)

are found to be amplified, unlike the patient data in Figure 3.1b where this was

approximately 20% of biopsies. Meanwhile, the corresponding cooperative cases

both gave the highest level of points with both genes amplified and the lowest

levels with only EGFR amplified. In Figure 3.4, we also explored the effects of

affording the PDGFRA amplified sub-population a (c) 50% invasive and (d) 50%

proliferative advantage over non-amplified cells while giving EGFR amplified cells

the same advantages as in (b). These resulted in qualitatively similar amplifica-

tion patterns to those observed in (b) and (a), respectively, with the exception

of the competitive case in (d) where a small proportion of simulations with only

PDGFRA amplified were observed. Further plots exploring the effects of selec-
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tion advantages can be found in the supplementary material in Figure C.1 and

are not presented here for brevity. We find that giving either, or both, of the am-

plified populations invasive and proliferative advantages over non-amplified cells

improves the amplification patterns we see in simulations with respect to the

biopsy data and, in general, the competition and neutral cases fit the biopsy data

better than the cooperative case, which generally results in higher proportions of

tumours with both genes amplified. Next we move on to explore the effects that

the timing of mutations have on the results we see.

The phylogenetic ordering of mutations

In all simulations presented up until this point, we have assumed that the mu-

tations leading to the establishment of EGFR and PDGFRA amplified cell sub-

populations occur at the same time. While this could be the case, a study recon-

structing the phylogeny of GBMs identified EGFR and PDGFRA amplification

as early and late events during tumour progression [108]. From an analysis of

multiple spatially distinct samples from 11 GBMs, it was inferred that alter-

ations that were more common occurred earlier in the evolution of the tumour

compared to those only present in a smaller subset of cells. Alterations in gene

copy numbers on the chromosomes where the EGFR and PDGFRA genes are

found tended to occur in the early and middle phases of tumour growth, respec-

tively [108]. Therefore, this timing, or phylogenetic ordering, of mutations may

be affecting the proportions of EGFR and PDGFRA amplified biopsies across

the patient cohort (Figure 3.1b) and so we undertake a brief exploration of the

effect it has in our simulations.

Therefore, we assume once more that all cell sub-populations have the same

proliferation and invasion parameters, i.e., ρ = ρE = ρP = ρN and D = DE =

DP = DN . As described before, we then simulate using four different ρ and D

pairs and the same assumptions described in Section 3.4.2, with the exception of

changing the times that the EGFR (E) and PDGFRA (P ) amplified populations

are introduced, i.e., t∗E and t∗P . In the previous simulations, both populations

were introduced after the non-amplified population (N) had grown to six times

its initial size, 6NI , and so we now choose to investigate the patterns of gene

amplification we see when the E and P populations are introduced earlier and

later than this. Thus, we define a vector of possible introduction times, t∗ =

(t∗1, ..., t
∗
7) as follows: t

∗
i is defined as the first time point in our simulations after the

growingN population has reached a size of (i+2)NI , for i = 1, ..., 7. Implementing

our model with t∗E and t∗P taking each of these values, we gain some insight into
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Figure 3.5: Plots showing the mean proportions of simulations with neither gene
(Neither Amp), only the EGFR gene (Only EGFR Amp), only the PDGFRA
gene (Only PDGFRA Amp) and both genes (Both Amp) amplified as t∗E is varied,
under neutral, competitive and cooperative interactions. The PDGFRA amplified
population is introduced at the fixed time t∗P = t∗4 (denoted by the vertical dotted
line) and other parameters and assumptions are as described in Section 3.4.2.

the effect that changing the time of mutations has on our simulations.

Figure 3.5 shows the average amplified proportions in seven sets of simulations

under neutral, competitive and cooperative interaction assumptions, where cells

of type P are introduced at t∗P = t∗4 in each set, but the E population is introduced

at each of the seven possible times given by the vector t∗. The points on the graph

where t∗E = t∗4 (marked by the dotted vertical line) are the same data represented

in Figure 3.3b as the EGFR and PDGFRA amplified populations are introduced

at the same time. From this graph, we see that the proportion with neither

gene amplified decreases and that with EGFR amplified increases as the EGFR

amplified population is introduced earlier. Meanwhile, as E cells are introduced

later than P cells, we see the proportions changing as we would expect, with the

only PDGFRA amplified proportion increasing. We also note the slight decrease

in the proportion of neither amplified cells when the EGFR amplified population
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is introduced at t∗E = t∗7 in the competitive case, this is because the PDGFRA

population is allowed enough time to proliferate to a size where the introduction

and competitive interactions of EGFR amplified cells has a smaller relative effect

on their proliferation. Again, for brevity we do not present all the simulation

results here, further plots can be found in the supplementary material (Figures

C.2 and C.3). As with the previous section where we looked at the effect of

giving the amplified sub-populations selection advantages, we find that changing

the timing of introducing the mutated populations in our simulations does not fit

the biopsy data perfectly, but has some of the desired effects. For example, to get

proportions more similar to the biopsy data, we need the proportion with neither

gene amplified to decrease and the EGFR amplified proportion to increase, which

is consistent with earlier EGFR introduction times in the competitive and neutral

scenarios, whereas the cooperative case produces a much higher proportion of

both amplified.

The location of mutations

Another factor that could result in some biopsies having only EGFR and others

only PDGFRA amplified is that the mutations occurred in different places, re-

sulting in the populations occupying different, spatially separated regions of the

tumour. In all previous simulations presented in this paper, we assumed that the

mutation events leading to the establishment of EGFR and PDGFRA amplified

sup-populations in our model occurred in the centre of the growing tumour; this

was a reasonable place from which to explore the effects of selection advantages

and timing of mutations, since it is where most proliferation is taking place in

our model in the early phases of tumour growth and, therefore, where we may

expect more mutations to appear. However, cells at the centre of the tumour also

experience more competition for space, a growth limiting resource in our model,

as this is where the highest tumour cell density is in these early growth phases.

Therefore, we now explore the effects of introducing the EGFR and PDGFRA

amplified sub-populations away from the centre of the tumour where there is less

competition for space.

We use the same parameters and assumptions described in Section 3.4.2,

but define a vector of possible introduction locations. In these simulations, the

mutated populations are introduced when the growing tumour is small (the N

population is only six times its initial size), with the bulk of the tumour being

contained within a width of 3mm for each (ρ, D) pair at this time. Thus we

choose introduction locations no further than 1.5mm from the tumour centre as
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(a) (b)

Figure 3.6: Sub-population distributions when mutations are introduced on op-
posite sides of the tumour: plots showing mean proportions of simulations with
neither gene (Neither Amp), only the EGFR gene (Only EGFR Amp), only the
PDGFRA gene (Only PDGFRA Amp) and both genes (Both Amp) amplified
when EGFR and PDGFRA amplified sub-populations are introduced (a) 0.5mm
to left and right of the center (i.e., x∗

E = x∗
3 and x∗

P = x∗
5) and (b) 1mm to left

and right of the center (i.e., x∗
E = x∗

2 and x∗
P = x∗

6), respectively.

mutations are unlikely to occur beyond this point where concentrations of tumour

cells are very low and, consequently, few proliferation events are occurring. We

define a vector of possible introduction locations, x∗ = (x∗
1, ..., x

∗
7) as follows:

x∗
i = x∗

c + 0.5(i− 4)mm, where x∗
c is the mesh point at the centre of the tumour.

We produce simulations with x∗
E and x∗

P each taking the values given by the

vector x∗. We show two simulation results in Figure 3.6 showing the proportions

when EGFR and PDGFRA amplified populations are introduced (a) 0.5mm and

(b) 1mm to the left and right of the tumour center, respectively. In both of these

cases we see distinct regions with EGFR and PDGFRA amplification forming in

the simulated tumours of equal proportion. We refer the reader to Figures C.4

and C.5 in the supplementary material for further results where we find that

introducing each population closer to the tumour centre has a small effect on

the amplified tumour proportion and that introducing PDGFRA further away

from the EGFR amplified population has similar effects to those presented here

in Figure 3.6. As found in the previous two sections, only changing where the

amplified sub-populations are introduced does not fully explain the patterns of

amplification we observe in the biopsy data, however it does produce some of the

desired effects, such as increasing the proportion of simulations with only one of

each gene amplified.
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3.4.3 LHS-PRCC Sensitivity Analysis

To consider the implications of our model in a more comprehensive manner, in

this section we conduct a sensitivity analysis through Latin Hyper-cube Sampling

(LHS) and Partial Rank Correlation Coefficients (PRCC). This enables a better

understanding of the effects of parameter values on the amplification patterns

we observe across our model simulations. In our analysis we include 12 model

parameters and assign a uniform probability density function (pdf) to each, with

minimum and maximum values chosen in line with the ranges explored in previous

sections of this paper; the details of which are outlined below and summarised in

Table 3.1.

In Section 3.4.2 we explored the effects of affording the EGFR and PDGFRA

amplified sub-populations various selection advantages and changing the phyloge-

netic ordering of mutations. Thus, in order to formally study the sensitivity of our

model to these factors we first introduce some new parameters. The parameters

ν ρ
E and ν ρ

P , defined such that ρE = ν ρ
E ρN and ρP = ν ρ

P ρN , are the proliferative

advantages of the E and P populations over the N population, with minimum

and maximum values of 1 and 1.5, i.e., no advantage and a 50% proliferation

advantage. Similarly, we investigate the sensitivity of the model to invasive ad-

vantages afforded to the amplified sub-populations via the parameters ν D
E and

ν D
P , defined analogously by DE = ν D

E DN and DP = ν D
P DN . To investigate how

the phylogenetic ordering of mutations influences the amplification pattern we

see across our simulations in Section 3.4.2, we chose to introduce the EGFR and

PDGFRA amplified sub-populations at various introduction times, t∗E and t∗P de-

termined by the size, NE or NP , of the growing tumour, which we also include

in the sensitivity analysis with minimum and maximum values of 3NI and 9NI ,

where NI is size of the initial population of non-amplified tumour cells.

In addition to these parameters, we include the introduction locations of the

mutated populations, x∗
E and x∗

P , and the proliferation rate, ρN , and diffusion

coefficient, DN , of the non-amplified population of tumour cells (N) in our sensi-

tivity analysis. As detailed in Section 3.3, we previously ran simulations for four

(ρN , DN) pairs to represent the heterogeneity of tumours present in our patient

cohort and calculated the average proportions from these four simulations, while

other parameters in the model were varied. Therefore, we assign each parameter

uniform pdfs with minimum and maximum values of 3 and 30, with appropri-

ate units, to represent tumours with varying degrees of proliferative and invasive

capabilities.

The interactions, αPE and αEP , are the final parameters to be included in the
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Table 3.1: Parameter definitions and the minimum and maximum values of their
corresponding uniform distributions.

Parameter Definition (Min, Max) Units
ν ρ
E proliferative advantage of E cells (1, 1.5) unitless
ν ρ
P proliferative advantage of P cells (1, 1.5) unitless

ν D
E invasive advantage of E cells (1, 1.5) unitless
ν D
P invasive advantage of P cells (1, 1.5) unitless

NE tumour size when E is introduced (3NI , 9NI) cells/mm2

NP tumour size when P is introduced (3NI , 9NI) cells/mm2

x∗
E introduction location of E cells (x∗

c − 1.5, x∗
c + 1.5) mm

x∗
P introduction location of P cells (x∗

c − 1.5, x∗
c + 1.5) mm

ρN proliferation rate of N cells (3, 30) 1/year
DN diffusion coefficient of N cells (3, 30) mm2/year
αPE effect of P on E (-5, 5) unitless
αEP effect of E on P (-5, 5) unitless

sensitivity analysis. We note that we previously made the assumption that the

interactions between the EGFR and PDGFRA amplified sub-populations were

symmetric, that is α = αPE = αEP . This assumption allowed us to reduce the

number of parameters in our model and study the amplification patterns for the

three key cases of competition (α = −5), cooperation (α = 5) and neutralism

(α = 0) throughout Section 3.4.2. It is, however, possible that these interactions

are non-symmetric and one of the other six interaction types detailed in Table 2.1

could explain the amplification patterns observed in the biopsy data in Figure 3.1,

or perhaps an interaction scenario where both populations are competing, but

not to the same degree. Thus, in the following sensitivity analysis we allow αPE

and αEP to take different values and sample them independently from uniform

distributions with minima and maxima of -5 and 5.

Briefly, the first step of the sensitivity analysis is to conduct the LHS for

which we choose a sample size of 2000; each of the 12 parameter distributions

given in Table 3.1 are divided into 2000 intervals of equal probability and a sample

is drawn from each. These samples are then randomly grouped and 2000 simula-

tions are run, from which we record the four outputs of interest: the proportions

of neither, only EGFR, only PDGFRA and both genes amplified. The inputs

and outputs are then rank transformed and PRCC values are calculated between

each parameter and each output of interest, with values ranging from −1 to +1.

The sign and magnitude of the PRCC values indicate the qualitative relationship

between the input and output variables and the importance of parameter uncer-

tainties in accurate prediction of the model outputs [10]. A significance test is



3.4. Results 75

(a) (b)

(c) (d)

Figure 3.7: Bar plots showing PRCC values between each model parameter de-
tailed in Table 3.1 and the four outputs of interest: the proportion of simulations
with (a) neither, (b) only EGFR, (c) only PDGFRA and (d) both genes ampli-
fied. PRCC values significantly different from zero at the 0.05 (*), the 0.01 (**)
and the 0.001 (***) levels are highlighted.
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conducted to test whether each PRCC value is different from zero, thus indicating

any significant correlations between outputs and parameters. A more in depth

description of the LHS-PRCC protocol is provided in [10] and [60]. We imple-

mented the sensitivity analysis utilising code by Massey et al. [62], which can be

found at https://github.com/scmassey/model-sensitivity-analysis along

with further details of the LHS-PRCC method.

The results from the LHS-PRCC sensitivity analysis for the four outputs of

interest from our model—given by Eq.s (2.1)–(2.3), (2.7) and (3.1)–(3.6) and

initial conditions (3.7)—and the 12 parameters detailed in Table 3.1 are shown

in Figure 3.7. As expected from our analysis in Section 3.4.2, the proportions

of simulations with only EGFR and only PDGFRA amplified are both strongly

correlated to selection advantages and the timings of mutations, with the effects

being reflected for each output. For example, there is a strong positive correlation

between the parameter ν ρ
E, which affords the EGFR amplified population a prolif-

erative advantage, and the proportion of simulations with only EGFR amplified,

whereas there is a strong negative correlation between this parameter and the

proportion with only PDGFRA amplified. Affording these amplified populations

invasive advantages, through νD
E and νD

P , and introducing them at earlier times,

t̃E and t̃P , in the growing tumour also has a similar, albeit slightly weaker, effect

on the proportions of simulations with only one of the genes amplified observed.

In Figure 3.7a, we observe that the proportion of simulations with neither

gene amplified is most sensitive to the parameters ρN and DN . This may be due

to the effects at the edges of the simulated tumours, where the total tumour cell

population, T = N+E+P , is above the threshold of detection and the amplified

populations, E and P , remain undetected below the threshold (as illustrated in

Figure 3.3a), so these points in the simulations contribute to the proportion of

the simulation with neither gene amplified. As the parameter ρN decreases and

DN increases, the profile of the tumour edges becomes flatter and this area at the

edge of the tumour becomes wider, thus contributing more to the proportion of

the simulated tumour with neither gene amplified. This suggests that to represent

amplification patterns for a population of heterogeneous GBMs it is important to

incorporate this heterogeneity into our mathematical modelling by considering a

range of ρN and DN values, as we did throughout Section 3.4.2.

In Figure 3.7d, we notice that only the interaction parameters, αPE and αEP ,

have a strong impact on the proportion of simulations with both genes amplified;

this is, again, consistent with our previous observations in Section 3.4.2, where we

saw that the proportion of simulations with both genes amplified increased as we

https://github.com/scmassey/model-sensitivity-analysis
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moved from the competitive case through to the neutral and cooperative cases.

The other proportions in the simulations are also strongly correlated to these pa-

rameters. We observe that if αPE and αEP have opposite signs, say αPE > 0 and

αEP < 0, then the EGFR amplified population will benefit, while the proportion

with only PDGFRA amplified will decrease. The case where both parameters

have the same sign is more difficult to understand due to the competing effects;

a positive αPE will increase the only EGFR Amp proportion and have a stronger

negative effect on the only PDGFRA Amp proportion, whereas a positive αEP ,

will have the opposite effect. Since the negative effects are stronger in this case,

it is likely that the proportions with only one gene amplified will decrease, as the

proportion with both amplified will increase when both interaction parameters

are positive. Meanwhile, if αPE and αEP are both negative, the proportion with

both genes amplified will decrease, as the EGFR and PDGFRA amplified sub-

populations compete with one another; this is likely to result in each amplified

population occupying distinct regions of the tumour or one population dominat-

ing, depending on the strength of the competitive interactions and various other

factors, such as one population being introduced and becoming established before

the other.

