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Abstract

Mineral micronutrient deficiencies (MND), prevalent in Ethiopia and Malawi among most
countries in sub-Saharan Africa, are linked to soil type. Dietary mineral intake is influ-
enced by mineral content of edible portions of crops, and there is strong evidence that
cereals grown in these regions have low uptake of micronutrients. The low nutrient uptake
is attributed to soil conditions. Spatial information on soil and crop properties is therefore
required to improve local estimates of MND risk in order to implement targeted and efficient
interventions. Obtaining spatial information on soil micronutrients status and other relevant
properties that affect their uptake requires substantial effort, and there are uncertainties in
the resulting information, which depend, in part on the methods used for prediction and the
sampling design. Therefore, it is necessary to use robust and efficient methods for spatial
prediction which characterise the uncertainty of the predictions reliably. Furthermore, it is
necessary that these uncertainties can be communicated effectively to stakeholder groups
so that they can account for them at all stages from commissioning the survey through to
making decisions based on the information.

In this study, it was important first to understand how uncertain spatial information can
be communicated to stakeholders (e.g., those in public health or nutrition and agronomy
or soil science) through a systematic evaluation in the forms of maps. Evaluation of the
test methods were done through a structured elicitation of the opinions of members of a
stakeholder group about the usefulness of the methods. Stakeholders found that general
measures of uncertainty, such as prediction error variances (e.g., kriging variance) were
less clear than measures which integrated the uncertainty explicitly with the decision–e.g.,
the probability that the true value of a variable at a site if interest falls below a critical thresh-
old. There was no evidence that they found verbal phrases these (e.g., “very uncertain”)
clearer than numerical values (i.e., a probability in the interval [0,1]).

Following on this finding, it was necessary to examine how stakeholders interpret such
probability information in more detail. Specifically, is it possible to estimate a probability
threshold which a stakeholder group would choose to intervene, reflecting their assessment
of the costs attached to errors of commission and omission? Further does this probability
depend on framing of the problem (e.g., probability that a threshold is exceeded or that it is
not exceeded) and does it depend on professional background of the stakeholder? In a de-
signed experiment, stakeholders were presented with uncertain information on micronutri-
ent supply from a crop, with the uncertainty expressed as a probability with positive framing
(probability of adequate supply) or negative framing (probability of insufficient supply). The
results showed that probabilities presented in a negative framing led to more conservative
decisions, i.e., deciding to intervene at a much smaller probability of deficiency than if the
equivalent probability of sufficiency were presented. The elicited probability threshold is
prone to framing effects (i.e., how the question is posed), and that this effect interacts with
professional group.

The two components of this thesis described above showed how uncertain information can
be effectively communicated to stakeholders to support decisions. The next task was to
develop a framework for the planning, execution and evaluation of surveys to address spe-
cific requirements of these stakeholders. This was based on a decision-theory approach to
analyse the particular task, to identify the key uncertainties and their implications and so
to enable stakeholders to ensure that an approach to survey would meet their needs. A
particular task, based on research practices within the GeoNutrition project (Bill & Melinda
Gates funded) was identified–the selection of the study sites to evaluate agronomic biofor-
tification strategies for MND at selected sites based on soil soluble Selenium (Sesol). The
information required were analysed, and then the outputs of spatial prediction at national-
scale of Sesol by ordinary kriging, indicator kriging, linear mixed models and random forest
were evaluated. There were substantial uncertainties by all three methods, and challenges



with dealing with a complex statistical distribution. This work showed the importance of
validation–internal and independent for understanding the suitability of spatial prediction to
support decision making.

Uncertainty should be considered when planning sampling for a geostatistical survey. It
is important to consider how stakeholders can assess the implications of uncertainty in
spatial predictions to determine appropriate sampling grid space for a geostatistical survey.
Four approaches (offset correlation, prediction intervals, conditional probabilities and im-
plicit loss functions), that can be used to assess the implications of uncertainty in spatial
predictions using prior information on variability of the target properties, were presented to
a diverse group of stakeholders in order to determine an appropriate grid spacing. There
were variations in the selection made by each method. Some were not well understood.
The one which stakeholder favoured, offset correlation, is not directly linked to decision
making. More work is needed to develop sound but accessible ways to engage stakehold-
ers with uncertainty consistent across planning and interpretation. Findings from this re-
search will help in better understanding of uncertainties in the data obtained in the GeoNu-
trition projects thereby facilitating improved use and uptake of that information by decision
makers in Ethiopia and Malawi. Better decisions will be made on sampling for such sur-
veys in other countries which decide to undertake those using better methodologies for
national-scale surveys of soil properties or similar environmental variables.
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Chapter 1

Introduction and Background

1.1 Problem statement

Micronutrient deficiencies (MND) are a widespread health problem in sub-Saharan Africa

(Hurst et al., 2013; Joy et al., 2014), underlying many non-communicable diseases such as

anemia, goitre and thyroid dysfunction (Fairweather-Tait et al., 2011; Winther et al., 2020).

Most illnesses from MND are associated with deficiency of selenium (Se), iron (Fe), iodine

(I) and zinc (Zn) in diets (World Health Organisation, 2004; Chilimba et al., 2011; Joy et al.,

2015). Micronutrient deficiencies can reduce immune functions and in some cases impair

growth and cognitive development in women and infants (Rayman, 2012; Winther et al.,

2020). There is large prevalence of MND in Ethiopia and Malawi, and this is attributed to

reliance on predominantly cereal-based diets (Joy et al., 2014; Gashu et al., 2020). This

is thought to be, in part, because the availability of micronutrients in crops is limited by the

soil in which they are grown (Chilimba et al., 2011; Hurst et al., 2013; Ligowe et al., 2020).

The capacity of the soils in farming regions to supply adequate quantities of micronutrients

for optimal crop growth varies widely (Tittonell et al., 2011). Gashu et al. (2021) reported

the location of residence had the largest influencing factor in determining the dietary in-

take of micronutrients from cereals. The cereals commonly cultivated, by people residing in

these areas, include maize (Zea mays L.), sorghum (Sorghum bicolor (L.) Moench), wheat

(Triticum aestivum L.) and teff (Eragrostis tef (Zucc.) Trotter). Joy et al. (2015) showed

evidence of restricted uptake of micronutrients into edible portions of crops in countries

such as Ethiopia and Malawi, in sub-Saharan Africa. The concentration of micronutrients

in these crops vary spatially (Gashu et al., 2021). Spatial information on soil and crop
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properties is required to improve estimates of MND risk for implementing targeted and effi-

cient interventions. Micronutrient deficiencies can be addressed through the various types

of intervention such as agronomic biofortification and food fortification (Joy et al., 2019;

Botoman et al., 2022). These interventions should be made at a location where there is a

problem. Sound and interpretable spatial information on soil and crop micronutrient vari-

ation is therefore needed to support decisions to address MND. These interventions are

costly, and their efficient deployment requires that they are targeted to address local needs

(Brown et al., 2015).

Spatial information about soil and crop micronutrient concentration would be useful to many

stakeholders such as farmers, and agricultural practitioners to inform policy decisions and

address knowledge gaps (Lark et al., 2014). This information is needed to identify locations

where there will be likely risks of problems in order to plan for mitigatory measures. For ex-

ample, farmers may require this information to make a decision about the soil, such as

application of fertilisers, at a local level (e.g. farm). Agricultural practitioners such as land

managers and extension workers are mostly concerned about the management of nutrient

supply to improve both crop and livestock quality (Lark et al., 2016).

Low and middle income countries, such as Ethiopia and Malawi, rely on information from

past soil surveys, more than 30 years ago, to make decisions on soil conditions at sites

of interest. This data is commonly referred to as legacy data. Although generalised soil

spatial information is available for sub-Saharan Africa at small-scale (cartographic), pro-

vided by African Soil Information Services (AfSIS, 2015), this is largely based on legacy

analytical data and key soil chemistry properties relevant to micronutrient status of crops

(e.g. particular fraction) as opposed to fertiliser management are not available.

1.2 Soil surveys, their objectives and execution

Conventional soil survey is based on classification of the soil, and the delineation of map

units which are each identified with one soil class, or an association of soil classes, as ex-

plained in the map legend (Dent and Young, 1981). Most maps are produced with ‘general-

purpose’ classes, defined on genetic principles and intended for many uses (White, 2006).

These aim to group together soils produced by similar factors in comparable landscape

conditions. ‘Special-purpose’ classes (e.g. engineering properties, land irrigability classi-
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fication) may also be mapped, although commonly only at the largest scales and based

on one or a few soil properties (White, 2006). In most instances the user’s requirement is

the basis for separating the classes. Information on the soil is organized with respect to

classes (e.g. estimation of class means for soil properties, or provision of a description and

analyses of a ‘representative profile’ (not always statistically robust). Information from soil

surveys has mainly been used for planning and managing different agricultural land parcels

such as croplands, grazing areas and forestry (Dent and Young, 1981). It has been critical

in making sound decisions about to soil management and land-use planning.

Conventional soil survey should begin with reconnaissance and semi-detailed surveys, for

general fact findings and these heavily on remote-sensor data or aerial photograph in-

terpretation (White, 2006). The survey start with studying aerial photographs or satellite

images, and this would be followed by drawing boundaries. Limited field work activities,

such as transects that cross the boundaries, would then be done to validate and interpret

the maps. For detailed and semi-intensive surveys, free surveys are undertaken involving

interpretation of the landscape on the ground, defining mapping units in terms of landform,

vegetation and other clues, and using observations to corroborate a mental model of the

landscape in which these map units correspond to one soil class (simple map unit) or an

association of classes (complex map units) (Malone et al., 2018). Soil map units are never

perfect, inclusions of unpredicted classes will occur because only 0.001% of the survey

region is observed (Burrough et al., 1971).

Intensive soil surveys, to map properties affecting a high value crop, are usually done

by sampling on a grid, and typically specific soil properties are measured by laboratory

analysis. Some methods used to interpolate the soil class at intervening points or to draw

contours for properties of interest. Originally, interpolation was done by hand or general

contouring program but the discovery of geostatistical methods (Burgess and Webster,

1980) to support such interpolation, gave rise to the use of geostatistical methodology and

ultimately to the development of digital soil mapping (DSM).

1.3 Digital soil mapping

The simplest geostatical method, ordinary kriging, uses only information of the target vari-

able but, as described below, can be generalised to a wider class of methods which
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uses covariates to model the local mean of the property. Other methods, including ma-

chine learning, also use covariates. These approaches are generalised into a framework

called the ‘scorpan model’ for empirical quantitative description of soil landscape relation-

ships for spatial prediction (McBratney et al., 2003) a generalisation of Jenny’s (1994) fac-

tors of soil formation. The ‘scorpan’ factors are: s–soil class or property, c–climate, o–

organisms other biotic environmental factors, r–relief or topography, p–parent materials

including lithology, a–age, and n–space or spatial position. This is usually represented as

Sc = f{s, c, o, r, p, a, n}, and this conceptual model is very useful in DSM. Many models can

represent f(), and these can be classified into two broad groups (i) geostatistical methods,

and (ii) machine learning (ML) algorithms. Digital soil mapping has three core elements,

(i) data input from field and laboratory measurements (e.g. use of soil maps, collection of

new samples), (ii) spatial and non-spatial inference through building statistical or algorith-

mic models relating soil properties and environmental variables (covariates) and (iii) the

output in the form of spatial soil information systems in the form of raster prediction maps

and uncertainty of the prediction (Minasny et al., 2008; Minasny and McBratney, 2016).

1.3.1 Geostatical models for spatial prediction

Kriging has become the generic term for a range of best unbiased linear predictor (BLUP)

methods for spatial prediction of soil properties in geostatistics (Lark et al., 2006; Oliver,

2010). The BLUP of a variable computed from a linear mixed model (LMM) comprises an

additive combination of one or more fixed-effects, one or more random effects and an in-

dependent random error variable. When the single fixed effect is just an unknown constant

mean then the BLUP is equivalent to ordinary kriging and when the fixed effects of the LMM

are a combination of spatial coordinates then the BLUP is equivalent to universal kriging

(Lark and Cullis, 2004; Lark et al., 2006). When the fixed effects are one or more covariates

such as remotely sensed data then BLUP is equivalent to kriging with an external drift or

regression kriging (Webster and Oliver, 2007). Estimated variance parameters are required

to implement the BLUP. Maximum likelihood (ML) and residual maximum likelihood (REML)

methods can be used to estimate the variance parameters of a BLUP. REML allows the es-

timation of a variance structure for the LMM, and this will be used to obtain the estimates

of the model coefficients to form the empirical best unbiased predictor (E-BLUP) (Stein,

1999). Both ML and REML are based on the assumption that random effects have a joint

Gaussian distribution, therefore it is important to study the residuals from an exploratory fit

of the fixed effects and to transform the data when necessary (Kerry and Oliver, 2007).
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The theory of the REML in combination with empirical best linear unbiased predictor (E-

BLUP) for spatial prediction is described in greater detail by Lark et al. (2006). The LMM

takes the form

z = Xτ + Zu+ ε, (1.1)

where z contains n observations of a variable (e.g. soil property) at sampled locations, X

is a design matrix for the fixed effects (e.g., spatial trend, environmental covariates), with τ

the vector of regression coefficients or fixed effects parameters, and Z is the design matrix

for random effects. Z is typically a n x q identity matrix, n–number of observations and

q-number of locations. The vector u contains random effects, realisations of a variable u,

is a Gaussian variable which has zero mean with a covariance, matrix G that expresses its

spatial dependence. The term ε is an independently and identically distributed Gaussian

residual with mean zero and a variance σ2. The error represents both independent error

measurements and variation that arises over shorter distances than separate samples.

Such that it can be described as the ‘nugget’ in geostatistical terms because it represents

both variation that arises over short distances and measurement errors (Matheron, 1963;

Webster and Oliver, 2007). Vectors u and ε are independent of each other and jointly

Gaussian, thus



u

ε


 ∼ N






0

0


 ,



σ2ξG 0

0 σ2I





 , (1.2)

where ξ as the ratio of the variance of u to σ2 and I is an identity matrix. Correlation matrix

G will depend only on the relative locations of observations with some specified correlation

function, C(·), with one or more parameters that characterise spatial dependence:

Gi,j = Corr [u(xi),u(xj)] = C(xi − xj), (1.3)

where u is assumed to be drawn from a second-order stationary random process. The cor-

relation function may take various forms which the spherical or exponential are commonly

used. The exponential function has a single distance parameter, a, and

C(xi − xj) = exp

{−|xi − xj |
a

}
. (1.4)
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With the spherical model, the distance parameter becomes the range, a, at which the cor-

relation goes exactly to zero and

C(xi − xj) = 1− 3|xi − xj |
2a

− 1

2

( |xi − xj |
a

)3

if |xi − xj | < a

= 0 otherwise.

(1.5)

Other correlation functions such as the Matérn are particularly useful when the variation

is locally smooth (Stein, 1999; Minasny and McBratney, 2007). The Matérn covariance

function can be written as:

C(xi − xj) =
1

2κ−1Γ(κ)

(
2κ

1
2 |xi − xj |
a

)κ

Kκ

(
2κ

1
2 |xi − xj |
a

)
, (1.6)

where κ is the smoothness parameter and Kκ is the modified Bessel function of the second

kind order κ (Matérn, 1960; Stein, 1999). These correlation functions describe isotropic

variation and the variogram will only depend on the lag distance between |xi − xj | (Lark

and Cullis, 2004). The parameters of the covariance function are estimated from observa-

tions, z, by maximum likelihood or REML (Marchant and Lark, 2007). Estimation by REML

is preferred because it reduces bias in the estimates of the random effects parameters

due to uncertainty in the fixed effects parameters (Lark and Cullis, 2004). The residual

log-likelihood is conditional on the data and selected fixed effects, contains the unknown

parameters of the correlation function in vector θ. The unknown parameters in θ are σ2 and

ξ. The residual log-likelihood is

ℓR(σ
2, ξ,θ|z) = −1

2

{
log|H|+ log|XTHX|+ (n− p)σ2 +

1

σ2
(I−WC−1WT)z

}
, (1.7)

where W = [Z,Z], H = ξZGZT+I. The estimates of σ2 ξ, and θ that maximise ℓR(σ2, ξ,θ|z)

will be determined numerically (Lark et al., 2006).

In instances where z is contaminated by independent errors from a long-tailed distribu-

tion, this may affect estimated model parameters and a ‘robustified’ REML may be needed

(Künsch et al., 2013; Papritz, 2021). A robust REML identifies the outlying observations

and down-weights the outliers when estimating model parameters (Nussbaum et al., 2012).

A slightly different residual log-likelihood will be used to estimate the correlation function

parameters. A “robustified” REML means that an algorithm to find the maximised ℓR is
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substituted by:

ℓR =
∑

i

f

(
ψ

(
zi −X− u

τ
|σ2, ξ,θ|z

))
, (1.8)

where ψ down-weights the outliers (Künsch et al., 2013), to replace the general log-likelihood

ℓR =
∑

i

f

(
zi −X− u

τ
|σ2, ξ,θ|z

)
. (1.9)

The estimates of variance parameters obtained by REML, will be used to compute the

estimated covariance matrix for the random effects at the sampled points. When the matrix

is computed, the next step would be to compute the estimates of fixed effects, τ̂ , and

predictions of the random effect, ũ by solution of mixed model equation:

C



τ̂

ũ


 =



XTz

ZTz


 . (1.10)

The covariance of the error of the estimates is

Cov



τ̂ − τ

ũ − u


 = σ2C−1 = σ2




C1,1 C1,2

C2,1 C2,2


 (1.11)

When the fixed effects parameters and covariance matrix have been estimated, they will be

used in E-BLUP to make a prediction at unsampled locations,

z̃p = sT
p τ̂ + ũp

= sT
p β̂ + gT

o,pG−1ũ,
(1.12)

where Cov[u,up] = ξσ2go,p and sp is a p x 1 vector containing the fixed effects. The

prediction error variance for the E-BLUP is

Var [z̃p − zp] = σ2

{[
sp,gT

o,pG−1
]T [

sp,gT
o,pG−1

]
− ξ

(
gp,p,gT

o,pG−1go,p

)}
. (1.13)

The prediction error variances or kriging variances, Var [z̃p − zp] is a ‘prior’ measure of

uncertainty for the E-BLUP. A prior measure of uncertainty is output directly from the pre-

diction process and depends on the predictive model. The kriging variance can be mapped
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and the map will show how uncertainty varies spatially. The values of kriging variance will

be smaller in the neighbourhood of sample points and larger further away. How well the

kriging variances characterise uncertainty can be assessed by computing the standardised

squared prediction error (SSPE), θ(x) after cross-validation. The SSPE is computed as

θ(x) =
{z(xi)− Ẑ(xi)}2

σ̂2
K(x0)

(1.14)

where Ẑ(xi) is the cross-validation kriging prediction of z(xi) and σ̂2
K(x0) is the kriging vari-

ance, θ(x) is expected to have a χ2 distribution with one degree of freedom if the kriging

errors are assumed to follow a Gaussian distribution (Lark, 2000). The median value of θ(x)

over all data is expected to be 0.455 and Lark (2000) showed that this is a more reliable

summary of SSPE than its mean (with an expected value of 1).

After cross-validation, the kriging standard errors can be examined. If the kriging stan-

dard errors plausibly be regarded as normally distributed, then other posterior measures

of uncertainty can be computed such as prediction intervals. The E-BLUP prediction and

prediction error variance (kriging variance) are parameters of the prediction distribution and

conditional probabilities. A prediction intervals contains the unknown value of a prediction

site with specific probability (Heuvelink, 2018). If there is a value of the variable of man-

agement significance (e.g. regulatory threshold for soil contamination or a concentration of

a micronutrient in a staple grain which corresponds to adequate intake for health), then the

conditional probability that the unknown values exceeds this, or does not, can be obtained

from the prediction distribution. This is called conditional distribution because it depends

on the prediction distribution and hence the model, the data and the location of interest.

With advances in technology, there is now an abundance of auxiliary data which can be

used to improve spatial prediction of soil and crop properties as covariates. Sources of the

auxiliary data includes satellites (remote sensing) and digital elevation models and maps

of soils, vegetation and land use. Using all available covariates for spatial prediction may

present some problems. Problems that can be encountered include (i) risk of propagating

error in the regression coefficients when weak covariates are included in a model, and (ii)

including two or more strongly correlated covariates in a linear model which would result

in numerical problems for estimation of regression coefficients (Lark et al., 2007). Meth-

ods such as stepwise and backward regression are sometimes used to select covariate(s)
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from a pool of potential predictors. Stepwise methods consists of sequentially adding and

removing covariates from a spatial random model. However, these procedure are not ro-

bust to variations in data because the model may depend on the first variable added or

the variables deleted. Lark et al. (2007) suggested that the problem of variable selection is

considered in terms of multiple hypothesis testing.

Lark (2017) suggested the use of α-investment proposed by Foster and Stine (2008) to

select significant covariates for predictive models. Under the α-investment, hypotheses are

tested in an ordered sequence with hypothesis j tested against a threshold Pj . The thresh-

old P -value of the jth test depends on the α-wealth after the previous test, W(j - 1). If the

previous null hypotheses have been rejected we can set a larger threshold P -value to test

hypothesis j while controlling false discovery rate and the sequence of tests will end either

at the kth test or the jth test when W(j) goes to zero. So it is important to test the most

plausible hypotheses first as this increases the statistical power. A set of k hypotheses in

a particular order, will be advanced by considering how available covariates may be con-

sidered as explanatory variables through literature review and reflection on the underlying

process. The selection and ordering of hypotheses is done without examining relationships

between the covariates and other data, but exploratory analysis to identify redundancy

between correlated covariates is useful. Having proposed hypotheses in order, they are

tested by fitting the corresponding models in order testing each additional covariate by the

log-likelihood ratio.

1.3.2 Machine learning for spatial prediction

Machine learning refers to a large class of non-linear data-driven algorithms originally de-

veloped for pattern recognition, data mining, regression and classification problems with

the ultimate goal for prediction and they don’t entail explicit statistical assumptions about

the distribution of a soil property (Witten et al., 2016; Wadoux, 2019; Arrouays et al., 2020).

Random forest are the most commonly used ML approaches in DSM. Random forests

are an ensemble of decision trees (Breiman, 2001). A decision tree algorithm recursively

partitions data into several homogenous and non-overlapping regions using a set of split-

ting rules (Hastie et al., 2009; James et al., 2013). A set of p predictors, X1, X2, . . . , Xp,

for a dependent variable Y will be split into J regions, R1, . . . , Rj , that are distinct and

non-overlapping. The mean value for observations in each region will be calculated and

assigned as the prediction for all the observation that fall in that region (James et al., 2013).
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The decision tree algorithm automatically decides on the best split point, s, and the splitting

variable, j in the data set. The best pair of j and s are the ones that minimizes the residual

sum of squares given by:

J∑

j=1

∑

i=ϵRj

(
y − ȳRj

)
, (1.15)

where ȳRj
is the mean response for the observations in Rj . Fig 1a illustrates a simple

decision tree, were the data are partitioned into two homogenous region using the split

point, si. The initial split to give two regions, R1 and R2, also known as terminal nodes.

The two regions produced from the first split can then themselves be split in turn, each by

Figure 1a: Example of subtree illustrating the initial split to give two regions.

the selection of the pair (j, s) which minimizes Equation (1.15). This produces two new

nodes, as shown in Fig. 1b. The tree now has four terminal nodes, namely: R1, R2, R3 and

R4. These four regions can be further split until as stopping rule is invoked. For example,

the splitting process may stop when a minimum node size is reached (Hastie et al., 2009).

The splitting of the trees is stopped when the resulting trees achieves the lowest residual

sum of squares. At each node, the algorithm, chooses split points that reduce the resid-

ual sum of squares for that particular subgroup, rather than optimising splits to reduce the

overall residual sum of squares (James et al., 2013). Hence decision trees are referred to

as a ‘greedy algorithm’ and this leads to poor predictions and over-fitting of the observation

(Bramer, 2020). Decision trees are unstable and have large ‘variance’ (Hastie et al., 2009).

Large variance in this setting, refers to large changes in the prediction and the model upon

making a small change in the observations of Y . Due to problems with decision trees, other

tree-structured models have been developed to counter these challenges and use trees as

building blocks to construct powerful prediction models such as bagging and random forest.
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Figure 1b: Example of subtree illustrating further split of the nodes to give four regions

Bagging or bootstrap aggregation was introduced by Breiman (1996) to address some

challenges of decision trees. Bagging reduces the variance of the model without increasing

bias (Hastie et al., 2009). This is achieved by random sampling with replacement from the

training observation of Y (bootstrap). This procedure is repeated several times to produce

different bootstrap samples of the training dataset. Decision trees can now fit the boot-

strapped samples and a prediction is made from the average of all the trees (James et al.,

2013). Some observations can occur more than once in the bootstrap sample, and this

may lead to building individual trees in the model which are highly correlated (Boehmke

and Greenwell, 2019).

Random forest reduces the strong correlation amongst the trees by using a set of rules

when the trees are split (Breiman, 2001). Each tree is built from the bootstrapped samples

from the training dataset. At the terminal node, the tree will only consider a random subset

ofmtry predictors from the full list of predictors, p, when splitting. When using random forest

for regression, usually mtry ≤ p and it is recommended to use mtry = p
3 for the split-point,

and whenmtry = p, the algorithm is equivalent to bagging (Boehmke and Greenwell, 2019).

A large number of single trees, k, are grown by the random forest algorithm with identi-

cally and independently distributed vector Θt, t = 1, . . . , k. The vector Θ determines how

the trees are grown (Meinshausen, 2006). The prediction of a single tree is the weighted

sum over all the observation of Y (Breiman, 2001)

µ̂(x) =

n∑

i=1

wi(x,Θ)Yi. (1.16)
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The weighted average, wi(x), is obtained by

wi = k−1
k∑

t=1

wi(x,Θt)Yi. (1.17)

After the trees are constructed, they vote for the popular class (Breiman, 2001). Random

forest prediction is given by

µ̂(x) =

n∑

i=1

wi(x)Yi. (1.18)

In random forest, all other information about the observations in a node of a tree are dis-

regarded except for the conditional mean. The conditional mean, E(Y|X = x), predicted

by random forest algorithm is the average predictions of k single trees grown. Quantile

random forest is an extension of random forest. The quantile regression forest keeps the

value of all observations and assesses the conditional distribution based on this information

(Meinshausen, 2006). The full conditional distribution function F(Y |X = x) will be given by

F(y|X = x) = P (Y ≤ y|X = x)

= E(1{Y≤y}|X = x).

(1.19)

The estimate of E(1{Y≤y}|X = x) is given by the weighted mean of all observations of

1{Y≤y},

F̂(y|X = x) =

n∑

i=1

wi1{Y≤y}, (1.20)

using the weights in Equation (1.17). The variable 1{Y≤y} is an indicator variable,

1{Y≤y} =





1 If Y ≤ y,

0 otherwise.

(1.21)

and this is equivalent of indicator kriging. The quantile regression forest can be used to

obtain prediction interval for any given α. The estimate Q̂α(x) of the conditional quantile

will then be obtained by F̂(y|X = x) in Equation (1.22). For example, a 95% prediction

interval for the value of Y will be given by

I(x) = [Q0.025(x), Q0.975(x)] . (1.22)

Random forest builds trees from bagged bootstrapped samples from the training dataset,

not all the data will be used for this. The data that is left out when building the model are the
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out-of-bag observations. Spatial predictions of the target variable at the locations of each

out-of-bag observations will be made and the out-of-bag mean square error (MSE) and the

out-of-bag R2 will be computed (Breiman, 2001). The out-of-bag MSE is the prior measure

of uncertainty and is regarded as the unbiased estimator of the prediction error (Breiman,

2001). The out-of-bag MSE should be close to zero and be positive. Whilst the out-of-bag

R2 is used to measure the strength and correlation of the model.

The conditional distribution, obtained through quantile regression, of the predicted soil

property are very important. The conditional quantiles from the distribution are another

prior measure of uncertainty for random forest. The conditional quantiles can be used to

compute other measures of uncertainty such as prediction intervals and conditional proba-

bility that a value of the target variable falls below or above a threshold.

Validation with an independent dataset is important because they provide posterior mea-

sures of uncertainty. The validation usually compare predictions of a soil property Ỹ at

location x0 with independent observations of soil property y at location xi, from the valida-

tion dataset. Then the universal predication accuracy measures such mean error ; mean

square error, and root mean square error can be computed from the validation dataset.

The aim of covariate selection is to remove redundant covariates when calibrating ML

algorithms. This is important in-order not to over-fit the model and thereby reduce the

complexity. Variable importance is used in random forests and decision trees in order to

remove the least important predictors. This variable importance is the overall summary of

the importance of each predictor by comparing their residual sum of squares and those with

low importance can be omitted from the model (James et al., 2013). Two main approaches

are used for variable selection when using random forest (i) filter methods and (ii) wrapper

methods.

In first approach, commonly referred to as ‘filter’ methods, covariate selection is taken as a

pre-processing step before calibrating the ML algorithm. The selection of covariates will be

independent from any ML algorithm and this involves exploratory statistical analysis of the

covariates. This can done by quantifying the correlation between the covariates by corre-

lation coefficients such as Pearson’s in order to discard those highly correlated from being

potential predictors. Then when the best subset of predictors are selected, the training of
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the algorithm commences. The second approach is the use of ‘wrapper’ methods and this

involves training the ML algorithm several times and based on inferences from previous

model covariates can be added or removed from the subset. Commonly used wrapper

methods include forward, backward, and recursive feature elimination.

Forward selections begins with a null model that contains no predictors, and then one at a

time a covariate is added to the model until all the predictors are added. The best model

will be the one with the smallest residual sum of squares or the highest R2, computed from

the calibrated models. Then using an independent validation data, the universal measures

are computed for the best model. Backward stepwise selection involves starting with full

model with all predictors and then iteratively removes the least useful covariates one at a

time (James et al., 2013).

1.3.3 Posterior measures of uncertainty

It is important to validate a model in order to assess the accuracy of predictions. Valida-

tion compares the prediction at a site and the true value at that site and this provides a

‘posterior’ measure of uncertainty. Several approaches can be used to validate predictions

and these include jackknifing or data splitting, cross-validation and collection of additional

independent data. Brus et al. (2011) recommended the collection of additional indepen-

dent data by probability sampling for validating predictions. In the event of data being

sparse or for it being too expensive to collect additional samples cross-validation is recom-

mended. Cross-validation can be carried out by using leave-one-out-cross-validation and

k-fold cross-validation, amongst other methods. With leave-one-out cross-validations, each

observation is removed in turn and the remaining will be used for prediction of that observa-

tion, using the variance model fitted to all data. k-fold cross-validation involves partitioning

the data set into k sets, then one set is removed and the remaining are used for predic-

tion. The procedure is repeated for each of the k sets. With jackknifing, an observation is

removed in turn and variance parameters estimated with the remaining data. At the end,

there will a set of predictions and model parameters that can be used to compute posterior

measures of uncertainty (Journel and Huijbregts, 1976).

After the validation, posterior measures of uncertainty can be computed. These include

mean error (bias), mean squared error and the root mean square error. The mean error is
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computed by
1

N

N∑

i=1

(
{z(xi)− Ẑ(x0)}

)
, (1.23)

where Ẑ(x0) is the prediction and z(xi) is the true value at that location or value of the

observation at that location. The mean error assesses the accuracy of the prediction. The

mean error value ideally should be close to zero indicating an absence of bias. The mean

square error is computed by

1

N

N∑

i=1

(
{z(xi)− Ẑ(x0)}

)2
. (1.24)

The mean square error on the other hand should be small. Often the mean square error

is expressed as its root, the root mean square error which is in the same units as the

measurements. This is computed as

(
1

N

N∑

i=1

({z(xi)− Ẑ(x0)})2
) 1

2

. (1.25)

If the prediction is biased (i.e. mean error is not close to zero) then this will inflate the mean

square error and root mean square error. Imprecise but unbiased predictions also result in

large values. These measures of uncertainty can be assessed by comparing them with the

variance or standard deviation of the data. The mean square error skill score (Wilks, 2011).

It is computed as

1−
∑n

i=1

(
{z(xi)− Ẑ(x0)}

)2

∑n
i=1

(
z(xi)− 1

n

∑n
i=1 z(xi)

)2 , (1.26)

Here, a score of 1 indicates perfect predictions, whilst a score less than 0 indicate predic-

tions with large variance (Wilks, 2011). A score of 0 indicates the predictions being the

same with overall mean.

1.3.4 How to distribute sample points in space?

Sampling designs in the context of geostatistical surveys refers to the set of rules for selec-

tion of sampling points. Geostatistical methods for spatial prediction depend on covariance

parameters estimated from a variogram, and at least 100-150 sampling points are required

to estimate an accurate variogram (Webster and Oliver, 1992). Kriging minimises the pre-

diction error variance given the data and the model of the variogram (Webster and Lark,

2013). Therefore, a variogram is needed to determine sampling effort to reduce kriging

error and achieve required precision. It is possible to draw some conclusion about spa-
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tial variation to support decisions on subsequent sampling from an approximate variogram

of a region (Lark et al., 2017) or from a comparable region (Alemu et al., 2022). An ap-

proximate variogram can be obtained through reconnaissance surveys. When we have

kriging variances of an area we are able to obtain sampling intervals through an optimal

sampling scheme for local estimation and mapping regional variables (OSSFIM) proposed

by Burgess and Webster (1980) and McBratney et al. (1981). One will able to deduce the

required sampling interval for a maximum kriging variances deemed acceptable, by draw-

ing a horizontal line to cut the curve and a perpendicular line from this the intersection will

give the required interval (Webster and Lark, 2013). When the sampling interval is de-

termined by a fixed budget, the maximum kriging variance can also be deduced from the

graph (Oliver and Webster, 2015). Once the sampling density is obtained the next issue

will be how to distribute the samples in the study region.

Systematic sampling on a regular grid is ideal for kriging, because the distance between

a target point and nearest sample point is minimised. Square grids are more convenient

than triangular grids (Webster and Lark, 2013). Square grids have the largest distance

between the target point and sampling points for the same density when compared with

triangular grids. However, the kriging variance is only slightly larger because there are four

near points on a square grid compared to three on a triangular grid. Regular grids are re-

strictive in finite irregular regions (i.e. real world) because the prediction error variances will

be larger since there are no measurement outside the border. Therefore, the best configu-

ration of the sampling points can be achieved through the use optimised sampling design.

Spatial coverage sampling aims at distributing the grid points in the study area as uniformly

as possible (Royle and Nychka, 1998). This involves shifting of grid points to the under-

sampled areas thereby making the pattern irregular and selection of sampling locations is

based on the spatial coordinates of the locations (Brus, 2019). A further step may involve

partitioning of the study region into geographic compact blocks that will be used as strata

for random sampling (Walvoort et al., 2010). The feature space coverage sampling mea-

surements evenly spread out measurements by utilising k-means algorithms that minimise

the feature space distance criterion between sampling points and prediction points (Brus,

2019; Wadoux et al., 2019). Although the sampling on a grid is good for kriging, it does

not provide information on spatial dependence over short interval. This can be resolved by

additional points near the grid nodes, close-pairs (Lark and Marchant, 2018). The close-
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pairs are need to give reliable estimates of variogram parameters, and to increase spatial

coverage to minimise kriging variances especially at the border of a study region. In this

way, sampling points will be set out in systematic way and the grid will be optimised on an

estimate of an underlying model.

These methods are favoured for DSM because they allow for building on the relationship

of the soil property and one or more several environmental covariates available. When

planning sampling for mapping with covariates, when using geostatical methods or ML, it is

useful to spread out sample points over the range of covariate values, as well as spreading

them out in space, to estimate fixed effects coefficients more precisely.

Conditioned Latin Hypercube sampling (cHLS) is a stratified random sampling procedure

that provide a full coverage of the range of each variable by maximally stratifying the

marginal distribution (Minasny and McBratney, 2006). It is not straightforward process to

optimise the sample design for ML because there is no statistical model in which a rela-

tion between sample size/distribution and precision of predictions is implied. This is also

due to the fact that ML do not rely on rigid statistical assumptions about the distribution of

soil property unlike model based methods which map soil using a known model of spatial

variation. However, despite the challenges (Brus, 2019) recommended methods such as

feature space coverage sampling and cHLS for ML because they optimised to spread out

measurements uniformly in both geographic and feature spaces. Conditioned Latin Hyper-

cube sampling manage this by defining a marginal strata for each covariate and the breaks

with each interval are chosen such that the number of pixels in each strata are equal by

using quantiles corresponding with evenly spaced cumulative probabilities (Minasny and

McBratney, 2006). Also, the marginal distributions of the covariates in the sample are close

to the distribution of the entire population, making it advantageous for regression trees and

random forest that rely on non-linear relations (Brus, 2019).

