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Abstract

The brain is the central hub regulating thought, memory, vision, and

many other processes occurring within the body. Neural information trans-

mission occurs through the firing of billions of connected neurons, giving

rise to a rich variety of complex patterning. Mathematical models are used

alongside direct experimental approaches in understanding the underlying

mechanisms at play which drive neural activity, and ultimately, in under-

standing how the brain works.

This thesis focuses on network and continuum models of neural activity,

and computational methods used in understanding the rich patterning that

arises due to the interplay between non-local coupling and local dynamics.

It advances the understanding of patterning in both cortical and sub-cortical

domains by utilising the neural field framework in the modelling and analy-

sis of thalamic tissue – where cellular currents are important in shaping the

tissue firing response through the post-inhibitory rebound phenomenon –

and of cortical tissue. The rich variety of patterning exhibited by different

neural field models is demonstrated through a mixture of direct numerical

simulation, as well as via a numerical continuation approach and an analyt-

ical study of patterned states such as synchrony, spatially extended periodic

orbits, bumps, and travelling waves. Linear instability theory about these

patterns is developed and used to predict the points at which solutions

destabilise and alternative emergent patterns arise. Models of thalamic tis-

sue often exhibit lurching waves, where activity travels across the domain

in a saltatory manner. Here, a direct mechanism, showing the birth of lurch-

ing waves at a Neimark-Sacker-type instability of the spatially synchronous

periodic orbit, is presented. The construction and stability analyses carried

out in this thesis employ techniques from non-smooth dynamical systems

(such as saltation methods) to treat the Heaviside nature of models. This
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is often coupled with an Evans function approach to determine the linear

stability of patterned states.

With the ever-increasing complexity of neural models that are being stud-

ied, there is a need to develop ways of systematically studying the non-

trivial patterns they exhibit. Computational continuation methods are de-

veloped, allowing for such a study of periodic solutions and their stabil-

ity across different parameter regimes, through the use of Newton-Krylov

solvers. These techniques are complementary to those outlined above. Us-

ing these methods, the relationship between the speed of synaptic transmis-

sion and the emergent properties of periodic and travelling periodic pat-

terns such as standing waves and travelling breathers is studied. Many

different dynamical systems models of physical phenomena are amenable

to analysis using these general computational methods (as long as they have

the property that they are sufficiently smooth), and as such, their domain

of applicability extends beyond the realm of mathematical neuroscience.
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1
I N T R O D U C T I O N

1.1 introduction

The field of neuroscience has taken great strides forward in the past century

in understanding the complex processes that underpin brain function. Two

Nobel Prize winning examples are the works by Cajal and Golgi in the early

1900s postulating the existence of and identifying neurons [135, 192, 114],

and that of Hodgkin and Huxley in the 1950s identifying the mechanisms

behind action potential-generation [100]. Modelling and experimentation

have been used hand-in-hand to advance our understanding of the brain

and the mechanisms that underlie neural patterning. The work of du Bois-

Reymond and others in the mid-1800s culminated in the discovery of the

action potential [189]. The early 1900s saw Bernstein hypothesise that the

action potential could be explained by potassium ions crossing a cell mem-

brane before Hodgkin and Huxley refined this idea in their modelling study

by suggesting sodium ions played an equally important role [101]. The exis-

tence of ion channels, through which ions may cross a membrane, was then

confirmed experimentally in the 1970s [155], thus substantiating the ideas of

Bernstein and Hodgkin and Huxley. Since the 1960s and the advent of mod-

ern computing capabilities, there has been a rapid growth in mathematical

neuroscience-related research. As such, neuroscience has sprouted into an

inherently multi-disciplinary field, combining approaches in biology, scien-

1



1.1 introduction 2

tific computing, and mathematical and statistical modelling to further the

understanding of neural processes such as cognition, consciousness, and

learning to name just a few [201, 191, 52]. Far from being self-contained

within their own field, developments in neuroscience have led to advances

in other fields too, such as predictive analytics and artificial intelligence

[142, 22]. Artificial neural networks – which pervade the modern world

in diverse areas such as facial recognition technology [92], self-driving cars

[205], search engine optimisation [112], and financial fraud detection [227] –

are computational algorithms inspired by the connectivity and information

processing in biological neural networks.

The work in this thesis falls into the domains of mathematical and com-

putational neuroscience. Mathematical models of different brain regions

are utilised, developed, and analysed using dynamical systems approaches

and computational techniques to shed light on the mechanisms underly-

ing pattern formation in the brain. Much work has been carried out on

single-neuron models in the literature [65, 100, 220, 77]. In this thesis, the

focus is on networks of connected neurons. The inclusion of network con-

nectivity significantly contributes to the dynamical complexity of models.

Current computational limits and analytical techniques often require that

simplifying approaches be considered in such cases. One such approach

widely used is the continuum limit. This allows for dimension-reduction

techniques to be used, with the caveat that instead of considering networks

of neurons, a spatial field of neural tissue is considered. Such continuum

techniques are more concerned with the overall, coarse-grained activity in

a network rather than activity on the scale of individual neurons. Advanta-

geously, field models are favourable for fitting to data obtained from global

brain recording methods. The neural field model is an effective description

of neural tissue connectivity, and variants of it are used throughout this

thesis to understand neural pattern-forming mechanisms. In consultation

with colleagues at VU Amsterdam, an opportunity to bring novel continua-

tion techniques into the domain of mathematical neuroscience and develop
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these was identified. These allow for the automated computation of in-

variant dynamical systems solutions such as equilibria and periodic orbits

under different parameter regimes. With the ever-growing complexity of

neural models, and the desire to find relationships between differences in

biophysical parameters and model behaviour, computational tools such as

these are a welcome asset.

1.2 thesis structure

Below, we set out the structure of this thesis, including what is contained

within each chapter. A list of figures, a list of tables, and a glossary are

provided for reference in the front matter of this thesis.

Chapter 2 – “Background”

The relevant neural biology is outlined before the major models of single cell

neural activity are introduced. A review of synaptic modelling is carried

out, comparing and contrasting the benefits of different synaptic models.

It is shown how rate-based models may be motivated from spiking models,

and how network models of connected cells may be constructed from inter-

connected single cells.

The later parts of this chapter review the main models motivating the

work in this thesis before saltation techniques for the analysis of solutions

in non-smooth dynamical systems are described and critiqued. The Evans

function approach for linear stability of patterned states is outlined, and is

used extensively along with the saltation method in later chapters of this

thesis.
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Chapter 3 – “Numerical Continuation Methodologies”

This chapter begins with a discussion of techniques from dynamical sys-

tems theory relevant to numerical continuation before a review of standard

continuation methods is presented. An illustration of equilibria and trav-

elling wave continuation in a neural field model is given before reviewing

novel, efficient, matrix-free techniques for carrying out spatially extended

periodic orbit continuation. Tests are carried out, ensuring convergence to

true periodic orbit solutions and validifying the methods, before they are

used explicitly to continue a periodic structure in a spatial model.

The final part of this chapter builds on currently existing work to develop

novel methodologies allowing the continuation of travelling, periodic solu-

tions in spatio-temporal systems (for clarity, an example of such a pattern

is a travelling breather). The methods developed are sufficiently general to

cater for models other than neural field-type models and may be used in

research areas beyond mathematical neuroscience.

Chapter 4 – “Neural Fields with Dynamic Firing Thresholds”

In contrast to the numerical nature of the previous chapter, the majority of

this chapter focuses on analytical techniques in the study of a neural field

model incorporating non-trivial, non-constant firing threshold dynamics. A

Turing instability analysis is carried out on a model from the literature, char-

acterising patterning that arises upon the instability of a spatially homoge-

neous steady state. Moreover, it is shown that certain types of instabilities

may not occur due to the intrinsic nature of the model under consideration.

The existing literature of neural fields with dynamic thresholds is out-

lined and critiqued, leading to a refined, smoother model, for which a bump

solution is characterised and constructed, and its linear stability analysed

using Evans function techniques.
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The chapter concludes with an illustration of the different types of ex-

otic spatially-extended solutions admitted by the model and a spatially-

extended periodic orbit continuation of a number of these, using techniques

from Chapter 3.

Chapter 5 – “Thalamic Neural Fields with Rebound Currents”

The final research chapter of this thesis focuses on a model of sub-cortical,

thalamic tissue. A non-standard, modified neural field model incorporating

ingredients to effectively describe the dynamics of cells within the thalamus

– namely, rebound currents – is studied. The model exhibits characteristic

thalamic behaviour through the post-inhibitory rebound phenomenon; we

study the pattern forming nature of thalamic tissue by constructing specific

patterns and analysing their linear stability in both one- and two-spatial di-

mensions. We utilise the so-called saltation approach to do so, and demon-

strate how to extend it in a general way to cater for the study of spatially

extended patterns. The dispersion curve for periodic waves, relating the

wave-speed to the spatial period, is generated, with stability boundaries

found via an Evans function approach.

The literature shows a specific type of solution – lurching waves, with

saltatory motion – appearing often in a number of different thalamic mod-

els. It is shown that one pathway by which they may arise is via a Neimark-

Sacker instability of the synchronous periodic orbit state. A numerical ex-

ploration is carried out in two spatial dimensions, hinting at an abundance

of rich dynamical behaviour on the plane. Moreover, the planar stability

theory developed allows for a systematic study of patterns that arise at bi-

furcations.

As in Chapter 4, the continuation techniques developed in Chapter 3 are

utilised to shed light on the dynamics of highly complex spatio-temporal

patterns in the model and illustrate how the time-scales of synaptic activity

alter patterning.
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Chapter 6 – “Discussion”

This thesis is concluded with a discussion, summarising the main achieve-

ments and placing them within the larger context of the existing literature.

This work opens up a number of paths to continue research in a number

of different areas of applied mathematics and theoretical biology. This

includes numerical continuation methods, analytical methods for stability,

and neural models with alternative rebound currents to name just a few.

These are all topics for future study and are discussed in greater detail in

Chapter 6.



2
B A C K G R O U N D

2.1 neurons : a physiological perspective

T he brain is a complex organ which regulates the bodily processes

of nearly all eukaryotes. The fundamental units, or cells, within

the brain that are thought to be most important in information

transmission are neurons, which are supported by glial cells. Figure 2.1

shows the main structure of a typical neuron. The nucleus sits within the

cell body, or soma, which is surrounded by dendrites. These are appendages

which allow signals to be received from other cells. The axon is covered

in a myelin sheath (though unmyelinated axons exist) and connects the soma

to the axon terminals. These form junctions with the dendrites of other

neurons at locations known as synapses.

Electrical signals known as action potentials travel down the axon until they

reach an axon terminal, often referred to as the pre-synaptic terminal. Here,

they elicit post-synaptic potentials (PoSP) in the dendrites of connected neu-

rons which travel towards the soma. If enough PoSPs of sufficient strength

are elicited in the connected neuron, a firing event occurs, in which an action

potential is generated at the soma [169]. Each neuron typically forms thou-

sands of synaptic connections with other neurons. There are approximately

100 billion neurons in the human brain, meaning that the total number of

synapses is on the order of magnitude of 100 trillion [207]. The stagger-

7
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Figure 2.1.: Schematic anatomy of a neuron (left) connected to another neu-

ron (right). The synapse (boxed in the top-right) is shown in

more detail in Figure 2.2. This figure (original author Jennifer

Walinga) has been modified from Wikimedia Commons and is

licensed under the Creative Commons Attribution-ShareAlike

4.0 International License.

ing complexity of the resultant network of neurons requires a robust and

efficient communication system of information signalling and processing.

Action potentials may be seen as the language of neural information process-

ing.

A variety of cells support different types of action potentials including

skeletal muscle cells and specialised cardiac cells, however our discussion

will focus on neuronal action potentials – those occurring in neurons. Action

potentials are generated by the movement of sodium (Na+) and potassium

(K+) ions across the cell membrane through specialised proteins, selectively

permeable to ions, known as ion channels.

A multitude of different ion channels exist, including voltage-gated [233,

37, 236] – such as the sodium and potassium channels mentioned above; the

configuration of voltage-gated channels change in response to membrane

https://commons.wikimedia.org/wiki/File:Components_of_neuron.jpg
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
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potential – and ligand-gated [103]. Our focus is mainly on voltage-gated

ion channels. A channel either allows a flow of ions through it (conducting)

or does not (non-conducting). It may consist of activation and inactivation

gates which all must be open to ensure the channel is in the conducting

state [169, 10, 157]. Inactivation refers to the phenomenon by which an

open channel enters a non-conducting conformation (this typically occurs

after a change in membrane potential) [173]. Depending on the type of ion

channel, inactivating gates may or may not be present [35].

The typical resting membrane potential of a neuron is approximately

−70mV, meaning that the inside of the cell is more negatively charged than

the outside, by 70mV. At rest, the concentration of Na+ ions is higher out-

side the cell than inside, while the opposite is true for K+ ions. In a con-

ventional action potential, a cell fires once the membrane potential reaches

a critical value: the firing threshold. This is a consequence of some stimulus

applied to the cell, for example synaptic input, noise or some ionic current

[171]. The result of this is a large cell depolarisation. The voltage-gated Na+

channel opens and Na+ ions flow into the cell. The resultant change in po-

larity causes the Na+ channel to close and the voltage-gated K+ channel to

open, allowing K+ ions to leave the cell, resulting in cell repolarisation (typi-

cally hyperpolarisation). This repolarisation causes the K+ channel to close.

This behaviour occurs rapidly and successively down the axon, between

myelinated segments of axonal membrane at the nodes of Ranvier where a

high density of ion channels exist, and characterises a neuronal action po-

tential. For reference, the typical length-scale of an ion channel is 10nm

[200], while for a node of Ranvier, it is 1-2µm [9]; hundreds of ion channels

are able to fit on a one-dimensional cross section of a node. The insulating

properties of the myelin sheath increase action potential conduction velocity

from 0.5-10ms−1 in unmyelinated neurons to up to 150ms−1 in myelinated

ones [169].

Immediately following an action potential spike, the cell enters its refrac-

tory period in which the ATP-dependent Na+/K+ pump returns Na+ ions
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to the outside and K+ ions to the inside of the cell. This is an energy-

intensive process [17] – the activity of the Na+/K+ pump is estimated to

account for 20-40% of the brain’s total energy consumption [169], indicating

its importance in function. The refractory period is composed of the absolute

refractory period, lasting a few milliseconds [20], in which it is impossible for

another action potential to be generated, regardless of the stimulus, and the

relative refractory period, lasting slightly longer, in which a larger stimulus

than usual is required for an action potential to occur. The absolute refrac-

toriness of the membrane in the wake of the action potential is responsible

for uni-directional action potential propagation [169]. The refractory period

imposes a limit on the number of action potentials that can occur per unit

time. That is, it limits the neuronal firing rate [169].

When an action potential generated in a pre-synaptic neuron arrives at

a synapse, cell-to-cell communication can occur via electrical synaptic cou-

pling or chemical synaptic coupling. In the former, current flows through

specialised membrane channels known as gap junctions, while in the latter,

an abundance of neurotransmitters, housed in synaptic vesicles in the pre-

synaptic terminal are released into the synaptic cleft, the gap between two

neurons connected at a synapse. This induces a PoSP by activating receptor

molecules in the post-synaptic neuron [169]. An action potential arriving at

the pre-synaptic terminal activates voltage-gated calcium (Ca2+) channels,

causing an influx of Ca2+ ions. This results in the secretion of neurotrans-

mitters out of their vesicles and into the synaptic cleft. They diffuse through

the synaptic cleft and bind to receptors at the post-synaptic neuron. This in-

duces a post-synaptic current, either excitatory or inhibitory depending upon

the neurotransmitter which increases or decreases the membrane potential of

the post-synaptic neuron, respectively. Examples of specific neurotransmit-

ters are acetylcholine (ACh) and glutamate (both excitatory), and gamma-

aminobutyric acid (GABA) and glycine (both inhibitory) [169]. This is all

summarised in Figure 2.2, which outlines the stages involved in chemical

synaptic communication.



2.1 neurons : a physiological perspective 11

Ca2+

Synaptic vesicles release 
neurotransmitter into the 

synaptic cleft

Ca2+ flows into the 
pre-synaptic terminal

Depolarisation due to action
potential opens voltage-gated 
Ca2+ channels on pre-synaptic 

membrane

An action potential 
arrives at the pre-
synaptic terminal
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opening post-synaptic ion 
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A post-
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induced, causing 
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Figure 2.2.: A summary of transmission at a chemical synapse. Ions

and neurotransmitters are shown as red and yellow cir-

cles, respectively. Neurotransmitters may be either excita-

tory or inhibitory. This figure (original author https://www.

scientificanimations.com/) has been modified from Wikime-

dia Commons and is licensed under the Creative Commons

Attribution-ShareAlike 4.0 International License.

A number of methods have been developed to obtain readings of brain

activity. Patch clamp experiments allow cellular membrane potential (as

well as other cellular properties) to be recorded by an experimentalist, while

more macroscopic recording techniques include electroencephalograms (EEG)

[161] and functional magnetic resonance imaging (fMRI). EEG detects the

activity of large groups of cortical neurons firing together – their synchrony

– on a timescale of milliseconds by measuring PoSPs. It has a number of

clinical applications including the diagnosis of neuronal disorders such as

epilepsy and sleep disorders [162]. fMRI is a relatively new imaging tech-

https://www.scientificanimations.com/
https://www.scientificanimations.com/
https://commons.wikimedia.org/wiki/File:Neurotransmitters.jpg
https://commons.wikimedia.org/wiki/File:Neurotransmitters.jpg
http://creativecommons.org/licenses/by-sa/4.0/
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nique, having been developed in the 1990s. It measures brain activity at the

larger spatial scale of the whole-tissue by detecting changes associated with

blood oxygen and flow [174]. Areas with higher amounts of blood flow and

blood oxygenation are associated with higher levels of neural activity [84].

As such, it is a useful tool in determining how different brain regions are

functionally related. Due to the measurement of blood flow, fMRI is used to

evaluate the effects of, and recovery from, stroke [223].

2.2 the post-inhibitory rebound mechanism

As well as standard neuronal firing via depolarisation, other non-canonical

mechanisms exist by which neurons may fire. An example of this is the post-

inhibitory rebound (PIR) phenomenon, seen in recordings of thalamic cells,

which requires an initial hyperpolarisation to cause cells to fire. Characteris-

tically, in cells that exhibit PIR, hyperpolarisation causes de-inactivation of

one or more species of ion channels. That is, channels are primed to allow

a conductance due to the opening of inactivation gates. Whether or not a

flow of ions occurs is then dependent on the state of activation gates of ion

channels. Channels allow the flow of ions when their activation and inac-

tivation gates are both open. As the cell recovers from hyperpolarisation,

the ion channels’ activation gates open, resulting in a large depolarisation

as ions rush in and out of the cell.

Typical currents that are important in generating PIR are the T-type Ca2+

current (IT) and the hyperpolarisation-activated cation current (Ih) [8]. IT

arises when there is a non-zero conductance in T-type Ca2+ channels. These

channels are found in thalamic neurons as well as cardiac myocytes, glial

cells, and osteoblasts [126, 69] to name just a few cell types. The electro-

physiology of T-type channels from different cell types is similar but there

are differences in how they inactivate and respond to drugs [164]. This

variation can be attributed to the fact that different cell types express dif-

ferent sub-types of ion channels. In the case of the T-type channel, there
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are three sub-types, designated Cav3.1, Cav3.2, and Cav3.3, with all three

expressed in various cells throughout the brain [108, 141, 213, 206]. T-

type Ca2+ channels exist on the cell membrane. From a modelling point

of view, voltage-gated channels are classically characterised by their steady

state curves, which reflect the proportion of activating and inactivating gates

that are open as functions of voltage [179]. Hyperpolarising synaptic inhi-

bition leads to a temporary state in which the cell is more excitable than

normal (meaning it is more amenable to fire as a result of a smaller stim-

ulus). As the inhibition wears off, the potential of the cell returns towards

rest but due to its heightened excitability, it instead fires a low-threshold

spike (LTS) resulting in a burst of action potentials as the T-type Ca2+ con-

ductance grows [221, 165, 113]. T-type Ca2+ channels are typically only

found in high enough densities to be significant in the soma and dendrites

of neurons [237], so the LTS itself does not transmit synaptic activity, since

to do so, it would need to traverse the axon and reach a pre-synaptic termi-

nal. However other action potentials which can transmit synaptic activity

ride on the crest of an LTS [136, 180], resulting in a burst response, where a

tight cluster of action potentials occurs successively in a short space of time.

In this way, the LTS can contribute to information propagation in a network

of neurons. Thalamo-cortical relay (TC) neurons are a particular type of cell

that exhibit PIR in response to inhibition [7]. The interaction between TC

cells and reticular thalamic nucleus (RE) cells in the thalamus through the

PIR mechanism generates oscillations that have been recorded in vivo [202]

and in vitro [218, 106].
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2.3 foundations : single neuron models

2.3.1 The Hodgkin-Huxley Model

Most influential in the description of single-cell neural dynamics and the ac-

tion potential is the Nobel Prize-winning work carried out in 1952 by Alan

Hodgkin and Andrew Huxley. Their series of papers [98, 97, 99, 100] culmi-

nated in a mathematical model that described various electrical properties

in the giant axon of the squid. Compared to modern equipment, the elec-

trodes of the time were large. As such, the giant axon of the squid allowed

for the insertion of an electrode inside the cell, and for Hodgkin and Huxley

to carry out their experiments. Such was the success of their work that the

majority of models since have been based on the same formalism.

In essence, their work models the effect of ion movement in and out of

the cell on the cell membrane potential. The membrane acts as a capacitor,

separating charge inside and outside the cell. It is selectively permeable to

ions – that is, ions can cross the membrane only where ion channels exist.

Hodgkin and Huxley’s results suggested that ion channels can be modelled

as variable resistors in the language of electrical circuitry. The modelling

assumes two important currents that contribute towards the dynamics of

the action potential: the Na+ and K+ currents. A third leak current is in-

cluded which models the effects of chloride (Cl−) and other ions. The first

step in their analysis was to divide the total membrane current into a capac-

itative current and an ionic current. Then the dynamics for the membrane

potential, V, is obtained from Kirchhoff’s current law1 and is given by the

current-balance equation

I = C
dV
dt

+ Iion, (2.1)

1 Charge is conserved at a circuit junction, so the total current entering Iin and leaving Iout

a junction must sum to zero. That is, Iin = Iout.



2.3 foundations : single neuron models 15

where I is an applied current, C is the membrane capacitance, V is the poten-

tial difference across the membrane, and Iion is the relevant ionic current(s).

Given that only three ionic currents are considered, this can be written as

Iion = INa + IK + IL, (2.2)

where the ionic current has been split into components carried by Na+ ions

(INa), K+ ions (IK), and by other ions (IL). In [97], they showed that each

of these currents could be modelled in terms of their conductances and

the difference between the membrane potential and the reversal potential

for that particular species of ion. That is, they obey Ohm’s law (where

conductance is the reciprocal of resistance)

INa = gNa(V −VNa), (2.3a)

IK = gK(V −VK), (2.3b)

IL = gL(V −VL). (2.3c)

where VNa, VK and VL are the reversal, or Nernst potentials for each respec-

tive species of ion. At these potentials, there is no net flow of the specific

ionic species across the membrane.

For a charged ionic species X, chemical and electrical gradients act to

drive the potential towards the reversal potential, denoted VX. The chemical

gradient

∆Gchemical = RT ln
(
[X]out

[X]in

)
, (2.4)

arises from the difference in ion concentration across the membrane. Here,

R is the universal gas constant, T is the absolute temperature (measured in

Kelvin), and [X] denotes the concentration of species X with the subscript

indicating whether this is outside or inside the cell membrane. The electrical

gradient

∆Gelectrical = zFV, (2.5)

arises due to an unequal amount of charge distribution across the mem-

brane, where z is the ionic valence (the number of electrons an atom of
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species X uses in bonding [163]), F is the Faraday constant, and V is the

voltage. These two gradients are together referred to as the electrochem-

ical gradient; this is the quantity that determines the movement of an ion

across the membrane [156]. At the reversal potential V = VX, ∆Gelectrical and

∆Gchemical across the membrane are equal [116]. This results in the Nernst

equation

VX =
RT
zF

ln
(
[X]out

[X]in

)
, (2.6)

giving an expression for the reversal potential of an ionic species X.

Hodgkin and Huxley modelled the conductances gNa, gK and gL by fitting

various conductance models to data. Experimental evidence showed that

the end of a recording of potassium conductance could be fitted to a first

order equation, but a higher order equation was needed to model the initial

phase of conductance response.2 Their solution was to model potassium

conductance as being proportional to the fourth power of some variable, n,

which obeyed a first-order differential equation. That is,

gK = ḡKn4, (2.7a)

dn
dt

= αn(V)(1− n)− βn(V)n, (2.7b)

where ḡK is the maximum potassium conductance, n is the activating gat-

ing variable which varies in [0, 1] and αn and βn are rate constants for the

fraction of open and closed gates respectively [157]. It is noted that they

depend only on voltage. Originally, Hodgkin and Huxley stated that the

physical basis of this equation is that “K+ ions can only cross the membrane

when four self-similar particles occupy a certain region of the membrane.” The

gating charges have since been found [11, 79, 38], confirming their great

insight. They showed that potassium conductance is adequately modelled

by (2.7). See Figure 2 from [100], showing that the smooth curve obtained

from (2.7) is a good fit to experimental recordings. Hodgkin and Huxley

acknowledged that a fifth or sixth power of n may have provided a better

2 This is illustrated concretely in Figure 2 of Hodgkin’s and Huxley’s seminal work: [100].
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fit, but found their choice of a fourth power of n to be satisfactory. The

steady-state solution of n satisfies (for a specific value of V)

n∞(V) =
αn(V)

αn(V) + βn(V)
. (2.8)

By fitting to experimental data, expressions were found for the rate con-

stants as

αn(V) =
0.01(V + 10)

exp
(

V+10
10

)
− 1

, (2.9a)

βn(V) = 0.125 exp
(

V
80

)
. (2.9b)

By relating αn(V) and βn(V) to n∞(V), and to a new variable τn(V) de-

scribing the voltage-dependent time constant, (2.7b) can be rewritten as

dn
dt

=
n∞(V)− n

τn(V)
, (2.10)

which describes the evolution of n in terms of its steady state curve with

respect to V, n∞(V), and its time constant, τn(V), rather than the rate-based

description of αn(V) and βn(V). The time constant is given by

τn(V) =
1

αn(V) + βn(V)
. (2.11)

In modelling the sodium conductance, Hodgkin and Huxley postulated

that

gNa = ḡNam3h, (2.12)

where ḡNa is regarded as the maximum sodium conductance, and m and h

are activating and inactivating gating variables that vary in [0, 1]. Originally,

they stated that this equation “may be given a physical basis if conductance

is assumed to be proportional to the number of sites on the inside of the membrane

which are simultaneously occupied by three activating molecules and are not blocked

by an inactivating molecule”. Although modern experimentation [10, 139] has

shown that this is not quite the case, the foresight of Hodgkin and Huxley

should not be diminished. Indeed, their conductance model does show

an excellent fit with empirical data and is remarkable, given the lack of
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knowledge of ion channels at the time. The dynamics of the gating variables

are given by

dm
dt

= αm(V)(1−m)− βm(V)m, (2.13a)

dh
dt

= αh(V)(1− h)− βh(V)h, (2.13b)

where αm,h and βm,h are again rate constants. The variable m represents

the fraction of open activation gates. Therefore, the proportion of activation

gates that are open increases as m gets closer to 1. Similarly, since h repre-

sents the fraction of open inactivation gates, as h gets closer to 0, the pro-

portion of inactivation gates in the closed state increases. This description

of ion channels is deterministic and assumes a large population of indepen-

dent ion channels and independent binding kinetics, however at the level of

single – or a small number of – ion channels, a stochastic approach provides

a better description; see [42] for an analysis of the Hodgkin-Huxley equa-

tions with stochastic channel dynamics. Similarly to the case of the potas-

sium conductance, voltage-dependent expressions for the rate constants are

found by fitting to experimental data. They are given by

αm(V) =
0.1(V + 25)

exp
(V+25

10

)
− 1

, (2.14a)

βm(V) = 4 exp
(

V
18

)
, (2.14b)

and

αh(V) = 0.07 exp
(

V
20

)
, (2.15a)

βh(V) =
1

exp
(V+30

10

)
+ 1

. (2.15b)

By a similar line of reasoning, the time evolution equations for m and h

can be written in a similar way to (2.10) (in terms of steady state curves

and time constants). The sigmoidal steady state curves Y∞(V) and the time-

scales τY(V) (as functions of voltage) for the gating variables Y ∈ {n, m, h}

are shown in Figure 2.3. The steady state curves for the activating potassium
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Figure 2.3.: The steady state curves Y∞(V) (upper panel), and the time-

scales τY(V) (lower panel), Y ∈ {n, m, h} for the gating variables

in the potassium and sodium conductances in the Hodgkin-

Huxley model.

and sodium gates n∞(V) and m∞(V) are close to 0 for more negative values

of V and are close to 1 for more positive values of V. Contrastingly, h∞(V)

behaves in the opposite way – it is close to 1 for more negative V and closer

to 0 for more positive values of V. This is indicative of its inactivating gating

nature. These descriptions give a good fit of the potassium and sodium

conductances.

Obtaining the reversal potential and maximal conductance of the leak

current was considered to be difficult due to the current consisting of more

than one species of ion. However, once satisfactory values for these were

obtained, the complete four-dimensional model could be written as

C
dV
dt

= −ḡKn4(V −VK)− ḡNam3h(V −VNa)− gL(V −VL) + I, (2.16)

along with (2.7b), (2.13a), (2.13b), (2.9), (2.14), and (2.15). With this complete

model, Hodgkin and Huxley first considered whether the model correctly

predicted the total current during a voltage clamp, in which dV/dt = 0.
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Figure 2.4.: Top: numerical solution of 2.16 showing the temporal evolu-

tion of V. The action potential lasts approximately 3ms, after

which the refractory period begins. Bottom: curves showing

the time course of gK (blue solid) and gNa (blue dotted) on the

left vertical axis, and h (orange) on the right vertical axis during

an action potential and the subsequent refractory period. Ini-

tial conditions are (v0, n0, m0, h0) = (−58, 0.4139, 0.1056, 0.4135),

with applied current I = 15mV. Other parameters are ḡNa = 120,

VNa = 115, ḡK = 36, VK = −12, gL = 0.3, and VL = 10.6.

In this case, the voltage-dependent rates αn,m,h(V), βn,m,h(V) are constant

and a solution for the total current is given by (2.2) as well as expressions

for n, m, and h. The total current was computed for a number of differ-

ent voltages and showed agreement with experimental curves. Hodgkin

and Huxley also considered a partial differential equation (PDE) formula-

tion in which solutions are referred to as propagated action potentials. Such

depolarisations have a conduction velocity, describing the speed at which

the action potential propagates down a nerve fibre. They found a good

agreement between the theoretical and the experimental conduction veloc-

ity. Solving (2.16) with I = 0 corresponds to a membrane action potential. The
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shape, duration and amplitude of the action potential were all successfully

captured by their model, as well as the absolute and relative refractory pe-

riods. The refractory periods arise as a consequence of inactivation, which

decays relatively slowly following a depolarisation. This is seen in Figure

2.4 as h slowly increases back to its steady state value of 1 at the resting

voltage following an action potential. For a smaller h, as is the case during

the refractory period, the level that can be reached by the sodium conduc-

tance is reduced. In turn, this reduces the maximum depolarisation of the

membrane potential.

Hodgkin and Huxley briefly considered the phenomenon known as anode-

break excitation, where a neuron fires action potentials in response to the

termination of a hyperpolarising current. Upon application of a hyperpolar-

ising current, the membrane potential falls below rest. This is followed by

a drop in the membrane potential required for an action potential to occur.

They found that upon removal of the hyperpolarising current, an action po-

tential is generated. The mechanism is similar to PIR in that a cell fires after

a hyperpolarisation – in fact, Rinzel et al. [178] described PIR as being qual-

itatively equivalent to anodal break excitation – however unlike in thalamic

tissue, burst firing (multiple action potentials) was not seen.

2.3.2 Integrate-and-Fire Models

Conductance-based models such as the Hodgkin-Huxley model describe

the generation of an action potential from a biophysical point of view by

considering ion channel dynamics. The integrate-and-fire (IF) model – and

variants of it – is a more phenomenological description of a neuron, capable

of spike generation, albeit without any underlying biophysical detail such

as ion channel dynamics [1, 31]. It is simpler than the Hodgkin-Huxley

model in the sense that it is a lower-dimensional description of neural tissue,

although this comes at the price of introducing non-smooth dynamics. It is

widely used in the study of neural systems. The IF model consists of a
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Figure 2.5.: Integrate-and-fire (2.17), (2.18), solutions for the LIF model (left),

with I = 1.2, τ = 1, vth = 1, and vreset = −1, and the QIF model

(right), with I = 1, vth = 10, and vreset = −1.

voltage variable, v, modelling the neuronal membrane potential of a single

neuron, driven by some current I, as

dv
dt

= g(v) + I, (2.17)

with a firing threshold, vth, such that once v reaches vth from below at some

time T, the voltage is reset, to some value vreset < vth, according to the

firing-reset rule

v(T−) = vth, v′(T−) > 0, ⇒ v(T+) = vreset, (2.18)

where T± = limε↘0(T ± ε) denote the times immediately after and before

the firing time, T [31]. The function g defines the type of IF model. Two

important models in this class are the linear integrate-and-fire (LIF) model3,

generated by g(v) = −v/τ for some timescale τ [130], and the quadratic

integrate-and-fire (QIF) model, generated by g(v) = v2 [195]. See Figure 2.5

for illustrations of the dynamics generated by the LIF and QIF models.

With an initial condition v(0) = vreset, the general IF model (2.17) quali-

tatively captures spikes at time mT, m ∈ Z if I is constant, or at the gener-

alised times Tm if I = I(t). There is no underlying biophysical modelling

3 This is sometimes referred to as the leaky IF model in the literature.
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here, and there is no attempt to capture the shape of a spike, as the Hodgkin-

Huxley model does (see Figure 2.4), but nonetheless, the qualitative spiking

features are captured and are consistent with the process being modelled.

An IF model with an adaptive threshold has been shown to mostly cap-

ture the voltage dynamics of a real neuron, driven by a fluctuating current,

where the model is driven by the same current [83]. Thus, even relatively

simple models such as the IF model can effectively capture neuronal dy-

namics.

In the form given here (2.17), the IF model does not account for the signals

received from pre-synaptic neurons. We discuss synaptic modelling in the

following section.

2.4 synapse modelling

Individual neurons are connected to each other at synapses, joining the

axons of pre-synaptic neurons to the dendrites of post-synaptic neurons,

as illustrated in Figure 2.1. Figure 2.2 outlines the events involved in the

generation of a post-synaptic current via a cascade of biochemical reactions

causing a change in the post-synaptic membrane potential [219].

The post-synaptic current which arises as a result of synaptic activity can

be described by Isyn = −gsynu(v− vsyn), where gsyn is a constant defining

the overall strength of synaptic conductance interaction, u defines the scaled

synaptic activity, and v and vsyn are the membrane potential and the reversal

potential of the post-synaptic neuron respectively. For some action potential

arriving at the pre-synaptic terminal at a time T > 0, the post-synaptic

conductance takes the form u(t) = η(t− T), where η(t) describes the shape

of the post-synaptic response to the arrival of a pre-synaptic action potential.

Synaptic interactions are assumed to be causal, that is, a pre-synaptic action

potential cannot elicit a post-synaptic response occurring in the past. This

is captured by the causality condition, η(t) = 0 for t < 0.
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Figure 2.6.: Two different post-synaptic response functions η(t): exponen-

tial decay (red, dashed curve) and the rise and fall α-function

(blue, solid curve), with α = 1 in both cases. The causality con-

dition is captured by η(t) = 0 for t < 0.

The most basic synaptic model assumes pulsatile coupling,

η(t) = δ(t), (2.19)

where δ(·) is a Dirac delta function. This captures the transfer of informa-

tion at a synapse, albeit in a rather crude way in that, here, the post-synaptic

response to a pre-synaptic action potential is instantaneous. However, quan-

tities of neurotransmitter traversing the synaptic cleft decay (on the order of

milliseconds) after they initially enter the cleft. A modified exponential decay

model incorporating this behaviour takes the form

η(t) = αe−αtH(t), (2.20)

where H(·) is a Heaviside function, describing the causality condition, and

α is the rate of decay of the response. As well as the decay of quantities

of neurotransmitters over time, it takes a finite amount of time for neuro-

transmitters to traverse the synaptic cleft before arriving at the post-synaptic
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terminal. This is adequately described by the rise and fall model, given by

the α-function

η(t) = α2te−αtH(t), (2.21)

where 1/α is the finite time-to-peak of the post-synaptic response. The

α-function captures the finite time taken by neurotransmitter particles to

cross the synaptic cleft by the small response for small times after t = 0.

The response peaks at some finite time, and subsequently decays. The con-

trast between the exponential decay and rise and fall responses is shown in

Figure 2.6. A point of further model improvement revolves around the im-

mediate rise in the post-synaptic response. A more accurate reflection of the

finite time taken for neurotransmitters to arrive at the post-synaptic terminal

would require a response function which is held essentially at zero for some

traversal time, ζ, before taking the shape of the rise and fall response. Such a

function could be described by η(t) = α2(t− ζ)e−α(t−ζ)H(t− ζ). It should

also be noted that a non-zero time is taken for a response to be induced

in the post-synaptic neuron. A trade-off must be made between accuracy

and convenience. The rise and fall operator is a relatively simple function

with convenient properties, and so is an adequate choice for post-synaptic

response in the majority of cases.

A neuron typically receives multiple incoming synaptic signals (often

from multiple neurons). Assuming a similar post-synaptic response for each

signal received, the overall post-synaptic response to a train of m action po-

tentials, arriving at times Tm, m ∈ Z, may be modelled as

u(t) = ∑
m∈Z

η(t− Tm). (2.22)

This is illustrated for an incoming train of three spikes in Figure 2.7 for η(t)

given by (2.21).

For a function η which is a Green’s function of a differential operator Q,

so that Qη = δ, (2.22) may be rewritten as

Qu(t) = ∑
m∈Z

δ(t− Tm). (2.23)
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Figure 2.7.: The post-synaptic response u(t) (black curve) to a train of m = 3

spikes, illustrating how the overall synaptic response sums the

conductance changes, η(t− Ti), i = 1, 2, 3 (blue dashed curves),

arising from individual action potential spikes (illustrated in

red) arriving to the pre-synaptic terminal at times T1 = 1, T2 = 2,

T3 = 6. The rise and fall synaptic response (2.21) for η is used

here, with α = 1.

The three different types of synaptic response considered above are all

Green’s functions to different linear differential operators. Pulsatile cou-

pling (2.19) corresponds to the zeroth-order operator Q = 1. Exponential

decay (2.20) corresponds to the first-order linear differential operator4

Q =

(
1 +

1
α

d
dt

)
, (2.24)

and the rise and fall α-function, (2.21), is the Green’s function of the second-

order linear differential operator

Q =

(
1 +

1
α

d
dt

)2

. (2.25)

4 A calculation showing that the exponential decay function is the Green’s function of this

first-order differential operator is given in Appendix A.1.
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2.5 from spiking models to rate-based models

A spiking single neuron synapse model given by (2.22) has the equivalent

representation

u(t) =
∫ ∞

−∞
η(s) ∑

m∈Z

δ(s− (t− Tm))ds, (2.26)

so that u is the temporal convolution of a synaptic response function η, with

a spike train ∑m∈Z δ(t− Tm). To see how a firing rate model may arise, take

a short-time average 〈·〉τ of u(t) over some time window τ, defined as

〈u(t)〉τ =
1
τ

∫ t+τ

t
u(t′)dt′, (2.27)

Then upon averaging (2.26),

〈u(t)〉τ =
∫ ∞

−∞
η(s)

(
1
τ

∫ t+τ

t
∑

m∈Z

δ(s− t′ + Tm)dt′
)

ds. (2.28)

Now making the assumption that u(t) varies sufficiently slowly so that

〈u(t)〉τ ' u(t) is constant, (2.28) reduces to

u(t) =
∫ ∞

−∞
η(s)R(t− s)ds, (2.29)

where the rate R(t) effectively counts the numbers of spikes per unit time

τ, and is defined as

R(t) =
1
τ

∫ t+τ

t
∑

m∈Z

δ(Tm − t′)dt′. (2.30)

Heuristically, the spike train ∑m∈Z δ(s − t + Tm) in (2.26) is replaced by a

firing rate R(t − s). The exact form of the firing rate is model-dependent.

For a linear IF model (2.17, 2.18, g(v) = −v/τm) with the addition of a

constant synaptic input u and an absolute refractory period τR, the firing

rate is given by5

R =

(
τR + τm log

(
u− vreset

u− vth

))−1

H(u− vth), (2.31)

5 See Appendix A.2 for a derivation of the firing rate for a linear and a quadratic IF model.
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where the condition u > vth must be true in order for firing events to oc-

cur. The firing rate for the QIF model (2.17, 2.18, g(v) = v2) with constant

synaptic forcing u in the limits vth → ∞, vreset → −∞, takes the form5

R =
1
π

√
I + u H(I + u). (2.32)

Thus for slowly varying synaptic input u(t), a natural leading order choice of

firing rate function R(t) is the one corresponding to constant input R, such

that R(t) = f ◦ u(t) for a firing rate f composed with u. In (2.29) this gives

rise to the rate-based model

u(t) =
∫ ∞

−∞
η(s) f (u(t− s))ds. (2.33)

The IF and QIF firing rates are logarithmic and square root in shape, respec-

tively. Three different ways of obtaining rate-based models from spiking

models are given in [65]. The derivation shown above is not exact and has

relied on the assumption of slow synapses. However, models often incor-

porate firing rates which are qualitatively similar to the IF and QIF rates.

Sigmoidal functions of u are typically used.

Spiking models return precise information on spike timings, while their

rate-based reductions instead give information on the relative firing rate of

a neuron. This is illustrated well in Figure 2.8 where the firing rate is shown

to be zero when a model neuron is not spiking. As the number of spikes

per unit time increases, the output of the firing rate model increases. While

rate-based models do not yield precise spike timings, they do an excellent

job of capturing the time duration of a burst of spikes.

The importance of individual spikes vs. rates in neural computation is

currently an open question in the field [28]. Rate-based descriptions allow

for a simplified description of a spiking model; Montbrió, Pazó, and Roxin

[150] developed a rate-based model showing that the dynamics of a network

of quadratic integrate-and-fire model neurons are exactly described by an

appropriate firing rate description [150]. Traditionally, rate-based models

have failed to capture spike synchronisation effects, link to biophysical pa-

rameters, and describe finite-size fluctuations [190]. The next generation of
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curve). When many spikes occur in a short period in the spik-

ing model, this is reflected by a higher activity in the rate-based

model.

neural field models, beginning with the work in [137, 150], addresses some

of these shortcomings [33]. The advantage of rate-based models is they ad-

mit a low-dimensional description of a high dimensional (spiking) problem.

Individual spikes are washed out in this description, but model simplifi-

cation allows for more tractable analysis to be carried out. Whether or

not rate-based or spiking models are appropriate for study depends on the

problem under consideration.

2.6 from single neurons to networks and spatial fields

So far, we have considered the synaptic dynamics of a single post-synaptic

neuron. Neurons exist in connected networks and so here, we include a no-

tion of network connectivity into a description of synaptic dynamics. Con-

sider a continuum of neurons with position x ∈ R. Then in general, a

framework must provide the capability for a patch of tissue at a location

x to be able to receive input from anywhere else in the domain. There-
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fore, the synaptic source, ψ, is modified by convolving a spike train with a

description of network connectivity as

ψ(x, t) = w⊗ ∑
m∈Z

δ(t− Tm(x)), (2.34)

where the symbol ⊗ represents a spatial convolution, defined as

(w⊗ g)(x, t) =
∫ ∞

−∞
w(x− y)g(y, t)dy. (2.35)

A useful property of convolutions that is used throughout this thesis is

commutativity: F⊗ G = G⊗ F for arbitrary functions F and G.

Equation (2.34) filters spikes occurring across the domain by how they

are connected to tissue at x at a time t. Here, the connectivity function w

is distance-dependent: w = w(x− y). Further, it has been modelled as con-

stant in time. However, in studies of network plasticity, in which changes

may occur in the connectivity structure of the brain due to learning – for

example, in developing infants [36] – the temporal evolution of the con-

nectivity description is important. The assumption of distance-dependent

connectivity may be relaxed too, in which case, w = w(x, y, t) is a more

appropriate description of evolving structural connectivity.

