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Abstract

The number of features collected has increased greatly in the past decade, partic-

ularly in medicine and life sciences, which brings challenges and opportunities. Making

reliable predictions, exploring associations and extracting meaningful information in high-

dimensional data are some of the problems that are yet to be solved. Due to intrinsic

properties of high-dimensional spaces such as distance concentration and hubness, tra-

ditional classification and clustering algorithms face difficult challenges. In general, a

Multiple Classifier System (MCS) provides better classification accuracy than individual

classifiers. One of the most promising approaches to MCS is Dynamic Selection (DS)

methods, which work by selecting classifiers on the fly, according to each unknown test

sample. The rationale behind this is that not every classifier is an expert in predicting

all samples, rather each classifier or a combination of classifiers is an expert in a different

region of the feature space; whose quality can significantly impact the overall performance.

This thesis provides three major contributions. First, traditional DS methods fail to

perform effectively in high-dimensional data sets due to the use of a k-Nearest Neighbour

(k-NN) to define the region competence and, moreover, they do not indicate which are

the most important features for classification. Second, two frameworks were proposed

the Subspace-Based Dynamic Selection (SBDS) and the Classifier SBDS (cSBDS) which

integrate characteristics of DS methods and subspace clustering. Subspace clustering

methods localise their search for clusters and are able to uncover clusters that exist in

multiple, possible overlapping subspaces of features and/or samples. The subspace clus-

tering approach separates the high-dimensional feature space into small feature spaces

with a reduced number of features and samples in each one. The results indicate that

the cSBDS framework performs statistically better when compared to DS methods and

majority voting on real-world and synthetic datasets. Third, we provide a comparison

between the features selected by the cSBDS framework and feature importance methods.

The results indicate that for high-dimensional datasets, the cSBDS framework is able to

capture the most important features when the number of clusters per class is increased,

while traditional feature importance methods lose this capability.
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1.1 Introduction

Classification is an important task in pattern recognition, which is one of the main

reasons why the number of methods developed have dramatically increased in the past

decades [1, 2]. Even though the methods developed may differ in different aspects and

achieve the objectives from which they were proposed, creating a single classifier to cover

all the variability in most pattern recognition problem is still a challenge, even more with

the increase in the number of features in some areas like medicine and biology [1, 2].

For these reasons, Multiple Classifier System (MCS) are a very active area of research

in classification problems. Recently, several studies published results demonstrating its

advantages over a single robust classifier [3–5]. The idea behind MCS relies on the fact that

a combination of “different” classifiers might have a strong degree of “independence” in the

1
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errors, i.e. make few coincident errors. Thus, the errors committed by a classifier can be

overridden by the correct classification of other classifiers. Static Selection (SS), Dynamic

Classifier Selection (DCS) and Dynamic Ensemble Selection (DES) are the techniques

commonly employed to determine the set of classifiers within the ensemble [4, 6]. SS

works by selecting a group of classifiers for all new samples, while DCS and DES select

a single or a group of classifiers for each new sample, respectively. Recently, Dynamic

Selection (DS) methods have been preferred over static methods due to their ability to

create different classifier configurations, i.e. different groups of classifiers are experts in

different local regions of the feature space. As for many cases, different samples are

associated with different classification difficulties and the ability to choose a group of

classifiers can possibly overcome static selection methods limitations [4, 6, 7].

However, traditional DS methods fail to perform effectively in high-dimensional

datasets with more features than samples [8, 9]. This is caused by the use of nearest-

neighbours approaches to define the region competence. Another limitation of those

methods is that they do not provide any indication of how important the data features

are for a classification task. The focus of our research is to identify ways to overcome

these limitations. Therefore, this thesis proposes alternative ways to replace k-Nearest

Neighbour (k-NN) in the DS framework. In practical problems, different query samples

have different classification difficulties and, in high-dimensional datasets, may be located

in different subspace clusters [4, 10]. Hence, it is intuitive to think that adopting different

subspaces to predict the pattern of different test samples may increase the performance

of a multiple classifier system. Moreover, by using the concepts of subspace clustering

into the DS framework, it would be possible to know which features are more important

for the classification of each test pattern. This chapter aims to outline the motivations,

research gaps and aim of the thesis and to introduce the thesis structure.

1.2 Background and Motivation

The quantity of data collected from multiple sources have increased significantly

in the past decade . Heterogeneity, scalability, computational time and complexity are
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challenges that impede progress to extract meaningful information from data [11, 12].

Datasets with more features than samples are typical in some domains, such as biology,

medicine, bioinformatics and neuroimaging. Often in these areas data instances do not

exist in abundance or are expensive to acquire, although technology allows for the acqui-

sition of multiple features for each observation [13]. Patient data is an example where

the number of samples are limited to the number of patients in a practice, but there is a

significant higher amount of information (visits, diagnoses, interventions, laboratory tests,

clinical narratives, image records, patient history, demographic attributes. etc.) [14, 15].

DNA microarray is another example of these types of datasets. Data collected from tissue

and cell samples are used to measure the levels of gene expression. The number of genes

is usually far higher than the number of patients [16].

Exploring associations, making reliable predictions and extracting information are

problems yet to be solved in high-dimensional data [11, 15]. Traditional machine learning

techniques were often created having in mind intuitive properties and examples in low-

dimensional datasets and when these methods are applied to high-dimensional datasets

they might not behave as expected [17–19]. Collinearity, numerical instability, overfitting,

model instability are some of the known problems that can occur when analysing high-

dimensional datasets. Moreover, high-dimensional spaces have geometrical properties that

are not intuitive [17], for instance:

• Distance concentration: which shows the tendency of the distance between all points

to become almost equal, making, therefore, nearest neighbours to be meaningless

[20].

• Hubness: the tendency of high-dimensional data to contain points (hubs) that fre-

quently occur in k-nearest neighbour lists of other points [20].

Concentration of distances, a phenomenon related to hubness, was studied on high-

dimensional datasets for general distance measures [21, 22], for Minkowski and fractional

distances [23–26] and for the cosine distance [27]. Therefore, the issues surrounding high-

dimensional datasets are still present regardless of the distance metric used as indicated
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by Radovanovic et al. [20], even though one distance metric may perform better in a

specific dataset.

For any classifier to be successful, it is usually necessary to have sufficient data to

cover the feature space during training [16, 17]. In general, ensemble classifiers provide

better classification accuracy than individual classifiers [28]. However, many ensemble

methods proposed in the literature do not perform well in terms of accuracy in high-

dimensional biomedicine data, according to a survey made by Meshram and Shinde (2015)

[28].

Multiple classifier systems (MCSs) are widely researched in machine learning and

pattern recognition. Several studies published results demonstrating its advantages over

a single robust classifier [3–5]. DS is one of the most promising approaches to MCS

[4, 5], with many researchers reporting their superior performance over a single robust

classifier and other MCS approaches (majority voting, bagging, boosting) [4–7, 29, 30].

DS techniques can select either a single classifier (Dynamic Classifier Selection) or an

ensemble of classifiers (Dynamic Ensemble Selection). These techniques are used to select

classifiers based on their competence level to predict the label of a test sample. The

competence is estimated considering only the samples of a local region of the feature space

where the test sample is located (region of competence). The majority of DS techniques

rely on k-Nearest Neighbour (k-NN) algorithms and the quality of the neighbourhood

impacts on their performance [4–6].

Intuition tells that a good pool of classifiers is formed by methods with high accuracy

and as much diverse as possible. However, diversity is not an exact concept and defining

it is not trivial [31, 32]. A point of consensus is that classifiers that make statistically

different errors when combined have the power to increase the overall performance. Bag-

ging, boosting and Random Subspace Sampling (RSS) are some of the methods that can

be used to create a diverse pool of classifiers [7]. The first two create pools based on clas-

sifiers being trained on different sets of samples. While the last one, creates diversity by

training classifiers in different sets of features that are randomly selected without repeti-

tion [7]. Because RSS chooses the subspaces randomly, it is unfeasible to understand how
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one features relates to another and what are the reasons behind the selection of features.

In general, ensemble classifiers provide a better classification performance than in-

dividual classifiers [28]. Moreover, individual classifiers are usually not able to handle

the noise and imbalance data in high-dimensional datasets [28, 33]. In 2015, Meshram &

Shinde [28] presented a survey on ensemble methods for high-dimensional datasets high-

lighting their limitations, some of the limitations for three state-of-art and well-known

ensemble methods:

Bagging its performance degrades when deals with stable base learners [34];

Boosting its highly sensitive to noise and outliers;

Random Forest its difficult to analyse, overfit noise data, it cannot predict beyond

the range of the training data.

Moreover, the authors indicate that the performance of the analysed methods varies con-

sistently because of the characteristics of the features in the datasets and which set of the

features the learners are given.

Several authors have shown that DS obtain high performances in terms of accuracy on

low dimensional datasets when compared to static ensemble methods and single classifiers

[4, 5]. The main advantage of DS methods is the fact that, in theory, the DS methods have

the capability of selecting the most competent classifiers in each region of the feature space,

since these regions may have different classification difficulties, which would be unfeasible

to achieve using a pre-defined (static) selection of classifiers. Nevertheless, many authors

observed that DS techniques are still far from the upper bound performance of the oracle,

which always predicts the correct label if at least one classifier in the ensemble predicts

the correct label. Along with its high computation cost, the complexity of selecting the

best classifier for a specific region in the feature space is perhaps the two most important

drawbacks of DS methods. Cruz et al. [5] compared the DS methods with a k-NN and

indicated that the later should be used for the classification of instances associated with

a low degree of instance hardness, while DS methods were able to select the correct label

on instances with a higher degree of instance hardness (samples that are located close
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to the decision border). Therefore, authors have therefore proposed solutions to improve

the quality of the region of competence in low-dimensional datasets to increase classifier

performance [5, 35]. . Over the past decade, DS techniques have been evaluated on low

dimensional datasets and, to the best of our knowledge, there is no work in the literature

that verifies the performance of the state-of-art DS methods for high-dimensional, small-

instances datasets. Moreover, there is no adaptation of DS to adequately handle those

datasets.

As stated by Cruz et al. (2017) [4], improvement on how the “region of competence” is

defined is still an open problem in the area. Most DS methods use a k-NN as the method

to define the “region of competence”. As a consequence, when dealing with datasets

datasets, the quality of the “region of competence” can be compromised, decreasing the

performance of DS methods.

In datasets datasets, the task of selecting relevant features is one of the most im-

portant problems in machine learning. In two reviews Bólon-Canedo et al. [16, 36]

reported the benefits of applying feature selection methods to improve classification, and

highlighted the fact that feature selection methods are considered a de facto standard

in machine learning and data analysis since their introduction. Tsymbal et al. (2001)

[37] and Pechenizkiy et al. (2007) [38] demonstrated the benefits of integrating feature

selection methods to the DS framework, to remove redundant and noisy features that will

impact in the definition of the region of competence. However, the datasets used had a

sample-feature ratio higher than one.

Cluster analysis is the task of grouping a set of samples based on some similarities

of their features, i.e., data points in one group (cluster) are more similar to the points in

the same group and dissimilar to data points in other groups. k-NN is one of the main

strategies for distance-based grouping described in the literature and a core method in

many DS frameworks. Traditional clustering algorithms consider all the dimensions of the

dataset to learn about each sample and compute the similarities between samples [10].

In datasets datasets, many of the dimensions are irrelevant and can directly impact in

the quality of the clusters retrieved [10, 39]. In addition, due to the properties of high-
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dimensional spaces (distance concentration and hubness), defining distance between data

points in high-dimensional data is very difficult [10, 18–20, 40, 41]. Feature selection and

extraction methods have been employed to remove irrelevant features to improve cluster

quality [10, 39]. However, in high-dimensional data, a phenomena called local feature

relevance happens, i.e., different subsets of features are relevant for different clusters [39].

Therefore, traditional feature selection and extraction methods which use all data points

to determine the importance of each feature might not be suitable. Instead, subspace

clustering methods localise their search and are able to elucidate clusters that exist in

multiple, possible overlapping subspaces of features and/or samples [10].

This thesis, therefore, proposes a framework for dynamic selection (DS) methods

with the incorporation of subspace clustering, named Subspace-Based Dynamic Selection

(SBDS). We investigate whether it is possible to increase the performance in terms of accu-

racy of DS methods and improve knowledge discovery in high-dimensional small-instance

datasets. To accomplish this, we use the main characteristics of the DS framework and

integrate them with subspace clustering. Despite the large number of papers published

on DS, there is no comprehensive study available verifying the use of DS and subspace

clustering on high-dimensional datasets, also focusing on understanding feature impor-

tance on sample sets. Therefore, the SBDS and the cSBDS methods proposed here have

an advantage of using a subspace clustering method to determine the best sets of features

for each region of the feature space when comparing with RSS, giving meaning to the

selection of the subspaces and increasing the changes of understanding how the feature

within a subspace relate to each other, and why they were selected.

1.3 Aim and Objectives

The overall aim of this thesis is to overcome the limitations of the current DS meth-

ods by proposing a framework. This framework incorporates subspace clustering to deter-

mine the “regions of competence” into the DS framework, thereby overcoming existing is-

sues with high-dimensional small-instance datasets when using distance-based approaches.

The objectives are as follows:
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1. Chapter 3 evaluates the performance of DS methods in synthetic and real world

high-dimensional small-instance datasets before and after different feature selection

approaches, and compares them with traditional ensemble methods (e.g. majority

voting) and single classifiers;

2. Chapter 4 proposes two frameworks which combines the advantages of DS and

subspace clustering methods to replace k-NN as the method to define the region of

competence, and test the proposed frameworks on high-dimensional small-instance

datasets, comparing the results with DS methods;

3. Chapter 5 investigates how subspace clustering selects the most important features

and compares them with traditional feature importance approaches;

1.4 Research Questions

The above aim and objectives relate to three specific research questions to be asked

in this thesis:

1. What are the strengths and limitations of DS methods in high-dimensional

small-instance datasets? Whilst DS methods have been shown to perform sta-

tistically better than traditional MCS methods and single classifiers on datasets

with more samples than features, there is no study available in the literature,

to the best of our knowledge, that evaluates the performance of DS methods in

high-dimensional small-instance datasets. In addition, an investigation is required

to better understand the specific challenges and problems of small instance high-

dimensional datasets.

2. How can we incorporate subspace clustering methods to the DS frame-

work? Two frameworks were proposed both of them integrating a subspace cluster-

ing method into the traditional DS framework. The subspace clustering substitutes

the region of competence steps in DS by selecting the most interesting subspaces

that will be used as “regions” to evaluate the classifiers.
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3. How can we extract information in terms of feature importance for

classification for each unseen sample? By using subspace clustering methods

it is possible to understand which are the most importance features to classify each

sample. Feature importance techniques were also used to compared the results and

evaluate the features found.

1.5 Thesis Outline

This section outlines each chapter of this dissertation.

Chapter 2 provide the literature review. It first gives a broad overview on MCS and

DS methods. Next, it discusses the issues of high-dimensional datasets and methods that

can improve the classification: feature selection and subspace clustering. Finally, the

chapter discusses the concepts of the nearest subspace search which is one of the main

concepts necessary for the understanding of our proposed SBDS framework.

Chapter 3 introduces the challenges of high-dimensional small instance datasets used

in this dissertation. This serves as an evaluation of two criteria (hubness and distance

concentration). In addition, we demonstrate how traditional dimensionality reduction

methods perform on those datasets. Next, the chapter evaluates the DS methods in

synthetic and real-world datasets with feature selection methods such as wrapper and

filter methods.

Chapter 4 introduces the Subspace-Based Dynamic Selection (SBDS) framework.

This is our proposed method that includes a subspace clustering method instead of the

traditional k-NN method to define the region of competence. The chapter describes the

two versions of the SBDS framework. The first one presented in Maciel-Guerra et al.

(2020) [42] uses a distance metric to find the nearest subspace for each unseen sample.

While the second version introduces a filter for the selected subspace clusters to improve

performance and uses the performance of a Radial Basis Function Support Vector Machine

(RBF-SVM) classifier to select the best subspaces, whilst also changing the way the

subspaces are found. Both frameworks are validated on small instance high-dimensional

datasets and they are compared to the traditional DS methods and majority voting.
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Chapter 5 gives an overview of the features selected by the SBDS framework and

analyse them by comparing with different feature importance methods. It also presents

a different way to find the subspaces.

The thesis concludes with Chapter 6, where a summary of the contributions is pro-

vided. This also includes a discussion into how well the aim and objectives are met, as

well as ideas for possible future directions of this research.

1.5.1 Contributions to knowledge

The research described in this thesis has demonstrated the applicability of different

methods to understand and overcome the issues associated with small instance high-

dimensional datasets. This work also highlights a core limitation of DS methods when

applied to high-dimensional datasets due to their use of k-NN as the method to define to

region of competence. This achieves one of the key objectives of the thesis: the evaluation

of DS methods on small instance high-dimensional datasets. A key finding is that the

DS methods are statistically equivalent to single classifiers and majority voting when

compared to small instance high-dimensional datasets before and after feature selection

approaches.

The most significant contribution of the thesis is the Subspace-Based Dynamic Selec-

tion (SBDS) framework, which achieves the key objective of a framework which contains

the advantages of DS and subspace clustering methods. The two versions of the proposed

SBDS framework were able to perform statistically better when compared to majority

voting and single classifiers on real-word and synthetic data. This framework can be

briefly outlined as follows:

• Find one-dimensional clusters using either a Gaussian Kernel Density Estimator

(GKDE) or a Jenks Natural Break Points (NBP) approach

• After finding all one-dimensional clusters, a merge process is conducted to obtain

the subspace clusters.

• For each unknown test sample, determine the nearest or best subspaces to train a
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classifier to predict the unseen sample.

In addition, the SBDS framework has the advantage of indicating which were the

most important features for the classification, since for each unseen samples a potential

different group of subspaces can be selected. The Classifier SBDS (cSBDS) framework was

compared with different feature importance methods on synthetically created data and it

indicates that on datasets with multiple clusters per class the cSBDS has the capability

of uncovering the most important features better than traditional methods.

1.6 Academic Publications

The following publications were produced as a direct result of the work undertaken

during the course of conducting this research:

1. A. Maciel-Guerra, G. P. Figueredo, F. J. V. Zuben, E. Marti, J. Twycross,

and M. J. C. Alcocer, “Microarray feature selection and dynamic selec-

tion of classifiers for early detection of insect bite hypersensitivity in

horses,” in IEEE Congress on Evolutionary Computation, CEC 2019,

Wellington, New Zealand, June 10-13, 2019, IEEE, 2019, pp. 1157–

1164. DOI: 10.1109/CEC.2019.8790319 In this publication, we investigate the

potential use of DS methods to classify protein microarray data, with a case study

of equine insect bite hypersensitivity (IBH) disease. To the best of our knowledge

DS was not previously applied to these data types. However, since most microarrays

datasets have a low number of samples, we hypothesise that DS models will produce

satisfactory results due to their ability to perform better when compared to tradi-

tional ensemble techniques for similar data. Results from traditional classifiers are

compared to 21 different DS methods before and after performing feature selection.

Our results indicate that DS methods do not outperform single and static classifiers

on this high-dimensional dataset and their performance also does not improved after

feature selection. Detailed description is presented as part of Chapter 3.

2. A. Maciel-Guerra, G. P. Figueredo, and J. Twycross, “Dynamic selection

https://doi.org/10.1109/CEC.2019.8790319
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of classifiers applied to high-dimensional small-instance data sets: Prob-

lems and challenges,” in LOD2020 - The Sixth International Conference

on Machine Learning, Optimization, and Data Science – July 19-23,

2020 – Certosa di Pontignano, Siena – Tuscany, Italy, Lecture Notes in

Computer Science - LNCS, 2020. DOI: 10.1007/978-3-030-64583-0_56 In

this publication, DS is employed on small instance high-dimensional datasets and a

feature selection method is used to verify if the performance of the DS methods can

be improved. Therefore, the performance of 21 DS methods was statistically com-

pared against the performance of majority voting on 10 high-dimensional datasets

and with a filter feature selection method. We found that majority voting is among

the best ranked classifiers and none of the DS methods perform statistically better

than it with and without feature selection. Moreover, we demonstrated that fea-

ture selection does improve the performance of DS methods. Detailed analysis is

presented as part of Chapter 3.

3. A. Maciel-Guerra, G. P. Figueredo, F. J. V. Zuben, E. Marti, J. Twycross,

and M. J. C. Alcocer, “Subspace-based dynamic selection: A proof of

concept using protein microarray data,” in WCCI - World Congress

on Computational Intelligence, The International Joint Conference on

Neural Networks (IJCNN) 2020, Glasgow, UK, July 19-24, 2020, IEEE,

2020. DOI: 10.1109/IJCNN48605.2020.9207611 In this paper, we propose a two-

stage framework based on subspace clustering using a Gaussian Based Estimator,

followed by a k-Nearest subspace search mechanism to overcome these limitations of

dynamic selection. The idea of subspace allows for regions of competence with dif-

ferent numbers of instances and dimension sizes. Our hypothesis is that by using our

framework, we will achieve comparable results to the state-of-the-art dynamic selec-

tion, with the benefit of producing a model that helps to understand the importance

of sets of features for the patterns found within the data. We test our approach to a

high-dimensional microarray data of insect bite hypersensitivity in horses. Results

show that our approach is comparable to traditional dynamic selection methods in

https://doi.org/10.1007/978-3-030-64583-0_56
https://doi.org/10.1109/IJCNN48605.2020.9207611
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terms of accuracy. In addition, it facilitates the interpretability of the feature im-

portance for each class of the dataset. Detailed description is presented in Chapter

4.

4. A. Maciel-Guerra, G. P. Figueredo, and J. Twycross, “Classifier subspace-

based dynamic selection for high-dimensional data,” In Review, 2022 In

this paper, we propose the classifier subspace-based dynamic selection (cSBDS)

framework which incorporates a subspace clustering method, using a Gaussian ker-

nel density estimator, to the dynamic selection framework. A RBF-SVM classifier is

used to select the most important subspaces and give the final prediction. The sub-

space clustering approach separates the high-dimensional feature space into small

feature spaces with a reduced number of features and samples in each one. Our

hypothesis is that the cSBDS framework can perform statistically better when com-

pared to the state-of-art DS methods. To test this hypothesis, the cSBDS was

evaluated on ten small instance high-dimensional datasets and results indicate that

our approach performs statistically better when compared to the SBDS framework,

10 DS methods and the majority voting technique. Detailed description is presented

in Chapter 4.
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2.1 Introduction

Data mining is the study of discovering insightful, interesting and novel patterns, as

well as descriptive, understandable and predictive models from large-scale data. From an

analytical perspective, data mining is challenging because of the amount of data types,

problems and methods encountered. Nonetheless, data mining can be often connected to

four different categories: association pattern mining, clustering, classification and outlier

detection [1, 2]

Consider a multidimensional dataset D with n records, and d attributes. Such a

14
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dataset D may be represented as an n × d matrix D, in which each row corresponds to

one record and each column corresponds to a dimension [1, 2]. The relationship between

data items are one of two kinds:

1. Relationship between the columns: many data mining problems are directed

toward a specific goal that is sometimes represented by the value of a particular

feature in the data. This particular feature is referred to as the class label from

which the relationships of the remaining features in the data with respect to this

special feature are learned. Therefore, these methods are called supervised learning.

The data used to learn these relationships is referred to as the training data. The

learned model may then be used to determine the estimated class labels for records,

where the label is unknown [1, 2].

2. Relationship between rows: the goal is to determine a set of rows, in which the

values in the corresponding columns are related. Clustering methods are considered

unsupervised and one of the possible definitions is the following: given a data matrix

D, partition its rows (records) into sets C1 . . . Ck, such that the rows (records) in

each cluster are “similar” to one another [1, 2].

Machine learning and pattern recognition methods are frequently used to solve prob-

lems in several areas like life sciences, medicine, recognition systems, data streams and

others [1, 2]. A recurrent task in machine learning is the choice of classifier to solve a

problem, of which is expected to choose a classifier that better generalises the problem

and has the highest recognition rate [44]. However, this is not a trivial task, and the

“no free lunch” theorem states that there is no classifier that performs better across all

problems [44]. Several studies, nonetheless, have demonstrated that ensemble methods

usually perform better that single classifiers [3–7, 28, 33], because several weak classifiers

can be grouped together to form a better learner.

One of the most important tasks surrounding algorithms of ensemble of classifiers is

the decision of which classifier or classifiers will be selected. Therefore, from a pool of

different classifiers an algorithm must select a group that can achieve optimum recognition
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rates. It is possible to perform this using two different methods: (1) Static Selection (SS);

(2) Dynamic Selection (DS). The first selects a group of classifiers for all test patterns,

while the second select a single or a group of classifiers for each different test pattern. DS

methods have been chosen more often recently over static methods due to their capacity of

creating different classifier configurations according to each test pattern. It is reasonable

to assume that, in many cases, different test patterns will be associated with different

classification difficulties. Therefore, the ability to choose a group of classifiers for each

test pattern gives us reasons to believe that DS methods can overcome static selection

methods [4, 6, 7].

This chapter reviews the literature related to the project. Firstly, a brief description

of multiple classifier systems (MCS) is given to introduce the basic concepts of Dynamic

Selection (DS). Next, challenges and opportunities of studying high-dimensional data are

discussed. The following section introduces technical details on how to perform dimension-

ality reduction. Finally, methods of subspace clustering and nearest subspace search are

discussed to provide the necessary concepts for the understanding of the Subspace-Based

Dynamic Selection (SBDS) framework proposed.

2.2 Multiple Classifier Systems

Empirical studies have demonstrated that a multiple classifier systems (MCS) might

increase efficiency and classification accuracy when compared with a single classifier in

pattern recognition and forecasting problems. Nowadays, they are widely used to solve

real-world problems, such as intrusion detection, recommendation systems, face recog-

nition and time series predictions [4, 5, 12, 45–48]. The idea is that a combination of

“different” classifiers might have a strong degree of “independence”, i.e. the prediction

errors committed by a classifier ci can be overcome by the correct classification of other

classifiers. Initially, the MCS methods had their final prediction given by the combina-

tion of the prediction of the different classifiers used. In 1994, Ho et al. [49] proposed a

selection approach to choose a single or a group of classifiers that were more suitable for

undertaking a given classification task, instead of combining the outputs of all classifiers
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in the MCS.
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Figure 2.1: Basic MCS framework showing the three stages: generation, selection and
integration.

The basic framework of an MCS is presented on Figure 2.1 and the most relevant

techniques used in each stage is presented on Figure 2.2. MCS are essentially composed

of three major stages: (1) pool generation, (2) selection and (3) integration. On

the pool generation stage, the main goal is to train a pool of classifiers that are both

accurate and diverse. On the second stage, based on the pool of classifiers, the goal is to

select a single or an ensemble of classifiers from the pool of classifiers. This stage can be

divided into two groups: static and dynamic selection. In the first group, the classifiers

are selected during the training stage and are fixed for all the unknown test samples,

while the later selects a different set of classifiers for each test sample. The final stage

consists of combining the outputs of the selected ensemble of classifiers according to a

combination rule [4–6]. In addition, Cruz et al. [4] presented a taxonomy for a multiple

classifier system considering the main approaches proposed in for each stage (Figure 2.2),

as further detailed next.
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Figure 2.2: Main approaches for each of the three stages of multiple classifier systems
(adapted from [4, 50]).

2.2.1 Generation

In the first stage, the main goal is to train a pool of classifiers that are diverse

and accurate, i.e. the classifiers must have an error rate lower than random guessing

(accurate) and two classifiers must make different errors on new samples (diverse). Their

combination, therefore, is likely to improve the classification accuracy [4, 6, 51]. Figure 2.2

shows six main strategies to generate a pool of classifiers: different (1) initialisation, (2)

parameters, (3) architectures, (4) classifiers, (5) training sets and (6) feature sets, that

can be used separately or combined [4].

2.2.2 Selection

Static and dynamic classifier ensembles are the two main methodologies of the second

stage of a MCS. Static selection means that the ensemble of classifiers is selected during

the training phase according to a selection criteria estimated on the validation set. The

optimal solution found is fixed and used for the classification of all unknown test samples.

On the other hand, DS means that a single or an ensemble of classifiers are selected on

the testing stage according to each unknown test sample and could be different between
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the different test samples [4, 51, 52]. Figure 2.3 shows the difference between static and

dynamic selection.

2.2.2.1 Static Selection

In general, there are three approaches for static selection: classifier fusion, static

classifier selection and static ensemble selection. The first has higher chances of having

inaccurate and redundant classifiers [50, 52]. Therefore, the other two have recently

received more attention .

Classifier Fusion

Simple or weighted majority voting, negative correlation learning, adaboost, bagging,

boosting and random forest are the most common decision making methods employed

on classifier fusion [50].

Static Selection

This method first generates the local region of competence in the feature space during

the training phase by using either the training set itself or an independently validation

set. Next, it selects a single best or an ensemble of classifiers for each region which

will be fixed for all test samples. Finally, each test sample is classified according to

the region it belongs using the classifier from that region [50].

2.2.2.2 Dynamic Selection of Classifiers

Differently from static selection, the selection of the classifiers is done during the

selection stage of the MCS [4, 6, 48, 52]. In other words, a single (dynamic classifier

selection) or an ensemble (dynamic ensemble selection) is selected specifically to classify

each new test sample. As a rule, the dynamic classifier ensemble has three basic steps

(Figure 2.4). First, the system needs to generate the local region of competence based

on the training set on an independent validation set. Second, the system uses a selection

criterion to dynamically determine the competence level of the classifiers. The selection

is dynamic because generally these two steps are performed during the testing phase.
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Figure 2.3: Differences between static ensemble selection and dynamic selection [4].

However, there are some approaches in dynamic classifier ensemble that predetermine the

region of competence during the training phase and only select the best classifiers during

the testing phase [4, 6, 48].

2.2.3 Integration

The final stage consists of combining the output of the selected classifiers according

to a combination rule. There are three strategies for this stage: non-trainable, trainable

and dynamic weighting.

2.2.4 Limitations of multiple classifier systems

The ultimate goal of supervised learning for classification is to correctly predict the

class of a sample based on previous knowledge from existing data. Many algorithms
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Figure 2.4: Main approaches considering the three different steps of DS (adapted from
[4]).

have been proposed such as random forest [53], neural networks [54, 55], and support

vector machines [56, 57]. However, the increase in data dimensionality causes issues with

regarding scalability and performance. Moreover, the classification ability of a single

classifier could be limited [33]. In 2015, Meshram and Shinde [28] presented a survey

on ensemble methods for high-dimensional datasets. The authors show that individual

classifiers are usually not able to handle the noise and imbalance data in high-dimensional

datasets [28, 33]. On the other hand, ensemble classifiers provide a better classification

performance [28]. Moreover, the authors indicate that the performance of the analysed

methods varies considerably because of the characteristics of the features in the datasets

and which set of the features the learners are presented with.

The following section describes DS methods while a comparison between the different

methods is given. Appendix A gives an in depth description of the individual DS methods

used in this thesis.
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2.3 Dynamic Selection of Classifiers

Recently, DS methods have been preferred over static methods due to their ability

to create different classifier configurations, i.e. different groups of classifiers are experts

in different local regions of the feature space. As for many cases, different samples are

associated with different classification difficulties and the ability to choose a group of

classifiers can possibly overcome static selection methods limitations [4, 6, 7].

For DS methods to achieve optimal recognition rates they need to select the most

competent classifiers for any given test sample, which can be done by measuring different

selection criteria depending on the technique used (accuracy, ranking, behaviour, diversity,

probabilistic, complexity and meta-learning) [4, 6]. A local region of the feature space

surrounding the test sample (Region of Competence) is used to estimate the competence

of each classifier according to any selection criteria.

Table 2.1 shows the most important DS methods found in the literature in terms of

their selection criteria. These methods were chosen due to their differences in the selection

criteria and because they state-of-art methods. The majority of DS techniques relies on

k-Nearest Neighbour (k-NN) algorithms (Table 2.1) and the quality of the neighbourhood

can have a huge impact on the performance of DS methods [4–6]. For DS methods using

k-NN, as indicated in the Table 2.1, the region of competence size is k; for approaches

not adopting k-NN, all data is used to make the prediction. For the methods using a

k-NN, the “region of competence” is defined as the k closest samples to the unknown test

sample.

