# The molecular basis of G<sub>s</sub> protein efficacy at the β<sub>2</sub>adrenoceptor

Clare R. Harwood, MSci (Hons)

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

July 2022

This thesis is entirely the candidates own work. The experiments described in the this were performed between 2018 and 2022 in the Cell Signalling Research Group, University of Nottingham. No part of this work has been submitted previously for a degree or any other qualification at any university,

#### Abstract

GPCRs are the largest family of transmembrane receptors in the human genome and currently represent 34% of all FDA approved medicines. The  $\beta_2$ -adrenoceptor ( $\beta_2AR$ ) is a prototypical class A GPCR which is therapeutically relevant in asthma, whereby  $\beta_2AR$  agonists relieve bronchoconstriction. Despite the therapeutic importance of the  $\beta_2AR$  and other GPCRs the molecular basis of agonist efficacy is not well understood.

The hypothesis underlying this study was that ligand residence time effects  $\beta_2AR$  receptor conformational dynamics to affect efficacy of  $G_s$  protein activation. To this end, this thesis investigated  $\beta_2AR$  agonist ligand binding kinetics and purified mini- $G_s$  binding kinetics to  $\beta_2AR$  that had been extracted from the mammalian cell membrane using detergent. This study found no correlation between ligand residence time and  $G_s$ protein efficacy for  $\beta_2AR$  agonists but found differences in the affinity of full agonist bound  $\beta_2AR$  complexes for the mini- $G_s$  compared to partial agonist bound complexes.

These results do not support a role for kinetics in the molecular basis of efficacy at the  $\beta_2AR$  but suggest a model in which agonists of higher efficacy stabilise a conformation of the  $\beta_2AR$  which is more likely to recruit a G<sub>s</sub> protein. Moreover, this thesis shows the development and application of novel methods to study isolated GPCR dynamics and pharmacology. Further application of this approach to a greater number of GPCRs and agonists would elucidate if the model presented in this study is relevant to other receptors and if this shows a general mechanism of efficacy.

#### Publications arising from this thesis

#### Papers

Harwood, CR. Sykes, DA. Hoare, BL. Poyner, PR. Briddon, SJ. Veprintsev, DB. (2021). Functional solubilisation of the  $\beta_2$ -adrenoceptor using diisobutylene maleic acid. iScience 24, 103362

#### Abstracts

Harwood, CR. Sykes, DA. Hoare, BL. Poyner, PR. Briddon, SJ. Veprintsev, DB. (2019/2020). Functional solubilisation of the  $\beta_2$ -adrenoceptor using diisobutylene maleic acid. Poster Pharmacology, Edinburgh 2019, Oral presentation European SMALP conference 2020 (cancelled due to COVID-19)

Harwood, CR, Briddon, SJ. Veprintsev, DB (2022)

Agonist efficacy at the  $\beta_2$ -adrenoceptor ( $\beta_2AR$ ) is driven agonist induced conformational differences that increase the affinity of the  $\beta_2AR$  for the  $G_s$  protein.

Poster Keystone: GPCRs: An Odyssey from structure, signaling and regulations to therapeutics, Snowbird Utah 2022

#### Acknowledgments

I would like to thank my supervisors, Professor Dmitry Veprintsev and Dr Stephen Briddon, for their help, support, and guidance over the last 3.5 years, as for well as the opportunity to work on such an interesting project.

I would also like to thank past and present members of Dmitry's lab group for their instruction and discussion. Particularly, Dr David Sykes for his help and advice with the kinetic experiments in this thesis.

I am very grateful to the whole Cell Signalling research group, for creating such a positive and collaborative working environment. Their encouragement and engagement in scientific discussion was enormously helpful, and fun in and out of the lab.

Of course, this was done in a pandemic, among other crises, and I would like to thank my all my friends and family for their love and support during this time. Especially, my parents, who for some reason always seemed to believe in me, and my friends and 'households' in Nottingham for their companionship during this time. A special thanks to Fi, Charlie, Rhi, Beth, Desi, and Lydia<sup>2</sup>.

### Abbreviations

| A <sub>2A</sub> R | Adenosine-2A receptor                         |  |
|-------------------|-----------------------------------------------|--|
| AC                | Adenylyl cyclase                              |  |
| ATP               | Adenosine triphosphate                        |  |
| β₁ <b>AR</b>      | β1-adrenoceptor                               |  |
| β2 <b>AR</b>      | β <sub>2</sub> -adrenoceptor                  |  |
| B <sub>max</sub>  | Maximal specific binding of the system        |  |
| BSA               | Bovine Serum Albumin                          |  |
| C26               | 7-[(R)-2-((1R,2R)-2-                          |  |
|                   | benzyloxycyclopentylamino)-1-hydroxyethyl]-4- |  |
|                   | hydroxybenzothiazolone                        |  |
| cAMP              | 3,'5'-cyclic adenosine monophosphate          |  |
| CHO cells         | Chinese Hamster Ovary cells                   |  |
| CMV               | Cytomegalovirus                               |  |
| CV                | Column Volume                                 |  |
| Cyanopindolol     | 1-(1H-indol-4-yloxy)-3-(propan-2-             |  |
| hemifumerate      | ylamino)propan-2-ol                           |  |
| DDM               | n-dodecyl-β-D-maltoside                       |  |
| DIBMA             | Diisobutylene Maleic Acid                     |  |
| DIBMALP           | Diisobutylene Maleic Acid Lipid Particle      |  |
| DMEM              | Dulbecco's Modified Eagle's Medium            |  |
| DMSO              | Dimethyl Sulphoxide                           |  |
| EC <sub>50</sub>  | Concentration at which half the system        |  |
|                   | maximal response occurs                       |  |
| E <sub>max</sub>  | Maximal response of the system                |  |
| E.coli            | Esherichia coli                               |  |
| Epinephrine       | 4-[1-hydroxy-2-                               |  |
| hydrochloride     | (trideuterio(113C)methylamino)ethyl]benzene-  |  |
|                   | 1,2-diol;hydrochloride                        |  |
| F-propranolol     | Fluorescent propranolol                       |  |
| F-XAC             | Fluorescent Xanthine Amine Cogener            |  |
| FBS               | Fetal Bovine Serum                            |  |
| FSEC              | Fluorescence Size Exclusion Chromatography    |  |

| GDP              | Guanosine diphosphate                            |  |
|------------------|--------------------------------------------------|--|
| GPCR             | G Protein-Coupled Receptor                       |  |
| GTP              | Guanosine triphosphate                           |  |
| HBSS             | Hank's Balanced Salt Solution                    |  |
| HEK              | Human Embryony Kidney                            |  |
| HPLC             | High Performance Liquid Chromatography           |  |
| IC <sub>50</sub> | Concentration at which half inhibitory response  |  |
|                  | occurs                                           |  |
| ICI 118, 551     | (-)-1-[2,3-(Dihydro-7-methyl-1H-inden-4-yl)oxy]- |  |
|                  | 3-[(1- methylethyl)amino]-2-butanol              |  |
| IMAC             | Immobilised Metal Affinity Chromatography        |  |
| IPTG             | Isopropyl β-d-1-thiogalactopyranoside            |  |
| K <sub>d</sub>   | Equilibrium dissociation constant                |  |
|                  | (concentrations at which half the receptors are  |  |
|                  | occupied)                                        |  |
| K <sub>obs</sub> | Observed rate of association                     |  |
| Kon              | Association rate constant                        |  |
| K <sub>off</sub> | Dissociation rate constant                       |  |
| NECA             | 5'-N-Ethylcarboxamidoadenosine                   |  |
| Noradrenaline    | 4-[(1R)-2-amino-1-hydroxyethyl]benzene-1,2-      |  |
|                  | diol                                             |  |
| NTPs             | Nucleotide Triphosphates                         |  |
| PBS              | Phosphate buffered saline                        |  |
| PCR              | Polymerase Chain Reaction                        |  |
| PDL              | Poly D-lysine                                    |  |
| PEI              | Polyethylenimine                                 |  |
| PEN/Strep        | Penicillin Streptomycin                          |  |
| SEC              | Size Exclusion Chromatography                    |  |
| SMA              | Styrene Maleic Acid                              |  |
| SMALP            | Styrene Maleic Acid Lipid Particles              |  |

### **Table of Contents**

| Chapter 1                                                                                                                                                      | 1                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Introduction                                                                                                                                                   | 1                                    |
| 1.1 GPCRs                                                                                                                                                      | 2                                    |
| 1.2 The therapeutic potential of GPCRs                                                                                                                         | 3                                    |
| 1.3 The β <sub>2</sub> -adrenoceptor                                                                                                                           | 3                                    |
| 1.4 Heterotrimeric G proteins                                                                                                                                  | 6                                    |
| 1.4.1 G $\alpha$ subunits and their activation at the structural level<br>1.4.2 Downstream signalling by heterotrimeric G proteins                             | 6<br>7                               |
| 1.5 GPCR pharmacology                                                                                                                                          | .10                                  |
| 1.5.1 Drug receptor theory                                                                                                                                     | . 10                                 |
| 1.5.3 Agonists and antagonists                                                                                                                                 | . 13                                 |
| <b>1.6 Current understanding of molecular basis of efficacy at GPCRs</b> .<br>1.6.1 Contribution of structural studies to understanding the molecular basis of | .14                                  |
| efficacy<br>1.6.2 Contribution of biophysical studies to understanding the molecular basis                                                                     | . 15<br>s of                         |
| efficacy                                                                                                                                                       | . 17                                 |
| 1.6.3 Evidence for the role of kinetics in the molecular basis of efficacy                                                                                     | . 18                                 |
| 1.7 Evidence for a role of ligand binding kinetics in the molecular basis of efficacy                                                                          | .19                                  |
| 1.8 GPCR molecular pharmacology in the cellular environment                                                                                                    | .19                                  |
| 1.8.1 Modulation of GPCR dynamics by the cell membrane<br>1.8.2 Modulation of GPCR signalling by cellular regulation                                           | . 20                                 |
| 1.0.2 Modulation of Cr Signaling by certain regulation                                                                                                         | . 20<br>21                           |
| 1.9 Methods to extract proteins for active CDCDs                                                                                                               | ۱۲.<br>مد                            |
| 1.10 MINI-G <sub>s</sub> proteins: sensors for active GPCRs                                                                                                    | .24                                  |
| 1.11 Aims and Objectives                                                                                                                                       | .27                                  |
| Chapter 2                                                                                                                                                      | . 28                                 |
| Materials and methods                                                                                                                                          | . 28                                 |
| 2.1 Materials                                                                                                                                                  | .29                                  |
| 2.1.1 Mammalian cell culture reagents:                                                                                                                         | . 29                                 |
| 2.1.2 Molecular blology reagents:                                                                                                                              | . 29                                 |
| 2.1.4 Compounds:                                                                                                                                               | . 30                                 |
| 2.2 Methods                                                                                                                                                    | .32                                  |
| 2.2.1 Molecular biology                                                                                                                                        | . 32                                 |
| 2.2.2 Mammalian cell culture                                                                                                                                   | . 39                                 |
| 2.2.3 NanoBRE I                                                                                                                                                | .43                                  |
| $2.2.5 \text{ CASE-G}_{\text{s}}$ activations BRET assays                                                                                                      | . 44                                 |
| 2.2.6 Production of TS-SNAP-β2AR from mammalian cells                                                                                                          | . 45                                 |
| 2.2.7 Fluorescence Size Exclusion Chromatography (FSEC)                                                                                                        | . 47                                 |
| 2.2.6 Decterial cell culture                                                                                                                                   | 48                                   |
|                                                                                                                                                                | 49                                   |
| 2.2.10 SDS-page electrophoresis                                                                                                                                | . 49<br>. 50                         |
| 2.2.10 SDS-page electrophoresis                                                                                                                                | . 49<br>. 50<br>. 51                 |
| 2.2.10 SDS-page electrophoresis<br>2.2.11 TR-FRET<br>2.2.12 TR-FRET Ligand binding studies                                                                     | . 49<br>. 50<br>. 51<br>. 53<br>. 54 |

| 2.2.14 In solution intermolecular nanoBRET assays                                              | 55       |
|------------------------------------------------------------------------------------------------|----------|
| 2.2.15 Venus mini-Gs nanoBRET recruitment assays                                               | 56       |
| 2.2.16 Venus mini-G $_{s}$ nanoBRET kinetic assays                                             | 56       |
| 2.2.18 Data analysis                                                                           | 58       |
| Chapter 3                                                                                      | 65       |
|                                                                                                |          |
| Solubilisation of the functional β <sub>2</sub> AR using Diisobutylene Malei                   | C        |
| acid (DIBMA)                                                                                   | 65       |
| 3.1 Introduction                                                                               | 66       |
| 3.1.1 Methods previously employed to solubilize the $\beta_2AR$                                | 66       |
| $3.1.2$ Applicability of using polymers to solubilize the $\beta_2AR$                          | 00       |
| 3 1 3 Methods to characterise membrane protein stability                                       | 68       |
| 3 1 4 Methods to characterise membrane protein stability                                       | 70       |
|                                                                                                |          |
| 3.2 Methods                                                                                    |          |
| 3.2.1 Mammalian cell culture                                                                   | 72       |
| 3.2.2 Solubilisation of TS-SNAP-β <sub>2</sub> AR or TS-SNAP-A <sub>2A</sub> using DDM or DIBM | A. 72    |
| 3.2.3 TR-FRET thermostability assays                                                           | 72       |
| 3.2.4 TR-FRET ligand binding assays                                                            | 72       |
| 3.2.5 Haio-mini-Gs sniπ assay                                                                  | 73       |
| 3.3 Results                                                                                    | 74       |
| 3.3.1 Solubilisation of the TS-SNAP- $\beta_2$ AR from the mammalian membrane.                 | 74       |
| 3.3.2 Saturation ligand binding studies on TS-SNAP- $\beta_2$ AR in membranes, D               | DM       |
| micelles and DIBMALPs                                                                          | 78       |
| 3.3.3 Competition ligand binding studies on TS-SNAP-β <sub>2</sub> AR in membranes,            |          |
| DDM micelles and DIBMALPs:                                                                     | 81       |
| 3.3.4 TR-FRET thermostability studies on TS-SNAP-β2AR in membranes, D                          | DM       |
| micelles and DIBMALPs                                                                          | 84       |
| 3.3.5 TR-FRET ligand binding shift studies to investigate the ability of DIBM                  | ALP-     |
| $\beta_2 AR$ to couple Halo-mini-G <sub>s</sub>                                                | 90       |
| 3.3.6 TR-FRET ligand binding shift studies to investigate the ability of DIBM                  | ALP-     |
| A <sub>2A</sub> to couple Halo-mini-G <sub>s</sub>                                             | 94       |
| 3.4 Discussion                                                                                 | 97       |
| 3.4.1 DIBMA can extract $\beta_2$ AR from the mammalian cell membrane                          |          |
| 3.4.2 DIBMAL P-B <sub>2</sub> AR retains ligand binding capabilities                           | 97       |
| $3 4 3 \text{ DIBMAL } P-\beta_2 \text{ Retains native pharmacology and conformational}$       |          |
| landscape                                                                                      | 98       |
| $3.4.4$ DIBMALP- $\beta_2$ AR shows improved thermostability.                                  |          |
| $3 4 5 \text{ DIBMAL P-}B_2\text{AR cannot couple Halo-mini-G_s}$                              | 100      |
| 3 4 6 Conclusion                                                                               | 101      |
|                                                                                                |          |
| Chapter 4                                                                                      | . 102    |
| Pharmacological characterisation of eight agonists for the $\beta_{\rm A}$                     | R        |
| $p_{Z}$                                                                                        | 、<br>102 |
|                                                                                                | 102      |
| 4.1 Introduction                                                                               | .103     |
| 4.1.1 The eight $\beta_2$ AR agonists chosen for this study                                    | 103      |
| 4.1.2 Use of TR-FRET to measure ligand binding kinetics                                        | . 106    |
| 4.1.3 Defining efficacy using a G <sub>s</sub> protein activation assay                        | 107      |
| 4.1.4 Aims:                                                                                    | 109      |
| 4 2 Methods                                                                                    | 110      |
| 4.2.1 TR-FRET ligand binding assays                                                            | . 110    |
| 4.2.2 CASE-G <sub>s</sub> activation assavs                                                    | 110      |
|                                                                                                |          |
| 4.3 Results                                                                                    | .112     |
| 4.3.1 Development of a TR-FRET ligand binding kinetics assay                                   | . 112    |
|                                                                                                | 114      |

| 4.3.2 Measurement of the ligand binding kinetics of eigh 4.3.3 Equilibrium competition binding of eight $\beta_2$ AR ago 4.3.4: Assessment of the relative time to reach equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tt β2AR agonists 120<br>nist 123<br>μm of eight β2AR                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| agonists<br>4.3.5 Development of CASE G <sub>s</sub> activation assay<br>4.3.6 Quantifying the efficacy of eight BoAR agonists us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| activation assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.4 Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.4.1 The development and limitations of a TR-FRET kind assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | netic ligand binding<br>141                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.4.2 The ligand binding kinetics of eight $\beta_2 AR$ agonists SNAP- $\beta_2 AR$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | binding the DDM-TS-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.4.3 The relative $K_{\text{off}}$ values of eight $\beta_2$ AR agonists can equilibrium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | be ranked by time to                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.4.4 The CASE $G_s$ activation assay required the develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | opment of the clone A5                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.4.5 Comparison of the CASE $G_s$ activation data to p<br>4.4.6 Quantification of efficacy of eight $\beta_2 AR$ agonists efficacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bublished studies 145 ficacy using CASE $G_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| activation<br>4.4.7 There is no correlation between ligand residence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e time and efficacy for                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| these β <sub>2</sub> AR agonists<br>4.4.8 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chapter 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Investigating the role of G <sub>s</sub> protein binding kine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tics in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| molecular basis of emcacy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2 A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2 AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2 A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2 AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2 ARnLuc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>152</b><br>R activation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.1 Introduction $5.1.1$ Use of mini-Gs proteins as tools to investigate $\beta_2 A$ $5.1.2$ Use of nanoBRET to investigate $\beta_2 AR$ -mini-Gs bin $5.1.3$ Aims: $5.2$ Methods $5.2.1$ Production of mini-Gs proteins $5.2.2$ Production of TS-SNAP- $\beta_2 ARnLuc$ $5.2.3$ In-solution intermolecular BRET assays to investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151           R activation         152           ding         153           154         155           155         155           gate TS-SNAP-         157                                                                                                                                                                                                                                                                                                                                      |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology.<br>5.2.4 Venus-mini-G <sub>s</sub> recruitment assays in cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 151           R activation         152           ding         153           154         155           155         155           gate TS-SNAP-         155           156         155                                                                                                                                                                                                                                                                                                            |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology<br>5.2.4 Venus-mini-G <sub>s</sub> recruitment assays in cells<br><b>5.3 Results</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 151         R activation       152         ding       153         154       155         155       155         jate TS-SNAP-       155         156       156         157       155                                                                                                                                                                                                                                                                                                              |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology.<br>5.2.4 Venus-mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br><b>5.3 Results</b><br>5.3.1 Production of mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.2 Characterisation of mini-G <sub>s</sub> proteins from <i>E</i> . coli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 151         R activation       152         ding       153         154       155         155       155         gate TS-SNAP-       155         156       157         157       157         157       157                                                                                                                                                                                                                                                                                        |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology.<br>5.2.4 Venus-mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.1 Production of mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.2 Characterisation of mini-G <sub>s</sub> protein preparations b<br>$\beta_2ARnLuc$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151         R activation       152         ding       153         154       155         155       155         gate TS-SNAP-       155         156       156         157       157         157       157         nding the TS-SNAP-       157         155       157         157       157         157       157         155       157         157       157                                                                                                                                     |
| 5.1 Introduction         5.1.1 Use of mini-Gs proteins as tools to investigate β2A         5.1.2 Use of nanoBRET to investigate β2AR-mini-Gs bin         5.1.3 Aims:         5.2 Methods         5.2.1 Production of mini-Gs proteins.         5.2.2 Production of TS-SNAP-β2ARnLuc         5.2.3 In-solution intermolecular BRET assays to investig         β2ARnLuc: venus-mini-Gs pharmacology         5.2.4 Venus-mini-Gs proteins from <i>E</i> . coli.         5.3.1 Production of mini-Gs proteins from <i>E</i> . coli.         5.3.2 Characterisation of mini-Gs proteins from <i>E</i> . coli.         5.3.3 Characterisation of venus-mini-Gs association and DDM-TS-SNAP-β2ARnLuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151         R activation       152         ding       153         154       155         155       155         jate TS-SNAP-       155         156       157         157       157         inding the TS-SNAP-       157         156       157         157       157         159       159         dissociation from the       164                                                                                                                                                              |
| <b>5.1 Introduction</b> 5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate β <sub>2</sub> A         5.1.2 Use of nanoBRET to investigate β <sub>2</sub> AR-mini-G <sub>s</sub> bin         5.1.3 Aims: <b>5.2 Methods</b> 5.2.1 Production of mini-G <sub>s</sub> proteins.         5.2.2 Production of TS-SNAP-β <sub>2</sub> ARnLuc         5.2.3 In-solution intermolecular BRET assays to investig         β <sub>2</sub> ARnLuc: venus-mini-G <sub>s</sub> pharmacology         5.2.4 Venus-mini-G <sub>s</sub> proteins from <i>E</i> . coli.         5.3.1 Production of mini-G <sub>s</sub> proteins from <i>E</i> . coli.         5.3.2 Characterisation of mini-G <sub>s</sub> protein preparations b         β <sub>2</sub> ARnLuc         5.3.3 Characterisation of venus-mini-G <sub>s</sub> association and DDM-TS-SNAP-β <sub>2</sub> ARnLuc         5.3.4 Investigation of purified venus-mini-G <sub>s</sub> binding kind                                                                                                                                                                                                                                                                                                                                   | 151         R activation       152         ding       153         154       155         155       155         gate TS-SNAP-       155         156       157         157       157         Inding the TS-SNAP-       157         Idissociation from the       164         etics at DDM- TS-SNAP-       164                                                                                                                                                                                      |
| <b>5.1 Introduction</b> 5.1.1 Use of mini-Gs proteins as tools to investigate β2A5.1.2 Use of nanoBRET to investigate β2AR-mini-Gs bin5.1.3 Aims: <b>5.2 Methods</b> 5.2.1 Production of mini-Gs proteins.5.2.2 Production of TS-SNAP-β2ARnLuc5.2.3 In-solution intermolecular BRET assays to investigβ2ARnLuc: venus-mini-Gs pharmacology5.2.4 Venus-mini-Gs proteins from <i>E</i> . coli.5.3.1 Production of mini-Gs proteins from <i>E</i> . coli.5.3.2 Characterisation of mini-Gs proteins from <i>E</i> . coli.5.3.3 Characterisation of venus-mini-Gs association and DDM-TS-SNAP-β2ARnLuc5.3.4 Investigation of purified venus-mini-Gs binding kingβ2ARnLuc in complex with eight β2AR agonists.5.4.1 Mini-Gs proteins produced in this study bound TS-to consiste atimulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 151         R activation       152         ding       153         154       155         155       155         jate TS-SNAP-       155         156       157         inding the TS-SNAP-       157         inding the TS-SNAP-       159         dissociation from the       164         etics at DDM- TS-SNAP-       176         SNAP-β2AR in response       107                                                                                                                               |
| <b>5.1 Introduction</b> 5.1.1 Use of mini-Gs proteins as tools to investigate $β_2A$ 5.1.2 Use of nanoBRET to investigate $β_2AR$ -mini-Gs bin5.1.3 Aims: <b>5.2 Methods</b> 5.2.1 Production of mini-Gs proteins.5.2.2 Production of TS-SNAP- $β_2ARnLuc$ 5.2.3 In-solution intermolecular BRET assays to investig $β_2ARnLuc$ : venus-mini-Gs pharmacology5.2.4 Venus-mini-Gs pharmacology5.2.5 A venus-mini-Gs pharmacology5.3.1 Production of mini-Gs proteins from E. coli.5.3.2 Characterisation of mini-Gs protein preparations b $β_2ARnLuc$ 5.3.3 Characterisation of venus-mini-Gs association andDDM-TS-SNAP- $β_2ARnLuc$ 5.3.4 Investigation of purified venus-mini-Gs binding king $β_2ARnLuc$ in complex with eight $β_2AR$ agonists5.4.1 Mini-Gs proteins produced in this study bound TS-to agonists stimulation.5.4.2 N terminal fusion tags decreased mini-Gs affinity for                                                                                                                                                                                                                                                                                                                                                                                                | 151         R activation       152         ding       153         154       155         155       155         gate TS-SNAP-       155         155       156         156       157         157       157         nding the TS-SNAP-       159         dissociation from the       164         etics at DDM- TS-SNAP-       176         SNAP-β2AR in response       187         por TS-SNAP-β2ARnLuc       187                                                                                   |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology.<br>5.2.4 Venus-mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.1 Production of mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.2 Characterisation of mini-G <sub>s</sub> protein preparations b<br>$\beta_2ARnLuc$<br>5.3.3 Characterisation of venus-mini-G <sub>s</sub> association and<br>DDM-TS-SNAP- $\beta_2ARnLuc$<br>5.3.4 Investigation of purified venus-mini-G <sub>s</sub> binding kind<br>$\beta_2ARnLuc$ in complex with eight $\beta_2AR$ agonists.<br>5.4.1 Mini-G <sub>s</sub> proteins produced in this study bound TS-<br>to agonists stimulation.<br>5.4.2 N terminal fusion tags decreased mini-G <sub>s</sub> affinity for<br>5.4.3 Venus-mini-G <sub>s</sub> association to TS-SNAP- $\beta_2ARnLuc$<br>dissociation is incomplete.                                                      | 151         R activation       152         ding       153         154       155         155       155         jate TS-SNAP-       155         156       157         inding the TS-SNAP-       157         inding the TS-SNAP-       159         dissociation from the       164         etics at DDM- TS-SNAP-       176         SNAP-β2AR in response       187         or TS-SNAP-β2AR nLuc       188         is biphasic and       180                                                      |
| <b>5.1 Introduction</b><br>5.1.1 Use of mini-G <sub>s</sub> proteins as tools to investigate $\beta_2A$<br>5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G <sub>s</sub> bin<br>5.1.3 Aims:<br><b>5.2 Methods</b><br>5.2.1 Production of mini-G <sub>s</sub> proteins.<br>5.2.2 Production of TS-SNAP- $\beta_2ARnLuc$ .<br>5.2.3 In-solution intermolecular BRET assays to investig<br>$\beta_2ARnLuc$ : venus-mini-G <sub>s</sub> pharmacology.<br>5.2.4 Venus-mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.1 Production of mini-G <sub>s</sub> proteins from <i>E</i> . coli.<br>5.3.2 Characterisation of mini-G <sub>s</sub> protein preparations b<br>$\beta_2ARnLuc$ .<br>5.3.3 Characterisation of venus-mini-G <sub>s</sub> association and<br>DDM-TS-SNAP- $\beta_2ARnLuc$ .<br>5.3.4 Investigation of purified venus-mini-G <sub>s</sub> binding kind<br>$\beta_2ARnLuc$ in complex with eight $\beta_2AR$ agonists.<br>5.4.1 Mini-G <sub>s</sub> proteins produced in this study bound TS-<br>to agonists stimulation.<br>5.4.3 Venus-mini-G <sub>s</sub> association to TS-SNAP- $\beta_2ARnLuc$<br>5.4.3 Venus-mini-G <sub>s</sub> association to TS-SNAP- $\beta_2ARnLuc$<br>5.4.4 Full agonists increased the affinity of DDM-TS-SNAP- $\beta_2ARnLuc$ | 151         R activation       152         ding       153         154       155         155       155         jate TS-SNAP-       155         156       157         inding the TS-SNAP-       157         inding the TS-SNAP-       159         idissociation from the       164         etics at DDM- TS-SNAP-       176         SNAP-β2AR in response       187         or TS-SNAP-β2AR in response       187         or TS-SNAP-β2AR in 189       189         AP-β2ARnLuc for the       189 |

| Chapter 6                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.1 General discussion       194         6.1.1 DIBMALPs but not detergent affected β2AR function       194         6.1.2 Demonstration of novel methods to characterise membrane protein       194         preparations       196         6.1.3 Agonist residence time did not correlate with efficacy at the β2AR       197         6.1.4 Agonist efficacy correlated with likelihood to recruit mini-Gs at the β2AR 197       197         6.1.5 Future work       202 |
| 6.2 General conclusion203                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chapter 7 204                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Appendices and references204                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>7.1 Supplementary data</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                               |

Chapter 1 Introduction

#### 1.1 GPCRs

G protein-coupled receptors (GPCRs) are seven transmembrane receptors that regulate a broad range of physiological processes. This includes the detection and transmembrane transduction of signals mediated by hormones, chemokines in the immune system, neurotransmitters, and even light from the retina. In addition to their seven transmembrane helices, GPCRs are defined by their ability to couple to heterotrimeric guanine nucleotide binding proteins (G proteins), although it is now understood that GPCRs can signal through other proteins and signalling cascades, for example arrestins.

This superfamily of receptors accounts for 2% of the human genome and are therefore the largest family of transmembrane receptors (Schiöth & Fredriksson, 2005) (Venter et al., 2001). Phylogenetic analysis of human GPCRs has subdivided GPCRs into the five classes of the GRAF classification system, which is based primarily on sequence homology; namely Rhodpsin-Like (class A), secretin receptor family (class B), glutamate receptor family (class C), adhesion receptor family and frizzled receptor family (Schiöth & Fredriksson, 2005). These sub families show functional and structural differences. The  $\beta_2$ -adrenoceptor is a class A or rhodopsin-like GPCR. The majority of class A GPCRs contain a NsxxNPxxY motif in transmembrane domain 7 (TM7), a DRY motif between TM3 and intracellular loop (IL2) and generally have shorter N termini then other classes of GPCR (Figure 1.1). The DRY motif forms a salt bridge with TM6, known as the ionic lock, which stabilises the receptor in its inactive conformation and is broken upon receptor activation. Similarly, the NsxxNPxxY motif stabilises the active state via a hydrogen bond between Y<sup>7.53</sup> and Y<sup>5.58</sup> (Ballesteros & Weinstein, 1995). The ligands of class A GPCRs generally bind between the TM regions as opposed to the larger N termini as is the cases in other classes of GPCR.

#### 1.2 The therapeutic potential of GPCRs

GPCRs are easily accessible membrane receptors, which generally have modulatory roles in physiology. GPCRs therefore represent an opportunity to target a large range of diseases. Indeed, GPCRs currently represent 34% of all US food and drug administration (FDA) approved drugs, with 475 drugs targeting over 100 diverse receptors. Moreover, a further 321 agents aimed at over 60 novel GPCR targets are in clinical trials (Hauser et al., 2017), implying that the therapeutic potential of GPCRs is still underexploited.

#### 1.3 The $\beta_2$ -adrenoceptor

The  $\beta_2AR$  is a member of the adrenoceptor sub family within the class A GPCR family. Adrenoceptors respond to neurotransmitters adrenaline and noradrenaline to form the interface between the sympathetic nervous system and the cardiovascular system (Triposkiadis et al., 2009), therefore contributing to the modulation of the 'fight or flight' response. As such adrenoceptors are expressed in most tissues and organ systems.

There are nine different adrenoceptors in total, including three  $\alpha_1$ , three  $\alpha_2$  and three  $\beta$  receptors (Alexander et al. 2021).  $\alpha$ -adrenoceptors are concerned with regulation of smooth muscle and vascular tone whilst  $\alpha_2$ -adrenoceptors are also involved in regulation of neurotransmitter release (Philipp et al., 2002). Understanding of the precise role of  $\alpha$ -adrenoceptor subtypes remains incomplete (Philipp et al., 2002). Conversely, the specific physiological roles of the  $\beta$ -adrenoceptors are much better characterised. The  $\beta_1$ -adrenoceptor ( $\beta_1AR$ ) is expressed primarily in the heart and its stimulation is well-established in increasing the rate and contractility of the heart. The  $\beta_3$ -adrenoceptor is also involved in modulation of heart contractility and in lipolysis and thermogenesis of adipose tissues (Schena & Caplan, 2019).

The  $\beta_2$  adrenoceptor ( $\beta_2AR$ ) (Figure **1.1**) is expressed primarily in the lungs, heart, peripheral vasculature, gastrointestinal (GI) tract, adipose tissue, skeletal muscle, and female reproductive system. The  $\beta_2AR$  signals primarily via the G<sub>s</sub> protein although it has also been showed to couple G<sub>i</sub> in the heart (Hill and Baker, 2003). The  $\beta_2$ adrenoceptor is a well-established target for asthma whereby  $\beta_2$  agonists are used to relax the constricted lung smooth muscle via G<sub>s</sub> protein activation and adenylyl cyclase signalling (Cazzola, et al., 2011). As such, a large range of agonists of varying potencies and selectivity's for  $\beta_2AR$  compared to the other adrenoceptors have been developed. These ligands are discussed in more detail in **sec 4.1**.

The clinical importance of  $\beta_2 AR$  in combination with it being one of the first GPCRs to be cloned (Dixon et al., 1986), has led to  $\beta_2AR$ becoming one of the most studied GPCRs over the years and therefore a prototypical GPCR to study. Indeed, there are now 38 structures of the  $\beta_2$ AR (Berman et al., 2000). These include  $\beta_2$ AR in complex with an inverse agonist (Rasmussen et al., 2007) (Wacker et al., 2010), partial agonist (Masureel et al., 2018), full agonist (Zhang et al. 2020), antagonist (Wacker et al., 2010) and in complex with the full length G<sub>s</sub> protein (Rasmussen et al., 2011b). Moreover, there have also been several in-depth biophysical studies into its dynamics and activation of the heterotrimeric G<sub>s</sub> protein in response to different ligands (Du et al., 2019) (Gregorio et al., 2017) (Nygaard, et al. 2013) (Manglik et al., 2015). These structural and biophysical studies are discussed in more detail in sec 1.5. The clinical importance of the  $\beta_2$ AR have led to the development of a range of agonists and more advanced understanding of its molecular mechanism compared to other GPCRs, this makes  $\beta_2AR$  an sensible choice to study the molecular basis of efficacy at class A GPCRs.



Figure 1.1: The  $\beta_2$ -adrenoceptor A) Comparison of the active (green) and inactive (blue) structures of the  $\beta_2AR$ , showing outward movement of TM5 and 6 to accommodate G<sub>s</sub> protein coupling (Rasmussen et al. 2011b), B) Primary sequence of the human  $\beta_2AR$  showing DRY and NPY motifs, snake plot adapted from www.gpcrdb.org (Pándy-Szekeres et al., 2018)

#### 1.4 Heterotrimeric G proteins

GPCRs signal primarily through coupling heterotrimeric guanine nucleotide binding proteins (G proteins). Heterotrimeric G proteins consist of an  $\alpha$ ,  $\beta$ , and  $\gamma$  subunit. Although G protein subunits are far from as numerous as their receptors there are 16 G $\alpha$  subunits, 5 G $\beta$  subunits, and 11 Gy subunits (Downes & Gautam, 1999). a subunits are classified into four main classes ( $\alpha_s$ ,  $\alpha_i$ ,  $\alpha_q$  and  $\alpha_{12/13}$ ) according to their sequence homology. This allows for numerous heterotrimer combinations, indeed except for  $\beta 5$ , all possible  $\beta \gamma$  combinations have been shown to form dimers and to heterotrimerise with  $\alpha_{i1}$  and  $\alpha_{sL}$  in insect cells (Hillenbrand et al., 2015). This is the largest characterisation study to date, however the functional and physiological relevance of these different heterotrimer combinations remains poorly characterised. Although a GPCR is generally able to couple multiple G proteins not every GPCR is necessarily able to couple all heterotrimer combinations of the Ga subunit, (Hillenbrand et al., 2015) and different ligands have been shown to differentially effect heterotrimer coupling of a GPCR. This is true for both synthetic (Mukhopadhyay, 2005) and endogenous ligands (McLaughlin et al., 2005). G protein subunit expression has been shown to vary across the body (Syrovatkina et al. 2016), suggesting G protein subunit combinations to be a physiological mechanism for modulating signalling. Overall, different heterotrimer combinations, expression and ligands allow for a diverse range of GPCR-G protein signalling responses.

#### 1.4.1 G $\alpha$ subunits and their activation at the structural level

Although knowledge of the physiological relevance of different G  $\beta$  and  $\gamma$  subunits remains limited, knowledge of G $\alpha$  signalling and the structural mechanism of activation is much better understood. G $\alpha$  proteins consist of a GTPase domain and  $\alpha$  helical domain, which close around the nucleotide binding pocket. The GTPase domain has intrinsic GTPase activity, whilst the helical domain forms a lid over the nucleotide binding pocket preventing nucleotide dissociation. Upon activation of the G protein the helical domain rotates out from the GTPase domain and

structural changes in the nucleotide binding pocket allow GDP dissociation and GTP association (Rasmussen et al., 2011b). The full structure of the heterotrimeric G protein is shown in figure **1.5**. The  $\beta_2$ AR is understood primarily to signal through the stimulatory G protein G $\alpha_s$ . Structural studies of agonist- $\beta_2$ AR-G $\alpha_s$  (Rasmussen et al., 2011b) (Zhang et al., 2020) complexes show that outward displacement of the TM6 of  $\beta_2$ AR allows binding of the G<sub>s</sub> heterotrimer via the G $\alpha_s$  GTPase domain. The C terminus of the activated G $\alpha_s$  projects into the transmembrane core of the receptor and appears to displace the  $\alpha$ 5 helix which propagates structural changes to disrupt the nucleotide binding pocket, leading to the displacement of GDP. Cytoplasmic GTP then associates activating the heterotrimeric G protein so that the  $\alpha$  and  $\beta\gamma$  subunits dissociate.

#### 1.4.2 Downstream signalling by heterotrimeric G proteins

Both  $\alpha$  and  $\beta\gamma$  subunits may activate further signalling molecules for example G $\alpha_s$  commonly activates adenylyl cyclases (AC) (Tang et al., 2016), which then goes on to activate the conversion of ATP into cyclic 3',5'- adenosine monophosphate (cAMP).  $\beta\gamma$  subunits has been shown to independently directly activate inward rectifying potassium channels (GIRKs) (Logothetis et al. 1987), various isoforms of phospholipase C (PLC) (Kresge, et al 1992) and SNAP-25 (Blackmer et al., 2005) which is directly involved in neurotransmitter release. G protein signalling is terminated when GTP is hydrolysed to GDP through the intrinsic GTPase activity of the  $\alpha$  subunit. The G protein activation cycle is summarised in figure **1.2**.



Reassembly of heterotrimeric G protein

Figure 1.2: Ligand induced G protein activation by the  $\beta_2$ AR: GPCRs can signal through G proteins whereby GPCR- G protein coupling activates the G protein through nucleotide exchange releasing G $\alpha$  and G $\beta\gamma$  subunits which go on to initiate downstream signalling.  $\beta_2$ AR activates G $\alpha_s$  which couples AC whilst  $G\beta\gamma$  subunits can initiate several responses including the direct activation of ion channels. Adapted from (Rasmussen et al. 2011).

#### 1.5 GPCR pharmacology

#### 1.5.1 Drug receptor theory

Naturally, to affect the activity of any receptor a ligand must firstly bind to that receptor. Ligand binding can be described by the law of mass action as shown in equation **1.1**.

# $\begin{array}{l} K_{off} \\ Ligand + Receptor & \leftrightarrows \\ K_{on} \end{array} Ligand. Receptor. \end{array}$

**Equation 1.1:** Lligand binding can be described by the law of mass action, whereby ligand binds with the receptor to give the ligand-receptor complex.

The affinity of a ligand for a receptor can be described by the equilibrium dissociation constant  $K_d$  which is the ratio of  $K_{off}/K_{on}$ .  $K_d$  can be measured in equilibrium binding conditions as the concentration at which 50% of the maximal binding of the ligand at the receptor is achieved. Whilst optimising the affinity of ligand for receptor has always been considered essential in drug development, more recently the kinetic properties of the ligand are becoming increasingly recognised in pharmacodynamics (Sykes et al. 2019).

Equation **1.1** shows that the rate of association of the ligandreceptor complex is described by the  $k_{on}$  and the rate of dissociation of the complex by the  $k_{off}$  (Kenakin, 2016). The  $K_{on}$  is a second order reaction as it describes the rate at which two molecules (ligand and receptor) bind. The  $K_{on}$  is diffusion limited as this is clearly the maximum rate at which two molecules can move through aqueous solution to collide. Therefore,  $K_{on}$  cannot be greater than  $K_{on} 1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$  (D'ans et al., 1952). As  $K_{off}$  describes the dissociation of the ligand-receptor complex this a first order reaction, which is independent of the ligand concentration and entirely dependent on the specific interactions of the ligand and receptor. A ligands' residence time at the receptor is the reciprocal of  $K_{\text{off}}$ .

#### 1.5.2 The extended ternary complex model

The ternary complex model (De Lean et al., 1980) (Figure **1.3**) describes how a ligand must bind the GPCR and then in turn form an active complex with a G protein to bring about a response. The original ternary complex model evolved from the observation that guanine nucleotides affect the affinity of agonists binding to the GPCR therefore showing the co-operativity of agonists and G protein binding (De Lean, 1980). This model was then developed into the extended ternary complex model following the observation that constitutively active GPCRs could also couple G proteins in the absence of an agonist (Samamasb et al., 1993). As such, the extended ternary complex model describes how GPCR signalling through G protein coupling is subject to a number of rate-limiting steps, namely the association and dissociation rates of both the agonist and the G protein. These rates have rarely been characterised when considering agonist efficacy. However, both this model and these rates with will form the basis of our study.



Figure 1.3: The extended ternary complex model describes how G protein coupling to ligand bound GPCR is a two-step process, whereby agonist binding precedes G protein binding: A = agonist, R = receptor, G = G protein,  $R_i$  = inactive receptor,  $R_a$ = active receptor,  $\alpha$  and  $\gamma$  describe efficacy (Kenakin 2017).

