
Machine Learning-Augmented
Turbulence Models for the Simulation

of Two-Phase Shear Flows

by

Luc Bertolotti

Thesis Supervisors Dr. Richard Jefferson-Loveday
Dr. Stephen Ambrose

The Gas Turbine and Transmissions Research Centre
Department of Mechanical, Materials and Manufacturing Engineering

The University of Nottingham

Dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

August 2022

To Mémé, who guided and encouraged me to look for answers.

"I am an old man now, and when I die and go to Heaven there are two matters

on which I hope enlightenment. One is quantum electrodynamics and the other

is turbulence of fluids. About the former, I am really rather optimistic."

Sir Horace Lamb

Acknowledgements

Firstly, I would like to express my gratitude to my supervisors Dr. Richard
Jefferson-Loveday and Dr. Stephen Ambrose who gave me the opportunity
to carry out this PhD project. I would like to thank them for their constant
support, guidance, and precious advice throughout the past few years.

I am also thankful to Prof. Carol Eastwick, head of G2TRC, for her ongoing
help and support anytime we needed them; Dr. Evgenia Korsukova for her
suggestions and collaboration; Dr. Jung Hoon Kim, Dr. David Hann, and
Ahmed Abou Sherif for their experimental work, it has been a pleasure working
with them on the Cornerstone project.

Thanks go to Rolls-Royce plc and the EPSRC for their support under the
Prosperity Partnership Grant Cornerstone1.

I am grateful to Dr. Mirco Magnini and Dr. Federico Municchi for their
invaluable training, advice, and tips on OpenFOAM.

I would like to thank Dr. Colin Bannister, manager of the University
of Nottingham’s HPC service, which was used to perform most of my CFD
calculations.

A special thanks goes to Benedikt, Gabriele, Ryan, William, Zak, and to all
my lab mates, for their support beyond friendship and the interesting conversa-
tions; to my former classmate, then roommate, but most importantly valuable
friend Dr Philippe Sohouenou, and our all-nighters working on our theses or
debating on existential issues; to my dear friends, Benjo, Guillaume, Martin,
and Théo, who were always happy to discuss about the math, and helped
maintain my (online) social life alive especially during the many lockdowns.

Finally, my thanks go to my parents, who have always encouraged me to
pursue my dreams and been giving me the tools to achieve my projects; and to
my Juliette, for her love, her kindness, her patience, for so many years now.

1Mechanical Engineering Science to Enable Aero Propulsion Futures", Grant Ref:
EP/R004951/1.

Declaration

I hereby declare that except where specific reference is made to the work of

others, the contents of this dissertation are original and have not been submitted

in whole or in part for consideration for any other degree or qualification in

this, or any other university. This dissertation is my own work and contains

nothing which is the outcome of work done in collaboration with others, except

as specified in the text and the acknowledgements.

Luc Bertolotti

September 2022

Abstract

This dissertation focuses on the investigation of co-current two-phase strat-

ified gas-liquid shearing flows with a sharp interface for industrial applications

and more specifically for the study of flows present in aero-engine bearing

chambers. Predicting the behaviour of shear flows in the different parts of an

aero-engine, such as bearing chambers, is crucial. As a matter of fact, in the

context of the thermal management of the bearing chamber, methodologies

to predict the oil film thickness distribution must be investigated in order to

optimise the system lubrication and prevent from oil coking or degradation.

The thickness distribution of wavy films is largely analysed in the industry,

but turbulent two-phase flows remain very challenging to predict depending on

the case. Carrying out experiments is often too expensive and computational

fluid dynamics (CFD) still struggles with two-phase flow prediction especially

when it involves the modelling of a sharp interface. Many CFD methods are

employed to predict the oil film thickness distribution and interface velocity.

However, the vastly used standard Reynolds-averaged Navier-Stokes equations

(RANS) turbulence models are derived from semi-empirical methods of tur-

bulence damping, which are inaccurate for wavy films with high gradients of

velocity across the interface, thus impacting flow modelling in bearing chambers.

With the objective of improving the current RANS models from scale-

resolving methods, high-fidelity simulations were carried out in this dissertation,

x

using quasi-direct numerical simulation (qDNS) with OpenFOAM. The results

of various high-fidelity simulation cases were employed to inform the interfacial

turbulence in the widely used standard Wilcox’s RANS k−ω turbulence model.

Two flow configurations based on experimental works exploring stratified flows

in horizontal channels were investigated, namely the thick-film and thin-film

configurations. Simplified 3D periodic versions of the channels were designed.

Channels were filled with two distinct gaseous and liquid phases. Shearing

flows and interface waviness were triggered by the strong interfacial velocity

gradients, as the gaseous phase velocity was set at much larger values than the

liquid velocity. Numerical results were compared with experiments in terms of

mean velocity and turbulent energy and Reynolds stress.

First, a preliminary study was conducted in order to choose the most op-

timal methods for the investigated two-phase flows. Part of this preliminary

work involved the domain simplification by an analysis of the fluctuation veloc-

ity auto-correlations in the periodic directions of the computational domain.