For a source of synaptic activity given by (2.34), the synaptic activity u,

evolves according to Qu = ψ. Written in full, this is

Qu(x, t) = w⊗ ∑
m∈Z

δ(t− Tm(x)). (2.36)

Equation (2.36) is in the form of a differential operator acting on u and is

equivalent to the (temporal) integral formulation

u(x, t) = η ∗ w⊗ ∑
m∈Z

δ(t− Tm(x)), (2.37)

where the symbol ∗ represents a temporal convolution, defined as

(η ∗ g)(x, t) =
∫ ∞

−∞
η(t− s)g(x, s)ds. (2.38)

Both differential (2.36) and integral (2.37) formulations are commonly used

interchangeably throughout the literature. This spiking model describes the
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effect on synaptic activity of idealised spikes, described by delta functions,

arriving at a synapse at position x at times Tm and causing a post-synaptic

response.

As shown in the previous section, spiking models may be reduced to rate-

based models if the synaptic response evolves on a slower time-scale than

the mean inter-spike interval, Tm − Tm−1. This is typically the case if α� 1

in (2.20) and (2.21). Then the spike train may be replaced by a function

describing the tissue firing rate [45, 27, 64, 6] as

(Qu)(x, t) = (w⊗ f ◦ u)(x, t), (2.39)

where f describes the average rate of spikes over a number of mean inter-

spike intervals [6]. It is typically a sigmoidal function of u, generating a

feedback loop wherein tissue with high synaptic activity drives more activ-

ity to connected tissue. Models of the form (2.39) are referred to as neural

field models of synaptic activity.

The transition to networks of connected neurons – rather than to contin-

uum fields – is in essence identical to what has been shown above, with the

difference that instead of considering a continuum field x ∈ R, a network of

spiking neurons i ∈ {1, . . . , n}, with synaptic activity ui is considered. The

structural connectivity of a network of connected neurons is described by a

weight matrix, Wij. The synaptic drive to the ith neuron is given by

ψi(t) =
n

∑
j=1

Wij ∑
m∈Z

δ(t− Tm
j ) (2.40)

and in an analogous manner to Section 2.5 the spike train ∑m∈Z δ(t− Tm
i )

may be replaced by a firing rate Ri for the ith neuron in the network under

the assumption of slow synaptic activity (in the ith neuron) to give the

discrete rate-based model of synaptic drive

ψi(t) =
n

∑
j=1

WijRj. (2.41)

This is fed into the dynamics for u as

Qui(t) = ψi(t). (2.42)
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Figure 2.9.: An illustration of the wizard hat connectivity function given by

w(x) = (1− |x|)e−|x|. Where w(x) is above zero, connections

are excitatory, while below zero, connections are inhibitory.

2.7 developments : networks and neural fields

A seminal work in neural field modelling is that of Wilson and Cowan

[228, 229]. They developed a deterministic model for the dynamics of neu-

ral populations on the basis that, while local interactions between single

neurons is largely a random/stochastic process, on the macroscale, such

randomness “gives rise to quite precise long-range interactions.” The idea

is similar in spirit to the following: at the macroscale, fluid flow can appear

very orderly, yet at the microscale, one observes Brownian motion [228].

Their model is a study of populations of cells, rather than individual neu-

rons. Indeed, there is evidence that “even within relatively small volumes of

cortical tissue, there exist many cells with very nearly identical responses to identi-

cal stimuli” [228, 151]. Their model includes inhibitory as well as excitatory

populations of neurons, along with refractoriness.
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2.7.1 The Amari Neural Field Model

Subsequent to the work of Wilson and Cowan, Amari [5] introduced a

single-layer neural field with dynamics given by

τ
∂u
∂t

= −u(x, t) +
∫ ∞

−∞
w(x, y) f (u(y, t))dy + s(x, t), (2.43)

where u(x, t) is the average membrane potential of tissue at (x, t). If the

connectivity function between neurons from a position x to a position y is

purely distance-dependent (referred to as a homogeneous field by Amari in

[5]), then w(x, y) = w(|x− y|). This is assumed to be the case in the follow-

ing discussion. The shape of w(x) is important in describing the underlying

architecture that is being modelled. In one spatial dimension, a functional

form typically chosen for w to make patterns is the so-called “wizard hat”

connectivity given by w(x) = (1− |x|)e−|x|. This is an effective model of a

mixed population of excitatory and inhibitory interacting neurons. Figure

2.9 illustrates this, where w(x) takes values either side of zero. Other con-

nectivity functions can of course be chosen, such as the purely inhibitory

connectivity used in models of thalamic tissue [148, 176].

A model assumption allowing for a mathematically tractable analysis is

that the sigmoidal firing rate function f takes the form of a Heaviside func-

tion: f (u) = H(u − h), where h is a firing threshold. This all-or-nothing

response is not required for the formation of the patterns seen in neural

fields [5], but rather, it is an aid in constructing patterns and analysing their

stability. Such a firing rate description may be obtained by taking the limit

as the steepness of a sigmoidal function is continually increased. Amari pro-

ceeded to analytically construct a stationary bump solution in the absence

of any external stimulus s(x, t) as follows. Stationary solutions to (2.43) are

given by removing any explicit time-dependence as

u(x) =
∫ ∞

−∞
w(x− y)H(u(y)− h)dy. (2.44)
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Figure 2.10.: A snaking bifurcation diagram for (2.43) with a sigmoidal fir-

ing rate f (u; µ, θ) = 1
1+e−µu+θ − 1

1+eθ with steepness µ centred at

θ, and connectivity w(|x|) = e−bx(b sin(x) + cos(x)). The norm

of the spatial solution is plotted against the bifurcation parame-

ter µ. Insets correspond to the appropriately labelled triangles.

Parameter values are θ = 2.5, with τ = 1 and s(x, t) = 0 in

(2.43).

Then a simple bump solution is characterised by the condition x ∈ (a1, a2),

u(x) > h for some constant locations a1 < a2 (and u(x) < h outside of this

interval). In this way, one obtains

u(x) =
∫ a2

a1

w(x− y)dy. (2.45)

The two conditions u(a1) = h, u(a2) = h uniquely determine the two un-

knowns a1, a2.

For smooth sigmoidal firing rate functions, other techniques are available

to modellers, including numerical continuation techniques, which allows

for the continuation of a solution branch through parameter space. Cou-

pled with a numerical stability routine, such techniques are noteworthy for

their ability to provide insight about a model away from the Heaviside limit.

We expose this in greater detail in Chapter 3, but we give a flavour of the
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insights which continuation techniques yield in Figure 2.10. Solutions to the

Amari neural field are continued in parameter space, meaning the change in

the asymptotic solution profile is tracked as a parameter is varied. The 2-

norm of the solution, || · ||2, is a measure of the magnitude of activity and is

plotted against the bifurcation parameter. Three different spatially extended

solutions are projected into the parameter, norm space: the spatially homo-

geneous steady state, with ||u||2 = 0, which undergoes a Turing bifurcation

at the star (?), and the two additional unstable (signified by the colour red)

patterns which bifurcate from this, which are a localised solution (lower red

branch) and a spatially periodic solution (upper branch). The unstable spa-

tially periodic bumps increase in activity as µ is decreased until a fold point

is reached at µ = 3.3, denoted by the large black circle (•). At this point,

the periodic bumps stabilise (the curve is blue beyond the fold point) and

continue to grow in activity as µ increases.

A snaking structure in continuation space exists for the localised solution

and can be seen in the grey shaded region of parameter space. Multiple

stable (blue) and unstable (red) solutions co-exist via a cascade of fold bi-

furcations, represented by smaller black circles (•). Examples of the spatial

profiles of patterns along the snaking branch marked by small black trian-

gles (N) are shown in the inset. The localised pattern spreads out in space,

with more bumps forming as the snaking branch is traversed upwards in

increasing norm. The snaking branch terminates by joining to the fold of

periodic bumps. This analysis is carried out away from the Heaviside limit,

with a sigmoidal firing rate function. In [172], the authors continue steady

state patterns analogous to those in Figure 2.10 in two spatial dimensions,

with their results “forming a basis for the general study of localised cortical

activity”.

The work of Wilson, Cowan, and Amari has had a profound influence on

the field of theoretical neuroscience, with neural fields and variants being

used as a basis for modelling visual hallucinations [66, 172], the role of

the hippocampus in memory function [91], and the onset of epilepsy [196]
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to name just a few applications. With the development of computational

techniques and efficient ways of implementing these, there is now a large

toolbox of analytical and numerical techniques that may be applied to the

study of neural systems. The reader is referred to [208, 46] for a review of

neural fields from a mathematical point of view.

2.7.2 A Model of Spike Frequency Adaptation

Spike frequency adaptation (SFA) is the phenomenon in which the firing

rate of a neuron decreases when exposed to a continuous stimulus of con-

stant intensity [166, 198]. It is a common, experimentally observed feature

of neural dynamics [82]. In 2014, Ermentrout, Folias, and Kilpatrick [67]

studied a model of SFA by considering pattern formation in neural fields

with linear adaptation. That is to say, they studied the dynamics of

τ
∂u
∂t

= −u(x, t) +
∫ ∞

−∞
w(x− y) f (u(y, t))dy− βv(x, t) + I(x, t), (2.46a)

1
α

∂v
∂t

= −v(x, t) + u(x, t), (2.46b)

where u(x, t) denotes synaptic activity as before, and the local negative

feedback v(x, t) models the effects of spike frequency adaptation at rate α

and strength β [19]. Finally, the function I(x, t) is an external drive to the

system; see [235] for an investigation of a spatially localised drive on bumps

in a Wilson-Cowan-type model. In the absence of external drive, they de-

rive the amplitude equations describing solutions that emerge at the onset

of bifurcation from the homogeneous steady state in one- and two-spatial

dimensions. Amplitude equations are derived by carrying out a weakly

non-linear analysis about a Turing instability point [160]. In both one- and

two-spatial dimensions, there are two ways for the steady state to go unsta-

ble: a real eigenvalue crosses the imaginary axis, or a complex conjugate

pair of eigenvalues crosses the imaginary axis. Emergent solutions were sta-

tionary periodic patterns, standing waves, or travelling waves, with richer
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dynamics seen in two spatial dimensions, including spots, stripes, squares,

and hexagons, as well as travelling and time-periodic variants of these.

With the inclusion of the external drive, standing bump solutions exist,

which destabilise into so-called “sloshers”. Where a breather can be thought

of as oscillating “up and down” in time in terms of activity in a space-time

plot, sloshers are solutions which appear to oscillate (or “slosh”) to-and-fro

(or “left and right”) about the location of drive. Travelling bump solutions

destabilise into “sloshing pulse” solutions. These are characterised by a

“side-to-side” movement which sits atop a travelling pulse. They have a well-

defined wavespeed, and yet cannot be constructed as stationary solutions in

a co-moving frame (examples of this phenomenon are shown in [67]). This is

illustrative of the rich dynamics that are present in neural field-type models.

2.7.3 Inhibitory Neural Network Models of Thalamic Tissue

The success of the Hodgkin-Huxley model has paved the way for many

biophysical descriptions of single-cell dynamics which are constructed in

the same spirit. In 1994, Wang [220] developed a single-cell model capturing

the important features displayed by a thalamic relay neuron, namely burst

firing upon release from hyperpolarisation, and tonic (periodic) firing when

depolarised from rest. Rinzel et al. [178] considered a simplification of

Wang’s single-cell model, reducing from six to three relevant ionic currents

and applied it to a network of inhibitory connected neurons. In one spatial-

dimensional, x ∈ R, the current balance equation in this model is given by

the Hodgkin-Huxley-type equation,

Cm
∂V
∂t

= −IL − IT − Isyn, (2.47)

where V is the membrane potential, and the three relevant currents on the

right-hand side are the leak-, T-type Ca2+-, and synaptic-currents, respec-

tively. They take the forms IL = gL(V − VL), IT = gTm∞(V)h(V − VCa),

and Isyn = gsynstot(x, t)
(
V(x, t)−Vsyn

)
. The constants gµ, and Vµ, µ ∈
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{L, T, syn} represent an overall conductance strength and the reversal poten-

tial for each current, respectively. The variable h models the de-inactivation

of T-type calcium channels, and evolves according to

∂h
∂t

= φ
h∞(V)− h

τh(V)
, (2.48)

where the constant φ is a scaling for the the voltage-dependent timescale

τh(V) = τ0 + τ1/(1 + exp((V + 50)/3)). The total synaptic activity at x, is

given as

stot(x, t) =
∫ ∞

−∞
w(x− y)s(y, t)dy,

where the total synaptic activity at x at time t consists of a weighted sum of

synaptic activity elsewhere in the tissue. The tissue connectivity determines

this weighting. Rinzel et al. used the connectivity

w(x) = A exp
(
−x2/λ2

) (
1− γ exp

(
−x2/λ2

gap

))
, (2.49)

where A is chosen so w(x) is normalised to 1. The parameters λ determines

the spatial scale, while γ determines whether connectivity is on-centre or

off-centre (these are defined below). If connectivity is off-centre, λgap de-

fines the gap between peaks in the connectivity function. The local synaptic

activity s(x, t), evolves according to

∂s
∂t

= k f s∞(V)(1− s)− krs, (2.50)

for saturation and decay rates k f and kr. The sigmoidal activation functions

are given by

m∞(V) = 1/(1 + exp(−(V + 40)/7.4)),

h∞(V) = 1/(1 + exp((V + 70)/4)),

s∞(V) = 1/(1 + exp(−(V + 35)/2)),

and are all shown in Figure 2.11 for parameters used in [178].

Figure 2.12 illustrates the on-centre and off-centre coupling used by Rinzel

et al. [178] in their study. For on-centre coupling, the synaptic architecture

is such that a patch of neuronal tissue receives the majority of input from
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Figure 2.11.: An illustration of the three functions m∞(V) (blue), h∞(V) (or-

ange) and s∞(V) (yellow) in the model (2.47, 2.48, 2.50) for the

parameter values in [178].

itself and its nearby neighbours. Interaction strength drops off for tissue

further away. For off-centre coupling, interaction strength with tissue in the

immediate vicinity is small but grows to some maximum at an intermediate

distance. Beyond this, interaction strength again decays away.

In the case of on-centre coupling, lurching-type solutions, shown in Fig-

ure 2.13, were seen in which activity spreads in a saltatory rather than

smooth fashion. A difficulty in studying these waves is that they do not

have a well-defined co-moving frame, although their wave-speed appears

to be determinable (if not analytically, then certainly numerically by, for ex-

ample, calculating the slope of the line passing through the outer activity

in the space-time plot). Rinzel et al. observed “highly chaotic fluctuations be-

tween spikes, generated completely by deterministic network dynamics”. Coombes

(2005) [45] characterised the lurching speed by considering the temporal pe-

riod and characteristic length scale of a lurch [44], in a different model to

that considered by Rinzel et al. Smooth travelling waves were numerically

shown to be a viable solution for off-centre coupling. For the parameters
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Figure 2.12.: An illustration of on-centre (left) and off-centre (right) coupling

as used by Rinzel et al. [178].

used, Rinzel et al. [178] showed that the wave speed was around 0.6mm

s−1.

The inactivation dynamics of the T-type Ca2+ current generates the PIR

events seen in this model. PIR only generates firing events once a sufficient

amount of applied inhibition wears off. A consequence of this is that wave

speeds are much slower in models that rely upon PIR as a mechanism to

generate waves as opposed to excitatory coupling. When connectivity is on-

centre, this model incorporates self-inhibition, meaning that if a cell is firing,

it receives inhibitory input from itself. Consequently, PIR firing events in

this case are brief. Indeed, within a reasonable parameter regime, cells need

to receive many bouts of brief inhibitory synaptic input in order for their

PIR mechanism to be adequately primed to enable rebound upon release

[178]. Let τsyn = (kr)−1 denote the time constant for the decay of synaptic

input. The more time a cell spends in the hyperpolarised state, the longer

it takes to fire. A result of this is that a lurching wave slows if cells require

longer bouts of hyperpolarisation before rebound. However, the rebound

will be stronger since a larger proportion of channels will be de-inactivated

due to the increased time spent in a hyperpolarised state. Stronger rebound

results in more robust PIR patterning. Rinzel et al. noted that if τsyn is too

small, then synaptic inhibition becomes too brief to yield PIR firing and in

this case the wave cannot persist and disappears. PIR waves leave a train of
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Figure 2.13.: Lurching waves, seen in the model (2.47, 2.48, 2.50) with on-

centre connectivity. They travel across the domain in a highly

saltatory manner. Parameters are φ = 1.3, λ = 0.02cm,

λgap = 0.014cm, k f = 0.5 ms−1, kr = 0.025 ms−1, γ = 0 (on-

centre connectivity), Cm = 1 µF/cm2, τ0 = 30ms, τ1 = 500ms,

gL = 0.4 mS/cm2, gT = 1.5 mS/cm2, gsyn = 5 mS/cm2,

VL = −70mV, VCa = 90mV, Vsyn = −85mV.

synaptic inhibition in their wake [178] which can, and often does, promote

subsequent rebound events as illustrated in Figure 2.13. Thus instead of a

solitary travelling pulse, PIR models often have families of travelling pulses.

This phenomenon allows for the formation of highly complicated dynamics

from relatively simple initial conditions.

The model described by (2.47, 2.48, 2.50) is a reduction of a two-layer de-

scription of the thalamo-cortical relay network found in the brain. Thalamo-

cortical cells (TC) and reticular nucleus (RE) cells are connected as shown

in Figure 2.14. The TC cells receive inhibitory input from RE cells, priming

them for rebound. Upon recovery from hyperpolarisation, the TC cells fire.
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Figure 2.14.: An illustration of a two-layer thalamic network, consisting of

inter-connected TC and RE cells, with inhibitory (excitatory)

connectivity shown by the black (grey) arrows. The overall

inhibitory TC-to-TC loop is shown on the right.

This excites RE cells which fire, sending inhibitory signals to both RE and

TC cells. This completes one cycle of activity. The whole process is able to

repeat, leading to the generation of periodic activity [44]. The idea behind

the Rinzel-reduction is for TC cells to indirectly send inhibitory signals to

other TC cells via the RE cells. Thus, removing explicit dependence on RE

cells, one can, in essence, consider a population of TC cells with inhibitory

synaptic self-interactions.

Yew et al. [234] studied the two-population TC and RE circuit in 2001.

They used singular perturbation methods to derive formulae for solutions

and discover how wave properties, such as speed or shape, depend on pa-

rameters. The two-layer model of TC and RE cells were connected as shown

in Figure 2.14. Yew et al. demonstrated by direct numerical simulation that

smooth and lurching waves exist in the two-layer model. Furthermore, they

showed that the model supports the following types of travelling wave: a

solitary pulse, a double pulse, a multiple pulse solution, a solitary lurcher,

a double lurcher and a lurching wave with periodic lurching activity in its

wake. Before considering network dynamics, the authors study single-cell

and two-cell dynamics, illustrating the intrinsic single-cell properties and
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the very basic network properties. Following this, they find an analytical

expression for the smooth wave in the full network model by moving to the

co-moving frame.

In 2010, Wasylenko et al. [224] undertook a numerical investigation of

lurching waves in a two-population network model akin to that of [234], al-

beit on a lattice instead of on the continuum. They showed lurching waves

in their model to be fixed points of a Poincaré map and carried out a bifur-

cation analysis by following those fixed points as parameters were varied.

In this way, they were able to numerically obtain the bifurcation structure

of various lurching solutions to their model. An analytical linear stability

analysis of lurching waves is still an open challenge in the field.

2.8 stability in non-smooth dynamical systems

The models reviewed in the previous section are all set up as smooth, non-

linear dynamical systems. This non-linearity is a major obstacle to overcome

in an analytical treatment (although not in every case). One approach to rem-

edy this is to consider non-smooth, piece-wise linear (PWL) models which

caricature the smooth, non-linear ones. For PWL models, linear theory ap-

plies away from any non-smoothness. The natural caveat with this approach

is that while non-linearity disappears, non-smoothness is introduced which

requires a different host of techniques for analysis. The upshot is that non-

smoothness typically occurs at locations in phase-space which may be char-

acterised, for example on the hyperplane defining a firing condition, given

by v = vth.

These locations are referred to as switching manifolds. Upon these, the

dynamics of the dynamical system changes discontinuously, either in the

vector field or in the flow, or in both. Table 1 summarises the main types

(1, 2, and 3) of discontinuities that may be found in non-smooth dynamical

systems. We add the notion of a type 0 discontinuity which is characterised

by a fully smooth dynamical system for completeness.
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Type Vector Field Solution

0
(Smooth)

Smooth Smooth

1 Non-smooth, 
continuous

Smooth

2
(Filippov-type)

Non-smooth, 
discontinuous

Non-smooth, 
continuous

3
(Impulsive)

Exposed Delta 
function

Non-smooth, 
discontinuous

Table 1.: For the generic dynamical system du/dt = F(u), u ∈ Rn, t > 0, the

Types of discontinuity in dynamical systems are characterised by

the relative non-smoothness of the vector field F(u) and solution

u.

In 1995, Müller [154] developed a method to determine the linear stability

of solutions to non-smooth systems by appropriately characterising the non-

smooth jumping events at a switching manifold. This method has been

dubbed the saltation approach (in Italian, the verb saltare means “to jump”).

We utilise this approach in Chapter 5, and give the details of a derivation of

the saltation operators appropriate to our problem there in Appendix C.2.

Here, we give a brief overview of the method.

Consider an arbitrary unperturbed trajectory z(t), and a perturbed trajec-

tory z̃(t) (see Figure 2.15) to a time-dependent dynamical system

dz
dt

= F(z), z ∈ Rn, (2.51)
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Figure 2.15.: A diagram showing the evolution of a perturbation at a switch-

ing event at time. The blue (red) line specifies the unperturbed

(perturbed) trajectory with switching event occurring at time T

(T̃).

with a switching event in the dynamics at a time t = T for the unper-

turbed trajectory, captured by the indicator function γ(z), via the condition

γ(z(T)) = 0. This may be a switch in the vector field, such that

F(z) =

F1(z), v < a,

F2(z), v > a,

where v = a is a surface in phase-space where the dynamics switch (here, v

is a component of z upon which the dynamics switch). In this case, γ(z) =

v− a. Or it may be a switch in the solution, such that, where a trajectory hits

the switching manifold v = a, the solution after this moment is discontinu-

ously mapped to the solution just before this moment. If T denotes the time

when the trajectory hits the switching manifold, then z(T+) = g(z(T−)),

where the function g discontinuously maps z before a switch to its value

after a switch. The times T± are defined by T± = limε↘0 T± ε. Collectively,

both of these cases are captured in Figure 2.15, where there is a clear discon-

tinuity in the solution (blue line) and its vector field (slope of the blue line)

at time t = T. It is important to note that the switch occurs in phase-space
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rather than time. We have introduced the switching time T simply to help

illustrate what happens to trajectories through time.

The perturbation between the two trajectories is defined as δz(t) = z(t)−

z̃(t). Then the perturbation after a switch, δz+, may be mapped to a pertur-

bation before a switch, δz−, via a saltation operator K ∈ Rn×n at time t = T,

such that

δz+ = K(T)δz−.

Müller showed that the saltation matrix takes the form

K(T) = Dg(z(T−))

− (Dg(z(T−))F1(z(T−))− F2(z(T+)))∇zγ(z(T−))T

∇zγ(z(T−)) · F1(z(T−))
. (2.52)

This simplifies considerably when applied to a problem. Notice that the

numerator of the second term of K(T) is an outer product, generating an

appropriately sized n× n matrix. For two vectors u ∈ Rm×1 and v ∈ Rn×1,

the outer product, (u ⊗OP v),6 is of size m × n, and is defined in index

notation by (u⊗OP v)ij = uivj, where vT ∈ R1×n denotes the transpose of v.

Saltation is a useful approach to effectively treat the evolution of pertur-

bations through switching manifolds. It is an invaluable analytical tool in

constructing a monodromy matrix in piece-wise models, which is crucial

in the linear stability analysis of periodic solutions. Away from switching

manifolds in PWL systems, perturbations are propagated forwards via ma-

trix exponentials.7 The reader will see how this is achieved in Chapter 5.

Saltation operators have been used to analytically compute periodic orbit

stability in a neuroscience context in [148, 159, 47, 127, 187, 25].

For smooth dynamical systems without switching manifolds, the use of

these techniques recovers the smooth theory (in this case they are unneces-

6 The subscript “OP” stands for “Outer Product”, and is given to avoid confusion and to

distinguish this symbol from ⊗ representing a spatial convolution.

7 In theory, the approach can be applied to piece-wise non-linear systems, where perturba-

tions are propagated via some non-linear operator instead of matrix exponentials away

from switching events. The simplest way to do this is via a numerical approach.
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sary). Developing an appropriate non-smooth model which caricatures the

underlying biology or the original model well is key in using this approach

effectively to gain insights.

2.9 evans function stability of heterogeneous spatial pat-

terns

The neural field model with linear adaptation of spike frequency adaptation

(2.46) admitted patterns with non-trivial oscillatory dynamics [67]. Simpler

solutions such as simple travelling waves and stationary bumps also exist

in neural field-type models.

A useful tool in the study of heterogeneous patterns such as these is the

Evans function. This is used to analyse the linear stability of non-linear waves

on unbounded domains [143]. The Evans function is a complex analytic

function whose zeroes give the point spectrum of the operator obtained by

linearising a system about its travelling wave solution [50]. These zeroes cor-

respond to the eigenvalues of the stability problem and are typically found

computationally by finding the intersections of the real and imaginary zero

contours in the complex plane. Originally developed for travelling waves,

Coombes and Owen (2005) [45] demonstrated that the technique could be

adapted to find the eigenvalues of a (stationary) bump solution, and thus

provide stability information for a stationary class of solutions too. The

Evans function technique was first considered by Evans [70, 71, 72, 73] dur-

ing a stability analysis of Hodgkin-Huxley type equations. Coombes and

Owen developed the use of the Evans function for travelling waves in neu-

ral field-type integro-differential equations in the case of a Heaviside firing

rate function [49].

Here we outline how to determine the Evans function in non-smooth sys-

tems. Consider a model with stationary bump solutions, such as the Amari

neural field model (2.43) [46]. A stationary bump in an Amari-style neural



2.9 evans function stability of heterogeneous spatial patterns 48

x1 x2

x

3u

Figure 2.16.: An illustration of a stationary bump (blue curve) parame-

terised by two threshold crossings, x1 and x2 (black dots), at

which firing events, given by u(x) = θ, occur. The firing thresh-

old θ is illustrated by the dashed black line.

field is defined by two locations, x1 and x2 (which are both fixed in time),

in space for which the firing threshold, θ, is crossed (this is illustrated in

Figure 2.16). x1 and x2 are called threshold crossings, and occur at u(x) = θ,

where the firing rate function f (u(x)) = H(u(x)− θ) activates. A complete

bump construction identifies x1 and x2, giving a determinable solution pro-

file z(x).8

To determine the linear bump stability, linearise about it, so that

z(x, t) = z(x) + δz(x)eλt,

where δz(x) � 1 describes spatial variations in the perturbations and λ

is an eigenvalue to the stability problem. If Re(λ) > 0, then solutions

are unstable, while if Re(λ) = 0, a linear instability occurs. Otherwise,

8 The notation z is useful in generality for multi-component systems. In this scalar neural

field example, z(x) = u(x).
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a solution is linearly stable. A homogeneous linear system in the spatial

perturbations at the threshold crossings is then found. It typically takes the

form

(Γ(λ)− In)x = 0,

where n is the number of distinct threshold crossings (2 in the case of a

bump), I is the identity matrix, x is a vector of perturbations9 at the n

crossing events, and Γ is a complex-valued n × n matrix obtained via the

above linearisation, containing a description of threshold crossings (concrete

illustrations of this are shown in Chapters 4 and 5).

The complex-valued Evans function E is generated by demanding that

perturbations x be non-trivial through the equivalent condition E(λ) = 0,

where

E(λ) = det(Γ(λ)− In).

The zeroes may be found by decomposing λ = a + ib, a, b ∈ R, and finding

where the zero real and imaginary contours intersect.

In this way, the linear stability of heterogeneous spatially extended solu-

tions may be determined. We utilise the Evans function to obtain bump and

wave stability in Chapters 4 and 5 of this thesis.

2.10 summary

The brain is an inherently multi-scale object, working coherently over multi-

ple spatial scales from the microscopically small (proteins, nm) to the macro-

scopically large (the brain, and the human body, m). The dynamics at the

smallest spatial scales contribute to the behaviour observed at the largest

spatial scales.

Modellers must therefore decide what is of importance in the problems

which are being studied. Is biophysical detail important, or are phenomeno-

9 For the bump solution in Figure 2.16, x = (δu(x1), δu(x2)) ∈ R2. These are the perturba-

tion at x1 and x2.
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logical models – in which underlying biophysical detail comes second to

the generation of qualitatively realistic behaviour – acceptable? Figure 2.17

shows a structured hierarchy of spatial scales within the brain, as well as

some of the most famous models used at each scale. The Hodgkin-Huxley

and Morris-Lecar models incorporate a description of ion channel dynamics

at the single-neuron level contributing towards action potential generation,

and thus they are dubbed biophysical models. The integrate-and-fire (IF)

model on the other hand comprises a dynamical system heuristically de-

scribing voltage, augmented with firing and reset conditions. There is no

explicit biophysical mechanism in the model (although this could be added),

nonetheless it captures the salient features of single cell neuronal dynamics:

spikes. Although neural fields are phenomenological descriptions of synap-

tic activity, they offer an effective description of macroscopic brain activity

which has been predictive in studies of cortical activity. The study carried

out in [140] is illustrative of this, showing agreement in the dynamical re-

sponse between a neural field model of visual cortex tissue and mesoscopic

brain activity across a patch of tissue in the visual cortex, both in response

to visual stimuli.

In this thesis, models of different brain regions are studied and devel-

oped, using a number of analytical and numerical techniques. We have

given an overview and summary of event-driven synaptic modelling, in

terms of spikes generating PoSPs, and showed that firing rate models can

be motivated by, and heuristically derived from, spiking models. Extending

this to include a network of cells or a field describing cortical tissue dy-

namics, the integro-differential equation framework for neural field models

was introduced. The SFA model (2.46) is one of many in this class which

demonstrates a plethora of spatio-temporal dynamical activity. The neu-

ral field framework can be modified, as demonstrated by Coombes (2003)

[44], to effectively model sub-cortical structures, in particular, the thalamus.

We study an augmented neural field model of thalamic tissue in Chapter 5,
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Figure 2.17.: Schematic diagram showing spatially organised scales and

structures in the brain and a selection of biophysical and phe-

nomenological models used at appropriate scales.

making use of the Evans function approach to study heterogeneous solution

stability for bumps (Chapter 4) and waves (Chapter 5).

In the following chapter, we develop tools to conduct a numerical analysis

of models, allowing for the systematic study of various different solution

types and patterns to dynamical systems models.



3
N U M E R I C A L C O N T I N U AT I O N M E T H O D O L O G I E S

3.1 introduction

3.1.1 Dynamical Systems

T wo useful applied mathematical frameworks that can aid in the

understanding of real-world phenomena are non-linear dynamical

systems and scientific computation. These are used hand-in-hand in

the modelling of such phenomena. Dynamical systems are often expressed

as systems of first-order differential equations of the form

du
dt

= f (u), u ∈ Rn, t > 0, (3.1)

for a state variable u = u(t), where f : Rn → Rn defines a vector field

describing how u evolves in time.

In general, closed form solutions to dynamical systems cannot be found

in the majority of cases. An important exception to this is the class of linear

dynamical systems. In the continuous case, the right-hand side the form

f (u) = Au for some matrix A ∈ Rn×n, which gives rise to a system of linear

differential equations in (3.1), with explicit solution given by

u(t) =
n

∑
i=1

αivieλit, (3.2)

where λi ∈ C and vi ∈ Rn are the eigenvalues and corresponding eigen-

vectors [102] of the matrix A, and αi ∈ R are constants determined by

52
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specifying initial conditions. A solution is asymptotically stable if, in the con-

tinuous case, Re(λi) < 0 for all i ∈ {1, . . . , n}. This means that trajectories

sufficiently close will eventually converge to the solution. A solution is

asymptotically unstable if it is not asymptotically stable [125]. In the case of

discrete dynamical systems, represented by first-order difference equations

xN+1 = f (xN), N = 0, 1, 2, . . . , where xN ∈ Rn for all N, linear systems are

given by f (xN) = AxN, and have solution

xN =
n

∑
i=1

αiviλ
N
i . (3.3)

Linear, discrete systems are used in the study of the stability of periodic

orbits. Their solutions are asymptotically stable if |λi| < 1 for all i ∈

{1, . . . , n − 1}. For periodic orbits, the trivial eigenvalue satisfies λn = 1.

In both continuous and discrete cases, solutions are unstable if they are not

stable. This rich theory for linear systems is often exploited when studying

non-linear systems. Typically, one characterises the stability of equilibria in

non-linear systems by invoking the Hartman-Grobman theorem [12, 90, 86].

This guarantees that the stability properties of the non-linear system are

equivalent to those of the linear system in the vicinity of hyperbolic equilib-

ria; these are equilibria whose eigenvalues do not lie on the critical stability

boundaries, Re(λ) = 0 (continuous) and |λ| = 1 (discrete). Thus the sta-

bility of the linear system is studied to characterise that of the non-linear

system.

In general, there are two ways to analyse dynamical systems; via an an-

alytical or a numerical approach. In the case of the former, one often tries

to determine properties of systems in closed form, be they various solution

types, or conditions regarding stability, whereas the latter is concerned with

determining properties computationally. Consider the example of finding a

steady state u∗ satisfying f (u∗) = 0. For simple systems, this can be done

analytically by solving f (u) = 0 to obtain explicit closed form expressions

for each component of u ∈ Rn. In general, though, this is not possible, and

the steady state(s) are found by computing the root(s) of f (u) numerically,
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using a root-finding algorithm such as Newton’s method to converge to the

steady state to within a desired tolerance.

3.1.2 Space-time Models

A notion of space may be included into (3.1) by considering the system

∂u
∂t

= f (u(x, t)), u ∈ Rn, x ∈ R, t > 0, (3.4)

which may be used to model phenomena which evolve in space and time.

Examples include waves and patterns of activity seen in cortical slices, and

fluid flow [2]. Spatially extended models of activity are ubiquitous through-

out applied mathematics and mathematical biology. The neural field models

discussed in Section 2.7 fall under the umbrella of space-time models. Us-

ing the method of lines [188, 89], and by specifying appropriate boundary

conditions, spatially extended systems may be transformed into systems

of ODEs in time (those of the form (3.1)), by considering a spatial mesh

xi, i = 1, . . . , nx which approximates space x well. If space is infinite (as in

3.4), then often periodic boundary conditions are applied to a finite domain.

The size of the resultant system is directly related to its spatial resolution,

nx. A sufficient spatial resolution is often associated with the problem under

consideration, but typically requires a large number of ODEs. This number

dramatically increases as the number of spatial dimensions under consider-

ation increases. If u has n components, then the spatially discretised system

consists of n × nx ODEs. Finer meshes are typically better at approximat-

ing space, and so nx is required to be large enough to sufficiently capture

spatial detail.

A number of so-called invariants or special solutions are admissible as so-

lutions to space-time models. Examples include equilibria, periodic orbits,

and waves to name just a few. Their “special” nature arises from their

regular behaviour: equilibria stay fixed for all time, periodic orbits repeat
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indefinitely in time, and, on a periodic domain, waves are periodic in space

and time.

In studies of biophysical systems, model parameters often have a physi-

cal correspondence to “tunable” quantities. It is of interest to modellers to

study how robust patterning is to changes in biophysical parameters. To

frame this from a different perspective, do certain states of a biophysical

system, for example pathological states, persist for a wide or narrow range

of values that can be taken by biophysical quantities, such as intracellu-

lar calcium or dopamine concentration? Finding answers to questions like

this increases our understanding of the solution structure of dynamical sys-

tems, but also may have more clinical benefits further downstream. A point

to note here is that to gain useful clinical insights, the model under con-

sideration must be sufficiently detailed; interdisciplinary approaches which

actively build up models to more accurately reflect reality should be encour-

aged for pursuits like this.

3.1.3 Numerical Continuation

Using numerical integration to repeatedly carry out long-time simulations

directed towards finding equilibria or periodic orbits is possible, but is cum-

bersome and inefficient, especially for the large-dimensional systems that

inevitably result from the consideration of space-time models. A more fun-

damental drawback of this approach is that only stable solutions can be

found. Often the knowledge of unstable solutions is useful in determin-

ing the boundaries of the basins of attraction for multiple stable solutions,

though for large-dimensional systems, this is unlikely. Rather, unstable or-

bits may be viewed as organising structures in phase space. The method of

numerical bifurcation analysis, or numerical continuation, is well-suited to

explore dynamical systems from this perspective.

The dependence of ODE systems on parameters can be studied using

well-established software packages such as AUTO [59] and MATCONT [56].
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These are examples of feature-rich [57] software packages that should be a

first port-of-call when studying low-dimensional ODE systems. They are

relatively simple to learn how to use, with extensive documentation and

tutorials. However, the main drawback with these packages is they are

only feasible for low-dimensional dynamical systems. A difficulty arises

when studying space-time systems. Numerical bifurcation analysis requires

Jacobians of vector fields to be computed for finding solutions via Newton’s

methods and for stability. Taylor expanding (3.1) about a steady state u∗ as

u(t) = u∗ + δu(t) (to first order in δu), we have

d
dt

δu = DuF(u∗)δu + o(δu), (3.5)

the Jacobian is the matrix of partial derivatives about u∗, given by DuF(u∗).

For generic, large problems, there is no guarantee that Jacobians are sparse

(which speeds up the computation of eigenvalues for large systems), and

thus it is not feasible to tackle the numerical bifurcation analysis of space-

time problems with the packages described above. Instead, matrix-free

methods – in which linear systems are solved in such a way that large ma-

trices are not stored, and actions of matrix-vector product operations are

utilised instead – may be used for their efficiency [216].

Numerical continuation involves tracking given solutions, be they equi-

libria, periodic orbits, homoclinic orbits, or bifurcation points, through pa-

rameter space. First, let us consider the notion of a solution branch. Given

some solution u0 which exists for some parameter p0 ∈ R1, if the implicit

function theorem is satisfied, there exists a continuous branch of solutions

u(p) in the vicinity of p0 [122]. Continuation schemes revolve around find-

ing points (ui+1, pi+1), i = 0, 1, 2, . . . , on the solution branch, given a known

1 The system may have multiple parameters (a parameter set), but only one of these (p0) is

varied for continuation
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solution-parameter pair (ui, pi). A solution-parameter pair (u, p) is found

by solving the augmented zero-problem H̃(u, p) = 0, where

H̃(u, p) =

H(u, p)

h(u, p)

 , (3.6)

for u ∈ RN, p ∈ R. Here, H̃ : RN ×R → RN+1, defines the zero-problem

for the solution-type of interest. For equilibria, the problem H is taken to

be the vector field of the problem, since equilibria are zeroes of the vec-

tor field f in (3.1). However, for other solution-types, such as travelling

waves, an appropriate interface, or transformation, must be defined for H,

such that the solution-type is a zero of an appropriate problem. For exam-

ple, travelling waves are a solution in an appropriate co-moving frame, so

the interface to travelling waves is defined by the transformation to the co-

moving frame. Examples of solution-types include the following: equilibria

(N = n), travelling waves (N = n + 1), and periodic orbits (N = n + 1). The

augmented function h : RN ×R→ R defines a parameter-update condition.

Two choices for h define parameter and pseudo-arclength continuation, and

are described below.

3.1.4 Continuation Schemes

Parameter continuation is the method of obtaining solutions in parameter

space via a parametrisation of the solution branch by the continuation pa-

rameter, p. Assuming that a solution, (u0, p0) of H̃(u, p) = 0, is known, the

next point on the solution branch, u1, is computed for p1 = p0 + δp, for a

given δp. The next solution, u1, can be found by using a root finding algo-

rithm, such as Newton’s method, with a suitable initial guess (one method

by which this may be found is by time-stepping to a solution).

This is not suitable for systems with strong variations in p, or for solution

branches which fold back on themselves [216]; a consequence of this is that

unless an initially chosen solution is unstable, we will not be able to find
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the unstable branch of solutions, which is often on the other side of a fold

point. In short, poor performance may result from this parametrisation [4].

An alternative parametrisation known as pseudo-arclength continuation

(PALC) [117] does not suffer from these issues. In this case, the scalar-valued

expression for h in (3.6) is given by h(u, p) = hT
u (u− u0) + hp(p− p0)− ∆s,

where (hu, hp) is the tangent to the solution branch at (u0, p0), where hT
u

denotes the transpose of hu [216], and ∆s is the step-size in the direction of

the tangent. An initial guess (“predictor”) is found by extrapolation in the

direction given by the tangent at the current solution to the solution branch.

A point on the branch is found in the tangent space of the predictor point

in the “corrector” step. See Figure 3.1 for an illustration of this. The major

advantage of this method is that it can be used to find solutions beyond

folds of a solution branch, since the defining PALC system is non-singular

at the fold point [122]. Thus, it is a more numerically robust algorithm than

parameter continuation.

3.1.5 The Predictor-Corrector Step

For all numerical continuation within this thesis, a PALC algorithm is used,

where the initial guess for the subsequent point on the solution branch is

found using a secant – which passes through two close points on the solu-

tion branch – to approximate the derivative, rather than finding the exact

derivative via Newton’s method. For large-dimensional systems, Newton’s

method is generally expensive and time-consuming, so we use the more ef-

ficient method of using a secant to make the “predictor” step. This requires

two known solutions, (u0, p0) and (u1, p1). The second may be found from

the first by using standard parameter continuation methods. As stated above,

this fails close to a fold point, but starting sufficiently far from a fold point al-

lows for the secant continuation to be initialised as so. The PALC algorithm

is then used to find subsequent points, (ui, pi), i ≥ 2, on the branch, as il-

lustrated in Figure 3.1. Continuation step-size may be adaptive [3], which
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Figure 3.1.: Illustration of the predictor-corrector method utilised in the con-

tinuation scheme. The predictor uses two previously known

solutions to generate an initial guess for the next solution. Con-

vergence is achieved by the corrector, which finds a solution in

the tangent space. This is shown in close-up on the right, con-

sisting of the outer Newton iterations, and the inner inner itera-

tions to find the appropriate correction within a given Newton

iteration.

can lead to more efficient progress in characterising a solution branch. This

is how continuation software developed by Avitabile (2016) [13], which we

use and build on, works.

A single continuation step involves solving the system F(v) = 0, with

v, F(v) ∈ RN. This zero-problem consists of finding the state and parameter,

and any other quantities of interest that define a solution. These are all

contained in the overarching variable, v = (u, p) in the notation of (3.6). For

all of the different solution types considered throughout this chapter, this is

encapsulated in Table 2, in the summary of this chapter.

Given two known, consecutive solutions on the solution branch, which,

without loss of generality, we label v0 and v1, a suitable predictor for v2,

denoted v(0)2 , is given by

v(0)2 = v1 +
v1 − v0

||v1 − v0||2
∆s, (3.7)
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where ∆s is the arc-length of the continuation step, and || · ||2 denotes the

vector length. For an arbitrary vector x = (x1, x2, . . . , xn) ∈ Rn, this is

defined by

||x||2 =

√
n

∑
i=1

x2
i . (3.8)

An approximation of a tangent to v1 is taken in the direction given by the

vector v1 − v0. This is illustrated by the dashed grey line in Figure 3.1.

The approximated tangent is normalised so the length of the predictor is

completely specified by the arc-length ∆s (the dashed black line).

The corrector step converges to v2 (large yellow dot in Figure 3.1), given

v(0)2 (top-most small yellow dot) as a starting point. This is illustrated in the

zoom in Figure 3.1. Newton’s method may be used for this purpose.

Theorem 1 (Newton’s Method). Let F(v) = 0 define a system of N non-linear

equations. Furthermore, let {v(k)}k∈N ⊂ RN be a sequence, and let v∗ ∈ RN. If

• F(v) = 0 has a solution v∗

• F is continuously differentiable in a neighbourhood of v∗

• DvF(v∗) is nonsingular

then the Newton iteration

v(k+1) = v(k) + ∆v(k), with DvF(v(k))∆v(k) = −F(v(k)) (3.9)

converges to the solution v∗ quadratically [53, 216].

More specifically, a solution v is said to have numerically converged to

the true solution v∗ to within a tolerance εn, if ||F(v)||2 < εn, where

||F(v)||2, (3.10)

is defined as the residual (a measure of the error in the solution) of the non-

linear system about v.