2.3.1 Pool generation and diversity

Intuition says that a good set of base classifiers should have methods with high

recognition rates and be as diverse as possible. Diversity is not an exact concept and

defining it is not trivial [31, 32]. However, classifiers that make statistically different errors

are a good starting point to create a pool and improve the system’s recognition rate. If

knowledge about the diversity of a set of classifiers is good, this makes it possible to choose
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Table 2.1: DS methods investigated

Name Selection criteria DS Method Region of Competence Reference
Classifier Rank (CR) Ranking DCS k-NN [58]
Modified Classifier Rank (MCR) Ranking DCS k-NN [59]
Overall Local Accuracy (OLA) Accuracy DCS k-NN [59]
Local Class Accuracy (LCA) Accuracy DCS k-NN [59]
A Priori Probabilistic DCS k-NN [60]
A Posteriori Probabilistic DCS k-NN [60]
Multiple Classifier Behaviour (MCB) Behaviour DCS k-NN [61]
Modified Local Accuracy (MLA) Accuracy DCS k-NN [62]
DES - k-Means (DES-kMeans) Accuracy & Diversity DES k-Means [63, 64]
DES - k-Nearest Neighbour (DES-kNN) Accuracy & Diveristy DES k-NN [63, 64]
KNORA - Eliminate (KNORA-E) Oracle DES k-NN [7]
KNORA - Union (KNORA-U) Oracle DES k-NN [7]
DES - Exponential (DES-EXP) Probabilistic DES All training samples [65]
DES - Randomised Reference Classifier (DES-RRC) Probabilistic DES All training samples [29]
DES - Minimal Difference (DES-MD) Probabilistic DES All training samples [66]
DES - Kullback-Leibler Divergence (DES-KL) Probabilistic DES All training samples [67]
DES - Performance (DES-P) Probabilistic DES All training samples [67]
KNOP - Eliminate (KNOP-E) Behaviour DES k-NN [68]
KNOP - Union (KNOP-U) Behaviour DES k-NN [68]
Meta-Learning - DES (Meta-DES) Meta-learning DES k-NN [30]
Dynamic Selection on Complexity (DSOC) Accuracy & Complexity DCS k-NN [69]

the fusion method better [44]. The link between how diversity measures are related to the

recognition rate of a classifier set is still a matter of investigation. However, experimental

studies have observed that: the greater the diversity, the greater the performance of MCS

methods. They also showed that the properties of a set of classifiers that are desirable

(high recognition rate and diversity) to obtain a successful combination are not common

in practice [44].

The different classifier generation approaches aim to create a good pool of classifiers

(with high hit rate and diversity), in order to have a better performance after their

combination. Some of the more popular methods are seen below:

1. Bagging: an acronym for Bootstrap AGGregaTING [34], is one of the first meth-

ods for generating ensemble of classifiers proposed, one of the most intuitive, and

perhaps one of the simplest algorithms for generating a set of classifiers, with a

good performance. Bagging is based on the idea that bootstrap samples from the

training set will show a small change with respect to the original set, but enough dif-

ference to produce diverse classifiers. Thus, for bootstrapping the different subsets

of training data are randomly drawn - with replacement - from the entire training

dataset. Then, each subset of training data is used to train a different base classi-

fier. Finally, the individual classifiers are combined by averaging or majority voting
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of their decisions. Although bagging is a good algorithm, as the diversity of the

classifiers is obtained using several bootstrap “replicates” of the training set, it is

only effective when a small change in the set can cause a significant change in the

model. Therefore, to make use of training set variations, the base classifier must be

unstable or non-linear, that is, small changes in the training set must lead to large

changes in the classifier’s output. Otherwise, the resulting set will be a collection of

nearly identical classifiers, therefore unlikely to improve the performance of a single

classifier. Examples of unstable classifiers are neural networks and decision trees,

while k-NN is an example of a stable classifier [4, 7, 35, 67].

2. Boosting: similar to bagging, boosting [70] also creates an ensemble of classifiers

by sample subsets of the training data and combines the output by majority voting.

However, in boosting, sampling is strategically oriented to provide the most infor-

mative training data for each classifier consecutively. In essence, each iteration of

boosting creates three weak classifiers: the first classifier c1 is trained with a random

subset of the training data. The training data subset for the second classifier c2 is

chosen as the most informative subset, given c1. More specifically, c2 is trained on

the training data only half of which is correctly classified by c1, and the other half

of which is miss-classified. The third classifier c3 is trained with instances where c1

and c2 disagree. The three classifiers are combined through majority voting [4, 35,

71].

3. Random Subspace Sampling (RSS): one way to improve diversity in a pool of

classifiers is to train the individual classifiers with different subsets of the feature

space. The selection of features aims at a more efficient computation and a higher

recognition rate of the set. RSS [72] is a method of selecting subsets of random

features for the construction of a pool of classifiers. It is similar to bagging but

instead of sampling instances, it samples features without repetition, as it would be

pointless to include a feature more than once. RSS randomly selects an arbitrary

number of feature subspaces from the original space, and builds each classifier in

each subspace. This randomisation should create classifiers that are complementary
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and so the combination can be done by simple fusion rules [4, 7, 35].

Most of the studies in the area of DS have focused on finding the neighbourhood of a

new data instance and choosing the most competent classifier(s) to make the prediction.

According to Yasar et al. [73] the focus on having a diverse ensemble of classifiers was

ignored on previous studies because the DS systems is not required to generalise to all

samples, i.e. since the system focus on prediction the class of a single instance at each

time, the classifiers’ performance over the different regions is not relevant. The majority

of the methods in DS uses a bagging approach to generate the pool of classifiers, with the

base learner being the difference across different studies. Also, to date, a few dynamic

selection models have incorporated diversity with other competence measures to perform

an ensemble selection. The two methods that do consider it (DES-kMeans and DES-kNN)

usually do not present a good overall performance [4].

It is worth noticing that diversity in dynamic selection methods might not be that

important when compared to static selection methods. Because after selecting the classi-

fiers from the pool, the goal should be to achieve a consensus between the classifiers for a

specific region of the feature space. In addition, Cruz et al. [4] indicated that increasing

the diversity at instance level may not improve the performance of DS methods. Nonethe-

less, Yasar et al. [73] proposed that diversity still plays a role in DS prediction, because

in the ideal world the classifiers chosen in DS should behave similarly in the region of the

feature space from which their were selected, but differently outside this area. Therefore,

they should have a high local accuracy, with a low local diversity but a high diversity in

other regions.

2.3.2 Comparison between Dynamic Selection (DS), Static Se-

lection (SS) and single classifiers

Table 2.2 presents the main results from the literature. It shows the papers where

these methods were cited and the datasets on which they were tested. Moreover, we

separated each method in terms of their selection criteria and the type of region of com-

petence.
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Table 2.2: Summary of the main features of the DS methods and their performance in
the literature.

Ref. Method Category Sel. Type RofC Type Eval in Pool Type (size) Datasets SB CC SS Other DS
[59] CR Ranking DCS k-NN [59] Het(5) 3S (1,0,2) (2,0,1) NA (1,0,8)

- - - - - [74] Hom(100) 28S/2L (16,0,14) (25,0,35) (13,0,17) (99,0,171)
[59] MCR Ranking DCS k-NN [59] Het(5) 3S (2,0,1) (2,0,1) NA (5,0,4)
[59] OLA Accuracy DCS k-NN [59] Het(5) 3S (2,0,1) (3,0,0) NA (4,0,5)

- - - - - [60] Het(5) 3S (3,0,0) (0,0,6) NA (4,1,4)
- - - - - [62] Het(3)/Het(4) 1S/1L (2,0,0) (3,0,0) NA (2,0,0)
- - - - - [7] Hom(10) 5S/1L (27,6,21) (36,3,15) NA (122,50,98)
- - - - - [30] Hom(100) 27S/3L (18,0,12) (27,2,31) (13,0,17) (80,36,94)
- - - - - [69] Hom(100) 29S/1L (22,1,7) (20,0,10) NA (99,3,48)
- - - - - [74] Hom(100) 28S/2L (17,0,13) (25,1,34) (13,0,17) (99,33,138)

[59] LCA Accuracy DCS k-NN [59] Het(5) 3S (3,0,0) (3,0,0) NA (8,0,1)
- - - - - [60] Het(5) 3S (3,0,0) (1,0,5) NA (3,0,6)
- - - - - [66] Het(9) 6S (3,0,3) (2,0,4) NA (10,0,2)
- - - - - [29] Het(10)/Hom(50) 22S (17,0,27) (30,0,58) NA (48,7,121)
- - - - - [67] Het(11)/Hom(11) 14S (16,0,12) (4,0,24) NA (26,2,112)
- - - - - [7] Hom(10) 5S/1L (20,8,26) (27,4,23) NA (122,35,113)
- - - - - [30] Hom(100) 27S/3L (18,0,12) (29,1,30) (13,0,17) (81,32,97)
- - - - - [69] Hom(100) 29S/1L (23,1,6) (21,0,9) NA (116,4,30)
- - - - - [74] Hom(100) 28S/2L (18,0,12) (29,1,30) (14,0,16) (112,28,130)

[60] a Priori Probabilistic DCS k-NN [60] Het(5) 3S (3,0,0) (0,0,6) NA (1,1,7)
- - - - - [7] Hom(10) 5S/1L (19,8,27) (28,4,22) NA (104,38,128)
- - - - - [69] Hom(100) 29S/1L (12,0,18) (8,0,22) NA (41,1,108)

[60] a Posteriori Probabilistic DCS k-NN [60] Het(5) 3S (3,0,0) (2,0,4) NA (9,0,0)
- - - - - [7] Hom(10) 5S/1L (16,7,31) (23,4,27) NA (70,26,174)

[61] MCB Behaviour DCS k-NN [61] Het(3) 2S (2,0,0) (4,0,0) NA NA
- - - - - [66] Het(9) 6S (4,0,2) (3,0,3) NA (6,0,6)
- - - - - [29] Het(10)/Hom(50) 22S (18,0,26) (31,0,57) NA (49,5,122)
- - - - - [67] Het(11)/Hom(11) 14S (15,0,13) (6,1,21) NA (40,5,95)
- - - - - [30] Hom(100) 27S/3L (19,0,11) (34,0,26) (17,2,11) (67,28,115)
- - - - - [74] Hom(100) 28S/2L (19,0,11) (34,0,26) (17,2,11) (94,29,147)

[62] MLA-Macleod Accuracy DCS k-NN [62] Het(3)/Het(4) 1S/1L (2,0,0) (3,0,0) NA (2,0,0)
- - - - - [29] Het(10)/Hom(50) 22S (20,0,24) (31,0,57) NA (78,6,92)
- - - - - [67] Het(11)/Hom(11) 14S (15,0,13) (5,0,23) NA (28,5,107)

[62] MLA-Euclidean Accuracy DCS k-NN [30] Hom(100) 27S/3L (11,0,19) (22,0,38) (11,0,19) (59,11,140)
- - - - - [74] Hom(100) 28S/2L (11,0,19) (22,0,38) (11,0,19) (74,9,187)

[63] DES-kNN Accuracy/Diversity DES k-NN [63] Het(10) 2S (2,0,0) NA (1,0,1) (0,0,2)
[63] DES-kMeans Accuracy/Diversity DES k-Means [63] Het(10) 2S (2,0,0) NA (2,0,0) (2,0,0)
[65] DES-EXP Probabilistic DES all Val [65] Het(11) 5S (4,0,1) (15,0,0) NA NA
[66] DES-MD Probabilistic DES all Val [66] Het(9) 6S (1,0,5) (1,0,5) NA (2,0,10)
[29] DES-RRC Probabilistic DES all Val [29] Het(10)/Hom(50) 22S (39,0,5) (70,0,18) NA (170,0,6)

- - - - - [4] Hom(100) 29S/1L NA NA NA (89,1,60)
- - - - - [74] Hom(100) 28S/2L (26,0,4) (52,0,8) (29,0,1) (165,1,104)

[67] DES-P Accuracy DES k-NN [67] Het(11)/Hom(11) 14S (22,1,5) (22,2,4) NA (125,3,12)
- - - - - [4] Hom(100) 29S/1L NA NA NA (53,3,94)

[67] DES-KL Probabilistic DES all Val [67] Het(11)/Hom(11) 14S (22,0,6) (20,1,7) NA (122,0,18)
- - - - - [4] Hom(100) 29S/1L NA NA NA (50,2,98)

[7] KNORA-E Oracle DES k-NN [7] Hom(10) 5S/1L (28,8,18) (44,2,8) NA (155,41,74)
- - - - - [29] Het(10)/Hom(50) 22S (25,1,18) (28,1,59) NA (84,4,88)
- - - - - [67] Het(11)/Hom(11) 14S (19,0,9) (13,0,15) NA (71,1,68)
- - - - - [30] Hom(100) 27S/3L (22,0,8) (34,2,24) (16,1,13) (91,27,92)
- - - - - [69] Hom(100) 29S/1L (9,1,20) (4,4,22) NA (11,3,136)
- - - - - [74] Hom(100) 28S/2L (22,0,8) (34,2,24) (17,1,12) (118,27,125)

[7] KNORA-U Oracle DES k-NN [7] Hom(10) 5S/1L (21,9,24) (43,5,6) NA (120,44,106)
- - - - - [30] Hom(100) 27S/3L (22,0,8) (38,0,22) (19,1,10) (94,31,85)
- - - - - [69] Hom(100) 29S/1L (16,1,13) (11,1,18) NA (52,4,94)
- - - - - [4] Hom(100) 29S/1L NA NA NA (59,2,89)
- - - - - [74] Hom(100) 28S/2L (22,0,8) (38,0,22) (19,1,10) (127,31,112)

[68] KNOP-U Behaviour/Oracle DES Similarity [68] Hom(100) 4S/1L (10,0,0) (10,0,0) NA NA
- - - - - [74] Hom(100) 28S/2L (18,0,12) (37,0,23) (17,2,11) (136,25,109)

[68] KNOP-E Behaviour/Oracle DES Similarity [30] Hom(100) 27S/3L (18,0,12) (37,0,23) (16,2,12) (104,25,81)
[30] Meta-DES Meta-Learning DES k-NN [30] Hom(100) 27S/3L (30,0,0) (57,0,3) (28,0,2) (169,0,41)

- - - - - [4] Hom(100) 29S/1L NA NA NA (79,1,70)
[69] DSOC Complexity DES k-NN [69] Hom(100) 29S/1L (28,0,2) (23,0,7) NA (123,1,26)

In the table, the column Reference (Ref.) show who proposed them while the columns

Method, Category, Selection Type (Sel. Type) and Region of Competence Type (RofC

Type) indicate the most important characteristics of each method. The column Category

highlights the different criteria of dynamic selection methods: ranking, accuracy, proba-

bilistic, diversity, oracle, behaviour, meta-learning and complexity. The column Sel. Type
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separates the methods into two groups: dynamic classifier selection (DCS) and dynamic

ensemble selection (DES). The column RofC Type presents the method to determine the

region of competence: k-Nearest Neighbour (k-NN), k-Means, similarity, all Val (region

of competence not defined, all validation samples are used).

The last 7 columns of table 2.2 present the papers where each method was evaluated;

the type of pool of classifiers (Homogeneous or Heterogeneous) and its respective size;

the number of datasets and their size (S = small and L = Large for datasets with more

than 10.000 instances); while the last four columns present the number of wins, ties and

losses of each method against the single best classifier in the pool (SB), all classifiers in

the pool (CC), static selection methods (SS) and other dynamic selection method (other

DS). The rationale behind the computation of wins, ties and losses is to have an approach

that allows us to compare different papers, even if they used different datasets and/or

different classifiers.

Figure 2.5 presents the comparison results of the methods from Table 2.2. Dynamic

selection methods perform better when compared with SB, CC and SS. This indicates

why DS have been preferred in the literature over static selection and traditional classifier

fusion such as majority voting.

Figure 2.5: Performance of DS methods presented in table 2.2 in terms of percentage of
wins, ties and losses when compared to SB, CC, SS and General (any alternative selection)
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2.3.3 Limitations of dynamic selection methods

In the last two decades, a number of researchers have shown that for low-dimensional

data, dynamic selection (DS) outperforms single robust classifiers and traditional combi-

nation methods, such as majority voting, bagging and boosting [4–7, 29, 30]. Nonetheless,

for high-dimensional data, Maciel-Guerra et al. (2019) [8] and Maciel-Guerra et al. (2020)

[9] showed that DS fails to perform as well, and the authors demonstrated that was due

to use of the k-NN approach embedded in most DS methods. Also, according to them,

DS methods performed statistically equivalent to majority voting when applied to high-

dimensional datasets. Chapter 3 discusses in more details the results obtained and how

they assisted in identifying the need for our thesis contributions. The following section,

describes some challenges about high-dimensional datasets.

2.4 High-Dimensional Data

Exploring associations, making reliable predictions and extracting information are

some of the problems that are yet to be solved in high-dimensional data [11, 15]. Ac-

cording to Verleysen and François (2005) [17], traditional machine learning techniques

were often created having in mind intuitive properties and examples in low-dimensional

datasets. However, when tackling high-dimensional data, collinearity, numerical insta-

bility, overfitting, model instability are some of the known problems that can occur.

Moreover, high-dimensional spaces have geometrical properties that are not intuitive [17],

for instance:

• Distance concentration: within very high-dimensional spaces, the distance between

all data instances become almost equal, making, therefore, nearest neighbours to be

unable to distinguish between “near” or “far” data points [20].

• Hubness: Let D ⊂ Rd be a set of d-dimensional points and Nk(~x) the number of k-

occurrences of each point ~x ∈ D, i.e., the number of times a point ~x appears among

the k-NN of all points in D, according to some distance metric [20]. According



2.5. Feature Selection 29

to Radovanovic et al. (2010) [20], as d increases, the distribution of Nk becomes

considerably skewed to the right, resulting in the appearance of hubs, i.e., points

that are “popular” nearest neighbours.

Therefore, these properties of high-dimensional spaces (distance concentration and

hubness) can directly affect machine learning application, specially the ones that deal

with distance metrics such as k-NN. Our hypothesis is that subspace clustering methods

can overcome these issues, since they are able to select a subset of features and samples.

In general, the ensemble classifiers provide better classification accuracy than indi-

vidual classifiers [28]. However, many ensemble methods proposed in the literature are

do not perform accurately in high-dimensional biomedicine data, according to the recent

survey made by Meshram & Shinde (2015) [28].

Chapter 3 will discuss in more details the issues regarding the ”curse of dimension-

ality” in the datasets studies in this research. It will also present the reasons of why DS

methods fail to perform better when compared to traditional ensemble methods. The

following section describes the traditional dimensionality reduction methods to overcome

some of the issues of high-dimensional datasets. Feature selection methods are described

and compared in terms of their advantages and disadvantages.

2.5 Feature Selection

Feature selection is the process of reducing the number of features in a dataset. In

most of the times they are employed as a pre-processing step in pattern analysis to extract

the useful information in the data [75]. This can be in terms of a better representation of

the data or better discrimination of the classes [75]. This thesis focus on feature selection

methods due to their simplicity and the possibility of analysing which were the most

important features for the classification. Moreover, feature extraction/transformation

methods transform the original feature space into a novel feature space, they end up

losing interpretability and this transformation can be computationally expensive.

To formally introduce feature selection methods some notations must be defined.

Given a dataset with n instances denoted by {xi}ni=1 from which we want to extract
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or select features. Each of these instances xi, is a d-dimensional vector (i.e. xi ∈ Rd)

which can be also represented by ~x. The instances can be represented by a matrix

X = [x1, · · · ,xn] = [x1, · · · ,xd]T ∈ Rn×d. The subscript (xi) and the superscript (xj)

represent the i-th instance and the j-th feature, respectively [75].

Feature selection methods reduce the dimensionality of the data. Therefore, their

goal is to map ~x ∈ Rd → ~y ∈ Rp where p < d. In feature selection, {yj}pj=1 ⊆ {xj}dj=1,

i.e. the selected subset of features in an inclusive subset of the original features [75].

2.5.1 Methods

Feature selection methods maps ~x ∈ Rd → ~y ∈ Rp where p < d. They work by

removing features that are not relevant or redundant [36, 75, 76] without altering the

original representation of the data [76]. With d dimensions the total number of possible

subsets of features are 2d. In consequence, if d is large it starts to be infeasible to compute

all the exponential number of subsets in a reasonable time [75]. The evaluation of the

subsets is based on some criterion, which can be separated into three categories:

1. the filters which select a subset of features from the dataset without any learning

method;

2. the wrappers that uses a learning methods to evaluated which features will be se-

lected for the subset

3. the embedded techniques which combine the feature selection and classification steps.

2.5.1.1 Filter methods

Filter methods perform the feature selection as a pre-processing step. It is indepen-

dent from the learning stage and relies only on the attributes of the data [36]. Filter

methods can be used in any machine learning algorithm and they are computationally

inexpensive [16, 36, 76].. Despite the lower time consumption, one of the main disadvan-

tages of filters is the fact that they do not interact with the learning method; which usually

leads to worse performance when compared to other methods [16]. Nonetheless, they are
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able to eliminate irrelevant, duplicated, constant, redundant and correlated features [16,

36, 76].

They are divided into univariate and multivariate methods. Univariate considers

each feature separately and selects the best features based on univariate statistical tests

(ANOVA F-value, mutual information, X 2). One problem that can occur with these

methods is that they can select redundant variables, as they don’t take the relationship

between features into account. On the other hand, multivariate methods find relationship

among features using the whole feature space. Therefore, these methods are able to handle

duplicated, correlated and redundant features. [16, 36, 76].

Statistical and ranking filter methods are univariate, evaluating each feature indi-

vidually. They evaluate whether each feature is important based on the distribution of

the target labels. Essentially, these methods rank the features based on certain criteria

methods and then select the features with the highest rank [75, 76].

Mutual information (MI) is a measure of the mutual dependencies between two

variables. It measures the amount of information obtained about one variable by

observing the other variable [75]. If X and Y are independent, their MI is zero. In

feature selection, we need to find the MI between the feature and the target labels.

In this case, since X and Y are dependent, the MI value is greater than zero and

given by the relative entropy between the joint distribution and product distribution

(Equation 2.1) [75].

MI(X;Y ) =
∑
x,y

PXY (x, y) log
(
PXY (x, y)
PX(x)PY (y)

)
(2.1)

X 2 test measures the dependence of feature occurrence on the target labels and

is based on the X 2 probability distribution [75]. It is commonly used for testing

relationship between categorical variables (discrete finite values) with the variables

usually being non-negative, typically Boolean, frequencies and counts [75]. The X 2

measure for the j-th feature is obtained by Equation 2.2.
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X 2(xj, t) =
p∑
p=1

q∑
q=1

(np,q − Ep,q)2

Ep,q
(2.2)

where np,q denotes the number of samples which have the p-th value of the j-th

feature and the q-th value of the target label t; Ep,q is the expected value for np,q and

is obtained as:

Ep,q = n× Pr(p)× Pr(q) = n×
∑q
q=1 np,q

n
×
∑p
p=1 np,q

n
(2.3)

The largest X 2 measures shows the most significant dependence between the feature

and the target labels; therefore if it is below a pre-defined threshold the feature is

discarded [75].

ANOVA Univariate test or ANalysis Of VAriance test measures the dependence

between two variables. It assumes a linear relationship between the feature and the

target labels and also that the feature is normally distributed. Therefore, it is well-

suited for continuous features [77]. The largest ANOVA measures shows the most

significant dependence between the feature and the target labels; therefore if it is

below a pre-defined threshold the feature is discarded.

2.5.1.2 Wrapper methods

Wrapper methods use a learning algorithm as a subroutine, measuring the usefulness

of each subset of features with the prediction performance of the learning algorithm over

a validation set [36]. These are called greedy methods because they aim to find the

best possible combination of features. Wrapper methods have the advantage of detecting

the interaction between variables and they aim to find the optimal feature subset for the

desired machine learning algorithm [75]. Although usually wrapper methods show a better

performance when compared with filter methods, they have a much higher computation

cost which increases as the number of features in the data increases [16]. The search

methods can be divided into two categories: sequential selection and meta-heuristics.
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Sequential selection methods creates the optimal feature subset by selecting the

features from the given feature space in a sequential manner. There are four main

categories: (i) Forward Feature Selection (FFS) which starts with no features and add

one at a time; (ii) Backward Feature Selection (BFS) which starts with all features

and removes one at a time; (iii) Exhaustive Feature Selection (EFS) which tries all

the possible combinations; and (iv) Bidirectional Search (BS) does both forward and

backward feature selection simultaneously. It is worth noticing that FFS and BFS can

have a major drawback a part from the computational cost which is the impossibility

to remove a feature after it was selected to be part of the subset [75].

Sequential wrapper backward elimination was introduced by Marill and Green [78]

and implemented by Maciel-Guerra et al. (2019) [8] to evaluate how DS methods perform

before and after the feature selection. The method initially considers the whole set of

features. Subsequently, at each step, it drops a single feature whose absence causes the

learning model to have the smallest mean validation error (root mean square error with

cross-validation of 10 folds). For n available features, therefore, the first learning model

will have n inputs. In the first iteration, n learning models are trained, where each model

is comprised of a distinct set of n − 1 inputs. From one iteration to the next one, the

size of the input vector is dropped by one. As it is difficult to detect when the minimum

validation error is achieved and due to the fact that the error reduction does not occur

monotonically, the elimination may proceed until a learning model with a single input is

obtained. The remaining feature corresponds to that which is the most relevant. After

analysing the curve [number of inputs] x [validation error], it is possible to choose the

best subset of features producing the smallest mean validation error.

The backward elimination [78] is an approach that implements greedy decision steps,

given that a large amount of subsets of features (candidate input vectors) are not tested.

In backward elimination, once a feature is eliminated, no other subset containing this

feature is assessed. This approach is locally optimal, at each elimination/insertion stage,

although being clearly unable to predict all relevant complex interactions among features

[79]. Despite the shortcomings of the method, their application guides to an acceptable
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compromise between cost and effectiveness. Furthermore, backward elimination appears

more robust to local minima than constructive approaches, as it starts considering all

the interactions among features [80], increasing the likelihood of retaining the relevant

interactions at the final solution.

It is worth noticing that the WBS method admits any reasonable choice for the

learning model, being an issue associated with the specific purpose of the application.

Generally, linear learning models are adopted, given that a high number of learning models

should be trained [80]. However, given that extreme learning machines (ELMs) [81] were

designed to have a fast training phase, they are going to be adopted here. Moreover, since

nonlinear models like ELMs are much more flexible than linear models, regularisation

becomes a relevant issue here. Therefore, given our interest in the qualitative aspects of

the obtained learning model, its interpretability and the fast training phase, we implement

a regularised ELM as the learning model of WBS. To our knowledge, this is the first

scalable approach in the literature that resorts to a non-linear embedded model.

Extreme learning machines (ELMs) [81] are multilayer neural networks with the hid-

den layer(s) projected in an unsupervised manner (being a random choice of weights a valid

option). As emphasised by Kulaif and Von Zuben [82], the main advantages of ELMs are:

(1) The training phase corresponds to solving a linear regression problem, which is far less

computationally intensive when compared to the training process of MLPs, RBF neural

networks, and SVMs; (2) There is no local minimum, given that the training is a convex

optimisation problem, and even when a kernel must be defined, the influence of the kernel

choice is reduced when compared to what is seen in SVMs; (3) Ridge regression founded

on a single regularisation parameter is enough to promote the generalisation capability;

(4) When properly defined according to general requirements, the number of neurons at

the hidden layer and their weights, even when defined randomly, do not restrain the per-

formance; (5) ELMs exhibits competitive generalisation performance when compared to

MLPs, RBF neural networks and SVMs, being all of them universal approximators [83].
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2.5.2 Challenges of small instance high-dimensional datasets

According to Zawbaa et al. (2018) [84] it is far more complex and challenging to

deal with with high-dimensional small-instance datasets for two reasons: (i) the search

space becomes too large; and (ii) the small number of instances do not provide enough

examples to learn from. In another work, Kuncheva and Rodriguez (2018) [85] published

an article on which they discussed a protocol for feature selection on small instance high-

dimensional datasets. The authors raise two important questions: (i) “How reliable are

any conclusions drawn for such datasets?” and (ii) “How meaningful is feature selection?”.

Kuncheva and Rodriguez (2018) [85] showed that most papers published use a “con-

taminated” protocol, which includes the peeking phenomenon. The peeking happens if

the test data is seeing during some part of the training step of the classifier or during

the feature selection step. Most papers in the literature select a subset of features S by

applying a feature selector F over all samples of the dataset. Next, the classifier model C

is evaluated on the same data, most of the times using a cross-validation technique. The

caveat here, according to the authors, is that the dataset is used twice: once for finding

S through F and once for evaluating C. Therefore, the testing data have already been

used to select S which may cause a bias on the accuracy, i.e. the peeking phenomenon.

Kuncheva and Rodriguez (2018) [85] argue that the correct protocol should be to

include the feature selector F into the cross-validation loop. A subset of features Si is

obtained for each cross validation fold; and the classifier C is trained on Si using the same

data as F . The testing data is, then, used to evaluate C and the average accuracy over

all the folds is estimated. At no point of this protocol the testing data is used neither by

the classifier C or the feature selector F .

The following section describes subspace clustering methods. This is methods can

substitute the k-NN method to find the region of competences in the DS framework in

high-dimensional datasets. Because they are able to select the most important features

for a specific set of samples, which is a common phenomena in small instance high-

dimensional datasets [10, 39, 86]. The motivation on why to use subspace clustering is

further explained, as well some of the most important methods in the literature based on
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their contribution for the area.

2.6 Subspace Clustering

Clustering is an essential task for knowledge discovery [10, 39, 87]. Traditional clus-

tering algorithms attempt to find clusters using similarity measures based on distance

metrics [10, 39, 87]. Moreover, these methods use the whole set of features to compute

the similarities [10, 39, 87]. However, with the advances in technology, data is increasingly

growing in terms of its dimensions, which pose great challenges for clustering methods

due to issues like distance concentration and hubness [40, 87]. Feature selection and

extraction methods can be a good choice to decrease the dimensionality of the dataset.

Nonetheless, according to Tian and Gu (2019) [87] some features might only work for a

subset of samples and appear as noise for the rest of the samples, and this phenomenon

is more common in high-dimensional datasets.

To deal with this problem, subspace clustering has been used by many authors to

find clusters in different subsets of features and samples, as shown in the recent reviews by

Parsons et al. (2004) [10], Kriegel et al. (2009) [39] and Muller et al. (2009) [86]. Clusters

determined in subspaces can reduce the computational cost and provide a more relevant

information regarding local structures of the feature space, which can assist establishing

the most important features relevant to the end point investigated [10, 39, 87]. For

microarray studies, for instance, the goal is to understand which biomarkers (features)

are relevant to the biological activity.

2.6.1 Subspace clustering motivation

To illustrate the need for subspace clustering we describe here the analysis done by

Parsons et al. (2004) [10] using a simple synthetic dataset (Figure 2.6). This dataset has

four hundred samples spread out over four clusters with 100 samples each in 3 dimensions.

The first two clusters (red and green) exist on dimensions a and b. They were created

using a normal distribution with means 0.5 and −0.5 in dimension a and mean −0.5

in dimension b with standard deviation of 0.1. In dimension c, these two clusters have
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mean 0 and unit standard deviation. The other two clusters (blue and purple) exist in

dimensions b and c. They were created using a normal distribution with means 0.5 and

−0.5 in dimension c and mean 0.5 in dimension b with standard deviation of 0.1. In

dimension a, these two clusters have mean 0 and unit standard deviation. If k-Means

was applied in this data it would do a poor job of finding the clusters, this is because

each cluster only exist in two dimensions and the third dimension is irrelevant. According

to Parsons et al. (2004) [10], in higher dimension datasets this problems is even worse

due to the number of irrelevant features and to issues such as distance concentration and

hubness.

Figure 2.6: Example of a dataset with four clusters, each in two dimensions with the third
dimension being noise [10].

For the synthetic dataset presented on Figure 2.6 if we try to use a feature selection

technique will not work. Figure 2.7 shows the data projected into a single dimension and

it is possible to observe that none of the three dimensions is sufficient to fully separate

the four clusters. Alternatively, we could try to remove only one dimension. Figure 2.8

shows the 2D plot of the three possible combinations with a dataset with 3 dimensions.
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In this again, none of the combinations yields in higher separation.

Figure 2.7: Histograms of each dimension of dataset presented on Figure 2.6 [10]

Nonetheless, it is worth noticing that the clusters red and green are easily separated

from each other in dimensions a and b, while clusters blue and purple are easily separated

using dimensions b and c. Therefore, the key of finding the clusters in the dataset is to

use subspace clustering and find them in their appropriate subspaces.

2.6.2 Subspace clustering algorithms

This section discusses the main subspace clustering strategies and summarises some

of the major subspaces clustering algorithms.

Parsons et al. (2004) [10] divided subspace clustering methods into two large groups:
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Figure 2.8: 2D plots of all possible combinations of dimensions of the dataset presented
on Figure 2.6 [10]

bottom-up and top-down. A naive approach would be to search for all possible subspaces

and use some cluster validation metric to determine the subspaces with the best clusters

[10]. However, this problem is intractable and, therefore, more sophisticated heuristics

are needed [10].