1.4 Aims of this research

There is urgent need for spatial information to support decisions on interventions to address

MND in sub-Saharan Africa and elsewhere. This has been shown by the GeoNutrution

project, amongst others (Gashu et al., 2020, 2021). Obtaining spatial information on soil

and crop micronutrient status and other properties that affect micronutrient uptake from the
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soil, such as pH, requires substantial effort, and there are uncertainties, which depend, in

part on the methods used for prediction and the sampling design. Therefore, there is need

robust methods for spatial prediction of key information to support decisions making and

quantification of the uncertainties. It is essential that uncertainty can be effectively com-

municated with stakeholders at key stages in soil surveys. These uncertainties must be

managed as they will have implications for the outcome of management or policy decisions

based on the predictions.

The following issues have been identified. First, the sampling and prediction methods must

be robust and efficient. Second, the uncertainties must be quantified appropriately. Fi-

nally, the spatial predictions and their uncertainty must be communicated in ways which

enable the information-user to make sound decisions which account for uncertainty in a

transparent and justifiable way. This includes decisions such as whether to implement an

intervention to tackle MND at a particular location, but may also include decision making

earlier in the process; for example, how much survey effort is justified given the diminish-

ing returns in reduced uncertainty to increased survey effort and cost. In order to address

these challenges, this PhD considers the following research questions:

1. How can spatial uncertainty be most effectively communicated to a range of key

decision-makers to support their decision making both on interventions to address

MND and on how much resources should be used for sampling?

2. What are the implications of uncertainty in spatial predictions of soil and crop micronu-

trient status for their use by key decision-makers, and how does this affect various

information needs of diverse stakeholders?

3. How is soil and crop micronutrient status most efficiently mapped, in terms how good

the predictions have to be and trade off between sampling and degree of precision?

The specific objectives are:

1. To establish how best to effectively communicate uncertainty in spatial prediction of

grain micronutrients concentration that fall below threshold levels.

2. To understand how stakeholders can best be helped to make decisions from uncertain

spatial information and how they interpret probabilistic information to decide whether

to recommend an intervention.
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3. To define a “decision process” for selecting the most suitable spatial prediction method

for mapping soil micronutrients to address information needs of diverse stakeholders.

4. To establish the optimum sampling densities when planning for a geostatistical survey

at national-scale.

1.5 Thesis structure

Chapter 1 gives an overview of the problem, literature review and the objectives of this

study. The literature review describes the two groups of methods used in digital soil map-

ping. Chapter 2 is concerned with how the uncertainty in spatial information about envi-

ronmental variables can be communicated to stakeholders who must use this information

to make decisions. Five methods for communicating the uncertainty in spatial predictions

were tested by eliciting the opinions of end-users about the usefulness of the methods,

through formal elicitation exercises in Ethiopia and Malawi. Chapter 3 examines how dif-

ferent professional groups (agricultural scientists or health and nutrition experts) interpret

uncertain information conveyed with probabilities, when making a decision about interven-

tions to address human Se deficiency. The information provided was a map, either of the

probability that Se concentration in local staple grain falls below a nutritionally-significant

threshold (negative framing) or of the probability that grain Se concentration is above the

threshold (positive framing). In chapter 4, a “decision process” which serves as a to guide

to address some of the data needs for end-users of spatial information will be defined.

The decision process is used comparing machine learning approaches and geostatistical

methods using a case study to identify locations for trials for agronomic biofortification in

Malawi. Chapter 5 is concerned with how stakeholders use uncertain information to make

decision on sampling strategies. The optimum strategy to obtain sampling density was ob-

tained through formal elicitation with end-users and survey sponsors from Malawi, Ethiopia

and the wider GeoNutrition network such as United Kingdom, Zimbabwe and Zambia. The

overall discussion and synthesis will be presented in chapter 6. The conclusions and rec-

ommendations of the study will also be presented in this chapter.

1.6 Ethical statement

This research used results from the laboratory analysis of soil and crop samples collected

in Ethiopia and Malawi in Work Package 1 of the GeoNutrition project. Ethical approvals for
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the collection of these data allows for their reuse was provided by the University of Notting-

ham, School of Sociology and Social Policy Research Ethics Committees (REC); BIO-1718-

004 and BIO-1819-001 for Ethiopia and Malawi, respectively. The approval ensured that the

farmers who’s soils and crops were sampled gave informed consent, including subsequent

reuse of the data, as in this PhD. Ethical approval to conduct formal elicitation presented

in Chapter 2 and Chapter 3 was granted by the University of Nottingham, School of Soci-

ology and Social Policy REC; BIO-1920-007 and BIO-1920- 004 for Ethiopia and Malawi

respectively. Ethical approval to conduct the online workshop for eliciting sampling densi-

ties, in Chapter 5, was granted by University of Nottingham, School of Biosciences REC;

SBREC202122018FEO. These REC approvals, with the exception of the one for Chap-

ter 5 conducted online by University of Nottingham staff only, were recognized formally by

the Directors of Research at Addis Ababa University (Ethiopia) and Lilongwe University of

Agriculture and Natural Resources (Malawi), who also reviewed the study protocols.

20



Chapter 2

Communicating uncertainties in

spatial predictions of grain

micronutrient concentration

This chapter has been published as:

Chagumaira, C., Chimungu, J. G., Gashu, D., Nalivata, P. C., Broadley, M. R., Milne, A.

E., and Lark, R. M. (2021). Communicating uncertainties in spatial predictions of grain

micronutrient concentration. Geoscience Communication, 4 (2), 245–265,

https://doi.org/10.5194/gc-4-245-2021
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Abstract. The concentration of micronutrients in staple
crops varies spatially. Quantitative information about this can
help in designing efficient interventions to address micronu-
trient deficiency. Concentration of a micronutrient in a staple
crop can be mapped from limited samples, but the resulting
statistical predictions are uncertain. Decision makers must
understand this uncertainty to make robust use of spatial in-
formation, but this is a challenge due to the difficulties in
communicating quantitative concepts to a general audience.
We proposed strategies to communicate uncertain informa-
tion and present a systematic evaluation and comparison in
the form of maps. We proposed testing five methods to com-
municate the uncertainty about the conditional mean grain
concentration of an essential micronutrient, selenium (Se).
Evaluation of the communication methods was done through
a questionnaire by eliciting stakeholder opinions about the
usefulness of the methods of communicating uncertainty. We
found significant differences in how participants responded
to the different methods. In particular, there was a preference
for methods based on the probability that concentrations are
below or above a nutritionally significant threshold compared
with general measures of uncertainty such as the prediction
interval. There was no evidence that methods which used
pictographs or calibrated verbal phrases to support the in-
terpretation of probabilities made a different impression than
probability alone, as judged from the responses to interpreta-
tive questions, although these approaches were ranked most

highly when participants were asked to put the methods in
order of preference.

1 Introduction

Micronutrient deficiencies are an important issue in develop-
ing countries such as Ethiopia and Malawi. Deficiencies in
micronutrients underlie many non-communicable diseases.
For example, deficiencies in selenium (Se) can cause thy-
roid dysfunction, suppressed immune response and increase
disease progression and mortality rates, especially in people
with already compromised immunity (Fairweather-Tait et al.,
2011; Rayman, 2012; Winther et al., 2020).

Micronutrients are largely derived from dietary sources,
and there is evidence of a suboptimal intake of Se below
recommended levels in Ethiopia and Malawi (Gashu et al.,
2020; Ligowe et al., 2020a). Interventions to improve the di-
etary intake of Se are possible. These include agronomic bio-
fortification, food diversification and fortification (Broadley
et al., 2010; Chilimba et al., 2011; Joy et al., 2019; Ligowe
et al., 2020b).

Micronutrient deficiencies and the factors that cause them
vary spatially (Phiri et al., 2019, 2020; Belay et al., 2020;
Gashu et al., 2020). For example, the intake of Se in Ethiopia
and Malawi is linked to soil type and other factors (Chilimba
et al., 2011; Hurst et al., 2013; Joy et al., 2015). Belay et
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al. (2020) showed that the risk of Se deficiency is widespread
and spatially dependent across Ethiopia. So, spatial infor-
mation (e.g. on grain micronutrients) can be used to design
more efficient interventions to address this micronutrient de-
ficiency.

Soil and crops cannot be sampled everywhere and mea-
surements can only be made directly at a few locations. Us-
ing statistical models, interpolations at unsampled locations
can be made, but the predictions are uncertain. Predictions
are subject to uncertainty because of spatial variability result-
ing from multiple factors operating at different scales (Lark
et al., 2014a). In addition to environmental factors (geology
and climate), there is also uncertainty due to measurement
error, in the analysis of material, and sampling error, in the
field where a single crop or soil sample is collected. When
using spatial information, it is important to report this uncer-
tainty and make sure that decision makers understand it in
order to make informed decisions.

In geostatistical prediction, the uncertainty of a predicted
value is quantified directly by the kriging variance, the mean
squared error of the prediction. The prediction is a linear
combination of the data, sometimes after a nonlinear trans-
formation, which is optimal in the sense of minimising the
kriging variance, given a variogram function which models
the spatial dependence of the variable of interest. The krig-
ing variance depends on the spatial distribution of observa-
tions. The kriging prediction and variance can be regarded as
parameters of a prediction distribution at an unsampled site
of interest, which represents our uncertain knowledge about
the value of the variable there (conditional on our data and
the variogram model). If we assume that the prediction er-
rors are normally distributed, then we can find the interval
bounded by the 0.025 and 0.975 quantiles of the prediction
distribution as a 95 % prediction interval, which expresses
our uncertainty about the true value. It is, therefore, possible
to represent the uncertainty in a map of micronutrient con-
centrations in grain by a corresponding map, which shows
the kriging variance, or by the upper and lower bounds of the
prediction interval, which can also be mapped.

Other approaches can be taken to communicate the uncer-
tainty in a prediction when the prediction is to be interpreted
relative to some threshold value of the mapped variable (e.g.
a threshold concentration below which typical intake of grain
does not provide adequate intake of a nutrient). While the
predicted value may lie above the threshold because the pre-
diction is uncertain, it is possible that the true value is ac-
tually below the threshold. This probability, conditional on
the data and on the geostatistical model, can be obtained in
various ways. A common geostatistical approach is to use
indicator kriging (e.g. Webster and Oliver, 2007).

The quantification of uncertainty is generally straightfor-
ward, but the communication of this uncertainty to a range of
users of information is less so. As Milne et al. (2015) found,
the success of a method to present uncertainty may depend on
the subject matter and on the background of the interpreter.

The probability that the true value lies below a threshold
might not be easily interpreted by the policy maker or man-
ager who needs to make a decision based on a map. Probabil-
ity is often not easily interpreted by a range of end-users of
information (Spiegelhalter et al., 2011), and for this reason,
in addition to the “raw” probability, verbal interpretations of
probability based on “calibrated phrases” (e.g. “unlikely”)
have been proposed, e.g. the Intergovernmental Panel for Cli-
mate Change (IPCC) scale (Mastrandrea et al., 2010). Pic-
tographs may also be used to communicate probabilities by
enabling the interpreter to visualise them as proportions (e.g.
Spiegelhalter et al., 2011).

Statistical predictions can be used to support decision-
making to identify areas of sufficiency or insufficiency. A
simple decision model could be based on a threshold value of
a variable, with the aim that the user should act if the variable
of interest falls below or exceeds the threshold. In our study,
we chose a threshold of 38 µg kg−1, based on the assumption
that a mean daily intake of 330 g of grain flour should provide
a third of the daily estimated average requirement (EAR) of
Se for an adult woman. The EAR is a commonly used mea-
sure of intake when assessing nutritional status and planning
intervention.

In this study, we propose methods for communicating
uncertainty in mapped concentrations of micronutrients in
grain, using Se as a case study. These methods are based
on the kriging variance or on the probability that concentra-
tion falls below a nutritionally significant threshold. Maps
using these methods, and based on real data collected in
Ethiopia and Malawi, were presented to panels of stakehold-
ers in those countries, and their experience of using the maps
and their evaluation of the different methods were recorded
using questionnaires.

2 Materials and methods

This study was conducted in Ethiopia and Malawi.
Ethiopia is located in the horn of Africa (9.1450◦ N,
40.4897◦ E), while Malawi is in southern Africa (13.2543◦ S;
34.3015◦ E). Primarily, these are research sites for the
GeoNutrition project (http://www.geonutrition.com/, last ac-
cess: 3 July 2020) to inform strategies on addressing mi-
cronutrient deficiencies commonly referred to as “hidden
hunger”. We proposed testing five methods to communicate
the uncertainty about predictions of Se concentration in grain
(see Sect. 2.1).

In order to determine how best to communicate the un-
certainty in our predictions, we recruited participants to
evaluate our five candidate methods at two workshops held
in Lilongwe, Malawi (November 2019), and Addis Ababa,
Ethiopia (January 2020). Each method was presented on a
poster, with the same format, consisting of (1) predicted nu-
trient concentration in map form and (2) a map communi-
cating the uncertainty about the predictions. Examples of the
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posters are shown in Figs. S1–S5 in the Supplement. For-
mal evaluations were done through a structured questionnaire
that participants completed during the workshops. Ethical ap-
proval to conduct this study was granted by the University
of Nottingham School of Sociology and Social Policy Re-
search Ethics Committees (BIO-1920-004 for Malawi and
BIO-1920-007 for Ethiopia).

2.1 Test methods

2.1.1 Statistical modelling and spatial prediction of grain
Se concentration

Field sampling in Amhara, Ethiopia, was previously con-
ducted to support the spatial prediction of Se concentration
in grain crops, including the staple crops teff (Eragrostis
tef (Zucc.) Trotter) and wheat (Triticum aestivum L; Gashu
et al., 2020). The sample frame was defined with reference
to the Africa Soil Information Service map of croplands in
Amhara region (AfSIS, 2015) so that all sample sites were
expected to have a crop or to be near a cropped site. The sam-
ple points were selected to give good spatial spread across
the sample frame and to be spatially balanced. This proce-
dure was implemented in the BalancedSampling library
for the R platform (R Core Team, 2020; Grafström and Lisic,
2016). A total of 25 additional sample sites, closely paired
with one of those selected as described above, were added to
the sample design to support the estimation of the parame-
ters of the spatial linear mixed model (Gashu et al., 2020). In
total, 455 sampling points were obtained, including 136 and
113 locations where teff and wheat were sampled, respec-
tively. The sample support for these data consisted of a bulk
grain sample formed from aliquots collected from grain sam-
ples within a single field, as described by Gashu et al. (2020).
The predictions, and quantifications of uncertainty, there-
fore relate to grain nutrient concentrations at individual field
scale. This is appropriate when considering possible health
implications for smallholder and subsistence producers.

In Malawi, the objective of field sampling was to sup-
port the spatial prediction of Se concentration in maize (Zea
mays L), the staple crop. The location of sample points
were obtained with the spcosa package for the R platform
(Walvoort et al., 2010). This finds sample points which give
good spatial coverage of a sample domain and can incor-
porate the location of fixed prior points. We had 820 prior
points from the 2015–2016 micronutrient survey of Malawi
(Phiri et al., 2019) and added a further 890 spatial coverage
points with spcosa. Of these 1710 sites, 190 were selected
at random for a duplicate “close pair” sample to support spa-
tial modelling, with 10 % of the total samples following Lark
and Marchant (2018).

We first undertook an exploratory data analysis using sim-
ple summary statistics and plots, notably quantile–quantile
(QQ) plots, to check whether we needed to transform the
data to make the assumption of normality reasonable. In or-

der to check for any spatial trends, we plotted classified post
plots which show the spatial location of data and use sym-
bols to indicate quantiles. We found no evidence of the spa-
tial trend in the Malawi data. The data were very skewed, and
we transformed them to logarithms to make the assumption
of normality plausible. However, for the Amhara data set, we
observed a spatial trend. Exploratory analysis indicated that
a linear trend model in the spatial coordinates accounted for
this, and the exploration of the residuals from the trend indi-
cated that a transformation to logarithm was necessary.

After the exploratory data analysis, we used ordinary krig-
ing to obtain the kriging prediction and kriging variance of
grain Se concentration in the Malawi data set for every pre-
diction location on the transformed (log) units. However,
for the Amhara data, we used universal kriging, which also
makes predictions at unsampled locations, x0, by a weighted
linear combination of available sample data designed to min-
imise prediction error whilst filtering the trend (Webster and
Oliver, 2007). The variance parameters for both Amhara and
Malawi data sets were estimated by the residual maximum
likelihood (Diggle and Ribeiro, 2010) with the likfit pro-
cedure for the R platform.

The kriging predictions were on the log scale and
need to be back-transformed for ease of interpretation.
For such strongly skewed variables, while an unbiased
back-transformation is available, it has been proposed by
Pawlowsky-Glahn and Olea (2004) that the median, rather
than the mean, of the conditional distribution on the origi-
nal scale of measurement is obtained by back-transformation
(i.e. by simple exponentiation of the kriging prediction). We
followed this proposal, and so we refer to our predicted val-
ues as the conditional median rather than the conditional
mean. The back-transformation of the limits of the predic-
tion interval is straightforward.

We used indicator kriging to obtain the conditional prob-
ability that grain Se concentration at the unsampled location
exceeds the threshold value, 38 µg kg−1. Indicator kriging
predictions are made by ordinary kriging of an indicator vari-
able created by a transformation of the data on a variable of
interest, z, to an indicator variable,w, given a threshold value
of interest, zT. The indicator variable at location x takes the
value 0 if z(x)≤ zT and 1 otherwise. The estimate of the in-
dicator variable at some location x0 can be interpreted as the
conditional probability that z(x0)≤ zT (Webster and Oliver,
2007). While exceedance probabilities could be computed on
the assumption of normally distributed errors, we chose to
use the widely applied nonparametric method, i.e. indicator
kriging, which requires no such assumption.

2.1.2 Kriging variance

In statistical predictions, some unknown quantity (e.g. grain
Se concentration at a location) has a prediction distribution
conditional on the data and a statistical model. The kriging

https://doi.org/10.5194/gc-4-245-2021 Geosci. Commun., 4, 245–265, 2021



248 C. Chagumaira et al.: Communicating uncertainties in spatial predictions of grain micronutrient concentration

variance at an unsampled location, x0, is defined as follows:

σ 2
K = E[{Z(x0)− Z̃(x0)}2], (1)

where the random variable Z(x0) is predicted by Z̃(x0), a
kriging prediction. We noted above that the kriging predic-
tion and variance can be regarded as parameters of a pre-
diction distribution at an unsampled site of interest. The dis-
persion of this distribution reflects our uncertainty about the
true value of the variable there, which is, therefore, quantified
by the kriging variance. The kriging variance is evaluated at
each unsampled site and so can be displayed as a map along-
side the map of predictions.

The map of kriging variance is a summary of the uncer-
tainty about our predictions in the study area and shows
areas that need further sampling to resolve uncertainty for
decision-making. In ordinary kriging, the kriging variance
has smaller values near the sample locations and so reflects
the distribution of sampling points. For universal kriging, the
kriging variance is smallest near the sample location where
the values of covariates are close to their respective mean.
Because the kriging variance is a direct output of kriging al-
gorithms, it is common to see it mapped alongside kriging
predictions and referred to as a measure of local prediction
uncertainty (e.g. Holmes et al., 2007; Goovaerts, 2014; Hat-
vani et al., 2021). However, the interpretation of the kriging
variance may be challenging, particularly for a non-specialist
user of spatial information. One could take its square root
and present it as a kriging standard error with the same units
as the target variable. However, the interpretation of the raw
standard error can clearly be helped by rescaling it to a pre-
diction interval, and we considered this option in the next
section.

The interpretation of the kriging variance is particularly
difficult in the case of a variable which must be trans-
formed prior to analysis. The kriging variance cannot be
back-transformed to the original units (except for simple
kriging). In this setting then, the kriging variance can serve
as little more than a general “uncertainty index”, indicating
in general where uncertainty is large and where it is small.
However, such generalised indices have been developed for
3-D geological information to serve the needs of engineering
stakeholders (e.g Lelliott et al., 2009; Lark et al., 2014b). For
this reason, and because of the long-standing use of kriging
variance as an uncertainty measure (see above), we included
it as a measure of uncertainty in this experiment. One poster
showed a map of the conditional median of Se concentration
in grain (Sect. 2.1.1) with a map of kriging variance on the
transformed units (see Table 1; Fig. S3).

2.1.3 Prediction intervals

We computed cross-validation predictions from our geosta-
tistical model and exploratory analysis of the kriging errors,
{z(x0)− Z̃(x0)}, and showed that these can be regarded as a

Table 1. The designated poster number for each method of commu-
nicating uncertain information.

Poster Method of communication

Poster 1 Prediction interval
Poster 2 IPCC verbal scale
Poster 3 Kriging variance
Poster 4a Raw probability
Poster 4b Raw probability plus pictograph

normal random variable. Because the kriging predictor is un-
biased, the mean of the errors is zero, and their standard devi-
ation is equal to kriging standard deviation σK (x0). On this
basis, we computed a 95 % prediction interval at each pre-
diction location as Z̃(x0)± 1.96σK (x0). One poster showed
a map of the conditional median of Se concentration in grain
plus the lower and upper bounds of the 95 % prediction inter-
vals mapped separately to communicate the uncertainty (see
Table 1; Fig S1).

2.1.4 Conditional probability

Using indicator kriging allowed us to quantify uncertainty of
the prediction in terms of the probability that the true value
exceeds or lies below the threshold. This is a conditional
probability, which is conditional on the data and indicator
variogram. The probability provides a basis for decisions on
interventions, given the threshold value. For example, if the
conditional probability that grain Se is below the threshold
is very large, then a decision might be made to promote an
intervention such as dietary supplementation or agronomic
biofortification.

Probability can be presented in a number of different ways
– at the first instance, on a raw probability scale, from 0
to 1 or 0 % to 100 %. However, raw probabilities are not
very useful to non-specialists as they are often misinterpreted
(Spiegelhalter et al., 2011). Given this shortfall, the IPCC
(Mastrandrea et al., 2010) introduced a verbal scale for com-
municating probabilistic information from uncertain results
using calibrated verbal phrases. For example, an event with
probability < 1 % will be described as “exceptionally un-
likely” and an event with probability in the interval 90 %–
99 % is described as “very likely”. However, the scale is not
always interpreted consistently among different individuals.
Budescu et al. (2009) observed a tendency for a “regressive”
interpretation in which large or small probabilities are inter-
preted as being close to 50 %. Therefore, we followed Lark
et al. (2014a) in supplementing the calibrated verbal phrases
with the definition of the probability range.

Graphics, such as pictographs, can be used to report the
probability of an event exceeding a threshold. Graphics can
be tailored to the target audience and can help those with low
numeracy. Zikmund et al. (2008) showed that pictographs
significantly improved people’s understanding of disease
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Table 2. The composition of participants during the meetings in Ethiopia and Malawi.

Number of participants

Meeting/country Agronomist Soil Nutritionist/health Total
scientist practitioner

Ethiopia meeting

Ethiopia 6 13 17 36

Malawi meeting

Ethiopia – 1 1 2
Malawi 6 5 4 15
Pakistan – 2 – 2
Zambia – 2 – 2
Zimbabwe – 2 2 4

Total 12 25 24 61

Figure 1. Use of pictographs reporting a probability of an event
exceeding a threshold.

risks compared with other graphics. However, Spiegelhalter
et al. (2011) suggested that graphics such as pictographs can
be misinterpreted, particularly by people with low numeracy.
Therefore, in this study, we proposed to combine raw prob-
abilities and graphics to communicate uncertainty to address
these setbacks. In the exercise, we did it by showing the prob-
ability map and the pictograph for locations of interest. We
used pictographs to report the probability of grain Se concen-
tration exceeding the threshold value, as shown in Fig. 1.

Therefore, we presented three posters, each showing a
map of the conditional median of Se concentration in grain
(Sect. 2.1.1.), plus probability, and presenting the (1) raw
probability scale (see Fig. S4), (2) IPCC verbal scale (see
Fig. S2) and (3) raw probability scale plus pictographs (see
Fig. S5) to communicate the uncertainty (see Table 1).

2.2 Format of the exercise

We wanted to elicit stakeholder opinions about the useful-
ness of the communication methods presented as posters
described in Sect. 2.1. We invited participants working in
the following sectors: agriculture, nutrition and health, non-
governmental organisations (NGOs), and universities and
government departments from Ethiopia, Malawi and other

areas in the wider GeoNutrition project sites. In Ethiopia,
through a contact person in the GeoNutrition project, we
recruited participants who fitted in the above criterion, and
these were mainly local professionals. In Malawi, through
contact persons at the Lilongwe University of Agriculture
and Natural Resources, we invited participants who fitted
the above criterion. Many of the participants were already
engaged with the GeoNutrition project. In total, we had 61
participants, with 36 at the Ethiopia meeting and 25 at the
Malawi meeting (see Table 2). We asked our participants to
assign themselves into one of the three professional groups,
i.e. (1) “agronomist”, (2) “nutritionist/health practitioner”
and (3) “soil scientist”. We then asked them to record their
level of mathematical education and level of use of statistics
or mathematics in their job role.

Evaluation of communication methods was done through
a questionnaire, as shown in Table 3, but without putting the
participants in a situation where they felt they were being
tested on their mathematical skills and understanding. The
first part of the questionnaire was an interpretative task (ques-
tions 1–3, i.e. Q1–Q3). We presented the participants with
true statements about the confidence in the information pre-
sented on the maps at different locations (x, y and z). We
asked whether the communication of uncertainty was clear.
Then, we had the decision-focused task, Q4, in which we
asked whether each poster (prediction plus uncertainty) pro-
vided adequate information to support a given decision. We
then had reflective tasks Q5 and Q6. In Q5, we asked whether
in each case the uncertainty about grain Se concentration was
straightforward to interpret. We asked if the method of com-
munication helped them understand uncertainty in the pre-
dictions in Q6. At the end of the questionnaire, we wanted
the participants to assess the methods (Q7) by ranking the
posters in order of their effectiveness at communicating un-
certainty in the predictions.
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Table 3. The list of questions used to elicit stakeholder opinions about the usefulness of the communication methods presented as posters in
the workshops in Ethiopia and Malawi.

Question Response

Question 1 Is it clear from the poster that this statement is true? (1) Not clear
(Q1) “Our confidence that grain Se concentration exceeds 38 µg kg−1 (2) Took a while

is greater at x than at z” (3) Can be misinterpreted
(4) More information needed
(5) Message clear

Question 2 Is it clear from the poster that this statement is true? (1) Not clear
(Q2) “Our confidence that grain Se concentration does not exceed 38 µg kg−1 (2) Took a while

is greater at z than at y” (3) Can be misinterpreted
(4) More information needed
(5) Message clear

Question 3 Is it clear from the poster that this statement is true? (1) Not clear
(Q3) “Our confidence that grain Se concentration does not exceed 38 µg kg−1 (2) Took a while

is greater at y than at x” (3) Can be misinterpreted
(4) More information needed
(5) Message clear

Question 4 Does the poster provide adequate information for you to determine (1) Inadequate information
(Q4) how likely it is that an intervention programme is needed at any given location? (2) Adequate information

(3) More than what I wanted

Question 5 Is the way this poster communicates the uncertainty about grain Se (1) Not clear
(Q5) concentration straightforward to interpret? (2) Took a while

(3) Can be misinterpreted
(4) More information needed
(5) Message clear

Question 6 Do you think that the poster helped you understand the (1) Yes
(Q6) uncertainty in the predictions? (2) No

Question 7 Comparing all methods, please rank the posters in order of their effectiveness, Rank 1 being most effective
(Q7) in your experience, at communicating uncertainty in the predictions. and Rank 5 the least effective.

In each workshop, we started out with an introductory talk
to explain the objectives of the exercise. During the talk, we
also explained the structure of the questionnaire and how we
expected the participants to complete it. After being handed
the questionnaires, the participants were directed into a room
with the five methods displayed on A0-sized posters. Partic-
ipants visited each poster in a randomised order to avoid any
bias resulting from the carry-over effects from one poster to
another when the individual responses were pooled for anal-
ysis. For example, if participants found a particular method
easier to interpret, this might help them understand the next
poster that they examined. Participants were not allowed to
speak to one another when they were completing their ques-
tionnaires to avoid bias. When completing the last two ques-
tions on the questionnaire, participants were allowed to re-
visit the posters without following the randomised order to
revise their answers. A non-specialist facilitator was sta-
tioned at the poster, to check that participants were on the
correct pages on the colour-coded questionnaire, to check

that all questions were completed and to help with any prob-
lems (e.g. translating language).

2.3 Data analysis

We presented our results for Q1 to Q6 as contingency ta-
bles, where the selected responses in the rows (of which
there are nr) and the columns (of which there are nc) are
the posters (i.e. methods of communication), separated either
between the location of the meeting (Ethiopia or Malawi) or
between professional group (agronomist, soil scientist or nu-
tritionist/health practitioner) of the respondent. Analysis of
the contingency table allowed us to test the null hypothesis
of the random association of the responses with the factor
in columns (i.e. that the proportion of participants indicat-
ing a particular response to the question is independent of
the poster which they are considering). The description of
how we partitioned contingency tables to evaluate whether
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there were differences between the location of the meeting
and professional groups is given in the Appendix.

The null hypothesis for a contingency table is equivalent to
an additive log-linear model of the table under which the ex-
pected number of responses in cell [i,j ], ei,j , is the product
of the row and column totals (ni and nj ) divided by the to-
tal number of responses, N . An alternative log-linear model,
the so-called “saturated” model for the table, has an extra
(nr−1)× (nc−1) term which allows an interaction between
the rows and columns of the table, such that the proportions
of different responses may differ among all the posters.

The evidence for the saturated model, as a better model for
the data than the additive model, is provided by the likelihood
ratio statistic or the deviance for the two models, L, where,
in the following:

L= 2
∑
i=1

∑
j=1
oi,j log

oi,j

ei,j
, (2)

and oi,j are the number of observed responses in cell [i,j ].
Under the null hypothesis of random association between the
rows and columns of the table, L has an approximate χ2 dis-
tribution, with (nr−1)× (nc−1) degrees of freedom (Chris-
tensen, 1997; Lawal, 2014). We fitted the log-linear models
using the loglm function from the MASS package in the R
platform (Venables and Ripley, 2002).

Our primary interest is whether there are differences in
the responses recorded by our participants depending on the
method of communicating uncertainty. However, it was first
necessary to consider whether there was evidence for differ-
ences in the responses between the two sets of respondents at
different locations. Such differences might arise because of
differences in the composition of the groups (Table 2), dif-
ferences between the examples presented (a map from the
Amhara region in Ethiopia and a map of Malawi), differ-
ences between the contexts (in Ethiopia, many were local
professionals recruited for the exercise; in Malawi, many of
the participants were already engaged with the GeoNutrition
project) and the possibility of unconscious changes in how
the second meeting, in Ethiopia, was conducted (adapting
from the experience of conducting the exercise in Malawi).
Because our participants were drawn from different profes-
sional groups, we thought this would affect their responses,
and if this was the case, then this would also be of interest
because it would suggest that people from different profes-
sional backgrounds find some methods better than others.

For this reason, we first tested whether there were differ-
ences in the overall responses between the locations of the
meetings, using a contingency table in which the responses
to different posters by people from different professional
groups are pooled within the two meeting locations. This
gave us a five (responses) by two (locations) contingency ta-
ble, with 4 degrees of freedom for each poster (Q1–Q3 and
Q5), or a three (responses) by two (locations) contingency ta-
ble, with 2 degrees of freedom (Q4), or a two (responses) by

two (locations) contingency table, with 1 degree of freedom
(Q6). We next tested whether there were differences in the
overall responses between the different professional groups,
using a contingency table in which the responses to different
posters were pooled within each of those groups.

For some questions, there were differences in the re-
sponses between the location of the meeting. But for no
questions was there any evidence to reject the null hypoth-
esis of random association between responses and the pro-
fessional group of the participants. We, therefore, proceeded
to consider a set of prior hypotheses about differences in
the responses between posters and the methods which they
employed to communicate uncertain information, based ei-
ther on a partition of the separate subtables for each location
(where the locations differed) or of a table in which the re-
sponses from the different locations were pooled.

The first hypothesis which we considered is that partic-
ipants would respond differently to a threshold-based ap-
proach to uncertainty (in which the poster presents the prob-
ability that the Se concentration in grain at an unsampled site
falls below or above a threshold – posters 2, 4a and 4b) than
they would to a general measure of uncertainty (the kriging
variance, poster 3, or the prediction interval for the predic-
tion, poster 1). We call this hypothesis H1, and the evidence
against the corresponding null hypothesis, H1

0, was evaluated
by the deviance in the subtable for which the responses to
posters 2, 4a and 4b were pooled in one column (threshold
based) and the responses to posters 1 and 3 were pooled in a
second.

The second hypothesis that we considered, H2, was that
the respondents’ views on the posters that used kriging vari-
ance would differ from their views on the posters that used
prediction intervals. The evidence against the corresponding
null hypothesis, H2

0, was tested by the subtable comprising
the responses to poster 1 in one column and the responses to
poster 3 in a second.

The deviances for the tables testing null hypotheses H1
0

and H2
0 are two components of the deviance for the overall

table (whether this is pooled over several locations or a sub-
table for one location). The remaining deviance component
is for a subtable with all the separate responses to threshold-
based methods. This can be partitioned into two further com-
ponents, which address our two remaining hypotheses.

The first of these, hypothesis H3, was that respondents
would have different opinions about poster 4a (raw proba-
bility values) than the posters (4b and 2) in which guides to
the interpretation of the probability are given (pictographs
or a partition of the probability into intervals corresponding
to the calibrated phrases of the IPCC scheme). The null hy-
pothesis, H3

0, is tested by the deviance of a table in which
one column comprises responses to poster 4a and the second
contains pooled responses to posters 4b and 2.

The final hypothesis, H4, was that respondents would have
different opinions on the poster which used the calibrated
phrases of IPCC (poster 2) and the rather different approach
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Table 4. Analysis of Q1 according to the location of the meeting, professional group and methods that the latter tested on separate location
subtables.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 93.33 36 < 0.001
Pooled within location of meeting 22.83 4 < 0.001
Pooled within professional group 11.71 8 0.16

Subtable – Ethiopia meeting

Poster effects 21.78 16 0.15
Threshold based vs. general H1

0 9.61 4 0.05
Within general H2

0 7.10 4 0.13
Within threshold based 5.07 8 0.75
Poster 4a vs. guided H3

0 2.64 4 0.62
Poster 4b vs. poster 2 H4

0 2.43 4 0.66

Subtable – Malawi meeting

Poster effects 48.72 16 < 0.001
Threshold based vs. general H1

0 31.95 4 < 0.001
Within general H2

0 6.53 4 0.16
Within threshold based 10.24 8 0.25
Poster 4a vs. guided H3

0 8.87 4 0.06
Poster 4b vs. poster2 H4

0 1.37 4 0.85

Note: each row of this table presents a test of a null hypothesis of random association between the rows and columns of
a contingency table, but the four highlighted here correspond to the prior hypotheses about differences among posters
which are of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance statistic this large or
larger if the null hypothesis of random association of the rows and columns of the table holds.

of poster 4b, with pictographs imposed on a map of proba-
bilities.

The approaches above were applied for Q1 to Q6.
We tabulated the responses for Q7, with ranks as the rows

and posters as the columns. Participants were asked to rank
the preferred poster first, but we reversed this for the analy-
sis, giving a rank of 5 to the most preferred poster and of 1
to the least. We considered only those responses in which a
complete ranking was provided by the respondent. The mean
rank was calculated for each poster, and this was done over
all respondents and then separately for locations and for pro-
fessional groups.

For a set of rankings of k items, under a null hypothesis
of random ranking, the expected mean rank for each item is
(k+ 1)/2. The evidence against this null hypothesis can be
measured by the following statistic:

12n
k(k+ 1)

k∑
i=1

{
ri −

k+ 1
2

}2

, (3)

where ri is the mean rank of the ith item, and a total of n
rankings comprise the data. Under the null hypothesis, this
statistic is distributed as χ2(k− 1) (Marden, 1995).