Secondly, a methodology of a proof of concept was established and performed

in order to demonstrate the RANS k − ω turbulence model capability to be

driven by high-fidelity data for the prediction of accurate behaviours of two-

phase shearing flows, in the thick-film configuration. Finally, a high-fidelity

data-driven neural network was implemented in machine learning models with

PyTorch and coupled with the Wilcox’s model through python scripts in order

to inform and improve the interfacial turbulence of RANS simulations. This

was accomplished by following the methodology of the proof of concept on new

cases, in the thin film configuration. While the type of corrections predicted by

the implemented machine learning models presented in this dissertation applies

to the specific Wilcox’s turbulence model, it was proven that machine learning

xi

can be used effectively to assist and enhance CFD abilities to predict two-phase

stratified flows with averaged models without increasing computational costs

significantly as opposite to high-fidelity simulations or hybrid models. In the

context of industrial studies, one can imagine the future development of new

CFD methods involving couplings between averaged turbulence models and

machine learning models for quick analyses and accurate results.

Keywords: Aero-engine, Bearing chamber, Two-phase flow, Computational

Fluid Dynamics, Quasi-Direct Numerical Simulation, Interfacial Turbulence,

Neureal Network, Machine Learning.

Table of contents

List of figures xvii

List of tables xxvii

Nomenclature xxix

1 Introduction 1

1.1 Context of the research . 1

1.2 Problem statement . 5

1.3 Contribution to knowledge and objectives 6

1.4 Thesis layout . 10

2 Background knowledge on two-phase flows and numerical meth-

ods 13

2.1 General knowledge on two-phase flows 13

2.2 Numerical modelling of two-phase flows 15

2.2.1 The Volume of Fluid method 19

2.2.2 The Euler-Euler method 23

2.3 Additional numerical methods for CFD simulations 26

2.3.1 OpenFOAM . 26

2.3.2 Finite volume spatial discretisation method 27

2.3.3 Discretisation schemes 28

2.3.4 Turbulence modelling . 31

2.3.5 Solution methods . 43

xiv Table of contents

2.4 Introduction to machine learning 49

2.4.1 Machine learning process and neural network 49

2.4.2 Data normalisation . 52

2.4.3 Loss function and training quality 54

2.5 Remarks . 58

3 Literature review: two-phase shear flows and ML applications

in CFD 59

3.1 Existing work on two-phase shear-flows 59

3.1.1 Experimental work . 60

3.1.2 Numerical work . 69

3.2 Existing applications of machine learning in CFD 78

3.2.1 ML applications in single-phase flows 80

3.2.2 ML applications in two-phase flows 84

3.2.3 Concluding remarks . 84

4 High-fidelity simulation of a stratified flow in a channel 87

4.1 Preliminary study: comparison of the VOF and Euler-Euler

methods . 87

4.1.1 Simulation setup and methodology 88

4.1.2 Numerical methods . 92

4.1.3 Results and comparison between the VOF and Euler-

Euler methods . 96

4.2 Further analyses using the VOF method 103

4.2.1 Domain geometry . 104

4.2.2 Quasi-DNS and small turbulent scales 104

4.2.3 Mesh resolution . 106

4.2.4 Results . 107

5 Proof of concept: implementation of a data-driven turbulence

model 123

Table of contents xv

5.1 Informing the k − ω model with high-fidelity data 124

5.1.1 Performance of the standard k − ω model in two-phase

shear flows . 124

5.1.2 Methodology . 125

5.2 Data-driven thick-film flow turbulence modelling 131

5.2.1 Application to the smooth interface flow regime 132

5.2.2 Limitations of the frozen film correction: application to

wavy-films . 137

5.3 Turbulence correction prediction by a machine learning model . 140

5.3.1 Structure of the ML model 141

5.3.2 Model training . 142

5.3.3 ML model predictions 145

5.4 Conclusions and discussions . 146

6 Application to thin-film two-phase channel flows 151

6.1 Simulation setup and creation of the training dataset 152

6.1.1 Geometry and flow characteristics 152

6.1.2 Quasi-DNS simulations and comparison with experiments157

6.2 Frozen correction field method 164

6.2.1 Process description . 164

6.2.2 Implementation of the machine learning model M2 . . . 166

6.2.3 Model M2 prediction results and discussions 170

6.3 Adaptive correction field method 175

6.3.1 Process description . 175

6.3.2 Implementation of a new machine learning model: model

M3 . 176

6.3.3 Model M3 prediction results and discussions 181

6.3.4 Test of model M3 in an open channel 188

6.4 Conclusions and discussions . 190