See Algorithm 1 for a schematic computational implementation of New-

ton’s method. Typical stopping criteria is for solutions to converge within

some specified non-linear tolerance, εn.
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Algorithm 1: An implementation of Newton’s method

1 Goal: To numerically find a solution to F(x) = 0

2 Input: F(·), DxF(x)(·), x0

3 Output: x

4 Set: NonlinTol, MaxNonlinIterations

5 Set: x ← x0

6 Set: Residual← ||F(x0)||2
7 Set: Iterations← 0

8 while (Residual > NonlinTol) & (Iterations < MaxNonlinIterations) do

9 Solve the linear system DF(x)∆x = −F(x) for ∆x

10 Update: x ← x + ∆x

11 Update: Residual← ||F(x)||2
12 Update: Iterations← Iterations + 1

13 end

The main advantage of using Newton’s method is its fast, quadratic con-

vergence. It does, however, involve solving the Newton linear system

DvF(v(k))∆v(k) = −F(v(k)), (3.11)

for ∆v(k) ∈ RN as shown in Algorithm 1, line 9. This must occur at each

Newton step (when moving from one yellow dot to the next in Figure 3.1).

For the large systems which result when studying discretised spatial mod-

els, the linear system (3.11) may be solved iteratively [53] as illustrated by the

green arrows in Figure 3.1, to obtain a very good approximation to a true so-

lution. Iterative methods require a suitable stopping criteria. This is obtained

by considering the residual

rk = DvF(v(k))∆v(k) + F(v(k)), (3.12)

of the linear system (3.11), and minimising the relative residual, defined by

||rk||/||F(v(k))||. This leads to the condition

||DvF(v(k))∆v(k) + F(v(k))|| ≤ ηk||F(v(k))||, (3.13)
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where the ηk are referred to as the forcing factors. The linear solver solves

to within some specified linear tolerance. Under the assumption that all

{ηk}k∈N are less than one, local convergence is achieved [53].

This use of an iterative method to obtain ∆v(k) introduces a source of inex-

actness, since ∆v(k) is found to within a specified tolerance, εl. If this is not

small enough, it may affect convergence. There may be other such sources,

such as in the evaluation of the function F, or its Jacobian action. The cumu-

lative effect of this is that the convergence of the inexact Newton’s method

may suffer. This is especially true for periodic orbits, which may be found

as fixed points of a map, computed using a time integration. Therefore, the

approximation of a Jacobian action by finite differences is not only slow, but

“dangerous because the error in the time evolution is amplified when it is divided

by the step of the difference formula” [216]. For this reason, exact analytical

Jacobian actions are preferred.

The Generalised Minimal Residual (GMRES) method can be used to solve

a linear system iteratively. For a nonsingular system Ax = b, of dimension

N � 1, GMRES finds the solution x to within a given tolerance, εl, by

minimising the the norm of the residual vector at each inner iteration over a

Krylov subspace2 [181, 225], via a least squares approach [182, 216, 58, 118].

Explicitly, the stopping criteria used by GMRES is [18, 16, 182]

||b− Ax||/||b|| < εl. (3.14)

This is the minimisation of the relative residual discussed above. For a more

detailed and technical exposition of how this method works, the reader is

referred to Saad and Schultz (1986) [182]. Suffice to say, for our purposes it

is sufficient to know that the Newton linear system (3.11) may be solved iter-

atively using the GMRES method to within a specified tolerance, εl. This is

implemented in MATLAB (introduced before R2006a) and may be function-

called as gmres.

2 The mth-order Krylov subspace generated by A ∈ Rn×n and b ∈ Rn×1 is defined as

span{b, Ab, A2b, . . . , Am−1b} [181].
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If the linear systems (3.11) are solved with suitable tolerances, quadratic

convergence of Newton’s method can still be achieved. In practice, this

typically involves experimentally varying the tolerances εn and εl to find

a combination which minimises the total computational cost of the whole

method [216]. Note that there are two iterative processes occurring. The

outer Newton iterations to converge to a solution, and the inner GMRES iter-

ations needed to solve the linear system (3.11) at each outer iteration. This is

illustrated in the zoom of Figure 3.1. The combination of Newton’s method

with schemes such as GMRES to solve the linear system at each outer iter-

ation are referred to as Newton-Krylov solvers in the literature [118, 119].

Often it is unclear how to balance the number of outer vs. inner iterations in

order to obtain the optimal set-up minimising the total computational cost.

Typically, the outer tolerance, εn, and the inner tolerance, εl, are related to

each other, but it is often an art rather than an exact science in finding opti-

mal values for these, such that continuation does not stall and is sufficiently

quick.

3.1.6 Summary

To summarise, the continuation routine can be broken down as follows.

During each continuation step, a number of Newton iterations are required

to converge to the next solution. During each of these outer iterations, a

large linear system must be solved, which is done iteratively using GMRES.

The work in this chapter builds on the aforementioned software devel-

oped by Avitabile [13] (which is currently able to carry out the continuation

of equilibria and simple travelling wave solutions), extending it to continue

periodic orbit-type (PO) solutions to spatially extended systems, using the

blueprint given in [216] as a basis. We provide a review of the method in

[216], and an exposition of the implementation in MATLAB in Section 3.3.

The rationale is to study spatially extended periodic-orbits in neural fields,
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for which off-the-shelf packages are unavailable, though it is stressed that

the methods are applicable beyond neural fields.3

The choice to implement the software in MATLAB was made on the ba-

sis that many researchers in applied mathematics are familiar with, and

use, MATLAB. Of course we would likely obtain greater performance in

other languages, such as C++ or perhaps even Python, but it is our opinion

that any potential performance gains are eclipsed by implementing in a lan-

guage familiar to the community; potential users are saved from requiring

to learn a new programming language in order to use the software.

Further, we expand on the techniques introduced in [216] to develop novel

methods in the stability and continuation of travelling-wave periodic orbit-

type (TWPO) solutions. They are characterised by their travelling, repeating

units of activity.

3.2 equilibria and travelling waves

Equilibria are solutions to dynamical systems characterised by their long-

term persistence at steady state. In the words of Kuznetsov [125], “a system

placed at equilibrium remains there forever.” The word “equilibrium” is typ-

ically used in continuous-time systems, while the phrase “fixed point” is

used for maps or discrete-time systems. They are the simplest type of dy-

namical systems solution.

Travelling waves are ubiquitous in the study of biological and physical

systems. Members of this generic solution family include fronts, pulses,

tango waves [210], spirals, and periodic travelling waves (also known as

“wavetrains”). These patterns transfer “information” between different loca-

tions in space, and are to be contrasted with standing waves which are con-

fined to a fixed location. Travelling waves with a well-defined wavespeed

can be studied and analysed by seeking solutions in an appropriate co-

3 The methods in [216] were developed to tackle problems in fluid dynamics.
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moving frame; this technique was introduced by Fisher (1937) [76] and Kol-

mogorov et al. [121, 211] in a study of the spread of advantageous gene

mutations.

From the early 2000s onwards, methods arose that were able to continue

travelling solutions to the Navier-Stokes equations [144]. These utilised pre-

conditioners and matrix-free methods to achieve efficiency. The former are

used to accelerate convergence to the solution x of a linear system Ax = b,

by solving the pre-conditioned system M−1Ax = M−1b, which has the same

solution as the original linear system [15]. The matrix M−1 is known as the

pre-conditioner, and is chosen to be a good approximation to A−1, while also

being cheaper to compute [15]. In this case, M−1A ≈ I, where I is the iden-

tity matrix. The latter allows linear systems to be solved in such a way that

matrices are not stored, and matrix-vector products are used instead. This

is especially useful for large problems, where storage and memory consid-

erations may be prohibitive [29]. They were introduced into the study of

neural fields in a study of localised rather than travelling patterns by Rankin

et al. (2014) [172]; this was the first numerical study of patterns with the full

integro-differential equation formulation of neural fields. Prior to this, the

integral equations were reduced to PDEs via specific choices of connectivity

kernels with a suitable Fourier transform, as outlined in [46, 128]. Matrix-

free methods allow for a much wider range of connectivity kernels to be

considered – not just those allowing the equations to be written in a differ-

ential equation form. This includes connectivities with non-smoothness.4

The work by Sherratt (2012) [194] notes the importance of travelling wave-

train solutions in the study of partial differential equation (PDE) systems.

It introduces a software package, WAVETRAIN, which is able to continue

these solutions and calculate their stability.

4 In neural fields, the connectivity kernel appears under an integral, and so non-impulsive

non-smoothness is washed out.
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Consider a generic dynamical system in (x, t)-space,

∂u
∂t

= F(u, p), u = u(x, t), x ∈ R, t > 0, (3.15)

with a given initial condition u(x, 0) = u0(x). Here, u ∈ Rn, and p ∈ R rep-

resents a model parameter. Upon discretisation, the problem of equilibria

continuation is given by settingH(u, p) = F(u, p) in (3.6), with N = n. Equi-

libria satisfy u(x, t) = u(x) for all t. Their linear stability can be analysed by

considering the evolution of small perturbations (to equilibria) to first order.

To do this, substitute u(x, t) = u(x) + eλtδu(x) into (3.15) to obtain

λδu(x) = DuF(u, p)δu(x), (3.16)

which is an eigenvalue-eigenvector problem for the pair (λ, δu). (3.16) can

be solved in MATLAB via the function eigs if either of the Jacobian matrix

DuF(u, p) or the action DuF(u, p)δu are supplied.

In illustration of equilibria continuation, let us consider a Hopfield-style

network posed on the periodic plane R2, given as

τ
∂

∂t
s(r, t) + s(r, t) = f

(∫
R2

w(|r− r′|)s(r′, t)dr′ + B(r)
)

, (3.17)

for r = (x, y) ∈ R2, where s(r, t) is the synaptic activation of tissue at posi-

tion r at time t, w(|r− r′|) is the distance-dependent synaptic connectivity

between tissue at r′ and r, and f is the “softplus” firing rate function,

f (s; µ) = log(1 + exp(µs))/µ, (3.18)

which approaches the Rectified Linear activation (ReLU) function f (s) = s,

s > 0, and 0 otherwise, as µ→ ∞. The synaptic time-constant is represented

by τ, and B(r) = 1 for all r ∈ R2. The connectivity is given by

w(r) = w0(ae−γr2 − e−βr2
), w0 = wNor

βγ

π(aβ− γ)
. (3.19)

The kernel is normalised to wNor, and β = 3/λ2
net and γ = 1.05β, where

λnet is a parameter defining the spatial scale of the connectivity. Burak and

Fiete (2009) [30] added a time-dependent drive in this model, with kernel
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Figure 3.2.: Continuation of qualitatively different equilibria solutions (la-

belled on diagram) to (3.17), with the solution’s 2-norm plot-

ted against wNor (“HSS” stands for Homogeneous Steady State).

Blue and red denote stable and unstable solutions, respectively.

A fold bifurcation of hexagons is denoted by a black star (?),

and the instability of the HSS by a black square (�). Solutions

represented by the dots (a)-(d) are shown on the right on the

plane, all with the same colorbar. Each pattern is on a lattice of

1282 neurons. Parameters are: a = 1, λnet = 13, τ = 10, and

µ = 20.

anisotropies to generate a first generation model of grid cell dynamics. This

is discussed more in the Discussion (Chapter 6) of this thesis, but for our

purposes here, it is sufficient to consider a simple Hopfield network without

time-dependent drive or anisotropies.

Figure 3.2 shows the results of a 2-D continuation of various equilibria

solutions to (3.17), with wNor as the bifurcation parameter. Shown are

hexagons, stripes, and the homogeneous steady state in (wNor, || · ||2)-space.

The homogeneous steady state (lower-most branch) undergoes an instability

near wNor ≈ −8. As wNor increases beyond this, the homogeneous steady

state is the unique stable solution, with an illustration of its spatial structure
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on the plane shown in (d). At the instability, three different branches of so-

lution are born in a Turing bifurcation: two branches of unstable hexagons

(lower and upper dashed red lines), and a branch of unstable stripes (middle

dashed red line), with a pattern from this branch shown by (b). The lower

branch of hexagons persists as an unstable solution as wNor decreases, with

a point on the solution branch shown by (c). The upper branch of hexagons

born at the Turing instability is unstable near the instability point, but turns

back on itself in a fold bifurcation, gaining stability in the process. As wNor

decreases, the stable pattern is the upper branch of hexagons. Where the sta-

ble hexagons exhibit high levels of activity in space, the unstable hexagons

have low levels of activity, and vice versa. This can be seen by compar-

ing the spatial activity profiles shown in (a) and (c). Intriguingly, the stable

hexagons do not form from a Turing instability of the spatially homoge-

neous steady state, but rather from a secondary instability through unstable

hexagons.

Standard travelling waves are typically studied in the co-moving frame,

defined by ξ = x− ct. This is identical to an observer travelling along stan-

dard space with wavespeed c ∈ R; such an observer would see a travelling

wave as a stationary solution in their reference frame. In the co-moving

frame,
∂u
∂t

= G(u, c, p), G(u, c, p) = c
∂u
∂ξ

+ F(u, p), (3.20)

where now ξ and t are understood to be space5 and time variables in the

co-moving frame, and u ∈ Rn and p ∈ R is a parameter as before. Let the

state vector z = (u, c) ∈ Rn+1 consist of the wave solution, u, augmented

with its wave speed, c. This satisfies ∂u/∂t = 0: that is, travelling waves

satisfy G(u, c, p) = 0. The problem G therefore, defines a suitable interface

and zero-problem which may be used by a continuation routine, along with

5 The “travelling wave co-ordinate.”
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the phase condition X (u, p) = 0, to find the travelling wave solution branch.

The phase condition, defined by

X (u, p) = u′ref(u− uref)
T, u ∈ Rn, (3.21)

is chosen. Here, uref ∈ Rn is a spatial profile given by a reference solution,

which is often taken to be the previous solution on the branch, or a suffi-

ciently good initial guess to a true solution. The quantity u′ref is the spatial

derivative of uref. In the words of Doedel (1981) [61], the orthogonality con-

dition “ensures that u . . . to be determined occupies a similar position [in phase

space] as uref”. Thus the phase condition “pins” a solution to a particular

region of phase space. More specifically, the phase of the next solution to be

found is fixed such that the difference between the solution to be found and

the reference solution is perpendicular to the tangent vector of the reference

solution [122]. We must bear in mind that u ∈ Rn, and so, while the phase

condition takes in u ∈ Rn as a function argument, it is scalar-valued.

Then, in the language of (3.6), travelling wave continuation is given by

H(z, p) =

G(z, p)

X (u, p)

 ∈ Rn+1. (3.22)

Numerical linear wave stability can be found by considering the first n

components of the equation,

λδz = DzG(z, p)δz, (3.23)

with the relevant (n + 1)× (n + 1)-sized Jacobian matrix given by

DzG(z, p) =


DuG(u, c, p) DcG(u, c, p)

Xu(u, p) Xc(u, p)

 , (3.24)

acting on δz = (δu, δc). Again, (3.23) is an eigenvalue problem which may

be solved numerically using eigs in MATLAB. It is important to note that

numerical wave stability only finds the point spectrum of the travelling
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wave solution under consideration. This consists of all isolated eigenval-

ues with finite multiplicity [186]. The full spectrum of a linearised differ-

ential operator for a travelling wave solution may be partitioned into the

point spectrum and the essential spectrum [115, 185]. A travelling wave

may only be stable if the essential spectrum lies completely in the open left

half-plane [185, 170]. See [115] for an excellent overview of analytical wave

stability, which involves finding the essential spectrum in addition to the

point spectrum. The numerical wave stability in this thesis does not involve

computation of the essential spectrum and is backed up by direct numerical

simulation to show that changes of stability occur where it is calculated that

eigenvalue(s) in the point spectrum cross the stability boundary.

Travelling solutions in space are stationary solutions in the co-moving

frame. In linear, or PWL models, these may often be constructed analyt-

ically – they are defined by ODEs in ξ, in the travelling-wave frame. In

theory, these ideas can be extended to more than one spatial dimension by

considering a wavespeed vector, with the stipulation that instead of solving

ODEs, time-independent spatial PDEs must be solved when seeking station-

ary solutions in higher dimensions.
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3.3 spatially extended periodic orbit continuation

The previous sections have exposed the high-level methodology with re-

gards to numerical continuation and its application to equilibria and trav-

elling waves. In this section, the focus shifts to spatially-extended periodic

solutions to space-time models.

3.3.1 A Review of the Problem Formulation

For non-trivial solutions to spatially extended models, computational meth-

ods may be used in a complementary analysis along with an analytical

study to probe a problem and gain insights. Here, we describe the numer-

ical method we use in the continuation of spatially extended periodic orbits

as developed by Umbría and Net (2016) [216].

Consider the resultant problem after a continuum space-time problem has

been discretised over space, or simply a large system of ODEs. This takes

the form
du
dt

= f (u, p), (u, p) ∈ U ⊂ Rn ×R, (3.25)

where n� 1 is the size of the large-dimensional system of ODEs. The flow

φ(u, t, p), (3.26)

is defined as the solution of (3.25) at time t, with initial condition u at t = 0,

for a fixed parameter p ∈ R. 3.26 may be thought of as the output of

a numerical time-stepper, such as a Runge-Kutta scheme, of (3.25) which

flows an initial condition u forward a time t.

A given trajectory is a periodic orbit solution of (3.25) with period T

if φ(u, T, p) = u for all components of u and φ. This is the periodicity

condition; it specifies infinitely many periodic orbits, occupying the same

phase space, but each with different initial conditions along the orbit. As

such, this has a non-unique solution since it is satisfied by many values of u
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at any phase along the periodic orbit. Appending a phase condition in time,

T (u, p) = 0, to the problem selects one of the infinitely many orbits on the

cycle [60, 149]. We utilise the Poincaré orthogonality phase condition [61] in

time, given by

T (u, p) = fref(u− uref)
T, (3.27)

where u is a solution profile at a fixed time (often considered to be the solu-

tion at t = 0), uref is a point on a reference solution (at t = 0) which is often

taken as the previous solution on the branch, or a sufficiently good initial

guess to a true solution, and fref is the vector field at uref. Other phase

conditions exist, such as the widely used integral phase condition which

minimises the distance between successive solutions globally over a period,

though the Poincaré condition is sufficient for our purposes. The selection

of a unique phase is chosen which closes the system of equations, ensuring

there are as many conditions as unknowns. There are n + 1 equations –

consisting of n components of the periodicity condition, and 1 phase condi-

tion in time – for n + 1 unknowns – n components of the solution u, and 1

period, T.

Thus, the zero-problem for a spatially extended periodic orbit solution is

H(u, T, p) = 0, where

H(u, T, p) =

u− φ(u, T, p)

T (u, p)

 ∈ Rn+1, (3.28)

so that N = n + 1 in (3.6). This simultaneously determines u and the

period T, for a fixed parameter p; in other words, (3.28) determines the

spatially extended periodic orbit solution for a given parameter set. With

z = (u, T) ∈ Rn+1, the problem of periodic orbit continuation is given by

H(z, p) = H(z, p) in (3.6).

In standard periodic orbit continuation, the Jacobian matrix of (3.28) needs

to be computed explicitly, which is an O(n2) computation for the Jacobian

matrix of size (n + 1)× (n + 1). Instead, the method in [216] requires the ac-

tion of the Jacobian on the perturbed quantities of interest (this is discussed
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below). The action is the same size as the problem (3.28) – that is, of size

(n + 1) – and results in a significant increase in computation speed due to

dealing with O(n) quantities rather than O(n2) quantities. For a number

of examples illustrating the computational specification of Jacobian actions,

see the GitHub repository here [147].

Suppose a periodic orbit solution Z = (u, T, p) has been found for a given

parameter value. This is a zero of (3.28). For continuation, the Jacobian

action of the system (3.28), with respect to the perturbation state vector

δZ = (δu, δT, δp) must be determined. Since φ = φ(u, T, p), then to first

order,

dφ = φ(u + δu, T + δT, p + δp)− φ(u, T, p),

= Dtφ(u, T, p)δT + Duφ(u, T, p)δu + Dpφ(u, T, p)δp, (3.29)

and so the Jacobian action of (3.28) on δZ is

DZH(Z)δZ =δu− Duφ(u, T, p)δu− Dpφ(u, T, p)δp− Dtφ(u, T, p)δT

Tu(u, p)δu

 . (3.30)

In order to compute 3.30, we must compute the various terms present. The

term Tu(u, p)δu is analytically computable as

Tu(u, p)δu = frefδuT. (3.31)

Note there is no Tu(u, p)δp term. The terms involving the Jacobian of the

flow are found as follows.

Let y(t) = φ(u, t, p) define the flow, or the solution of (3.25), subject to the

initial condition y(0) = u, and fixed parameters p. Then by (3.25),

dy
dt

= f (y, p), y(0) = u. (3.32)

The terms

Duφ(u, T, p)δu + Dpφ(u, T, p)δp

https://github.com/danieleavitabile/rebound-periodic-orbit-continuation
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can be obtained as the solution to a set of ODEs coupling the quantities y(t)

and y1(t) = Duφ(u, t, p)δu + Dpφ(u, t, p)δp. With this choice of y1(t), the

quantity

y1(T) = Duφ(u, T, p)δu + Dpφ(u, T, p)δp

consists of precisely the terms we are trying to find. A variational problem

is solved to find y1(T), as described here. Taking the time derivative of

y1(t), we obtain

dy1

dt
= DtDuφ(u, t, p)δu + DtDpφ(u, t, p)δp, (3.33)

where the notation DtDu represents the second-order partial derivative Dt,u.

By the interchangeability of partial derivatives,

dy1

dt
= DuDtφ(u, t, p)δu + DpDtφ(u, t, p)δp, (3.34)

Then noting that f (y(t), p) = Dtφ(u, t, p), and that u = φ(u, 0, p), so that

y1(0) = δu, one obtains

dy1

dt
= Dy f (y, p)y1 + Dp f (y, p)δp, y1(0) = δu. (3.35)

In summary, integrating the variational problem

dy
dt

= f (y, p), y(0) = u, (3.36a)

dy1

dt
= Dy f (y, p)y1 + Dp f (y, p)δp, y1(0) = δu, (3.36b)

up to a time t = T, we obtain the desired quantity

y1(T) = Duφ(u, T, p)δu + Dpφ(u, T, p)δp. (3.37)

In this way, all of the terms involved in the computation of the Jacobian

action DZH(Z)δZ (3.30) are determined. Notice here the lack of matrices in

the problem description. The variational problem involves the integration

of 2n quantities without requiring the explicit construction of the Jacobian

matrix. The use of a suitable time-stepper is key in utilising the potential of

the method. In our tests and usage, a Runge-Kutta (4,5) scheme has been

suitable for sufficiently smooth systems.
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3.3.2 Numerical Stability Routine

Given a spatially extended periodic orbit solution, we numerically deter-

mine its stability as follows. Periodic orbit stability is characterised by the

existence of Floquet multipliers (λi, i = 1, . . . , n). Of these n multipliers, one

is the trivial multiplier, λn = 1, which arises due to solution periodicity [21].

If all non-trivial multipliers (λi, i = 1, . . . , n− 1) are inside the disc, the orbit

is stable. If at least one non-trivial multiplier is outside the unit disc, it is un-

stable [78, 125]. The three distinct ways eigenvalues can cross the unit disc

are shown in Figure 3.3. Instabilities may be of fold of cycles- (λ = +1), pe-

riod doubling- (λ = −1), or Neimark-Sacker-type (λ = eiθ, θ 6= 0, π). Recall

the periodicity condition defining a periodic orbit

u = φ(u, T, p). (3.38)

where T is the period. Define a Poincaré map ui+1 = φ(ui, T, p), through

some transverse section Σ [149] of u-phase space, and linearise about the

𝜃
1

−𝑖

−1

𝑖

Re(𝜆)

Im(𝜆)

(b) (a)

(c)

Figure 3.3.: A plot showing the three different qualitative ways an eigen-

value can cross the unit disc resulting in an instability to a peri-

odic orbit: (a) through +1 (red), (b) through −1 (blue), and (c)

with non-zero imaginary part (yellow).
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periodic orbit solution, which is a fixed point of the map. So, ui = u + δui,

ui ∈ Rn, where i is an iteration counter. Then

δui+1 = Duφ(u, T, p)δui. (3.39)

This defines an eigenvalue problem which can be solved by eigs in MAT-

LAB to determine the stability of the spatially extended periodic orbit. The

quantity Duφ(u, T, p)δui can be found via the variational problem defined

in the previous subsection, with δT = 0, and δp = 0.6

3.3.3 Computational Implementation

So far, we have determined the necessary zero-problem in order to suc-

cessfully compute spatially extended periodic orbit solutions; given a suffi-

ciently close initial guess to a true periodic orbit solution, we have the math-

ematical framework in place to find the true solution. This zero-problem is

augmented with a PALC condition as described in Section 3.1, allowing for

the continuation of periodic solutions along the solution branch.

The way we set this up computationally is by creating a class in MAT-

LAB for a given model containing the vector field, F(u, p), the Jacobian

action DuF(u, p)δu, and the Jacobian action with respect to parameters

DpF(u, p)δp. An instance of this class is created with chosen parameter

values, mesh size, and domain length for spatial systems. This is fed into

a suitable interface describing the solution-type of interest, for example a

spatially-extended periodic orbit, along with a reasonable initial guess. The

continuation software then augments the pseudo arc-length condition and

carries out the continuation as outlined in Section 3.1.5 and illustrated in

Figure 3.1. The flowchart, Figure 3.9 at the end of this chapter illustrates

this.

6 Note that we only demand periodicity in u, and not in T or p, which is why δT and δp

are set to 0.
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3.3.4 Convergence Tests

In carrying out periodic orbit continuation using the matrix-free method

described in this section, the Jacobian action must be computed exactly. A

correct Jacobian action is critical for correct function. As such, we give here

a test which may be used to determine if the supplied Jacobian action is

correct for a given vector field, f .

Taylor expanding the right-hand side of (3.25), with ε � 1, about some

u = u0, we obtain

f (u0 + εu, p) = f (u0, p) + Du f (u0, p)(εu) +O(ε2). (3.40)

Test 1: Testing Du f (u, p)δu. The error quantity

E(ε) = f (u0 + εu, p)− f (u0, p)− Du f (u0, p)(εu), (3.41)

decreases to 0 at O(ε2) as ε→ 0.

Thus, a Jacobian action is correctly supplied if and only if E(ε) → 0 at

O(ε2).

An identical test can be carried out for the Jacobian action with respect

to parameters. Taylor expanding the right-hand side of (3.25) about some

p = p0, we obtain

f (u, p0 + εp) = f (u, p0) + Dp f (u, p0)(εp) +O(ε2), (3.42)

Test 2: Testing Dp f (u, p)δp. The error quantity

Ep(ε) = f (u, p0 + εp)− f (u, p0)− Dp f (u, p0)(εp), (3.43)

decreases to 0 at O(ε2) as ε→ 0.

As a test case, consider the neural field model of spike frequency adapta-

tion (SFA) (2.46), known to exhibit periodic orbit solutions [67]. Figure 3.4

(upper panels) shows these tests for (2.46), demonstrating that O(ε2) con-

vergence of the quantity E(ε) is achieved as ε → 0. This is shown by the
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Figure 3.4.: Convergence tests for the SFA model (2.46). Blue dots in the top

panels show E(ε) (left) and Ep(ε) (right). Blue dots and blue

line in the bottom panel shows super-quadratic convergence to

a breathing solution. The slope of the orange lines indicate ex-

pected O(ε2) convergence on the logarithmic vertical scale in all

three panels. The dashed black line denotes the non-linear tol-

erance, εn, for Newton’s method.

matching slopes of the orange (expected error) line and the blue dots (actual

error), until machine accuracy is encountered close to 10−15. The quantity,

Ep(ε) passes the test too.

These tests are a necessary check to ensure that the supplied Jacobian

action are correct for the vector field f provided. In the case where the

supplied Jacobian action does not match up with the relevant vector field,

the slopes will not match; the slope of the points E(ε) will be shallower

than O(ε2), indicating a sub-O(ε2) convergence. The same test is utilised
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to show that the Jacobian action (3.30) of the PO problem (3.28) is correctly

specified.

Before continuation, a final test is carried out to ensure solutions converge

as expected.

Test 3: Quadratic Newton convergence to a solution. A sufficiently close

initial guess x0 to a true solution x∗ of the problem under consideration will exhibit

quadratic convergence to x∗.

A failure of this test may be a consequence of Tests 1 or 2 not passing, or it

may indicate that parameters are poised numerically unfavourably and that

numerical stiffness is present in the model. The model (2.46) passes this

test for a breathing solution; see the lower panel of Figure 3.4, showing the

residual (3.10) at each Newton iteration decreasing beyond what is expected.

Quadratic convergence is shown in Figure 3.4: as the number of iterations

increases, the convergence occurs more rapidly, as shown by the residual

decreasing by larger orders of magnitude. Eventually, the residual falls

below the specified tolerance, εn (illustrated by the black dashed line at

10−12), for the non-linear solver, indicating that the resulting solution has

converged to the true solution, to within the specified tolerance.

For the most accurate solution, εn should be close to machine accuracy.

For large spatial systems, the smaller εn is, the more iterations are needed

per continuation step to converge to a solution, increasing the time taken.

This can be significantly costly in cases where each Newton iteration takes

a long time. Thus, the required tolerance should be chosen carefully. Of-

ten, an overly small tolerance is not required to successfully characterise

solutions.
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3.3.5 Results: Breathers in a Neural Field Model

Figure 3.4 shows that the model (2.46), passes the two tests for E(ε) and

Ep(ε), and the convergence test for a breathing solution. Therefore, we are

in a position to carry out continuation and have confidence in the results.

Figure 3.5 shows the continuation of a spatially extended, heterogeneous

periodic pattern using the methodology developed in this chapter. A sta-

tionary breather is continued in the adaptation rate parameter, α. This bi-

furcation parameter is plotted against the emergent temporal period of the
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Figure 3.5.: Continuation of a breather in (2.46), in the adaptation rate pa-

rameter α against the temporal period T, showing a period-

doubling-type bifurcation at α = 0.017. See the main text

for more details. Blue (red) lines are stable (unstable) solu-

tion branches. The black brace in the top inset illustrates the

emergent period of the period-doubled solution. Parameters:

β = 2.75, µ = 10, κ = 0.375, σ = 1.2, I0 = 1.9, with kernel pa-

rameters wE = 1, wI = 0, σE = 1, and σI = 2. Domain (−Lx, Lx),

with half-length Lx = 4π, and mesh size nx = 1000.
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pattern, T. The branch of stable (blue) breathers persists as α is decreased,

until α = 0.017, where an eigenvalue leaves the unit disc through −1 (this is

shown in the lower-left inset, with eigenvalues represented by orange dots).

This is indicative of an instability of period-doubling-type, and is confirmed

by direct numerical simulation shown in the upper inset. Two solutions are

taken – one from the stable part of the branch, and one from the unstable

(red) part of the branch – and perturbed. The time evolution of the resultant

patterns is shown in the insets.

A solution on the stable part of the branch, when perturbed, eventually

settles back down to its initial unperturbed state. However, solutions on the

unstable part of the branch undergo a qualitative change in their dynam-

ics. Rather than settling back down to a standard breather, a more exotic

breather is seen, exhibiting a “large-small-large-small-small” repeating unit

of sub-breathers over the new period. This is illustrated with the black brace

shown in the upper inset.

The predictions of the continuation software agree with direct numerical

simulation, with the numerical stability routine predicting the correct type

of instability at the correct location on the solution branch. Furthermore,

the existence of the trivial eigenvalue at +1 should be noted as a property

of periodic orbits as opposed to an instability of +1-type.

3.4 travelling periodic orbit continuation

3.4.1 Problem Formulation

The previous section was concerned with the study of stationary spatially-

extended periodic orbit solutions. The numerical method does not require

any property from a solution other than that it be periodic in time. This

covers a wide range of solutions; a few examples are breathers, standing

oscillatory waves, such as n-cycles, and sloshers.
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We now turn our attention to a different class of solution: spatially-

extended travelling-wave temporally-periodic orbits (TWPO). Such solutions

appear in a wide variety of contexts. Perhaps the simplest that fit into

this category are standard travelling waves, and travelling wavetrains. These

are stationary in the co-moving frame, and so can be thought to take any

temporal period. Examples can be seen throughout biology and in physi-

cal systems [148, 120, 68, 138]. However, our main interest is in travelling

patterns that exhibit some sort of spatial heterogeneity. In the case where

this repeats in time, we obtain TWPO solutions. Examples include saltatory

waves with a well-defined wavespeed, travelling breathers [48] seen in neu-

ral fields, and lurching waves [224] found in models of thalamic tissue. It

should be noted here that travelling breathers are not specific to neural field-

type models – they are seen in many multi-component reaction-diffusion

equations [197, 146, 145]. Mimura et al. [145] studied them in systems

of reaction-diffusion equations by utilising singular perturbation methods

and reducing the spatio-temporal description of travelling breathers down

to an interface problem described by ODEs. The numerical study of lurch-

ing waves in a two-layer, one dimensional lattice model by Wasylenko et

al. [224] is currently the most thorough numerical treatment of lurching

waves (on a mesh of size nx = 60). The authors utilise continuation tech-

niques to continue different lurching-type patterns by seeking fixed points

of a Poincaré map.

The method we describe here is quite general in the sense that it is not lim-

ited to globally spatially periodic travelling solutions, but can also be used

to continue localised solutions which travel, such as the travelling breather

solutions in [48]. The only property required of a solution of interest is that

it consist of self-similar units that repeat after a temporal period, with a zero

or non-zero wavespeed. In the case of a zero wavespeed, travelling periodic

solutions reduce to periodic solutions; the problem description reduces to

the PO problem given by (3.28).



3.4 travelling periodic orbit continuation 83

Simply put, the stationary periodic orbit method given in [216], and re-

viewed in the previous section, finds solutions q(x) = u(x, 0) such that

q(x) = u(x, T) for some T > 0. Here, we extend this method to find so-

lutions which have the same spatial profile after some period T, up to a

spatial shift, ξ ∈ R. Figure 3.6 shows an illustration of this.

Consider a system of coupled partial differential equations, where the

state vector z(x, t) ∈ Rn, of the form

∂

∂t
z(x, t) = N (z(x, t)), x ∈ R, t > 0, (3.44)

where N is an operator (which may be non-local) describing the time evolu-

tion of the state variables z. Further assume that z(x, t) = Z(x− ct, t), with

Z being T-periodic in its second variable (time in the co-moving frame).

Notice importantly that we do not restrict ourselves to the case of seeking

time-independent solutions in the co-moving frame, which correspond to sim-

ple travelling waves with no other intra-period dynamics.

This generic set-up leads to the consideration of solutions of the general

type shown in Figure 3.6; they move with a well-defined wavespeed, but

have non-trivial intra-periodic dynamics. We seek solutions which have an

identical spatial profile after a temporal period T, when subject to some

spatial shift, ξ = cT, where c is the constant wavespeed. For an initial

profile q(x), and a flow φ which maps an initial profile q(x) to its value at

time t, as u(x, t) = φ(q(x), t, p), a zero-problem defining periodic solutions

of the type described here is given by

q− S−ξφ(q, T, p) = 0, (3.45)

where the shift operator S is defined as

(Sξq)(x) = q(x + ξ). (3.46)

Eq. (3.45) flows the solution and then shifts it by a spatial amount ξ, rep-

resented by the action of S−ξ , at the end of a period. However, an equally

valid condition can be considered by flowing the initial profile over a period
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Figure 3.6.: (left) An illustration of the generic solution type our method

can continue: a travelling wave which is spatially-heterogeneous

over a period. In purple is the profile at some initial time, t = 0,

and in red we highlight the profile after a temporal period T.

(right) The wave profile in the co-moving frame, so that a travel-

ling periodic solution in (x, t)-space becomes a purely periodic

solution in (x− ct, t)-space. The initial profile, S−ξq(x), and the

final profile, φT(q(x)), are identical in the co-moving frame, for

the correct period T and shift ξ. Black dashed lines in the left-

hand pane illustrate the wavespeed, and illustrate the idea that

the travelling periodic solution is shifted to become a purely pe-

riodic solution in the right-hand pane.

T, and then shifting the initial profile by an appropriate ξ. This condition is

given as

S−ξq− φ(q, T, p) = 0, (3.47)

and is illustrated in Figure 3.6. We make the choice to shift by −ξ to ensure

that a positive wavespeed c corresponds to a positive shift ξ.7

One of the two periodicity conditions, (3.45) or (3.47), must be chosen to

define the zero-problem. Bearing in mind that the method we use requires

an analytical Jacobian action that can simply be function evaluated when

considering the variational problem (3.36), we make the choice to use (3.47),

7 A wave moving to the right corresponds to a shift in the positive x-direction.
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so that the shift does not act on the flow. This aids us in determining the

Jacobian action below.

In order to solve for T and ξ, we require two suitable phase conditions

to be appended to the periodicity condition: one in space and one in time,

since there is translation-invariance in space as well as time for travelling

periodic solutions on a homogeneous domain; a solution can be shifted an

arbitrary amount in space or time, and it still remains a valid solution. We

utilise the phase conditions in space and time, given by X (q, p) (3.21) and

T (q, p) (3.27).

The zero-problem for travelling periodic patterns with spatial heterogene-

ity over a period can be succinctly given by G(q, T, ξ, p) = 0, where

G(q, T, ξ, p) =


S−ξq− φ(q, T, p)

T (q, p)

X (q, p)

 ∈ Rn+2, (3.48)

where N = n + 2 in (3.6). For a TWPO solution specified by V = (q, T, ξ, p)

to the problem G ∈ Rn+2, given by (3.48), the Jacobian action, DVG(V)δV,

on a small perturbation δV = (δq, δT, δξ, δp) about V must be supplied. The

action of the first component of DVG(V)δV is denoted dG(q), and is given

by

dG(q) = G(q)(q + δq, T + δT, ξ + δξ, p + δp)− G(q)(q, T, ξ, p), (3.49)

where G(q) = S−ξq− φ(q, T, p) are the first n components of G. Substituting

in for G(q) using (3.48), and Taylor expanding (3.49) to first order in the

small quantities, we obtain

dG(q) = S−ξδq− S−ξq′δξ − dφ (3.50)

where dφ = Dqφ(q, T, p)δq + Dtφ(q, T, p)δT + Dpφ(q, T, p)δp. The varia-

tional problem (3.36) may be used to compute the three terms making up

dφ as before.
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Then the full Jacobian action is specified by

DVG(V)δV =


S−ξδq− S−ξq′δξ − dφ

Tq(q, p)δq

Xq(q, p)δq

 (3.51)

where Tq(q, p)δq is given by (3.31), and

Xq(q, p)δq = q′refδqT, (3.52)

for a reference solution qref and its spatial derivative q′ref.

This fully specifies the travelling periodic-orbit problem G (3.48), and its

Jacobian action on a perturbation δV, DVG(V)δV (3.51). When ξ = 0, the

problem reduces down to the PO problem (3.28), (3.30). Next, we implement

a method which computes the spatial shifts and derivatives present in the

problem.

3.4.2 Implementation of Shift and Derivative Operators

The means of an efficient computation of the shift and derivative are critical

in ensuring that computational bottlenecks are minimised. Therefore, we

utilise the Fourier shift and derivative properties, with the “unitary, ordinary

frequency” definition of the Fourier transform defined on the periodic ring

[−L, L) as8

F{ f (x)}(k) =
∫ L

−L
f (x)e−2πikxdx. (3.53)

The shift operator S−ξ acts on a spatial profile q(x), shifting it by an

arbitrary amount ξ, as

S−ξq(x) = q(x− ξ), (3.54)

which can be computed by utilising the Fourier shift property

F{q(x− ξ)}(k) = e−2πiξkF{q(x)}(k), (3.55)

8 We use the “unitary, ordinary frequency” definition of the Fourier transform (with the 2π

exposed) to keep the notation here as similar as possible to the computational implemen-

tation.
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Figure 3.7.: Representative shift error (left) and derivative error (right) in

blue as the mesh size is increased. The domain used is [−L, L),

L = 10, with periodic boundary conditions, and the test func-

tion is f (x) = exp
(
−x2). Also plotted is the representative

log-computation time taken to determine shifts and derivatives

using Fourier transform methods, in orange.

and Fourier inverting to obtain q(x− ξ), as

q(x− ξ) = F−1
[
e−2πiξkF{q(x)}(k)

]
(x). (3.56)

The derivative operator D is implemented in a similar fashion. The oper-

ator D acts on a profile q(x) as

Dq(x) = q′(x), (3.57)

which we compute by utilising the Fourier derivative property that

F{q′(x)}(k) = 2πikF{q(x)}(k), (3.58)

and then inverting to obtain q′(x) as

q′(x) = F−1 [2πikF{q(x)}(k)] (x). (3.59)

In MATLAB, the vector k takes the form k = [0:(nx/2)-1,(-nx/2):-1]’,

where nx is the integer mesh size which is some power of two. Using the

ordering k = [-nx/2:(nx/2)-1]’ requires the use of the fftshift function.

Shown in Figure 3.7 is the error in the shift (left panel) and the derivative

(right panel), when computed for a test function using the Fourier shift
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and derivative approach, as in (3.56) and (3.59). The test function used is

f (x) = exp
(
−x2), with a known analytical solution for when it is shifted

by some arbitrary amount ξ, f (x − ξ) = exp
(
−(x− ξ)2) or its derivative

taken, f ′(x) = −2x exp
(
−x2). For a domain [−L, L), L = 10 – chosen so

that the function comfortably fits inside the domain when it is non-zero,

to mirror how an arbitrary pattern may fit on the domain – the error falls

sharply as the mesh size is increased beyond 25. This behaviour is typical

and expected, and is referred to as spectral accuracy [212]. The time taken

to compute the shift or derivative is shown in orange. A sweet spot for the

mesh size appears to be somewhere between 27 and 211 mesh points where

both the error and the computation time are extremely small. Beyond this,

the computation time for both the shift and derivative operations grows

exponentially. This behaviour persists, regardless of the test function used.

As the domain length L is increased, the sharp drop in the error occurs at a

larger mesh size. This is expected, since more points are required to resolve

the mesh for a larger domain. The error rises slightly as the mesh gets

larger beyond 214 mesh points. This is due to the accumulation of machine

rounding error as the number of arithmetic operations increases [39]; in

practice, this is irrelevant since it is not an overly significant rise, and our

study takes place with mesh sizes between 27 and 211.

While the main advantage of using the Fourier shift and derivative proper-

ties lies in its speed, there are a few notable drawbacks. Firstly, this requires

a domain to be periodic. While for our purposes, this is acceptable, different

boundary conditions may be required for other studies. Another, perhaps

more pertinent issue is the requirement by the properties of Fourier analy-

sis that, in order to obtain a very good approximation from a finite Fourier

series, a solution must not be discontinuous. For solutions which are discon-

tinuous, the Gibbs phenomenon [93] is encountered which may ultimately

ruin convergence to a solution.

However, the general method of continuation of travelling periodic so-

lutions presented here is still able to converge to these solutions if a dif-
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ferent procedure is used to compute shifts and derivatives. The challenge

lies in finding such a technique which is also fast and efficient. A simple

matrix-vector multiplication of a shift matrix (e.g., a circularly shifted iden-

tity matrix) with a state vector is an implementation which would allow the

method to find a solution, but this would lead to the types of computational

bottlenecks we are keen to avoid. Thus, this is an open challenge moving

forward. Are we able to find an efficient way to compute shifts which are

independent of the mesh size, and derivatives of solutions which contain

shocks or discontinuities, to a high degree of accuracy?

3.4.3 Convergence Tests

The overarching travelling periodic orbit problem defined by G(·) (3.48) and

DVG(V)(·) (3.51) has been constructed, and a method for computing shifts

and derivatives has been supplied. We carry out the convergence tests de-

fined in Section (3.3.4) on the problem (G(·), DVG(V)(·)). This tests whether

the Jacobian action DGVδV is the correct one corresponding to the problem

G for an arbitrary perturbation δV.

Figure 3.8 shows the characteristic O(ε2) error for ε < 10−3 until it levels

off close to machine accuracy. Also shown is the convergence of a travelling

periodic solution (right panel). At least quadratic convergence is expected,

and this benchmark is shown by the slope of the orange line in log-space.

Super quadratic convergence, where the residual “accelerates” towards zero

after the second iteration, is seen. This demonstrates the problem is set up

correctly, and an initial guess to a travelling periodic solution converges as

expected to a true solution. Thus, the method is ready for the continuation

of travelling periodic structures. We use the TWPO continuation method in

Chapter 4 to continue travelling periodic solutions that exist in the models

studied there.
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3.4.4 Numerical Stability Routine

Here, we derive a scheme to computationally determine linear stability. It

uses the same idea as that in Section 3.3.2 for PO-type problems.