3 Results

At the Ethiopia meeting, we had fewer participants (64 %)
who had studied mathematics and statistics up to degree level
and above than at the Malawi meeting (88 %; see Fig. S9).
We had more participants using statistics or mathematics
regularly in their job at the Malawi meeting (52 %) than at
the Ethiopian meeting (18 %). Most of the participants at
the Ethiopian meeting (58 %) occasionally use mathemat-
ics or statistics in their jobs. There were more soil scientists
(48 %) at the meeting in Malawi than agronomists and nutri-
tionists/health practitioners. While, in Ethiopia, there were
more nutritionists/health practitioners (47 %) compared to
the other professional groups.

3.1 Interpretative tasks

The full tables for responses over both locations and all
posters to Q1 are shown in Table A1 in the Appendix. The
responses pooled for both meeting locations are shown in Ta-
ble A2. There is strong evidence for differences among the
columns of the full table (P < 0.001) and strong evidence
(P < 0.001) against the null hypothesis of random associa-
tion between posters and responses pooled within locations
and responses (Table 4). However, there was no evidence
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Table 5. Analysis of Q2 according to the location of the meeting, professional group and methods that the latter tested on separate location
subtables.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 60.66 36 0.01
Pooled within location of meeting 24.42 4 < 0.001
Pooled within professional group 14.95 8 0.06

Subtable – Ethiopia meeting

Poster effects 16.21 16 0.44
Threshold based vs. general H1

0 7.59 4 0.11
Within general H2

0 2.18 4 0.70
Within threshold based 6.44 8 0.60
Poster 4a vs. guided H3

0 3.91 4 0.42
Poster 4b vs. poster 2 H4

0 2.52 4 0.64.

Subtable – Malawi meeting

Poster effects 20.02 16 0.22
Threshold based vs. general H1

0 5.34 4 0.25
Within general H2

0 6.93 4 0.14
Within threshold based 7.76 8 0.46
Poster 4a vs. guided H3

0 4.04 4 0.40
Poster 4b vs. poster2 H4

0 3.72 4 0.45

Note: each row of this table presents a test of a null hypothesis of random association between the rows and columns of
a contingency table, but the four highlighted here correspond to the prior hypotheses about differences among posters
which are of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance statistic this large or
larger if the null hypothesis of random association of the rows and columns of the table holds.

Figure 2. Bar charts showing how participants when pooled within the location of the meeting responded to the interpretive task (Q1).

to reject the null hypothesis of random association between
posters and responses pooled within professional groups. On
this basis, further analysis of responses to posters was based
on the separate subtables for the Ethiopia and Malawi meet-
ing locations. Similar results were obtained for Q2 and Q3,
as shown in Tables 5 and 6, respectively.

For Q2, while there is evidence for a difference in re-
sponses between the two meeting locations, there is no
evidence, either for the responses from Ethiopia or from

Malawi, to reject the null hypothesis for any of the focussed
questions about differences between posters (see Table 5).
For Q3, however, there is evidence for a difference in the
responses for the threshold-based methods and the general
methods in the responses from Ethiopia (P = 0.009) and
from Malawi (P = 0.02; see Table 6).

Figure 2 shows the responses to Q1 for the separate posters
for each subtable. Threshold-based methods were found to
be clearer by a larger proportion of the participants. In both
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Table 6. Analysis of Q3 according to the location of the meeting, professional group and methods that the latter tested on separate location
subtables.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 60.36 36 0.006
Pooled within location of meeting 21.93 4 0.0002
Pooled within professional group 10.01 8 0.26

Subtable – Ethiopia meeting

Poster effects 16.60 16 0.41
Threshold based vs. general H1

0 13.48 4 0.009
Within general H2

0 0.51 4 0.97
Within threshold based 2.61 8 0.96
Poster 4a vs. guided H3

0 2.03 4 0.73
Poster 4b vs. poster 2 H4

0 0.58 4 0.97

Subtable – Malawi meeting

Poster effects 21.83 16 0.15
Threshold based vs. general H1

0 11.67 4 0.02
Within general H2

0 4.07 4 0.40
Within threshold based 6.09 8 0.64
Poster 4a vs. guided H3

0 4.07 4 0.40
Poster 4b vs. poster2 H4

0 2.03 4 0.73

Note: each row of this table presents a test of a null hypothesis of random association between the rows and columns
of a contingency table, but the four highlighted here correspond to the prior hypotheses about differences among
posters which are of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance statistic this
large or larger if the null hypothesis of random association of the rows and columns of the table holds.

countries, there was a marked difference between poster
1 (prediction intervals) and the rest, with a much smaller
proportion of respondents selecting the response “message
clear”. In Malawi, a large proportion of respondents selected
“not clear” as their response for this poster. The figures which
summarise responses for Q2 and Q3 are shown in the Sup-
plement (Figs. S10 and S11).

3.2 Decision-focused task

There was no evidence for differences among the columns
of the full table (P = 0.11) and strong evidence (P = 0.01)
against the null hypothesis of random association between
posters and responses pooled within locations and responses
for Q4 (Table 7). However, there was no evidence to reject
the null hypothesis of random association between posters
and responses pooled within professional groups. Therefore,
further analysis of responses to posters was based on the sep-
arate subtables for the Ethiopia and Malawi meeting loca-
tions.

For Q4, we have no evidence to reject the null hypothesis
of the random association between poster and response for
any of our set of four focussed hypotheses in Ethiopia. In
Malawi, however, there is evidence (P = 0.03) to reject the
H 1

0 and not the other focussed hypotheses.

Figure 3 shows the responses to Q4 for the separate posters
for each subtable graphically. The larger proportion of the
participants found threshold-based methods to provide ade-
quate information for decision-making. In Ethiopia, poster 3
(kriging variance) was different from all other posters, with a
large proportion of respondents selecting “inadequate infor-
mation”.

3.3 Reflective task

There is no evidence for differences among the columns of
the full table (P = 0.26) for Q5 (Table 8). Also, there is
no evidence (P = 0.63) against the null hypothesis of the
random association between posters and responses pooled
within locations. Table 9 shows that there is strong evidence
for differences among the columns of the full table (P =
0.001) for Q6. However, the evidence is marginal (P = 0.05)
against the null hypothesis of random association between
posters and responses pooled within locations and responses.
However, there was no evidence to reject the null hypothesis
of random association between posters and responses pooled
within professional groups for both Q5 and Q6. On this basis,
further analysis of responses to posters was based on pooled
counts for the Ethiopia and Malawi meetings. The responses
for Q5 are shown in Table A3.
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Table 7. Analysis of Q4 according to the location of the meeting, professional group and methods that the latter tested on separate location
subtables.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 25.70 18 0.11
Pooled within location of meeting 9.14 2 0.01
Pooled within professional group 8.96 4 0.06

Subtable – Ethiopia meeting

Poster effects 6.47 8 0.59
Threshold based vs. general H1

0 4.34 2 0.11
Within general H2

0 0.28 2 0.87
Within threshold based 1.85 4 0.76
Poster 4a vs. guided H3

0 1.22 2 0.54
Poster 4b vs. poster 2 H4

0 0.63 2 0.73

Subtable – Malawi meeting

Poster effects 10.09 8 0.26
Threshold based vs. general H1

0 6.94 2 0.03
Within general H2

0 1.61 2 0.45
Within threshold based 1.53 4 0.82
Poster 4a vs. guided H3

0 0.63 2 0.73
Poster 4b vs. poster2 H4

0 0.90 2 0.64

Note: each row of this table presents a test of a null hypothesis of random association between the rows and
columns of a contingency table, but the four highlighted here correspond to the prior hypotheses about differences
among posters which are of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance
statistic this large or larger if the null hypothesis of random association of the rows and columns of the table holds.

Figure 3. Bar charts showing how participants, when pooled according to the location of the meeting, responded to whether a method
provided adequate information or not (Q4).

As shown in Table 8, we have evidence (P = 0.02) to re-
ject the null hypothesis of contrasting the threshold-based
methods with the general uncertainty measures for Q5. For
Q6, there is evidence for a difference in the responses
for the threshold-based methods and the general methods

(P < 0.001). However, we have no evidence for the second,
third and fourth focussed hypotheses in both Q5 and Q6.

Figure 4 shows the responses to Q5 for the separate
posters for pooled counts graphically. We can see that there
is a greater proportion of respondents selecting the response
“message clear” for threshold-based methods, i.e. posters 2
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Table 8. Analysis of Q5 according to the location of meeting, professional group and methods that the latter tested on pooled counts over
Ethiopia and Malawi.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 40.93 36 0.26
Pooled within location of meeting 2.55 4 0.63
Pooled within professional group 2.35 8 0.99

Pooled counts over Ethiopia and Malawi

Poster effects 17.74 16 0.34
Threshold based vs. general H1

0 12.23 4 0.02
Within general H2

0 1.11 4 0.89
Within threshold based 4.40 8 0.82
Poster 4a vs. guided H3

0 2.34 4 0.67
Poster 4b vs. poster 2 H4

0 2.06 4 0.72

Note: each row of this table presents a test of a null hypothesis of random association between the rows and columns of a
contingency table, but the four highlighted here correspond to the prior hypotheses about differences among posters which
are of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance statistic this large or larger if the
null hypothesis of random association of the rows and columns of the table holds.

Table 9. Analysis of Q6 according to the location of the meeting, professional group and methods that the latter tested on pooled counts over
Ethiopia and Malawi.

Specified null Deviance Degrees of P ∗

hypothesis (L2) freedom

Full contingency table analysis

Full table 29.08 9 0.001
Pooled within location of meeting 23.69 1 0.05
Pooled within professional group 0.39 2 0.82

Pooled counts over Ethiopia and Malawi

Poster effects 24.13 4 < 0.001
Threshold based vs. general H1

0 3.60 1 < 0.001
Within general H2

0 0.002 1 0.97
Within threshold based 0.53 2 0.77
Poster 4a vs. guided H3

0 0.34 1 0.56
Poster 4b vs. poster 2 H4

0 0.18 1 0.67

Note: each row of this table presents a test of a null hypothesis of random association between the rows and columns of a
contingency table, but the four highlighted here correspond to the prior hypotheses about differences among posters which are
of primary interest. The asterisk (∗) indicates the probability of obtaining a deviance statistic this large or larger if the null
hypothesis of random association of the rows and columns of the table holds.

(IPCC verbal scale), 4a (raw probability) and 4b (raw prob-
ability plus pictograph), than on general based. We also see
more people selecting the response “not clear” for posters 1
(prediction intervals) and 3 (kriging variance), the general-
based methods. Figure 5 shows how participants responded
to Q6. There was a marked difference between poster 3 (krig-
ing variance) and the rest, with a much larger proportion of
respondents selecting the response “no”.

3.4 Assessment of the method

For Q7, first, we computed the mean ranks for all the partici-
pants and measured the evidence against the null hypothesis
of random ranking using Eq. (3). Table 10 shows that there
is strong evidence (P = 0.002) against the null hypothesis of
random ranking.
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Figure 4. Bar charts showing how participants responded to whether a method is straightforward to interpret (Q5).

Figure 5. Bar charts showing how participants responded to how each poster helped them understand uncertainty in the spatial predictions
(Q6).

Figure 6. Ranking of posters in terms of the most effective at com-
municating uncertainty about spatial predictions.

Second, we computed mean ranks for each location of
the meeting. After the test, we found no evidence (P =
0.12) against the null hypothesis in Ethiopia. However, at
the Malawi meeting, there was strong evidence (P = 0.001).

The difference may be because the set of stakeholders at
the Malawi meeting was more homogenous in terms of pro-
fessional group (a less even distribution among them) and
level of mathematical education than the stakeholders at the
Ethiopia meeting.

Last, we computed mean ranks for the different profes-
sional groups. We found strong evidence against the null hy-
pothesis of random ranking for the nutritionists/health prac-
titioners (P = 0.017) and not for soil scientists (P = 0.16)
and agronomists (P = 0.23).

Figure 6 shows the mean rankings for the separate posters
for all the respondents graphically. Posters 4b (raw probabil-
ity plus pictograph) and 2 (IPCC verbal scale) had the largest
mean ranks, and poster 3 (kriging variance) had the least.
Threshold-based methods were found to be more effective at
communicating uncertainty about spatial predictions of grain
Se concentration.
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Table 10. Analysis of Q7 according to all the respondents, the lo-
cation of the meeting and the professional group.

Test statistic Degrees P ∗

(X2) of freedom

All respondents 16.90 4 0.002

Location of meeting

Ethiopia 7.44 4 0.12
Malawi 18.21 4 0.001

Professional group

Agronomist 5.60 4 0.23
Soil scientist 6.51 4 0.16
Nutritionist/health 12.10 4 0.017
Practitioner

The asterisk (∗) indicates the probability of obtaining a deviance statistic this
large or larger if the null hypothesis of random ranking of the rows and columns
of the table holds.

4 Discussion

In this study, we tested strategies to communicate uncertain
information through a systematic evaluation and comparison
with distinct groups of data end-users. We found significant
differences between participants’ responses to the posters
which employed general measures of uncertainty (kriging
variance or prediction interval) and those which presented
the probability that the Se concentration in grain falls be-
low or above a threshold. The interpretative task that partici-
pants undertook was based on interpretation of the informa-
tion relative to a nutritional threshold. The presentation of
uncertainties in terms of probabilities framed with respect to
this threshold was found more accessible by data users than
the general measures of uncertainty, despite the general view
(see Spiegelhalter et al., 2011) that users of information com-
monly find probabilities hard to interpret. Our results suggest
that users of information can find information presented in
terms of probabilities accessible and clear.

There was no evidence that the participants responded
more positively to communication of uncertainty in the form
of probabilities when these were supported with pictographs,
or the calibrated phrases of the IPCC scheme, in contrast to
the simple map of probability, although the maps with pic-
tographs were highest ranked. These methods to assist the
interpretation of probability are widely used because of the
assumption that many users of information find probabili-
ties hard to interpret. However, there is evidence that cali-
brated phrases are themselves not without problems. Bude-
scu et al. (2009) reported substantial inconsistencies in how
people interpret scales of calibrated phrases, with a tendency
to have a “regressive” interpretation (interpreting large or
small probabilities as close to 0.5). Jenkins et al. (2019)
found that presentations of probability in numerical formats
were consistently perceived as more credible than verbal ex-

pressions. While the posters using pictographs were ranked
highest (Fig. 6) in our study, we have not shown that they
are markedly preferred. We note that our study focussed
on stakeholders’ preferences and opinions and did not in-
clude tests of how correctly the information was interpreted.
We, therefore, suggest that further work is needed before
a definitive assessment can be made of the value of cali-
brated phrases or pictographs in supplementing raw probabil-
ity, while noting that we have not found them to be markedly
more congenial to the user.

Kriging variances were the lowest-ranked poster in the
participants’ overall assessment (Fig. 6). The kriging vari-
ance is fundamental to the geostatistical approach for pre-
dicting spatial variables. It is the quantity which is minimised
by the kriging predictor, and its virtues as a built-in measure
of the uncertainty of point predictions have been widely ac-
knowledged. Nonetheless, it is clear that the kriging variance
in itself is not an accessible measure of uncertainty for most
end-users. Along with prediction intervals, the kriging vari-
ance is a general measure of uncertainty which reflects the
spatial variability of the target variable and the local den-
sity of the sample. Although the kriging variance is a valid
statistic, in this context it has very little value as a means
for communicating uncertainty for a general audience. That
is particularly true in this case, where the kriging variance
must remain on transformed units, and so it serves as little
more than a general uncertainty index. This was clear a pri-
ori and is confirmed by the responses we received. Our find-
ings here cannot, therefore, be regarded as definitive, and a
similar experiment for variables which do not require trans-
formation would be necessary in further research. In such
cases, one could also include the kriging standard error as an
uncertainty measure to assess (i) whether the fact that it is
presented in the units of the target variable makes it prefer-
able to kriging variance and (ii) whether it is regarded as less
interpretable than its rescaled form as a prediction interval.
That said, our results do show that the communication of pre-
diction intervals requires more attention.

These considerations aside, kriging variances, standard er-
ror and prediction intervals must be interpreted by the user
along with other information (for example, is the predicted
value close to the threshold or substantially different from
it?) in order to make a judgement at a particular location. Our
results do show that the probability measure, tied directly to
the interpretative task, is clearer to the user than general mea-
sures of uncertainty.

Prediction intervals were not ranked highly by our partic-
ipants, and we had no evidence that they were found any
clearer than the kriging variance. In part, this might be be-
cause of the limitations in presenting the predictions and up-
per and lower bounds of the prediction interval as three sep-
arate maps. The task of interpreting the information at one
location or comparing two, when this entails examining three
maps, may have influenced the participants’ responses. In
other settings, the prediction intervals might be more effec-
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tive for interpretation, for example where the user of infor-
mation can display the prediction intervals for a prediction at
a site of interest as a single figure (e.g. a bar against a scale)
with the threshold value of concern indicated. Further work
is needed on different ways to present the prediction intervals
for interpretative tasks.

We only found strong evidence of differences between the
meeting location for questions on interpretative and decision-
focused tasks. This can be attributed to the composition of
each group. Participants at the Malawi meeting comprised re-
searchers and stakeholders already somewhat engaged with
the GeoNutrition project, whereas those in Ethiopia were
mainly local stakeholders not previously involved with the
project.

The participant groups from the two locations differed in
their self-assessed level of mathematical education and use of
mathematics and statistics in their work. We had more partic-
ipants with mathematical components in their education up to
degree level in Malawi than in Ethiopia. We had fewer peo-
ple who had mathematical education only to secondary/high
school level in Malawi than in Ethiopia. There were fewer
participants who used mathematics and statistics regularly at
the Ethiopia meeting. This, along with the differences in role
noted in the previous paragraph, might contribute to differ-
ences between the locations. However, our data cannot sup-
port a more detailed assessment of the effects of mathemat-
ical background because they are strongly unbalanced. For
example we only had 3 % of participants educated up to cer-
tificate/diploma level at the Ethiopia meeting. Further work
to address this question and examine how stakeholders inter-
preted each poster will require an elicitation with sufficient
numbers of participants with different mathematical back-
grounds. This would be useful for a better understanding of
how different learning styles influence the interpretation of
uncertain information.

No map is perfect (Heuvelink, 2018), but maps must be
used as a basis for decisions. It is, therefore, important to
ensure that the user of spatial information is aware of the
uncertainty in these predictions, and that these are communi-
cated in a clear way. The user must be aware that the predic-
tions have an attached uncertainty, and it is therefore possible
that a decision they make might be judged as being incor-
rect in the light of perfect information. Given this, the user
must have a clear enough understanding of the uncertainty
attached to a prediction so as to be confident that the deci-
sion they make will be robust given the uncertainty. For ex-
ample, the predicted concentration of a nutrient in a staple
crop at a location may be such that the intake of the nutrient
should be sufficient to meet the needs of those who eat that
crop. The user should consider the uncertainty in that predic-
tion. If the probability that the threshold concentration is ex-
ceeded is just 0.6 (about as likely as not on the IPCC scale),
then they may conclude that a decision on whether or not
to proceed with an intervention at that location requires fur-
ther information. If, on the other hand, the probability is 0.95

(very likely) then they may be confident in deciding to pri-
oritise interventions elsewhere. However, if the uncertainty is
not communicated clearly, then the data user might be over-
confident in predictions where the probability that the thresh-
old is exceeded is only just over 0.5 and may waste resources
in further investigation or unnecessary interventions at loca-
tions where the prediction was well supported and indicated
adequate local concentrations of the nutrient.

The findings of this study complement work that has been
done on cartography and visualisation for spatial information
(Kunz et al., 2011; Beven et al., 2015). Our findings show
the importance of finding cartographic solutions to represent
probability information and to develop interactive methods
for interpretation in a geographic information system (GIS)
environment (e.g. to produce pictographs, like those we have
used, for sites of interest or to find more effective ways of
representing the 95 % prediction interval). It is good practice
to use a consistent colour scale for the three legends showing
the lower and upper 95 % prediction interval and the condi-
tional median. However, in our study, we could not use one
colour legend for the three maps for Fig. S1 (poster 1) be-
cause of the marked differences in the predicted values on
back-transformation. This made it difficult to find a working
colour scale from the minimum value in the lower bound to
the maximum in the upper bound on which one would see
the variation in all three maps. We opted to use a continu-
ous legend on the map of the mean and discrete ones for the
lower and upper limits. This might have hindered interpreta-
tion. However, we suspect that there is a need for fundamen-
tally different ways of visualising prediction intervals, per-
haps by using interactive methods to display them in a GIS
environment.

We accept that a possible source of bias in any such study
is that a participant feels that they are being tested on their
interpretative skills and so might select a response which
suggests, in a general sense, that they understand the in-
put (e.g.“message clear” for the case in Table 3). However,
all participants were aware that their responses were strictly
anonymous, and it was emphasised that the task involved
their evaluation of several methods for the communication
of an interpretation which was provided. In future studies, it
might be useful to include some final questions which actu-
ally are “tests of interpretation”, secondary to the main task,
to see whether this affects the responses given for different
methods.

5 Conclusions

Despite the general expectation that users of spatial informa-
tion do not generally find probabilities a congenial way to
express uncertainty, we found that when probability is used
to quantify the uncertainty in a specific interpretation of spa-
tial information, based on a nutritionally significant thresh-
old, end-users largely found the approach clear and prefer-
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able to general measures of uncertainty which are not directly
linked to the specific interpretation (prediction intervals and
kriging variance). In the general assessment and ranking of
how methods to present uncertainty succeeded, the methods
based on a specific interpretation of the information, using
probability, were again preferred. There was no significant
evidence for a difference in assessment by users of presenta-
tions which used probability alone or those which used pic-
tographs or verbal phrases to aid in the interpretation of the
raw probability values, although these latter methods were
ranked highest among all methods.

Because decisions on interventions to address nutrient de-
ficiencies may have positive and negative effects on peoples’
health and well-being, the interpretation of information such
as that we have used is not value neutral, and uncertainty in
information has ethical implications (given that all spatial in-
formation is uncertain, how much uncertainty is ethically ac-
ceptable in the decision-making process?). While these con-
siderations are outside the scope of the study reported here,
it would be interesting, in future research, to examine how
individual attitudes to the ethics of fortification interventions
affect their responses and whether individuals’ perspectives
on the ethical implications of basing decisions on uncertain
information differs between different methods to communi-
cate that uncertainty.

To conclude, we suggest that the challenge of communi-
cating the significance of uncertain information to a range
of stakeholders should be considered in the context of spe-
cific interpretations of the information (e.g. nutrient concen-
trations relative to thresholds of nutritional significance) and
that, in this setting, probabilities can be accessible to a wide
range of end-users. Calibrated phrases or pictographs seem
to have some value (given the rankings by our participants),
although there is no strong evidence that they should be pre-
ferred to a simple map of the probability. While general mea-
sures of uncertainty (kriging variance and prediction inter-
vals) are valid ways of quantifying uncertainty, they are less
effective for communication, although other ways of present-
ing prediction intervals for spatial data in interactive formats
online or in a GIS may merit further investigation.
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Appendix A

In this section, we describe how we partitioned contingency
tables to evaluate whether there were differences between the
location of the meeting and professional groups. A full ta-
ble, such as the one shown in Fig. A1, may be hard to inter-
pret. Table A1 shows a full table of how many individuals se-
lected a given response to Q1, the interpretive task. It is pos-
sible to partition the table, and its deviance statistic and de-
grees of freedom, into components corresponding to pooled
tables and subtables of the full table. This is illustrated in
Fig. A1. Here the full table is partitioned into a subtable for
responses from Malawi and another subtable for responses
from Ethiopia, as shown also in Table A2. A pooled table, in
which the responses pooled over all posters in Malawi were
compared with the responses similarly pooled from Ethiopia,
completes the partition. As shown in Fig. A1, the deviance
statistics for these three tables, and their degrees of freedom,
sum to the deviance and degrees of freedom for the full ta-
ble. In this case, we could conclude whether there are differ-
ences in the responses between the two locations (if not, then
we might pool the responses for any poster at the two loca-
tions), and whether there are differences in responses to the
posters at each location in turn. As described below, we used
this approach to evaluate whether there were differences be-
tween the two locations. We also used it to examine evidence
for differences in the responses for professional groups. Hav-
ing done this, we then analysed either pooled tables or sep-
arate subtables (e.g. for responses in Ethiopia and responses
in Malawi) to examine a priori contrasts between particular
posters and groups of posters.
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Figure A1. An illustration of how the log likelihood ratio can be partitioned into subtables and pooled tables.

Table A1. The full contingency table showing how many individuals selected a given response to Q1 (interpretive task). The table is presented
according to the location of the meeting and the method of communication. The figures in parentheses are the expected numbers, and ei,j is
the product of the row and column totals (ni and nj ) divided by the total number of responses (N ).

Response Ethiopia Malawi

Poster 1 Poster 2 Poster 3 Poster 4a Poster 4b Poster 1 Poster 2 Poster 3 Poster 4a Poster 4b

Not clear 1(1) 0(1) 4(1) 1(1) 0(1) 8(3) 1(3) 5(3) 2(3) 1(3)
Took a while 9(7) 8(6) 6(6) 6(7) 4(7) 0(1) 1(1) 3(1) 2(1) 1(1)
Can be mis-
interpreted

5(4) 4(4) 3(4) 5(4) 3(4) 6(2) 1(2) 3(2) 0(2) 0(2)

More infor-
mation needed

7(3) 2(3) 2(3) 2(3) 3(3) 2(2) 0(2) 3(2) 3(2) 0(2)

Message clear 13(20) 20(19) 19(19) 22(21) 26(21) 8(16) 22(16) 11(16) 18(16) 22(16)

Table A2. A subtable showing how many individuals selected a
given response to Q1 when columns are pooled within the location
of the meeting.

Response Ethiopia Malawi

Not clear 6 17
Took a while 33 7
Can be misinterpreted 20 8
More information needed 16 8
Message clear 100 81

Table A3. Responses to Q5 pooled responses from the Ethiopia and
Malawi meetings.

Response Pooled counts

Not clear 27
Took a while 55
Can be misinterpreted 40
More information needed 53
Message clear 103
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Figure S1. Poster showing the prediction intervals (lower and upper limit) and the predicted selenium concentration in teff grain in Amhara
region, Ethiopia
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Figure S2. Poster on verbal probability scale (with probabilities indicated as percentages) of the probability that intake of grain teff selenium
concentration is less than the threshold 38 µg kg−1 in Amhara region, Ethiopia
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Figure S3. Poster showing (a) predicted selenium concentration in teff grain and (b) kriging variance (expected squared prediction error) in
Amhara region, Ethiopia
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Figure S4. Poster on raw probability scale of the probability that intake of grain teff selenium concentration is less than the threshold 38 µg
kg−1 in Amhara region, Ethiopia
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Figure S5. Poster on raw probability scale, with pictographs, of the probability that intake of grain teff selenium concentration is less than
the threshold 38 µg kg−1 in Amhara region, Ethiopia
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Figure S6. Post-plot of Amhara dataset
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Figure S7. Post-plot of Amhara dataset
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Questionnaire

Purpose of Survey Spatial information is critical to many important decisions made by stakeholders in the area of food and
nutrition, for example about whether and where interventions are required to address nutritional deficiencies. In this study
we consider the example of information on micronutrient concentrations in staple crops. These concentrations vary spatially
because of many factors. We can make direct measurements only at limited numbers of sites and use statistical models to make
predictions elsewhere as a basis for mapping. Because of this the information presented in maps has attendant uncertainty. It is
important that this uncertainty is communicated effectively to users of the information, and the objective of this exercise is to
elicit information from stakeholder groups about the success or otherwise of different approaches to the problem.

This questionnaire aims to identify the best method(s) for communicating the uncertainty in spatial prediction of grain Se
concentration. We hope to identify the most appropriate methods of communicating uncertainty for different groups, and so
define the outputs we need from our uncertainty analysis.

We will show you five methods that could be used to communicate uncertainty. Please consider each in turn and answer the
associated sets of questions. The two central questions ask:

1. Is the information that you need on uncertainty represented?

2. Is the method used to present uncertainty clear and not misleading?

Section A: Questions about you

1. Country where you work

2. Which group do you represent

(a) Agronomist

(b) Soil Scientist

(c) Nutritionists/Health Practitioners

3. What level of mathematical education do you have?

(a) Very Little

(b) Secondary/ High school qualifications

(c) Certificate/Diploma

(d) Degree level and above

4. How much do you use mathematics or statistics in your role?

(a) Not at all

(b) Occasionally

(c) Regularly

(d) All the time

Section B: Questions about communicating uncertainty about spatial predictions of grain Se concentration

In all posters, the threshold Se concentration in grain to which we refer is 38 µg kg−1 (micrograms per kilogram), such that a
serving of 330g of grain flour provides a third of the daily EAR of Selenium for an adult woman.

Poster 1

Please look at the poster and find locations x, y, and z

12



1. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration exceeds
38 µg kg−1 is greater at x than at z”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

2. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at z than at y”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

3. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at y than at x”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Suppose you would want to design programmes to address micronutrient deficiency in your region

4. Does the poster provide adequate information about the selenium content of grain for you to identify locations where
programme is most needed?

(a) Inadequate Information

(b) Adequate information

(c) More than what I wanted

5. Is the way this poster communicates the uncertainty about grain selenium content straightforward to interpret

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Poster 2

Please look at the poster and find locations x, y, and z
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1. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration exceeds
38 µg kg−1 is greater at x than at z”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

2. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at z than at y”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

3. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at y than at x”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Suppose you would want to design programmes to address micronutrient deficiency in your region

4. Does the poster provide adequate information about the selenium content of grain for you to identify locations where
programme is most needed?

(a) Inadequate Information

(b) Adequate information

(c) More than what I wanted

5. Is the way this poster communicates the uncertainty about grain selenium content straightforward to interpret

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Poster 3

Please look at the poster and find locations x, y, and z
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1. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration exceeds
38 µg kg−1 is greater at x than at z”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

2. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at z than at y”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

3. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at y than at x”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Suppose you would want to design programmes to address micronutrient deficiency in your region

4. Does the poster provide adequate information about the selenium content of grain for you to identify locations where
programme is most needed?

(a) Inadequate Information

(b) Adequate information

(c) More than what I wanted

5. Is the way this poster communicates the uncertainty about grain selenium content straightforward to interpret

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Poster 4a

Please look at the poster and find locations x, y, and z
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1. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration exceeds
38 µg kg−1 is greater at x than at z”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

2. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at z than at y”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

3. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at y than at x”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Suppose you would want to design programmes to address micronutrient deficiency in your region

4. Does the poster provide adequate information about the selenium content of grain for you to identify locations where
programme is most needed?

(a) Inadequate Information

(b) Adequate information

(c) More than what I wanted

5. Is the way this poster communicates the uncertainty about grain selenium content straightforward to interpret

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Poster 4b

Please look at the poster and find locations x, y, and z
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1. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration exceeds
38 µg kg−1 is greater at x than at z”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

2. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at z than at y”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

3. Is it clear from the poster, that the statement below is true? “Our confidence that grain selenium concentration does not
exceed 38 µg kg−1 is greater at y than at x”

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Suppose you would want to design programmes to address micronutrient deficiency in your region

4. Does the poster provide adequate information about the selenium content of grain for you to identify locations where
programme is most needed?

(a) Inadequate Information

(b) Adequate information

(c) More than what I wanted

5. Is the way this poster communicates the uncertainty about grain selenium content straightforward to interpret

(a) No it is not clear at all

(b) I understand it but took me a while to figure it out

(c) I think it is good but can be misinterpreted

(d) Good but needs more information

(e) Message is clear

Comparing all methods

Once you have completed all the posters, which poster did you find easy to interpret and communicated uncertainty the
best?
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6. Do you think that the poster helped you understand the uncertainty in the predictions?

(a) Poster 1

i. Yes
ii. No

(b) Poster 2

i. Yes
ii. No

(c) Poster 3

i. Yes
ii. No

(d) Poster 4a

i. Yes
ii. No

(e) Poster 4b

i. Yes
ii. No

7. Please rank the posters in order of their effectiveness, in your experience, at communicating uncertainty in the predic-
tions, Rank1 being MOST effective and Rank 5 the LEAST

(a) Rank 1 : Poster ....

(b) Rank 2: Poster ....

(c) Rank 3: Poster ....

(d) Rank 4: Poster ....

(e) Rank 4: Poster ....

Thank you for completing this questionnaire. If you have any further comments about the best ways to commu-
nicate uncertainty, please write below.
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ABSTRACT
Spatial information, inferred from samples, is needed for decision-
making, but is uncertain. One way to convey uncertain informa-
tion is with probabilities (e.g. that a value falls below a critical
threshold). We examined how different professional groups (agri-
cultural scientists or health and nutrition experts) interpret infor-
mation, presented this way, when making a decision about
interventions to address human selenium (Se) deficiency. The
information provided was a map, either of the probability that Se
concentration in local staple grain falls below a nutritionally-sig-
nificant threshold (negative framing) or of the probability that
grain Se concentration is above the threshold (positive framing).
There was evidence for an effect of professional group and of
framing on the decision process. Negative framing led to more
conservative decisions; intervention was recommended at a
smaller probability that the grain Se is inadequate than if the
question were framed positively, and the decisions were more
comparable between professional groups under negative framing.
Our results show the importance of framing in probabilistic pre-
sentations of uncertainty, and of the background of the inter-
preter. Our experimental approach could be used to elicit
threshold probabilities which represent the preferences of stake-
holder communities to support them in the interpretation of
uncertain information.
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1. Introduction

1.1. The problem

There is increasing awareness that, while much progress has been made to address
malnutrition with respect to energy and protein supply, micronutrients (such as zinc,
iron, iodine and selenium) may remain deficient among populations of many countries
(Ligowe et al. 2020). This micronutrient deficiency (MND) or ‘hidden hunger’ has impli-
cations for human health, growth and cognitive function. In the GeoNutrition project,
funded by the Bill and Melinda Gates Foundation, micronutrient studies in soil, crops
and the human population are being conducted in Malawi and Ethiopia (Gashu et al.
2020, 2021). There is interest in how MND problems may vary spatially due to vari-
ation in soil and other environmental conditions. If this occurs, then interventions
might be more effectively targeted where particular MND are prevalent.

Through the GeoNutrition project, a large dataset has been collected on soil and
crop micronutrient status in Malawi and Ethiopia. This allows the micronutrient con-
centration in soil and staple crops to be mapped. The spatial predictions are uncertain,
but the statistical models on which they are based allow us to compute the probabil-
ity that a particular micronutrient concentration falls below or above a nutritionally
relevant threshold at some unsampled location. It is often suggested that mapping
this probability will help interpret the information while allowing for its uncertainty in
the spatial data. However, it remains unclear how various stakeholders, for whom such
information is required to support decisions on interventions to address MND, would
use the probabilities in order to account for uncertainty.

In this paper we describe a study to examine how stakeholders interpret probability
that local grain micronutrient concentration falls below a threshold. Groups of stake-
holders were provided with different scenarios, in which this probability took different
values, and were asked to indicate in which they would recommend an intervention
(such as campaign to promote fertiliser to increase crop micronutrient concentration,
or the deployment of nutrient supplements or fortified food). We used these
responses to estimate and compare the mean probability value at which different
stakeholder groups chose to recommend an intervention. We also examined how the
framing of the question affected the responses. That is to say, whether the responses
of stakeholders presented with a positive framing (probability that the grain Se con-
tent is sufficient) would be different to those who were presented information with
negative framing (probability that the grain Se content is inadequate). On this basis
we aimed to assess the feasibility of using formal elicitation to estimate the threshold
probability at which groups of stakeholders would recommend an intervention, as a
basis both for examining critically how they interpret probabilistic information and
developing rules for interpretation which reflect stakeholder opinion and assumptions.

1.2. The general context

Spatial information has uncertainty, which arises from error (location error, measure-
ment error), environmental heterogeneity, and our uncertainty about the interpret-
ation of information (e.g. the vagueness of concepts such as a ‘deep soil’, which play
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a part in data interpretation) (Li et al. 2018). For this reason it is widely recognized in
geographical information science (GIScience) that the uncertainty about spatial infor-
mation must be communicated to its end-users if they are to apply it effectively (Li
et al. 2012, Greiner et al. 2018). Heuvelink and Burrough (2002) suggested that it is
necessary to address how stakeholders deal with problems of uncertainty in spatial
information as part of a decision making process. The study reported here fits into
that research agenda, and is concerned with how stakeholders make decisions based
on comparison of spatial variables to threshold values when the uncertainty about the
true value of the variable relative to the threshold is expressed in terms of probability.