xvi Table of contents

7 Conclusions and future work 193

7.1 Conclusions . 193

7.1.1 Summary of the work . 193

7.1.2 Key contributions . 199

7.2 Recommendations for future improvements 200

List of publications 207

References 209

Appendix A Code implementations 229

A.1 C++ pieces of code . 229

A.1.1 Field objects implemented in the solver interFoam . . . 229

A.1.2 Function objects coded in the OpenFOAM simulation

control dictionary controlDict 229

A.1.3 Coded source terms in the fvOptions dictionary 235

A.1.4 Modified turbulence model 237

A.2 Python scripts . 245

A.3 PyTorch model notebooks . 248

Appendix B Additional figures 259

B.1 Additional figures from chapter 5 259

B.2 Additional figures from chapter 6 261

List of figures

1.1 Rolls-Royce Ultrafan aero-engine [109] and rear bearing chamber

location . 4

1.2 Schematic of a bearing chamber cross section 4

1.3 Schematic of a zoomed view of a bearing chamber cross-section 6

2.1 Schematics of different gas/liquid two-phase flow configurations 15

2.2 Illustration of the volume of fluid method applied to a stratified

flow with a sharp interface . 20

2.3 Examples of a 2D co-located grid (left) and of a 2D staggered

grid (right) . 28

2.4 Convective flux F across a control volume of volume centroid P

and face centroid f . 30

2.5 Classification of the main turbulence simulation methods. Adapted

from [114] . 33

2.6 Standard law of the wall with sublayers ranges 40

2.7 Flowchart of the PIMPLE algorithm process 44

2.8 Representation of a feed-forward neural network containing three

inputs, two hidden layers of six and five neurons and two outputs. 52

3.1 Main gas-liquid co-current flow configurations in channels with

liquid in red and gas in white 61

3.2 General scheme of the experiments of Fabre et al. [35] 65

3.3 Mean axial velocity profiles measured in [35] 65

xviii List of figures

3.4 General scheme of the experiments of Kim et al. [76] 66

3.5 Image processing procedure for the detection of the interfaces

developed by Hann et al. [54] and performed in [76] 67

3.6 Kim et al. [76] raw PIV image of the air flow field (top left),

velocity vector field obtained using the adaptive PIV algorithm

(bottom left), corresponding mask (centre left), averaged velocity

profiles for different flow regimes probed vertically in the channel

(top right), and instantaneous velocity profile (bottom right).

Superficial velocity: 3.6 m/s (air), 0.019 m/s (water). 68

3.7 Oil film thickness distribution in an aero-engine’s bearing cham-

ber by Bristot et al. [15] for B = 100 (left) and B = 10 (right) . 71

3.8 Mixture velocity profiles of the corrected and standard RANS

models obtained by Frederix et al. [41] compared with Fabre et

al. experiments [35] . 74

3.9 Mean streamwise velocity profile above the interface obtained

by Fulgosi et al. [43] . 76

3.10 Example of a comparison obtained replacing the source term in

the SA model within the boundary layer of the NACA 0012 airfoil

at 8 degrees using training data from the flat plate solutions [135] 81

3.11 Difference in the true Spalart-Allmaras source term and the

machine learning prediction in a global view (left) and a zoomed

view on the tail (right) [135] . 81

3.12 Skin friction prediction for a case example of a flow over a bump.

The magenta lines represent predictions using an ensemble of

machine-learned models trained on different combinations of the

inverse solutions. LES is represented in blue and the standard

Wilkox’s k − ω in green. [118] 83

4.1 2D schematic of the simplified channel with boundary conditions

(side view) . 89

List of figures xix

4.2 Turbulent kinetic energy spectrum measured in the gaseous phase 94

4.3 Mean and instantaneous velocity profiles obtained with the two

multiphase methods . 97

4.4 Mean axial velocity profiles . 98

4.5 Axial velocity profiles . 99

4.6 Turbulent kinetic energy profiles 100

4.7 Contours (x, z) of vorticity magnitude with the VOF (top) and

Euler-Euler method (bottom) on a plane located above the

interface at y = 0.040 m . 101

4.8 Contours (x, z) of vorticity magnitude with the VOF (top) and

Euler-Euler method (bottom) on a plane located above the

interface at y = 0.045 m . 101

4.9 3D isosurfaces of Q for Q > 4 500 with contours of vorticity

magnitude with the VOF method (top) and with the Euler-Euler

model (bottom) . 102

4.10 Schematic of the simplified domain’s geometry and boundary

conditions . 105

4.11 Root mean square error of the mean axial velocity (top left), tur-

bulent kinetic energy (top right), and Reynolds stress (bottom)