Finally, we note that the PRCC values between the introduction locations

and each of the four outputs of interest are close to zero, indicating that they

are not strongly correlated. While this may be expected, since our results in Fig-

ure 3.6 in Section 3.4.2 and Figures C.4 and C.5 in the Appendix C do not show

that changing the introduction locations has a big effect on the amplification pat-

terns observed, it is also possible that this is due to a non-monotonic relationship

between the introduction locations and the outputs. In this case, it is possible to

remove the non-monotonicity from the problem by dividing the domains of x∗
E and

x∗
P into two; this process is discussed in further detail in Appendix D, where the

results of a second LHS-PRCC analysis with the non-monotonicities accounted

for can be found in Figures D.1 and D.2. Upon removing the non-monotonicity,

we find, however, that there are still no very strong correlations between the in-

troduction locations of the amplified sub-populations and the outputs of interest,

while the results for the other 10 model parameters remain consistent with the

results presented here.
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3.5 Discussion

In this chapter, we have used a novel mathematical model describing the co-

evolution of three distinct tumour cell sub-populations to investigate the nature

of interactions between cells with two common mutations occurring in GBMs,

namely amplification of the genes encoding the EGFR and PDGFRA proteins.

We conducted an in silico investigation into the levels of EGFR and PDGFRA

amplified sub-populations observed under competitive, cooperative and neutral

interactions between these cell types and compared our results to population

levels of amplification observed in image-localized biopsy data from an initial

cohort of GBM patients, where a high proportion of biopsies had only the EGFR

gene amplified, a smaller proportion had both or neither gene amplified and very

few showed amplification of only the PDGFRA gene (see Figure 3.1b).

In carrying out computational simulations, we found that the amplification

patterns observed in simulated tumours under each of the different interaction as-

sumptions did not match those observed across the patient biopsy data when we

assumed that cells with the EGFR and PDGFRA genes amplified did not differ

in their dynamics, shown in Figure 3.3b. We note that this was to be expected

and is consistent with research suggesting dynamical differences between these

sub-populations. For example, a study reconstructing the phylogeny of GBMs

suggests that EGFR amplification is a mutation that arises earlier than amplifi-

cation of the PDGFRA gene [108], while other studies have found that tumours

with EGFR amplified are more invasive, which could indicate that EGFR ampli-

fied cells themselves are more invasive [81, 124]. Following this, we explored the

effects of introducing differences between the sub-populations in our simulations

through changing various model parameters. Since a high proportion of biopsies

across the patient data have the EGFR gene amplified but no amplification of

the PDGFRA gene, we investigated the effects of giving EGFR amplified cells

various selection advantages over PDGFRA and non-amplified cell types, shown

in Figure 3.4 and Figure C.1 in Appendix C. While these simulations do not

achieve the same amplification patterns observed in the biopsy data, affording

EGFR amplified cells a selection advantage does help to produce the high levels

of EGFR amplification required, particularly in the competition and neutral in-

teraction cases. We note that further investigation of other degrees of invasive

and proliferative advantages may improve the results we see; throughout Section

3.4.2 we only looked at quite large advantages of 50% of the respective parame-

ters, allowing different degrees of advantages in the model is something that will

be addressed in Chapter 4. We then chose to investigate the effects of changing
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the phylogenetic ordering of mutations and found that introducing the EGFR

amplified sub-population earlier in the evolution of our simulated tumours also

helped to produce the desired higher level of EGFR amplification under compet-

itive and neutral interaction assumptions, whereas the proportion of points with

both genes amplified was much higher than observed in the biopsy data in the

cooperative case. Finally, we looked at introducing the EGFR and PDGFRA

amplified sub-populations in different locations in the growing tumour simula-

tions. We found that changing these locations did not have such a large effect

on the amplification patterns observed as the selection advantages and phylogeny

did, however it could be an important factor in replicating amplification pat-

terns observed in individual GBMs with distinct regions of EGFR and PDGFRA

amplification.

We also conducted a LHS-PRCC sensitivity analysis, which highlighted the

sensitivity of the amplification patterns observed across simulations to the selec-

tive advantages and introduction times of the amplified sub-populations and the

type of interactions occurring between them. Consistent with our finding in Sec-

tion 3.4.2, this analysis also highlighted that the amplification patterns were not

strongly correlated to the introduction locations; while this may be the case, the

weak correlation observed could be a result of only considering a small range of

tumour locations as a result of the small size of the tumour at early introduction

times providing little scope for spatial variation. This is a factor that could be

investigated in future work.

Although the simulation results presented in this chapter do not perfectly

match the patterns of EGFR and PDGFRA amplification observed across the

patient biopsy data in Fig. 3.1b, our in silico modelling approach has allowed us

to investigate how different interaction assumptions influence the amplification

patterns in simulated tumours and explore the effects of changing the parameters

and the timing and position of sub-population introductions in our model. We

found that some of these changes improved our simulation results with respect to

the biopsy data and were also consistent with suggestions about EGFR amplified

sub-populations found in the literature.

In Section 3.4.2, we only explored each factor individually, whereas a com-

bination of factors relating to the selection advantages of EGFR and PDGFRA

amplified cells as well as the timing and location of mutations is likely to be

influencing the amplification patterns across the biopsy data. This combination

of factors makes it difficult, at this stage, to deduce the nature of interactions

between cell types that is driving these patterns, however, this will be addressed
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in Chapter 4, where we build on the work presented in this chapter. Across our

simulation results, nonetheless, we did find that the competitive and neutral cases

approximated the patterns observed in the biopsy data better than the cooper-

ative case, suggesting that EGFR and PDGFRA amplified sub-populations are

not strongly cooperating with one another.

Throughout our investigation in Section 3.4.2, we only studied one strength

of competitive and cooperative interactions between EGFR and PDGFRA am-

plified sub-populations and also assumed that these interactions were symmetric,

whereas these cells may be interacting differently and to stronger or weaker de-

grees. To shed light on this, in Section 3.4.3, we allowed αPE and αEP to take

different values. We found that, if they have opposite signs, one amplified popu-

lation will benefit while the other decreases and that if they have the same sign

but are not equal the results are more difficult to interpret due to competing ef-

fects. The effect of this on the amplification patterns observed across a cohort of

tumours requires further investigation, which is something that may be studied

in future work. In Chapter 4, however, we remove the assumption that the inter-

actions between EGFR and PDGFRA amplified sub-populations are symmetric

and explore different strengths of cooperation and competition in our work.

Determining the nature of interactions between EGFR and PDGFRA am-

plified sub-populations in GBMs is a complex biological problem, with factors

relating to selection advantages and the phylogeny of these tumours influencing

the balance of populations we see in a tumour, as we have demonstrated with our

in silico investigation in this chapter. To be able to untangle the influence from

and the nature of interactions from the effects of these other factors, more data

may be required. In this study, we had biopsy data for a cohort of 25 patients and

a larger number may enable us to gain more insight into the pattern of EGFR

and PDGFRA amplification. The patient cohort data is expanded in Chapter 4,

where we use an inference algorithm to infer the model parameters to see if any

further insight into the interactions between these amplified sub-populations in

GBMs.



Chapter 4

Parameter Inference to

characterise EGFR and

PDGFRA amplified glioblastoma

sub-populations

4.1 Introduction

The work presented in this chapter follows on from that detailed in Chapter 3.

Here, we build on the knowledge gained from the in silico investigations carried

out to infer estimates of the dynamics and interactions of EGFR and PDGFRA

amplified sub-populations in a final set of patient biopsy data.

This chapter begins by presenting tissue analysis data in Section 4.2, build-

ing on the preliminary dataset presented in Chapter 3. We briefly discuss the

need to modify the copy number aberration (CNA) threshold previously used to

determine the amplification status of the biopsies, before illustrating a patient

example and providing the details of the tissue samples from the final cohort of

patients included in the study.

Next, we discuss the need to introduce stochasticity into the model, giving

details of the approach taken in Section 4.3, before then moving on to param-

eter inference work in Section 4.4. We detail the inference algorithm used and

test whether the parameters in our model can be inferred for example synthetic

datasets. Finally, in Section 4.5, the model parameters are inferred for the patient

biopsy data and the results are discussed.
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4.2 Image-localised biopsies and tissue analysis

from a cohort of GBM patients

Following on from the work in Chapter 3, an additional 30 patients were recruited

to the study by researchers at the Mayo Clinic, taking the total patient cohort to

55 patients. As previously described in Section 3.2, patients with clinically sus-

pected GBM undergoing preoperative MRI for surgical resection were recruited to

the study and the absence of previous treatment was confirmed. Institutional re-

view board approval was obtained, along with written and informed consent from

each participant prior to being enrolled. Multiple image-localised biopsies were

collected during surgery from each patient; more detail of the biopsy collection

protocol can be found in Section 3.2 and [41].

Copy number aberration (CNA) values associated with the EGFR and PDGFRA

genes are determined for the biopsy samples using array comparative genomic hy-

bridization (aCGH) or whole exome sequencing, more details of these processes

can be found in [40] and [131]. Each biopsy is then classified as being amplified

in each gene based on these CNA values, with a value above a certain thresh-

old corresponding to amplification and vice versa. Previously, we chose to use a

CNA value of 2.2 for this threshold. This threshold was chosen so that it would

be sensitive to densities of EGFR and PDGFRA amplified cell populations as low

as 10% in the tissue samples; this was based on the knowledge that each biopsy

is likely to contain a mixture of amplified and non-amplified cells in each gene

and that all cells not amplified in each gene will have a CNA equal to 2 and the

assumption that all cells amplified in each gene would have a CNA value of 4.

In the updated dataset, however, only rounded, whole number CNA values

were available for a subset of the patient biopsies. Thus, we choose to use a

CNA threshold of 2.5 to determine the amplification status of the biopsies as this

threshold can be used consistently across the whole dataset. In this way, using

the same knowledge and assumptions about the CNA values of amplified and

non-amplified cell populations, the amplification threshold will now be sensitive

to densities of amplified cell populations as low as 25% of the tissue sample.
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Analogously to Chapter 3, the CNA threshold of 2.5 is calculated as follows:

CNA value of
tissue sample =

(
Non-amp fraction

of sample × CNA value of
non-amp cells

)
+
(
Amp fraction
of sample × CNA value of

amp cells

)
=(0.75× 2) + (0.25× 4)

=2.5.

Intratumoural heterogeneity: a patient example

Figure 4.1: Three axial T1Gd MRI slices of a patient with a clinically diagnosed
GBM to the rear of the brain in the left occipital lobe. The location of a biopsy
sample as recorded during surgery is shown on each slice by the red dot and
highlighted by an arrow.

A patient with clinically suspected GBM who was included in this study

underwent surgical resection of their GBM, during which 8 biopsy samples were

taken. The surgical team recorded the locations from which each of these biopsies

were sampled, which were then co-registered with the individual’s preoperative

MRI scans. In this way, each biopsy has a set of (x, y, z) coordinates matching

the location on the MRI scan from where it was sampled, with the z coordinate

corresponding to the slice number.

Figure 4.1 shows 3 axial slices of the patient’s preoperative T1Gd MRIs.

On each of these slices, the (x, y) coordinates of any biopsy samples with the

matching z coordinate are marked by a red dot and highlighted by an arrow.

Of the 8 sampled biopsies, 4 are shown on these 3 slices, while the remaining 4
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biopsies have coordinates on 4 different MRI slices that are not shown here for

brevity.

It can be observed from the images shown in Fig. 4.1 that the neurosurgeon

has sampled biopsies from a variety of regions within the tumour: (a) the biopsy

location is recorded just outside the enhancing tumour region, where the invasive

edge of the tumour is likely to be; (b) two biopsy locations are recorded on this

slice, with one being close to the centre of the necrotic tumour core (yellow arrow),

while the other is on the inside edge of the enhancing lesion (green arrow); (c)

the biopsy location is within the enhancing region of the tumour. In this way, an

insight into the genomic profile of these different regions of the tumour is gained

when the samples are sent for analysis.

CNA values are determined for each of the biopsies, where it is found that this

patient’s tumour exhibits heterogeneity in EGFR and PDGFRA amplification.

For example, of the biopsies shown in Fig. 4.1, two are amplified in only EGFR;

the biopsies sampled from the locations shown in (a) and (c). Meanwhile, the

biopsy from the location highlighted by the green arrow in (b) is amplified in

neither gene, while the other biopsy shown on the same slice is amplified in both

genes. The location and amplification status of each of the eight biopsies sampled

from this individual’s tumour are summarised in Figures 4.2(a)-(d). These figures

show the locations of the eight biopsies and their distribution throughout the

various tumour regions. Here it can be seen that the neurosurgeon has sampled

at least one biopsy from the invasive margin, the T1Gd enhancing tumour and

the necrotic tumour core as segmented from the preoperative MRI scans. Of

these eight biopsies, two are amplified in neither of the genes, five are amplified

in only the EGFR gene, while one is amplified in both the EGFR and PDGFRA

genes.
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(a) (b)

(c)

(d)

Figure 4.2: Images showing biopsy sampling locations and their corresponding
amplification status for an individual with a clinically diagnosed glioblastoma.
The brain domain segmented from the patient’s MRI scans is shown pale grey
in (a) sagittal, (b) axial and (c) coronal planes. A lesion is shown in pale yellow
to the rear of the brain in the left occipital lobe. Three different layers to this
lesion are shown: the outermost layer is the segmented volume from T2 MRI scans
representing tumour edema; the middle layer is the segmented contrast enhancing
volume from T1Gd MRIs, corresponding to the densest part of the tumour; and
the innermost layer is the non-enhancing tumour core segmented from T1Gd
MRIs, showing the necrotic core of the tumour. A closer image of this tumour
lesion is shown in (d) without the surrounding brain domain. Within this tumour
lesion small volumes are shown at the locations where biopsies were sampled
as recorded by the surgical team during surgery. The colour of these volumes
represent the amplification status of each biopsy as determined through tissue
analysis. The brain domain and tumour volumes were segmented by a member of
the Mathematical NeuroOncology Lab at Mayo Clinic, Phoenix, Arizona. These
images were created using the open source software 3D Slicer (version 4.10.2).
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Figure 4.3: Scatter plot showing the EGFR and PDGFRA CNA whole number
values for each of the 240 patient biopsies. The values are plotted on a log2 scale
and the colour of each point represents the number of biopsies for each CNA value
pair. The red lines show the thresholds used to determine amplification status
for each of the EGFR and PDGFRA genes, that is a CNA value of 2.5 in each
case.

Sampling from a cohort of patients with GBM

A total of 240 biopsies that contained adequate tumour and/or DNA content to

undergo analysis were collected from 55 patients with clinically suspected primary

GBM; we note that this data is also published in [131]. EGFR and PDGFRA

CNA values were successfully determined for these biopsies through aCGH anal-

ysis or whole exome sequencing. The number of biopsies sampled from each

patient ranged from 1-10, with a median of 4 samples coming from an individual.

Only rounded whole number CNA values were available for the samples from

24 patients (116 biopsies), as opposed to values with 6 decimal points for other

samples. Therefore, we chose to use rounded whole number CNA values for all

samples in order to be consistent across our entire dataset, which are shown in the

scatter plot in Fig. 4.3 along with the thresholds used to determine amplification

status in each of the EGFR and PDGFRA genes.

EGFR amplification was the more commonly observed genetic alteration,

with 162/240 samples having a CNA value associated with EGFR amplification,

whereas 40/240 were determined to be PDGFRA amplified. Of these amplified

samples, 24 were found to have amplification of both the EGFR and PDGFRA

genes.

The data shown in Fig. 4.3 highlight the heterogeneity in CNA values ob-
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served across samples from this cohort of patients, where biopsies with up to 206

copies of the EGFR gene and 57 copies of the PDGFRA gene were found. Even

within individual tumours, large variations in CNA values are observed; for ex-

ample, of the four biopsies taken from one patient’s tumour, two did not exhibit

amplification in either gene and two were highly amplified in the PDGFRA gene,

one sample having 46 copies and the other 34. This highlights the importance of

multi-region sampling from GBM tumours, as it demonstrates that the genetic

profile of one region of a tumour can be very different to another, which may have

implications for therapeutic decisions and treatment outcomes.

For each patient, we then determined the proportion of their biopsies that

were found to be amplified in neither gene, only the EGFR gene, only the

PDGFRA gene and, finally, both of the EGFR and PDGFRA genes simulta-

neously. The proportions calculated for each of the 55 patients are summarised

as a box plot in Fig. 4.4a and the means of these proportions are shown as a

spider plot in Fig. 4.4b. Figure 4.4a highlights the heterogeneity of amplifica-

tion patterns observed across the patient cohort, with some patients having all

their biopsies amplified in neither, only one or both of the genes. Meanwhile,

other patients have differing amplification among their biopsies, as illustrated by

the patient example discussed earlier in this section. The spider plot shown in

Fig. 4.4b demonstrates that the highest mean proportion of biopsies are those

amplified in EGFR, followed by amplification in neither gene; the mean propor-

tions of biopsies that are amplified in only PDGFR or both genes are both at low

levels. We note that the mean proportion of biopsies amplified in neither gene is

slightly higher in Fig. 4.4b than in Fig. 3.1b, while the mean amplified propor-

tions are slightly lower; this is likely to be a result of the slightly different CNA

thresholds used to determine amplification in this work and in the preliminary

dataset in Chapter 3.