A simple and common decision model is where some action is taken at a location
if the value of a variable there exceeds (or falls below) a threshold. For example,
action must be taken to remediate soil where the concentration of a contaminant
exceeds a soil guideline value (Cole and Jeffries 2009) or legislative thresholds
(Marchant et al. 2017). Fertilisers might be recommended where the measured concen-
tration of a nutrient in soil is smaller than an index value and liming might be recom-
mended where soil pH is less than a threshold. For example, in Malawi, it is
recommended that liming should be done when soil pH is below 5.0 (Chilimba et al.
2013); whereas, in the UK if soil pH falls below 6.0 in pasture land, then liming is rec-
ommended to maintain yield and forage quality (DEFRA 2010). Interventions to
address micronutrient deficiencies in human populations can be recommended where
measurements of a biomarker (such as concentration of the nutrient in blood serum
or urine) falls below a threshold (e.g. Likoswe et al. 2020, Phiri et al. 2020) or where
inferred intake is less than a quantity such as the recommended daily allowance (RDA)
or estimated average requirements (EAR) (e.g. Joy et al. 2014, 2015).

Such management decisions are usually made in the face of uncertainty because
the variable concerned is estimated or predicted from partial data or a model
(Goovaerts 1997). Spatial uncertainty can be quantified in a number of ways. In geo-
statistical mapping, the spatial uncertainty of the predictions is quantified directly by
the prediction error variance or the kriging variance. The kriging variance varies spa-
tially, and its values are small in the neighbourhood of sample points and larger fur-
ther away. The kriging variance is the variance of the prediction distribution at an
unsampled site of interest, or the conditional distribution given the data and the geo-
statistical model. The width of this prediction distribution (indicated by its variance)
represents the uncertainty of the predicted value there (Heuvelink 2018). The kriging
variance might be mapped directly as an indicator of uncertainty (e.g. Hatvani et al.
2021). Alternatively, it might be more accessible to compute prediction intervals from
the prediction distribution, that is to say an interval of values which contains the true
value at the location with some specified probability (e.g. Karl 2010). These methods
are useful to experts familiar with the underlying concepts, but may be inaccessible
for decision makers who do not necessarily understand kriging variance. Prediction
intervals and kriging variance were the methods of communicating and quantifying
uncertainty least-preferred by end-users (Chagumaira et al. 2021).

When there are decisions to be made relative to thresholds, spatial uncertainty can
be quantified by using probabilities. This uncertainty can be quantified by the prob-
ability that the threshold is exceeded or not. Ideally this probability can be obtained
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from the prediction distribution of the variable from data and an appropriate statistical
model (conditional probability). Marchant et al. (2017) took this approach to compute
probabilities that arsenic and mercury concentration exceeds soil guidance values and
to map this across France. Lark et al. (2014) similarly computed the probability that
local soil conditions indicate a risk of cobalt deficiency in grazing sheep across part of
the north of Ireland. Approaches such as disjunctive kriging (DK) and indicator kriging
(IK) are commonly used to compute conditional probabilities (Webster and Oliver
2007). Ordinary kriging may be used, along with an assumption of normal errors.
However, indicator kriging is more robust to any failures of this assumption, and is
also more resistant to local outliers. Lark et al. (2016) used DK to map the probability
that soil pH under pasture in the north of Ireland is below 6.0, to indicate where lim-
ing would be advised. Goovaerts et al. (1997) used IK to map the probability that cad-
mium concentration exceeds a regulatory threshold at sites across the Swiss Jura, to
indicate where remediation might be necessary. Other approaches have been used to
compute local probabilites that variables exceed thresholds of environmental signifi-
cance. These include copulas, conditional simulation and Bayesian methods to com-
pute or sample from a local posterior distribution (Goovaerts 2001, Marchant et al.
2011, Greiner et al. 2018).

Much work has focused on computing the conditional probability that a variable
exceeds a threshold, and there is an implicit assumption that if the stakeholder has
been given the probability they will be able to use it to make decisions with the
uncertain information (Lark et al. 2016). Little attention has been given to how stake-
holders might use such information and how they might be helped to do so more
consistently and effectively. The use of probability to communicate uncertainty is not
straightforward (Milne et al. 2015) and probabilities are not always easily interpreted
by stakeholders who have to make the decision (Spiegelhalter et al. 2011). Because of
this, verbal interpretations of probability based on ‘calibrated phrases’ (e.g. ‘unlikely’)
have been proposed — e.g. the Intergovernmental Panel for Climate Change (IPCC)
scale due to Mastrandrea et al. (2010). Although calibrated phrases have been widely
used, Budescu et al. (2009) showed that they may be interpreted regressively (i.e. any
phrase indicating uncertainty about an outcome is thought to indicate that its prob-
ability is around 0.5). Furthermore, calibrated phrases may be subject to severity bias,
depending on how the outcome of interest is expressed (e.g. if it is stated that ‘severe
flooding is very unlikely’ the adjective ‘severe’ influences the assessment of risk more
than does the phrase indicating the uncertainty). However, Jenkins et al. (2019)
showed that stakeholders regard probabilities expressed in numerical form as more
credible than calibrated phrases. Chagumaira et al. (2021) found that, despite these
challenges in interpretation of probabilities, varied stakeholders preferred statements
of uncertainty expressed as probabilities to more general measures such as prediction
intervals or a prediction error variance.

Spatial uncertainty is an important subject in GIScience (Heuvelink and Burrough
2002, Li et al. 2012, 2018) and presenting spatial datasets together with their uncer-
tainties is necessary because it adds to the quality of spatial information used in deci-
sion making. As we have noted, a common approach to presenting uncertain
information about the value of a variable relative to a threshold is to compute the
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probability that the variable exceeds (or falls below) that threshold. However, we con-
tend that insufficient attention has been given to how stakeholders incorporate such
uncertain information into decision-making processes.

A stakeholder, using uncertain information to support a decision, must in effect
decide on the probability threshold at or above which they would choose to act as
if the threshold was exceeded/not exceeded. Taking the concentration of Se in sta-
ple grain as an example, would a stakeholder approve an intervention at a certain
location where there were a 50% probability that the concentration of Se falls below
the threshold? Would they make the same decision if the probability were 25%,
or 75%?

A stakeholder deals with an unknown state, the true value of the environmental
variable either indicates that the action should be taken or it does not. They also have
a choice of two actions to intervene or not. We might expect that the threshold prob-
ability at which a stakeholder would choose to intervene will reflect their assessment
of the loss attached to each possible outcomes—the intervention was necessary or
not, as determined by the unknown state, under each decision (intervene or not).
These losses may reflect factors such as the social, economic, individual and political
consequences of failing to address a problem, and the opportunity costs of resources
expended on unnecessary intervention. In some cases these losses may be quantified,
and used in a formal analysis e.g. Ramsey et al. (2002) who considered the losses asso-
ciated with different decisions and outcomes in the management of contaminated
land. However, for many applications the different losses under decisions and out-
comes may be complex and hard to quantify. The question that we address in this
paper is how and whether one might identify a threshold probability that consistently
reflects the perception of the losses by a stakeholder group, and how they weight
these, tacitly if not explicitly. Before refining this question, we consider a theoret-
ical framework.

1.3. Theory

Let L1 be the loss incurred if we intervene unnecessarily, where with perfect know-
ledge we would intervene only if the variable (nutrient concentration) z<zt , where z is
the unknown true value and zt is the threshold of interest. In this treatment we regard
the loss as zero if we intervene appropriately. Let L2 be the loss incurred if we choose
not to intervene, but should have done so. Again, we regard loss as zero if we cor-
rectly choose not to intervene. If P is the probability that the concentration is below
the threshold, z<zt , then expected loss if we choose to intervene is

ð1�PÞL1: (1)

If we choose not to intervene then the expected loss is

PL2: (2)

If we wish to make the decision with the smaller expected loss, a rational assump-
tion, then it follows that we should intervene if P takes a value such that

ð1�PÞL1 � PL2, (3)
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and not intervene otherwise. By simple algebraic rearrangement of Equation (3) we
can show that we should intervene if

P � L1
L1 þ L2ð Þ , (4)

and not otherwise, that is to say if P exceeds or equals a threshold value, Pt where,

Pt ¼ L1
L1 þ L2

: (5)

The larger the loss from an unnecessary intervention relative to a failure to inter-
vene where necessary, the larger Pt must be.

In a situation where L1 and L2 can be quantified directly, Pt could be computed
from Equation (5). However, complex real-world problems components of the loss
associated with outcomes maybe difficult to quantify (e.g. the political cost of a failure
to address a public health problem) and controversial (e.g. do disability adjustment
life years, DALYs, lost really capture all the social loss from a failure to act where a
nutritional deficiency pertains?) and may not be commensurable. The value of Pt at
which an agent chooses to act therefore reflects a complex judgement.

This study is based on two principles. First, while the provision of conditional prob-
abilities is a natural way to communicate the uncertainty associated with the informa-
tion of a variable which users of that information will interpret relative to threshold
values, the problem of decision-making is not solved by those probabilities. As we
have seen, a judgement must still be made. Second, we suggest that one approach to
this problem is to elicit a threshold probability from members of relevant stakeholder
communities. We assume that an individual stakeholder has a least a tacit sense of
the values of L1 and L2 that they would assume in making a judgement from condi-
tional probabilities. In principle, then, a suitable process might be used to elicit a value
of Pt from individuals or groups of stakeholders that represent an individual opinion
or a group consensus. Such an elicitation would be analogous to the process by which
probabilities of unknown states or distribution for uncertainty quantification are for-
mally elicited from expert panels (O’Hagan et al. 2006).

The aim of the study reported here was to address the following:

� Can a consistent (i.e. reasonably precise) estimate of Pt be elicited from a stake-
holder group?

� Does the estimated Pt depend on the specific interests of the group (e.g. does it differ
between nutritionists and agronomists)?

� Is the estimated Pt prone to framing effects (i.e. does the estimate depend on how the
question is posed)?

These are practical and useful questions to address. If decisions are to be based on
uncertain information then a value of Pt is required for a decision making and should
be obtained by some transparent process in which the underlying questions are exam-
ined. The findings of this study should provide a basis for designing a formal proced-
ure to elicit a value of Pt for this and similar problems. In this study we address these
questions, considering a core study concerned with decision on interventions to
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improve micronutrient supply based on estimates of the amount provided locally by
staple crops. We asked two stakeholder groups individually to identify a threshold
probability at which an intervention would be recommended, and used these to esti-
mate an underlying mean value for each group. Furthermore, we investigated whether
the framing of the question influenced the responses.

2. Method

2.1. Basic approach

The approach was to offer respondents a set of scenarios for which the probability
that concentration of Se in staple crop is less than the threshold Se concentration
(Segrain<tSe) took a series of values over the range 0–1. For each one they were invited
to respond as to whether the intervention would be recommended or not.

The respondents were asked to self-identify as either (i) A public health and nutri-
tion specialist, or (ii) an agronomists and soil scientist. Each respondent was also allo-
cated at random to one of two groups. The first group was presented with a positive
framing of the question (i.e. to select a probability that Segrain>tSe below which an
intervention would be recommended). The second group was presented with a nega-
tive framing of the question (i.e. to select a probability that Segrain<tSe above which
an intervention would be recommended).

More detail on the practical organization of the experiment is given in section 2.2.
The threshold Se concentration, tSe, in grain to which we referred is 38 mg kg–1, such
that a serving of 330 g of grain flour provides a third of the daily EAR of Se for an
adult woman. We used EAR because it is one of the commonly-used measure of intake
when assessing nutritional status and planning intervention.

The respondents were presented with probabilities that Se concentration in grain
falls below or above a threshold from specific locations on maps of Amhara, Ethiopia
or Malawi dependent on the location of the particular session. These maps were
derived by indicator kriging (see Webster and Oliver 2007) from data collected in the
GeoNutrition project (Gashu et al. 2021). Indicator kriging was used because it requires
no specific assumption that the kriging errors are normally distributed (Rivoirard
1994). More detail on this is provided by Chagumaira et al. (2021). Note that the grain
samples in this project, in both Ethiopia and Malawi, were collected on a consistent
sample support: a 0.1-ha circular plot in the centre of the sampled field. The probabil-
ities therefore relate to mean values of grain concentration across such a support
within a field at a specified location.

2.2. Organization of the experiment

The experiment was done in two sessions at Lilongwe, Malawi (November 2019) and
Addis Ababa, Ethiopia (January 2020). Ethical approval to conduct this study was
granted by the University of Nottingham School of Sociology and Social Policy
Research Ethics Committees (BIO-1920-004 for Malawi, and BIO-1920-007 for Ethiopia),
as approved by Lilongwe University of Agriculture and Natural Resources (LUANAR),
and Addis Ababa University (AAU).
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We invited participants from among professionals working in agriculture, nutri-
tion and health, at NGOs, universities and government departments from Ethiopia,
Malawi and in the wider GeoNutrition project. Recruitment was undertaken by the
local GeoNutrition Project team. In total we had 51 participants, 34 were agrono-
mists and soil scientists and 17 were public health and nutrition specialists, see
Table 1.

In each workshop, we started by randomly allocating participants to one of two
groups one for positive framing and the other for negative. This was done by asking
each participant to draw a shuffled card from a pot of cards bearing group labels.
Cards were not replaced. We did not explain why we were grouping them until after
the exercise had been completed.

We presented the first group with a map of probability that Segrain>tSe: The loca-
tions were identified on the map, and at each probability that Segrain>tSe was also
illustrated by a pictograph (see Figure 1(a)). The questions were targeted to their areas
of expertise. Specifically, agronomists and soil scientists were asked to decide whether
or not they would recommend an intervention to provide and promote Se-fortified
fertiliser. The public health and nutrition specialists to decide whether or not they
would recommend a programme to provide Se-fortified food at that site. In both cases
we asked the participants to assume that checks would be undertaken before the
intervention took effect to ensure that no one was exposed to toxic levels of Se. The
map showed nine locations, labelled a, b, c, d, e, f, g, h and i, at which probability
that Segrain>tSe was 7%, 25%, 33%, 41%, 58%, 76%, 82%, 92%, 99%, respectively.

For each location in turn and by referring to the probability (as shown on map
with pictograph, and explicitly stated in words), each participant recorded in a ques-
tionnaire whether or not they would recommend an intervention at the site given the
probability. Using location a as an example, we phrased our question as follows: ‘At
site a there is 7% probability that the concentration of grain Se concentration exceeds
the threshold, would you approve this intervention?’ We chose a range of probabilities
giving coverage of the interval [0,1] so as not to limit the responses participants
could give.

When the first group had completed filling in the questionnaires we invited partici-
pants from the second group into the room. To this group we presented a map of
probability that Segrain<tSe: At each location, probability that Segrain<tSe was also illus-
trated by a pictograph (see Figure 1(b)). The map showed the same nine locations but
with 93%, 75%, 67%, 59%, 42%, 24%, 18%, 8%, 1% probability that Segrain<tSe: The
participants answered the same questions as the first group, for the same location,
but with a negative framing. For example, we asked them, ‘At site a there is 93%

Table 1. Composition of different professional groups during the experiment in Ethiopia
and Malawi.

Professional group

Location

TotalEthiopia Malawi

Agronomist 4 5 9
Soil scientist 12 13 25
Public health and nutrition specialist 12 5 17
Total 28 23 51
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Figure 1. (a) Probability that concentration of Se in teff grain is greater than 38mg kg–1

(Segrain>tSe) in Amhara region, Ethiopia. This was presented to the first group, with a positive fram-
ing of the question. The locations labelled a, b, c, d, e, f, g, h, and i at which probability that
Segrain>tSe is also illustrated with a pictograph. (b) Probability that the concentration of Se in teff
grain is less than 38mg kg–1 (Segrain<tSe) in Amhara region, Ethiopia. This was presented to the
second group of participants, with a negative framing of the question. The locations labelled
a, b, c, d, e, f, g, h, and i at which probability that Segrain<tSe is also illustrated with
a pictograph.
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probability that the concentration of grain Se concentration does not exceed the thresh-
old, would you approve this intervention?’

Participants did this exercise independently, and were asked not discuss the ques-
tions with each other until they had completed the exercise. In the introduction to
this exercise, it was pointed out to the participants that errors could go on both direc-
tions, resulting in an intervention where it was not needed (error of commission), or
failing to intervene where the nutritional supply from staple foods was inadequate
(error of omission). We encouraged participants to consider the sources of losses
under errors of commission or omission. For example, the agronomists and soil scien-
tists group should consider the costs of buying Se-enriched fertilisers especially given
that Se does not improve crop yield. For public health and nutrition specialists, there
would be costs associated with failing to intervene when there is need because of
increased risk of health complications and mortality especially with people with com-
promised immunity due Se deficiency (e.g. thyroid disfunction and suppressed
immune response), but that unnecessary interventions are likely to represent a loss as
resources are used which could address other public health initiatives. However, we
did not ask the participants to attempt to calculate any of these costs. Rather, the aim
was that having considered the possible outcomes, they should make a judgement in
the light of their experience. This would be expected to reduce any framing effect
(Almashat et al. 2008). When both groups had completed the exercise, we brought
them together and we then explained the objectives of the exercise and background
of the loss functions.

2.3. Model and analysis

The following sections describe the statistical methodology used in this paper to ana-
lyse the data from the experiment. We summarize the methods briefly here for the
benefit of readers for whom the mathematical content is of limited interest. We pro-
pose a statistical model for a set of responses to the questionnaires. Under the model
any individual respondent is assumed to advocate intervention once the probability
that grain Se concentration is less than 38 mg kg–1 exceeds some value p0: We assume
that the values of p0 for a set of respondents can be treated as a random variable
with a Beta distribution, a distribution particularly suited to modelling values which
are constrained on an interval, and able to accommodate a wide range of behaviours.
The two parameters of the Beta distribution can be estimated for a set of observations
by a maximum likelihood method. Of interest is an estimate of the mean of the distri-
bution, which we refer to as Pt, the expected value of, p0 for an individual from the
population of which the set of respondents is a sample. The maximum likelihood esti-
mation allows us to evaluate evidence that, for example, it is necessary to model the
responses from positive or negative framing with different parameter sets. This is
done by means of the log-likelihood ratio test to compare a null model (in which
responses with the two framings are pooled) with an alternative (in which distinct
parameters are estimated for each framing). We used this approach to test the effect
of framing, location (Ethiopia or Malawi), and professional group (agronomists and soil
scientists or public health and nutrition specialists).
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Having explored the data by modelling we decided that we wished to estimate the
mean value Pt for all professional groups and locations pooled, for the responses to
the negatively framed question. We did this by Bayesian estimation, using very unin-
formative prior distributions for the Beta parameters (that is, priors that have very little
influence on the posterior distribution, which is dominated by the data.

2.3.1. Form of the data and their interpretation
Our data are a set of responses to questions, asking whether an intervention would
be recommended in a situation given the probability that Se concentration in grain
exceeds a nutritionally-significant threshold (positive framing) or is below the thresh-
old (negative framing). The probabilities were expressed as percentages. Let the
ordered set of percent probabilities (negatively framed) be P1, P2, . . . , Pmf g: The posi-
tively-framed question set was directly equivalent, referring to the same scenarios, and
so the percent probabilities presented with the positively framed questions
were 100� Pm, . . . , 100� P2, 100� P1f g:

For purposes of analysis the probabilities were scaled to ½0, 1�, and the positively-
framed probabilities were converted to the equivalent probability that Segrain<tSe: We
denote these probabilities by p1, p2, . . . , pmf g:

A response to the question is deemed to be consistent only if the respondent indi-
cated that, for some i 2 f1, 2, . . . ,mg, an intervention should be considered for all scen-
arios where the probability that Segrain<tSe was greater than or equal to pi, and that the
intervention should not be considered otherwise. If a response was not consistent in
this sense, then it was discarded. Our data therefore comprise a set of n index values,
ϱ, where ϱ½j� ¼ i if the jth respondent stated that interventions would be recommended
in all cases where PðSegrain<tSeÞ � pi: Of the 51 responses five were inconsistent (for
example, the respondent recommended an intervention in a case where the probability
of deficiency took some value, but did not recommend it in cases with both larger and
smaller probabilities of deficiency). Three of the responses were anomalous, the
respondent advocated an intervention for cases with a small probability of deficiency,
and did not recommend intervention in cases with a large probability of deficiency.
These 8 returns were discarded, leaving 43 for analysis, but they do illustrate the difficul-
ties that stakeholders can have with the interpretation of probabilities.

We assume that each respondent has a latent ‘personal’ probability, p0 such that,
given all available information, they would advocate an intervention at a site where
PðSegrain < tSeÞ � p0: Furthermore, we assume that, if the respondent indicates that an
intervention should be recommended for all scenarios in the set for which the prob-
ability equals or exceeds pi, then the lower and upper bounds on p0 are given by

li ¼ pi þ pi�1

2
i 6¼ 1,

¼ 0 i ¼ 1,
(6)

and

ui ¼ pi þ piþ1

2
i 6¼ m,

¼ 1 i ¼ m:
(7)
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2.3.2. The statistical model and its estimation
We assume that the distribution of p0 within any group of respondents has a Beta dis-
tribution, such that the probability density function for some value x 2 ½0, 1� is given
by

fbðxÞ ¼ xa�1ð1�xÞb�1

Bða, bÞ 0<x<1,

¼ 0 otherwise,
(8)

where

Bða,bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ

and Cð�Þ denotes the gamma function. The Beta distribution is particularly appropriate
for modelling probabilities as random variables, because a Beta random variable is
continuous but constrained to a fixed interval (here [0,1]), and it is very flexible,
accommodating a wide range of behaviours: bell-shaped, symmetrical with large or
small kurtosis, uniform, strongly positively or negatively skew, straight-line or U-shaped
(Tjims 2018).

The parameters of the gamma distribution are a and b but a convenient reparame-
terization (because of the correlation of these parameters) is to the mean U and a pre-
cision parameter V which is smaller the more dispersed the distribution of x;

U ¼ a
aþ b

, (9)

and

V ¼ aþ b: (10)

We denote the probability density function for some set of parameters h ¼ fU, Vg
by fbðxjhÞ (McDonald and Xu 1995).

If the value of p0 for the jth respondent can be regarded as a Beta random variable
with probability density function (PDF) fbðxjhkÞ then the probability of observing ϱ½j� ¼
i can be obtained as the integral of the Beta PDF over the limits li and ui:

Prob ϱ j½ � ¼ i
� � ¼

ðui
li

fb xjhkð Þdx: (11)

If we treat all our respondents as members of a single population of interest, then
the log-likelihood for a proposed set of parameters h for that population can be
obtained by computing, for each entry in ϱ the probability for the observed value of i
by evaluating Equation (11). The sum of the logarithms of these probabilities gives the
log likelihood. A maximum likelihood estimate of h can be found numerically, as
described below.

For our purposes we want to estimate models for our observations which assumes
that there are different sub-populations from which the they are drawn, and that dif-
ferent values of the Beta parameters may be estimated for such a sub-population. For
example, we might choose to fit a model in which we assume that all responses from
individuals who were presented with information with positive framing are drawn
from a sub-population with a set of Beta parameters, and that those responses where
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the framing was negative constitute a second sub-population. The likelihood, as
described above, must be extended to this more complex model.

Consider a set of responses from a group of n subjects. The subjects can each be
assigned to one of Q sub-populations, and our hypothesis is that a particular set of
values of the parameters hk ¼ Uk , Vkf g can be proposed for the kth sub-population.
We denote the full set of Q parameters by H ¼ hT1, h

T
2, . . . , h

T
Q

h i
:

Given the assumptions set out in Equations (6) and (7) above, the log-likelihood for
proposed values of the parameters H, given a set of n responses can be obtained as

l ϱ;Hð Þ ¼
XQ
k¼1

Xn
j¼1

Xm
i¼1

Ik, j, i log
ðui
li

fb xjhkð Þdx, (12)

where Ik, j, i is an indicator variable which takes the value 1 if ϱ½j� ¼ i and the jth

respondent belongs to the kth sub-population of respondents. In all other cases Ik, j, i ¼
0: This indicator variable allows us to simplify the notation. The three nested summa-
tions implies that we compute the log of the probability for every sub-population par-
ameter set over every set of bounds for each observation, but the indicator takes the
value zero for any combination where the jth respondent is not in the kth sub-popula-
tion, and ϱ½j� 6¼ i: Equation (12) therefore allows us to compute the log likelihood for a
proposed set of Beta parameters, H for a corresponding model of a set of responses.

In this study we found maximum likelihood estimates of the parameters ĥk , k 2
f1, 2, . . . , Pg which minimized �‘ðϱ;HÞ given the data in ϱ: This was done using the
optim function in base R (R Core Team 2020), using the default optimizer which is the
simplex algorithm of Nelder and Mead (1965).

A series of nested models were fitted to the data. In the first, model M0, all
respondents were considered as a single population. In the second, model M1,
respondents who were presented with a negative framing were treated as a distinct
sub-population from respondents presented with a positive framing. These two mod-
els were compared by computing the log-likelihood ratio statistic:

L ¼ 2 ‘M1 � ‘M0ð Þ, (13)

where ‘M1 and ‘M0 denote the maximized log-likelihood for models M1 and M0 respect-
ively. Under a null-hypothesis where the parameters for the two sub-populations can
be regarded as equal (as in M0, termed the ‘null model’) L is asymptotically distributed
as v2ð2Þ, the degrees of freedom being equal to the number of additional parameters
in M1 relative to M0.

Further models were considered in which sub-populations were defined by (i) the
location of the experiment and (ii) the broad professional group, both tested with the
groups with positive and negative framing. The first of these was considered in case
there were some differences in the way the meetings in two locations were con-
ducted. Differences could also be due to composition of the participants group (see
Table 1), we had fewer public health and nutrition specialists in the Malawi meeting.
For familiarity and engagement, we used a probability map from Ethiopia’s Amhara
region in the experiment in Ethiopia and a map of Malawi in the experiment in
Malawi. The comparison between the groups (agronomists and soil scientists or public
health and nutrition specialists), was considered to test the hypothesis that cultural
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differences between the two professional groups contribute to differences in sensitiv-
ity to the framing effect, and in the relative weighting of the cost of errors of commis-
sion and omission.

2.3.3 Bayesian estimation
After examining the alternative models described in the previous section, it was
decided to make a final estimate of the mean value of U for all respondents (both
locations and professional groups) within the sub-sets presented with negative fram-
ing. A Bayesian approach was taken for this final step so as to quantify uncertainty in
the parameter estimates without the assumptions of linearity required in methods
based on the information matrix or the assumption that estimation errors are normal
(Spiegelhalter and Rice 2009).

The Bayesian approach requires prior distributions for the parameters U and V. A
uniform prior distribution over (0, 1) was assumed for U. This is entirely uninformative
about the parameter. The prior for V was a gamma distribution with parameters
(1, 20). This is a weakly informative prior, so the posterior distribution is dominated by
the data.

The prior predictive density for the data was obtained by integrating out the
parameters, this was done with the adaptIntegrate function from the cubature library
for the R platform (Narasimhan et al. 2020). The posterior joint density of U and V is
then straightforward to evaluate. The posterior density of U was then evaluated at a
fine set of locations by integrating out V with the integrate function of base R. The
highest posterior density credible interval for U (95%) was then evaluated by applying
the hdi function from the HDInterval library for R (Meredith and Kruschke 2018) to the
set of density values. Finally the mean of U was obtained by integration over its pos-
terior density.

3. Results

We had similar numbers of attendees whose professional background was agronomy
and soil science in both workshops (see Table 1). However, we had more professionals
who where public health and nutrition specialists in the Ethiopian experiment.

Table 2. Fitted models for respondent data and maximized log-likelihood.

Model
Number of
parameters ‘

M0 All respondents pooled 2 –81.58
M1 Respondents separated by framing 4 –73.22
M2 Respondents separated by framing within location 8 –69.15
M3 Respondents separated by framing within professional group 8 –67.35

Table 3. Log-likelihood ratio tests to compare models.

Null model Model L
Degrees of
freedom p

M 0 M1 16.71 2 0.0002
M1 M2 8.13 4 0.087
M1 M3 11.74 4 0.019
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3.1. Nested model analysis

Table 2 shows the fitted models for the combined respondent data and their maxi-
mised log-likelihood.

Table 3 shows log-likelihood tests to compare the models. There is strong evidence
to reject the model with all respondents pooled (M0) and to accept an overall differ-
ence between the groups with different framing (M1) (p¼ 0.0002). However, there is
no strong evidence to reject M1 by comparison to the more complex model with loca-
tions (M2) (p¼ 0.087).

When comparing a more complex model with professional group (M3) with model
with respondents separated only by framing, there is some evidence (p¼ 0.019) to
reject M1. Therefore, further analysis of the respondent data was based on M1 and M3.

Figure 2. Fitted beta distributions for model M1 (negative or positive framing, professional groups
and locations pooled) superimposed on histograms for the results. The solid line and dark grey
histogram corresponds to the respondents with negative framing. The broken line and hachured
histogram are for respondents with positive framing.

Table 4. Maximum likelihood estimates of parameters U and V for models M1 and M3.

Model Sub-group

Parameters

U V

M 1 All respondents with negative framing 0.307 10.55
M1 All respondents with positive framing 0.547 4.26
M 3 All public health and nutrition specialists with negative framing 0.310 30.19
M3 All public health and nutrition specialists with positive framing 0.712 3.80
M3 All agronomists and soil scientists with negative framing 0.303 7.69
M3 All agronomists and soil scientists with positive framing 0.462 6.81
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3.2. Model fitting

Figure 2, shows the beta probability densities for positive and negative framing under
model M1. The histograms show empirical densities from the responses over the probabil-
ity ranges in each group. The solid line and dark grey histogram corresponds to the
respondents with negative framing. The broken line and hachured histogram are respond-
ents with positive framing. The figure also shows that negative framing results in a deci-
sion to intervene at a smaller probability that the threshold is not exceeded than does the
positive framing.

Table 4, shows the estimated parameters for M1. Figure 3 shows fitted beta distribu-
tions for model M3. Here again, decisions to intervene are at a smaller probability for
the respondents with negative framing in both professional groups, although the
difference is most marked for the public health and nutrition specialists.

Table 4, shows the estimated parameters for M3. The mean values for U are very
similar in both professional groups with negative framing. The estimates of U under
positive framing in the public health and nutrition specialists group is close to the

Figure 3. Fitted beta distributions for model M3 (negative or positive framing, locations pooled)
superimposed on histograms for the results for professionals from (a) agronomists and soil scien-
tists and (b) public health and nutrition specialists. The solid line and dark grey histogram corre-
sponds to the respondents with negative framing. The broken line and hachured histogram are for
respondents with positive framing.
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complement of this value under negative framing, and the dispersion is large. It is
possible that this reflects some misunderstandings of the probabilities with this group.
On this basis we pooled the negatively framed responses for further analysis.

The mean of U from the posterior distribution for the pooled (over professional
group) responses to the negatively-framed question was 0.31 (similar to the ML esti-
mate). The posterior density is shown in Figure 4.

Close to symmetrical, the highest-posterior density credible interval for U, is
½0:25�0:38�, so comfortably below 0.5. For positive framing, further analysis was based
on the separate professional groups. The mean of U from the posterior distribution for
the public health and nutrition specialists group to the positively framed question was
0.70 (very close to the ML estimate 0.71) with a highest-posterior density credible
interval for U, is ½0:55�0:85�: Whilst for the agronomists and soil scientists group it
was 0.46 (similar to the ML estimate) with a highest-posterior density credible interval
for U, is ½0:37�0:55�:

Figure 5(a) shows a map of the probability that the concentration of Se in teff grain less
than the threshold, 38mg kg–1 in Amhara region, Ethiopia. The dashed line is the probabil-
ity isoline or contour at which the probability is equal to the estimated mean value of Pt
for the pooled (over professional group) responses to the negatively- framed question. If
this value is used as a guide to decisions, then interventions would be recommended
where probabilities mapped on this figure exceed the specified isoline. In these circum-
stances intervention would be recommended over 50% of the mapped area (34,672 km2).

Figure 5(b) shows the same probabilities as 5a, but this time with two probability
isolines, one (black) is the estimated mean value of Pt for the response of the public
health and nutrition specialists group to the positively framed to the positively-framed

Figure 4. Posterior density for U and (solid bar) the highest posterior density credible interval
(95%) estimated from pooled data for all respondents with negative framing.
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Figure 5. (a) Probability that the concentration of Se in teff grain less than 38mg kg–1 in Amhara
region, Ethiopia. The dashed probability isoline is the mean probability value, Pt, at which a stake-
holder would judge that an intervention should be made. This is the probability at which either
professional group would recommend an intervention in Amhara region, Ethiopia which the ques-
tion was framed negatively. (b) Probability that the concentration of Se in teff grain exceeds 38mg
kg–1 in Amhara region, Ethiopia. The grey probability isoline is the mean probability value, Pt, at
which agronomists and soil scientists would judge that an intervention should be made which the
question was framed positively. The black probability isoline is the mean probability value, Pt, at
which public health and nutrition specialists would judge that an intervention should be made
which the question was framed positively.

18 C. CHAGUMAIRA ET AL.



question, this encloses an area where an intervention would be recommended corre-
sponding to proportion, 12% of the mapped area (7,792 km2). The second isoline
(grey) is the estimated mean value of Pt for the response of the agronomist and soil
scientist group to the same question. Decisions based on this value of Pt would see
interventions over proportion, 40% of the mapped area (26,596 km2).

4. Discussion

4.1. Our findings

Our results have shown (Figure 4) that a reasonably precise estimate of the mean
probability value, Pt, at which a stakeholder would judge that an intervention should
be made, can be elicited from a stakeholder group. The estimated mean value of Pt
from a group of stakeholders in Malawi and Ethiopia, 0.31, is shown visually as a con-
tour on the map of probabilities for Amhara region in Ethiopia (Figure 5(a)). This is the
estimated mean probability at which either professional group would recommend an
intervention in Amhara, Ethiopia and Malawi, if the question were framed negatively
(i.e. in terms of deficiency). This Pt should not be interpreted as an objective optimal
threshold value for the decision. Rather, it reflects the judgement of some group of
stakeholders and their tacit assessment of losses and costs associated with making a
choice with uncertain information. The methodology provided here to elicit this quan-
tity from a stakeholder group allows us to identify a threshold Pt to use so as to pre-
sent uncertain information with an interpretation which reflects the assumptions and
decision-making of a particular stakeholder group. The elicitation method may also
help to make that tacit process of judgement more explicit.

We also examined whether the elicited Pt depended on the specific interests of the
group, and whether it is prone to framing effects (i.e. how the question is posed). With or
without the effects of professional group (bothM1 andM3), our results show that the nega-
tive framing resulted in a decision to intervene at a much smaller probability than positive
framing. We also observed similar estimates of U for both professional groups within the
negative framing. With the public health and nutrition specialists group positive framing
resulted in a much larger threshold probability of deficiency for intervention than was the
case with the agronomists and soil scientists group.

Framing effects are well known in the psychology of decision-making. Decisions are
influenced by irrelevant aspects of the way information is presented, even though the
same information is presented with different framings (Tversky and Kahneman 1981).
In this example, a negative framing of the question draws the participant’s attention
to deficiency, rather than to sufficiency, and hence to a more conservative decision.
We see such an effect despite preparatory activities in the experiment to draw the
attention of participants to the possibility, and the implications, of interpretative errors
in both directions, as suggested by Almashat et al. (2008). The greater consistency of
responses across professional groups with negative framing may indicate that stake-
holders find this easier to interpret. This maybe because stakeholders are accustomed
to think about the specific problem in terms of nutrient deficiency. This shows the
importance of framing spatial information, and statements of its uncertainty, in terms
with which the user of the information is familiar.
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We noted above that our samples and predictions, with associated probabilities
were on a consistent, fixed support. A change of support (e.g. to predict a mean value
across a ward or other small region, or a cell in raster GIS) will reduce the local uncer-
tainty of the prediction. It would be interesting to see whether awareness that a prob-
ability refers to a mean across a local administrative unit, rather than a small bulk
sample from within a field (which is particularly relevant to the nutrient supply to sub-
sistence farmers) changes stakeholder’s interpretation, and whether any such effect
interacts with framing.