Bottom-up methods take advantage of the downward closure property of density

to reduce the search space, i.e. if there are dense units in k dimensions, there are

dense units in all k−1 dimensional projections. This algorithms first start by creating

a histogram for each dimension and select the bins above a given threshold. Next,

candidate two-dimensional subspaces are formed by combining only the dimensions

which contain dense units forming clusters, dramatically reducing the search space.

Higher dimensional subspaces are formed by combining adjacent dense units until

there are no more dense units to be found. The nature of bottom up approaches can

create overlapping subspaces where one instance is in zero or more subspaces. They

are two main approaches to accomplish this: (i) CLIQUE and ENCUS use a static

size grid to divide each dimension into bins; and (ii) MAFIA, Cell Based Clustering

(CBF), CLTree and DOC use data driven strategies to determine the cut-points for

the bins in each dimension (MAFIA and CBF use a histogram, CLTree uses a decision

tree and DOC uses a maximum width and minimum number of instances per cluster)

[10].
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Top-down methods starts by finding clusters using all dimensions. Next, each

dimension is assigned a weight for each cluster. These weights are then used to

update the clusters. This approach requires expensive clustering algorithms in high-

dimensional feature spaces. Top-down algorithms create clusters that are partitions

of the dataset, therefore, each instance is assigned to only one cluster, so there are no

overlaps in terms of instances. Parameter tuning is necessary to get meaningful results

with the number of clusters and the size of the subspaces being the most critical ones.

Most methods (PROCLUS, ORCLUS, FINDIT and δ-Clusters) determine the locality

of the clusters by setting a weight to each dimension for each instance. COSA is a

special algorithm that uses k-nearest neighbors for each instance to determine the

weight of each dimension for the particular instance [10].

The SBDS framework proposed in the thesis use a bottom-up approach which has

the advantage of reducing the search space, making these methods less computational

expansive. Approaches of subspace clustering can also be divided into three major groups:

cell-based, density based and clustering-oriented [86]. The SBDS framework was inspired

on the work done by Tian and Gu (2019) [87]. The authors proposed a cell-based approach

which divides the data into grid cells with a certain threshold and search clusters on the

cells considering count of data points in these cells. Another important aspect of these

methods is their pruning criterion for efficient subspace search based on a monotonicity

property. This property states that given a subspace cluster in d-dimensions, all low

dimension projections are also subspace cluster. Therefore, the negation of this property

is used as a pruning criterion, i.e., if a set of objects does not form a subspace in a d-

dimensional space then all higher dimensional projects do not form a subspace cluster

either [86]. Although there are difference between the methods in this category, all of

them share a main property of counting the number of objects inside a cell do determine

if this cell is part or not of a subspace. This makes the algorithms more efficient, but can

result in loss of information due to the discretization [86].
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2.6.2.1 Subspace Clustering Based on Self-Organising Map (SCBSOM)

Recently, Tian and Gu (2019) [87] proposed a novel cell-based approach for subspace

clustering based on self-organising maps called SCBSOM. This method aims to find cells

using the trained SOM and allows overlapping between clusters. Clusters are first con-

structed for each dimension, and later merged together. SCBSOM search for clusters in

the grid cells trained with SOM rather than the original sample space, as most of the tra-

ditional cell-based approaches. Moreover, since SOM preserves the topology of the data,

it contributes to a higher accuracy when compared with other cell-based approaches. Tian

and Gu (2019) [87] showed that SCBSOM had a better performance in 4 out of 7 datasets

when compared with other subspace clustering methods and with SOM. The 7 datasets

studied have always a higher number of samples when compared to the number of features

(the number of features range from 5 to 75 and the number of samples range from 1500

to 5500).

The pipeline to select the subspaces presented by Tian and Gu (2019) [87] is imple-

mented in the SBDS framework, with the main difference being that the authors used a

SOM to find the subspaces whilst the SBDS propose the use of a Gaussian Kernel Density

Estimator (GKDE) to get the one-dimensional clusters. The next section discusses how

the subspace clusters can be selected.

2.7 Nearest Subspace Search

According to Basri et al. (2011) [88], the Nearest Subspace Search problem is defined

as follows: let S1,S2, · · · ,Sn be a collection of subspaces in Rd, each with an intrinsic

dimension dS retrieved from a dataset with m samples and d features. Given a query Q

in Rd, the distance between the query and the ith subspace is dist(Q,S i). We seek the

subspace S∗ that is the nearest to the query, i.e., S∗ = arg mini dist(Q,S i).

Computing the similarity between objects is an important task in data mining. Typ-

ically, a k-NN algorithm is used to find the nearest samples of a query in a dataset using

a distance function. However, they consider all dimensions when computing the distance
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between data points. For datasets with a high number of dimensions, similarity measures,

including Euclidean distance, loose their discriminative ability [17, 89].

Basri et al. (2011) [88] proposed a mathematical approach to calculate an approx-

imate distance between points and subspaces from subset dimensions to tackle high-

dimensional data. Their experiments indicate that an approximate nearest subspace can

be located faster than the exact nearest subspace, with little loss of accuracy, in large

databases.

In 2015, Hund et al. [89] introduced the concept of Subspace Nearest Neighbour

Search (SNNS). It aims at finding the nearest neighbours of a sample in a relevant sub-

space. The paper proposes three questions: (1) ”What is a relevant subspace for a given

query?”; (2) ”How can we computationally extract this relevant information?”; and (3)

”How can we adapt ideas from subspace clustering, outlier detection, or feature selection

for SNNS?”. These three questions were used to develop the core framework of this thesis.

The SBDS framework proposes a subspace clustering approach to identify the most rel-

evant subspaces in the data making them the Regions of Competence of the framework;

and uses a SNNS approach to select the most important subspaces for each unseen test

sample.

2.8 Chapter Summary

This chapter started with multiple classifier system to introduce the basic concepts

for dynamic selection of classifiers. We indicated the reasons on why this is an important

area to study and its advantages showcased by the literature. Subsequently, we identified

the challenges of working with high-dimensional datasets and how the literature overcomes

them by using dimensionality reduction. Next, the chapter reviewed subspace clustering

and nearest subspace search methods showing their motivations and advantages to be

used on high-dimensional datasets.
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2.9 Conclusions from the literature

From the literature, we identified the need to improve the overall DS framework to

address high-dimensional data. DS methods are well known in the literature for their

superior performance when compared with traditional classification methods and static

selection. However, to the best of our knowledge, there is no work evaluating these

methods for high-dimensional small instance datasets.

Although traditional feature selection methods are able to remove features that are

irrelevant and/or redundant, they fail to address the issue properly because in high-

dimensional data a phenomena called local feature relevance happens, ie.e different subsets

of features are relevant for different samples. Hence, the choice of incorporating a subspace

clustering method into the SBDS framework, because this approach has been shown to

be extremely effective in detecting the most important aspects of the data not only in

terms of features but also in terms of the samples.

The next chapter (Chapter 3) evaluate high-dimensional, small instance datasets in

different scenarios comparing traditional classification methods with dynamic selection

methods.
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3.1 Introduction

In data classification, observations are instances of a particular phenomena (e.g.

clinical patient measurements), each one being a vector of values measured on variables

(e.g. blood pressure, height, weight, heart rate) [13]. In recent years, technology enabled

researchers to gather increasingly amounts of data not only in terms of observations,

but also in the number of variables [17, 41]. Financial, risk management, computational

44
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biology, health studies are areas where high-dimensional datasets are produced. However,

in some of these areas, such as biology and medicine, it might not be feasible to have

thousands or millions of samples due to the nature of the disease or the access to samples

[17, 41].

Yang et al. (2015) [90] identified the following five major challenges when working

with high-dimensional data:

1. Distance concentration: denotes the tendency of distances between all pairs of points

to become almost equal

2. Due to the high number of features compared to the small number of samples, these

datasets tends to have higher sparcity. In addition, it is likely that correlations exist

between the different dimensions, and, therefore, the most important features are

difficult to define.

3. Datasets tends to be unstructured. In addition, noise and uncertainties often exist,

which impose challenges to its pre-processing and applying data mining techniques.

Classification algorithms tend to be problem-specific and in some cases even data-

specific.

4. As the number of features increases, the possible combinations of clusters increases

exponentially and clustering can become a NP-hard problem.

5. Even with the recent increase in speed of modern computers and cheaper parallel

and cloud computing, the increasing number of features are still a problem and

efforts on developing new classification methods are needed.

Therefore, this chapter first introduces in more details the issues regarding hubness

and distance concentration in high-dimensional datasets and evaluate small instance high-

dimensional datasets to understand if they suffer from these issues. Next, the chapter

investigates the challenges classifiers face when dealing with high-dimensional datasets

by creating synthetically data varying the number of features. The results indicate that

when the number of features increase, single classifiers and DS methods have a drop in
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their performance. Finally, DS methods are compared with majority voting and singles

classifiers before and after two feature selection approaches: filter and wrapper.

3.2 Hubness and distance concentration analysis

Datasets with a high number of features usually poses challenges that are commonly

referred as the “curse of dimensionality”. One of the main issues is distance concentration

which is the tendency of distance to all points to become almost equal in high-dimensional

spaces [20, 25, 40]. This directly affects machine learning application, specially those

approaches based on distance metrics, such as k-NN. There is another important aspect

of the “curse of dimensionality” which is related to nearest neighbours. Let D ⊂ Rd be a

set of d-dimensional points and Nk(~x) the number of k-occurrences of each point ~x ∈ D,

i.e., the number of times a point ~x appears among the k-nearest neighbours of all points

in D, according to some distance metric [20]. According to Radovanovic et al. (2010) [20],

as d increases, the distribution of Nk becomes considerably skewed to the right, resulting

in the appearance of hubs, i.e., points that are “popular” nearest neighbours.

Radovanovic [20, 40] showed that hubness is an inherent property of high-dimensional

datasets with negative influence on classification algorithms, such as k-NN, Suport Vector

Machines with RBF kernels and Adaboost [20, 40]. In addition, the authors showed that

hubness has a negative influence on clustering methods, because intra-clusters distance

may be increased due to points with low k-occurrences, since they act as outliers [20, 40,

91]; also hubs do not cluster well because they are close to many points, including other

clusters [20, 40, 91].

The above findings in relation to hubness and distance concentration are relevant to

machine learning because many algorithms use distance between data points. First, a an

illustrative experiment is conducted to demonstrate the changes in the distribution of Nk

with varying dimensionality. By using a random synthetic dataset with 10000 samples and

d features independently drawn from a normal distribution and the following distances:

Euclidean, Squared Euclidean and cosine. Figure 3.1 shows empirically the distributions

of N7 for (a) d = 3, (b) d = 20 and (c) d = 100. As the dimensionality increases, the
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N7 distributions become skewed to the right, i.e., the majority of the points are on the

tails of the distribution. The skeweness, according to Radovanovic et al. (2010) [20] is an

indication of the hubness phenomenon, that is, points with high k-occurrences.
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Figure 3.1: Empirical distribution of N7 for Euclidean, Squared Euclidean and cosine
distances for normally distributed datasets with n = 10000 and dimensionality (a) d = 3,
(b) d = 20 and (c) d = 100

To illustrate the hubness phenomenon on real data, 11 real-world benchmark datasets

with a high number of features and a low number of samples were examined to verify if

they suffer from hubness issues. Four datasets are text based while seven are biomedical

datasets relating to different types of cancer (lung, prostate, leukemia, colon, glioma and

ovarian). The attributes of each dataset are shown in Table 3.1. This study attempts

to explain the phenomena of hubness and distance concentration and the mechanisms

through which hubs emerge.

Table 3.1: datasets attributes

dataset sample (n) features (d) ratio (n/d) No. of classes Distribution Type

ALLAML [92] 72 7129 0.0101 2 65.3 - 34.7% Microarray
Arcene [92] 200 10000 0.02 2 56 - 44% Mass Spectrometry

Basehock [92] 1993 4862 0.4099 2 49.9 - 50.1% Text
Colon [92] 62 2000 0.031 2 64.5 - 35.5% Microarray
Dexter [93] 600 20000 0.03 2 50 - 50% Text
Gli85 [92] 85 22283 0.0038 2 30.6 - 69.4% Microarray

Leukemia [92] 72 7070 0.0102 2 65.3 - 34.7% Microarray
Pcmac [92] 1943 3289 0.5907 2 50.5 - 49.5% Text

Prostate [92] 102 5966 0.0171 2 49 - 51% Microarray
Relathe [92] 1427 4322 0.3302 2 54.6 - 45.4% Text

Smk-Can [92] 187 19993 0.0094 2 48.1 - 51.9% Microarray

Table 3.2 lists the main findings in terms of statistics which can describe if hubness
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appears in this datasets for three different distance metrics (Euclidean, Cosine and Can-

berra). The number of nearest neighbours k was fixed to 7, as this is the number most

papers on DS methods use to determine the region of competence. The columns on this

table describe the following dataset characteristics:

Table 3.2: 10 real-world datasets characteristics for three different distance metrics (Eu-
clidean, Squared Euclidean and Cosine)

dataset Distance n d dmle SNk
p-value SNk

7-NN Acc Clu CN7
cm p-value CN7

cm CN7
dm p-value CN7

dm

Allaml Euclidean 72 7129 20,65284 1,285764 7,6E-05 77,86% 2 -0,85501 1,21E-21 -0,81643 2,34E-18
Allaml Cosine 72 7129 10,83564 1,185723 0,000192 80,54% 2 -0,87825 4,03E-24 -0,8092 7,93E-18
Allaml Sqeuclidean 72 7129 10,32642 1,285764 7,6E-05 77,86% 2 -0,85501 1,21E-21 -0,81643 2,34E-18
Arcene Euclidean 200 10000 19,62199 0,778613 2,95E-05 85,00% 12 -0,60045 5,57E-21 -0,37683 3,8E-08
Arcene Cosine 200 10000 10,02271 1,016812 2,43E-07 82,00% 11 -0,69375 4,87E-30 -0,30282 1,31E-05
Arcene Sqeuclidean 200 10000 9,810997 0,778613 2,95E-05 85,00% 12 -0,60045 5,57E-21 -0,37683 3,8E-08

Basehock Euclidean 1993 4862 50,24644 19,02935 0 60,96% 44 -0,4162 2,47E-84 -0,32971 9,52E-52
Basehock Cosine 1993 4862 10,2059 1,373365 3,05E-83 91,62% 44 -0,1409 2,65E-10 0,024623 0,271894
Basehock Sqeuclidean 1993 4862 25,12322 19,02935 0 60,96% 44 -0,4162 2,47E-84 -0,32971 9,52E-52

Colon Euclidean 62 2000 11,79957 0,179461 0,529365 79,52% 3 -0,80951 1,67E-15 0,135635 0,293203
Colon Cosine 62 2000 7,532528 1,978379 6,39E-07 74,29% 7 -0,78223 6,06E-14 -0,77359 1,7E-13
Colon Sqeuclidean 62 2000 5,899783 0,179461 0,529365 79,52% 3 -0,80951 1,67E-15 0,135635 0,293203
Dexter Euclidean 600 20000 55,62183 9,269779 1E-150 51,00% 13 -0,43 2,13E-28 -0,41378 3,22E-26
Dexter Cosine 600 20000 87,22038 3,182544 7,62E-67 88,33% 2 -0,71551 3,21E-95 -0,71915 1,29E-96
Dexter Sqeuclidean 600 20000 27,81091 9,269779 1E-150 51,00% 13 -0,43 2,13E-28 -0,41378 3,22E-26

Gli Euclidean 85 22283 21,20165 1,655786 4,98E-07 80,83% 3 -0,90784 4,49E-33 -0,86622 9,81E-27
Gli Cosine 85 22283 11,00125 1,082364 0,000195 82,08% 3 -0,86363 2,06E-26 -0,76956 7,66E-18
Gli Sqeuclidean 85 22283 10,60083 1,655786 4,98E-07 80,83% 3 -0,90784 4,49E-33 -0,86622 9,81E-27

Leukemia Euclidean 72 7070 25,97378 0,811738 0,005734 85,89% 5 -0,75997 9,88E-15 -0,42996 0,000164
Leukemia Cosine 72 7070 12,74763 1,285482 7,62E-05 92,86% 3 -0,91665 1,37E-29 -0,69849 9,02E-12
Leukemia Sqeuclidean 72 7070 12,98689 0,811738 0,005734 85,89% 5 -0,75997 9,88E-15 -0,42996 0,000164

Pcmac Euclidean 1943 3289 50,79432 17,37004 0 68,40% 43 -0,31288 2,18E-45 -0,22186 4,3E-23
Pcmac Cosine 1943 3289 12,73431 14,31757 0 77,25% 41 -0,25198 1,6E-29 -0,1024 6,11E-06
Pcmac Sqeuclidean 1943 3289 25,39716 17,37004 0 68,40% 43 -0,31288 2,18E-45 -0,22186 4,3E-23

Prostate Euclidean 102 5966 13,62113 0,391625 0,095436 80,45% 8 -0,52107 1,97E-08 -0,29431 0,002677
Prostate Cosine 102 5966 6,908708 0,279018 0,228342 80,36% 3 -0,74048 5,88E-19 -0,17279 0,082436
Prostate Sqeuclidean 102 5966 6,810564 0,391625 0,095436 80,45% 8 -0,52107 1,97E-08 -0,29431 0,002677
Relathe Euclidean 1427 4322 41,44929 15,91792 0 72,10% 25 -0,47938 7,04E-83 -0,42594 5,59E-64
Relathe Cosine 1427 4322 10,94281 3,716883 2,5E-175 86,47% 32 -0,15917 1,48E-09 -0,00542 0,83793
Relathe Sqeuclidean 1427 4322 20,72464 15,91792 0 72,10% 25 -0,47938 7,02E-83 -0,42594 5,59E-64
Smkcan Euclidean 187 19993 17,09152 1,202981 1,42E-08 63,48% 10 -0,77918 2,2E-39 -0,53401 3,54E-15
Smkcan Cosine 187 19993 8,59914 1,109409 9E-08 61,32% 10 -0,78852 6,5E-41 -0,48767 1,45E-12
Smkcan Sqeuclidean 187 19993 8,545761 1,202981 1,42E-08 63,48% 10 -0,77918 2,2E-39 -0,53401 3,54E-15

1 Number of samples n and features d
2 dmle: estimated intrinsic dimensionality
3 SNk

: the asymmetry of Nk as characterised using the standardised third moment SNk
= E(Nk − µNk

)3/σ3
Kk

, where µNk
and σNk

are the mean and
the standard deviation of Nk respectively.
4 p-value SNk

: is the corresponding p-value of SNk
, which tests whether the skewed data is different from the normal distribution.

5 7-NN Acc: 7-Nearest Neighbour mean accuracy using a 10-fold cross validation.
6 Clu: number of clusters determined with K-Means clustering by exhaustive search of values between 2 and

√
n, where n is the number of samples, to

maximise CN7
cm

7 CN7
cm : is the Spearman correlation of the observed Nk and the distance to the closest group mean.

8 p-value CN7
cm : the two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data (N7 and CN7

cm) are uncorrelated.
9 CN7

dm: is the Spearman correlation of the observed Nk and the distance to dataset mean (centre).
10 p-value CN7

dm: the two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data (N7 and CN7
dm) are uncorrelated.

It can be observed that for 9 datasets there is a 99% confidence level that the SNk

distribution is different from a normal distribution. Only the Prostate and the Colon

datasets have a SNk
with a p-value higher than 0.01. Also some datasets present very

high SNk
values, indicating strong hubness on the corresponding datasets. Moreover, in

most cases CN7
cm is much stronger than CN7

dm, i.e., hubs are much closer than other points

to their respective cluster centres. It is worth noticing as well the estimated intrinsic
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dimensionality is much lower than the real dimensionality of the datasets.

In order to understand the mechanisms behind hubs formation its necessary to un-

derstand (1) the geometrical and distribution setting in which some points tends to be

closer than the dataset mean and (2) why such points become hubs. To illustrate this, the

distribution of the Euclidean distance of all points to the true data mean is presented on

panels (c) and (d) of Figures 3.2 and 3.3. According to Radovanovic et al. (2010) [20], it

is known and expected for points that are closer to the mean of the data to also be closer,

on average, to all other points. Panels (c) and (d) of Figures 3.2 and 3.3 and Appendix

C indicate that this tendency is amplified in high-dimensional datasets, with points that

reside in the proximity of the data mean become closer to all other points. This results

indicates how the hubness and the distance concentration phenomena are related.
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Figure 3.2: Hubness analysis of Prostate dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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To examine the clustering attributes of real world datasets, Table 3.2 shows: (i)

the spearman correlation, denoted as CN7
dm of the observed N7 and the distance from the

dataset mean, and (ii) the spearman correlation, denoted as CN7
cm , of the observed N7 and

the distance to the closest group mean. Groups are determined with K-means clustering

where the number of clusters is determined by exhaustive search between 2 and
√
n, to

maximise CN7
cm , with n being the number of samples. In most cases, CN7

cm is stronger (closer

to -1) when compared to CN7
dm, which indicates that hubs tends to be closer that other

points to their respective cluster centres. Panels (e) and (f) of Figures 3.2 and 3.3 and

Appendix C, shows the scatter plot and the empirical distribution of distances from the

closest cluster mean. In all the cases, the probability of observing a point near the centre

becomes closer to zero.
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Figure 3.3: Hubness analysis of Dexter dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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3.3 DS applied to high-dimensional datasets: pool

generation and comparison with MCS methods

In the majority of DS publications, the pool of classifiers is generated using the

bagging method, which is a well known generation approach for static methods [4, 29, 67].

In addition, some DS methods used a pool of classifiers made by heterogeneous methods,

which were compared with a homogeneous pool [29, 67]. The authors indicated that,

although the expected diversity in the heterogeneous pool could increase the performance,

in reality, the homogeneous outperformed the heterogeneous one, because at the majority

of the times the same classifiers were selected in the heterogeneous pool and the methods

chosen were not complementary.

Diversity, therefore, is still an open question in the DS area and it should be more

carefully studied. The SBDS and cSBDS methods proposed on Chapter 5 generate intrin-

sically diverse classifiers, since each classifier is trained only in one specific region of the

feature space, determined by the subspace clustering method. Nonetheless, future work

on increasing the diversity by using different classifiers in different regions could perhaps

help to improve the performance of these two methods.

To compare the different DS methods on high-dimensional datasets a bagging ap-

proach is used due to its simplicity and because most of the studies in the area of DS

have focused on finding the neighbourhood of a new data instance and choosing the most

competent classifier(s) to make the prediction. According to Yasar et al. [73] the focus

on having a diverse ensemble of classifiers was ignored on previous studies because the

DS systems is not required to generalise to all samples, i.e. since the system focus on

prediction the class of a single instance at each time, the classifiers’ performance over the

different regions is not relevant.

Therefore, a pool of classifiers composed of 11 decision trees is used, as suggested by

Woloszynski et al. [67], with pruning level set to 10. The pool is generated using the

bagging technique, similarly to the methodology followed by Woloszynski in [29, 67]. An

odd number of classifiers is chosen to overcome decision ties. These classifiers are used
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due to their instability when trained with different sets of data, i.e., small differences on

the training set can create different trees [67]. Moreover, a study was also conducted to

compare the pool of classifiers composed with decision trees, with a pool of 11 perceptrons

and an pool of 11 naive bayes. Using the “gentrunk” function from Matlab PRTools with

number of samples fixed at 300 and number of features ranging from 2 to 5000, we

have created 224 datasets and evaluated 21 DS methods. The DS methods were ranked

according to their accuracy. The pool of classifiers composed with 11 decision trees had

an overall rank of 1.73, while the pool with 11 nayve bayes had an overall rank of 2.16

and the perceptrons an overall rank of 2.75.

In addition, the performance of an Adaboost (Figure 3.4) and a Random Forest

(Figure 3.5), state-of-art multiple classifier systems, were tested on the datasets presented

on Table 3.1. The accuracy, sensitivity and specificity are shown in the violin plots which

is similar to a box plot, but also indicates the probability density of the data at different

values, smoothed by a kernel density estimator. It is interesting to observe that in both

analysis three of the four datasets with the highest number of dimensions had the lowest

accuracy performances.
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Figure 3.4: Supervised machine learning prediction of 11 high-dimensional small instance
datasets. Prediction performance results of Adaboost classifier. Three performance indi-
cators have been used to evaluate the classification: (A) accuracy, (C) sensitivity and (D)
specificity value from 30 runs.

The next three section moves to discuss experiments that showcase the issues of

using DS methods in high-dimensional small instance datasets. We first apply the DS



3.4. DS on synthetic data 53

Al
la

m
l

Ar
ce

ne
Ba

se
ho

ck
Co

lo
n

De
xt

er Gl
i

Le
uk

em
ia

Pc
m

ac
Pr

os
ta

te
Re

la
th

e
Sm

kc
an

Datasets

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Ac

cu
ra

cy
A

Al
la

m
l

Ar
ce

ne
Ba

se
ho

ck
Co

lo
n

De
xt

er Gl
i

Le
uk

em
ia

Pc
m

ac
Pr

os
ta

te
Re

la
th

e
Sm

kc
an

Datasets

0.5

0.6

0.7

0.8

0.9

1.0

Se
ns

iti
vi

ty

B

Al
la

m
l

Ar
ce

ne
Ba

se
ho

ck
Co

lo
n

De
xt

er Gl
i

Le
uk

em
ia

Pc
m

ac
Pr

os
ta

te
Re

la
th

e
Sm

kc
an

Datasets

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ec

ifi
cit

y

C

Figure 3.5: Supervised machine learning prediction of 11 high-dimensional small instance
datasets. Prediction performance results of Random Forest classifier. Three performance
indicators have been used to evaluate the classification: (A)accuracy, (C) sensitivity and
(D) specificity value from 30 runs.

methods on synthetic data. Since the results demonstrated that when increasing the

number of features the performance of dynamic selection is reduced, we decided to apply

DS methods on real-world small instance high-dimensional datasets and compared them

to majority voting and single classifiers. The results presented here were also described

on Maciel-Guerra et al. (2019) [8] and on Maciel-Guerra et al. (2020) [9].

3.4 DS on synthetic data

In this section, DS is evaluated using several synthetic datasets with different number

of samples and number of features were generated based on the Trunk’s classification

problem [94]. These datasets are based on a two-class problem of normally distributed

data. The features are independent and have a unit standard deviation for both classes.

The class averages are given by (1
i
) 1

2 and −(1
i
) 1

2 for the i-th feature [94]. Figure 3.6 shows

the first 7 features for a problem with 3000 samples.

3.4.1 Experimental Methodology

To analyse if dynamic selection methods and specially the methods to define the

region of competence (k-Nearest Neighbour and k-Means) will suffer from the curse of

dimensionality in high-dimensional datasets and have their performance decreased, we
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Figure 3.6: Trunk’s classification problem of normally distributed data. The features are
independent and all have a unit variance for both classes. First 7 features are shown for
a problem with 3000 samples.

decided to created multiple Trunk’s datasets, with the number of samples ranging from

200 to 1000 and features ranging from 2 to 5000. The pool of classifiers were created

using the bagging algorithm with a decision tree as base classifier. The size of the pool

of classifiers was 11. The experiments were run 10 times using 50% of the samples as

the training set, 25% as validation set and 25% as testing set. The size of the region of

competence was set to 7 as proposed by Cruz et al. (2017) [4].

3.4.2 Results

Figures 3.7 and 3.8 show the mean accuracy of a Decision Tree classifier and a k-NN,

respectively, computed using a 10-fold cross validation for datasets generated with the

“gentrunk” function from Matlab PRTools with number of samples raging from 200 to

1000 and number of features ranging from 2 to 5000. From both figures, we observe that

for a low number of features and a high number of samples the accuracy is high, and

for a high number of features and a low number of samples the accuracy is significantly
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reduced, which indicates that the both the Decision Tree and the k-NN classifiers suffered

from the “curse of dimensionality” in this context.
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Figure 3.7: Mean accuracy of Decision Tree computed using a 10-fold cross validation for
datasets generated with the “gentrunk” function from Matlab PRTools with number of
samples raging from 200 to 1000 and number of features ranging from 2 to 5000

Since the single classifiers have their performance deteriorated when the numbers of

features increase, we hypothesise that the same thing could happen with DS methods.

Therefore, to verify this hypothesis we tested the DS methods indicated on Table 2.1

on 224 datasets with features ranging from 2 to 5000 (99 datasets with the number of

features ranging from 2 to 100, 45 with the number of features raging from 120 to 1000

and 80 datasets with the number of features ranging from 1050 to 5000) and the number

of samples fixed at 300. The results are shown in Figure 3.9, where it is possible to observe

that the methods that rely on the k-Nearest Neighbour and k-Means to define the region of

competence had their performance decreased with the increase on the number of features.

DES-EXP, DES-KL and DES-MD, that use the entire validation set to compute the

confidence level of each base classifier, also had their performances decreased but with a

lower rate, which may be due to the use of Euclidean distance to calculate the potential

function. META-DES and DSOC also had their performances decreased in a lower rate,



56 Chapter 3. Dynamic selection applied to high-dimensional datasets

200 300 400 500 600 700 800 900 1000

Number of Samples

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
um

be
r 

of
 F

ea
tu

re
s

k-Nearest Neighbour

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M
ea

n 
A

cc
ur

ac
y

Figure 3.8: Mean accuracy of k-NN computed using a 10-fold cross validation for datasets
generated with the “gentrunk” function from Matlab PRTools with number of samples
raging from 200 to 1000 and number of features ranging from 2 to 5000

even though they use a k-Nearest Neighbour to define the region of competence; these

results can be explained by the fact that they combine different types of features to

measure the confidence level; therefore, even if one of these features fail, the others can

carry the information necessary to predict the correct label.

3.4.3 Conclusions

To evaluate how DS methods perform on high-dimensional synthetic datasets, first

datasets with increasing number of features and different number of samples were created

using the “gentrunk” function from the PRTools toolbox. First, the performance of a

decision tree and a k-NN were evaluated and we observed that their performance is de-

creased when the number of features increase, which confirms the issues with the ”curse

of dimensionality”. Afterwards, we evaluated 224 datasets with 300 samples and features

ranging from 2 to 5000. We observed that all DS methods had a decrease in performance,

with methods that had a k-NN or a k-Means to define the region of competence being the

ones with the highest decrease in performance. On the other hand, DES-KL, DES-EXP
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Figure 3.9: ]
Mean accuracy of 21 DS methods computed using a 10-fold cross validation for datasets

generated with the “gentrunk” function from Matlab PRTools with 300 samples and
number of features ranging from 2 to 5000. The size of the region of competence was set

to 7 and the pool of classifiers was composed of 11 decision trees.

and DES-MD had a smaller decrease in performance because they use the entire validation

set to compute the confidence level of each base classifier. Hence, we can conclude that

DS methods also suffer from the ”curse of dimensionality” when used on datasets with

a high number of features and a low number of samples. The next section investigates

how the DS methods perform on small instance high-dimensional datasets from real world

problems and compares them to the majority voting technique.

The next section moves to discuss how DS methods perform on different real-world

datasets using a filter feature selection approach to further evaluate their performance.
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3.5 DS on real world datasets using a filter feature

selection

In this section, the focus is to evaluate how DS methods perform on high-dimensional

small-instance datasets and compare this to majority voting which is the simplest MCS

method. Despite the large number of papers published in DS, there was no comprehensive

study available verifying the use of this methods on this specific type of dataset until the

work done by Maciel-Guerra et al. (2020) [9] which is shown here.

3.5.1 Experimental Methodology

The experiments are conducted on 10 real-world high-dimensional datasets (Table 3.1.

Nine of those datasets are obtained from the Feature Selection datasets (Arizona State

University [92]) and another from the UCI machine learning repository [93]. We consid-

ered only datasets with small sample sizes.

All techniques are implemented using the scikit-learn [95] and the DESlib [96]

libraries in Python. The experiments are conducted using 30 replicates. For each replicate,

the datasets are randomly divided in 50% for the training set, 25% for the Region of

Competence set and 25% for the test set as suggested by Cruz et al. [4]. These divisions

are performed preserving the proportion of samples for each class by using the stratified

k-fold cross validation function in the scikit-learn [95] library.

The pool of classifiers is composed of 11 decision trees, as suggested by Woloszynski et

al. [67], with pruning level set to 10. The pool is generated using the bagging technique,

similarly to the methodology followed by Woloszynski in [29, 67]. An odd number of

classifiers is chosen to overcome decision ties. These classifiers are used due to their

instability when trained with different sets of data, i.e., small differences on the training

set can create different trees [67]. Following the recent survey on DS techniques [4], the

size of the Region of Competence K is set to 7 neighbours for all the techniques based on

k-NN. Moreover, as suggested by Cruz and Soares in [4, 63, 64], 30% of the base classifiers

are selected using accuracy and diversity for the techniques DES-kNN and DES-kMeans.
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In addition, the number of clusters of DES-kMeans is set to 5.