Of the 55 tumours for which copy number data for at least one biopsy were

determined in this dataset, 12 had at least one biopsy sampled where both the

EGFR and PDGFRA genes were amplified. Meanwhile, 45/55 (81%) and 16/55

(29%) tumours were found to have at least one biopsy amplified in the EGFR

and PDGFRA genes, respectively. We note that these numbers are much higher

than those observed in data from the Cancer Genome Atlas (TCGA) [125], where

41% and 10% of the 206 tumours analysed were found to be amplified in EGFR

and PDGFRA, respectively, and 5 cases were observed to have co-amplification of

these genes [107]. The numbers of tumours exhibiting amplification of these genes

is likely to be much higher in our dataset than in TCGA data due to the fact that
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(a) (b)

Figure 4.4: (a) A box plot summarising the proportion of each individual’s biop-
sies that were determined to be amplified in neither gene (Neither), only the
EGFR gene (Only EGFR Amp), only the PDGFRA gene (Only PDGFRA Amp)
and both of the EGFR and PDGFRA genes (Both Amp) for the 55 patients.
Each of the blue circles overlaid on the box plot represents the relevant propor-
tion of an individual’s biopsies for each category. The means of these proportions
across the 55 patients are shown in (b).

multiple biopsies are sampled from various regions of each tumour in our dataset,

whereas single samples are analysed for each case in the TCGA dataset. Thus,

where only one biopsy is sampled, amplification may not be identified in cases

where the tumour is not amplified everywhere, whereas multi-region sampling is

more likely to identify these cases.

4.3 Introducing stochasticity in a simulated pop-

ulation of GBMs

The data from our patient cohort, illustrated in Fig. 4.4a, shows that the propor-

tions of biopsies amplified in the EGFR and PDGFRA genes vary from patient

to patient, with some patients having all their biopsies without any amplifica-

tion in these genes, others having all biopsies with one or both genes amplified

and others somewhere in between with a mixture of amplified and non-amplified

biopsies. Natural variation and the fact that mutations occur randomly are likely

to play a role in contributing to this observed variation and so, to replicate this

heterogeneity arising in our patient cohort, we introduce stochasticity to some of

the model parameters and run a number of simulations, M , to create a simulated

population of GBMs.

As the biopsy data are calculated as the mean from a cohort of 55 individual
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tumours, where each tumour varies in their proliferative and invasive ability, we

use a variety of ρN and DN pairs to reflect this. (Recalling that the proliferation

and invasion rates of the EGFR amplified sub-population are defined as ρE =

νρ
EρN and DE = νD

EDN , with the parameters for the PDGFRA amplified cell

population defined analogously, the proliferative and invasive abilities of these

amplified sub-populations are also varied implicitly.) In Chapter 3 and [68], this

variability was accounted for by producing four simulations using two values for

each of ρN and DN to mirror the range of parameters observed in unpublished

patient databases; to represent high parameter values we used ρN = 30/year and

DN = 30mm2/year and for low values we used ρN = 3/year andDN = 3mm2/year

as in [36]. Instead, we now make the assumption that the proliferation and

invasion parameters are uniformly distributed over these ranges and, thus, in

each of our M simulations, ρN and DN are selected from the distributions

ρN ∼ U(3, 30)/year and DN ∼ U(3, 30)mm2/year.

In the previous chapter, the effect of changing the location of mutations, x∗
E

and x∗
P , on the amplification patterns observed in our simulated tumours was

explored. While the model was not found to be particularly sensitive to these

parameters, they may still play a role in contributing to the observed hetero-

geneity of amplification levels in Fig. 4.4a. Since the mutations leading to the

introduction of amplified sub-populations occur randomly during cell prolifera-

tion, we now assume that the locations at which these populations are introduced

in the simulations are also random. Further, we make the assumption that these

mutations are more likely to occur where more proliferation is taking place and

less likely to occur where fewer cells are replicating. Since we previously assumed

that E and P cells mutate only from N cells, we determine this likelihood based

on the proliferation of the N population of cells. Therefore, at the time point, t∗E,

at which the EGFR amplified population is introduced in each simulation, the

location x∗
E is randomly sampled from the set of simulation spatial mesh points

xi with weights wx,i defined by

wx,i =
fN(xi, t

∗
E)

ΣjfN(xj, t∗E)
, (4.1)

where fN is given by Eq. (2.7). Thus, the spatial mesh points where the net

proliferation of the N population is highest at this time point are more likely

to be selected as the introduction location of population E. Similarly, x∗
P is

randomly sampled at time t∗P with analogously defined weights.
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In Chapter 3, we explored the effect of changing the introduction times of the

two amplified sub-populations on the mean proportions of amplified simulations

observed. These introduction times, t∗E and t∗P , are defined as the first time point

in a simulation after the growing population of N tumour cells had reached a

particular size, NE or NP . By choosing a range of values for NE and NP , we

explored the effect of changing the phylogenetic ordering of mutations and found

that introducing the EGFR amplified sub-population earlier in the evolution of

our simulated tumours also helped to produce the desired higher level of EGFR

amplification under competitive and neutral interaction assumptions.

Since the mutations leading to the introduction of these amplified sub-populations

are random events, we now assume that the parameters NE and NP are random

variables with an associated distribution and mean that may differ between the

EGFR and PDGFRA amplified sub-populations. In this work, we choose to

model them with Gamma distributions,

NE ∼ NI + Γ(kE, θE) and NP ∼ NI + Γ(kP , θP ),

where kE, kP > 0 are the shape and θE, θP > 0 are the scale parameters. NE

and NP are modelled in this way so that the possible range of values are [NI ,∞),

with means NI + kEθE and NI + kP θP , respectively. We recall that NI is the size

of the initial population of N cells, as defined in Chapter 3.

As mentioned previously, a mutation event occurring in a cell leads to the

creation of a single EGFR or PDGFRA amplified cell and, while there are likely to

be many such events occurring during the growth of a GBM, we assume that each

of the EGFR and PDGFRA amplified sub-populations only become established

within the tumour at most once, as in Chapter 3 and [68]. Thus, the scale

parameters, θE and θP , of the gamma distribution are the change in size of the

tumour between mutation events leading to the creation of an EGFR or PDGFRA

amplified cell; and the shape parameters, kE and kP , are the average number of

such events occurring before the amplified sub-population is introduced into the

growing tumour and has the opportunity to become established. Therefore, a

small value of ki means that few mutations occur before population i is introduced

into the growing tumour and a small value of θi means these mutations events

are occurring regularly as the tumour grows.

Modelling NE and NP in this way introduces an additional four unknown

parameters into our model and, thus, the final list of unknown model parameters

to be inferred are given in Table 4.1.
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Table 4.1: Definitions of parameters to be inferred.

Parameter Definition Units
ν ρ
E proliferative advantage of E cells unitless
ν ρ
P proliferative advantage of P cells unitless

ν D
E invasive advantage of E cells unitless
ν D
P invasive advantage of P cells unitless
kE shape parameter of gamma distribution for NE unitless
θE scale parameter of gamma distribution for NE cells/mm2

kP shape parameter of gamma distribution for NP unitless
θP scale parameter of gamma distribution for NP cells/mm2

αPE effect of P on E unitless
αEP effect of E on P unitless

4.3.1 Defining a simulated cohort of GBMs

Throughout the following parameter inference work, we produce a simulated co-

hort of GBMs for a given candidate parameter vector, η∗ = (ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , kE, θE,

kP , θP , αPE, αEP ). Given η∗, we define a simulated cohort of M GBMs as M ∈ N
simulations of our model, given by Eq.s (2.1)–(2.3), (2.7) and (3.1)–(3.6) and

initial conditions (3.7), where each of the M model simulations are produced

with the fixed parameters ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , αPE, αEP , while the stochastic parame-

ters ρN , DN , x
∗
E and x∗

P are sampled as described in the previous section and the

parameters NE and NP are sampled from the Gamma distributions,

NE ∼ NI + Γ(kE, θE) cells/mm2, (4.2)

NP ∼ NI + Γ(kP , θP ) cells/mm2, (4.3)

for each of the M simulation runs.

Each simulation of the model is run to a biologically relevant size, which is

chosen to represent a typical size of a GBM tumour at the time of diagnosis. Thus,

as described in Chapter 3, we run each simulation until the width of the total

tumour cell population above the threshold of 0.8K in each simulation is 36.2mm,

to reflect that the average tumour diameter at diagnosis is 36.2 mm (unpublished

patient data); more detail of this process can be found in the previous chapter

of this thesis. In this way, a sample of simulated GBMs is generated for the

given parameter vector, η∗, that reflects the heterogeneity observed in the GBMs

sampled from the patient cohort detailed in Fig. 4.4a in Section 4.2.

For each of the individual simulated GBMs, the proportion of the tumour
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with both of the EGFR and PDGFRA genes amplified, only one gene amplified

and neither of the genes amplified is then calculated. This process in analogous

to that outlined in Chapter 3, but taking into account the higher CNA threshold

used to define amplified biopsies in the updated set of patient data. As the new

patient data are for the proportions of biopsies containing EGFR and PDGFRA

amplified cells above a given density threshold, now assumed to be 25% of the

tissue sample instead of 10% as previously, we modify the equivalent measure

for each simulated tumour defined in Chapter 3 accordingly. For example, the

proportion of the simulated tumour with only EGFR amplified at time t, AE(t),

is now calculated as

AE(t) =

∫ L

0

H(E(x, t)− 0.25K)H(0.25K − P (x, t)) dx∫ L

0

H(E(x, t) + P (x, t) +N(x, t)− 0.25K) dx

,

≈ Number of mesh points with E > 0.25K and P < 0.25K at time t

Number of mesh points with T > 0.25K at time t
,

(4.4)

where T = E+P+N is the total tumour cell population andH(·) is the Heaviside
step function. The proportions with neither gene, only the PDGFRA gene and

both genes amplified, AN(t), AP (t) and AB(t), are defined and calculated in a

similar way. Each of these measures is then calculated at the time when each

simulation reaches the biologically relevant size, defined as having T > 0.8K at

a width of 36.2mm. This process is analogous to the approach taken in Chapter

3, where it is illustrated schematically in Fig. 3.3a.

Throughout the following parameter inference work, these proportions calcu-

lated from a simulated cohort of GBMs for each candidate parameter vector are

then compared to the proportions of amplified and non-amplified biopsies in the

patient cohort data. To do this, we make the assumption that the proportion of

biopsies amplified in each of the EGFR and PDGFRA genes for each patient is

representative of the amplified proportions of their entire tumour. Further details

of the inference methods we use and the metric used to compare the simulated

and patient cohorts are discussed later in this chapter.

For the remainder of this thesis, each of the simulation runs of the model

is produced using MatLab R2017a to implement a finite difference scheme in

space with a uniform mesh size of 0.5 mm and a forward Euler time step of 0.001

years. As in Chapter 3, we consider a domain length of L = 200 mm. Since we

are only interested in running simulations to a biologically relevant size and all
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populations are introduced close to its centre, this domain is sufficiently large

that tumour growth remains far from the boundaries, hence avoiding boundary

condition artefacts.

4.4 Parameter Inference

In this work, we now employ an approximate Bayesian computation method based

on sequential Monte Carlo, termed an ABC-SMC method [127], to estimate the

unknown parameters in our model. First, we estimate the parameters for syn-

thetic datasets, before then applying the inference scheme to the patient dataset

detailed in Section 4.2.

4.4.1 ABC-SMC Algorithm

The ABC-SMC parameter inference algorithm requires a prior distribution, π(η),

to be proposed for the unknown parameters. From this prior distribution, a

number of particles, {η(1), ..., η(R)}, is then sampled and propagated through a

sequence of intermediate populations, gradually evolving until they represent a

sample population from the target posterior. In this work we employ the ABC-

SMC algorithm as developed by Toni [127].

The ABC-SMC algorithm requires the user to predefine a number of inputs,

namely: the number of populations, Q+1; the vector of tolerances, ϵ = (ϵ1, ..., ϵQ);

the perturbation kernels, Kq; the prior distribution, π(η); the number of particles

to sample R; and the function, d(y∗, y0), to determine the distance of the simu-

lated data, y∗, from the data points, y0. The ABC-SMC algorithm then proceeds

as follows [127, 128]:

1: Initialise the tolerance vector, (ϵ1, ..., ϵQ); these are chosen such that ϵ1 >

... > ϵQ ≥ 0.

2: Set the population indicator q = 0.

3: Set the particle indicator i = 1.

4: while q ≤ Q do

5: if q = 0 then

6: while i ≤ R do

7: Sample η∗ independently from π(η).

8: Set η
(i)
q = η∗.

9: Set the weight for the particle η
(i)
q , w

(i)
q = 1.

10: Update the particle indicator, i← i+ 1.
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11: end while

12: else

13: while i ≤ R do

14: Sample η∗ from the previous population {η(1)q−1, ..., η
(R)
q−1} with weights

wq−1.

15: Perturb the particle to obtain η∗∗ ∼ Kq(η|η∗).
16: if π(η∗∗) > 0 then

17: Simulate a candidate dataset y∗ ∼ f(y|η∗∗).
18: Calculate the distance, d(y∗, y0).

19: if d(y∗, y0) < ϵq then

20: Set η
(i)
q = η∗∗.

21: Calculate the weight for the particle η
(i)
q ,

w
(i)
q =

π(η(i)q )
R∑

j=1

w
(j)
q−1Kq(η

(i)
q |η

(j)
q−1)

22: Update the particle indicator, i← i+ 1.

23: end if

24: end if

25: end while

26: end if

27: Normalise the weights.

28: Update the population indicator, q ← q + 1.

29: Reset the particle indicator, i = 1.

30: end while

In this way Q + 1 populations of accepted particles are generated. This

first of these populations is simply a random sample from the prior distribution,

with each subsequent population gradually evolving towards the target posterior

distribution, π(η|d(y∗, y0) < ϵQ).

The choice of predefined inputs can greatly impact the efficiency of the ABC-

SMC algorithm. The number of populations to sample, Q+ 1, and the tolerance

vector, ϵ, are usually chosen so that the intermediate populations gradually evolve

until they represent a sample from the target posterior, π(η|d(y∗, y0) < ϵQ). Small

differences between successive tolerances, that is ϵi and ϵi+1, mean that interme-

diate populations look very similar, whereas large differences between successive

tolerances can result in a low particle acceptance rate and a slow evolution towards

the target posterior; we note that the special case where Q + 1 = 1 corresponds

to the ABC rejection algorithm, which in general performs poorly compared to
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the ABC-SMC algorithm with Q+1 > 1 [127, 128]. Often the number of popula-

tions and corresponding tolerance vector are tuned by hand using trial and error

[27, 127], however algorithms have been proposed to select these inputs in a more

optimal manner. Rather than initialising the tolerance vector at the first step

in the above algorithm, one approach is an adaptive choice of threshold schedule

that consists of selecting the p-th quantile of distances between the simulated

and observed data [22, 25, 64, 66]. Selecting the tolerance vector adaptively often

improves the efficiency of the ABC-SMC algorithm [27], however Silk et al. [99]

recommend caution as in some cases the algorithm may not converge to the pos-

terior distribution for some values of p. In this work we choose to employ an

adaptive approach to selecting the tolerance vector, the details of which are given

in Appendix E and discussed in the next section.

The choice of perturbation kernel requires finding a balance between effec-

tively exploring parameter space and the speed of convergence to the target pos-

terior; a local perturbation kernel produces particles close to those from the pre-

vious population that will have a high probability of being accepted, provided

ϵ is suitably chosen, whereas a widely spread kernel enables a fuller exploration

of parameter space at the cost of a lower acceptance rate [27]. Thus, the choice

of perturbation kernel also greatly impacts the efficiency of the ABC-SMC algo-

rithm, the construction of which remains an unsolved problem in the context of

ABC [27].

A variety of perturbation kernels have been proposed for use in an ABC-SMC

context that range in their algorithmic complexity, from simpler component-

wise perturbation kernels [27, 127, 128] to more the complex multivariate ker-

nels [27, 66]. Filippi et al. [27] observed that component-wise kernels performed

poorly in cases where parameters are highly correlated, since they poorly reflect

the structure of the true posterior distribution of the parameters. Multivariate

kernels with a covariance matrix depending on the previous population of parti-

cles, however, were found to be superior producing a higher acceptance rate, with

a multivariate normal kernel with optimal local covariance matrix performing best

[27].