Given a general TWPO solution V = (q, T, ξ; p) for a fixed parameter

set, we determine its numerical stability as follows. Recall that travelling,

periodic solutions are determined by

S−ξq = φ(q, T, ξ, p), (3.60)

which is illustrated in Figure 3.6. This gives rise to a Poincaré map

S−ξqi+1 = φ(qi, T, p), (3.61)

through some transverse section Σ [149] of q-phase space. A rather impor-

tant consideration is that the section only be taken through q-phase space,

and not (q, T, ξ)-phase space, since T and ξ are fixed properties of a given

10-10 10-5 100
10-20

10-15

10-10

10-5

100

Figure 3.8.: (left) The error in E(ε) plotted as a function of ε shown as blue

asterisks’, for the travelling periodic orbit problem (3.48) and

(3.51). The slope of the orange line shows the expected O(ε2)

error. E(ε) follows this closely until a machine or function ac-

curacy is reached at E ≈ 10−15. (right) The residual at each

Newton iteration in converging to a true travelling periodic or-

bit solution. A mesh size nx = 512 is used.
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travelling periodic orbit.9 Linearise about the travelling periodic orbit solu-

tion, qi = q + δqi, qi ∈ Rn, where i is an iteration counter. Then

S−ξδqi+1 = Dqφ(q, T, p)δqi. (3.62)

This defines a generalised eigenvalue problem, which are problems of the

form

Avi = λiBvi, (3.63)

for A, B ∈ Rn×n, v ∈ Rn. In the case where B = In (n× n identity matrix),

this reduces down to the standard eigenvalue problem utilised in the PO

continuation earlier in this chapter.

The generalised problem (3.62) can be solved by eigs in MATLAB to

determine the stability of the travelling periodic orbit. The Jacobian action

quantity Dqφ(q, T, p)δqi can be found via the variational problem defined in

Section 3.3.1, with δT = 0, δξ = 0, and δp = 0. Note that we only demand

periodicity in q (and not in T, ξ, or p, which is why δT, δξ, and δp are set to

zero).

3.5 summary

This chapter has focused on numerical bifurcation analysis in spatially ex-

tended systems. Rather different techniques are required when studying

the large-dimensional systems that spatial models give rise to, than those

implemented in current state-of-the-art software aimed at the analysis of

low-dimensional ODE systems, such as AUTO and MATCONT. Iterative

schemes currently appear to be the best approach in large-dimensional sys-

tems. We briefly reviewed the continuation of equilibria by considering

hexagonal patterns in a neural network set on a planar lattice in Section

3.2. Standard travelling wave solutions may be continued by moving to a

co-moving frame to obtain an appropriate zero-problem.

9 When flowing a solution, we do not expect that Tend = Tstart = 0, or ξend = ξstart, since T

and ξ are properties of the solution.
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Solution Type
Quantity of Interest

State Wavespeed Period Shift Parameter

Equilibria X × × × X

Travelling Wave X X × × X

Periodic Orbit X × X × X

Travelling Periodic Orbit X X X X

Fold-of-Cycles Point XX × X × X

Flip Point XX × X × X

Neimark-Sacker Point XXX × X × X

Table 2.: (upper): A summary of qualitatively different solutions to space-

time models, and the quantities that fully describe such solutions.

During continuation, the ticked quantities for each solution-type

are emergent quantities. The wavespeed for a travelling periodic

orbit is uniquely determined from its period and shift.

(lower): Methods to be implemented. Double (triple) ticks in the

state column indicate the need to track a corresponding eigenvector

(eigenvalue and eigenvector pair) [216].

Spatially-extended periodic orbits have rarely been studied in-depth in a

mathematical neuroscience context; the majority of focus up until this point

appears to be in fluid dynamics applications [184, 183]. A likely reason

for this is the integro-differential nature of the neural field equations. Tech-

niques exist allowing an equivalent PDE representation for choices of con-

nectivity functions whose Fourier transforms have a rational structure [128].

We have developed a continuation suite utilising the methods derived in

[216] and elucidated in this chapter at this GitHub repository [147]. One of

the many advantages of this suite is that neural field models can be studied

in the integro-differential formulation; there is no need to transform the sys-

tem to PDE system. However, we stress that the suite is not limited to the

study of neural field models. The suite builds on the work of [13], going be-

https://github.com/danieleavitabile/rebound-periodic-orbit-continuation
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Figure 3.9.: Structure of the periodic orbit continuation code. The interface

and continuation core are “hidden” from a user, in the sense that

the user is not required to have knowledge about the workings

of these two parts. The only demands on the user are to supply

their problem in the form shown, and to choose an appropriate

interface (which amounts to knowing the solution type of the

initial guess).

yond equilibria and travelling waves, allowing for the efficient continuation

of periodic solutions. Table 2 summarises the different types of solutions

that can be continued using the suite and the emergent quantities that fully

characterise each solution-type. We have implemented the methods in [216]

to study temporally periodic solutions, and have developed novel methods

on top of these to study travelling periodic solutions.

The illustration shown in Figure 3.9 shows a simplified global structure

of the spatially-extended periodic orbit continuation software. A problem

is specified, containing a description of the vector field F describing the

problem, and Jacobian actions DuF(u, p)δu and DpF(u, p)δp. Depending on

the solution-type of interest, a relevant interface is chosen – be that travelling

wave, periodic orbit, travelling periodic orbit, or the identity interface in

the case of equilibria – along with a sufficiently close initial guess to the



3.5 summary 94

solution. From this, solution continuation may proceed. We hope that the

development of this suite brings continuation and numerical bifurcation

analysis of periodic orbits in spatially-extended systems into the domain of

researchers who are not specialists in continuation.

There is scope to include more functionality within the continuation suite.

The upper part of Table 2 summarises the current functionality, with future

implementations that would allow an even more in-depth study into peri-

odic patterning in space-time models shown in the lower part. Umbría and

Net (2016) [216] include methods to track and continue points where bifur-

cations of periodic orbits occur in two-parameter space. This is a natural

way to extend the suite and would allow for two parameter bifurcation di-

agrams tracking, for example, fold-of-cycles points for spatially extended

patterns. Other possible avenues that could be explored are implementing

an automatic differentiation scheme to compute the Jacobian actions. This

would certainly be beneficial to users, since supplying and testing the Jaco-

bian actions can be quite time consuming for large systems.

With regards to the core continuation scheme, the currently implemented

PALC scheme only tracks a single solution branch based on initial data.

So-called “deflation” techniques have been developed which allow multiple

distinct solutions to differential equations to be found from a single initial

guess [75]. This is done by systematically eliminating known solutions from

the search-space. Deflated Newton continuation techniques were utilised

in [40] to find multiple solution branches to a two-dimensional non-linear

Schrödinger equation. Deflation appears to be the next generation of con-

tinuation scheme, although it is still in its infancy. Its higher computational

cost is also likely a hurdle to overcome in the coming years before it be-

comes a more mainstream technique. Until then, it is likely that deflated

continuation on space-time models will occur via Graphics Processing Unit

(GPU) programming [232, 74].



4
N E U R A L F I E L D S W I T H D Y N A M I C F I R I N G

T H R E S H O L D S

4.1 introduction

Neural tissue consists of a highly complicated network of interconnected

cells. This is often modelled using integro-differential equations to describe

the synaptic activity of tissue [45] in the cortex of the brain. For slow synap-

tic interactions, the spike train typically seen to represent action potentials

that contribute to inducing a post-synaptic potential can be replaced by a

firing rate function [45] as outlined in Section 2.5. This is often a sigmoidal

function of the synaptic activity such that higher activity in connected tis-

sue feeds higher activity at the point of interest. For synaptic activity u, the

firing rate function is typically of the form f = f (u− h) where h is the firing

threshold.

In the standard neural field set-up, the firing threshold h is modelled as

being constant [5]. However, there is strong evidence to suggest that the

firing threshold is a dynamic quantity which is increased for firing tissue

when compared to that of resting tissue. Hill (1936) [94] noted that “The

critical value of [the local membrane potential] V required for excitation, i.e., the

threshold U, might have been constant and independent of the previous history of

the nerve. If the current lasts only for a very short time, this is true. If, however,

the current lasts longer, the threshold rises, as is shown by the well-known fact

95



4.1 introduction 96

that a slowly increasing current has a higher threshold than a quickly increasing

one.” Hill goes on further to state that “We shall use the term “accommodation”

(Nernst, 1908 [158]) to describe the fact that the threshold U rises when the “local

potential” V is maintained. It is known that the accommodation disappears of itself,

i.e., U gradually reverts to its original value U0, when the nerve is allowed to return

to its original resting state.”

Further evidence of a dynamic threshold is present in the seminal work

of Hodgkin and Huxley [100] who noted the “anodal break excitation” phe-

nomenon in which a hyperpolarised giant squid axon was shown to fire

upon release from hyperpolarisation, as opposed to simply returning to rest.

In some sense then, the hyperpolarisation of tissue changes its firing proper-

ties (namely the firing threshold is altered from its resting value). The firing

threshold is raised during the refractory period following a neuronal spike

when compared to its resting value, hence the difficulty in firing during the

refractory period.

In 2005, Coombes and Owen [50] considered a simple phenomenological

model of threshold accommodation that took the form

u = η ∗ w⊗ f (u− h), (4.1a)

ht = −(h− h0) + κg(u− θ), (4.1b)

where the symbols ∗ and ⊗ represent temporal (2.38) and spatial (2.35) con-

volutions, respectively. The function f is the firing rate function, and g is a

function describing the effects of threshold accommodation. Coombes and

Owen took f and g to be Heaviside functions, represented by the symbol

H(·). Explicitly, f (u) = H(u), and g(u) = H(u). The parameter h0 is the

resting value of the dynamic firing threshold and κ is a parameter that mea-

sures the strength of accommodation. The maximal value that can be taken

by the threshold is h0 + κ. The accommodation is itself a threshold process

with the accommodation threshold given by θ. To briefly summarise, the

threshold only increases if u is sufficiently large (u > θ), and returns to
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Figure 4.1.: Stationary bump solution to the model (4.1) with u(x) in blue

and h(x) in orange. The accommodation threshold θ is shown

as a dashed black line. The solutions are symmetric about x = 0.

The threshold crossings shown in the insets satisfy q(xi) = p(xi)

for i = 1, 3, 4, 6, and q(xi) = θ for i = 2, 5.

rest otherwise. This is very much in the spirit of Hill’s [94] observations

summarised above.

It was shown in [50] that the classical wizard hat connectivity

w(x) = (1− |x|)e−|x|, (4.2)

shown in Figure 2.9, allows for the existence of spatially localised bumps

such as that shown in Figure 4.1. Bumps have been linked to working/short-

term memory in the prefrontal cortex [129, 230, 43, 85]. Via a linear stability

analysis and using Evans function techniques for stability, they show that

the localised bump solution can become unstable in two distinct ways: via

a drift instability and a dynamic instability.

A drift instability occurs when an eigenvalue, moving in the complex

plane, crosses from the left half-plane to the right half-plane along the real

line and corresponds to the formation of a travelling pulse.
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A dynamic instability occurs when a pair of complex conjugate eigenval-

ues cross from the left half-plane to the right half-plane with non-zero imag-

inary part and corresponds to the formation of breathers from the instability

of the bump. The oscillatory nature of the breather is due to a pair of com-

plex conjugate eigenvalues crossing the imaginary axis away from zero.

A similar construction and stability analysis of the solitary travelling

pulse showed an instability to a travelling breather; this is a pattern with

oscillatory breather-like qualities superimposed on a travelling pulse. For

the details of this, see both [50, 48]. Other exotic phenomena were demon-

strated via simulation such as the formation of self-replicating bumps, the

destruction of two travelling breathers meeting at a collision, and the in-

stability of bumps with dimples (an inflection in a bump) into wandering

patterns on the plane.

4.2 a semi-smooth dynamic threshold neural field model

Here we consider a modification of the model considered by Coombes and

Owen. It is atypical — and indeed seems unlikely, given the non-smooth

nature of the stationary threshold bump solution in space for h shown in

red in Figure 4.1 — of neural tissue to be accurately modelled by such a

non-smooth threshold process. Therefore, we alter the threshold dynamics

of (4.1), smoothing out the discontinuity in the accommodation dynamics.

This is achieved by convolving a smoothing kernel with the function repre-

senting the effect of accommodation in the evolution equation for the thresh-

old dynamics. The symmetric smoothing kernel is taken to be isotropic, and

is given by

wh(x) =
1

σ
√

π
exp

(
−x2/σ2

)
, (4.3)
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where the parameter σ > 0 defines the spatial scale of smoothing. We also

consider the inclusion of a localised spatial drive I(x) to the synaptic activity

such that the modified model is

u = η ∗ w⊗ f (u− h) + I, (4.4a)

ht = −(h− h0) + κwh ⊗ g(u− θ). (4.4b)

where the functions f and g are sigmoidal functions of the form

s(u; µ) =
1

1 + exp(−µu)
, µ > 0, (4.5)

where µ is a steepness parameter. The sigmoidal function satisfies the prop-

erty that, as µ → ∞, s(u; µ) → H(u). In the limit σ → 0, wh(x) → δ(x),

whereby (4.4) reduces to the model considered by Coombes and Owen (4.1).

We work in the Heaviside limit (µ → ∞) in Sections 4.4 and 4.5, and

use the wizard hat connectivity function (4.2) throughout the chapter. This

captures the spirit of the model in [50] while also allowing the steady state

threshold solution to be spatially continuous, rather than discontinuous, as

is the case in [48]. Critically, this gives us the opportunity to use the Evans

function approach for linear stability and put stability results for bumps on

a clear, non-ambiguous, and formal footing.

4.3 turing analysis of the homogeneous steady state

4.3.1 Constructing the Homogeneous Steady State

Our analysis of a neural field model of cortical tissue with a dynamic thresh-

old begins with a study of the spatio-temporally homogeneous steady state

of (4.4) in the absence of any localised drive. This final condition is equiv-

alent to I(x) = 0. As shown in Section 2.4, if the post-synaptic response

function, η, takes the form of the exponential decay response function given
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by (2.20), then (4.1a) can be expressed equivalently as Qu = w⊗ f (u− h)+ I,

with Q given by (2.24). Then (4.4), with the integrals given explicitly, is

1
α

∂

∂t
u(x, t) = −u(x, t) +

∫ ∞

−∞
w(y) f (u(x− y, t)− h(x− y, t))dy, (4.6a)

∂

∂t
h(x, t) = −(h(x, t)− h0) + κ

∫ ∞

−∞
wh(y)g(u(x− y, t)− θ)dy. (4.6b)

where f and g are sigmoidal functions as given by (4.5).

Seeking the spatio-temporally homogeneous steady state solution, that is

u(x, t) = ū and h(x, t) = h̄ for all x and all t > 0, (4.6a) reduces to

ū = f (ū− h̄)ŵ(0), (4.7)

where

ŵ(k) =
∫ ∞

−∞
w(y)e−ikydy, (4.8)

is the Fourier transform of w(x), and ŵ(0) is the normalisation of w(x).

Since we work with the balanced kernel1 (4.2), ŵ(0) = 0, leading to the

unique solution ū = 0. Similarly, (4.6b) becomes h̄ = h0 + κg(ū− θ)ŵh(0).

For the Gaussian smoothing kernel (4.3), ŵh(0) = 1, and so h̄ = h0 + κg(−θ).

Thus, the unique homogeneous state is given by (ū, h̄) = (0, h0 + κg(−θ)).

Note that as µ → ∞, g(−θ) → H(−θ) = 0 for any θ > 0, implying that

h̄ = h0 in this limit.

4.3.2 Linear Stability of the Homogeneous State

To assess the linear stability of the homogeneous steady state, first linearise

about (ū, h̄) so that

u(x, t) = ū + δu(x, t), (4.9a)

h(x, t) = h̄ + δh(x, t), (4.9b)

1 A “balanced kernel” has the property that the total amount of excitatory and inhibitory

connectivity is equal.
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and substitute into (4.6) to obtain2

1
α

∂

∂t
δu(x, t) = −δu(x, t)

+ f ′(ū− h̄)
∫ ∞

−∞
w(y)

(
δu(x− y, t)− δh(x− y, t)

)
dy, (4.10a)

∂

∂t
δh(x, t) = −δh(x, t) + κg′(ū− θ)

∫ ∞

−∞
wh(y)δu(x− y, t)dy, (4.10b)

Now let us assume spatio-temporally separable perturbations of the form,

(δu(x, t), δh(x, t)) = eikx(δu(t), δh(t)). Then (4.10) reduces to

d
dt

δu(t) = α
(
−δu(t) + f ′(ū− h̄)ŵ(k)

(
δu(t)− δh(t)

))
, (4.11a)

d
dt

δh(t) = −δh(t) + κg′(ū− θ)ŵh(k)δu(t), (4.11b)

which can be written in the matrix form

d
dt

δu

δh

 = J (k)

δu

δh

 , (4.12)

where

J (k) =

α(−1 + γ1ŵ(k)) −αγ1ŵ(k)

κγ2ŵh(k) −1

 , (4.13)

and γ1 = f ′(ū − h̄) and γ2 = g′(ū − θ) can be treated as parameters that

depend on the steady state.

Let the temporal part of the perturbations be (δu(t), δh(t)) = eλt(U, H),

where U, H are constants. Then the eigenvalues, λ, of the linearisation about

(ū, h̄) determine the stability of the homogeneous steady state; they satisfy

λ2 + m(k)λ + n(k) = 0. (4.14)

If Re(λ) > 0 for any k, the steady state is unstable. The functions m and n

are given by m(k) = −Tr(J (k)) and n(k) = det(J (k)). In full,

m(k) = 1 + α− αγ1ŵ(k), (4.15a)

n(k) = α(1− γ1ŵ(k) + κγ1γ2ŵ(k)ŵh(k)). (4.15b)

2 The Taylor expansion f (v̄ + δv) = f (v̄) + f ′(v̄)δv +O(δv2), δv� 1, has been used here.
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For the connectivity (4.2) and smoothing kernel (4.3), the relevant Fourier

transforms are

ŵ(k) =
4k2

(k2 + 1)2 , (4.16)

and

ŵh(k) = exp
(
−k2σ2

4

)
. (4.17)

(4.14) gives the implicit dispersion relation E(λ, k) = 0, where

E(λ, k) = λ2 + λ (1 + α− αγ1ŵ(k))

+ α− αγ1ŵ(k) + ακγ1γ2ŵ(k)ŵh(k). (4.18)

In order to compute the Turing and Turing-Hopf bifurcations of the spa-

tially homogeneous steady state, in the spirit of [32], let λ = µ + iω, where

µ, ω ∈ R.3 There are four possible bifurcations of the steady state, all of

which occur when eigenvalue(s) cross the imaginary axis, µ = 0, in (µ, ω)-

space. For k = 0, the steady (ω = 0) and Hopf (ω 6= 0) bifurcations may

occur, while for k 6= 0, the steady state may undergo Turing (ω = 0) and

Turing-Hopf (ω 6= 0) bifurcations.

One may determine the location of bifurcations (other than the steady

bifurcation) in parameter space by augmenting the dispersion relation (4.18)

with a condition that ensures µ = 0. Defining M = Re(E)|µ=0 and N =

Im(E)|µ=0, the implicit function theorem gives the condition

MkNω −MωNk = 0, (4.19)

which states that the eigenspectrum λ(k) grazes the imaginary axis [217].

A steady bifurcation results in the formation of a different homogeneous

steady state than the original. It is found by solving E(0, 0) = 0. In the case

of this model, there is only one homogeneous steady state, and so steady

bifurcations do not occur.

3 It should be understood that µ used in this context as Re(λ) is different to the use of µ as

the sigmoidal steepness parameter in (4.5).
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A Hopf bifurcation results in globally synchronous oscillations, where ac-

tivity across the entirety of space obeys the same dynamics but oscillates pe-

riodically in time. It is found by solving E(iω, 0) = 0 for ω with k = 0 (bulk

oscillations) and a bifurcation parameter. Note that this complex equation

yields two equations Re(E(iω, 0)) = 0, and Im(E(iω, 0)) = 0, for the two un-

knowns, ω and a bifurcation parameter. We can show that for this dynamic

threshold model (4.6), the homogeneous steady state never undergoes a

Hopf bifurcation to result in bulk oscillations. By solving E(iω, 0) = 0 for

ω, we obtain the complex quadratic equation in ω: −ω2 + iω(1+ α)+ α = 0.

This has complex solutions, ω ∈ {i, iα} ∈ C. However, when decomposing

λ = µ + iω, we made the assumption ω ∈ R, and so this short calcula-

tion shows that an ω ∈ R, which would yield a Hopf bifurcation, does not

exist. Therefore, the homogeneous steady state never undergoes a Hopf

bifurcation.

A static Turing bifurcation results in the formation of a stationary pattern

with a wavenumber given by the non-zero k. It is found by solving the two

conditions E(0, k) = 0 and (4.19) for k = kc 6= 0 and a bifurcation parameter.

A dynamic Turing-Hopf bifurcation results in the formation of a pattern

with non-trivial spatial and temporal structure – a typical example is a peri-

odic wavetrain solution [33]. It is found by solving E(iω, k) = 0 and (4.19)

for k = kc 6= 0, ω 6= 0, and a bifurcation parameter [34]. Again, E(iω, k) = 0

is a complex equation and thus one must solve the two equations that arise

from setting the real and imaginary parts to zero. In total, there are three

equations for three unknowns.

In the following section, we determine conditions for static Turing and

dynamic Turing-Hopf curves.



4.3 turing analysis of the homogeneous steady state 104

4.3.3 Static Turing and Turing-Hopf Bifurcation Curves

Let us now compute (4.19) for theM andN relevant to this problem. Using

(4.18),

M(ω, k) = −ω2 + α(1− γ1ŵ(k) + κγ1γ2ŵ(k)ŵh(k)), (4.20a)

N (ω, k) = ω(1 + α(1− γ1ŵ(k))). (4.20b)

Differentiating (4.20) with respect to ω and k separately and substituting

appropriately into (4.19), we obtain

αγ1

(
−ŵ′(k) + κγ2

d
dk

(ŵ(k)ŵh(k))
)
(1 + α− αγ1ŵ(k))

− 2ω2αγ1ŵ′(k) = 0. (4.21)

Since f and g are sigmoidal – and importantly, non-Heaviside – we have

that γ1, γ2 6= 0. Therefore, to ensure (4.21) holds, we require both ŵ′(k) = 0

and
d
dk

(ŵ(k)ŵh(k)) = 0. The first condition is true for the wizard hat

connectivity (4.2) for non-zero kc = ±1. The second condition reduces to

ŵ′(k)
ŵ(k)

= −
ŵ′h(k)
ŵh(k)

(4.22)

and when the first condition is applied, it reduces further to

ŵ′h(k) = 0. (4.23)

For the choice of wh(x) we use, the only k satisfying this is k = 0, and so

there is no solution to (4.19) for k in this case. Consequently, the homoge-

neous steady state does not undergo Turing or Turing-Hopf instabilities for

σ > 0.

However, in the limit that σ → 0, wh(x) → δ(x), ŵh(k) → 1 for all k. In

this case,
d
dk

(ŵ(k)ŵh(k)) = ŵ′(k), (4.24)

and (4.19) becomes

αγ1ŵ′(k) (−1 + κγ2) (1 + α− αγ1ŵ(k))− 2ω2αγ1ŵ′(k) = 0. (4.25)
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which yields

ŵ′(k) = 0. (4.26)

We work in the limit that σ → 0 for the remainder of this section, in which

case the model under consideration is (4.1). For the connectivity (4.2), the

Fourier transform is given by (4.16), which has maxima at kc = ±1. There is

also a minimum at k = 0, however static Turing and dynamic Turing-Hopf

bifurcations both require k 6= 0, hence we only consider the maxima, for

which the critical wavenumber satisfies |kc| = 1.

We are now in a position to find conditions at which Turing and Turing-

Hopf bifurcations from the homogeneous steady state occur. In doing so,

we follow a similar methodology as prescribed in [32, 33].

The eigenvalue equation (4.14) has solutions λ(k) = λ±(k), where

λ±(k) =
−m(k)±

√
m(k)2 − 4n(k)
2

. (4.27)

A Turing bifurcation occurs when a purely real eigenvalue is crossing the

imaginary axis. The scenario is shown by the black dot in Figure 4.2A,

which shows that λ+(kc) = 0. This occurs when n(kc) = 0, since then

λ(kc) = {0,−m(kc)}. This condition on n(kc) reduces to

γ1ŵ(kc) = 1/(1− κγ2), (4.28)

noting that ŵ(kc) = 1 at kc = ±1. The non-zero eigenvalue must be nega-

tive, since otherwise a bifurcation would already have occurred. Therefore

λ−(kc) < 0, meaning that m(kc) > 0, which reduces to 1 + α − α/(1 −

κγ2) > 0. This is a necessary condition that must be satisfied by the param-

eters in order to ensure a Turing bifurcation occurs.

For a dynamic Turing-Hopf bifurcation, a pair of complex conjugate eigen-

values grazes the imaginary axis. This is shown by the black dots in Figure

4.2B which have λ(kc) = ±iω, ω 6= 0. This occurs when m(kc) = 0, since

then λ(kc) = ±
√
−4n(kc)/2, with the additional condition that n(kc) > 0.

From the first condition, we obtain the relation

γ1ŵ(kc) = 1 + 1/α, (4.29)
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Figure 4.2.: The continuous (in k) spectrum λ(k) = µ(k) + iω(k) at a static

Turing (A) and a Turing-Hopf bifurcation (B). In (A), the branch

of eigenvalues can be seen to just touch the imaginary axis at

ω = 0. Likewise, in (B) a complex conjugate pair just touches

the imaginary axis at ω = ±0.5956. In both cases, the grazing

occurs at |k| = kc = 1, as shown by the black dot(s). Parameter

values common to both panels are h0 = 0.04, κ = 0.3, σ = 0.02,

and sigmoidal steepness µ = 10. In (A): θ = 0.1358, α = 0.8, and

in (B): θ = 0.1, α = 1.3.

which determines the Turing-Hopf bifurcation curve in (γ1, α)-space. The

additional condition reduces to 1 + α− α/(1− κγ2) < 0.

The continuous spectrum λ(k) is shown in (µ, ω)-space at a static Tur-

ing (A) and a Turing-Hopf (B) bifurcation in Figure 4.2. The spectrum is

continuous since it depends on the wavenumber k; this figure shows the

eigenvalues (4.27) plotted parametrically in k. An unstable homogeneous

steady state (not shown) has its spectrum pushed into the right half-plane,

signifying that Re(λ) > 0 for k ∈ (k1, k2), k1 < k2. For a static Turing bifurca-

tion, the spectrum passes through zero, while for a Turing-Hopf bifurcation,

the spectrum moves into the right half-plane via a complex conjugate pair

of eigenvalues with non-zero imaginary parts.

Figure 4.3 shows the loci of Turing (maroon curve) and Turing-Hopf (light-

blue curve) bifurcations in (γ1, α)-space. These are obtained by plotting

(4.28) and (4.29) for appropriate values of α in each case as discussed above.
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Figure 4.3.: Turing (maroon) and Turing-Hopf (light-blue) curves defined

by (4.28) and (4.29) separating parameter space into dynami-

cally distinct regions (I)-(III), along with the pseudo-region (IV)

(shaded yellow). Dynamics for u(x, t) and h(x, t) in each region

are shown in Figures 4.4 and 4.5, respectively. The black dot

indicates the locations of a Bogdanov-Takens bifurcation where

there is a double zero eigenvalue. Parameters are h0 = 0.04,

θ = 0.1, κ = 0.3, with sigmoidal steepness parameter µ = 10.

The curves partition parameter space into distinct regions in which different

dynamical behaviours emerge upon an instability from the homogeneous

steady state. In region I, Figure 4.4a shows that the homogeneous steady

state is stable to perturbations, which decay as t → ∞. Moving beyond

the static Turing bifurcation, into region II, yields a non-travelling, static

Turing pattern as shown in Figure 4.4b. This is a consequence of a real

eigenvalue crossing the imaginary axis with corresponding eigenfunction

eikx. In region III, past the dynamic Turing-Hopf instability, travelling wave-

train solutions are produced as shown in Figure 4.4c. When the steady state

is both Turing and Turing-Hopf unstable, the two unstable modes compete,

yielding more complex spatio-temporal patterning, an example of which is

shown in Figure 4.4d, taken from the pseudo-region IV (named as such be-
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cause the competing modes may give rise to a number of different complex

mixed-mode states). This patterning may be described as some non-trivial

fusion of a Turing-Hopf travelling wavetrain, and a static Turing pattern.

Figure 4.5 shows the solutions for h(x, t) that correspond to those shown

for u(x, t) in Figure 4.4. It is clear that the dynamical behaviour in u and

h is very similar, and, qualitatively, is essentially identical. That is, where

synaptic activity u(x, t) is high, then in general, threshold activity h(x, t) is

high. This is as expected, since there is a contribution to the equation for u

in (4.6a) when u > h. This serves to increase u, and there is a contribution

to the equation for h in (4.6b) – via the accommodation process – when u is

sufficiently large (u > θ).

When 1+ α− α/(1− κγ2) = 0, both m(k) and n(k) vanish, and the Turing

and Turing Hopf curves meet in a Bogdanov-Takens bifurcation in which

there is a double zero eigenvalue. This is shown in Figure 4.3 by the black

dot and is continued in two-parameter (α, κ)-space in Figure 4.6. It is note-

worthy that κ does not grow unbounded as α ↘ 0, but approaches some

finite value κ ≈ 0.5.
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Figure 4.4.: Emergent patterns for u(x, t) in the four regions I-IV shown in

Figure 4.3. In I, the homogeneous steady state is stable, while

in regions II-IV, it undergoes an instability into the (II) Turing,

(III) Turing-Hopf, and (IV) mixed Turing-Turing-Hopf patterns

shown here.
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(a) I (b) II

(c) III (d) IV

Figure 4.5.: Emergent patterns for h(x, t) in the four regions I-IV shown in

Figure 4.3, with each panel corresponding accordingly with the

relevant panel in Figure 4.4. In I, the homogeneous steady state

is stable, while in regions II-IV, it undergoes an instability into

the (II) Turing, (III) Turing-Hopf, and (IV) mixed Turing-Turing-

Hopf patterns shown here.
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Figure 4.6.: A two parameter bifurcation diagram tracking the co-dimension

two Bogdanov-Takens bifurcation point in (α, κ)-space. Other

than κ, which is being treated as a second bifurcation parameter

here, parameters are as in Figure 4.3.



4.4 construction of a localised bump solution 112

4.4 construction of a localised bump solution

The previous section showed the construction and stability of the spatially

homogeneous steady state as well as various patterned states that emerge

as a result of instabilities. Here, we focus on a different class of solution,

namely a stationary bump; we construct it and analyse its linear stability

for the model with smoothed threshold dynamics (4.4). We do so for the

Gaussian smoothing kernel as given by (4.3). The functions f and g are now

taken to be Heaviside functions.

Seeking time-independent, spatial solutions (u, h)(x, t) = (q, p)(x) to

(4.4), we obtain

q(x) =
∫ ∞

−∞
w(x− y)H(q(y)− p(y))dy + I(x), (4.30a)

p(x) = h0 + κ
∫ ∞

−∞
wh(x− y)H(q(y)− θ)dy. (4.30b)

A localised bump solution – of the class illustrated in Figure 4.7 – is param-

eterised by the unknowns xi, i = 1, . . . , 8, which indicate the locations of

threshold crossing events.4 The Heaviside functions in each integral allow

for the integration domain to be restricted to those subsets of R such that

the Heaviside function takes the value 1. It can be seen that q(x) > θ for

x ∈ (x3, x6), while q(x) > p(x) for x ∈ (x1, x2) ∪ (x4, x5) ∪ (x7, x8). Thus,

(4.30) reduces to

q(x) =
( ∫ x2

x1

+
∫ x5

x4

+
∫ x8

x7

)
w(x− y)dy + I(x), (4.31a)

p(x) = h0 + κ
∫ x6

x3

wh(x− y)dy. (4.31b)

4 Other classes of bump solutions no doubt exist which are characterised by different num-

bers of threshold crossings, but this is the class we focus on since it it most similar to that

in [50].
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Figure 4.7.: Localised bump solution as solid blue (q(x)) and orange (h(x))

lines respectively, with I(x) = 0. Parameter values are h0 = 0.04,

θ = 0.1, κ = 0.16, σ = 0.02. Threshold crossings occur at

x1 = −1.65, x2 = −1.583, x3 = −1.5775, x4 = −1.46, with

(x5, x6, x7, x8) = −(x4, x3, x2, x1) due to the symmetry of the

solution. The two insets show an enlargement of the solution

near to the threshold crossings xi, i = 1, . . . , 8. Note the distinct

crossing points, x2 and x3, and x6 and x7. See the text for the

constraints defining these crossing points. The accommodation

threshold θ is shown in black (dashed in insets). Compare the

smoothed nature of solutions near the crossing events with Fig-

ure 4.1.

The eight threshold crossing conditions that determine the eight unknowns

xi, i = 1, . . . , 8 are given by

q(x) = p(x), x = xi, i = 1, 2, 4, 5, 7, 8,

q(x) = θ, x = xi, i = 3, 6.
(4.32)

One may calculate the integrals in the expression for q(x) (4.31a) for a wiz-
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ard hat connectivity (4.2) by using the expression for the indefinite integral

F1(y; x) =
∫

w(x− y)dy

= (y− x)e−(y−x)H(y− x) + (y− x)ey−xH(x− y), (4.33)

Thus, a closed form expression is obtained for q(x), defined in terms of the

function F1, as

q(x) = F1(x2; x)− F1(x1; x) + F1(x5; x)− F1(x4; x)

+ F1(x8; x)− F1(x7; x) + I(x). (4.34)

To evaluate p(x) (4.31b), the indefinite integral may be calculated as

F2(y; x) =
∫

wh(x− y)dy = −1
2

erf
(x− y

σ

)
, (4.35)

where erf(x) is the Error function defined by

erf(x) =
2√
π

∫ x

0
e−ξ2

dξ, (4.36)

and so, ∫ x6

x3

wh(x− y)dy = F2(x6; x)− F2(x3; x), (4.37)

giving an explicit expression for p(x) as

p(x) = h0 + κ(F2(x6; x)− F2(x3; x)), (4.38)

in terms of evaluations of the error function, which can simply be computed

numerically.

Thus, we have semi-analytical5 closed form expressions for q(x) and

p(x). Along with the conditions (4.32) to determine the eight unknowns

xi, i = 1, . . . , 8, this completes the construction of the spatially localised

bump solution. For no spatial drive, or symmetric spatial drive, the solu-

tion is symmetric about the origin. This is a consequence of the symmetric

connectivity. In this case, the localised bump solution is shown in Figure

4.7, where the close proximity of x2 and x3, and x6 and x7, should be noted.

5 Semi-analytical in the sense that we must use erf(x) in the evaluation of p(x).
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As σ is increased, p(x) becomes shallower in the region about the threshold

crossings, ultimately resulting in a different class of bump solution with

fewer threshold crossings.

4.5 stability of the localised bump solution

To consider the linear stability of the stationary bump, we develop an Evans

function approach. This technique has been used in the linear stability anal-

ysis of waves on unbounded domains [73, 49]. By considering the bump

solution to be a travelling pulse with zero speed, the approach is fruitful

in this case. The objective is to find a linear homogeneous system in the

perturbations at each event, as outlined in Section 2.9. Here, this will yield

an 8× 8 linear system, since there are eight distinct crossing events in the

solution. From this linear system, we shall demand that the perturbations

at each event be non-trivial. This constraint will define the Evans function.

To begin, we perturb the time-independent bump solution as

u(x, t) = q(x) + δu(x, t), h(x, t) = p(x) + δh(x, t), (4.39)

Then substituting (4.39) into (4.4a), we obtain

δu(x, t) =
∫ t

0
dsη(s)

∫ ∞

−∞
dyw(x− y)

× δ(q(y)− p(y))[δu(y, t− s)− δh(y, t− s)]. (4.40)

Now, we make the ansatz that perturbations are spatio-temporally separa-

ble, and there is an exponential time-dependence,

(δu(x, t), δh(x, t)) = eλt(δu(x), δh(x)). (4.41)

Then (4.41) is substituted into (4.40) to obtain

δu(x)
η̃(λ)

=
∫ ∞

−∞
dyw(x− y)δ(q(y)− p(y))[δu(y)− δh(y)], (4.42)

where η̃(λ) =
∫ t

0
dsη(s)e−λs is the Laplace transform of η(t). To collapse

the integral over y using the delta function, we require knowledge of when
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q(x) = p(x). By (4.32), this occurs for x = xi, i = 1, 2, 4, 5, 7, 8. Therefore,

using a formal property of delta functions (“composition with a function”),

δ(q(x)− p(x)) =
8

∑
i=1,i 6=3,6

δ(x− xi)

|q′(xi)− p′(xi)|
, (4.43)

we obtain

δu(x)
η̃(λ)

=
∫ ∞

−∞
dyw(x− y)

8

∑
i=1,i 6=3,6

δ(y− xi)

|q′(xi)− p′(xi)|
[δu(y)− δh(y)], (4.44)

which, upon collapsing the integral over y using the delta functions, reduces

to

δu(x) =
8

∑
i=1,i 6=3,6

g(x, xi; λ)(δu(xi)− δh(xi)), (4.45)

where

g(x, a; λ) = η̃(λ)
w(x− a)

|q′(a)− p′(a)| . (4.46)

It is noted that, in this section, g refers to the function as defined in (4.46)

rather than as the sigmoidal function in (4.4) (which is taken as a Heaviside

throughout this section). This expression for δu(x) depends on δh(x) eval-

uated at crossing points. The goal is to obtain a linear system in either of

δu(x) or δh(x), evaluated at each crossing point. We make the choice here

to generate the linear system in δu(x). With this in mind, we linearise about

(4.31b) to obtain

∂

∂t
δh(x, t) = −δh(x, t) + κ

∫ ∞

−∞
dywh(x− y)δ(q(y)− θ)δu(y, t). (4.47)

Using that ηh(t) = e−tH(t) is the Green’s function of the linear operator

L(t) = 1+ d/dt, or alternatively, by making the ansatz (4.41), we have that

δh(x) = κη̃h(λ)
∫ ∞

−∞
dywh(x− y)δ(q(y)− θ)δu(y), (4.48)

where η̃h(λ) =
1

1 + λ
is the Laplace transform of ηh(t). Since q(x) = θ at

x = x3, x6, we again use a formal property of delta functions (“composition

with a function”) to obtain

δh(x) = κη̃h(λ)
∫ ∞

−∞
dywh(x− y) ∑

i=3,6

δ(y− xi)

q′(xi)
δu(y). (4.49)
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Collapsing the integral above using the delta functions, we obtain δh(x)

in terms of δu(x) at crossing points as

δh(x) = f1(x; λ)δu(x3) + f2(x; λ)δu(x6), (4.50)

where

f1(x; λ) = κη̃h(λ)
wh(x− x3)

|q′(x3)|
, f2(x; λ) = κη̃h(λ)

wh(x− x6)

|q′(x6)|
. (4.51)

We can now write δu(x) in terms of δu(x) at each crossing event, from

which we will be able to obtain a linear system in δu(xi), i = 1, . . . , 8. First,

we have that

δu(x) =
8

∑
i=1

Gi(x)δu(xi), (4.52)

where

Gi(x) = g(x, xi), i = 1, 2, 4, 5, 7, 8, (4.53)

and

G3(x) = −
(

8

∑
i=1,i 6=3,6

g(x, xi) f1(xi)

)
, (4.54)

and

G6(x) = −
(

8

∑
i=1,i 6=3,6

g(x, xi) f2(xi)

)
, (4.55)

where there is an implicit, but important, dependence on λ in the functions

g, f1, f2, and consequently in Gi, i = 1 . . . 8 too, which has been suppressed

for notational brevity. By substituting x = xi, i = 1, . . . , 8, into (4.52), we

generate the 8× 8 linear system

x = Γ(λ)x, (4.56)

where x = (δu(x1), δu(x2), δu(x3), δu(x4), δu(x5), δu(x6), δu(x7), δu(x8))
T is

the vector of perturbations at each crossing event and Γ ∈ C8×8 has elements

Γij(λ) = Gj(xi), i, j = 1, . . . , 8,

Γ(λ) =


G1(x1) . . . G8(x1)

... . . . ...

G1(x8) . . . G8(x8)

 . (4.57)
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Demanding that perturbations be non-trivial is equivalent to the constraint

det(Γ(λ)− I8) = 0, (4.58)

where In is the n× n identity matrix. Then the relevant Evans function is

E(λ) = det(Γ(λ)− I8). (4.59)

The eigenvalues of the stability problem are the zeroes of the Evans function.

They are found at the intersection of the real and imaginary zero contours

of the complex valued Evans function. In practice, they are found by decom-

posing λ = a+ ib, a, b ∈ R, plotting the zero contours of E(λ) in (a, b)-space,

and finding their intersections. This can be done either with an algorithm

which finds the intersections between two curves, or by noting the points of

intersection “by-eye”. For stability, we are interested in eigenvalues close to

Re(λ) = 0.

Figure 4.8 shows a drift instability as α is varied through α = 1.22, for

κ = 0.16. A single eigenvalue crosses the imaginary axis on the real line.

The trivial eigenvalue that exists at λ = 0 is a consequence of spatial

translation-invariance in the system (this is formalised in Section 4.7). Di-

rect numerical simulation in Figure 4.9 shows that the drift instability desta-

bilises the stationary bump (A) into a travelling pulse (B) as the speed of

synaptic transmission increases through α = 1.22.

Figure 4.10 shows a dynamic instability as α is varied, for κ = 0.3. A

complex conjugate pair of eigenvalues cross the imaginary axis, with simu-

lations showing that the localised bump solution destabilises into a breather,

a pattern with oscillatory dynamics, as shown in Figure 4.11. The oscilla-

tory nature of the breather is a consequence of eigenvalues having crossed

the imaginary axis with non-zero imaginary part, rather than a purely real

eigenvalue. These results are entirely consistent with those found in [48].
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Figure 4.8.: Evans function plots (with κ = 1.6) of the drift instability as the

parameter α is varied, where λ = a+ ib. The red and blue curves

signify the zero-contours of Re E(λ) and Im E(λ) respectively.

Intersections of the zero-contours are the zeroes of E(λ), and

hence are the eigenvalues λ of the stability problem. Note the

trivial eigenvalue in all three panels. As α is varied, a single real

eigenvalue crosses the imaginary axis at α = αc ≈ 1.22. Values

of α are α = 1 (left), α = 1.22 (middle), and α = 1.4 (right). The

black dashed line separates the two complex half planes with

negative and positive real part, respectively. Parameter values

other than α are h0 = 0.04, θ = 0.1, κ = 0.16, σ = 0.02.

(A) (B)

Figure 4.9.: Spatiotemporal plots of u(x, t) for parameters corresponding to

panels 1 and 3 of Figure 4.8 respectively. Panel (A) shows a

stable bump solution persisting through time, whereas in panel

(B) the bump solution destabilises into a travelling pulse via a

drift instability. Parameters are as in Figure 4.8, with α = 1 on

the left and α = 1.4 on the right.
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Figure 4.10.: Evans function plots for the localised bump solution at κ = 0.3

and all other parameters as in Figure 4.7, as α is varied, where

λ = a + ib. Thick red (thin blue) lines are the real (imaginary)

zero contours of E(λ). Eigenvalues are given by the intersec-

tions of the real and imaginary zero contours. Note the trivial

eigenvalue in all three panels. Note the trivial eigenvalue in all

three panels. As α is varied, a complex conjugate pair of eigen-

values crosses the imaginary axis at α = αc ≈ 2.13. Values of α

are α = 1.8 (left), α = 2.13 (middle), and α = 2.5 (right). Param-

eters other than α are h0 = 0.04, θ = 0.1, κ = 0.3, and σ = 0.02.

(A) (B)

Figure 4.11.: Spatiotemporal plots of u(x, t) for parameters corresponding

to panels 1 and 3 of Figure 4.10 respectively. Panel (A) shows

a stable bump solution persisting through time, whereas in

panel (B) the bump solution destabilises into a pattern with

oscillatory dynamics in time, named a breather. Parameters are

as in Figure 4.10, with α = 1.8 on the left and α = 2.5 on the

right.
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4.6 equilibria and travelling wave continuation

The previous sections focused on the analytical construction and linear sta-

bility of the spatially homogeneous steady state and a localised bump so-

lution. In this section, we showcase numerical continuation, firstly of the

stationary bump, and demonstrate the effectiveness of continuation by con-

tinuing an as-of-yet unseen pattern: spatially-periodic bumps. Lastly, we

consider the continuation of a spatially-heterogeneous, temporally-periodic

standing two-cycle pattern. The numerical nature of this section necessitates

that f and g in the model (4.4) be represented by the sigmoidal function (4.5)

with steepness parameter µ.