The Friedman test FF with Iman-Davenport correction [97] is employed for statistical

comparison of multiple classifier system techniques as suggested by Cruz and Demsar in

[4, 98]. The rank of each method is calculated using the weighted ranking approach

proposed by Yu in [99], which considers the differences among the average performance

metric values between classifiers for each dataset [99]. The best performing algorithm is

the one with the lowest average rank. Next, as suggested by [98], to compare all classifiers

against a control, we use the Bonferroni-Dunn test with the following test equation to

compare two classifiers:

z = (Ri −Rj)
/√

k(k + 1)
6N (3.1)

where Ri is the rank of i-th classifier, k is the number of classifiers and N is the number of

datasets. The z value is than used to find the corresponding p-value from the two-tailed

normal distribution table, which is subsequently compared to an appropriate significance

level α. The Bonferroni-Dunn test subsequently divides α by k− 1 to control the family-

wise error rate. The level of α = 0.05 is considered as significance level. Hence, the level

of p < 0.0022 was considered as statistically significant.

3.5.2 Results

Accuracy is calculated for all experiments and averaged over the 10 replications. In

addition, the rank of all classifiers for each dataset is calculated according to the weighted

ranking approach proposed by Yu in [99] and averaged to measure the Z-score to find its

respective p-value. With 22 classifiers and 10 datasets, the Friedman test is distributed

according to the F distribution with 22 − 1 = 21 and (10 − 1) × (22 − 1) = 189 degrees

of freedom. The critical value of F(21,189) for α = 0.0001 is 2.8165.

The first experiment assesses classifier performance without feature selection. Table

3.3 shows the average accuracy and standard deviation for each dataset, the average rank,

Z-score and p-value results for all the classifiers that had a rank lower than majority

voting without feature selection. The FF statistic is 4.7468, so the null-hypothesis can
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be rejected with 99.99% confidence. To compare all classifiers against a control, majority

voting, the Bonferroni-Dunn test is used to measure the Z-score for each classifier. Even

though there are 3 classifiers (KNORA-U, KNOP-U and DES-P) with a better rank than

majority voting, none of them is statistically different from majority voting.

Table 3.3: Average accuracy, ranking, z-score and respective p-value for the classifiers
that had a lower rank when compared with majority without feature selection and the
oracle results

knop u knora u des p majority voting oracle
Allaml 0.9333 ± 0.0563 0.9296 ± 0.0573 0.9296 ± 0.0573 0.9278 ± 0.0576 1 ± 0
Arcene 0.7067 ± 0.0646 0.7173 ± 0.0667 0.704 ± 0.0576 0.71 ± 0.0586 0.996 ± 0.0095

Basehock 0.9045 ± 0.0138 0.8922 ± 0.0132 0.8923 ± 0.0132 0.8917 ± 0.0128 0.9625 ± 0.013
Colon 0.7542 ± 0.0926 0.7604 ± 0.0983 0.7417 ± 0.1067 0.7438 ± 0.0932 0.9896 ± 0.0233
Dexter 0.8789 ± 0.0357 0.8722 ± 0.0366 0.8731 ± 0.0368 0.8729 ± 0.0367 0.992 ± 0.0111

Gli 0.8136 ± 0.0678 0.8212 ± 0.0713 0.8273 ± 0.0737 0.8152 ± 0.0713 0.9924 ± 0.0169
Pcmac 0.8648 ± 0.0162 0.8582 ± 0.0158 0.8576 ± 0.016 0.8575 ± 0.016 0.9421 ± 0.0261

Prostate 0.8782 ± 0.0724 0.8833 ± 0.064 0.8821 ± 0.062 0.8821 ± 0.0688 0.9936 ± 0.0143
Relathe 0.825 ± 0.0205 0.8085 ± 0.0226 0.8121 ± 0.0228 0.8076 ± 0.0217 0.9525 ± 0.0193
Smkcan 0.6298 ± 0.0637 0.6255 ± 0.0551 0.6262 ± 0.0661 0.6135 ± 0.053 0.9986 ± 0.0053
Rank 5,60 6,49 6,82 7,47 -

z score 0,6413 0,3374 0,2220 0 -
p-value 0,5213 0,7358 0,8243 1 -

The second experiment (Table 3.4) employs the univariate feature selection method.

Instead of selecting a specific number of features, a p-value is computed using the ANOVA

F-test and a family wise error rate is used to select them with a 95% confidence level.

For high-dimensional datasets it is necessary to compute a feature selection method to

reduce the complexity of the problem. Nonetheless, this is not an easy task due to the

“curse of dimensionality”. Therefore, the feature selection method chosen must be fast

to compute because of the large number of features. This is the reasoning for choosing

a filter method as the feature selection approach. For this experiment, the FF statistical

value was 5.6171. Aposteriori, KNORA-U and KNOP-U had a lower rank when compared

with majority voting, nevertheless, these ranks are not statistically different.

The aforementioned results show that for all the datasets we tested with more features

than samples dynamic selection methods are statistically equivalent to a simple method

such as majority voting. This result differs from the recent reviews in the literature [4,

6] that showcased the higher performance of DS methods over majority voting on low-

dimensions datasets. Nonetheless, the filter feature selection method chosen was able to

reduce drastically the number of features (Table 3.5) and increase the performance of
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Table 3.4: Average accuracy, ranking, z-score and respective p-value for the classifiers that
had a lower rank when compared with majority with univariate feature selection based
on the ANOVA-F test with Family-wise Error rate and the oracle results

aposteriori knop u knora u majority voting oracle
Allaml 0.9111 ± 0.0682 0.9315 ± 0.0652 0.9333 ± 0.0664 0.9333 ± 0.0664 1 ± 0
Arcene 0.6907 ± 0.0593 0.7727 ± 0.065 0.7693 ± 0.0655 0.766 ± 0.0687 0.9913 ± 0.0123

Basehock 0.9048 ± 0.0144 0.9063 ± 0.0128 0.895 ± 0.0137 0.8929 ± 0.0136 0.9633 ± 0.0125
Colon 0.8625 ± 0.0987 0.7896 ± 0.0876 0.7896 ± 0.0876 0.7938 ± 0.0886 0.9688 ± 0.0419
Dexter 0.8949 ± 0.0262 0.9009 ± 0.0174 0.8976 ± 0.0166 0.8962 ± 0.0204 0.99 ± 0.0089

Gli 0.8864 ± 0.0721 0.8515 ± 0.0778 0.8545 ± 0.0866 0.8606 ± 0.0813 0.9924 ± 0.0169
Pcmac 0.8737 ± 0.0138 0.8684 ± 0.0186 0.8666 ± 0.0184 0.8641 ± 0.0153 0.9198 ± 0.0368

Prostate 0.8949 ± 0.0432 0.8936 ± 0.0656 0.8885 ± 0.0669 0.8897 ± 0.0657 0.9885 ± 0.0202
Relathe 0.8313 ± 0.0166 0.8274 ± 0.0204 0.8183 ± 0.0209 0.8139 ± 0.0204 0.9198 ± 0.0374
Smkcan 0.7553 ± 0.0568 0.7333 ± 0.0688 0.7369 ± 0.0685 0.7355 ± 0.074 0.9872 ± 0.0224
Rank 5,89 5,9 7,3 7,81 -

z score 0,6606 0,6585 0,1756 0 -
p-value 0,5089 0,5102 0,8606 1 -

most classifiers over all datasets.

The type of datasets used in our work might explain the reasons of our findings.

The datasets investigated have a far larger number of features compared to the number

of instances. This situation poses a problem for machine learning techniques for some

reasons: (1) wrapper methods require a reasonable computational time to select a subset

of features in a large search space, hence the selection of a filter technique to reduce the

dimensionality; (2) it is likely that there is insufficient data to cover the entire feature

space, because the reduction of dimensionality increased the performance of 97% of 22

classifiers over 10 datasets; (3) Euclidean distance does not work on high-dimensional

spaces since points are equally distance from one another.

We focused on demonstrating that DS methods did not have high performance levels

on datasets with high-dimensionality and low sample sizes when compared with a simple

Table 3.5: Number of features after applying the filter univariate feature selection based
on the ANOVA-F test with Family-wise Error rate

datasets Features before Filter Features after Filter Reduction
Allaml 7129 130 98,18%
Arcene 10000 937 90,63%

Basehock 4862 286 94,12%
Colon 2000 16 99,20%
Dexter 20000 36 99,82%

Gli 22283 265 98,81%
Pcmac 3289 59 98,21%

Prostate 5966 198 96,68%
Relathe 4322 126 97,08%
Smkcan 19993 63 99,68%



62 Chapter 3. Dynamic selection applied to high-dimensional datasets

MCS method such as majority voting. The results suggest that the Euclidean distance

used by most of the methods is not working and therefore an alternative must be proposed

for these types of dataset. Moreover, feature selection could be incorporate to the DS

framework to select the most important features for each sample. Although the results

suggest an increase in performance, they are still far from the oracle. This indicates that

the features selected might still not be the best subset.

In addition, due to the properties of high-dimensional spaces, clusters can be masked

[10]; and a phenomena called local feature relevance happens, i.e., different subsets of

features are relevant for different clusters [39]. This might explain the reason why the

accuracy after feature selection was still further apart from the oracle and further inves-

tigations must be conducted to overcome this issue and improve even further the results.

3.5.3 Conclusions

In this section, we investigated how DS methods perform on high-dimensional datasets,

more specifically those with a sample-feature ratio below one. We compared 21 DS meth-

ods against the majority voting method. Our approach used the Friedman test with the

Iman-Davenport correction to compare the averaged weighted ranking of each classifier

for all datasets. If the null-hypothesis is rejected, the Bonferroni-Dunn test is used as a

post-hoc test to compare all classifiers against a control (majority voting). Experiments

with and without feature selection were performed and showed that for high-dimensional

datasets the DS methods are statistically equivalent to the majority voting. For both

studies , with and without feature selection, the null-hypothesis of the FF statistic was

reject with a confidence of 99.99%. Moreover, in both studies, the Bonferroni-Dunn test

showed that none of the best ranked classifiers are statistically different from the major-

ity voting classifier, which contradicts most of the results in the literature. These results

indicate that modifications to the traditional DS framework could be beneficial.

The next section discusses how DS methods compare with single classifiers before

and after a wrapper feature selection approach using a protein microarray dataset.



3.6. DS on real-word data using a wrapper approach 63

3.6 DS on real-word data using a wrapper approach

In this section, the focus is to evaluate and compare single classifiers with DS methods

using a wrapper feature selection approach. Since we have to train and cross-validate

our model for each feature subset combination, this approach is much more expensive

than a filter approach. When compared to filter methods, a wrapper approach tends to

find features better suited to the predetermined learning algorithm resulting in superior

learning performance, but it also tends to be more computationally expensive which

increases with the number of features in the dataset. Since, the datasets studied on the

previous section have a high number of features, we decided to test this approach on

a protein microarray dataset which has less samples than features, but with a feasible

number of features for a wrapper approach. Here we used a wrapper backward selection

(WBS) with a RELM as the embedded model.

Protein microarrays are a powerful tool employed in allergy diagnostics, as it monitors

interactions between the immune system and allergens. In microarray data, there is

information regarding the fluorescence of binding signals, which are proportional to the

concentration of an antibody’s reaction to each spot containing allergens in the microarray.

As healthy and unhealthy animals are expected to mount different immune responses to

allergens, the analysis of existing microarray data should enable the determination of

prediction models for early diagnosis of allergies. Another important aspect of the study

of microarray data is that it generally carries a significant number of irrelevant features

leading to miss classification. The determination and pruning of those irrelevant features

tend to promote performance improvement.

Nine state-of-the-art classification methods (Logistic Regression [100], Linear and

Non-linear Support Vector Machines (SVM) [56, 57], Random Forest [53], Multi-Layer

Perceptron (MLP) Neural Networks [54, 55], AdaBoost [101], Naive Bayes [102], Lin-

ear Discriminant Analysis (LDA) [103, 104] and Regularized Extreme Learning Machine

(RELM) [81, 105]) were compared with 21 DS methods (Table 2.1).
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3.6.1 The Insect Bite Hypersensitivity dataset

A total of 196 horses comprising 49 non-affected (healthy) controls and 147 IBH-

affected horses are included in the study. A complex protein microarray containing 384

extracts and pure proteins from a wide range of protein families (e.g. fruit, dairy, seeds,

pollen, fungi, insects, fish) is assembled essentially as described by Marti et al. (2015)

[106]. The dataset does not contain missing values and is pre-processed according to the

scheme described by Vigh-Conrad et al. (2010) [107]. The authors normalise the data by

correcting the autofluorescence in both red and green channels [107]. They assume that

for each spot, the red channel intensity (R) is the sum of the fluorescence of the second

antibody - IgE (RIgE) and autofluorescence (RAF ); while the green channel intensity (G),

since is not affect by the second antibody, is, therefore, equal to its autofluorescence

(GAF ). On slides with buffer only, they observed that RAF = mGAF + b, in other words,

a linear relationship exists between the red and green channels [107]. RAF and GAF

were, therefore, obtained by applying linear models for each allergen separately, and the

resulting value of RAF was subtracted from R to obtain RIgE. By using this normalisation,

the final intensities are centered at 0. Finally, the data is further normalised for each

feature to have a range between 0 and 1.

3.6.2 Experimental Methodology

The same dataset employed by Marti et al. [106] to study equine insect bite hy-

persensitivity (IBH) is adopted in this study. The dataset contains 109 observations (66

healthy controls and 43 IBH diseased animals) described by 193 features. The minimum

value of this dataset is 0 and the maximum value is 874.91. The dataset does not contain

missing values. The dataset is pre-processed according to the scheme adopted by Marti et

al. [106], in which the negative control microarray data (consisting of all reagents except

the animal serum) was subtracted from the sample slide to eliminate non-specific binding

and inherent autofluorescence of some proteins; after the occurrence of this process, the

slides received a second normalization (Equation 3.2, where nx is the norm of a 1 by N
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vector x), involving the sum of absolute values of all expressions (associated with each

individual), in order to reduce technical variability. Finally, the data is mean centered

and scaled to unit standard deviation for each feature.

nx =
N∑
i=1
|xi| (3.2)

For evaluation of the results we employ classification area under the receiver operating

characteristic curve (AUC ) of each classifier.

The performance of the classifiers Näıve Bayes [102], Linear and Non-Linear (RBF

kernel) Support Vector Machines (SVM) [56, 57], Random Forest [53], Multi-Layer Per-

ceptron Neural Networks (MLP) [54, 55], AdaBoost [101], Logistic Regression and Linear

Discriminant Analysis (LDA) [103, 104] was investigated using the scikit-learn library in

Python [95]. The Regularized Extreme Learning Machine classifier was implemented in

MATLAB R2016a (The MathWorks, Inc., Natick, Massachusetts, United States), using

the proposal of Kulaif and Von Zuben [82].

For the classifiers, the following set of values are employed for the hyper-parameters,

before and after feature selection:

• Logistic Regression: inverse of regularization strength C = [0.001, 0.01, 0.1, 1,

10, 100, 1000].

• Linear SVM: penalty parameter of the hinge loss error C = [0.001, 0.01, 0.1, 1,

10, 100, 1000].

• Random Forest and Adaboost: Number of estimators = [2, 4, 8, 16, 32, 64,

128, 256, 512, 1024].

• MLP Neural Network: α (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10,

100], learning rate (initial learning rate used to control the step size in updating the

weights with adam solver) = [0.001, 0.01, 0.1, 1] and hidden layer sizes = [10, 20,

40, 100, 200, 300, 400, 500].

• Non-linear SVM with RBF kernel: γ (RBF kernel coefficient) = [0.0001, 0.001,
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0.01, 0.1] and C (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100, 1000].

• RELM: λ (L2 penalty parameter) = [0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100, 1000],

hidden layer sizes = [200, 201, 202, ..., 698, 699, 700], and random weights of the

hidden layer in the range [-0.5, 0.5].

• Naive Bayes and LDA: do not have hyper-parameters.

For the WBS approach, an RELM with λ (L2 penalty parameter) = [0.0001, 0.001,

0.01, 0.1, 1, 10, 100, 1000] and hidden layer size of 500 was adopted.

3.6.3 Results

Table 3.6 shows the accuracy results, before and after feature selection. Each ex-

periment is conducted thirty times. The numbers after the “±” symbol are standard

deviation.

The wrapper feature selection method implemented as the WBS with RELM as the

embedded model produced 36 features which are considered the most relevant. The third

column of Table 3.6 shows that the feature selection is able to remove redundant and non-

important proteins for the classification of IBH for most classifiers, since their performance

is improved after feature selection or remains the same.

Comparing the accuracy before and after feature selection, LDA has the highest

increase (36.82%), followed by Linear SVM with an increase of 26.53%. No classifiers

had an accuracy over 0.9 before feature selection, while 4 methods (Logistic Regression,

Linear SVM, RBF SVM and LDA) achieve an accuracy over 0.9 after feature selection.

Logistic Regression and SVM with RBF kernel have improvements of 16.74% and 14.96%.

Although the literature shows that DS methods usually have a higher performance when

compared with single classifiers or other ensemble techniques, for this specific dataset DS

under-performed.

These results can potentially be explained by the fact that the IBH microarray data

has far more features than samples. As the DS methods employ a bagging algorithm to

generate the pool of classifiers in different regions of the feature space, it has fewer in-
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Table 3.6: Accuracy Results in Insect bite Hypersensitivity dataset

Classifiers Before Feature Selection After Feature Selection
Logistic Regression 0.813 ± 0.024 0.949 ± 0.014
Linear SVM 0.741 ± 0.035 0.937 ± 0.016
RBF SVM 0.817 ± 0.024 0.939 ± 0.016
Random Forest 0.827 ± 0.021 0.894 ± 0.023
AdaBoost 0.885 ± 0.021 0.878 ± 0.017
Decision Tree 0.81 ± 0.032 0.818 ± 0.026
Naive Bayes 0.698 ± 0.021 0.767 ± 0.019
QDA 0.546 ± 0.042 0.606 ± 0
LDA 0.713 ± 0.036 0.975 ± 0.01
CR 0.829 ± 0.065 0.771 ± 0.068
MCR 0.793 ± 0.061 0.796 ± 0.068
OLA 0.839 ± 0.062 0.836 ± 0.056
LCA 0.761 ± 0.052 0.786 ± 0.066
RELM 0.803 ± 0.012 0.864 ± 0.031
Apriori 0.818 ± 0.069 0.811 ± 0.045
Aposteriori 0.725 ± 0.061 0.782 ± 0.095
MLA 0.832 ± 0.046 0.832 ± 0.028
DES-kNN 0.796 ± 0.08 0.804 ± 0.07
DES-kMeans 0.85 ± 0.076 0.814 ± 0.047
KNORA-E 0.857 ± 0.068 0.864 ± 0.045
KNORA-U 0.814 ± 0.079 0.8 ± 0.074
KNOP-E 0.873 ± 0.059 0.861 ± 0.037
KNOP-U 0.811 ± 0.064 0.8 ± 0.058
META-DES 0.876 ± 0.057 0.857 ± 0.06
DSOC 0.861 ± 0.056 0.814 ± 0.061
DES-RRC 0.832 ± 0.094 0.854 ± 0.046
DES-EXP 0.879 ± 0.064 0.857 ± 0.06
DES-KL 0.875 ± 0.058 0.857 ± 0.062
DES-MD 0.814 ± 0.061 0.839 ± 0.056
DES-P 0.875 ± 0.058 0.857 ± 0.062

stances available which do not allow the methods to create effective regions of competence

for classification.

3.6.4 Conclusions

Accurate diagnosis of a disease is vital for a successful therapy. Protein microarrays

are a powerful tool employed in allergy diagnostics in order to monitor interactions of

antibodies with allergens. In this section which indicates the results obtained by Maciel-

Guerra et al. (2019) [8], we investigated the use of DS methods in microarray data.
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We used an insect bite hypersensitivity dataset as our case study and compared the DS

results with traditional machine learning methods. We also compared the results of DS

with single and static classifiers before and after feature selection.

Machine learning classifiers along with WBE for feature selection were investigated.

A Regularized Extreme Learning Machine with WBS was used as a feature selection

method. We compared the classification results before and after WBS. The DS methods

did not have a higher increase in performance. In addition, most of the outputs of the

21 different DS models produced similar results. Nonetheless, most of single and static

classifiers had a higher increase in performance. These results may be explained by the

fact that this dataset has more features than samples, which leaves less samples to form

the region of competence, i.e., with few samples in a high-dimensional space, the k-NN

algorithm may not find the correct regions of competence for each unseen sample.

3.7 Chapter Summary

In this chapter, characteristics of high-dimensional datasets were investigated. In

particular, the hubness and distance concentration phenomena were discussed with ex-

periments showcasing the issues and challenges 11 real-world datasets have. Next, experi-

ments were conducted to investigate the challenges dynamic selection methods face when

dealing with small instance high-dimensional datasets. First, DS methods were tested on

synthetic data with different numbers of features and samples generated based on Trunk’s

classification problem. The results indicate that all DS methods had a decrease in per-

formance when the number of dimensions increase. Next, DS methods were compared

with majority voting and single classifiers on different feature selection approaches. First,

the performance of DS methods was tested on 10 real-world datasets and compared with

majority voting. A filter feature selection was implemented to evaluate the performance

before and after feature selection. The results showed that the performance of major-

ity voting was statistically equivalent in comparison to the DS methods. Second, nine

state-of-art classification methods were compared with 21 DS methods before and after

the feature selection with a wrapper backward selection in a protein microarray dataset.



3.7. Chapter Summary 69

The results indicate that single and static classifiers had a higher performance when com-

pared to the DS methods before and after the wrapper feature selection. Overall, these

results indicates that the traditional DS framework cannot be used on small instance

high-dimensional datasets, since the performance of the k-NN deteriorates as the number

of dimensions increases. In addition feature selection approaches, like filter and wrapper

methods, can improve the overall classification but they still fail to make the DS methods

statistically better than majority voting and single classifiers.

Therefore, the next chapter moves to propose a novel dynamic selection method based

on a subspace clustering algorithm to reduce the impacts of hubness and distance con-

centration in small instance high-dimensional datasets. The subspace clustering method

substitute the k-NN in the region of competence.
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4.1 Introduction

In this chapter, we introduce the SBDS framework (Figure 4.1), which aims to have

a better performance in high-dimensional, small instance datasets when compared to dy-

namic selection methods.. To achieve this, we propose to combine subspace clustering and

nearest subspace search. The objective is to improve feature relevance, while maintaining

or increasing the performance when compared with DS methods. The main difference of

SBDS over DS is the use of subspace clustering to search through the feature and sample

spaces for relevant clusters (equivalent to regions of competence in DS). By training dif-

ferent classifiers in distinct subspaces, we ensure that each classifier (or a combination of

70
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classifiers) is an expert in a different region of the feature space [4–6].

The core aim of this thesis is to provide a framework to evaluate high-dimensional

small instance datasets. In order to do this we developed a framework based on dynamic

selection with the addition of a subspace clustering method to improve the selection of

the features. Moreover, since the subspace clustering method gives the best features for

an specific group of samples we are able to further understand their importance. There-

fore, SBDS also helps with knowledge discovery which in biological datasets, genomics

for instance, can help understand which genes are more important for each sample. Spe-

cially, this chapter aims to answer one of our main research questions: ”How can we

incorporate subspace clustering methods to the DS framework?”
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Figure 4.1: Proposed SBDS framework. The red dashed square indicates the Step 1
(subspace clustering) and the blue dashed squared indicates Step 2 (k-Nearest Neighbour
Search and decision making).

This chapter first introduces an overview over each part of the framework in general

terms. The data generation process is explained, followed by how one dimensional clusters

are found and how they can be merged to form subspaces. After the merging procedure

some insights on how to select the subspaces are given. The chapter then moves to give

further details on the two version proposed for the SBDS framework: the SBDS (Section

4.3) and the Classifier SBDS (cSBDS) (Section 4.4). The core of the framework is kept

on both version with the main differences being on the following steps:
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1. Subspace clustering method

2. Addition of a filter method to improve subspace selection

3. Nearest Subspace Search

These differences are further discussed in sections 4.3 and 4.4 with the comparisons

and the rationale behind the differences explained.

4.2 Overview

In this section, we introduce each step of the proposed SBDS framework (Figure 4.1)

with the reasoning behind each step.

4.2.1 Generate Data

Data is normalised using a Min-Max approach, which scales the data between 0 and

1 for each feature. Then data is randomly divided into a training set and a testing set

using a stratified k-fold cross validation to preserve the proportion of samples for each

class.

4.2.2 Find One-Dimensional Clusters

Given a training dataset, we determine the clusters in each dimension using a Gaus-

sian Kernel Density Estimator (GKDE). A cluster is defined by a local maximum of the

estimated density function, i.e. all points near the local maximum are assigned to the

same cluster (Fig. 4.2).

A GKDE helps identify the density of a distribution of the data, i.e. it helps identify

where a group of samples is present and where is not present. Therefore, naturally it

can be used to cluster one dimensional data by creating clusters of points near a local

maxima (high density), separated by the points in a local minima (low density). For this

to happen, GKDE needs 4 steps:

1. normalise data
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Figure 4.2: Example of a Gaussian Kernel Density Estimator (GKDE) to find one-
dimensional clusters. Based on the density distribution of the points local minima and
maxima areas are established. The points between two local minima are considered a
cluster

2. compute densities

3. find areas of local maxima

4. find areas of local minima

5. the points between two local minima form a cluster

One of the most important aspects to find a suitable density estimator is the choice

of bandwidth. A bandwidth very narrow (values close to 0) can lead to a high-variance

estimate (over fitting), i.e. the presence or absence of a single point makes a large differ-

ence. On the other hand, a too wide bandwidth can lead to a high-bias estimate (under

fitting), where the topology of the data is lost. Therefore, a grid search cross-validation

is used to empirically optimise the bandwidth which maximises the data log-likelihood
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using a 20-fold cross validation.

4.2.3 Merging Procedure

After finding all one-dimensional clusters, a merge process is conducted to obtain the

subspace clusters. Here we adopt a general method based on Tian and Gu (2019) [87].

The authors proposed to first merge similar clusters with different subspaces by using the

Jaccard coefficient. In addition, if a cluster is contained in another cluster (in terms of

samples) they must be merged [87]. The summary of the merging process is the same as

the one proposed by Tian and Gu (2019) [87] and is described as follows:

Step 1 : set an empty set D

Step 2 : choose one dimension that has not been merged and determine its clusters

using a GKDE

Step 3 : choose one cluster of the current dimension

Step 4 : compare the selected cluster with all subspace clusters in D to find if there

is a similar cluster by computing the Jaccard coefficient (Equation 4.1). If no similar

subspace exists, go to Step 7

Step 5 : merge the chosen cluster with its similar one

Step 6 : compare the selected cluster with all subspace clusters in D to find if it is

contained in another subspace (Equation 4.2). If it is merge them and go to Step 8

Step 7 : add the selected subspace to D and compare the selected cluster with all

subspaces in D to find if there is one that contains it. If there is, merge them

Step 8 : if all cluster of current dimension are selected, go to Step 9. Otherwise go

to Step 3

Step 9 : if all dimensions are merged, return D. Otherwise go to Step 2.
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The Jaccard coefficient to measure the similarity between two subspaces is defined

as:

J(E,F ) = |E ∩ F |
|E ∪ F |

(4.1)

where E and F are the samples of two subspaces. The containment relationship of E and

F is defined as:

C1(E,F ) = |E ∩ F |
|E|

C2(E,F ) = |E ∩ F |
|F |

(4.2)

if C1(E,F ) is close to 1 (in this case the threshold is set at 0.9) and C2(E,F ) have a

smaller value (below the set threshold), E is contained in F . On the other hand, if

C2(E,F ) is close to 1 (in this case the threshold is set at 0.9) and C1(E,F ) have a smaller

value (below the set threshold), F is contained in E.

After the merging procedure we have all the subspaces found for the dataset.

4.2.4 Subspace Selection

For each unknown test sample, we need to determine the nearest or best subspaces

to classify our unseen sample. We propose two versions of the SBDS framework which

mainly differ in this aspect of the framework. Version 1 is proposed on the work Maciel-

Guerra et al., 2020 [42] where a 7-nearest subspace search is performed using a distance

metric. Version 2 selects the best subspaces based on the performance of a RBF-SVM

classifier.

The next section describes the first version of the SBDS framework in more details.

Moreover, it argues the advantages and disadvantages of using this version.
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4.3 Subspace-Based Dynamic Selection (SBDS) frame-

work

In this section, we introduce the proposed SBDS framework (Algorithm 1) which

aims to merge different concept of DS, subspace clustering and nearest subspace search.

The objective of this framework is to improve feature relevance in high-dimensional small-

instances datasets while maintaining or increasing the performance when compared with

DS methods. The advantage of SBDS over DS is the use of subspace clustering to search

through the feature and sample spaces for relevant clusters (equivalent to regions of com-

petence in DS). By training different classifiers in distinct subspaces, we ensure that each

classifier (or a combination of classifiers) is an expert in a different region of the feature

space [4–6]. Moreover, in practical problems, different instances have different classifica-

tion difficulties and may be located in different subspace clusters. Hence, our hypothesis

is that adopting different subspaces to predict different test samples may increase the

performance of a multiple classifier system [4, 48].

Therefore, the first version of the SBDS framework consists of finding possible clusters

for each individual dimension using a GKDE approach which uses all samples regardless

of their class. The example given in Figure 4.2 indicates how the one-dimensional cluster

is selected using all the samples. Subsequently, a merging process is conducted to combine

the one-dimensional clusters to form the subspaces. After the merging process, we train

one k-NN classifier per subspace cluster, iff the subspace contains samples for more than

one class. Otherwise, if the subspace contains just one class, we don’t train a k-NN on it.

The next step is to find the nearest subspaces to each test sample in order to make their

prediction.

For each unknown test sample, we need to determine the 7-nearest subspaces. The

number of subspaces is the same as that used in most papers in DS to define the size

of the region of competence. This step measures the similarity between a point and a

subspace.

We first calculate the centroid Ci for each subspace S i, by calculating the average
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for each feature for all instances in S i. Subsequently, we measure the average Euclidean

distance (dSc) between all points in S i and Ci. We also calculate the Euclidean distance

(dTc) between the test sample Q (using only the dimensions within S i) and Ci.

The ratio between the two distances dTc and dSc is calculated to verify whether

the instance Q belongs to the subspace. However, we observed that this ratio does not

remain constant as the dimensionality increases. High-dimensional data produces higher

distance values, which adds bias toward the k-nearest low dimensional subspaces, since

we are selecting the k smallest ratios. To prevent this bias the ratio needs to be multiplied

by a function of the dimension, in a way that the ratio between Q and all subspaces are

comparable.

Equation 4.3 therefore gives the final value used to compare the point-to-subspace

similarities. The multiplier factor 1
1+
√

(dim)∗ln(dim)
was found empirically for the IBH

dataset. Finally, the 7 smallest ratios are selected.

R = dTc
dSc
∗ 1

1 +
√
dim ∗ ln(dim)

(4.3)

where dim is the dimension of the subspace.

The predictions are given by the 7 classifiers (if more than one class is present) or

the original class (if a single class is present) associated with each one of the 7-nearest

subspaces, and a majority voting is used to define the label of the test sample.

4.3.1 Experimental Methodology

For evaluating the results we employ accuracy, sensitivity and specificity for each

classifier. The experiment is carried out using 30 replications. For each replication, the

datasets are randomly divided as 75% for training and 25% for testing. These divisions

are performed preserving the proportion of samples for each class by using the stratified

k-fold cross validation function in the scikit-learn [95] library.

The same DS methods used are listed in Table 2.1. More information about each

method can be found on their respective reference and on the Appendix A. Similarly

to Maciel-Guerra et al. (2019) [8], 11 decision trees are used to compose the pool of
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Algorithm 1: Subspace-Based Dynamic Selection (SBDS)
input : dataset D
output: υ
/* υ is the array with the predicted label for all samples in L */

1 Split the data into training T and testing L ;
2 foreach feature ∈ D do
3 Use a GKDE approach to define the one-dimensional cluster;
4 Apply a merging procedure to create the subspaces
5 end
6 foreach xtest ∈ L do
7 Calculate the centroid Ci for each subspace S i, by averaging each feature for

all instances in S i ;
8 Measure the average Euclidean distance (dSc) between all points in S i and Ci ;
9 Calculate the Euclidean distance (dTc) between the test sample Q (using only

the dimensions within S i) and Ci ;
10 Calculate the ratio between the two distances dTc and dSc and apply a

multiplier factor 1
1+
√

(dim)∗ln(dim)
;

11 Select the 7-nearest subspaces; Predict the label of xtest using the 7 selected
subspaces;

12 end

classifiers. The size of the region of competence is set to 7 for all techniques based on

k-NN.