between Fabre et al. experiments [35] and the VOF simulations,

against the mesh density . 109

4.12 Mesh convergence analysis for the mean axial velocity (top left),

turbulent kinetic energy (top right), and Reynolds stress (bottom)110

4.13 Mean axial velocity (top left), TKE (top right), shear stress in

the liquid (bottom left) and in the gas (bottom right) 111

4.14 Mesh representation corresponding to the refinement level s1 . 112

4.15 Spatial autocorrelations of the x, y and z-components of the

fluctuation velocity measured in the centre of the gaseous phase

in the flow direction (top) and in cross-flow direction (bottom) . 114

xx List of figures

4.16 Autocorrelation contour map Rxx(∆x,∆t) of the axial fluctua-

tion velocity in the gaseous phase measured in the streamwise

direction for 50∆t = 0.05 s. 115

4.17 Energy spectrum measured in the gaseous phase in qDNS com-

pared with the LES measurements 116

4.18 Isosurfaces of Q-criterion and contours of vorticity magnitude

on a 3D view of the cyclic channel using the refinement level

s1. The Q-criterion threshold is 100 times higher in the gaseous

phase than the liquid phase . 117

4.19 Contours of vorticity magnitude and liquid phase fraction on a

3D view of the cyclic channel with the refinement level s1 . . . 119

4.20 Contours of vorticity magnitude on a cross-flow plane (y, z)

duplicated 4 times for a total width of 0.1 m (left) and contours

of vorticity magnitude with velocity vector field on a single cyclic

domain in the cross-stream direction with the refinement level s1 120

5.1 Mean axial velocity (left), TKE (centre), and absolute shear

stress (right) profiles comparison between Fabre et al. experi-

ments [35], qDNS predictions with mesh s1, and standard RANS

k − ω model predictions . 125

5.2 Specific turbulence dissipation rate (left), turbulence dissipation

(centre), and TKE (right) profiles comparison between qDNS

predictions with mesh s1, and standard RANS k − ω model

predictions . 129

5.3 Correction source term Sω calculated and time-averaged in qDNS

(black cross) and with additional spatial averaging, mapped on

the RANS mesh (green line) . 130

List of figures xxi

5.4 Smooth interface regime (left column) compared with the two-

dimensional wavy interface regime (right column) in terms of

liquid volume fraction (top row), instantaneous axial velocity in

m·s−1 (centre row), and vorticity magnitude in s−1 (bottom row) 133

5.5 Specific turbulence dissipation budget across the interface 134

5.6 Mean axial velocity (left), TKE (centre), and cross Reynolds

stress profiles comparison between the qDNS, the standard k−ω

model (stand.), and the corrected k−ω model (corr.) predictions

in the closed channel configuration and smooth interface regime 136

5.7 Mean axial velocity (left), TKE (centre), and cross Reynolds

stress profiles comparison between the qDNS, the standard k−ω

model (stand.), and the corrected k−ω model (corr.) predictions

in the open channel configuration and smooth interface regime . 137

5.8 Mean axial velocity (left), TKE (centre), and cross Reynolds

stress profiles comparison between the qDNS, the standard k−ω

model (stand.), and the corrected k−ω model (corr.) predictions

in the closed channel configuration and wavy interface regime . 138

5.9 Mean axial velocity (left), TKE (centre), and cross Reynolds

stress profiles comparison between the qDNS, the standard k−ω

model (stand.), and the corrected k−ω model (corr.) predictions

in the open channel configuration and wavy interface regime . . 139

5.10 Adjustment of the correction field Sω according to the interface

position. Sω profile is represented in green, the liquid film is

represented in light red . 140

5.11 Histogram of the inputs and output used in the training of the

model M1 . 143

5.12 Training and validation loss (left) and accuracy (right) against

the number of epochs obtained during the training of the ML

model M1 . 144

xxii List of figures

5.13 Profile predictions obtained with the ML-informed k − ω model

(blue line), the former corrected k − ω model (green dash line),

the standard k − ω model (orange point line) and the qDNS

(black line) in the closed channel configuration, smooth interface

regime . 145

5.14 Mean axial velocity (left), TKE (centre), and cross Reynolds

stress profiles predictions compared between the qDNS, the

standard k−ω model (stand.), the corrected k−ω model (corr.)

and the corrected k − ω model without correction in the liquid

denoted as "New", in the closed channel configuration and wavy

interface regime . 147

6.1 Map of flow patterns identified by Andritsos and Hanratty [5]:

smooth interface (smooth), 2D waves (2D), and large amplitude

waves (LA), overlaid with the experimental conditions of Hann

and Kim [54][76] (marked symbols) identifying wave patterns:

stratified smooth (SS), 2D small amplitude (2D), and 3D small

amplitude(3D) . 153

6.2 Spatial autocorrelations of the x, y and z-components of the

fluctuation velocity measured in the centre of the gaseous phase

in the flow direction (top) and in cross-flow direction (bottom) . 155

6.3 Range of mean axial velocity and correction source term profiles

obtained in qDNS in cases "1." (Ub,l = 0.008 m/s), "2." (Ub,l =

0.019 m/s), and "3." (Ub,l = 0.031 m/s) 158

6.4 Q-criterion isosurfaces with axial velocity contours & vorticity

magnitude contour map obtained in qDNS, case 1.e 158

6.5 qDNS simulations performed at the liquid film velocity 0.008 m/s 160

6.6 Mean axial velocity profiles obtained in qDNS and compared

with the experiments in case 1.e (left), 2.c (centre), and 3.d (right)162

List of figures xxiii

6.7 Absolute value of the Reynolds stress profiles obtained in qDNS

and compared with the experiments in case 1.e (left), 2.c (centre),

and 3.d (right) . 162

6.8 Mean axial fluctuation velocity profiles obtained in qDNS and

compared with the experiments in case 1.e (left), 2.c (centre),

and 3.d (right) . 163

6.9 Mean vertical fluctuation velocity profiles obtained in qDNS and

compared with the experiments in case 1.e (left), 2.c (centre),

and 3.d (right) . 163

6.10 Flowchart of the process of a RANS simulation carried out

with the M2-informed k − ω turbulence model and the frozen

correction field method . 165

6.11 Histogram of the inputs and output used in the training of the

ML model M2 . 167

6.12 Training and validation loss (left) and accuracy (right) against

the number of epoches obtained during the training of the ML

model M2 . 170

6.13 Predictions of model M2 in test cases 1.e (left), 2.c (centre), and

3.d (right) . 171

6.14 Comparison of the mean axial velocity profiles obtained in qDNS,

in RANS using the M2-informed k − ω model, and in RANS

using the standard k − ω model in cases 1.e (left), 2.c (centre),

and 3.d (right) . 172

6.15 Comparison of the absolute values of Reynolds stress profiles

obtained in qDNS, in RANS using the M2-informed k−ω model,

and in RANS using the standard k − ω model in cases 1.e (left),

2.c (centre), and 3.d (right) . 173

xxiv List of figures

6.16 Comparison of the TKE profiles obtained in qDNS, in RANS

using the M2-informed k − ω model, and in RANS using the

standard k − ω model in cases 1.e (left), 2.c (centre), and 3.d

(right) . 173

6.17 Flowchart of the process of a RANS simulation carried out

with the M3-informed k − ω turbulence model and the adaptive

correction field method . 176

6.18 Histogram of the inputs and output used in the training of the

ML model M3 . 178

6.19 Illustration of the qDNS dataset in terms of mean axial velocity

(m/s) and log10 correction source term (s−2) including the test

cases 1.e, 2.c, and 3.d highlighted in red 179

6.20 Training and validation loss (left) and accuracy (right) against

the number of epochs obtained during the training of the ML

model M3 . 181

6.21 Predictions of model M3 in test cases 1.e (left), 2.c (centre), and

3.d (right) . 182

6.22 Evolution of the corrected axial velocity (first row) and predicted

(second row) source using the M3-informed k − ω model 184

6.23 Comparison of the mean axial velocity profiles obtained in qDNS,

in RANS using the M3-informed k − ω model, and in RANS

using the standard k − ω model in cases 1.e (left), 2.c (centre),

and 3.d (right) . 185

6.24 Comparison of the absolute value of Reynolds stress profiles

obtained in qDNS, in RANS using the M3-informed k−ω model,

and in RANS using the standard k − ω model in cases 1.e (left),

2.c (centre), and 3.d (right) . 186

List of figures xxv

6.25 Comparison of the TKE profiles obtained in qDNS, in RANS

using the M3-informed k − ω model, and in RANS using the

standard k − ω model in cases 1.e (left), 2.c (centre), and 3.d

(right) . 186

6.26 Comparison of the Reynolds stress (left) and TKE (right) profiles

obtained in qDNS, in RANS with the M3-informed k − ω model

and the standard k − ω model, for case 1.e using linear scales . . 188

6.27 Comparison of the mean axial velocity (left), absolute value of

Reynolds stress (centre), and TKE (right) profiles obtained in

qDNS and in RANS using the M3-informed k − ω model and

the standard k − ω model cases 3.d with a slip BC at the top wall189

7.1 Two-phase flow in periodic section of bearing chamber with

boundary conditions (BC) . 204

B.1 Specific turbulence dissipation rate (left) and turbulence dissi-

pation rate (right) profiles comparison between the qDNS, the

standard k − ω model (stand.), and the corrected k − ω model

(corr.) predictions in the closed channel configuration and wavy

interface regime . 259

B.2 profiles comparison between the qDNS, the standard k−ω model

(stand.), and the corrected k − ω model (corr.) predictions in

the open channel configuration and smooth interface regime . . 260

B.3 Specific turbulence dissipation rate (left) and turbulence dis-

sipation rate (right) profiles comparison between the qDNS,

the standard k − ω model (stand.), and the corrected k − ω

model (corr.) predictions in the closed channel configuration

and smooth interface regime . 260

B.4 profiles comparison between the qDNS, the standard k−ω model

(stand.), and the corrected k − ω model (corr.) predictions in

the open channel configuration and wavy interface regime 261

xxvi List of figures

B.5 Mean axial velocity profiles for Ub,g = 3.1 m/s and using Ub,l =

0.008 m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s

(right) . 261

B.6 Mean axial velocity profiles for Ub,g = 3.6 m/s and using Ub,l =

0.008 m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s

(right) . 262

B.7 Mean axial velocity profiles for Ub,g = 4.2 m/s and using Ub,l =

0.008 m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s

(right) . 262

B.8 Mean axial velocity profiles for Ub,g = 4.7 m/s and using Ub,l =

0.008 m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s

(right) . 263

B.9 Mean axial velocity profiles for Ub,g = 5.2 m/s and using Ub,l =

0.008 m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s

(right) . 263

B.10 qDNS simulations performed at the liquid film velocity 0.019 m/s 264

B.11 qDNS simulations performed at the liquid film velocity 0.031 m/s 265

List of tables

4.1 Case description based on Fabre et al. [35] 90

4.2 Characteristics of the six meshes 108

6.1 Flow regimes description and names 154

6.2 Description of the flows conditions of the 15 qDNS cases 156

6.3 M2 training data statistics before standardisation 168

6.4 Standardised data statistics used for the training of model M2 . 168

6.5 RMSEs of the standard ("Stand.") and the ML-informed ("M2")

models . 174

6.6 M3 training data statistics before standardisation 180

6.7 Standardised data statistics used for the training of model M3 . 180

6.8 Simulation times of the M3-informed model 183

6.9 RMSEs of the standard ("Stand.") and M3-informed ("M3")

models and evolution ("Evol.") of RMSEs in comparison with

results of M3 . 187

6.10 RMSEs of the M3-informed model ("M3") compared to the

standard model ("Stand.") in the open channel configuration . . 190

Nomenclature

Roman Symbols

A0 Amplitude of the quantity A

A Vectorial field of the quantity A

A′ Fluctuation of the quantity A

A Time average of the quantity A

Ax, Ay, Az Resp. X, Y, Z components of the vector A

B Turbulence damping factor

Cα Artificial compression coefficient

CD Drag coefficient

Dh Hydraulic diameter (m)

FD Drag force (N)

FS Surface tension force (N)

H Channel height (m)

h Interface height (m)

k Turbulent kinetic energy (m2·s−2)

xxx Nomenclature

p Pressure (Pa)

Re Reynolds number

Reh Reynolds number based on the hydraulic diameter

S Rate of strain tensor (s−1)

S Symmetric component of ∇U (s−1)

Sτ Strouhal number

T Time period (s)

t Time (s)

Tc Turnover time (s)

Tcomp Simulation duration (s)

U Velocity (m·s−1)

Ub Bulk velocity (m·s−1)

uc Compression velocity (m·s−1)

u∗ Shear velocity (m·s−1)

Greek Symbols

α Phase volume fraction

µ Dynamic viscosity (Pl)

µt Turbulent dynamic viscosity

ν Kinematic viscosity (m2 · s−1)

Nomenclature xxxi

νt Turbulent kinematic viscosity (m2 · s−1)

Ω Antisymmetric component of ∇U (s−1)