4.2. Generalizability, and topics for further work

The probability threshold which we estimated here is for a very specific problem,
micronutrient concentration in staple crops, and is unlikely to serve as a general one
for interpretation of spatial information. We would expect the threshold probability to
differ between settings depending on the particular stakeholder perspective on the
costs entailed if an intervention is not recommended where it should be, or is imple-
mented unnecessarily. The approach which we have used could be applied to differ-
ent groups and different problems and settings where decisions are based on
uncertain information.

The framing effect which we have seen has been identified in other studies on
decision-making under uncertainty (e.g. Chen et al. 2014), and so is likely to apply in
other cases where probabilities are used to indicate whether the state of affairs at a
location requires an intervention. In our case negative framing led to a more conserva-
tive outcome because the stakeholders are directed to think in terms of nutrient defi-
ciency. This cannot be generalised for different problems and settings. For example, in
the case of assessing concentrations of a potentially harmful element in soil against
soil guideline values, a positive framing (probability that the threshold is exceeded)
might be expected to result in more conservative decisions.

It would be interesting to see whether the interaction of professional group and
framing holds more generally for other problems (e.g. the interpretation of informa-
tion on environmental contaminants). In particular our finding in this instance, that
the interpretation of probabilities was more consistent between professional groups
under the framing which led to more conservative decisions, would be of practical sig-
nificance if it is found to hold consistently.

Probabilities are not straightforward to interpret. As noted above, our experimental
procedure included presentations to participants about uncertainty and its implica-
tions for decision making prior to their completing the exercise. However, it would
have been possible to spend more time in ‘priming’ participants before the exercise.
This could be achieved by discussion of probability problems from everyday life, like
weather forecasts, when decisions are made. This might reduce the framing effect, as
well as the rate of rejection due to inconsistent or anomalous interpretations.
However, the responses based on minimal priming are perhaps of more practical inter-
est, because they may better represent how a stakeholder approaches probabilistic
information in the course of their ordinary working life. The fact that eight returns
received from our experiment had to be discarded because they were inconsistent or
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anomalous underlines the difficulties that stakeholders with professional expertise in
their own fields may have with the interpretation of probability. This has already been
recognized (e.g. Spiegelhalter et al. 2011), although paradoxically, Jenkins et al. (2019)
found that stakeholders seem to attach greater authority to numerical statements of
probability than to calibrated phrases.

Some professional groups may have been able to handle and interpret probabilities
better than others because of the content of education and training programmes
which they typically complete. Further work to assess this, with a more varied range
of professional groups, would be interesting, and might help to show how profes-
sional skills in the interpretation of uncertain spatial information could be best be
developed, either in higher education curricula or in particular professional training.

When decisions are made, stakeholders weigh up the pros and cons for the deci-
sion they make. We suggest that this process might be better-emulated in an experi-
ment such as ours if more time could be spent in engagement with stakeholder
groups to co-create scenarios for decision-making, and outcomes which are possible
given the uncertainty in the spatial information which is used and the stakeholders’
professional experience.

4.3. Implications for practice in GIScience

The mean value of Pt obtained in this experiment will be used for practical purposes
to aid interpretation of maps of nutrient supply from staple crops produced in the
GeoNutrition project. We shall add a contour line to probability maps (for negative
framing), as in Figure 5(a), annotating the legend to indicate that the mean threshold
value applied by our stakeholder group means that interventions would be recom-
mended where the probability takes larger values. The value can also be used as a
starting point for discussion with other stakeholder groups, at national and local level,
about the implications of the spatial information provided by the project.

In GIScience, it is common to validate prediction distributions by assessing the
coverage of prediction intervals for validation data at different probabilities. Lark et al.
(2019) provide an example from the study of soil nutrients. The coverage of the pre-
diction intervals may be consistent with their probability over some ranges of values
but not others. One value of this study for practical purposes in the GeoNutrition pro-
ject is that we shall be able to focus our assessments of methods for spatial mapping
on the validity of prediction intervals for probabilities close to Pt.

If decisions are based on uncertain information, presented in terms of the probabil-
ity that a variable exceeds or falls below a threshold, then, other factors being equal,
the decision process is equivalent to selecting a value of Pt. We suggest that this be
done through a transparent process in which the underlying questions are examined
by relevant stakeholders. Our experimental procedure, supplemented by standardized
processes to co-create scenarios and to set the scene on uncertainties, could provide
the basis for a formal elicitation methodology to achieve this. There is increasing inter-
est in the use of elicitation methods to formalize the decision processes and concep-
tual models which individuals and communities of stakeholders may hold and use, at
least tacitly, when forming expert judgements. Methods for expert elicitation have
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been applied to problems in medical diagnosis, the interpretation of data on natural
hazards and engineering design (e.g. O’Hagan et al. 2006).

The development of an elicitation procedure should take account of our findings
with respect to framing effects, differences between professional groups and the inter-
action of professional group with framing. In our particular study there was greater
consistency between the two professional groups with negative framing, and a more
conservative outcome. These would be reasons for using negative framing when elicit-
ing Pt for this particular problem, but as we note above further work is needed to see
how far this finding can be generalized. At the very least it is important to ensure that
framing is done consistently (i.e. we do not use mix positive and negative framing for
the same problem) and that framing is coherent with standard terminology in the
relevant stakeholder community, e.g. whether nutrient supply is generally described in
terms of deficiency (deficient or not) or sufficiency (sufficient or not).

In the theoretical framework for this study we noted that a threshold probability,
Pt, can be expressed in terms of the relative losses of contrasting decisions relative to
those made with perfect information. We also noted that these losses, in general, are
not accessible as they may be complex and have multiple components including
actual costs (e.g. money required for interventions, the economic value of disability-
adjusted life years saved or not saved) but also losses which are less tangible, and
which may not be directly commensurable, (the value of public health, political and
reputational losses). It is possible that the elicitation of a value of Pt could help to
make public or community discussions of these losses more explicit. For example, if a
stakeholder group decides that interventions to address micronutrient deficiency be
recommended if probability of deficiency is �0.1 then it could be pointed out that
this implies that the losses arising from a failure to intervene where intervention is
required are nine times larger than the losses arising from an unnecessary interven-
tion. Stakeholders might then reflect on whether this undervalues the opportunities to
apply resources to other better-focussed interventions. This discussion could be built
into a group elicitation process on the lines of the behavioural elicitation methods
proposed by Reagan-Cirincione (1994) under which, after initial modelling of values
returned by individuals, a group works together to arrive at a consensus.

We note one further development of our approach, which could be of practical
relevance. In our conceptual framework we assume discrete states: an intervention
happens or does not in response to whether or not a spatial variable exceeds a
threshold. In practice spatial information might be used to set a continuous value at
which some intervention is applied (e.g. a rate of fortification of a foodstuff, or a rate
for a fertilizer or other agronomic input). In such a case, rather than discrete losses,
there may be a continuous loss function of the error of the prediction, which is zero
at zero error and increases with both under- and over-estimation of the target vari-
able. If we assume that the loss function is piece-wise linear with error in the target
variable, and that a1 is the loss per unit of error of overestimation and a2 is the loss
per unit of error of underestimation, then the expected loss is minimized at a location
with some particular prediction distribution for the target variable if we use as our
estimate of the target variable the value X

^

X
^ ¼ F�1 Poð Þ, (14)
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where F�1ðpÞ denotes the quantile of the prediction distribution corresponding to
probability Po and

Po ¼ a2
a1 þ a2

, (15)

(Journel 1984). The formal similarity with our conceptual model for Pt in the case of
discrete decisions (intervene or not) is apparent. Lark and Knights (2015) showed how
the continuous loss-function model could be used to compute an implicit loss func-
tion, the loss function implied by a particular level of effort to obtain spatial informa-
tion, and suggested that this could be used to support decision making about
sampling effort. However, it requires a value for the ratio of a1 and a2. One approach
to obtaining this would be to provide stakeholders with scenarios in which the pre-
dicted value of the target variable is at the threshold for intervention, and to elicit a
value of Pt which, under negative framing, could be regarded as an approximation to
Po in Equation (15) above.

Visualization of spatial uncertainty is important in GIScience. It is important to use
appropriate colour scales to visualize spatial information, including uncertainty (Kunz
et al. 2011, Kinkeldey et al. 2014). Uneven colour scales, such as rainbows, can distract
from the information content of the image, and even generate artefacts (Crameri et al.
2020). Probabilities are ordered, continuous quantities, and we have no particular
interest in values relative to a centric value (as we might for a variable on a scale from
–1 to þ1). For this reason, following Crameri et al. (2020), we decided that a sequential
colour scale was appropriate. Because we wish to have good discrimination across the
range of probabilities, a two-hue sequential scale is preferred. We therefore selected
the ‘terrain’ HCL (hue-chroma-luminance) colour scale (Zeileis et al. 2020) to present
probabilities to participants.

5. Conclusions

Much effort in GIScience and spatial statistics has focused on how to obtain prediction
distributions, and probabilities from these (disjunctive kriging, indicator kriging,
Bayesian methods), but it is clear (e.g. Chagumaira et al. 2021) that the task of com-
municating the uncertainty in spatial information is not complete when that is
achieved, at least if the objective is that a general range of stakeholders should be
able to use the information. This paper is a step towards that development. In our
study we have shown we can go beyond just computing probabilities, and consider
how uncertainty can be communicated to a diverse group of end-users for decision
making for interventions. We also have shown that a reasonably precise estimate of
the mean probability value at which a stakeholder would judge that an intervention
should be made, can be elicited from a stakeholder group with particular expertise
and interests.

There were more consistent estimates of the mean probability value under negative
framing. This might not apply generally, whether it is should be a matter for further
research. Note that ‘negative’ framing relative to a threshold in this setting gives rise
to a conservative response, but that in other contexts (e.g. if the threshold is a pollu-
tant), the positive framing might be expected to do so. Hence the framing effect can

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 23



be pronounced in the interpretation of probabilistic representation of uncertainty pre-
sented as maps, and that this effect interacts with professional group.

Acknowledgements

The authors gratefully acknowledge the contributions made to this research by the participating
farmers and field sampling teams. In Ethiopia, field sampling teams were from the Amhara
National Regional Bureau of Agriculture. In Malawi, field sampling teams were from the
Department of Agricultural Research Services, and Lilongwe University of Agriculture and
Natural Resources.

Data and codes availability statement

The data and code that support the research are available at https://doi.org/10.6084/m9.fig-
share.14339987.v4

Disclosure statement

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Funding

This work was supported by GeoNutrition projects funded by the Bill & Melinda Gates
Foundation (BMGF) [INV-009129], and the Nottingham-Rothamsted Future Food Beacon
Studentships in International Agricultural Development. The funders were not involved in the
study design, the collection, management, analysis, and interpretation of data, the writing of
the report or the decision to submit the report for publication.

Notes on contributors

Christopher Chagumaira is a PhD candidate at the Future Food Beacon of Excellence
International Agriculture Doctoral Training Programme at the University of Nottingham,
Rothamsted Research and Lilongwe University of Agriculture and Natural Resources. His research
focuses on spatial statistics, understanding and communicating uncertainty in spatial informa-
tion of micronutrients to design site-specific interventions to address ‘hidden hunger’ in sub-
Saharan Africa regions.

Patson Nalivata is an Associate Professor of Soil Science and head of Crop and Soil Science
Department at Lilongwe University of Agriculture and Natural Resources, Malawi. His research
focuses on understanding biogeochemical dynamics of selenium and iodine in tropical soils;
doubled-up legume technologies; optimization of fertiliser recommendations; biochar influences
on soil fertility; effects of water stress on root architecture among Malawi maize germplasm;
composting systems and processes in Malawi and the quality of human compost (eco-
san toilets).

Joseph Chimungu is a Senior Lecturer in Soil Science at Lilongwe University of Agriculture and
Natural Resources, Malawi. His research interest is on understanding the genetic, physiological,
and ecological basis of plant adaptation to drought and low soil fertility.

24 C. CHAGUMAIRA ET AL.



Dawd Gashu is an Associate Professor of Food Science and Nutrition at Addis Ababa University.
His research focuses on micronutrient nutrition and its link to human health and finding feasible
ways of addressing micronutrient deficiency.

Martin Broadley is Professor of Plant Nutrition at the University of Nottingham. His research
seeks to increase our understanding of the movement of micronutrients and trace elements in
food systems. Potential outcomes of the research include improving the nutritional quality of
soils and crops for human and livestock diets.

Alice Milne is a mathematical modeller in the Sustainable Agricultural Sciences department at
Rothamsted Research. Her research focuses on the mathematical analysis and modelling of
agro-ecological systems using various statistical and geostatistical techniques. She also has keen
interest in quantifying and communicating uncertainty in model-based predictions.

Murray Lark is Professor of Environmetrics at the University of Nottingham. His research is con-
cerned with spatial statistics, sampling and experimental design, and capacity strengthening in
agricultural and environmental research. Most of his current work addresses issues of sustain-
ability and human health in relation to food and agricultural systems in Africa.

ORCID

Christopher Chagumaira http://orcid.org/0000-0003-0590-0350
Patson C. Nalivata http://orcid.org/0000-0001-8429-2829
Joseph G. Chimungu http://orcid.org/0000-0002-0330-0872
Dawd Gashu http://orcid.org/0000-0002-6067-4432
Martin R. Broadley http://orcid.org/0000-0003-3964-7226
Alice E. Milne http://orcid.org/0000-0002-4509-0578
R. Murray Lark http://orcid.org/0000-0003-2571-8521

References

Almashat, S., et al., 2008. Framing effect debiasing in medical decision making. Patient Education
and Counseling, 71 (1), 102–107.

Budescu, D.V., Broomell, S., and Por, H.H., 2009. Improving communication of uncertainty in the
reports of the intergovernmental panel on climate change. Psychological Science, 20 (3),
299–308.

Chagumaira, C., et al., 2021. Communicating uncertainties in spatial predictions of grain micro-
nutrient concentration. Geoscience Communication, 4 (2), 245–265.

Chen, S.Y., Ross, B.H., and Murphy, G.L., 2014. Decision making under uncertain categorization.
Frontiers in Psychology, 5 (991), 991–913.

Chilimba, A.D.C., et al., 2013. Agricultural lime application for improved soil and crop production in
Malawi. Malawi: Soil Health Consortium of Malawi (SOHCOM).

Cole, S., and Jeffries, J., 2009. Using soil guideline values. Bristol, United Kingdom: Environmental
Agency.

Crameri, F., Shephard, G.E., and Heron, P.J., 2020. The misuse of colour in science communica-
tion. Nature Communications, 11 (1), 7.

DEFRA 2010., Fertiliser Manual (RB209). Norwich, United Kingdom. Available from: https://ahdb.
org.uk/rb209.

Gashu, D., et al., 2020. Spatial prediction of the concentration of selenium (Se) in grain across
part of Amhara Region, Ethiopia. The Science of the Total Environment, 733, 139231.

Gashu, D., et al., 2021. The nutritional quality of cereals varies geospatially in Ethiopia and
Malawi. Nature, 594 (7861), 71–76.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 25



Goovaerts, P., 1997. Geostatistics for natural resources evaluation. New York, Oxford: Oxford
University Press.

Goovaerts, P., 2001. Geostatistical modelling of uncertainty in soil science. Geoderma, 103 (1–2),
3–26.

Goovaerts, P., Webster, R., and Dubois, J.P., 1997. Assessing the risk of soil contamination in the
Swiss Jura using indicator geostatistics. Environmental and Ecological Statistics, 4 (1), 49–48.

Greiner, L., et al., 2018. Uncertainty indication in soil function maps – transparent and easy-to-
use information to support sustainable use of soil resources. SOIL, 4 (2), 123–139.

Hatvani, I., et al., 2021. Geostatistical evaluation of the design of the precipitation stable isotope
monitoring network for Slovenia and Hungary. Environment International, 146, 106263.

Heuvelink, G.B.M., 2018. Uncertainty and uncertainty propagation in soil mapping and model-
ling. In: A.B. McBratney, B. Minasny and U. Stockmann, eds. Pedometrics. Cham: Springer
International Publishing, 439–461.

Heuvelink, G.B.M., and Burrough, P.A., 2002. Developments in statistical approaches to spatial
uncertainty and its propagation. International Journal of Geographical Information Science, 16
(2), 111–113.

Jenkins, S.C., Harris, A.J.L., and Lark, R.M., 2019. When unlikely outcomes occur: the role of com-
munication format in maintaining communicator credibility. Journal of Risk Research, 22 (5),
537–554.

Journel, A.G., 1984. mad and conditional quantile estimators. In: G. Verly, M. David, A.G. Journel
and A. Marechal, eds. Geostatistics for natural resource characterisation part 1. Dordrecht.
Netherlands: Springer Netherlands, 261–270.

Joy, E.J.M., et al., 2014. Dietary mineral supplies in Africa. Physiologia Plantarum, 151 (3),
208–229.

Joy, E.J.M., et al., 2015. Dietary mineral supplies in Malawi: spatial and socioeconomic assess-
ment. BMC Nutrition, 1 (1), 25.

Karl, J.W., 2010. Spatial predictions of cover attributes of rangeland ecosystems using regression
kriging and remote sensing. Rangeland Ecology & Management, 63 (3), 335–349.

Kinkeldey, C., MacEachren, A.M., and Schiewe, J., 2014. How to assess visual communication of
uncertainty? a systematic review of geospatial uncertainty visualisation user studies. The
Cartographic Journal, 51 (4), 372–386.

Kunz, M., Grêt-Regamey, A., and Hurni, L., 2011. Visualization of uncertainty in natural hazards
assessments using an interactive cartographic information system. Natural Hazards, 59 (3),
1735–1751.

Lark, R.M., et al., 2014. Mapping trace element deficiency by cokriging from regional geochem-
ical soil data: a case study on cobalt for grazing sheep in Ireland. Geoderma, 226–227, 64–78.

Lark, R.M., Ander, E.L., and Broadley, M.R., 2019. Combining two national-scale datasets to map
soil properties, the case of available magnesium in England and Wales. European Journal of
Soil Science, 70 (2), 361–377.

Lark, R.M., Ander, L., and Knights, K., 2016. Information for agriculture from regional geochemical
surveys: the example of soil pH in the Tellus and Tellus Border data. In: M. Young, ed.
Unearthed: impacts of the Tellus surveys of the North of Ireland. Dublin, Ireland: Royal Irish
Academy, 193–204.

Lark, R.M., and Knights, K.V., 2015. The implicit loss function for errors in soil information.
Geoderma, 251–252, 24–32.

Li, D.R., Zhang, J.X., and Wu, H.Y., 2012. Spatial data quality and beyond. International Journal of
Geographical Information Science, 26 (12), 2277–2290.

Li, L., et al., 2018., 1.22 - spatial data uncertainty. In: B. Huang, ed. Comprehensive geographic
information systems. Amsterdam: Elsevier, 313–340.

Ligowe, I.S., et al., 2020. Selenium deficiency risks in sub-Saharan African food systems and their
geospatial linkages. Proceedings of the Nutrition Society, 79 (4), 457–467.

Likoswe, B.H., et al., 2020. Inflammation adjustment by two methods decreases the estimated
prevalence of zinc deficiency in Malawi. Nutrients, 12 (6), 1563.

26 C. CHAGUMAIRA ET AL.



Marchant, B.P., et al., 2011. Spatial prediction of soil properties with copulas. Geoderma, 162
(3–4), 327–334.

Marchant, B.P., Saby, N.P.A., and Arrouays, D., 2017. A survey of topsoil arsenic and mercury con-
centrations across France. Chemosphere, 181, 635–644.

Mastrandrea, M.D., et al., 2010. Guidance note for lead authors of the IPCC fifth assessment report
on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC),
Report October. Available from: https://www.ipcc.ch/pdf/supporting-material/uncertainty-guid-
ance-note.pdf.

McDonald, J.B., and Xu, Y.X., 1995. A generalization of the beta distribution with applications.
Journal of Econometrics, 66 (1–2), 133–152.

Meredith, M., and Kruschke, D., 2018. HDInterval: Highest (Posterior) Density Intervals. R package
version 0.2.0. Available from: https://CRAN.R-project.org/package=HDInterval.

Milne, A.E., et al., 2015. Communicating the uncertainty in estimated greenhouse gas emissions
from agriculture. Journal of Environmental Management, 160, 139–153.

Narasimhan, B., et al., 2020., cubature: Adaptive Multivariate Integration over Hypercubes. R pack-
age version 2.0.4. Available from: https://CRAN.R-project.org/package=cubature.

Nelder, J.A., and Mead, R., 1965. A simplex method for function minimization. The Computer
Journal, 7 (4), 308–313.

O’Hagan, A., et al., 2006., Uncertain judgements:eliciting experts’ probabilities. Chichester, UK: John
Wiley & Sons.

Phiri, F.P., et al., 2020. Urine selenium concentration is a useful biomarker for assessing popula-
tion level selenium status. Environment International, 134, 105218.

R Core Team. 2020., R: A language and environment for statistical computing. Available from:
https://www.r-project.org/.

Ramsey, M., Taylor, P., and Lee, J., 2002. Optimized contaminated land investigation at minimum
overall cost to achieve fitness-for-purpose . Journal of Environmental Monitoring, 4 (5),
809–814.

Reagan-Cirincione, P., 1994. Improving the accuracy of group judgement: a process intervention
combining group facilitation, social judgement analysis and information technology.
Organizational Behavior and Human Decision Processes, 58 (2), 246–270.

Rivoirard, J., 1994. Introduction to disjunctive kriging and non-linear geostatistics. Oxford, UK:
Oxford University Press.

Spiegelhalter, D., and Rice, K., 2009. Bayesian statistics. Scholarpedia, 4 (8), 5230.
Spiegelhalter, D., Pearson, M., and Short, I., 2011. Visualizing uncertainty about the future.

Science, 333 (6048), 1393–1400.
Tjims, H., 2018. Probability: a lively introduction. Cambridge: Cambridge University Press.
Tversky, A., and Kahneman, D., 1981. The framing of decisions and the psychology of choice.

Science, 211 (4481), 453–458.
Webster, R., and Oliver, M.A., 2007. Geostatistics for natural environmental scientists. 2nd ed. West

Sussex: John Wiley & Sons Chichester.
Zeileis, A., et al., 2020. Colorspace: A toolbox for manipulating and assessing colors and palettes.

Journal of Statistical Software, 96 (1), 1–49.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 27



Supplement for: Chagumaira et al 2022 Stakeholder inter-

pretation of probabilistic representations of uncertainty in

spatial information: an example on the nutritional quality

of staple crops

Chagumaira, C., Nalivata, P. C., Chimungu, J. G., Gashu, D., Broadley, M. R., Milne, A. E.,

and Lark, R. M. (2022). Stakeholder interpretation of probabilistic representations of uncer-

tainty in spatial information: an example on the nutritional quality of staple crops. Interna-

tional Journal of Geographical Information Science, 1–27, https://doi.org/10.1080/13658816.2021.2020278.

24



Supplementary Material

Equation (3) states that we should intervene when
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estimated from the agronomy and soil science group with positive framing.
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Abstract. Mineral micronutrient deficiencies (MND), prevalent in many countries, are linked to soil type. Stakeholders in

Malawi, with different information needs, require spatial information about soil micronutrients in order to design efficient

interventions. These stakeholders require reliable evidence for them to act, in most cases the outcome of their decisions involves

financial costs and implications for farmers’ livelihoods, food security and public health. They would not want to intervene

where it is unnecessary to do so or not fail to intervene where it is needed. Information about the concentration of micronutrient5

in soil is needed by stakeholders for decision-making. In practice this information is uncertain. Geostatistical methods and those

based on algorithmically driven machine learning (ML) generate predictions of soil properties with measures of uncertainty,

these measures are rarely linked to the decision-making process for which spatial information is required and it may not be

clear to the stakeholders how to make use of the uncertainty information in decision-making. In this study we start from an

analysis of how stakeholders, in Malawi, may use uncertain spatial information to support decisions, providing the decisions10

about the acceptable quality of the information and how it should be collected. We then use this analysis as a framework to

compare options for spatial prediction of micronutrients in soil by ML (e.g. random forest) and geostatistical methods (e.g.

linear mixed models).

1 Introduction

Mineral micronutrient deficiencies (MND) prevalent in many countries, including Malawi, are linked to soil type (Hurst et al.,15

2013; Joy et al., 2015; Gashu et al., 2021), therefore the concentration of micronutrients in staple cereals is spatially dependent

(Gashu et al., 2020). This is of particular concern in countries where diets are sourced locally as there is a greater risk of defi-

ciency. For example, Gashu et al. (2020), showed that the concentration of Se in grain teff (Eragrostis tef (Zucc.) Trotter) was

dependent on soil properties such as pH and organic carbon content. Joy et al. (2015) showed that there is strong evidence that

cereals grown in Malawi have restricted uptake of micronutrients and dietary mineral intake is influenced by mineral content20

1



of edible portions of crops. Studies done in Ethiopia and Malawi have shown positive relationships between the concentration

of Se in grain and Se-biomarker values in women of reproductive age (Phiri et al., 2019; Belay et al., 2020).

Spatial information about soil properties is needed to design site-specific interventions to address MND such as the promo-

tion of practices like agronomic biofortification with additions of micronutrients to fertilisers (Botoman et al., 2022; Joy et al.,

2022). Soil properties cannot be measured everywhere, and to map the variation in a soil property one must interpolate from25

measurements made on samples taken at a number of locations across the area of interest (Webster, 1977). However, the result-

ing predictions are uncertain due to the inherent variation of soil at multiple scales and resulting sampling error, measurement

error and uncertainty arising from predictive factors in our spatial models.

Spatial information about the soil can be derived from soil survey. Conventionally, a soil survey was almost always based

on classification of the soil, and the delineation of map units which are each identified with one soil class, or an association30

of soil classes, as explained in the map legend (Dent and Young, 1981). Information on the soil was organised with respect to

the classes, e.g. estimation of class means for soil properties, or provision of a description and analyses of a ‘representative

profile’.

The soil surveyor would usually draw sharp boundaries between the map units they recognise (Webster, 2015). The variation

of soil properties within each mapping unit is treated as an independent and identically distributed random variable for pur-35

pose of quantifying uncertainty (Webster and Beckett, 1968; Webster and Lark, 2013). However, the implicit model of spatial

variation–sharp boundaries between map units– is not adequate to fully capture soil variation. One might expect more efficient

predictions or similar map accuracy with fewer samples (Nussbaum et al., 2018) from a model in which soil variation occurs

continuously and at multiple spatial scale in space. Such a model is provided by the regionalised variable theory of Matheron

(1965) which underpins geostatistical methods. The pioneering work of Burgess and Webster (1980) introduced this method-40

ology to soil science. The approach has been taken up and developed substantially over the intervening period (Malone et al.,

2018) leading to the development of digital soil mapping (DSM, McBratney et al., 2003).

Geostatistical methods aim to capture the spatial dependence, by treating soil variation as an outcome of a random process

(Webster, 2000), through predicting soil classes or properties onto grid points or cells (raster in Geographic Information System

terms) from a set of point observations which might be on a systematic grid, or assembled from past surveys with different45

designs. Additional points near the grid nodes (close pairs) are needed to give reliable estimates of the fine-scale covariance

in the soil property (captured formally in the variogram model) for geostatistical methods (Webster and Lark, 2013; Lark and

Marchant, 2018). The simplest geostatistical method, ordinary kriging (OK), uses only data on the target soil property and

entails the assumption that its unknown mean value is locally constant. However, the assumption can be relaxed by modelling

the mean as a function of covariates. These might just be coordinates, to capture a simple trend (universal kriging) or could50

include other variables such as remote sensor data (kriging with an external drift). All the kriging approaches can be regarded

as forms of the Empirical Best Linear Unbiased Predictor (E-BLUP, Webster and Oliver, 2007). The E-BLUP is based on the

linear mixed model (LMM) with covariates as the fixed effects, spatially correlated random effects and uncorrelated residuals.

More recently, DSM practitioners have turned their attention to machine learning (ML) methods for spatial prediction of soil

properties. Machine learning algorithms refers to a large class of data-driven algorithms originally developed for data mining55
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and pattern recognition. Most ML methods do not assume a pre-defined functional form of the response-covariate relationship

and therefore do not require or have relaxed assumptions of the model errors to follow a pre-specified distribution (Wadoux,

2019; Arrouays et al., 2020). DSM by ML methods can use the same covariates as LMM for spatial prediction with the E-

BLUP. For spatial prediction with OK, sample points are best distributed on a grid or some other design which achieves spatial

coverage (de Gruijter et al., 2006). If covariates are incorporated through an E-BLUP then the estimation of fixed effects60

coefficients must also be considered in the design of sampling. Brus et al. (2006) showed how requirements for estimating

both the fixed and random effects components of the E-BLUP influence an optimal sample design. If spatial prediction does

not directly exploit spatial dependence, the sample selection may be based on the variation of the covariates. For example,

conditioned Latin hypercube sampling (Minasny and McBratney, 2006) aims to spread the sample points over the covariate

space. Ma et al. (2020) suggested that the feature space coverage sampling design is optimal for ML because it covers the65

multivariate covariate space equally. Once soil data are collected the prediction model must be built. The incorporation of

covariates which are poor predictors may inflate the uncertainty of the final prediction. In geostatistics, a variable selection

procedure may be used while ML methods aim to weight all covariates appropriately.

Variability, sampling effort and modelling of the relationship between soil and covariate all contribute to the uncertainty

in spatial predictions. Most studies in pedometrics provide some measure of uncertainty alongside spatial predictions, but all70

too often these are done in a “vacuum” without considering the particular requirements of a specific end-user in mind. The

question therefore usually remains open whether an advance has been achieved from the perspective of the user of information

(Lark et al., 2022). Although attempts have been made to quantify and communicate uncertainty (Chagumaira et al., 2021),

pedometricians have realised that these measures are rarely linked explicitly to the decision-making process for which spatial

information is required (Wadoux et al., 2021) and it may not be clear to the stakeholders how to make use of the uncertainty75

information in decision-making. With increasing technological advances, there is a demand to provide soil information from

new soil surveys and using legacy data. We aim to analyse how a ‘decision process’ can be used to address various information

needs by different stakeholders. This has implications for how good predictions have to be, i.e. the trade-off between sampling

effort and degree of precision. This study fits well in the research agenda focusing on the decision process of key users of soil

information to quantify impacts of uncertainty in spatial information raised by Wadoux et al. (2021) among the ten challenges80

for future of pedometrics.

2 Decision process

Spatial information about environmental variables is required to serve stakeholders with different needs. These stakeholders

require reliable evidence for them to act, in most cases the outcome of their decisions may involve financial costs and impli-

cations for farmers’ livelihoods, food security and public health. They would not want to intervene where it is unnecessary85

to do so or not to intervene where it is needed. The needs of stakeholder are unsystematically reported in most pedometrics

research, perhaps a lot of consideration of their needs go unaddressed. Without a full analysis of the implications of decisions

end-users make, we cannot fully address their requirements. In this section we will discuss different clusters of decisions and
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concepts, the ‘decision process’, that should be considered when planning for sampling and spatial prediction. The general

decision theory concepts which we use can be found in standard texts such as Peterson (2017).90

2.1 Decisions and losses

As stakeholders have different information needs, it is important to consider the use of soil information. This can be charac-

terised in terms of a set, I, of five questions about the information.

I





(I1) What decision is to be made with the information?

(I2) At what management unit is the decision made (e.g. field, farm, district)?

(I3) How is soil information used in the decision?

(I4) What are the possible outcomes from the decisions given uncertainties?

(I5) What is the potential legacy value of the survey?

There is a need to consider how stakeholders use the information to make decisions. Figure 1 is an illustration of how a95

stakeholder may use spatial information based on soil pH and texture to decide on liming rate. For each decision made, the

outcome depends on the possible states. The state is the state of affairs which our soil information predicts. In this example

the stakeholder has a choice of three actions to intervene (apply lime at one of two rates) or not (no lime application). In this

example, the stakeholder needs to make a decision about liming at a specific management unit (e.g., farmer’s field) and the

decision will be made using data on soil pH and texture. If a stakeholder decides to apply a greater amount of lime when there100

was no need, the losses attached would be the unnecessary costs (e.g. purchasing of lime and labour) and increased risk of

immobilising micronutrients in the soil. When the stakeholder decides not to apply lime when there is a need for it, the loss

attached to the decision would be yield loss. The stakeholder may try to be cautious due to uncertainties and decide to apply a

moderate amount of lime when there is need for a greater application, the loss attached to this decision would be some yield

loss.105

In our example of soil pH, the decision whether and how to intervene will reflect the stakeholder’s assessment of the loss

attached to each possible outcome. The loss is relative to an outcome. For example, one might attach a cost in monetary terms

to yield loss from failing to lime when necessary, and opportunity cost of unnecessary liming. One may represent the costs

as a continuous loss function (Ramsey et al., 2002; Lark and Knights, 2015). For a given state (e.g. optimal liming rate)

the loss is the cost of overestimation or underestimation of the soil variable(s) which determine(s) the state. If the loss from110

overestimation and underestimation by the same amount are equal then the loss function is symmetrical. This is unlikely in

general. In the example here, if we underestimate fertiliser required by a certain quantity, we may expect a larger loss, due to

yield reduction, than if we overestimate by the same amount. As a result the loss function is asymmetrical. From the perspective

of environmental management the asymmetry may go either way– with more severe losses associated with over-application

that results in emissions from the field.115
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Figure 1. Illustration of a decision process for deciding on liming rate.

2.2 Stakeholders

The considerations described above highlight the importance of considering who the stakeholders are: who carries the risks

from the outcomes, and who bears the costs of collecting the information. Three types of stakeholders can be defined: the infor-

mation user (S1), the sponsor (S2) and the indirect or social client (S3). These three may have different soil information needs.

The information user (S1) may include land managers, nutritionists, agronomists, soil scientists, policy-makers, environmental120

managers, governments and donors e.g. non-governmental organisations. Examples of sponsors (S2) are governments, research

organisations or consortia e.g.G-BASE (Johnson and Breward, 2004), GlobalSoilMap.net (ISRIC - World Soil, 2009), GeoNu-

trition projects (GeoNutrution, 2017) and donors e.g. non-governmental organisations. The third group include farmers and the

general public who suffer from the consequences of errors made by the group S1. At times, groups S1, S2 and S3 may have a

common interest to a problem and in such a case we propose a "composite stakeholder", a user of information informed about125

the needs of the social client, and the constraints on the sponsor, and balancing them in a way that is socially and politically

acceptable.
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“Composite” Stakeholders (CS)





(S1) Who makes the decision? (user)

(S2) Who pays for the survey? (sponsor)

(S3) Who is affected by the outcome? (social client)

The uncertainty in the predictions of the soil variable of interest can usually be reduced by increasing the number of samples

taken. Many survey sponsors and users, who make decisions about information, (I1 to I5), which have an impact on sample130

size, have little knowledge of statistics and so might not be equipped to relate sample size to measures of uncertainty and,

in turn, to implications for decision. In most cases their decision are based on financial costs of the surveys. Therefore, the

surveyor needs to engage with stakeholders to identify sampling designs that maximise benefits of sampling over the cost by

considering the questions (O1 to O6).

O





(O1) What type of survey is appropriate?

(O2) What measure of uncertainty is required?

(O3) How should survey outcomes (including uncertainty) be communicated?

(O4) How many samples should be taken?

(O5) How should the samples be distributed?

(O6) Which covariates should be used in modelling?

135

In order to address some of the concerns raised by the questions above we need to consider the questions:

V





(V1) Can we characterise the spatial variability of the soil properties of interest?

(V2) Can we characterise other sources of uncertainty? (e.g. analytical lab analysis)

These questions are concerned with how we capture spatial variation (V1) and how uncertainty is quantified (V2). Data and

surveys are costly, and therefore rational decisions should be made in this respect. The resources questions (R1to R4) are

concerned with budgets and information. R1 is important especially for the survey sponsor (S2) because this is where the140

decisions on sampling are made.

R





(R1) Is budget fixed or negotiable? i.e. is there an actual decision about sampling?

(R2) Are there legacy sources of information?

(R3) Are there legacy data?

(R4) What covariates are available?

The key questions raised by information needs (I), stakeholder (S), spatial variation and uncertainty (V) and resources (R)

are the “base level" questions about a situation where soil information is needed. The uncertainties associated with predictions
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from partial sampling need to be quantified and communicated effectively to the stakeholders (S1 to S3) who need to make145

decisions based on their information needs (I1 to I5). First, the value of uncertain information to CS must be quantified as

function of uncertainty (U1). Secondly, can the acceptable uncertainty be quantified (U2)? Finally, can the survey effort be

linked to tolerable uncertainty measure? (U3).