4.6.1 Stationary Bump

Figure 4.12 shows the continuation of a stationary bump solution in the ac-

commodation strength, κ. During numerical continuation, the class of bump

solution (as characterised by its threshold crossings) may change; more pre-

cisely, the number of threshold crossings is not necessarily constant along

the solution branch. The numerics are unaffected by this, since the knowl-

edge of threshold crossings is an aid for an analytical construction. A stable

branch of solutions persists for the chosen parameter set for κ < 0.27; for

κ > 0.27, the bump solution is unstable. Direct numerical simulation con-

firms this and informs us that the emergent stable solution is a travelling

pulse for 0.27 < κ < 0.3, and is the spatially homogeneous steady state for

κ ≥ 0.3. Of interest is the unstable isola shown for the approximate values

of κ, 0.25 ≤ κ ≤ 0.26. An isola is defined as a closed curve in parameter

space [14].

Shown in Figure 4.13 is the shape of the bump solution at the three points

labelled (a), (b) and (c) in Figure 4.12. On the main branch, solutions take

the general shape of a single “hump” in the main bump as shown in Fig-
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(a)

(b)

(c)0.25 0.26

15

15.1

15.2

Figure 4.12.: Continuation of a stationary bump in κ with the solution 2-

norm plotted on the vertical. Note the existence of an unstable

isola of solutions shown in more detail in the inset. Blue (red)

curves denote stable (unstable) branches of solutions. Spatial

plots of (a), (b), (c) are shown in Figure 4.13. Parameters are:

h0 = 0.2, θ = 0.4, α = 1.5, σ = 0.1, µ = 80.
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Figure 4.13.: The solutions represented by the black dots in Figure 4.12. The

blue and orange lines represent u(x) and h(x) respectively. (a)

is stable, while (b) and (c) are unstable solutions.

ures 4.13a and 4.13c, whereas on the isola, Figure 4.13b shows that the main

bump is composed of two smaller humps. One may expect that as a param-

eter other than κ is varied, the isola may “join up” with the main branch

to create a single uninterrupted branch with no isola present. A method of

numerically treating isolas of equilibria is given in [14], where a procedure
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is outlined that continues a given isola in a secondary parameter. Due to

an isola’s nature as a closed branch of solutions, it must contain at least

two fold points, and so it is possible to continue each of the fold points in

two-parameter space to track regions of existence and the birth/death of

the isola [14, 111, 62].
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Figure 4.14.: (Left): Continuation of spatially periodic stationary bumps to

(4.4) in κ with the solution 2-norm plotted on the vertical. The

homogeneous steady state is continued in the same figure (de-

noted “HSS”) and forms a boundary in (κ, || · ||)-space in which

the various periodic bump solutions exist. Blue curves are

stable solutions, while red curves denote unstable solutions.

(Right): Plots of u(x) (blue) and h(x) (orange) for the four so-

lutions (a)-(d) denoted by the black dots on the continuation

diagram. Parameters are: h0 = 0.04, θ = 0.0, α = 1.0, σ = 0.1,

µ = 100.
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4.6.2 Stationary Spatially Periodic Bumps

As well as localised bumps, (4.4) supports spatially-periodic bumps. Figure

4.14 shows a continuation of various steady spatially-periodic bump solu-

tions and the homogeneous steady state (HSS). As κ increases through 0,

the HSS gains stability.

At the instability point, a variety of branches of unstable spatially-periodic

bumps are born that exist within the “v-shaped valley” outlined by the HSS

in (κ, 2-norm)-space. Solutions on a few of these unstable branches are

shown as (b)-(d). Solution (a) is stable, and this is confirmed via numeri-

cal simulation as well as by the numerical stability routine implemented in

the continuation. As the norm decreases down a branch, the spatial period

decreases (compare, for example (a) with (c)). Solution (b) is a spatially-

periodic multi-bump solution. With regards to (a) and (d), the upper branch

is stable while the lower branch is unstable.

4.6.3 Travelling Pulse

The authors in [48, 50] further constructed the travelling pulse solution to

(4.1) by finding the stationary solution in the co-moving wave frame, and

analysed its linear stability via an Evans function approach. Where the

pulse was seen to go unstable, direct numerical simulation showed the emer-

gence of stable travelling breathers. We explore facets of the travelling pulse

solution to (4.4) from a numerical perspective. Figure 4.15 shows the con-

tinuation of a travelling pulse solution in the parameter h0 with wavespeed,

c, shown on the vertical. The existence of the curve demonstrates that trav-

elling waves are solutions to the dynamic threshold model with smoothed

dynamics, (4.4). We investigate stability through a combination of direct

numerical simulation and a numerical stability routine. In general, an up-

per branch and a lower branch exist, with the lower being unstable. Both
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Figure 4.15.: The continuation curve (blue stable, red unstable) for a trav-

elling pulse solution to (4.4) in the parameter h0, with the

wavespeed c plotted on the vertical. In general, the upper

branch is stable, with the lower branch unstable. Parameter

values are θ = 0.4, κ = 0.4, α = 1.5, σ = 0.1, and µ = 80.

branches meet at h0 = 0.02 and h0 = 0.24, forming a closed loop of solutions.

A stable pulse is shown (by direct numerical simulation) to be the emergent

pattern on the upper branch for 0.05 < h0 < 0.18. The numerical stability

routine picks out certain segments of the upper branch as being unstable. A

hypothesis we put forward here is that the pulse initially destabilises into

some other pattern, which then undergoes a secondary instability to a trav-

elling pulse on these segments. There are a number of different emergent

patterns at various points along the lower solution branch including the

homogeneous steady state, travelling breathers, standing waves, travelling

wavetrains, and the stable pulse on the upper branch. In other words, de-

pending on the parameter value h0, a pulse may destabilise into one of any

of the solutions here listed. This demonstrates the rich variety of ways in

which solutions may go unstable. This may be interpreted as there being a

variety of way information transmission can be affected in neural systems.
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For example, by termination (instability to the homogeneous steady state)

or storage (via the generation of standing patterns).
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4.7 translation-invariance

The persistence of a zero eigenvalue in the Evans function plots Figures 4.8

and 4.10 is a consequence of spatial translation invariance in the system. We

show that this is indeed the case by verifying that z′(x) = (q′(x), p′(x)) is

an eigenfunction of the operator L for the stability problem [115]

Lz = λz, (4.60)

which is given explicitly by (4.42) and (4.48), with λ = 0.

First, we construct z′(x) explicitly6 to obtain

q′(x) =
∫ ∞

−∞
w(x− y)δ(q(y)− p(y))

[
q′(y)− p′(y)

]
dy, (4.61a)

p′(x) =
∫ ∞

−∞
wh(x− y)δ(q(y)− θ)q′(y)dy. (4.61b)

Substituting λ = 0 into (4.42) and (4.48), one obtains the equivalent of

(4.61), after making the substitution δz(x) = z′(x). Therefore δz(x) = z′(x)

is a solution to the stability problem with λ = 0 showing spatial translation

invariance of the system. It is clear that the presence of a non-constant

spatial drive breaks this translation invariance. Explicitly, (4.61) for q′(x)

becomes

q′(x) =
∫ ∞

−∞
w(x− y)δ(q(y)− p(y))

[
q′(y)− p′(y)

]
dy + I′(x), (4.62)

and if I(x) is non-constant, then I′(x) 6= 0, breaking translation invariance.

4.8 the inclusion of localised spatial drive

In Sections 4.4 and 4.5, we considered localised solutions to a neural field

equation with a dynamic threshold. Spatial homogeneity was assumed,

demonstrated by the persistent zero eigenvalue, and see Section 4.7 for the

6 This is done by taking the derivative with respect to x of (4.30).
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Figure 4.16.: The shape of the the symmetric (4.63) and the asymmetric (4.64)

spatial drive, in blue and orange respectively, for I0 = 0.6 and

σI = 0.8, and d = 30 in the case of the asymmetric drive. Note

the steep descent for x < 0 in this case.

calculation that shows this. Here we consider a non-uniform spatial drive

in the dynamics of the synaptic variable. This can be considered as a source

of activity, chosen to be centred at the origin.

The spatial drive we consider is localised at the centre of the bump but can

be asymmetric. We study two different cases of non-zero drive: symmetric,

given by

I(x) = I0e−x2/σ2
I , (4.63)

and asymmetric, given by

I(x) = I0

e−x/σI , x ≥ 0,

edx/σI , x < 0,
(4.64)

with the parameter d 6= 1 to ensure an asymmetry is present. These func-

tions are shown in Figure 4.16. For a non-constant I(x), space is no longer

homogeneous and so translation invariance is lost. Correspondingly, the

stability problem no longer has a persistent zero eigenvalue and therefore

the possibility of a drift instability occurring is also lost. The lack of a zero
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Figure 4.17.: Evans function plot for the localised bump solution with sym-

metric drive at κ = 0.3 and all other parameters as in Figure

4.7. The parameter α = αc ≈ 1.86 at the Hopf-type instability.

Thick red (thin blue) lines are the real (imaginary) zero con-

tours of E(λ). Eigenvalues are given by the intersections of the

real and imaginary contours, and so here we see the onset of

instability as a complex conjugate pair of eigenvalues crosses

the imaginary axis. Note the absence of the trivial eigenvalue

due to translation invariance.

eigenvalue is seen in the Evans function plots Figures 4.17 and 4.19, which

both show the onset of a dynamic instability for a symmetric and asymmet-

ric spatial drive respectively.

We show numerically that a symmetric spatial drive of sufficient magni-

tude changes the nature of the instabilities that occur. The dynamic instabil-

ities shown in the Evans function plots no longer produces breathers, but

sloshers as seen in Figures 4.18 and 4.20. These patterns appear to be a

hallmark of neural fields with spatial drive; see the work of Folias [80] for

a weakly non-linear analysis of a stationary bump that can destabilise into

a breather or a slosher. To summarise, in the case of a symmetric spatial

drive, symmetric sloshers are seen, as in Figure 4.18 whereas for an asym-

metric spatial drive, asymmetric sloshers are seen, as in Figure 4.20, with

the relevant Evans plot shown in Figure 4.19.
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(A) (B)

Figure 4.18.: Spatiotemporal plots of u(x, t) for α either side of αc ≈

1.86 which is the bifurcation point as shown in Figure 4.17.

Panel (A) shows a stable symmetric bump solution persisting

through time, whereas in panel (B) the bump solution desta-

bilises into a pattern with “sloshing” dynamics, aptly named a

slosher. The spatial drive in this case is symmetric, and results

in a symmetric slosher pattern emerging. Parameters are as in

Figure 4.17, with I0 = 0.6, and σI = 0.8. On the left, α = 1.8,

and on the right, α = 2.2.
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Figure 4.19.: Evans function plots for the localised bump solution with

asymmetric spatial drive at α = αc ≈ 1.28, I0 = 0.6 and σI = 0.8.

All other parameters are as in Figure 4.7. Thick red (thin blue)

lines are the real (imaginary) zero contours of E(λ). Eigenval-

ues are given by the intersections of the real and imaginary con-

tours. As α is varied, a complex conjugate pair of eigenvalues

crosses the imaginary axis at α = αc ≈ 1.28, as shown here. For

α < αc, all eigenvalues, λ, are such that Re(λ) < 0. For α > αc,

a complex conjugate pair of eigenvalues has crossed the imagi-

nary axis resulting in an oscillatory-type solution forming from

the bump in this case. See Figure 4.20 for an illustration of this.
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(A) (B)

Figure 4.20.: Spatio-temporal plots of u(x, t) for α either side of αc ≈ 1.28

in Figure 4.19. Panel (A) shows a stable asymmetric bump so-

lution persisting through time, whereas in panel (B) the bump

solution destabilises into an asymmetric slosher. The right-hand

side of the slosher has higher activity as a consequence of the

asymmetry of the spatial drive (see Figure 4.16). Parameters

are as in Figure 4.19.
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4.9 exotic solutions

Whether or not more exotic solutions exist can be explored via direct nu-

merical simulation with a variety of initial conditions and parameter sets,

as well as by a bifurcation analysis. Figure 4.21 shows a selection of such

patterning exhibited by the model. These have been found via direct sim-

ulation. Pulse emitter-type solution such as Figure 4.21B have been seen

previously in [81] via numerical simulation in a model very similar to (2.46).

The nature of many of the solutions in Figure 4.21 excludes them from

analysis via a traditional analytical approach, however a numerical contin-

uation analysis would likely be successful and provide more insight, espe-

cially for the travelling breathers (Figure 4.21A) and saltatory waves (Figure

4.21F) which are two of the more regular solutions that have been seen. This

is done in the next section, using techniques from Chapter 3.

See Table 3 for the parameter values used in simulations to generate the

exotic patterns in Figure 4.21. Relatively steep sigmoidal functions (4.5)

Parameter A B C D E F

h0 0.2 0.0 0.04 -0.12 0.04 0.04

θ 0.4 0.1 0.1 0.1 0.34 0.1

κ 0.4 0.3 0.3 0.25 0.54 0.5

α 1.5 2.0 3.0 1.0 1.0 1.0

σ 0.1 0.1 0.1 0.1 0.01 0.1

µ 80 80 80 80 100 80

Table 3.: Parameter values for which the exotic patterns (A-F) to the model

(4.4) in Figure 4.21 were seen to exist, with each column in the table

corresponding to each pattern. The value µ corresponds to the

steepness of the sigmoidal function used as the firing rate function

as in (4.5).
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(A) (B)

(C) (D)

(E) (F)

Figure 4.21.: Exotic patterns seen in the dynamic threshold model. (A)

travelling breathers, (B) travelling pulses created from a cen-

tral breather, (C) travelling pulse emitting and annihilating

waves, (D) wave/bump creation cascade, (E) chaotic wander-

ing bumps, (F) a saltatory pattern that travels across the do-

main with a well-defined wavespeed in discrete clumps. These

patterns were seen for sigmoidal f and g. Parameters used in

numerical simulation for each pattern are in Table 3.

were used for the firing rate function f in these simulations, with µ = 80.
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Further exploration is required to see if the patterns exist in the Heaviside

firing rate limit or indeed in the shallow sigmoidal regime.

4.10 continuation of temporally periodic structures

The travelling breather and saltatory waves in Figure 4.21 are patterns which

are periodic in time up to a spatial shift after each temporal period. Thus

they fit the necessary criteria to be amenable to a TWPO continuation anal-

ysis via the methods developed in Chapter 3.

We begin this section on the continuation of temporally periodic struc-

tures with a PO continuation analysis of spatially extended standing wave

patterns.

4.10.1 Standing Waves

Using techniques from Chapter 3, Figure 4.22 shows an example of the

continuation of a spatially-heterogeneous, temporally-periodic solution to

(4.4). The pattern under consideration is referred to as a standing two-cycle

wave, and is shown for u(x, t) in the inset at two different points along the

solution branch. Plotted is the emergent temporal period, T, against the

continuation parameter α; the insets have the same vertical axis scaling for t

to emphasise how drastically the pattern changes along the branch. As the

synaptic decay constant α increases, the period T decreases resulting in a

shorter temporal gap between each successive cycle within a period. This

is as one may expect, since a larger α corresponds to a quicker transfer of

synaptic information.
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Figure 4.22.: Periodic orbit continuation of a spatially heterogeneous stand-

ing wave pattern to (4.4) in α with the temporal period T of

the pattern plotted on the vertical. The spatio-temporal profile

u(x, t) over a period is shown at two points on the solution

branch, denoted by the black dots to highlight how the period

and structure of the solution changes along the branch. Param-

eters are: h0 = 0.1, θ = 0.3, κ = 0.5, σ = 1.0, µ = 10, with

I(x) = 0.

4.10.2 Saltatory Travelling Periodic Waves

Figure 4.23 shows the bifurcation diagram for the saltatory TWPO solu-

tion. This is split over the two panels to adequately present the information

obtained from continuation. Recall from Chapter 3 that during a TWPO

continuation, there are three “active quantities”, which change at each con-

tinuation step: the bifurcation parameter (which is α in this case), and the

two independent quantities which are the temporal period of the pattern

T, and the spatial shift ξ. The wave-speed of the solution may be com-

puted from these two quantities as c = ξ/T. Ideally, the norm of the whole

spatio-temporal solution should be measured over the entire temporal pe-

riod, since this returns a consistent value, no matter where the temporal

origin is chosen to be (rather than purely the norm of the spatial solution
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Figure 4.23.: Bifurcation diagram for the saltatory travelling periodic pat-

tern, with multiple solution measures on the vertical. The left-

hand panel shows (left axis, black) the norm of the solution ||z||

and (right axis, purple) the wave-speed c against α. The right-

hand panel shows (left axis, black) one period of the solution

T and (right axis, purple) one spatial shift ξ against α. Cyan

and green dots each correspond to the two spatio-temporal so-

lutions in Figure 4.24. Parameters are as in Table 3, column

F. Numerical parameters are Lx = 33 on a periodic domain

[−Lx, Lx) with nx = 212 mesh points, εn = 10−5, εl = 10−4.

at the temporal origin). The left-hand panel shows the projection of the bi-

furcation diagram into (|| · ||, α)-space on the left vertical axis (black curve),

while the right vertical axis shows (c, α)-space (purple curve). The right-

hand panel projects the bifurcation diagram into (T, α)-space on the left

vertical axis (black curve), and (ξ, α)-space on the right vertical axis (purple

curve). The cyan dot on each curve represents the same spatio-temporal

solution, which is plotted in the top panel of Figure 4.24. The green dots

represent a different solution, plotted in the bottom panel of Figure 4.24,

with the 200 multipliers with the largest absolute value plotted for each

solution on the right.

As α is increased from 1, the norm of the solution increases over the

range of α plotted. This corresponds to a higher “activity level”, and is
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Figure 4.24.: Spatio-temporal plots (left) of the solutions represented by the

cyan dot (top row) and green dot (bottom row) in Figure 4.23.

The right-hand panels show an ordered selection of the 200

largest numerically computed multipliers in absolute value in

orange. The blue circle is the unit disc.

visualised explicitly by comparing the spatio-temporal plots of the solutions

corresponding to the cyan and green dots. The magnitude of the speed

initially decreases until α ' 1.1 (purple curve rises), but increases beyond

this, as shown by the purple curve becoming more negative. The sign of the

wave-speed is important and corresponds to the direction of travel of the

wave. The spatio-temporal plots show the wave moving to the left, hence

the wave-speed is negative. A close inspection of the spatio-temporal plots

confirms that the magnitude of the wave-speed is greater for the solution

corresponding to the green dot, as is shown on the bifurcation diagram.

The black curve in the right-hand panel shows that as α increases, T ini-

tially rises until α ' 1.1, then decreases. Though this may appear to follow

the same pattern as c, this is not the case exactly, since c is signed, and is

inversely proportional to T. The purple curve shows ξ decreasing as α is in-

creased. It is important to remember that ξ refers to the amount the pattern

shifts in space over a single temporal period T, while the spatio-temporal

plots are plotted for t ∈ [0, 9T].
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The multipliers for the two solutions represented by the cyan and green

dots are plotted in the right-hand panes of Figure 4.24. In each case, the

largest eigenvalues (in absolute value) are obtained using Krylov-Schur

solvers [204, 123] implemented in MATLAB. All of these multipliers exist

inside the unit disc, therefore all multipliers are inside the unit disc, mean-

ing the solutions are both stable. The entire branch is predicted to be stable

by the numerical stability theory; direct numerical simulation at a number

of points along the branch, starting with a perturbed initial condition con-

firms this to be the case.

4.10.3 Travelling Breathers

Travelling breathers were found by Coombes and Owen in the neural field

with a dynamic threshold (4.1) in [48]. As well as existing in neural fields,

they appear in systems of multi-component reaction-diffusion equations,

with the additional components giving rise to the oscillatory nature of trav-

elling breathing solutions [145, 109]. We utilise the techniques developed in

Chapter 3 in order to track the travelling breathers as the synapse parame-

ter α is varied. This is shown in Figure 4.25, where, as in Figure 4.23, the

continuation diagram has been projected into (α, ||z||)-, (α, c)-, (α, T)-, and

(α, ξ)-space. Here, z = (u, h) is the state vector of the system. The existence

curves are shown in blue and orange, with the colour of each curve cor-

responding to the axis with the correspondingly coloured labels and ticks.

Beginning on the upper branch in (α, c)-space, as α is decreased, a fold point

is encountered at α = 1.345. Beyond this, α begins to increase, while c con-

tinues to decrease, until α = 1.6, beyond which c increases slowly. Travelling

breathers exist within a narrow window of values for α.

Two different solutions on the continuation diagram, identified by the

cyan and green dots, are selected and plotted in Figure 4.26. The cyan dot

is stable, whereas the green dot is unstable, as shown by direct numerical

simulation (the lower solution destabilises into a travelling pulse). Simu-
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Figure 4.25.: Bifurcation diagram for the travelling breather pattern, with

multiple solution measures on the vertical. The left-hand panel

shows (left axis, blue) the norm of the solution ||z|| and (right

axis, orange) the wave-speed c against α. The right-hand panel

shows (left axis, blue) one period of the solution T and (right

axis, orange) one spatial shift ξ against α. Cyan and green

dots each correspond to the two spatio-temporal solutions in

Figure 4.26. Parameters are as in Table 3, column A. Numerical

parameters are Lx = 24 on a periodic domain [−Lx, Lx) with

nx = 29 mesh points, εn = 10−6, εl = 10−5.

lation indicates that the upper branch in (α, ||z||)-space is stable, while the

lower branch (beyond the fold point at α = 1.345) is unstable, with solutions

either settling to the corresponding stable solution on the upper branch, to

the homogeneous steady state, or to a travelling pulse. This shows the

model exhibits multi-stability, where a pulse, a travelling breather, and the

homogeneous steady state all co-exist for the same parameter set. The pulse

solution emerging at the green dot has a much higher wave speed than the

travelling breather.
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Figure 4.26.: Spatio-temporal plots of the solutions represented by the cyan

dot (top row) and green dot (bottom row) in Figure 4.25. The

cyan dot is initialised with a stable breather while the green is

initialised with an unstable breather which destabilises into a

travelling pulse as the emergent pattern.
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4.11 summary

Neural fields are typically modelled with a constant threshold, although

there are exceptions to this – for example, see [209] which studies neural

fields with firing thresholds with noise. In this chapter, we have built upon

the work in [50, 48] to shed light on patterning in neural fields incorporating

threshold accommodation.

We began with a Turing analysis of the spatially homogeneous steady

state in Section 4.3 in which we obtained an implicit dispersion relation be-

tween the eigenvalues λ of the stability problem, and the wavenumber of

perturbation, k. We showed that the homogeneous steady state is unable

to undergo steady or Hopf bifurcations in this model, and only undergoes

static Turing and dynamic Turing-Hopf bifurcations in the case where the

functions f and g are sigmoidal. Emergent patterns beyond bifurcations

were those typically seen in neural field models [67] such as standing Turing

patterns and travelling waves. However, in the region of parameter-space

beyond both Turing and Turing-Hopf bifurcations, direct numerical simu-

lation showed a mixing of Turing and Turing-Hopf patterns. The synaptic

activity u and dynamic threshold activity h were qualitatively similar, as

expected based on the model equations. This part of the chapter fleshes out

the model introduced by Coombes and Owen [50] by analysing the homo-

geneous steady state in that model.

Since the Turing analysis is a linear analysis, we have used it to determine

the location and type of bifurcation, and then observed the type of emer-

gent pattern just beyond bifurcation using direct numerical simulations. A

weakly non-linear analysis – such as that carried out in [67], where the

authors analysed a neural field model incorporating spike frequency adap-

tation – provides an analytical description of solution behaviour close to the

point of bifurcation. However, in our exploration we have favoured tech-

niques from numerical analysis, such as simulation and continuation. From

a pattern formation perspective, it is of interest to explore further in two
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spatial-dimensions to determine whether or not any more exotic solutions

exist. The numerical continuation tools we have developed will be useful in

any future numerical analysis on the plane.

In Section 4.4, we focused on a different class of solution, namely the

stationary bump solution. Working in the Heaviside firing rate limit allowed

for an explicit construction of the bump solution. There are multiple classes

of bump solutions supported by the model, but we have focused on the

one shown in Figure 4.7. The eight unknowns parameterising the bump

solution are found via the eight crossing conditions (4.32) and rely on the

knowledge of the integral of a wizard hat connectivity.

In determining the linear stability of the stationary bump, we developed

an Evans function approach for stability. Viewing the bump as a stationary

wave ensures that the Evans function approach is successful in characteris-

ing linear stability. By generating a linear system in the perturbations at the

threshold crossings, we were able to determine the complex-valued Evans

function whose zeroes are the eigenvalues to the stability problem. In this

way, we have been able to put the linear stability of bumps in the neural field

model with a dynamic firing threshold on a completely formal footing.

In the absence of any spatially varying drive, there are two possible routes

to an instability: the drift instability, in which an eigenvalue crosses the

imaginary axis through zero, yielding a travelling pulse, and a dynamic in-

stability, in which breathers form. With the inclusion of a spatially hetero-

geneous drive, the possibility of a drift instability is lost, and sloshing so-

lutions form at the dynamic instability. An asymmetric spatial drive yields

asymmetric sloshing solutions. These types of solutions are ripe for nu-

merical continuation in the drive strength parameter I0 or the asymmetry

parameter k.

Modelling neural tissue with dynamically varying thresholds is one of a

number of routes forward to more realistic cortical modelling. The work in

this chapter has elucidated the complex patterning present in such a model
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and opens the door towards – and provides routes forward for – further

study.



5
T H A L A M I C N E U R A L F I E L D S W I T H R E B O U N D

C U R R E N T S

5.1 introduction

In single-neurons, there exist a zoo of ionic currents that can shape the

cellular firing response. As reviewed in Chapter 2, Hodgkin and Huxley

(1952) [98] demonstrated by a blend of modelling and sophisticated exper-

imentation that the movement of sodium (Na+) and potassium (K+) ions

into and out of the cell is responsible for the action potential. Ionic cur-

rents expressed at the cellular level may be incorporated into models of the

membrane potential of single neurons by using extensions of the Hodgkin-

Huxley approach, including further gating variables describing the opening

and closing of large ensembles of ion channels as follows. A generic number

of N currents Ii, i ∈ {1, . . . , N}, take the form

Ii = gi(V −Vi,rest), gi = mp
i hq

i , p, q ∈ Z,

dX
dt

=
X∞(V)− X

τX(V)
, X ∈ {mi, hi}, i ∈ {1, . . . , N},

and are incorporated into a single cell model of membrane potential, V, as

C
dV
dt

= −
N

∑
i=1

Ii,

each with their own conductances gi, and gating dynamics specified by

mi (activating) and hi (inactivating) with their voltage-dependent activa-

tion/steady state curves X∞(V) and timescales τX(V). The exponents p

145
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and q describe the number of molecules which must occupy a certain re-

gion of the membrane in order for a channel to conduct [100], as reviewed

in Chapter 2. The membrane capacitance, C, and the reversal potential for

the ith ionic species, Vi,rest, are often modelled as constant, though it has

been shown they can vary with age [51].

Where there is a desire to study networks of connected neurons, mean

field approaches are often favoured. These often wash out the detailed ionic

mechanisms that can sculpt firing patterns, in favour of considering tissue

connectivity. This is the basis for many continuum neural field models of

the cortex, where it is often sufficient to ignore non-linear ionic currents

and assume that the firing rate of a population of neurons is a sigmoidal

function of synaptic activity only. In this case, it is assumed that neuronal

activity only depends on the activity of connected tissue through synaptic

currents. See [26, 46, 208] for an overview of this continuum mean field

modelling approach.

When the sigmoidal firing rate function is taken to be sufficiently steep

so that it may be approximated by a Heaviside function, an abundance

of mathematical results for localised patterns and waves can be generated

in the neural field framework. To give a flavour of these Heaviside-based

results, Amari (1977) [5] was able to construct stationary bumps explicitly,

Pinto and Ermentrout (2001) [168] demonstrated the existence of travelling

pulse solutions, while Coombes and Owen (2004) [49] developed the Evans

function approach to determine the stability of travelling waves in neural

field-type systems.

By ignoring any dependence of firing rate mechanisms on intrinsic ionic

currents, the standard neural field approach cannot be expected to repro-

duce all biological firing behaviours, in particular those that rely on said

ionic currents to generate firing events. A case in point is rebound firing,

or PIR, in which the neuronal response to the release of hyperpolarising

inhibition can result in a burst of action potentials [63, 95]. This is a non-
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canonical, robust firing mechanism, requiring hyperpolarisation rather than

depolarisation [107].

As has been discussed briefly in Chapter 2, thalamo-cortical relay (TC)

cells are a specific example of a type of neuron which exhibits rebound fir-

ing. They are found in the thalamus – the organ often described as the

“sensory gateway to the cortex”. When Ca2+ enters the neuron through

T-type Ca2+ channels in the soma and dendrites [54], a large voltage depo-

larisation known as a low-threshold Ca2+ spike (LTS) can occur; the LTS is

named due to its occurrence at relatively negative (low) membrane poten-

tials. Due to its ability to generate an LTS, the T-type Ca2+ current (IT) is

sometimes referred to in the literature as the low-threshold Ca2+ current [105].

The LTS occurs over a longer timescale than conventional action potentials

mediated by fast Na+ and K+ currents [222]. As a consequence, these can

ride on the crest of an LTS, resulting in a burst firing response, whereby a

tight cluster of several action potentials occurs. This is illustrated in Figure

5.1, showing bursts of conventional action potentials when the LTS occurs.

The time-scale of the LTS is roughly 30ms, while the conventional action

potentials occur over 1-3ms.

Andersen and Eccles (1962) [7] were the first to establish the significance

of rebound firing in TC cells, dubbing the phenomenon “post-anodal ex-

altation”. They conjectured that TC cells were connected reciprocally to

other TC cells via inhibitory connections, and that in the late phase of in-

hibitory PoSPs, thalamic neurons are more excitable than usual. Though

it was shown in slice experiments [124] and in vivo [202] that rebound os-

cillations are due to the mutual interactions between TC and RE cells, the

essence of their hypothesis was, nevertheless, correct. Indeed, the model

studied by Rinzel et al. [178] is a reduction of the TC-RE network to a sin-

gle layer of TC cells with inhibitory connections and gives rise to rebound

firing. This reduction is outlined in more detail below.

Wang (1994) [220] developed a minimal model of the thalamic relay neu-

ron, incorporating rebound firing through IT. This showed non-trivial neu-
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Figure 5.1.: An illustration of two bursts of action potentials riding the crest

of the LTS from 40-70ms and 110-140ms with membrane poten-

tial in blue. The action potential time-scale (1-3ms) is much

shorter than that of the LTS (30ms). This illustration is gener-

ated by simulation of the Izhikevich model [110] in a bursting

parameter regime.

ronal bursting at the single-cell level. Guckenheimer, Tien, and Willms

(2005) [87] treated bursting in the Wang single-neuron model via a fast-slow

analysis.

TC cells receive rhythmic, inhibitory signals from cells in the thalamic

reticular nucleus (RE) [202, 124]. The properties of the T-type Ca2+ cur-

rent in RE cells are different, with the cells requiring depolarisation to burst,

rather than hyperpolarisation (as is the case for TC cells). Modelling studies

have considered closed, two-layer circuits where RE cells receive excitatory

input from TC cells [234]. Numerical simulation carried out by Rinzel et

al. (1998) [178] of connected networks of TC cells, with purely inhibitory

synaptic connectivity demonstrates the possibility of information propa-

gation through different types of travelling waves: smoothly propagating
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and lurching waves, in which waves propagate in a saltatory fashion. This

one-layer model is in the spirit of the Andersen-Eccles conjecture discussed

above, and is obtained by considering the net effect on TC cells in the two-

layer model. The RE loop is modelled indirectly, through considering an

overarching TC-to-TC loop; an illustration of this inhibitory TC-to-TC loop

is shown on the right of Figure 2.14. In the literature, the network model is

reduced to track the envelope of the LTS (as opposed to individual spikes),

and smoothly propagating waves may be analysed using singular perturba-

tion methods [234]. However, this approach does not easily allow for the

determination of solution stability and bifurcations. Therefore, it is of in-

terest to seek models of sub-cortical tissues – in particular, the thalamus –

while enabling us to obtain a better understanding of the mechanisms be-

hind tissue dynamics by retaining analytical tractability. This is especially

important given the thalamus acts as an intermediary gateway for motor

and sensory signals arriving at the brain before passing to the cortex for

processing [193], and is known for its role in the generation of thalamo-

cortical rhythms [203].

The integrate-and-fire-or-burst (IFB) model [199, 175] was developed by

adding a slow variable to a standard IF single cell model. Smith et al. [199]

successfully fitted the model to experimental responses of thalamic neurons

and noted that “its simplicity makes it a candidate for large scale network simu-

lations of thalamic functioning.” The IFB model was posed on a network of

cells by Huertas et al. (2005) [104], who studied thalamic response to visual

drive. They demonstrated a rich variety of dynamics including bursting,

and phase-locked bursting in the network model.

Bearing in mind that the neural field is an effective model of tissue con-

nectivity, it may be augmented with a description capturing the important

properties of thalamic tissue, namely rebound firing. This was done in [44]

by ensuring the firing rate in the neural field model is a function of some

voltage variable which tracks the envelope of bursting spikes, as is the case

for the LTS (rather than only synaptic activity) for an IFB model. This is
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reviewed in Section 5.2. The approach is sufficiently general to be able

to include multiple slow ionic currents and is effective from an analytical

standpoint for non-smooth, piecewise linear (PWL) models. A number of

techniques from non-smooth dynamical systems theory are available if the

sigmoidal gating variable dynamics, such as the steady state curves, and

time-scales with respect to voltage, are taken to be PWL functions. In this

study, they are taken to be piecewise-constant (PWC) for simplicity and this

is sufficient, but it is noted that a sigmoidal function is better approximated

by a PWL function. It should be noted that a PWC description of a sigmoid

introduces a stronger class of non-smoothness than would be introduced

with a PWL description. This is discussed in the Discussion. It is important

in any case not to abuse methodologies from smooth dynamical systems the-

ory when considering non-smooth models. Furthermore, one must always

bear in mind that approximating a sigmoidal function by a PWC caricature

is a first order approximation, and that this may alter dynamics in some

cases. We show how network-level stability can be treated by considering

saltation operators. These were originally derived for ODEs [154], but this

approach has been extended here to include non-local spatial interactions.

There is no requirement that space be continuous, though that is the state

of affairs in this chapter.

In this chapter, we focus on spatially continuous, purely inhibitory non-

local neural field models of thalamic tissue that support patterning via PIR.

In Section 5.2, we review the augmented thalamic continuum neural field

model, introduced in [44], and show how it is constructed to include a

slow T-type Ca2+ current, before moving on to an analysis of the spatially

synchronous periodic solution, which is constructed in Section 5.3. Its lin-

ear stability is analysed using tools from non-smooth dynamical systems

in Section 5.4. This allows us to determine novel routes to patterning by

considering the dynamical spatial patterns that emerge at instabilities to

synchrony. Notably, this includes an instance of lurching waves, which is

discussed in Section 5.5. The linear instability theory we develop is utilised
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in 2D to determine the types of planar patterning in Section 5.6. We use the

numerical bifurcation approaches developed for spatially extended periodic

orbits in Chapter 3 in a more computational approach in Section 5.7, where

by necessity, the smooth, sigmoidal model is treated.

The second half of this chapter is focused on spatially periodic travelling

waves. The non-smooth nature of the model allows for an explicit wave

construction in Section 5.8 and a calculation of the dispersion relation be-

tween the wavespeed and the spatial period of the wavetrain. The non-local

input must be carefully treated, and we utilise Fourier analysis to aid in

this. Wave stability is the focal point of Section 5.9. For the spatially ex-

tended travelling solutions under consideration, we follow a similar Evans

function approach as considered for bump stability in Chapter 4. Travelling

wave translation-invariance is shown in Section 5.10, before a summary and

discussion conclude this chapter in Section 5.11.
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5.2 the augmented neural field model

Since the advent of the neural field model, beginning with the work of

Amari [5] and Wilson and Cowan [229], there has been a high level of suc-

cess in cortical modelling. An example of this is cortical travelling waves;

the neural field model successfully models waves of activity seen in vitro

[46, 41]. Cortical activity is typically represented by a model that captures

the non-local interactions provided by tissue at other locations in space.

They are often variants of the form

Qu = ψ, ψ = w⊗ f , (5.1)

where Q is a temporal differential operator describing a level of synaptic

processing and u represents synaptic activity. The term ψ describes a source

of activity and consists of the non-local contributions from connected, firing

tissue. This is effectively described by the spatial convolution of a connec-

tivity kernel, w, with a firing rate function, f , describing firing tissue. The

spatial convolution ⊗ is defined by

(w⊗ f )(r, t) =
∫

Γ
w(r− r′) f (r′, t)dr′. (5.2)

where Γ is an integration domain. The standard neural field closes the

equations by ensuring the firing rate function f is a function of u, so that

f = f (u). In a study of cortical tissue, this is often a sufficient model.

There is a strong dependence of dynamics on non-linear intrinsic currents

which cannot be ignored if we are to consider a successful model of thalamic

tissue (one which captures features seen experimentally such as the PIR

phenomenon). IT is incorporated into a neural field-style tissue connectivity

as follows. Consider some voltage variable v, satisfying a Hodgkin-Huxley-

type equation to track the currents of interest. The dynamics of v involve a

sum of the relevant currents, which, importantly, includes IT. We pose the
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model on the continuous plane and consider the dynamics of the voltage

envelope variable v = v(r, t), r = (x, y) ∈ R2 as

C
∂

∂t
v(r, t) = IL(r, t) + IT(r, t) + Isyn(r, t). (5.3)

This is the current-balance equation. The constant C describes the capaci-

tance of neural tissue. The terms on the right-hand side represent the three

main currents we include in the model: leak (IL), T-type Ca2+ (IT), and

synaptic (Isyn). These three currents are sufficient in capturing the PIR phe-

nomenon.

The leak current takes the standard form IL = −gL(v− vL), with constant

leak conductance gL and leak reversal potential vL. It captures the dynamics

due to ions not explicitly modelled, such as Cl− ions, and sets the resting

potential of the cell.

The T-type Ca2+ current is given by [220, 178, 199, 44, 104, 148]

IT = −gThm∞(v)(v− vT), (5.4)

where gT and vT are the constant conductance and reversal potential respec-

tively, and m∞(v) = H(v− vh) is the activation function, where H(·) is the

Heaviside step function. The parameter vh sets the rebound threshold, at

which the T-type Ca2+ current activates and deactivates. For a model of TC

cells, vh < vL, while vh > vL for RE cells. Typical values for vT are large and

positive (relative to vL), such as 90mV [178] and 120mV [44]. There is an

explicit dependence on the inactivating gating variable h whose dynamics

are given by
∂

∂t
h =

h∞(v)− h
τh(v)

, (5.5)

where h∞(v) = H(vh − v), and τh(v) = τ−h H(v− vh) + τ+
h H(vh − v). The

dynamics of h can be succinctly described as

h→

0 at a rate τ−h , if v > vh,

1 at a rate τ+
h , otherwise.

(5.6)

When v < vh, IT = 0 due to m∞(v), and h saturates to 1. As v passes

through vh from below, IT activates discontinuously. Although activation
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and inactivation functions are typically sigmoidal in shape with respect to

voltage [178, 44], we take the piecewise constant caricature here in order to

facilitate the subsequent mathematical treatment that takes place through-

out this chapter. This caricature is taken for the timescale of IT too.

The synaptic current is modelled as Isyn = −gsynu(v − vsyn) where the

conductance scaling, gsyn, and reversal potential, vsyn, are constant. The

sign of vsyn relative to the resting potential, vL, determines whether or not a

synapse is excitatory (vsyn > vL) or inhibitory (vsyn < vL) [44]. We consider

a population of inhibitory neurons with the parameter values vL = −65mV

and vsyn = −200mV, unless stated otherwise. The equations are closed

by ensuring the firing rate is a function of the voltage envelope variable,

v, [44] thus augmenting a standard neural field to provide an appropriate

description of thalamic tissue. The functional form of f (v) is

f (v) =
1

τR
H(v− vth), (5.7)

which caricatures a typical sigmoidal firing rate function in the limit of in-

creasing steepness. (5.7) also arises by considering only the absolute refrac-

tory period in the firing response (2.31) of the IF model. The parameter τR

represents the absolute refractory period of thalamic tissue, with the max-

imal firing rate limited to 1/τR. By closing the equations in this way, the

source ψ becomes

ψ(r, t) =
∫

Γ
w(|r− r′|) f ◦ v(r′, t)dr′. (5.8)

The connectivity function w is radially symmetric, described in polar co-

ordinates with radial distance r > 0 and angle θ ∈ [0, 2π) as w(r, θ) = w(r),

and takes the form

w(r) = w0 exp(−r/σ)(1− γ cos(ρr/σ)). (5.9)

The parameter γ is a measure of off-centred connectivity and is constrained

to lie in the interval 0 < γ ≤ 1. The oscillatory nature is described by

cos(ρr/σ), with larger values of the parameter ρ corresponding to stronger
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Figure 5.2.: Illustration of the radially symmetric off-centre connectivity ker-

nel w(r) from (5.9) in 2D. Kernel parameters are as in Table 4

but with ρ = 3.

oscillatory connectivity. The parameter σ measures the spatial length scale,

or footprint, of connectivity. The normalisation constant w0 is chosen to

ensure the kernel is normalised to 1. In 1D,

w0 =
ρ2 + 1

2σ(ρ2 + 1− γ)
, (5.10)

and in 2D,

w0 =
ρ4 + 2ρ2 + 1

2πσ2 (ρ4 + (γ + 2)ρ2 − γ + 1)
. (5.11)

See Appendix C.1 for a derivation of these results. Figure 5.2 illustrates

the shape of the connectivity kernel in 2D. Connectivity strength increases

as distance between tissue increases until some maximum connectivity at

an intermediate distance. Beyond this, connection strength decays. From

the discussion in Chapter 2, the post-synaptic response η is taken to be the

α-function (2.21), with the relevant differential operator given as

Q =
(

1 +
1
α

∂

∂t

)2
. (5.12)

An equivalent integral representation of the synaptic response given by (5.1)

is u = η ∗ ψ, where ∗ represents a temporal convolution (2.38). With this,

the synaptic activity is given by

u(r, t) =
∫ t

0
η(s)ψ(r, t− s)ds. (5.13)
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Next, we make simplifying assumptions to remove the non-linearities in

the equation for v. Given the large magnitudes of vT and vsyn (approxi-

mately 150mV and 200mV respectively) it is assumed that v − vT ' −vT

and v− vsyn ' −vsyn. The resultant forms of the relevant currents are

IT = −gThH(v− vh), and Isyn = −gsynu,

where the factors−vT and−vsyn have been absorbed into gT and gsyn respec-

tively. These latter parameters no longer represent conductances, but rather

scaled, signed strengths of interaction, with units mV mS / cm2. From this

point onwards, we assume this to be the case. In all that follows, we rewrite

the second-order variable u as two first-order variables with the auxiliary

first-order variable

r(r, t) =
(

1 +
1
α

∂

∂t

)
u(r, t). (5.14)

To recapitulate the model in full, we have

C
∂

∂t
v(r, t) = IL + IT + Isyn, (5.15a)

∂

∂t
u(r, t) = α(−u(r, t) + r(r, t)), (5.15b)

∂

∂t
r(r, t) = α

(
−r(r, t) +

∫
R2

w(r− r′) f (v(r′, t))dr′
)

, (5.15c)

∂

∂t
h(r, t) =

h∞(v(r, t))− h(r, t)
τh(v(r, t))

, (5.15d)

With all model ingredients now in place, we briefly describe how the

PIR mechanism works in the model. Hyperpolarising input builds a latent

current in hyperpolarised tissue (h increases), which activates when tissue

potential passes through the rebound threshold. If tissue is held in a hyper-

polarised state for a longer duration, then the effect of the rebound current

is stronger. Upon activation of the rebound current, a depolarisation event

occurs. If this is large enough, and tissue depolarises beyond the firing

threshold, then firing events occur in which signals are sent to connected

tissue. For the kernel used, these signal are purely inhibitory, providing a

feedback mechanism to propagate rebound patterning across the domain.
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Parameter Value Description

gL 0.035 mS/cm2 Overall leak current conductance strength

vL −65.0 mV Leak current reversal potential

gT 8.4 mVmS/cm2 Scaled strength of IT interaction

τ+ 100.0 ms IT saturation time constant

τ− 20.0 ms IT decay time constant

vth −35.0 mV Firing threshold

vh −70.0 mV Rebound threshold

α 0.1 ms−1 Synaptic time constant

C 1.0 µF/cm2 Membrane capacitance

τR 5.0 ms Firing strength scaling constant

gsyn 200.0 mVmS/cm2 Scaled strength of synaptic interaction

σ 0.02 cm Length scale of spatial connectivity

γ 1.0 Measure of off-centre connectivity

ρ 2.0 Measure of oscillatory nature in connectivity

Table 4.: Standard parameter values. The upper half contains parameter val-

ues obtained from fits with experimental data [199]. The remain-

ing parameter values are specific to the present study. Note that gT

and gsyn as defined here are not conductances but are compound

parameters measuring the strength of currents. See text for details.