ω Specific turbulence dissipation rate (s−1)

Ω Vorticity magnitude (s−1)

ρ Fluid density (kg·m−3)

τ” Reynolds stress tensor (m2 · s−2)

τij Reynolds stress tensor coordinates (m2 · s−2)

τw Wall shear stress (s−1)

ε Turbulence dissipation rate (m2·s−3)

Superscripts

j Superscript index

Subscripts

g Gas

i Subscript index

i Phase number

i Liquid

b Bulk

s Superficial

w Wall

xxxii Nomenclature

Acronyms / Abbreviations

BC Boundary Condition

BSL Baseline Model

CFD Computational Fluid Dynamics

CNN Convolution Neural Network

CV Control Volume

DNS Direct Numerical Simulation

FEM Finite Element Method

FFNN Feed-Forward Neural Network

FVM Finite Volume Method

G2TRC Gas Turbine and Transmissions Research Centre

GNU GNU’s Not Unix operating system

GPL General Public License

GPU Graphics Processing Unit

HPC High Performance Computing

IATA The International Air Transport Association

LDA Laser Doppler Anemometry

LES Large Eddy Simulation

ML Machine Learning

Nomenclature xxxiii

MLP Multi-Layer Perceptron (neural network)

NN Neural Network

OpenFOAM Open Field Operation and Manipulation

PCG Preconditioned Conjugate Gradient

PIC Particle-In-Cell

PINN Physics-Informed Neural Network

PISO Pressure-Implicit with Operators Splitting

PIV Particle Image Velocimetry

QDNS Quasi-Direct Numerical Simulation

RANS Reynolds Averaged Navier-Stokes equations

SIMPLE Semi-Implicit Method for Pressure Linked Equations

SPH Smoothed-Particle Hydrodynamics

SST Shear Stress Transport model

TD Turbulence Damping

TKE Turbulent Kinetic Energy

TVD Total Variation Diminishing

URANS Unsteady Reynolds Averaged Navier-Stokes equations

VMS Variational Multiscale approach

VOF Volume of Fluid

Chapter 1

Introduction

1.1 Context of the research

In the last decades, the interest for flow simulation has grown along with the

computational power and resources available. It has become common in fluid

mechanics to use Computational Fluid Dynamics (CFD) as a tool to reproduce

the physical behaviours of fluids. Those behaviours are obtained by either

directly solving the Navier-Stokes equations and/or modelling the flow. On

the one hand, high-fidelity simulations, such as direct numerical simulations

(DNS), are solving the Navier-Stokes equations. On the other hand, lower

fidelity simulations can be performed using flow models, such as the commonly

used Reynolds Average Navier-Stokes equations (RANS) models. Those lower

fidelity simulations are computationally less expensive than high fidelity sim-

ulations and are widely employed in the industry to help with creating and

improving engineering designs and processes. On the contrary, high-fidelity

simulations allow for a better understanding of physical behaviours as accurate

solutions can be obtained for numerous cases that would not be easily set

up experimentally. Moreover, CFD provides detailed data for entire studied

2 Introduction

domains. In this thesis, it was aimed to use high-fidelity simulations results to

inform and improve lower fidelity simulation models, and more particularly a

RANS turbulence model: the k − ω model. One way to inform those models is

to train with high fidelity data a machine learning model capable of providing

appropriate corrections for the RANS model.

CFD models are designed to fit known behaviours of the flow. They are

based on the Navier-Stokes equations that describe the flow motion and the

parameters within are tuned by using empirical data. High-fidelity simulations

try to reproduce reality with the most accuracy and depend on how well the

equations describing flow motion are implemented, discretised, and how ap-

propriate they are for this purpose. For high-fidelity simulations, increasing

the number of discrete volumes in the domain normally leads to more accurate

results as it helps capturing and solving the smallest scales of the turbulence.

However, computational resources often limit the level of discretisation of the

domain. That is why a compromise between domain discretisation refinement

and accuracy of the results must be found. Large eddy simulations (LES) can

be used as high-fidelity methods to resolve the largest scales of the turbulence

until a certain threshold under which a subgrid model is applied and models

the smaller scales. A quasi-direct numerical Simulation (qDNS) will employ a

coarser mesh resolution than DNS comparable to LES, and without any subgrid

model, assuming the smallest turbulent scales impact the solution marginally.

The recommendations for appropriate mesh generation in LES and qDNS are

provided in chapter 4

In this thesis, two-phase flow simulations are investigated in an industrial

context and more particularly two-phase stratified flows with a large scale sharp

1.1 Context of the research 3

interface, where high shear occurs between the two phases. The interfacial

shearing is due to the high velocity gradients between the two phases, one

usually being liquid and the other gaseous. Two-phase flows are encountered

in aero-engine cores, gearboxes and more especially in bearing chambers where

wavy films can be initiated in a shear driven air-oil flow. Figure 1.1 shows the

location of the rear bearing chamber in a Rolls-Royce Ultrafan aero-engine.

The flow of interest is circulating in the external portion of the chamber in the

wall area and contains oil and air represented in red and white respectively in

figure 1.2.

It goes without saying that the urgent necessity of reducing our emissions

directly involves the aviation industry, which accounted for 2.5% of the total

CO2 emissions in 2018 [47], and contributed to global warming with a share of

3.5% through radiative forcing [81]. Those emissions have doubled since 1987

at an analogous rate as total carbon emission. The research developed in this

thesis falls within the Cornerstone project, coming from the ongoing partnership

between Rolls-Royce plc and the universities of Nottingham, Oxford, along with

Imperial College London and Queen’s University of Belfast. This partnership

was made with the objectives to improve aero-engine efficiency, reduce noise

and carbon emissions in new and future designs. These objectives can be

qualified as key targets as aviation has radically changed its ways to design

aero-engines over the last 50 years in order to improve their performance and

now to meet present and future requirements in terms of carbon emissions.