#### 1.5.3 Agonists and antagonists

Once a ligand has bound to a receptor it can be classified by the type of effect it brings about. An agonist can be defined as a ligand that binds to a receptor and causes a response. The ability of an agonist to bring about a response will depend on both its affinity for the receptor and its intrinsic efficacy, that is the efficiency of the ligand to bring about the response. Agonists can be broadly categorised into three types: full, partial, and inverse. These are summarised in figure **1.4**. A full agonist can be defined as a ligand which causes the maximal possible response for the receptor in the system in question, and a partial agonist can be defined as a ligand which causes a response that is less than that of the maximal response of the receptor in the system in question. An inverse agonist is a ligand which decreases the constitutive or basal activity of a receptor. A neutral antagonist is a ligand which blocks the activity of a ligand at a receptor but does not decrease the constitutive activity of that receptor. Furthermore, it is now appreciated that a GPCR may signal through multiple pathways, and that different ligands may differentially modulate the signalling down each of these pathways. This phenomenon is known as ligand bias.

As GPCRs are important therapeutic targets for a broad range of diseases it would be advantageous to better understand agonism at the molecular level. As such we currently have very little understanding of what distinguishes a partial agonist from a full agonist or leads to biased signalling at the molecular level. A better understanding of the molecular basis of agonism may allow the design of more therapeutically useful drugs.



**Figure 1.4:** Classification of ligands according to their biological response.

#### 1.6 Current understanding of molecular basis of efficacy at GPCRs

Whilst the molecular basis of efficacy is far from understood, it is now well-established that GPCRs are highly flexible and dynamic proteins which rapidly convert between different conformations, as such any population will exist in a number of populations at any one time (Mary et al., 2012). Biophysical studies into the effect of agonists binding to populations of GPCRs show that an agonist will affect the equilibrium of receptor conformations in a population, stabilising the receptor in a number of energetically favourable conformations (Deupi & Kobilka, 2011) (Nygaard et al. 2013) (Mary et al. 2012). This may occur by conformational selection, or conformational induction or a combination of both (Zhao & Furness, 2019). This has led to the paradigm that the efficacy of an agonist to cause the receptor to couple its intracellular signalling molecule depends upon the conformations preferentially stabilised by that agonist. As such it has been hypothesized that structural studies may reveal the conformations of GPCRs responsible for different transduction efficiencies by different ligands.

### 1.6.1 Contribution of structural studies to understanding the molecular basis of efficacy

There has been a great deal of focus on obtaining x-ray crystallography and cryo-electron microscopy (cryo-EM) structures of GPCRs in complex with agonists, partial agonists, antagonists and intracellular signalling proteins (Masureel et al., 2018) (Rasmussen, Devree, et al., 2011b) (Wacker et al., 2010). These studies show a conserved mechanism for GPCR activation whereby agonist binding causes the outward movement of TM6 to allow G protein coupling. Comparison of these structures may give some insight into the molecular basis of efficacy.  $\beta_2AR$  structural studies show substantial differences in the binding poses of different  $\beta_2AR$  agonists, namely formoterol, adrenaline, salmeterol and BI-167-107, (Masureel et al., 2018)(Zhang et al., 2020) and variations in the extracellular domain of the receptor but little difference in the intracellular proportion. Zhang and colleagues (Zhang et al. 2020) show significant differences in the engagement and conformational rearrangement of the G<sub>s</sub> protein when in complex with the formoterol-  $\beta_2$ AR, compared to BI-167-107- $\beta_2$ AR. These differences may be important in the increased potency of BI-167-107 compared to formoterol (Rasmussen et al., 2011b) (Zhang et al., 2020).

Similar comparisons of structures supposed to represent conformations of different efficacies have been made for other GPCRs. For example, Warne and colleagues (Warne et al., 2011) use x-ray crystallography to compare structures of the  $\beta_1$ -adrenoceptor ( $\beta_1$ ) in complex with two partial and two full agonists. Although the thermostabilising mutations used in this study decrease the likelihood that these structures show the active state of the  $\beta_1$ AR, this study shows several differences in the initial binding and ligand-residue interactions. Warne and colleagues suggest that differences in contraction of the orthosteric ligand binding pocket, and interaction with helix 5 underlie the difference in efficacy of the full Vs partial agonists.

Furthermore, Liang and colleagues (Liang et al., 2018) use cryo-EM to investigate differences in the active structure of the GLP-1 receptor, a class B GPCR, when bound to GLP-1 and the G<sub>s</sub> biased peptide exendin-5 (Zhang et al. 2015) in complex with G<sub>s</sub>. Similarly, to the above structural studies on  $\beta_2AR$ , this study shows differences in the transmembrane domain structure of GLP-1 receptor and resulting differences in the conformation and angle of engagement of the G protein for GLP-1 and exendin-5.

Whilst these structural differences could be important in the molecular basis of efficacy, structural studies can only ever provide snapshots of the receptor conformation in its lowest energy state when bound to the ligand. Such a state is the most likely and average active receptor state, not all the states which will exist within the dynamic and heterogeneous population. Whilst these states are therefore important to understanding the active conformation, they cannot provide the entire explanation for the molecular basis of efficacy. Moreover, technical limitations of structural biology mean that structures of the agonist-GPCR state prior to G protein binding, i.e the GPCR state most likely to recruit

a G protein, cannot be obtained. Moreover, the agonist-GPCR-G-protein state cannot inform on the number or rate of productive complexes.

## 1.6.2 Contribution of biophysical studies to understanding the molecular basis of efficacy

Biophysical studies into GPCR conformational dynamics have also furthered our understanding into the molecular basis of efficacy at GPCRs. Whilst it is understood that the unliganded GPCRs exist in a dynamic landscape of numerous conformations (Mary et al., 2012) Manglik and colleagues (Manglik et al 2015) used NMR to show that even in complex with agonists the  $\beta_2$ AR remain highly dynamic and continues to interconvert between different conformations. The role of these other different conformations, intermediates in signalling and the kinetics of conversion between these states in signalling remains unknown.

NMR studies have also allowed the investigation into the agonist-GPCR state prior to G protein coupling, a state which has not been possible to obtain structurally. Such studies (Manglik et al. 2015) (Nygaard et al 2013,) show that agonist binding alone is not enough to fully stabilise the active state of a GPCR and that a G protein mimetic nanobody is required to fully stabilise the active state. Moreover, Liu and colleagues (Liu et al., 2013) investigated the conformational states of  $\beta_2AR$  bound to agonists of a range of efficacies and show efficacy dependant differences in the agonist- $\beta_2AR$  conformational state. Taken together, these studies suggest that distinct conformational states of the GPCRs are induced by different agonists with differing activity towards transducer coupling. As discussed, it has not been possible to obtain structures of agonist-GPCR complexes in the absence of a G protein or G protein mimetic although the above studies suggest the pre-coupled state to be important in transducer coupling.

#### 1.6.3 Evidence for the role of kinetics in the molecular basis of efficacy

Several studies have investigated a role of kinetics in both receptor activation and in agonist bound GPCR to G protein complex formation in the molecular basis of efficacy. For example, Nikoleav and colleagues (Nikolaev et al., 2006) use FRET to show a correlation between the rate of  $\alpha_{2A}$ -receptor activation, G<sub>i</sub> protein activation and ligand efficacy, suggesting faster GPCR-G protein kinetics to play a role in the molecular basis of efficacy. Moreover, Gregorio and colleagues (Gregorio et al., 2017) show that full agonists at the  $\beta_2AR$  show increased GTP turnover compared to partial agonists, suggesting an increased number of G proteins being activated. Similarly, this study also showed that the rate and/or amplitude of receptor TM6 movement, and complex stability also correlated with ligand efficacy. This suggests that differences in efficacy may result from an increased rate of G protein activation as a result of either increased TM6 displacement of increase rate or TM6 movement. Furthermore, Furness and colleagues (George et al. 2016) investigated the rate of G protein and GTP turnover by the human calcitonin (CT) receptor and show that these are increased in response to the higher efficacy human calcitonin peptide (hCT) compared to the lower efficacy salmon calcitonin peptide (sCT). Collectively, these studies suggest agonists of higher efficacy increase the rate of GPCR activation by the GPCR through conformational differences in the receptor.

Overall, our understanding of the molecular basis of GPCR activation and GPCR ligand efficacy remains limited. Whilst structural studies have shown some insight into the conformations of different signalling complexes, we have not been able to characterise the dynamic conformational landscapes of ligand-GPCR complexes or of the kinetic relationships between these, ligands and signalling proteins. Whether or not all G proteins recruited to a GPCR undergo productive nucleotide exchange also remains to be elucidated.

# 1.7 Evidence for a role of ligand binding kinetics in the molecular basis of efficacy

Aside from GPCR-G protein complex kinetics several studies have shown correlations between ligand residency time and drug efficacy. For example, a positive correlation has been shown between the efficacy of seven agonists at the M3 muscarinic receptor, and ten agonists at the A<sub>2A</sub> receptor and their ligand residence time (Sykes, et al. 2009) (Guo et al., 2012). Conversely, no correlation between efficacy and residency time was shown for the Adenosine A<sub>1</sub> receptor (Louvel et al., 2014). The molecular basis for these differences in ligand residency time nor how this related to differences in efficacy is not understood. It was not possible to find any studies addressing how ligand and G protein kinetics correlate.

#### 1.8 GPCR molecular pharmacology in the cellular environment

It is also understood that, aside from the ability of the ligand to stabilise the active complex there are many regulatory mechanisms in both the cell and the cell membrane which will modulate the ability of the ligand-receptor complex to couple intracellular signalling molecules.

#### 1.8.1 Modulation of GPCR dynamics by the cell membrane

Firstly, it has been shown that membrane composition can influence receptor function, in the context of both ligand binding and signalling. For example, cholesterol has been shown to affect ligand-GPCR binding both allosterically to Cannabinoid receptor 1 (CB1) in rat glioma (Bari et al., 2005) and orthosterically to the Adenosine-2A receptor (A<sub>2A</sub>) (Guixà-González et al., 2017). Indeed, in the context of the  $\beta_2$ AR, cholesterol has been shown to associate with the receptor in structural studies (Cherezov et al., 2007) and to greatly improve  $\beta_2 AR$ stability (Zocher et al., 2012). Moreover, cholesterol depletion has been shown to increase  $\beta$ -adrenoceptor signalling in cardiac myocytes (Paila et al., 2011). Additionally, Strohman and colleagues (Strohman et al., 2018) showed that modification to the lipid content of detergent/lipid micelles affected  $\beta_2$ AR to G<sub>i3</sub> coupling and G<sub>i3</sub>-mediated Ca<sup>2+</sup> signalling. Taken together these studies, suggest that local membrane composition is specifically important in regulating  $\beta_2$ AR pharmacology, and therefore that cell type or the method of  $\beta_2AR$  solubilisation is an important consideration for a physiologically relevant study.

#### 1.8.2 Modulation of GPCR signalling by cellular regulation

The ability of the protein to signal intracellularly will also depend upon the local concentration of downstream signalling molecules relative to receptor concentration. Clearly, both receptor and signalling molecule need to be present for the signalling response in question to take place. Both receptor and G protein expression varies across the body and even across different locations in the cell (Dick et al., 2010), therefore affecting the ability of the GPCR to signal. Moreover, it is well established that increased receptor expression levels allow a ligand to induce a more efficacious response (Zhao and Furness 2019). Additionally Halls and colleagues showed how differential organisation of the  $\mu$  opioid receptor on the plasma membrane is linked to differential spatiotemporal signalling responses intracellularly by the agonists morphine and DAMGO, (Halls et al., 2016).

Overall, cellular regulation of GPCRs and their signalling transducers play an important role in modulating pharmacology and are important considerations for experimental design and understanding the molecular basis of efficacy.

#### 1.9 Methods to extract proteins from the plasma membrane

Considering the complexity of receptor pharmacology in the cellular environment this study chose to study  $\beta_2AR$  in isolation. To study membrane proteins in the absence of the cellular regulation the membrane protein must be extracted from the plasma membrane. Finding conditions that mimic the membrane protein's native environment and allow the membrane protein in question to remain active and folded has generally proven a difficult task for biochemists.

Most often, detergents are used to extract membrane proteins from the plasma membranes. Detergents can be defined as any agent that consists of a polar hydrophobic head group and nonpolar hydrophilic tail. Whilst soluble in aqueous solution detergent molecules will aggregate into micelles, this process is known as micellization. These properties, and those of the plasma membrane, mean that the detergent molecules are able to incorporate into the plasma membrane via the lipophilic tail and therefore extract membrane proteins within a detergent micelle. The detergent micelle serves to mimic the hydrophobic environment of the cell membrane whilst hydrophilic head groups mean that the protein containing micelle remains soluble in aqueous solution. The ability of the detergent to disrupt the plasma membrane and its contents depends on the net charge of the head group. As such ionic detergents such as sodium dodecyl sulphate (SDS) are the harshest types of detergents. Such detergents disrupt protein-lipid interactions and inter- and intramolecular protein-protein interactions and are therefore most often denaturing to the protein. Non-ionic detergents such as maltosides (e.g n-dodecyl  $\beta$ -D-maltoside) will disrupt only lipid-protein interactions and are therefore useful for extraction of functional membrane proteins from the lipid bilayer.

Whilst detergents have classically been used to extract proteins from the plasma membrane it is generally accepted that the detergent micelle far from fully recapitulates the plasma membrane environment. Use of detergents often results in poor protein stability and inactivity. Multiple studies have improved protein stability by reconstitution of the detergent solubilised receptor in synthetic nanodiscs (Skrzypek et al., 2018). Such nanodiscs are typically 8-16nm in diameter and consist of a phospholipid bilayer encircled by a helical 'membrane scaffold protein' (MSPs). Whilst synthetic nanodiscs are clearly advantageous over detergents, their use still has the disadvantages of still requiring detergents to initially extract the membrane protein from the lipid bilayer, which may irreversibly have damaged the protein. Furthermore, the lipids within the synthetic nanodisc are not identical to the plasma membrane and are clearly different from the specific native phospholipids of the isolated protein. The precise content of the phospholipid bilayer has been shown to modulate the function of many membrane proteins (Strohman et al., 2018) and is therefore clearly important in the study of the native receptor.

Recently, it was realised that styrene maleic acid copolymer (SMA) will incorporate into biological membranes and self-assemble into

nanoparticles known as Styrene Maleic Acid Lipid Particles (SMALPs) (Knowles et al., 2009) (Stroud, et al., 2018). This provides a novel mechanism for isolating a membrane protein within its native phospholipids whilst avoiding use of detergents at any stage. SMALPs have already been used to isolate a range of membrane proteins (Dörr et al., 2014) (Sun et al., 2018) (Gulati et al., 2014) including GPCRs (Bada Juarez et al., 2020) (Jamshad et al., 2015). Although the mechanism by which SMA polymer disrupts the plasma membrane and self-assembles into nanodiscs is not completely understood, coarse grain molecular dynamic simulations have given some insight. These simulations show that styrene moiety of the SMA copolymer binds to the membrane, inserting into the core of the membrane, underneath the phosphate headgroups via hydrophobic interactions. As polymers disrupt the membrane, they cause the membrane to bend, and the polymer creates pores in the membrane to grow until all of the membrane has self-assembled into nanodiscs. These simulations showed just one polymer chain per nanodiscs.

Whilst use of SMALPs has significant advantages, they also bring a number of limitations. Firstly, SMALPs are disrupted by divalent cations, which hinders biophysical study of any process where cations are required as a cofactor, for example ATP hydrolysis. Furthermore, SMALPs also precipitate out of solution when exposed to a pH below 7 and the high UV absorbance of the SMA polymer makes optical spectroscopic studies of membrane proteins that are encapsulated within SMALPs challenging (Oluwole et al., 2017a). Additionally, there is evidence that the conformational flexibility of GPCRs within SMALPs is restricted, (Mosslehy et al., 2019) (Routledge et al., 2020) and therefore that the conformational dynamics of the SMALP encapsulated protein may differ from that of the native protein. The copolymer Diisobutylene maleic acid (DIBMA), was developed specifically for the extraction of membrane proteins from the intact bilayer (Oluwole et al., 2017b). Compared to SMALPs, DIBMALPs are believed to have only a mild effect on lipid packing, be compatible with optical spectroscopy in the far UV range and tolerate low millimolar concentrations of divalent cations (Oluwole, et al., 2017a). This makes DIBMA far more amenable for functional biophysical studies. Although the disk size of SMALPs is believed to vary with different ratios of styrene to maleic acid, DIBMALPs are generally thought to have a larger hydrodynamic radius. The diameter of SMALPS and DIBMALPs have been characterised at 13nm and 29nm respectively (Oluwole et al., 2017a).

### 1.10 Mini-G<sub>s</sub> proteins: sensors for active GPCRs

As described above G proteins are heterotrimeric, consisting of  $\alpha$ ,  $\beta$  and  $\gamma$  subunits with the G<sub> $\alpha$ </sub> subunits consist of the helical domain and GTPase domain. As such full-length heterotrimeric G proteins are dynamic complexes that are difficult to isolate. To overcome this, this study chose to utilise mini-G proteins as tools to study the dynamics of  $\beta_2AR$  activation. Mini-G proteins were developed by the Tate lab, Cambridge as a method of stabilising the active state of the GPCRs for structural studies (Carpenter & Tate, 2016) and successfully used to obtain an active structure of the A<sub>2A</sub>R. The mini-G<sub>s</sub> protein is the isolated GTPase domain of the G<sub> $\alpha$ </sub> subunit which has been engineered with several thermostabilising mutations.

In the most used mini- $G_s$ , mini- $G_s$ -393, modifications from the wild-type GTPase domain include truncation of the N terminus and switch III region, and 7 thermostabilising mutations. Thermostabilising mutations are in switch II, the nucleotide binding pocket and the  $\alpha$ 5 helix

as summarised in figure **1.5.** Biophysical characterisation of mini-G<sub>s</sub>-393 compared to other mini-G<sub>s</sub> proteins and the full length G<sub>s</sub> protein reveal that the L272D mutation prevents the mini-G<sub>s</sub>-393 coupling the  $\beta\gamma$  subunits and that the I273A mutation prevents nucleotide exchange. The thermostabilising mutations in mini-G<sub>s</sub> proteins make them rigid proteins, locked in the active state of the G<sub>a</sub> protein as shown in the agonist bound A<sub>2A</sub>R-mini-G<sub>s</sub> proteins as conformational sensors for all active states of the GPCR as opposed to 'miniature G proteins.'



Figure 1.5: A summary of the structure of the mini-G<sub>s</sub>-393 protein compared to the full length heterotrimeric G<sub>s</sub> protein: the mini-G<sub>s</sub>-393 structure is shown in magenta and is superimposed against the full length G<sub>s</sub> protein. Grey areas show deletions. Adapted from (Carpenter and Tate 2016).

Moreover, although mini-G proteins were initially developed as tools for stabilising GPCRs in the active state for structural studies, they have more recently been used as biosensors to detect the GPCR active state in living cells. This approach was first adopted and validated by Wan and colleagues (Wan, et al., 2018) who fused the venus fluorophore to the N terminus of several mini-G proteins and show that mini-G protein binding upon agonist stimulation is reversible and recapitulates the pharmacology and coupling specificity of a G protein for a range of GPCRs in mammalian cells. Furthermore, Carpenter and colleagues (Carpenter & Tate, 2016) also show that, unlike full length G proteins, mini-G proteins can be expressed and purified from *E. coli* in large yields, making their production easy and cheap. Based on this literature mini-G<sub>s</sub> proteins were chosen for this study, as tools to investigate the kinetics of G protein recruitment to the  $\beta_2AR$  in response to agonists of different efficacies and kinetics.
# 1.11 Aims and Objectives

Considering the limited understanding of the molecular basis of efficacy, this study aimed to further our understanding by investigating a role for kinetics. The hypothesis underlying this study was that ligand residence time effects  $\beta_2AR$  receptor conformational dynamics to affect  $G_s$  protein activation efficacy. For example, a ligand of longer or shorter residence time could allow more G proteins to be activated. The overarching aim of this study was to investigate the correlations between agonist kinetics,  $\beta_2AR$  conformational dynamics and agonist ability to induce  $G_s$  activation at the  $\beta_2AR$ . Studying this in a purified protein system allows the molecular dynamics of the receptor itself to be investigated in isolation from the complex cellular and subcellular regulation discussed above. The main objectives were:

- 1. To investigate the applicability of the polymer DIBMA to extract the  $\beta_2$ AR from mammalian cells in a functional state.
- 2. To characterise the ligand binding and  $G_s$  protein activation efficacy of eight partial and full  $\beta_2AR$  agonists.
- 3. To investigate mini-G<sub>s</sub> binding kinetics to  $\beta_2AR$  in the presence of these eight agonists.

# Chapter 2 Materials and methods

# 2.1 Materials

## 2.1.1 Mammalian cell culture reagents:

The T-REx<sup>™</sup>-293 cell line was obtained from Invitrogen (CA, U.S.A). HEK293T/17 cells were obtained from American Tissue Culture Collection (ATCC) (VA, U.S.A.). T75 and T175 mammalian cell culture flasks were purchased from Fisher scientific (Loughborough, UK). All cell culture reagents, including Phosphate Buffered Saline (PBS) and Fetal Calf Serum (FCS) were purchased from Sigma Aldrich (Gillingham, UK), except for blastocidin which was obtained from Gibco<sup>™</sup> (MA, U.S.A) and zeocin<sup>™</sup> and sheared salmon sperm from Invitrogen (MA, U.S.A). SNAP labelling reagents (SNAP-surface Alexa Fluor-488 and SNAP-surface Alexa Fluor-647) were purchased from New England Biolabs (NEB) (Hitchen, U.K.). Tag-lite SNAP-Lumi4-Tb labelling reagent and LabMed buffer was purchased from Cisbio (Codolet, France). Polyethylenimine (PEI) (25kDa) was obtained from Polysciences Inc (PA, U.S.A), and CellStar® 96 well tissue culture plates from Greiner Bio-One (Kremsmünster, Austria).

# 2.1.2 Molecular biology reagents:

Phusion® high fidelity PCR Master mix, Beta-NAD<sup>+</sup>, Taq DNA Ligase, T5 exonuclease and chemically competent *E. coli* cells were obtained from NEB (Hitchen, U.K). Gelpilot loading dye, Qiagen MiniElute reaction clean up kit, QIAprep spin miniprep kit were obtained from Qiagen (Hilgen, Germany). NTPs were obtained from Promega (WI, U.S.A), Phusion polymerase from Thermoscientific (MA, U.S.A). SYBER safe and Generuler 1kb DNA ladder were from Thermofisher (MA, U.S.A).

#### 2.1.3 Protein purification materials:

DIBMA and DDM were obtained from Anatrace (OH, U.S.A). 5% Magstrep 'type3' XT magnetic bead suspension was obtained from IBA Lifesciences (Göttingen, Germany). Yarra 1.8µm SEC-x300 2.5mL column was obtained from Phenomenex, (CA, U.S.A). cOmplete<sup>™</sup> Protease inhibitor cocktail was obtained from Roche (Basel, Switzerland). HisTrap FF crude 5mL columns were obtained from GE Healthcare (IL, U.S.A). Vivaspins® protein concentrators were obtained from Sartorious (Göttingen, Germany). Slide-a-Lyzer<sup>™</sup> dialysis cassettes, Nupage<sup>™</sup> LDS sample buffer, Nupage<sup>™</sup> 4-12% Bis-Tris 15 x 1.0mm well gels, Nupage<sup>™</sup> MOPs SDS running buffer, Pageruler<sup>™</sup> prestained protein ladder and BODIPY<sup>™</sup> F-L-cystine dye were all obtained from Thermofisher (MA, U.S.A).

# 2.1.4 Compounds:

 $\beta_2$ AR antagonist [(S)-propranolol-green] (CA200693), (S)propranolol-red (CA200689) and fluorescent XAC (CA200634) were all from CellAura, UK, and supplied by Hello Bio, (Bristol, U.K) (s)-(-)-Propranolol hydrochloride, cyanopindolol hemifumerate and salmeterol were obtained from Tocris, (Bristol, U.K). ICI 118, 551 hydrochloride was obtained from Selleckchem, (Munich, Germany), Formoterol hemifurate from APExBIO (TX, U.S.A), and BI-167-107 from Boehringer Ingelheim (Ingelheim, Germany). (±)-epinephrine hydrochloride, noradrenaline, salbutamol hemisulfate and isoprenaline hydrochloride were purchased from Sigma Aldrich (Gillingham, UK). C26 was a gift from Professor Steven Charlton. Nano-Glo® luciferase substrate was obtained from Promega (WI, U.S.A). All other chemicals were purchased from Sigma Aldrich (Gillingham, UK).

## 2.2 Methods

# 2.2.1 Molecular biology

# The constructs used in this study:

This study required the production of both GPCRs and mini-G proteins. The GPCRs  $\beta_2AR$ , and  $A_{2A}R$  were expressed in mammalian cells using the plasmid pcDNA4TO with a Twin-strep and SNAP tag on the N terminus of the GPCR. These constructs were made by Franziska Heydrenreich and Brad Hoare respectively according to the methods below. The construct pcDNA4TO-TS-SNAP- $\beta_2ARnLuc$  was also made by Brad Hoare and the construct pcDNA3- $A_{2A}nLuc$  by Mark Soave.

Venus and Halo-tagged as well as unlabelled mini-G<sub>s</sub> constructs were expressed in bacteria in the vector PJ411(Kan) (appendix 7.1.4). These mini-G<sub>s</sub> sequences were a kind gift from Nevin Lambert which were then recloned into the PJ411 vector containing MKK HIS10 TEV (Flock et al., 2016) to give the constructs MKK HIS10 TEV Halo mini-G<sub>s</sub>, MKK\_HIS10\_TEV\_venus\_mini-G<sub>s</sub>, and MKK\_HIS10\_TEV-mini-G<sub>s</sub>, according to the methods below. This cloning strategy is summarised in figure **2.1**. MKK is a tag that is often used to improve the expression levels of bacterially expressed recombinant proteins. Its DNA encoding sequence (ATGAAAAAA) improves flexibility of the RNA and therefore ribosome priming. His10 is a purification tag consisting of 10 Histidine residues which has a high affinity for nickel and hence acted as an affinity purification tag for the protein. TEV refers to the sequence Glu-Asn-Leu-Tyr-Phe-Gln-Gly-Gly-Ser which can be cleaved specifically at the Gly/Ser junction by the cysteine protease Tobacco Etch Virus (TEV). This enables removal of the MKK HIS10 post purification. Mini-G<sub>s</sub> constructs were optimised for bacterial expression as this was the preferred expression system for cost, protein yield and ease.

Mini-G<sub>s</sub> proteins and the biosensor CASE-G<sub>s</sub> were also expressed in mammalian HEK cells. The mammalian mini-G<sub>s</sub> constructs were a gift from Nevin Lambert (Wan, et al., 2018). CASE G<sub>s</sub> constructs were generated by Hannes Schihada and colleagues (Schihada et al., 2021) and were obtained from Addgene. Full vector maps of all constructs can be found in the appendix's sec (**7.1.1**).

## Polymerase chain reaction

The polymerase chain reaction (PCR) is a procedure used to amplify a single strand of DNA as dictated by the designed primers. To generate the mini-G<sub>s</sub> constructs PCR was used to amplify the Halo-mini-G<sub>s</sub>, venus-mini-G<sub>s</sub> and mini-G<sub>s</sub> DNA sequence and the PJ411\_ MKK\_HIS10\_TEV vector. These primers are summarised in table **2.1**. Primers were designed using 'PCRcloning' software, a part of the AAScan suite (Sun et al., 2013). Which optimised the melting temperature (T<sub>m</sub>) to 65°C and ensured a CG clamp. For this project, overhangs were added to mini-G<sub>s</sub> inserts only for simplicity so that the same vector DNA fragments could be used for each assembly reaction.

PCR reactions were set up in 0.2mL PCR tubes and in a total volume of 20µL with a final concentration of 0.5ng/µL template, 500nM forward and reverse primers, 3% DMSO and x1 Phusion master mix in HF buffer. All dilutions were made in MilliQ deionised water. PCR reactions used a touch down protocol. A DNA denaturing temperature of 98°C was used followed by cycling down to 55°C decreasing 0.5°C at a time, for 2 x 20 cycles, this allowed primer annealing to DNA sequences. A final extension phase took place at 72°C, 2 min was used for extension phase of vector and 30 secs for mini-G<sub>s</sub> inserts due to the difference in length of these DNA sequences.

To check success of PCR reactions 2µL PCR fragments were run on a 1% agarose gel containing SYBER safe diluted 20,000 times. This allowed assessment to of correctly sized fragments and purity. Gels were run for 50 min at 100V in Tris-acetate-EDTA (TAE) running buffer, with samples loaded in Gelpilot loading dye. GeneRuler 1kb DNA ladder was used to calibrate molecular weights of fragments. The remaining PCR reaction products were incubated with *Dnp1* for 3 hours at 37°C, to digest remaining template. Fragments were then purified using Qiagen MinElute Reaction Cleanup Kit according to manufacturer's instructions.

| PCR Fragment               | Forward primer | Reverse primer    |
|----------------------------|----------------|-------------------|
| PJ411_MKK_His              | TAACCCCCTAGCAT | GGATCCACCCTGGAAGT |
| 10_TEV                     | AACCCCTTGGGGC  | ACAGGTTTTC        |
|                            | СТС            |                   |
| Halo-mini-G <sub>s</sub>   | TTCCAGGGTGGATC | TATGCTAGGGGGTTATC |
| insert                     | CATGGCAGAAATCG | TAGCAAATTCCGGGAAG |
|                            | GTACTGGCTTTCCA | TAGTCCTCAATC      |
|                            | TTC            |                   |
| Venus-mini-G <sub>s</sub>  | TTCCAGGGTGGATC | TATGCTAGGGGGTTATC |
| insert                     | CGTGAGCAAGGGC  | TAGCAAATTCCGGGAAG |
|                            | GAGGAGCTG      | TAGTCCTCAATC      |
| Mini-G <sub>s</sub> insert | TTCCAGGGTGGATC | TATGCTAGGGGGTTATC |
|                            | CATCGAGAAACAAT | TAGCAAATTCCGGGAAG |
|                            | TGCAGAAAGACAAA | TAGTCCTCAATC      |
|                            | CAGGTC         |                   |

**Table 2.1** A summary of the primers used to clone Halo and Venustagged and untagged miniG<sub>s</sub> protein into the PJ411\_MKK\_His10\_TEV vector

# Gibson assembly reactions

Gibson assembly (Gibson et al., 2009) is a method for the assembly of multiple fragments of DNA. In short, DNA fragments are designed with overlapping ends and produced by PCR. The Gibson assembly reaction then uses T5 exonuclease to chew back overlapping ends of single stranded DNA from the 5' end so that complementary regions of DNA fragments will anneal to each other. A polymerase then closes any gaps in the DNA, before a DNA ligase covalently links the DNA fragments together.

In these Gibson assembly reactions insert and vector PCR fragments were incubated for 1 hour at 50°C in a molar ratio of 1:3 (vector:insert), where 50ng of DNA was used for the vector. Assembly reactions took place in 10uL. Where 2.5µL consisted of DNA 50ng and 7.5µL consisted of home-made Gibson assembly master mix. Assembly master mixture was prepared by combining 320µL 5xisothermal reaction buffer, 0.64µL of  $10U/\mu L^{-1}$  T5 exonuclease, 20 µL of  $2U/\mu L^{-1}$  Phusion DNA polymerase, 160µL of 40U/µL<sup>-1</sup> Taq DNA ligase and water up to a final volume of 1.2 mL. Frozen 50µL assembly mixture aliquots were thawed and then kept on ice until ready to be used. 6mL of 5 × isothermal reaction buffer had been prepared by combining 3mL of 1M Tris-HCl pH 7.5,150µL of 2M MgCl<sub>2</sub> 60µL of 100mM dGTP, 60µL of 100mM dATP, 60µL of 100mM dTTP, 60µL of 100 mM dCTP, 300µL of 1M DTT, 1.5 g PEG-8000 and 300µL of 100mM NAD. Where assembly reactions were unsuccessful, assembly reactions were repeated using NEB DNA assembly master mix E2621L.

## Transformation of competent cells

Chemically competent Turbo *E. coli* cells were thawed on ice for approximately 20min.  $50\mu$ L of these competent cells were transferred to a fresh, sterile 0.5mL eppendorf microcentrifuge tube and used for each transformation.  $2\mu$ L assembly reaction was added to competent cells in proximity to a Bunsen burner to create sterile conditions and incubated for 20min on ice. This allowed the DNA to associate with the outer membrane of the competent cells. Cells were then heat shocked for 1 min at 42°C using a heat block and then placed back on ice. Heat shocking allowed the plasmid to pass through the cell membrane and into the cell cytoplasm. Cells were then incubated at 37°C and 225RPM in 500 µL Lennox's Broth (LB). in a shaking incubator. This allowed the cells to recover and begin replicating and expressing the plasmid. Cells were then spun out (14,000xg for 5min) of LB and plated onto room temperature LB agar plates containing 50µg/mL kanamycin. Again, this was done in close proximity to a Bunsen burner to maintain sterility. The plates were then incubated at 37 °C overnight (approximately 15h) upside down so that condensation did not interfere with bacterial colony development. Only colonies that had taken up the PJ411 plasmid were resistant to kanamycin. Using a sterile pipette tip colonies were removed to a 15mL U-bottomed tube containing 5mL LB with 50µg/mL kanamycin and left at 4°C for approximately 8h.

#### Minipreps of DNA

5mL cultures (as described above) were incubated overnight at 37°C and 225RPM overnight. This allowed the bacteria containing the plasmid to reproduce, therefore amplifying the DNA. The following morning bacteria were pelleted at 4122*xg* and DNA isolated using the QIAprep spin miniprep kit used according to manufacturer instructions.

This miniprep system extracts DNA using a spin column system. Firstly, cells were lysed under alkaline conditions which allowed selective denaturation of chromosomal DNA, but not the covalently closed circular DNA plasmid of interest. This solution was then neutralised which simultaneously aggregated chromosonal DNA and bacterial plasmids (Birnboim & Doly, 1979) so that these contaminates could be removed through centrifugation. Neutralisation (N3) buffer also contained a high concentration of salts therefore allowing nucleic acids to bind to the silica spin column. Therefore, contaminants such as RNA and other cellular metabolites could be removed in the column flow through via centrifugation before circular DNA was eluted from the spin column using the low salt containing (EB) buffer.

# **DNA** sequencing

All DNA sequencing was performed by Genewiz UK. Generally, 50-100ng DNA was sent for sequencing. To confirm successful cloning of the MKK-His10-mini-G<sub>s</sub> constructs minipreps were sequenced with T7 forward primer (5'TAATACGACTCACTATAGGG) and a primer specifically designed to bind just downstream of the mini-G<sub>s</sub> stop codon (5'GGTTGGGGTTATGCTAGGG) which was called PJ411\_R



Figure 2.1: Schematic of cloning strategy for mini-G<sub>s</sub> constructs by PCR and Gibson assembly: A) PJ411 vector containing MKK His10 and TEV (PJ411\_MKK\_His 10\_TEV) and relevant mini-G<sub>s</sub> insert were amplified by PCR B), these PCR fragments were then assembled by Gibson assembly to give the resulting construct PJ411\_MKK\_His 10\_TEV\_halo-mini-G<sub>s</sub> shown in C)

#### 2.2.2 Mammalian cell culture

The T-REx<sup>™</sup>-293 cell line is a Human Embryonic Kidney 293 (HEK293) line which has been stably transfected with pcDNA6<sup>™</sup>/TR. This vector expresses a high level of a tetracycline repressor (tetR) under the control of the human cytomegalovirus immediate early (CMV) promotor. T-REx<sup>™</sup>-293 cells were co-transfected with pcDNA4TO containing the protein of interest under the control of the CMV promoter containing a tet-Operator. Expression of the protein of interest could then be induced with tetracycline which inhibits tetR repression of the protein of interest. This system was first described in (Yao et al., 1998). This system was chosen to obtain high protein expression and used for all small-scale protein production throughout this thesis.

HEK 293T/17 cells were used for all transient transfections. HEK 293T cells are HEK293 cells which contain the SV40 large T antigen, which enables then to produce recombinant proteins under the control of the SV40 promotor. HEK 293T/17 cells descend from clone 17 of these cells which was showed high transfectability.

T-REx<sup>TM</sup>-293 cells were maintained in high glucose Dulbecco's modified Eagle's medium with 10% FCS,  $5\mu g/\mu L$  blastocidin and  $20\mu g/\mu L$  zeocin (growth medium). Blasticidin and zeocin are used in T-REx<sup>TM</sup>-293 stable cell line culture to maintain pcDNA6<sup>TM</sup>/TR and pcDNA4TO expression respectively. HEK 293T/17 cells were maintained in DMEM with 10% FCS. Cells were grown in cell culture incubators at 37°C and 5% CO<sub>2</sub> in a humified atmosphere.

# Passaging of cells

Adherent T-REx<sup>™</sup>-293 cells and HEK 293T/17 cells were generally maintained in 75cm<sup>2</sup> or 175cm<sup>2</sup> tissue culture flasks until 90% confluent. When passaging was required, media was aspirated from the flasks and flasks were washed with 10mL PBS prior to detachment with 2mL trypsin-EDTA for 2min at 37°C. Detached cells were washed off

flasks, and trypsin deactivated with 10mL growth medium. Cells were then pelleted by centrifugation at 362*xg* for 5min. Supernatant was aspirated and cells were resuspended in growth medium before transfer to a new tissue culture flask. All cell culture was performed in a class II tissue culture hood and using sterile technique.

## Induction of protein expression in T-REx<sup>™</sup>-293 cell

Protein expression was generally induced in T-REx<sup>™</sup>-293 cells when cells were 70% confluent in T175 tissue culture flasks using 1µg/mL tetracycline. Cells were allowed to express for a further 50 h before experimentation. Expressing cells were detached as above but using non-enzymatic cell dissociation solution instead of trypsin and washing with PBS. This was so that membrane proteins were not internalised in response to trypsin. Pelleted cells were immediately frozen at -80°C until further use.

# Cryopreservation of mammalian cells

For long term storage cells were stored in liquid nitrogen or its vapour. For cryopreservation 80% confluent cells were detached as above but resuspended in cell freezing media consisting of 10% DMSO and 90% FBS after centrifugation. Cells were resuspended in freezing media at a density of one T175 flask of cells per 10mL freezing media and stored in 1mL aliquots in 2mL cryovials. Cryovials were then transferred to a CoolCell freezing system container and cooled to -80°C at a rate of 1 °C/min. Cells were transferred from the -80°C freezer to a dewar containing liquid nitrogen for long term storage.

#### Recovery of cryopreserved mammalian cells

To recover cells from liquid nitrogen vials were thawed rapidly at 37°C in a water bath and diluted ten-fold into growth medium. Cells were pelleted by centrifugation at 362*xg* for 5min and then resuspended in growth medium before transfer to tissue culture flasks. Cells were

allowed to adhere for 24h before growth media was changed to removed cell debris from cryopreservation.

## Generation of stable cells lines

Four T-REx<sup>TM</sup> -293 stable cell lines were used in this study expressing either pcDNATO-TS-SNAP-A<sub>2A</sub>, pcDNA4TO-TS-SNAP- $\beta_2$ AR, pcDNA4TO-TS-SNAP- $\beta_2$ ARnLuc or pcDNA4TO-TS-SNAP- $\beta_2$ AR and Clontech-style N1-CASE G<sub>s</sub>. For generation of these cells lines T-REx<sup>TM</sup> -293 cells were transfected with 5µg DNA using PEI in a ratio of 1:3 DNA:PEI in Opti-MEM<sup>TM</sup> media, in T75 flasks when cells were 70% confluent. Cells were incubated with DNA for 24h at 37°C and 5% CO<sub>2</sub>. After 48h media was changed for selection media, which was normal growth media with 20µg/mL zeocin for T-REx<sup>TM</sup> -293 cells and 500µg/mL G418 for CASE G<sub>s</sub> cells. Cells were incubated with selection media until all cells in a corresponding untransfected flask died.

## Fluorescence-Activated Cell sorting (FACS)

T-REx<sup>TM</sup>-293 pcDNA4TO-TS-SNAP- $\beta_2$ AR CASE G<sub>s</sub> stable cell line was sorted into mixed populations and single cells based on both TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> expression levels. The CASE G<sub>s</sub> expression was detected using the venus fluorophore on the Gy subunit and TS-SNAP-β<sub>2</sub>AR via SNAP Surface Alexa-Fluor®647 labelling. Cells were labelled as described in sec **2.3**. Untransfected T-REx<sup>TM</sup>-293 cells were used as a negative control and a T-REx<sup>™</sup>-293 cell line stable expressing SNAP-Cannabinoid receptor 1 (CB1) and β-arrestin-2-venus was used as the positive control. Protein expression had been induced for 48h with 1µg/mL tetracycline prior to detachment for FACS. Cells were detached from T75 flasks using non-enzymatic cell dissociation solution according to Section 2.2. Cells were resuspended in DMEM with 10% FBS, 100 U/mL penicillin and 100µg/mL Streptomycin and diluted to 100,000 cells/mL. T-REx<sup>TM</sup>-293 pcDNA4TO-TS-SNAP-β<sub>2</sub>AR CASE G<sub>s</sub> cells were sorted in the University of Nottingham Flow Cytometry Facility using Coulter Astrios EQ sterile cell sorter. FACS was conducted at room temperature and thresholds fluorescence set against untransfected cells. Gating took place using venus and Alexa-Fluor®647 fluorescent intensity. Mixed populations were placed in T75 flasks and single cells into 96 well cell culture plates. Media was replaced regularly. When single cells formed colonies, they were expanded to T25 flasks before passaging to T75 flasks.

## Transient transfection

For all pcDNA4TO-TS-SNAP- $\beta_2$ AR, pcDNA4TO-TS-SNAP- $A_{2A}$ R CASE G<sub>s</sub> or venus-mini-G<sub>s</sub> transient transfections HEK293T/17 or occasionally T-REx<sup>TM</sup>-293 cells were transfected in suspension. Cells were detached from flasks when 60-70% confluent using trypsin. Transfections took place using 0.8µg/mL DNA at a 3:1 ratio with PEI in OptiMEM<sup>TM</sup> media. Sheared salmon sperm was used to normalise DNA to 0.8µg/mL, where less than 0.8µg/mL receptor or biosensor was used. Transfection mixtures were vortexed thoroughly and incubated at room temperature for 20 min before addition to cells suspensions in growth media. Cell suspensions containing transfection mixtures were plated onto PDL coated white 96-well cell culture plates and incubated for 48h at 37°C and 5% CO<sub>2</sub>.