Table 4 shows the standard parameter values used in this chapter unless

stated otherwise. The upper part contains parameter values obtained from

fits to experimental data, while the lower part shows parameters chosen

for the current study. In particular note the choice of σ = 0.02 cm [178]

capturing the small length-scale of thalamic tissue.

5.3 construction of periodic spatial synchrony

Neural tissue often exhibits synchronous behaviour [215, 214, 24]; we begin

our study of the thalamic neural field model (5.15) with an investigation

of synchrony. For convenience, we collect the dynamical variables of the
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model in the state vector z = (v, u, r, h). The simplest type of synchrony

may be given by the homogeneous steady state, where z(r, t) = z0 for some

constant state vector z0, for all r ∈ Γ, and all t > 0. For vh < vL < vth,

z0 = (vL, 0, 0, 0) and is stable to small perturbations by the way the PIR

mechanism works. By this, we mean that h only increases if v < vh, and

if vL > vh, then a small perturbation will not result in v < vh. Therefore,

no synaptic activity causing movement away from the homogeneous steady

state occurs in this case. A direct stability analysis may be carried for the

parameters in Table 4 which shows that all eigenvalues are negative (not

shown here), thus indicating the homogeneous steady state is indeed stable.

We begin our analytical treatment of the model (5.15) in earnest by con-

structing the temporally periodic spatially synchronous solution, given by

z(x, t) = z(t) for all x ∈ R, with the property z(t) = z(t + T), for some

T > 0. We choose here to present the following analysis in 1D, however the

corresponding 2D analysis is nearly identical, with differences pointed out

as and when they occur.

With the spatially-independent ansatz, the full space-time model (5.15),

reduces to the non-smooth, piecewise linear system of 4 ODEs given by

C
d
dt

v = −gL(v− vL)− gThH(v− vh)− gsynu , (5.16a)

d
dt

u = α(−u + r) , (5.16b)

d
dt

r = α

(
−r +

w
τR

H(v− vth)

)
, (5.16c)

d
dt

h =
h∞(v)− h

τh(v)
, (5.16d)

where

w =
∫ ∞

−∞
w(|y|)dy (5.17)

is the normalisation of w. For all figures, we take w = 1 but leave it as a

general constant in theoretical calculations. Figure 5.3 shows an illustration

of the connectivity kernel, w(x), in 1D (left panel). Coupling is off-centre,

in which interaction strength with tissue in the immediate vicinity of the

origin is small, grows to some maximum at an intermediate distance, and
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Figure 5.3.: The 1D kernel w(x) = w0e−|x|/σ (1− γ cos(ρx/σ)) , x ∈ R (left),

normalised to 1, with w0 given by 5.10. The periodic extension

of w(x) (blue) on the 2L-periodic ring [−L, L) is illustrated on

the right. Coupling is off-centre with kernel parameters as in

Table 4.

decays away for large distances. When posed on a ring with periodic bound-

ary conditions, we define the kernel by periodic extension on the domain

[−L, L). This is illustrated in Figure 5.3 (right panel) on the 2L-periodic ring,

with distance between neurons given outside, and the strength of connec-

tivity for a given distance shown by the relative height of the blue curve at

the appropriate angle.

The dynamics of (5.16) changes discontinuously at the two Heaviside-

induced switching manifolds v = vh and v = vth. They partition phase

space into three distinct regions: (i) v < vh, (ii) vh < v < vth, (iii) v > vth.

This is a PWL system; away from the switching manifolds, the functions

f , h∞ and τh are PWC, resulting in a PWL linear model. Thus, away from

switching events, (5.16) can be solved to obtain closed form solutions as
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follows. Firstly, we explicitly give the equations in each region. In region (i),

C
dv
dt

= −gL(v− vL)− gsynu, (5.18a)

du
dt

= α(−u + r), (5.18b)

dr
dt

= −αr, (5.18c)

dh
dt

=
1− h

τ+
, (5.18d)

in region (ii),

C
dv
dt

= −gL(v− vL)− gTh− gsynu, (5.19a)

du
dt

= α(−u + r), (5.19b)

dr
dt

= −αr, (5.19c)

dh
dt

= − h
τ−

, (5.19d)

and in region (iii),

C
dv
dt

= −gL(v− vL)− gTh− gsynu, (5.20a)

du
dt

= α(−u + r), (5.20b)

dr
dt

= α

(
−r +

w
τR

)
, (5.20c)

dh
dt

= − h
τ−

. (5.20d)

In each case, the dynamics is linear and so is easily solved for an initial

state z(0) = (vh, u0, r0, h0) to give an explicit solution z(t). By demanding

T-periodicity and continuity of solutions, we find the periodic solution sat-

isfying (5.16). The explicit formula for the solution is rather cumbersome

though, and, as such, is not written explicitly here. Instead, the resultant

periodic orbit describing spatial synchrony is shown in Figure 5.4. It is char-

acterised by seven unknowns: the times-of-flight ∆i, i = 1, . . . , 4, describing

the time spent in each partition of phase space, and the three unknowns in

the initial state, u0, r0, h0. These are found by demanding periodicity and



5.3 construction of periodic spatial synchrony 161

−200 −150 −100 −50
v (mV)

0.3

0.4

0.5

0.6

0.7

0.8

h

vh vth

(i) (iii)(ii)

Figure 5.4.: Synchronous period-1 orbit in the (v, h)-plane. Different colours

(line styles) indicate parts of the orbit between switching events.

The dotted black lines represent the switching manifolds at vh

and vth, with regions (i)-(iii) denoted. Parameter values are as

in Table 4.

continuity in the solution. The following seven constraints characterise the

sequence of switching events and periodicity of the solution,

v(T1) = vth, u(T4) = u0,

v(T2) = vth, r(T4) = r0,

v(T3) = vh, h(T4) = h0,

v(T4) = vh,

(5.21)

where Ti, i = 1, . . . , 4, is the time of the ith switching event and T = T4 is

the temporal period of the solution. The absolute switching times, Ti, are

related to the times-of-flight, ∆i, by

Ti =
i

∑
j=1

∆j.

Solving (5.21) for the seven unknowns ∆i, i = 1, . . . , 4, u0, r0, and h0 com-

pletes the construction of the spatially synchronous periodic orbit.

The temporal origin is shown at the beginning of the blue line in Figure

5.4, where v(0) = v(T4) = vh, and corresponds to the state of the system
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just after reaching the rebound threshold, v = vh, from v < vh. At this in-

stant in time, h is maximal, so the discontinuous activation of the rebound

current will have a strong impact on the dynamics of v. From this point

onwards this is seen, and the system evolves in region (ii) from initial con-

ditions (vh, u0, r0, h0). As t increases, the orbit follows the blue line with v

continuing to increase, while h decreases. At t = T1, v = vth, at which point,

all tissue fires in synchrony. The dynamics switch to those of region (iii)

denoted by the orange line. The dynamics in r differ from those in region

(ii). The addition of a drive in the equation for r generates synaptic activity.

As t continues to increase, v reaches its maximum and then begins to de-

crease (a consequence of h becoming smaller and v being much larger than

vL and vsyn), until v(T2) = vth. Following this, the dynamics switch back to

region (ii), with the dynamics in r reverting back to decay. Due to the finite

time-to-peak in the spread of synaptic activity, u continues to increase for

a short time after firing stops. v continues to decrease until v(T3) = vh, at

which point the dynamics enter region (i). IT switches off, while h begins

to saturate to one. During this phase, v is driven towards vsyn due to the

action of the elevated u, before beginning to increase back towards rest, un-

til v(T4) = vh. This completes a full period. Subsequently, the behaviour

described here repeats periodically. The orbit is continuous in time. Al-

though jumps exist within the vector field, resulting in non-smoothness in

the derivative of the solution, there are no jumps in the solution.

The periodic orbit exhibits bistability with the spatially homogeneous

steady state, the latter of which can be shown to be stable via a standard lin-

ear stability analysis, for the parameter regime of Figure 5.4. However, given

a knowledge of how the rebound mechanism works, the spatially homoge-

neous steady state, z0 = (vL, 0, 0, 0), existing in region (ii) (vh < vL < vth), is

clearly stable to small perturbations, since these are not large enough to pro-

vide enough hyperpolarisation required to drive the PIR mechanism. This

situation may change for a parameter regime where vth ' vL ' vh.
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The synchronous periodic orbit solution does not arise via a Hopf bifur-

cation from a steady state as is typical, but exists as a stand-alone solution

due to the PIR mechanism.
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5.4 linear stability of periodic spatial synchrony

5.4.1 Local Saltation Approach

We are now in a position to analytically determine the linear stability of the

periodic orbit. This is a non-trivial task due to the non-smooth nature of the

model. Discontinuities in the vector field induce discontinuities in the per-

turbations which must be properly treated. This is achieved using saltation

operators; these are tools used in non-smooth dynamical systems to map

perturbations across discontinuities in solutions or vector fields [154]. The

synchronous orbit constructed in the previous section is continuous, with

discontinuities present in the vector field; these are referred to as Filippov-

type discontinuities in the language of non-smooth dynamical systems [133]

(a Type 2 discontinuity in Table 1).

Consider a perturbation δz(x, t) around the synchronous periodic orbit

solution z(t). Over one period, the periodic orbit trajectory passes through

switching manifolds1 a total of four times. Therefore, four saltation matrices

are required to map perturbations across switching events over a single

period. The saltation matrices take the form Ki ∈ R4×4, i = 1, . . . , 4, and act

such that

δz(x, T+
i ) = Kiδz(x, T−i ),

where δz(x, T±i ) = limε↘0 δz(x, Ti± ε) (this is the value of the perturbations

just after and just before the periodic orbit hits a switching manifold).

The model (5.15) has a mixture of local and non-local dynamics, there-

fore we determine the components of Ki, i = 1, . . . , 4, via two separate

approaches that are able to deal with each of these types of dynamics. For

1 A switching manifold separates phase space into two regions, with distinct dynamics on

either side.
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the rows of Ki, i = 1, . . . , 4, pertaining to local dynamics,2 that is δv(x, T+
i ),

δu(x, T+
i ) and δh(x, T+

i ), we employ standard approaches from non-smooth

dynamical systems [154] as outlined in Section 2.8. Then for the dynamical

system dz/dt = F(z), the entries for δv, δu and δh correspond to the first,

second and fourth row of

Ki = I4 −
(F−i − F+

i )(∇g)T

(∇g) · F−i
, i = 1, . . . , 4, (5.22)

where F±i denotes the vector field either side of the ith switching event as

F±i = limε↘0 F(z(Ti ± ε)) (as ε approaches zero from above), and In denotes

the n× n identity matrix. The indicator function g characterises the occur-

rence of switching events at time T by g(z(T)) = 0 [159]; it parameterises

the switching manifolds and is either g(z) = v− vth or g(z) = v− vh, result-

ing in ∇g = (1, 0, 0, 0)T in either case. The derivation of the local saltation

matrix (5.22) is shown in Appendix C.2.1.

5.4.2 Non-local Saltation Approach

The non-local character of the model enters the saltation matrices in the row

corresponding to the mapping of δr across a switching manifold. This is

due to the presence of the non-local integral term, summing activity from

across the domain, in the evolution equation for r in (5.15). Starting from

the equation for r in (5.15),

∂

∂t
r(x, t) = α

(
−r(x, t) +

∫ ∞

−∞
w(|y|) f (v(x− y, t))dy

)
, (5.23)

we linearise about the steady state z(t) by letting z(x, t) = z(t) + δz(x, t), to

obtain an evolution equation for δr as

∂

∂t
δr(x, t) = α

(
−δr(x, t) + f ′(v(t))

∫ ∞

−∞
w(|y|)δv(x− y, t)dy

)
. (5.24)

2 The terms associated with local dynamics are those which affect the evolution of the

system at the same point in space. In (5.15), this includes every term except the integral

term in the evolution equation for r.
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Making the ansatz δz(x, t) = eikxδz(t), (5.24) reduces to

d
dt

δr(t) = α

(
−δr(t) + f ′(v(t))δv(t)

∫ ∞

−∞
w(|y|)e−ikydy

)
. (5.25)

Here we recognise the form of the Fourier transform

ŵ(k) =
∫ ∞

−∞
w(|y|)e−ikydy,

and so obtain the evolution equation for δr incorporating a notion of non-

locality as
d
dt

δr(t) = α
(
−δr(t) + f ′(v(t))δv(t)ŵ(k)

)
. (5.26)

The functional form of f (v) gives f ′(v(t)) = δ(v(t) − vth)/τR. It is noted

here that the delta function exists underneath an implicit integral in time

given by the derivative on the left-hand side. So, by a formal property of

delta-functions (“composition with a function”), (5.26) becomes

d
dt

δr(t) = α

(
−δr(t) +

ŵ(k)δv(t)
τR

2

∑
i=1

δ(t− Ti)

|v̇(Ti)|

)
, (5.27)

where t = Ti, i = 1, 2, are the times at which v(t) = vth. From (5.27), we see

that δr(t) changes discontinuously about Ti, i = 1, 2, according to

δr(T+
i ) = δr(T−i ) +

αŵ(k)
τR |v̇(Ti)|

δv(T−i ) , i = 1, 2 , (5.28)

at the switching times t = Ti, i = 1, 2. Thus, the non-local saltation rule is

given by (5.28): it relates δr(t) after switching events, at time T+
i to the per-

turbations before switching events, at time T−i , and contains the necessary

information to fill in the non-local entries in the saltation matrices. These

are the prefactors that multiply δv(T−i ), i = 1, 2. At times t = Ti, i = 3, 4,

δr(t) is continuous as expected, since these switching times correspond to

changes in the voltage and rebound dynamics rather than the synaptic and

firing dynamics. Explicitly, non-locality is only present in K1 and K2, with

the relevant non-local entries given by

K(3,1)
1 =

αŵ(k)
τR
∣∣v̇(T−1 )

∣∣ , (5.29a)

K(3,1)
2 =

αŵ(k)
τR
∣∣v̇(T−2 )

∣∣ , (5.29b)
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where K(j,k)
i denotes the (j, k)th entry of the ith saltation matrix. Note the

explicit dependence of K1 and K2 on the wavenumber k, purely through

ŵ(k). All other entries to all four saltation matrices, Ki, i = 1, 2, 3, 4, are

local, and are found using (5.22). The saltation approach is valid for non-

continuous discrete networks too, as shown in [47, 159].

5.4.3 Non-smooth Periodic Orbit Stability

The complete saltation matrices are given explicitly as

K1(k) =


1 0 0 0

0 1 0 0
αŵ(k)

τR v̇(T−1 )
0 1 0

0 0 0 1

 , (5.30a)

K2(k) =


1 0 0 0

0 1 0 0

− αŵ(k)
τR v̇(T−2 )

0 1 0

0 0 0 1

 , (5.30b)

K3 =



1 + gTh(t−3 )

Cv̇(T−3 )
0 0 0

0 1 0 0

0 0 1 0
1/τ+−h(T+

3 )/τ++h(T−3 )/τ−

v̇(T−3 )
0 0 1


, (5.30c)

K4 =



1− gTh(T−4 )

Cv̇(T−4 )
0 0 0

0 1 0 0

0 0 1 0
−h(0)/τ−−1/τ++h(T−4 )/τ+

v̇(T−4 )
0 0 1


. (5.30d)
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Between switching events, the dynamics obeyed by the perturbations is lin-

ear, and satisfies
d
dt

δz(t) = Jδz(t), where J is the piecewise constant matrix

J =



J1, 0+ ≤ t ≤ T−1 ,

J2, T+
1 ≤ t ≤ T−2 ,

J3, T+
2 ≤ t ≤ T−3 ,

J4, T+
3 ≤ t ≤ T−,

(5.31)

and

Ji =


−gL −gsyn 0 −gT

0 −α α 0

0 0 −α 0

0 0 0 −1/τ−

 , i = 1, . . . , 3, (5.32a)

J4 =


−gL −gsyn 0 0

0 −α α 0

0 0 −α 0

0 0 0 −1/τ+

 . (5.32b)

All saltation matrices Ki, all times of flight ∆i, and the in-region vector

fields for the perturbations, Ji, i = 1, . . . , 4, describing the evolution of per-

turbations in each region are known. This is all of the information required

to calculate the fundamental matrix (monodromy matrix) mapping an initial

perturbation to its value after one period. The eigenvalues (multipliers) of

the monodromy matrix determine periodic orbit stability. The linear na-

ture of the model away from the switching events means that perturbations

may be propagated forwards using matrix exponentials away from the two

switching manifolds.

Given some perturbation δz(t) with initial value δz(0), its value after a

period T is given by δz(T) = Ψ(k)δz(0), where the monodromy matrix is

given by

Ψ(k) = K4 exp(J4∆4)K3 exp(J3∆3)K2(k) exp(J2∆2)K1(k) exp(J1∆1) . (5.33)
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Figure 5.5.: Real (solid lines) and imaginary (dashed lines) parts of the four

multipliers of Ψ(k) as a function of k in blue, orange, green

and red, for two different parameter sets. The green and red

eigenvalues are both effectively zero for all k (the red sits atop

the green in these figures). The dotted black line marks the

stability boundary at |λ| = 1. Parameter values are as in Table 4

with the exception of the following in (B): gT = 12.6mVmS/cm2,

γ = 0.65.

We explicitly note the dependence of Ψ on k to highlight that periodic orbit

stability is dependent upon the wavenumber of perturbation k. The saltation

matrices K1 and K2 are functions of the wavenumber k through ŵ(k), hence

it is more precise to say that stability is dependent upon tissue connectivity.

The synchronous periodic orbit state is linearly stable if the multipliers,

λi, i = 1, . . . , 4, of Ψ(k) are contained within the unit disk for all k [125,

78] (excluding the trivial multiplier which exists with certainty for k = 0

only). For spatially homogeneous perturbations (k = 0), there is always a

multiplier with value λ = 1 corresponding to time translation invariance.

The orbit can go unstable in three distinct ways as shown in Figure 3.3: (a)

a multiplier passes through +1 in a Fold of cycles-type bifurcation, (b) a

multiplier passes through −1 in a Flip-type bifurcation, and (c) a multiplier

passes through the unit circle at eiθ0 , θ0 ∈ [0, 2π), θ0 6= 0, π, in a Neimark-

Sacker-type bifurcation [125].
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Figure 5.6.: Space-time plot of the perturbation δv(x, t) in mV when syn-

chrony is linearly unstable (A) and stable (B). Parameters values

are as in the corresponding panels in Figure 5.5.

In Figure 5.5, we plot the eigenvalues of Ψ(k) as a function of k for two

different sets of parameter values, as described in the figure caption. In

Figure 5.5A, the eigenvalue coloured blue is larger than 1 for a subset of

wavenumbers, k ∈ (77, 155) (and beyond −1 for k ∈ (38, 45)) indicating

that the synchronous solution is linearly unstable in this parameter regime.

This is confirmed by direct numerical simulations, shown in Figure 5.6A,

where we depict the spatio-temporal evolution of δv(x, t). Starting simula-

tions from a perturbed synchronous state with a wavenumber of k = 106

and periodic boundary conditions, perturbations grow, as expected, based

on the spectrum for this wavenumber. The perturbed pattern eventually

destabilises into a standing pattern on top of the global bulk periodic oscil-

lation which is indicative of the type of pattern seen beyond a +1 instability.

For the second set of parameter values, we observe in Figure 5.5B that the

eigenvalues do not leave the unit disc for any k. In this case, the theory pre-

dicts the orbit is stable to small perturbations. This is illustrated via direct

simulation shown in Figure 5.6B with k = 106, where an initial perturbation

around the synchronous state decays to zero. When simulating numerically,

these perturbations are scaled to the size of the domain to satisfy periodic

boundary conditions.
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Figure 5.7.: Fourier transform (left) and eigenvalues of Ψ(k) as a function of

ŵ(k) (right). Parameters for the top (bottom) row correspond to

those in the left (right) panel of Figure 5.5.

5.4.4 Connectivity-independent Stability

The propagator Ψ(k) depends on k through the Fourier transform ŵ(k) of

the connectivity kernel, since the saltation matrices K1(k) and K2(k) depend

on ŵ(k). As a consequence, changing the connectivity, w(x), can change the

linear stability of the synchronous periodic orbit state. This is illustrated

in Figure 5.7, where we plot the eigenvalues of Ψ(k) as a function of ŵ(k)

for the two sets of parameter values in Figure 5.5. The connectivity kernels

used are normalised to 1, that is ŵ(0) = 1. As k increases, ŵ(k) → 0, by

(5.34) and as shown in Figure 5.7. In the plots of λ vs. ŵ(k), the excursion

taken by the largest eigenvalue must begin at ŵ(k) = 1 and end at ŵ(k) = 0.

Thus, in this case, if the largest eigenvalue passes outside of the unit disc

for 0 < ŵ(k) < 1, then the periodic orbit will be unstable for the given
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parameter set, regardless of the connectivity function. This is a powerful,

connectivity-independent characterisation of stability.

If the values of ŵ(k) are such that the corresponding eigenvalues are in-

side the unit disc, then synchrony is stable. Therefore, given the Fourier

transform of a specific kernel, we only need to consult the appropriate plot

of λi, i = 1, . . . , 4, as a function of ŵ(k) to infer linear stability of the syn-

chronous state. As an example, consider the connectivity kernel (5.9) in 1D,

with Fourier transform

ŵ(k) = w0

(
a(k; σ, 0)− γ

2
(a(k; σ, ρ) + a(k; σ,−ρ))

)
,

a(k; σ, ρ) =
2σ

1 + (ρ− kσ)2 ,
(5.34)

where the calculation to obtain this is shown in Appendix C.1. For the

parameter values as in Figure 5.5A, ŵ(k) ∈ (−0.4235, 1), and see Figure

5.7A showing that ŵ(k) is bounded accordingly. We deduce from Figure

5.7B that synchrony is linearly unstable since for ŵ(k) ∈ (−0.4235,−0.18),

the blue eigenvalue exists outside of the unit disc beyond +1. This agrees

with our previous result. On the other hand, the parameter values used

in Figure 5.5B, for which synchrony was shown to be linearly stable, lead

to the Fourier transform as shown in Figure 5.7C with ŵ(k) ∈ (−0.182, 1).

Then Figure 5.7D shows synchrony is stable since, for ŵ(k) ∈ (−0.182, 1),

all eigenvalues are shown to be inside the unit disc.

One point of interest is the small excursion of the blue eigenvalue beyond

−1 in Figure 5.7B. For this parameter set, any kernel with γ = 1 as in Table

4 will be unstable to a small band of perturbations that pass beyond −1,

since any connectivity satisfying the above properties must be normalised

to 1 and decay to 0 as k → ∞. Such a reasonable connectivity will have a

smoothly varying Fourier transform, and so we see that to go from ŵ(k) = 1

to ŵ(k) = 0 smoothly in Figure 5.7B, the blue eigenvalue will always pass

through −1 for a small band of wavenumbers. This band can be seen in

Figure 5.5A for k ∈ (38, 45).
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Figure 5.8.: Top: A blinking solution formed from a −1 instability of syn-

chrony ((b) in Figure 3.3). Bottom: The wavelength spectrogram

for the solution in the top panel, showing the relative dominance

of different spatial wavelengths for each solution through time.

Parameters are as in Table 4 with τR = 3, and the kernel param-

eter γ = 0.55. The perturbation applied to the initial condition

has wavenumber k = 47.

In the case where an eigenvalue of Ψ(k) leaves the unit disc along the

real axis at −1 in a Flip-type instability, the synchronous solution breaks

into standing oscillations in which a point in space fires on every other

cycle, and the pattern on one cycle is shifted half a spatial cycle on the

next temporal cycle; we denote this solution a “2-cycle”. This is shown in

Figure 5.8 (upper panel), along with a spectrogram (lower panel) showing

the emergent pattern to have a well-defined wavelength of around 0.18mm

on each cycle.

Where an eigenvalue of Ψ(k) leaves the unit disc through +1 in a Fold-

type instability, then a standing pattern emerges which does not exhibit the

off-cycle oscillatory behaviour shown by the emergent pattern in the case

of a −1 instability. The standing pattern exists on top of the bulk oscilla-
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Figure 5.9.: Top: A standing solution formed from a +1 instability of syn-

chrony ((a) in Figure 3.3). Bottom: The wavelength spectrogram

for the solution in the top panel, showing the relative dominance

of different spatial wavelengths for each solution through time.

Parameters are as in Table 4. The perturbation applied to the

initial condition has wavenumber k = 106.

tions. This is shown in Figure 5.9 (upper panel) and is the instability that

occurs when perturbing synchrony with a wavenumber from k ∈ (77, 155)

in Figure 5.5. Indeed, numerical simulation has shown that this emergent

standing pattern is not stable, and that it quickly breaks down into other

solutions. Although this is not shown explicitly here, it can be inferred

from the spectrogram (lower panel), where the power of the dominant wave-

length becomes increasingly unsettled as time progresses.

In two spatial dimensions, the linear stability analysis for the synchronous

periodic orbit is very similar. The only change when compared to the 1D

analysis presented above is that ŵ(k) is replaced by the 2D Fourier trans-

form

ŵ(k) =
∫

R2
w(r)eik·rdr, (5.35)
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with k ∈ R2. For the radially symmetric kernel given by (5.9) we have that

ŵ(k) = w0[g(k; σ, 0)− γRe g(k; σ, ρ)],

g(k; σ, ρ) = 2π
1− iρ

σ[k2 + (1− iρ)2/σ2]3/2 ,
(5.36)

where k = |k|. The calculation showing this result is in Appendix C.1, and

entails a contour integral to obtain g(k; σ, ρ).

5.5 lurching waves

We have seen the patterns that emerge from the spatially synchronous pe-

riodic orbit when an eigenvalue escapes the unit disc through −1 (period-

doubling type) and +1 (fold of cycles type). However, as stated earlier,

a third way in which a periodic orbit can become unstable is when an

eigenvalue passes through eiθ, where θ 6= 0, π (Neimark-Sacker type) cor-

responding to a crossing with non-zero imaginary part. Using (5.9) as the

connectivity function mimics the shape used by Rinzel et al. in [178], but its

symmetrical nature excludes the possibility of obtaining a non-real instabil-

ity, where eigenvalues cross the unit disc away from +1 and −1. Therefore,

an asymmetric connectivity function is now introduced as

w(x) = w0

e−a1x/σ, x > 0,

ea2x/σ, x ≤ 0,
(5.37)

which has the Fourier transform

ŵ(k) = w0

(
1

a1/σ + ik
− 1
−a2/σ + ik

)
. (5.38)

Both (5.37) and (5.38) are shown in Figure 5.10. The constant w0 is chosen

so that w(x) is normalised to 1, yielding

w0 =
a1a2

σ(a1 + a2)
. (5.39)

The propagator Ψ(k) depends on k only through the Fourier transform,

ŵ(k), which, for the asymmetric kernel, now has a non-zero imaginary part
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as a function of k, as shown in the right-hand panel of Figure 5.10. As

a consequence, the eigenvalues of Ψ(k) for each k now have, in general,

a non-zero imaginary part, and so Neimark-Sacker-type instabilities may

occur. We complete our characterisation of the three types of instabilities

that may occur from synchrony by considering the Neimark-Sacker-type

instability.

Figure 5.11 shows the excursion of the two largest eigenvalues, to the

stability problem for synchrony, in the complex plane. The larger of the

two is shown in blue. It can clearly be seen that the eigenvalue crosses the

unit disc at eiθ, θ = 0.8593 · · · ≈ 7π/8, away from +1 and −1. We see a

wide range of wavenumbers outside the unit disc for this chosen parameter

set. For k > 162, all eigenvalues are inside the unit disc. Thus the pattern

that emerges at the instability, as shown in Figure 5.12 (top panel), is some

amalgamation of waves with wavenumbers k < 162.3 The emergent pattern

is an instance of lurching waves – a hallmark solution of models of thalamic

tissue, as first noted by Rinzel et al. (1998) [178]. The spectrogram (lower

3 These are the wavenumbers such that the largest eigenvalue is outside the unit disc. See

Figure 5.11.
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Figure 5.10.: The asymmetric connectivity kernel (5.37) (left) and its

complex-valued Fourier transform (5.38) as a function of k

(right) with real and imaginary parts shown in blue and orange

respectively. Parameter values are σ = 0.02, a1 = 1, a2 = 5.
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Figure 5.11.: The two non-zero eigenvalues of Ψ(k) for the asymmetric con-

nectivity (5.37) shown in the complex plane in blue and red

plotted parametrically as k varies from 0 to 600. As k increases,

the transparency of each eigenvalue curve increases. The unit

disc is the stability threshold and is shown in black. The largest

eigenvalue enters the unit disc as k increases through k = 162.

Parameters are as in Table 4, with the asymmetric connectivity

(5.37), with kernel parameters as in Figure 5.10.

panel) demonstrates the large wavelength : domain-size ratio which is present

in this pattern.

These waves have a well-defined wavespeed, and yet are not simply sta-

tionary solutions in the co-moving frame. Rather, they are time-periodic so-

lutions in the co-moving frame. In this sense, structurally, from a wave-like-

solutions point-of-view, these are akin to the travelling-wave periodic-orbit

patterns discussed towards the end of Chapter 3. Lurching waves have

been seen in a variety of different guises since their discovery. Rinzel et

al. [178] showed a somewhat unstructured and disorganised pattern which

propagated across the domain in a saltatory fashion. Following this, Yew et

al. [234] illustrated the existence of highly “blocky” lurching waves, while

others considered different clusters of cells firing separately, but with all
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Figure 5.12.: Top: Lurching waves formed from a Neimark-Sacker type in-

stability of synchrony ((c) in Figure 3.3). Bottom: The wave-

length spectrogram for the solution in the top panel, showing

the relative dominance of different spatial wavelengths for each

solution through time. Parameters are as in Table 4, with the

asymmetric connectivity (5.37), with kernel parameters as in

Figure 5.10. Perturbation wavenumber is k = 161.

clusters conforming to a well-defined wavespeed [224]. The continuum pat-

terns we have found are in the same spirit as these: oscillating clumps of

activity moving with a well defined wavespeed.

This completes our characterisation of the three types of instabilities that

may occur from synchrony.

5.6 patterning in two dimensions

As we have seen in 1D, the inclusion of rebound currents can lead to com-

plex spatio-temporal patterns. This is shown to be the case in 2D as well, as
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illustrated in Figure 5.13. Starting from a small bump of elevated synaptic

activity in the centre of the domain of the form

u0(x, y) =
0.06

cosh(x) cosh(y)
,

where (x, y) ∈ R2 denotes 2D space, patterns emerge where spatially sep-

arated and distinct parts of the domain fire in synchrony via the rebound

mechanism. Intriguingly, the patterns generated by the IT current here are

qualitatively similar to those in [25], which originate from an Ih current.

Patterns arising due to IT appear to travel more clearly than those arising

due to Ih. This suggests that generic rebound currents may be capable of

producing non-trivial patterns consisting of complex structures.

The linear stability theory for periodic synchrony given in Section 5.4, is

valid in 2D; the only change is that the Fourier transform of the connectivity,

appearing in the saltation matrices K1 and K2, is the 2D Fourier transform

Time = 5400 ms

Figure 5.13.: Membrane potential v in mV on a two-dimensional domain of

size 0.38× 0.38 cm2 with periodic boundary conditions, shown

at a fixed time point. Simulations were performed on a grid

with 1024× 1024 spatial points. Parameters are as in Table 4.
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Figure 5.14.: Membrane potential v in mV at the point of a −1 instability of

the synchronous periodic orbit on a two-dimensional domain

of size 0.16× 0.27 cm2 (rotated for illustrative purposes) with

periodic boundary conditions. Simulations were performed on

a grid with 512× 886 spatial points. Parameter values are as

in Table 4, but with gsyn = 188.4 mVmS/cm2. Perturbation has

wavenumber k = 49.

(5.35). For the connectivity function (5.9), the 2D Fourier transform is given

by (5.36).

Utilising the linear stability theory in 2D, we may find the points of insta-

bility to the spatially synchronous periodic orbit, and the emergent patterns

that result. Conducting numerical simulations when an eigenvalue crosses

the unit disc along the real axis at −1, we observe a period-doubling-type

pattern, shown in Figure 5.14, at the point of instability, much like what is

seen in 1D in Figure 5.8. However, unlike in 1D, the planar pattern is tran-

sient before undergoing a secondary instability to highly complex spatio-

temporal patterning of a similar qualitative nature as shown in Figure 5.13.
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Time = 11400 ms Time = 13000 ms Time = 14600 ms

Figure 5.15.: Membrane potential v in mV on a two-dimensional domain of

size 0.16× 0.27 cm2 with periodic boundary condition for three

different time points. The white hexagon connects the same six

spots of large membrane depolarisation, illustrating a moving

hexagonal pattern. Simulations were performed on a grid with

512× 886 spatial points. Parameter values are as in Table 4, but

with α = 0.19 and gT = 20.3 mVmS/cm2.

More structured and regular travelling wave solutions are supported in

2D, as shown in Figure 5.15. These emerge from the perturbation of the syn-

chronous temporally-periodic network state, with parameters poised just

beyond a +1 instability. The emergent standing pattern quickly destabilises,

much like in 1D. However, unlike in 1D, travelling hexagonal waves form.

They travel across the domain as illustrated by the vertical translation of the

white hexagon, tracking the same six spots of large membrane depolarisa-

tion through time. As the pattern travels, it oscillates. This behaviour is akin

to the travelling wave periodic patterns discussed in Chapter 3, and thus is

amenable to the continuation analysis detailed there. We have also seen

such patterns emerge from a hexagonally patterned initial condition. These

patterns do not arise via a Turing mechanism from a spatially homogeneous
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steady state, but instead via the PIR mechanism elucidated throughout this

chapter.

All 2D simulations were carried out in Python using an explicit Runge-

Kutta (RK) 2-3 scheme (“RK23”) [23] via the scipy.integrate.solve_ivp

package of ODE solvers. For the parameters used, the values for the rel-

ative tolerance and absolute tolerance of the solver were 10−6 and 10−10

respectively.
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5.7 parameter continuation

As we have seen in the previous sections of this chapter, a blend of linear

theory and direct numerical simulation offers a powerful predictive capabil-

ity in understanding patterning in the model. However, the linear stability

is predictive only about spatial synchrony. The stability of patterns such as

lurching waves, two-cycles, and travelling, oscillating hexagons is, as of yet,

unknown. One of the reasons we were able to carry out an analysis of syn-

chrony is due to its simple spatial nature as a dynamic solution – synchrony

is governed by ODEs, as shown in (5.16). Here, we carry out a continuation

of the ODE solution representing synchrony, and illustrate the similarities

and differences with spatially extended synchrony, before using the tools de-

veloped in Chapter 3 in the continuation of the more complicated patterns

mentioned above.

5.7.1 Synchrony

Figure 5.16 shows a periodic orbit continuation carried out for the solution

shown in Figure 5.4 to the non-smooth ODE system (5.16). This is done by

wrapping the seven conditions (5.21) characterising a periodic orbit inside a

PALC routine and continuing the seven unknowns while varying a param-

eter. The fully non-smooth periodic orbit is then reconstructed using the

newly found switching times and initial conditions for the new parameter

set. The period T of the orbit is plotted against the bifurcation parameter α.

The upper branch is stable until it turns around at a fold point at α ≈ 0.27

where an eigenvalue leaves the unit disc at +1. This is shown by the black

circle (•). The lower branch is unstable; solutions here occupy a “smaller”

portion of phase space than on the stable upper branch, with the unstable

orbit partitioning phase space into two basins of attraction for the stable

steady state z = (vh, 0, 0, 0) and the stable periodic orbit.
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Figure 5.16.: Continuation of the periodic solution shown in Figure 5.4 to

the non-smooth ODE system (5.16). The temporal period T

is plotted against the bifurcation parameter α. The blue and

red curves represent stable and unstable periodic orbits, re-

spectively. The black dot represents a fold of cycles bifurcation,

where an eigenvalue passes through +1. Parameters (with the

exception of α) are as in Table 4.

In essence, Figure 5.16 shows that the period of the stable periodic orbit

decreases as the speed of synaptic transmission increases. This is to be

expected for quicker synaptic signalling, represented by increasing α.

The synchronous solution to the spatially extended system (5.15) yields

the same existence curve as Figure 5.16 upon continuation in (α, T)-space,

but with different stability properties. This is to be expected – stability

of the ODE system is akin to tracking the eigenvalues in Figure 5.5, as a

bifurcation parameter is varied, at k = 0 only. The spatially extended system

has stability properties determined by the entire range of k ∈ R.
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5.7.2 Spatially Heterogeneous 2-cycle

The patterns mentioned in the introduction to this section that arise via bi-

furcations – be they primary bifurcations, or secondary bifurcations in the

case of the travelling, oscillating hexagons – have a highly non-trivial spa-

tial structure, and as a consequence, difficulties arise when attempting any

analysis of the type in Sections 5.3 and 5.4.

Therefore, we utilise the numerical bifurcation approach developed in

Chapter 3 for periodic orbit-type solutions. These methods are flexible in

the sense that they are indifferent to the spatial heterogeneity in a solution.

The only requirement is that the equations governing the model under con-

sideration and any solutions of interest be “sufficiently smooth”. So far, we

have considered a PWL, discontinuous model which has allowed for the ex-

plicit analysis carried out on periodic synchrony. Now however, we consider

the case where all Heaviside functions are replaced with steep sigmoidal

functions. This affects f , h∞, τh, and IT in the model (5.15).

The sigmoidal function takes the form

S(u; κ, µ) =
1

1 + exp(−µ(u− κ))
, µ > 0, κ ∈ R, (5.40)

where κ and µ are parameters determining the sigmoidal shift and steep-

ness, respectively. As µ→ ∞, S(u; κ, µ)→ H(u− κ).

A balance must be struck between a sufficiently smooth model and a

sigmoidal function that is sufficiently steep so as to effectively approximate

the non-smooth model. We use µ = 10. Although this is not as steep as

the value for µ used in Chapter 4, it is sufficient here. While this discussion

centres on approximating the non-smooth system, it is important to bear in

mind that non-smooth model is an idealisation of the non-linear sigmoidal

system which is a more accurate reflection of the underlying biology.

We find the sigmoidal model to be in good agreement with the non-

smooth model. Where a 1D 2-cycle (as shown in the top panel of Figure

5.8) is predicted at an instability of synchrony in the latter, it appears in
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Figure 5.17.: Periodic orbit continuation of the spatially heterogeneous 2-

cycle solution, T vs. α, to the smooth model (5.15). Blue (solid)

and red (dashed) lines are stable and unstable solutions respec-

tively. Parameters are as in Table 4, with τR = 3, µ = 10,

and the kernel parameter γ = 0.55. Continuation parameters:

εn = 10−4, εl = 10−4.

the former. The 2-cycle is a spatially heterogeneous, temporally periodic

solution. As such it is amenable to the PO continuation methods in Chapter

3. The results of this are shown in Figure 5.17, showing the relationship be-

tween the temporal period T and the synapse parameter α. Beginning on the

upper branch at α = 0.1, moving to the right, and following it around onto

the lower branch, we see the 2-cycle alternates between stable (blue, solid)

and unstable (red, dashed). We time-evolve patterns which are a small per-

turbation away from (a) and (b) denoted on the lower branch. Both (a) and

(b) are predicted by the numerical stability theory to be unstable. This is

confirmed via direct numerical simulation, as shown by the two panels on

the right. Solution (a) settles to the stable upper branch, with temporal pe-

riod T ' 160. Whereas the solution on the upper branch directly above (a)

is stable, this is not the case for (b): the upper branch is unstable for the

same value of α as (b). Thus, the emergent pattern upon instability of (b) is

not the corresponding pattern on the upper branch, but instead is seen to be



5.7 parameter continuation 187

Figure 5.18.: Membrane potential v, of the lurching wave solution shown

in the top panel of Figure 5.12, plotted through time over one

temporal period. The initial profile is shown in blue. The wave

is shown evolving over a period as the curve goes from light

to dark. The dark red curve shows the wave after a temporal

period. These temporal snapshots reveal the shock-like, discon-

tinuous nature of the solution in space throughout time.

an exotic, somewhat unstructured pattern which does not settle to a more

regular state. In some parts of the domain, patches of activity split up into

two, and in others, the firing symmetry in a patch is lost. The dynamics are

highly non-trivial, and we have taken a step here in understanding them.

The lurching waves in Figure 5.12 are a travelling, periodic solution which

are amenable, in theory, to the TWPO continuation methods in Chapter 3.

These exist in the smoothed model too, and are qualitatively identical to

those in the non-smooth model. They have a highly non-smooth nature

over a temporal period (after which, the profile of the wave is identical,

albeit with a spatial shift), as shown in Figure 5.18 – the vertical lines in the

solution indicate jumps where the solution is discontinuous (an example

is shown at x = 0.07 for the initial, blue profile). The Fourier methods

associated with computing shifts and derivatives are unable to function as

required and thus, at present, our numerical approach is unable to shed
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much light on instabilities of lurching waves. Possible remedies to this are

discussed in the Discussion of this thesis.
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5.8 construction of spatially periodic travelling waves

5.8.1 Synaptic Dynamics

Travelling waves have been seen in a variety of different models of cortical

and sub-cortical tissue as well as in vitro and in vivo [152]. Notable studies

of travelling waves in thalamic models can be found in [178], which consid-

ers a biophysical cell-based model, and [234], which uses geometric singular

perturbation methods to determine when waves exist in a two-layer model

of interacting TC and RE cells.

In the following, we construct spatially periodic waves (also known as

a travelling wavetrain) in one spatial dimension and determine the corre-

sponding dispersion relation, relating the wavespeed to their spatial period.

Let us denote the co-moving variable by ξ = x− ct. Recall that, from (5.8)

and (5.13) in 1D, the synaptic variable satisfies

u(x, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s) f (v(x− y, t− s)). (5.41)

Transforming the expression for u, (5.41), into the co-moving frame, by the

spatial shift x → ξ = x − ct, noting the transformation of the spatial co-

ordinate in the firing rate function, we obtain

u(x− ct, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s) f (v(x− y− c(t− s), t− s)), (5.42)

which, in terms of the travelling-wave co-ordinate, ξ, is

u(ξ, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s) f (v(ξ − y + cs, t− s)). (5.43)

Travelling wave solutions to (5.3), (5.5), (5.13) in (x, t)-space are stationary

solutions with no explicit time-dependence in (ξ, t)-space. That is, travelling

wave solutions satisfy z(ξ, t) = z(ξ). So seeking time-independent solutions

to (5.43), we obtain

u(ξ) =
∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s) f (v(ξ − y + cs)) , (5.44)
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Figure 5.19.: The spatially periodic travelling waves solution (two spatial

periods of v(ξ) (blue) and h(ξ) (red) in the left panel, while

(v, h)-phase space through space over a spatial period, with dif-

ferent colours indicating parts of the orbit between switching

events, is shown in the right panel). Over a period, [0, φ], where

φ = 0.65mm, switching events ξi, i = 1, . . . , 4 occur when v(ξ)

crosses the switching manifolds v = vµ, µ ∈ {vth, vh} in a topo-

logically equivalent manner to Figure 5.4. The dotted black

lines represent the switching manifolds at vh and vth, respec-

tively. Parameter values are as in Table 4.

and using the form of f given by (5.7), (5.44) becomes

u(ξ) =
1

τR

∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)H (v(ξ − y + cs)− vth) . (5.45)

For ξ ∈ [0, φ], where φ denotes the spatial period of the travelling wave in

the co-moving frame, v(ξ) exhibits an orbit that is topologically identical to

the one shown in Figure 5.4, but with the corresponding switching events

occurring in the travelling wave co-ordinate rather than in time. A plot of

(v(ξ), h(ξ)) is shown in the left panel of Figure 5.19 with corresponding

phase space shown in the right panel. Hence, we can map the switching

times Ti to switching events at ξi, i = 1, . . . , 4, in the co-moving frame, where

ξ4 = φ is the full spatial period, with v(0) = vh.