The International Air Transport Association (IATA) has for instance fixed the

environmental goal of reducing aviation’s net CO2 emissions to half of what

they were in 2005 and make flying net zero by 2050 [68]. In order to achieve

this goal, aviation has been responding by designing more efficient engines,

4 Introduction

Figure 1.1 Rolls-Royce Ultrafan aero-engine [109] and rear bearing chamber
location

Figure 1.2 Schematic of a bearing chamber cross section

1.2 Problem statement 5

identifying weight savings, using sustainable aviation fuels (SAF), or the use of

new propulsion technologies (hydrogen).

1.2 Problem statement

With the aim of improving their performance, future aero-engines are

designed to increase the shaft speed and reliability. Bearing chambers have

the fundamental role of distributing and collecting the oil in the engine for

lubrication purposes. Additionally, the bearing chamber is the location in

which the cooling of the lubricating oil occurs, as the air mixes with it [19].

As a consequence, air-driven and sprayed liquid oil flows are observed in the

rotating chamber. Therefore, it is essential to be able to predict the oil film

distribution in the bearing chamber to prevent from oil coking and deterioration.

The realisation of numerical predictions of two-phase shear flows is a chal-

lenging task. As mentioned previously, CFD models are mostly employed for

flow simulations in the industry, as experiments and high fidelity simulations

are time consuming and expensive to carry out. However, current CFD mod-

els like the averaged RANS models (k − ω, k − ε) tend to overestimate the

turbulence intensity at the interface between the two phases due to the high

gradients of velocities from one phase to another in the shearing zone around

the interface [32] [101]. Modelling interfacial turbulence has indeed become a

real challenge in stratified flows [41] [141] and more specifically in the prediction

of the oil thickness distribution in aero-engine bearing chambers. Moreover, it

is especially difficult to fully understand interfacial turbulence as experimental

measurements are exceptionally hard to carry out in the region of interest, as

wavy interfaces add more constraints to the process [9]. Figure 1.3 highlights

6 Introduction

the flow of interest in a bearing chamber showing the sharp interface of the

air-driven oil film. In order to improve the prediction of the air shear-driven

oil film thickness distributions in aero-engine bearing chambers and optimise

the process of improving the engine performance, the inability of the current

RANS models to produce accurate interfacial turbulence must be addressed.

Figure 1.3 Schematic of a zoomed view of a bearing chamber cross-section

1.3 Contribution to knowledge and objectives

In order to tackle the RANS models’ inability to correctly predict interfa-

cial turbulence and produce accurate results for stratified flows with a sharp

interface, the following questions were answered:

• What is the current state of the art on modelling two-phase flows using

RANS methods, what are the up to date developed strategies to overcome

the poor interfacial turbulence modelling, and what are their known

limitations?

1.3 Contribution to knowledge and objectives 7

• In the context of stratified gas-liquid shearing flows, what are the most

effective high-fidelity simulations and numerical methods to employ, what

is the behaviour of the fluids, and how is turbulence distributed in those

flows?

• Can a standard RANS model be driven efficiently by high-fidelity sim-

ulations results in order to appropriately predict two-phase shearing

flows?

• How can RANS models benefit from the use machine learning tools

for the types of two-phase shearing flow simulations to be carried out

in bearing chambers specifically and what are the limitations of such

machine learning tools?

The present research aimed to investigate the physics of stratified gas-liquid

flows, and provide new strategies to overcome standard RANS models’ failure

in accurately evaluating turbulent high shear interfacial regions and thus to

model correctly two-phase shearing flows with large scale and sharp interfaces,

and especially thin-film flows encountered in aero-engine bearing chambers.

The dissertation reports on existing strategies that have been already devel-

oped to correct RANS models used for stratified flow simulations in order to

understand the limitations of those methods in chapter 3. For example, it

was found that damping the turbulence levels in the interface region led to an

improvement of the solution. This strategy is based on the hypothesis that

the denser phase of a stratified flow behaves like a wall for the lighter phase.

In the context of the bearing chamber shear-driven flows, the oil film would

be seen as a wall by the gaseous air phase. This method, as well as other ex-

isting methods come with their share of limitations, which were brought to light.

8 Introduction

The open source CFD code Open∇FOAM® was employed to carry out all

the simulations presented in this work. The implementations of new methods

for averaged models were also tested with OpenFOAM. Two major multiphase

flow modelling methods are available in OpenFOAM to describe the motion

of the phases. Thus, the two-phase flow simulations carried out in this work

employed the Volume of Fluid (VOF) method in which one set of momentum

equations for the whole mixture is used, and the Euler-Euler method in which

one set of momentum equations for each phase is employed. Both methods

were compared in a preliminary study in chapter 4 in order to determine which

solver was the most appropriate to perform the two-phase flow simulations of

air-driven liquid films with a sharp, large scale interface. The OpenFOAM

solver interFoam based on the VOF method was tested against the solver

multiphaseEulerFoam based on the Euler-Euler method. All the numerical

methods employed to carry out the research were presented in chapter 2. Details

on the types of simulations employed, the turbulence models, the multiphase

solvers, and the solution algorithms were provided, as well as the machine

learning methods used for the implementation and training of neural networks.