U





(U1) Can the value of uncertain information to CS be quantified?

(U2) Can acceptable uncertainty be specified quantitatively?

(U3) Can survey effort be linked to the uncertainty measure?

U1 is a complex question which has received a good deal of attention, and this has been summarised by Lark et al. (2022).150

Lark et al. (2022), Lark and Knights (2015), Ramsey et al. (2002) and Giasson et al. (2000) discuss how value of information

theory (Howard, 1966) can be applied to soil information. Lark and Knights (2015) give a simple example in which a loss

function for a liming decision based on field-scale estimate by simple random sampling is used to calculate the expected loss

of a decision based on an estimate as a function of its standard error (U1). This in turn can be expressed as a function of sample

size (U3) given the variance of pH within the field (V1), and so the marginal benefit (reduced expected loss) of an additional155

sample point may be calculated. In this setting a rational value for tolerable uncertainty (V2) could be the standard error at

which the marginal reduction of the expected loss equals the marginal cost of an additional sample (Lark and Knights, 2015;

Lark et al., 2022). Criteria for specifying acceptable uncertainty measure (V2) may be conventions based on experience such

as purity values for soil maps specified in survey contracts (Western, 1978) or the offset correlation (Lark and Lapworth, 2013)

in which survey effort can be limited to a measure of the robustness of the final map to arbitrary variation of the origin of a160

survey grid (U3) on the basis of the variogram of the target variable (V1).

3 Case study

Malawi is a setting for much activity in the GeoNutrition project, which addresses the recalcitrant challenges of MND in SSA.

The GeoNutrition project aims to examine whether better interventions to address MND could be based on spatial information,

rather than assuming that the same intervention is required everywhere (Gashu et al., 2020).165

The ‘Addressing hidden hunger trials (AHHA)’ trial was conducted in Malawi to test the efficacy, for the alleviation of Se

deficiency, of consuming maize flour enriched with Se by agronomic biofortification (Joy et al., 2019). The Se-enriched maize

flour, and non-fortified flour, was provided to households in a randomized double-blind design. Comparison of biomarker

measurements before and after a period, of 8 weeks, in which this flour was consumed were recorded for one woman of

reproductive age and one school-aged child in each household. It was found that, for households receiving the fortified flour,170

Se status of the individuals improved over the period, but did not change in the control group and that agronomic biofortification

is a viable strategy to address Se deficiency (Joy et al., 2022).

7



(I1) – What decision has 

to be made with the 

information? 

(I2) – At what scale is 

the decision made 

(e.g. field, farm, district)

(I3) – How is the soil 

information used in the 

decision? 

(I4) – What are the 

possible outcomes from 

decision given 

uncertainties? 

Location of 

agronomic 

biofortification 

trial to enrich local 

staple grain

Community 

Identifying

locations with Se 

concentration  < 

threshold

Se concentration > 

threshold

(Not suitable for trial)

Se concentration < 

threshold

(Suitable for a trial)

Trial not established Requirement met Opportunity cost

Trial established Unnecessary cost

Project credibility lost 

Requirement met

STATE

D
EC

IS
IO

N
 

M
A

D
E

Figure 2. Summary for the decision process for deciding on location of trials, for agronomic biofortification, where concentration of Sesol is

less than a threshold.

In this case study we consider how soil information could be used for the design of a further round of experiments to

evaluate the potential of agronomic biofortification as a strategy ‘at scale’ with local agronomic fortification. In the AHHA

trial the fortified maize was grown at a single central location. A key question is whether agronomic biofortification can be175

practiced by farmers, and whether this benefits local communities who then consume the produce. The team managing the

experiment, agronomists and soil scientists, public health and nutrition specialists, want to use spatial information to identify

potential sites where the concentration of soil soluble Se (Sesol) is small. When a list of experimental sites has been produced,

some initial engagement with each local community will be undertaken to explain the project. Informal consent will be obtained

to sample soil from local fields to check that the concentrations are small. If they are, then a second more intensive phase of180

sensitisation will be undertaken leading up to the agronomic component of the trial and the feeding trial. If the proposed site

does not have small Se concentrations in the soil then it will be abandoned and an alternative will be examined instead. This

means that a ‘false positive’, a site incorrectly identified as having small Se supply from the soil, will not entail losses due to

the completion of a trial where the effects of agronomic biofortification are small. However, it will entail costs due to the effort

required for the initial community engagement, the completion of soil sampling, and the loss of goodwill and credibility with185

the community if the trial is not completed there. This might have implications for wider public attitudes to the trial, and further

up-scaling of the approach in the future. A decision process for deciding on location of trials, for agronomic biofortification,

where concentration of Sesol is less than a threshold are summarised in Figure 2.
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Given this background, we can now consider the question sets in Section 2.1.

I1. The decision is where to locate n community-level trials, given that the objective is to do them on sites which, among190

other considerations, have small Sesol concentrations.

I2. The decision is to be made at community level. Conventionally-produced and agronomicaly biofortified crops will be

grown separately by recruited farmers in each community, the soils of which have small Sesol concentrations.

I3. Candidate communities will be those at locations where the predicted Sesol concentration is less than a threshold. At

present there is no accepted threshold to define Se-deficient soil, but agronomists and soil scientists agreed to use the195

25th percentile of the measured Sesol concentration, from GeoNutrition samples (Gashu et al., 2021), as a threshold,

denote by Sethreshold. Other factors will influence the decision (e.g accessibility), so the project team will weigh up

the risk that the site is not suitable because of soil conditions against other factors when short-listing communities for

participation.

I4. A community is added to the list for the trial because the predicted Sesol concentration is below a threshold. The soil will200

be sampled locally, so if the prediction is found to be correct (at least with respect to the threshold), then the site will be

correctly included in the trial, and the process of community engagement discussed above will proceed smoothly. If the

soil at the community is found to have Se concentration in excess of the threshold, then the site is not suitable for the trial.

The effort already put into community engagement will be largely wasted, the withdrawal of the team may affect their

credibility, and that of spatial soil information, in the eyes of the local community. They may be less willing to engage205

in similar trials in future, and resistant to future attempts to engage them in work to scale up agronomic biofortification

practices (or maybe other campaigns to address MND). Uncertainties in the soil information may also mean that eligible

sites might not be considered. This could result in opportunity costs for well-positioned locations, but given the size of

the threshold this is unlikely to limit the completion of the trial.

I5. The proposed activity is not a survey to undertake mapping or to provide information, but is secondary data analysis. This210

question is therefore not relevant.

S1. The project team will make the decision, along with local officials.

S2. The sponsor is the Government of Malawi.

S3. In so far as communities are included, at least initially, in the trial but are found to be unsuitable, the project team wastes

some resource. They also lose credibility, and this has some impact on the sponsor as well, who are associated with215

the trial. Local communities who lose faith in the promoters of the study may later choose to exclude themselves from

activities, including up-scaling of MND interventions, from which they would have benefited.

O1. This is a secondary analysis, so no new survey decisions have to be made. Spatial predictions of Sesol concentration are

needed effectively at point scale since communities are small relative to the sampled domain (all the country).
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O2. A quantitative measure of uncertainty is needed, so that the project team can assess the risk that the site is unsuitable220

when making this judgement. As there is a threshold specified, the probability that the soil Se at the site is below the

threshold would be a useful measure.

O3. Chagumaira et al. (2021) found that a wide range of stakeholders found the probability that the true value of a variable

is below or above a threshold is an effective way to communicate uncertainty in spatial information. They found little

evidence that different methods to express this probability worked better than others, but methods such as calibrated225

phrases (Mastrandrea et al., 2010; Lark et al., 2014) or maps of probability with pictographs at different candidate

communities might be appropriate.

O4. This is secondary data analysis and this decision is not relevant.

O5. As this is secondary data analysis this decision is not relevant.

O6. The available covariates are surface slope, and topographic index mapping derived from the MERIT Digital Elevation230

Model of Yamazaki et al. (2017). Downscaled climate data was obtained from CHELSA data set (Karger et al., 2017).

Average and variance annual net primary productivity, enhance vegetation index, normalised difference vegetation index

and soil adjusted vegetation index were obtained from the MODIS remote sensor satellite (Justice et al., 1998) (see

Table S1).

Questions under V and R: probably not relevant to a secondary data analysis.235

U1. The costs of a false positive are partly tangible (time and resources wasted) and intangible (loss of goodwill and cred-

ibility). Costs of false negatives are harder to evaluate. Given the size of the threshold the project is unlikely to be

short of communities. However, if the criterion is too strict we might miss out on communities good for other reasons

(accessibility etc). Overall, cost of false positives exceeds that of false negatives.

U2. On the above basis a critical probability might be elicited from a group, following Chagumaira et al. (2022) such that a240

community is considered for inclusion in the trial of P(Sesol < Sethreshold) exceeds that critical value. Considerations

in U1 suggest that the loss function is asymmetrical with a larger loss from false positives than false negatives. On this

basis we would expect that, if the probability is presented as P(Sesol < Sethreshold), then the critical probability will be

in excess of 0.5.

U3. Not relevant for a secondary data analysis.245

4 Materials and methods

4.1 Data and study area

Details of soil sampling and laboratory analysis are given by Gashu et al. (2021). Soil soluble Se was extracted in 0.01M KNO3.

The objective of the field sampling in Malawi was to support spatial prediction of soil and crop micronutrient concentration.
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The location of sample points were obtained by using the k-means methods as encoded in the spcosa package for the R250

platform (Walvoort et al., 2010). This method allows one to form a sample which gives good coverage while incorporating

the fixed prior points in the sample. There were 820 prior points from the 2015–16 micronutrient survey of Malawi (Phiri

et al., 2019), and a further 890 spatial coverage points were added by using spcosa plus a further 190 ‘close-pair’ sample

locations. The close-pair samples are required to support spatial modelling–10% of the total samples (Lark and Marchant,

2018). The additional points near the grid nodes (close pairs) are needed to give reliable estimates of variogram parameters and255

they increase spatial coverage to minimise kriging variances especially at the border of a study region. A total of 1,812 sites of

grain and soil samples were taken. However, some sample location had positional uncertainties that were attributed to either

poor satellite signal or enumerators not giving the devices enough time to establish the location and were not usable for further

analysis. These six samples were removed from the spatial prediction of Sesol. Of these 1806 sites, 10% of the data was used

to create an independent dataset for validation. The 190 close-pair sites were included in the dataset used for prediction and260

training of the models. From the data with the close-pairs removed, 160 points were selected into the validation dataset using

simple random sampling without replacement.

4.2 Linear mixed models for spatial prediction

The best unbiased linear predictors (BLUP) is computed from a linear mixed model (LMM) is an additive combination of one

or more fixed-effects and one or more random effects. The independently and identically distributed component is in the model265

but does not affect the prediction. When the fixed effects are just an unknown constant mean then the BLUP is equivalent to

ordinary kriging. The theory of LMM as a geostatistical model for spatial prediction is described in greater detail by Lark et al.

(2006). The variance parameters are estimated by maximum likelihood or residual maximum likelihood (REML, Stein, 1999).

Both maximum likelihood and REML are based on the assumption that random effects have a joint Gaussian distribution,

therefore it is important to study the descriptive statistics of the dataset and do the transformations when necessary. Estimation270

of variance parameters by REML eliminated bias that results from estimating semivariance computed from a variogram of

residuals by using method-of-moments when there are fixed effects added to a constant mean.

Exploratory data analysis, using simple summary statistics and plots (e.g. Q-Q), were done to check whether transformation

was needed to make the assumption of normality reasonable. Table 1 shows the summary statistics of Sesol. Exploratory

analysis of the data indicated a possible spatial trend, but this was not pronounced, as indicated on the exploratory variograms.275

Two LMM were therefore considered as options. First, with a constant mean as the fixed effect, second with fixed effects

selected from available coordinates (Table S1), including spatial coordinates.

4.2.1 Constant mean as the fixed effect

The Sesol data was strongly skewed, transformation to logarithm reduces this, but the histogram of the data stilled showed

marked non-normality and bimodal (see Table 1 and Figure S3). We therefore considered transformation of the data by Gaus-280

sian anamorphosis (GA) using Hermite polynomials computed with the anam.fit function for the RGeostats package (MINES

ParisTech / ARMINES, 2022) for the R platform (R Core Team, 2021). Variograms were then estimated for the transformed

11



Table 1. Summary statistics of for soil soluble Se concentration (Sesol), cross-validation errors for ordinary kriging and robust REML E-

BLUP, and out-of-bag cross-validation errors for random forest.

Concentration of Ordinary kriging robust REML E-BLUP Random forest

Sesol cross-validation cross-validation out-of-bag

( µg kg−1) errors errors errors

Mean 3.94 0.00 -0.07 -0.00

Median 3.30 0.01 -0.02 -0.05

Standard Deviation 2.99 0.55 0.76 0.50

Minimum 0.18 -2.78 -2.86 -1.90

Maximum 18.8 3.11 2.48 2.41

Skewness 1.29 -0.26 0.00 0.59

Octile skewness 0.24 -0.03 -0.16 0.14

data using the estimates due to Matheron (1962), Dowd (1984) and Cressie and Hawkins (1980). Exponential variogram model

were fitted by weighted least squares and the models were validated by cross-validation. Following Lark (2000), we chose the

variogram fitted by the different estimators that had a standardised squared prediction error (SSPE) falling within the 95% con-285

fidence interval around the expected value of 0.455. Predictions of the GA-transformed scale was obtained by ordinary kriging

(OK) at validation sites and at points in a grid across Malawi. The value of Sethreshold, 1.49 µg kg−1, was transformed to the

GA scale (-0.681), and the probability that the true value is smaller than this was computed assuming a prediction distribution

of the mean and variance equal to the OK estimate and kriging variance, respectively. Median-unbiased estimates of Sesol in

units of µg kg−1 were obtained by back transformation.290

4.2.2 Fixed effect selected from available covariates

Exploratory analysis with spatial coordinates and environmental covariates (see Table 2) on fixed effects suggests that an

assumption of normal random effects was plausible on transformed to natural logarithm, although with some outliers present.

For this reason we estimated variance parameters for the LMM by using robust REML following Künsch et al. (2013).

Robust REML algorithm automatically identify outliers within a dataset and the outliers receive small weight when esti-295

mating model parameters (Nussbaum et al., 2012). The covariance matrix of the regression coefficients and the variogram

parameters are estimated by georob (Papritz and Schwierz, 2021), for the R platform, either by REML or maximum likelihood

from the Sesol dataset and values of the environmental covariates. The estimating equations are robustified by replacing the

standardised errors by a bounded function of them and introducing a suitable bias correction terms for Fishers consistency in

the Gaussian model (Künsch et al., 2013; Papritz, 2021). The bounded function of the residuals becomes the tuning parameter,300

c, of robust REML and is used to control the robustness of the procedure. The lower the value of c, the more the outliers are

penalised by lower weights. The resulting predictions of Sesol were on a log-scale, and they needed to be back-transformed
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to aide interpretation. We used the standard unbiased back-transformations for log-normal kriging procedure (Cressie, 2006)

using the lgnpp function of georob package (Papritz and Schwierz, 2021).

Not all available covariates are useful for spatial prediction when using LMM. If all covariates are used for prediction some305

problems can be encountered. These include risk of propagating error in the regression coefficients when weak covariates are

included in a model. Other problems may include overfitting, over-adaptation to the training data hence leading to a lack of

generalization and poor predictive performance in new conditions. In order to address some of these challenges Lark (2017)

suggested that the problem of variable selection is considered in terms of multiple hypothesis testing. Hence in this study,

covariate selection was done by using the method described in Lark (2017) in which false discovery rate is controlled with the310

α-investment.

In this method of variable selection, a prior ranking of potential predictors of Sesol was required. The rankings were provided

by a panel of eight plant and soil scientists from the University of Nottingham, Rothamsted Research, Lilongwe University of

Agriculture and Natural Resources and Addis Ababa University. The rankings were based on a priori expectations of the order

of importance based on the processes involved. The rankings from the panel was obtained through group elicitation facilitated315

by a statistician. The selected order for testing potential predictors for Sesol obtained in the group are shown in Table 2.

Table 2. Sequence of predictors for Sesol concentration (environmental covariates) for testing with the α-investment

Order Environmental Covariate

1 Downscaled mean annual precipitation (BIO12)

2 Downscaled mean annual temperature (BIO1)

3 Slope (SLOPE)

4 Topographic index (TIM)

5 Average enhanced vegetation index (EVI)

6 MODIS band 7 (MB7)

7 MODIS band 2 (MB2)

8 MODIS band 1 (MB1)

9 MODIS band 3 (MB3)

The climate variables (mean precipitation and rainfall) were as the most likely useful predictors because it is expected

that rainfall and temperature can enhance the mineralization of organic matter in the soil thereby releasing Se bound in organic

compounds into soil solution. The terrain variables, slope and topographic index where considered next. The MODIS enhanced

vegetation index (EVI) and bands were also considered because they measure vegetation vigour and health.320

In a LMM framework, evidence that the coefficient of a covariate is significantly from zero can be tested by a Wald test

WT =

(
θ̂1 − θ0

)2

Var(θ̂1)
. (1)
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Where θ1 and θ0 are the vectors of all parameters estimated by REML, from fitting the model with additional fixed effect

and the simple model, respectively. The statistic is asymptotically distributed χ2 with one degrees of freedom (Diggle et al.,

1994; Drapper and Smith, 1998). In each test, if the p-value did not exceed 0.05 then the predictor was provisionally retained,325

otherwise it was dropped, and the next predictor was considered. When all the predictors had been considered, the p-values

for the Wald test on each were compared to thresholds according to the α-wealth controlling the false discovery rate. The

successive hypothesis were tested in the order (1) annual precipitation, (2) annual temperature, (3) slope, (4) topographic

index, (5) enhanced vegetation index, (6) MODIS band 7, (7) MODIS band 2, (8) MODIS band 1 and (9) MODIS band

3 (Table 2). The predictors whose p-values were below the thresholds would be used in the final model. The models were330

sequentially fitted starting with a ‘null’ hypothesis with the linear spatial trend identified in the exploratory analysis. The were

fitted with robust REML with c= 2, in order to avoid problems of convergence. Convergence problems often depend on the

data and occur when c is low and a numerical solution of the equations would not be found (Papritz, 2021). This occurs when

there is low spatial correlation (near pure nugget variogram) and/or poor linear relationship between response and covariates.

However, the final model was fitted with a much lower tuning parameter, c= 1.75, in order to penalise the outliers in Sesol335

dataset with lower weights.

4.3 Quantile random forest algorithm for spatial prediction

A random forest is an ensemble of tree-structured predictors formed by a collection of classification and regression trees

(CART), that depend on the value of a random vector sampled independently, with the same distribution for all the trees in the

forest (Breiman, 2001). It is a method often used for performing predictive tasks (e.g., Nussbaum et al., 2018) by combining340

large number of regression trees by the mean of their predictions. Decision trees are often referred to as a ‘greedy algorithm’,

because each split reduces the residual sum of squares for that particular subgroup, rather than optimising splits to reduce

overall residual sum of squares (James et al., 2013). This ‘greedy’ property tends to over-fit the training data and results in

poor predictions (Bramer, 2020). Due to their hierarchical nature decision trees tend to be unstable and have large variance

(Hastie et al., 2009), in the sense that large changes in model and prediction following only small changes in the training data.345

On the other hand, on average tree based predictions tend to be unbiased. Therefore, algorithms like random forest have been

developed to balance for the instability of CART, but to still be able to profit from the complexity of interaction-type response-

covariate relationships. Quantile random forest is an expansion of random forest that allows for uncertainty quantification for

each prediction (Breiman, 2001; Meinshausen, 2006). We used the Boruta algorithm that uses a wrapper approach for variable

selection using the Boruta package (Kursa and Rudnicki, 2010). The algorithm creates a shadow attribute dataset consisting of350

randomly shuffled predictors. A random forest model is fitted including original and shuffled predictors and variable importance

is computed. Variables that have on average larger importance than the randomised variables will be used in spatial prediction.

The quantile random forest is explained in greater detail by (Meinshausen, 2006). The ranger function of the ranger package

(Wright and Ziegler, 2017) was used for fitting the random forest to predict Sesol in Malawi. In order to directly compare to

robust REML E-BLUP, Sesol was also transformed by natural logarithm scale.355
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4.4 Measures of uncertainty

Prior and posterior measures of uncertainty can be used to quantify uncertainty in spatial predictions. A prior measure of

uncertainty results from the prediction process. Kriging variances are example of prior measure of uncertainty for LMM. The

kriging variances are the expected square difference between predicted and the observed values and they can be plotted on a map

to show areas where additional sampling is required to reduce this uncertainty. The appropriateness of the kriging variances can360

be assessed by the standardised squared prediction error (SSPE) after internal cross-validation, with leave-one-out or K-fold

cross-validation. We used cv.georob function to perform K-fold cross-validation for the robust REML E-BLUP. The model

is re-fitted 10 times by robust REML but each time 1/Kth of the data is excluded (Papritz, 2021). After cross-validation, the

SSPE is computed by

θ(x) =
{z(xi)− Z̃(x0)}2

σ̂2
K(x0)

, (2)365

where Z̃(x0) is the kriging prediction of z(xi) and σ̂2
K(x0) is the kriging variance. The expected value of θ(x) is 1, this is not

a sensitive diagnostic. Assuming that the errors follow a Gaussian distribution θ(x) is expected to have a χ2 distribution with

one degree of freedom, so that the median value of θ(x) over all data can be used as a diagnostic (Lark, 2000).

The prior measures of uncertainty for random forests are the out-of-bag mean square error and the quantile regression

forest that estimate conditional distribution of the predicted variable. About a third of the samples in the random forest are370

left out during the bootstrapping of samples. The out-of-bag serve as test sample to assess the prediction accuracy of random

forests through computation of universal measures of uncertainty (e.g., mean square error) as with cross-validation. Prediction

intervals can be computed from conditional quantiles by using quantile regression forest, a generalisation of random forests by

Meinshausen (2006).

The prior measures of uncertainty, kriging variances and conditional quantiles, can be used to compute conditional probabil-375

ities that–given the current model– future observations of Sesol fall bellow a threshold, Sethreshold (1.49 µg kg−1). With robust

REML E-BLUP, an assumption of normality of the prediction errors, after cross-validation, should be plausible. Exploratory

analysis of the kriging errors after computing K-fold cross-validation, showed that the errors could be regarded as a normal

random variable. Conditional probabilities also can be obtained from quantile predictions of quantile regression forest without

assumption of normality as in the geostatistical approach. Conditional probabilities for a true value exceeding a threshold,380

Sethreshold, are taken from the full predictive distribution resulting from quantile regression forest (Meinshausen, 2006).

We also used indicator kriging to obtain the conditional probability. The kriging predictions were made by ordinary kriging

of a transformed variable, the indicator variable, ω (Webster and Oliver, 2007). The transformation is made by:

ω =




1 If z(x)≤ zt,

0 otherwise.
(3)

Posterior measures of uncertainty depend on the primary data and are obtained from validation. Validation compares the385

prediction at a site and the measured value at that site. Several approaches can be used to validate predictions and these include
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Jack-knifing/ data splitting and collection of an independent dataset. To assess random forest, OK with GA and robust REML

E-BLUP, we validated the predictions with an independent dataset. We computed the universal prediction accuracy measures

(e.g., mean error, mean square error, root mean square error). We also computed the mean squared error skill score (MSESS)

MSESS = 1−
∑n

i=1

(
{z(xi)− Z̃(x0)}

)2

∑n
i=1

(
z(xi)− 1

n

∑n
i=1 z(xi)

)2 , (4)390

where Z̃(x0) is the prediction and z(xi) is the measured value of Sesol. The MSESS can be interpreted in a number of ways.

At the first instance a score of 1 indicates perfect predictions and the root mean square error would be 0. Second, a score of

0 shows that the predictions have the same variance as the data of the validation set and a score less than 0, suggests that the

predictions have larger variance than the validation dataset (Wilks, 2011).

Coverage probabilities were estimated from 0.5 to 0.99 for the predictions from cross-validation and of the independent395

dataset for OK with GA, robust REML E-BLUP and random forest. We used the blakerci function of the PropCIs package for

the R platform to compute the 95% confidence interval for each estimated coverage (Blaker, 2000). Chagumaira et al. (2022)

showed that a critical probability, Pt, can be elicited from a diverse group of stakeholders (S1 to S3) when provided with maps

conditional probabilities of not exceeding a threshold. The Pt is an indication of a stakeholder’s judgement when making a

decision for an intervention using uncertain spatial information. The elicited Pt can be used to assess the validity of coverage400

probabilities of prediction intervals for probabilities close to a threshold. In this case study we used a range of notional Pt to

assess coverage probabilities of prediction intervals and thereby show proportion of mapped area under the selected critical

probability value. This analysis can allow stakeholders to identify locations for setting up field trials.

5 Results

5.1 Linear mixed models for spatial prediction405

After transforming Sesol by GA, there was no evidence of a spatial trend. Summary statistics for the cross-validation errors for

OK with GA are presented in Table 1. The variograms for the transformed Sesol are shown in Figure A1. After cross-validation,

the variogram estimated using the Matheron estimator has the largest value of median of SSPE of 0.39. The median unbiased

back transformed spatial predictions of the concentration Sesol in Malawi, by ordinary kriging, are shown in Figure 3a. The

map shows that there is higher concentrations of Se in central, northern and southern west parts of Malawi.410

After sequential fitting of the models, with robust REML, with ordered predictors for Sesol shown in Table 2, enhanced

vegetation index (EVI) was selected through the false discovery rate control procedure (Figure 4). The graph (a) shows α-

wealth over the sequence of tests and the lower (b) shows the p-values and the corresponding thresholds under the false

discovery rate control with the α-investment. The final model fitted with robust REML, with c= 1.75, was used for spatial

prediction of Sesol. The maximum likelihood variogram for Sesol is presented in Figure A2. The variogram shows strong spatial415

autocorrelation in the data for Sesol.
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Figure 3. Spatial predictions of Sesol concentration across study area by: (a) OK with transformed Sesol (b) robust REML E-BLUP and (c)

random forest.

Table 3. Models for Sesol concentration in Malawi fitted using robust REML.

Predictand Coefficient R̆2
adj τ2 σ2 ϕ

β0 β1 β2 β3

Easting Northing EVI

Null model 11.0377 -0.0042 -0.0009 0.1095 0.4087 28.0000

+EVI 11.7980 -0.0045 -0.0010 0.0002 0.025 0.1099 0.3985 28.0000

Final model 11.7847 -0.0045 -0.0010 0.0002 0.1065 0.4026 28.0000

† The symbols β0 to β2 are the fixed effects coefficients, β0 is a constant and βi is the coefficient for the ith random effect; κ is

the smoothness parameter of the correlation function; τ2 is the nugget variance; σ2 is variance of the correlated random effect;

and ϕ is the distance parameter. R̆2
adj is the difference between σ2 of the null model and proposed model expressed as a

proportion of the variance for the null model.

The variance parameters estimated by robust REML E-BLUP for the null model and the model with EVI as a predictor are

shown in Table 3. A small proportion of the spatially correlated variation (R̆2
adj = 0.025) is accounted for by inclusion of EVI

as a predictor of Sesol.

Summary statistics for the cross-validation errors are shown in Table 1. After cross-validation we computed SSPE, and the420

median value of θ(x) was 0.427. This value lies within the 95% confidence interval for the expected value of median under a
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Figure 4. Ordered tests for covariate selection for models for Sesol fitted by robust REML. The sequence of predictors is as given in Table

1b. The graph (a) shows α-wealth over the sequence of tests and the lower (b) shows the p-values for successive tests (open symbols) and

the corresponding threshold values with marginal false discovery rate control.

valid model given the number of observations. The mean unbiased spatial predictions of the concentration Sesol in Malawi, by

robust REML E-BLUP, are shown in Figure 3b.

Figure 5 shows the maps of conditional probability of Sesol falling bellow Sethreshold (1.49 µg kg−1). Figures 5a to d are

the probabilities expressed on a numerical scale, and 5e to f shows the same conditional probabilities with calibrated phrases425

on the IPCC scale. Figure 5a and e correspond to OK with GA. The Figure 5b and f are for robust REML E-BLUP. Figures 5c

and g correspond to the indicator kriging predictions. The maps quantifying the uncertainty would be used with the spatial

predictions by the sponsors (S2) and information user (S1) to identify sites where trials can be established, locations with Sesol

< 1.49 µg kg−1.
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Figure 5. Probability that soil Se concentration does not exceed Sethreshold, 1.49 µg kg−1, expressed on a numerical scale (a to d) and

according to calibrated phrases (e to h) for spatial predictions by OK with GA (a & e), robust REML E-BLUP (b & f), indicator kriging (e &

g) and random forest (d & h).

5.2 Quantile random forest algorithm for spatial prediction430

All the available covariates (see Table S1) and the spatial coordinates were used to fit a random forest model. Figure 6 shows

the box plots of variable importance of original predictors (green) compared to the minimum, mean and maximum importance

of randomly shuffled shadow predictors (dark blue) as computed by the Boruta algorithm from 100 repetitions. No covariate

was deemed unimportant because all the variables have larger importance than the randomly shuffled shadow predictors (dark

blue). The results also showed that downscaled mean annual precipitation and spatial coordinates were the most important435

covariates. The spatial coordinates were among the three most important covariates for the random forest algorithm, and this

reflected the strong spatial autocorrelation shown the variogram for Sesol (Figure A2). Therefore, spatial structure in random

forest was modelled splitting the area based on north-south and east-west directions.

Summary statistics for the out-of-bag cross-validation are presented in Table 1. Table 4 shows the parameters for the random

forest algorithm, the out-of-bag MSE and R2 were 0.25 ands 63.5%, respectively. The spatial predictions of the random forest440
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Figure 6. Boxplots of variable importance of original predictors (green) compared to the minimum, mean and maximum importance of

randomly shuffled shadow predictors (dark blue) as computed by the Boruta algorithm from 100 repetitions.

Table 4. Parameters of the random forest algorithm for prediction of Sesol.

Number of Predictors mtry
† Out-of- Out-of-

trees Bag MSE Bag R2

1000 21 4 0.253 0.635

mtry
† number of randomly chosen variables.

are shown in Figure 3c. This map is similar to those produced by the LMMs, there are higher concentrations of Se in central,

northern and southern west parts of Malawi. The conditional probability of Sesol less than 1.49 µg kg−1, expressed on numerical

scale and according to calibrated phrases are presented in Figure 5d and h, respectively.
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5.3 How can stakeholder (CS) compare predictions?

The posterior measures of accuracy and precision for spatial prediction, for OK with GA, robust REML E-BLUP and random445

forest, computed after validation with an independent dataset are presented in Table 5. The mean error for OK is 0.07 on the

GA transformed scale and this is close to zero. The mean error for robust REML E-BLUP and quantile random forest are

−0.050 and −0.049 log (µg kg−1), respectively. The mean error for both robust REML E-BLUP and random forest are close

to zero. Robust REML produces more accurate predictions of the conditional mean than random forest. The MSESS is the

only statistic comparable amongst the three spatial prediction methods. The score for the OK with GA is 1.04, and for robust450

REML E-BLUP and random forest the scores are 0.94 and 0.87, respectively. All the models for spatial prediction performed

well.

Table 5. Accuracy of the predictions computed with an independent validation dataset (n=160).

Method Measure

ME MSE RMSE MSESS

Ordinary Kriging 0.07 0.400 0.448 1.04

robust REML E-BLUP −0.050 0.212 0.326 0.94

Quantile random forest −0.049 0.216 0.342 0.87

ME–mean error; MSE–mean square error; RMSE–root mean square error, MSESS–mean

square error skill score.

Figure 7 shows the coverage probability plots for the OK with GA, robust REML E-BLUP and random forest. Figure 7a

to c, shows the coverage probabilities with 95% confidence interval for the cross-validations of OK with GA, robust REML

E-BLUP and random forest predictions. All show some deviation from the bisector, with the largest difference seen for the455

robust REML E-BLUP predictions. Figures 7d to f, show the corresponding coverage probabilities for the validation sites

(n=160). The closest agreement is for OK with GA predictions, with the 95% confidence interval included the bisector for all

probabilities less than 0.9. The largest deviation is seen for the robust REML E-BLUP. The coverage is less than the specified

probability showing that the prediction intervals are to conservative. This may reflect a bias introduced by the tuning parameter

or the consistency correction.460

Figure 8a shows the proportion of points at which P(Sesol < 1.49) exceeds different values of Pt based on cross-validation,

and (b) shows the proportion of those sites at which the observed Sesol meets the condition. The robust REML E-BLUP has

the smallest proportion of mapped area at which the P(Sesol < 1.49) exceeds different values of Pt. Ordinary kriging has the

largest proportion, whilst the proportion of random forest and indicator kriging are similar. Figure 9 shows the proportion of

points based on validation with an independent dataset. Note that for both the cross-validation and independent validation the465

number of points for which the estimated P(Sesol < 1.49) exceeds large values goes to zero or small values, so the proportion

of the points for which P(Sesol < 1.49) may vary strongly, or the be undefined. The random forest have the smallest proportion
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Figure 7. Plot of estimated coverage of prediction intervals from 0.5 to 0.99 at the validation locations with their 95% confidence intervals

(dotted lines), for: (a) ordinary kriging after leave-one-out cross-validation, (b) robust REML E-BLUP after K-fold cross-validation, (c)

random forest after validation with out-of-bag data, (d) ordinary kriging after validation with an independent dataset, (e) robust REML E-

BLUP after validation with an independent dataset, and (f) random forest after validation with an independent dataset.

of points at which P(Sesol < 1.49) exceeds different values of Pt. The proportion of points for indicator kriging, robust REML

E-BLUP and ordinary kriging are similar.

6 Discussion470

6.1 Can we meet requirements of the soil information user?

In this study we postulate a set of stakeholders who require soil information to make a decision on where to locate agronomic

biofortification trials to address human Se deficiency. Our objective is to appraise three common approaches to digital soil

mapping in the light of a decision framework for such stakeholders.
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Figure 8. Plots for (a) the proportion of points at which P(Sesol < 1.49) exceeds different values of Pt based on cross-validation, and (b)

shows the proportion of those sites at which the observed soil Se meets the condition.
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Figure 9. Plots for (a) the proportion of points at which P(Sesol < 1.49) exceeds different values of Pt based on validation with an indepen-

dent dataset (n=160), and (b) shows the proportion of those sites at which the observed soil Se meets the condition with independent dataset.

The first observation is that the predictions, as measured by an independent validation set, are more precise for the robust475

REML E-BLUP predictions from the linear mixed model (smaller mean square error) and have a smaller bias. These differences
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are not large. However, it is notable that this smaller prediction error variance is achieved by the robust REML E-BLUP with a

smaller final covariate set than was used by the random forest, and a model of spatial dependence for the unexplained variation

in the target variables.

Second, we note that there is substantial uncertainty in the spatial predictions of Sesol by all three methods. Even though the480

maps of Sesol show clear structure, which may encourage the user to assume that it has succeeded in representing variation of

this property, a local prediction may have substantial error. That is why the uncertainty of these predictions should be explicitly

quantified and presented a way that is accessible to the stakeholders (S1, S2 and S3). The objective is that the stakeholder

understands the uncertainty and is equipped to use the information with appropriate caution, and attention to the possible

outcomes, when deciding where to locate the agronomic trials to minimise losses. The key challenge is how to characterise the485

sources of errors with probability distributions (Heuvelink, 2018) and attention should be paid to the assumptions made when

modelling uncertainty (Szatmári and Pásztor, 2019).

Geostatistical models and ML methods permit a sophisticated and robust quantification of the uncertainty in spatial informa-

tion but communicating uncertainty is a challenge. Communicating uncertainty depends on the subject matter and knowledge

of the target audience (Milne et al., 2015). Uncertainty in spatial predictions can be quantified by either using general mea-490

sures (prediction error variances and prediction intervals) or methods based on interpreting probabilities based on exceeding a

threshold. Prediction intervals are commonly used in DSM to quantify and communicate the uncertainty of spatial predictions,

and this has been applied in many Pedometrics studies. Chagumaira et al. (2021) found that the diverse group of stakeholders

(S1,S2, and S3), find methods of communicating uncertainty based on specific interpretation of the uncertainty to be clearer

and easier to interpret (e.g.,- the probability that the concentration of a micronutrient in grain does not exceed a nutritionally-495

significant threshold) than general measures such as prediction intervals. Chagumaira et al. (2022) showed that a further step,

from just computing conditional probabilities, should be taken to consider how uncertainty can be communicated to a range of

end-users for decision-making.