Explicitly, we construct the travelling wavetrain with the switching condi-

tions v(ξ1) = vth, v(ξ2) = vth, v(ξ3) = vh, and v(φ) = vh, and the periodicity
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Figure 5.20.: An illustration depicting the spatially periodic travelling waves

in the co-moving frame, with the regions providing synaptic

input, ξ1 + mφ < ξ < ξ2 + mφ, m ∈ Z, shaded in blue.

conditions v(φ) = v(0) and h(φ) = h(0). With this set-up, the Heaviside

function in (5.45) only contributes if

ξ1 + mφ ≤ ξ − y + cs ≤ ξ2 + mφ, m ∈ Z. (5.46)

as shown in Figure 5.20. This reduces (5.45) to

u(ξ) =
1

τR

∫ ∞

0
dsη(s) ∑

m∈Z

∫ ξ−ξ1+cs−mφ

ξ−ξ2+cs−mφ
dyw(y) , (5.47)

which, with the substitution y′ = y− ξ − cs + mφ (and subsequently remov-

ing the prime notation) can be rewritten as

u(ξ) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)W(−mφ + cs + ξ), (5.48)

where

W(x) =
∫ ξ2

ξ1

dyw(x− y). (5.49)

It is now natural to express the ξ-periodic function u(ξ) as a Fourier series,

which we obtain as

u(ξ) = ∑
p∈Z

upe2πipξ/φ, up =
1

τRφ
η̂

(
−2πcp

φ

)
Ŵ
(

2πp
φ

)
. (5.50)

See Appendix C.3 for a derivation of this result. Here, η̂(k) and Ŵ(k) denote

the Fourier transforms of η(t) and W(x), respectively. For η and w given by

(2.21) and (5.9), the aforementioned Fourier transforms are given by

η̂(k) =
(

α

α + ik

)2

, (5.51)
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and
Ŵ(k) = w0[b(k, σ, 0)− γ

2
(b(k, σ, ρ) + b(k, σ,−ρ))],

b(k; σ, ρ) =
2σi(e−ikξ2 − e−ikξ1)

k(1 + (ρ− kσ)2)
,

(5.52)

with the result for Ŵ(k) shown in Appendix C.1. This fully specifies the

solution u(ξ) in the computationally convenient form of a Fourier series. It

now remains to construct the φ-periodic solutions v(ξ) and h(ξ).

5.8.2 Rebound Dynamics

Due to the presence of exposed Heaviside functions in the model, the dy-

namics switch discontinuously when v = vh. Over a single spatial period,

this occurs at ξ = ξ3 and ξ = φ.

Transforming (5.5) into the co-moving frame, we obtain

(
−c

∂h
∂ξ

+
∂h
∂t

)
=

−h/τ−h , v > vh,

(1− h)/τ+
h , v < vh.

(5.53)

Seeking time-independent solutions, that is setting ∂h/∂t = 0, to find an

equation governing the travelling wave z(ξ), we obtain

−c
dh
dξ

=

−h/τ−h , 0+ ≤ ξ ≤ ξ−3 ,

(1− h)/τ+
h , ξ+3 ≤ ξ ≤ φ−,

(5.54)

which is an uncoupled piecewise linear equation. The notation ξ±i is de-

fined by ξ±i = limε↘0 ξi ± ε, i ∈ {3, 4}, and denotes space either side of a

switching event. With the condition for h(ξ) that sets the spatial origin given

as h(0) = h0, and the continuity condition h(ξ−3 ) = h(ξ+3 ), this can be solved

using integrating factors, which is equivalent to using the Green’s functions

G±h (ξ) = eξ/(cτ±h ), for c < 0 to obtain

h(ξ) =

h0G−h (ξ), 0+ ≤ ξ ≤ ξ−3 ,(
h0G−h (ξ3)− 1

)
G+h (ξ − ξ3) + 1, ξ+3 ≤ ξ ≤ φ−.

(5.55)
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The sign of the wave-speed c < 0 ensures that solutions are bounded. This

is a consequence of our choice of co-moving frame variable as the space-like

ξ = x − ct rather than, say, the time-like ξ = t− x/c, for which c > 0. A

constraint that will determine h0 is the periodicity condition, h(φ) = h0.

5.8.3 Voltage Dynamics

Transforming (5.3) to the co-moving frame, we obtain4

C
(
−c

∂v
∂ξ

+
∂v
∂t

)
= −gL(v− vL)− gThH(v− vh)− gsynu. (5.56)

Seeking travelling wave solutions, obtained by setting ∂z/∂t = 0 in the

co-moving frame, the piecewise equation for v(ξ) is given by

−Cc
dv
dξ

=

−gL(v− vL)− gTh− gsynu, 0+ ≤ ξ ≤ ξ−3 ,

−gL(v− vL)− gsynu, ξ+3 ≤ ξ ≤ φ−,
(5.57)

These are first-order linear differential equations in v(ξ), where h(ξ) and

u(ξ) are treated purely as functions of ξ. Thus (5.57) can be solved via the

Green’s function Gv(ξ) = egLξ/(Cc), to obtain

v(ξ) =



Gv(ξ)vh +
∫ ξ

0
Gv(ξ − ξ ′)

(
− gLvL

Cc
+

gT

Cc
h(ξ ′) +

gsyn

Cc
u(ξ ′)

)
dξ ′,

0+ ≤ ξ ≤ ξ−3 ,

Gv(ξ − ξ3)vh +
∫ ξ

ξ3

Gv(ξ − ξ ′)

×
(
−gLvL

Cc
+

gsyn

Cc
u(ξ ′)

)
dξ ′,

ξ+3 ≤ ξ ≤ φ−.

(5.58)

We have used the initial condition v(0) = vh, and the switching condition

v(ξ+3 ) = vh. It is important to note that v(ξ+3 ) = vh has been used in this

construction, so the switching event v(ξ3) = vh is more accurately written

as v(ξ−3 ) = vh to clamp v at vh at ξ = ξ−3 .

4 Observe the notational similarity between the capacitance parameter C, and the wave

speed c, which is explicitly pointed out to avoid confusion.
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5.8.4 The Dispersion Relation

Analogously to Section 5.3 where we had to determine the switching times

Ti and the initial state z0 to construct the synchronous solution, the spatially

periodic wave constructed here according to (5.50), (5.55), (5.58), is param-

eterised by the switching coordinates ξi, i = 1, 2, 3, the period φ, the initial

value h0 and the wave speed c. The six unknowns, and the five switching

and periodicity conditions

v(ξ1) = vth, (5.59a)

v(ξ2) = vth, (5.59b)

v(ξ−3 ) = vh, (5.59c)

v(φ) = vh, (5.59d)

h(φ) = h0, (5.59e)

define a dispersion relation c = c(φ) between the wave speed c and the

spatial period φ of the travelling wave.

Figure 5.21 shows the resultant dispersion curve c = c(φ) for three differ-

ent values of α. We note that c < 0 in these plots which is consistent with

the choice of co-moving frame variable used here, as mentioned above. The-

oretical predictions c = c(φ) are shown by the three lines. As we decrease

α going from the red to the black to the blue line, the emergent wave speed

decreases for all φ. This is consistent with the interpretation of α as the

reciprocal of the synaptic time scale – decreasing α increases the time until

peak synaptic response, which in turn results in synaptic activity spreading

more slowly. The speeds found here are consistent with those found by

Rinzel et al. [178], being on the order of mms−1. The spatial profile and

phase space corresponding to φ = 0.65mm for α = 0.1 ms−1 are shown in

Figure 5.19. With the origin of a spatial period at v(0) = vh, the spatially pe-

riodic trajectory follows the same qualitative trajectory (shown in the right

panel) as that followed by the trajectory describing spatial synchrony. In

the final phase over a period (purple line), h saturate to 1, while the volt-
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Figure 5.21.: Dispersion curves c = c(φ) for periodic travelling waves for

three different values of α: 0.07 ms−1 (blue), 0.1 ms−1 (black)

and 0.2 ms−1 (red). Solid lines indicate linearly stable travel-

ling waves, while dashed lines correspond to linearly unstable

travelling waves. Dots indicate simulation results, with colour

corresponding to the relevant parameter set as defined above.

The asterisk represents the emergent wave speed and period

of an initially unstable wave with initial period φ = 1.32mm.

Parameter values other than α are as in Table 4.

age variable v decreases to a minimum before recovering and completing a

spatial period. The behaviour described here, and shown in the right panel,

should not be confused with a discontinuous reset event. The correspond-

ing behaviour can be seen in the left panel where v < vh. The sharp turn in

the purple line in phase space occurs as v recovers from inhibition while h

is already essentially saturated to 1.

In Figure 5.21, the dots represent the emergent wave speed and spatial

period from numerical simulations, where initial conditions are a perturba-

tion away from the dispersion curve. These simulation results agree very

well with the theoretical predictions. We indicate linear stability of the pe-

riodic travelling waves in Figure 5.21 as follows. Linearly stable travelling
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Figure 5.22.: Top: Space-time plot of the v component in mV of the travel-

ling wave corresponding to the asterisk in Figure 5.21.

Bottom: A spectrogram showing the magnitudes of the wave-

lengths (reciprocal of spatial frequency) that compose the solu-

tion shown in the top panel at each point in time.

waves are denoted by solid lines, while dashed lines refer to linearly un-

stable travelling waves. This linear wave stability is computed in Section

5.9.

When initiating a numerical simulation with an unstable pattern, the

emergent travelling wave is selected from the possible periods in the stable

region of Figure 5.21. As an example, the asterisks represents the emer-

gent wave from a simulation initiated with a spatial period of φ = 1.32mm,

which is linearly unstable. The emergent wave can clearly be seen to sit on

the dispersion curve with a spatial period of φ = 0.66mm. The correspond-

ing space-time plot of the periodic travelling wave denoted by the asterisks

is depicted in the top panel of Figure 5.22. In this case, the unstable wave

immediately breaks up, with the transient behaviour settling to a wave of

spatial period φemergent = φinitial/2. The spectrogram in the lower panel

shows the magnitudes of the wavelengths (reciprocal of the spatial frequen-
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cies) that compose the solution shown in the upper panel, through time.

The dominant wavelength at t = 0 is 1.32mm (as expected since this is the

initially unstable solution). The dominant wavelength almost immediately

settles to 0.66mm. Faint lines are seen at other wavelengths, for example

at 1.32mm and around 0.5mm. These are a consequence of the solution

not being purely sinusoidal, and indicate some non-trivial spatial structure.

The first of these indicates that wavelengths of 1.32mm are present in the

solution over two periods. The second may be characteristic of the generic

bump width, shown in the upper panel as the hazy yellow/green colour

in the vicinity of the yellow bands representing peaks. The spectrogram is

computed by using a discrete Fourier transform at each point in time to ob-

tain the spatial frequencies that make up the solution. The reciprocal of this

is then taken to obtain the spatial wavelength, which is the quantity plotted.

5.9 stability of spatially periodic travelling waves

5.9.1 Synaptic Dynamics

In the previous section, periodic travelling waves were constructed, and the

resultant dispersion curve was plotted in Figure 5.21, upon which, stabil-

ity was indicated. Those results are based on the following linear stability

analysis. Much like in Chapter 4, to analytically compute wave stability,

we follow the Evans function approach outlined in Section 2.9. Perturbing

about the spatially periodic travelling wave z(ξ), in the co-moving frame as

z(ξ, t) = z(ξ) + δz(ξ, t), (5.60)

the aim is to find evolution equations for the travelling wave part of the per-

turbations, and obtain the eigenvalues of the stability problem. Here, this

entails constructing an appropriate 4× 4 linear system in the perturbations
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at the four switching events over one spatial period, and demanding that

the perturbations at said switching events be non-trivial.

We begin by considering perturbations to the synaptic dynamics, u(ξ).

Substituting the perturbation ansatz (5.60) into the equation for u in the

co-moving frame (5.43), we obtain

δu(ξ, t) =
∫ ∞

−∞
dyw(y)

∫ ∞

0
dsη(s)

× f ′(v(ξ − y + cs))δv(ξ − y + cs, t− s). (5.61)

Making the substitution y′ = ξ − y + cs, we obtain (upon removing prime

notation)

δu(ξ, t) =
∫ ∞

−∞
dyw(ξ − y + cs)

∫ ∞

0
dsη(s) f ′(v(y))δv(y, t− s). (5.62)

where f ′(v(x)) = δ(v(x) − vth)/τR underneath the spatial integral. Then

based on the points where a trajectory crosses vth (see (5.46) and Figure 5.20

for where this occurs) we have the formal “composition with a function”

delta function identity that

δ(v(y)− vth) = ∑
m∈Z

2

∑
j=1

δ(y−mφ− ξ j)

|v′(mφ + ξ j)|
, m ∈ Z. (5.63)

Utilising (5.63), (5.62) becomes

δu(ξ, t) =
1

τR

∫ ∞

−∞
dyw(ξ − y + cs)

∫ ∞

0
dsη(s)

× ∑
m∈Z

2

∑
j=1

δ(y−mφ− ξ j)

|v′(ξ j)|
δv(y, t− s), (5.64)

after using that z′(ξ) is φ-periodic – more explicitly, that v′(mφ + ξ) = v′(ξ)

for all ξ ∈ R, and all m ∈ Z. Collapsing the integral over y by using the

delta function in (5.64), we obtain

δu(ξ, t) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)

×
2

∑
j=1

w(ξ − ξ j −mφ + cs)
δv(mφ + ξ j, t− s)

|v′(ξ j)|
. (5.65)
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Let us assume spatio-temporally separable perturbations, that is perturba-

tions of the form

δz(ξ, t) = eλtδz(ξ).

This results in

δu(ξ; λ) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)e−λs

×
2

∑
j=1

w(ξ − ξ j −mφ + cs)
δv(mφ + ξ j)

|v′(ξ j)|
. (5.66)

A final assumption we make is that the perturbations are spatially periodic,

that is δz(mφ + ξ) = δz(ξ) for all ξ. This reduces (5.66) to

δu(ξ; λ) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)e−λs

2

∑
j=1

w(ξ − ξ j −mφ + cs)
δv(ξ j)

|v′(ξ j)|
. (5.67)

As we did for synaptic activity u(ξ) in Section 5.8, we express δu(ξ) as a

Fourier series, which is computationally useful in constructing the Evans

function. The calculation is in the same spirit as that shown in Appendix

C.3, but we show it here completely. Rewriting w(ξ− ξ j−mφ+ cs) in terms

of its Fourier transform as

w(ξ − ξ j −mφ + cs) =
1

2π

∫ ∞

−∞
dkŵ(k)eik(ξ−ξ j−mφ+cs),

then (5.67) reduces to

δu(ξ) =
1

τR

∫ ∞

0
dsη(s)e−s(λ−ick)

2

∑
j=1

∫ ∞

−∞
dkŵ(k)eik(ξ−ξ j)

×
(

1
2π ∑

m∈Z

e−ikmφ

)
δv(ξ j)

|v′(ξ j)|
. (5.68)

The integral over s is in the form of a Laplace transform,

η̃(λ) =
∫ ∞

0
η(s)e−λsds.

Utilising this, and the Dirac comb property,

φ ∑
m∈Z

e±ikmφ = 2π ∑
p∈Z

δ
(

k− 2πp
φ

)
,
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we arrive at

δu(ξ) =
1

τRφ ∑
p∈Z

η̃

(
λ− 2πipc

φ

)

×
2

∑
j=1

∫ ∞

−∞
dkŵ(k)eik(ξ−ξ j)δ

(
k− 2πp

φ

)
δv(ξ j)

|v′(ξ j)|
. (5.69)

Collapsing the integral over k via the delta function in (5.69) yields the

Fourier series representation of δu(ξ) as

δu(ξ) = ∑
p∈Z

δupe2πipξ/φ, δup =
1

τRφ
ŵ
(

2πp
φ

) 2

∑
j=1

Ij, (5.70)

where

Ij =
δv(ξ j)

|v′(ξ j)|
η̃

(
λ− 2πipc

φ

)
e−2πiξ j/φ. (5.71)

Over a period φ, δu(ξ) is continuous: there are no discontinuities in the

perturbations at ξi, i = 1, 2, as was the case at the analogous switching

times for spatial synchrony. This is a result of the solution being “spatially-

dependent” in the co-moving frame: the argument of f ′ appearing in (5.61)

depends on the spatial integration variable y. An important consequence

of this is that the delta functions that appear in the stability calculation are

inside the convolution integral; recall that at the analogous point in the anal-

ysis for synchrony (5.24), the f ′ term had no spatial dependence, leading

to exposed delta functions underneath the implicit integral supplied by the

time-derivative on the left-hand side. This led to perturbations with jumps.

Since δu(ξ) is continuous over a period, saltation operators are not re-

quired at ξi, i = 1, 2 (as will be shown in the next sub-section, δv(ξ) and

δh(ξ) do not exhibit switches in the dynamics at ξi, i = 1, 2 either).
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5.9.2 Voltage and Rebound Dynamics

The evolution equations for δh(ξ, t) and δv(ξ, t) can be obtained by sub-

stituting the perturbation ansatz (5.60) into (5.53) and (5.56) to obtain the

evolution equations for small perturbations as

(
−c

∂

∂ξ
δh(ξ, t) +

∂

∂t
δh(ξ, t)

)
=

−δh(ξ, t)/τ−h , v > vh,

−δh(ξ, t)/τ+
h , v < vh,

(5.72)

and

C
(
−c

∂

∂ξ
δv(ξ, t) +

∂

∂t
δv(ξ, t)

)
=−gLδv(ξ, t)− gTδh(ξ, t)− gsynδu(ξ, t), v > vh,

−gLδv(ξ, t)− gsynδu(ξ, t), v < vh.
(5.73)

Assuming separable perturbations, δz(ξ, t) = eλtδz(ξ), since all terms are

local, the exponential time-dependence is common to all terms, therefore

c
d

dξ
δh(ξ) =


(

λ + 1
τ−h

)
δh(ξ), 0+ ≤ ξ ≤ ξ−3 ,(

λ + 1
τ+

h

)
δh(ξ), ξ+3 ≤ ξ ≤ φ−,

(5.74)

and

Cc
∂

∂ξ
δv(ξ) =


(gL + Cλ)δv(ξ) + gTδh(ξ)

+ gsynδu(ξ),
0+ ≤ ξ ≤ ξ−3 ,

(gL + Cλ)δv(ξ) + gsynδu(ξ), ξ+3 ≤ ξ ≤ φ−.

(5.75)

(5.74) and (5.75) are linear equations in their respective perturbations and

so are readily solved using the Greens functions G±h (ξ) = e(1/τ±h +λ)ξ/c and

Gv(ξ) = e(gL+Cλ)ξ/Cc for c < 0 to obtain

δh(ξ) =

δh(0+)G−h (ξ), 0+ ≤ ξ ≤ ξ−3 ,

δh(ξ+3 )G
+
h (ξ − ξ3), ξ+3 ≤ ξ ≤ φ−,

(5.76)
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and

δv(ξ) =



δv(0+)Gv(ξ) +
∫ ∞

0
Gv(ξ − ξ ′)

×
( gT

Cc
δh(ξ ′) +

gsyn

Cc
δu(ξ ′)

)
dξ ′,

0+ ≤ ξ ≤ ξ−3 ,

δv(ξ+3 )Gv(ξ − ξ3) +
∫ ξ

ξ3

Gv(ξ − ξ ′)

×
gsyn

Cc
δu(ξ ′)dξ ′,

ξ+3 ≤ ξ ≤ φ−.

(5.77)

These solutions for the spatial part (in the travelling wave frame) of the

perturbations depend on the variables evaluated at ξ = 0+ and ξ = ξ+3 .

This is a consequence of the non-smooth dynamics that arises when v(ξ)

and h(ξ) cross the switching manifold vh at ξ = 0, and ξ = ξ3.

5.9.3 A Reduced Saltation Approach

In order to propagate the perturbations through the switching manifolds,

we require saltation matrices as in Section 5.4. However, a key difference

in the stability of spatially periodic waves is the continuity by δu(ξ) over a

spatial period. Recall that when studying the stability of the spatially syn-

chronous periodic orbit, all state variables were discontinuous (for at least

one switching time) over a temporal period which necessitated the use of

the full 4 × 4 saltation matrices. Here however, we may consider reduced

2× 2 saltation matrices such that δzr(ξ
+
i ) = Kiδzr(ξ

−
i ), i = 0, 3, where the

reduced state vector is defined as zr(ξ) = (v(ξ), h(ξ))T. This is possible

since only δv(ξ) and δh(ξ) are discontinuous over a period (and that the

switching condition depends on the value of v only) for the wavetrains un-

der consideration. By the derivation shown in Appendix C.2.2, the reduced

saltation matrices Ki are given by

Ki = I2 −
1

v′(ξ−i )

v′(ξ−i )− v′(ξ+i ) 0

h′(ξ−i )− h′(ξ+i ) 0

 , i = 0, 3 , (5.78)
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where the notation ξ0 = 0 is used, and I2 is the 2× 2 identity matrix. Defin-

ing

Sg(a) = −g′(a−)− g′(a+)
v′(a−)

, (5.79)

where g ∈ {v, h}, and a ∈ {ξ0, ξ3}, then

δh(ξ+3 ) = δh(ξ−3 ) + Sh(ξ3)δv(ξ−3 ), (5.80a)

δv(ξ+3 ) = (1 + Sv(ξ3)) δv(ξ−3 ), (5.80b)

both of which “set the space-like initial condition” for δv(ξ) and δh(ξ) in

ξ+3 ≤ ξ ≤ φ−.

Recall that the objective is to obtain a linear system in either δv(ξi) or

δh(ξi), i = 1, . . . , 4, from which we can obtain the constraint determining

the Evans function. Here, we make the choice to generate this system in

δv(ξi).

Evaluating (5.77) for ξ < ξ3, one obtains an expression for δv(ξ) con-

taining δh(0+), making any linear system in δv(ξi), i = 1, . . . , 4 an inhomo-

geneous system. To remedy this and obtain a homogeneous system, we can

rewrite δh(0+) in terms of δv(ξ) at the switching events by repeated ap-

plication of the saltation rule as follows. Periodic perturbations (enforced

earlier), yield δh(0+) = δh(0−). Thus,

δh(0+) = Sh(φ)δv(φ−) + δh(φ−) (5.81a)

= Sh(φ)δv(φ−) + G+
h (φ− ξ3)δh(ξ+3 ) (5.81b)

= Sh(φ)δv(φ−) + G+
h (φ− ξ3)

(
Sh(ξ3)δv(ξ−3 ) + δh(ξ−3 )

)
(5.81c)

= Sh(φ)δv(φ−) + Sh(ξ3)G+
h (φ− ξ3)δv(ξ−3 )

+ G+
h (φ− ξ3)G−h (ξ3)δh(0+) , (5.81d)

so that

δh(0+) =
Sh(φ)δv(φ−) + Sh(ξ3)G+

h (φ− ξ3)δv(ξ−3 )
1− G+

h (φ− ξ3)G−h (ξ3)
. (5.82)

(5.82) expresses δh(0+) in terms of δv(ξ) at ξ = ξ−3 , φ−. The pieces are now

in place to generate a linear system from which the Evans function can be

generated, and wave stability may be ascertained.
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5.9.4 The Evans Function

With (5.82), the piecewise expression for δv(ξ), (5.77), over a period only

depends on δv(ξi), i = 1, 2, 3, 4 (the piecewise expression is not given ex-

plicitly here due to the length of the constituent pieces). From this, a linear,

homogeneous system can be generated as

(Γ(λ)− I4)x = 0 (5.83)

where

Γ(λ) =


f1(ξ1; λ) f2(ξ1; λ) f3(ξ1; λ) f4(ξ1; λ)

f1(ξ2; λ) f2(ξ2; λ) f3(ξ2; λ) f4(ξ2; λ)

f1(ξ3; λ) f2(ξ3; λ) f3(ξ3; λ) f4(ξ3; λ)

g1(φ; λ) g2(φ; λ) g3(φ; λ) g4(φ; λ)

 , (5.84)

and x = (δv(ξ1), δv(ξ2), δv(ξ−3 ), δv(φ−))T. The explicit entries of Γ(λ) are

listed in Appendix C.4.

A non-trivial solution for the perturbations δv at the switching events, x,

exists if and only if det(Γ(λ)− I4) = 0. This constraint defines the Evans

function for this system as

E(λ) = det(Γ(λ)− I4) , (5.85)

which vanishes only for certain values of λ ∈ C. To find these, we let

λ = a + ib, a, b ∈ R, and compute the zero-contours of Re E(λ) and Im E(λ).

The exact zeros to E(λ) occur where the zero real and imaginary contours

intersect. These are the eigenvalues to the stability problem. When all non-

trivial eigenvalues are such that Re(λ) < 0, the wave is stable. Otherwise, it

is unstable.

Figure 5.23 shows the zero contours of the Evans function for a linearly

stable travelling wave: all eigenvalues are contained in the left-hand side of

the complex plane. Upon increasing the spatial period φ, a pair of eigenval-

ues touches the imaginary axis, as seen in Figure 5.24, indicating the onset

of an instability. This point is shown in Figure 5.21 by a transition from a
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black solid to a black dashed line at φ = 0.782mm. For larger values of φ,

a pair of complex conjugate eigenvalues with positive real parts exist, as

shown in Figure 5.25. This indicates a linearly unstable periodic travelling

wave. In this way, we are able to delineate the stability boundaries for the

dispersion curves, c = c(φ), shown in Figure 5.21.
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Figure 5.23.: Zero-contours of Re E(λ) (thick, red curve) and of Im E(λ)

(thin, blue curve) for φ = 0.74mm for a linearly stable wave.

Intersections of the zero-contours, and hence zeroes of E(λ),

are shown as yellow dots. The black dashed line separates the

two complex half planes with negative and positive real part,

respectively. Parameter values as in Table 4.
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Figure 5.24.: Zero-contours of Re E(λ) (thick, red curve) and of Im E(λ)

(thin, blue curve) for φ = 0.782mm for a wave at a linear in-

stability. Intersections of the zero-contours, and hence zeroes

of E(λ), are shown as yellow dots. The black dashed line sep-

arates the two complex half planes with negative and positive

real part, respectively. Parameter values as in Table 4.
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Figure 5.25.: Zero-contours of Re E(λ) (thick, red curve) and of Im E(λ)

(thin, blue curve) for φ = 0.824mm for a linearly unstable wave.

Intersections of the zero-contours, and hence zeroes of E(λ),

are shown as yellow dots. The black dashed line separates the

two complex half planes with negative and positive real part,

respectively. Parameter values as in Table 4.
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5.10 translation invariance of spatially periodic travel-

ling waves

A zero eigenvalue is shown in all three wave stability plots (Figures 5.23-

5.25). This trivial eigenvalue originates from the translational invariance of

the underlying equations. Its persistence can be established by showing that

z′(ξ) is an eigenfunction to the stability problem when λ = 0 [115].

For the local variables, v(ξ) and h(ξ), this is readily shown by differenti-

ating the travelling wave equations (5.57) and (5.54) with respect to ξ and

comparing with the evolution equations for the spatial parts of the pertur-

bations (5.75) and (5.74), respectively.

In the case of the synaptic variable, first differentiate (5.48) to obtain

du
dξ

=
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)

×
(

w(| −mφ + cs + ξ − ξ1|)− w(| −mφ + cs + ξ − ξ2|)
)

, (5.86)

where we have used that

W ′(x) =
d

dx

∫ ξ2

ξ1

w(x− y)dy = w(x− ξ1)− w(x− ξ2). (5.87)

Then setting λ = 0 in (5.67), we obtain

δu(ξ; 0) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)

2

∑
j=1

w(ξ − ξ j −mφ + cs)
δv(ξ j)

|v′(ξ j)|
. (5.88)

Making the substitution δz(ξ) = z′(ξ), we have

δu(ξ; 0) =
1

τR
∑

m∈Z

∫ ∞

0
dsη(s)

2

∑
j=1

w(ξ − ξ j −mφ + cs)
v′(ξ j)

|v′(ξ j)|
. (5.89)

A critical observation in the demonstration of translation invariance is that

v′(ξ1) > 0 and v′(ξ2) < 0 by construction. This is illustrated in Figure 5.26,

and yields
v′(ξ1)

|v′(ξ1)|
= 1,

v′(ξ2)

|v′(ξ2)|
= −1, (5.90)

and so (5.89) reduces to (5.86) as required.
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Figure 5.26.: An illustration showing a close-up of the travelling wave solu-

tion v(ξ) depicted in Figure 5.19 near ξ1 and ξ2. Graphically, it

is evident that v′(ξ1) > 0 and v′(ξ2) < 0.

Therefore, δz(ξ) = z′(ξ) is a solution to the stability problem for λ =

0, showing the spatial translation invariance of the system, and that the

travelling wave orbit is neutrally stable to tangential perturbations.

5.11 summary

Thalamic tissue, and indeed many other subcortical tissues, have, up until

now, not enjoyed the same modelling successes as has been seen for the

cortex, where neural fields are readily used in understanding the pattern-

ing observed. A few examples of cortical patterns are waves of activity that

propagate in the primary visual cortex of the awake monkey [153], and the

intra-cortical, rhythmic alpha oscillations fluctuating around 10Hz in hu-

man brains, recorded via electroencephalograms (EEG) [96]. The Heaviside

world perspective adopted by Amari [5], and the growth of non-smooth

dynamical systems theory fostered many of the successes of cortical mod-

elling [68, 177, 45, 50]. The domain of the standard neural field is the cortex.

Its great advantage is its succinct description of tissue connectivity. In this
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chapter, we have reviewed the approach in [44] which shows how to extend

the standard neural field framework to effectively model sub-cortical tissue.

The thalamus has been taken as a case-in-point. Non-linear ionic currents

expressed at the cellular level play a significant role in shaping the firing

response at the tissue level [55]. By augmenting the neural field description

of tissue connectivity with a minimal voltage envelope description of thala-

mic cell dynamics, we are able to generate a tissue level firing rate model

of thalamic tissue. This is done by composing the firing rate function in a

standard Amari-style neural field with some non-spiking voltage variable

which incorporates a description of gating dynamics for the relevant ionic

currents.

The augmented neural field approach is sufficiently general that it is

amenable to tissues other than the thalamus where ionic currents play an

important role in tissue-level activity – one simply includes the relevant cur-

rents and gating dynamics associated with those into the overarching volt-

age variable. In order to conduct a mathematically tractable analysis as has

been done in this chapter, adopting a switch-like perspective for the gating

variable dynamics is helpful, though we stress that the non-smoothness in-

troduced must be treated with care, using appropriate non-smooth method-

ologies [154]. Perhaps more fundamentally, it is important to ensure that

the dynamics of the switch-like system is qualitatively similar to that of the

full model if the goal is to extract meaningful information about modelled

phenomena. For example, one should check whether bifurcations occur at

similar locations in parameter space, and that the emergent pattern is qual-

itatively similar in each case. Here, we have considered a PWL description,

and shown that the Amari-style methodology for constructing solutions and

analysing their stability is valid for the augmented model.

Crucially, the thalamic model expresses the post-inhibitory rebound phe-

nomenon postulated by Andersen and Eccles (1962) [7] which is a char-

acteristic behaviour of thalamo-cortical cells. Robust, whole tissue syn-

chronous periodic oscillations (the spatially synchronous periodic orbit) are
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supported via PIR. These oscillations do not arise via a Hopf bifurcation

from a spatially homogeneous steady state as is typically the case in neu-

ral fields [33], but exist as a direct consequence of the rebound mechanism.

By blending traditional periodic orbit stability methods, in which a mon-

odromy matrix taking perturbations over a period is critical in establishing

stability [125], with techniques from non-smooth dynamical systems theory,

we have been able to determine the points of instability to the spatially syn-

chronous periodic orbit. We have shown how to construct new network-level

saltation operators, which take spatial effects into account, to determine the

linear stability of the synchronous solution in this case, but the general ap-

proach we have taken is more widely applicable. Emergent solutions at the

instability of synchrony include those with a spatially periodic component

– with a wavelength determined by the anatomical connectivity – superim-

posed atop of the bulk periodic oscillations; standing 2-cycle oscillations in

which a point in space fires on every other cycle, and the pattern on one

cycle is shifted by half a spatial cycle on the next temporal cycle; and an in-

stance of lurching waves, in which discrete clumps of activity travel across

the domain in a saltatory rather than continuous manner. Direct numeri-

cal simulation coupled with a periodic orbit continuation approach further

showed that 2-cycles may destabilise into other 2-cycles, or into irregular

patterns with disordered dynamics. In short, a number of exotic solutions

exist in this simplified model of thalamic circuitry. By considering stationary

solutions in a co-moving frame, we have shown how to construct wavetrains

in 1D and have utilised saltation operators to construct the Evans function

in determining wave stability. Direct numerical simulation shows excellent

agreement with the stable branch of the theoretically determined dispersion

curve.

The work in this chapter has probed the understanding of patterning from

a few different perspectives: an analytical study has been supplemented

by direct numerical simulation and a numerical bifurcation analysis. We

have shown that the PIR mechanism is able to generate exotic patterning.
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Although we have taken a step towards understanding the rich dynam-

ics in neural field models with rebound currents, there is clearly more to

do, for example in understanding the secondary bifurcations that lead to

travelling, oscillating hexagons on the plane, and the routes to exotic pat-

tern generation. Natural steps forward include a more thorough analysis

of planar patterning, as has been done in this chapter for 1D patterns, as

well as a continuation of lurching waves, and an analytical construction of

lurching waves, since these are a hallmark of systems with IT [178]. It is

also worth pursuing what mechanisms are necessary for lurching waves to

form. Here, we have used IT, but other rebound currents exist, such as the

hyperpolarisation-activated current (Ih) which have also been show to give

rise to exotic patterns [25] in networks of cells. Are lurching waves a by-

product of IT specifically, and appropriate tissue connectivity, or is there a

more fundamental pattern generator – that may incorporate rebound cur-

rents other than IT, for example – at play?

We have considered a closed-loop one-layer model of TC cells, but a more

refined, two-layer model of thalamic tissue, and the connectivity between

TC and RE cells, as illustrated in Figure 2.14, was studied by Yew et al.

(2001) [234]. The switch-like perspective adopted throughout this chapter is

well-suited to the study of the two-layer model and would facilitate a similar

analysis as has been carried out here, albeit with the extra book-keeping that

would come with a two-layer model.

A PWL description is a closer approximation to the fully non-linear sig-

moidal description of gating variables and firing rate functions. Indeed, by

adopting a PWL approach, it is possible to accommodate window currents

that arise when multiple gating variables co-operate in the generation of

persistent background currents. Notice that, in the model (5.15) considered

in this chapter, the switching manifold vh is such that when IT is activated,

h is decreasing; a PWL approach allows activation and inactivation curves

to overlap, thus generating window currents without detriment to mathe-



5.11 summary 213

matical tractability. This more generic mixing of gating dynamics may lead

to novel dynamics.



6
D I S C U S S I O N

Models of single neuron dynamics have done much to aid in the under-

standing of neural dynamics. Mechanisms behind action potential genera-

tion have been determined by modelling and validified experimentally [100].

The work in this thesis has studied the dynamics that arise in networks of

connected neurons. A continuum study has been carried out which has

allowed for the use of many continuum dynamical systems techniques for

analysis.

To conclude this thesis, we recapitulate the work that has been carried

out and the novel findings, before moving on to a discussion of future work

that branches off what has been done here.

6.1 thesis recapitulation

A range of topics have been considered in this thesis, but principally, the

aim has been to effectively model patterning – and the mechanisms behind

patterning – in multiple structures within the brain, and to develop new

techniques for the analysis of the resulting models.

A review of the relevant neuronal biology and the main analytical tech-

niques used in the bulk of the thesis was given in Chapter 2. The biophysi-

cal mechanisms underlying information transmission at a chemical synapse

were described, and the development of synaptic models effectively captur-

ing this was reviewed. These are critical in modelling tissue interactions;

214
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the α-function provides a good description of post-synaptic response and

is used in our study of thalamic tissue. The non-canonical PIR mechanism

that underlies burst firing plays an important role in generating activity in

thalamic tissue. It is an effective mechanism for rhythmogenesis [44, 234] as

has been seen in the study of periodic activity in Chapter 5.

Chapter 3 developed numerical techniques for the continuation and sta-

bility of spatially extended periodic structures in sufficiently smooth mod-

els. Beginning with a description of linear stability in continuous and

discrete dynamical systems, we describe how standard continuation algo-

rithms work before reviewing the existing literature for the continuation of

equilibria and travelling wave structures. The bulk of this chapter then fo-

cuses on using, developing, and testing the methodologies in [216] for the

continuation of temporally periodic structures and travelling temporally pe-

riodic structures in neural field models. An important novel contribution

resulting from this chapter is the development of a continuation software

suite incorporating all of the above, which is not restricted to neural-type

models.

The focus then shifts away from the development of techniques, and

moves towards modelling in Chapter 4. Neural fields have been shown

to be effective in modelling cortical activity; we consider an alteration to

the standard neural field which incorporates a dynamically varying thresh-

old. Beginning with a linear stability analysis of the spatially homogeneous

steady state, we demonstrated that steady and Hopf bifurcations were not

present in the model, but that Turing and Turing-Hopf bifurcations were

present in the case that the firing rate function and the threshold accommo-

dation functions were both sigmoidal (rather than Heaviside functions). A

spatially more complex bump solution was then considered, and an Evans

function approach was utilised to determine bump stability. Pulses and

breathers were found at the instability of symmetric bumps, while sloshers

emerged from asymmetric bumps. The final part of the chapter focuses on

the novel continuation of temporally periodic structures such as standing
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waves, saltatory travelling periodic waves, and travelling breathers using

the techniques developed in Chapter 3.

Chapter 5 focuses on modelling in a sub-cortical structure: the thalamus.

The model is a neural field describing tissue connectivity augmented to a

voltage description of thalamic tissue. The first half of this chapter con-

siders spatial synchrony and the construction of the spatially synchronous

periodic orbit and its stability using saltation techniques to correctly charac-

terise jumps in the solution due to vector field discontinuities in the model.

Lurching waves appear to be a hallmark feature of thalamic models; we

demonstrated that a mechanism for their generation is through a Neimark-

Sacker instability of the synchronous periodic orbit. Studies on the plane

show a rich variety of patterns that may form. We investigated this via a

blend of numerical simulation and the 2D linear stability theory developed

for spatial synchrony. Standing and periodic patterns emerging from the

instability of synchrony were investigated through continuation. This was a

natural approach to gain insight into spatially non-trivial patterns. The sec-

ond half of the chapter focuses on spatially periodic travelling waves. The

dispersion relation between the wave-speed and the spatial period was de-

termined analytically, with excellent agreement between theory and direct

simulation. The attention then turned to using saltation methods coupled

with an Evans function approach to determine linear stability of the wave-

train solution. On the whole, this chapter developed predictive theories

which successfully characterised multiple solutions to a model of thalamic

tissue. The approach used is sufficiently general for the framework to be

applied in models of other sub-cortical tissues too.

6.2 future work

This work opens up a number of fruitful paths forward in the analysis of

brain dynamics from mathematical perspectives, some of which have been
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outlined in the summary sections of each chapter. Here, we briefly recap

these and discuss other pieces of work which can branch off from this thesis.

Much of the analysis in this work has relied on PWL caricatures of smooth

models. Where smooth sigmoidal functions (5.40) have been present, these

have been approximated by a discontinuous Heaviside function. This makes

analysis much more straightforward, but comes at the cost of introducing

Type 2 discontinuities into the model (see Table 1). Instead of a Heaviside

function, a more refined PWL caricature can be considered. Whereas the

Heaviside function approximates a sigmoidal function into two (discontinu-

ous) linear pieces, the natural next step it to partition the sigmoid into three

pieces. This is shown in Figure 6.1, with the sigmoidal function shown in

black, the Heaviside in blue, and the PWL function shown in dashed orange.

The refined PWL curve, fPWL,3(u),1 is constructed by matching the slope of

the central piece to the sigmoid at u = κ. This gives

fPWL,3(u) =


0, u ≤ u−,
1
2
+

µ

4
(u− κ), u− < u < u+,

1, u ≥ u+.

, u± = κ ± 2
µ

. (6.1)

It is evident from Figure 6.1 that while the Heaviside function provides a

good first order approximation to the sigmoidal function, there are a large

portion of values for u ∈ (−1, 1) which are not accurately captured. The

refined PWL function does a much better job at capturing the changes in the

sigmoid and reduces the type of discontinuities from Type 2 to Type 1. Its

PWL nature ensures that models using it are amenable to analysis, although

it does require tracking non-smooth effects at the two distinct points, u =

u±, rather than the Heaviside function, which only requires event tracking

at the single point u = κ. This framework can be applied not only to firing

rate functions, but to the activation curves and time-scale functions of gating

1 The subscript 3 indicates that the PWL caricature has three linear pieces. Under this

notation, fPWL,2(u) = H(u− κ), and fPWL,1(u) = 1/2.
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Figure 6.1.: The sigmoid function (5.40) in black, plotted along with two of

its PWL caricatures. The two piece caricature, H(u − κ), is in

blue, while the refined three piece caricature, given by (6.1), is

in dashed orange. Here, µ = 1, and κ = 0.

variables, such as h∞(v) and τh(v) in (5.5). In the Heaviside framework,

gating dynamics are switch-like, with no overlap between activation and

inactivation curves; with this refined PWL approach, the opportunity for

window currents [131] arises, along with the opportunity for the analysis of

any novel dynamics that are sensitive to the existence of window currents.

Of course, the PWL caricature can be refined further, however there is no

practical benefit in doing so, unless solutions exist in the fully sigmoidal

limit which are not captured by fPWL,3. With further refinement comes

more book-keeping during analysis. An appropriate PWL caricature should

reflect the original model in its dynamics.

In Chapter 4, the stability of a stationary bump was determined in a neu-

ral field with a dynamic firing threshold with smoothed threshold dynamics.

The original model considered in [50] is given by (4.1). The offending term

with regards to bump stability is the exposed Heaviside function H(u− θ)

in the threshold dynamics.
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To see why, consider linearising about a bump solution given by q(x)

and p(x) with appropriate switching conditions to determine the unknowns

parameterising the bump. Note that these may differ from those found in

Section 4.4. Suppose for simplicity that the switching conditions are as

shown in Figure 4.1 so that q(x) = p(x), for x = xi, i = 1, 3, 4, 6, and

q(x) = θ for x = xi, i = 2, 5. Then upon linearising the dynamics for u and

h about the bump via z(x, t) = z(x) + δz(x)eλt to determine bump stability,

we obtain

δu(x) =
6

∑
i=1,i 6=2,5

g(x, xi; λ)(δu(xi)− δh(xi)), (6.2)

where

g(x, a; λ) = η̃(λ)
w(x− a)

|q′(a)− p′(a)| . (6.3)

and

δh(x) = κη̃h(λ)δ(q(x)− θ)δu(x, t), (6.4)

where η̃h = 1/(1 + λ). The problem here is that δh(x) = 0 for all x away

from the accommodation threshold, θ. This includes at x = xi, i = 1, 3, 4, 6.

So there is no contribution to (6.2) from δh. Moreover, at x = xi, i = 2, 5,

δh(x) takes the functional form of a non-zero delta function, and is there-

fore undefined. It does not sit underneath an integral (even an implicit one),

therefore a direct stability approach using saltation operators is unsuccess-

ful here. Clearly, there is a contribution from δh, as shown in [50], and it

depends on δh(xi), i = 2, 5, however the saltation techniques used fail in

this case. In a sense, the system is too non-smooth for the saltation approach

to cope with. In the discussion of types of discontinuities in dynamical

systems in Chapter 2, δh(x) above does not fit into the Type 0, 1, 2, or 3

discontinuities shown in Table 1. It is very likely that using a PWL cari-

cature such as (6.1) to approximate the firing rate and/or accommodation

functions will deal with this issue effectively, since (6.1) effectively reduces

the order of non-smoothness present (see Table 1). The issue detailed above

arises from the discontinuous nature of the Heaviside function in the evolu-

tion equation for h. We postulate here that by replacing the discontinuous
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Heaviside with a continuous, albeit non-smooth function such as (6.1), we

expect the saltation approach to be fruitful.

It is of interest to develop the saltation approach to be able to cope with

situations like this. Of course, the situation can be resolved by smoothing

the threshold dynamics, as shown in Section 4.5. This is successful because

it yields an integral over the exposed delta function in the linearisation.

However a direct stability result for such non-smooth systems would de-

velop new analytical techniques in the analysis of non-smooth dynamical

systems.

In 2005, Hafting et al. [88] discovered grid cells in the medial entorhinal

cortex (MEC) which act to serve as a spatial map in the brain. They showed

that grid cells in the dMEC tend to fire at the nodes of a hexagonal lattice.

That is, given a single grid cell neuron, if a mammal is to move around in

real space, then that single neuron will fire at the nodes of a hexagonal lat-

tice tiling real space. They demonstrated this with experiments measuring

firing of single grid cell neurons in rats that were able to traverse a confined

space for a sufficiently long time such that the rat crossed multiple places in

real space, multiple times. In this way, grid cell firing fields were generated

(as in Figure 1 in [88]).