## 2.2.3 NanoBRET

Bioluminescence Resonance Energy Transfer (BRET) occurs when the emission spectra of a donor luciferase overlap with the excitation spectra of an acceptor fluorophore, such that the nonradiative transfer of energy can occur and cause the acceptor to be excited and emit light of a longer wavelength. BRET will occur only when the acceptor and donor are in proximity (<10nm), as such BRET is well suited to studying protein-protein interactions in real time.

NanoBRET refers to BRET which utilises the Nanoluc (nLuc) luciferase, which an engineered luciferase subunit from the deep-sea shrimp Oplophorus gracilirostris (Hall et al., 2012). NanoLuc represents an improved luciferase in comparison to previously development renilla luciferase (RLuc) or firefly luciferase (FLuc) which is around 150 times brighter, has a narrower bioluminescent spectrum and is half the size (19kDa). NLuc therefore increases the sensitivity of BRET, range of acceptor fluorophores that can be utilised and is less likely to affect the function of the protein of interest (Machleidt et al., 2015). Moreover, in parallel, Hall and colleagues, (Hall et al., 2012) developed the improved nLuc substrate furimazine, which, when paired with nLuc in mammalian cells is 2.5 million-fold brighter relative to the native Oplophorus gracilirostris enzyme subunit Oluc-19 with the conventional substrate coelenterazine. The development of nLuc and furimazine, have therefore increased the sensitivity and therefore application of BRET, providing an improved method for investigating the protein-protein interactions in our study.

# 2.2.4 Venus-mini-G<sub>s</sub> recruitment BRET assays in HEK293T/17 cells

For venus-mini-G<sub>s</sub> recruitment assays HEK293T/17 cells were plated at a density of 30,000 cells/well in 100 $\mu$ L. 48h later media was aspirated from 96 well plates containing HEK293T/17 cells transiently transfected with pcDNA4TO-TS-SNAP- $\beta_2$ ARnLuc or pcDNA3.1-A<sub>2A</sub>RnLuc and venus-mini-G<sub>s</sub> in a ratio of 1:9, receptor to venus-mini-G<sub>s</sub>. Plates were washed twice with  $100\mu$ L /well HBSS, to remove excess media.  $80\mu$ L/well assay buffer (HBSS + 0.1% BSA) was added to plates.  $10\mu$ L of x10 furimazine diluted in assay buffer was added to each well and plates were incubated at 37°C and 5% CO<sub>2</sub> for 20min. A white back seal was placed on underside of plate and luminescence was read on PHERAstar FSX using 450-80/550LP module. Online PHERAstar injectors were used to add  $10\mu$ L of x10 ligand dilutions to the plate. Saturating concentrations of Isoprenline ( $100\mu$ M), ICI 118, 551 ( $100\mu$ M), NECA ( $10\mu$ M) and ZM241385 ( $1\mu$ M) were used.

## 2.2.5 CASE-G<sub>s</sub> activations BRET assays

For CASE-G<sub>s</sub> activation assays HEK293T/17 cells transiently transfected with pcDNA4TO-TS-SNAP- $\beta_2$ ARnLuc and CASE-G<sub>s</sub> at various transfection ratios and plated at a density of 50,000 cells/well in 100µL. Alternatively, T-REx<sup>TM</sup>-293 pcDNA4TO-TS-SNAP- $\beta_2$ ARnLuc + 500ng or 1000ng CASE-G<sub>s</sub> stable cell line were plated at 50,000 cells/well in 100µL and induced for 48h with 1µg/mL tetracycline. Plates were prepared for BRET assays as described for venus-mini-G<sub>s</sub> recruitment assays, and then read on PHERAstar FSX using 450-80/550LP module for 3 min to establish a basline BRET signal. The plate reader was then paused and 10µL of x10 ligand dilutions were added to plate offline.

## 2.2.6 Production of TS-SNAP- $\beta_2$ AR from mammalian cells

#### SNAP labelling of $A_{2A}$ or $\beta_2 AR$ receptors with various fluorophores

For all TR-FRET experiments SNAP tag technology was used to label the A<sub>2A</sub>R or  $\beta_2$ AR with Lumi4-terbium (terbium cryptate). The SNAP tag is a 19.6kDa peptide tag and a mutant of the O<sup>6</sup>-alkylguanine-DNA alkyltransferase. The SNAP tag reacts rapidly and specifically with benzylguanine derivatives. Attachment of benzylguanine to terbium cryptate or other fluorophores, such as the AlexaFluor 488 used in FSEC experiments, allows specific and covalent attachment these labels to the SNAP tagged protein of interest. This is summarised in **figure 2.2** 



**Figure 2.2:** Various fluorophore labels were added to GPCR via N terminus SNAP tag

#### TS-SNAP-β<sub>2</sub>AR membrane preparation

Membrane preparations were made from terbium labelled TS-SNAP- $\beta_2$ AR T-REx<sup>TM</sup>-293 cells. Cells were cultured, induced and detached as described above (Sec 2.2). Cell pellets were then thawed on ice and resuspended in 20mL buffer B (10mM HEPES and 10mM EDTA, pH 7.4). Suspensions were homogenised using 6 x 1 sec pulses of a Polytron tissue homogeniser (Werke, Ultra-Turrax). Suspensions were spun at 48,000xg and 4°C for 30min, supernatant was removed and resuspended and centrifuged again as above. Resulting pellets were resuspended in buffer C (10mM HEPEs and 0.1mM EDTA, pH 7.4) aliquoted and frozen at -80°C.

#### Solubilisation of TS-SNAP-B2AR using DDM or DIBMA

TS-SNAP- $\beta_2$ AR was extracted from membranes by incubating membranes with 3% DIBMA (w/v) in 20mM HEPEs, 10% (v/v) glycerol, and 150mM NaCl, pH 8 at room temperature or 1% DDM (w/v), 20mM HEPEs, 10% (v/v) glycerol, and 150mM NaCl, pH 8 at 4°C for 2-3h. Samples were clarified by ultracentrifugation at 100,000*xg* for 1h at 4°C for ligand binding assays and 16900*xg* for thermostability assays.

## Small scale affinity purification of DDM or DIBMALP-TS-SNAP- $\beta_2AR$

Solubilised DDM- $\beta_2$ AR and DIBMALP- $\beta_2$ AR samples were purified using 20µL of 5% MagStrep "type3" XT magnetic beads suspension. These beads bind to the twin-strep tag on the N-terminus of the receptor.

The strep tag is an 8 amino acid peptide sequence (WSHPQFEK) which binds to biotin and streptavidin as well as the engineered streptavidins such as streptactin® and streptactin® XT. The twin-strep tag contains the strep tag repeated twice, separated by a flexible linker so that it can bind two streptavidin protomers in a tetramer. The twin-strep tag system was chosen for affinity purification from mammalian cells because it has very high affinity for streptactin® resulting in high

yields. Moreover, the binding reactions between the twin strep tag and streptactin® is very specific and generally results in fewer impurities in samples from mammalian cells compared to use of other affinity tags such as the His tag system.

Beads were prepared by removal of supernatant using a magnetic rack and 2x 200µL washes in solubilisation buffer before resuspension. Samples were incubated with beads for 2h at 80RPM on a roller at 4°C in a cold room. Supernatant was then removed from beads using the magnetic rack and beads were washed twice with wash buffer (20mM HEPES, 10% glycerol, 150mM NaCl, pH 7.5 with 0.1% DDM for DDM sample only), before resuspension in 50µL elution buffer. Elution buffer consisted of 1-part 10X buffer BXT (IBA), which contains biotin and 9 parts wash buffers. Elution took place for 2 hours at 80RPM on a roller in cold room. Sample were then separated from beads using magnetic rack.

#### 2.2.7 Fluorescence Size Exclusion Chromatography (FSEC)

Size exclusion chromatography (SEC), also known as gel filtration, is technique used to separate molecules based on their size. SEC columns consists of a porous matrix of inert beads of decreasing size such that molecules of decreasing size will elute further down the column. FSEC employs a fluorescence detector in-built to a HPLC system to analyse SEC column output.

For FSEC on samples of Alexa488 labelled DDM- $\beta_2AR$  or DIBMALP- $\beta_2AR$ ,  $30\mu$ L crude lysate was run through a Yarra 1.8 $\mu$ m SECx300 2.5mL column using a Shimadzu prominence HPLC system. Running buffer consisted of 20mM HEPEs, 150mM NaCl, 5% glycerol, and 0.03% DDM (for DDM- $\beta_2AR$  sample only). FSEC took place at a flow rate of 0.2mL/min and 0.2mL fractions were collected. Samples were excited at 488nm, and emission collected at 520nm. GE HMW calibration kit was use as a standard to characterise the elution volume of the column.

#### 2.2.8 Bacterial cell culture

Mini-G<sub>s</sub> proteins were expressed in either B384(DE3) or Nico21 (DE3) strains of *E. coli.* B834 (DE3) is the parent strain of BCL21, which are methionine auxotrophs and protease deficient. These were used to decrease proteolytic cleavage. DE3 refers to the strain containing the  $\lambda$ DE3 lysogen which carries the gene for T7 RNA polymerase under the control of the lacUV5 promotor. This therefore allows use of the T7-lac promotor. Nico21 (DE3) are derived from the BL21 strain commonly used for protein expression which is deficient in *Ion* and *ompT* proteases. Nico21 cells differ from BCL21 in that the protein and common IMAC impurity GlmS is mutated to prevent its binding the nickel column.

PJ411\_MKK\_HIS10\_TEV\_Halo\_mini-G<sub>s</sub> was transformed into *E. coli* and then a single colony was picked and used to inoculate 5mL LB. After overnight incubation, 2.5mL of this 5mL culture was used to inoculate 1L of Terrific broth (TB) in a 2L conical flask. TB is a nutrient enriched phosphate buffered medium containing, yeast extract (24g/L), casein peptone (12g/L) and glycerol (4% (v/v). These higher levels of nutrients compared to other broths such as 2YT and LB allow greater densities of *E. coli* to be sustained and therefore protein yield is increased.

1L cultures were grown at 37°C and 225RPM until optical density (OD) of the culture reached 0.6. At this point protein expression was induced with 1mM Isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG), which is a mimic of allolactose which binds to the Lac repressor, releasing it from the lac operators and therefore allowing transcription of the protein of interest. Following induction, cultures were incubated for 24h at 20°C. The temperature was dropped for expression in order to prevent degradation of the protein of interest. Cultures were then transferred to 1L centrifuge buckets and cells pelleted via centrifugation at 4122*xg* for 20min at 4°C. Cells were resuspended in PBS and transferred to 50mL Falcon tubes, before being pelleted again as above and frozen at -80 °C.

#### 2.2.9 Production of purified mini-G<sub>s</sub> proteins

Bacterial cell pellets expressing His-TEV-venus-mini-G<sub>s</sub>, His-TEV-halo-mini-G<sub>s</sub> or His-TEV-mini-G<sub>s</sub> were thawed on ice. Cell pellets from 1L culture were resuspended in 50mL lysis buffer consisting of 20mM HEPEs, 500mM NaCl, 40mM imidazole, 10% glycerol, 8mM βmercaptoethanol (BME), 1µM GDP, cOmplete protease inhibitors (Roche), DNAase I and lysozyme pH 7.5 using a douse. Bacterial cells were lysed by 5 x 10 second pulses of sonication on ice at 30 second intervals. Unlysed and larger components of the cells were removed using ultracentrifugation at 25,000xg at 4°C for 45 min. Lysate was filtered through a 0.45µm membrane using a syringe and loaded onto HisTrap<sup>™</sup> FF crude 5mL column, to capture His-tagged protein of interest, using ÄKTA<sup>™</sup> start protein purification system at a flow rate of 5mL/min. System and column had been equilibrated with 10 column volumes (CV) buffer A (20mM HEPEs, 500mM NaCl, 40mM imidazole, 10% glycerol, 8mM BME, 1µM guanosine diphosphate GDP). Unbound protein was washed out with 10 column volume (CV) buffer A. Bound protein was then eluted over an 8CV gradient of 0-100% buffer A to B at a flow rate of 5mL/min. Buffer B consisted of 20mM HEPEs, 500mM NaCl, 400mM imidazole, 10% glycerol, 8mM BME and 1µM GDP. Fractionation took place in 5mL volumes. Presence of the protein of interest was confirmed by gel electrophoresis and staining for protein as described in sec 2.2.10. Pooled elution fractions were concentrated using 10,000 or 30,000 molecular weight cut off (MWCO) Vivaspin protein concentrators by centrifugation at 3000xg and 4°C for 15 min intervals for an average of 2-3 hours. Protein prep was exchanged into assay buffer using slide-A-lyzer™ 10,000 or 30,000 MWCO dialysis cassettes for tagged and untagged mini-G<sub>s</sub> protein samples, respectively. Dialysis took place overnight in cold room and under constant stirring. Assay buffer consisted of 20mM HEPEs, 150mM NaCl, 10% glycerol, 8mM BME and 1µM GDP. Purified mini-G<sub>s</sub> proteins were flash frozen using liquid nitrogen and stored at -80°C.

#### 2.2.10 SDS-page electrophoresis

To check for the presence of the protein of interest and the purity of the sample, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-page) electrophoresis was used to separate proteins by mass. This system uses SDS to denature the tertiary structure of the proteins and coat protein samples with an overall negative charge so that they migrate along the gel to the positive anode based of their molecular weight only. A protein marker is used to identify the size of proteins on the gel.

For SDS-PAGE gels 15µL sample was diluted in 5µL NuPAGE<sup>™</sup> LDS sample buffer. Samples were not boiled prior to electrophoresis. Sample were then run on NuPage<sup>™</sup> 4-12% Bis-Tris 15 x 1.0mm well gel using NuPage<sup>™</sup> MOPs SDS running buffer. Gels were run for 50 min at 200V and Pageruler prestained protein ladder was used to estimate molecular weights.

For in-gel fluorescence, gels were scanned on an Amersham Typhoon imaging system (GE Healthcare Life Sciences, Pittsburgh, PA) using Fluorostage and Cy5 670BP300 filter sets with the PMT set to auto and pixel size to 200µm. After fluorescence was measured, protein was stained using InstantBlue® protein stain. Gels were removed from cassette and washed twice in deionised water, stained overnight on a rocker, and then imaged using a standard smart phone camera.

## 2.2.11 TR-FRET

Fluorescence Resonance Energy Transfer (FRET) (Figure 2.2) is the non-radiative transfer of energy from an excited donor fluorophore to a ground state acceptor fluorophore. Energy transfer will only occur when the fluorescence emission spectrum of the donor overlaps with the excitation spectrum of the acceptor fluorophore, and these fluorophores are within ~10nm of each other, and dipoles are in the parallel orientation. Most fluorophores have short lived emission lasting nanoseconds (ns), in contrast the lanthanide metals have much longer half times (~1ms). Time resolved FRET (TR-FRET) uses this property to increase the signal to noise ratio of the FRET. TR-FRET uses a fluorophore of longer half time and measures FRET at time delay of approximately 50µs after excitation therefore separating the FRET between the molecules of interest and background auto-fluorescence. In these experiments, terbium cryptate is used as the acceptor fluorophore.

TS-SNAP-A<sub>2A</sub> or TS-SNAP- $\beta_2$ AR receptors were expressed in T-REx<sup>TM</sup> cells as described above (sec **2.2**). Receptors were labelled in adherent whole cells. Media was aspirated from T175 flasks and adherent cells washed twice at room temperature with Phosphate Buffered Saline (PBS). Adherent cells were labelled with 100nM SNAP-Lumi4-Tb labelling reagent in Labmed buffer for 1 h at 37°C and 5% CO<sub>2</sub>. Cells were washed twice more with PBS and detached with 5mL non enzymatic cell dissociation solution (Sigma, UK). Cells were pelleted by centrifugation for 10 min at 1000*xg*, supernatant was removed, and cell pellets frozen at -80°C.



**Figure 2.3: A summary of the TR-FRET methods used in this study** *A***)** FRET occurs when the emission of spectra of an excited donor fluorophore overlaps with the excitation spectra of an acceptor fluorophore hence energy is transferred **B)** TR-FRET between terbium on the N terminus of the GPCR and F-propranolol was used to measure ligand binding **C)** TR-FRET between terbium on the N terminus of the GPCR and BODIPY F-L-cysteine, which bound to the core of the GPCR during unfolding, was used to measure protein thermostability **D)** TR-FRET shows improved signal to noise over conventional FRET as the long fluorescence lifetime of the donor allows the FRET signal of interest to be measured after background FRET is emitted.

# 2.2.12 TR-FRET Ligand binding studies

For TR-FRET ligand binding experiments membranes of Lumi4-Tb labelled TS-SNAP-A<sub>2A</sub> or TS-SNAP-β<sub>2</sub>AR receptors were solubilised as described in Sec 2.3. TR-FRET between the donor Lumi4-Tb and the fluorescent acceptors CA200689 (s)-propranolol-red (F-propranolol) was measured by exciting the sample at 337nm and quantifying emission at 665nm and 620nm using a PheraStar FSX (BMG Labtech) and HTRF 337 665/620 module (BMG Labtech). Assay buffer consisted of 20mM HEPEs, 5% glycerol, 150mM NaCl, and 0.5% BSA and 0.1% ascorbic acid, pH 8 and, for DDM samples only, 0.1% DDM was used. All binding assays used a final concentration of 1% dimethyl sulfoxide (DMSO), assay volume of 30µL, and 3µM cyanopindolol was used for non-specific binding (NSB). For equilibrium binding experiments solubilised receptors were added to plates last, and the plates were incubated at room temperature for 45min prior to reading. For equilibrium competition binding assays 100nM of CA200689 (s)-propranolol-red (F-propranolol) was used for membrane and DDM samples and 200nM CA200689 (s)propranolol-red (F-propranolol) for DIBMA samples. For A<sub>2A</sub> the fluorescent adenosine antagonist XAC CA200634 (F-XAC) was used as the tracer. For kinetic binding experiments DDM solubilised receptors were added last to plates using PHERAstar FSX in built injectors. CA200693 (s)-propranolol-green was used as the tracer and 3µM alprenolol as the NSB.

#### 2.2.13 TR-FRET thermostability assays

For TR-FRET thermostability assays membranes of Lumi4-Tb labelled TS-SNAP-A<sub>2A</sub> or TS-SNAP-β<sub>2</sub>AR receptors and solubilsation of these proteins took place as described above **section 2.2.6**. Solubilised β2AR was incubated with 100nM BODIPY<sup>™</sup> FL L-Cystine dye with or without 200nM F-propranolol or 100µM cyanopindolol, for 15min on ice in 20mM HEPES, 150mM NaCl, 5% glycerol, 0.5% BSA, pH8 and for DDM samples 0.1% DDM was used. 20µL samples were added to each well of a 96 well plate and incubated for 30min over a temperature gradient of 20-78°C across the plate. Samples were transferred to 384 well proxiplate and TR-FRET between BODIPY<sup>™</sup> FL L-Cystine dye and Lumi4-Tb was read by exciting at 337nm and reading emission at 620nm and 520nm using Pherstar FSX and 337 520/620 module (BMG Labtech). F-propranolol and fluorescent XAC (F-XAC) (CellAura, UK) binding was measured using HTRF 337 665/620 module as above.

# 2.2.14 In solution intermolecular nanoBRET assays

For all solution BRET assays, membranes were made from cells expressing TS-SNAP-A<sub>2A</sub>-nLuc or TS-SNAP- $\beta_2$ AR-nLuc receptors and solubilisation of these proteins took place as described above (**sec 2.3**). 20mM HEPEs, 150mM NaCl, 10% glycerol, 1µM GDP, 8mM BME, 0.5% BSA and 0.1% ascorbic acid pH 7.4 was used as the assay buffer in all in solution nanoBRET assays. For all in solution nanoBRET assays luminescence at 450-80nm was quantified for nanoLuc and from 550nm and higher for venus mini-Gs using 450-80/550LP module and Pherastar FSX.



**Figure 2.4:** mini-G<sub>s</sub> recruitment to the  $\beta_2AR$  was quantified by fusing nanoLuc to the C terminus of the  $\beta_2AR$  and venus to the N terminus of the mini-G<sub>s</sub> and measuring BRET between nanoLuc and venus.

#### 2.2.15 Venus mini-G<sub>s</sub> nanoBRET recruitment assays

Solution-based recruitment assays in which varying concentrations of  $\beta_2AR$  agonists were used to recruitment an excess (1µM) of venus mini-G<sub>s</sub> were run in 20µL volumes in white 384 well proxiplates. 25µM unlabelled mini-G<sub>s</sub> was used to define specific binding of the venus mini-G<sub>s</sub> to the TS-SNAP- $\beta_2AR$ -nLuc receptors. Receptor, ligand and mini-G<sub>s</sub> proteins were added to plate and incubated for 80 min at room temperature, 8µM furimazine was added to plate and incubated for a further 10 min before the plate was read on PHERAstar FSX as described above.

## 2.2.16 Venus mini-G<sub>s</sub> nanoBRET kinetic assays

For in solution kinetic nanoBRET assays in which the affinity of venus-mini-G<sub>s</sub> for the agonist bound TS-SNAP- $\beta_2$ ARnLuc receptors was measured over time, assays were run in 20µL volumes in white 384 well proxiplates. Varying concentrations (3000-1.4nM) of venus mini-G<sub>s</sub> were added to plates with either buffer or 30µM mini-G<sub>s</sub> to define total and nonspecific binding, respectively. DDM solubilised receptors were incubated with saturating concentration of selected  $\beta_2AR$  agonists for 40min, and X4 (32µM) furimazine for 10 min, prior to addition to plate. Receptor was added to plate offline, mixed up and down rapidly with a matrix pipette and read immediately on PHERAstar FSX as described above. After reading for 20min to allow for association of venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ AR-nLuc receptors reader was paused and 2µL of 333µM mini-G<sub>s</sub> added to total wells to dissociate, plate was read for a further 20min. Buffer was added to NSB wells. The saturating concentrations of each agonist used in these studies was defined by the in-solution venus-mini-G<sub>s</sub> recruitment assays (chapter 5) and are summarised in table 2.2.

| Ligand        | Saturating concentration used |
|---------------|-------------------------------|
| Formoterol    | 5µM                           |
| Isoprenaline  | 100µM                         |
| Adrenaline    | 500µM                         |
| Noradrenaline | 1mM                           |
| C26           | 100nM                         |
| BI-167-107    | 100nM                         |
| Salmeterol    | 50nM                          |
| Salbutamol    | 60µM                          |

**Table 2.2:** A summary of the saturating concentrations of  $\beta_2AR$  agonists used in section 3.02.

## 2.2.18 Data analysis

All non-linear regression fits were performed in GraphPad Prism 9.0 (Ca, U.S) using a least-squares fitting method.

## TR-FRET equilibrium ligand binding data

Total and NSB for F-propranolol binding to the  $\beta_2$ AR was fitted to onesite models according to equations **2.1** and **2.2**.

$$Total \ binding = \left[\frac{Bmax * X}{(K_d + X)}\right] + [NS * X + background]$$

Equation 2.1

Where:

NS = slope of linear nonspecific binding Background = Y when X is 0 Bmax = the maximum specific binding K<sub>d</sub> = the equilibrium dissociation constant X= concentration of tracer

Equilibrium specific binding of F-propranolol to the  $\beta_2AR$  and venus-mini-G<sub>s</sub> binding the  $\beta_2ARnLuc$  was fitted to a one site specific binding model according to equation **2.2**. Final K<sub>d</sub> values were taken as an average of K<sub>d</sub> values from individual specific curve fits.

$$Y = \frac{Bmax * X}{(K_d + X)}$$

Equation 2.2

Where:

Y = specific binding

K<sub>d</sub> = the equilibrium dissociation constant of the labelled ligand

Equilibrium competition binding data was fitted to the One site Fit  $K_i$  model according to equation **2.3.**  $K_i$  values were calculated from resulting IC<sub>50</sub> values according to equation **2.4.** Final  $K_i$  values were taken as an mean of individual experiments.

$$Y = \frac{(Top - Bottom)}{(1 + 10^{(x - LogIC_{50})}) + Bottom}$$

Equation 2.3

Where:

Y = binding of tracer

 $IC_{50}$  = the concentration of competing ligand which displaces 50% of radioligand specific binding.

$$K_i = \frac{IC_{50}}{1 + \left(\frac{[L]}{K_d}\right)}$$

Equation 2.4

Where:

 $K_i$  = the inhibition constant of the unlabelled ligand

[L] = concentration of labelled ligand

 $K_d$  = the equilibrium dissociation constant of the labelled ligand.

## **TR-FRET** kinetic ligand binding data

Specific binding of the kinetics of association of F-propranolol binding to DDM- $\beta_2$ AR was fitted globally to simultaneously fit  $K_{on}$ , and  $K_{off}$  using equation **2.5**.

$$K_{obs} = [Fluorescent - propranolol] * K_{on} + K_{off}$$

$$Y = Y_{max} * (1 - exp(-1 * K_{obs} * X))$$
 Equation 2.5

Where:

 $K_{obs}$  = the observed rate of association

 $K_{on}$  = the association rate constant

 $K_{off}$  = the dissociation rate constant

Y = fluorescent propranolol binding

Specific binding for the competition association kinetics of the unlabelled ligands, formoterol, isoprenaline, adrenaline, noradrenaline, salmeterol, salbutamol, C26 and BI-167-107 binding to the DDM- $\beta_2$ AR was fitted to the Motulsky Mahan competition kinetics model (Motulsky & Mahan, 1984) to calculate  $K_{on}$ , and  $K_{off}$  of the unlabelled ligand according to equation **2.6**.

$$K_A = K_1[L] + K_2$$
$$K_B = K_3[I] + K_4$$

$$S = \sqrt{((K_A - K_B))^2 + 4 \cdot K_1 \cdot K_3 \cdot L \cdot I \cdot 10^{-18})}$$

$$K_F = 0.5 * (K_A + K_B + S)$$

 $K_s = 0.5 * (K_A + K_B - S)$ 

$$Q = \frac{B_{max} * K_1 * L * 10^{-9}}{K_F - K_S}$$

$$Y = Q \cdot \left(\frac{K_4 \cdot (K_F - K_s)}{K_F \cdot K_s} + \frac{K_4 - K_F}{K_F} \exp^{(-k_F \cdot x)} - \frac{K_4 K_s}{K_s} \exp^{(-K_s \cdot x)}\right)$$
  
Equation **2.6**

Where:

Y= specific binding

 $K_1 = K_{on}$  of fluorescent propranolol

 $K_2 = K_{off}$  of fluorescent propranolol

 $K_3 = K_{on}$  of the unlabelled ligand

 $K_4 = K_{\text{off}}$  of the unlabelled ligand

[L] = [fluorescent propranolol]

[I] = [unlabelled ligand]

# Thermostability curves

All thermostability data from each experiment was fitted to a Boltzmann sigmoidal curve according to equation **2.7** to obtain a melting temperature (Tm) value. Final  $T_m$  values were taken as an average of  $T_m$  values from individual curve fits.

$$Y = Bottom + \frac{(Top - Bottom)}{1 + \exp\left(\frac{Tm - X}{Slope}\right)}$$

Equation 2.7

Where:

Y = the relative concentration of proteins in the unfolded state

X = Temperature (°C)

 $T_m$  = The temperature at which half the protein of interest is unfolded

## NanoBRET mini-G<sub>s</sub> binding kinetics

Specific binding data for the association of venus-mini-G<sub>s</sub> binding to the agonist bound DDM- $\beta_2$ AR was fitted to a two-site exponential association model described in equation **2.8.** Where Y = specific binding.

$$Y = Y_{max1} \cdot (1 - e^{-K_1 - X}) + Y_{max2} \cdot (1 - e^{-K_2 - X})$$
  
Equation **2.8**

 $K_{obs}$  plots for  $K_{fast}$  values obtained from equation 2.8 were fitted to a simple linear regression model according to equation 2.9 to obtain the  $K_{on}$  of  $K_{fast}$ .

$$Y = mx + c$$

Equation 2.9

Where:

m = slope or  $K_{on}$ c = intercept or  $K_{off}$ 

For the analysis the intercept was fixed to  $K_{\text{off}}$  values measured experimentally and obtained via equation 2.10.

Specific binding data for the dissociation of venus-mini-G<sub>s</sub> from the agonist bound DDM- $\beta_2$ AR complex was fitted to a one phase exponential decay model, according to equation **2.10**. Where Y = specific binding.

$$Y = Span \cdot e^{-k \cdot x} + Plateau$$

Equation 2.10
#### NanoBRET concentration-response curves

Concentration response curves obtained for in-solution venusmini-G<sub>s</sub> recruitment to  $\beta_2AR$  and for CASE-G<sub>s</sub> activation by the eight  $\beta_2AR$  agonists used in this study were fitted to a three-parameter logistic curve using equation 2.11.

$$Response = \frac{(E_{max} * [A])}{([A] + EC_{50})}$$

Equation 2.11

Where:

[A] = concentration of agonist

 $EC_{50}$  = concentration of agonist required to induce half the maximal response

 $E_{max}$  = the maximal response of the agonist

To obtain efficacy values ( $\tau$ ) for the eight  $\beta_2AR$  agonists to activate the CASE G<sub>s</sub> protein concentration response curves were fitted to the operational model (equation **2.13**).

$$E = \frac{E_{max} \tau [A]}{K_A + [A](1+\tau)}$$

$$\tau = \frac{R_T}{K_E}$$

Equation 2.13

Where:

 $\tau$  = the transducer ratio

 $K_A$  = the equilibrium association constant of the agonist

[A] = concentration of agonist

 $R_T$  = total receptor concentration

 $K_E$  = the concentration of agonist-receptor complex required for half maximal response

 $E_{max}$  = the maximal response of the agonist

## **Statistical analysis**

Comparison of  $T_m$ ,  $K_d$ ,  $K_i$ ,  $K_{off}$ ,  $K_{on}$ , EC<sub>50</sub> and  $\tau$  values was made using a one-way Analysis Of Variance (ANOVA) test and Tukey's post hoc multiple comparison test. Statistical comparison of  $T_m$  values obtained with F-propranolol Vs BODIPY<sup>TM</sup> FL L-Cystine dye was made using an unpaired t test. A Pearson's correlation coefficient was used to investigate correlations between CASE-G<sub>s</sub> activation,  $\tau$  values and relative time to reach equilibrium (IC<sub>50</sub>1min/IC<sub>50</sub>End) and between CASE-G<sub>s</sub> activation  $\tau$  values and mini-G<sub>s</sub> binding  $K_{on}$  and  $K_{off}$  values. All statistical analysis was completed in GraphPad Prism 9 and p<0.05 was considered statistically significant. Chapter 3 Solubilisation of the functional β<sub>2</sub>AR using Diisobutylene Maleic acid (DIBMA)

## 3.1 Introduction

This study aimed to investigate the kinetics of ligand- $\beta_2AR$  and  $\beta_2AR$ -mini-G<sub>s</sub> interactions in isolation from the cellular environment. As such, a prerequisite was extraction of the  $\beta_2AR$  from its cellular environment, such a biophysical study requires only small amounts of  $\beta_2AR$ , and benefits from maintaining the  $\beta_2AR$  in as physiological environment as possible to avoid compromising protein stability and native activity.

## 3.1.1 Methods previously employed to solubilize the $\beta_2 AR$

Classically, extraction of the  $\beta_2AR$  has involved the use of detergents, often in the case of the  $\beta_2AR$  and other GPCRs (Munk et al., 2019), *n*-dodecyl- $\beta$ -D-maltopyranoside (DDM) is used. It is however, well established that whilst the hydrophobic head groups of detergent molecules are designed to mimic the cell membrane, they far from recapitulate this complex environment of lipids and phospholipids. As such, protein stability and activity is compromised in the detergent micelle. More detail about the types of detergents used for solubilisation of membrane proteins and the mechanism for this is given in section **1.9**.

Clearly, optimal protein stability and activity is essential for accurate biophysical studies. One method to further stabilise membrane proteins is the introduction of thermostabilising mutations. This method has been employed to stabilise the DDM solubilized  $\beta_2AR$  (Serrano-Vega & Tate, 2009a) (Roth et al., 2009). Serrano-Vega and colleagues transferred 6 stabilizing mutations from the thermostabilized turkey  $\beta_1AR$  to the human  $\beta_2AR$  (m23-h $\beta_2AR$ ) and showed that this improved the stability of the m23-h $\beta_2AR$  by an 11°C increase in its T<sub>m</sub>. Moreover, Roth and colleagues (Roth et al., 2009) substituted glutamic acid 122 (E122) for tryptohan to give a 9.3-fold increase in stability and an increase in membrane expression. Whilst thermostabilizing mutations undoubtedly improve the viability of membrane proteins for structural studies and the resolution of these studies, thermostabilizing mutations may affect

protein function. For example, E122W  $\beta_2$ AR showed a 2-fold loss in ligand binding affinity compared to the wild type (WT) (Roth et al., 2009), and ligand binding studies on m23-h $\beta_2$ AR showed a preference for the antagonist bound conformation. Therefore, whilst thermostabilizing mutations may be used to improve  $\beta_2$ AR stability for structural studies such methods are problematic for functional biophysical studies.

Another method to improve membrane protein stability has been use of synthetic nanodiscs, which better mimic the native membrane environment. More detail on the components of synthetic nanodiscs is given in **sec 1.9**. Leitz and colleagues (Leitz et al., 2006) first showed the reconstitution of functional  $\beta_2AR$  in a synthetic nanodisc. Whorton and colleagues (Whorton et al., 2007) also showed that  $\beta_2AR$  remained functional in monomers when reconstituted in high density lipoproteins (rHDL). Neither of these studies investigated the thermostability of the  $\beta_2AR$  in these environments. The main disadvantage of this method is that detergents are still required for extraction of the  $\beta_2AR$  from the membrane and detergents have been showed to irreversibly damage membrane proteins.

#### 3.1.2 Applicability of using polymers to solubilize the $\beta_2 AR$

Alternatively, SMA and DIBMA polymers have recently been employed as a novel method for extracting protein from the plasma membrane. These polymers incorporate into the membrane, disrupt the membrane, and self-assemble into lipid nanoparticles containing the membrane protein along with its' native phospholipids. This method has clear advantages over use of detergents which often denature the protein and are only a poor mimic of the membrane protein's native phospholipids.

The concept that membrane lipids and phospholipids modulate membrane protein functions is well established. Moreover, several studies point to a direct role for allosteric modulation by membrane lipids and phospholipids specifically in  $\beta_2AR$  function. Dawaliby and

colleagues, (Dawaliby et al., 2016) systematically characterized the effect of different phospholipids on purified  $\beta_2AR$  activation and ligand binding. This study showed that phosphatidylglycerol increased the proportion of the population of the receptor in the active state whereas phosphatidylethanolamine increased the proportion of the population of the receptor in the inactive state. Moreover, cholesterol has also been shown to modulate  $\beta_2$ AR signaling. Studies in HEK293 cells showed than cAMP signaling is increased when cholesterol is depleted from the cell membrane (Pontier et al., 2008), and Paila and colleagues showed that β-adrenoceptor signalling in response to isoprenaline is similarly affected in rat cardiomyocytes (Paila et al., 2011), suggesting that cholesterol modulation of β<sub>2</sub>AR is physiologically relevant. Furthermore, Zocher and colleagues (Zocher et al., 2012) used single molecule force spectroscopy to show that presence of cholesterol increases the intramolecular interactions within the human  $\beta_2AR$  and therefore its stability. These studies provide direct evidence that native membrane composition is vital for native  $\beta_2$ AR activity and stability therefore supporting the use of native nanodiscs for these biophysical studies.

#### 3.1.3 Methods to characterise membrane protein stability

Protein stability is the net balance of intramolecular forces within a protein that determine whether a protein will exist in its native or a denatured state. As such to measure protein stability the equilibrium between the native and denatured states must be assessed. The intramolecular forces that stabilize the folded structure of a protein include hydrophobic, electrostatic, hydrogen bonds, van der Waals and disulphide interactions. The denatured and unfolded state of a protein is characterized by disorder. The equilibrium between the natured (N) and denatured (D) states of a protein can be described by a two-step model (equation **3.1**) (Shirdel & Khalifeh, 2019).

$$N \rightleftharpoons D$$
 Equation 3.1.

68

Any chemical reaction is driven by a change in Gibb's free energy  $(\Delta G)$ , which will favour one direction of a reaction. In the case of protein unfolding the natured state will have a higher free energy than the denatured state hence the more positive  $\Delta G$  the more stable the protein and the more negative  $\Delta G$  the more protein will denature. Therefore, an increase in temperature causes an increase in enthalpy and so decrease in  $\Delta G$  and therefore an increase in protein denaturing. This is summarised in equation **3.2**.

$$\Delta G = -R \cdot T \cdot ln (K)$$
 Equation **3.2**

Where R = gas constant, T = temperature and K=the equilibrium constant of the reaction.

Hence measuring protein unfolding over an increasing temperature range will provide relative measurements of protein stability. Measurements of proteins stability are generally summarised by their melting temperature ( $T_m$ ) values.  $T_m$  values are the point at which 50% of the protein is in the unfolded state. It is important to note that the  $T_m$  value of a protein is highly dependent upon pH and buffer conditions, as these will influence molecular interactions of the protein and therefore effect  $\Delta G$ , therefore  $T_m$  values cannot be absolute (Gao et al., 2020).

Many techniques have been employed to measure protein unfolding in response to temperature during thermostability studies. Such methods include exposing the protein to increased temperatures, removing protein aggregates via ultracentrifugation and then measuring the relative amounts of protein remaining, for example FSEC or in gel fluorescence. The above methods are very labour intensive (Miljus et al., 2020). Other techniques allow for a direct measurement of protein unfolding. Differential scanning fluorometry (DSF) has become a popular method as it is both high throughput and economically viable. DSF generally uses a fluorescent dye such as SYPRO orange or 7Diethylamino-3-(4'-Maleimidylphenyl)-4-Methylcoumarin (CPM) which are quenched in aqueous solution but show a significant increase in quantum yield when bound to hydrophobic regions of an unfolded protein (Gao et al., 2020) (Huynh, 2016). A drawback of DSF assays is that they require the protein to be purified as there is otherwise nothing to distinguish one protein from another. Protein purification is very labour intensive and often takes multiple optimisation steps.

This study uses a novel TR-FRET based thermostability assay described in section (2.2.13). This method works on a similar premise to the DSF assay. The dye BODIPY<sup>™</sup> FL L-cystine binds to cysteine residues within the core of the GPCR which are only exposed when the GPCR unfolds, and this acts as a FRET acceptor for a terbium label on the N terminus of the GPCR. The advantage of this method over other DSF methods is that the terbium tag means that the protein of interest does not need to be purified for the assay, whilst the assay is still high throughput.

#### 3.1.4 Methods to characterise membrane protein functionality

One method to elucidate if a protein remains folded and active once extracted from the plasma membrane is to investigate if it retains ligand binding ability. Classically, pharmacologists have used radioligands to detect ligand binding to a receptor of interest. However, due to the safety concerns associated with radioactivity and therefore the cost of their licensing and disposal use of fluorescence ligands has become more prominent. The TR-FRET ligand binding assay used in this study detects FRET been a terbium label on the GPCR N terminus and fluorescently labelled propranolol, as described in section **2.2.12**. In addition to safety and economic concerns TR-FRET ligand binding has the advantage of showing a more specific signal than radioligand binding as only ligand bound to the receptor produces a FRET signal and not that which is non-specifically bound to the membrane. The aim of this chapter was to examine the use of the polymer DIBMA as an improved method to extract the  $\beta_2AR$  from mammalian cell membranes. To this end, this study aimed to investigate:

- 1. The ability of DIBMA to extract  $\beta_2AR$  from T-REx<sup>TM</sup>-293 cell membranes.
- 2. If DIBMALP- $\beta_2$ AR retained the native  $\beta_2$ AR activity.
- 3. If DIBMALP- $\beta_2$ AR retained the native  $\beta_2$ AR conformational landscape.
- 4. The stability of the  $\beta_2AR$  inside the DIBMALP compared to conventional methods
- 5. The ability of the DIBMALP- $\beta_2AR$  to couple to the mini-G<sub>s</sub> protein

#### 3.2 Methods

#### 3.2.1 Mammalian cell culture

T-REx<sup>TM</sup> cell lines expressing either stably expressing TS-SNAP- $\beta_2$ AR or TS-SNAP- $A_{2A}$  were used in this chapter. These cell lines were cultured and induced as described in **sec 2.2.2**.

# 3.2.2 Solubilisation of TS-SNAP- $\beta_2AR$ or TS-SNAP- $A_{2A}$ using DDM or DIBMA

Small scale solubilisation trials took place on TS-SNAP-  $\beta_2AR$  or TS-SNAP- $A_{2A}$  expressing membranes. Membranes were generated from terbium-cryptate labelled TS-SNAP-  $\beta_2AR$  or TS-SNAP- $A_{2A}$  expressing T-REx<sup>TM</sup> cell lines as described in **sec 2.2.5**. Receptors were extracted from membranes in either 1% DDM or 3% DIBMA as described in **sec 2.2.6**. Unsolubilised material was removed via ultracentrifugation.

## 3.2.3 TR-FRET thermostability assays

Protein unfolding was driven by incubation of the sample over an increasing temperature range. Protein unfolding was measured by an increase in FRET signal between Lumi-4-terbium on the N terminus of the GPCR and BODIPY<sup>™</sup> FL L-Cystine dye which bound to cysteine in the now exposed core of the receptor. TR-FRET signal was measured using PHERAstar FSX plate reader at room temperature using 520/620 TRF module. This assay is described in **sec 2.2.12**.

## 3.2.4 TR-FRET ligand binding assays

The affinity of F-propranolol for the TS-SNAP-β<sub>2</sub>AR in the membrane, DDM micelle and DIBMALP environments was measured by TR-FRET between Lumi4-Tb and CA200689 (s)-propranolol-red (F-propranolol) using PHERAstar FSX plate reader at room temperature using HTRF module. This method is described in **sec 2.2.13.** 100nM (for membrane or DDM samples) or 200nM (for DIBMA samples) F-propranolol was used as the tracer for competition binding studies with propranolol, isoprenaline and ICI 118, 551.

## 3.2.5 Halo-mini-G<sub>s</sub> shift assay

The ability of Halo-mini-G<sub>s</sub> to couple TS-SNAP- $\beta_2$ AR in membranes, DDM or DIBMALPs was measured by performing the above TR-FRET isoprenaline competition binding experiments in the absence and presence of 25µM Halo mini-G<sub>s</sub>. Binding of Halo-mini-G<sub>s</sub> to the TS-SNAP- $\beta_2$ AR would be expected to increase the affinity of TS-SNAP- $\beta_2$ AR for isoprenaline and hence shift the ligand binding curve. Halo-mini-G<sub>s</sub> proteins were made as described in chapter **2** and discussed in chapter **5**.