In our case study we have shown conditional probabilities of not exceeding a threshold can be computed for the spatial

predictive methods we used. These conditional probabilities will be used by stakeholders (S1 to S3) to make decisions where500

to establish the trials. Using the decision process, stakeholders will be provided with information about Sesol concentration not

exceeding a hypothetical threshold, 1.49 µg kg−1, to locate sites with inadequate Se supply (I3) in the soil at farm scale (I2). A

community would be listed for a trial because the predicted Sesol concentration falls below a threshold. Given the uncertainties

in the spatial predictions, it might be possible to set up trials at a location where there is sufficient Se supply. Sites for a trial

should only be set up if the prediction is found to be correct with respect to the threshold. Stakeholders should be assisted when505

making this decision. Chagumaira et al. (2022) showed that a critical probability value (Pt), at which a stakeholder would

judge an intervention to address MND deficiencies, can be elicited from a diverse group. The Pt at which stakeholders would

judge for an intervention reflects the stakeholders judgement of the losses under different outcomes.

The use of Pt to illustrate different proportion of mapped area at which P(Sesol < 1.49) exceeds different values of Pt,

where trials may be established, has been presented in Figures 8 and 9. Stakeholders can set a critical value of their choice510

considering their different circumstances and information needs. For example, a government research organisation with good
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and well established linkages with communities, confident that it can engage with minimum disruption if a local sample

shows Sesol > 1.49, can set Pt to 0.8. On the other hand a non-governmental organisation beginning local engagement with a

community, that maybe more nervous about project withdrawal, may set Pt to 0.8 and will have a smaller proportion of the

mapped area where the concentration of Sesol meets the condition of Sesol < 1.49.515

6.2 How the spatial predictive methods performed?

In our example, we considered the spatial prediction of Sesol with OK, robust REML E-BLUP and quantile random forest. Or-

dinary kriging and robust REML E-BLUP are models for spatial prediction that capture the spatial dependence of soil variation

(Webster, 2000; Webster and Oliver, 2007). Whereas, random forest are non-spatial and do not capture spatial dependence of

soil variation (Heuvelink and Webster, 2022), although this is the case spatial dependence will be implicitly captured through520

the input variables. We expected similar results under these models.

In our case study, Sesol was transformed by natural logarithms to make the assumption of normality plausible for robust

REML E-BLUP. The log transformed Sesol variable was used also for spatial prediction with random forest. After the trans-

formation, the data showed traits of being bimodal (see Figure S3). We took a further step to use more robust transformation,

Gaussian anamorphosis. The transformed Sesol (see Figure S2) was used for spatial prediction with OK.525

The cross-validation coverage probabilities are shown in Figure 7a,b and c. Our results shows that after cross-validation

of the OK model indicated it to be a good model and produced accurate predictions of the conditional mean. The coverage

probabilities of ordinary kriging, however were above and below the nominal coverage at lower and higher probabilities,

respectively but with quite small deviance. The coverage probabilities for robust REML nearly follow the nominal coverage

at lower probabilities only and then deviate the bisector at larger probabilities. Robust REML E-BLUP produced accurate530

predictions of the conditional mean and seems to underestimate the error. The random forest, have much better prediction

intervals when compared robust REML E-BLUP predictions. The coverage probabilities for random forest deviates from the

nominal coverage at higher probabilities. Therefore, the random forest overestimates the uncertainty. Spatial predictions of

random forest are less extreme and are central to the mean of the distribution. However, random forest has have the larger error

(Table 5).535

The coverage probabilities for the independent dataset was wide and nearly followed the bisector line for OK and random

forest. However, OK with GA and random forest deviate from the bisector in a opposite directions at larger probabilities.

Random forest has uncertainty is better quantified, so the tendency to shrinkage in the prediction is not necessarily a strength.

The mapped validations also show that OK with GA is arguably better. The validation with independent dataset also confirm

the underestimation of uncertainty by robust REML E-BLUP. The underestimation of uncertainty may be due to the fact we540

had to use robust methods, which may have down weighted observations in the tails too strongly, such that we do not see the

evidence for over-conservative uncertainty quantification by random forest.
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6.3 Way forward

This study aimed to address challenges of the future of pedometrics (Wadoux et al., 2021) by analysing a decision process

that can be used when mapping micronutrients at a national-scale in sub-Saharan Africa region. In study we aimed to how545

key users of soil information can be incorporated when designing surveys, mapping, and quantifying uncertainty of the spatial

predictions. Many digital soil mapping studies put emphasis of comparing performance of machine learning algorithms and

statistical methods of spatial prediction (e.g., Vaysse and Lagacherie, 2017; Szatmári and Pásztor, 2019; Makungwe et al.,

2021). It is not enough to only quantify uncertainty and leave it there. This is of little use for key users of soil information who

have to make decisions at farm-level, field-scale, regional level, national-level and at policy level. Lark et al. (2022) suggested550

the need of paying attention to ‘decision-focused’ measures of uncertainty regardlessly of the method of spatial prediction used.

Further steps such as investigating how stakeholders use probabilistic representation of uncertainty is of paramount importance.

Chagumaira et al. (2022) showed how discussions centred on how probabilistic representation of uncertain information, with

diverse stakeholders can be used to elicit critical probabilities at which they would recommend an intervention.

In the GeoNutrition project, we aim at using spatial information to target areas where specific interventions would be appro-555

priate to efficiently use the scarce financial resources. This is important because most people in countries south of the Sahara

(e.g., Ethiopia, Malawi, Zambia, and Zimbabwe) mainly rely on subsistence farming for their food and income. The decision

process presented in this paper would be important in addressing some questions raised when addressing micronutrient de-

ficiencies. This decision process may be applied for a different problem, e.g., decisions on sampling, and thorough decision

analysis is required when addressing such problems.560

7 Conclusions

This study aimed to address challenges of the future of Pedometrics by analysing a decision process that can be used when

mapping micronutrient at a national-scale in sub-Saharan Africa region. In study we aimed at showing how key users of soil

information can be incorporated when designing surveys, mapping and quantifying uncertainty of the spatial predictions. We

have shown how the decision-process for making decisions when using different methods for spatial prediction. The linear565

mixed models (ordinary kriging and robust REML E-BLUP) underestimate the uncertainty in the spatial predictions of Sesol,

whereas the random forest overestimate the uncertainty. However, the decision to which method is better in providing soil in-

formation remains difficult. This study has shown the importance of cross-validation and validation of conditional probabilities

used when quantifying uncertainty in spatial predictions using a critical probability threshold. This allows stakeholders S1 and

S2 to make rationale decisions based on their different circumstances and information needs.570

Appendix A

The variance parameters for Sesol transformed by were estimated from fitting an exponential variogram on an empirical vari-

ogram estimated by the method-of-moments (Figure A1, Matheron, 1965). The maximum likelihood variogram functions for
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the null model (coordinates filtering spatial trend) for Sesol concentration, and for enhanced vegetation index (EVI) added as a

predictor are shown in Figure A2.575
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Figure A1. Variogram functions for Sesol transformed by Gaussian anamorphosis estimated by (a) Matheron (1962) (b) Cressie and Hawkins

(1980), and (c) Dowd (1984) estimators
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Supplement

Table S1. Environmental covariates available.

Environmental Covariate Grid name

Mean annual temperature (◦C ∗ 10, 1979–2013) BIO1

Mean diurnal range (◦C ∗ 10, 1979–2013) BIO2

Mean annual precipitation (mm year−1, 1979–2013) BIO12

Mean rainfall seasonality (1979–2013) BIO15

Distance to inland water bodies (km) DOWS

Average night-time land surface temperature (◦C, 2001–2017) LSTN

Average day-time land surface temperature (◦C, 2001–2017) LSTD

Average enhanced vegetation index (2000–2016) EVI

Average MOD13Q1 band 1 reflectance (2000–2016) MB1

Average MOD13Q1 band 2 reflectance (2000–2016) MB2

Average MOD13Q1 band 3 reflectance (2000–2016) MB3

Average MOD13Q1 band 7 reflectance (2000–2016) MB7

Normalised difference vegetation index (2000–2016) NDVI

Soil adjusted vegetation index (200-2016) SAVI

Average annual net primary productivity (kg m−2, 2000–2015) NPPA

Variance annual net primary productivity (2000-2015) NPPS

Slope (%) SLOPE

Topographic index TIM

Elevation above mean sea level (m) MDEM
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Figure S1. Histogram with boxplot and QQ plot for soil soluble Se (Sesol) concentration in Malawi.
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Figure S2. Histogram with boxplot and QQ plot for Sesol transformed by Gaussian anamorphosis.
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Abstract

When planning a survey of soil properties it is necessary to make de-
cisions about the sampling density. Sampling density determines both
the quality of predictions and the cost of field work. In this study, four
approaches (offset correlation, prediction intervals, conditional proba-
bilities and implicit loss functions), that can be used to assess the impli-
cations of uncertainty in spatial predictions using prior information on
variability of the target properties, soil pH and selenium concentration
in grain, were presented to a diverse group of stakeholders in order to
determine an appropriate grid spacing. The background of the stake-
holder, i.e. the professional group and frequency of use of statistics in
job role, had no influence in the responses selected for each approach.
Our results show that there were variations in the selection made by
each method. Some were not well understood (conditional probability
and implicit loss function). The one which stakeholders favoured, offset
correlation, was not directly linked to decision making. Over 70% of the
stakeholders specified a correlation of 0.7 or more as a criteria for ade-
quate sampling intensity. The offset correlation will be more useful to
stakeholders, with little or no statistical background, who unable to ex-
press their requirements of information quality based on other measures
of uncertainty.
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1 Introduction

When planning a survey of soil properties it is necessary to make deci-
sions about the sampling density (e.g. Ball, 2019). Sampling density deter-
mines both the quality of predictions and the cost of field work. If we have a
reasonable estimate of variance parameters (i.e. variogram for ordinary krig-
ing) then we can compute kriging variances for different grid spacings and, in
principle, select an acceptable one (McBratney et al., 1981). In cases where
we do not know the variogram (as we have yet to sample), a variogram from
comparable regions can be used instead (Alemu et al., 2022). Alternatively, an
approximate variogram can be obtained from a reconnaissance study, allowing
for uncertainty, e.g., by a Bayesian approach (Lark et al., 2017). An average
variogram or some other generalised model can be extracted from published
studies (Paterson et al., 2018), and the variogram can also be elicited from
experts with relevant experience (Truong et al., 2013).

The kriging variance at some location depends only on the variogram and
the spatial distribution of observations (Webster and Oliver, 2007; Webster
and Lark, 2013). As the sampling density increases around a location, then
the kriging variance diminishes. Because field and analytical costs increase
in parallel with sampling density, the kriging variance, as a measure of the
resulting uncertainty, could be used to find an appropriate sample density
in which the data user is satisfied that the resulting information is sufficiently
precise, but the costs of obtaining it are also considered. However, Chagumaira
et al. (2021) found that for many users, the kriging variance is not an accessible
measure of uncertainty.

Kriging variances are a direct measure of uncertainty resulting from the
prediction process, and they are the variance of the prediction distribution.
Because the kriging prediction is unbiased it is the mean of the prediction
distribution (Webster and Oliver, 2007). On making the assumption of nor-
mality of the kriging errors, prediction intervals can be computed from kriging
variances. Prediction intervals reflect the spatial variability of the variable and
density of the samples (Webster and Oliver, 2007). They can be visualised on
a map. Interpretation of prediction intervals depends on both the width of
the interval and its location. However, prediction intervals were not preferred
by stakeholders as a method of communicating uncertainty when making deci-
sions, because stakeholders find it easier when uncertainty is tied to particular
decision (Chagumaira et al., 2021). Perhaps tying prediction intervals to a
particular decision may help with their interpretation.

Due to uncertainty, at a location where the true value indicates that an
intervention is needed, the prediction might indicate that it does not. We could
consider this as a general, decision related uncertainty measure: if we act at a
location where a decision is needed, what is the probability that the prediction
will be a false negative? We can compute the probability that the prediction
indicates that an intervention is not needed at a site, conditional on the true
value at that site’s indicating that an intervention is needed. Intervention, in
general, might be indicated by exceeding or falling below a threshold. These
conditional probabilities are computed from the kriging variance obtained from
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a variogram. Then the conditional probabilities can then be used to make a
decision about soil sampling, by selecting an appropriate grid spacing. Con-
ditional probabilities have not been used in this way before, but there might
be a way to tie uncertainty to a specific decision in a way which will help the
stakeholder to understand its significance Chagumaira et al. (2021)

A further way to develop the decision-focussed approach to sample plan-
ning is to consider the costs of sampling and the costs resulting from uncer-
tainty. This requires the data user’s loss function. A loss function expresses
the costs incurred resulting from using erroneous information to make a de-
cision for an intervention (Goovaerts, 1997). The precision of the estimate
and the loss function determines the expected loss when the estimate is used
to make a decision, we can then compute the expected loss for decision for a
grid of different samples, and considering the costs of the latter in comparison.
It may not be possible to define a loss function prior to making decisions on
soil sampling strategy because the cost of the errors are difficult to frame and
quantify. However, an implicit loss function, conditional on a logistic model
(i.e. a function of sampling effort and statistical information about the esti-
mates of the cost of errors) can be modelled as the loss function that makes a
particular decision on sampling effort rational (Lark and Knights, 2015). The
logistic model can be obtained from data from a previous survey or a from
a comparable region. Lark and Knights (2015) suggested that reflection on
the implicit loss function for different sample schemes, or competing projects,
might help decision-makers to arrive at loss functions which maybe regarded
as plausible.

Decisions on soil sampling can be based on more general measures of un-
certainty, that relate to sampling intensity, such as the offset correlation (Lark
and Lapworth, 2013). The offset correlation is a measure of the robustness of
the resulting map to arbitrary variation in the location of the origin of a fixed
regular sampling grid. The offset correlation increases as the uncertainty in the
map, attributable to sample density, decreases. It is not directly related to the
decision process but dependent on the variogram and the proposed sampling
spacing. The offset correlation might be a more intuitive uncertainty mea-
sure than prediction intervals and kriging variances. This is because people
can more easily grasp and evaluate bounded measures such as the correlation
(Hsee, 1998).

In this study we aimed to find out whether diverse groups of stakeholders
are able to make decisions on soil and crop sampling strategies, in particular
sampling density using soil pH and selenium concentration in grain (Segrain),
with the methods described above. We aimed to address the following ques-
tions: (i) can stakeholders use the different approaches consistently? (ii) do
the stakeholders have a preference? and (iii) does their use/preference depend
on their background and experience?

In the next section of this paper, we describe in detail the test approaches.
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2 Theory

2.1 Prediction interval

Some unknown quantity at a location (e.g. soil pH or Segrain) is char-
acterised by a prediction distribution conditional on the data and statistical
model. The kriging variance at the unsampled location, x0, is defined as

σ2
K = E[{Z(x0)− Z̃(x0)}2], (1)

where Z̃(x0) is a prediction of the random variable Z(x0). The kriging predic-
tion is a weighted average of the data

Z̃(x0) =
N∑

i=1

λz(x0), (2)

where z(x0) is the data and λ are the kriging weights (Webster and Oliver,
2007). Then the kriging variance, σ2

K is given by:

σ2
K = E[{Z(x0)− Z̃(x0)}2]. (3)

Cross-validation predictions of the statistical model need to be examined
by exploratory analysis of the kriging error, ε(x0) = {z(x0)− Z̃(xo)} to check
if the assumption of the normality holds. The kriging predictor is unbiased
and the mean of the errors is zero, and their standard deviation is equal to the
kriging standard deviation, σK, from kriging. Based on this, a 95% prediction
intervals can be computed as:

[
Z̃(x0)− 1.96σK(x0), Z̃(x0) + 1.96σK(x0)

]
. (4)

The prediction distribution may also be obtained on a block support–for ex-
ample if predictions are required at the scale of a farm mean or a mean for
an administrative region. The same approach holds to the derivation of a
prediction interval.

2.2 Conditional probability

We can calculate the joint probability that a location requires an inter-
vention, and that the kriged estimate does not indicate this. If Z̃(x0) is the
prediction location of interest, and z(x0) the value of the variable at x0 then
ε(x0) is the error of the kriging predictions. The covariance of z(x0) and ε(x0)
is:

Cov [z(x0), ε(x0)] = Var [Z(x0)]− λTc, (5)

where λ denotes the vector of kriging weights for observations used to make
the prediction, and c denotes the vector of covariances between each of these
observations and Z(x0). We can therefore, specify the joint distribution of
{z(x0), ε(x0)}, assuming a normal random variable and prediction errors. From
this it is possible to compute the conditional probability that Z̃(x0) ≥ zt given
that z(x0) < zt, i.e. the probability, given that an intervention is required at
x0 that, due to error in prediction, the mapped variable does not show this.
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2.3 Implicit loss function

The loss function is a function of the error of Z̃, the kriging estimate of
Z, as an estimate of the true unknown value, z, L(Z̃− z). The loss function is
explained in greater detail by Journel (1984), Goovaerts (1997) and Lark and
Knights (2015). According to Journel (1984) a general linear loss function is
defined as:

L(Z̃ − z) = α1|Z̃ − z| if Z̃ <z

= α2|Z̃ − z| if Z̃ ≥ z. (6)

The parameters α1 and α2 have positive real values. The coefficient α2 is the
loss per unit error of underestimation and α1 is the loss per unit of error of
overestimation. For example, If an intervention is required if z is less than
some threshold then α2 is the cost per unit value of z of an unnecessary in-
tervention. The slopes, α1 and α2 define the asymmetry of the loss function.
The loss function can be symmetrical, i.e. penalizing overestimation and over-
estimation equally; or can be asymmetrical because over-and-underestimation
have different consequences. The asymmetry of the loss function is the ratio
of the loss per unit value by which a quantity is underestimated to the loss per
unit value of an overestimation (Lark and Knights, 2015). The asymmetry, a,
is obtained by

a =
α2

α1

. (7)

The loss is independent of the absolute value of z. If the loss function
depends only on the estimation error, then z can be set to zero, without loss
of generality and the expected loss can be computed as a function of the
error variance, and so of the sample size (Lark and Knights, 2015). Increasing
sample size reduces the minimum expected loss in so far as it reduced the
error variance. Therefore, the cost of obtaining n samples can be measured at
which the marginal cost of additional sample point is equal to the reduction in
expected loss that single sample achieves (Goovaerts, 1997). However, it maybe
difficult to define a loss function prior to making decisions about sampling.
The losses may not be easy to quantify, e.g. social costs of failing to intervene,
costs of unnecessary interventions, loss of confidence in the decision-making
organisation. One sampling campaign does not necessarily map on to one use
of the data. How can we consider the value of future use of the information?
For example, there will be more costs for errors for underestimating Segrain
concentration than underestimating soil pH. The implicit loss function aims
to help stakeholders to reflect in possible loss functions for the problem in
a decision-making setting. The implicit loss function is a loss function that
makes a specified sample size, n, a rational choice, given the marginal costs.
That is to say, it is the loss function implied by a choice of n̄, assuming this is
rational.

The implicit loss function is conditional on a logistic model, that ex-
presses the marginal costs of sampling exercise and the conditional distribu-
tion of z as a function of effort (Lark and Knights, 2015). The implicit loss
function is obtained by finding ᾱ1 (given asymmetry), such that
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L̆ (n̄− 1|ᾱ1, ᾱ2,ϕ)− L̆ (n̄|ᾱ1, ᾱ2,ϕ) = C(n̄)− C(n̄− 1), (8)

where n̄ is the specified number of sample, C(n) is the function that returns the
cost of n samples and ϕ is a vector of variogram parameters, so kriging variance
is a contributor. The asymmetry can be set at different values, or inferred from
other elicited opinions of the stakeholder group (Lark and Knights, 2015, e.g.,).
Lark and Knights (2015) suggested that a stakeholder group might consider
an implicit loss function for different n̄ as starting points in the elicitation of
a sample size, or compare implicit loss function for different projects given
different partitions of a total budget between them. No attempt has been
made to elicit opinions from stakeholders on implicit loss function, so we tried
it in the current project.

2.4 Offset correlation

The offset correlation is a measure of the correlation that is expected
between the kriging predictions, Z̃1(x0), made from the first square grid, of
interval ζ, and predictions, Z̃2(x0), made from the second grid, a translation
of the first grid by ζ/2 in both directions. The offset correlation in described
in greater detail by Lark and Lapworth (2013). The correlation of the two
kriging predictions can be computed by:

ρZ̃1,Z̃2
=

CZ̃1,Z̃2
(x0)√

σ2
KZ̃1

σ2
KZ̃2

, (9)

where CZ̃1,Z̃2
(x0) is the covariance Z̃1(x0) and Z̃2(x0). σ2

KZ̃1

and σ2
KZ̃2

are the

kriging variances of the predictions from the first and second grid, respectively.
The offset correlation depends on x0, and is smallest at the location furthest
from points on either grid. This minimum offset correlation is used to evaluate
predictions from a grid spacing ζ. Offset correlation is bounded on the interval
[0,1], which makes it intuitively easy to interpret as an uncertainty measure.
The offset correlation increases as the uncertainty in the map, attributable to
sample density, decreases. The denser the grid the more consistent the maps
and the offset correlation will be 1 if the maps are identical and 0 if they are
entirely unrelated to each other.

3 Materials and methods

3.1 Basic approach

We used four methods to assess uncertainty in relation to sampling den-
sity, considering the problem of measuring a soil property relevant to crop
management: soil pH, and a property of the crop: Segrain concentration. We
used variograms from a national survey in Malawi for each variable (Gashu
et al., 2021) to obtain sampling densities for further notional sampling for an
administrative district in Malawi, Rumphi District, with an area of 4,769 km2.
The outputs were presented to participants. The participants considered each
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method in turn and were asked to select a sampling grid density based on the
method. The key questions asked were:(i) has the method helped you assess
the implication of uncertainty in spatial prediction in as far as it is controlled
by sampling? and (ii) which of these methods was easiest to interpret?. Fi-
nally, the participants were asked to rank the method in terms of ease of use.
Evaluation of the test methods were done using an online questionnaire on
Microsoft Forms.

The elicitation was conducted online using Zoom Video Communications
(2022) in two sessions, 26th and 28th April 2022. There were two sessions in
order to accommodate participants from different time zones, and manage the
participants in smaller groups to allow for questions and feedback. The in-
vited participants self-identified as (i) agronomist or soil scientist or (ii) public
health or nutrition specialists. The participants also self-assessed their statis-
tical/mathematical background and their frequency of use of statistics in their
job role (perpetual, regular, occasional use).

We invited professionals working in agriculture, nutrition and health
at civic organisations, universities, government departments from Ethiopia,
Malawi and wider GeoNutrition sites (United Kingdom, Zambia and Zim-
babwe). In total we had 26 participants (18 were agronomist or soil scientist
and 8 public health or nutrition specialists). Ethical approval to conduct this
study was granted by the University of Nottingham, School of Biosciences
Research Ethics Committees (SBREC202122022FEO) and participants gave
informed consent to their participation and subsequent use of their responses.

In the exercise, an introductory talk was given to explain the study’s
objectives. During the talk, we explained the four test methods (offset corre-
lation, prediction intervals, conditional probabilities and implicit loss function)
and how they can be used to assess the implications of uncertainty in spatial
predictions to determine appropriate sampling grid space for a geostatistical
survey. We explained the structure of the questionnaire to the participants.
We emphasized to the participants that we were not testing their mathemati-
cal/statistical skills and understanding but rather were testing the accessability
of the methods.

Evaluation of the test methods was done through a questionnaire, as
shown on Figure 1. Using the first four questions, Q1 to Q4, we wanted to find
out if the method helped to identify a sampling grid spacing. On Q5, we wanted
the participants to assess the test methods in terms of their effectiveness in
finding an appropriate grid spacing. We asked the participants to rank these
methods in an order of their effectiveness, in their experience, and in terms
of finding a level of uncertainty that they were able to tolerate when deciding
about a sampling grid spacing. We asked them to put rank 1 as the most
effective method and rank 4 the least.

The offset correlation was the first method presented to the participants.
This was followed by prediction intervals and conditional probabilities. The
implicit loss function was the final method presented to the participants. We
followed this order, we started with a measure we thought all our stakeholder
would understand and move on to more complex methods.
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3.2 Test Methods

3.2.1 Statistical modelling and spatial prediction of grain Se concentration
and soil pH

We used the data from a geostatistical survey conducted in Malawi for
the GeoNutrition project (Gashu et al., 2021). Field sampling was undertaken
to support the spatial prediction of micronutrient concentration in crops and
soil across Malawi. Detailed description of soil and crop sampling in Malawi
are presented by Gashu et al. (2021) and Botoman et al. (2022), and the full
data description is provided by Kumssa et al. (2022).

We undertook exploratory analysis of soil pH and Segrain concentration
using QQ plots, histograms and summary statistics to check whether there was
need for transformation of the variables for the assumption of normality. The
data for Segrain concentration were skewed and it was necessary to transform
them to natural logarithms. The variance parameters for both soil pH and
Segrain concentration were estimated by residual maximum likelihood using the
likfit procedure (Diggle and Ribeiro, 2010) for the R platform (R Core Team,
2022) with a constant mean as the only fixed effect. These variance parameters
were used in the subsequent test methods. The thresholds we considered, in
this study for the prediction intervals and conditional probabilities were soil
pH of 5 and Segrain concentration of 38 µg kg−1. The threshold for soil pH is 5
in Malawi, such that if the pH at a location falls below 5, it would be necessary
to apply lime (Chilimba et al., 2013). The threshold Segrain concentration is 38
µg kg−1, such that a serving of 330g of grain flour provides a third of the daily
estimated average requirement of Segrain for an adult woman (Chagumaira
et al., 2021). The intervention for soil pH was liming, and Segrain was provision
of fortified food.

3.2.2 Prediction intervals

Using the variance parameters estimated in Section 3.2.1, we evaluated
kriging variances at the centres of cells of square grids of different spacings. We
considered minimum and maximum grid spacings of 0.05 and 125km, respec-
tively, with an increment of 0.5km. We then computed the cell-centred block
kriging variance the spacings we were considering by block kriging (Webster
and Oliver, 2007). We considered different prediction for each variable but
the prediction interval was fixed, depending only on grid spacing. The three
predictions of soil pH were 4.8, 5.5 and 6.0 and those of Segrain were 20, 55 and
90 µg kg−1. The participants were presented, in a chart, predictions of soil pH
and Segrain concentration in relation to a threshold, such that if a prediction
falls below zt an intervention is needed. The chart consisted of (a) box plot of
the distribution of the measured variable, (b) a graph of the lower and upper
prediction intervals for the prediction for grid spacings from 0 to 120km, and
(c) lines indicating the zt and prediction (see Figure 2a, S7 and S8). From
the chart, we asked the participants the grid spacing that gives the widest
prediction interval that would be acceptable if the mapped predictions were to
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be used to make decisions about soil management or interventions to address
human Se deficiency.

Figure 2a: An example of a chart, for prediction intervals, with prediction of
soil pH of 5.7 with prediction intervals and in relation to a threshold of pH =
5.0.

3.2.3 Conditional probability

The conditional probability is a measure of uncertainty in terms of the
risk of failing to intervene at some location given that an intervention is needed.
We presented the participants with a chart of conditional probabilities plotted
against grid spacing is shown on Figure 2b and Figure S9, and this probability
increases with grid spacing. The conditional probability is bounded on an
interval [0,1]. If the prediction of Segrain or pH was below the threshold, zt,
an intervention is needed. We then asked the participant at what grid spacing
they thought corresponded to the largest acceptable value of this probability.

3.2.4 Implicit loss functions

In order to compute the implicit loss function, we needed a cost model for
Rumphi district. The cost model for was computed from the rate of sampling
during the geostatical survey conducted at national-scale in Malawi for the
GeoNutrition project (Gashu et al., 2021). We used the function defined in
Lark and Knights (2015) to return the costs of n samples over an area A km2:
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Figure 2b: An example of the chart of conditional probabilities plotted against
grid spacing for (a) soil pH and (b) Segrain concentration.

C(n) = ω + vn+ βAtr, (10)

where ω are the fixed costs, v cost of laboratory analysis per unit, and β the
field costs per work day per team. The variable tr is time taken to sample per
km2 at a density of r per km2. The variable tr is a function of (i) the total
time spent sampling per unit area, (ii) sample density, and (iii) square root of
the sampling density. These variables were obtained from extracting from the
geostatical survey conducted at national-scale in Malawi for the GeoNutrition
project: (i) number of points sampled, (ii) mean time spent travelling per
sample (excluding periods of lunch break), (iii) mean time spent at sample site,
(iv) total areas sampled that day, and (v) length of sampling day. A detailed
description of how the costs were computed is presented in the Supplement.

We fixed the asymmetry ratio as 1.5 following Lark and Knights (2015),
implying a bigger loss for overestimation of the variables (i.e. failing to in-
tervene of soil pH or Segrain are smaller than prediction). With the implicit
loss function we assumed that the sample density is fixed (e.g. on budgetary
grounds) and computed the loss function which would make that a rational
choice. We presented three specified implicit loss functions for predictions of
Segrain for Rumphi district, with an area of 4,769 km2 with sampling densities
fixed at 10, 20 and 40km. Figure 2c and Figure S10, shows the implicit loss
function for Segrain. We then asked the participants to identify the loss function
implied by the sampling decision that looked more plausible to make decisions
about interventions to address human Se deficiency.
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Figure 2c: An example of specified implicit loss functions for predictions of
Segrain concentration at a 10km grid spacing.

3.2.5 Offset Correlation

We presented the participants with pairs of example maps of soil pH and
Segrain concentration, each pair being based on a different grid spacing, and so
with different offset correlation. We also showed scatter plots that illustrated
the strength of the correlation. Figure 2d, shows an example of pairs of maps
of Segrain concentration and the corresponding scatterplot (see Figure S5 and
S6). The correlation plots showed the kriging predictions for soil pH and Segrain
concentration predicted with parameters estimated in Section 3.2.1. We asked
the participants the smallest offset correlation that would be acceptable if one
of the maps were to be used to make decisions based on the soil or grain
property.

3.3 Data Analysis

3.3.1 Test methods

The results for Q1 to Q4 were presented as contingency tables. The rows
of each table correspond to the response (e.g. the different grid spacings) and,
the full table, the columns correspond to the frequency of use of statistics,
nested, within professional group and nested within variable used (soil pH or
Segrain). Contingency tables allowed us to test the null hypothesis of random
association of responses with the different factors in the columns. The expected
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Figure 2d: The pairs of example maps of Segrain concentration and correspond-
ing scatterplot for offset correlation 0.4.

number of responses under the null hypothesis, ei,j in a cell [i, j], is a product
of row (ni) and column (nj) totals dived by the total number of responses (N),
and this the null hypothesis of the contingency table which is equivalent to an
additive log-linear model of the table. An alternative to the additive model for
the contingency table, is the saturated model that has an extra (nr−1)(nc−1)
term that allows for interaction amongst the columns and tables of the table.
The proportions of observed responses oi,j may differ from ei,j in a cell [i, j] and
the likelihood ratio statistic or deviance, L, can be used to provide evidence
against the null the null hypothesis. The likelihood ratio statistic is computed
by

L = 2
∑

i=1

∑

j=1

oi,jlog
oi,j
ei,j

. (11)

where L has an approximate χ2 distribution under the null hypothesis of ran-
dom association between the rows and columns of the table, with (nr−1)(nc−1)
degrees of freedom (Christensen, 1996; Lawal, 2014). We fitted the log-linear
models using the loglm from the MASS package (Venables and Ripley, 2002)
for the R platform.

A contingency table can be partitioned to evaluate whether there are
differences in the responses of the participants based on (i) variable used in the
test method, (ii) professional group and (iii) by frequency of use of statistics.
In Figure 3, we illustrate how the contingency table can be partitioned. The
table can be partition into components corresponding to pooled table and
subtables of the full table.
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The full table in Figure 3, was partition into subtables for soil pH (Subtable 1
in the figure), and Segrain concentration (Subtable 2 in the figure). Then the
pooled table completes the partition. The degrees of freedom and deviances
for the three table sum to the degrees of freedom and deviance of the full
table. Using the contingency table, we could conclude if there are differences
in responses for the two variables. The full table in can further be partitioned,
in a similar way, by the background of the respondents i.e., professional group
and frequency of use of statistics.

In our study, we wanted to find out if the responses recorded by the
stakeholders depended on the variable used (soil pH or Segrain concentration),
and background of the respondent. We expected the responses to differ. We
thought the stakeholders would have different perceptions of the impacts of the
uncertainty for soil pH and Segrain concentration. There were more agronomist
or soil scientists than public health or nutrition specialists in the meeting, and
we expected the priorities of the groups to differ when making interventions
for soil pH and Segrain concentration. We also thought the frequency of use of
statistics would influence the choice of method used to select an appropriate
grid spacing.

We first tested for differences responses recorded for each test method, by
the variable used (soil pH or Segrain concentration) using contingency tables.
The responses from stakeholders in different professional groups were pooled
within the two variables, as illustrated by the Pooled table 1 on Figure 3. This
gave us a six (responses) by two (variables) contingency table with 5 degrees
of freedom for the questions corresponding to offset correlation, prediction
intervals and conditional probabilities (Q1 to Q3). However, for the implicit
loss function we did not consider this because we only had a loss function for
Segrain concentration.

Second, we considered if the differences in the responses depended on
the professional group of the respondent. Finally, we considered whether the
frequency of use of statistics in their job role had an impact on the responses
recorded by the respondents.

For some questions, we noted differences in the responses when pooled
within variable used (soil pH or Segrain concentration) and there was no differ-
ences in responses in professional groups and frequency of use of statistics for
all questions. We further analysed the pooled tables or separate subtables to
examine if the responses where uniformly distributed. The null hypothesis is
a random distribution, if this is rejected then the shape of the distribution can
be further examined.

3.3.2 Assessment of the method

The responses for the Q5 were tabulated with the methods as the columns
and ranks as the rows. The participants ranked their preferred method first.
However, in our analysis we reversed the order by assigning a score of 4 for
the most preferred method and 1 for the least. We computed the mean ranks,
r̄i, for each method for all respondents. We then separated the respondents by
their professional group and computed the mean ranks.
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Finally we separated the respondents by their frequency of use of statistics in
their job role. Under a null hypothesis of random ranking for set of k ranks,
the expected mean rank is (k + 1)/2. The evidence against this hypothesis is
measured a statistic distributed as χ2(k − 1):

12n

k(k + 1)

k∑

i=1

{
r̄i −

k + 1

2

}
, (12)

where n is the total number of rankings (Marden, 1996).

4 Results

4.1 Test methods

4.1.1 Method 1: Offset correlation

The full contingency table for Q1, for offset correlation, is presented as
Table 1a. The table shows how many individuals selected the given responses
for offset correlation. This table is according to variable used (soil pH vs.
Segrain), professional group and frequency of use of statistics. Table 1b shows
how many individuals selected a given response to Q1, for offset correlation,
when columns are pooled within variable used, soil pH or Segrain concentration.
Table 1c shows the pooled counts of the responses for Q1. There were no
differences in the responses of the when the columns were pooled by the variable
used, soil pH vs. Segrain concentration, p = 0.656 (Table 2).

There were no differences in the responses when the columns were also
pooled within professional groups (p = 0.491) and frequency of use of statistics
(p = 0.595). Further analysis of the question on offset correlation was based
on pooled counts, see Table 1c. There was strong evidence to reject the null
hypothesis that the responses are uniformly distributed (p = 0.003). Figure 4
shows the responses of how all the participants responded to Q1, for offset
correlation.

Table 1b: A subtable showing how many individuals selected a given response
to Q1, for offset correlation, when columns are pooled within variable used
(soil pH vs. Segrain concentration).

Response soil pH Segrain
Offset=0.4 1 3
Offset=0.5 2 1
Offset=0.6 3 4
Offset=0.7 10 6
Offset=0.8 6 9
Offset=0.8 4 3
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Table 1c: Pooled responses given to the question on offset correlation.

Response Pooled counts
Offset=0.4 4
Offset=0.5 3
Offset=0.6 7
Offset=0.7 16
Offset=0.8 15
Offset=0.8 7

Table 2: Analysis of the question on offset correlation, Q1, according to vari-
able used, professional group and frequency of use of statistics.