Since this discovery, a number of different models have been suggested

as a mechanism for how grid cell activity can emerge. The work by Bonilla-

Quintana et al. (2017) [25] is a mathematical study of grid cell firing fields

modelled by a spiking network of IF neurons. Hyperpolarisation-activated

cyclic-nucleotide-gated (HCN) channels are expressed in cells in the medial

enthorinal cortex (MEC). These ion channels give rise to the Ih rebound

current when cells are stimulated by hyperpolarising input. The dynamics

of Ih and IT can be contrasted as follows. While inactivation of IT may be

modulated, Ih is a non-inactivated current that activates as levels of hyper-

polarisation increase [63]. Specifically, Ih = −ghnh(V −Vh), where

∂nh

∂t
=

nh,∞(V)− nh

τh(V)
, nh = nh(r, t), r ∈ R2, t > 0, (6.5)
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Figure 6.2.: Head direction preference maps on the lattice (left) and the con-

tinuum (right). The lattice tiling is as used by Burak and Fi-

ete [30], and consists of repeating 2× 2 nodes with preferences

aligned to the four compass points (N, E, S, W) as illustrated

on this 23 × 23 sized lattice. The continuum tiling is doubly pe-

riodic with colour representing the preferred angle, θ, at that

point in space. The relative density of angles for this HDPM is

shown in the semi-transparent histogram in the inset.

which may be contrasted with the form of IT, given by (5.4). The work in

[25] determines a dispersion relation between the speed of periodic waves

and the spatial period, exhibiting a wide range of long wavelength solu-

tions. This is in contrast to the dispersion curve studied in Chapter 5 for the

thalamic model shown in Figure 5.21 (showing a relatively small range of

wavelengths for stable waves), and supports the hypothesis that Ih rebound

firing modulates the spatial scale of grid cell firing fields in the MEC.

Another main idea are the so-called “continuous attractor” models, as

studied in [30]. In these models, “grid cell activity arises from the collective

behaviour of a neural network”. The idea is that the network state in the ab-

sence of any velocity-dependent drive is steady, whether that be a patterned

state (e.g. hexagonal patterning) or a homogeneous state. Upon a response

to the velocity of a rat/mammal, the network state is updated accordingly.
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A first-order model of grid-cell activity can be constructed by considering

a Hopfield network with shifted connectivity and a head-direction prefer-

ence map (HDPM). The HDPM endows neurons or tissue with a preferred

direction such that movement in a particular direction in space induces a

larger integrated input from the neurons endowed with a similar head di-

rection [30]. There is currently no experimentally determined HDPM much

like there is an orientation preference map in the visual cortex [226]. As

such, in a modelling study, there is freedom in how the HDPM is chosen.

Burak and Fiete (2009) [30] demonstrated that such a model posed on a

lattice driven by the velocity of an agent (e.g., a rat) can drive hexagonal

patterns across domains with both periodic and zero-flux boundary condi-

tions. Their HDPM consisted of a 2× 2 repeated tiling of the domain with

a preferred angle φ ∈ {0, π/2, π, 3π/2}, corresponding to the four compass

points, as shown in the left-hand panel of Figure 6.2. A predictive theory

can be developed, indicating which direction(s) are poised to go unstable

upon the inclusion of velocity-dependent drive as follows.

Let us re-introduce the Hopfield-style model posed on a finite continuum

r = (x, y) ∈ R2 considered in Chapter 3 (3.17), as2

τ
∂

∂t
s(r, t) = −s(r, t) + f

(∫∫
Ω2

p

w(r, r′)s(r′, t)dr′ + B(r)

)
, (6.6)

where the domain is the finite periodic plane (torus) given by Ω2
p = [−L, L)2;

the subscript p indicates periodic boundary conditions. The connectivity w

includes a shift εg, so that

w(r, r′) = w(r− r′ − εg(r′)), (6.7)

where g represents the HDPM, and is specified by

g(r) = (cos φ(r), sin φ(r))T, (6.8)

where φ(r) indicates the preferred angle at position r. On the torus, we

use a HDPM which is doubly periodic; such maps may be generated by the

2 In this discussion, vectors are denoted in bold for clarity.
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Weierstrass elliptic function [132]. An example is shown in the right-hand

panel of Figure 6.2. The parameter ε � 1 is small. A first order expansion

of w in ε yields

w(r− r′ − εg(r′)) = w(r− r′)− ε∇w(r− r′) · g(r′) +O(ε2). (6.9)

Finding the steady state s(r, t) = s(r), and expressing it as a perturbation ex-

pansion in ε as s(r) = s0 + εs1(r) +O(ε2) gives the conditions determining

s0 and s1(r) at O(1) and O(ε) respectively as

0 = −s0 + f (s0ŵ0 + B), (6.10a){
−1 + f ′(s0ŵ0 + B)w©∗

}
s1 = f ′(s0ŵ0 + B)s0

×
∫∫

Ω2
p

∇w(r− r′) · g(r′)dr′. (6.10b)

This specifies the steady state with ε � 1 up to O(ε). The symbol ©∗

denotes a spatial convolution on the finite domain Ω2
p as

(w©∗ s)(r, t) =
∫ L

−L

∫ L

−L
w(r− r′)s(r′, t)dr′. (6.11)

To determine the linear stability of the steady state, perturb about it so

that s(r, t) = s(r) + eλtu(r), resulting in

(τλ + 1)u(r) =

f ′
( ∫∫

Ω2
p

(w(r− r′)− ε∇w(r− r′) · g(r′))(s0 + εs1(r′))dr′ + B

)

×
(

w©∗ u− ε
∫∫

Ω2
p

∇w(r− r′) · g(r′)u(r′)dr′
)

. (6.12)

Upon the perturbation expansion u(r) = u0(r) + εu1(r) +O(ε2) and λ =

λ0 + ελ1 +O(ε2), we obtain the conditions

L u0 = 0, (6.13)

L u1 = −τλ1u0 + χ(u0), (6.14)

where the operator L defined by

L u = (τλ0 + 1)u− f ′(s0ŵ(0) + B)(w©∗ u), (6.15)
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is self-adjoint,3 and

χ(u0) = − f ′(s0ŵ(0) + B)
∫∫

Ω2
p

∇w(r− r′) · g(r′)u0(r′)dr′

+ f ′′(s0ŵ(0) + B)

(
w©∗ s1 − s0

∫∫
Ω2

p

∇w(r− r′) · g(r′)dr′
)

× (w©∗ u0). (6.16)

(6.13) determines λ0, with the corresponding solution u0(r) = exp
(
ikj · r

)
,

where kj are the wavevectors that fit inside the finite periodic domain. To

determine λ1, we introduce the solvability condition

〈u0, L u1〉 = 0, (6.17)

which arises via the properties that L is self-adjoint and L u0 = 0. The

inner product is defined on the torus as

〈u, v〉 =
∫ L

−L

∫ L

−L
u∗(r)v(r)dr, (6.18)

where u∗(r) is the complex conjugate of u(r). Then λ1 = 〈u0, χ(u0)〉/τ. The

pattern s(r) destabilises when Re(λ0 + ελ1) = 0. This condition determines

the wavevector(s) k that become unstable. In the case where ε = 0, a ring

of wavenumbers determined by kc = |k| simultaneously become unstable,

however, only a subset of these become unstable when bias is present in the

connectivity function. In the case where there is an equal distribution of m

angles φ in the HDPM, then m wavevectors are selected to become unstable.

An unequal distribution of angles where one angle dominates, such as that

shown in the right-hand panel of Figure 6.2 causes a single wavevector to

be selected.

Extending the capability of the continuation suite is a way of bringing

modern analytical methods into the domain of mathematical neuroscience.

The lurching waves seen at the Neimark-Sacker instability of the synchronous

3 An operator L is self-adjoint if it satisfies 〈L u, v〉 = 〈u, L v〉 for an appropriately defined

inner product 〈·, ·〉.
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periodic orbit in the model of thalamic tissue we studied in Chapter 5 fall

into the category of TWPO patterns. Figure 5.18 shows their structure

through time. It is clear that there are discontinuous jumps at various points

across space, throughout time. This ruins convergence to a true solution

when the shift and derivative operators are implemented using a Fourier

approach. Implementing a method to carry out the shift and derivative

operations in an efficient manner, whilst also catering for solutions with

shocks is a route forward to enable the continuation suite to be used for a

larger class of solutions.

Tango waves are a relatively newly discovered dynamical phenomena,

having first been observed in a diffusive bidomain model of Ca2+ interac-

tions in both the cell cytoplasm and endoplasmic reticulum (ER) by Li [134]

in 2005. The ER is considered to be an intra-cellular store of Ca2+. The

bidomain model develops upon single domain models (which only con-

sider Ca2+ concentration in the cell cytoplasm as dynamic), where the ER

Ca2+ concentration is not assumed to be finite or dynamic. The interactions

between Ca2+ in the cytoplasm and the ER gives rise to tango waves in the

bidomain model. They were named as such by Li due to their characteristic

backwards-and-forwards propagation (reminiscent of tango dancers), and

were analysed further by Thul et al. [210]. Examples are shown in Figure

4 of [134], and Figures 14 and 15 of [210]. The study by Li (2005) showed

that “the occurrence of tango waves is related to spatial inhomogeneity in the local

dynamics.” Notice that the sloshing solutions to (4.4) with non-trivial spa-

tial inhomogeneity shown in Figure 4.18 have the characteristic “sharpness”

associated with tango waves, although the sloshers are a localised pattern.

It is not inconceivable for tango waves to appear in neural field models.

A dynamic neural field model with inhomogeneous spatio-temporal input,

such as that studied in [231], has the ingredients described above by Li.

When considering whether tango waves may be amenable to a continuation

analysis, we must determine the appropriate repeating unit. Those tango

waves in the right-hand pane of Figure 14 in [210] are not simply amenable
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to the TWPO continuation described in Chapter 3, since that assumes that

activity within each period is identical, up to a spatial shift. These tango

waves appear to have a form of activity which repeats subject to some ex-

ponentially increasing scale in time. Developing the continuation suite to

analyse highly non-trivial patterns such as these is a fascinating way for-

ward that is certainly worthy of consideration.

In addition to increasing the class of solutions amenable to spatially-

extended continuation, [216] includes methods to track fold-of-cycles, period-

doubling-type and Neimark-Sacker-type bifurcations. Such techniques will

allow a systematic study of patterning by considering how parameter space

is partitioned, with different emergent spatial patterns on either side of a

two parameter bifurcation curve.

Figure 6.3.: The human connectome, showing the structural connectivity of

the anatomical fibres (myelinated axons) in the brain. Each of

the RGB colours correspond to fibres traversing the brain in the

three different spatial dimensions respectively. This image (orig-

inal author Andreas Horn) is from Wikimedia Commons and is

licensed under the Creative Commons Attribution-ShareAlike

4.0 International License.

https://commons.wikimedia.org/wiki/File:The_Human_Connectome.png
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
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Furthermore, a natural extension to this modelling study is to consider

“more realistic” domains. In this work, we have mostly considered peri-

odic boundary conditions – for fast simulations via the use of fast Fourier

transform (FFT) algorithms – or the infinite plane. In both cases, these as-

sumptions simplify analysis. Although domains have been large enough so

that boundary effects are nullified, for global patterning this is not the case,

and indeed, global patterns depend on the boundary conditions to some ex-

tent. A modelling study on a realistic brain mesh, using connectome data,

such as that shown in Figure 6.3, is likely to provide more realistic insights,

although this comes at the cost of requiring an almost exclusively computa-

tional study. Moreover, novel computational techniques would be required

to simulate a neural field on a brain mesh with folded surfaces and axonal

delays efficiently [167].



A
A P P E N D I C E S : B A C K G R O U N D

a.1 green’s functions for synaptic responses

Here, we show explicitly that the exponential decay function given by

η(t) = αe−αtH(t),

is the Green’s function of the first-order linear differential operator

Q =

(
1 +

1
α

d
dt

)
.

We begin with consideration of the equation defining a Green’s function,

Qu = δ, where δ(·) is a Dirac delta function, with the differential operator

given as above. We aim to show that the Green’s function is given by the

exponential decay function.

With this set-up, about t = 0 we have(
1 +

1
α

d
dt

)
η(t) = δ(t), (A.1)

which, upon rearranging terms, may be written as

dη

dt
+ αη(t) = αδ(t). (A.2)

This first-order linear differential equation may be solved using the integrat-

ing factor exp(αt). Taking this step-by-step, we first obtain

d
dt
(
η(t)eαt) = αeαtδ(t). (A.3)

228
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Integrating this over a small region t ∈ (−ε, ε), ε� 1, yields

η(ε)eαε − η(−ε)e−αε = α. (A.4)

By causality, η(−ε) = 0, therefore η(ε) = αe−αε. This effectively sets the

initial condition just after t = 0 when an impulse is received.

For t > 0, δ(t) = 0, therefore the differential equation reduces to

dη

dt
+ αη(t) = 0. (A.5)

Solving this in t > 0 (integrating over t′ ∈ (ε, t)), yields

η(t) = (α + A)e−αt, (A.6)

for some integration constant A to be determined by the initial condition,

η(ε) = αe−αε. Applying this, the constant A = 0, yielding the Green’s

function as

η(t) = αe−αt, t > 0, (A.7)

and η(t) = 0 for t < 0 due to causality.

A similar calculation shows that the α-function

η(t) = α2te−αtH(t), (A.8)

is the Green’s function of the second-order differential operator

Q =

(
1 +

1
α

d
dt

)2

. (A.9)

Here two initial conditions are required: one setting the value η(ε) and one

setting the slope η′(ε).

a.2 deriving firing rates in integrate-and-fire models

a.2.1 Linear Integrate-and-Fire Model

A linear IF model takes the form

τm
dv
dt

= −v(t) + u(t), (A.10)
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with the firing and reset conditions at firing times t f u(t f−) = vth and

u(t f+) = vreset. Now suppose that u(t) = U is constant, then

τm
dv
dt

= −v(t) + U. (A.11)

For the initial condition, we choose the start of a period so that v(t1) = vreset.

Now integrating up from v(t1) = vreset, we obtain∫ v

vreset

1
−v′ + U

dv′ =
∫ t

t1

1
τm

dt′ (A.12)

Integrating this and rearranging for v(t), we obtain

v(t) = U − (U − vreset)e−(t−t1)/τm . (A.13)

If vth > U, no spike occurs, since in the absence of a firing event, v(t)→ U

as t → ∞. However, if vth < U, spikes occur with a regular inter-spike

interval. If we let t2 denote the first time after t1 at which u(t) = vth, then

the inter-spike interval is given by T = t2 − t1. The threshold condition

u(t2) = vth states

U − (U − vreset)e−(t2−t1)/τm = vth. (A.14)

Solving (A.14) for T, we obtain

T = τm log
(

U − vreset

U − vth

)
. (A.15)

The total firing period, ∆ with the inclusion of an absolute refractory period,

∆abs, is ∆ = T +∆abs. The mean firing rate is the reciprocal of the total firing

period (R = 1/∆), resulting in a firing rate R of

R(U) =

(
∆abs + τm log

(
U − vreset

U − vth

))−1

H(U − vth), (A.16)

for the IF model with constant input u(t) = U. In the case where u(t) varies

slowly, (A.16) remains a good approximation to the firing rate.
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a.2.2 Quadratic Integrate-and-Fire Model

A QIF model with synaptic input u(t) takes the form

dv
dt

= v2 + I + u(t), (A.17)

with the firing and reset conditions as above. If u(t) = U is constant, then

dv
dt

= −v2 + I + U. (A.18)

Integrating up from the initial condition v(t1) = vreset, we obtain∫ v

vreset

1
−v′2 + I + U

dv′ = t− t1 (A.19)

Integrating this, we obtain

tan−1
(

v(t)√
I + U

)
− tan−1

(
vreset√
I + U

)
=
√

I + U(t− t1). (A.20)

Applying the condition that the first firing event after t1 occurs at time t2,

v(t2) = vth, we obtain an expression for the inter-spike period, T = t2 − t1

as

T =
1√

I + U

(
tan−1

(
vth√
I + U

)
− tan−1

(
vreset√
I + U

))
(A.21)

As vth → ∞ and vreset → −∞,

T =
π√

I + U
, (A.22)

where we have used the asymptotic property tan−1(ξ)→ ±π/2 as ξ → ±∞.

The firing rate, R is the reciprocal of the inter-spike period, T, therefore

R =
1
T
=

√
I + U
π

H(I + U), (A.23)

for the QIF model with constant synaptic input.



B
A P P E N D I C E S : N E U R A L F I E L D S W I T H D Y N A M I C

F I R I N G T H R E S H O L D S

b.1 first derivative of solutions

We require knowledge of q′(x) and p′(x) when determining stability. Given

that the synaptic part of q(x) is given by the sum of three integrals with

identical integrands but with different limits (4.31a), consider the generic

integral

J(x) =
∫ b

a
w(x− y)dy. (B.1)

Then

J′(x) =
d

dx

∫ b

a
w(x− y)dy, (B.2a)

=
∫ b

a

∂

∂x
w(x− y)dy, (B.2b)

=
∫ b

a
w′(x− y)dy, (B.2c)

=
[
− w(x− y)

]b

y=a
, (B.2d)

= −w(x− b) + w(x− a). (B.2e)

Therefore,

q′(x) = w(x− x1)− w(x− x2) + w(x− x4)− w(x− x5)

+ w(x− x7)− w(x− x8) + I′(x).
(B.3)

For an asymmetric spatial drive I(x) of the type given by (4.64), I′(x) is

not defined at x = 0, but q′(x) is only required at the crossing events x =

232
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xi, i = 1, . . . , 8, which are never at x = 0, and so this is a robust expression

for q′(x).

Similarly, given that p(x) is given by (4.31b), we have that

p′(x) = κ
d

dx

∫ x6

x3

wh(x− y)dy, (B.4a)

= κ
[
− wh(x− y)

]x6

y=x3
, (B.4b)

= κ
{

wh(x− x3)− wh(x− x6)
}

. (B.4c)



C
A P P E N D I C E S : T H A L A M I C N E U R A L F I E L D S W I T H

R E B O U N D C U R R E N T S

c.1 fourier transforms of connectivity functions

In carrying out the linear stability of the spatially synchronous periodic

orbit in Section 5.4, it was shown that non-local effects enter into the mon-

odromy matrix via the Fourier transform of the connectivity function. Here,

we determine these integral transforms for the connectivity function (5.9) we

use in 1D (Section C.1.1) and 2D (Section C.1.3), and the Fourier transform

of the integral of the 1D kernel (Section C.1.2) required in the computation

of spatially periodic travelling waves in Section 5.8.

c.1.1 1D Kernel

Let w0 be chosen to normalise the kernel (5.9) in 1D

w(x) = w0e−|x|/σ
(

1− γ cos
(ρx

σ

))
, x ∈ R, (C.1)

234
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to 1, that is the kernel normalisation w = 1. Here, σ, γ, and ρ are parameters.

To normalise,

w =
∫ ∞

−∞
w(x)dx, (C.2a)

= 2w0

∫ ∞

0
e−x/σ (1− γ cos(ρx/σ))dx, (C.2b)

= 2w0σ

(
ρ2 + 1− γ

ρ2 + 1

)
, (C.2c)

where we have used the property that the integrand is even, and have then

rewritten cos(ρx/σ) in terms of exponentials (or using a symbolic integra-

tion package such as Maple) to evaluate the resulting integral. So for the

kernel to be normalised to 1 in 1D, we require that

w0 =
ρ2 + 1

2σ(ρ2 + 1− γ)
. (C.3)

Let us now calculate the Fourier transform of w(x) in 1D. This is given by

ŵ(k) =
∫ ∞

−∞
w(x)eikxdx (C.4a)

= w0

∫ ∞

−∞
e−|x|/σ (1− γ cos(ρx/σ)) e−ikxdx, (C.4b)

= w0

∫ ∞

−∞
e−|x|/σ

(
1− γ

2

(
eiρx/σ + e−iρx/σ

))
e−ikxdx, (C.4c)

= w0

(
a(k; σ, 0)− γ

2
(a(k, σ, ρ) + a(k, σ,−ρ))

)
, (C.4d)

where

a(k; σ, ρ) =
∫ ∞

−∞
e−|x|/σeiρx/σe−ikxdx. (C.5)

Partitioning the integration domain, we can determine a(k; σ, ρ) as follows

a(k; σ, ρ) =
∫ 0

−∞
ex/σeiρx/σe−ikxdx +

∫ ∞

0
e−x/σeiρx/σe−ikxdx, (C.6a)

=

[
ex/σeiρx/σe−ikx

1/σ + iρ/σ− ik

]0

x=−∞

+

[
e−x/σeiρx/σe−ikx

−1/σ + iρ/σ− ik

]∞

x=0

, (C.6b)

=
1

1/σ + iρ/σ− ik
− 1
−1/σ + iρ/σ− ik

, (C.6c)

= − 2
σ

(
1

−1/σ2 − (ρ/σ− k)2

)
, (C.6d)

=
2σ

1 + (ρ− kσ)2 . (C.6e)
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In summary, the Fourier transform of w(x) is

ŵ(k) = w0

(
a(k; σ, 0)− γ

2
(a(k, σ, ρ) + a(k, σ,−ρ))

)
,

a(k; σ, ρ) =
2σ

1 + (ρ− kσ)2 ,
(C.7)

and that ŵ(0) = w as expected.

c.1.2 Integral of 1D Kernel

In constructing spatially periodic travelling waves in Section 5.8, and ex-

pressing u(ξ) as a Fourier series, we are required to evaluate the Fourier

transform of W(x) =
∫ ξ2

ξ1

w(x− y)dy. To do this, express it as

W(x) =
∫ −ξ1

−ξ2

w(y + x)dy, (C.8)

where w(x) is given by (C.1). Then

Ŵ(k) =
∫ ∞

−∞
W(x)e−ikxdx, (C.9)

=
∫ ∞

x=−∞

∫ −ξ1

y=−ξ2

w(y + x)e−ikxdydx, (C.10)

= w0

∫ ∞

−∞

∫ −ξ1

−ξ2

e−|y+x|/σ (1− γ cos(ρ(y + x)/σ)) e−ikxdydx. (C.11)

Since ξ1 and ξ2 are constants, the integral domain is a rectangle with infinite

length and finite height. Therefore, the order of integration can be swapped

and the cos function written in terms of exponentials to obtain

Ŵ(k) = w0

(
b(k; σ, 0)− γ

2
(b(k; σ, ρ) + b(k; σ,−ρ))

)
, (C.12)

where the function

b(k; σ, ρ) =
∫ −ξ1

y=−ξ2

∫ ∞

x=−∞
e−|y+x|/σeiρ(y+x)/σe−ikxdxdy. (C.13)

The absolute value function is defined by

|y + x| =

y + x, x > −y,

−(y + x), x < −y,
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so

b(k; σ, ρ) =
∫ −ξ1

−ξ2

I1(y) + I2(y)dy, (C.14)

where

I1(y) =
∫ −y

−∞
e(y+x)/σeiρ(y+x)/σe−ikxdx, (C.15a)

=
σeiky

1 + i(ρ− kσ)
, (C.15b)

and

I2(y) =
∫ ∞

−y
e−(y+x)/σeiρ(y+x)/σe−ikxdx, (C.16a)

=
σeiky

1− i(ρ− kσ)
. (C.16b)

Then

b(k; σ, ρ) =
2σ

1 + (ρ− kσ)2

∫ −ξ1

−ξ2

eikydy, (C.17a)

=
2σi
(
e−ikξ2 − e−ikξ1

)
k (1 + (ρ− kσ)2)

. (C.17b)

In summary, the Fourier transform of W(x) is

Ŵ(k) = w0

(
b(k; σ, 0)− γ

2
(b(k; σ, ρ) + b(k; σ,−ρ))

)
,

b(k; σ, ρ) =
2σi
(
e−ikξ2 − e−ikξ1

)
k (1 + (ρ− kσ)2)

.
(C.18)

c.1.3 2D Kernel

Let w0 be chosen to normalise the kernel (5.9) to 1 in 2D, that is w = 1. In

polar co-ordinates (r, θ), the radially symmetric kernel is given by

w(r) = w0e−r/σ
(

1− γ cos
(ρr

σ

))
, r > 0, (C.19)

as in (5.9).
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The kernel normalisation is given by

w =
∫

R2
w(|r′|)dr′ =

∫ 2π

0

∫ ∞

0
w(r)rdθr, (C.20a)

= w0

∫ 2π

0

∫ ∞

0
e−r/σ(1− γ cos(ρr/σ))rdθdr, (C.20b)

= 2πw0

∫ ∞

0
re−r/σ(1− γ cos(ρr/σ))dr, (C.20c)

= 2πw0σ2
(

ρ4 + (γ + 2)ρ2 − γ + 1
ρ4 + 2ρ2 + 1

)
, (C.20d)

where the final step can be calculated by rewriting cos(ρr/σ) in terms of

exponentials, or by using a symbolic integration package such as Maple.

Therefore, for the kernel to be normalised to 1 in 2D, we require that

w0 =
ρ4 + 2ρ2 + 1

2πσ2 (ρ4 + (γ + 2)ρ2 − γ + 1)
. (C.21)

In 2D, the transformation to polar co-ordinates is given by dr = rdθdr,

and k · r = kr cos θ, where |k| = k and |r| = r. Then the 2D Fourier trans-

form is given by

ŵ(k) =
∫

R2
dre−ik·rw(|r|), (C.22a)

= w0

∫ 2π

θ=0

∫ ∞

r=0
re−ikr cos θe−r/σ(1− γ cos(ρr/σ))drdθ, (C.22b)

= w0

∫ 2π

θ=0

∫ ∞

r=0
re−ikr cos θe−r/σ

(
1− γ

2
(eiρr/σ + e−iρr/σ)

)
drdθ, (C.22c)

= w0

(
g(k; σ, 0)− γ

2
(g(k, σ, ρ) + g(k, σ,−ρ))

)
, (C.22d)

where

g(k; σ, ρ) =
∫ 2π

0

∫ ∞

0
re−
(

1−iρ
σ +ik cos θ

)
rdrdθ. (C.23)
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Let a =
1− iρ

σ
. Then

g(k; σ, ρ) =
∫ 2π

θ=0

∫ ∞

r=0
re−
(

a+ik cos θ
)

rdrdθ

∣∣∣∣∣
a= 1−iρ

σ

, (C.24a)

= − ∂

∂a

∫ 2π

θ=0

∫ ∞

r=0
e−(a+ik cos θ)rdrdθ

∣∣∣∣∣
a= 1−iρ

σ

, (C.24b)

= − ∂

∂a

∫ 2π

0

[
−1

a + ik cos θ
e−(a+ik cos θ)r

]∞

r=0

dθ

∣∣∣∣∣
a= 1−iρ

σ

, (C.24c)

= − ∂

∂a

∫ 2π

0

1
a + ik cos θ

dθ

∣∣∣∣∣
a= 1−iρ

σ

. (C.24d)

The contour integral

Ia =
∫ 2π

0

1
a + ik cos(θ)

dθ, (C.25)

appearing in the expression for g(k; σ, ρ) must be evaluated. To do so, we

utilise the transformation z = eiθ, dz = izdθ, cos(θ) = (z + z−1)/2. Then

Ia =
∮

γ

1
a + ik

2 (z + z−1)

1
iz

dz, (C.26)

where γ is the contour around the unit disc. Then

Ia = −
2
k

∮
γ

F(z; a)dz, (C.27)

for the integrand defined here as

F(z; a) =
1

z2 − 2aiz
k + 1

=
1

(z− z+)(z− z−)
, (C.28)

where the poles of F(z) are

z± = i
(

a/k±
√

1 + a2/k2
)

. (C.29)

For the choice a = (1− iρ)/σ, σ > 0, we have Re(a) > 0 since σ, k > 0.

Therefore only z− lies inside the contour,1 so by the Residue theorem, only

z− yields a non-zero contribution to the contour integral, therefore

Ia = −
(

2
k

)
2πi Res(F, z−), (C.30)

1 Note that z+z− = 1, therefore |z+| = 1/|z−|, so if z− is inside the unit disc, z+ is outside

it, and vice versa. With σ, k > 0, z− is inside the contour γ.
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where Res(F, z−) is the residue of F(z) at z = z−, defined as

Res(F, z−) =
1

z− − z+
=

1
−2i
√

1 + a2/k2
. (C.31)

Hence, we obtain an expression for Ia as

Ia =
2π√

k2 + a2
. (C.32)

Returning to the expression for g(k; σ, ρ),

g(k; σ, ρ) = − ∂

∂a

∫ 2π

0

1
a + ik cos(θ)

dθ

∣∣∣∣∣
a= 1−iρ

σ

, (C.33a)

=
∂

∂a

( 2π

k2 + a2

)∣∣∣∣∣
a= 1−iρ

σ

, (C.33b)

= 2π
a

(k2 + a2)3/2

∣∣∣∣∣
a= 1−iρ

σ

, (C.33c)

and so, we obtain

g(k, σ, ρ) =
2π

σ

1− iρ
(k2 + 1

σ2 (1− iρ)2)3/2
. (C.34)

In summary, the 2D Fourier transform for the radially symmetric connec-

tivity given by w(r) is

ŵ(k) = w0

(
g(k; σ, 0)− γ

2
(g(k; σ, ρ) + g(k; σ,−ρ))

)
,

g(k, σ, ρ) =
2π

σ

1− iρ
(k2 + 1

σ2 (1− iρ)2)3/2
,

(C.35)

where k = |k|.

c.2 derivation of saltation matrices

c.2.1 The Spatially Local Saltation Matrix

Saltation matrices allow for the proper treatment of discontinuous dynamics

at switches in non-smooth systems. Here, we derive the saltation matrices



C.2 derivation of saltation matrices 241

used for mapping perturbations to the synchronous solution across switch-

ing manifolds in Section 5.4. A similar derivation is seen in the Appendix

of [159]. There are switches in the dynamics of the model (5.15) as the

membrane potential variable v passes through vh and vth. Let us introduce

the indicator function γ(z(t)) = v(t) − µ, µ ∈ {vh, vth} to track switch-

ing events in time. The unperturbed trajectory, z(t) = (v(t), u(t), r(t), h(t)),

is the synchronous periodic orbit. Now consider a perturbed trajectory,

z̃(t) = z(t) + δz(t) where the perturbation is only in time, since the pertur-

bations are separable into temporal and spatial parts, and the spatial parts

are common to all terms in all equations for the perturbations. The dynam-

ical system satisfied by z(t) is

dz
dt

= F(z), (C.36)

where F is PWL. Linearising about the solution z(t) yields an evolution

equation for the perturbations, δz(t), given by

d
dt

δz(t) = DF(z(t))δz(t), δz(0) = δz0, (C.37)

where DF is a PWC matrix (since F is PWL).

Consider a situation as in Figure C.1 where the vector field F and/or

the solution z discontinuously changes at a switching time t = T. More

precisely, F = F1(z) for t < T and F = F2(z) for t > T, and the function g

maps solutions across the switching event as z(T+) = g(z(T−)). We want to

obtain a relationship between the perturbations before, δz−, and after, δz+,

a switching event. The following derivation closely follows [154].
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Figure C.1.: Saltation diagrams showing the unperturbed trajectory z(t) in

blue, and the perturbed trajectory z̃(t) in red. (left) discontinu-

ity in the vector field and in the solution. (right) discontinuity

only in the vector field with continuous solutions.

The unperturbed and perturbed trajectories reach the switching manifold

at times T and T̃ respectively, so γ(z(T)) = 0 and γ(z̃(T̃)) = 0. By Taylor

expanding γ(z̃(T̃)), we obtain

γ(z̃(T̃)) = γ(z̃(T− + δT)) (C.38a)

' γ(z̃(T−) + ˙̃z(T−)δT) (C.38b)

= γ(z(T−) + δz(T−) + F1(z̃(T−))δT) (C.38c)

= γ(z(T−) + δz− + F1(z(T−))δT) (C.38d)

' γ(z(T−)) +∇zγ(z(T)) ·
(

δz− + F1(z(T−))δT
)

(C.38e)

Then since γ(z(T)) = 0 and γ(z̃(T̃)) = 0, we obtain

∇zγ(z(T)) ·
(

δz− + F1(z(T−))δT
)
= 0, (C.39)

and so

δT = − ∇zγ(z(T−)) · δz−
∇zγ(z(T−)) · F1(z(T−))

. (C.40)

On each switching manifold, the indicator function is either γ(z) = v− vh,

or γ(z) = v− vth. In either case, ∇γγ(z) = (1, 0, 0, 0), so (C.39) reduces to

δT = −δv(T−)
v̇(T−)

. (C.41)
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In constructing the saltation matrix, we must relate perturbations before to

those after a switching event; that is, we must relate δz− to δz+. Considering

the transition at t = T̃ in the perturbed trajectory, we obtain

z̃(T̃+) = g(z̃(T̃−)), (C.42a)

= g(z̃(T− + δT)), (C.42b)

' g(z̃(T−) + ˙̃z(T−)δT), (C.42c)

= g(z(T−) + δz− + F1(z̃(T−))δT), (C.42d)

' g(z(T−) + δz− + F1(z(T−))δT), (C.42e)

' g(z(T−)) + Dg(z(T−))
{

δz− + F1(z(T−))δT
}

, (C.42f)

where, F1(z̃(T−))δT ' F1(z(T−))δT since δT is a small quantity. For the

unperturbed trajectory, we obtain

z(T̃+) = z(T+ + δT), (C.43a)

= z(T+) + ż(T+)δT, (C.43b)

= g(z(T−)) + F2(z(T+))δT. (C.43c)

Then the perturbation δz+ is given by

δz+ = z̃(T̃+)− z(T̃+), (C.44a)

= Dg(z(T−))
{

δz− + F1(z(T−))δT
}
− F2(z(T+))δT, (C.44b)

= Dg(z(T−))δz− +
{

Dg(z(T−))F1(z(T−))− F2(z(T+))
}

δT. (C.44c)

Finally, substituting in for δT (C.40), we obtain

δz+ = K(T)δz−, (C.45)

where

K(T) = Dg(z(T−))

−

{
Dg(z(T−))F1(z(T−))− F2(z(T+))

}
∇zγ(z(T−))T

∇zγ(z(T−)) · F1(z(T−))
. (C.46)

For the problem in Section 5.4, solutions are continuous at switching events,

so g(z) = z for z = (v, u, r, h), which gives Dg = I4 where I4 is the 4× 4
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identity matrix. Switching events occur when v passes through either of

vth or vh. In either case, γ(z(t)) = v(t)− µ, µ ∈ {vh, vth}, so ∇zγ(z(t)) =

(1, 0, 0, 0)T for all t. Then the form that the local saltation matrix takes at

switching times T = Ti, i = 1, . . . , 4, in Section 5.4 of our model is given by

K(T) = I4 −
1

v̇(T−)


v̇(T−)− v̇(T+) 0 0 0

u̇(T−)− u̇(T+) 0 0 0

ṙ(T−)− ṙ(T+) 0 0 0

ḣ(T−)− ḣ(T+) 0 0 0

 . (C.47)

c.2.2 Saltation Matrices in the Co-moving Frame

Likewise, saltation matrices allow us to characterise switching in the spatial

dynamics of non-smooth systems. In this section, we explicitly derive the

general saltation matrix needed for the stability analysis of the travelling

wave solution carried out in Section 5.9. Let Z(ξ, t) = (v(ξ), h(ξ)) denote

the reduced state vector, where ξ represents a space-like travelling wave

co-ordinate, and introduce the indicator function γ as

γ(Z(ξ, t)) = v(ξ)− vh,

which defines switching events in the travelling wave coordinates satisfying

γ(Z(ξ, t)) = 0. Consider the unperturbed trajectory, Q(ξ) = (v(ξ), h(ξ)),

which is the travelling wave solution, and a perturbed trajectory, Z̃(ξ, t) =

Q(ξ) + δZ(ξ, t), where δZ is small. Now, let the travelling wave spatial co-

ordinate at which a switching event occurs be denoted ξ = ξs(t) for the

unperturbed trajectory, and ξ = ξ̃s(t) = ξs(t) + δξs(t) for the perturbed tra-
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jectory. Taylor expanding the indicator function for the perturbed trajectory,

we obtain

γ(Z̃(ξ̃s, t)) = γ(Z̃(ξs(t) + δξs(t), t)), (C.48a)

= γ(Q(ξs(t) + δξs(t)) + δZ(ξs(t) + δξs(t), t)), (C.48b)

' γ(Q(ξs + δξs)) +∇Qγ(Q(ξs + δξs)) · δZ(ξs + δξs, t), (C.48c)

' γ(Q(ξs)) +∇Qγ(Q(ξs)) ·Qξ(ξ
−
s )δξs

+∇Qγ(Q(ξs)) · δZ(ξs, t). (C.48d)

We have introduced the notation Q(ξ±s ) = limε↘0 Q(ξs ± ε) in order to

ensure the partial derivative in ξ is well-defined. Now since γ(Q(ξs)) = 0

and γ(Z̃(ξ̃s, t)) = 0, (C.48) becomes

∇Qγ(Q(ξs)) · (Qξ(ξ
−
s )δξs + δZ(ξs, t)) = 0. (C.49)

From this, we use the result that ∇Qγ(Q(ξs)) = (∂v, ∂h)(v− vh) = (1, 0), to

obtain an expression for the perturbation in the switching co-ordinate (δξs)

in terms of the perturbation of the state vectors as

δξs(t) = −
δv(ξs, t)
v′(ξ−s )

. (C.50)

We are now in a position to construct the saltation matrix relating per-

turbations before and after switching events. We consider the deviation,

δZ, between the unperturbed and the perturbed trajectories at a switching

event, ξ = ξs, as

δZ(ξ−s + δξs, t) = Z̃(ξ−s + δξs, t)−Q(ξ−s + δξs), (C.51a)

' Z̃(ξ−s , t) +
∂Z̃
∂ξ

δξs −Q(ξ−s )−
dQ
dξ

δξs, (C.51b)

= δZ(ξ−s , t) +

(
∂Z̃
∂ξ
− dQ

dξ

)
δξs. (C.51c)

Now, to leading order,
∂Z̃
∂ξ

=
dQ
dξ

+ o(1) (since this term multiples an

already small term: δξs). Then

δZ(ξ−s + δξs, t) ' δZ(ξ−s , t) +
(

Q′(ξ−s )−Q′(ξ+s )
)

δξs. (C.52)
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Substituting (C.50) into (C.52) gives

δZ(ξ−s + δξs, t) = δZ(ξ−s , t)− δv(ξ−s , t)
v′(ξ−s )

(
Q′(ξ−s )−Q′(ξ+s )

)
, (C.53)

which can be written in the equivalent, and useful, form as

δZ(ξ−s + δξs, t) = K(ξs)δZ(ξ−s , t), (C.54)

where

K(ξs) = I2 −
1

v′(ξ−s )

v′(ξ−s )− v′(ξ+s ) 0

h′(ξ−s )− h′(ξ+s ) 0

 , (C.55)

is the general form, for our purposes, of the saltation matrix in the co-

moving frame.

c.3 the fourier series representation of u(ξ )

Here, we show how to express spatially periodic solutions in the co-moving

frame, u(ξ), as a φ-periodic Fourier series

u(ξ) = ∑
p∈Z

upe2πipξ/φ, (C.56)

where the Fourier coefficients up are defined as

up =
1
φ

∫ φ

0
u(ξ)e−2πipξ/φ dξ. (C.57)

as required in Section 5.8. This is a computationally useful form that can

be used to find existence and stability conditions numerically with analyt-

ical expressions. To evaluate (C.57), we make use of the Fourier transform

representations of various functions. First note the general form of the non-

unitary, angular frequency Fourier and inverse Fourier transforms

a(k) =
∫ ∞

−∞
a(x)e−ikx dx, (C.58a)

a(x) =
1

2π

∫ ∞

−∞
â(k)eikx dk. (C.58b)
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Beginning from (5.48), rewrite η and W in terms of their Fourier trans-

forms to obtain

u(ξ) =
1

τR
∑

m∈Z

∫ ∞

0
ds
( 1

2π

∫ ∞

−∞
dk1η̂(k1)eik1s

)
×
( 1

2π

∫ ∞

−∞
dk2Ŵ(k2)eik2(−mφ+cs+ξ)

)
, (C.59a)

=
1

(2π)2τR
∑

m∈Z

e−ik2mφ

×
∫ ∞

0
ds
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2η̂(k1)Ŵ(k2)eik1seik2(cs+ξ). (C.59b)

Now, we use the Dirac comb relation

φ ∑
m∈Z

e±ikmφ = 2π ∑
q∈Z

δ
(

k− 2πq
φ

)
, (C.60)

to obtain

u(ξ) =
1

2πτRφ ∑
q∈Z

∫ ∞

0
ds
∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

× δ
(

k2 −
2πq

φ

)
η̂(k1)Ŵ(k2)eik1seik2(cs+ξ), (C.61a)

=
1

2πτRφ ∑
q∈Z

∫ ∞

0
ds
∫ ∞

−∞
dk1η̂(k1)Ŵ

(2πq
φ

)
eik1sei( 2πq

φ )(cs+ξ), (C.61b)

=
1

2πτRφ ∑
q∈Z

∫ ∞

0
ds
∫ ∞

−∞
dk1

× η̂(k1)Ŵ
(2πq

φ

)
eis(k1+2πqc/φ)e2πiqξ/φ. (C.61c)

At this point, we substitute this into (C.57) to obtain

up =
1

2πτRφ

1
φ

∫ φ

0
dξe2πiξ(q−p)/φ

∫ ∞

0
ds
∫ ∞

−∞
dk1

× ∑
q∈Z

Ŵ(2πq/φ)η̂(k1)eis(k1+2πqc/φ) (C.62)

Now we see the form of a Dirac delta function,

δ(q− p) =
1
φ

∫ φ

0
dξe2πiξ(q−p)/φ, (C.63)
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in the expression (C.62) for up. Substituting in, and collapsing the sum over

q, we obtain

up =
1

2πτRφ

∫ ∞

0
ds
∫ ∞

−∞
dk1

× ∑
q∈Z

δ(q− p)Ŵ(2πq/φ)η̂(k1)eis(k1+2πqc/φ), (C.64a)

=
1

2πτRφ

∫ ∞

0
dseis(k1+2πpc/φ)

∫ ∞

−∞
dk1η̂(k1)Ŵ(2πp/φ). (C.64b)

Noticing another delta function,

2πδ(k1 + 2πpc/φ) =
∫ ∞

−∞
dseis(k1+2πpc/φ), (C.65)

we have

up =
1

τRφ

∫ ∞

−∞
dk1δ(k1 + 2πpc/φ)η̂(k1)Ŵ(2πp/φ). (C.66)

Finally, collapse the integral over k1 via the delta function to obtain the

Fourier coefficients

up =
1

τRφ
η̂

(
−2πcp

φ

)
Ŵ
(

2πp
φ

)
, p ∈ Z. (C.67)

c.4 functions for evans function calculation

Here, we give the functions fi(ξ; λ), gi(ξ; λ), i = 1, . . . , 4, that are the en-

tries of the matrix Γ(λ), (5.84), which is required for computing the Evans

function. The conductance parameter C has been set to 1 here.

f1(ξ) =
gsyn

c
1

|v′(ξ−1 )|
∑

p∈Z

Īp,ξ1,λ

(
e

2πipξ
φ − e

(
gL+λ

c

)
ξ

)
, (C.68a)

f2(ξ) =
gsyn

c
1

|v′(ξ−2 )|
∑

p∈Z

Īp,ξ2,λ

(
e

2πipξ
φ − e

(
gL+λ

c

)
ξ

)
, (C.68b)

f3(ξ) =
gT

c
fh(ξ)

(
−

h′(ξ−3 )− h′(ξ+3 )
v′(ξ−3 )

e(λ/c+1/cτ+)(φ−ξ3)

)
, (C.68c)

f4(ξ) =

(
1− v′(φ−)− v′(0+)

v′(φ−)

)
e
(

gL+λ
c

)
ξ

− gT

c
fh(ξ)

(
h′(φ−)− h′(0+)

v′(φ−)

)
, (C.68d)
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where

Īp,a,λ =
Ip,a,λ

2πip
φ −

gL+λ
c

, (C.69a)

Ip,a,λ =
1

τRφ
η̃
(

λ− 2πipc
φ

)
ŵ
(2πp

φ

)
e−

2πipa
φ , (C.69b)

and

fh(ξ) =
e
(

λ
c +

1
cτ−
)

ξ − e
(

gL+λ
c

)
ξ(

λ
c +

1
cτ− −

gL+λ
c

)(
1− e(

λ
c +

1
cτ− )ξ3e(

λ
c +

1
cτ+

)(φ−ξ3)
) , (C.70)

and

g1(ξ) =
gsyn

c
1

|v′(ξ−1 )|
∑

p∈Z

Īp,ξ1,λ

(
e

2πipξ
φ − e

2πipξ3
φ e

(
gL+λ

c

)
(ξ−ξ3)

)
, (C.71a)

g2(ξ) =
gsyn

c
1

|v′(ξ−2 )|
∑

p∈Z

Īp,ξ2,λ

(
e

2πipξ
φ − e

2πipξ3
φ e

(
gL+λ

c

)
(ξ−ξ3)

)
, (C.71b)

g3(ξ) =

(
1−

v′(ξ−3 )− v′(ξ+3 )
v′(ξ−3 )

)
e
(

gL+λ
c

)
(ξ−ξ3), (C.71c)

g4(ξ) = 0. (C.71d)

The infinite sums in f1(ξ), f2(ξ), g1(ξ), g2(ξ), are well-behaved as p→ ±∞,

so these can be truncated during computation.
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