### 3.3 Results

# 3.3.1 Solubilisation of the TS-SNAP- $\beta_2$ AR from the mammalian membrane

The first aim of this study was to investigate if the polymer DIBMA was able to extract the TS-SNAP- $\beta_2AR$  from the mammalian cell membrane. To investigate this the TS-SNAP-B<sub>2</sub>AR was labelled with AlexaFluor488 in whole adherent T-REx<sup>™</sup> cells. Membranes were then prepared from these cells and incubated with 3% DIBMA for 3h at room temperature. Extraction with 1% DDM was used as the positive control. Following the removal of unsolubilised material using ultra centrifugation the TS-SNAP-β<sub>2</sub>AR was quantified using the Pherastar FSX plate reader and AlexaFluor 488. A high fluorescent emission at 520nm would indicate a high efficiency for DIBMA to extract the TS-SNAP-β<sub>2</sub>AR from the mammalian cell membrane whilst no increase in the 520nm signal compared to background would indicate that the polymer DIBMA was unable to extract TS-SNAP- $\beta_2$ AR from the mammalian cell membrane. Figure 3.3.1B shows 3% of the polymer DIBMA was able to extract 32±7% of the TS-SNAP-β<sub>2</sub>AR from the T-REx<sup>™</sup> cell membrane whilst 1% DDM extracted 90±11%. Figure 3.3.1A shows in gel fluorescence of purified AlexaFluor-647 labelled TS-SNAP-β<sub>2</sub>AR confirming presence of this protein at 75kDa.



Figure 3.3.1: Solubilisation of TS-SNAP- $\beta_2$ AR from the membrane of T-REx<sup>TM</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR using 1% DDM and 3% DIBMA A) In gel fluorescence SDS-PAGE gel of AlexaFluor-647 labelled affinity purified TS-SNAP- $\beta_2$ AR read on Amersham Typhoon using Cy5 filter set, representative of n=2, B) Solubilisation efficiency of DDM Vs DIBMA to extract the Alexa488 labelled TS-SNAP- $\beta_2$ AR from T-REx<sup>TM</sup>-293-TS-SNAP- $\beta_2$ AR cells, where 520nm fluorescence intensity of samples was quantified on PHERAstar FSX using 520nm FI module and percentage of membrane sample used for receptor extraction calculated (n=3 ± SEM).

In addition to confirming DIBMA could be used to extract the TS-SNAP- $\beta_2$ AR and quantifying its solubilization efficiency, Fluorescent Size Exclusion Chromatography (FSEC) was used to characterize the quality of DDM and DIBMA solubilized TS-SNAP- $\beta_2$ AR. Figure **3.3.2A** shows mean (n=3) FSEC traces for DDM and DIBMA solubilized TS-SNAP- $\beta_2$ AR. These traces peak at 1.6-1.8mL, roughly 75kDa which corresponds to DDM- $\beta_2$ AR or DIBMALP- $\beta_2$ AR. Additionally, there was a higher molecular weight peak for the DIBMALP- $\beta_2$ AR and two higher molecular weight peaks for DDM- $\beta_2$ AR. The higher molecular weight peaks are presumed to correspond to protein aggregates. Whilst the achieved resolution does not show a difference in size between the two preparations it is evident that a lesser proportion of the DIBMALP- $\beta_2$ AR.



Figure 3.3.2: Characterisation of Alexa488 labelled DDM and DIBMALP TS-SNAP- $\beta_2$ AR using FSEC A) FSEC analysis of DDM-TS-SNAP- $\beta_2$ AR and DIBMA-TS-SNAP- $\beta_2$ AR samples using Yarra X300 column and Shimadzu HPLC system to measure 520nm emission (Mean of n=3). B-C) Confirmation of FSEC fractions by representative in gel fluorescence, of SDS-PAGE gel, columns show elution volume (mL) read on Amersham Typhoon using Cy2 filter set

## 3.3.2 Saturation ligand binding studies on TS-SNAP-β<sub>2</sub>AR in membranes, DDM micelles and DIBMALPs

The next aim was to investigate whether the TS-SNAP- $\beta_2$ AR remained functional when extracted from the mammalian cell membrane using DIBMA. This was assessed using a TR-FRET ligand binding assay. Ligand binding was indicated by TR-FRET between the fluorescent antagonist CA200689 (s)-propranolol-red (F-propranolol) and Lumi4-Tb on the TS-SNAP- $\beta_2$ AR N-terminus. Figure **3.3.3** shows saturation ligand binding experiments for F-propranolol binding membrane- $\beta_2$ AR, DDM- $\beta_2$ AR and DIBMALP- $\beta_2$ AR. As indicated, ligand binding capacity was retained when TS-SNAP- $\beta_2$ AR was extracted from the membrane using the conventional detergent DDM and the polymer DIBMA. These data also showed similar mean pK<sub>d</sub> values (±SEM) for Fpropranolol binding membranes (7.50±0.05), DDM (7.10±0.08) and DIBMA (7.00±0.13), although with slightly reduced affinity in DIBMALPs compared to membranes (P=0.02, one-way ANOVA and Tukey's multiple comparison). The maximal binding signal obtained for Fpropranolol binding to the TS-SNAP-β<sub>2</sub>AR was 3-fold lower for DIBMALP- $\beta_2$ AR than its binding to  $\beta_2$ AR in membranes.



Figure 3.3.3: A comparison of F-propranolol binding to TS-SNAP- $\beta_2$ AR in membranes, DDM and DIBMALPs A-C) Representative Fpropranolol (2-666nM) saturation plots showing total and non-specific binding to the  $\beta_2$ AR in A) TS-SNAP- $\beta_2$ AR T-REx<sup>TM</sup>-293 cell membranes, B) DDM and C) DIBMALPs. D-F) Saturation binding curves showing specific binding and associated affinity (pK<sub>d</sub>) values for F-propranolol binding to the  $\beta_2$ AR in D) HEK cell membranes, E) DDM and F) DIBMALPs, curves show combined data normalised to maxium signal of each preparation, data points show mean ± SEM, n=3. TR-FRET between Lumi4-Tb and F-propranolol was read on PHERAstar FSX using HT

## 3.3.3 Competition ligand binding studies on TS-SNAP-β<sub>2</sub>AR in membranes, DDM micelles and DIBMALPs:

The next aim was to investigate if the conformational landscape of the TS-SNAP- $\beta_2$ AR was restricted by the DIBMALP. To ascertain this, the ability of DIBMALP-TS-SNAP- $\beta_2$ AR to bind the agonist isoprenaline, the inverse agonist ICI 118, 551 and the antagonist propranolol was investigated using a TR-FRET equilibrium competition binding assay with F-propranolol as the tracer. As agonists, inverse agonists and antagonists respectively, these ligands will bind different receptor conformations and a difference in affinity between DIBMALP- $\beta_2$ AR and membrane- $\beta_2$ AR would indicate that the conformational landscape of TS-SNAP- $\beta_2$ AR differed from its native conformational landscape. Figure **3.3.4** shows that increasing concentrations of each ligand produced a reduction in the specific binding of F-propranolol bound to the TS-SNAP- $\beta_2$ AR in membranes, DDM and DIBMALPs with largely comparable pK<sub>i</sub> values (Table 3.3.1). The only statistically significant difference was between isoprenaline binding to the TS-SNAP- $\beta_2$ AR found in membranes versus the DDM solubilised  $\beta_2AR$  (p=0.03) (one-way ANOVA and Tukey's post hoc).



Figure 3.3.4: Competition TR-FRET ligand binding studies using Fpropranolol as a tracer and unlabelled propranolol, ICI 118, 551 and isoprenaline as competitors in A)  $\beta_2$ AR membranes, B) DDM- $\beta_2$ AR C) DIBMALP-  $\beta_2$ AR, curves show normalized combined data of n=3, error bars show SEM. TR-FRET between Lumi4-Tb and F-propranolol was read on PHERAstar FSX using HTRF module.

|              | Membranes         |                 |       | DDM               |                 |       | DIBMA             |                 |       |
|--------------|-------------------|-----------------|-------|-------------------|-----------------|-------|-------------------|-----------------|-------|
|              | pIC <sub>50</sub> | рК <sub>і</sub> | Slope | pIC <sub>50</sub> | рК <sub>і</sub> | Slope | pIC <sub>50</sub> | рК <sub>і</sub> | Slope |
| Dronronolol  | 8.7               | 9.5             | 1.0   | 9.0               | 9.5             | 1.2   | 9.1               | 9.6             | 0.8   |
| FIOPIATIOIOI | ±0.13             | ±0.03           | ±0.02 | ±0.04             | ±0.03           | ±0.04 | ±0.10             | ±0.10           | ±0.30 |
|              | 8.5               | 9.3             | 1.1   | 8.5               | 8.9             | 1.0   | 8.3               | 9.1             | 1.3   |
| 101 110, 551 | ±0.10             | ±0.15           | ±0.22 | ±0.02             | ±0.10           | ±0.06 | ±0.15             | ±0.06           | ±0.23 |
| Isoprenaline | 4.7               | 5.5             | 1.1   | 5.8               | 6.3             | 1.1   | 5.1               | 5.8             | 1.1   |
|              | ±0.12             | ±0.20           | ±0.11 | ±0.06             | ±0.13           | ±0.09 | ±0.18             | ±0.10           | ±0.15 |

Table 3.3.1: A summary of pIC<sub>50</sub>, pK<sub>i</sub> and Hill slope values for propranolol, ICI 118,551, and isoprenaline obtained through TR-FRET competition binding assays Values show mean of n=3 individually fitted curves ±SEM, TR-FRET between Lumi4-Tb and F-propranolol was read on PHERAstar FSX using HTRF module.

## 3.3.4 TR-FRET thermostability studies on TS-SNAP- $\beta_2$ AR in membranes, DDM micelles and DIBMALPs

We then investigated the thermostability of the DIBMALP- $\beta_2AR$  compared to the conventionally used DDM solubilised  $\beta_2AR$ . This was first investigated using a novel ThermoFRET assay (Tippett et al., 2020). As with the TR-FRET ligand binding assay a SNAP tag on the N terminus of the TS-SNAP- $\beta_2AR$  was labelled with Lumi4-Tb and the preparation was then heated over an increasing temperature range, in the presence of BODIPY<sup>TM</sup> FL L-Cystine dye. BODIPY<sup>TM</sup> FL L-Cystine covalently reacts with cysteines on the receptor which become exposed as the receptor unfolds.  $\beta_2AR$  unfolding was then measured by quantifying TR-FRET between Lumi4-Tb and BODIPY<sup>TM</sup> FL L-Cystine. This allowed thermostability to be investigated without purifying the receptor.

Figure **3.3.5B** shows thermostability curves for DDM- $\beta_2$ AR in the absence and presence of the high affinity antagonist cyanopindolol. These data show DDM- $\beta_2$ AR alone has a T<sub>m</sub> of 35.2±2.4°C, which is increased by the presence of cyanopindolol (41.9±0.1°C, p=0.04) and Fpropranolol T<sub>m</sub>=37.8±0.4°C, p>0.05 (one-way ANOVA and Tukey's multiple comparison test). Figure **3.3.5A** shows thermostability curves for TS-SNAP- $\beta_2$ AR in the cell membrane in the absence and presence of cyanopindolol and F-propranolol. These data give a T<sub>m</sub> of 62.4±0.2°C for membrane- $\beta_2$ AR alone and showed no shift in thermostability when measured in the presence of cynopindolol and F-propranolol. This suggests the unfolding of the receptor itself is not directly measurable and perhaps that these data show the disintegration of the membrane itself. ThermoFRET data for the DIBMALP- $\beta_2$ AR did not fit a Boltzmann sigmoidal curve as the top end of the temperature range did not plateau (Figure **3.3.5C**). No effect on any part of the DIBMALP- $\beta_2$ AR thermostability curve was observed when measured in the presence of cyanopindolol or F-propranolol.



Figure 3.3.5: TR-FRET thermostability measurements using terbium cryptate and BODIPY<sup>TM</sup> FL L-Cystine dye in A)  $\beta_2$ AR membranes B) DDM solubilised  $\beta_2$ AR C) DIBMALP- $\beta_2$ AR in the presence and absence of cyanopindolol (100nM) and F-propranolol (200nM). All curves show normalized combined data, mean ± SEM, for n=3. TR-FRET between Lumi4-Tb and BODIPY<sup>TM</sup> FL L-Cystine dye was measured on PHERAstar FSX at room temperature using 520/620 TRF module.



Figure 3.3.6: A comparison of TR-FRET thermostability curves obtained for  $\beta_2AR$  A) membranes, B) DDM and C) DIBMA using BODIPY<sup>TM</sup> FL L-Cystine dye or F-propranolol. All curves show normalized combined data, mean ± SEM, for n=3. TR-FRET between Lumi4-Tb and BODIPY<sup>TM</sup> FL L-Cystine dye was measured on PHERAstar FSX at room temperature using 520/620 TRF module, and for TR-FRET between Lumi4-Tb and F-propranolol using HTRF module.

As the ThermoFRET data for DIBMALP- $\beta_2AR$  did not fit a Boltzmann sigmoidal curve we then investigated thermostability using Fpropranolol as a probe rather than BODIPY<sup>™</sup> FL L-Cystine dye. An increase in temperature would be expected to cause a decrease in ligand binding as the  $\beta_2$ AR unfolds. Figure **3.3.6** compares thermostability data for membrane- $\beta_2$ AR, DDM- $\beta_2$ AR and DIBMALP- $\beta_2$ AR in the presence of F-propranolol obtained by measuring either TR-FRET between Lumi4-Tb and BODIPY<sup>™</sup> FL L-Cystine dye or between Lumi4-Tb and Fpropranolol. The resulting data showed similar T<sub>m</sub> values determined for the membrane- $\beta_2$ AR (60.1±0.6°C) and DDM- $\beta_2$ AR (36.0±0.6°C) using Fpropranolol as those obtained using BODIPY<sup>™</sup> FL L-Cystine dye. Unpaired two-tailed t tests showed no statistically significant differences between membrane- $\beta_2$ AR and DDM- $\beta_2$ AR T<sub>m</sub> values obtained with Fpropranolol measured using either TR-FRET method. Thermostability curves for DIBMALP- $\beta_2$ AR measured by quantifying TR-FRET between F-propranolol and Lumi4-Tb could be fitted to a Boltzmann sigmoidal curve with a corresponding  $T_m$  value of 46.8 ± 2.1°C. This  $T_m$  value is statistically significant from that of membrane- $\beta_2 AR$  (p=0.0002) and DDM- $\beta_2$ AR (p=0.0009) obtained by the same method (one-way ANOVA) and Tukey's multiple comparison test). Therefore, the DIBMALP- $\beta_2$ AR shows approximately 10°C improved stability over the conventional DDM- $\beta_2$ AR. The slope of DIBMALP- $\beta_2$ AR also differed from that of DDM- $\beta_2$ AR, these were -3.2 and -2.7 respectively.

In addition to investigating the thermostability of the  $\beta_2AR$  in these different environments, the thermostability of of another rhodopsin-like GPCR, the adenosine 2A receptor (A<sub>2A</sub>R) in a DIBMALP was measured using a fluorescent adenosine receptor antagonist (F-XAC) (Hello Bio, UK). Measuring the reduction in F-XAC bound to A<sub>2A</sub>R over an increased temperature range gave a T<sub>m</sub> value of 44.8±0.7°C, which was not statistically significantly different from that of the DIBMALP- $\beta_2AR$  (Figure 3.3.7).

 $T_m$  values for membrane- $\beta_2AR$ , DDM- $\beta_2AR$ , DIBMALP- $\beta_2AR$  and DIBMALP- $A_{2A}$  obtained measuring TR-FRET between Lumi4-Tb and BODIPY<sup>TM</sup> FL L-Cystine dye, and between Lumi4-Tb and F-propranolol or F-XAC are summarized in table **3.3.2**.



Figure 3.3.7: A summary of thermostability curves obtained by TR-FRET ligand binding.  $\beta_2AR$  and  $A_2AR$  thermostability measurements were made using F-propranolol (200nM) and F-XAC (200nM) respectively. All curves show normalized combined data, mean ± SEM, for n=3. TR-FRET between Lumi4-Tb and F-ligands was measured on PHERAstar FSX at room temperature using HTRF module.

|                            | T <sub>m</sub> (°C) | T <sub>m</sub> (°C) |  |
|----------------------------|---------------------|---------------------|--|
|                            | BODIPY™ FL L-       | F-propranolol       |  |
|                            | Cystine             |                     |  |
| Membrane β <sub>2</sub> AR | 62.4±0.2            | -                   |  |
| Membrane β <sub>2</sub> AR | 61 6+0 /            | 60 1+0 6            |  |
| + F-propranolol            | 01.0±0.4            | 00.110.0            |  |
| Membrane β <sub>2</sub> AR | 63 0+0 4            | _                   |  |
| + cyanopindolol            | 00.0±0.4            | -                   |  |
| DDM β <sub>2</sub> AR      | 35.2±2.4            | -                   |  |
| DDM β <sub>2</sub> AR      | 37.8 +0 /           | 36.0.+0.6           |  |
| + F-propranolol            | 57.0 ±0.4           | 50.0 ±0.0           |  |
| DDM β <sub>2</sub> AR      | <i>1</i> 1 Q +0 1   |                     |  |
| + cyanopindolol            | 41.9 ±0.1           | -                   |  |
| DIBMALP β2AR               | -                   | 46.8 ±2.1           |  |
| DIBMALP A <sub>2A</sub>    | -                   | 44.8 ±0.7           |  |

Table 3.3.2: A summary of mean  $T_m$  values ± SEM for TS-SNAP- $\beta_2AR$ and TS-SNAP- $A_{2A}R$  in mammalian cell membranes, DDM detergent micelles or DIBMALPs with or without F-propranolol or cyanopindolol, using either BODIPY<sup>TM</sup> FL L-Cystine or F-propranolol or F-XAC.  $T_m$ values were a mean of n=3 experiments individually fitted to a Boltzmann sigmoidal curve. 3.3.5 TR-FRET ligand binding shift studies to investigate the ability of DIBMALP- $\beta_2$ AR to couple Halo-mini-G<sub>s</sub>

Finally, to investigate whether the DIBMALP- $\beta_2$ AR retained its ability to couple its G protein, isoprenaline TR-FRET competition ligand binding assays were performed in the absence and presence of saturating concentrations (25µM) of Halo-mini-G<sub>s</sub>. Saturating concentrations were defined by the experiments in chapter 5. If the DIBMALP- $\beta_2$ AR affinity for the agonist isoprenaline increased in the presence of saturating concentrations of Halo-mini-G<sub>s</sub> this implies that the  $\beta_2$ AR has bound the mini-G<sub>s</sub>. An agonist such as isoprenaline will have higher affinity for  $\beta_2$ AR in an active or G protein coupled state.

Figure **3.3.8A-C** shows the effect of  $25\mu$ M Halo-mini-G<sub>s</sub> on the antagonist F-propranolol binding to the TS-SNAP- $\beta_2$ AR in membranes, DDM, and DIBMALPs. It was necessary to assess the effect of Halo mini-G<sub>s</sub> on binding of the tracer F-propranolol to the  $\beta_2$ AR so that isoprenaline competition binding data could be accurately fitted. F-propranolol pK<sub>d</sub> values were  $6.9\pm0.07$ ,  $7.3\pm0.01$  and  $7.1\pm0.22$  for membrane- $\beta_2$ AR, DDM- $\beta_2$ AR and DIBMALP- $\beta_2$ AR respectively in the absence of mini-G<sub>s</sub>. There was no statistically significant difference between these pK<sub>d</sub> values and those obtained for F-propranolol in the presence of saturating concentrations of Halo-mini-G<sub>s</sub>, these were  $7.0\pm0.06$  (p=0.89),  $7.3\pm0.10$  (p=0.86) and  $7.3\pm0.14$  (p=0.47) for membrane- $\beta_2$ AR +  $25\mu$ M Halo-mini-G<sub>s</sub> and DIBMALP- $\beta_2$ AR +  $25\mu$ M Halo-mini-G<sub>s</sub> respectively. Statistical comparison between pK<sub>d</sub> values in the absence and presence of  $25\mu$ M Halo-mini-G<sub>s</sub> were made using unpaired two-tailed T-tests.

Figure **3.3.8D-F** shows competition binding studies to investigate the effect of saturating concentrations of Halo-mini-G<sub>s</sub> on binding of the agonist isoprenaline to the TS-SNAP- $\beta_2$ AR in membranes, DDM or DIBMALPs. These data showed statistically significant shifts of in the affinity of membrane- $\beta_2AR$  and DDM- $\beta_2AR$  for isoprenaline in the presence of 25µM Halo-mini-G<sub>s</sub>. The presence of 25µM Halo-mini-G<sub>s</sub> decreased the pK<sub>d</sub> value of isoprenaline binding membrane- $\beta_2AR$  from 5.3 to 7.4 (p=0.0002, unpaired t-test) and from 6.4 to 8.5 (p=0.0058, unpaired t-test) for DDM- $\beta_2AR$ . This indicates Halo-mini-G<sub>s</sub> binding to these  $\beta_2AR$  preparations. There was no effect of the presence of 25µM Halo-mini-G<sub>s</sub> on the affinity of isoprenaline for DIBMALP- $\beta_2AR$  (p=0.84, unpaired t-test). pK<sub>d</sub> values for isoprenaline binding DIBMALP- $\beta_2AR$  were 6.0 ±0.21 in the absence of Halo-mini-G<sub>s</sub> and 6.1±0.24 in the presence of 25µM Halo-mini-G<sub>s</sub>.

|                              | pK₀           | рК <sub>і</sub> |  |
|------------------------------|---------------|-----------------|--|
|                              | F-propranolol | isoprenaline    |  |
| Membranes- β <sub>2</sub> AR | 6.9±0.07      | 5.3±0.11        |  |
| Membranes-β <sub>2</sub> AR  | 7 0+0 06      | 7.4±0.27        |  |
| + 25µM Halo-miniG₅           | 1.020.00      |                 |  |
| DDM- β <sub>2</sub> AR       | 7.3±0.01      | 6.4±0.02        |  |
| DDM-β <sub>2</sub> AR        | 7 3+0 10      | 8 5+0 38        |  |
| + 25µM Halo-miniG₅           | 1.0±0.10      | 0.010.00        |  |
| DIBMALP- β <sub>2</sub> AR   | 7.1±0.22      | 6.0±0.21        |  |
| DIBMALP- β <sub>2</sub> AR   | 7 3+0 14      | 6.1±0.24        |  |
| + 25µM Halo-miniG₅           | 1.0±0.14      |                 |  |

Table 3.3.3: A summary of the mean  $pK_d$  and  $pK_i$  values ± SEM for F-propranolol and isoprenaline binding TS-SNAP- $\beta_2$ AR in mammalian cell membranes, DDM detergent micelles or DIBMALPs in the absence and presence of 25µM Halo-mini-G<sub>s</sub>. TR-FRET between Lumi4-Tb and F-propranolol was measured on PHERAstar FSX at room temperature using HTRF module, values are mean of n=3 experiments individually fitted to a one-site specific binding model for Fpropranolol, or One-site competition binding for isoprenaline.



Figure 3.3.8: TR-FRET ligand binding shift studies to investigate the effect the presence of Halo-min-G<sub>s</sub> on Fpropranolol binding to A) membranes- $\beta_2$ AR B) DDM- $\beta_2$ AR C) DIBMALP- $\beta_2$ AR and Isoprenaline binding to D) Membranes- $\beta_2$ AR E) DDM- $\beta_2$ AR F) DIBMALP- $\beta_2$ AR. All curves show normalized combined data, mean ± SEM, for n=3-4. TR-FRET between Lumi4-Tb and F-propranolol was measured on PHERAstar FSX at room temperature using HTRF module.

## 3.3.6 TR-FRET ligand binding shift studies to investigate the ability of DIBMALP- $A_{2A}$ to couple Halo-mini- $G_s$

Following the observation that Halo-mini-G<sub>s</sub> bound to membrane- $\beta_2$ AR and DDM- $\beta_2$ AR but not DIBMALP- $\beta_2$ AR, it was possible that this was a specific problem with  $\beta_2 AR$  when in the DIBMALP, or a more general effect for class A GPCRs in DIBMALPs or a problem with the assay conditions. To further understand the reason that DIBMALP- $\beta_2$ AR did not bind Halo-mini-G<sub>s</sub> we investigated if DIBMALP-A<sub>2A</sub> could bind Halo-mini-G<sub>s</sub>. To this end F-XAC was used as a tracer to detect binding of the full agonist NECA to membrane-A<sub>2A</sub> and DIBMALP-A<sub>2A</sub>. Figure **3.3.9A** shows that, as with F-propranolol binding  $\beta_2AR$ , there was no statistically significant effect of 25µM Halo-mini-Gs protein on F-XAC binding to membrane- $A_{2A}$  or DIBMALP- $A_{2A}$ . The resulting pK<sub>d</sub> values are summarised in table 3.3.4. The pK<sub>d</sub> value obtained for F-XAC binding membranes-A<sub>2A</sub> was 6.11±0.02 compared to 6.18±0.01 in the presence of  $25\mu$ M Halo-mini-G<sub>s</sub> (p=0.059, unpaired t-test).). Similarly, the pK<sub>d</sub> value for F-XAC binding DIBMALP-A<sub>2A</sub> was 6.03±0.06 compared to  $6.08\pm0.02$  in the presence of  $25\mu$ M Halo-mini-G<sub>s</sub> (p=0.056). Moreover, as with the  $\beta_2AR$ , the presence of  $25\mu M$  Halo-mini-G<sub>s</sub> caused a 0.5 log unit shift in the affinity of the full agonist NECA for membrane-A<sub>2A</sub>. These  $pK_i$  values were 6.44±0.12 for membrane-A<sub>2A</sub> and 6.99±0.10 for membrane-  $A_{2A}$ +25µM Halo-mini-G<sub>s</sub> (p=0.03, unpaired t-test). There was no statistically significant effect of 25µM Halo-mini-G<sub>s</sub> on the affinity of NECA for DIBMALP-A<sub>2A</sub> again showing the Halo-mini-G<sub>s</sub> could not bind the DIBMALP-A<sub>2A.</sub> pK<sub>i</sub> values were 5.53±0.05 for DIBMALP-A<sub>2A</sub> and 5.70±0.08 for DIBMALP-A<sub>2A</sub> + 25 $\mu$ M Halo-mini-G<sub>s</sub> (p=0.15, unpaired ttest).). The difference in affinity of NECA for membranes-A<sub>2A</sub>  $(pK_i=6.44\pm0.12)$  and DIBMALP-A<sub>2A</sub>  $(pK_i=5.53\pm0.05)$  was statistically significant 0=0.0038, (unpaired t-test).). This suggests a difference in the conformational landscape of A<sub>2A</sub> compared to its native membrane state.



Figure 3.3.9: TR-FRET ligand binding shift studies to investigate Halo-min-G<sub>s</sub> binding to membrane and DIBMALP A<sub>2A</sub> A) F-XAC binding to membranes-A<sub>2A</sub> and DIBMALP-A<sub>2A</sub> in the absence and presence of 25 $\mu$ M Halo-mini-G<sub>s</sub> B) NECA binding to membranes-A<sub>2A</sub> in the absence and presence of 25 $\mu$ M Halo-mini-G<sub>s</sub>, C) NECA binding to DIBMALP-A<sub>2A</sub> in the absence and presence of 25 $\mu$ M Halo-mini-G<sub>s</sub>. All curves show normalized combined data, mean ± SEM, for n=2 for F-XAC and n=3 for NECA, TR-FRET between Lumi4-Tb and F-XAC was measured on PHERAstar FSX at room temperature using HTRF module.

|                                | pKd       | pKi       |  |
|--------------------------------|-----------|-----------|--|
|                                | F-XAC     | NECA      |  |
| Membranes- A <sub>2A</sub>     | 6.11±0.02 | 6.44±0.12 |  |
| Membranes-A <sub>2A</sub>      | 6.18±0.01 | 6.99±0.10 |  |
| + 25µM Halo-miniG <sub>s</sub> |           |           |  |
| DIBMALP- A <sub>2A</sub>       | 6.03±0.06 | 5.53±0.05 |  |
| DIBMALP- A <sub>2A</sub>       | 6.08±0.02 | 5.70±0.08 |  |
| + 25µM Halo-miniG₅             |           |           |  |

**Table 3.3.4** A summary of the mean  $pK_d$  and  $pK_i$  values  $\pm$  SEM for F-XAC and NECA binding  $A_{2A}$  in mammalian cell membranes, or DIBMALPs in the absence and presence of  $25\mu$ M Halo-mini-G<sub>s</sub>. TR-FRET between Lumi4-Tb and F-XAC was measured on PHERAstar FSX at room temperature using TRF module, values are mean of n=3 experiments individually fitted to a one-site specific binding model for F-XAC, or One-site competition binding for NECA.

#### 3.4. Discussion

The  $\beta_2AR$  has become the prototypical GPCR for studies into GPCR activation be it structural, functional, or biophysical studies (Bang & Choi, 2015)(Gregorio et al., 2017). Structural and biophysical studies all require the extraction of the  $\beta_2AR$  from the plasma membrane, as such the above studies have employed use of the detergent DDM. Detergents do not recapitulate the complexity of the native membrane environment and so the stability of membrane proteins within the detergent micelle is often compromised. Alternative approaches have included use of synthetic nanodiscs and thermostabilizing mutations. Here, the applicability of the polymer DIBMA to extract the  $\beta_2AR$  was investigated.

## 3.4.1 DIBMA can extract $\beta_2AR$ from the mammalian cell membrane

This study showed it was possible to extract the  $\beta_2AR$  from mammalian cell membranes using DIBMA although solubilization efficiency for DIBMA (32±7%) was dramatically lower that of the conventional detergent DDM (90±11%). It was possible to find one other study examining solubilisation efficiency by DIBMA; Gulamhussein and colleagues (Gulamhussein et al., 2020) show a similar solubilisation efficiency of approximately 30% to extract the ABC transporter BmrA from *E. coli*. Additionally, they show it was possible to extract the A<sub>2A</sub> receptor from yeast membranes using DIBMA, which supports the findings of this study. Whilst low solubilisation efficiency may decrease purification yields and make structural studies unfeasible this lower yield was not problematic for this study. Furthermore, FSEC analysis suggested that although DIBMA yield was lower a lesser proportion of it was aggregated than that of the DDM preparation.

## 3.4.2 DIBMALP- $\beta_2$ AR retains ligand binding capabilities

To investigate if the  $\beta_2AR$  remained functional in the DIBMALP ligand binding ability was assessed using a TR-FRET ligand binding assay. Saturation TR-FRET binding data showed F-propranolol binding to DIBMALP- $\beta_2AR$ , therefore indicating that the  $\beta_2AR$  was functional. The

pK<sub>d</sub> value (7.0±0.13) for F-propranolol binding DIBMALP- $\beta_2$ AR was comparable to that of membrane- $\beta_2$ AR (7.5±0.05) and DDM-  $\beta_2$ AR (7.10 ± 0.08). Although the difference in pK<sub>d</sub> values for F-propranolol binding DIBMALP- $\beta_2$ AR was statistically different (p=0.02) from that of membranes- $\beta_2$ AR this is only 3-fold which is not a large difference.

While the pK<sub>d</sub> values for different preparations of the receptor were comparable, the signal amplitude obtained for F-propranolol binding DIBMALP- $\beta_2$ AR in TR-FRET experiments was 3-fold lower than for membranes- $\beta_2$ AR. This reduction in signal amplitude could be due to an effect of the DIBMA polymer on the TR-FRET, for example fluorescence quenching. Alternatively, it could reflect that a lower fraction of the  $\beta_2$ AR receptors have retained ligand binding capabilities.

However, it should be noted that the assay window for DDM- $\beta_2AR$  was higher than that of membranes whilst it would be expected that less  $\beta_2AR$  is functional, suggesting that the solubilization environment can influence the observed signal amplitude. Whilst the concentration of  $\beta_2AR$  used in each experimental condition was quantified using 620nm emission of Lumi4-Tb, it was not possible to account for difference in Lumi4-Tb quantum yield in the membrane, DDM and DIBMALP environments.

# 3.4.3 DIBMALP- $\beta_2$ AR retains native pharmacology and conformational landscape

Next, the conformational landscape of DIBMALP- $\beta_2$ AR was investigated using an equilibrium TR-FRET competition binding assay. To ascertain the relative populations of active and inactive conformations of the  $\beta_2$ AR in the DDM, DIBMALP or membrane environment the affinity of the agonist isoprenaline, the antagonist propranolol and the inverse agonist ICI 118,551 was investigated. A dramatic increase or decrease in the affinity (pK<sub>i</sub>) of any of these ligands for any of the  $\beta_2$ AR preparations would indicate a respective increase or decrease in the proportion of the population of receptors in the conformational state stabilised by the relevant ligand and hence a difference in the conformational landscape of the  $\beta_2AR$ . There is evidence that the conformational flexibility of the rhodopsin and  $A_{2A}R$  within SMALPs is restricted (Mosslehy et al. 2019) (Routledge et al., 2020). Interestingly, this study also found that the affinity of DIBMALP-A<sub>2A</sub> for the full agonist NECA was reduced compared to its native membrane state suggesting DIBMA restricts the conformational changes of the full active state of  $A_{2A}$  as Routledge and colleagues showed was the case of  $A_{2A}$  in SMALPs (Routledge et al., 2020).

Competition TR-FRET ligand binding studies showed comparable pK<sub>i</sub> values for propranolol and ICI 118, 511 in membrane- $\beta_2$ AR, DDM- $\beta_2$ AR and DIBMALP- $\beta_2$ AR, and for isoprenaline in membrane- $\beta_2$ AR and DIBMALP- $\beta_2$ AR. This suggests that the  $\beta_2$ AR remains in its native conformational state inside the DIBMALP. The difference in pK<sub>i</sub> value between DDM- $\beta_2$ AR (6.3±0.13) and membrane- $\beta_2$ AR (5.5±0.2) for isoprenaline was statistically significant (p=0.03), this may indicate a change in the conformational state of  $\beta_2$ AR in the DDM micelle compared to its native conformational state. Propranolol, ICI 118, 551 and isoprenaline pK<sub>i</sub> values obtained in this study are in line with the previous studies that investigate the affinity of these compounds for the  $\beta_2$ AR (Baker, 2005) (Sykes et al., 2014a). All ligand binding curves showed one phase binding and a slope of 1 indicating no co-operativity of ligand binding.

#### 3.4.4 DIBMALP-β2AR shows improved thermostability

The next aim of this study was to investigate the thermostability of the DIBMALP- $\beta_2$ AR. This was explored using novel TR-FRET thermostability assays. The key finding was that DIBMALP- $\beta_2$ AR showed a 10°C increase in thermostability compared to DDM- $\beta_2$ AR. It was not possible to find any thermostability data for the  $\beta_2$ AR in synthetic nanodiscs; however, the only other method to show a similar (11°C) increase in thermostability for  $\beta_2$ AR is that of thermostabilizing mutations
(Serrano-Vega & Tate, 2009b). Since these mutations also lead to a shift in the  $\beta_2$ AR's conformational landscape to the antagonist-bound and inactive form, the DIBMALP- $\beta_2$ AR offers a clear advantage for study of  $\beta_2$ AR function.

This study also found that there was no ligand induced shifts in the ThermoFRET curve of DIBMALP-β<sub>2</sub>AR suggesting the thermostability curve of DIBMALP- $\beta_2$ AR and T<sub>m</sub> of 46.8±2.1°C corresponded to disruption of the protein-lipid-polymer particles as opposed to the  $\beta_2AR$  itself. This conclusion was also supported by the Tm value of 44.8±0.7°C obtained for DIBMALP-A<sub>2A</sub> not being statistically significantly different from that of the DIBMALP- $\beta_2$ AR. We also noted a shallower slope for DIBMALP- $\beta_2$ AR (-3.2) compared to DDM- $\beta_2$ AR (-2.7), this broader transition may reflect the more heterogenous nature of DIBMALPs compared to the detergent micelle. The T<sub>m</sub> values obtained for DIBMALP encapulsated  $\beta_2$ AR and  $A_{2A}$  in this study are similar to that of 51.4±0.8°C obtained for DIBMALP encapulsated Rho by Grime and colleagues (Grime et al., 2021).

# 3.4.5 DIBMALP-β<sub>2</sub>AR cannot couple Halo-mini-G<sub>s</sub>

Lastly, this study investigated if the DIBMALP- $\beta_2AR$  could couple the Halo-mini-G<sub>s</sub> proteins produced in chapter 5 in response to agonist stimulation. Mini-G<sub>s</sub> proteins are the engineered GTPase domain of the  $\alpha$  subunit of the G protein, they act as conformational sensors for the active state of the GPCR. This study used the TR-FRET competition binding assay to detect Halo-mini-G<sub>s</sub> binding by shifts in agonist affinity for the receptor. Using this method, we were able to detect halo-mini-G<sub>s</sub> binding to the TS-SNAP- $\beta_2AR$  in membranes and DDM but not DIBMALPs. Similarly, we were able to detect Halo-mini-G<sub>s</sub> binding TS-SNAP-A<sub>2A</sub> in membranes but not DIBMALPs. It is not known why it was not possible to detect Halo-mini-G<sub>s</sub> binding to DIBMALP- $\beta_2AR$  or DIBMALP-A<sub>2A</sub> although clearly the assay was able to detect binding of halo-mini-G<sub>s</sub> to the other preparations. It could be that both the A<sub>2A</sub>R and  $\beta_2AR$  are conformationally restricted in DIBMALPs or the free polymer or non-receptor containing DIBMALPs or something else interfere with the preparation interfere with the assay. However, removing the free polymer by dialysis did not affect the result. Moreover, it was not possible to purify enough DIBMALP-GPCR to complete the assay with purified material. It was not possible to find any other studies showing G protein or mini-G coupling to a GPCR encapsulated in a DIBMALP. However, Logez and colleagues (Logez et al., 2016) show arrestin and G protein recruitment to purified SMALP-MT1.

#### 3.4.6 Conclusion

Overall, this study shows that the polymer DIBMA can be used to extract the human  $\beta_2AR$  from the plasma membrane. This study showed that this method offers improved stability over the use of the conventional detergent DDM. Moreover, this study shows both DDM- $\beta_2AR$  and DIBMALP- $\beta_2AR$  maintain their native pharmacology and conformational landscape however only DDM- $\beta_2AR$  was shown to be able to couple mini-G<sub>s</sub>. Based on these conclusions the conventional detergent DDM was chosen as the best method to extract the  $\beta_2AR$ . Future work would investigate why DIBMALP- $\beta_2AR$  would not couple mini-G<sub>s</sub> in this study.

Chapter 4 Pharmacological characterisation of eight agonists for the  $\beta_2AR$ 

## 4.1 Introduction

The hypothesis underlying this study was that differences in the kinetics of agonist- $\beta_2$ AR-G<sub>s</sub> protein complex formation underly differences in agonist efficacy at the  $\beta_2$ AR. Investigation of this hypothesis required a range of fully pharmacologically characterised agonists of varying ligand binding and efficacy profiles. To this end this study chose eight  $\beta_2$ AR agonists from the literature based on their published ligand binding kinetics and efficacies and fully characterised their pharmacology in our own systems.

# 4.1.1 The eight $\beta_2$ AR agonists chosen for this study

Table **4.1.1** summarises pharmacological properties of the eight  $\beta_2$ AR agonists from published literature chosen for this study. These data were taken from different studies (Baker, 2005)(Rasmussen, et al., 2011a) (Rosethorne et al., 2016) (Sykes et al., 2014) and systems.

Taken together these data predict these compounds to have a range of residence times at the  $\beta_2AR$ , for example isoprenaline, salbutamol, and formoterol, are predicted to have short residence times and C26 to have a very long residence time. These data also suggest salbutamol and salmeterol to be partial agonists, whilst formoterol, adrenaline and isoprenaline are full agonists and C26 is a super agonist. Overall, these synthetic ligands were chosen for this study because of their range of kinetic and efficacy values, adrenaline and noradrenaline were chosen based on this and being endogenous ligands for the  $\beta_2 AR$ . Despite these published studies characterising these compounds, this study chose to characterise the ligand binding kinetics of these compounds so that these parameters could be obtained for all ligands in one data set and whilst the  $\beta_2$ AR was in the DDM micelle. The  $\beta_2$ AR was solubilised in DDM in this and other chapters in our study to isolate it from the regulation of the cell. Moreover, this study also specifically aimed to characterise the efficacy of these compounds to activate the heterotrimeric G<sub>s</sub> protein, as opposed to cAMP. Efficacy of these

compounds to activate the heterotrimeric  $G_s$  protein is the most relevant system to compare to the mini- $G_s$  kinetic data obtained in chapter **5**.

| β2 <b>AR</b>  | р <i>К</i> d   | cAMP              | cAMP             | K <sub>off</sub>      | Kon                                    |
|---------------|----------------|-------------------|------------------|-----------------------|----------------------------------------|
| agonist       |                | pEC <sub>50</sub> | E <sub>max</sub> | (Min⁻¹)               | (Mol <sup>-1</sup> Min <sup>-1</sup> ) |
|               |                |                   | (% of            |                       |                                        |
|               |                |                   | Isoprenaline)    |                       |                                        |
| Adrenaline    | 6.13           | 7.93              | 101%             | -                     | -                                      |
|               | ±0.05          | ±0.07             | (Baker, 2005)    |                       |                                        |
|               | (Baker, 2005)  | (Baker, 2005)     |                  |                       |                                        |
| Isoprenaline  | 6.64           | 8.22              | 100%             | 3.06                  | 2.47±1.39                              |
|               | ±0.09          | ±0.11             | (Baker, 2005)    | ±1.53                 | X10 <sup>7</sup>                       |
|               | (Baker, 2005)  | (Baker, 2005)     |                  | (Sykes et al., 2014b) | (Sykes et al., 2014b)                  |
| Salbutamol    | 6.01           | 7.72              | 95.8%            | 4.06                  | 2.05±1.03                              |
|               | ±0.01          | ±0.07             | (Baker, 2005)    | ±1.19                 | X10 <sup>7</sup>                       |
|               | (Baker, 2005)  | (Baker, 2005)     |                  | (Sykes et al., 2014b) | (Sykes et al., 2014b)                  |
|               |                |                   |                  |                       |                                        |
| BI 167-107    | 9.07           | 10.3              | 100%             | -                     | -                                      |
|               | (Rasmussen,    | (Rasmussen,       | (Rasmussen,      |                       |                                        |
|               | et al., 2011b) | et al., 2011b)    | et al., 2011b)   |                       |                                        |
| Noradrenaline | 5.41           | 6.36              | 103%             | -                     | -                                      |
|               | ±0.07          | ±0.04             | (Baker, 2005)    |                       |                                        |
|               | (Baker, 2005)  | (Baker, 2005)     |                  |                       |                                        |
|               |                |                   |                  |                       |                                        |
| Formoterol    | 7.77           | 8.29              | 111%             | 3.00                  | 1.78±0.21                              |
|               | ±0.01          | ±0.08             | (Baker, 2005)    | ±0.38                 | X10 <sup>8</sup>                       |
|               | (Sykes et al., | (Baker, 2005)     |                  | (Sykes et al., 2014b) | (Sykes et al., 2014b)                  |
|               | 2014b)         |                   |                  |                       |                                        |
|               |                |                   |                  |                       |                                        |
| Salmeterol    | 9.26           | 9.89              | 94%              | 1.16                  | 3.50±0.57                              |
|               | ±0.06          | ±0.08             | (Baker, 2005)    | ±0.16                 | X10 <sup>9</sup>                       |
|               | (Baker, 2005)  | (Baker, 2005)     |                  | (Sykes et al., 2014b) | (Sykes et al., 2014b)                  |
|               |                |                   |                  |                       |                                        |
| C26           | 9.78           | 10.2              | 117%             | 0.02                  | 3.70±0.47                              |
|               | (Rosethorne et | ±0.07             | (Rosethorne      | ±0.003                | X10 <sup>8</sup>                       |
|               | al., 2016)     | (Rosethorne       | et al., 2016)    | (Rosethorne et al.,   | (Rosethorne et al.,                    |
|               |                | et al., 2016)     |                  | 2016)                 | 2016)                                  |
|               |                |                   |                  |                       |                                        |

Table 4.1.1: A summary of ligand binding affinity, kinetics and potency values obtained from literature for the eight  $\beta_2$ AR agonists selected in this study.