It is important to consider, however, the increased algorithmic complexity

that these more complex kernels bring alongside their increased particle accep-

tance rate. Filippi et al. [27] note that the computational cost of simulating the

data for each particle often outweighs the complexity added to the ABC-SMC

algorithm by a more complex kernel, although in cases where a simpler kernel

produces the same acceptance rate, then the kernel that has a cheaper algorithmic
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complexity should be chosen.

In this work, we employ a component-wise uniform perturbation kernel for

simplicity. This consists of perturbing each component 1 ≤ j ≤ k of the parame-

ter vector η = (η1, ..., ηk) independently according to a uniform distribution with

width 2σj. These widths of the uniform distributions can be fixed or a commonly

chosen approach is to adaptively chose their value informed by the range of values

for each component in the previous population [27]. We follow the latter approach

and, therefore, index the kernel and its width by the population index, q. Thus,

we define the perturbation kernel for population q (for q = 1, ..., Q) as

Kq(η|η∗) = {η∗j + U(−σq,j, σq,j)}j=1,...,k, (4.5)

where σq,j is given by,

σq,j = δ(max{η(1)q−1,j, ..., η
(R)
q−1,j} −min{η(1)q−1,j, ..., η

(R)
q−1,j}). (4.6)

We note that the notation η
(i)
q−1,j denotes the jth component of the ith particle of

population q − 1 and η∗j is the jth component of η∗, a weighted sample from the

previous population of accepted particles, {η(1)q−1, ..., η
(R)
q−1}. Further, the parameter

δ ∈ R determines the width of the perturbation kernel; a larger value of δ results

in a larger region of parameter space being explored at each population iteration,

which, again, comes with the potential cost of a lower particle acceptance rate.

4.4.2 Inferring the parameters of the gamma distributions

for NE and NP

As discussed in Section 4.3, we assume the parameters NE and NP - the sizes of

the N population of cells when the EGFR and PDGFR amplified populations of

cells are introduced into the growing tumour, respectively - are gamma distributed

as follows:

NE ∼ NI + Γ(kE, θE) and NP ∼ NI + Γ(kP , θP ),

where kE, kP > 0 are the shape and θ, θP > 0 are the scale parameters and NI

is the size of the initial population of N cells, as defined in Chapter 3. In this

section, we briefly explore how the choice of shape and scale parameters impact

the spread of our simulated GBM cohorts and employ the ABC-SMC algorithm

to test if we can infer these parameters for a set of synthetic data when all other
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Figure 4.5: Probability density function for the gamma distribution with different
values for the shape parameter, k, and scale parameter, θ.

parameters are known.

The shape and scale parameters, k and θ, of a gamma distribution, despite

their names, both affect the shape of the gamma distribution, while its mean is

given by kθ. Figure 4.5 shows the probability density function (pdf) of the gamma

distribution for six different pairs of k and θ. Of these distributions, three have a

mean equal to 200 and three a mean of 1000 with the shape parameter k taking

the values 1, 10 and 100 and θ the corresponding values in each case. From

this, we see that the two pdfs with k = 1 and high values of θ are both curves

monotonically decreasing from x = 0, with the higher value of θ having a lower

maximum at x = 0. When k = 10 or 100, the pdf has a peak at the mean,

with a higher value of k and lower value of θ resulting in a taller and narrower

peak. Thus, the choice of k and θ will affect the spread of the NE and NP values

sampled from each of the gamma distributions as well as the mean.

To explore how the choice of shape and scale parameters effects our simulated

GBM cohorts, we produce a simulated GBM cohort of 100 GBMs, as described

in Section 4.3.1, for each of these six (k, θ) pairs. In each of these simulated

cohorts, the shape and scale parameters of the gamma distributions for NE and

NP are equal, that is kE = kP = k and θE = θP = θ, taking the value pairs

(k, θ) = (1, 200), (10, 20), (100, 2), (1, 1000), (10, 100) and (100, 10). Meanwhile,

all other model parameters are kept the same for each of the simulated cohorts

and are as follows: νρ = 1.3, νρ
P = 1.2, νD

E = 1, νD
P = 1, αEP = 0 and αPE = 0.

The results of these simulations are shown in Figures 4.6 and 4.7.

Figures 4.6(a)-(c) show the simulated cohorts with parameters (k, θ) = (1, 200),

(10, 20) and (100, 2), respectively. Thus, in these figures the mean size of tumour
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(a) (b)

(c)
(d)

Figure 4.6: The results from simulated GBM cohorts with different parameters
of the gamma distribution where the mean size of tumour when each amplified
sub-population is introduced is kept fixed at 300 cells/mm2. In each plot kE =
kP = k and θE = θP = θ, where k and θ are varied. The box plots summarise
the proportion of each simulated tumour that were determined to be amplified
in neither gene (Neither), only the EGFR gene (Only EGFR Amp), only the
PDGFRA gene (Only PDGFRA Amp) and both of the EGFR and PDGFRA
genes (Both Amp) for the 100 simulations in each cohort of simulated GBMs
with (a) k = 1, θ = 200, (b) k = 10, θ = 20, (c) k = 100, θ = 2. A scatter plot
showing the means of 3 simulated GBM cohorts for each (k, θ) pair is shown in
(d). The other parameters used to simulate each GBM cohort were νρ

E = 1.3,
νρ
P = 1.2, νD

E = 1, νD
P = 1, αEP = 0 and αPE = 0.

when each of the amplified sub-populations are introduced is 300cells/mm2. The

proportions of simulations with neither, only EGFR, only PDGFRA and both

genes amplified for each of these simulated cohorts is shown as a boxplot for each

case. These plots show the spread of data points across the cohort, with each

blue circle representing the proportion of a single simulation that is or is not

amplified, accordingly. From these boxplots, it is clear that the proportions of

simulations with neither gene amplified is very similar for each of the simulated
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(a) (b)

(c)
(d)

Figure 4.7: The results from simulated GBM cohorts with different parameters
of the gamma distribution where the mean size of tumour when each amplified
sub-population is introduced is kept fixed at 1100 cells/mm2. In each plot kE =
kP = k and θE = θP = θ, where k and θ are varied. The box plots summarise
the proportion of each simulated tumour that were determined to be amplified
in neither gene (Neither), only the EGFR gene (Only EGFR Amp), only the
PDGFRA gene (Only PDGFRA Amp) and both of the EGFR and PDGFRA
genes (Both Amp) for the 100 simulations in each cohort of simulated GBMs
with (a) k = 1, θ = 1000, (b) k = 10, θ = 100, (c) k = 100, θ = 10. A scatter
plot showing the means of 3 simulated GBM cohorts for each (k, θ) pair is shown
in (d). The other parameters used to simulate each GBM cohort were νρ

E = 1.3,
νρ
P = 1.2, νD

E = 1, νD
P = 1, αEP = 0 and αPE = 0.

cohorts, each having all proportions low and tightly packed around the median,

shown by the horizontal red line, with the exception of a few outliers. However,

the spread of proportions that are amplified in one or both genes varies across

the three simulated cohorts, with the biggest variation seen in the proportion of

simulations that are amplified in only the EGFR gene. In Fig. 4.6(a) we can see

that the simulated cohort contains some simulations that are amplified in the

EGFR gene everywhere and others that are amplified nowhere, which mirrors
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the range of amplification levels that we see in the patient cohort in Fig. 4.4a.

As the shape parameter k increases, the spread of proportions that are EGFR

amplified decreases and the proportions become more closely distributed around

the median, shown by the red horizontal line on the boxplots. This is intuitively

as expected, since the shape of the gamma distribution for these three sets of pa-

rameters varies considerably, as shown in Fig. 4.5, and the sampled values of NE

and NP will be more spread out when k = 1 and the gamma pdf is very flat than

when k = 100 and the pdf is a tall, narrow peak. Figures 4.7(a)-(c) show analo-

gous results for three simulated cohorts of 100 GBMs with the parameters of the

gamma distributions equal to (k, θ) = (1, 1000), (10, 100) and (100, 10), respec-

tively. A similar pattern to the spread of amplified and non-amplified proportions

of simulations is observed, with the simulated cohort where k = 1 producing a

wider range amplification pattern, more closely resembling that observed in the

patient cohort in Fig. 4.4a.

Figures 4.6d and 4.7d show the mean proportions of simulations that are

amplified and non-amplified in each simulated cohort. For each of the six (k, θ)

pairs, three simulated cohorts are produced and the mean of each is calculated.

These figures illustrate that the mean proportions for each simulated cohort can

vary quite significantly when all model parameters are kept fixed. This is due to

the stochasticity introduced to the model simulations as described in Section 4.3.

While this stochasticity is more representative of the natural variation observed

in a biological population, it may have implications for parameter inference; this

will be explored in the remaining work in this chapter.

Despite the stochasticity of the results in Figures 4.6d and 4.7d, it is clear

that the mean of the gamma distributions for NE and NP plays an important role

in the mean amplification patterns observed for a simulated cohort of GBMs. In

Fig. 4.6d, the amplified populations are introduced when the growing tumour is

at a mean size of 300 cells/mm3 leading to a larger mean proportion of amplified

tumours than when introduced at a larger mean tumour size of 1100 cells/mm3

in Fig. 4.7d. Thus, the products kEθE and kP θP will also be important to con-

sider when inferring the parameters as well as their individual values. This was

expected to be the case, since we found that the model was highly sensitive to

the parameters NE and NP in the sensitivity analysis presented in the previous

chapter and, thus, we expect that the model would also be sensitive to their mean

values now that we are assuming they are gamma distributed.

The inferability of model parameters is linked to the sensitivity of the model

output to those parameters; indeed, if varying a particular model parameter has
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very little impact on the output of the model, then it will be difficult to infer

that parameter [127]. As we found in the previous chapter that the amplification

patterns observed in the model were very sensitive to the parameters NE and

NP , it is intuitive to expect that the mean amplification patterns observed when

using the model to generate a cohort of GBMs will be sensitive to the means of

the gamma distributions, kEθE and kP θP , for NE and NP and that the means

will be inferable. However, it may be the case that using the mean amplification

patterns alone may not be enough information to be able to infer the parameters

kE, θE, kP and θP individually. For this reason, we choose to use the standard

deviation of the amplified proportions to infer the parameters in our model to as

well. As shown in Fig.s 4.6 and 4.7, the spread of proportions of non-amplified

and amplified tumours seen in a simulated cohort of GBMs varies as kE, θE, kP

and θP are varied and so we expect that incorporating the standard deviation

into our parameter inference will help to identify these parameters. Thus, we

use eight data points from the dataset we are inferring the model parameters

for, which we denote as two vectors yM0 and ySD0 . The vector yM0 contains the

four mean values of the tumour proportions amplified in neither, only EGFR,

only PDGFRA and both genes in the dataset. The vector ySD0 contains the four

standard deviations of these four sets of proportions. For each particle sampled in

the ABC-SMC algorithm, we generate a simulated cohort of GBMs representative

of the size of the dataset we are inferring the parameters for and calculate the

analogous eight data points, calculating the proportions of tumours amplified

as previously described. We then denote these eight points as the vectors y∗M

and y∗SD, each consisting of the four mean and four standard deviation values,

respectively. We use the Euclidean distance as the distance metric, d, in the

ABC-SMC algorithm and choose to calculate the distance between yM0 and y∗M

separately to the distance between ySD0 and y∗SD. In this way, the tolerance vector

is defined as ϵ = (ϵ1, ..., ϵQ), where ϵi = (ϵMi , ϵSDi ) for i = 1, ..., Q. As mentioned

before, the tolerance vector is chosen adaptively during the ABC-SMC algorithm,

the process used for determining it is detailed in Appendix E. A particle is then

accepted into population i in the ABC-SMC algorithm (line 19 of the algorithm

in Section 4.4.1) if

d(y∗M , yM0 ) < ϵMi and d(y∗SD, y
SD
0 ) < ϵSDi . (4.7)

Accepting the particles in this way allows us to infer parameters with a desired

tolerance level to both the yM0 and ySD0 and avoid a situation where we may end
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Figure 4.8: A spider plot showing the mean proportions of simulations in a
simulated cohort of 100 GBMs that were amplified in neither gene, only the
EGFR gene, only the PDGFRA gene and both gene; these four data points
are represented in blue. The green shaded area shows the mean ± the stan-
dard deviation on each axis. The simulated cohort was produced as described in
Section 4.3.1 with model parameters (ν ρ

E, ν
ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ) =
(1.3, 1.2, 1, 1, 10, 20, 10, 20, 0, 0).

up fitting to the mean data points well and the standard deviation points poorly,

for example.

Inferring the model parameters kE = kP = 10 and θE = θP = 20

In order to now test whether we can infer the shape and scale parameters of the

gamma distributions for NE and NP in our model, namely parameters kE, kP , θE

and θP , we generate a synthetic dataset and test if we are able to recover these

parameters, while assuming that all other model parameters are known. The

synthetic dataset is generated by producing a simulated cohort of 100 GBMs, as

described in Section 4.3.1, with parameters

(ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ) = (1.3, 1.2, 1, 1, 10, 20, 10, 20, 0, 0).

The proportion of each simulation that is amplified in neither gene, only

EGFR, only PDGFRA and both genes is calculated as previously described. The

mean and standard deviation of these four measures for the 100 simulated tu-

mours in the synthetic dataset are shown in Figure 4.8. From this spider plot, we

see that the mean of the proportions of simulated tumours with only the EGFR

amplified is more than half at 0.5556, while the mean proportions with both genes,

only PDGFRA and neither gene are 0.2996, 0.1046 and close to zero at 0.0403,
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respectively. This mean amplification pattern was to be expected, since both the

EGFR and PDGFRA amplified populations were introduced into the growing

tumour early, at a mean size of 300cells/mm2, and both had a proliferative ad-

vantage over the non-amplified tumour cell population, with the EGFR amplified

population having the greater advantage. Thus, we would expect the proportion

of tumours with only EGFR amplified to be highest, followed by the PDGFRA

and both genes amplified proportions since the interactions between these pop-

ulations were neutral. Finally, we would expect the non-amplified proportion of

simulated tumours to be small.

The results seen here are similar to those shown in Fig. 4.6b, which shows

another simulated cohort produced with the same parameters. While the cohorts

are similar, the results differ slightly each time due to the stochastic nature of the

model and its parameters. Indeed, three additional runs with the same parameter

set produced simulated cohorts with distances from the means and standard

deviations of

(0.0405, 0.0274, 0.0576) and (0.0104, 0.0345, 0.0216), (4.8)

respectively. Thus, when implementing the ABC-SMC algorithm we should not

expect it to return a final population of accepted particles with distances from

the mean and standard deviations less than these values, although achieving final

tolerances, ϵMQ and ϵSDQ , close to these distances is desired.

We now implement the ABC-SMC algorithm as described in Section 4.4.1

with Q + 1 = 8 populations of R = 200 sampled particles, to infer the unknown

parameter vector (kE, θE, kP , θP ) for the simulated cohort shown in Fig. 4.8. As

the synthetic dataset consists of 100 GBMs, for each particle sample a simulated

cohort of 100 GBMs is produced. The prior distributions for the unknown pa-

rameters are defined such that each of the parameter pairs (kE, θE) and (kP , θP )

are jointly uniformly distributed over the region Si, where Si is defined as

Si = {ki, θi ∈ R2 : 0.001 ≤ ki ≤ 200, 0.001 ≤ θi ≤ 1200, kiθi < 3000}, (4.9)

for i = {E,P}. These prior distributions are defined in this way so that feasible

parameter ranges are sampled from without specifying any preference to particu-

lar parameter values, except to exclude those values giving means of the gamma

distribution from which NE and NP are subsequently sampled larger than 3000.

The shape and scale parameters of the gamma distributions are chosen to have

joint prior distributions, since it is known that the model output greatly depends
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on their product, that is the mean of the gamma distributions, as well as their

individual values. While it is known that the amplified populations are not intro-

duced at such late mean times, defining the regions Si in this way greatly reduces

the size of the parameter space from which the initial population of particles are

sampled and will improve the performance of the inference algorithm.

As described in Appendix E, the tolerance vectors are generated using an

adaptive approach, yielding

ϵM = (0.4640, 0.3879, 0.3173, 0.2432, 0.1794, 0.1364, 0.1076)

and

ϵSD = (0.1998, 0.1752, 0.1436, 0.1018, 0.0773, 0.0591, 0.0471)

in this instance. Therefore, the final population of accepted particles satisfies the

conditions,

d(y∗M , yM0 ) < 0.1076 and d(y∗SD, y
SD
0 ) < 0.0471, (4.10)

where y∗M and y∗SD denote the four mean and four standard deviation data points

of a simulated cohort generated with a given parameter particle and yM0 and ySD0

denote the same eight data points of the synthetic data. Upon comparing these

final values to the distances from the synthetic data observed in (4.8) following

multiple runs with the true parameters, we find that the ABC-SMC algorithm

has produced a final population of accepted particles with distances close to these

values.