4.3.2 Results

In our experiment, SBDS is compared with some state-of-art machine learning meth-

ods and some of the most import DS methods in the literature using a protein microarray

dataset. Table 4.1 shows accuracy, sensitivity and specificity results for all techniques

mentioned on Table 2.1. The numbers after the “±” symbol are standard deviation.

From the obtained results in Table 4.1 it is relevant to observe that all methods

learned better the majority class. Moreover, our proposed SBDS framework performed

better in terms of accuracy (0.7986) than all DS methods investigated. A posteriori had

the highest sensitivity (0.9811) and DES-kMeans the highest specificity (0.5166).

These results in a single dataset indicate that SBDS is able to achieve similar results

by having an embedded subspace clustering method. This allows us to verify which

features were selected in each subspace to predict the label of the unknown test sample.
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Table 4.1: Accuracy, sensitivity and specificity results of the IBH dataset

Classifiers Accuracy Sensitivity Specificity
SBDS 0.7986 ± 0.0455 0.9270± 0.0389 0.4027± 0.1199
CR 0.7217± 0.0659 0.8171± 0.0747 0.4277± 0.1133
MCR 0.7612± 0.0522 0.8936± 0.0512 0.3527± 0.1605
OLA 0.7245± 0.0493 0.8405± 0.0551 0.3666± 0.1151
LCA 0.7177± 0.0582 0.8288± 0.0765 0.3750± 0.1268
A Priori 0.7231± 0.0631 0.8234± 0.0727 0.4138± 0.1317
A Posteriori 0.7599± 0.0222 0.9811 ± 0.0253 0.0777± 0.0984
MCB 0.7265± 0.0684 0.8315± 0.0884 0.4027± 0.1219
MLA 0.6844± 0.0474 0.7801± 0.0623 0.4055± 0.1268
DES-kMeans 0.7299± 0.0547 0.7990± 0.0661 0.5166 ± 0.1280
DES-kNN 0.7442± 0.0473 0.8676± 0.0546 0.3638± 0.1402
KNORA-E 0.7361± 0.0666 0.8180± 0.0754 0.4833± 0.1298
KNORA-U 0.7803± 0.0437 0.9234± 0.0503 0.3388± 0.1234
DES-EXP 0.7578± 0.0598 0.8585± 0.0867 0.4472± 0.1603
DES-RRC 0.7768± 0.0477 0.9189± 0.0563 0.3388± 0.1359
DES-MD 0.7578± 0.0598 0.8585± 0.0867 0.4472± 0.1603
DES-KL 0.7626± 0.0607 0.9009± 0.0772 0.3361± 0.1352
DES-P 0.7782± 0.0389 0.9072± 0.0472 0.3805± 0.1069
KNOP-E 0.7211± 0.0639 0.8171± 0.0757 0.4250± 0.1125
KNOP-U 0.7823± 0.0429 0.9351± 0.0455 0.3111± 0.1137
Meta-DES 0.7401± 0.0582 0.8387± 0.0727 0.4361± 0.1192
DSOC 0.7694± 0.0508 0.9045± 0.0566 0.3527± 0.1547

Therefore, our method poses an advantage in comparison to DS methods in terms of giving

this additional information of which are the most important features for each sample.

Table 4.2 shows which features were most selected by the 7-Nearest Subspace Search

over all test samples in the 30 iterations. The 16 out of the 21 proteins are related to the

Culicoides sp. allergome family that are clinically the cause of IBH in horses.

4.3.3 Discussion

To overcome the issue of using a k-NN in high-dimensional feature spaces, this thesis

suggests the use of subspace clustering. The first version of the Subspace-Based Dynamic

Selection (SBDS) framework [42] is created based on this idea, and the incorporation

of a subspace clustering method attempts to narrow the search of important features

using a specific set of samples. Moreover, by using a subspace clustering technique,

SBDS naturally gives the importance of each feature in relation to the prediction of each
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Table 4.2: Frequency of proteins that were selected in the 7-Nearest Subspace Search

Allergome name Latin name Appearance
Api g [Root] Apium graveolens 81.70%
Cul n 10.03 Culicoides nubeculosus 78.88%
Cul o2P Culicoides obsoletus 77.78%
Mal d [Fruit] Malus domestica 77.78%
Cul o 7 Culicoides nubeculosus 76.98%
Cul o 7 Culicoides nubeculosus 73.89%
Cul o 7 Culicoides nubeculosus 71.40%
Culicidae Cul E culicidae 71.24%
C0145 Culicoides obsoletus 64.07%
Cul ob 8 Culicoides obsoletus 61.81%
Mus xp Musa x paradisiaca 60.80%
Pru p 3 Prunus persica 57.96%
Bos d 4 Bos domesticus 57.93%
Cul o1P Culicoides nubeculosus 57.64%
Cul o 7 Culicoides nubeculosus 56.63%
Cul n 4 Culicoides nubeculosus 56.05%
Cor a 9 Corylus avellana 55.65%
Culicidae Cul C culicidae 54.18%
Cul o 1 Culicoides nubeculosus 53.64%
Culicidae Cul D culicidae 53.04%
Cul o 4 Culicoides obsoletus 50.80%

unknown test samples. Thus making it a more explainable technique when compared to

complex DS methods. Nonetheless, the proposed SBDS framework [42] has a disadvantage

of relying in a empirical multiplier factor to find the nearest subspaces of an unknown

test sample. This multiplier factor was initially introduced to make distances based on

different dimensions comparable.

The SBDS framework presented has two limitations based on the dataset investigated:

(1) the subspaces were found by using samples from both classes on the dataset; (2)

the framework uses a multiplier factor that was found empirically for this dataset in

the distance calculation to determine which is the closest subspace to the unknown test

sample. By overcoming these limitations we hypothesise that the performance of the

SBDS framework could be improved in comparison to DS methods.

The first limitation is important because some subspaces could be lost since the one-

dimensional cluster depends on the Gaussian kernel density estimator approach. In some

cases, if the points from different classes are not clearly separated, the approach proposed
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for the SBDS framework will disregard this dimension. However, when analysing the

classes separately the differences between these points could be accounted for. In addition,

the second limitation is important because the multiplier factor was determined for the

IBH dataset, and may not be the correct one for other datasets.

Nonetheless, SBDS achieved the highest accuracy over all DS methods, but did not

achieve the highest sensitivity and specificity. Moreover, it has the advantage of showing

which features were selected for the classification of each test sample. This is important

for accurate diagnosis of a disease and it is vital for a successful treatment. Moreover,

precision diagnostic of each separate individual allows doctors to give personalised treat-

ment. The proposed SBDS algorithm brings this possibility by incorporating a subspace

clustering method into the DS framework.

The next section presents the modified version of the SBDS framework and compare

the two approaches with other high-dimensional datasets. Also, it describes how it is

possible to improve the nearest subspace search by investigating different approaches to

select the subspaces and if changes in the way subspaces are generated can improve the

performance.

4.4 Classifier SBDS (cSBDS) framework

In this section, we introduce a modified version of the SBDS framework to tackle high-

dimensional problems in which there is no multiplier factor, making it more general to

be used in different datasets. Moreover, modifications were made on the subspace finding

algorithm. The focus of this section is to compare the modified framework with the one

presented in the previous section and with traditional DS methods using high-dimensional

datasets. This section attempts to answer the following research questions:

1. How does the cSBDS framework performs in high-dimensional small instance dataset?

2. Can the proposed cSBDS framework outperform the original SBDS framework?

3. Can the modified SBDS framework select less features?
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4. How does the performance of the cSBDS framework compare with traditional DS

methods and majority voting?

To answer these questions, 10 real-world datasets with a high number of features and a low

number of samples are selected. Three datasets are text based while seven are biomedical

datasets all related to different types of cancer (lung, prostate, leukemia, colon, glioma

and ovarian).

The main differences between the proposed cSBDS framework (Algorithm 2) when

compared to one proposed in the previous section are:

1. The subspaces are selected per class using the GKDE one-dimensional clustering

approach.

2. A filter to select previously the most relevant subspaces

3. The removal of the distance metric to find the closest subspaces

4. The incorporation of a RBF-SVM trained in each subspace in the k-Nearest Sub-

space Search step.

Further details of each stage of the cSBDS framework are described below:

Generate Data In the cSBDS framework the data is randomly divided into 50%

for the training set, 25% for the validation set and 25% for the testing set using a

stratified k-fold cross validation to preserve the proportion of samples for each class.

Find One-Dimensional Clusters Given a training dataset, we determine the clus-

ters in each dimension using a GKDE. Differently from the original SBDS framework,

in which the GKDE is used in the whole set of the training samples; the cSBDS frame-

work determine the clusters using the samples from each class separately. Figure 4.3

indicates the difference between the proposed approach on the SBDS and the one

proposed here. This example shows that for this feature if we used all the samples

regardless of their class, no clusters would have been found. Nonetheless, by hav-

ing the GKDE done on each class it is possible now to identify two clusters for this

feature.
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Figure 4.3: Comparison between the Gaussian Kernel Density Estimator (GKDE) ap-
proach on the SBDS and the cSBDS to find one-dimensional clusters.

Merging Procedure After all one-dimensional clusters, a merge process is con-

ducted to obtain the subspace clusters. The merging procedure is conduct for each

class individually, creating subspaces with only one class. Here we adopt a general

method based on Tian and Gu (2019) [87] and further described on Section 4.2.3.

k-Nearest Subspace Search After the merging process, all the one-dimensional

subspaces are removed. Next, one RBF-SVM classifier was trained per subspace

and evaluated using the validation set. Since each subspace is formed by a singles

class, the classifier is trained on the entire set of the training samples, but only

on the features for each subspace. A grid search for the gamma kernel coefficient

(0.0001, 0.001, 0.01, 0.1) and the regularisation parameter (0.001, 0.01, 0.1, 1, 10, 100, 1000)

was used to identify the best hyper-parameters. A filter approach was used to re-

move the subspaces that did not achieve a threshold delta of performance in terms

of accuracy, which is reduced by 5% iff the number of subspaces selected is below
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7. For each unknown test sample, the RBF-SVM classifiers trained in the previous

steps are used to predict the class of each unknown test sample. Majority voting is

used to determine the final class and the subspaces used to determine it.

Algorithm 2: Classifier SBDS (cSBDS)
input : dataset D
output: υ
/* υ is the array with the predicted label for all samples in L */

1 Split the data into training T, validation V and testing L ;
2 foreach feature ∈ D do
3 Use a GKDE approach to define the one-dimensional cluster using each class

separately;
4 Apply a merging procedure to create the subspaces ;
5 Remove the 1-dimensional subspaces ;
6 Train one RBF-SVM classifier in each subspace using the entire set of the

training samples ;
7 Select the best hyper-parameters and evaluate using the validation set ;
8 end
9 foreach xtest ∈ L do

10 Filter the subspaces using the validation set that did not achieve a threshold
delta of performance in terms of accuracy, which is reduced by 5% iff the
number of subspaces selected is below 7. ;

11 Predict the label of xtest using the RBF-SVM ;
12 Use a majority voting to determine the label of xtest and output only the

subspaces that predicted that label ;
13 end

4.4.1 Experimental Methodology

All techniques are implemented using the scikit-learn [95] and the DESlib [96]

libraries in Python. For evaluating the results we employ accuracy, sensitivity and speci-

ficity for each classifier. The experiment is carried out using 30 replications. For each

replication, the datasets are randomly divided as 75% for training and 25% for testing

for the original version of the SBDS framework. For the cSBDS framework, the datasets

are randomly divided in 50% for the training set, 25% for the validation set and 25%

for the test. These divisions are performed preserving the proportion of samples for each

class by using a stratified k-fold cross validation. For both the SBDS and the cSBDS, the

threshold for the Jaccard coefficient and the containment relationship were set to 90%.
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Moreover, for the cSBDS framework, the threshold δ was set initially to 90% to filter the

subspaces after they have been merged.

For the DS methods (Table 2.1), the pool of classifiers is composed of 11 decision

trees, as suggested by Woloszynski et al. (2012) [67], with pruning level set to 10. The

pool is generated using the bagging technique, similarly to the methodology followed by

Woloszynski in [29, 67].

In the DS methods, following the recent survey on DS techniques [4], the size of the

Region of Competence K is set to 7 neighbours for all the techniques based on k-NN.

Therefore, to be consistent with this finding for the DS methods, we selected 7 subspaces

to predict the unknown test samples in the original SBDS frameworks [42]. Also, because

the odd number of classifiers helps to overcome decision ties.

4.4.2 Comparative studies showcasing the details of the changes

made to the SBDS framework

In this section, we present the modifications done into the original SBDS framework

to create the cSBDS.

4.4.2.1 Comparative study - changes in the k-Nearest Subspace Search (step

2) of the original SBDS version

In this section, we compare the modifications made into the original SBDS frame-

work in regards to how the k-Nearest subspace search is done. The original version of

the SBDS framework [42] selected the 7 closest subspaces in relation to each unknown

test sample, in terms of the Euclidean Distance and the centroids of the subspaces. In

this calculation the authors proposed a multiplying factor that was found empirically to

be able to compare the distance within different subspaces with a different number of

features. The objective of this study is to answer to the research questions: (1) How

the modified SBDS framework performs in high-dimensional small instance dataset? (2)

Can the original SBDS framework be improved by changing the k-nearest subspace search

step?
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The first proposed improvement in this part of the framework was to substitute the

distance calculation with a k-NN classifier. One classifier was trained per subspace and

evaluated using a nested cross validation with a grid search over the number of nearest

neighbours ranging from 7 to 14. The 7 subspaces with the highest accuracy are selected

and a majority voting is used to define the label of the unknown test sample. Therefore,

by adopting the accuracy of a 7-NN to select the most similar subspaces, we theoretically

improved the SBDS framework so it could be applied to different datasets without the

need to find empirically to each one the multiplier factor.

Classification accuracy, sensitivity and specificity are reported on Table 4.3. The

results in black indicate that there is no statistical difference in terms of the Wilcoxon

Rank Sum test, while the results in red indicate that the performance is statistically

better and in blue statistically worst with a level of significance of α = 0.05. In 50%

of the datasets the proposed new method to select the subspaces using a k-NN had a

statistically better accuracy, in two cases (Basehock and Relathe) with an improvement

over 15%.

The five datasets (Basehock, Colon, Dexter, Leukemia and Relathe), which had a

statistical improvement in their performance, are composed of discrete features, whilst

the other 5 datasets are composed of continuous features. This could indicate that the

multiplier factor employed on the SBDS framework is more sensitive to discrete data.

Table 4.3: Performance metrics (accuracy, sensitivity and specificity) for the original
SBDS subspace acquisition and for two subspace selection methods: 1.the distance selec-
tion method that was introduced by Maciel-Guerra et al. 2020 [42]; 2. the kNN selection
modification

Distance kNN
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Allaml 83.70 ± 6.40 52.77 ± 17.78 99.16 ± 2.50 87.67 ± 7.80 62.22 ± 21.05 98.89 ± 3.56
Arcene 79.40 ± 5.35 83.48 ± 6.15 76.19 ± 7.16 79.53 ± 5.05 83.03 ± 7.87 76.79 ± 6.70

Basehock 75.18 ± 2.43 75.75 ± 9.34 74.61 ± 9.65 91.07 ± 1.69 88.47 ± 3.60 93.48 ± 3.43
Colon 62.92 ± 7.20 16.67 ± 13.61 90.67 ± 9.98 71.04 ± 8.15 43.89 ± 19.95 87.33 ± 11.23
Dexter 72.27 ± 3.42 81.16 ± 11.19 63.38 ± 12.33 80.76 ± 4.46 84.67 ± 7.17 76.84 ± 9.18
Gli85 81.06 ± 7.05 87.78 ± 8.09 66.67 ± 16.22 81.52 ± 6.09 90.44 ± 7.03 62.38 ± 15.86

Leukemia 83.33 ± 6.42 53.89 ± 18.09 98.06 ± 4.13 88.52 ± 8.72 71.67 ± 25.15 96.94 ± 5.89
Prostate 82.43 ± 7.34 82.56 ± 9.51 82.31 ± 10.15 82.31 ± 6.99 84.10 ± 7.93 80.51 ± 12.36
Relathe 66.48 ± 3.36 86.63 ± 8.31 49.74 ± 10.12 83.86 ± 2.22 87.80 ± 4.10 80.58 ± 4.51
Smkcan 70.92 ± 7.13 80.97 ± 9.48 60.43 ± 12.47 69.22 ± 5.43 78.06 ± 11.33 60.00 ± 12.57

1 The black colour indicates statistically equivalent, the red colour indicates statistically significant better and the blue
colour indicates statistically significant worst. These results are based on the Wilcoxon rank sum test with a confidence
level of 95%.
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The second proposed improvement in this part of the framework was to substitute

the k-NN classifier with a Radial Basis Function Support Vector Machine (RBF-SVM).

One classifier was trained per subspace and evaluated using nested cross validation with a

grid search for the gamma kernel coefficient (0.0001, 0.001, 0.01, 0.1) and the regularisation

parameter (0.001, 0.01, 0.1, 1, 10, 100, 1000).

Classification accuracy, sensitivity and specificity are reported on Table 4.4. The

results in black indicate that there is no statistical difference in terms of the Wilcoxon

Rank Sum test, while the results in red indicate that the performance is statistically

better and in blue statistically worst with a level of significance of α = 0.05. In 90% of

the datasets the proposed new method to select the subspaces using a RBF-SVM had a

statistically better accuracy. Interestingly, the only dataset, which the classification was

statistically equal in terms of accuracy, was the Colon dataset. This dataset has discrete

features, has the least number of samples (62) and an uneven class distribution (64.5 -

35.5%) which makes it a difficult dataset for any method to learn.

Thus, based on the analysis we can answer the two research questions: the modified

version of the SBDS framework does indeed significantly improve the classification perfor-

mance of the system. In addition, we can see that the use of an RBF-SVM as the classifier

method to select the subspace during the second step of the SBDS framework should be

considered when compared with the distance metric and the k-NN. This indicates that

the use of the empirical factor on the distance metric in the original SBDS framework

should be avoided.

4.4.2.2 Comparative study - changes in the subspace clustering selection

(step 1) of the original SBDS version

In this section, we compare the modifications made into the original SBDS framework

in regards to how the subspace are selected. Given a training dataset, we determine the

clusters in each dimension using a GKDE. In the original SBDS version [42], a cluster is

defined by a local maximum of the estimated density function, i.e. all points near the

local maximum are assigned to the same cluster. Here, the definition of the cluster is
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Table 4.4: Performance metrics (accuracy, sensitivity and specificity) for the original
SBDS subspace acquisition and for two subspace selection methods: 1 the kNN selection
modification; 2. the RBF-SVM selection modification

kNN RBF-SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Allaml 87.67 ± 7.80 62.22 ± 21.05 98.89 ± 3.56 92.78 ± 6.11 83.33 ± 15.52 97.50 ± 4.38
Arcene 79.53 ± 5.05 83.03 ± 7.87 76.79 ± 6.70 86.4 ± 4.36 84.7 ± 7.09 87.74 ± 4.29

Basehock 91.07 ± 1.69 88.47 ± 3.60 93.48 ± 3.43 95.74 ± 0.95 94.68 ± 1.62 96.80 ± 1.41
Colon 71.04 ± 8.15 43.89 ± 19.95 87.33 ± 11.23 73.13 ± 11.65 52.22 ± 21.83 85.67 ± 12.57
Dexter 80.76 ± 4.46 84.67 ± 7.17 76.84 ± 9.18 89.16 ± 2.18 90.76 ± 3.25 87.56 ± 3.57
Gli85 81.52 ± 6.09 90.44 ± 7.03 62.38 ± 15.86 87.58 ± 5.98 96.22 ± 4.77 69.05 ± 16.94

Leukemia 88.52 ± 8.72 71.67 ± 25.15 96.94 ± 5.89 94.63 ± 4.86 85.56 ± 14.10 99.17 ± 2.50
Prostate 82.31 ± 6.99 84.10 ± 7.93 80.51 ± 12.36 90.90 ± 5.39 87.95 ± 7.87 93.85 ± 5.40
Relathe 83.86 ± 2.22 87.80 ± 4.10 80.58 ± 4.51 88.32 ± 1.41 87.86 ± 2.66 88.70 ± 2.72
Smkcan 69.22 ± 5.43 78.06 ± 11.33 60.00 ± 12.57 71.84 ± 6.26 81.25 ± 11.06 62.03 ± 12.55

1 The black colour indicates statistically equivalent, the red colour indicates statistically significant better and the blue
colour indicates statistically significant worst. These results are based on the Wilcoxon rank sum test with a confidence
level of 95%.

the same, but the search is conducted in each class independently, whilst in the original

version all the points were used regardless of their class.

After finding all one-dimensional clusters, a merge process is conducted to obtain the

subspace clusters. Here we adopt a general method based on Tian and Gu (2019) [87].

The same method was used in this thesis.

After the merging process, all the one dimensional subspaces are removed and we

train one classifier per subspace. Since each subspace is formed by a single class, we

decided to use all the samples in the training set and only the features that were selected

for the subspace. Next, we tested each classifier on the validation set and selected the

ones with an accuracy over a initial threshold δ, if less than 7 subspaces were selected,

δ is decreased by 5% until 7 subspaces or more are selected. The objective of this study

is to answer to the research questions: (1) How the modified SBDS framework performs

in high-dimensional small instance dataset? (2) Can the original SBDS framework be

improved by changing subspace clustering step? (3) Can the modified SBDS framework

select less features?

Classification accuracy, sensitivity and specificity are reported on Table 4.5 for the

original SBDS version [42] against the proposed SBDS framework with a novel way to

select the subspaces and with a k-NN as the classifier in the k-Nearest Subspace Search.

It is interesting to notice that the three datasets (Basehock, Dexter and Relathe), that
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achieved a statistically better accuracy performance in the proposed SBDS framework, are

text based datasets with discrete features created using a bag-of-words model. These three

datasets are also the only ones closer to a 50-50% class distribution. Moreover, in two of

these datasets (Dexter and Relathe) the difference between sensitivity and specificity was

reduced using the new proposed method, which was the overall aim of creating this new

method to select the subspace, i.e. by attempting to find one-dimensional clusters per

class we aim to remove the influence of class distribution in the selection of subspaces.

Table 4.5: Performance metrics (accuracy, sensitivity and specificity) for the original
SBDS framework and for the modified framework proposed in this work with a novel
subspace acquisition method and a kNN subspace selection method

Original Modified
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Allaml 83.70 ± 6.40 52.77 ± 17.78 99.16 ± 2.50 85.56 ± 9.03 59.44 ± 25.34 98.61 ± 3.78
Arcene 79.40 ± 5.35 83.48 ± 6.15 76.19 ± 7.16 78.53 ± 5.80 80.61 ± 8.93 76.90 ± 8.08

Basehock 75.18 ± 2.43 75.75 ± 9.34 74.61 ± 9.65 82.57 ± 4.54 73.68 ± 12.27 91.49 ± 9.55
Colon 62.92 ± 7.20 16.67 ± 13.61 90.67 ± 9.98 66.67 ± 9.99 25.56 ± 24.62 91.33 ± 10.24
Dexter 72.27 ± 3.42 81.16 ± 11.19 63.38 ± 12.33 76.53 ± 4.94 74.36 ± 8.92 78.71 ± 10.44
Gli85 81.06 ± 7.05 87.78 ± 8.09 66.67 ± 16.22 83.03 ± 7.69 92.44 ± 7.04 62.86 ± 17.14

Leukemia 83.33 ± 6.42 53.89 ± 18.09 98.06 ± 4.13 83.33 ± 9.18 56.11 ± 26.35 96.94 ± 6.97
Prostate 82.43 ± 7.34 82.56 ± 9.51 82.31 ± 10.15 82.05 ± 7.84 83.85 ± 8.96 80.26 ± 12.67
Relathe 66.48 ± 3.36 86.63 ± 8.31 49.74 ± 10.12 78.33 ± 2.99 90.21 ± 7.29 68.46 ± 4.62
Smkcan 70.92 ± 7.13 80.97 ± 9.48 60.43 ± 12.47 67.94 ± 7.96 74.58 ± 11.50 61.01 ± 12.42

1 The black colour indicates statistically equivalent, the red colour indicates statistically significant better and the blue
colour indicates statistically significant worst. These results are based on the Wilcoxon rank sum test with a confidence
level of 95%.

Since the proposed modification impacts the number of subspace and consequently

the possible number of features selected in each framework we have also analysed the

number of subspaces and features in each one. Table 4.6 indicates the number of subspaces

and features selected in the original SBDS framework, which is based on a subspace

clustering method that uses all the samples, and the modified version, which is based on

a subspace clustering method that uses samples from a single class at each time. Although

the majority of the datasets (70%) had a statistically equivalent accuracy performance,

Table 4.6 shows that in 90% of the datasets the modified version had a lower average

of features being selected, with 50% of the datasets having more subspaces. Therefore,

based on this analyses we can answer the three research questions proposed for at the

beginning of this section: the modified version of the SBDS framework was able to have

an statistically equivalent performance on 70% of the datasets and a statistically better
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performance in 30% of them based on the accuracy level even though it selected less

features in 90% of the datasets. This indicates that the modified version is better selecting

the most important features.

Table 4.6: Number of subspaces and features comparison between the original SBDS
framework and the modified framework proposed in this work with a novel subspace
acquisition method

datasets Subspaces Original Subspaces Modified Features Features Original Features Modified Reduction

Allaml 257.57 ± 7.46 146.0 ± 26.04 7129 3417.57 ± 65.17 2294.63 ± 88.55 67.81%
Arcene 325.93 ± 11.75 313.47 ± 18.56 10000 9884.77 ± 12.87 9668.73 ± 27.27 3.31%

Basehock 320.8 ± 5.36 435.0 ± 9.55 4862 4860.97 ± 1.11 2823.93 ± 85.32 41.92%
Colon 389.5 ± 148.08 75.3 ± 22.85 2000 1989.5 ± 9.45 1703.73 ± 81.89 14.81%
Dexter 432.93 ± 5.62 495.3 ± 11.14 20000 9605.63 ± 68.48 3330.23 ± 53.67 83.35%

Gli 934.5 ± 16.24 359.17 ± 61.1 22283 13852.7 ± 197.66 10313.77 ± 220.2 53.71%
Leukemia 561.57 ± 118.82 152.8 ± 22.8 7070 7030.57 ± 7.8 6945.43 ± 13.08 1.76%
Prostate 137.6 ± 12.38 164.8 ± 19.06 5966 5271.2 ± 74.58 5091.43 ± 112.9 14.66%
Relathe 336.73 ± 7.26 467.03 ± 12.79 4322 4321.57 ± 0.56 2677.37 ± 59.75 38.05%
Smkcan 326.6 ± 19.04 2009.0 ± 289.13 19993 10382.03 ± 484.32 11732.93 ± 541.93 48.07%

1 The black colour indicates statistically equivalent, the red colour indicates statistically significant more subspaces/features and the blue
colour indicates statistically significant less subspaces/features. These results are based on the Wilcoxon rank sum test with a confidence
level of 95% for the comparison of the number of subspaces and the number of features in each framework.
2 The reduction column indicates the largest reduction in terms of features when compared with the original number of features

4.4.2.3 Comparative study - changes in the k-Nearest Subspace Search (step

2) of the step 1 modified SBDS version

In this section, we aim to evaluate if an RBF-SVM performs better in comparison

to a k-NN for the k-Nearest Subspace Search using the modified step 1 SBDS framework

discussed in the previous section. The objective of this study is to answer to the research

questions: (1) How the modified SBDS framework performs in high-dimensional small

instance dataset? (2) Can the modified step 1 SBDS framework be improved by changing

the k-nearest subspace search step?

The proposed improvement in this part of the framework was to substitute k-NN

classifier with a RBF-SVM. Classification accuracy, sensitivity and specificity are reported

on Table 4.7. In 80% of the datasets the use of the RBF-SVM had a statistically better

accuracy. Therefore, based on this analyses we can answer the two research questions

proposed for at the beginning of this section: the use of the RBF-SVM classifier in the

k-Nearest Subspace Search step as shown for the original version of the SBDS framework

had a better performance in terms of accuracy when compared with the use of a k-NN.
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Table 4.7: Performance metrics (accuracy, sensitivity and specificity) for the proposed
modified cSBDS subspace acquisition and for two subspace selection methods: 1. the
k-NN selection modification; 2. the RBF-SVM selection modification

kNN RBF-SVM
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Allaml 85.56 ± 9.03 59.44 ± 25.34 98.61 ± 3.78 93.15 ± 5.31 83.89 ± 16.38 97.78 ± 3.69
Arcene 78.53 ± 5.80 80.61 ± 8.93 76.90 ± 8.08 85.93 ± 5.33 83.48 ± 7.56 87.86 ± 6.94

Basehock 82.57 ± 4.54 73.68 ± 12.27 91.49 ± 9.55 92.04 ± 3.15 88.08 ± 4.98 96.01 ± 3.16
Colon 66.67 ± 9.99 25.56 ± 24.62 91.33 ± 10.24 75.00 ± 10.08 55.00 ± 23.63 87.00 ± 11.59
Dexter 76.53 ± 4.94 74.36 ± 8.92 78.71 ± 10.44 87.60 ± 2.89 87.33 ± 6.05 87.87 ± 4.47
Gli85 83.03 ± 7.69 92.44 ± 7.04 62.86 ± 17.14 85.76 ± 7.58 96.22 ± 5.88 63.33 ± 20.10

Leukemia 83.33 ± 9.18 56.11 ± 26.35 96.94 ± 6.97 93.52 ± 6.10 80.56 ± 18.30 100.00 ± 0.00
Prostate 82.05 ± 7.84 83.85 ± 8.96 80.26 ± 12.67 89.87 ± 5.48 88.21 ± 8.12 91.54 ± 8.03
Relathe 78.33 ± 2.99 90.21 ± 7.29 68.46 ± 4.62 83.52 ± 2.55 88.15 ± 3.04 79.68 ± 3.48
Smkcan 67.94 ± 7.96 74.58 ± 11.50 61.01 ± 12.42 65.67 ± 7.82 74.17 ± 9.77 56.81 ± 13.70

1 The black colour indicates statistically equivalent, the red colour indicates statistically significant better and the blue
colour indicates statistically significant worst. These results are based on the Wilcoxon rank sum test with a confidence
level of 95%.

4.4.2.4 Comparison with the state-of-art DS techniques and majority voting

In this section, we compared the accuracy obtained by the proposed cSBDS against

eleven state-of-art dynamic selection techniques presented previously in Table 2.1 and

the majority voting technique. The objective of this study is to answer to the research

questions: (1) How the cSBDS framework performs in high-dimensional small instance

dataset? (2) How the performance of the cSBDS framework compare with traditional DS

methods and majority voting?

The DS methods used in this analysis are: Classifier Rank (CR) [58], Overall Lo-

cal Accuracy (OLA) [59], Local Class Accuracy (LCA) [59], Multiple Classifier Behaviour

(MCB) [61], Modified Local Accuracy (MLA) [62], K-Nearest Oracles - Eliminate (KNORA-

E) [7], K-Nearest Oracles - Union (KNORA-U) [7], k-Nearest Output Profiles - Elimiante

(KNOP-E) [68], k-Nearest Output Profiles - Union (KNOP-U) [68], Meta-Learning - DES

(Meta-DES) [30].

The Friedman test with Iman-Davenport correction (FF ) [97] is employed for statisti-

cal comparison of multiple classifier system techniques as suggested by Cruz and Demsar

in [4, 98]. The null-hypothesis states that all algorithms are equivalent and so their

average ranks should be equal.

The rank of each method is calculated using the average ranking approach. The best

performing algorithm is the one with the lowest average rank. Next, as suggested by [98],
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to compare all classifiers against a control, we use the z value (Equation 4.4 to compare

two classifiers. The z value is used to find the corresponding probability from the table

of normal distribution, which is then compared with an appropriate α.

z = (Ri −Rj)
/√

k(k + 1)
6N (4.4)

where Ri is the rank of i-th classifier, k is the number of classifiers and N is the number of

datasets. The z value is than used to find the corresponding p-value from the two-tailed

normal distribution table, which is subsequently compared to an appropriate significance

level α.