# 4.1.2 Use of TR-FRET to measure ligand binding kinetics

Traditionally, radiolabelled ligands have been used to investigate ligand binding to a receptor of interest. Aside from the problems associated with cost and radiation disposal and exposure, the practicalities of radioligand binding do not allow for the kinetic resolution required to study the kinetics of many ligands. Radioligand binding assays require a separate sample for each time point as the assay is not homogenous and requires the separation of bound and free. Conversely, more recently developed, and homogenous, TR-FRET ligand binding assays can be continuously read from the same well for up to 5 second time cycles (Sykes et al., 2019). The principles of TR-FRET are discussed in more detail in sec **2.2.8**. Ease and greatly improved kinetic resolution were the main reasons for choosing TR-FRET technology as opposed to radioligand binding assays.

#### 4.1.3 Defining efficacy using a G<sub>s</sub> protein activation assay

Classically, radiolabelled GTP $\gamma$ S has been used to quantify G protein turnover by GPCRs in cell membranes. Although a sensitive method, this assay has high background and is difficult to apply in whole cells or measure kinetically.

More recently, FRET and BRET based biosensors for G protein activation have been developed. Such methods are much easier to apply kinetically and in live cell system. Moreover, since their initial use, a great deal of work into identification of optimal labelling sites has taken place to improve G protein biosensor sensitivity (Yu & Rasenick, 2002). BRET sensors are generally advantageous over FRET sensors due to their increased sensitivity and elimination of the photobleaching associated with FRET.

Generally, use of G protein biosensors in cellular assays involves the simultaneous transfection of the 3 G protein subunits (Galés et al., 2006). This approach can prove a difficult step in assay optimisation as multiple transfections can lead to variability in expression between cells, absence of all proteins in some cells will clearly decrease assay sensitivity. To overcome this, Schihada and colleagues (Schihada et al., 2021), recently generated multicistronic vectors for common G protein heterotrimer biosensors, therefore allowing the simultaneous expression of the three G protein subunits from a single vector. They show improved sensitivity compared to other G protein biosensors, and use of the heterotrimeric  $G_s$  protein biosensor (CASE  $G_s$ ) to detect  $G_s$  protein activation by the  $\beta_2$ AR in response to isoprenaline. The CASE  $G_s$  protein biosensor is summarised in figure **4.1.1**. This study chose to use the CASE  $G_s$  protein biosensor to investigate and quantify  $G_s$  protein activation by the eight  $\beta_2$ AR agonists described in sec **4.1.1**.



Figure 4.1.1: A summary of the CASE  $G_s$  biosensor used in this study A) A summary of the vectors design of CASE  $G_s$ :  $\beta 1$  and venus- $\gamma 1$  were separated by a T2A element venus- $\gamma 1$  from  $G\alpha s_{short}$  by an IRES element, nLuc is inserted between N136 and V137 of  $G\alpha s_{short}$ . B) Activation of the CASE  $G_s$  biosensor is indicated by a decrease in BRET as venus- $\gamma 1$  dissociates from  $G\alpha s_{short}$ nLuc following activation. Figure adapted from (Schihada et al., 2021).

# 4.1.4 Aims:

The purpose of this study was to characterise the pharmacology of eight agonists for the  $\beta_2AR$ , to this end this study aimed to:

- 1. To characterise the ligand binding kinetics and affinity of eight  $\beta_2 AR$  agonists for the DDM solubilised  $\beta_2 AR$
- 2. To measure the ability of eight  $\beta_2 AR$  agonists to activate the  $G_s$  protein
- To investigate the correlation between ligand residence time and G<sub>s</sub> protein activation efficacy.

## 4.2 Methods

#### 4.2.1 TR-FRET ligand binding assays

Optimisation of the kinetic TR-FRET ligand binding assay was performed on Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR in membranes due to ease and COVID-19 time restrictions. TS-SNAP- $\beta_2$ AR was labelled in mammalian T-REx<sup>TM</sup>-293 cells and membranes prepared as described in sec **2.2.6**. For final competition kinetics studies of the eight cold agonist; adrenaline, noradrenaline, isoprenaline, formoterol, salbutamol, salmeterol, BI-167-107 and C26 the TS-SNAP- $\beta_2$ AR was solubilised n the detergent DDM as described in sec **2.2.6**.

Kinetic ligand binding studies were run in white 384 well plates. CA200693 (S)-propranolol-green and unlabelled ligand dilutions were added to plate, and plate placed into PHERAstar FSX plate reader. TS-SNAP- $\beta_2$ AR was added online using in-build PHERAstar FSX injectors. Binding between CA200693 (S)-propranolol-green and lumi4-Tb was read immediately using two laser flashes per cycle and 520/620 TRF module.  $3\mu$ M alprenolol was used to define the non-specific binding. Kinetic ligand binding studies are fully described in sec **2.2.13**.

#### 4.2.2 CASE-G<sub>s</sub> activation assays

CASE-G<sub>s</sub> activation assays to measure G<sub>s</sub> protein activation were performed in HEK 293T/17 cells that had been transiently transfected, T-REx<sup>TM</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR or T-REx<sup>TM</sup>-293 cells stably expressing both TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub>. All cell lines were adherent in white 96 well plates, all cell culture and transfections took place as described in sec **2.2.2**. Various concentrations and induction times were used to control TS-SNAP- $\beta_2$ AR expression as shown.

For CASE G<sub>s</sub> BRET assays cells were incubated with furimazine for 20min prior to assay. BRET between G $\alpha$ s-nLuc and  $\gamma$ -venus was read

using PHERAstar FSX using 550LP/450-60nm luminescence module. Plates were read for 3 min prior to addition of agonists, and then for a further 20min. CASE- $G_s$  assays are fully described in **sec 2.2.4**.

# 4.3 Results

#### 4.3.1 Development of a TR-FRET ligand binding kinetics assay

The first aim of this study was to measure the ligand binding affinities and kinetics of eight  $\beta_2AR$  agonists for the DDM-TS-SNAP- $\beta_2$ AR. To this end, a TR-FRET ligand binding kinetic assay was developed on membranes from HEK cells expressing TS-SNAP- $\beta_2$ AR which had been labelled with Lumi4-Tb. Firstly, it was necessary to assess the best fluorescently labelled antagonist to use as a tracer for these assays. Figure 4.3.1 shows the association (4.3.1A-B) and saturation binding plots (4.1C) of two different fluorescent variants of CA200693(-S)-propranolol-green and propranolol; CA200689(s)propranolol-red to membranes expressing TS-SNAP-β<sub>2</sub>AR labelled with Lumi4-Tb. Figure **4.3.1A-B** shows that, using 2 laser flashes per cycle, TR-FRET between Lumi4-Tb and CA200693 (-S)-propranolol-green and could be read for 30 min without a decrease in TR-FRET signal due to photobleaching (Figure 4.3.1A). In contrast CA200689 (s)-propranololred (Figure **4.3.1B**) showed photobleaching after 20min.

 $K_{on}$ ,  $K_{off}$  and  $K_d$  values for these experiments are summarised in table **4.3.1**. The  $K_{on}$  value of  $1.57 \pm 0.92 \times 10^7$  Mol<sup>-1</sup> Min<sup>-1</sup> for CA200693(-S)-propranolol-green was not statistically significantly different to that of 5.69  $\pm 3.4 \times 10^6$  Mol<sup>-1</sup> Min<sup>-1</sup> obtained for CA200689 (s)-propranolol-red (p=0.28, unpaired t-test). Neither was there any statistically significant difference between pK<sub>d</sub> obtained from kinetic association fits, these were 8.09  $\pm 0.15$  for CA200693(-S)-propranolol-green and 7.36 $\pm 0.27$  CA200689 (s)-propranolol-red (p=0.07, unpaired t-test). The  $K_{off}$  values for these compounds were also similar, these were 0.12  $\pm 0.03$  Min<sup>-1</sup> and 0.22 $\pm 0.01$  Min<sup>-1</sup> for CA200693(-S)-propranolol-green and CA200689 (s)-propranolol-red respectively (p=0.047, unpaired t-test).

Based on these experiments CA200693(-S)-propranolol-green was chosen as the best tracer for TR-FRET ligand binding kinetic

experiments as there was no significant differences in kinetics or affinity values between these two compounds but there was photobleaching of CA200689 (s)-propranolol-red over the time course relevant to these experiments.



Figure 4.3.1: Characterisation of the ligand binding kinetics of commercially available fluorescent propranolol compounds in Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes using TR-FRET. **A**) Specific binding for the association varying concentrations of CA200693 (S)-propranolol-green to Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes **B**) Specific binding for the association of varying concentrations of CA200689-(s)-propranolol-red to Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes **C**) Specific saturation binding for varying concentrations of CA200693 (S)-propranolol-green or CA200689 (s)-propranolol-red to Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes **C**) Specific saturation binding for varying concentrations of CA200693 (S)-propranolol-green or CA200689 (s)-propranolol-red to Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes at 30min time point. TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green or

CA200689-(s)-propranolol-red was read on PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF or HTRF modules respectively. All graphs show representative data of n=2 experiments.

|                   | Kon                                    | K <sub>off</sub>     | Kinetic      | Equilibrium  |
|-------------------|----------------------------------------|----------------------|--------------|--------------|
|                   | (Mol <sup>-1</sup> Min <sup>-1</sup> ) | (Min <sup>-1</sup> ) | р <i>К</i> d | р <i>К</i> d |
| CA200693(-S)-     | 1.57 ± 0.92                            | 0.12                 | 8.09         | 8.03         |
| propranolol-green | x 10 <sup>7</sup>                      | ±0.03                | ±0.15        | ±0.16        |
| CA200689(-S)-     | 5.69 ±3.4                              | 0.22                 | 7.36         | 7.66         |
| propranolol-red   | x 10 <sup>6</sup>                      | ±0.01                | ±0.27        | ±0.16        |

Table 4.3.1: A summary of the mean  $K_{on}$ ,  $K_{off}$  and  $K_d$  values for fluorescent propranolol variants CA200693(-S)-propranolol-green and CA200689(-S)-propranolol-red binding Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes. TR-FRET between Lumi4-Tb and CA200693 (S)propranolol-green or CA200689 (s)-propranolol-red was read on PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF or HTRF modules respectively. Values show mean of n=2 experiments ±SD.

Next, this study investigated the best concentration of the tracer CA200693 (S)-propranolol-green to use in kinetic competition assays with the eight unlabelled  $\beta_2AR$  ligands. An increased concentration of tracer will associate to the receptor faster, therefore affecting the kinetic resolution of the assay.  $1x K_{d}$  or 15nM,  $3x K_{d}$  or 45nM, and  $5x K_{d}$  or 75nMconcentrations of CA200693 (S)-propranolol-green were trialled in kinetic competition assays with varying concentrations of formoterol and isoprenaline (Figure 4.3.2). Formoterol and isoprenaline were chosen for these experiments because, based on literature they were expected to represent medium and fast  $K_{\text{off}}$  compounds. Kinetic competition binding data shown in figure **4.3.2** was fitted to the Motulsky-Mahan model and the ligand binding parameters obtained for each compound at each concentration of CA200693 (S)-propranolol-green are summarised in table **4.3.2.** These data show that although the Motulsky-Mahan model fitted well to both compounds at all tracer concentrations (Figure **4.3.2**), feasible  $K_{on}$  and  $K_{off}$  values could only be obtained for formoterol and not for isoprenaline (Table **4.3.2**). *K*on and *K*off values obtained for formoterol at 45nM ( $2.8\pm1.6\times10^8$  Mol<sup>-1</sup> Min<sup>-1</sup> and  $4.2\pm2.9$  Min<sup>-1</sup> respectively) and 75nM  $(3.1\pm1.8\times10^7 \text{ Mol}^{-1} \text{ Min}^{-1} \text{ and } 1.0\pm0.4 \text{ Min}^{-1} \text{ respectively})$  tracer were not statistically significantly different (unpaired t-test).



Figure 4.3.2: Trial and optimisation of CA200693-(S)-propranolol-green concentration for kinetic competition binding experiments: 15nM, 45nM and 75nM of CA200693-(S)-propranolol-green were trialled with varying concentrations of Isoprenaline A-C) or formoterol D-F), Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR membranes, TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module, A-F shows representative data of n=2-3.

| Ligand       | CA200693(-S)-<br>propranolol-<br>green | <b>K</b> on<br>(Mol <sup>-1</sup> Min <sup>-1</sup> ) | K <sub>off</sub><br>(Min <sup>-1</sup> ) | Kinetic<br>K <sub>d</sub> |
|--------------|----------------------------------------|-------------------------------------------------------|------------------------------------------|---------------------------|
|              | 15nM                                   | >6 x10 <sup>10\$</sup>                                | >6 x10 <sup>10\$</sup>                   | N/A                       |
| Isoprenaline | 45nM                                   | >6 x10 <sup>10</sup>                                  | >6 x10 <sup>10</sup>                     | N/A                       |
|              | 75nM                                   | >6 x10 <sup>10</sup>                                  | >6 x10 <sup>10</sup>                     | N/A                       |
| Formoterol   | 45nM                                   | 2.8±1.6<br>x10 <sup>8</sup>                           | 4.2±2.9                                  | 7.8                       |
|              | 75nM                                   | 3.1±1.8<br>x10 <sup>7</sup>                           | 1.0±0.4                                  | 7.5                       |

Table 4.3.2: A summary of the kinetic ligand binding parameters obtained for isoprenaline and formoterol using 15nM, 45nM or 75nM CA200693 (S)-propranolol-green as the tracer for kinetic competition binding experiments on Lumi4-Tb labelled TS-SNAP- $\beta_2$ AR in membranes. TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module. Values are mean of n=3 ±SEM or <sup>\$</sup> denotes n=2.

#### 4.3.2 Measurement of the ligand binding kinetics of eight $\beta_2$ AR agonists

Following the optimisation of a TR-FRET kinetic ligand binding assay using Lumi4-Tb labelled TS-SNAP-B2AR in membranes, this assay was used to investigate the ligand binding kinetics of formoterol, isoprenaline, adrenaline, noradrenaline, salmeterol, salbutamol, BI-167-107 and C26 binding DDM-TS-SNAP- $\beta_2$ AR. Specific binding for a representative replicate of these experiments is shown in figure 4.3.3. Using this assay and fitting the results to the Motulsky-Mahan model enabled  $k_{on}$  and  $k_{off}$  rates for formoterol, salmeterol, C26 and BI-167-107 to be obtained. These results (summarised in table 4.3.3) show that salmeterol had the fastest  $K_{on}$  of the compounds measured,  $(1.35 \pm 0.45)$ x10<sup>8</sup> Mol<sup>-1</sup> Min<sup>-1</sup>) which was significantly faster than those obtained for formoterol (2.6  $\pm$  0.43 x10<sup>7</sup> Mol<sup>-1</sup> Min<sup>-1</sup>), C26 (1.06  $\pm$  0.05 x10<sup>7</sup> Mol<sup>-1</sup> Min<sup>-1</sup> <sup>1</sup>) and BI-167-107 (2.6 3± 0.15 x10<sup>6</sup> Mol <sup>-1</sup> Min<sup>-1</sup>) (P=0.021, One-way ANOVA and tukey's posthoc). There were no other statistically significant differences in the  $K_{on}$  values of these four compounds. Table **4.3.3** also shows that formoterol had the fastest  $K_{\text{off}}$  at 0.47 ± 0.08 Min<sup>-1</sup>. This was statistically significantly faster than that of salmeterol (0.13±0.03 Min<sup>-1</sup>), C26 (0.005±0.001 Min<sup>-1</sup>) and BI-167-107 (0.0021±0.001 Min<sup>-1</sup>) (One-way ANOVA and tukey's posthoc). There were no other statistically significant differences in the K<sub>off</sub> values of these four compounds.



4.3.3: TR-FRET competition kinetic binding studies for A) Adrenaline B) Isoprenaline C) Salbutamol, D) BI-167-107, E) Noradrenaline, F) Formoterol G) Salmeterol, H) C26 on DDM-TS-SNAP- $\beta_2$ AR using 75nM CA200693 (S)-propranolol-green. TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module. Data are representative of n=3, fitted to Motulsky-Mahan model for kinetic competition binding.

|               | K <sub>on</sub><br>(Mol⁻¹ Min⁻¹) | K <sub>off</sub><br>(Min⁻¹) | Residence<br>time<br>(Min) | p <i>K</i> d<br>(From<br>k <sub>off</sub> /k <sub>on</sub> ) |
|---------------|----------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------|
| CA200693(-S)- | 4.09±0.9                         | 0.08 ±                      | 12.2                       | 7.7                                                          |
| propranolol-  | x10 <sup>6</sup>                 | 0.009                       |                            | ± 0.04                                                       |
| green         |                                  |                             |                            |                                                              |
| Formoterol    | 2.6 ± 0.43                       | 0.47                        | 2.1                        | 7.8                                                          |
|               | x10 <sup>7</sup>                 | ±0.08                       |                            | ±0.05                                                        |
| Salmeterol    | 1.35 ± 0.45                      | 0.13                        | 7.89                       | 9.0                                                          |
|               | x10 <sup>8</sup>                 | ± 0.03                      |                            | ±0.0005                                                      |
| C26           | 1.06 ± 0.05                      | 0.005                       | 189                        | 9.3                                                          |
|               | x10 <sup>7</sup>                 | ± 0.001                     |                            | ±0.13                                                        |
| BI-167-107    | 2.6 3± 0.15                      | 0.0021                      | 480                        | 10.3                                                         |
|               | x10 <sup>6</sup>                 | ± 0.001                     |                            | ±0.27                                                        |

Table 4.3.3: A summary of the kinetics ligand binding parameters obtained from TR-FRET ligand binding studies of formoterol, salmeterol, C26 and BI-167-107 on Lumi4-Tb labelled DDM-TS-SNAP- $\beta_2$ AR using 75nM CA200693 (S)-propranolol-green. TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module. Data show mean of n=3 experiments ±SEM.

### 4.3.3 Equilibrium competition binding of eight $\beta_2AR$ agonist

To obtain equilibrium  $pK_i$  values for the eight  $\beta_2AR$  agonists at DDM TS-SNAP- $\beta_2AR$ , specific competition binding curves were fitted to a one-site model at the 40 min time point for C26 and BI-167-107 and 20 min for all other compounds (Figure **4.3.4**). Mean  $pK_i$  values are summarised in table **4.3.4**.  $pK_i$  affinity values ranged from 4.4±0.09 for noradrenaline to 9.2±0.08 for BI-167-107.

pK<sub>i</sub> values obtained from equilibrium competition curve fits for the four compounds for which  $K_{on}$  and  $K_{off}$  values were obtained were generally similar to the pK<sub>d</sub> values calculated from  $K_{off}$  and  $K_{on}$  (Table **4.3.3**). These were pK<sub>i</sub>=7.8±0.07 Vs pK<sub>d</sub> 7.8±0.05 (p=0.49) for formoterol, pK<sub>i</sub> =8.7 ± 0.03 Vs pK<sub>d</sub> 9.3 ± 0.13 (p=0.01) for C26, pK<sub>i</sub> = 9.2 ±0.08 Vs pK<sub>d</sub> 10.3± 0.27 (p=0.02) for BI-167-107 and pK<sub>i</sub> = 9.1±0.08 Vs pK<sub>d</sub> =9.0 ±0.0005 (p=0.04) for salmeterol. Statistical comparison of pK<sub>i</sub> Vs pK<sub>d</sub> values for each compound was made using an unpaired t-test.



Figure 4.3.4: Equilibrium competition binding studies for isoprenaline, adrenaline, noradrenaline, formoterol, salbutamol, salmeterol, C26, BI-167-107 binding Lumi4-Tb labelled DDM-TS-SNAP- $\beta_2$ AR, using 75nM CA200693 (S)-propranolol-green. Equilibrium measure measurements were read at 20 min post DDM-TS-SNAP- $\beta_2$ AR addition for all compounds except C26 and BI-167-107 which were read at 40 min. TR-FRET between Lumi4-Tb and CA200693 (S)-propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module. Data points show mean of n=3 experiments normalised to 0% inhibition for each compound, ±SEM

|               | pKi±SEM        |
|---------------|----------------|
| Isoprenaline  | 6.4 ± 0.12     |
| Adrenaline    | 5.2 ± 0.25     |
| Noradrenaline | $4.4 \pm 0.09$ |
| Formoterol    | 7.8 ± 0.07     |
| Salbutamol    | 5.8 ± 0.06     |
| Salmeterol    | 9.1 ± 0.02     |
| C26           | 8.7± 0.03      |
| BI-167-107    | 9.2 ±0.08      |

Table 4.3.4: A summary of  $pK_i$  values for Isoprenaline, adrenaline, noradrenaline, formoterol, salbutamol, salmeterol, C26 and BI-167-107 binding DDM-TS-SNAP- $\beta_2$ AR obtained from equilibrium competition binding. TR-FRET between Lumi4-Tb and CA200693 (S)propranolol-green PHERAstar FSX using 2 laser flashes per cycle and 520/620 TRF module. Values are mean of n=3 experiments ±SEM.



Figure 4.3.5: A summary of the relative time to reach equilibrium for isoprenaline, adrenaline, noradrenaline, formoterol, salbutamol, salmeterol, C26, BI-167-107 binding to the DDM-TS-SNAP- $\beta_2$ AR A) relative time to reach equilibrium (IC<sub>50</sub> 1min/IC<sub>50</sub>end) as measured by TR-FRET for all eight compounds, bars show mean of n=3 individually plotted, error bars show SEM, B) Correlation plot for relative time to reach equilibrium (IC<sub>50</sub> 1min/(IC<sub>50</sub>end) for BI-167-107, C26, salmeterol and formoterol and their obtained  $K_{off}$  values using Pearsons' correlation.

# 4.3.4: Assessment of the relative time to reach equilibrium of eight $\beta_2 AR$ agonists

Having been unable to obtain  $K_{on}$  and  $K_{off}$  values for isoprenaline, adrenaline, noradrenaline and salbutamol binding the DDM-TS-SNAP- $\beta_2$ AR, this study calculated the relative time for each compound to reach equilibrium by the fold difference in the IC<sub>50</sub> at 1 minute Vs at the final measurement time, either 40min for C26 and BI-167-107 or 20min for all other compounds (Figure **4.3.5A**). This analysis should indicate a rank order of  $K_{off}$  values, and therefore residence time for all eight compounds. This analysis showed the rank order of  $K_{off}$  values for these compounds to be adrenaline (0.11 ±0.01), < noradrenaline (0.15 ±0.01), < salbutamol (0.22 ±0.11), < isoprenaline (0.32±0.05), < formoterol (1.37 ± 0.17). < salmeterol (7.19 ±1.63), < C26 (8.42 ± 4.23), < BI-167-107 (15.20 ± 3.6).

Figure **4.3.5B** shows a Pearsons' correlation for experimentally obtained  $K_{off}$  values (table **4.3.3**) and relative time to reach equilibrium for the four  $\beta_2AR$  agonist for which  $K_{off}$  values were obtained. These data show a strong (R<sup>2</sup>=0.86) correlation between relative time to reach equilibrium (IC<sub>50</sub> 1 min/ IC<sub>50</sub> end) for these four compounds (BI-167-107, C26, salmeterol and formoterol) and K<sub>off</sub>.

# 4.3.5 Development of CASE G<sub>s</sub> activation assay

The second aim of this study was to quantify the efficacy of the eight  $\beta_2AR$  agonists to activate the G<sub>s</sub> protein. To this end, this study initially tried to establish the CASE G<sub>s</sub> assay in HEK293T/17 cells transiently transfected with  $\beta_2AR$  and CASE G<sub>s</sub> biosensor. The full agonist formoterol was used to stimulate  $\beta_2AR$  mediated CASE G<sub>s</sub> activation (Figure **4.3.6**). Figure **4.3.6A** shows that TS-SNAP- $\beta_2AR$  expression could be detected by SNAP488 labelling 48h after HEK293T/17 cells had been transiently transfected with 100ng pcDNA4TO-TS-SNAP- $\beta_2AR$  using PEI. Likewise, figure **4.3.6B** shows that addition of furimazine resulted in luminescence at 450-80nm, indicating nanoLuc expression and therefore expression of the CASE G<sub>s</sub> biosensor. Despite confirming expression of both TS-SNAP- $\beta_2AR$  and CASE G<sub>s</sub> figure **4.3.6C** shows that no decrease in BRET ratio was added to these HEK293T/17 expressing TS-SNAP- $\beta_2AR$  and CASE G<sub>s</sub>.



Figure 4.3.6: Trial of the CASE  $G_s$  activation assay using transient transfection of TS-SNAP- $\beta_2$ AR and CASE  $G_s$  into HEK293T/17 cells **A**) investigation of TS-SNAP- $\beta_2$ AR expression following 48h transient transfection of 100ng pcDNA4TO-TS-SNAP- $\beta_2$ AR using PEI and SNAP-488 labelling, data points show n=2 **B**) Investigation of CASE  $G_s$  expression following varying 48h transcient transfections using PEI and 8 $\mu$ M furimazine, points show raw data of n=2 **C**) trial of CASE  $G_s$  activation assay at various 48h transfection ratios using 10 $\mu$ M formoterol to stimulate CASE  $G_s$  activation, data points show raw data from n=3

independent experiments. Fluorescence intensity and luminescence were read on PHERAstar FSX.

Following the observation that CASE G<sub>s</sub> activation could not be detected with transient transfection of TS-SNAP-B2AR and CASE Gs in HEK293T/17 cells, we investigated if CASE G<sub>s</sub> activation could be detected when either 500ng or 1000ng CASE G<sub>s</sub> was transiently transfected into T-REx<sup>TM</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR (Figure 4.3.7). Figure 4.3.7A shows a time course for TS-SNAP- $\beta_2$ AR expression over time since the initiation of induction. Figure 4.3.7A shows that TS-SNAP- $\beta_2$ AR expresses in this cell line and that there is approximately a 20% increase in TS-SNAP-B<sub>2</sub>AR expression at 48h compared to 24h. Induction at the 24h and 48h time point was used to modulate TS-SNAP-B2AR expression in CASE Gs activation assays in T-REx<sup>TM</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR (Figure **4.3.7B**). Simular to results obtain with transcient transfection of receptor and biosensor, figure **4.3.7B** shows that there was no decrease in BRET ratio was detected when formoterol was added to T-REx<sup>™</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR and transciently transfected with CASE G<sub>s</sub>.

In light of these results, we generated a double stable cell line of TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> by stably transfecting CASE G<sub>s</sub> into the T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR stable cell line (Figures **4.3.7A-C**). A mixed population of this cell line was tested for CASE G<sub>s</sub> activation as shown in figure **4.3.7D**. Again, these data show no decrease in BRET when these cells were stimulated with 10µM formoterol, indicating that CASE G<sub>s</sub> activation was not detectable. Figure **4.3.7C** shows that TS-SNAP- $\beta_2$ AR expression can be modulated by different concentrations of tetracycline added at the same time point. Based on this, varying concentrations of tetracycline was used to modulate TS-SNAP- $\beta_2$ AR expression in figure **4.3.8D**.



Figure 4.3.7 Trial of the CASE G<sub>s</sub> assay in T-REx<sup>™</sup>-293 cells stably expressing TS-SNAP- $\beta_2$ AR with transient CASE G<sub>s</sub> expression or T-REx<sup>™</sup>-293 cells stably expressing TS-SNAP-β<sub>2</sub>AR and CASE G<sub>s</sub> A) investigation of TS-SNAP-β<sub>2</sub>AR expression in T-REx<sup>™</sup>-293 cells stably expressing TS-SNAP-B2AR over time since induction with 1µg/mL tetracycline (n=1) **B)** trial of CASE  $G_s$  activation assay in T-REx<sup>TM</sup>-293 cells stably expressing TS-SNAP-B2AR with 48h transient transfection of 500ng or 1000ng CASE G<sub>s</sub> using 10µM formoterol to stimulate CASE G<sub>s</sub> activation, data points show raw data from n=3 independent experiments, **C**) investigation of TS-SNAP- $\beta_2$ AR expression in T-Rex<sup>TM</sup>-293 cells stably expressing TS-SNAP-β<sub>2</sub>AR induced with varying concentrations of tetracycline for 48h, n=3±SEM D) Trial of CASE G<sub>s</sub> activation assay in T-REx<sup>™</sup>-293 cells stably expressing TS-SNAP-β<sub>2</sub>AR and CASE G<sub>s</sub> using 10µM formoterol to stimulate CASE G<sub>s</sub> activation, data points show raw data from n=2 independent experiments. Fluorescence intensity and luminescence were read on PHERAstar FSX.

Finally, the mixed population T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR + CASE G<sub>s</sub> stable cell line was FACS sorted into single cell populations with varying TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> expression levels. Figure 4.3.8 shows the FACS plot and assignment of the mixed population T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR + CASE G<sub>s</sub> stable cell line to quadrants. A single cell was picked from each quadrant and expanded to a single clone population that could be tested for CASE G<sub>s</sub> expression and activation. The colonies corresponding from each quadrant are summarised in table 4.3.5. All clones except A2 and A4 showed 450-80nm luminescence following the addition of furimazine therefore indicating CASE G<sub>s</sub> expression. Clones A1, A3, A5 and A6 were screened for CASE G<sub>s</sub> upon stimulation with formoterol and salbutamol (Figure **4.3.9**). No clear CASE G<sub>s</sub> activation response in the clones A1, A3 and A6, however a clear CASE G<sub>s</sub> activation concentration response curve was observed for the clone A5 (Figure 4.3.9C). Figure 4.3.9C shows distinct  $EC_{50}$  and differences in the  $E_{max}$  for the full agonist formoterol and partial agonist salbutamol. These data indicate the clone A5 to be a viable system to characterise the efficacy of the eight  $\beta_2 AR$ agonists. A screen of the clones A1, A3, A5 and A6 took place at varying tetracycline concentrations to assess the optimal receptor level for the assay. Figure 4.3.10 shows that for the clone A5 the highest concentration of tetracycline (1 $\mu$ g/mL) was required for CASE G<sub>s</sub> activation.



Figure 4.3.8: FACS plot of T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> mixed population sorting and resulting quadrants

| Clone | FACS<br>quadrant |  |
|-------|------------------|--|
| A1    | R13              |  |
| A2    | R10              |  |
| A3    | R12              |  |
| A4    | R9               |  |
| A5    | R8               |  |
| A6    | R11              |  |

Table 4.3.5: A summary of the T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> clones picked from each quadrant of the FACS analysis.



Figure 4.3.9: Trial of CASE G<sub>s</sub> activation assay in T-REx<sup>TM</sup>-293 TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> clones A1, A3 A5 and A6: Cells were induced with 1µg/mL tetracycline for 48h at time of plating, adherent cells in 96 well were stimulated with varying concentrations of formoterol and salbutamol, BRET was read at 10min using 550LP/450-80nm Luminescence module and PHERAstar FSX. Data are a representative replicate of single wells of n=3.


Figure 4.3.10: Trial of CASE  $G_s$  activation assay in T-REx<sup>TM</sup>-293 -SNAP- $\beta_2$ AR and CASE  $G_s$  clone A5 using varying concentrations (0-1µg/mL) of tetracycline to induce varying levels of  $\beta_2$ AR expression: Cells were induced with tetracycline for 48h, adherent cells were stimulated with varying concentrations of A) formoterol and B) salbutamol, BRET was read at 10min using 550LP/450-80nm Luminescence module and PHERAstar FSX Data are a representative replicate of n=3.

4.3.6 Quantifying the efficacy of eight  $\ \beta_2 AR$  agonists using the CASE  $G_s$  activation assay

The T-REx<sup>TM</sup>-293 cells TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> clone A5 was consequentially used to screen the efficacy of the  $\beta_2$ AR agonists isoprenaline, adrenaline, noradrenaline, formoterol, salbutamol, salmeterol, C26 and BI-167-107. These data are fitted to a sigmoidal concentration response curve in figure **4.3.11**. Corresponding pEC<sub>50</sub>, and E<sub>max</sub> values are summarised in table **4.3.6**. These data showed the most potent compounds to be BI-167-107 and formoterol with a pEC<sub>50</sub> values of 8.8±0.62 and 8.7±0.18 respectively. The least potent compound was noradrenaline with a pEC<sub>50</sub> value of 5.6±0.33. There was no statistically significant difference between the E<sub>max</sub> of the eight  $\beta_2$ AR agonists (p=0.47, One-way ANOVA) (Figure **4.3.11**)

These data were also fitted to the operational model using the p $K_i$  values obtained in table **4.3.4** to obtain log  $\tau$  values for efficacy. A representative example of fitting of these data to the operational model is shown in figure **4.3.12**. Data for all compounds except C26 fitted well to the operational model, for this reason C26 was excluded from the analysis. Mean log  $\tau$  values ranged from 0.05±0.05 for salmeterol to 1.26±0.84 for adrenaline and 1.6±0.96 for isoprenaline (p=0.37 One-way ANOVA).



Figure 4.3.11: CASE  $G_s$  activation studies on A) Adrenaline, B) Isoprenaline, C) Salbutamol, D) BI-167-107, E) Noradrenaline, F) Formoterol, G) Salmeterol, H) C26 in the T-REx<sup>TM</sup>-293 -SNAP- $\beta_2$ AR and CASE  $G_s$  clone A5 which had been induced with 1µg/mL tetracycline for 48h. Duplicate wells of adherent cells were stimulated with varying concentrations of ligand and BRET was read at 15min post ligand addition using 550LP/450-80nm luminescence module and PHERAstar FSX. Data points are mean of 3 independent experiments normalised to 1% DMSO control, error bars show SEM.



Figure 4.3.12: Example of fitting CASE G<sub>s</sub> activation in response to A) formoterol, B) salbutamol, C) salmeterol, D) BI-167-107, E) isoprenaline, F) adrenaline, G) noradrenaline and H) C26 to the operational model: Formoterol was used as the reference ligand and K<sub>A</sub> values fixed to experimentally obtained K<sub>i</sub> values. CASE G<sub>s</sub> activation was obtained in the T-REx<sup>TM</sup>-293 -SNAP- $\beta_2$ AR and CASE G<sub>s</sub> clone A5 which had been induced with 1µg/mL tetracycline for 48h. Duplicate wells of adherent cells were stimulated with varying concentrations of ligand and BRET was read at 15min post ligand addition using 550LP/450-80nm luminescence module and PHERAstar FSX, Data points show mean of duplicate wells from a single experiment, error bars show SD.

| Ligand        | pEC <sub>50</sub> | E <sub>max</sub> | Log τ         | pEC <sub>50</sub> -pK <sub>i</sub> |
|---------------|-------------------|------------------|---------------|------------------------------------|
| Adrenaline    | 7.2<br>± 0.5      | 97.2%            | 1.26<br>±0.84 | 2.0                                |
| Isoprenaline  | 7.5<br>±0.23      | 95.6%            | 1.64<br>±0.96 | 1.7                                |
| Salbutamol    | 7.5<br>±0.19      | 96.8%            | 0.40<br>±0.09 | 1.6                                |
| BI-167-107    | 8.8<br>±0.62      | 96.8%            | 0.36<br>±0.04 | -0.4                               |
| Noradrenaline | 5.6<br>±0.33      | 96.9%            | 0.52<br>±0.45 | 1.2                                |
| Formoterol    | 8.7<br>±0.18      | 95.31%           | -             | 0.9                                |
| Salmeterol    | 8.0<br>±0.18      | 97.3%            | 0.05<br>±0.05 | -1.1                               |
| C26           | 7.9<br>±0.21      | -                | -             | -                                  |

Table 4.3.6: A summary of efficacy and potency values obtained for CASE-G<sub>s</sub> activation by adrenaline, isoprenaline, salbutamol, BI-167-107, noradrenaline, formoterol, salmeterol and C26 in the T-REx<sup>TM</sup>-293 -SNAP- $\beta_2$ AR and CASE G<sub>s</sub> clone A5 which had been induced with 1µg/mL tetracycline for 48h, pEC<sub>50</sub> values are mean of n=3 individually experiments individually fitted to a sigmoidal curve, E<sub>max</sub> values were obtained from sigmoidal curve fits in figure 4.3.11, log  $\tau$  values are mean of n=3 individually experiments individually fitted to the operational model with K<sub>A</sub> values fixed to experimentally obtained K<sub>i</sub> values, All error bars show SEM. pEC<sub>50</sub>-pK<sub>i</sub> values correspond to the pEC<sub>50</sub> value above minus pK<sub>i</sub> values in table **4.4**.

#### 4.4 Discussion

The aim of this study was to characterise the pharmacology of eight  $\beta_2AR$  agonists so that they could be used at tools to investigate the role of kinetics in the molecular basis of efficacy. To this end, this chapter shows the development of a kinetic TR-FRET ligand binding assay and the BRET based CASE G<sub>s</sub> activation assay to investigate the ligand binding kinetics and G<sub>s</sub> protein activation efficacy of these eight  $\beta_2AR$  agonists, and the correlations between them.

## 4.4.1 The development and limitations of a TR-FRET kinetic ligand binding assay

This study chose the fluorescent propranolol tracer CA200693(-S)-propranolol-green as, although it has similar ligand binding kinetics to CA200689(-S)-propranolol-red, it did not photo bleach. This study then used CA200693(-S)-propranolol-green as a tracer in kinetic competition binding studies to investigate the ligand binding kinetics of eight  $\beta_2 AR$ agonists. Using this approach, this study was able to obtain  $k_{on}$  and  $K_{off}$ values for BI-167-107, C26, formoterol and salmeterol by fitting specific kinetic competition binding data to the Motulsky-Mahan model. It was not possible to obtain  $k_{on}$  and  $K_{off}$  for adrenaline, noradrenaline, isoprenaline and salbutamol. According to literature values (Sykes & Charlton, 2012) these compounds all have faster  $K_{off}$  values than the compounds which this study was able to obtain kinetic parameters for. Moreover, the tracer compound used by Sykes and colleagues had a much faster  $K_{off}$  of  $0.23\pm0.02$  compared to the tracer used in this study which had a  $K_{\text{off}}$  of 0.08±0.009. It therefore seems likely that the tracer used in this study did not have a fast enough  $K_{\text{off}}$  value to measure the kinetics of adrenaline, noradrenaline, isoprenaline and salbutamol. Indeed, Monte Carlo simulations (appendix 7.1.3) of the tracer and time cycles used in our assay and a hypothetically cold compound with a  $K_{\text{off}}$  of 0.1min<sup>-1</sup>, 1 min<sup>-1</sup> <sup>1</sup>, 3 min<sup>-1</sup> and 10 min<sup>-1</sup> showed that the tracer and time cycles used in this study could correctly calculate  $k_{on}$  and  $K_{off}$  values for a cold ligand

with a  $K_{off}$  of up to  $3min^{-1}$  using the Motulsky-Mahan model. This modelling and comparison to Sykes and colleagues' study validates that the limitation of the TR-FRET kinetic ligand binding assay was the slow kinetics of the tracer and that a tracer with a faster  $K_{off}$  would be required to obtain the  $k_{on}$  and  $K_{off}$  values for adrenaline, noradrenaline, isoprenaline and salbutamol.