The results of this implementation of the ABC-SMC algorithm are sum-

marised in Fig. 4.9. The scatter plots show the accepted particles in the first

(blue), third (red), sixth (yellow) and final/eighth (purple) populations plotted

in (a) kE–θE, (c) kP–θP and (e) kEθE–kP θP parameter spaces. These scatter plots

illustrate how the populations of accepted particles gradually evolve from a ran-

dom sample from the prior distribution towards a final population representing

a sample from the target posterior distribution, π(η|d(y∗, y0) < ϵQ). Each subse-

quent population of accepted particles occupies a smaller region of the parameter

space as the cloud of accepted particles converge towards the final population.

The second, fourth and seventh populations follow the same pattern and are only

omitted here to avoid the scatter plots becoming too crowded.

Plots (b), (d) and (f) show kernel density estimates of the parameter values in

the final population of accepted particles, from which we can see that the ABC-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Results from an implementation of the ABC-SMC algorithm to infer
the unknown model parameters kE, kP , θE and θP , assuming all other parameters
are known. Scatter plots (a), (c) and (e) show the initial (blue), third (red), sixth
(yellow) and final (purple) populations of accepted particles for parameters (a)
kE and θE; and (c) kP and θP ; (e) kEθE and kP θP . The true parameter values
kE = kP = 10 and θE = θP = 20 used to create the synthetic data are shown by
a black diamond. Plots (b), (d) and (f) show kernel density estimates of the final
population of accepted particles from the ABC-SMC algorithm for parameters
(b) kE and θE; (d) kP and θP ; and (f) kEθE and kP θP .
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SMC algorithm has performed fairly well. Figure 4.9b shows that the region of

high density of accepted parameter values of kE and θE include the true param-

eter values. The distribution for the kE parameter does extend the right of this

peak, however, illustrating that a number of parameter particles were accepted

into the final population with much higher values of kE, with the mean value

of the parameter kE in the final population of accepted particles being 21.85,

approximately double the true value. Meanwhile, the mean value of the θE pa-

rameter is 24.06. The kernel density estimates of the parameters kP and θP in

the final population of particles are shown in Fig. 4.9d. From this we see that the

accepted parameter values are distributed closely around the true values, with

the region of highest density lying slightly above the true parameter values. The

mean value of kP in the final population is 9.89, which is very close to the true

value of 10, while the mean value of θP is 36.92. Finally, Fig. 4.9f shows the

density distribution of accepted values for the means of the gamma distributions,

kEθE and kP θP . From this, we can see that the accepted mean values have con-

verged well around the true value of 200, with the mean values of kEθE and kP θP

in the population of particles being 260.87 and 265.26, respectively. These are

slightly larger than the true values and we also see that the region of highest

density mostly includes slightly higher parameter values as well. This may be

by chance due to the random sample of parameters, or it may be the result of

the stochastic nature of the model meaning that the synthetic data produced fit

these slightly higher mean values better; sampling more particles and fitting to

the mean data points from multiple sets of synthetic data would be likely to help

to resolve this, although this may not be possible when using real sets of data.

Depicting the results in this way gives an insight into the relationship be-

tween model parameters. From Fig.s 4.9(e) and (f), we observe that the products

kEθE and kP θP of the accepted parameter particles cluster around the straight

line kEθE = kP θP for values between approximately 50 and 500. This indicates

that accepted particles in the final population are those with approximately equal

values for the mean of the gamma distributions for the NE and NP parameters.

As we know that the true values used to generate the synthetic data were in-

deed equal, this indicates that the ABC-SMC algorithm has performed well and

identified a target posterior for the means of the gamma distributions that is con-

sistent with the true, known values. Meanwhile, Fig.s 4.9(a) and (b) show that

the accepted parameter values for kE and θE are highly correlated, converging

around the line kEθE ≊ 200, with a similar relationship between parameters kP

and θP shown in Fig.s 4.9(c) and (d). This, again, illustrates that the inference
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algorithm is able to infer the mean of gamma distributions well.

From the scatter plots in Fig. 4.9(a) and (c), we observe that we are able

to infer the individual parameters to some degree. Toni [127] considers the in-

ferability of parameters using the ABC-SMC algorithm in the following sense:

if a posterior distribution is considerably narrower than the prior distribution,

then the corresponding parameter is inferable, while if the posterior and prior

distributions are similar, then the parameter is not inferable. Upon comparing

the final population (purple points) to the initial random sample from the prior

distribution (blue points), we can see that they are quite different; the inference

algorithm has excluded large values for the parameters kE, θE, kP and θP and

the posterior distributions are narrower than the prior distribution.

Inferring the model parameters kE = kP = 1 and θE = θP = 1000

We now repeat the same analysis to test whether we can infer the kE, θE, kP

and θP parameters for synthetic data generated with different values of these

parameters, namely (kE, θE, kP , θP ) = (1, 1000, 1, 1000), while all other model

parameters are kept the same as for the previous set of synthetic data. This new

set of synthetic data is produced in the same way as before by creating a simulated

population of 100 GBMs and is shown in Fig. 4.10. Here we see that introducing

the amplified sub-populations at later times, when the tumour is on average a

larger size at 1100 cells/mm2, produces a slightly different mean amplification

pattern. The EGFR and PDGFRA populations are still able to grow so that the

mean proportions of tumours amplified in these genes are still quite high because

of their proliferative advantage over the non-amplified population of cells, however

this later mean introduction time has resulted in a slightly larger non-amplified

mean proportion.

Notably different between the two synthetic datasets is the size of the green

area on the spider plots. As NE and NP are gamma distributed with scale pa-

rameters kE = kP = 1 when generating this synthetic data, a wide variety of

introduction times for the amplified sub-populations will be selected as their

gamma distributions will be very flat, as shown in Fig. 4.5. Thus, we see a wider

variety of amplified and, consequently, non-amplified proportions across the sim-

ulated cohort of GBMs resulting in larger standard deviations. We also see the

impact of this wider variety when comparing three additional datasets gener-

ated with the same parameters to the set of synthetic data shown in Fig. 4.10,

where we observe distances from the means, d(y∗M , yM0 ), and standard deviations,

d(y∗SD, y
SD
0 ), of (0.0603, 0.0936, 0.1038) and (0.0487, 0.0835, 0.1005), respectively.
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Figure 4.10: A spider plot showing the mean proportions of simulations in a
simulated cohort of 100 GBMs that were amplified in neither gene, only the
EGFR gene, only the PDGFRA gene and both gene; these four data points
are represented in blue. The green shaded area shows the mean + the stan-
dard deviation on each axis. The simulated cohort was produced as described in
Section 4.3.1 with model parameters (ν ρ

E, ν
ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ) =
(1.3, 1.2, 1, 1, 1, 1000, 1, 1000, 0, 0).

As these distances are larger than for the previous set of synthetic data, we do not

expect the ABC-SMC algorithm to achieve tolerance levels as low as previously,

however somewhere close to these values is desired.

We now employ the ABC-SMC algorithm to infer the (kE, θE, kP , θP ) param-

eters for the synthetic dataset shown in Fig. 4.10. All details of the ABC-SMC

algorithm are kept the same as before, including the definition of the prior distri-

butions. The tolerance vectors generated adaptively as the algorithm progresses

are

ϵM = (0.3950, 0.2971, 0.2391, 0.1943, 0.1565, 0.1325, 0.1124)

and

ϵSD = (0.2323, 0.2076, 0.1822, 0.1654, 0.1400, 0.1197, 0.1036).

The final tolerance values achieved are good when taking into account that a sec-

ond dataset produced with the true parameters gave distances from the means

and standard deviations of the synthetic dataset of 0.1038 and 0.1005, respec-

tively.

The results of this inference are shown in Fig. 4.11. We are able to infer

some information about the kE and θE parameters from these results, as large

values of kE and small values of θE are excluded from the final population of

accepted particles in Fig.s 4.11(a) and (b). The majority of particles are spread
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Results from an implementation of the ABC-SMC algorithm to infer
the unknown model parameters kE, kP , θE and θP , assuming all other parameters
are known. Scatter plots (a), (c) and (e) show the initial (blue), third (red), sixth
(yellow) and final (purple) populations of accepted particles for parameters (a)
kE and θE; (c) kP and θP ; and (e) kEθE and kP θP ;. The true parameter values,
kE = kP = 1 and θE = θP = 1000, used to create the synthetic data are shown
by a black diamond. Plots (b), (d) and (f) show kernel density estimates of the
final population of accepted particles for parameters (b) kE and θE; (d) kP and
θP ; (f) kEθE and kP θP .
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in a fairly even density in a band that includes the true parameter values, with

θE values ranging from approximately 200 to 1200 and no particular regions of

higher density forming. The mean parameter values in the final population of

accepted particles are 1.90 and 675.81 for kE and θE, respectively.

From Fig. 4.11(c) and (d), we see that the kP and θP parameters have not been

inferred as well, since we see a region of higher density forming at lower values of

θP with kP between approximately 8 and 10, far away from the true parameter

values. The mean parameter values for kP and θP in the final population of

accepted particles are 5.20 and 293.55, respectively. We expect these parameters

have been inferred less well than the kE and θE parameters due to chance, either

in the particles sampled or in the generation of the synthetic data.

Finally, from Fig.s 4.11(e) and (f), we can see that the algorithm has been

able to infer the means of the gamma distributions for NE and NP , that is kEθE

and kP θP . We can see that a region of high density has formed close to the true

parameter values, with mean values of kEθE and kP θP in the final population

of accepted particles of 987.73 and 796.53, respectively. Thus, despite individual

parameters not being inferred well, the final population of particles for the means,

kEθE and kP θP , has still clustered around the true parameters well, providing us

with information about the means of the gamma distributions.

4.4.3 Inferring all model parameters using the ABC-SMC

algorithm

In this section, we now test whether we can infer all model parameters using

the ABC-SMC inference algorithm. Thus, instead of just inferring four param-

eters, we will now explore how well we can infer the parameters when all ten

parameters, (ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ), are unknown. We choose

to implement the algorithm to infer the parameters for the synthetic dataset

shown in Fig. 4.8, where the true parameters values used to generate the data

were (1.3, 1.2, 1, 1, 10, 20, 10, 20, 0, 0).

Thus, we now implement the ABC-SMC algorithm as described in Section

4.4.1 with Q + 1 = 8 populations of R = 500 sampled particles to infer the un-

known parameter vector (ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ). Once again,

as the synthetic data is comprised of 100 GBMs, a simulated cohort of 100 GBMs

is produced for each particle sampled throughout the inference. The prior distri-
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butions for each unknown parameter are defined as follows:

ν ρ
E ∼ U(1, 2), (4.11)

ν ρ
P ∼ U(1, 2), (4.12)

ν D
E ∼ U(1, 2), (4.13)

ν D
P ∼ U(1, 2), (4.14)

αEP ∼ U(−5, 5), (4.15)

αPE ∼ U(−5, 5), (4.16)

and each of the parameter pairs (kE, θE) and (kP , θP ) are jointly uniformly dis-

tributed over the region Si, where Si is defined as

Si = {ki, θi ∈ R2 : 0.001 ≤ ki ≤ 200, 0.001 ≤ θi ≤ 1200, kiθi < 3000}, (4.17)

for i = {E,P}. As previously, the tolerance vectors are generated adaptively as

the inference algorithm progresses and, during this implementation, the values

produced are

ϵM = (0.5472, 0.4388, 0.3252, 0.2442, 0.1778, 0.1340, 0.1040)

and

ϵSD = (0.2236, 0.1748, 0.1245, 0.0978, 0.0774, 0.0615, 0.0499).

The results of this parameter inference are shown in Fig.s 4.12–4.15. The first

of these figures shows scatter plots of the parameter values in the first, third, sixth

and eighth (final) populations of accepted particles, where we see the populations

evolving gradually towards the final population, which gives us the final estimate

of the posterior distribution from the inference. Fig.s 4.13–4.15 show plots of

the estimated kernel density of the parameter values in the final population of

accepted particles.

Figure 4.12: (See next page for figure.) Results from an implementa-
tion of the ABC-SMC algorithm to infer the unknown model parameters
(ν ρ

E, ν
ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ) for the synthetic data with true param-
eters (1.3, 1.2, 1, 1, 10, 20, 10, 20, 0, 0). Each scatter plot shows the first (blue),
third (red), sixth (yellow) and final (purple) population of accepted particles
plotted in (a) kE − θE, (b) kP − θP , (c) ν

ρ
E − ν ρ

P , (d) ν
D
E − ν D

P , (e) αEP − αPE,
(f) kEθE − kP θP , (g) kEθE − ν ρ

E and (h) kP θP − ν ρ
P parameter space. The true

parameter values are shown by the grey diamond on each scatter plot.
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(a) (b)

(c) (d)

(e)
(f)

(g) (h)

Figure 4.12
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(a)

(b)

(c)

Figure 4.13: Results from an implementation of the ABC-SMC algorithm to infer
the unknown model parameters for the patient cohort data shown in Fig.4.8. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) kE − θE, (b) kP − θP and (c) kEθE − kP θP parameter space. The
mean parameter values in the final population of accepted particles and the true
parameter values are also shown on each plot.



4.4. Parameter Inference 114

(a)

(b)

(c)

Figure 4.14: Results from an implementation of the ABC-SMC algorithm to infer
the unknown model parameters for the synthetic data shown in Fig.4.8. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) αPE − αEP , (b) ν

ρ
E − ν ρ

P and (c) ν D
E − ν D

P parameter space. The
mean parameter values in the final population of accepted particles and the true
parameter values are also shown on each plot.



4.4. Parameter Inference 115

(a)

(b)

Figure 4.15: Results from an implementation of the ABC-SMC algorithm to in-
fer the unknown model parameters for the synthetic data shown in Fig.4.8. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) kEθE − ν ρ

E and (b) kP θP − ν ρ
P parameter space. The mean of

parameter values in the final population of accepted particles and the true pa-
rameter values are also shown on each plot.

From plots (a) and (b) of both Fig.s 4.12 and 4.13 we can see that the algo-

rithm has inferred some information about the parameters of the gamma distri-

butions for NE and NP , that is kE, θE, kP and θP . The posterior distributions

are narrower than the prior and the true parameter value is contained within

the posterior distribution in each case, although slightly outside the regions of

highest density in Fig.s 4.13(a) and (b). The parameters kE and kP have been

inferred well, with mean values in the final population of 15.75 and 18.08, respec-

tively. Meanwhile, we observe that θE and θP have not been inferred as well as in

the previous parameter inference (see Fig. 4.9) when only these four parameters,

(kE, θE, kP , θP ) were being inferred; this was to be expected due to the increased

dimensionality of the parameter inference in this instance. Furthermore, we see
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from Fig. 4.16(c) that the most likely values inferred for the means of the gamma

distributions are much larger than the true parameter values, with the mean val-

ues for kEθE and kP θP in the final population of particles being 1527.7 and 1641.8,

respectively. This, again, contrasts the results in Fig. 4.9, where the means of

the gamma distributions for NE and NP were inferred well for the same set of

synthetic data. If we look at the inference results for parameters ν ρ
E and ν ρ

P , a

reason for this poor inference of the means of the gamma distributions for NE and

NP becomes clearer. From Fig. 4.14(b), we see that the region of highest density

of accepted particles in the final population is with values of ν ρ
E between 1.7 and

1.9 and values of ν ρ
P between 1.5 and 1.7; these are much higher than the true pa-

rameter values of 1.3 and 1.2, respectively. These higher proliferative advantages

of the EGFR and PDGFRA amplified sub-populations mean that the popula-

tions can be introduced into the growing tumour at a later time and still grow

to reach the same amplification levels as if they were introduced earlier. Thus,

similar amplification patterns can be observed depending on the combination of

proliferative advantage afforded to the amplified sub-populations and their time

of introduction into the growing tumour. Indeed, as shown in Fig.s 4.15(a) and

(b) a relationship between the values of the proliferative advantage and mean of

the gamma distributions can be seen for each of the amplified sub-populations.

Here we observe that no particles in the final accepted population have large vales

of kEθE and small values of ν ρ
E, whereas particles with these later mean intro-

duction times are accepted if the EGFR amplified sub-population is afforded a

larger proliferative advantage; a similar pattern is observed for the parameters of

the PDGFRA amplified sub-population. Therefore, due to the nature of the rela-

tionship between these model parameters, it is difficult to infer them well if both

are unknown. However, some insight can still be gained about the parameters

from this inference. The mean parameter values shown in Fig. 4.13(c) for kEθE

and kP θP are both very similar, which is consistent with the knowledge that the

true parameters used to generate the synthetic data were the same. Additionally,

the posterior distributions for the proliferative advantages shown in Fig. 4.14(b)

indicate that the EGFR amplified cells have a proliferative advantage over the

PDGFRA amplified sub-population, which is also true of the populations in the

synthetic data. Thus, while the majority of parameter values in the final pop-

ulation of accepted particles do not match the true parameter values well, the

inference does still provide us with information about the EGFR and PDGFRA

populations that is consistent with our knowledge about the synthetic data. Fur-

thermore, it may also be the case that the parameter inference algorithm has
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performed poorly due to the stochasticity in the model, as the particular set of

synthetic data generated may simply fit these inferred parameter values better

by chance. This is a challenge encountered when inferring parameters for models

with stochasticity, as successive runs of the model with the same parameters can

produce quite different outputs, as previously seen by the distances calculated

between the synthetic data and three further runs of the model in (4.8). Fitting

to a larger synthetic dataset or the mean of multiple datasets would be likely

to help improve this. However, a single dataset consisting of a simulated cohort

of 100 GBMs was chosen in this case to reflect the size of the patient cohort

detailed in Section 4.2 and highlight challenges that may be encountered when

inferring the model parameters for the patient dataset in the following section of

this thesis.