With 13 classifiers and 10 datasets, the Friedman test is distributed according to the

F distribution with 13 − 1 = 12 and (10 − 1) × (13 − 1) = 108 degrees of freedom. The

critical value of F(12,108) for α = 0.0001 is 3.7324.

The results of the mean accuracy and the rank of each classifier over each dataset

is shown on Table 4.8. The FF statistic found was 27.6104, so the null-hypothesis can

be rejected with 99.99% confidence. To compare all classifiers against a control, in this

case the majority voting approach we measure the Z-score for each classifier. The cS-

BDS method was the only one that achieved a statistically significant lower rank when

compared to the majority voting with 95% confidence.

Therefore to answer to the research question, these results showcases the ability of

the SBDS framework to uncover the most important features in a small instance high-

dimensional dataset. Maciel-Guerra et al. (2020) [9] showed that DS methods fail to

perform on this type of datasets, because the k-NN approach, commonly adopted to define

regions of competence, deteriorates as the number of dimensions increases. Therefore, the

use of a subspace clustering method as the “region of competence” in the DS method

enabled the cSBDS framework to achieve a statistically significant results when compared

with majority voting.
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Table 4.8: Mean and Rank results of the accuracy obtained by the proposed mSBDS, 11
state-of-art DS methods and Majority Voting

CR OLA LCA MCB MLA KNORA-E KNORA-U KNOP-E KNOP-U Meta-DES DES-P mSBDS Majority Voting

Arcene 66.40% (11) 67.13% (10) 68.27% (7.5) 67.60% (9) 61.20% (13) 68.27% (7.5) 71.73% (2) 66.33% (12) 70.67% (4) 69.47% (6) 70.40% (5) 85.93% (1) 71.00% (3)
Allaml 84.81% (12) 88.89% (8) 87.41% (11) 87.59% (10) 84.44% (13) 91.30% (6) 92.96% (3.5) 89.07% (7) 93.33% (1) 88.70% (9) 92.96% (3.5) 93.15% (2) 92.78% (5)
Basehock 89.49% (5) 89.30% (7) 88.88% (12) 89.23% (9) 88.48% (13) 89.46% (6) 89.22% (10) 91.28% (2) 90.45% (3) 89.65% (4) 89.23% (8) 92.04% (1) 89.17% (11)
Colon 73.13% (7.5) 73.13% (7.5) 71.46% (11) 70.63% (12) 70.42% (13) 73.96% (6) 76.04% (1) 72.29% (10) 75.42% (2) 72.92% (9) 74.17% (5) 75.00% (3) 74.38% (4)
Dexter 78.62% (13) 81.67% (9) 80.29% (11) 81.02% (10) 79.40% (12) 84.07% (7) 87.22% (5) 84.27% (6) 87.89% (1) 83.24% (8) 87.31% (3) 87.60% (2) 87.29% (4)
Gli 74.55% (12) 76.06% (9) 74.55% (11) 75.00% (10) 73.64% (13) 76.82% (7.5) 82.12% (3) 76.82% (7.5) 81.36% (5) 77.73% (6) 82.73% (2) 85.76% (1) 81.52% (4)
Leukemia 80.19% (13) 88.33% (8) 87.41% (9) 85.74% (11) 82.04% (12) 88.52% (7) 90.93% (2) 90.37% (5) 90.56% (3.5) 87.04% (10) 90.56% (3.5) 93.52% (1) 90.00% (6)
Prostate 79.74% (12) 83.85% (9) 80.00% (11) 82.95% (10) 77.44% (13) 84.87% (6) 88.33% (2) 84.10% (7) 87.82% (5) 83.97% (8) 88.21% (3.5) 89.87% (1) 88.21% (3.5)
Relathe 78.94% (10) 79.40% (9) 78.43% (12) 78.69% (11) 77.50% (13) 80.94% (5) 80.85% (6) 81.21% (3.5) 82.50% (2) 80.04% (8) 81.21% (3.5) 83.52% (1) 80.76% (7)
Smkcan 58.79% (9) 58.58% (11) 60.71% (7) 59.22% (8) 58.58% (11) 58.44% (13) 62.55% (4) 58.58% (11) 62.98% (2) 60.92% (6) 62.62% (3) 65.67% (1) 61.35% (5)
Average Rank 10.45 8.75 10.25 10 12.6 7.1 3.85 7.1 2.85 7.4 4 1.4 5.25
p-value 0.00283 0.04447 0.00409 0.00639 0.00002 0.28814 0.42149 0.28814 0.1682 0.21703 0.47294 0.02707 1

1 The numbers in brackets indicates the rank of the classifier for each dataset
2 The test statistics for comparing the i-th and j-th classifier is shown in Equation 4.4 with their pvalues shown here.
3 The values highlighted in red are statistically significant with a 95% confidence.

4.4.3 Conclusions

In this section, we presented the modified version of the SBDS framework called

cSBDS. It first searches for one-dimensional clusters using a GKDE and then a merging

procedure is conducted to generate subspace clusters. A filter approach is used based on

the performance of a classifier to select the best subspaces. Next, the selected classifiers

are trained on each subspace. Finally, the performance of the best classifiers in relation

to the unknown test sample on each subspace is used to determine which subspaces will

be used to make the prediction.

Experiments were conducted using 10 small instance high-dimensional problems.

First, we performed an analysis modifying the k-Nearest Subspace Search (step 2) of

the original SBDS framework proposed by Maciel-Guerra et al. (2020) [42] and presented

on Section 4.3. The analysis demonstrated that the empirical factor and the distance

approach proposed in the original version could be substituted by a RBF-SVM classifier

which achieved a statistically better accuracy in 100% of the datasets when compared

to the original version and 90% when compared to the k-NN classifier. Second, we per-

formed an analysis modifying the subspace clustering selection (step 1) of the original

SBDS framework [42]. The analysis demonstrated that by changing how the subspaces

are selected we could decrease the number of feature being selected in 90% of the datasets

and increase the number of subspaces in 50% of the datasets without loosing performance

and in three datasets having a statistically better performance in terms of accuracy. Third,

the changed the classifier in modified step 1 SBDS framework to a RBF-SVM (cSBDS)

and compared to the k-NN approach. In this analysis, the cSBDS framework achieved a
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statistically better accuracy in 80% of the datasets, indicating once again that the use of

a RBF-SVM can statistically increase the performance of the SBDS framework. Finally,

the performance obtained by the cSBDS framework was compared with 11 state-of-art

DS techniques and with the majority voting. Experimental results demonstrate that the

cSBDS outperforms the studied DS techniques and majority voting. In addition, the gain

in performance obtained by the cSBDS framework is shown to be statistically significant

when compared to the majority voting based on the Friedman test with a post-hoc z-score

test.

This results confirm the hypothesis that the cSBDS is able to select the appropriate

features and have high performances in small instance high-dimensional datasets when

compared to state-of-art DS techniques and the majority voting.

The performance of cSBDS has been demonstrated on real world datasets in this

chapter. On Chapter 5, we use synthetic datasets to better understand why cSBDS

performs the way it does and if its able to correct find the most important features using

the subspace clustering feature selection.

4.5 Chapter Summary

In this chapter, the Subspace-Based Dynamic Selection (SBDS) framework has been

presented. In particular, each component of the theoretical framework has been discussed

and two versions are presented with differences on how the subspaces are found and

selected. The proposed method merges the capabilities of the DS framework with a

subspace clustering approach to improve feature selection by finding the most important

features for each subspace in high-dimensional small-instances datasets while maintaining

or increasing the performance when compared with DS methods. The first proposed

SBDS framework had some limitations in relations of how the subspaces were selected

and specially the use of an empirical multiplier factor to remove a bias of the distance

calculation to find the closest subspaces to the unknown test samples. On the other

hand, the proposed cSBDS framework overcomes these limitations and is able to perform

statistically better when compared to DS methods and majority voting. Moreover, by
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changing how the subspaces are found, the cSBDS framework is able to select less features

and more subspaces. The next chapter demonstrates how effective this framework can be

on synthetic data to find the most important features.
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5.1 Introduction

In this chapter, we analyse the features selected by the cSBDS framework introduced

in Chapter 4, which aims to evaluate if the subspace clustering method in the SBDS frame-

work can be used as a feature selection approach. To achieve this, we propose to evaluate

the cSBDS framework in multiple synthetic datasets varying the classification difficulty

and the number of clusters per class in each one; whilst comparing its performance with

an RBF-SVM.

The core aim of this thesis is to provide a framework to evaluate high-dimensional

small instance datasets using a DS framework with the addition of a subspace clustering

96
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method to improve the selection of the features. Therefore, this chapter evaluates if

the subspace clustering approach proposed on the cSBDS framework selects the most

important features for a given dataset. By confirming this aspect of the cSBDS framework

we can acknowledge that it helps with knowledge discovery which in biological datasets,

genomics, for instance, can help understand which genes are more important for each

sample. This chapter aims to answer one of our main research questions: ”How can we

extract information in terms of feature importance for classification for each

unseen sample?”

In this section, we analyse the features selected by the subspace clustering approach

on the cSBDS framework introduced in Chapter 4. To achieve this we create multiple

synthetic classification datasets with different classification difficulties and a different

number of clusters per class. Also, a new approach to finding the subspace clusters is

proposed.

This chapter first analyses the feature selection aspect of the subspace clustering

method on the cSBDS framework using different synthetic datasets. Next, it compares the

features selected by the cSBDS on the proposed synthetic datasets with the ones selected

by feature importance methods such as permutation, Gini and statistical importance.

5.2 Overview

High-dimensional feature spaces make a k-NN fail to work [8, 9, 108]. Moreover,

since the intrinsic dimensionality is typically small on a high-dimensional dataset, fea-

ture selection approaches aim to find a low dimensional feature space that preserves the

intrinsic data structure by removing the noisy, irrelevant and redundant features [108].

To choose a good feature subset, many features selection algorithms were proposed:

filter, wrapper, embedded and hybrid. The wrapper methods are computationally expen-

sive and can overfit on small training sets. The filter methods are usually a good option

for high-dimensional datasets [109]. Nonetheless, according to Tian and Gu (2019) [87]

some features might only work for a subset of samples and appear as noise for the rest of

the samples, and this phenomenon is more common in high-dimensional datasets.
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In 2001, Pechenizkiy et al. [38] created the FEDIC (Feature Extraction for Dynamic

Integration of Classifiers) algorithm. It is based on early dynamic integration methods

while using a PCA and two eigenvector-based class-conditional for feature extraction.

Because FEDIC is based on feature extraction methods, it loses the physical information

of the original feature set which makes it difficult to understand which of the original

features were more important for the classification. Moreover, this method was tested

only in datasets that have more samples than features. Nonetheless, Pechenizkiy et al.

(2001) [38] were able to show that dimensionality reduction methods incorporated into

the DS framework can improve the performance of DS methods on some datasets and

overcome some of the problems related to high-dimensional datasets.

The SBDS and the cSBDS frameworks proposed in Chapter 4 use a subspace clus-

tering approach to select which features will be used for the classification. Subspace

clustering is a technique that finds clusters within different subspaces of one or more di-

mensions for a specific set of samples [10]. To evaluate if the proposed subspace clustering

is selecting the most important features, we first evaluated the performance of an RBF-

SVM with and without a filter approach and compared it with the cSBDS performance on

synthetic datasets. Next, we compare the features selected by the cSBDS framework with

other feature importance methods. Finally, we compare the performance of two cSBDS

methods on real-world datasets.

5.3 Methodology

To analyse if the cSBDS is selecting the most important features, we decided to

create multiple random 2-class classification problems. To achieve this, we used the

make classification function from the Scikit-learn library [95] which was adapted from

Guyon (2003) [110] to generate the “Madaleo” dataset. The dataset is formed by cre-

ating clusters of points normally distributed (std = 1) on vertices of an n-informative-

dimensional hyper-cube with sides of length 2∗class sep and assigns an equal c number of

clusters to each class. We have created multiple datasets with 200 samples, 400 features

(5 of them being informative and 395 useless features drawn at random). The class sep
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parameter is the class separation which is the multiplying factor of the hyper-cube size,

i.e. larger values spread out the clusters/classes and make the classification easier. We

have set this parameter to range from 0.1 to 3 with 0.1 steps. Moreover, we have created

datasets with the number of clusters per class ranging from 1 to 10.

To evaluate the results, we measured the accuracy, sensitivity and specificity of each

classifier. The experiment is carried out using 30 replications. The datasets are randomly

divided in 50% for the training set, 25% for the validation set and 25% for the test.

To preserve the proportion of samples for each class a stratified k-fold cross validation

is used. For the cSBDS, the thresholds for the Jaccard coefficient and the containment

relationship are set to 90%. Moreover, for the cSBDS framework, the threshold δ is set

initially to 90% to filter the subspaces after they have been merged.

For the RBF-SVM classifiers, the following set of values are employed for the hyper-

parameters, before and after feature selection: γ (RBF kernel coefficient) = [0.0001, 0.001,

0.01, 0.1] and C (L2 penalty parameter) = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. The feature

selection approach used for the RBF-SVM classifier is the filter approach with a Wilcoxon

rank-sum test which tests the null hypothesis that two sets of measurements are drawn

from the same distribution.

Concerning the comparison of feature importance metrics, the following methods are

employed: (1) Gini importance using a Random Forest classifier with 10 estimators and

a maximum depth of the trees of 10; (2) permutation importance using as a base model

the previous random forest classifier with 5 repeats; (3) Wilcoxon rank-sum test; (4) chi-

square test. The first two methods are estimated using a stratified k-fold cross validation

with 75% for the training set and 25% for the test set. The last two methods are evaluated

using all the samples.

5.4 Results and Discussion

Feature selection uncovers the most important features that can provide insights into

the nature of the studied problem. The objective of studying feature selection is to remove

unwanted, irrelevant and redundant features that contribute neither to the prediction of
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a target class nor to the efficiency of data mining methods. Unlike other algorithms that

use statistical methods to identify the most important features, the subspace clustering

approach proposed for the SBDS and cSBDS dynamically selects the clusters, and conse-

quently the most important features, using a Gaussian kernel density estimator method.

In this section, we propose to use multiple synthetic datasets. The performance of

the cSBDS framework is compared with the performance of the RBF-SVM classifier with

and without a filter feature selection approach. The RBF-SVM classifier was chosen since

is the same classifier used to make the predictions in the cSBDS framework, therefore

by applying the same data splits into both methods, the only difference lies in how the

features are selected. Hence, an improvement in the performance should indicate whether

the subspace clustering method is selecting the most important features. To test this

hypothesis, the datasets were also evaluated using feature importance methods and their

results were compared with the cSBDS approach.

5.4.1 Performance comparison

Figures 5.1, 5.3 and 5.5 show the performance in terms of accuracy, sensitivity and

specificity, respectively, for the cSBDS framework with a Gaussian kernel density estima-

tor (cSBDS GKDE), the RBF-SVM using all the features (RBF-SVM) and the RBF-SVM

using a filter feature selection approach based on the Wilcoxon rank sum test (RBF-SVM

FS). In addition, to compare the performance results between the different methods, a

Wilcoxon rank sum test was used and the p-values results are indicated on Figures 5.2,

5.4 and 5.6 for the accuracy, sensitivity and specificity, respectively.

Figures 5.1 and 5.2, first indicate that the RBF-SVM FS when compared with the

RBF-SVM performs statistically better in 38.67% of the datasets, while the remaining

61.13% are statistically equivalent. This indicates that the filter feature selection approach

was able to improve the performance of the RBF-SVM in terms of accuracy. Next, when

comparing the performance of the cSBDS GKDE framework with the RBF-SVM, the first

performs better in 26.67% of the datasets, while the second performs better in 4.33% and

on 69% they are statistically equivalent. Interestingly, the RBF-SVM performs better
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only when there is 1 cluster per class, by increasing the number of clusters per class the

cSBDS GKDE performs better. Nonetheless, when comparing the cSBDS GKDE with

the RBF-SVM FS approach the first performs better in 2% of the datasets, while the

second performs better in 14% and on 84% they are statistically equivalent.
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Figure 5.1: Performance results in terms of accuracy for the RBF-SVM classifier using all
the features (RBF-SVM), the RBF-SVM classifier with filter feature selection approach
(RBF-SVM FS) and the cSBDS framework with a Gaussian kernel density estimator
(cSBDS GKDE) and a Jenks natural break points (cSBDS NBP) to determine the one-
dimensional clusters in the subspace clustering selection. Each method is evaluated on
dataset with different classification difficulties (class separation ranging from 0.1 - 3) and
different numbers of clusters per class (ranging from 1 - 10).

Figures 5.3 and 5.4 indicate the performance in terms of the sensitivity. They show

that the RBF-SVM FS when compared with the RBF-SVM performs statistically better

in 32% of the datasets, while the RBF-SVM performs better on 1.33% and the remaining

66.67% are statistically equivalent. This indicates that the filter feature selection approach

was able to improve the performance of the RBF-SVM in terms of sensitivity. Next,

when comparing the performance of the cSBDS GKDE framework with the RBF-SVM,

the first performs better in 30.67% of the datasets, while the second performs better in

3.33% and on 66% they are statistically equivalent. The RBF-SVM performs better in

terms of sensitivity, when the number of clusters are increased. When comparing the

cSBDS GKDE with the RBF-SVM FS approach the first performs better in 3.67% of the
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Figure 5.2: Statistical comparison of the accuracy performance of all the combinations of
the methods RBF-SVM, RBF-SVM FS (RBF-SVM with a filter feature selection), cSBDS
GKDE and cSBDS NPB using a Wilcoxon rank sum test. The colour white indicates that
the null hypothesis was not rejected with a 99.999% confidence. The colours red (RBF-
SVM), green (RBF-SVM FS), blue (cSBDS GKDE) and magenta (cSBDS NBP) indicate
that method performed statistically better with a 99.999% confidence.

datasets, while the second performs better in 9.67% and on 86.67% they are statistically

equivalent.

Moreover, the Figures 5.5 and 5.6 indicate the performance in terms of the speci-

ficity. They show that the RBF-SVM FS when compared with the RBF-SVM performs

statistically better in 17.33% of the datasets, while the remaining 82.67% are statistically

equivalent. This indicates that the filter feature selection approach was able to improve

the performance of the RBF-SVM in terms of specificity. Next, when comparing the per-

formance of the cSBDS GKDE framework with the RBF-SVM, the first performs better

in 7.67% of the datasets, while the second performs better in 14.33% and on 78% they are

statistically equivalent. The RBF-SVM performs better in terms of specificity, when the

number of cluster per class increase and on more difficult classification datasets (low class

separation). Nonetheless, when comparing the cSBDS GKDE with the RBF-SVM FS ap-

proach the RBF-SVM FS performs better in 8.67% of the datasets, while the remaining

91.33% are statistically equivalent.

The analysis of the results indicate that the performance increases when the clas-

sification difficulty decreases (higher class separation), as we would except. Also, by
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Figure 5.3: Performance results in terms of sensitivity for the RBF-SVM classifier using all
the features (RBF-SVM), the RBF-SVM classifier with filter feature selection approach
(RBF-SVM FS) and the cSBDS framework with a Gaussian kernel density estimator
(cSBDS GKDE) and a Jenks natural break points (cSBDS NBP) to determine the one-
dimensional clusters in the subspace clustering selection. Each method is evaluated on
dataset with different classification difficulties (class separation ranging from 0.1 - 3) and
different numbers of clusters per class (ranging from 1 - 10).

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

Cl
as

s S
ep

ar
at

io
n

cSBDS GKDE vs RBF-SVM

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

cSBDS GKDE vs RBF-SVM FS

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

cSBDS NBP vs RBF-SVM

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

cSBDS NBP vs RBF-SVM FS

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

cSBDS GKDE vs cSBDS NBP

1 2 3 4 5 6 7 8 9 10
Number of clusters

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

RBF-SVM vs RBF-SVM FS

Figure 5.4: Statistical comparison of the sensitivity performance of all the combinations of
the methods RBF-SVM, RBF-SVM FS (RBF-SVM with a filter feature selection), cSBDS
GKDE and cSBDS NPB using a Wilcoxon rank sum test. The colour white indicates that
the null hypothesis was not rejected with a 99.999% confidence. The colours red (RBF-
SVM), green (RBF-SVM FS), blue (cSBDS GKDE) and magenta (cSBDS NBP) indicate
that method performed statistically better with a 99.999% confidence.
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Figure 5.5: Performance results in terms of specificity for the RBF-SVM classifier using all
the features (RBF-SVM), the RBF-SVM classifier with filter feature selection approach
(RBF-SVM FS) and the cSBDS framework with a Gaussian kernel density estimator
(cSBDS GKDE) and a Jenks natural break points (cSBDS NBP) to determine the one-
dimensional clusters in the subspace clustering selection. Each method is evaluated on
dataset with different classification difficulties (class separation ranging from 0.1 - 3) and
different numbers of clusters per class (ranging from 1 - 10).
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Figure 5.6: Statistical comparison of the specificity performance of all the combinations of
the methods RBF-SVM, RBF-SVM FS (RBF-SVM with a filter feature selection), cSBDS
GKDE and cSBDS NPB using a Wilcoxon rank sum test. The colour white indicates that
the null hypothesis was not rejected with a 99.999% confidence. The colours red (RBF-
SVM), green (RBF-SVM FS), blue (cSBDS GKDE) and magenta (cSBDS NBP) indicate
that method performed statistically better with a 99.999% confidence.
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increasing the number of clusters per class the performance decreases for the same clas-

sification difficulty for all the methods. In addition, the Figures 5.1 and 5.6 indicate that

for the majority of the datasets the cSBDS GKDE performs statistically equivalent to the

RBF-SVM FS. Also, for the datasets that have a statistical different performance, the

RBF-SVM FS tends to perform better than the cSBDS GKDE. Therefore, the RBF-SVM

FS would be the preferred choice since it is selecting the most important features for the

classification in a less complex way due to the nature of the filter approach regardless of

which performance metric is used. We hypothesise that the issue of the cSBDS GKDE

could be on how the one-dimensional cluster is select by using a Gaussian kernel density

estimator. To test this hypothesis, we substitute the GKDE approach with the Jenks

Natural Break Points (NBP) method.

The Jenks natural break points classification method is a clustering method used

to determine the best arrangement of values into different classes. This is achieved by

minimising each class’s average deviation from the mean, while maximising each class’s

deviation from the means of the other classes, i.e. it reduces the variance within classes

and increases the variance between classes [111].

Figure 5.7 shows an example of the difference between the GKDE and the NBP

methods. In this example, the GKDE would separate the data into two different one-

dimensional clusters, while the NBP would create three different one-dimensional clusters:

one cluster for the class 1 (red) and 2 clusters for class 2 (black). The NBP tends to split

the data into smaller and more diverse clusters which could separate better the samples

into different subspaces.

Figures 5.1 and 5.2 show the results in terms of accuracy and they indicate that

the cSBDS with a NBP method performed statistically better in 48.33% of the datasets

against the RBF-SVM, in 13.67% against the RBF-SVM FS and 30.67% against the

cSBDS GKDE. In addition it performed statistically equivalent in 51.67% of the datasets

against the RBF-SVM, in 86.33% against the RBF-SVM FS and 68.67% against the

cSBDS GKDE. Only in 0.67% of the datasets against the cSBDS GKDE, the cSBDS

NBP had a statistically lower performance.
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Figure 5.7: Comparison between the Gaussian kernel density estimator (GKDE) and the
Jenks natural break points (NBP) methods for the one-dimensional clustering definition
in the cSBDS framework.

Figures 5.3 and 5.4 show the results in terms of sensitivity and they indicate that the

cSBDS NBP performed statistically better in 47% of the datasets against the RBF-SVM,

in 5.33% against the RBF-SVM FS and 34.67% against the cSBDS GKDE. In addition

it performed statistically equivalent in 51% of the datasets against the RBF-SVM, in

94.67% against the RBF-SVM FS and 59.33% against the cSBDS GKDE. Only in 2%

of the datasets against the RBF-SVM and in 6% against the cSBDS GKDE, the cSBDS

NBP had a statistically lower performance.

Figures 5.5 and 5.6 show the results in terms of specificity and they indicate that the

cSBDS NBP performed statistically better in 21.67% of the datasets against the RBF-

SVM, in 8.67% against the RBF-SVM FS and 16% against the cSBDS GKDE. In addition

it performed statistically equivalent in 71.33% of the datasets against the RBF-SVM, in

91.33% against the RBF-SVM FS and 83.67% against the cSBDS GKDE. Only in 7% of

the datasets against the RBF-SVM and in 0.33% against the cSBDS GKDE, the cSBDS
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NBP had a statistically lower performance.

These results indicate that in terms of accuracy, sensitivity and specificity, the sub-

stitution of the GKDE method for the NBP resulted in a statistical better framework

for this type of dataset. This confirms our hypothesis that the Gaussian kernel density

estimator had a bias when used on a Gaussian based dataset, and that the use of a dif-

ferent method, like the Jenks Natural Break Points (NBP), improved the classification

performance.

5.4.2 Feature importance methods comparison

To evaluate the benefits of using the cSBDS framework as a feature selection ap-

proach, we compared the features selected by it with traditional feature importance meth-

ods such as permutation, Gini and statistical importance. Feature importance methods

refer to techniques that calculate a score for all the features for a given method. These

scores simply represent the importance of each feature. Normally, a higher score means

that the specific feature will have a larger effect on the model that is being used. On

statistical methods, the p-value given by them is used to indicate the importance of the

features, therefore the lower the p-value is the more important the feature becomes.

Feature importance methods are important to use for several reasons: (1) they help

understand better the data that is used as an input for the model, showing which are

the relevant features; (2) by selecting the features through their importance, the number

of features is reduced making the model simpler but also speeding up the prediction and

ultimately improving the performance of the model; and (3) by having the importance of

the features it is easier to interpret and communicate to other researchers which features

have the most predictive power to the model.

The Gini importance is used to calculate the node impurity and the importance is

measured as a reduction in the impurity weighted by the number of samples that reach

that node. This is also known as the node probability [112]. In addition, the permutation

importance is calculated by noticing the increase or decrease in error when the values of

a feature are permuted. If permuting the values of a feature causes a huge change in the
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error, it means that this feature is important for the model [112].

Figures 5.8, 5.9 and D.1-D.8 show the importance of the 400 features on each of the

synthetically created datasets used in the previous analysis. Each figure corresponds to

the datasets created with a specific number of clusters per class (ranging from 1 to 10),

while the panels inside each figure show the importance of the 400 features on each dataset

varying the class separation parameter from 0.1 to 3. with 0.1 steps. In each figure, the

results of 6 importance methods are shown: (1) p-value of the Wilcoxon ranksum test,

(2) p-value of the chi-square test, (3) permutation importance, (4) Gini importance, (5)

cSBDS with a GKDE and (6) cSBDS with a NBP. Each dataset contains five features that

are important, while the other 395 features are considered useless. Also, they were created

to maintain the same important features while varying the class separation parameter.

The results on Figures 5.8, 5.9 and D.1-D.8 indicate that (1) the importance of the

features increase in all methods when the class separation increases, as expected; and

(2) when changing the number of clusters per class the Gini, permutation and statistical

importance methods reduce their capability of differentiating between the informative

and the useless features, while the cSBDS NBP method still indicates the most important

features regardless of the number of clusters per classes in the data. Interestingly, when

comparing the importance of the features calculated by the cSBDS GKDE and the cSBDS

NBP methods, the last one has large difference between the features that are not important

(close to 0) and the ones that are important (close to 100). In both cases, the importance

is given by the selection frequency, i.e. the percentage of times a feature is selected to

give the final prediction of the unseen test samples.
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5.5 Conclusion

In this chapter, we investigated the feature selection approach embedded into the sub-

space clustering technique which is one of the core points of the Classifier SBDS (cSBDS)

framework. First, we compared performance of the cSBDS framework with an RBF-SVM

on the whole set of features and using a Wilcoxon rank sum test as a filter feature selec-

tion method (RBF-SVM FS). Three hundred synthetic datasets were created varying the

number of clusters per class from 1 to 10 and the classification difficulty (class separation)

from 0.1 to 3. The results indicated that the RBF-SVM FS performed statistically equiv-

alent to the cSBDS GKDE with a confidence level of 99.999% on the majority of datasets

based on the accuracy, sensitivity and specificity performances. Moreover, based on the

datasets which had a statistically different performance, the RBF-SVM FS was usually

the one with the better performance when compared to the cSBDS GKDE. This initially

indicated that for these datasets, which are created based on Gaussian data, the use of

the RBF-SVM FS was preferable.

Therefore, we hypothesised that a change on how the one-dimensional clusters are se-

lected could improve the classification of the cSBDS framework. The Jenks Natural Break

Points (NBP) method was proposed to substitute the Gaussian Kernel Density Estimator

(GKDE) method. The results indicated that the cSBDS NBP was either statistically

equivalent or statistically better in the whole majority of cases when compared with the

RBF-SVM, RBF-SVM FS and the cSBDS GKDE. This indicates that the proposed sub-

stitution was beneficial for analysing these datasets and to select the most important

features for them.

Next, we analysed three feature importance techniques: Gini, permutation and sta-

tistical. Three hundred synthetic datasets were used to compare the feature importance

methods and the cSBDS methods (GKDE and NBP). The results indicate that when the

number of clusters per class increase, the feature importance techniques lose their capa-

bility of indicating which are the most important features with the importance of the best

ranked feature being closer to the importance of the worst features. The cSBDS NBP
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method was still able to indicate the most important features regardless of the number of

clusters per class, showcasing the advantage of this method when a dataset have multiple

clusters per class.

Therefore, the methods proposed in this chapter attempt to explain first for each

type of datasets the cSBDS framework performs better when compared to the SBDS and

a RBF-SVM before and after a feature selection approach. To do this, multiple datasets

were created varying the classification difficulty and including an increasing number of

clusters per class in the data. The results indicated that the SBDS framework have

a statistically better performance on datasets with a higher classification difficulty and

higher number of clusters per class. Second, multiple feature selection and importance

methods were compared with the cSBDS framework on synthetic data with a known set of

relevant features and a majority of noisy features. This analysis is important to evaluate

if the subspace clustering method is able to select the most important features for the

cSBDS framework. The results indicate that this is the case and that the cSBDS is able

to uncover the most important features on datasets with different classification difficulties

and number of clusters per class.
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6.1 Thesis summary

The core aim of this thesis has been to provide a novel framework to evaluate the

performance of small instance high-dimensional datasets. This framework was based on

the dynamic selection of classifiers theory which was combined with a subspace clustering

approach to overcome issues related to high-dimensional feature spaces. Fitting this

framework on synthetic and real-world datasets allowed the development of the algorithm

improving it on different characteristics of the datasets.

The thesis first explored how dynamic selection methods perform on small instance

high-dimensional subspaces, this led to an understanding in Chapter 3 that these methods

do not perform statistically better than the majority voting algorithm. The reason for

this was that the majority of dynamic selection methods are based on a k-NN to define

113
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the region of competence. In Chapter 3 the dynamic selection methods were evaluated

first on synthetic data and the increase in the number of features led to a decrease in

the performance of the algorithms. Next, they were compared with majority voting on

real-world datasets and their performance was found to be statistically equivalent, which

indicates that modifications needed to be done in the framework of DS methods to improve

their performance.

Chapter 4 presented the Subspace-Based Dynamic Selection (SBDS) framework,

a novel method to evaluate small instance high-dimensional datasets. This method is

based on the dynamic selection framework. However, to overcome the difficulties of high-

dimensional datasets, a subspace clustering approach was proposed to replace the k-NN in

the definition of the region of competence. It was shown that this modification was able to

improve the performance when compared to DS methods. Nonetheless, the SBDS frame-

work presented 3 important limitations that needed to be addressed: (1) the framework

was initially tested in a single dataset, and for this dataset, the accuracy was improved

but the sensitivity and specificity were reduced when compared to other DS methods; (2)

the subspaces were found by using an unsupervised method, i.e. using the samples from

both classes; and (3) the framework used a multiplier factor that was found empirically

for the studied dataset. Therefore, we proposed the Classifier SBDS (cSBDS) framework

which overcomes the aforementioned limitations and was found to be statistically better

than other DS methods and majority voting. Moreover, the changes made to how the cS-

BDS finds the subspaces, allowed the cSBDS to select fewer features and more subspaces

when compared to the SBDS framework.

The cSBDS framework was capable of performing statistically better than the ma-

jority voting, but it still has another advantage when compared to the traditional DS

methods, which is the capability to select the most important features. In Chapter 5, ap-

proaches to understanding how the feature selection aspect of the subspace clustering part

of the cSBDS framework compares with other feature selection methods are discussed.