## 4.4.2 The ligand binding kinetics of eight $\beta_2 AR$ agonists binding the DDM-TS-SNAP- $\beta_2 AR$

To our knowledge, this was the first study to examine the ligand binding kinetics of these eight  $\beta_2 AR$  agonists binding to the  $\beta_2 AR$  in the DDM micelle. Of the four ligands that  $k_{on}$  and  $K_{off}$  values were obtained three had published  $k_{on}$  and  $K_{off}$  values (table **4.3.1**). Published  $k_{on}$  values for salmeterol (3.50±0.57 x10<sup>9</sup> Mol<sup>-1</sup> Min<sup>-1</sup>) (Sykes et al., 2014b), C26 (3.70±0.47 x10<sup>8</sup> Mol<sup>-1</sup> Min<sup>-1</sup>) (Rosethorne et al., 2016), and formoterol (1.78±0.21 x10<sup>8</sup> Mol<sup>-1</sup> Min<sup>-1</sup>) (Sykes et al., 2014b) differed substantially from the values obtained in this study although they followed a similar rank order. The rank order of  $k_{on}$  values obtained in this study was salmeterol  $(1.35\pm0.45 \times 10^8 \text{ Mol}^{-1} \text{ Min}^{-1}) > \text{ formoterol } (2.6\pm0.43 \times 10^7 \text{ Mol}^{-1})$ <sup>1</sup> Min<sup>-1</sup>), >C26 (1.06 ±0.05x10<sup>7</sup>) Mol<sup>-1</sup> Min<sup>-1</sup> > BI-167-107 (2.63±0.15x10<sup>6</sup>) Mol<sup>-1</sup> Min<sup>-1</sup>). Moreover, published  $K_{off}$  values followed the same rank order as those obtained in this study although they differed substantially from the absolute values. These were formoterol (0.47±0.008 Vs  $3.00\pm0.38$  Min<sup>-1</sup> (Sykes et al., 2014b)) > salmeterol (0.13\pm0.03 Vs 1.16±0.16 Min<sup>-1</sup> (Sykes et al., 2014))>C26 (0.005±0.001 Vs 0.02±0.003 Min<sup>-1</sup> (Rosethorne et al., 2016)). In general, these values from the literature were all much faster than those obtained in this study, and this is explained by the higher temperature of 37°C used compared to 20°C used in our study. The similar rank order of  $k_{on}$  and  $K_{off}$  values and similarity in the kinetic K<sub>d</sub> and equilibrium K<sub>i</sub> values obtained in this study give confidence in this kinetic data set.

Comparison of the pK<sub>i</sub> values obtained in this study (table **4.3.4**) and those from the literature also show generally very similar results. This is except for adrenaline (6.1±0.05 Vs 5.2±0.25), noradrenaline (5.4±0.07 Vs 4.4±0.09) and C26 (10.2±0.07 Vs 8.7±0.03). The reason for these differences is not clear, it could be that ligand affinity is lost when  $\beta_2AR$ is in the DDM micelle as opposed to the cell membrane, however adrenaline and noradrenaline also very easily oxidise. C26 also appears to have decreased efficacy compared to the literature in this study, therefore it is also possible that these compounds had slightly reduced activity at the time of the experiment due to long storage.

# 4.4.3 The relative $K_{off}$ values of eight $\beta_2 AR$ agonists can be ranked by time to equilibrium

As it was not possible to quantify the  $K_{off}$  rates and corresponding ligand residence time of adrenaline, isoprenaline, noradrenaline and salbutamol, this study used the K<sub>i</sub> ratio method of Heise and colleagues (Heise et al., 2007) to provide a relative measure of  $K_{off}$  values for all eight of the  $\beta_2AR$  agonists (Figure **4.3.5A**). Heise and colleagues show that the fold change in K<sub>i</sub> over time correlates with the  $K_{off}$  rate of the ligand, thus providing a relative measure of  $K_{off}$ . **4.3.5B** shows a strong correlation for the K<sub>i</sub> ratios and experimentally obtained  $K_{off}$  values for salmeterol, formoterol, C26 and BI-167-107 in this study, therefore validating the applicability of this method to the data in this study. This method gave a rank order of  $K_{off}$  values as adrenaline > noradrenaline > salbutamol > isoprenaline > formoterol > c26 > BI-167-107. This also correlates well with the rank order of salbutamol > isoprenaline > formoterol > salmeterol > c26 > BI-167-107. This also correlates well with the rank order of salbutamol > isoprenaline > formoterol > c26 > BI-167-107.

### 4.4.4 The CASE $G_s$ activation assay required the development of the clone A5

To establish a CASE G<sub>s</sub> activation assay, this study initially transiently transfected TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> into HEK293T/17 cells as demonstrated by Schihada and colleagues (Schihada et al., 2021). In contrast to this study, these data showed that all though TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> expressed, there was no CASE G<sub>s</sub> response in these assays. This was hypothesised to be due to a low transfection efficiency meaning that TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub> expressed in the same cell therefore making changes in BRET difficult to detect.

Consequentially, this study trialled transiently transfecting CASE  $G_s$  into a T-REx<sup>TM</sup>-293 cell line stably expressing TS-SNAP- $\beta_2AR$ . The advantage of using this approach is that TS-SNAP- $\beta_2AR$  should be expressed in all cells which the CASE  $G_s$  is successful transiently transfected. However, this approach did not prove successful, hypothesising that this was due to low transfection efficiency of CASE  $G_s$ , this study generated a T-REx<sup>TM</sup>-293 TS-SNAP- $\beta_2AR$  + CASE  $G_s$  stable cell line. Again, the CASE  $G_s$  assay was not successful in the mixed population of this cell line. This data suggested that either the CASE  $G_s$  was not an effective biosensor, or it was difficult to detect differences in CASE  $G_s$  to different extents.

Finally, this study FACS sorted the T-REx<sup>TM</sup>-293 TS-SNAP- $\beta_2$ AR + CASE G<sub>s</sub> stable cell line into single clone populations with varying expression levels of TS-SNAP- $\beta_2$ AR and CASE G<sub>s</sub>. Of these clones, the clone A5 was the only clone to show a CASE G<sub>s</sub> response. The CASE G<sub>s</sub> response by A5 was only observed at the highest concentration of tetracycline (1µg/mL). Therefore, the clone A5 was used to investigate the efficacy of the eight  $\beta_2$ AR agonists following induction with 1µg/mL

tetracycline. It was not clear why the clone A5 was the only clone in which the CASE  $G_s$  was successful. The clone A5 was the lowest expressor of TS-SNAP- $\beta_2$ AR and CASE  $G_s$  of the selected clones.

#### 4.4.5 Comparison of the CASE G<sub>s</sub> activation data to published studies

The pEC<sub>50</sub> values obtained in CASE G<sub>s</sub> activation studies were generally left shifted from literature pEC<sub>50</sub> values for cAMP accumulation assays shown in table **4.1.1**. This is to be expected considering that cAMP is downstream of G<sub>s</sub> signalling and therefore its signal will be further amplified. Moreover, the pEC<sub>50</sub> value of 7.5±0.23 obtained for isoprenaline in this study is very similar to that of 7.2±0.37 obtained by Schihada and colleagues using the CASE G<sub>s</sub> (Schihada et al., 2021), giving confidence to our data.

Although not statistically significant there was a slight reduction in the  $E_{max}$  of the partial agonist's salbutamol and salmeterol in the CASE  $G_s$  activation studies compared to the other agonists. This is in line with cAMP data (Baker, 2005) which shows salbutamol and salmeterol to be partial agonists with a reduced  $E_{max}$  compared to full agonists. Conversely, C26 has been shown to produce an  $E_{max}$  that is 117% of that of isoprenaline in a cAMP accumulation assays (Rosethorne et al., 2016). It was not possible to obtain a realistic  $E_{max}$  value in this assay due to not having a high enough concentration of C26.

## 4.4.6 Quantification of efficacy of eight $\beta_2 AR$ agonists efficacy using CASE G<sub>s</sub> activation

As the aim of this study was to investigate the role of ligand and effector coupling kinetics in the molecular basis of efficacy, it was essential to quantify the efficacy of our eight  $\beta_2AR$  agonists in the CASE G<sub>s</sub> activation assay. There is no perfect way to quantify efficacy, as such this study considers several methods of analysis. Firstly, this study considered the difference between  $pK_i$  and  $pEC_{50}$  values as a measure of efficacy (table 4.3.4). This method gave the rank order of efficacy as adrenaline > isoprenaline > salbutamol > noradrenaline > formoterol > BI-167-107> salmeterol. These results do not match discussed literature cAMP values (table 4.1.1) or G protein activation data (Gregorio et al., 2017) for these compounds which generally indicate, for example, that formoterol is a full agonist and salbutamol a partial agonist. Moreover, some of the values shown for this method (table 4.3.4) show negative values which is not to be expected. This may suggest that this method is in appropriate in an assay with very little amplification. Moreover, a caveat of this method is that it does not consider the  $E_{max}$ .

Classically, efficacy has been quantified using the operational model (Black & Leff, 1983). The operational model considers the  $E_{max}$  of the system, and a ratio of agonist functional potency (EC<sub>50</sub>) to the equilibrium dissociation constant of the agonist for the active state of the receptor (K<sub>A</sub>) to produce the measure of efficacy  $\tau$ .  $\tau$  is the fractional occupancy of receptors required to give half the maximal effect. As both  $E_{max}$  and EC<sub>50</sub> are system dependent so is  $\tau$ . As such, an advantage of using this method over the EC<sub>50</sub>-p*K*<sub>i</sub> method is consideration of the E<sub>max</sub>. As there were some differences in the E<sub>max</sub> values in our data set considering the E<sub>max</sub> seemed appropriate in our study. However, one problem with fitting the operational model is that the parameters K<sub>A</sub>, E<sub>max</sub> and  $\tau$  are all inter-dependent. To overcome this, it has been shown that fixing K<sub>A</sub> to experimentally obtained K<sub>i</sub> values reduces error (Jakubík et al., 2019), despite K<sub>i</sub> values being for the inactive state of the receptor.

As this study had obtained  $pK_i$  values we chose to adopt this approach in our study. The resulting log  $\tau$  values are shown in table **4.3.4**.

These log  $\tau$  values gave a rank order of efficacy of isoprenaline > adrenaline > noradrenaline > salbutamol >BI-167-107 >salmeterol. Which differed from the order of efficacy given by pK<sub>i</sub> -pEC<sub>50</sub>. However, Gregorio and colleagues (Gregorio et al., 2017) use a GTP turnover assay to define the G<sub>s</sub> protein activation efficacy of the majority of these compounds at the purified  $\beta_2$ AR. Gregorio and colleagues define efficacy by the effectiveness to generate G<sub>s</sub> (GTP) from G<sub>s</sub> (GDP) ( $\epsilon$ ). This gave the rank order of efficacy as isoprenaline > adrenaline > BI-167-107 > salbutamol > salmeterol. The similarity of these results from our study to that of Gregorio and colleagues gives confidence in our data set and use of the operational model.

### 4.4.7 There is no correlation between ligand residence time and efficacy for these $\beta_2AR$ agonists

The hypothesis underlying this study was that ligand residence time effects  $\beta_2AR$  receptor dynamics to affect G<sub>s</sub> protein activation efficacy. As such the aim of this chapter was to characterise the ligand binding and efficacies of these eight  $\beta_2AR$  agonists and to investigate if there was a correlation between ligand residence time and efficacy. A positive correlation has been shown between the efficacy of seven agonists at the M3 muscarinic receptor, and ten agonists at the A<sub>2A</sub> receptor and their ligand residence time (Sykes, et al. 2009) (Guo et al., 2012). Conversely, no correlation between efficacy and residency time was shown for the Adenosine A<sub>3</sub> receptor (Louvel et al., 2014).

As discussed above, this study was only able to quantify the  $K_{on}$ and  $K_{off}$  values of four of the eight  $\beta_2AR$  agonists however, this study was able to rank the relative order of  $K_{off}$  values via their time to reach equilibrium (Figure **4.3.5**) (Heise et al., 2007). This study was also able to quantify the efficacy of these eight  $\beta_2AR$  agonists to activate the  $G_s$ protein using the CASE  $G_s$  activation assay and the methods to quantify efficacy discussed in sec **4.4.6**. Using this data this study investigated the correlation between relative  $K_{off}$  values and efficacy using a Pearsons' correlation (Figure **4.4.1**). This analysis showed no correlation between  $IC_{50}$  1min/  $IC_{50}$  end values and  $\log \tau$  values ( $R^2$ =0.26, p=0.29) and a statistically significant moderately positive correlation between  $IC_{50}$ 1min/  $IC_{50}$  end values and pEC<sub>50</sub>-pK<sub>i</sub> values ( $R^2$ =0.64. p=0.03). Since this study considered log  $\tau$  the most appropriate way to quantify efficacy, this study concludes that there is not a correlation between  $K_{off}$  values, or ligand residence time and efficacy for these eight  $\beta_2AR$  agonists.



**Figure 4.4.1:** Correlation plot for relative time to reach equilibrium (IC<sub>50</sub> 1min/IC<sub>50</sub>end) for salmeterol, BI-167-107, salbutamol, noradrenaline, adrenaline and isoprenaline binding the DDM-TS-SNAP- $\beta_2$ AR and **A**) log  $\tau$  values or **B**) pEC<sub>50</sub>-pK<sub>i</sub> values for CASE G<sub>s</sub> activation using Pearsons' correlation.

#### 4.4.8 Conclusion

In summary, this chapter shows the development of a TR-FRET kinetics binding assay to investigate the ligand binding parameters of eight agonists binding to the DDM-TS-SNAP- $\beta_2$ AR and its limitations. We also show the development of a BRET based assay to study G<sub>s</sub> protein activation efficacy by these eight agonists. This study was able to accurately obtain  $K_{on}$  and  $K_{off}$  values of four of the eight  $\beta_2$ AR agonists and rank the relative order of  $K_{off}$  values for all eight. This study was then able to quantify the efficacy of the eight  $\beta_2$ AR agonists to activate the G<sub>s</sub> protein and concluded that there is no correlation between ligand residence time and efficacy for these eight agonists at the  $\beta_2$ AR. These findings do not support a role for ligand binding kinetics in the molecular basis of efficacy at the  $\beta_2$ AR.

Chapter 5

Investigating the role of G<sub>s</sub> protein binding kinetics in the molecular basis of efficacy

#### 5.1 Introduction

The hypothesis underlying this study was that differences in the kinetics of agonist-β<sub>2</sub>AR-G<sub>s</sub> protein complex formation underly differences in agonist efficacy at the  $\beta_2$ AR. Evidence for this hypothesis came from Lamichhane and colleagues who use single molecule FRET to show that agonists prolong the time the  $\beta_2AR$  spends in the active conformation (Lamichhane et al., 2020). Moreover, Gregorio and colleagues show that full agonists at the  $\beta_2AR$  increased GTP turnover compared to partial agonists, suggesting an increased number of G proteins being activated (sec 1.6). However, neither study has investigated the kinetics of G protein binding and receptor dynamics in response to a larger range of agonists of different efficacies and kinetic profiles. Having characterised the pharmacological properties of eight  $\beta_2$ AR agonists in chapter **4**, this chapter aimed to investigate the kinetics of mini-G<sub>s</sub> binding to  $\beta_2 AR$  in response to these agonists. To this end, this chapter generated purified mini-G<sub>s</sub> proteins with fluorescent labels as probes to directly investigate mini-G<sub>s</sub> interaction with  $\beta_2$ ARnLuc in response to agonists of different efficacy using nanoBRET.

#### 5.1.1 Use of mini-G<sub>s</sub> proteins as tools to investigate $\beta_2$ AR activation

As discussed in **sec 1.8**, mini-G<sub>s</sub> proteins are the engineered GTPase domain of the G $\alpha$  subunit of the heterotrimeric G<sub>s</sub> protein (Carpenter & Tate, 2016). The thermostabilising mutations of the mini-G<sub>s</sub> restrict it to the active and nucleotide free conformation (García-Nafría, et al. 2018), ensuring that mini-G proteins do not undergo nucleotide exchange. It is important to note that this active nucleotide-free state of the G protein would usually have dissociated from the GPCR. This makes mini-G proteins a sensor for G protein-activating conformations of the GPCR, as opposed to truly mimicking the G protein and its activation process. The use of mini-G proteins as tools for sensing the active states of a GPCR was validated by (Wan et al., 2018), who fused the venus fluorescent protein to the N terminus of a range of mini-G proteins and

showed that mini-G protein binding upon agonist stimulation is reversible and recapitulates the pharmacology and coupling specificity to a range of GPCRs in mammalian cells. With this in mind, this study generated constructs for the expression of these fusion mini-G proteins in *E*. coli and purified these proteins with the aim of establishing an in-solution nanoBRET assay with which the kinetics of these proteins binding the  $\beta_2$ AR could be directly measured.

#### 5.1.2 Use of nanoBRET to investigate $\beta_2AR$ -mini-G<sub>s</sub> binding

To date, several studies have used BRET to investigate binding or protein-protein interactions at GPCRs. Such studies have included G protein (Galés et al., 2005), arrestin (Angers et al., 2000) and mini-G<sub>s</sub> (Wan, et al., 2018) recruitment to  $\beta_2 AR$  as well as G<sub>s</sub> protein activation by  $\beta_2AR$  in mammalian cells. Moreover, NanoBRET has also been applied to probe ligand binding at the  $\beta_2AR$  (Stoddart, et al., 2015) and has been demonstrated to accurately measure ligand binding kinetics at the adenosine A<sub>3</sub> receptor (Bouzo-Lorenzo et al., 2019), in live cells. Taken together, these studies show that nanoBRET is a feasible method to measure mini-G<sub>s</sub> recruitment specifically to  $\beta_2AR$  and that it yields adequate temporal resolution to study kinetics. Therefore, strongly supporting the applicability of NanoBRET to study the kinetics of purified mini-G<sub>s</sub> proteins binding the  $\beta_2$ AR, although, the above studies were all performed in live mammalian cells, and, to our knowledge this is one of the first studies to investigate protein-protein interactions in-solution using NanoBRET.

The most used alternative technique to study the kinetics of ligand-protein or protein-protein kinetics in real time is Surface Plasmon Resonance (SPR). SPR occurs when light is shone on a metal surface at such an angle that the light photons oscillate along the surface (resonance). SPR can be used to detect protein-protein interactions as the binding of a freely diffusing protein to a protein that has been immobilised on this metal surface will interfere with this resonance

(Nguyen et al., 2015). The main advantage of SPR over BRET is that it is a label free technique, as such there is not the risk of the fusion proteins required for BRET interfering with the function of the protein of interest. Conversely, BRET is a higher throughput technique and offers a much more specific signal avoiding the problems of non-specific binding associated with SPR.

#### 5.1.3 Aims:

The purpose of this Chapter was to use in-solution NanoBRET to investigate the kinetics of mini-G<sub>s</sub> proteins binding the  $\beta_2AR$  when in complex with the agonists characterised in chapter **4**. This study therefore aimed to:

- 1. Purify fluorescently tagged and unlabelled mini-G<sub>s</sub> proteins.
- Characterise the affinity, association and dissociation of fluorescently tagged and unlabelled mini-G<sub>s</sub> proteins binding to the TS-SNAP-β<sub>2</sub>ARnLuc using NanoBRET.
- 3. Use the fully characterised TS-SNAP- $\beta_2$ ARnLuc-mini-G<sub>s</sub> NanoBRET system to investigate mini-G<sub>s</sub> interaction with  $\beta_2$ ARnLuc in response to agonists of different efficacy.

#### 5.2 Methods

#### 5.2.1 Production of mini-G<sub>s</sub> proteins

Labelled and unlabelled mini- $G_s$  proteins used in this study were produced from *E.* coli using immobilised metal affinity chromatography (IMAC) as described in **sec 2.2.10**.

#### 5.2.2 Production of TS-SNAP-β<sub>2</sub>ARnLuc

TS-SNAP- $\beta_2$ ARnLuc expression took place in stably transfected HEK T-REx<sup>TM</sup> cells. TS-SNAP- $\beta_2$ ARnLuc membranes were produced as described in **sec 2.2.6.** TS-SNAP- $\beta_2$ ARnLuc were extracted from membranes in 1% DDM as described in **sec 2.2.6.** Unsolubilised material was removed via ultracentrifugation at 600,000*xg* for 1h.

## 5.2.3 In-solution intermolecular BRET assays to investigate TS-SNAP- $\beta_2$ ARnLuc: venus-mini-G<sub>s</sub> pharmacology

BRET was used to investigate the interactions between membrane or DDM TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub>, as described in **sec 2.2.3.** Serial dilutions of venus mini-G<sub>s</sub>, with 30µM unlabelled mini-G<sub>s</sub> for NSB wells only were added to 384 well plates. Saturating concentrations of agonists were pre-incubated with membrane or DDM TS-SNAP- $\beta_2$ AR-nLuc and (x4 or 32µM furimazine). TS-SNAP- $\beta_2$ AR-nLuc complexes were added to plates containing mini-G<sub>s</sub> proteins and luminescence at 450-80nm and >550nm was quantified immediately using 550LP/450-80nm LUM module and PHERAstar FSX plate reader. Or, for end point reads plates were incubated for 90min at room temperature before reading. Characterisation and optimisation of the TS-SNAP- $\beta_2$ AR-nLuc:venus-mini-G<sub>s</sub> NanoBRET system took place using TS-SNAP- $\beta_2$ AR-nLuc in membranes due to ease and COVID-19 time restrictions. Final experiments took place in using DDM solubilised TS-SNAP- $\beta_2$ AR-nLuc.

#### 5.2.4 Venus-mini-G<sub>s</sub> recruitment assays in cells

Cellular A<sub>2A</sub>RnLuc or TS-SNAP- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> assays were performed in HEK293T/17 cells that had been transiently transfected with receptor and biosensor. All cell lines were adherent in white 96 well plates, all cell culture and transfections took place as described in sec **2.2**. Cells were incubated with furimazine for 20min prior to assay. Plates were read for 3 min using 550LP/450-60nm luminescence module, prior to addition of agonists using in-built PHERAstar FSX injectors, and then for a further 20min.

#### 5.3 Results

#### 5.3.1 Production of mini-G<sub>s</sub> proteins from *E*. coli

The first aim of this study was to produce fluorescently labelled mini-G<sub>s</sub> proteins. To this end, N terminally labelled venus, halo and unlabelled mini-G<sub>s</sub> protein DNA was inserted into the PJ411 vector containing His10-TEV sites to give the constructs PJ411-MKK-His10-label-mini-G<sub>s</sub> as described in section **2.2.9**. Mini-G<sub>s</sub> proteins were expressed in *E. coli*, which were then lysed and mini-G<sub>s</sub> proteins purified via the His10 tag on their N terminus which has affinity for a nickel column. Analysis of mini-G<sub>s</sub> protein preparations by SDS-PAGE gel (Figure **5.3.1**) showed His10-TEV-Halo-mini-G<sub>s</sub> (63kDa), His10-TEV-Venus-mini-G<sub>s</sub> (55kDa) and His10-TEV-mini-G<sub>s</sub> (28kDa) at their respective molecular weights. Figure **5.3.1** also shows some impurities for each protein preparation of both higher and lower molecular weights than the protein of interest.





## 5.3.2 Characterisation of mini-G<sub>s</sub> protein preparations binding the TS-SNAP- $\beta_2$ ARnLuc

Next this study investigated if the venus-mini-G<sub>s</sub> and unlabelled proteins produced in figure **5.3.1** were functional, by interrogation of their ability to couple the TS-SNAP- $\beta_2$ ARnLuc. Figure **5.3.2B** shows venus-mini-G<sub>s</sub> proteins produced in this study were recruited to TS-SNAP- $\beta_2$ ARnLuc in membranes, in response to increasing concentrations of isoprenaline, with a pEC<sub>50</sub> value of 7.1±0.2 (n=3) and that this could be blocked by presence of an excess of unlabelled mini-G<sub>s</sub> protein. This suggests both venus and unlabelled mini-G<sub>s</sub> protein preparations were functional. The equivalent experiment in HEK293T/17 cells expressing TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> (Figure **5.3.2A**) gave a pEC<sub>50</sub> value of 6.7±0.6 (n=3) which was not statistically significantly different from that of 7.1±0.2 obtained in the purified system (p=0.59, unpaired Student's t-test).

The affinity of the labelled and unlabelled mini-G<sub>s</sub> proteins for the TS-SNAP- $\beta_2$ ARnLuc were subsequently determined. Knowledge of the affinity of the labelled and unlabelled mini-G<sub>s</sub> proteins is essential for designing kinetic experiment (section **5.3.4**), as unlabelled mini-G<sub>s</sub> proteins would be used to displace the venus-mini-G<sub>s</sub> protein. Figure **5.3.2C** shows saturation binding curves for venus-mini-G<sub>s</sub> binding to TS-SNAP- $\beta_2$ ARnLuc in the absence and presence of the saturating concentrations of an agonist isoprenaline. Figure **5.3.2C** shows venus-mini-G<sub>s</sub> only binds TS-SNAP- $\beta_2$ ARnLuc in the presence of the agonist. In the presence of saturating concentrations of isoprenaline venus-mini-G<sub>s</sub> bound TS-SNAP- $\beta_2$ ARnLuc with a pK<sub>d</sub> of 7.65 ±0.11.

Next, the venus-mini- $G_s$  was used as a tracer in competition binding experiments to examine the affinities of the halo or unlabelled mini- $G_s$  proteins for TS-SNAP- $\beta_2$ ARnLuc in the presence of saturating concentrations of isoprenaline. Figure **5.3.3A** shows that 20 $\mu$ M of unlabelled mini- $G_s$  protein can be used to define the non-specific binding of venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ ARnLuc. This allowed the pK<sub>d</sub> of 7.65±0.11 for venus-mini-G<sub>s</sub> binding TS-SNAP- $\beta_2$ ARnLuc to be obtained from its specific saturation binding curve. Based on this 30nM venus-mini-G<sub>s</sub> was used as the tracer for competition binding experiments.

Figure **5.3.3C-D** shows a competition binding curve for unlabelled mini-G<sub>s</sub> and Halo-mini-G<sub>s</sub> displacing venus-mini-G<sub>s</sub> from TS-SNAP- $\beta_2$ ARnLuc, with a pK<sub>i</sub> values of 8.33±0.14, and 7.28±0.15, respectively. These data show that venus-mini-G<sub>s</sub> and Halo-mini-G<sub>s</sub> have statistically significantly lower affinity for the receptor than unlabelled mini-G<sub>s</sub> (p=0.028 and p=0.003 respectively, One-way ANOVA and Tukey's multiple comparison test)



Figure 5.3.2: Venus and unlabelled mini-G<sub>s</sub> proteins produced bind TS-SNAP- $\beta_2$ ARnLuc. A) Recruitment of venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ ARnLuc in transciently transfected HEK293T/17 cells in response to varying concentrations of isoprenline B) Recruitment of purified venus mini-G<sub>s</sub> to membranes expressing TS-SNAP- $\beta_2$ ARnLuc in response to varying concentrations of isoprenaline C) Saturation binding curves for varying concentrations of purified venus-mini-G<sub>s</sub> binding to TS-SNAP- $\beta_2$ ARnLuc membranes in the absence and presence of 100µM

Isoprenaline. nanoBRET between TS-SNAP- $\beta_2$ ARnluc and venus-mini-G<sub>s</sub> was read on PHERAstar FSX using LUM 550LP/450-80nm module. All curves show combined normalised data of n=3, error bars show ±SEM.



Figure 5.3.3 Characterising the affinity of mini-G<sub>s</sub> proteins for the isoprenaline bound TS-SNAP- $\beta_2$ ARnLuc in membranes A) Representative total and NSB plot for increasing concentrations of purified venus-mini-G<sub>s</sub> binding the isoprenaline bound TS-SNAP- $\beta_2$ ARnLuc in membranes, B) Specific saturation binding for purified venus-mini-G<sub>s</sub>, data points show mean±SEM, from 3 independant experiments C) Competition binding between 30nM purified venus-mini-G<sub>s</sub> and varying concentrations of purified mini-G<sub>s</sub>, data points show n=3± SEM, D) Competition binding between varying concentrations of Halomini-G<sub>s</sub>, and 30nM of purified venus-mini-G<sub>s</sub>, data points show n=3± SEM. BRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> was read on PHERAstar FSX using LUM 550LP/450-80nm module. pK<sub>d</sub> values are mean of n=2±SD or 3±SEM individual experiments.

5.3.3 Characterisation of venus-mini-G<sub>s</sub> association and dissociation from the DDM-TS-SNAP- $\beta_2$ ARnLuc

Having defined the affinities of the labelled and unlabelled mini-G<sub>s</sub> proteins for the TS-SNAP- $\beta_2$ ARnLuc in membranes, this study began setting up venus-mini-G<sub>s</sub> kinetic studies with the DDM-TS-SNAP- $\beta_2$ ARnLuc, using unlabelled mini-G<sub>s</sub> to define the NSB and measure dissociation of the DDM-TS-SNAP- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> complex . Specific binding for the association of venus-mini-G<sub>s</sub> to isoprenaline bound TS-SNAP- $\beta_2$ ARnLuc and its dissociation using 33.3 $\mu$ M mini-G<sub>s</sub> is shown in figure 5.3.4. Figure 5.3.4 shows that the association of venusmini-G<sub>s</sub> to DDM-TS-SNAP-β<sub>2</sub>ARnLuc best fitted a two-phase association model. The dissociation was incomplete and did not revert to the baseline. Whilst the percentage of the association that could be attributed to the fast component was concentration dependent, the percentages of complexes that could be dissociated was consistent across concentrations. A summary of the percentage of fast and slow association and percentage dissociated is shown in table 5.3.1. The percentage of the association that could be attributed to the fast phase increased from 23% at 111nM venus-mini-G<sub>s</sub> to 71.4% at 3000nM venusmini-G<sub>s</sub>, whilst the percentage of complexes dissociated was always 70-74% (Table 5.3.1).



Figure 5.3.4 Characterising the association and dissociation of purified venus-mini-G<sub>s</sub> binding to the isoprenaline bound DDM-TS-SNAP- $\beta_2$ AR-nLuc using nanoBRET: DDM-TS-SNAP- $\beta_2$ ARnLuc was incubated with saturating concentration of isoprenaline for 20min before addition to plate containing varying concentrations of venus-mini-G<sub>s</sub>. BRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> was immediately read on PHERAstar FSX using LUM 550LP/450-80nm module.  $30\mu$ M unlabelled mini-G<sub>s</sub> was used to define the NSB and  $33\mu$ M to dissociate the venus-mini-G<sub>s</sub>. Representative data of n=3, showing specific binding.

|        | % Fast      | % Slow      | %           |
|--------|-------------|-------------|-------------|
|        | association | association | Dissociated |
| 3000nM | 71.4±3.0    | 39.9±12.1   | 72.1±1.2    |
| 1000nM | 63.6±6.5    | 46.5±10.8   | 70.7±4.3    |
| 333nM  | 49.9±11.5   | 58.4±17.6   | 73.0±4.1    |
| 111nM  | 23.0±9.0    | 77.3±11     | 74.3±2.7    |

Table 5.3.1: A summary of the phases of the association and dissociation of varying (3000-111nM) concentrations of venus-mini-G<sub>s</sub> to the isoprenaline bound DDM-TS-SNAP- $\beta_2$ AR: % fast and slow association was calculated from two site fits and % dissociated was calculated from the differences in the top and bottom of the dissociation curve. Data show mean of 3-4 individual experiments ± SEM.









Figure 5.3.5: Validation of the concentration of disociator required to dissociate the membrane-TS-SNAP- $\beta_2$ ARnLuc complex: membrane-TS-SNAP- $\beta_2$ ARnLuc was preincubated with saturating concentration of isoprenaline and 333nM venus-mini-G<sub>s</sub> before nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module for 3 min before addition of varying concentrations of **A**) mini-G<sub>s</sub> or **B**) the inverse agonist ICI 118, 551 to dissociate the membrane-TS-SNAP- $\beta_2$ ARnLuc complex, and read for a further 2h, specific binding data, where unlabelled mini-G<sub>s</sub> was used to define NSB, representative data of n=3.

In order to confirm that the incomplete dissociation of the TS-SNAP-- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> complex was real and not caused by an inadequate concentration of unlabelled mini-G<sub>s</sub> being used to dissociate, dissociation of this study then investigated the TS-SNAP- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> complex by varying concentrations of either the unlabelled mini-G<sub>s</sub> protein or by the inverse agonist ICI 118, 551 (Figure 5.3.5). Figure 5.3.5A confirms that a high enough concentration of mini-G<sub>s</sub> was being using to dissociate the TS-SNAP-β<sub>2</sub>ARnLuc:venus-mini-G<sub>s</sub> complex. Moreover 5.3.5B shows that dissociation of this protein complex is also incomplete using the antagonist ICI 118, 551 as the dissociator.

Next, this study sought to validate the findings of the two-phase association and incomplete dissociation of the TS-SNAP-B2ARnLuc and venus-mini-G<sub>s</sub> in a physiological setting. Consequently, TS-SNAPβ<sub>2</sub>ARnLuc and venus-mini-G<sub>s</sub> were transiently transfected into HEK293T/17 cells and the association and dissociation of venus-mini-G<sub>s</sub> to the TS-SNAP-B2ARnLuc in response to agonist stimulation or antagonist displacement investigated in both this, and the purified protein system (Figure 5.3.5A-B) using nanoBRET. Figure 5.3.6B shows that in the case of the TS-SNAP-B2ARnLuc, agonist induced stimulation of venus-mini-G<sub>s</sub> still appeared biphasic in HEK293T/17 cells and dissociation of the complex by the antagonist ICI 118, 551 was incomplete. Figure 5.3.6B also shows an increase in nanoBRET when saturating concentrations of isoprenaline and ICI 118, 551 are added Figure 5.3.6A shows identical results for TS-SNAPsimultaneously.  $\beta_2$ ARnLuc and purified venus-mini-G<sub>s</sub>. To investigate if the biphasic association and incomplete dissociation was unique to  $\beta_2AR$  or universal to other GPCR-mini-G<sub>s</sub> interactions, this study also investigated the association and dissociation of the venus-mini-Gs to A2AnLuc in HEK293T/17 cells using saturating concentrations of the agonist NECA to stimulate mini-G<sub>s</sub> recruitment and saturating concentrations of the antagonist ZM241385 to displace this.

Figure **5.3.6C** shows the association of venus-mini- $G_s$  to  $A_{2A}nLuc$ in HEK293T/17 cells using 10 $\mu$ M NECA followed a one phase association and the  $A_{2A}nLuc$ :venus-mini- $G_s$  complex was then completely dissociated by saturating concentrations of the antagonist ZM241385.

In the above experiments, saturating concentrations of the agonist and antagonists were added simultaneously as a control to confirm that the antagonist concentration was high enough to displace the agonist. Whilst an increase in nanoBRET between TS-SNAP-β<sub>2</sub>ARnLuc and venus-mini-G<sub>s</sub> was observed when isoprenaline and ICI 118, 551 were added simultaneously, no increase in BRET between A<sub>2A</sub>nLuc and venus-mini-G<sub>s</sub> was observed when NECA and ZM241365 were added simultaneously (Figure 5.3.6B-C). Considering that, the binding of venusmini-Gs to TS-SNAP-B2ARnLuc was partially irreversible and the association of isoprenaline to TS-SNAP- $\beta_2$ ARnLuc was faster than ICI 188, 551, it was realised that the simultaneous addition of isoprenaline and ICI 118, 551 would likely still show and increase in BRET despite isoprenaline being displaced by ICI 118, 551. This study therefore repeated this experiment with antagonist preincubation, instead of simultaneous addition (Figure **5.3.7A-B**). For both TS-SNAP-β<sub>2</sub>ARnLuc and A<sub>2A</sub>nLuc preincubation with the respective antagonist shows complete block of venus-mini-G<sub>s</sub> recruitment by the agonist (Figure **5.3.7A-B**). These data therefore support the finding that venus-mini-G<sub>s</sub> binding is displaceable for  $A_{2A}$ nLuc but not TS-SNAP- $\beta_2$ ARnLuc.



Figure 5.3.6: Characterising the association and dissociation of venus-mini-G<sub>s</sub> binding to A<sub>2A</sub>nLuc and TS-SNAP- $\beta_2$ ARnLuc in HEK293T/17 cells using nanoBRET, A) Association of purified venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ ARnLuc membranes using 100µM isoprenaline added using injectors at 3 min and dissociation using 10µM antagonist ICI 118, 551 at 20min B) Association of venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ ARnLuc in HEK293T/17 cells using 100µM isoprenaline added using injectors at 3 min and dissociation of venus-mini-G<sub>s</sub> to TS-SNAP- $\beta_2$ ARnLuc in HEK293T/17 cells using 100µM isoprenaline added using injectors at 3 min and dissociation using 10µM antagonist ICI 118, 551 at 20min B) Association using 100µM isoprenaline added using injectors at 3 min and dissociation using 10µM antagonist ICI 118, 551

at 20min **C**) Association of venus-mini-G<sub>s</sub> to A<sub>2A</sub>nLuc in HEK293T/17 cells using 10 $\mu$ M NECA and dissociation using 10 $\mu$ M ZM241385. NanoBRET between venus-mini-G<sub>s</sub> and TS-SNAP- $\beta_2$ ARnLuc or A<sub>2A</sub>nLuc was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module All figures show representative raw data from duplicate wells, of n=3.
HEKT/17 cells expressing  $\beta_2$ ARnLuc and venus mini-Gs 0.30 (550LP/450BP80) 0.25 **BRET** ratio 0.20 0.15 0.10 0 20 40 60 80 100 Time (min)

- 100µM Isoprenaline then 10µM ICI 118, 551
- Buffer
- Preincubated with 10µM ICI 118, 551 then 100µM Isoprenaline



Α

HEKT/17 cells expressing  $\mathbf{A}_{2\mathbf{A}}\mathbf{n}\mathbf{Luc}$  and venus mini-Gs



Figure 5.3.7 Investigating agonist induced recruitment of venus mini-G<sub>s</sub> following antagonist 20min preincubation to A) Association of venus-mini-G<sub>s</sub> to TS-SNAP-β<sub>2</sub>ARnLuc in HEK293T/17 cells using 100µM isoprenaline added using injectors at 3 min and dissociation using 10µM antagonist ICI 118, 551 at 20min B) Association of venus-mini-Gs to A<sub>2A</sub>nLuc in HEK293T/17 cells using 10µM NECA and dissociation using  $10\mu$ M ZM241385. NanoBRET between venus-mini-G<sub>s</sub> and TS-SNAP-B2ARnLuc or A2AnLuc was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module All figures show representative raw data from duplicate wells, of n=3.

172

Following the validation that the biphasic association and incomplete dissociation of venus-mini-G<sub>s</sub> from TS-SNAP-B<sub>2</sub>ARnLuc observed in the in-solution system was recapitulated in HEK293T/17 cells, this study investigated if the proportion of non-dissociating complexes changed over time. Figure 5.3.8A shows the association of venus-mini-G<sub>s</sub> to isoprenaline bound TS-SNAP-β<sub>2</sub>ARnLuc membranes and then dissociation of the TS-SNAP- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> complex using  $33\mu M$  mini-G<sub>s</sub> at varying time points since the start of the association. Figure 5.3.8B shows a comparison of the dissociation at each time point normalised to its peak. Figure 5.3.8B shows that there was no difference in the percentage of TS-SNAP-β<sub>2</sub>ARnLuc:venus-mini-G<sub>s</sub> complexes dissociated at varying time points up to 20 min after the association began. The proportion of TS-SNAP-B2ARnLuc:venus-mini-G<sub>s</sub> complexes dissociated at 30min was always similar to 60%, and there no statistically significant difference between the exact percentage dissociated when  $33\mu$ M mini-G<sub>s</sub> was added at 5, 10 or 20min (p=0.09, One-way ANOVA and Tukey's post-hoc comparison). The percentage TS-SNAP-β<sub>2</sub>ARnLuc:venus-mini-G<sub>s</sub> complexes dissociated when dissociation was initiated at 5, 10 or 20min is summarised in table **5.3.2**.

| Initiation of dissociation | % of<br>TS-SNAP-β₂ARnLuc:venus-mini-G₅ |            |  |
|----------------------------|----------------------------------------|------------|--|
|                            |                                        |            |  |
|                            | 5 min                                  | 64.1 ± 2.7 |  |
| 10 min                     | 57.2 ± 0.5                             |            |  |
| 20 min                     | 56.2 ± 2.8                             |            |  |

Table 5.3.2: A summary of the percentage of TS-SNAP- $\beta_2$ ARnLuc:venus-mini-G<sub>s</sub> complexes dissociated at 30 min when dissociation was initiated at 5, 10 or 20min post the initiation of complex association. NanoBRET between 333nM venus-mini-G<sub>s</sub> and TS-SNAP- $\beta_2$ ARnLuc membranes was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module, Data show of n=3 ±SEM.



**A** Disociation of venus-miniGs from  $\beta_2$ ARnLuc membranes

Figure 5.3.8 Investigating dissociation the **TS-SNAP**of β<sub>2</sub>ARnLuc:Venus-mini-G<sub>s</sub> complex after various association times, A) Total binding of venus-mini-G<sub>s</sub> association to isoprenaline bound TS-SNAP-β<sub>2</sub>ARnLuc and dissociation at varying time points using mini-G<sub>s</sub>, B) Comparison of dissociation of venus-mini-G<sub>s</sub> from TS-SNAP- $\beta_2$ ARnLuc at varying time points show in 5.3.8A, each time point is normalized to the point of dissociation, All figures show representative raw data of n=3.

## 5.3.4 Investigation of purified venus-mini-G<sub>s</sub> binding kinetics at DDM-TS-SNAP- $\beta_2$ ARnLuc in complex with eight $\beta_2$ AR agonists

Following the completion of the pharmacological and biophysical characterisation of venus-mini-G<sub>s</sub> binding TS-SNAP- $\beta_2$ ARnLuc, this study then aimed to investigate the kinetics of purified venus-mini-G<sub>s</sub> binding to DDM solubilised TS-SNAP-β<sub>2</sub>ARnLuc in response to agonists of different efficacies and kinetic profiles. To this end the ability of the eight  $\beta_2$ AR agonists characterized in chapter **4** to recruit venus-mini-G<sub>s</sub> to DDM-TS-SNAP-β<sub>2</sub>ARnLuc was investigated. Figure **5.3.9** shows all eight  $\beta_2$ AR agonists were able to recruit venus-mini-G<sub>s</sub> to the DDM-TS-SNAP-B2ARnLuc in rank order of their ligand binding affinities (chapter **4**). Indeed, for the agonists adrenaline (pki =  $5.2\pm0.25$  Vs pEC<sub>50</sub> = 5.8 $\pm 0.4$ ), noradrenaline (pki =  $4.4 \pm 0.09$ Vs pEC<sub>50</sub> =  $4.5 \pm 0.3$ ), formoterol (pki =  $7.8\pm0.07$  Vs pEC<sub>50</sub> =  $8.0\pm0.2$ ), isoprenaline (pki =  $6.4\pm0.12$  Vs pEC<sub>50</sub> =7.9  $\pm$ 0.4), salbutamol (pki = 5.8 $\pm$ 0.06 Vs pEC<sub>50</sub> = 6.2 $\pm$ 0.4), and salmeterol (pki =9.1  $\pm 0.02$  Vs pEC<sub>50</sub> = 8.7 $\pm 0.2$ ), there was no difference between the pEC<sub>50</sub> value obtained for venus-mini-G<sub>s</sub> recruitment and ligand binding affinity values determined in chapter 4 (all P>0.05, unpaired t-test). In contrast, the agonists C26 (pki =  $8.7\pm0.03$  Vs pEC<sub>50</sub> =  $9.2\pm0.1$ , p=0.004) and BI-167107 (pki =  $9.2\pm0.08$  Vs pEC<sub>50</sub> =8.6 $\pm$ 0.1p=0.01) showed statistically significant differences in pEC<sub>50</sub> and pK<sub>i</sub> values.