The invasive advantages, ν D
E and ν D

P of the two amplified sub-populations

are also inferred to some degree by the ABC-SMC inference algorithm. From

Fig. 4.14(c), we see the region of highest density of accepted parameter values

in the final population is in the bottom left hand corner of the plot, indicating

that smaller values of ν D
E and ν D

P fit the synthetic data better. This effect is also

observed in the scatter plot in Fig. 4.12(d), where it is clear that the majority

of particles accepted into the final population in the ABC-SMC algorithm are

those with smaller invasive advantages of the EGFR and PDGFRA amplified sub-

populations. Thus, the inference results are consistent with the knowledge that

these populations had no invasive advantage over the non-amplified population

of tumour cells in the synthetic data.

Finally, we examine the inference results for the interaction parameters, αEP

and αPE. The results, shown in Fig. 4.14(a), indicate that the most likely pa-

rameter values are those with αPE around zero and small positive values of αEP .

The mean parameter values for αPE and αEP in the final population of accepted

particles are 0.01 and 1.19, respectively. Furthermore, when plotting the results

in αEP–αPE space, a relationship between these parameters becomes clear. From

Fig.s 4.12(e) and 4.14(a), we see that competitive interactions, where both αEP

and αPE are negative, are excluded from the final population of particles. Sim-

ilarly, strongly cooperative interactions, where both parameters are larger than

approximately 2.5, are also excluded. Instead, the cloud of accepted particles in

the final population covers a range of other interaction types, including weakly

cooperative, commensalism, parasitism of one population on another and neutral-

ism, which we note was the true interaction type used to generate the synthetic

data. Interestingly, this cloud is also almost symmetric along the line αEP = αPE
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and its shape appears to suggest a negative correlation between the values of these

parameters in the accepted particles. We saw from the sensitivity analysis in the

previous chapter that opposite signs of αEP and αPE will benefit one amplified

population, while having a negative effect on the other. We propose that this is

the dominant effect of the interaction parameters in this case, as the values of

these parameters in the final population of accepted particles vary approximately

along the line αEP = −αPE +C, where C ≊ 1. This line has a positive intercept

on the αEP and αPE axes, as we know that these parameters positively affect

the proportion of tumours that are amplified in both genes from our previous

sensitivity analysis, which is the second largest mean proportion observed in the

synthetic data in Fig. 4.8. Where these parameter values lie along this line will

depend on the values of the other parameters in the accepted particles.

4.5 Parameter inference for the patient data

In this section, we now implement the ABC-SMC algorithm to infer the ten

parameters of the model detailed in Table 4.1 for the patient cohort data shown

in Fig. 4.4. As this data only tells us the amplification patterns observed in

tumour biopsies and we look at the amplification levels across whole tumours in

our simulated data, we make the assumption that the proportions of amplified

and non-amplified biopsies for each tumour in the patient cohort is representative

of the proportion of the whole tumour that is amplified and not amplified in each

gene. In this way, we are able to infer the model parameters in the same way as

for the synthetic dataset examples shown in the previous section.

Unlike for the synthetic data, the model parameters that best fit the patient

data are unknown so the prior distributions for each parameter are now chosen

based on some prior knowledge and assumptions about the populations of tu-

mour cells. As EGFR and PDGFRA amplification are considered to be driver

mutations in GBM tumour cells [107], playing major roles in driving the growth

of GBMs, we assume that the parameters determining the proliferative and inva-

sive advantages of the amplified sub-populations have a minimum value of 1. A

value less than 1 would mean that EGFR or PDGFRA amplification reduces the

proliferative or invasive ability of tumour cells, which contradicts the knowledge

that they are driver mutations. We also assume that the maximum proliferative

and invasive advantage that amplification in either these genes affords the tumour

cells is twice the rate of proliferation and invasion of non-amplified tumour cells.

Thus, the prior distributions for these parameters are taken to be uniform over
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these ranges, namely

ν ρ
E ∼ U(1, 2), (4.18)

ν ρ
P ∼ U(1, 2), (4.19)

ν D
E ∼ U(1, 2), (4.20)

ν D
P ∼ U(1, 2). (4.21)

In Chapter 3, we assumed the interactions of the amplified sub-populations were

symmetric and to the same degree, i.e. αEP = αPE, and explored the model

behaviour with three different types of interaction; these were strong competition

(αEP = αPE = −5), neutralism (αEP = αPE = 0) and strong cooperation

(αEP = αPE = 5). In this work, we no longer assume that these parameters

must be equal and take the prior distributions to be uniform distributions over

these ranges. Thus, the prior distributions for αEP and αPE are defined as,

αEP ∼ U(−5, 5), (4.22)

αPE ∼ U(−5, 5). (4.23)

Finally, the prior distributions for each of the parameter pairs (kE, θE) and

(kP , θP ) are taken to be joint uniform distributions over the region Si, where

Si is defined as

Si = {ki, θi ∈ R2 : 0.001 ≤ ki ≤ 200, 0.001 ≤ θi ≤ 5000, kiθi < 5000}, (4.24)

for i = {E,P}. As we have no prior knowledge about these parameters indi-

vidually in relation to the patient cohort data, it is difficult to know what the

prior distributions should be taken as. However, in Chapter 3 we explored intro-

duction times for the amplified populations ranging from tumour sizes of 300 to

900cells/mm2, so we now explore a much larger range of mean introduction times,

up to tumour sizes of 5100cells/mm2. Defining Si in this way with large ranges

of possible values of ki and θi, means that a wide variety of gamma distribution

shapes are possible for a large range of mean introduction tumour sizes.

We now implement the ABC-SMC algorithm as described in Section 4.4.1

with Q+1 = 10 populations of R = 1000 sampled particles to infer the unknown

parameter vector (ν ρ
E, ν

ρ
P , ν

D
E , ν D

P , kE, θE, kP , θP , αPE, αEP ) for the patient data in

Fig. 4.4. As the patient cohort data is comprised of biopsies from 55 tumours,

we produce a simulated cohort of 55 GBMs for each particle sampled throughout

the inference, so the patient and simulated cohort sizes are the same. As previ-
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ously, the tolerance vectors are generated adaptively as the inference algorithm

progresses and, during this implementation, the values achieved are

ϵM = (0.5548, 0.4170, 0.3371, 0.2719, 0.2154, 0.1723, 0.1401, 0.1155, 0.0964)

and

ϵSD = (0.4638, 0.4113, 0.3766, 0.3509, 0.3263, 0.3043, 0.2852, 0.2672, 0.2513).

We note that the final tolerance level achieved for the distances between the

mean data points from the patient cohort dataset and the cohorts simulated

with the sampled particles, at ϵM9 = 0.0964, is similar to the final tolerance level

reached when the ABC-SMC algorithm was applied to the synthetic dataset in

Section 4.4.3. This is promising as it indicates we are able to fit the model to

these data points from the patient cohort data as well as to a synthetic dataset

produced using the model. The final value of ϵSD9 = 0.2513, however, is much

larger, indicating that the final population of accepted particles do not produce

simulated cohorts with a similar spread of proportion data to that observed in

the patient cohort data. We note that the initial tolerance level in the vector ϵSD

is much larger than the initial level observed when inferring the parameters for

the synthetic dataset in the previous section. Thus, as the initial population of

particles produces data further away, it may be the case that more iterations of

the ABC-SMC algorithm are needed to achieve a similar final tolerance level for

ϵSDQ . As each successive value of ϵSDi continues to steadily decrease for i = 1, ..., 9,

this may be attainable if the number of populations sampled were increased,

which could be explored in future work.

The results for this implementation of the ABC-SMC algorithm to infer the

unknown model parameters for the patient cohort data shown in Fig. 4.4 are

presented in Fig.s 4.16, 4.17 and 4.18.

Looking at plots (a) and (b) of Fig. 4.16 first, we observe that the ABC-

SMC algorithm has been able to infer some information about the shape and

scale parameters of the gamma distributions for NE and NP . We observe that

the values of kE in the final population of accepted particles with the greatest

density lie mostly between 2 and 4, with a mean value of 2.56. Meanwhile, the

values for the θE parameter produce a much wider distribution, with a wide

variety of values accepted ranging from 114.86 to 2482.81 and a mean value of

873.89. The kernel density estimate plot for the kP and θP parameters shown in

(b) is a different shape to the plot in (a); namely, it is wider in the kP direction
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(a)

(b)

(c)

Figure 4.16: Results from an implementation of the ABC-SMC algorithm to
infer the unknown model parameters for the patient data shown in Fig.4.4. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) kE − θE, (b) kP − θP and (c) kEθE − kP θP parameter space. The
mean of the final population of accepted particles is shown by the black ‘×’ on
each plot. On plot (c), the line kEθE = kP θP is shown by the black dotted line.
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(a)

(b)

(c)

Figure 4.17: Results from an implementation of the ABC-SMC algorithm to
infer the unknown model parameters for the patient data shown in Fig.4.4. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) αPE − αEP , (b) ν

ρ
E − ν ρ

P and (c) ν D
E − ν D

P parameter space. The
mean of the final population of accepted particles is shown by the black ‘×’ on
each plot.
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(a)

(b)

Figure 4.18: Results from an implementation of the ABC-SMC algorithm to
infer the unknown model parameters for the patient data shown in Fig.4.4. Each
plot shows kernel density estimates of the final population of accepted parameter
particles in (a) kEθE − ν ρ

E and (b) kP θP − ν ρ
P parameter space. The mean of the

final population of accepted particles is shown by the black ‘×’ on each plot.

and shorter in the θP direction, with the greatest density of values lying below

and to the right of that in plot (a). The mean values of kP and θP in the final

population of accepted particles are 7.98 and 414.98, respectively.

Following on from this, we see that a wide range of mean values of the gamma

distributions forNE andNP are in the final population of particles. Figure 4.16(c)

reveals that the majority of the high density region of particles lies to the left

of the line kEθE = kP θP , i.e. where the EGFR amplified population of cells are

introduced at earlier mean times into the growing tumour than the PDGFRA

amplified population. The mean values of kEθE and kP θP are 2117.5 and 2764.9,

respectively.

The next inference results to examine are for the interaction parameters, αEP

and αPE. In Fig. 4.17(a), we observe that highest density region for the values
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of these parameters in the final population of accepted particles lie in the top

half of the graph close to the centre, where the presence of EGFR amplified cells

have a positive effect on the growth of PDGFRA amplified cells and the effect of

PDGFRA amplified cells on the EGFR amplified sub-population is less strong.

The mean values for these parameters, αEP and αPE in the final population of

accepted particles are 2.31 and 0.70, respectively. The accepted particles in the

final population are distributed over the four quadrants of the scatter plot as

follows: 346 particles have αEP > 0 and αPE ≤ 0; no particles have αEP ≤ 0

and αPE ≤ 0; 92 particles have αEP ≤ 0 and αPE > 0; and 562 particles have

αEP > 0 and αPE > 0. The numbers of accepted particles in each quadrant of the

scatter plot suggest that a cooperative relationship between the two populations

is most likely, where the amplified cell populations benefit from the presence of

one another. This is followed by parasitism between the two populations as the

next most likely interaction type, where PDGFRA amplified cells benefit from

the presence of the EGFR amplified cells, while negatively affecting their growth.

It is clear, however, that the inference results for do not suggest a competitive

relationship between the EGFR and PDGFRA amplified sub-populations, as no

particles were accepted into the final population of particles with αEP and αPE

both negative.

The plot in Fig. 4.17(b) shows the density of ν ρ
E and ν ρ

P values in the final

population of accepted particles. From this we observe that all values above 1.6

have been excluded, indicating that the amplified sub-populations do not have

a very large proliferative advantage over the non-amplified tumour cells. We

observe that the region of highest density for the proliferative advantages of the

amplified cells suggests that EGFR amplification affords cells a slightly higher

proliferative ability than PDGFRA amplified cells, with ν ρ
E and ν ρ

P having mean

values of 1.26 and 1.20, respectively, in the final population of accepted particles.

The estimated densities of the invasive advantage parameters, ν D
E and ν D

P

accepted into the final population are shown in Fig. 4.17(c). From this we observe

that, although particles are accepted with parameter values spanning the width of

the prior distribution, a clear peak in density has formed between values of 1.2 and

1.4 for both parameters. This suggests that EGFR and PDGFRA amplification

may afford tumour cells a greater ability to invade tissue than non-amplified cells.

The density distribution in both the ν D
E and ν D

P directions look very similar,

with mean values at 1.45 and 1.48, indicating that cells amplified in EGFR and

PDGFRA are similarly invasive.

As noted in the previous section, the proliferative advantage of amplified cells
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and their mean introduction time into the growing tumour are correlated, as the

density plots in Fig.4.18(a) and (b) also demonstrate in this case. From scatter

plot (a), we see that particles with earlier mean introduction times are accepted

when the proliferative advantage of EGFR amplified cells is small, while those

with later introduction times are accepted with larger proliferative advantages; a

similar pattern is also observed for the PDGFRA amplified cells in Fig. 4.18(b).

Finally, we observe that the estimated density of the final population of accepted

particle values in kEθE − ν ρ
E space lies above and to the left of that in kP θP −

ν ρ
P space, illustrating, again, that the EGFR amplified cells have a proliferative

advantage over and are introduced earlier into the growing tumour than the

PDGFRA amplified cells.

4.6 Discussion

In this chapter, we have used our mathematical model describing the co-evolution

of three distinct tumour cell sub-populations to infer the dynamics and nature of

interactions between EGFR and PDGFRA amplified populations in glioblastomas

from a set of patient data.

The patient dataset highlights the importance of sampling from multiple re-

gions of a tumour as large variations in amplification levels of the EGFR and

PDGFRA genes can be observed between different regions of individual tumours,

which would not be identified through more common sampling techniques where

only one sample is analysed per tumour. In particular, a patient example was

illustrated (see Fig. 4.2), where 8 biopsy samples were analysed and heterogeneity

in EGFR and PDGFRA amplification was observed across the tumour region. In

addition, the number of tumours found to have at least one biopsy sample am-

plified in EGFR, PDGFRA or both genes is much higher in this dataset than in

other reported data [107, 125], further highlighting the importance of multi-region

sampling techniques as conventional sampling techniques may under-represent

the true number of tumours having amplification of these genes, which may have

implications when identifying patients that will benefit from targeted therapies.

As a wide variety of amplification patterns are observed in the patient dataset

(see Fig. 4.4a), we assumed that certain model parameters had distributions

associated with them in order to reflect the role that natural variation and the

knowledge that mutations occur randomly may be playing in this. In this way,

a variety of amplified proportions are observed in a simulated cohort of GBMs,

echoing that observed in the patient dataset. In particular, we assumed that
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the tumour size at which the amplified sub-populations were introduced into the

growing tumour, NE and NP , were gamma distributed, with associated shape,

kE and kP , and scale parameters, θE and θP , respectively. We explored the effect

that varying these shape and scale parameters has on the proportions and mean

proportions of amplified tumours in a simulated cohort of GBMs and found that

smaller values of the shape parameters, kE and kP , produced a wider spread of

proportions and had some impact on the mean proportions observed (see Fig.s 4.6

and 4.7).