Deviance Degrees of P
(L2) freedom

Full contingency table analysis
Full table 54.57 55 0.491
Pooled by variable used (pH v. Segrain) 3.29 5 0.656
Pooled by professional group 6.50 5 0.260
Pooled by frequency of use of statistics 8.35 10 0.595

Subtable–pooled counts: variable used
Soil pH 27.01 25 0.352
Segrain 24.2 25 0.507

Subtable–pooled counts: professional group
Agronomist or soil scientist 26.25 25 0.394
Public health or nutrition specialist 21.81 25 0.646

Subtable–pooled counts: frequency of use of statistics
Perpetual use of statistics 8.99 15 0.878
Occasional use of statistics 18.17 15 0.254
Regular use of statistics 19.06 15 0.211

Subtable–pooled counts
Responses are uniformly distributed 17.69 5 0.003

Most of the respondents selected offset correlation of 0.7 as the smallest offset
correlation that would be acceptable if one of the maps were to be used to
make decisions based on the soil or grain property. We extracted the grid
spacings, for soil pH and Segrain, corresponding to the selected offset correlation
of 0.7. The spacings were extracted from a plot of offset correlation against grid
spacing obtained from the variance parameters of each variable (see Figure S4).
The grid spacing for soil pH is 25km and for Segrain is 12.5 km. The grid spacing
corresponding to the offset correlation for each variable were computed from
the variogram of the variable.
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Figure 4: Bar charts showing how the participants responded to the Q1 for
offset correlation.

Table 3: Analysis of the question on prediction interval, Q2, according to
variable used, professional group and frequency of use of statistics.

Deviance Degrees of P
(L2) freedom

Full contingency table analysis
Full table 56.0 55 0.437
Pooled by variable used (pH v. Segrain) 0.972 5 0.965
Pooled by professional group 4.36 5 0.498
Pooled by frequency of use of statistics 14.5 10 0.152

Subtable–pooled counts: variable used
Soil pH 23.8 25 0.531
Segrain 31.2 25 0.181

Subtable–pooled counts: professional group
Agronomist or soil scientist 26.5 25 0.381
Public health or nutrition specialist 25.1 25 0.455

Subtable- pooled counts: frequency of use of statistics
Perpetual use of statistics 9.68 15 0.840
Occasional use of statistics 16.88 15 0.330
Regular use of statistics 15.08 15 0.450

Subtable- pooled counts
Responses are uniformly distributed 7.77 5 0.169
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4.1.2 Prediction interval

There were no differences in the responses when pooled within the vari-
able used, p = 0.656, for prediction intervals (Table 3). We then pooled the
responses within the professional groups, and there was no evidence to reject
the null hypothesis (p = 0.498). Also, there were differences when responses
were pooled within frequency of use of statistics, p = 0.152. Therefore, further
analysis of the question on prediction intervals was based on pooled counts
of responses. There was no evidence to reject the null hypothesis that the
responses are uniformly distributed (p = 0.169). Figure 5 shows the bar charts
of how all the participants responded to the Q2 for prediction intervals. For
this method, there no clear choice of grid spacing for sampling for soil pH and
Segrain.
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Figure 5: Bar charts showing how the participants responded to the Q2 for
prediction intervals.

4.1.3 Conditional probabilities

Table 4 shows the results for partitioning the contingency table for the
question on conditional probabilities, Q3. There was strong evidence to reject
the null hypothesis when the columns were pooled by variable used, p ≤ 0.001.
Therefore, further analysis was based on separate subtables for soil pH and
Segrain concentration. For both variables, there were no differences in the
responses when the columns were pooled within professional groups and fre-
quency of use of statistics. For soil pH there was strong evidence to reject the
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null hypothesis that the responses are uniformly distributed (p ≤ 0.001). A
similar result was found for Segrain concentration (p ≤ 0.001). The bar charts
for the responses for the question on conditional probabilities for soil pH are
presented in Figure 6a. The grid spacing chosen by the participants for soil pH
is 60km. The responses for Segrain concentration are presented in Figure 6b.
The grid spacing selected by the respondents was 40km.

Table 4: Analysis of the question on conditional probabilities, Q3, according
to variable used, professional group and frequency of use of statistics.

Deviance Degrees of P
(L2) freedom

Full contingency table analysis
Full table 60.6 55 0.281
Pooled by variable used (pH v. Segrain) 26.7 5 < 0.001
Pooled by professional group 5.32 5 0.378
Pooled by frequency of use of statistics 14.5 10 0.152

Subtable–pooled counts: variable used
Soil pH 12.1 25 0.986
Segrain 21.8 25 0.647

Soil pH subtable–pooled counts: professional group
Pooled within professional group 4.48 5 0.483
Agronomist or soil scientist 3.10 10 0.979
Public health or nutrition specialist 4.50 10 0.922

Soil pH subtable–pooled counts: frequency of use of statistics
Pooled within frequency of use of statistics 0.889 10 1.00
Perpetual use of statistics 4.50 5 0.480
Occasional use of statistics 4.36 5 0.499
Regular use of statistics 2.33 5 0.802

Soil pH subtable–pooled counts
Responses are uniformly distributed 50.15 5 < 0.001

Segrain subtable–pooled counts: professional group
Pooled within professional group 4.77 5 0.445
Agronomist or soil scientist 11.0 10 0.361
Public health or nutrition specialist 6.09 10 0.808

Segrain subtable–pooled counts: frequency of use of statistics
Pooled within frequency of use of statistics 9.55 10 0.481
Perpetual use of statistics 1.73 5 0.886
Occasional use of statistics 5.55 5 0.353
Regular use of statistics 4.99 5 0.417

Segrain subtable–pooled counts
Responses are uniformly distributed 36.77 5 < 0.001
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Figure 6: Bar charts showing how all the participants responded to the Q3 for
conditional probabilities for (a) soil pH and (b) Segrain concentration.

Table 5: Analysis of the question on implicit loss function, Q4, according to
variable used, professional group and frequency of use of statistics.

Deviance Degrees of P
(L2) freedom

Full contingency table analysis
Full table 8.91 10 0.541
Pooled by professional group 0.49 2 0.781
Pooled by frequency of use of statistics 1.49 4 0.828

Subtable–pooled counts: professional group
Agronomist or soil scientist 2.33 4 0.676
Public health or nutrition specialist 6.09 4 0.193

Subtable- pooled counts: frequency of use of statistics
Perpetual use of statistics 1.73 2 0.422
Occasional use of statistics 1.73 2 0.422
Regular use of statistics 3.96 2 0.138

Subtable- pooled counts
Responses are uniformly distributed 54.00 2 < 0.001

4.1.4 Implicit loss functions

The results for partitioning the contingency table for implicit loss func-
tion, Q4, are presented in Table 5. There were no differences in the re-
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sponses when the columns of the table were pooled within professional groups
(p = 0.781) and frequency of use of statistics (p = 0.828). Further analysis of
the question on implicit loss function was based on pooled counts of responses.
There was strong evidence to reject the null hypothesis that the responses are
uniformly distributed (p ≤ 0.001). The bar charts for the responses pooled
counts for all respondents are shown on Figure 7. The grid spacing chosen by
the participants for Segrain concentration is 20km.

4.2 Assessment of the test methods

The question on ranking of the method was analysed in three ways.
Firstly, we computed the mean ranks for all participants and tested for the ev-
idence against the null hypothesis of random ranking. There is strong evidence
to reject the null hypothesis of random ranking, p ≤ 0.001 (Table 6). Second,
the mean ranks for each professional groups were computed and there was
strong evidence to reject the null hypothesis of random ranking (p ≤ 0.001).
Thirdly, we separated the participants according to their frequency of use of
statistics in the job role, and computed the mean ranks. There was strong
evidence to reject the null hypothesis of random ranking (p ≤ 0.001).
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Figure 7: Bar charts showing how all the participants responded to the Q4 for
implicit loss function.
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Table 6: Analysis of Q6 according to professional group and level of use of
statistics in job role

Test Statistic Degrees P ∗

(X2) of Freedom
All respondents 61.1 3 < 0.001

Professional group
Agronomist or soil scientist 49 3 < 0.001
Public health or nutrition specialist 15.6 3 < 0.001

Frequency of use of statistics
Perpetual user of statistics 34 3 < 0.001
Occasional user of statistics 28.5 3 < 0.001
Regular user of statistics 49.8 3 < 0.001
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Figure 8: Ranking of test methods in terms on the most effective: (a) by
all respondents, professional group: (b) agronomists or soil scientist and (c)
public health or nutritionist specialists, and frequency of use of statistics: (d)
occasional use, (e) regular use and (f) perpetual use.
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The offset correlation was ranked as the most effective by all respon-
dents (Figure 8a) and implicit loss function as the least effective. Both profes-
sional groups (i.e. agronomist or soil scientist and public health or nutrition-
ist) ranked offset correlation first but differed in the second and least ranked
methods (Figure 8b to 8c). Public health or nutrition specialists ranked sec-
ond prediction intervals and implicit loss function as the least effective. The
agronomist or soil scientist group ranked prediction intervals as the least ef-
fective and conditional probabilities as second.

When respondents were separated by their frequency of use of statis-
tics, offset correlation was also ranked first (Figure 8d to 8f). Those who use
statistics occasionally, in their job role, ranked the implicit loss function as the
second best and the prediction intervals the least. Conditional probabilities
were ranked second and implicit loss function as the least effective by those
who regularly use statistics in the job role. Those who use statistic at all times,
ranked conditional probabilities second. Prediction intervals and implicit loss
functions were ranked last.

5 Discussion

In this study, we presented to diverse groups of stakeholders, four meth-
ods (offset correlation, prediction intervals, conditional probabilities and im-
plicit loss functions) to support decisions on sampling grid spacing for a geo-
statistical survey using soil pH and Segrain.

We wanted to find out if the stakeholders had a preference among the ap-
proaches presented to them. Offset correlation was ranked first as the method
the stakeholders found easy to interpret (see Figure 8), and over 70% of the
stakeholders specified a correlation of 0.7 or more as a criteria for adequate
sampling intensity. During the feedback session, stakeholders highlighted that
they were more familiar with the concept of correlation, with a closed interval
of [0,1]. This explains why there more consistent responses under this method.
Our results are consistent with findings of Hsee (1998), that relative measures
of some quantity (Hsee gives an example of the size of a food serving rela-
tive to its container) are more readily evaluated than absolute measures (the
size of serving). An easy-to-evaluate attribute, such as the bounded correla-
tion of [0,1], has a greater impact on a person’s judgement of utility. Hsee
(1998) describe this as the “relation-to-reference” attribute. It is therefore,
not surprising that the offset correlation is highly-ranked.

The offset correlation will be more useful for stakeholders who are not
able to express their quality requirement for information in terms of quan-
tities such as kriging variance. Furthermore, it is an intuitively meaningful
measure of uncertainty, it recognises that spatial variation means that maps
interpolated from offset grids will differ but that the more robust the sampling
strategy the more consistent they will be. There is a paradox here, however, in
that the previous study Chagumaira et al. (2021) showed that interpretation
of survey outputs in terms of uncertainty was easiest for stakeholders with
measures related directly to a decision made with the information. The offset
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correlation is a general measure, and the absolute magnitude of uncertainty has
greater bearing on a specific decision. Indeed, Lark and Lapworth (2013) pro-
posed the offset correlation particulary with general baseline surveys in mind.
There is more research needed to develop sound but accessible ways to engage
stakeholders with uncertainty consistent across planning and interpretation.

All the stakeholders ranked conditional probabilities second. Under this
method, the stakeholders selected spacings where conditional probabilities was
1.0 or very close, i.e. the prediction equivalent to the overall mean. This
suggest that the stakeholders may not have fully understood the method. This
finding is consistent with the general view that users of information commonly
find probabilities difficult to interpret (Spiegelhalter et al., 2011). Because
probabilities are bounded [0,1], the ‘relation-to-reference” attribute effect by
Hsee (1998) may explain the previous preference for conditional probabilities
(Jenkins et al., 2019; Chagumaira et al., 2021), but stakeholders still struggle
to interpret them correctly. Perhaps if the problem had been framed in a
different way, the stakeholders may have understood this method much better.
More work is needed to investigate if framing the conditional probabilities in
a different way would improve the judgement of utility of the stakeholders.
More examples and more illustration may be needed in order to ‘prime’ the
participants before the exercise.

Prediction intervals were ranked third by all the respondents, but there
was no evidence against the null hypothesis of random selection among the
available spacings. During a feedback session, the stakeholders cited difficul-
ties of assessing the significance of a given prediction interval given that it can
be associated with different prediction values. For very large or small predic-
tion values the uncertainty is immaterial, it is near decision threshold that
it becomes important. Similarity, prediction intervals were not highly ranked
by stakeholders for communicating uncertainty in maps (Chagumaira et al.,
2021). Similar reasons were given the respondents. We expected that predic-
tion intervals to be of greatest value for specific interpretation of particular
sites, but would be of limited value for survey planning.

The implicit loss functions was the lowest-ranked method. The group
also commented that they had difficulties understanding this method, and
most people opted for the central value. Loss functions are not readily ac-
cessible. It is difficult to define a loss function because it requires the cost of
the errors, and we tried to show stakeholders some consistent approach with
some plausible design. The fact that they did not understand the loss func-
tions, shows there is need for more specific examples to help stakeholders think
about loss function and their implications. It might help the stakeholders to
provide some quantitative information about the costs of the survey, cost as-
sociated with intervention campaigns and costs of the impacts on MNDs on
a country’s gross domestic productivity. A reflection of these would allow the
stakeholder to use these implicit assumptions when they were making decisions
for selecting a fixed grid spacing for working with (Lark and Knights, 2015).
Therefore, more work is need to refine this approach.

The background of the stakeholders, i.e., professional group and fre-
quency of use of statistics, had no influence on their responses for all the
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methods. However, the background of the stakeholders had an influence on
their ranking of the methods in terms of their effectiveness. The offset corre-
lation was ranked as the most effective by all professional groups and by all
respondents separated by frequency of use of statistics. For the professional
groups there differences in the order of ranking. Prediction intervals were
ranked least effective by those respondents who self identified as agronomist
or soil scientist, but were ranked second by those in public health or nutrition.

At the begin of the online workshop, we explained each method with the
aid of illustrations. After an explanation each method, there was a feedback
session to allow the participants opportunities to seek clarity on ambiguous and
unfamiliar concepts from the presenters. The participants’ questions were an-
swered and explained in different ways by CC, RML and AEM, with the use of
illustrations. However, there are limitations with online workshops. Most par-
ticipants would have the cameras switched off, and the “unconscious” feedback
to presenters by observing the reactions of participants could not be noticed
as during in-person workshops. The “unconscious” feedback would prompt
the presenter to use a different approach to explain unfamiliar concepts and
ambiguous terms. Due to internet connectivity, online workshops are timed
and there will less time for feedback sessions. In such instances, respondents
may seek clarity from the colleagues who have the same interests, resulting in
bias (Ball, 2019).

All the methods may give different results for different variable, because
they depend on the variogram of the variable in question. There maybe dif-
ferent grid spacings selected for the different variables. A potential problem
may exist, if the variables were to be sampled in one survey and what spacing
should be used? This is an important question that needs to be addressed
when planning for soil and crop sampling. It may be reasonable to opt for the
grid spacing for the variable that maybe the hardest to characterise. Another
option would to consider some minimum quantile over all variables through a
group elicitation.

6 Conclusions

A diverse group of stakeholders was able to make decision on soil and crop
sampling strategies based on the four approaches (offset correlation, prediction
intervals, conditional probabilities and implicit loss functions) presented to
them. The background (professional group and frequency of use of statistics)
of the stakeholder had no influence in the responses selected for each approach.
There were variations in the selection made by each method. Some were not
well understood (conditional probabilities and implicit loss functions). The one
which stakeholders favoured, offset correlation, is not directly linked to decision
making. The offset correlation will likely be more useful to stakeholders, with
little or no statistical background, who unable to express their requirements
of information quality based on other measures of uncertainty.
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Supplement

1 Theory

1.1 Conditional Probabilities

Calculating the joint probability that a location requires an inter-
vention, and that the kriged estimate does not indicate this

At some location the true value of a property, z, might or might not indicate
that an intervention is required. For purposes of this argument we assume that
an intervention is required if z ≤ zt, a threshold value. We wish to compute
the joint probability that a random location (a) requires the intervention (i.e.
z ≤ zt), and (b) that the prediction, Z̃ indicates otherwise, (i.e. Z̃ > zt).
If the kriging error, z − Z̃, were independent of z, then we might consider,
assuming normal kriging errors and a known kriging variance, the probability

that Z̃ > zt, given a value Z = z , P
(
Z̃ > zt|z = Z

)
, and then compute its

expected value over the distribution of Z:

∫ −∞

−∞
P
(
Z̃ > zt|z = Z

)
f(Z)d Z, (1)

where f(Z) denotes the PDF of Z. However, this independence does not hold.
The kriging predictor, like any smoothing estimator, is conditionally biased in
the sense that the error:

εz = z − Z̃, (2)

is likely to be positive for large z and negative for small z.
We can write the covariance of z(x0) and εz(x0) at some location x0 as

Cov [z(xo), εz(x0)] = Var [Z(x0)]− λTc, (3)

where λ denotes the vector of nn kriging weights for observations used to make
the prediction, and c denotes the vector of covariances between each of these
observations and Z(x0). From Eq (2)

Z̃ = z − εz ∴ Z̃ > zt ⇔ z − εz > zt ⇔ εz < z − zt
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Figure S1: Plot of error (positive or negative) against the true value of z.

Figure S1 shows a plot of error (positive or negative) against the true value of
z. The line is the function

εz = z − zt

Figure S2: Plot of error against the true value of z.

In Figure S2 the light-grey shaded region, unbounded where the line is

2



Table S1: Parameters of the joint distribution of Z and εz

Mean of Z Population mean of the variable
Variance of Z A priori variance of the variable, i.e. c0 + c1.
Mean of εz 0, as kriging is unbiased
Variance of εz Kriging variance
Covariance of εz and Z Var [Z(x0)]− λTc

dashed, corresponds to where

z ≤ zt

and

εz < z − zt,

i.e. to where the intervention is indicated if z is known without error, but
Z̃ > zt. The other error condition is that z > zt and Z̃ ≤ zt. This is
represented by the dark grey space in Figure 2.
we may therefore, compute the joint probabilities that z(x0) ≤ zt and εz <
z − zt by

P (z(x0) < zt, εz < z(x0)− zt) =

∫ ∫
fz,εz(z, εz)dz dεz, (4)

where fz,εz(z, εz) is the joint normal distribution of z(x0) and εz with param-
eters in Table S1 and the corresponding probability that z(x0) < zt is

P (z(x0) < zt) =

∫ zt

−∞
fz(Z)dz, (5)

and the desired conditional probability

P (εz < z(x0)− zt|z(x0) < zt) =
P (z(x0) < zt, εz < z(x0)− zt)

P (z(x0)− zt)
. (6)
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1.2 Implicit loss function

1.2.1 Logistic cost model

In this section we describe how the function defined in Lark and Knights
(2015) to return the costs of n samples over an area A km2:

C(n) = ω + vn + βAtr, (7)

where ω are the fixed costs, v cost of laboratory analysis per unit, and β the
field costs per work day per team. The variable tr is time taken to sample per
km2 at a density of r per km2.

Consider a unit area containing the n sample locations. Following Beard-
wood et al. (1959), the expected distance to travel between sample points can
be written as

D = k
√
n. (8)

If we change the area in which the sample points are distributed to some value
A, then the distance travelled is scaled by

√
A and so

DA = k
√
An, (9)

and so we may write the distance travelled to sample n points per unit area as

Dn = k

√
n

A
. (10)

Assuming that the rate of travel is a random variable independent of sample
density, we can therefore conclude that the time taken per unit area to travel
between sample points is proportional to the square root of sample density

Tt = τ1

√
n

A
. (11)

Similarly, assuming that the sampling time is a random variable independent
of sample density (time at a sample site), sampling time per unit area is
proportional to sample density

Ts = τ2
n

A
. (12)

Given these results, we may propose as a model for total sampling time
per unit area

To = β1

√
n

A
+ β2

n

A
+ β0 + T + ε, (13)

where β0 is a constant to allow for fixed time requirements, T is a random
effect of mean zero for between-team variation in sampling time and ε is a
random effect of mean zero for the between-day (residual) variation.

4



1.3 Fitting to data

In order to compute the variable tr, we extracted the required data
from the geostatical survey conducted in Malawi for the GeoNutrition project
(Gashu et al., 2021). There were 8 teams that collected a total of 1812 sites of
soil and crop samples were visited, this is described in detail by Gashu et al.
(2021), Botoman et al. (2022) and Kumssa et al. (2022). For each team-day
from the GeoNutrition survey of Malawi we have extracted the following:

� Number of points sampled.

� Mean time spent travelling per sample, removing the maximum inter-
sample interval each day due to ‘lunch break effect’. The units were in
minutes.

� Mean time spent at a sample site. The units were in minutes.

� Length of the sampling day. The units were in minutes. The mean value
is 331.

� The total area sampled that day. This is defined as the area of the sample
domain which is in the Voronoi cell for the day’s sample points. Unit
were in square kilometres (km2).

These variables are combined. We then compute the following:

� The total time spent sampling per unit area, To in Eq [13] above, for
each team–day.

� Sample density, n
A
, for each team–day.

� The square root of sample density.

We can then fit a linear mixed model for To in which the fixed effects are√
n
A
and n

A
and in which team is a random effect.

The anova table for the model is as follows

Effect num DF denom DF F-ratio P

Square root of Sampling density 1 294 347.21 <0.0001
Sampling Density 1 294 9.12 0.0027

This shows significant effects of both powers of sample density.
The estimated model coefficients are as follows
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Figure S3: Scatter plot showing the data and fitted model.

Coefficient Estimate SE

β0 −0.007 0.51
β1 4.08 4.89
β2 33.6 11.12

The data and fitted model are shown bon Figure S3.
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Worked example

Rumphi district: Area 4,769 km2

Sample size Sample Density Predicted sample effort Total sample effort
/km−2 /min km−2 / team–days*

200 0.0419 2.238 35.6
500 0.1048 4.837 76.9
1000 0.2097 8.907 141.6

*Given total area of Rumphi and assuming a mean sampling day of 331
minutes (as above)
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1.4 Offset Correlation
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Figure S4: A plot of offset correlation and grid spacing for (a) soil pH and (b)
Segrain in Malawi.
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2 Test methods: charts presented to the stake-

holders
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Figure S9: Graph showing the probability, given that an intervention is re-
quired at xo that, due to error in prediction, the mapped variable does not
show this. zt is the threshold of interest. (a) is for soil pH and (b) for Segrain
concentration.
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Chapter 6

General discussion

6.1 The stakeholder perspective on spatial uncertainty and

digital soil mapping

Mineral micronutrient deficiencies (MND) are problematic in many countries in sub-Saharan

Africa at large. Solutions to address MND exist and these include agronomic biofortifica-

tion (Broadley et al., 2010; Botoman et al., 2022) and provision of food supplements (Joy

et al., 2019, 2022). However, these interventions are costly and should be undertaken at

relevant locations. Therefore, spatial information is critical in addressing MND in countries

including Ethiopia and Malawi. Stakeholders require spatial information on micronutrient

status of soils and crops to design programmes to address micronutrient deficiency in their

respective regions. Agronomists working in extension services need to understand the in-

formation on whether the concentration of micronutrients falls below a threshold in order to

advise farmers at farm level on fertiliser and lime application. Those in public health and

nutrition would require spatial on which locations have micronutrients which fall below a

threshold in order make decisions on supply of supplements and fortified food.

The spatial information required by stakeholders to make decisions in uncertain and the

stakeholders are aware of this. Therefore, the information on uncertainty needs to be un-

derstood by its users. However, most end-users feel uneasy with uncertainty and most of

them are unsure of how to use and communicate the uncertainty (Arrouays et al., 2020).

In this PhD research, one of the main aims was to establish how best stakeholders can

be assisted in making decisions when using information about the uncertainty of spatial

predictions of concentration of Se in a staple grain. It was important to establish first how
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best to communicate the uncertainty (Chapter 2). It was found that general-measures of

uncertainty, prediction intervals and kriging variance, are of limited value and do not help

the end-user to make informed decisions. However, there were more positive responses

to threshold-based methods which were found to be clearer by a larger proportion of the

participants. The results showed that probabilities, related to some specific interpretation

of the spatial information (e.g. nutrient concentration relative to a significant threshold) to

make a decision, are preferred by the stakeholders. Calibrated phrases and pictographs

added some value to interpretation of probabilities, although there is no strong evidence

that they should be preferred to raw probabilities. Verbal interpretations of probabilities are

widely used because of the assumption that end-users find probabilities expressed in nu-

merical forms difficult to understand.

The next aspect considered was how can probabilities be presented in a map and used

by the stakeholder? Maps with clearly delineated boundaries are often clearer to end-

users (Dent and Young, 1981; Malone et al., 2018), and such clear delineation provide

interpretable information for making decisions. Perhaps digital soil mapping outputs (DSM)

could be presented in this way in order to improve interpretability, consequently help in

decision-making but if we simply drew boundaries around areas where the predicted value

of a variable, z, is below a threshold value, zt, uncertainty remains unaccounted for. The

results from Chapter 3 in this PhD thesis are a significant step towards addressing some

of the challenges of interpretability, and it has been shown that the probability that z < zt

(P (z < zt)) can be presented with clearly delineated boundaries. The delineation of bound-

aries can be achieved by use of probability isolines for an elicited probability threshold (Pt)

to indicate locations which stakeholders believe would require interventions when they con-

sider the uncertain information (see Chapter 3, Figure 5). An intervention would be rec-

ommended if the probability that a micronutrient supply falls below a significant threshold

exceeds the Pt. This Pt can be elicited from diverse group of stakeholder but attention

should be paid to framing.

This PhD research showed how the Pt can be elicited from a diverse group of stakehold-

ers with different data needs, using their preferred method of communicating uncertainty–

conditional probabilities, to make decisions on interventions addressing MND in Ethiopia

and Malawi, with Segrain concentration as an example, in structured experiment (see Chap-

ter 3). The Pt is dependent on the professional group of the stakeholder and how the
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problem is framed. The results showed that when the problem was framed negatively

(probability that nutrient supply is below a significant threshold–in terms of deficiency),

there were more consistent responses by either professional group. The stakeholders were

more cautious and recommended interventions at much lower probabilities in comparison

to when the problem was framed positively (probability that nutrient supply exceeds a sig-

nificant threshold–in terms of sufficiency).

The elicited Pt represents a complex judgement of losses under errors of omission (fail

to intervene where necessary) and commission (intervene where not necessary) in relation

to the interpretation of probabilistic information by that particular stakeholder group. In this

case study, the elicited Pt was 0.3 (negative framing, i.e., the probability of deficiency). This

shows that while stakeholders assign a loss to an unnecessary intervention at a site where

z > zt, they assign a larger loss to failure to intervene at a site where z < zt, given the

public health costs entailed.

The information requirements of end-users of spatial information are rarely considered in

most DSM studies (Wadoux et al., 2021; Lark et al., 2022). It has been suggested that

most studies in DSM are ‘Quick and Dirty’ because they are done without sufficient spa-

tial coverage of observations and do not report uncertainties (Arrouays et al., 2020). The

first two results Chapters of this thesis have demonstrated importance of the interaction

between stakeholders and shown the value of threshold-based uncertainty measures to

support decision-making. Interaction with stakeholders, and communication of the signif-

icance of uncertainty is also relevant for the related problem of planning and executing

soil and crop surveys. Therefore, it is was important to develop a framework for the plan-

ning, execution and evaluation of surveys to address specific requirements of stakeholders.

The framework was based on a decision-theory approach to analyse the particular task, to

identify the key uncertainties and their implications and so to enable stakeholders to ensure

that an approach to survey would meet their needs (Chapter 4). The framework provides

a basis of engaging stakeholder to discuss how sampling decisions can be arrived at by

considering the relationship of sampling effort, costs and uncertainty. One positive finding

in this research is that stakeholders were able to assess the implications of uncertainty in

spatial predictions using prior information on variability of the target properties in order to

support decisions on a sampling grid spacing. However, more work is required to refine

these methods but this is a significant step in addressing the information requirements of
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end-users

6.2 Further questions on complexity of stakeholder interpretation–

consequences and outcomes

Framing, formally irrelevant aspects of how information is presented which may influence

interpretation, is an important factor to consider when engaging stakeholders with proba-

bilistic representations of uncertainty. Framing effects could explain the differences in how

stakeholders interpreted some question on the interpretative task–Q1 to Q3 (see Chap-

ter 2, Table 3). Q1 was framed positively and there was weak evidence for the differences

between the threshold-based methods and general measures for the participants in the

Ethiopian elicitation. However, the fact that Q3 was framed negatively might have helped

the stakeholders understand this. When comparing Q1 and Q2, there were two confound-

ing effects that could explain the difference, the framing effect and the differences in the

magnitude of the predictions. The experimental design was in this elicitation could be im-

proved by considering the effects of framing and this presents scope for further work. The

elicitation can be improved by a systematic assessment of statements of uncertainty with

predictions of different magnitude. The important question to consider is how to ensure

that the end-user understand the information presented to them, in order to get consistent

results?

When the question was positively framed (in terms of sufficiency), different values of Pt

were obtained for both professional groups. However, there was greater consistency of re-

sponses across professional groups when the question was negatively framed, in terms of

deficiency, and it led to the stakeholders being conservative. The public health or nutrition

group decided to intervene at a much larger probability when compared to their counter-

parts. The public health or nutrition group decided to intervene at a much larger probability

when compared to their counterparts and they might have misunderstood the probabilities

because they are accustomed to think about nutrition problems in terms of deficiency. The

framing effect was not only evident in this problem, but also on how stakeholders inter-

preted conditional probabilities in the context of sampling (Chapter 5). The respondents

selected the grid spacings where conditional probabilities was 1.0 or very close. These

findings shows that probabilities are difficult to interpret and this is evidenced by the fram-
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ing effects observed. This poses a question on how the effects of framing can be eliminated

from the elicitation? One approach would be to accept that framing can not be eliminated

but a consistent approach should be used when eliciting Pt from a group of stakeholders.

Almashat et al. (2008) suggested the need for preparatory activities that can direct the at-

tention of end-users to implications of errors in both directions to reduce framing effects.

Perhaps, an elicitation should be conducted using a consistent framing approach when us-

ing threshold-based methods. In the case of MND negative framing resulted in conservative

and consistent responses, and this approached should be used consistently.

Threshold-based methods were found to be clear and straightforward, however there was

no further evaluation of the correctness of the interpretations of probabilities. Therefore,

more work is required to assess the correctness of interpretation of probabilities in order

develop sound but accessible ways to engage stakeholders in DSM. Perhaps, pictographs

and calibrated phrases may help with this. As for the general-measures, perhaps present-

ing these methods along with a specific interpretation of spatial information (e.g., whether

the prediction is closer to threshold or not) could have yield positive opinions. This suggest

more work is required to substantially improve kriging variance and prediction intervals as

methods for communicating uncertainty

6.3 Outlook and way forward

Much attention has been paid to quantifying uncertainty in previous DSM studies and there

is growing interest communicating the uncertainty to end-users (Heuvelink and Webster,

2022). However, the communication of the uncertainty is not straightforward because it

depends on subject matter and background of the stakeholder (Milne et al., 2015). This

PhD research is a significant step in addressing some of these concerns of DSM, for ex-

ample, this thesis has shown the important of having measures of uncertainty that not only

communicate clearly the message but as well a basis for stakeholder engagement. The

decision-process framework presented in this research can be used in DSM studies to in

order to identify the key stakeholders (e.g., sponsors, decision makers and social client)

thereby characterize the decisions, states and comes from the spatial information avail-

able. This allows for accounting for uncertainty in such a way that risks carried can be

identified and possibly mitigated. There is scope for analysing the robustness of this deci-

sion process by considering other case studies of the different problems in environmental
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sciences.

This study will help in better understanding of uncertainties in the data obtained in the

GeoNutrition project, thereby facilitating improved use and uptake of that information by

decision makers in Ethiopia and Malawi. The GeoNutrition project aims to use spatial

information to target areas where specific interventions would be appropriate in order to

efficiently use the scarce financial resources. This is important because most people in

countries south of the Sahara (e.g. Ethiopia, Malawi, Zambia and Zimbabwe) mainly rely

on subsistence farming for their food and income. The decision process presented in this

thesis would be important in addressing some questions raised when addressing MND. It

is hoped that better decisions will be made on sampling for future surveys in Ethiopia and

Malawi, and in other countries which decide to undertake those using better methodolo-

gies for national-scale surveys of soil properties or similar environmental variables. This

research is not only relevant to Ethiopia and Malawi but to most countries within the sub-

Saharan Africa region, because they have similar farming systems. Countries within sub-

Saharan Africa may wish to conduct similar surveys such as the GeoNutrition, it is impor-

tant that the key findings from this study inform the process. Within the framework of the

decision-process, stakeholders should be engaged to have discussions centred on uncer-

tainty should be done at the planning phase of the survey. It would be important to engage

stakeholders and discuss the key questions relating to information needs (I), stakeholders

(S), spatial variation and uncertainty (V) and the resources (R). This will ensure informed

decisions are made during sampling, execution and spatial mapping processes of the sur-

vey.
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Appendices

Publications

List of joint-first authored publications not presented in this thesis:

I made substantial contributions to the GeoNutrition project and have co-authored many

publications. Here, I list the two publications, were I am joint-first author and give a short

account of my contribution.

Botoman, L., Chagumaira, C., Mossa, A.W., Amede, T., Ander, E.L., Bailey, E.H., Chimungu,

J.G., Gameda, S., Gashu, D., Haefele, S.M., Joy, E.J.M., Kumssa, D.B., Ligowe, I.S., Mc-

Grath, S.P., Milne, A.E., Munthali, M., Towett, E., Walsh, M.G., Wilson, L., Young, S.D.,

Broadley, M.R., Lark, R.M., Nalivata, P.C. (2022). Soil and landscape factors influence

geospatial variation in maize grain zinc concentration in Malawi. Scientific Reports, 12.

https://doi.org/10.1038/s41598-022-12014-w

Summary

This paper was published in Scientific Reports. The study aimed at understanding soil

properties and environmental covariates that affect Zn concentration in maize, the staple

crop in Malawi. I contributed mainly on the spatial mapping component of the paper. Us-

ing prior ranking of potential covariates for Zn, a formal hypothesis framework described

in Section 1.3.1 and Lark (2017) was used for covariate selection. The false discovery

rate was controlled with the α-investment. The downscaled mean annual temperature was

selected as the covariate that explained a proportion of the spatial variation of grain Zn

concentration in Malawi. Within the linear mixed model framework spatial predictions of

grain Zn concentration, with downscaled mean annual temperature and spatial coordinates

as the fixed effects, were made. The results from this study are important because they

provide a basis for further investigations to address dietary Zn deficiencies in Malawi.
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Selected co-authored publications from GeoNutrition project work:

• Gashu, D., Lark, R.M., Milne, A.E., Amede, T., Bailey, E.H., Chagumaira, C., Dun-

ham, S.J., Gameda, S., Kumssa, D.B., Mossa, A.W., Walsh, M.G., Wilson. L., Young,

S. D., Ander, E. L., Broadley, M. R., Joy, E.J.M., McGrath, S.P. (2020). Spatial pre-

diction of the concentration of selenium (Se) in grain across part of Amhara Region,

Ethiopia. Science of the Total Environment, 733, doi.org/10.1016/j.scitotenv.2020.139231

• Gashu, D., Nalivata, P.C., Amede, T., Ander, E.L., Bailey, E.H., Botoman, L., Chagu-

maira, C., Gameda, S., Haefele, S.M., Hailu, K., Joy, E.J.M., Kalimbira, A.A., Kumssa,

D.B., Lark, R.M., Ligowe, I.S., McGrath, S.P., Milne, A.E., Mossa, A.W., Munthali, M.,

Towett, E.K., Walsh, M.G., Wilson, L., Young, S.D., Broadley, M.R. (2021). The nu-

tritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 594,

71–76, doi.org/10.1038/s41586-021-03559-3

• Lark. R. M., Chagumaira, C., Milne, A. E. (2022). Decisions, uncertainty and spatial

information. Spatial Statistics, 50, doi.org/10.1016/j.spasta.2022.100619
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