Venus mini-Gs recruitment to DDM- $\beta_2 AR$ 

Figure 5.3.9: Venus-mini-G<sub>s</sub> recruitment to DDM-TS-SNAP- $\beta_2$ ARnLuc in response to increasing concentrations of eight  $\beta_2$ AR agonists: 1µM purified venus-mini-G<sub>s</sub> was incubated with DDM- $\beta_2$ ARnLuc and varying concentrations of isoprenaline, salbutamol, formoterol, salmeterol, adrenaline, noradrenaline, BI-167-107 or C26 at a final concentration 1% DMSO for 90min, before nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module. All curves show combined normalised data of n=3, error bars show ±SEM.

|               | pEC <sub>50</sub> |
|---------------|-------------------|
| Isoprenaline  | 7.9 ± 0.4         |
| Salbutamol    | 6.2 ± 0.4         |
| Formoterol    | 8.0 ± 0.2         |
| Salmeterol    | 8.7 ± 0.2         |
| Adrenaline    | 5.8 ± 0.4         |
| Noradrenaline | 4.5 ± 0.3         |
| BI-167107     | 8.6 ± 0.1         |
| C26           | 9.2 ± 0.1         |

Table 5.3.3: A summary of mean pEC<sub>50</sub> values for purified venusmini-G<sub>s</sub> recruitment to DDM-TS-SNAP- $\beta_2$ ARnLuc by various  $\beta_2$ AR agonists, nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module. pEC<sub>50</sub> values show mean of n=3 individually fitted experiments ± SEM.

Finally, this study investigated the kinetics of venus-mini-G<sub>s</sub> binding to the DDM-TS-SNAP- $\beta_2$ ARnLuc bound to each of the eight  $\beta_2$ AR agonists. Saturating concentrations of each agonist, as defined by ligand binding studies (chapter **4**), were incubated with the DDM-TS-SNAP- $\beta_2$ ARnLuc for 20-40min depending on the time ligand in question took to reach equilibrium (chapter **4**) at room temperature.

To investigate the rate of association of venus-mini-G<sub>s</sub> to the agonist-DDM-TS-SNAP- $\beta_2$ ARnLuc complex, the agonist-DDM-TS-SNAP- $\beta_2$ ARnLuc complex was then added offline to a plate containing various concentrations of venus-mini-Gs proteins and nanoBRET measured immediately. As above unlabelled mini-G<sub>s</sub> was used to define non-specific binding. After 20 min, a saturating concentration of 33µM mini-G<sub>s</sub> was added to total wells, offline, to dissociate the DDM-TS-SNAP-β<sub>2</sub>ARnLuc:venus-mini-G<sub>s</sub> complex. For each experiment specific binding data was fitted to a two-site association and one phase dissociation (Figure **5.10**). There was no difference in the percentage of the fast and slow phase of the association across the eight  $\beta_2AR$  agonist (appendix table 7.1.5). For all compounds, the dissociation of the venusmini-G<sub>s</sub> from the agonist bound DDM-TS-SNAP-β<sub>2</sub>ARnLuc was incomplete. The average percentage of complexes dissociated was very similar across the eight agonists, ranging from 72-80% (appendix table 7.1.6). A one-way ANOVA test shown no statistically significant difference (p=0.47) between the percentage of complexes dissociated for the different agonists.

 $K_{obs}$  plots for  $K_{fast}$  and  $K_{slow}$  are shown in figures **5.3.11** and **5.3.12** respectively.  $K_{obs}$  plots for  $K_{slow}$  did not follow a linear relationship.  $K_{obs}$  plots for  $K_{fast}$  followed a linear relationship for the majority of plots and were used to calculate the  $K_{on}$  of  $K_{fast}$ . Mean  $K_{on}$  of  $K_{fast}$  and  $K_{off}$  values were calculated from an average of n=3-4 experiments (Table **5.3.2**). pK<sub>d</sub> values for the venus-mini-G<sub>s</sub> binding the agonist:DDM-TS-SNAP- $\beta_2$ ARnLuc complex were obtained by fitting association data at 20 min to

a one-site saturation specific binding model as shown in figure **5.3.13**. Residence time was calculated as the reciprocal of  $K_{\text{off}}$ .



Figure 5.3.10: Investigation of the association and dissociation at 20min using  $33\mu$ M mini-G<sub>s</sub>, of venus-mini-G<sub>s</sub> binding to DDM-TS-SNAP- $\beta_2$ AR when preincubated with saturating concentration of A) Isoprenaline B) Formoterol C) Salbutamol D) Salmeterol E) Adrenaline F) Noradrenaline G) BI-167107 H) C26, using nanoBRET between DDM-TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> which was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module. All figures show specific binding, where  $30\mu$ M mini-G<sub>s</sub> was used to define the NSB, representative raw data of n=3, fitted to a two-phase association and one phase dissociation.



Figure 5.3.11:  $K_{obs}$  plots of  $K_{fast}$  for venus-mini-G<sub>s</sub> association to DDM solubilised TS-SNAP- $\beta_2$ AR bound to A) Isoprenaline B) Formoterol C) Salbutamol D) Salmeterol E) Adrenaline F) Noradrenaline G) BI-167107 H) C26, association was read using nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> which was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module,  $K_{obs}$  of  $K_{fast}$  at each venus-mini-G<sub>s</sub> concentration was obtained by fitting association to a two phase association model. All figures show representative raw data of n=3, fitted to a linear model.



Figure 5.3.12:  $K_{obs}$  plots of  $K_{slow}$  for venus-mini-G<sub>s</sub> association to DDM solubilised TS-SNAP- $\beta_2$ ARnLuc bound to A) Isoprenaline B) Formoterol C) Salbutamol D) Salmeterol E) Adrenaline F) Noradrenaline G) BI-167-107 H) association was read using nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> which was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module,  $K_{obs}$  of  $K_{slow}$  at each venus-mini-G<sub>s</sub> concentration was obtained by fitting association to a two phase association model, All figures show representative raw data of n=3.



## Venus-mini-Gs binding DDM- $\beta_2 ARnLuc$

Figure 5.3.13: Specific saturation binding of increasing concentrations of purified venus-mini-G<sub>s</sub> binding DDM-TS-SNAP- $\beta_2$ ARnLuc in the presence of saturating concentrations of formoterol, salbutamol, salmeterol BI-167-107, C26, isoprenaline, adrenaline and noradrenaline. nanoBRET between TS-SNAP- $\beta_2$ ARnLuc and venus-mini-G<sub>s</sub> was read on PHERAstar FSX, at room temperature, using LUM 550LP/450-80nm module at 20min, Data is fitted to one-site specific binding model, Data points show mean of n=4 ± SEM.

Kinetic and affinity values for venus-mini-G<sub>s</sub> binding agonist bound DDM-TS-SNAP- $\beta_2$ ARnLuc nanoBRET assays are summarised in table **5.3.3.** pK<sub>d</sub> values for venus-mini-G<sub>s</sub> binding the DDM-TS-SNAP- $\beta_2$ ARnLuc in response to all agonists were in the 100 nanomolar to micromolar range. However, there were 0.5-0.8 log units increased affinity for venus-mini-G<sub>s</sub> binding the full agonist (adrenaline, noradrenaline, formoterol, isoprenaline, BI-167-107 and C26) bound DDM-TS-SNAP- $\beta_2$ ARnLuc compared to the partial agonist (salbutamol and salmeterol) bound. These differences were statistically significant (one-way ANOVA and Tukey's post hoc). Agonist efficacy to activate the G<sub>s</sub> protein is defined in chapter **4**. Table **5.3.3** shows *K*<sub>on</sub> of *K*<sub>fast</sub> values for venus-mini-G<sub>s</sub> binding agonist bound DDM-TS-SNAP- $\beta_2$ ARnLuc were in the range of  $3.4\pm0.64 \times 10^5$  Mol<sup>-1</sup> Min<sup>-1</sup> to  $9.19\pm 0.26 \times 10^5$  Mol<sup>-1</sup> Min<sup>-1</sup>.

A one-way ANOVA showed that this variation in range was statistically significant (p=0.03), but Tukey's multiple comparison test shown no statistically significant difference in pairwise comparisons. There was very little variation in  $K_{off}$  values for venus-mini-G<sub>s</sub> dissociating from the agonist bound DDM-TS-SNAP- $\beta_2$ ARnLuc, table **5.3.3** shows a range of 0.17 to 0.21 min<sup>-1</sup>. Subsequently residence times for the venus-mini-G<sub>s</sub> were all approximately 5 minutes, (Table **5.3.3**).

|                            | рК <sub>d</sub> | K <sub>off</sub><br>(Min⁻¹) | K <sub>on</sub> (of k <sub>fast</sub> )<br>(Mol <sup>-1</sup> Min <sup>-1</sup> ) | Residence time<br>(Min) |  |
|----------------------------|-----------------|-----------------------------|-----------------------------------------------------------------------------------|-------------------------|--|
| <sup>%</sup> BI-167107     | 6.7             | 0.21                        | 7.29 ± 2.16                                                                       | 4.76                    |  |
|                            | ±0.03           | ±0.003                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>%</sup> C26           | 6.6             | 0.21                        | 7.80 ± 2.32                                                                       | 4.76                    |  |
|                            | ±0.03           | ±0.004                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>%</sup> Formoterol    | 6.7             | 0.20                        | 4.59± 1.64                                                                        | 5.00                    |  |
|                            | ±0.05           | ±0.011                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>%</sup> lsoprenaline  | 6.8             | 0.17                        | 9.19± 0.42                                                                        | 4.76                    |  |
|                            | ±0.07           | ±0.004                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>%</sup> Adrenaline    | 6.8             | 0.18                        | 8.56± 0.13                                                                        | 5.50                    |  |
|                            | ±0.05           | ±0.014                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>%</sup> Noradrenaline | 6.6             | 0.19                        | 7.92 ±0.56                                                                        | 5.20                    |  |
|                            | ±0.08           | ±0.007                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>\$</sup> Salbutamol   | 6.0             | 0.20                        | 3.36±0.64                                                                         | 5.00                    |  |
|                            | ±0.07           | ±0.006                      | x10 <sup>5</sup>                                                                  |                         |  |
| <sup>\$</sup> Salmeterol   | 6.1             | 0.21                        | 4.18±1.2                                                                          | 4.76                    |  |
|                            | ±0.09           | ±0.006                      | x10 <sup>5</sup>                                                                  |                         |  |

Table 5.3.3: A summary of the mean  $pK_d$ ,  $K_{off}$ ,  $K_{on}$  (of  $K_{fast}$ ) and residence time values for venus-mini-G<sub>s</sub> proteins binding the DDM solubilised TS-SNAP- $\beta_2$ AR bound to the  $\beta_2$ AR agonists BI-167107, C26, formoterol, isoprenaline, adrenaline, noradrenaline, salbutamol and salmeterol, as measured by nanoBRET, values show mean of n=3-4 experiments ± SEM. <sup>%</sup>denotes full agonist and <sup>\$</sup>partial agonist, as defined by CASE G<sub>s</sub> activation assay (chapter 4).

#### 5.4 Discussion

The aim of this chapter was to produce purified fluorescently labelled mini-G<sub>s</sub> proteins and investigate the kinetics of mini-G<sub>s</sub> protein binding to  $\beta_2AR$  bound agonists different potencies and kinetics profiles. The pharmacology of these eight  $\beta_2AR$  agonists had been characterised in chapter **4**.

## 5.4.1 Mini-G<sub>s</sub> proteins produced in this study bound TS-SNAP- $\beta_2$ AR in response to agonists stimulation

This study produced semi-pure unlabelled, venus and halo N terminal tagged mini-G<sub>s</sub> proteins from *E. coli* using IMAC. Commonly another purification step would be required to purify a protein to homogeneity. Although it was demonstrated that these proteins could be purified to homogeneity using secondary gel filtration step, this was not possible in this study due to COVID-19 restrictions. Consequentially, these semi-pure protein preparations were used in this study. This study demonstrated confirmed mini-G<sub>s</sub> proteins produced in this study were functional as they bind the DDM- $\beta_2$ AR in response to agonist stimulation and their interactions with the  $\beta_2$ AR was similar to that in mammalian cells, this supports use of these mini-G<sub>s</sub> preparations in our study.

Saturation binding data for increasing concentrations of purified venus-mini-G<sub>s</sub> binding TS-SNAP- $\beta_2$ ARnLuc membranes in the absence and presence of the agonist isoprenaline showed no constitutive activity of the  $\beta_2$ AR. This was also the case in mammalian cells. Whilst our study showed no  $\beta_2$ AR constitutive activity, Lamichhane and colleagues (Lamichhane et al., 2015) use single molecule FRET to show that 31% of unbound  $\beta_2$ AR are in the active state when  $\beta_2$ AR are isolated in synthetic nanodiscs. However, differences in basal activity in different systems are often due to receptor number and expression. Indeed, Bond and colleagues (Bond et al.,) show that  $\beta_2$ AR overexpression increases  $\beta_2$ AR constitutive activity in rat atria. It therefore seems likely that, the

ratio of  $\beta_2 AR$  to venus-mini-G<sub>s</sub> is too low to see constitutive activity in our system.

Moreover, the ability of a series of eight  $\beta_2AR$  agonists (characterised in chapter **4**) to recruit purified venus-mini-G<sub>s</sub> to the DDM solubilised TS-SNAP- $\beta_2ARnLuc$  was investigated using nanoBRET. These compounds all recruited venus-mini-G<sub>s</sub> with potencies that matched their affinity values. The pEC<sub>50</sub> values obtained of 6.7±0.6 for isoprenaline was similar to that of 6.9 shown by (Wan et al., 2018). The similarity of pEC<sub>50</sub> to pK<sub>i</sub> values suggest a 1:1 relationship between ligand binding and venus-mini-G<sub>s</sub> binding in this non-amplifying system.

## 5.4.2 N terminal fusion tags decreased mini-Gs affinity for TS-SNAP- $$\beta_2ARnLuc$$

Next, this study investigated the binding affinity of the venus-mini-G<sub>s</sub>, mini-G<sub>s</sub> and Halo-mini-G<sub>s</sub> for the Isoprenaline bound TS-SNAP- $\beta_2$ AR, using nanoBRET. To our knowledge this was the first study to investigate the affinity of a mini-G protein for a GPCR, this study showed that mini-G<sub>s</sub> binds isoprenaline bound TS-SNAP- $\beta_2$ AR with a pK<sub>d</sub> of 8.33±0.14. It was not possible to find any literature investigating the affinity of the full length G<sub>s</sub> protein for the  $\beta_2$ AR or agonist bound  $\beta_2$ AR.

Moreover, this study showed  $pK_d$  values of 7.65±0.11 and 7.28±0.15 for venus-mini-G<sub>s</sub> and halo-mini-G<sub>s</sub> respectively binding the isoprenaline bound TS-SNAP- $\beta_2$ AR. This decrease in affinity was consistent across protein preparations and so is most likely due to the addition of the N terminal tags to the mini-G<sub>s</sub>. Considering the proximity of the mini-G<sub>s</sub> N terminus to the GPCR coupling interface it seems likely that addition of an N terminal fusion protein would have this affect. This difference in affinity was accounted for in the design of kinetics studies, where 33µM mini-G<sub>s</sub> was calculated to be adequate to displace 3µM venus-mini-G<sub>s</sub> considering its increased affinity.

## 5.4.3 Venus-mini-G<sub>s</sub> association to TS-SNAP- $\beta_2$ ARnLuc is biphasic and dissociation is incomplete

This study characterised the association and dissociation of the purified venus-mini-G<sub>s</sub> proteins from the agonist bound DDM-TS-SNAP- $\beta_2$ ARnLuc (Figure **5.3.4**). This study showed a biphasic association and incomplete dissociation of this complex both in this purified protein system and mammalian cells. Similarly, Wan and colleagues (Wan et al. 2018) also use ICI 118, 551 show to incomplete dissociation of the venus-mini-G<sub>s</sub> protein from the agonist bound  $\beta_2AR$ -cerulean in HEK cells after 3 minutes. Although Wan and colleagues state that this complex dissociated after 15 minutes this data is not shown and so this study largely supports the findings that dissociation of venus-mini-Gs from TS-SNAP-β<sub>2</sub>ARnLuc was incomplete. Moreover, Wan and colleagues showed rapid (<3 min) and complete dissociation of venusmini-G<sub>si</sub> and venus-mini-G<sub>sq</sub> from muscarinic acetylcholine receptor 4 (M4) and muscarinic acetylcholine receptor (M3) receptors respectively. This, in combination with the fact that venus-mini-G<sub>s</sub> could be fully dissociated from the A<sub>2A</sub>R in our study suggests that this incomplete dissociation is specific to the  $\beta_2AR$ -venus-mini-G<sub>s</sub> complex (Figure 5.3.6).

Following the finding that association of the venus-mini-G<sub>s</sub> to the  $\beta_2AR$  is biphasic and dissociation is incomplete, this study sought to further understand the mechanism behind this. Analysis of these data showed that ~70% of the association could be accounted to the fast phase, and likewise ~70% of complexes could be dissociated. Suggesting that the fast-binding phase binds reversibly and the slow irreversibly. Figure **5.3.8** shows that the percentage of TS-SNAP- $\beta_2ARnLuc$ -venus-mini-G<sub>s</sub> complexes that are dissociable is not time dependent, this suggests that the two components occur simultaneously. This observation that the slow component is irreversible is furthered by the finding that the *K*<sub>obs</sub> plots corresponding to the slow component are not linear.

The identity of these two components not understood, whilst the fast and reversible state was expected, the slow and irreversible state could correspond to a very high affinity or stable complex. Chapter **4** shows that the high affinity state of DDM-TS-SNAP- $\beta_2AR$  can be induced in this system and under these buffer conditions, which include 150mM NaCl by Halo-mini-G<sub>s</sub> binding, despite it being generally stipulated that the physiological sodium concentration used prevents the high affinity state (Zarzycka et al., 2019). The physiological mechanism for there being two different states in this system remains to be elucidated.

Moreover, Galés and colleagues (Galés et al., 2005) used a similar BRET assay to investigate full length G<sub>s</sub> protein dissociation from isoprenaline bound  $\beta_2$ AR-RLuc in response to the antagonist ICI 118, 551 in HEK293T cells and show dissociation of the G<sub>s</sub> protein occurs completely and in the order of seconds. Considering this, with the findings of this study, it seems likely that the interaction of mini-G<sub>s</sub> with the  $\beta_2$ AR differs from that of the full length G<sub>s</sub> protein because of its modification from the wild type G<sub>s</sub> alpha protein, for example forming a more stable complex. Whilst the mechanism of agonist- $\beta_2$ AR-mini-G<sub>s</sub> complex formation is not fully understood the fast and reversible component of its binding seemed most relevant and relatable to  $\beta_2$ AR-G<sub>s</sub> protein interactions and so this study chose to study this component in relation to  $\beta_2$ AR-G<sub>s</sub> protein kinetics in response to agonist of differing efficacies. However, a major limitation of this study is the incomplete understanding of the two phase  $\beta_2$ AR-mini-G<sub>s</sub> interaction in our system.

5.4.4 Full agonists increased the affinity of DDM-TS-SNAP- $\beta_2$ ARnLuc for the venus-mini-G<sub>s</sub> protein

Finally, this study investigated the kinetics and affinity of venusmini-G<sub>s</sub> binding to the DDM-TS-SNAP- $\beta_2$ ARnLuc when bound to the eight  $\beta_2 AR$  agonists above (Table 5.3.3). These data showed no difference in the  $K_{\text{off}}$  or corresponding residence time of the venus-mini-G<sub>s</sub> for the receptor when bound to the different agonists. There were statistically significant differences in the affinity of the venus-mini-G<sub>s</sub> for the full agonist bound DDM-TS-SNAP- $\beta_2$ ARnLuc compared to the partial agonist bound DDM-TS-SNAP-β<sub>2</sub>ARnLuc. These differences appeared to be driven by an increase in the  $K_{on}$  of  $K_{fast}$ , although these were only small differences. This data, does not, therefore suggest a role for kinetics in the molecular basis of efficacy but suggests a model whereby full agonist stabilise a conformation of the receptors which is more likely to recruit the venus-mini-G<sub>s</sub> protein, but once bound to the receptor there is no conformational difference in the agonist-DDM-TS-SNAP- $\beta_2$ ARnLuc-venus-mini-G<sub>s</sub> complex. As mini-G proteins sense the active states of the GPCR, an agonist-receptor complex being more likely to recruit a mini-G protein suggests that the agonist-receptor complex is more likely to be in the active state.

These data provide no evidence for a role of kinetics in the molecular basis of efficacy. This conformational model is supported by data from hydrogen/deuterium exchange mass spectrometry (HDMS) and hydroxy radical foot printing mass spectrometry (HDX) (Du et al., 2019), whereby the conformational changes involved in  $\beta_2AR$  to full length G<sub>s</sub> protein complex formation are investigated. This study showed that the conformation of the initial  $\beta_2AR$ -G<sub>s</sub> structure differs from that of the full formed nucleotide free  $\beta_2AR$ -G<sub>s</sub> complex. Furthermore, nuclear magnetic resonance (NMR) studies (Manglik et al., 2015; Nygaardet al., 2013), show that the agonist BI-167-107 alone is not enough to fully

stabilise  $\beta_2AR$  in the active state and the nanobody 80 is required to fully stabilise the active state. These data support our findings that the conformation of the agonist- $\beta_2AR$  complex differs from that of the agonist- $\beta_2AR$ -mini-G<sub>s</sub> although it was not possible to find any biophysical studies examining differences in the conformation of the  $\beta_2AR$  bound to such a range of agonists.

Naturally, structural studies of the agonist bound  $\beta_2AR$  or other class A GPCRs have only been possible in the presence of a G protein mimetics (Rasmussen et al., 2011a). Only small differences in the conformations of these active structures have been observed and these do not seem to explain differences in efficacy (Katritch et al., 2009) and so support our finding that there was no difference in the agonist- $\beta_2AR$ -mini-G<sub>s</sub> conformation.

#### **Conclusion:**

In summary, this study generated purified fluorescently labelled mini-G<sub>s</sub> proteins and investigated the kinetics and affinity of their binding to the DDM-TS-SNAP- $\beta_2$ ARnLuc when bound to agonists of different efficacies and binding kinetics. These studies showed small differences in the affinity of full agonist- $\beta_2$ AR complexes for venus-mini-G<sub>s</sub> compared to partial agonist- $\beta_2$ AR complexes driven by an increased  $K_{on}$  supporting a model for different agonist- $\beta_2$ AR conformations in the molecular basis of efficacy.

Chapter 6 General discussion

#### 6.1 General discussion

The  $\beta_2AR$  is a prototypical class A GPCR and an essential therapeutic target in asthma, whereby  $\beta_2AR$  agonists cause smooth muscle relaxation. As such, a large range of agonists have been developed for the  $\beta_2 AR$  of differing kinetic and efficacious properties (Baker, 2005) (Rosethorne et al., 2016) (Sykes & Charlton, 2012) . Moreover, the  $\beta_2AR$ , has become one of the most well studied GPCRs with many structural (Masureel et al., 2018) (Rasmussen, Devree, et al., 2011b) (Wacker et al., 2010) and biophysical studies (Gregorio et al., 2017) (Liu et al., 2013) into its mechanism of activation. Despite these studies, and the broadly recognised therapeutic importance of GPCRs, the molecular basis of efficacy at the  $\beta_2AR$  and other GPCRs is far from understood. The hypothesis underlying this study was that ligand residence time effects  $\beta_2AR$  receptor conformational dynamics to affect G<sub>s</sub> protein activation efficacy. As such, the aim of this thesis was to investigate the correlations between agonist binding kinetics,  $\beta_2 AR$ conformational dynamics and agonist ability to induce G<sub>s</sub> activation at the  $\beta_2$ AR. An increased understanding into the molecular basis of efficacy at the  $\beta_2AR$  and GPCRs could aid more rational drug design at the molecular level. This thesis shows the development of novel methods to investigate this and concludes that there is no role for kinetics in the molecular basis of efficacy at the  $\beta_2 AR$ .

### 6.1.1 DIBMALPs but not detergent affected $\beta_2AR$ function

(Zhao & Furness, 2019)(Zhao & Furness, 2019) It's appreciated that receptor signalling is greatly influenced by cellular context. For example, components of the cell membrane (Paila et al., 2011) (Strohman et al., 2018), protein expression levels (Zhao & Furness, 2019), and spatio-temporal regulation (Halls et al., 2016) can all influence receptor pharmacology and signalling. Consequentially, this study chose to consider  $\beta_2AR$  pharmacology in isolation from the cell to investigate  $\beta_2AR$  function exclusively at the molecular level. Classically, isolation of membrane protein has employed detergents, which poorly recapitulate the plasma membrane and compromise protein function and stability. The first aim of this study was therefore to investigate the applicability of the polymer DIBMA to extract the  $\beta_2AR$  from mammalian cells. Polymers, such as DIBMA incorporate into the cell membranes and self-assemble into lipid particles containing the membrane proteins along with their native phospholipids. As such the native environment and stability of the membrane is maintained

The first chapter (**Ch. 3**) of this study shows that the polymer DIBMA can be used to extract the  $\beta_2AR$  from the mammalian cell membrane and that the  $\beta_2AR$  retains its ligand binding capability and native conformational landscape in the DIBMALP. Moreover, **Chapter 3** also shows improved thermostability of DIBMALP- $\beta_2AR$  compared to use of the conventional detergent DDM. However, for reasons not understood, when inside the DIBMALP,  $\beta_2AR$  did not couple to the Halomini-G<sub>s</sub> protein. This study therefore employed the detergent DDM to extract the  $\beta_2AR$  for ligand and mini-G<sub>s</sub> binding experiments.

Whilst use of detergents over a more physiologically relevant nanodiscs could be a criticism of this study, **chapter 3** carefully validates how pharmacology and function is affected for DIBMALP- $\beta_2$ AR but not DDM- $\beta_2$ AR. This study therefore furthers our understanding of how receptor environment can affect pharmacology. Indeed, whilst several studies have shown how the conformational dynamics of SMALP encapsulated protein may differ from that of the native protein (Mosslehy et al., 2019) (Routledge et al., 2020), few studies have been able to show intracellular coupling of GPCRs to signalling proteins in native nanodiscs. To our knowledge, this is the first study to directly compare a GPCR coupling to its intracellular transducer in different solubilisation environments and show that intracellular coupling is affected in native nanodiscs. The reason for the DIBMALP- $\beta_2$ AR not coupling to the Halomini- $G_s$  protein is not understood, although it could be due to

conformational restriction of the  $\beta_2AR$  inside the DIBMALP or perhaps other steric hinderance. Overall, this study furthers our understanding of how difference solubilisation methods, particularly native nanodiscs, can affect receptor function.

## 6.1.2 Demonstration of novel methods to characterise membrane protein preparations

Moreover, characterisation of membrane protein preparations has traditionally used methods and techniques that are low-throughput and require protein purification (Miljus et al., 2020). For example, in-gel fluorescence based thermostability assays or DSF as discussed in sec This has greatly hindered advances in membrane protein 3.1. preparation. This study has demonstrated a novel approach to characterising solubilised, but not purified GPCRs by specifically labelling the N-terminus of the receptor with the TR-FRET donor Lumi4-Tb and employing TR-FRET technology to investigate stability and functionality. As well as eliminating the requirement for protein purification this approach is also much higher throughput, utilising 96 or 384 well plate formats, therefore greatly decreasing the labour involved in a single preparation and increasing the number of conditions that can be screened at once. This thesis therefore demonstrates advances in the approaches and technologies involved in membrane proteins preparations. It is hoped that more widespread application of these ideas and techniques within the GPCR field and beyond will improve the membrane protein preparation and therefore the ability to perform biophysical studies on isolated membrane proteins.

#### 6.1.3 Agonist residence time did not correlate with efficacy at the $\beta_2 AR$

Chapter **4** shows the pharmacological characterisation of eight agonists of the  $\beta_2AR$ . We determined their ligand binding kinetics and efficacy to activate the heterotrimeric  $G_s$  protein and concluded that for these eight agonists there was no correlation between ligand residence time and efficacy at the  $\beta_2AR$ . This finding is in agreement with Louvel and colleagues (Louvel et al., 2014) who show that there is no correlation between ligand residence time and efficacy at the  $A_3$  receptor. However, a positive correlation has been shown between the efficacy of seven agonists at the M3 muscarinic receptor, and ten agonists at the  $A_{2A}$  receptor and their ligand residence time (Sykes, et al. 2009) (Guo et al., 2012). Taken together, these studies suggest that ligand residence time could be an important determinant of efficacy for some ligands and receptors but not the only determinant. Therefore, implying that there may not be a general mechanism for efficacy.

## 6.1.4 Agonist efficacy correlated with likelihood to recruit mini-Gs at the $\beta_2 AR$

Once the efficacies of the eight  $\beta_2AR$  agonists had been fully characterised, this study investigated the kinetics of venus-mini-Gs binding to the  $\beta_2 AR$  following preincubation with saturating concentrations of each ligand (Ch. 5). These data showed small differences in  $K_{on}$  (of  $K_{fast}$ ) and pK<sub>d</sub> values for venus-mini-G<sub>s</sub> binding the  $\beta_2$ AR bound to different agonists, but no difference in  $K_{off}$ . This suggests differences in the likelihood of different agonist- $\beta_2 AR$  complexes to recruit the venus-mini-G<sub>s</sub>, but that once the agonist- $\beta_2$ AR-venus-mini-G<sub>s</sub> complex is assembled there is no difference in the  $\beta_2AR$  conformation. Comparison of these  $K_{on}$  (of  $K_{fast}$ ) and  $pK_d$  values for venus-mini-G<sub>s</sub> binding  $\beta_2 AR$  with efficacy values from the operational model for  $G_s$ activation for each of the eight  $\beta_2AR$  agonists (Figure 6.1) showed a moderate correlation between ligand efficacy ( $\tau$ ) and mini-G<sub>s</sub> K<sub>on</sub> of K<sub>fast</sub>  $(R^2=0.58, p=0.07)$  and a moderate correlation between ligand efficacy ( $\tau$ ) and mini-G<sub>s</sub>  $K_{on}$  (R<sup>2</sup>=0.50, p=0.11). Therefore, suggesting that the

differences in agonist- $\beta_2AR$  complexes to recruit the venus-mini-G<sub>s</sub> could be explained by differences in agonist efficacy.

## Α

Correlation of mini-G<sub>s</sub> K<sub>on</sub> with G<sub>s</sub> protein efficacy ( $\tau$ )



В

Correlation of mini-Gs  $K_d$  with Gs protein efficacy  $(\tau)$ 





These data therefore support a model (Figure **6.2**) in which ligands of higher efficacy stabilise a conformation of the  $\beta_2AR$  that is more likely to recruit the G<sub>s</sub> protein, but once bound there are no differences in the conformation of  $\beta_2AR$  in the agonist- $\beta_2AR$ -mini-G<sub>s</sub> complex. These data, therefore, supports an argument for differing receptor conformations in the molecular basis of efficacy, as opposed to receptor, ligand or G<sub>s</sub> protein binding kinetics.

This conformational model is supported by Du and colleagues (Du et al., 2019), who investigated the conformational changes involved in  $\beta_2AR$  to full length G<sub>s</sub> protein complex formation. They show that the conformation of the initial  $\beta_2AR$ -G<sub>s</sub> structure differs from that of the full formed nucleotide free  $\beta_2AR$ -G<sub>s</sub> complex. Furthermore, nuclear magnetic resonance (NMR) studies (Manglik et al., 2015) (Nygaard et al., 2013), show that the agonist BI-167-107 alone is not enough to fully stabilise  $\beta_2AR$  in the active state and the nanobody 80 is required to fully stabilise the active state.

Conversely, several studies (Gregorio et al. 2017) (Nikolaev et al., 2006) have implicated a role for kinetics in the molecular basis of efficacy. These studies show correlations between ligand efficacy, rate or extent of receptor activation and GTP turnover at the  $\alpha_{2A}$  or  $\beta_2AR$ . Whilst these studies led to the hypothesis underpinning this study, these studies could also be interpreted as supporting the conformational model of efficacy suggested by our study. These studies both use FRET to investigate receptor dynamics and differences in intermolecular FRET could be caused by either a difference in the rate of receptor activation or in conformational differences.

Moreover, structural studies of the agonist bound  $\beta_2AR$  or other class A GPCRs have only been possible in the presence of a G protein mimetics (Rasmussen et al., 2011a). Only small differences in the conformations of these active structures have been observed and these do not seem to explain differences in efficacy (Katritch et al., 2009) and



Figure 6.2: A summary of the conformational model of efficacy proposed by this study: agonists of higher efficacy induce a conformation of  $\beta_2AR$  that is more likely to recruit a mini-G<sub>s</sub> protein but once bound there is no difference in the  $\beta_2AR$  conformation within the agonist- $\beta_2AR$ -mini-G<sub>s</sub> complex.

support our finding that there was no difference in the agonist- $\beta_2AR$ -mini-G<sub>s</sub> conformation.

#### 6.1.5 Future work

Overall, the main finding of this study was that for these  $\beta_2 AR$ agonists at least at the biophysical level, efficacy appeared dependent upon the agonist induced conformation of the  $\beta_2$ AR. Moreover, although there were moderate correlations in G<sub>s</sub> activation efficacy and mini-G<sub>s</sub> binding data sets, the differences for the eight agonists used, within each data sets were small. Therefore, whilst supported by other studies, these results should be interpreted with caution, considering this, future work should focus on the applicability of this model to a greater range of agonists and GPCRs. It would be particularly interesting to investigate the agonists used by Guo and colleagues (Guo et al., 2012) and Sykes and colleagues (Sykes et al., 2009) as, in contrast to our study, the ligand residence time of the agonists used in these studies was shown to correlate positive with efficacy. Exploration of the applicability of this study to these, and other agonists and receptors would aid understanding of whether there is a general mechanism of efficacy or can be a variety of reasons for efficacy.

Moreover, this study investigated ligand and mini-G<sub>s</sub> binding kinetics to the  $\beta_2AR$  in the DDM micelle, therefore considering  $\beta_2AR$  dynamics in isolation from the regulation of the cell. Whilst this approach answers the questions posed in this study at the biophysical level, further work should investigate if the findings of this study are applicable in the native cell environment. Interestingly, Sungkaworn and colleagues (Sungkaworn et al., 2017) investigated the  $K_{on}$  and  $K_{off}$  of G $\alpha_1$  binding to the  $\alpha$ 2A receptor in CHO cells in response to a range of agonists using single molecule microscopy and show efficacy is at least partially correlated with  $K_{on}$  but not  $K_{off}$ . Taken together with this study, this suggests that the conformational model of efficacy proposed in here is relevant to the  $\alpha$ 2A receptor in the cell environment. Future work could

investigate if this is the case for the eight  $\beta_2 AR$  agonists used in this study and other ligands and receptors.

Moreover, particularly if the conformational model of efficacy proposed in this study proved relevant to other agonists and GPCRs, further studies could investigate the conformational differences in the  $\beta_2$ AR when bound to the full range of agonists shown in this study. This could take place using NMR or molecular dynamics simulations. This would show the receptor conformation most likely to recruit and therefore activate G<sub>s</sub> protein, understanding this could aid drug design. As discussed above, limitations in structural biology mean that agonist bound GPCR complexes can currently only be obtained in complex with the G protein.

### 6.2 General conclusion

In summary, this thesis shows the development of novel systems and approaches to study the pharmacology of the isolated  $\beta_2AR$ . Specifically, this study employs alternative approaches to the characterisation of membrane protein preparations, and, using purified mini-G<sub>s</sub> proteins a novel approach to probe  $\beta_2AR$  pharmacology. Using these techniques, and eight agonists for the  $\beta_2AR$ , this study provides evidence for a conformational model of efficacy. Whilst this model is supported by literature, further work should investigate the applicability of this model to a greater range of agonists and GPCRs to ascertain if this model provides a general mechanism of efficacy.

# Chapter 7 Appendices and references

## 7.1 Supplementary data

### 7.1.1 Vector maps

All constructs used in this study were in the vector backbones, pcDNA4TO, pcDNA3.1(+), PJ411 or Clonetech N1. An example of the pcDNA4TO vector containing the sequence for TS-SNAP- $\beta_2$ AR is shown in figure **7.1.1**. The receptors TS-SNAP- $A_{2A}$ R, TS-SNAP- $\beta_2$ AR-nLuc and TS-SNAP- $A_{2A}$ R-nLuc were inserted also inserted under the control of the CMV promoter.



**Figure 7.1.1 Map of the pcDNA4TO-TS-SNAP-**β<sub>2</sub>**AR plasmid** showing main features and sites of interest. Image obtained with SnapGene Viewer.



**Figure 7.1.2 Map of the pcDNA4TO-TS-SNAP-A**<sub>2A</sub>**R plasmid** showing main features and sites of interest. Image obtained with SnapGene Viewer.



**Figure 7.1.3 Map of the Clontech-style N1 CASE Gs plasmid** showing main features and sites of interest. Image obtained with SnapGene Viewer.


Figure 7.1.4 Map of the PJ411\_MKK\_His\_10\_venus\_mini-G<sub>s</sub> plasmid showing main features and sites of interest. Image obtained with SnapGene Viewer.

## 7.1.3 Monte carlo simulations of TR-FRET ligand binding assays

Monte Carlo simulations of the tracer and time cycles used in our assay and a hypothetically cold compound with a  $K_{off}$  of 0.1min<sup>-1</sup>, 1 min<sup>-1</sup>, 3min<sup>-1</sup> and 10 min<sup>-1</sup> were run to investigate the limitation of the TR-FRET kinetic ligand binding assay in chapter 4. Motulsky Mahan fits of simulated data with hypothetically cold compound with a  $K_{off}$  of 0.1min<sup>-1</sup>, 1 min<sup>-1</sup>, 3min<sup>-1</sup> and 10 min<sup>-1</sup> are show in tables **7.1.1 to 7.1.4**:

|                 | 0    | 1e6  | 3e5  | 1e5  | 3e4  | 1e4  | Global<br>(shared<br>) |
|-----------------|------|------|------|------|------|------|------------------------|
| Kinetics of     |      |      |      |      |      |      | Ambigu                 |
| competitive     |      |      |      |      |      |      | ous                    |
| binding         |      |      |      |      |      |      |                        |
| Best-fit values |      |      |      |      |      |      |                        |
| K1              | =    | =    | =    | =    | =    | =    |                        |
|                 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 |                        |
|                 | 000  | 000  | 000  | 000  | 000  | 000  |                        |
| L               | =    | =    | =    | =    | =    | =    |                        |
|                 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 |                        |
|                 | 0    | 0    | 0    | 0    | 0    | 0    |                        |
| K2              | =    | =    | =    | =    | =    | =    |                        |
|                 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |                        |
|                 | 000  | 000  | 000  | 000  | 000  | 000  |                        |
| K3              | ~    | ~    | ~    | ~    | ~    | ~    | ~                      |
|                 | 3632 | 3632 | 3632 | 3632 | 3632 | 3632 | 363270                 |
|                 | 705  | 705  | 705  | 705  | 705  | 705  | 5                      |
| 1               | =    | =    | =    | =    | =    | =    |                        |
|                 | 0.00 | 1000 | 3000 | 1000 | 3000 | 1000 |                        |
|                 | 0    | 000  | 00   | 00   | 0    | 0    |                        |
| K4              | ~    | ~    | ~    | ~    | ~    | ~    | ~ 36.62                |
|                 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 |                        |
|                 | 2    | 2    | 2    | 2    | 2    | 2    |                        |
| Bmax            | 99.8 | 99.8 | 99.8 | 99.8 | 99.8 | 99.8 | 99.80                  |
|                 | 0    | 0    | 0    | 0    | 0    | 0    |                        |

**Table 7.1.1:** Output of Motulsky Mahan fit to monte carlo simulated TR-FRET ligand binding assay of using 75nM CA200693 (S)-propranolol-green to measure the ligand binding kinetics of 0-  $3x10^{-4}$ M a cold ligand a  $K_{off}$  of 10 Min<sup>-1</sup>.

|                                       | 0           | 1e6         | 3e5         | 1e5         | 3e4         | 1e4         | Global<br>(shared<br>) |
|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------|
| Kinetics of<br>competitive<br>binding |             |             |             |             |             |             |                        |
| Best-fit values                       |             |             |             |             |             |             |                        |
| K1                                    | =           | =           | =           | =           | II          | I           |                        |
|                                       | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 |                        |
| L                                     | =           | =           | =           | =           | =           | =           |                        |
|                                       | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   |                        |
| K2                                    | =           | =           | =           | =           | =           | =           |                        |
|                                       | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 |                        |
| K3                                    | 3034        | 3034        | 3034        | 3034        | 3034        | 3034        | 303419                 |
|                                       | 19          | 19          | 19          | 19          | 19          | 19          |                        |
| 1                                     | =           | =           | =           | =           | =           | =           |                        |
|                                       | 0.00        | 1000        | 3000        | 1000        | 3000        | 1000        |                        |
|                                       | 0           | 000         | 00          | 00          | 0           | 0           |                        |
| K4                                    | 3.03        | 3.03        | 3.03        | 3.03        | 3.03        | 3.03        | 3.036                  |
|                                       | 6           | 6           | 6           | 6           | 6           | 6           |                        |
| Bmax                                  | 99.8        | 99.8        | 99.8        | 99.8        | 99.8        | 99.8        | 99.87                  |
|                                       | 7           | 7           | 7           | 7           | 7           | 7           |                        |

**Table 7.1.2:** Output of Motulsky-Mahan fit to monte carlo simulated TR-FRET ligand binding assay of using 75nM CA200693 (S)-propranolol-green to measure the ligand binding kinetics of 0-  $3x10^{-4}$ M a cold ligand a  $K_{\text{off}}$  of 3Min<sup>-1</sup>.

|                                       | 0           | 1e6         | 3e5         | 1e5         | 3e4         | 1e4         | Global<br>(shared<br>) |
|---------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------------|
| Kinetics of<br>competitive<br>binding |             |             |             |             |             |             |                        |
| Best-fit values                       |             |             |             |             |             |             |                        |
| K1                                    | =           | =           | =           | =           | =           | =           |                        |
|                                       | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 | 4100<br>000 |                        |
| L                                     | =           | =           | =           | =           | =           | =           |                        |
|                                       | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   | 75.0<br>0   |                        |
| K2                                    | =           | =           | =           | =           | =           | =           |                        |
|                                       | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 | 0.08<br>000 |                        |
| K3                                    | 8434        | 8434        | 8434        | 8434        | 8434        | 8434        | 84340                  |
|                                       | 0           | 0           | 0           | 0           | 0           | 0           |                        |
| 1                                     | =           | =           | =           | =           | =           | =           |                        |
|                                       | 0.00        | 1000        | 3000        | 1000        | 3000        | 1000        |                        |
|                                       | 0           | 000         | 00          | 00          | 0           | 0           |                        |
| K4                                    | 0.84        | 0.84        | 0.84        | 0.84        | 0.84        | 0.84        | 0.8481                 |
|                                       | 81          | 81          | 81          | 81          | 81          | 81          |                        |
| Bmax                                  | 99.6        | 99.6        | 99.6        | 99.6        | 99.6        | 99.6        | 99.69                  |
|                                       | 9           | 9           | 9           | 9           | 9           | 9           |                        |

**Table 7.1.3:** Output of Motulsky-Mahan fit to monte carlo simulated TR-FRET ligand binding assay of using 75nM CA200693 (S)-propranolol-green to measure the ligand binding kinetics of 0-  $3x10^{-4}$ M a cold ligand a  $K_{\text{off}}$  of 1Min<sup>-1</sup>.

|                 | 0    | 1e6  | 3e5  | 1e5  | 3e4  | 1e4  | Global<br>(shared<br>) |
|-----------------|------|------|------|------|------|------|------------------------|
| Kinetics of     |      |      |      |      |      |      |                        |
| competitive     |      |      |      |      |      |      |                        |
| binding         |      |      |      |      |      |      |                        |
| Best-fit values |      |      |      |      |      |      |                        |
| K1              | =    | =    | =    | =    | =    | =    |                        |
|                 | 4100 | 4100 | 4100 | 4100 | 4100 | 4100 |                        |
|                 | 000  | 000  | 000  | 000  | 000  | 000  |                        |
| L               | =    | =    | =    | =    | =    | =    |                        |
|                 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 | 75.0 |                        |
|                 | 0    | 0    | 0    | 0    | 0    | 0    |                        |
| K2              | =    | =    | =    | =    | =    | =    |                        |
|                 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |                        |
|                 | 000  | 000  | 000  | 000  | 000  | 000  |                        |
| K3              | 1005 | 1005 | 1005 | 1005 | 1005 | 1005 | 10058                  |
|                 | 8    | 8    | 8    | 8    | 8    | 8    |                        |
|                 | =    | =    | =    | =    | =    | =    |                        |
|                 | 0.00 | 1000 | 3000 | 1000 | 3000 | 1000 |                        |
|                 | 0    | 000  | 00   | 00   | 0    | 0    |                        |
| K4              | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.1027                 |
|                 | 27   | 27   | 27   | 27   | 27   | 27   |                        |
| Bmax            | 100. | 100. | 100. | 100. | 100. | 100. | 100.1                  |
|                 | 1    | 1    | 1    | 1    | 1    | 1    |                        |

**Table 7.1.4:** Output of Motulsky Mahan fit to monte carlo simulated TR-FRET ligand binding assay of using 75nM CA200693 (S)-propranolol-green to measure the ligand binding kinetics of 0-  $3x10^{-4}$ M a cold ligand a  $K_{\text{off}}$  of 0.1Min<sup>-1</sup>.