Next, we tested whether these new model parameters—kE, kP , θE and θP—

could be inferred correctly using the ABC-SMC algorithm when all other model

parameters are known for a synthetic dataset. We tested this on synthetic

datasets with two different sets of values for the unknown parameters, the first

with kE = kP = 10 and θE = θP = 20 and the second with kE = kP = 1 and

θE = θP = 1000 (see Fig.s 4.9 and 4.11). We found that the parameters for the

first synthetic dataset were inferred better than for the second, where the scale

parameters θE = θP = 1000 were inferred quite poorly. We found in both cases

that we were able to infer the means of the gamma distributions well, with the

mean for the first dataset also being inferred slightly better than the second. It is

likely that the inference algorithm performed better at inferring the parameters

for the first set of synthetic data than the second due to the increased variation

between sets of synthetic data generated with the second set of parameters. This

variation presents a challenge for inference as a single simulated cohort may not

provide much information about the mean dynamics of the system and it results

in a lower particle acceptance rate. Increasing the number of simulated tumours

in the synthetic dataset and for each particle sampled would help to improve this,

although the simulated cohorts were chosen to contain 100 GBMs in order to test

the algorithm on a dataset of similar size to the patient dataset, to which the infer-

ence algorithm is later applied. However, this is something that could be explored

in future work as it may highlight the importance of a larger patient dataset if

more data were to become available in future. Other factors that may help to

improve the inference results are increasing the number of particles in each pop-

ulation and also the number of populations. Although, we note in this case that

we were able to achieve final tolerance levels in line with the variation observed

between simulated cohorts generated with the same parameters so increasing the

number of populations is unlikely to yield much improvement without the size of

the data and simulated cohorts being increased. Increasing these three factors

would help to improve the inference results to some degree, however it would also
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greatly increase the computational burden of implementing the algorithm so it

would be important to consider this in future work. Each of the implementations

of the ABCSMC algorithm in this work took between approximately 5-10 days

to run, depending on the numbers of particles and populations sampled and the

number of parameters inferred.

The inference algorithm was then used to test whether all 10 model parame-

ters could be inferred for a synthetic dataset. Because of the increased dimension-

ality of this problem, the number of particles in each population was increased to

reflect this, however, as noted before, this could be increased further to improve

our results. Nevertheless, applying the ABC-SMC algorithm to this problem did

allow us to infer some information about the model parameters, some more suc-

cessfully than others. In particular, we note that in this case the means of the

gamma distributions for the size of tumour when the amplified sub-populations

are introduced were not inferred well in this case, since the final population of ac-

cepted particles did not appear to be converging around the true parameter values

as seen previously. This is likely to be as a result of the increased dimensionality

of the inference and in Fig.s 4.12(g) and (h) it was shown that there is a rela-

tionship between accepted parameter values for the mean introduction times and

proliferative advantages of the EGFR and PDGFRA amplified sub-populations.

Specifically, sampled particles with later introduction times for the amplified

sub-populations are only accepted for larger values of proliferation advantages.

Intuitively, this makes sense as a more proliferative population of tumour cells

will be able to reach the same size as a less proliferative population that started

growing earlier. Indeed, this is consistent with the sensitivity analysis presented

in Chapter 3, where it was observed that the proportions of simulations with only

EGFR and only PDGFRA amplified were both strongly correlated to prolifera-

tion advantages and the timing of mutations, with the effects being reflected for

each output.

Finally, we inferred the model parameters for the patient cohort data de-

tailed in Section 4.2, where we were able to gain some insight into the dynamics

of EGFR and PDGFRA amplified sub-populations in glioblastomas. In partic-

ular, the results suggest that EGFR amplification is a mutation event typically

occurring at mean earlier times than PDGFRA amplification in the development

of GBMs, consistent with the findings of a study reconstructing the phylogeny of

these tumours [108]. The results also indicate that the amplified sub-populations

may have a slight proliferative advantage over the non-amplified tumour cells, as

the mean parameter values for these advantages were greater than one in both
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cases, with the EGFR amplified population having the greater mean proliferation

advantage. We note that particles with large proliferative advantages were not

accepted in the inference, indicating that amplification in either of these genes

does not afford cells a large increase in proliferative ability; we note that this

suggests the proliferation advantages of 50% explored in Chapter 3 may have

been too large, as speculated in the discussion in Section 3.5. These results

also illustrate the correlation between proliferation advantages and the timing

of mutations, with later mutation events being correlated to larger proliferative

advantages for both of the amplified sub-populations, consistent with the results

from the sensitivity analysis presented in Chapter 3.

Data at multiple time points, such as biopsies sampled from primary and

recurrent tumours, would be needed to provide us with the dynamic information

in order to further determine estimates and improve the identifiability of such

related parameters. This would present challenges, however, as treatment effects

would also need to be considered. Alternatively, radiogenomic maps showing

predicted regions of EGFR and PDGFRA amplification, such as those in [42]

discussed in Section 1.1.1, could provide data from multiple time points in a

non-invasive manner by utilising multiple pre-treatment MRIs to create maps a

different time points. Thus, instead of having only biopsy data from a single

time point, these maps would provide us with information about the amplified

proportions of the entire tumour region at multiple time points. This would

enable us to infer better estimates of the model parameters and improve the

identifiability of those model parameters found to be related to one another, such

as the proliferative advantages and timing of mutations. Utilising radiogenomic

maps in this way would also remove the need to consider treatment or surgical

effects on the observed amplification patterns, as would be necessary to consider

with biopsy data sampled at two time points. Another approach would be to

use in vitro single-cell cultures, which may be able to shed some light on the

relative proliferative abilities of amplified and non-amplified GBM tumour cells

and provide an insight into their in vivo dynamics.

The inference results also suggest that amplification in the EGFR and PDGFRA

genes each result in more invasive GBM tumour cells to a similar degree. EGFR

amplification has been shown to promote invasion in GBMs [124], while EGFR

amplified tumours have also been shown to be more migratory than non-amplified

tumours [81] and results from a recent study support an association between

EGFR amplification in cells and faster migratory behaviour of cells in GBM slice

cultures [80]. Thus, our finding that EGFR amplified cells have an invasive ad-
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vantage over non-amplified cells is consistent with the literature. In their work,

Parker et al. [80] observe a wide variety of migration speeds in EGFR amplified

GBM slice cultures and postulate that this may be explained by the varying levels

of EGFR amplification they observe. We also observe varying degrees of EGFR

amplification in our biopsy data (see Fig. 4.3), however our model does not take

this into consideration; cells are either amplified in the EGFR gene or they are

not. Introducing variable invasive abilities and varying degrees of EGFR ampli-

fication in our model formulation may help to improve our results further and

provide a better fit to the data than achieved here; this is something that could

be explored in future work. Meanwhile, amplification of PDGFRA in GBMs is

less well studied and we have been unable to find evidence in the literature to

support or contradict our findings that PDGFRA amplification may increase the

invasive ability of glioblastoma cells, similarly to EGFR amplification. Thus, it

would be interesting to see if similar behaviour is observed in PDGFRA amplified

GBM cells in in vivo studies, such as those in [80].

Finally, our inference results provide some insight into the nature of interac-

tions between EGFR and PDGFRA amplified sub-populations. In particular, our

model suggests that cooperation is the most likely interaction type between the

amplified sub-populations, with each benefiting from the presence of the other,

resulting in their increased proliferation and contributing to overall increased

tumour growth. If the EGFR and PDGFRA amplified cells are indeed interact-

ing in this way, targeting either sub-population will also have a negative impact

on the other population by removing their promoter, thus potentially increasing

the therapeutic benefits in glioblastomas where populations of both EGFR and

PDGFRA amplified cells are present. Our finding that cooperativity is the most

likely interaction type between these amplified cells is consistent with studies in

the literature that point to cooperation between these sub-populations in glioblas-

tomas [16, 107, 123], although we do note that more research is needed in this

area as the mechanism by which PDGFRA amplified and EGFR amplified cells

may interact in a cooperative manner is unclear and has not been well studied.

The second most likely interaction type in our results is parasitism of the

PDGFRA amplified cells on the EGFR amplified sub-population. If the cells are

interacting in this way, then EGFR amplified cells promote PDGFRA amplified

cells, while being negatively affected by them. Such interactions would have

implications for targeted therapies, as only targeting PDGFRA amplified cells

would be beneficial for the EGFR amplified cells, allowing them to proliferate

more freely once the PDGFRA amplified population is removed. Alternatively,
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targeting EGFR amplified cells first would remove the EGFR cells promoting the

PDGFRA amplified population, which could then be targeted with a different

therapy. We note that if there is uncertainty between a cooperative interaction

type or parasitism of the PDGFRA cells on the EGFR amplified sub-population,

such a treatment regimen would work well in both cases, since the PDGFRA

amplified cells benefit from the presence of the EGFR amplified sub-population

in both instances.

Thus, our results suggest that targeting the EGFR amplified cells with ther-

apy first, followed by targeting the PDGFRA amplified sub-population would be

the best course of action to take. Over 90% of the accepted particles in our in-

ference results say that EGFR amplified cells promote the growth of PDGFRA

amplified cells, whereas the influence of the PDGFRA amplified cells on the

EGFR amplified cells is less clear, although cooperation is the most likely. Our

results also suggest that competition between these amplified sub-populations is

unlikely as no particles with competitive interaction parameters were accepted

into the final population.

While this work has provided some insights into the interactions between and

dynamics of EGFR and PDGFRA amplified sub-populations in glioblastomas,

more work needs to be carried out. As this is a complex biological problem,

with several factors influencing the amplification patterns observed in our model,

more data will be needed in order to improve our results further to make them

more robust, improve our confidence in the results and improving the ability to

distinguish parameter estimates more clearly. This could be through increas-

ing the size of the patient cohort data further or using a combination of single-

and mixed-cell cultures and mathematical modelling, which may be able to iden-

tify the nature of interactions in vitro and provide some useful insights into the

co-evolution of EGFR and PDGFRA sub-populations in vivo. Ideally, biopsy

information at multiple time points would be available, allowing us to compare

our model simulations to the patient data at more than one time point. However,

this is unlikely to be possible without at least needing to account for treatment

effects, adding further complexity to the problem. Alternatively, the emerging

field of radiogenomics may have a role to play here, as predicted distributions

of EGFR and PDGFRA amplification could be obtained at multiple time points

from imaging data non-invasively.

We also note that in this work we have avoided modelling single cell events

in a macroscopic setting, by assuming that each of the EGFR and PDGFRA

amplified sub-populations only become established within a tumour at most once
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and introduce a small distribution of cells accordingly. It is possible, however,

that multiple mutation events resulting in EGFR and PDGFRA amplification in

cells could be occurring in an evolving tumour and it may be more appropriate to

model such single cell events in a micro- or meso-scopic setting. However, since we

are interested in population level patterns of amplification and are working with

large numbers of cells, this would be computationally expensive. In order to better

capture single cell events while avoiding a large computational burden, it may be

appropriate to consider a hybrid-modelling approach, similar to that described by

Smith and Yates [104]. Though in this work, we decided to represent a successful

mutation event by introducing a small population of cells in our continuum PDE

model and leave such considerations for future work.
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Conclusion

In this thesis, we have used a novel mathematical model describing the growth

of three distinct sub-populations to explore the nature of interactions between

EGFR and PDGFRA amplified sub-populations in glioblastomas. This work was

motivated by the failure of therapies to treat GBMs, in particular the failure of

targeted therapies, where it is thought that the heterogeneous nature of these

tumours may be an underlying cause. Genetically distinct sub-populations may

coexist within a single tumour and interact in such a way that enables them to

evade therapy or play an important role in tumour progression. In this work,

we have focussed on studying the dynamics of EGFR and PDGFRA amplified

sub-populations. These are two commonly occurring cell-types in GBMs and

there are some studies suggesting that they may be interacting in a cooperative

manner, although this requires further study. A particular challenge to overcome

when studying the nature of dynamics between these sub-populations in GBMs

is the lack of dynamic information available. Image-localised biopsies provide im-

portant genetic and spatial information about the distribution and co-occurrence

of EGFR and PDGFRA amplified sub-populations, however, this information

is static and it is difficult to extract dynamic information from. Therefore, in

this work, we have utilised our mathematical model to provide insight into the

complex dynamics of these amplified tumour cells.

In Chapter 2, we presented our novel mathematical model of the growth of

three distinct tumour cell sub-populations in GBMs; a sub-population amplified

in the EGFR gene, another amplified in the PDGFRA gene and a third popula-

tion amplified in neither gene. We explored the model behaviour under a variety

of interaction types and found that the nature of interactions resulted in some in-

teresting model dynamics. In particular, we found that a proliferative advantage

of one amplified sub-population over the other may not always actually be an

132
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advantage for those cells, as there are scenarios where the less aggressive tumour

cell population will become the dominant one (see Fig. 2.3). We then explored

travelling wave solutions to the model through numerical simulations and found

some conditions for their existence. We found that a variety of travelling waves

can emerge, with the type of wave we see depending on the model parameters

and initial conditions. These observations could motivate the design of in vitro

experiments, whereby the initial configuration of EGFR and PDGFRA ampli-

fied cells is varied and the patterns of invasion that emerge are studied. This

could provide information about the type of interactions occurring between these

glioblastoma cell sub-populations and provide validation of our model.

We also showed that EGFR and PDGFRA amplified cells can co-exist under

a variety of different interaction types. In particular, we showed that a compe-

tition co-existence state exists when there is strong competition between these

sub-populations and demonstrated that regions of co-existence can occur under

a variety of interaction assumptions (see Fig. 3.2). This indicates that the obser-

vation of EGFR and PDGFRA cells co-existing in the same tumour region does

not necessarily imply that these cells are cooperating in some way, as we may

intuitively expect, and further evidence is needed.

Following on from this, in Chapter 3, we conducted an in silico investigation,

where we compared the amplification levels of EGFR and PDGFRA in our simu-

lations to those in a preliminary dataset of image-localised biopsies from primary

GBMs. We found that factors relating to selection advantages and the phylogeny

of these tumours, in addition to the interaction type between the EGFR and

PDGFRA amplified cells, influenced the balance of populations we see in a sim-

ulated tumour. These additional factors make determining the nature of interac-

tions between the amplified sub-populations in GBMs more challenging, as they

add complexity to the problem. Nevertheless, we were able to gain important

insights into the dynamics of EGFR and PDGFRA amplified sub-populations

through the investigation. Importantly, we found that our results suggested that

EGFR amplification is a mutation occurring earlier than PDGFRA amplification

in the growth of GBMs (see Fig. 3.5), consistent with the findings from a study

of the phylogeny of GBMs [108]. Our findings in this chapter also revealed that

strong cooperative interactions between the amplified sub-populations did not

produce amplification patterns that compared as well to the levels observed in

the preliminary patient data as competitive and neutral interactions did.

Finally, in Chapter 4, we presented the complete patient dataset of image-

localised biopsies and used inference techniques to gain insight into the dynamics



134

of EGFR and PDGFRA amplified sub-populations in GBMs. We highlighted

the intra-tumoural heterogeneity of amplification in these genes through pre-

senting a patient example (see Fig. 4.2) and the inter-tumoural heterogeneity as

a variety of amplification patterns are observed across the patient cohort (see

Fig. 4.4a). To reflect this inter-tumoural heterogeneity, we assumed that certain

model parameters had associated probability distributions, so that a variety of

amplification patterns are observed when simulating a cohort of GBMs, echoing

the patient data. To test whether we could recover the model parameters, we gen-

erated some synthetic datasets and employed an ABC-SMC inference algorithm,

where we found that some model parameters were inferred better than others

and that the level of variation in the model presented a challenge. Nevertheless,

we then inferred the model parameters for the patient data, where we were still

able to gain some insight into the dynamics of EGFR and PDGFRA amplified

sub-populations. Some key suggestions from the results were that: amplification

in each of these genes confers cells slight selection advantages over non-amplified

cells; EGFR amplification is a mutation that is likely to occur, in general, ear-

lier than PDGFRA amplification in the growth of GBMs, consistent with our

previous findings and another study [108]; and cooperation is the most likely in-

teraction type between these amplified sub-populations. Taking these findings

into account, we suggested that a treatment regimen whereby EGFR amplified

cells are targeted with therapy first, followed by the targeting of PDGFRA am-

plified cells would be likely to result in the best results for patients with GBM

tumours where both amplified sub-populations are present.

Thus, despite only having limited data from a single time point, we have

been able to use our mathematical model to provide an insight into the dynamics

of EGFR and PDGFRA amplified sub-populations in GBMs and the nature of

interactions between them. As discussed in Section 4.6, this work has some

limitations that could be improved on and there are several directions for future

work, some of which we will briefly mention here. A simple next step, would be

to re-run the inference as more patient data becomes available to improve our

confidence in the results. It may also be of interest to incorporate different levels of

amplification in the EGFR and PDGFRA genes into our model; currently cells are

either amplified or not amplified in each gene, whereas a recent study suggested

that the varying levels of migrative ability of cells may be a result of varying

levels of EGFR amplification [80], so this could be something to explore in future

work that may improve our results. Finally, it would be particularly interesting

to utilise our model with predictions of EGFR and PDGFRA amplification from
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radiogenomic maps. Firstly, it would be interesting to compare inference results

using the predicted amplification patterns from the maps to those in the patient

biopsy data. Further to this, as these maps provide information on predicted

distributions of amplified cell populations non-invasively from imaging data, this

could be used to fit our model to multiple time points, which could help to further

determine model parameters, particularly where correlations exist between them

(see Fig.s 4.18a and 4.18b) and their identifiability when using data from only a

single time point is a challenge.