By using synthetically created Gaussian data, we found that the proposed subspace clus-

tering approach on the cSBDS was limited to differentiating informative Gaussian data
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from noise, due to the use of the Gaussian Kernel Density Estimator (GKDE). Therefore,

the Jenks Natural Break Points (NBP) was proposed and for the synthetic data it was

observed that it performed better than the GKDE method.

6.2 Conclusions

Several specific conclusions can be drawn from this thesis. One of the most impor-

tant conclusions is that the researchers need to be careful when applying methods on

small instance high-dimensional datasets. The special characteristics of these datasets

can lead to a decrease in performance and issues when evaluating feature importance.

The recent development of DS methods and their effectiveness in performing better than

static ensemble methods on small instance datasets led to a belief that these methods

could be a good starting point to analyse datasets that have more features than samples.

Nonetheless, since the majority of DS methods are based on a k-NN to define the region

of competence, modifications needed to be done to the DS framework to adapt it to deal

with high-dimensional datasets.

The comparison of DS methods on synthetic data and with majority voting on real-

world datasets led to the understating that the k-NN deteriorate its performance when the

number of features increases. Moreover, DS methods that did not use a k-NN to define the

region of competence were still statistically equivalent to majority voting, which indicated

that not only hubness and distance concentration in high-dimensional datasets can be a

problem, but also that these datasets have peculiarities that needed to be addressed as

well. One of the most important is that some features might only work for a subset of

samples and appear as noise for the rest of the samples as indicated by Tian and Gu

(2019) [87].

To deal with these problems, the SBDS framework proposed to incorporate a subspace

clustering approach to define the region of competence. Nonetheless, the SBDS had some

limitations that needed to be overcome. The modifications proposed led to the creation

of the cSBDS framework which demonstrated that it can perform statistically better than

majority voting and other DS methods. Furthermore, when compared to the SBDS, the
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cSBDS was able to select fewer features and more subspaces, making them more important

for the classification which helped to increase the performance. It is important to note

that both the SBDS and the cSBDS framework also have the advantage of indicating

which are the most important feature for the classification since the subspace clustering

part acts as a feature selection algorithm.

The feature selection analysis of the cSBDS framework also led to interesting findings.

Firstly, the performance of the cSBDS was evaluated on multiple synthetic Gaussian data

with an RBF-SVM with and without a filter feature selection approach. This analysis

indicated that the GKDE part of the subspace clustering did not perform rightly. This

happened because both the information and the useless features were drawn from Gaussian

distributions. Consequently, the substitution of the GKDE by the NBP improved the

performance due to a better selection of the subspaces. Furthermore, by comparing it

with traditional feature selection methods the results indicated that it was able to select

the most important features better than traditional methods on the tested synthetic

datasets.

6.3 Limitations

As discussed in Chapter 4 the SBDS approach had two important limitations that

were overcome for the proposal of the cSBDS framework. Nonetheless, both frame-

works have important limitations concerning the generation time of subspaces. For very

large data in terms of features and samples, the method proposed here would become

intractable.

Furthermore, when evaluating the performance of the cSBDS, it is important to point

out that the type of data influence the choice of how subspaces can be selected, as expected

and shown on Chapter 5. Therefore, studies to understand better the characteristics of

the data must be conducted in advance to decide which cSBDS framework should be

applied: the one with a GKDE or the one with an NBP to define the one-dimensional

clusters.

The bottleneck of the SBDS and cSBDS is the subspace clustering method, due to
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its high computational cost. The method proposed here was inspired by the work of

Tian and Gu (2019) [87]. This approach can be classified into a cell-based approach

and find subspaces efficiently. According to Parsons et al. (2004) [10], since there is

no universal definition of clustering, there is also no universal definition of measures to

compare clustering results. This is a great limitation of subspace clustering and clustering

itself since the cluster quality measures are heuristics and do not guarantee meaningful

results, hence the clusters found should be verified by domain experts. In high-dimensional

feature spaces, the number of possible subspaces can be huge, requiring efficient search

algorithms, which can be biased and greatly affect the assumptions made by the chosen

algorithm. The SBDS and cSBDS use a bottom-up approach which has the advantage of

reducing the search space, but because the pruning happens earlier the subspace detection

the accuracy is influenced, which is a big limitation of these methods.

6.4 Contributions

This section summarises the core major and minor contributions to knowledge pre-

sented in this thesis.

6.4.1 Major contributions

Dynamic selection methods evaluation on high-dimensional datasets

Chapter 3 presented a comparative analysis between different dynamic selection methods

and majority voting on small instance high-dimensional datasets. The results showed

that the performance decreases when the number of dimensions increases, and most im-

portantly that DS methods are statistically equivalent to the majority voting classifier.

This has an implication in the area of ensemble learning since DS are considered one of

the most important areas for multiple classifier systems recently due to its higher perfor-

mance when compared to single classifiers and static ensembles. Nonetheless, before this

thesis and the work carried out during the project, DS methods were not tested on small

instance high-dimensional datasets.
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Subspace-Based Dynamic Selection (SBDS)

The most significant theoretical contribution of this thesis is the Subspace-Based Dy-

namic Selection (SBDS) framework, which provides a novel DS framework combined with

a subspace clustering approach to define the regions of competence. The SBDS framework

aims to have a better performance when compared to dynamic selection methods. The

main difference between the SBDS over dynamic selection is the use of subspace clustering

to search through the feature and sample spaces for relevant clusters. Moreover, since

the subspace clustering method gives the best features for a specific group of samples,

we are able to further understand their importance. Chapter 4 describes in detail the

framework and shows how it performs on a protein microarray dataset compared to other

dynamic selection methods. The results indicated that the SBDS achieved the highest

accuracy when compared to the DS methods investigated, but did not achieve the highest

sensitivity or specificity.

Classifier SBDS (cSBDS)

Due to two clear limitations of the SBDS framework, we proposed the cSBDS framework.

The main limitations of the SBDS framework are: (1) the subspaces were found by using

samples from both classes, (2) the multiplier factor empirically found to define the distance

between subspace to help on the nearest subspace search. Chapter 4 describes in detail

how these limitations were overcome and which changes were made to the initial SBDS

framework. When analysing the cSBDS on real-world small instance high-dimensional

datasets, the results indicated that the cSBDS was able to overcome the limitations of the

SBDS framework and most importantly, when compared to the majority voting classifier

and other dynamic selection, the cSBDS was able to perform statistically better than

them. Therefore, the cSBDS framework was the most significant practical contribution

of this thesis.

6.4.2 Minor contributions

Novel subspace clustering methodology
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Chapter 4 proposes a novel subspace clustering approach that is part of the SBDS and

cSBDS frameworks. The method was inspired by Tian and Gu (2019) [87] and it is

formed by two steps: (1) one-dimensional clustering, and (2) merging procedure. The

merging procedure is the same one proposed by Tian and Gu (2019) [87], whilst the

one-dimensional clustering approach substitutes the self-organising maps proposed by the

authors. To find one-dimensional clusters this thesis proposes two approaches: the Gaus-

sian Kernel Density Estimator (GKDE) in Chapter 4 and the Jenks Natural Break Points

(NBP) in Chapter 5. The results in these two chapters indicate that the method to

find one-dimensional clusters depends on the type of data studied, when using Gaussian

datasets it is preferable to use a NBP approach to avoid bias in the selection of subspaces.

Feature selection analysis of the cSBDS framework

Chapter 5 investigated the feature selection approach embedded into the cSBDS frame-

work. The proposed cSBDS with a Jenks Natural Break Points (NBP) to find the one-

dimensional clusters was presented. This method performed statistically better when

compared to a Radial Basis Function Support Vector Machine (RBF-SVM) classifier with

a filter feature selection approach. Moreover, the cSBDS NBP was able to correctly

indicate which were the most important features on datasets with a high number of clus-

ters per class, while the investigated feature importance methods show a decrease in the

difference between the most important features and the worst feature.

6.5 Future work

The following section reviews some of the potential directions for future work, spe-

cially in relation to overcome the limitations described in this work.

Improvements for computational cost The methods proposed in this thesis are

computationally expensive since they are based on a subspace clustering approach and

used on high-dimensional datasets. As the number of features and samples increase, the

number of possible combinations to find subspaces increases as well. Therefore, parallel

computing methods should be investigated in order to speed up the frameworks.
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Pool generation and diversity When considering the use of DS, a diverse pool of

classifiers should be targeted, because, intuitively, a diverse pool of classifiers means that

different classifiers will be specialised in different regions of the feature space. However,

diversity, is still an open question in the DS area and it should be more carefully studied.

The methods proposed in this thesis (SBDS and cSBDS) generate intrinsically diverse

classifiers, since each classifier is trained only in one specific region of the feature space,

determined by the subspace clustering method. Nonetheless, future work on increasing the

diversity by using different classifiers in different regions could perhaps help to improve the

performance of these two methods. Moreover, a RSS approach should be used to better

compare the performance between DS methods and the proposed SBDS and cSBDS, as

well as using the RSS approach to define the subspaces in these two methods to verify

which features are selected and the chances in performance.

Use of other subspace clustering approaches The subspace clustering method is

the bottleneck in terms of the computational power required to run the proposed methods.

In this thesis, the proposed subspace clustering method was based on the work done by

Tian and Gu [87] with a one-dimensional cluster approach. This method is a bottom-up

approach which tends to be less computational expensive. Nonetheless, studies on the

use of top-down subspace methods need to be conducted to investigate if other methods

are preferable depending on the studied data.

Further analysis to understand the type of data Results in this thesis appear

to indicate that the type of data influence the selection of the one-dimensional clustering

approach on the cSBDS framework. The work presented here is not fully conclusive.

Further analytical and statistical methods should be used to test which is the best type

of data for each one-dimensional clustering approach. If so, pruning methods could be

developed for the subspace clustering approach to improve the subspace search based on

specific data types or use other methods to find one-dimensional clusters.

Data complexity measures a better understanding of the data and classifiers de-

pendencies is crucial to understand which classification methods should be used to analyse

different problems. Such understanding is not simple and data complexity measures fo-
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cused on the geometrical characteristics of the data class distributions could be used,

not only the statistics or information theoretical descriptions. Therefore, measures that

can highlight the manner in which classes are separated or interleaved could be used in

a future work to decide which subspace clustering approach should be used and which

classification methods should be used in the SBDS and cSBDS frameworks.
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The following sections will describe in details the different methods for dynamic

selection. Also, the following mathematical notation is used to describe the different

concepts comprised in the dynamic selection approaches.
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• L is the test set of unknown samples;

• V is the validation set where the RofC will be computed;

• T is the training set where the pool of classifiers will be trained;

• C = {c1, c2, . . . , cN} is the pool of classifiers consisting of N base classifiers;

• Ω = {ω1, . . . , ωL} is the set of L classes in the classification problem

• ωl is the class predicted by the classifier ci;

• ωt is the correct class of sample x;

• xj,test is the test sample with unknown class label;

• θj = {x1,x2, . . . ,xK} is the RofC of xj,test, xk is one instance belonging to θj and

K is the number of samples;

• P (ωt | xk ⊂ θj, ci) is the posteriori probability of class ωt provided by classifier ci

given a pattern xk ∈ ωt belonging to θj

• P (ci(xj,test) = ωl | xk, ci) is the posterior probability of class ci(xj,test) = ωl provided

by the classifier ci given a pattern xk belonging to θj;

• Wk = 1
dk

and dk is the Euclidean distance between the test sample xj,test and its

neighbour sample xk;

• δi,j is the estimated competence of the base classifier ci for the test sample xj,test

A.1 History of DS methods

In 1993, Sabourin et al. [58] introduced the first DCS approach based on the rank

of each classifier - Classifier Rank (CR). In 1997, Woods et al. [59] introduced: (1)

a modification of CR named Modified Classifier Rank (MCR); and (2) a DCS method

based on the local classification accuracy known as DCS by Local Accuracy (DCS-LA),

with two methods to estimate the local accuracy: the Overall Local Accuracy (OLA)
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and the Local Class Accuracy (LCA). Two years later, Giacinto & Roli [60] proposed

a modification over the OLA and LCA methods by considering the estimates of the

class posterior probabilities, creating two methods: a Priori and a Posteriori. The same

authors [61] proposed the Multiple Classifier Behaviour (MCB), which exploits the concept

of Behaviour Knowledge Space (BKS). Smits [62], in 2002, also proposed a modification

on the DCS-LA method by using distance weights to overcome outliers in the region of

competence; this methods is known as Modified Local Accuracy (MLA). Recently in 2016,

Brun et al. [69] proposed the Dynamic Selection on Complexity (DSOC) method that

considers not only the accuracy of each classifier in the region of competence, but also

the use of features related to the problem complexity.

Other authors focused on developing methods of DS that result in selecting an en-

semble of classifiers (DES). By selecting an ensemble of classifiers, the DES methods can

overcome one of the most critical points of DCS methods: the choice of one individual

classifier relies on how much we trust the estimate of generalization of the classifiers. In

other words, selecting a single classifier can be highly error-prone. On the other hand, if

an ensemble of classifiers is selected the risk of this over-generalization is reduced [3, 4,

7]. Another reason for selecting an ensemble of classifiers is that, frequently, some base

classifiers can have the same competence level and instead of selecting a random one it is

more reasonable selecting all of them [4].

In 2006 and 2008, Soares et al. [63] and Souto et al. [64] proposed two DES methods

based on accuracy and diversity to select classifiers using a k-NN (DES-kNN) and a k-

Means (DES-kMeans) to find the RofC. Also in 2008, Ko et al. [7] proposed the class of

methods k-Nearest ORAcles (KNORA), which are based on the concept of the Oracle.

The Oracle is defined as the ideal select for a pool of classifiers, i.e., it will always correctly

classifies a test sample if at least one classifier in the pool correctly classify the test sample;

hence, this is considered the upper bound of a MCS. The KNORA methods attempt to

find local oracles in the RofC.

Between 2009 and 2012, Antosik & Kurzynski [66], Woloszynski & Kurzynski [29, 65]

and Woloszynski et al. [67] proposed four DES methods based on a probabilist model.
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By calculating the competence of each classifier with respect to a random guessing, these

methods gained a meaningful interpretation: competent (incompetent) classifier are more

(less) accurate than the random classifier. All classifiers that achieve a competence higher

than the random classifier are selected to form the ensemble to predict the label of the

unknown test sample. In 2012, Woloszynski et al. [67], also proposed a method based

on random classification (DES-P), which finds the region of competence using a k-NN;

and from this samples, estimates the accuracy of each classifier; then, all classifiers that

achieve a competence higher than the random guessing are selected to form the ensemble.

In 2013, Cavalin et al. [68] proposed the k-Nearest Output Profiles (KNOP) methods

which selects the RofC based on the decision space, i.e., all samples in the test set and

validation set are transformed into output profiles. The output profile of an instance x̃j

is denoted by x̃j = {x̃j,1, x̃j,2, . . . , x̃j,M}, where x̃j,i is the predicted label of xj by the i-th

classifier.

Recently, in 2016, Cruz et al. [30] proposed the Meta-learning - DES (Meta-DES)

method that uses meta-learning and five distinct meta-features, each one corresponding

to a different criterion to measure the competence of a base classifier, to predict the label

of an unknown test sample.

A.2 Classifier Rank (CR)

Sabourin et al. [58] presented this algorithm which selects a classifier ci based on

the number of consecutive neighbouring samples correctly classified by ci. The selected

classifier is said to have the highest “rank”.

A.3 Modified Classifier Rank (MCR)

Woods et al. [59] presented an alternative for the CR method. Given a test sample

assigned to class ωl by a classifier ci, the competence of ci is the number of consecutive

neighbouring samples assigned to class ωl by ci that were correctly labelled by ci.
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Figure A.1: Example of CR method. The multiple classifier system is formed by three
classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. In this example,
the classifier c2 is the one chosen to classify the test pattern xj,test.

Figure A.2: Example of MCR method. The multiple classifier system is formed by three
classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. The three clas-
sifiers predict the label of test sample xj,test and their ranks are calculated based on the
class predicted to xj,test. In this example, the classifier c2 is the one chosen to classify the
test pattern xj,test.
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A.4 DCS by Local Accuracy (DCS-LA)

This method was proposed by Woods et al. [59] and it is based on local accuracy

estimates. The basic idea is to estimate the competence of each base classified using its

accuracy in local regions of the feature space surrounding the test sample. These local

regions are defined using a k-NN. The authors propose two methods to estimate the local

accuracy:

Algorithm 3: OLA / LCA
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find the RofC θj of xj,test using a k-NN in the validation set V ;
6 foreach ci ∈ C do
7 Calculate δi,j using equation A.1 (OLA) or A.2 (LCA) ;
8 end
9 Select the classifier c∗t with the highest δi,j ;

10 υj = c∗t (xj,test) ;
11 end
12 end

Figure A.3: Example of OLA method. The multiple classifier system is formed by three
classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. In this example,
the classifier c1 is the one chosen to classify the test pattern xj,test.
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Figure A.4: Example of LCA method. The multiple classifier system is formed by three
classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. The three clas-
sifiers predict the label of test sample xj,test and their accuracies are calculated based on
the class predicted to xj,test. In this example, the classifier c2 is the one chosen to classify
the test pattern xj,test.

Overall Local Accuracy (OLA) is the percentage of neighbouring samples of the

test sample xj,test that are correctly classified.

δi,j = Ni

K
(A.1)

where Ni is the number of neighbouring samples of xj,test that are correctly classified

by ci and K is the size of the RofC.

Local Class Accuracy (LCA) exploits the information that ωl is the class as-

signed by the classifier ci to the test pattern xj,test. Therefore, we can determine

the percentage of neighbouring sample assigned to class ωl by the classifier ci that

have been correctly labelled.

δi,j = Ni,l

Nk,l

(A.2)
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where Ni,l is the number of neighbouring samples of xj,test that have been correctly

assigned by ci with class ωl; and Nk,l is the total number of patterns in the RofC

that have been assigned by ci with class ωl.

Algorithm 4: a Priori
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Ψ = ∅ ;
6 Find θj of xj,test using a k-NN in the validation set V ;
7 foreach ci ∈ C do
8 Calculate δi,j using equation A.4 ;
9 if δi,j ≥ 0.5 then

10 Ψ = Ψ ∪ ci
11 end
12 δm = max(δi,j | ci ∈ Ψ) ;
13 cδm = argmax(δi,j | ci ∈ Ψ) ;
14 selected = TRUE ;
15 foreach ci ∈ Ψ do
16 d = δm − δi,j ;
17 if (i 6= m) and (d < Threshold) then
18 selected = FALSE ;
19 end
20 if selected == TRUE then
21 c∗t = cδm ;
22 else
23 c∗t is randomly selected from Ψ with d < Threshold ;
24 end
25 υj = c∗t (xj,test) ;
26 end
27 end

A.5 A priori

Giacinto & Roli [60] proposed an adaptation for the method OLA. By choosing clas-

sifiers with the ability to provide estimates of the class posterior probability, the authors

reformulated the equation A.1. Given a pattern xk ∈ ωt belonging to the neighbourhood
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θj, the P (ωt|xk ⊂ θj, ci) can be regarded as a measure of accuracy of the classifier ci for

the pattern xk. Therefore, the equation A.1 can be rewritten as follows:

δi,j = 1
K

K∑
k=1

P (ωt | xk ⊂ θj, ci) (A.3)

According to equation A.4, the selection is performed without knowing the class

predicted by the classifier ci to the test pattern xj,test.

In order to handle the “uncertainty” in the definition of the RofC, each instance in

θj is weighted by the inverse of the Euclidean distance dk of patterns xk to xj,test:

δi,j =
∑K
k=1 P (ωt | xk ⊂ θj, ci)Wi∑K

k=1Wi

(A.4)

Figure A.5: Example of a Priori method. The multiple classifier system is formed by
three classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. The three
classifiers estimate the posterior probability of each instance in θj according to its true
label. Each instance is also weighted by the inverse of the Euclidean distance dk of patterns
xk to xj,test. In this example, the classifier c1 is the one chosen to classify the test pattern
xj,test.



132 Chapter A. Dynamic Selection Algorithms

A.6 A posteriori

Giacinto & Roli [60] also proposed an adaptation for the method LCA. If the class

assigned by the classifier ci to the test pattern xj,test is known (ci(xj,test) = ωl), this infor-

mation can be used to reformulate equation A.2. Analogously to the a Priori method, the

“uncertainty” in the definition of θj,test is handled by weighting each posterior probability

by the Euclidean distance dk of patterns xk to xj,test

δi,j =
∑

xk∈ωl
P (ci(xj,test) = ωl | xk, ci)Wi∑K

k=1 P (ci(xj,test) = ωl | xk, ci)Wi

(A.5)

Figure A.6: Example of a Posteriori method. The multiple classifier system is formed by
three classifiers {c1, c2, c3} and a RofC using a 10-Nearest Neighbour classifier. The three
classifiers estimate the posterior probability of each instance in θj according to the label
predict for xj,test . Each instance is also weighted by the inverse of the Euclidean distance
dk of patterns xk to xj,test. In this example, the classifier c2 is the one chosen to classify
the test pattern xj,test.
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Algorithm 5: a Posteriori
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Ψ = ∅ ;
6 Find θj of xj,test using a k-NN in the validation set V ;
7 foreach ci ∈ C do
8 Calculate δi,j using equation A.5 ;
9 if δi,j ≥ 0.5 then

10 Ψ = Ψ ∪ ci
11 end
12 δm = max(δi,j | ci ∈ Ψ) ;
13 cδm = argmax(δi,j | ci ∈ Ψ) ;
14 selected = TRUE ;
15 foreach ci ∈ Ψ do
16 d = δmax − δi,j ;
17 if (i 6= m) and (d < Threshold) then
18 selected = FALSE ;
19 end
20 if selected == TRUE then
21 c∗t = cm ;
22 else
23 foreach ci ∈ C do
24 confi(xj,test) = min

ρ=1,...,L
ρ 6=l

[P (ωl | xj,test, ci)− P (ωρ | xj,test, ci)] ;

25 beli = confi(xj,test) · δi,j ;
26 if beli ≥ 0.5 then
27 Ψ̂ = Ψ̂ ∪ ci
28 end
29 belm = max(beli | ci ∈ Ψ̂) ;
30 cbelm = argmax(beli | ci ∈ Ψ̂) ;
31 selected = TRUE ;
32 foreach ci ∈ Ψ̂ do
33 d = belm − beli ;
34 if (i 6= m) and (d < Threshold) then
35 selected = FALSE ;
36 end
37 if selected == TRUE then
38 c∗t = cbelm ;
39 else
40 c∗t is randomly selected from Ψ̂ with d < Threshold ;
41 end
42 end
43 υj = c∗t (xj,test) ;
44 end
45 end
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A.7 Multiple Classifier Behaviour (MCB)

Giacinto & Roli [61] proposed a new dynamic classifier selection based on classi-

fier’s local accuracy and multiple classifier behaviour. The MCB of a given pattern

is a vector whose elements are the decisions (labels) predicted by each the individ-

ual classifier in the pool of classifiers, i.e., given x, the vector MCB(x) is defined by

MCB(x) = {c1(x), c2(x), . . . , cN(x)}.

For each unknown test pattern xj,test, θj is identified and the MCB is computed on

xj,test and all patterns on θj. Afterwards, the patterns on θj that satisfy the measure of

similarity S(xk,xj,test) > threshold are selected forming a new θ̂j. Finally, the competence

of each classifier is measured by the ratio between the number of patterns that were

correctly classified by the classifier ci ∈ C and the total number of patterns in θ̂j. The

classifier with the highest competence is then selected. The similarity measure used to

find θ̂j is defined as follows:

S(xk,xj,test) = 1
N

N∑
i=1

Ti(xk,xj,test) (A.6)

where Ti(xk,xj,test) is defined as:

Ti(xk,xj,test) =


1, if ci(xk) = ci(xj,test)

0, if ci(xk) 6= ci(xj,test)
(A.7)

It is worth noticing that this method has an advantage of not relying on the size of

the neighbourhood to compute the RofC, because θ̂j, which will be used to calculate the

accuracy of each classifier, depends on the degree of similarity between the unknown test

pattern and patterns in the region θj.

A.8 Modified Local Accuracy (MLA)

Proposed by Smits [62], the MLA DCS method aims to be more robust to the choice

of size of the RofC. This technique assumes that, in the feature space, the classes maintain
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Algorithm 6: MCB
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find θj of xj,test using a k-NN in the validation set V ;
6 θ̂j = ∅ ;
7 foreach xk ∈ θj do
8 Compute S(xk,xj,test) ;
9 if S(xk,xj,test) > Threshold then

10 θ̂j = θ̂j ∪ xk ;
11 end
12 foreach ci ∈ C do
13 Compute δi,j using equation A.1 with θ̂j ;
14 end
15 Select the classifier c∗t with the highest δi,j ;
16 υj = c∗t (xj,test) ;
17 end
18 end

a certain continuity. Therefore, neighbouring elements are expected to have a stronger

relationship when compared to elements further away. In other works, when the size (K)

of the RofC is too big, it might contain elements that can be considered as outliers, which

will negatively influence the final competence of each classifier; however, when K is too

small it may lead to insufficient information. Therefore, MLA weights each instance in θj

by its instance to xj,test. To tackle this issue, the MLA algorithm weights each correctly

assigned pattern in θj by ci with class wl:

δr,j =
∑
Wr,k

Nk,l

(A.8)

where Wr,k is the weight applied to the r-th pattern that was correctly assigned by ci with

class wl; and Nk,l is the total number of patterns in the RofC that have been assigned by

ci with class ωl.

The classifier with the highest competence is selected to predict the label of xj,test.

Three different weighting schemes were proposed in the literature:
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1. Dudani’s weighting scheme: Smits [62] proposed a MLA algorithm using the

Dudani’s weighting scheme. This scheme was proposed by Dudani [113] as a decision

rule to improve the classification of a k-NN; it calculates the weight of the r-th of

the k nearest neighbours based on the distance dr between the unknown test pattern

xj,test and its r-th neighbour in the RofC.

Wr,k =


dk − dr
dk − d1

, if di 6= d1

1, otherwise
(A.9)

2. Macleod’s weighting scheme: Smits [62] also proposed another MLA algorithm

using now the Macleod’s weighting scheme, which is a generalized version of the

Dudani’s weighting scheme proposed by Macleod et al. [114]. This scheme intro-

duces a mechanism for scaling the distance using a user-specified parameter (α) and

the s-th nearest neighbour. Good classification results were obtained by Smits [62]

using α = 0 and s set to the total number of samples in the validation set and

s = 3k where k is the size of the RofC.

Wr,k =


dk − dr + α(ds − d1)

(1 + α)(ds − d1) , if ds 6= d1

1, otherwise
(A.10)

3. Euclidean’s weighting scheme: Cruz et al. [4] proposed a MLA algorithm using

the inverse of the Euclidean distance (d) between the pattern xr ∈ θj and the

unknown test pattern xj,test.

Wr,k = 1
d(xr ∈ θj,xj,test)

(A.11)

where Wk,l is the inverse of the euclidean distance between the unknown test pattern

xj,test and the pattern xk ∈ θj.
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Algorithm 7: MLA
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find θj of xj,test using a k-NN in the validation set V ;
6 foreach ci ∈ C do
7 Calculate δi,j using equation A.8 with one of the possible weighting

schemes: equation A.9 (Dudani) or A.10 (Macleod) or A.11
(Euclidean) ;

8 end
9 Select the classifier c∗t with the highest δi,j ;

10 υj = c∗t (xj,test) ;
11 end
12 end

A.9 DES - K-Nearest Neighbour (DES-kNN) and

DES - k-Means (DES-kMeans)

Soares et al. [63] proposed a dynamic ensemble selection method which considers

both the accuracy and diversity of the classifiers in the RofC to select an ensemble of

classifiers to predict the label of the unknown test pattern xj,test. The diversity measure

is used due to the fact that an ideal situation for any multiple classifier system is to have

a set of classifiers with uncorrelated or negatively correlated errors, i.e., this classifiers

should make different errors, being, therefore, diverse. To do this, two different versions

to define the RofC were presented: the first one uses a k-NN (DES-kNN), while the

second uses a kMeans clustering algorithm (DES-kMeans). In both cases, the accuracy

and diversity of each classifier ci ∈ C is calculated based on the RofC provided for this

methods for each unknown test pattern.

The accuracy of each classifier in the RofC is computed as the proportion of neigh-

bours in which the classifier ci ∈ C has provided the true label. On the other hand, the

diversity is computed using the double-fault measure (Equation A.12). This measure uses
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Algorithm 8: DES-kMeans
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 Cluster via kMeans the patterns in V into k clusters ;
2 For each cluster produced, rank the classifiers in C in a decreasing order of

accuracy and increasing order of diversity ;
3 foreach xj,test ∈ T do
4 if ∀ci ∈ C predict the same label ωl for xj,test then
5 υj = ωl ;
6 else
7 Assign xj,test to the cluster that presents the nearest centroid (Euclidean

distance) ;
8 Choose the N most accurate classifiers of this cluster ;
9 From the N most accurate, choose the J most diverse classifier (the ones

with the lowest DFi,k values) to compose the ensemble Ψ, where J 6 N ;
10 υj = MajorityV ote(xj,test,Ψ) ;
11 end
12 end

Algorithm 9: DES-kNN
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find θj of xj,test using a k-NN in the validation set V ;
6 Based on θj, rank the classifiers in C in a decreasing order of accuracy and

increasing order of diversity ;
7 Select the N most accurate classifiers of θj ;
8 From the N most accurate, choose the J most diverse classifier (the ones

with the lowest DFi,k values) to compose the ensemble Ψ, where J 6 N ;
9 υj = MajorityV ote(xj,test,Ψ) ;

10 end
11 end
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the proportion of cases that has been misclassified by both classifiers, and is defined as

follows:

DFi,k = N00

N11 +N10 +N01 +N00 (A.12)

where N00 is the number of patterns that both classifiers misclassified; N01 is the number

of patterns that the first classifier correctly classified and the second misclassified; N10

is the number of patterns that the first classifier misclassified and the second correctly

classified; and N11 is the number of patterns that both classifiers correctly classified.

DFi,k = 1 shows that both classifiers are always wrong, while DFi,k = 0 shows that both

classifiers are always right. Therefore, a low DFi,k is desired for an ensemble.

Given a classification task, let L, V and T be three disjoint sets (L ∩ V ∩ T = ∅)

representing the training, validation and test sets. The two versions presented by Soares

et al. [63] are presented on algorithms 8 and 9.

A.10 k-Nearest ORAcles (KNORA)

Ko et al. [7] proposed a method to find the most suitable ensemble of classifiers

for each unknown test sample. The KNORA method also uses a k-NN to determine the

neighbourhood of a test sample in a validation set. This method checks which classifiers

made a correct prediction on the RofC and uses them to form an ensemble to classify the

test sample. Two different schemes using KNORA were proposed:

KNORA - Eliminate (KNORA-E) Given θj with k neighbours from the un-

known test sample xj,test, and supposing a set of classifier Ψ ⊂ C = {c1, c2, . . . , cN}

correctly classifies all the k neighbours, then every classifier ψ ∈ Ψ will submit a vote

on the sample xj,test. The label of xj,test will be the class with the highest number of

votes. If Ψ = ∅ for the k neighbours of xj,test, then the algorithm simply decreases

the value of k until at least one classifier correctly classifies all neighbours.

KNORA - Union (KNORA-U) Given θj with k neighbours from the unknown

test sample xj,test, and supposing a set of classifier Ψ ⊂ C = {c1, c2, . . . , cN} correctly



140 Chapter A. Dynamic Selection Algorithms

classifies at least one of the k neighbours, then each classifier ψ ∈ Ψ will submit the

same number of votes as correctly predicted neighbours. In other works, a classifier

can have more than one vote if correctly classifies more than one neighbour.

Algorithm 10: KNORA-E
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 k = K ;
6 Ψ = ∅ ;
7 while Ψ == ∅ do
8 Find θj of xj,test using a k-NN in the validation set V ;
9 foreach ci ∈ C do

10 if ci correctly recognizes all samples in θj then
11 Ψ = Ψ ∪ ci ;
12 end
13 if Ψ == ∅ then
14 k = k − 1 ;
15 else
16 break;
17 end
18 end
19 υj = MajorityV ote(xj,test,Ψ) ;
20 end
21 end
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Algorithm 11: KNORA-U
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find θj of xj,test using a k-NN in the validation set V ;
6 Ψ = ∅ ;
7 foreach xk ∈ θj do
8 foreach ci ∈ C do
9 if ci(xk) == ωt then

10 Ψ = Ψ ∪ ci ;
11 end
12 end
13 υj = MajorityV ote(xj,test,Ψ) ;
14 end
15 end

A.11 Measures of Classifier Competence

This class of methods represents an ensemble dynamic selection method based on a

class-independent measure of classifier competence in the feature space. All the methods

are calculated with respect to the response obtained by random guessing. Therefore,

these approaches gain a meaningful interpretation: competent (incompetent) classifiers

are more (less) accurate than the random classifier. The competence of a classifier is

determined by a two-step procedure: the first part calculates the source competence at

validation points, while the second part extends these source competences to the entire

feature space using a potential function model [29, 65–67].