7.1.4 Analysis of percentage of fast reversible and slow irreversible components of venus- mini-G<sub>s</sub> binding to the DDM-TS-SNAP- $\beta_2$ ARnLuc

For venus-mini-G<sub>s</sub> association and dissociation to the DDM-TS-SNAP- $\beta_2$ ARnLuc the percentage of association that could be attributed to the fast-binding phase was investigated across the different venusmini-G<sub>s</sub> and across ligands, this is summarised in table **7.1.5**.

|              | 3000nM    | 1000nM    | 333nM     | 111nM       |
|--------------|-----------|-----------|-----------|-------------|
| Formoterol   | 71.4±3.0  | 63.6±6.5  | 49.9±11.5 | 23±9.0      |
| Isoprenaline | 60.0±12.1 | 53.5±10.8 | 41.6±17.7 | 23±11.0     |
| Salbutamol   | 66.4±1.6  | 44.0±9.7  | 39.6±15.2 | 52±21.0     |
| C26          | 78.7±1.4  | 63.6±3.4  | 48.3±7.0  | 27±11.4     |
| Adrenaline   | 76.5±3.9  | 66.3±8.1  | 45.6±11.9 | 35±13.8     |
| BI-167-107   | 62.9±13.0 | 66.1±3.6  | 51.4±3.2  | 43±8.5      |
| Salmeterol   | 70.0±.3.8 | 48.6±9.1  | 34.6±9.8  | 36<br>±15.3 |

**Table 7.1.5: Quantification of the percentage of** venus-mini-G<sub>s</sub> binding DDM-TS-SNAP- $\beta_2$ AR that could be attributed to the fast association phase at varying [venus-mini-G<sub>s</sub>] and in the presence of each  $\beta_2$ AR agonist used in this study. Data are mean of n=3-4 experiments ±SEM.

For venus-mini-G<sub>s</sub> dissociation from the agonist bound DDM-TS-SNAP- $\beta_2$ AR the percentage of complexes that could be dissociated was quantified and is summarised in table **7.1.6**.

|              | % Dissociated    |
|--------------|------------------|
| Formoterol   | 74.3±4.1         |
| Isoprenaline | 73.1±2.1         |
| Salbutamol   | 72.3±2.2         |
| C26          | 76.9±1.4         |
| Adrenaline   | 73.1±2.1         |
| BI-167-107   | <b>79.7</b> ±4.5 |
| Salmeterol   | <b>72.5</b> ±1.5 |

**Table 7.1.6:** A summary of the percentage of DDM-TS-SNAP- $\beta_2$ AR: venus-mini-G<sub>s</sub> complexes that dissociated with each  $\beta_2$ AR agonist at each concentration. Data are mean of n=3-4 experiments ±SEM.

- Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Pia Abbracchio, M., Alexander, W., Al-hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R.,Ye, R. D. (2021). The Concise Guide to PHARMACOLOGY 2021/22: G-protein-coupled receptors. *British Journal of Pharmacology*, *178*, 27–156. https://doi.org/10.1111/bph.15538/full
- Angers, S., Salahpour, A., Joly, E., Hilairet, S., Chelsky, D., Dennis, M., & Bouvier, M. (2000). Detection of 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) (Vol. 97, Issue 7). PNAS. www.pnas.orgcgidoi10.1073pnas.060590697
- Bada Juarez, J. F., Muñoz-García, J. C., Inácio dos Reis, R., Henry, A., McMillan, D., Kriek, M., Wood, M., Vandenplas, C., Sands, Z., Castro, L., Taylor, R., & Watts, A. (2020). Detergent-free extraction of a functional low-expressing GPCR from a human cell line. *Biochimica et Biophysica Acta - Biomembranes*, *1862*(3), 183152. https://doi.org/10.1016/j.bbamem.2019.183152
- Baker, J. G. (2005). The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors. *British Journal of Pharmacology*, 144(3), 317–322. <u>https://doi.org/10.1038/sj.bjp.0706048</u>
- Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors (pp. 366–428). <u>https://doi.org/10.1016/S1043-9471(05)80049-7</u>
- Bang, I., & Choi, H.-J. (2015). Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond OVERALL STRUCTURE OF BETA2-ADRENERGIC RECEPTOR Molecules and Cells. *Mol. Cells*, 38(2), 105–111. <u>https://doi.org/10.14348/molcells.2015.2301</u>
- Bari, M., Paradisi, A., Pasquariello, N., & Maccarrone, M. (2005). Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. *Journal of Neuroscience Research*, 81(2), 275–283. <u>https://doi.org/10.1002/jnr.20546</u>
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. In *Nucleic Acids Research* (Vol. 28, Issue 1). <u>http://www.rcsb.org/pdb/status.html</u>

- Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Research*, 7(6), 1513–1523. <u>https://doi.org/10.1093/nar/7.6.1513</u>
- Black, J. W., & Leff, P. (1983). Operational models of pharmacological agonism. In *Proc. R. Soc. Lond. B* (Vol. 220). <u>https://royalsocietypublishing.org/</u>
- Blackmer, T., Larsen, E. C., Bartleson, C., Kowalchyk, J. A., Yoon, E. J., Preininger, A. M., Alford, S., Hamm, H. E., & Martin, T. F. J. (2005). G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis. *Nature Neuroscience*, *8*(4), 421–425. <u>https://doi.org/10.1038/nn1423</u>
- Bond, R. A., Lefft, P., David Johnsont, T., Milano, C. A., Rockman I, H.
  A., McMinn II, T. R., Apparsundaram, S., Hyek, M. F., Kenakin, T.
  P., Allen, L. F., & Robert Lefkowitz, Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. *Nature Mar* (1995). 272-6 10.1038/374272a0
- Bouzo-Lorenzo, M., Stoddart, L. A., Xia, L., IJzerman, A. P., Heitman, L. H., Briddon, S. J., & Hill, S. J. (2019). A live cell NanoBRET binding assay allows the study of ligand-binding kinetics to the adenosine A3 receptor. Purinergic Signalling, *15*(2), 139–153. https://doi.org/10.1007/s11302-019-09650-9
- Carpenter, B., Nehmé, R., Warne, T., Leslie, A. G. W., & Tate, C. G. (2016). Structure of the adenosine A2A receptor bound to an engineered G protein. *Nature*, *536*(7614), 104–107. <u>https://doi.org/10.1038/nature18966</u>
- Carpenter, B., & Tate, C. G. (2016). Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation. Protein Engineering, Design and Selection, 29(12), 583–593. <u>https://doi.org/10.1093/protein/gzw049</u>
- Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Kuhn, P., Weis, W. I., Kobilka, B. K., & Stevens, R. C. (2007). RESEARCH ARTICLES High-Resolution Crystal Structure of an Engineered Human  $\beta_2$ -Adrenergic G Protein–Coupled Receptor. *Science*, *318*(November), 1258–1265.
- D'ans, J., Breckheimer, K, W., Bonhoeffer, W., Jena; A, Makrides, N., Komodromos, N., Hackerman, B, Conway, J., & Bockris, O. (1952). Application of the theory of diffusion-controlled reactions to enzyme kinetics. In *J. Electro-chem. Soc* (Vol. 56, Issue 26). https://pubs.acs.org/sharingguidelines
- Dawaliby, R., Trubbia, C., Delporte, C., Masureel, M., van Antwerpen, P., Kobilka, B. K., & Govaerts, C. (2016). Allosteric regulation of G

protein-coupled receptor activity by phospholipids. *Nature Chemical Biology*, *12*(1), 35–39. <u>https://doi.org/10.1038/nchembio.1960</u>

- De Lean, A., Stadel, J. M., & Lefkowitzl, R. J. (1980). A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β<sub>2</sub>-adrenoceptor, *Journal of biological chemistry (1980)* (Vol. 255, Issue 15) 7108-7117.
- Deupi, X., & Kobilka, B. K. (2011). Energy landscapes as a tool to integrate GPCR structure, dynamics and function, *Physiology*. 25(5), 293–303,<u>https://doi.org/10.1152/physiol.00002.2010.Energy</u>
- Dixon, R. A. F., Kobilkat, B. K., Strader: D. J., Benovict, J. L., Dohlmant, H. G., Friellet, T., Bolanowskit, M. A., Bennett, C. D., Rands, E., Diehl, R. E., & Mumford, R. A. Cloning of the gene and cDNA for mammalian  $\beta_2$ -adrenoceptor receptor and homology with rhodopsin.
- Dörr, J. M., Koorengevel, M. C., Schäfer, M., Prokofyev, A. V., Scheidelaar, S., Van Der Cruijsen, E. A. W., Dafforn, T. R., Baldus, M., & Killian, J. A. (2014). Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: The power of native nanodiscs. *PNAS*, *111*(52), 18607– 18612. <u>https://doi.org/10.1073/pnas.1416205112</u>
- Downes, G. B., & Gautam, N. (1999). The G protein subunit gene families. *Genomics*, 62(3), 544–552. https://doi.org/10.1006/geno.1999.5992
- Du, Y., Duc, N. M., Rasmussen, S. G. F., Hilger, D., Kubiak, X., Wang, L., Bohon, J., Kim, H. R., Wegrecki, M., Asuru, A., Jeong, K. M., Lee, J., Chance, M. R., Lodowski, D. T., Kobilka, B. K., & Chung, K. Y. (2019). Assembly of a GPCR-G Protein Complex. *Cell*, 177(5), 1232-1242.e11. <u>https://doi.org/10.1016/j.cell.2019.04.022</u>
- Yao, F., Svensjo, T., Winkler, T., Lu, M., Eriksson, C., & Eriksson E.. (1998). Tetracycline repressor, tetR, rather than the cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. *Human gene therapy 9:*1939– 1950. 10.1089/hum.1998.9 13-1939
- Flock, T., Ravarani, C. N. J., Sun, D., & Venkatakrishnan, A. J. (2016). Europe PMC Funders Group Universal allosteric mechanism for G α activation by GPCRs. 524(7564), 173–179. <u>https://doi.org/10.1038/nature14663.Universal</u>
- Galés, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hébert, T. E., & Bouvier, M. (2005). Real-time monitoring of receptor and G-protein

interactions in living cells. *Nature Methods*, 2(3), 177–184. <u>https://doi.org/10.1038/nmeth743</u>

- Galés, C., van Durm, J., Schaak, S., Pontier, S., Percherancier, Y., Audet, M., Paris, H., & Bouvier, M. (2006). Probing the activationpromoted structural rearrangements in preassembled receptor-G protein complexes. *Nature Structural and Molecular Biology*, *13*(9), 778–786. <u>https://doi.org/10.1038/nsmb1134</u>
- Gao, K., Oerlemans, R., & Groves, M. R. (2020). Theory and applications of differential scanning fluorimetry in early-stage drug discovery. *Biophysical Reviews*, *12*(1), 85–104. <u>https://doi.org/10.1007/s12551-020-00619-2</u>
- García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. (2018). Cryo-EM structure of 201 the adenosine A<sub>2A</sub> receptor coupled to an engineered heterotrimeric G protein, *eLife* 7:e35946 https://doi.org/10.1101/267674
- George, S., Furness, B., Liang, Y., Nowell, C. J., Christopoulos, A., Wootten, D., George, S., Furness, B., Liang, Y., Nowell, C. J., Halls, M. L., Wookey, P. J., Maso, E. D., Inoue, A., Christopoulos, A., Wootten, D., & Sexton, P. M. (2016). Ligand-Dependent Modulation of G Protein Article Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy. *Cell*, *167*(3), 739-744.e11. <u>https://doi.org/10.1016/j.cell.2016.09.021</u>
- Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods*, 6(5), 343–345. <u>https://doi.org/10.1038/nmeth.1318</u>
- Gregorio, G. G., Masureel, M., Hilger, D., Terry, D. S., Juette, M., Zhao, H., Zhou, Z., Perez-Aguilar, J. M., Hauge, M., Mathiasen, S., Javitch, J. A., Weinstein, H., Kobilka, B. K., & Blanchard, S. C. (2017). Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. *Nature*, *547*(7661), 68–73. https://doi.org/10.1038/nature22354
- Grime, R. L., Logan, R. T., Nestorow, S. A., Sridhar, P., Edwards, P. C., Tate, C. G., Klumperman, B., Dafforn, T. R., Poyner, D. R., Reeves, P. J., & Wheatley, M. (2021). Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nanoparticles. *Nanoscale*, *13*(31), 13519–13528. <u>https://doi.org/10.1039/d1nr02419a</u>
- Guixà-González, R., Albasanz, J. L., Rodriguez-Espigares, I., Pastor, M., Sanz, F., Martí-Solano, M., Manna, M., Martinez-Seara, H., Hildebrand, P. W., Martín, M., & Selent, J. (2017). Membrane

cholesterol access into a G-protein-coupled receptor. *Nature Communications*, 8. <u>https://doi.org/10.1038/ncomms14505</u>

- Gulamhussein, A. A., Uddin, R., Tighe, B. J., Poyner, D. R., & Rothnie,
  A. J. (2020). A comparison of SMA (styrene maleic acid) and
  DIBMA (di-isobutylene maleic acid) for membrane protein
  purification. *Biochimica et Biophysica Acta (BBA) Biomembranes*,
  1862(7), 183281. <u>https://doi.org/10.1016/j.bbamem.2020.183281</u>
- Gulati, S., Jamshad, M., Knowles, T. J., Morrison, K. A., Downing, R., Cant, N., Collins, R., Koenderink, J. B., Ford, R. C., Overduin, M., Kerr, I. D., Dafforn, T. R., & Rothnie, A. J. (2014). Detergent-free purification of ABC (ATP-binding-cassette) transporters. *Biochemical Journal*, 461(2), 269–278. <u>https://doi.org/10.1042/BJ20131477</u>
- Guo, D., Mulder-Krieger, T., IJzerman, A. P., & Heitman, L. H. (2012). Functional efficacy of adenosine A 2A receptor agonists is positively correlated to their receptor residence time. *British Journal of Pharmacology*, *166*(6), 1846–1859. <u>https://doi.org/10.1111/j.1476-5381.2012.01897.x</u>
- Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, M. G., Otto, P., Zimmerman, K., Vidugiris, G., MacHleidt, T., Robers, M. B., Benink, H. A., Eggers, C. T., Slater, M. R., Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., & Wood, K. v. (2012). Engineered luciferase reporter from a deepsea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chemical Biology, 7(11), 1848–1857. https://doi.org/10.1021/cb3002478
- Halls, M. L., Yeatman, H. R., Nowell, C. J., Thompson, G. L., Gondin,
  A. B., Civciristov, S., Bunnett, N. W., Lambert, N. A., Poole, D. P.,
  & Canals, M. (2016). Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. *Science Signaling*, 9(414), 1–14. <u>https://doi.org/10.1126/scisignal.aac9177</u>
- Hauser, A. S., Attwood, M. M., Rask-andersen, M., Schiöth, H. B., & Gloriam, D. E. (2017). Trends in GPCR drug discovery : new agents , targets and indications. *Nature Publishing Group*. <u>https://doi.org/10.1038/nrd.2017.178</u>
- Heise, C. E., Sullivan, S. K., & Crowe, P. D. (2007). Scintillation proximity assay as a high-throughput method to identify slowly dissociating nonpeptide ligand binding to the GnRH receptor. *Journal of Biomolecular Screening*, 12(2), 235–239. <u>https://doi.org/10.1177/1087057106297362</u>
- Hillenbrand, M., Schori, C., Schöppe, J., & Plückthun, A. (2015). Comprehensive analysis of heterotrimeric G-protein complex

diversity and their interactions with GPCRs in solution. *PNAS 112*(11), E1181–E1190. <u>https://doi.org/10.1073/pnas.1417573112</u>

- Huynh, K. Partch, C. (2016). Analysis of protein stability and ligand interactions by thermal shift assay. *Current protocols in protein science, vol (79) 1 28.9.1-28.9.14* <u>https://doi.org/10.1002/0471140864.ps2809s79.Current</u>
- Jakubík, J., Randáková, A., Rudajev, V., Zimčík, P., El-Fakahany, E. E., & Doležal, V. (2019). Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-40993-w
- Jamshad, M., Charlton, J., Lin, Y., Routledge, S. J., Bawa, Z., Knowles, T. J., Overduin, M., Dekker, N., Dafforn, T. R., Bill, R. M., Poyner, D. R., & Wheatley, M. (2015). G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. *Bioscience Reports*, 35(2), 1–10. <u>https://doi.org/10.1042/BSR20140171</u>
- Katritch, V., Reynolds, K. A., Cherezov, V., Hanson, M. A., Roth, C. B., Yeager, M., & Abagyan, R. (2009). Analysis of full and partial agonists binding to β2- adrenergic receptor suggests a role of transmembrane helix v in agonist-specific conformational changes. *Journal of Molecular Recognition*, *22*(4), 307–318. https://doi.org/10.1002/jmr.949
- Kenakin, T. (2016). The mass action equation in pharmacology. *British Journal of Clinical Pharmacology*, *81*(1), 41–51. <u>https://doi.org/10.1111/bcp.12810</u>
- Kenakin, T. (2017). Theoretical aspects of GPCR-ligand complex pharmacology. *Chemical Reviews*, *117*(1), 4–20. <u>https://doi.org/10.1021/acs.chemrev.5b00561</u>
- Knowles, T. J., Finka, R., Smith, C., Lin, Y. P., Dafforn, T., & Overduin, M. (2009). Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. *Journal* of the American Chemical Society, 131(22), 7484–7485. <u>https://doi.org/10.1021/ja810046q</u>
- Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S. (1992). Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. *Nature*, *359*, 710–713.

- Lamichhane, R., Liu, J. J., Pljevaljcic, G., White, K. L., Schans, E. van der, & Katritch, V. (2015). Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β<sub>2</sub> AR. 2–7. *PNAS* 17;112 (46):14254-9 <u>https://doi.org/10.1073/pnas.1519626112</u>
- Lamichhane, R., Liu, J. J., White, K. L., Katritch, V., Stevens, R. C., Wüthrich, K., & Millar, D. P. (2020). Biased Signaling of the G-Protein-Coupled Receptor β<sub>2</sub>AR Is Governed by Conformational Exchange Kinetics. *Structure*, *28*(3), 371-377.e3. <u>https://doi.org/10.1016/j.str.2020.01.001</u>
- Leitz, A. J., Bayburt, T. H., Barnakov, A. N., Springer, B. A., & Sligar, S. G. (2006). Functional reconstitution of β<sub>2</sub>-adrenergic receptors utilizing self-assembling Nanodisc technology. *BioTechniques*, 40(5), 601–612. <u>https://doi.org/10.2144/000112169</u>
- Liang, Y., Khoshouei, M., Glukhova, A., Furness, S. G. B., Zhao, P., Clydesdale, L., Koole, C., Truong, T. T., Thal, D. M., Lei, S., Radjainia, M., Danev, R., Baumeister, W., Wang, M., Miller, L. J., Christopoulos, A., Sexton, P. M., & Wootten, D. (2018). bound human GLP-1 receptor – G<sub>s</sub> complex. *Nature Publishing Group*. <u>https://doi.org/10.1038/nature25773</u>
- Liu, J., Horst, R., Katritch, V., Stevens, R., & Wuthrich, K. (2013). Biased signalling pathways in β<sub>2</sub>-adrenergic receptor characterized by 19F-NMR. *Science*, *335*(6072), 1106–1110. <u>https://doi.org/10.1126/science.1215802</u>.
- Logez, C., Damian, M., Legros, C., Dupré, C., Guéry, M., Mary, S., Wagner, R., M'Kadmi, C., Nosjean, O., Fould, B., Marie, J., Fehrentz, J. A., Martinez, J., Ferry, G., Boutin, J. A., & Baneires, J. L. (2016). Detergent-free Isolation of Functional G Protein-Coupled Receptors into Nanometric Lipid Particles. *Biochemistry*, 55(1), 38– 48. <u>https://doi.org/10.1021/acs.biochem.5b01040</u>
- Logothetis, D., Kurachi, Y., Galper, J., Neer, E., & Clapham DE. (1987). The  $\beta\gamma$  subunits of GTP-binding proteins activate the muscarinic K+ channel. *Nature* (Vol. 325, Issue 22).
- Louvel, J., Guo, D., Agliardi, M., Mocking, T. A. M., Kars, R., Pham, T. P., Xia, L., de Vries, H., Brussee, J., Heitman, L. H., & Ijzerman, A. P. (2014). Agonists for the adenosine A1 receptor with tunable residence time. a case for nonribose 4-amino-6-aryl-5-cyano-2thiopyrimidines. *Journal of Medicinal Chemistry*, 57(8), 3213–3222. https://doi.org/10.1021/jm401643m

- Machleidt, T., Woodroofe, C. C., Schwinn, M. K., Méndez, J., Robers, M. B., Zimmerman, K., Otto, P., Daniels, D. L., Kirkland, T. A., & Wood, K. v. (2015). NanoBRET-A Novel BRET Platform for the Analysis of Protein-Protein Interactions. *ACS Chemical Biology*, *10*(8), 1797–1804. <u>https://doi.org/10.1021/acschembio.5b00143</u>
- Manglik, A., Kim, T. H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M. T., Kobilka, T. S., Thian, F. S., Hubbell, W. L., Prosser, R. S., & Kobilka, B. K. (2015). Structural insights into the dynamic process of β<sub>2</sub>-adrenergic receptor signaling. *Cell*, *161*(5), 1101–1111. <u>https://doi.org/10.1016/j.cell.2015.04.043</u>
- Mary, S., Damian, M., Louet, M., Floquet, N., Fehrentz, J.-A., Marie, J., Martinez, J., & Baneres, J.-L. (2012). Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. *PNAS*, *109*(21), 8304–8309. <u>https://doi.org/10.1073/pnas.1119881109</u>
- Masureel, M., Zou, Y., Picard, L. P., van der Westhuizen, E., Mahoney, J. P., Rodrigues, J. P. G. L. M., Mildorf, T. J., Dror, R. O., Shaw, D. E., Bouvier, M., Pardon, E., Steyaert, J., Sunahara, R. K., Weis, W. I., Zhang, C., & Kobilka, B. K. (2018). Structural insights into binding specificity, efficacy and bias of a β<sub>2</sub>AR partial agonist. *Nature Chemical Biology*, *14*(11), 1059–1066. https://doi.org/10.1038/s41589-018-0145-x
- McLaughlin, J. N., Shen, L., Holinstat, M., Brooks, J. D., DiBenedetto, E., & Hamm, H. E. (2005). Functional selectivity of G protein signaling by agonist peptides and thrombin for the proteaseactivated receptor-1. *Journal of Biological Chemistry*, 280(26), 25048–25059. <u>https://doi.org/10.1074/jbc.M414090200</u>
- Miljus, T., Sykes, D. A., Harwood, C. R., Vuckovic, Z., & Veprintsev, D. B. (2020). GPCR Solubilization and Quality Control. In C. Perez & T. Maier (Eds.), *Expression, Purification, and Structural Biology of Membrane Proteins* (pp. 105–127). Springer US. https://doi.org/10.1007/978-1-0716-0373-4
- Mosslehy, W., Voskoboynikova, N., Colbasevici, A., Ricke, A., Klose, D., Klare, J. P., Mulkidjanian, A. Y., & Steinhoff, H. J. (2019).
  Conformational Dynamics of Sensory Rhodopsin II in Nanolipoprotein and Styrene–Maleic Acid Lipid Particles. *Photochemistry and Photobiology*, 95(5), 1195–1204.
  <a href="https://doi.org/10.1111/php.13096">https://doi.org/10.1111/php.13096</a>
- Motulsky, H. J., & Mahan, L. C. (1984). The kinetics of competitive radioligand binding predicted by the law of mass action. *Molecular Pharmacology*, *25*(1), 1–9.

- Mukhopadhyay, S. (2005). Chemically Distinct Ligands Promote Differential CB1 Cannabinoid Receptor-Gi Protein Interactions. *Molecular Pharmacology*, 67(6), 2016–2024. <u>https://doi.org/10.1124/mol.104.003558</u>
- Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., Hanson, M. A., Stevens, R. C., Deupi, X., & Gloriam, D. E. (2019). An online resource for GPCR structure determination and analysis. *Nature Methods*, *16*(2), 151–162. <u>https://doi.org/10.1038/s41592-018-0302-x</u>
- Nguyen, H. H., Park, J., Kang, S., & Kim, M. (2015). Surface plasmon resonance: A versatile technique for biosensor applications. In *Sensors (Switzerland)* (Vol. 15, Issue 5, pp. 10481–10510). MDPI AG. <u>https://doi.org/10.3390/s150510481</u>
- Nikolaev, V. O., Hoffmann, C., Bünemann, M., Lohse, M. J., & Vilardaga, J. P. (2006). Molecular basis of partial agonism at the neurotransmitter α2A-adrenergic receptor and Gi-protein heterotrimer. *Journal of Biological Chemistry*, *281*(34), 24506–24511. <u>https://doi.org/10.1074/jbc.M603266200</u>
- Nygaard, R., Zou, Y., Dror, R. O., Mildorf, T. J., Arlow, D. H., Manglik, A., Pan, A. C., Bokoch, M. P., Thian, F. S., Kobilka, T. S., Shaw, D. E., Liu, C. W., Jose, J., Mueller, L., Prosser, R. S., & Kobilka, B. K. (2013). The Dynamic Process of β<sub>2</sub>AR-Adrenergic Receptor Activation. *Cell*, *152* (*3*) *532-542* <u>https://doi.org/10.1016/j.cell.2013.01.008</u>
- Oluwole, A. O., Danielczak, B., Meister, A., Babalola, J. O., Vargas, C., & Keller, S. (2017). Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. *Angewandte Chemie - International Edition*, 56(7), 1919–1924. <u>https://doi.org/10.1002/anie.201610778</u>
- Oluwole, A. O., Klingler, J., Danielczak, B., Babalola, J. O., Vargas, C., Pabst, G., & Keller, S. (2017). Formation of Lipid-Bilayer Nanodiscs by Diisobutylene/Maleic Acid (DIBMA) Copolymer. *Langmuir*, 33(50), 14378–14388. <u>https://doi.org/10.1021/acs.langmuir.7b03742</u>
- Paila, Y. D., Jindal, E., Goswami, S. K., & Chattopadhyay, A. (2011). Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. *Biochimica et Biophysica Acta - Biomembranes*, 1808(1), 461–465. <u>https://doi.org/10.1016/j.bbamem.2010.09.006</u>

- Pándy-Szekeres, G., Munk, C., Tsonkov, T. M., Mordalski, S., Harpsøe, K., Hauser, A. S., Bojarski, A. J., & Gloriam, D. E. (2018). GPCRdb in 2018: Adding GPCR structure models and ligands. *Nucleic Acids Research*, 46(D1), D440–D446. https://doi.org/10.1093/nar/gkx1109
- Philipp, M., Brede, M., & Hein, L. (2002). invited review Physiological significance of 2-adrenergic receptor subtype diversity: one receptor is not enough. *Am J Physiol Regulatory Integrative Comp Physiol*, 283, 287–295. https://doi.org/10.1152/ajpregu.00123.2002.
- Pontier, S. M., Percherancier, Y., Galandrin, S., Breit, A., Galés, C., & Bouvier, M. (2008). Cholesterol-dependent separation of the β<sub>2</sub>adrenergic receptor from its partners determines signaling efficacy: Insight into nanoscale organization of signal transduction. *Journal of Biological Chemistry*, 283(36), 24659–24672. <u>https://doi.org/10.1074/jbc.M800778200</u>
- Rasmussen, S. G. F., Choi, H. J., Fung, J. J., Pardon, E., Casarosa, P., Chae, P. S., Devree, B. T., Rosenbaum, D. M., Thian, F. S., Kobilka, T. S., Schnapp, A., Konetzki, I., Sunahara, R. K., Gellman, S. H., Pautsch, A., Steyaert, J., Weis, W. I., & Kobilka, B. K. (2011a). Structure of a nanobody-stabilized active state of the β<sub>2</sub> adrenoceptor. *Nature*, *469* (7329), 175–181. https://doi.org/10.1038/nature09648
- Rasmussen, S. G. F., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R. P., Sanishvili, R., Fischetti, R. F., Schertler, G. F. X., Weis, W. I., & Kobilka, B. K. (2007). Crystal structure of the human  $\beta_2$  adrenergic G-protein-coupled receptor. *Nature*, *450*(7168), 383–387. <u>https://doi.org/10.1038/nature06325</u>
- Rasmussen, S. G. F., Devree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T. A., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., & Kobilka, B. K. (2011a). Crystal structure of the β2adrenergic receptor-Gs protein complex. *Nature*, 477(7366), 549–557. <u>https://doi.org/10.1038/nature10361</u>
- Rosethorne, E. M., Bradley, M. E., Gherbi, K., Sykes, D. A., Sattikar, A., Wright, J. D., Renard, E., Trifilieff, A., Fairhurst, R. A., & Charlton, S. J. (2016). Long receptor residence time of C26 contributes to super agonist activity at the human β<sub>2</sub> adrenoceptor. *Molecular Pharmacology*, *89*(4), 467–475. https://doi.org/10.1124/mol.115.101253

- Roth, C. B., Hanson, M. A., & Stevens, R. C. (2009). Stabilization of the β<sub>2</sub>-adrenergic Receptor 4-3-5 Helix Interface by Mutagenesis of Glu-1223.41, *A Critical Residue in GPCR Structure.pdf*. 376(5), 1305–1319.
- Routledge, S. J., Jamshad, M., Little, H. A., Lin, Y. P., Simms, J., Thakker, A., Spickett, C. M., Bill, R. M., Dafforn, T. R., Poyner, D. R., & Wheatley, M. (2020). Ligand-induced conformational changes in a SMALP-encapsulated GPCR. *Biochimica et Biophysica Acta -Biomembranes*, 1862(6). https://doi.org/10.1016/j.bbamem.2020.183235
- Samamasb, P., Cotecchialf, S., Costal, T., & Lefkowitzs, R. J. (1993). A mutation-induced activated state of the  $\beta_2$  adrenergic receptor. Extending the ternary complex model. *J Biol Chem* 268(7):4625-36 PMID: 8095262
- Schena, G., & Caplan, M. J. (2019). Everything You Always Wanted to Know about β<sub>3</sub>AR (But Were Afraid to Ask). *Cells*, *8*(4), 357. <u>https://doi.org/10.3390/cells8040357</u>
- Schihada, H., Shekhani, R., & Schulte, G. (2021). Quantitative assessment of constitutive G protein–coupled receptor activity with BRET-based G protein biosensors. *Science Signaling*, *14*(699). https://doi.org/10.1126/scisignal.abf1653
- Schiöth, H. B., & Fredriksson, R. (2005). The GRAFS classification system of G-protein coupled receptors in comparative perspective. *General and Comparative Endocrinology*, 142, 94–101. <u>https://doi.org/10.1016/j.ygcen.2004.12.018</u>
- Serrano-Vega, M. J., & Tate, C. G. (2009a). Transferability of thermostabilizing mutations between β-adrenergic receptors. *Molecular Membrane Biology*, *26*(8), 385–396. <u>https://doi.org/10.3109/09687680903208239</u>
- Shirdel, S. A., & Khalifeh, K. (2019). Thermodynamics of protein folding: methodology, data analysis and interpretation of data. *European Biophysics Journal*, 48(4), 305–316. <u>https://doi.org/10.1007/s00249-019-01362-7</u>
- Skrzypek, R., Iqbal, S., & Callaghan, R. (2018). Methods of reconstitution to investigate membrane protein function. *Methods*, 147 (February), 126–141. <u>https://doi.org/10.1016/j.ymeth.2018.02.012</u>

- Stoddart, L. A., Johnstone, E. K. M., Wheal, A. J., Goulding, J., Robers, M. B., MacHleidt, T., Wood, K. v., Hill, S. J., & Pfleger, K. D. G. (2015). Application of BRET to monitor ligand binding to GPCRs. *Nature Methods*, *12*(7), 661–663. https://doi.org/10.1038/nmeth.3398
- Strohman, M. J., Maeda, S., Hilger, D., Masureel, M., Du, Y., & Kobilka, B. K. (2018). Local membrane charge regulates β<sub>2</sub> adrenergic receptor coupling to G<sub>i3</sub>. *Nature communications 10 (2234)* <u>https://doi.org/10.1038/s41467-019-10108-0</u>
- Stroud, Z., Hall, S. C. L., & Dafforn, T. R. (2018). Purification of membrane proteins free from conventional detergents: SMA, new polymers, new opportunities and new insights. *Methods*, 147, 106– 117. <u>https://doi.org/10.1016/j.ymeth.2018.03.011</u>
- Sun, C., Benlekbir, S., Venkatakrishnan, P., Wang, Y., Hong, S., Hosler, J., Tajkhorshid, E., Rubinstein, J. L., & Gennis, R. B. (2018). Structure of the alternative complex III in a supercomplex with cytochrome oxidase. *Nature*, 557(7703), 123–126. <u>https://doi.org/10.1038/s41586-018-0061-y</u>
- Sun, D., Ostermaier, M. K., Heydenreich, F. M., Mayer, D., Jaussi, R., Standfuss, J., & Veprintsev, D. B. (2013). AAscan, PCRdesign and MutantChecker: A Suite of Programs for Primer Design and Sequence Analysis for High-Throughput Scanning Mutagenesis. 8(10). <u>https://doi.org/10.1371/journal.pone.0078878</u>
- Sungkaworn, T., Jobin, M., Burnecki, K., Weron, A., Lohse, M. J., & Calebiro, D. (2017). Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. *Nature Publishing Group*, 550(7677), 543–547. <u>https://doi.org/10.1038/nature24264</u>
- Sykes, D. A., & Charlton, S. J. (2012). Slow receptor dissociation is not a key factor in the duration of action of inhaled long-acting β<sub>2</sub>adrenoceptor agonists. *British Journal of Pharmacology*, *165*(8), 2672–2683. <u>https://doi.org/10.1111/j.1476-5381.2011.01639.x</u>
- Sykes, D. A., Dowling, M. R., & Charlton, S. J. (2009). Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. *Molecular Pharmacology*, 76(3), 543–551. https://doi.org/10.1124/mol.108.054452
- Sykes, D. A., Parry, C., Reilly, J., Wright, P., Fairhurst, R. A., & Charlton, S. J. (2014a). Observed drug-receptor association rates are governed by membrane affinity: The importance of establishing "micro-pharmacokinetic/pharmacodynamic relationships" at the β<sub>2</sub>-adrenoceptor. *Molecular Pharmacology*, *85*(4), 608–617. https://doi.org/10.1124/mol.113.090209

- Sykes, D. A., Stoddart, L. A., Kilpatrick, L. E., & Hill, S. J. (2019). Binding kinetics of ligands acting at GPCRs. *Molecular and Cellular Endocrinology*, *485* (February), 9–19. <u>https://doi.org/10.1016/j.mce.2019.01.018</u>
- Tang, A. W., Gilman, A. G., Tang, W., & Gilman, A. G. (1995). Construction of a soluble adenylyl cyclase activated by Gs alpha and forskolin. *Science*, 23;268(5218):1769-72. https://<u>10.1126/science.7792604</u>
- Tippett, D. N., Hoare, B., Miljus, T., Sykes, D. A., & Veprintsev, D. B. (2020). ThermoFRET: A novel nanoscale G protein coupled receptor thermostability assay functional in crude solubilised membrane preparations. *BioRxiv*. <u>https://doi.org/10.1101/2020.07.07.191957</u>
- Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G., & Butler, J. (2009). The Sympathetic Nervous System in Heart Failure. Physiology, Pathophysiology, and Clinical Implications. In *Journal of the American College of Cardiology* (Vol. 54, Issue 19, pp. 1747–1762). https://doi.org/10.1016/j.jacc.2009.05.015
- Wacker, D., Fenalti, G., Brown, M. A., Katritch, V., Abagyan, R., Cherezov, V., & Stevens, R. C. (2010). Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. *Journal of the American Chemical Society*, *132* (33), 11443–11445. <u>https://doi.org/10.1021/ja105108g</u>
- Wan, Q., Okashah, N., Inoue, A., Nehmé, R., Carpenter, B., Tate, C. G., & Lambert, N. A. (2018). *Mini G protein probes for active G protein – coupled receptors (GPCRs ) in live cells*. 293, 7466– 7473. <u>https://doi.org/10.1074/jbc.RA118.001975</u>
- Warne, T., Moukhametzianov, R., Baker, J. G., Nehmé, R., Patricia, C., Leslie, A. G. W., Schertler, G. F. X., & Tate, C. G. (2011). *UKPMC Funders Group β1-adrenergic receptor*. *469*(7329), 241–244. <u>https://doi.org/10.1038/nature09746.</u>
- Whorton, M. R., Bokoch, M. P., Rasmussen, S. G. F., Huang, B., Zare, R. N., Kobilka, B., & Sunahara, R. K. (2007). A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. *PNAS* 104(18), 7682– 7687. <u>https://doi.org/10.1073/pnas.0611448104</u>
- Yu, J.-Z., & Rasenick, M. M. (2002). *Real-Time Visualization of a Fluorescent Gs: Dissociation of the Activated G Protein from Plasma Membrane*. http://molpharm.aspetjournals.org

- Zarzycka, B., Zaidi, S. A., Roth, B. L., & Katritch, V. (2019). Harnessing ion-binding sites for GPCR pharmacology. *Pharmacological Reviews*, *71*(4), 571–595. <u>https://doi.org/10.1124/pr.119.017863</u>
- Zhang, H., Sturchler, E., Zhu, J., Nieto, A., Cistrone, P. A., Xie, J., He, L., Yea, K., Jones, T., Turn, R., di Stefano, P. S., Griffin, P. R., Dawson, P. E., McDonald, P. H., & Lerner, R. A. (2015). Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects. *Nature Communications*, 6(May), 1–13. <u>https://doi.org/10.1038/ncomms9918</u>
- Zhang, Y., Yang, F., Ling, S., Lv, P., Zhou, Y., Fang, W., Sun, W., Zhang, L., Shi, P., & Tian, C. (2020). Single-particle cryo-EM structural studies of the β2AR–Gs complex bound with a full agonist formoterol. In *Cell Discovery* (Vol. 6, Issue 1). Springer Nature. <u>https://doi.org/10.1038/s41421-020-0176-9</u>
- Zhao, P., & Furness, S. G. B. (2019). The nature of efficacy at G protein-coupled receptors. *Biochemical Pharmacology*, 113647. <u>https://doi.org/10.1016/j.bcp.2019.113647</u>
- Zocher, M., Zhang, C., Rasmussen, S. G. F., Kobilka, B. K., & Müller, D. J. (2012). Cholesterol increases kinetic, energetic and mechanical stability of the human β<sub>2</sub>-adrenergic receptor. *PNAS*, *109*(50), 3463–3472. https://doi.org/10.1073/pnas.1210373109