Determining the nature of interactions between EGFR and PDGFRA am-

plified sub-populations in GBMs is a complex biological problem, with potential

clinical implications for targeted therapies and aiding a deeper understanding of

how these aggressive tumours evolve and evade treatments. To be able to further

untangle the influence from and the nature of interactions from the effects of other

factors influencing the patterns of EGFR and PDGFRA amplification observed

in GBMs, more work needs to be done. This will likely involve a combination

of in silico, in vitro and, possibly, in vivo studies to characterise the dynamics

of these sub-populations, as well as cell populations harbouring other mutations

commonly occurring in GBMs. In this work, however, we have demonstrated that

a simple mathematical model can prove a useful tool and provide some important

insights and aid more understanding of these complex brain tumours.
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[67] Molina, D., Pérez-Beteta, J., Luque, B., Arregui, E., Calvo,
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Appendix A

Finite Difference Scheme for

Interacting Species Model in 1D

We derive a finite difference scheme to solve the one-dimensional case of the

model, given by Eq.s (2.1)-(2.7), over the finite domain (x, t) ∈ [0, L] × [0, T ].

We discretise our spatial domain into a mesh of R + 1 evenly spaced points

with uniform mesh-spacing h, such that Rh = L; similarly, we obtain a mesh

of S + 1 time points with time-step τ , such that Nτ = T . We introduce the

notation En
i = E(ih, nτ) for i = 0, ..., R and n = 0, ..., S, with P n

i and Nn
i defined

analogously.

Numerical approximation of the movement term in the model (with DE con-

stant): We approximate this term in 2 steps. First, the outside derivative.

∂
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(A.1)

Next, approximating the remaining derivatives and the terms that lie between

mesh points with, for example,

En
i+1/2 =

En
i + En

i+1

2
, (A.2)
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we have
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(A.3)

We note that the zero flux boundary conditions require us to treat the cases where

i = 0 and R with some caution. To account for these boundary conditions, we

introduce ghost mesh points where En
−1 = En

1 and En
R+1 = En

R−1 for n = 0, ..., S,

with the P and N species cases analogously defined. Therefore, we have
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for n = 0, ..., S. Defining,

fn
E,i = fE(E(ih, nτ), P (ih, nτ), N(ih, nτ)), (A.6)

where fE is defined by Eq. (2.5) and using a forward Euler time-stepping scheme,

we have

En+1
i = τ(gnE,i + fn

E,i) + En
i (A.7)

for the E population of tumour cells. The numerical schemes to simulate the P

and N populations are derived analogously.



Appendix B

Validation of travelling wave

speeds

In Section 2.3.2, we claim that the travelling waves that emerge in simulations

of the model shown in Fig.s 2.5(a), (d) and (f) propagate with speed 2
√
ρEDE.

Figure B.1 shows plots of the speed of the propagating wave in each of these

simulations. From these, we observe that after an initial transition period during

which the wavefront forms, the front then propagates with a speed that tends

towards 2
√
ρEDE in each case.
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(a) (b)

(c)

Figure B.1: Plots showing the speeds of the travelling waves shown in (a)
Fig. 2.5a, (b) Fig. 2.5d and (c) Fig. 2.5f. Simulations of the model were pro-
duced under different example parameter regimes on a one-dimensional domain,
x ∈ [0, 400] mm, and over a time domain of t ∈ [0, 10] years. In each case
DE = DP = DN = 20 mm2year−1 and ρP = ρN = 15 years−1, while the in-
teraction types and proliferative ability of the E population were varied: (a)
αEP = αPE = 0 (neutralism) and ρE = 15 years−1; (b) αEP = αPE = 0 and
ρE = 16 years−1 (population E has a proliferative advantage over P and N cells);
(c) αEP = −5, αPE = −2 and ρE = 16 years−1. The initial conditions used in
model simulations are given by Eq. (2.45). From these simulations the speed of
the propagating wavefronts were calculated using linear interpolation to find the
point at which the wavefront passes through a threshold of 0.5K at each time
point. The wavespeed was then calculated as the distance travelled divided by
time.



Appendix C

Additional results exploring the

factors affecting amplification

patterns observed in simulations

Here we present additional figures to supplement those presented in Section 3.4.2

exploring the effects of various selection advantages and the timing and posi-

tioning of EGFR and PDGFRA amplified sub-population introductions on the

amplification patterns we see in our simulated tumours. These figures show the

general trends in changes to the proportions of simulations with neither gene,

only the EGFR gene, only the PDGFRA gene and both genes amplified that

changing each of these factors produces. We note that the effects of changing

each of these factors are symmetric with respect to the proportions of simula-

tions with only EGFR and only PDGFRA amplified. For example, affording E

cells a 50% proliferative advantage and P cells no advantages, produces the same

simulation proportions of neither and both amplified cells as giving the P popu-

lation this advantage and E no advantage, while the proportions with only one

gene amplified are reflected.

All of the following figures (Figures C.1–C.5) are produced from simulations

with the same parameters and assumptions outlined in Section 3.4.2, apart from

where parameter differences are indicated in the figure captions.
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(a) (b)

(c) (d)

Figure C.1: Amplification patterns change when EGFR and PDGFRA amplified
sub-populations are afforded proliferative and invasive advantages; proliferative
advantages have the bigger impact, decreasing the proportion of the tumour with
neither gene amplified. Plot showing the mean proportions of simulations with
neither gene (Neither Amp), only the EGFR gene (Only EGFR Amp), only the
PDGFRA gene (Only PDGFRA Amp) and both genes (Both Amp) amplified
under different interactions when the E and P sub-populations are given various
selection advantages: (a) EGFR 50% invasive advantage, PDGFRA 50% invasive
advantage (ρE = ρN , ρP = ρN , DE = 1.5DN and DP = 1.5DN); (b) EGFR
50% proliferative advantage, PDGFRA 50% proliferative advantage (ρE = 1.5ρN ,
ρP = 1.5ρN , DE = DN and DP = DN); (c) EGFR 50% proliferative and invasive
advantage, PDGFRA 50% proliferative and invasive advantage (ρE = 1.5ρN ,
ρP = 1.5ρN , DE = 1.5DN and DP = 1.5DN); (d) EGFR 50% proliferative
advantage, PDGFRA 50% invasive advantage (ρE = 1.5ρN , ρP = ρN , DE = DN

and DP = 1.5DN).
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(a) (b)

(c) (d)

Figure C.2: Delaying the introduction of amplified sub-populations increases the
proportion of the tumour with neither gene amplified and decreases the amplified
proportion. Plot showing the mean proportions of simulations with neither gene
(Neither Amp), only the EGFR gene (Only EGFR Amp), only the PDGFRA
gene (Only PDGFRA Amp) and both genes (Both Amp) amplified under different
interactions when the E and P sub-populations are introduced at the same time
which changes: (a) t∗E = t∗P = t∗1; (b) t∗E = t∗P = t∗3; (c) t∗E = t∗P = t∗5; (d)
t∗E = t∗P = t∗7, as defined in Section 3.4.2.
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(a) (b)

(c)

(d)

Figure C.3: Delaying the introduction of the PDGFRA amplified sub-population
increases the proportion of tumour with only EGFR amplified and decreases the
both amplified proportion. Plot showing the mean proportions of simulations
with neither gene (Neither Amp), only the EGFR gene (Only EGFR Amp), only
the PDGFRA gene (Only PDGFRA Amp) and both genes (Both Amp) amplified
under different interactions when the E population is introduced at t∗E = t∗1 and
P is introduced at: (a) t∗P = t∗1; (b) t

∗
P = t∗3; (c) t

∗
P = t∗5; (d) t

∗
P = t∗7, as defined

in Section 3.4.2.
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(a) (b)

(c) (d)

Figure C.4: Introducing amplified populations closer to the tumour centre de-
creases the proportion of tumour with both genes amplified in the neutral and
competitive cases, although the effect is small. Plot showing the mean propor-
tions of simulations with neither gene (Neither Amp), only the EGFR gene (Only
EGFR Amp), only the PDGFRA gene (Only PDGFRA Amp) and both genes
(Both Amp) amplified under different interactions when the E and P popula-
tions are introduced at the same location, which changes: (a) x∗

E = x∗
P = x∗

1; (b)
x∗
E = x∗

P = x∗
2; (c) x

∗
E = x∗

P = x∗
3; (d) x

∗
E = x∗

P = x∗
4, as defined in Section 3.4.2.
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(a) (b)

(c) (d)

Figure C.5: Introducing PDGFRA amplified cells further from the EGFR ampli-
fied population decreases the proportion of tumour with both genes amplified and
increases the proportions with only one gene amplified. Plot showing the mean
proportions of simulations with neither gene (Neither Amp), only the EGFR gene
(Only EGFR Amp), only the PDGFRA gene (Only PDGFRA Amp) and both
genes (Both Amp) amplified under different interactions when the E population
is introduced at x∗

E = x∗
1 and P is introduced at: (a) x∗

P = x∗
1; (b) x

∗
P = x∗

3; (c)
x∗
P = x∗

5; (d) x
∗
P = x∗

7, as defined in Section 3.4.2.



Appendix D

Effect of non-monotonicity of

introduction locations in the

LHS-PRCC sensitivity analysis

Partial Rank Correlation Coefficient (PRCC) values provide a measure of the de-

gree of monotonicity between an input and output variable and, therefore, are a

good measure of sensitivity for inputs and outputs with monotonic relationships

[10, 60]. As Marino et al. [60] demonstrate, a LHS-PRCC sensitivity analysis

is not always accurate for input parameters and outputs with non-monotonic

relationships and should be treated with caution. We observe that, due to the

symmetry of our initial condition N(x, 0), given by Eq. (2.4), and, thus, the grow-

ing tumour, the relationship between the introduction locations and the propor-

tions observed in our simulations in non-monotonic. For example, in Figure C.4

choosing introduction locations x∗
E = x∗

P = x∗
5, x

∗
6 and x∗

7 (as defined in Section

3.4.2) will produce equivalent results to those seen when x∗
E = x∗

P = x∗
3, x

∗
2 and

x∗
1, respectively, thus non-montonically affecting the proportions of simulations

with neither gene, only the EGFR gene and only the PDGFRA gene amplified.

Thus, we divide the x∗
E and x∗

P domains into two, over which the relationships

are monotonic and conduct a sensitivity analysis in each instance. First we study

the case where both E and P are introduced on the right side of the growing

tumour and we choose the uniform pdf to have minimum and maximum values of

x∗
c and x∗

c +1.5mm. We note that if we were to instead choose both introduction

locations on the left side of the tumour, this would produce analogous results

due to symmetry. Secondly, we conduct a sensitivity analysis where E and P are

introduced on opposite sides of the tumour; x∗
E is selected from the right side of

the tumour and x∗
P from the left. Thus, the pdf for x∗

E remains the same, but x∗
P
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is instead assigned a uniform distribution with minimum and maximum values of

x∗
c−1.5 and x∗

cmm, respectively. All other parameters and their distributions are

kept the same as detailed in Table 3.1. The results from these two LHS-PRCC

sensitivity analyses are shown in Figures D.1 and D.2. In Figure D.1, we see

that the PRCCs between the introduction location parameters and each of the

outputs of interest do not show a strong correlation when both x∗
E and x∗

P are

selected from the same side of the growing tumour. However, in Figure D.2, a

weak, but significant, correlation is present between the location parameters and

the proportion of simulations with only the EGFR or only the PDGFRA gene

amplified when x∗
E and x∗

P are selected from opposite sides of the growing tu-

mour, whereas there are no correlations with the other two outputs of interest.

Importantly, the results for the 10 other model parameters are consistent with

the main LHS-PRCC analysis presented in Section 3.4.3.
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(a) (b)

(c) (d)

Figure D.1: Sensitivity analysis for tumour composition when both mutations
arise on the same side of the tumour. Bar plots showing PRCC values between
each unknown model parameter and the four outputs of interest: the proportion
of simulations with (a) neither, (b) only EGFR, (c) only PDGFRA and (d) both
genes amplified. All samples for the LHS step are drawn from the parameter
distributions in Table 3.1, apart from the locations parameters x∗

E and x∗
P which

are both drawn from a uniform distribution with minimum and maximum values
of x∗

c and x∗
c + 1.5mm. Significant results at the 0.05 (*), the 0.01 (**) and the

0.001 (***) levels are highlighted.
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(a) (b)

(c) (d)

Figure D.2: Sensitivity analysis for tumour composition when the two mutations
arise on opposite side of the tumour. Bar plots showing PRCC values between
each unknown model parameter and the four outputs of interest: the proportion
of simulations with (a) neither, (b) only EGFR, (c) only PDGFRA and (d) both
genes amplified. All samples for the LHS step are drawn from the parameter
distributions in Table 3.1, apart from the locations parameters x∗

E and x∗
P ; x

∗
E

is drawn from a uniform distribution with minimum and maximum values of x∗
c

and x∗
c + 1.5mm; x∗

P is drawn from a uniform distribution with minimum and
maximum values of x∗

c − 1.5 and x∗
cmm. Significant results at the 0.05 (*), the

0.01 (**) and the 0.001 (***) levels are highlighted.



Appendix E

Determining the vector of

tolerances for the ABC-SMC

algorithm

For each implementation of the ABC-SMC algorithm in Chapter 4 we use the

following approach to determine the vector of tolerances, ϵ = (ϵ1, ..., ϵQ), where

Q is the number of populations and ϵi = (ϵMi , ϵSDi ), for i = 1, ..., Q. In this work,

we use the Euclidean distance as the function d(y∗, y) to determine the distance

of the simulated data, y∗, from the data points, y0. The 8 data points we use are

the four mean proportions of simulations/biopsies that are amplified in neither

gene, only EGFR, only PDGFRA and both genes in the simulated/patient data

- we denote these four points as y∗M and yM0 , respectively - and the standard

deviations of these proportions in the simulated/patient data - we denote as y∗SD

and ySD0 . Rather than combine these all in one metric, termed a union metric [64],

and calculate a single Euclidean distance, we choose to calculate two Euclidean

distances; one for the distance between the means of the amplified proportions

of the simulated and patient data and one for the distance between standard

deviations. A particle is then accepted only if each of these distances are within

certain tolerances; this is termed an intersection metric by McKinley et al. [64].

In this way, a particle is accepted into population i in the ABC-SMC algorithm

(line 19 of the algorithm in Section 4.4.1) if

d(y∗M , yM0 ) < ϵMi and d(y∗SD, y
SD
0 ) < ϵSDi , (E.1)

for i = 1, ..., Q.

Rather than predefine these tolerances we follow the approach of McKinley

167



168

et al. [64] and adaptively choose the values of (ϵMi , ϵSDi ) for i = 1, ..., Q based on

the distances of the accepted particles in population i − 1. Thus, the vector of

tolerances are chosen in the following way:

After the initial population of particles have been sampled from the prior dis-

tributions and the data simulated, we choose initial tolerance values (ϵM1 , ϵSD1 ) to

be the 50th percentile of the simulated metric distances for each of the two out-

puts, that is the Euclidean distance between the means and standard deviations

of the simulated and patient data. For i = 1, ..., Q − 1, tolerances at generation

i + 1 are then generated using the using a bisection method (detailed in Sup-

plement A of [64]), where the proportion of generation i particles that would be

accepted using the new tolerances is approximately p = 0.5, where p is the target

acceptance rate. We set upper and lower bounds for the target acceptance rate

to be pU = 0.55 and pL = 0.45, respectively. The algorithm for determining

(ϵMi , ϵSDi ) for i = 2, ...Q then proceeds as follows:

1: for i = 1, ..., Q− 1 do

2: Run simulations with particles sampled and perturbed according to the

ABC-SMC algorithm in Section 4.4.1. Accept particles into population i if

they satisfy condition E.1.

3: Set the lower bounds for ϵMi+1 and ϵSDi+1 as the 50th percentile of the simu-

lated distances in population i. Denote these as ϵML and ϵSDL , respectively.

4: Set the upper bounds for ϵMi+1 and ϵSDi+1 as ϵMU = ϵMi and ϵSDU = ϵSDi ,

respectively.

5: Set the initial proposal for ϵMi+1 and ϵSDi+1 as ϵM∗ = ϵML and ϵSD∗ = ϵSDL .

6: Calculate the proportion, p∗, of population i of accepted particles that

satisfy

d(y∗M , yM0 ) < ϵM∗ and d(y∗SD, y
SD
0 ) < ϵSD∗ .

7: if pL < p∗ < pU then

8: Set ϵMi+1 = ϵM∗ and ϵSDi+1 = ϵSD∗ and stop.

9: else if p∗ < pL then

10: Set ϵML = ϵM∗ and ϵM∗ = (ϵMU + ϵM∗ )/2.

11: Set ϵSDL = ϵSD∗ and ϵSD∗ = (ϵSDU + ϵSD∗ )/2.

12: Return to Step 6:

13: else if p∗ > pU then

14: Set ϵMU = ϵM∗ and ϵM∗ = (ϵML + ϵM∗ )/2.

15: Set ϵSDU = ϵSD∗ and ϵSD∗ = (ϵSDL + ϵSD∗ )/2.

16: Return to Step 6:

17: end if
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18: end for
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