Let (d1(χ), d2(χ), . . . , dL(χ)) be a set of discriminant functions produced by the

classifier ci ∈ C for a given sample described by the feature vector χ, where each

dω(χ),Ω = ω1, ω2, . . . , ωL represents the support given by the classifier ci for the l-th

class. Without loss of generality, dω(χ) > 0 and ∑ dω(χ) = 1. Also, assume a validation

set V is present and xk ∈ V. Now using V, we define the source competence K(ci | xk) of

the classifier ci ∈ C at a point xk ∈ V as a function of class number L and the support of
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correct class dωt(xk) having the following properties [29, 65–67]:

1. K(ci | xk) is a strictly increasing function of dωt(xk);

2. −1 ≤ K(ci | xk) ≤ 1;

3. −1 ≤ K(ci | xk) < 0 for 0 < dωt(xk) <
1
L
⇒ the classifier is incompetent;

4. K(ci | xk) = −1 for dωt(xk) = 0 ⇒ the classifier is absolutely incompetent;

5. 0 < K(ci | xk) ≤ 1 for 1
L
< dωt(xk) < 1 ⇒ the classifier is competent;

6. K(ci | xk) = 1 for dωt(xk) = 1 ⇒ the classifier is absolutely competent;

7. K(ci | xk) = 0 for dωt(xk) = 1
L
⇒ the classifier is neutral

The following source competence functions were proposed by Antosik & Kurzynski

[66], Woloszynski & Kurzynski [29, 65] and Woloszynski et al. [67]:

DES - Minimal Difference (DES-MD) [66] First, this function calculates the

difference between the discriminant function obtained by the classifier ci for the cor-

rect class (dωt(xk)) and those obtained by ci for each of the other classes (dω(xk)

with ω 6= ωt). The difference with the minimal value is selected as the source com-

petence of the classifier ci. If ci correctly classifies xk ∈ V, then K(ci | xk) > 0

and ci is considered competent. If ci makes an error, then K(ci | xk) < 0 and ci is

incompetent.

K(ci | xk) = min
ω∈Ω
ω 6=ωt

[dωt(xk)− dω(xk)] (A.13)

DES - Exponential (DES-EXP) [65] In this function, the source competence

K(ci | xk) depends on the number of classes in the classification problem. This de-

pendency can be observed on Figure A.7, where by increasing the number of classes,

the chances of having a higher source competence is increased, even with a low sup-

port given by the classifier. Therefore, a low number of classes is desired for this

function to properly work.
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K(ci | xk) = 1− 2
1−

(L− 1)dωt(xk)
1− dωt(xk) (A.14)
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Figure A.7: Exponential function number of classes dependency. The source competence
of classifier ci plotted against the support predicted by ci for the correct class ci(xk) = ωt
(Equation A.14) for different number of classes (L = 2, 3, 5, 10, 20, 50)

DES - Randomised Reference Classifier (DES-RRC) [29] This method decides

whether or not a base classifier performs better than a random guessing. The source

competence K(ci | xk) is estimated based on the randomised reference classifier with

a beta probability distribution proposed by Woloszynski & Kurzynski [29]. A MAT-

LAB code ccprmod.m is freely available for download with the proposed function
1.

DES - Kullback-Leibler Divergence (DES-KL) [67] This method measures the

source competence of a classifier from the information theory perspective. The

Kullback-Leibler divergence is computed between the uniform distribution RC =

[ 1
L
, 1
L
, . . . , 1

L
] and the vector of discriminant functions (d1(χ), d2(χ), . . . ,

dL(χ)) produced by the classifier ci ∈ C. Therefore, this divergence measures how

“close” the discriminant functions are to the random guessing.
1The ccprmod.m code is available for download at MATLAB File

Exchange: https://www.mathworks.com/matlabcentral/fileexchange/
28391-a-probabilistic-model-of-classifier-competence [29]

https://www.mathworks.com/matlabcentral/fileexchange/28391-a-probabilistic-model-of-classifier-competence
https://www.mathworks.com/matlabcentral/fileexchange/28391-a-probabilistic-model-of-classifier-competence
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K(ci | xk) = (2 ∗ I{ci(xk)=ωt} − 1) +
L∑
l=1

dω(xk) log
dω(xk)
RC(l)

 (A.15)

I{ci(xk)=lk} is the indicator of the event ci(xk) = lk, i.e., the classifier ci made a correct

prediction of the class of the validation sample xk.

Since the Kullback-Leibler divergence is non-negative, the term (2 ∗ I{ci(xk)=lk} − 1)

gives the sign of the source competence K(ci | xk). In other words, the source

competence is positive (negative) if the classifier correctly (incorrectly) predicts the

label of the validation sample xk.

After calculating the source competence K(ci | xk) at validation points xk ∈ V,

the following step is to extend the competence values to the entire feature space using a

normalized Gaussian potential function model to reduce the influence of each point in the

validation set based on its Euclidean distance to xj,test:

δi,j =
∑

xk∈VK(ci | xk)e−d(xj,test,xk)2∑
xk∈V e

−d(xj,test,xk)2 (A.16)

where d(xj,test,xk) is the Euclidean distance between the unknown test sample xj,test

and the validation sample xk. All classifiers that achieve a greater competence than the

probability of a random classifier is selected to compose the ensemble to predict the label

of the unknown test sample xj,test using a majority voting scheme [29, 65–67].

A.12 DES - Performance (DES-P)

The DES-P method was proposed by Woloszynski et al. [67] and is similar to the

OLA algorithm. First, the performance of each classifier ci ∈ C is computed in θj by

calculating the percentage of neighbours ci correctly classified. Then, the competence

δi,j of ci is obtained by subtracting the performance of a random classifier 1
L

from the

estimated performance of ci.

δi,j = Ni

K
− 1
L

(A.17)
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Algorithm 12: DES-MD / DES-EXP / DES-RRC / DES-KL
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Ψ = ∅ ;
6 Ψ′ = ∅ ;
7 foreach ci ∈ C do
8 Calculate δi,j using equation A.16 with one of the four types of source

competence measures: minimal difference (equation A.13),
exponential (equation A.14), randomised reference classifier ,
Kullback-Leibler divergence (equation A.15) ;

9 if δi,j ≥ 1
L

then
10 Ψ = Ψ ∪ ci ;
11 if δi,j > 0 then
12 Ψ′ = Ψ′ ∪ ci ;
13 end
14 if Ψ 6= ∅ then
15 υj = MajorityV ote(xj,test,Ψ) ;
16 else
17 υj = MajorityV ote(xj,test,Ψ′) ;
18 end
19 end
20 end

where Ni is the number of neighbouring samples of xj,test that are correctly classified by

ci and K is the size of the RofC.

The classifiers with a positive competence δi,j will form the ensemble to predict the

label of xj,test using a majority voting scheme.

A.13 k-Nearest Output Profiles (KNOP)

Proposed by Cavalin et al. [68], the KNOP method is inspired on the KNORA

algorithms and transforms all samples in the validation set V and the unknown test sample

xj,test into output profiles to create θj. The k most similar validation samples according

to equation A.6 will be selected to form θj. The main differences of this method when
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Algorithm 13: DES-P
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach xj,test ∈ T do
2 if ∀ci ∈ C predict the same label ωl for xj,test then
3 υj = ωl ;
4 else
5 Find θj of xj,test using a k-NN in the validation set V ;
6 Ψ = ∅ ;
7 foreach ci ∈ C do
8 Calculate δi,j using equation A.17 ;
9 if δi,j > 0 then

10 Ψ = Ψ ∪ ci ;
11 end
12 υj = MajorityV ote(xj,test,Ψ) ;
13 end
14 end

compared with the MCB method are:

Algorithm 14: KNOP-U
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 Transform all the sample in V into output profiles x̃v ;
2 foreach xj,test ∈ T do
3 if ∀ci ∈ C predict the same label ωl for xj,test then
4 υj = ωl ;
5 else
6 Compute the output profile x̃j,test of xj,test ;
7 Find the k most similar x̃v to x̃j,test to compute θj ;
8 Ψ = ∅ ;
9 foreach xk ∈ θj do

10 foreach ci ∈ C do
11 if ci(xk) == ωt then
12 Ψ = Ψ ∪ ci ;
13 end
14 end
15 υj = MajorityV ote(xj,test,Ψ) ;
16 end
17 end

1. The MCB method first uses a k-NN to compute θj and then selects the most similar
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output profiles using the equation A.6; while the KNOP method will select the k

most similar profiles using the entire validation set V.

2. The MCB method selects a single classifier while the KNOP algorithm selects an

ensemble of classifiers.

Similarly to the KNORA algorithms there are two possible KNOP methods: KNOP

- Eliminate (KNOP-E) and KNOP - Union (KNOP-U); depending on how the classifiers

will be selected to form the ensemble.

Algorithm 15: KNOP-E
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 Transform all the sample in V into output profiles x̃k ;
2 foreach xj,test ∈ T do
3 if ∀ci ∈ C predict the same label ωl for xj,test then
4 υj = ωl ;
5 else
6 k = K ;
7 Ψ = ∅ ;
8 while Ψ == ∅ do
9 Compute the output profile x̃j,test of xj,test ;

10 Find the k most similar x̃k to x̃j,test to compute θj ;
11 foreach ci ∈ C do
12 if ci correctly recognizes all samples in θj then
13 Ψ = Ψ ∪ ci ;
14 end
15 if Ψ == ∅ then
16 k = k − 1 ;
17 else
18 break;
19 end
20 end
21 υj = MajorityV ote(xj,test,Ψ) ;
22 end
23 end
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A.14 Meta-learning - DES (Meta-DES)

Proposed by Cruz et al. [30], the Meta-DES method is a DES framework that uses

meta-learning. Most DS techniques use either one or two criteria to select a classifier

or an ensemble of classifiers from a RofC θj surrounding an unknown test sample xj,test.

However, this criterion can be very error-prone and, according to the “No Free Lunch”

theorem, no algorithm is better in all possible class of problems. Therefore, to overcome

these issues, Cruz et al. [30] proposed a method with multiple criteria (meta-features) to

measure the competence of the base classifiers ci ∈ C to form an ensemble. The authors

propose five different meta-features, each one capturing a different behaviour of ci:

f1 - Neighbour’s hard classification First, a vector f1 with K elements is cre-

ated. Then, from each sample xk ∈ θj, if ci correctly classifies xk, the k-th position

of f1 is set to 1, otherwise is set to 0.

f2 - Posterior probability First, a vector f2 with K elements is created. Then,

from each sample xk ∈ θj, the posterior probability P (ωt|xk ⊂ θj, ci) is computed

and inserted into the k-th position of f2.

f3 - Overall local accuracy The accuracy of ci over θj is computed using the equa-

tion A.1.

f4 - Output profiles classification Similar to the KNOP method, first a vector f4

with Kp elements is created. Then, all samples in the validation set V are transformed

into output profiles x̃k and the Kp most similar x̃k to x̃j,test are selected to form θ̃j.

From each sample x̃kp ∈ θ̃j, if ci correctly classifies x̃kp , the k-th position of f4 is set

to 1, otherwise is set to 0.

f5 - Classifier’s confidence The posterior probability of the class wl predict by ci

for xk, i.e., P (ci(xk) = ωl|xk ⊂ θj, ci)

In consequence, if one of this meta-features fail (have a low confidence result), the system

can still achieve a good performance. These meta-feature will then be used to train a
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meta-classifier that decides whether or not the classifier ci is competent to predict the

label of xj,test. Cruz et al. [115] evaluated four types of meta-classifiers: Multiple Layer

Perceptron Neural Network (MLP), Support Vector Machine (SVM), Random Forest

classifier (RF) and Naive Bayes classifier (NB). Experimental results demonstrated that

the performance of this classifiers were statistically equivalent; hence, since NB is a simpler

classifier to train due to the lack of hyper-parameters, this classifier was chosen as the

meta-classifier.

The Meta-DES method is divided into three phases:

1. Overproduction: a pool of classifiers (C) is generated using a bagging method,

which builds a diverse ensemble of classifiers by randomly selecting different subsets

of the training set T. Each subset of T is used to train one classifier ci ∈ C.

2. Meta-training: the five sets of meta-features are extracted from the set Tλ and

used to train the meta classifier λ.

3. Generalization: the meta-features are extracted from the unknown test sample

xj,test and passed as an input to λ, which decides if the classifier ci is competent or

not to predict the label of xj,test. If it is competent, ci will form the ensemble that

will predict the label of xj,test using a majority vote scheme.

The meta-training and generalization phases are formalized in Algorithm 16. The pro-

posed framework differs from all the other dynamic selection algorithms in two aspects:

(1) it uses a multiple selection criterion to determine a classifier’s competence; (2) the

rule to select a classifier is learned by a meta-classifier using these multiple criteria.

A.15 Dynamic Selection on Complexity (DSOC)

Proposed by Brun et al. [69], the DSOC method combines the accuracy of a classifier

ci ∈ C on the RofC θj with the complexity of the data to select a single classifier from the

pool C. The complexity of the data is measured by complexity features, which analyse

the level of difficulty of a classification problem. These features analyse not only the
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number of instances, classes and features, but also how overlapping are two classes, how

are their boarders and the spatial distribution of each class. Three complexity measures

were proposed by Brun et al. [69] to form the DSOC method:

Fisher’s Discriminant Ratio F1 describes how separable are two classes accord-

ing to each feature.

F1 = (µ1 − µ2)2

σ12 − σ22 (A.18)

where µ1,µ2,σ1 and σ2 represent the mean value and the standard deviation of for

classes 1 and 2 for each feature in the feature space. The final value of F1 is the

highest among all features. The higher F1 is, the larger the separation between two

classes is, because F1 can be interpreted as the distance between the centre of two

classes.

Ratio of intra/inter class nearest neighbour distance N2 analyses the exis-

tence and form of the border between two classes to determine how separable they

are. Therefore, N2 calculates the sum of distance between the sample xi and its

nearest neighbour in the same class and divides by the sum of distance between the

same sample xi and its nearest neighbour outside xi’s class. The smaller the N2,

more separable the classes are.

N2 =
∑n
i=1 ρ(N=

1 (xi), xi)∑n
i=1 ρ(N 6=1 (xi), xi)

(A.19)

where ρ(N=
1 (xi), xi) represents the distance between xi and its nearest neighbour in

the same class; ρ(N 61 = (xi), xi) represents the distance between xi and its nearest

neighbour in a different class; and n is the number of instances.

Non-linearity of the 1-Nearest Neighbour classifier N4 describes the error rate

of a training set and a test set using a 1-Nearest Neighbour (1-NN) classifier. The

test set T is created by linearly interpolating (x̄ = αxk + (1 − α)xl) elements of
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randomly chosen pairs (xk and xl) within the same class in the training set, where

α ∈ [0, 1]. The smaller N4 is, the easier is the problem.

N4 = 1NNerror(T ) = N
n

(A.20)

where n is the number of instances in T and N is the number of errors 1NN made,

i,e, the number of times 1NN selects the incorrect class for x̄ ∈ T .

These complexity features are computed over each subset of data (DSi, where i = 1, . . . , N

and N is equal to the total number of classifiers in the pool) generated by bagging, creating

a M -complexity signature array (sigDSi
). Also, for each DSi the centroid of each class

αi,j is computed. Then, for each xj,test ∈ L, θj is computed to find another M -complexity

signature array (sigθj
). Finally, using sigDSi

, αi,j, sigθj
and θj three features are extracted

for each classifier, and their combination (Equation A.21) will decide which classifier is

more competent to predict the label of xj,test, i.e., the classifier with the highest δi,j will

be chosen.

f1i
- Similarity in terms of complexity Consider sigDSi

as theM -complexity sig-

nature array for each DSi. Also, consider sigθj
as the M -complexity signature array

of θj. The similarity between sigθj
and each sigDSi

is computed using the Euclidean

distance.

f2i
- Distance from the predicted class First, consider that ωl is the class pre-

dicted by ci for xj,test. Also, let αi,j be the centroid of class ωl in each DSi. Then, we

compute the Euclidean distance between αi,j and xj,test, creating an N -dimensional

array.

f3i
- Local class accuracy exploits the information that ci(xj,test) = ωl, determin-

ing, therefore, the percentage of neighbouring sample correctly assigned to ωl by ci.

This can be calculated using equation A.2.

δi,j = (1− f ′1i
) + (1− f ′2i

) + f3i
(A.21)
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where f ′1i
and f ′2i

correspond to the normalized metrics of f1i
and f2i

, calculated using

the Min-Max scaling scheme:

f ′n = fn −min(fn)
max(fn)−min(fn) (A.22)
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Algorithm 16: Meta-DES
input : L, V, T, Tλ and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 T∗λ = ∅;
2 foreach xj,train ∈ Tλ do
3 Compute the accuracy ρ of the pool over xj,train;

/* ρ is the number of correct predictions divided by the total number of
classifiers */

4 if ρ < threshold then
5 Find θj,λ using Tλ ;
6 Transform all the samples xj,train ∈ Tλ into output profiles x̃j,train ∈ T̃λ ;
7 Find the Kp most similar output profiles of T̃λ to x̃j,train, excluding

x̃j,train, to form the region φj,lambda ;
8 foreach ci ∈ C do
9 Compute f1, f2, f3, f4 and f5 using φj,lambda and θj,λ;

10 vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} ;
11 if ci correctly classifies xj,train then
12 αi,j = 1
13 else
14 αi,j = 0
15 end
16 T∗λ = T∗λ ∪ {vi,j}
17 end
18 end
19 Train the meta-classifier λ with T∗λ and α

20 foreach xj,test ∈ T do
21 if ∀ci ∈ C predict the same label ωl for xj,test then
22 υj = ωl ;
23 else
24 Ψ = ∅ ;
25 Find θj of xj,test using the validation set V ;
26 Transform xj,test into x̃j,test ;
27 Transform all the samples xk ∈ V into output profiles x̃k ∈ Ṽ ;
28 Find the Kp most similar output profiles of Ṽ to x̃j,test, to form the region

φj ;
29 foreach ci ∈ C do
30 Compute f1, f2, f3, f4 and f5 using φj and θj;
31 vi,j = {f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5};
32 if λ(vi,j) == 1 then
33 Ψ = Ψ ∪ {ci};
34 end
35 υj = MajorityV ote(xj,test,Ψ)
36 end
37 end
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Algorithm 17: DSOC
input : L, V, T and C
output: υ
/* υ is the array with the predicted label for all samples in L */

1 foreach ci ∈ C do
2 Compute sigDSi

, from data subset DSi ;
3 end
4 foreach xj,test ∈ T do
5 if ∀ci ∈ C predict the same label ωl for xj,test then
6 υj = ωl ;
7 else
8 Find θj of xj,test using a k-NN in V ;
9 Compute sigθj

of θj ;
10 foreach ci ∈ C do
11 foreach DSi do
12 Compute f1i

and f2i
;

13 end
14 Compute f3i

;
15 Normalize f1i

and f2i
;

16 δi,j = (1− f ′1i
) + (1− f ′2i

) + f3i
;

17 end
18 C∗ = argmax(δi,j) ;
19 υj = C∗(xj,test) ;
20 end
21 end



B

Ap
pe

nd
ix

Statistical Analysis
***

B.1 Comparison of two classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 156

B.2 Comparison of multiple classifiers . . . . . . . . . . . . . . . . . . . . . . . 159

B.3 Wilcoxon rank sum test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Over the last years, the machine learning community has used different statistical

methods to validate their results. Pairwise and non-pairwise t-test, averages and counts

of wins are some of the most common statistical tests in the literature to answer one of the

most import questions in machine learning: which classifier yields an improved score when

comparing with other classifiers or state-of-art methods? [98, 116]. When the differences

between classifiers are very clear, i.e., when one classifier has the best score in all datasets

studied, the direct comparison may be enough. However, in most situations, this is not

the case. Hence, statistical methods must be employed to determine the relevance of these

differences [116].

Statistical methods are employed to give answers to the above question and they

provide a more precise technique to determine if the differences are random or real. In

2006, Demsar [98] evaluated the usage of several statistical tests in different papers and

concluded that:

1. Comparisons of two classifiers over a single dataset have been scrutinised by the

155
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machine learning community and there are well established methods in the literature

and;

2. The choice of statistical methods to compare multiple classifiers over multiple datasets

(an increasing common situation) was not well established and researchers were un-

sure about which tests were appropriate for these cases.

Regarding the second conclusion, two situations are possible: (1) the comparison of two

classifiers over multiple datasets; and (2) the comparison of multiple classifier over multi-

ple datasets. The following sections (sections B.1 and B.2) discusses in details the most

common methods used in literature for these two cases, as well as their misuses, limita-

tions, advantages and disadvantages. Section B.3 discuss the Wilcoxon rank sum test to

compare DCS and DES methods.

B.1 Comparison of two classifiers

For this class of problem, Demsar [98] analysed four different statistical methods:

averaging, paired t-test, sign test and Wilcoxon signed-rank test.

B.1.1 Averaging over datasets

In the words of Webb [117] “it is debatable whether error rates in different domains

are commensurable, and hence whether averaging error rates across domains is very mean-

ingful”. For this reason, Demsar [98] states that if the datasets are comparable (set of

related problems, for example, different medical databases of a certain disease), averag-

ing their results are meaningful, otherwise their averages are meaningless. Also, average

is susceptible to outliers, i.e., if one classifier performs excellent in a single dataset, the

overall bad performance on the other datasets might be underestimated.

B.1.2 Paired t-test

According to Demsar [98], a common way in the literature to determine if the differ-

ence between two classifiers over multiple datasets are significantly different from zero is
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to compute a paired t-test, which has a Student distribution.

In the context of comparing classifiers over multiple datasets, the paired t-test suffers

from three weaknesses:

1. Commensurability. For the same reasons stated in the averaging case, if the

datasets are not comparable, the comparison of the differences between classifiers is

also meaningless [98].

2. Assumption of normal distribution. The paired t-test requires that the differ-

ences between two random variables compared are distributed normally. However,

this is not usually the case, since the nature of the problem does not suggest a

normal distribution and, also, the number of datasets studied is much less than 30

[98, 116]. Demsar [98] stated that “for using the t-test we need normal distributions

because we have small samples, but the small samples also prohibit from checking

the distribution shape”.

3. Outliers. The paired t-test is also affected by outliers which can decrease the test’s

power by increasing the estimated standard error.

B.1.3 Sign test and count of wins, losses and ties

According to Demsar [98], a popular way to compare the performance of two classifiers

over multiple datasets is to count the number of times a classifier performs better, worst

or equivalent to another classifier. Also, by using these counts in inferential statistics

with a binomial test (sign test). If two classifiers are equivalent, as assumed under the

null-hypothesis, each one should win approximately half on the total number of datasets.

Hence, the number of wins is distributed according to a binomial distribution.

Table B.1: Critical values of the two-tailed sign test (adapted from Mishra & Osman
[118])

# datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ω0.01 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 16 17 18
ω0.05 5 6 7 8 8 9 10 10 11 12 12 13 13 14 15 15 16 17 17 18 18
ω0.10 5 6 7 8 9 10 11 11 12 13 13 14 15 15 16 17 17 18 19 19 20
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The sign test does not assume commensurabitility and normal distribution. In con-

sequence, it can be used in any set of data. However, according to the critical values

presented in table B.1, one classifier can be deemed better, if it performs almost always

better than another classifier [98]

B.1.4 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a non-parametric test that is an alternative to

the paired t-test. Demsar [98] recommends this test for comparing two classifier over

multiple datasets because it does not assume normal distributions and the outliers have

less influence.

This test ignores the signs and absolute values of classifier’s difference by ranking

them. The smallest difference gets rank 1 and in case of ties, the average ranks are used.

Let A(i)
c1 and A(i)

c2 be the score of two classifiers c1 and c2 obtained on the i-th of N datasets

and di = |A(i)
c1 −A

(i)
c2 | be the absolute value of the difference between the scores. The test

statistics of the rank of the differences di is:

T = min(R+, R−) (B.1)

R+ =
∑
di>0

rank(di) + 1
2
∑
di=0

rank(di) (B.2)

R− =
∑
di<0

rank(di) + 1
2
∑
di=0

rank(di) (B.3)

A table with the exact critical values of the test statistic can be found on most statistical

text book [119]. For a larger number of datasets (over 30), the statistics:

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(B.4)

is distributed normally [98, 116, 120].
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B.2 Comparison of multiple classifiers

When considering the comparison of multiple classifiers over multiple datasets, there

are three common approaches according to Demsar [98]:

B.2.1 Pairwise

Many researches according to Demsar [98] use the methods mentioned on section

B.1 by conducting all the pairwise results from a set of classifiers and report results like

“classifier A was found significantly better than B and C, classifier D was significantly

better than classifiers A and E, while there was no significant differences between the

other pairs”. Demsar [98] stated that when the number of pairwise comparison increases

the likelihood of randomly rejecting a certain proportion of null hypothesis also increases,

therefore this approach is statistically meaningless to compare multiple classifiers.

B.2.2 ANOVA

The repeated measures ANOVA is one of the most common statistical methods to

compare the differences between more than two related samples. Although this is com-

mon statistical method, the required assumptions cannot be guaranteed when dealing

with machine learning algorithms. First, ANOVA assumes that the related samples are

drawn from a normal distribution. Second, and most important, assumption of repeated

measures ANOVA is sphericity, which requires the variance of the differences between all

combinations to be equal. Therefore, this method does not seem to be the ideal one to

handle the comparison of multiple classifiers over multiple datasets [98, 120, 121].

B.2.3 Friedman test and Iman-Davenport extension

The Friedman test is a non-parametric test similar to the repeated measures ANOVA.

If the assumptions of ANOVA are violated, the Friedman test can be more powerful since

it does not assumes normal distribution and sphericity. It compares k classifiers over N

datasets, by ranking the classifiers for each dataset separately (the best classifiers gets



160 Chapter B. Statistical Analysis

rank 1 and in case of ties, average ranks are assigned). The null hypothesis state that all

classifiers are equivalent and so their ranks are equal, hence the Friedman statistic is:

χ2
F = 12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (B.5)

is distributed according to χ2
F with (k− 1) degrees of freedom; where Rj = 1

N

∑
i r
j
i is the

average rank of classifiers and rji is the rank of the j-th classifier of the i-th dataset [98,

116, 120, 121].

In 1980, Iman & Davenport [97] showed that χ2
F has a conservative behaviour and,

in consequence, proposed a better alternative:

FF = (N − 1)χ2
F

N(k − 1)− χ2
F

(B.6)

which is distributed according to a F distribution with k − 1 and (k − 1)(n− 1) degrees

of freedom 1. If the null hypothesis of equivalence of classifiers is rejected, a post hoc can

be used to identify which classifiers performed different.

Demsar [98], suggested the Nemenyi test to compare all classifiers against each other.

The perform of two classifiers is significantly different if their average ranking differs by

more than a critical distance CD:

CD = qα

√
k(k + 1)

6N (B.7)

where qα are based on the Studentized range statistic divided by
√

2 (Table B.2)

Table B.2: Critical values of the two-tailed Nemenyi test (adapated from Carvalho &
Zanchettin [122])

# classifiers 2 3 4 5 6 7 8 9 10 11 12 13
ω0.01 2.576 2.913 3.113 3.255 3.364 3.452 3.526 3.590 3.646 3.696 3.741 3.781
ω0.05 1.960 2.344 2.569 2.728 2.850 2.948 3.031 3.102 3.164 3.219 3.268 3.313
ω0.10 1.645 2.052 2.291 2.460 2.589 2.693 2.780 2.855 2.920 2.978 3.030 3.077

# classifiers 14 15 16 17 18 19 20 21 22 23 24 25
ω0.01 3.818 3.853 3.884 3.914 3.941 3.967 3.992 3.015 4.037 4.057 4.077 4.096
ω0.05 3.354 3.391 3.426 3.458 3.489 3.517 3.544 3.569 3.593 3.616 3.637 3.658
ω0.10 3.120 3.159 3.196 3.230 3.261 3.291 3.319 3.346 3.371 3.394 3.471 3.439

1Critical values for the F distribution can be calculated using https://www.danielsoper.com/
statcalc/calculator.aspx?id=4

https://www.danielsoper.com/statcalc/calculator.aspx?id=4
https://www.danielsoper.com/statcalc/calculator.aspx?id=4
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B.3 Wilcoxon rank sum test

The Wilcoxon rank-sum test or Mann Whitney U test are essentially identical non-

parametric tests which are based on the order in which the observations from two samples

fall. The main difference between them is the test statistic. Suppose that we have

observations from two populations A and B containing NA and NB observations each.

The null hypothesis of the test is that the distributions of observations in the populations

A and B are equivalent. It is worth noticing that this test does not assume the populations

to be normally distributed. The alternative hypothesis, the two-tailed alternative, states

that the distributions are different, regardless the direction of the shift [123].

The Wilcoxon rank-sum test is based on the rank of the combined observations of

populations A and B, each observation is than ranked: the smallest value has rank 1 and,

in case of ties, the average rank is used. Therefore, the Wilcoxon rank-sum test is valid

for data with any distribution [123].

For a large number of samples, the distribution of a rank sum WA with observed rank

wA can be approximated to a normal distribution with mean µA and standard deviation

σA, where

µA = NA(NA +NB + 1)
2 (B.8)

σA =
√
NANB(NA +NB + 1)

12 (B.9)

In other words, the probability of WA ≥ wA can be approximated to the probability of

Z ≥ z, where

z = wA − µA
σA

(B.10)

and Z is a normal distribution with zero mean and unit standard deviation [123].

According to Tomczak & Tomczak [124], it is widely recommended to report the

effect size value of inferential test to not rely only on p-values. Effect size is a simple
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way to quantify the differences between two populations that reflects the strength of

the relationship between the two populations. The effect size estimates, therefore, the

importance of this relationship, and allows the results to be properly compared, without

depending on the size of the populations.

The effect size value for the Wilcoxon rank sum test is given by the correlation

coefficient r [124]

r = z√
NA +NB

(B.11)

A rough estimate is that r = 0.5 represents a large effect size, r = 0.3 a medium effect

size and r = 0.1 a small effect size [125].



C

Ap
pe

nd
ix

Hubness Analysis
***

C.1 Allaml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.2 Arcene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.3 Basehock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.4 Colon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.5 Gli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.6 Leukemia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.7 Pcmac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.8 Relathe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.9 Smkcan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

163



164 Chapter C. Hubness Analysis

C.1 Allaml
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Figure C.1: Hubness analysis of Allaml dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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Figure C.2: Hubness analysis of Arcene dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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Figure C.3: Hubness analysis of Basehock dataset. Six indicators have been used to
evaluate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot
and spearman correlation of N7 against the Euclidean distance to the dataset mean;
(D) probability density function of observing point at distance r from the mean of the
dataset; (E) scatter plot and spearman correlation of N7 against the Euclidean distance
to the closets cluster mean; (F) probability density function of observing point at distance
r from the closets cluster mean.
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Figure C.4: Hubness analysis of Colon dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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Figure C.5: Hubness analysis of Gli dataset. Six indicators have been used to evaluate the
hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square Euclidean
and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and spearman
correlation of N7 against the Euclidean distance to the dataset mean; (D) probability
density function of observing point at distance r from the mean of the dataset; (E) scatter
plot and spearman correlation of N7 against the Euclidean distance to the closets cluster
mean; (F) probability density function of observing point at distance r from the closets
cluster mean.
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Figure C.6: Hubness analysis of Leukemia dataset. Six indicators have been used to
evaluate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot
and spearman correlation of N7 against the Euclidean distance to the dataset mean;
(D) probability density function of observing point at distance r from the mean of the
dataset; (E) scatter plot and spearman correlation of N7 against the Euclidean distance
to the closets cluster mean; (F) probability density function of observing point at distance
r from the closets cluster mean.
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Figure C.7: Hubness analysis of Pcmac dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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Figure C.8: Hubness analysis of Relathe dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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Figure C.9: Hubness analysis of Smkcan dataset. Six indicators have been used to eval-
uate the hubness phenomenon: (A) empirical distribution of N7 for Euclidean, square
Euclidean and cosine distances; (B) intrinsic dimensionality analysis; (C) scatter plot and
spearman correlation of N7 against the Euclidean distance to the dataset mean; (D) prob-
ability density function of observing point at distance r from the mean of the dataset; (E)
scatter plot and spearman correlation of N7 against the Euclidean distance to the closets
cluster mean; (F) probability density function of observing point at distance r from the
closets cluster mean.
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