The research aspires to inform interfacial turbulence levels in a standard

RANS model – namely the Wilcox’s RANS k − ω turbulence model – in order

to improve its ability to model the types of stratified flow that are found

in aero-engines’ bearing chambers. More precisely, quasi-DNS high-fidelity

simulations were carried out to understand the physics and behaviours of

such flows and to study detailed interfacial turbulence in chapter 4, after the

preliminary comparative study between the two multiphase approaches. The

external portion of the bearing chamber containing the stratified two-phase

flow with a sharp interface was numerically simplified into a horizontal peri-

1.3 Contribution to knowledge and objectives 9

odic channel containing the air phase on top of the water phase. Two main

configurations were studied and compared to existing experiments. A deep

water case called the "thick-film" configuration, for which the physics of the

fluids and turbulence levels were investigated in chapters 4 and 5. The nu-

merical results obtained in the thick-film configuration were compared to the

experiments of Fabre et al. [35] who investigated stratified air-water flows in a

horizontal and rectangular channel. A shallow-water "thin-film" configuration

employed for various flow regimes for which the air phase flow quantities was

studied in details in chapter 6. The numerical results obtained in the thin-film

configuration were compared against the experimental work of Hann and Kim

[54][76]. The assessment of the simulations performance and comparisons to

the experiments were based on the study of averaged flow stream velocity,

turbulent kinetic energy, Reynolds stress profiles, and in some cases on the

turbulence dissipation and specific turbulence dissipation profiles. Vorticity

fields along with the Q-criterion method were employed for the identifica-

tion of turbulent structures in the flow. The two-phase flows investigated in

this thesis are always turbulent in the gaseous phase, turbulent in the liquid

phase for the thick-film configuration, and laminar in most of the thin-film cases.

The strategy developed to inform the standard RANS k − ω model’s inter-

facial turbulence using high-fidelity qDNS results was presented in chapter 5.

It was found that re-balancing the budget of the specific turbulence dissipation

rate in the RANS k − ω equations with an appropriate source term led to

significant improvements, by driving the ω equation towards the high-fidelity

solution. To serve this purpose, machine learning models were trained with

the high-fidelity quasi-DNS data in order to predict such appropriate budget

corrections for the standard RANS k − ω model. The machine learning models

10 Introduction

were developed with feed-forward neural networks (FFNN) implemented by

using the open source PyTorch library in Python. Two methods were proposed

and developed in order to inform the RANS k − ω model for the simulation

of thin-film flows using the machine learning models. The first method called

the "frozen correction field" method only adds one pre-processing step to the

simulation in which the machine learning model performs the prediction of a

correction budget to be applied in the ω transport equation during the whole

RANS simulation, without extending computational time, although, it comes

with limitations that are detailed in chapter 6. The second method called the

"adaptive correction field" method, is more complex to set up and increases

simulation times to a certain extent, but provides more accurate and physical

solutions and is potentially much more versatile. The process of both methods

is detailed, and tests are provided in chapter 6. The methodology employed for

the implementation of the machine learning models, their structure, training,

coupling with the RANS model, and the results produced in test cases are also

presented.

1.4 Thesis layout

In chapter 2, general knowledge on two-phase flows and numerical methods for

multiphase flows are given. More specifically, the VOF and Euler-Euler methods

are presented, as well as the open source CFD code OpenFOAM employed

for the simulations, turbulence solving and modelling methods, discretisation

schemes, and solution algorithms. An introduction to machine learning basics

and the implementation of neural networks is also provided in this chapter.

1.4 Thesis layout 11

A brief literature review investigating existing numerical and experimental

work on two-phase shearing flows and the use of machine learning methods

in CFD is given in chapter 3. More specifically, the reference experiments of

Fabre et al. [35] in the thick-film configuration and of Hann and Kim [54][76]

in the thin-film configuration are introduced.

Chapter 4 first presents the preliminary numerical work on the multiphase

solver comparison between the VOF and Euler-Euler methods in LES. It is

followed by a deeper analysis of flow turbulence in the thick-film configuration

using quasi-DNS with the VOF method.

A proof of concept on how the k − ω turbulence model can be driven by

high-fidelity data to perform RANS simulations of two-phase shear flows is

proposed in chapter 5. The "frozen correction field" method is introduced,

and the limitations and improvements of this method are discussed. A simple

machine learning model is also implemented and tested to close the chapter.

Chapter 6 consists of three parts in which thin-film qDNS simulations

are performed and compared to the reference experiments, and two machine

learning models are implemented and tested with the two developed methods,

namely the frozen correction field method and the adaptive correction field

method, in order to inform the k − ω turbulence model for RANS simulations

of thin-film flows. A range of test cases is investigated and each method and

machine learning model is discussed.

In the last chapter 7, the general conclusions on the work carried out during

this research project and the results obtained are given. Finally, recommenda-

12 Introduction

tions for further improvements are proposed, more particularly on the methods

developed in the context of CFD models coupled with machine learning models

for the purpose of improving the industrial simulations of shear-driven film flows.

Chapter 2

Background knowledge on

two-phase flows and numerical

methods

In this chapter, a brief introduction to two-phase flows physics is presented

in section 2.1 as well as numerical methods for two-phase flow modelling in

section 2.2. Additional numerical methods for CFD simulations are described

in section 2.3. Finally, an introduction to machine learning methods is given

in section 2.4.

2.1 General knowledge on two-phase flows

Two-phase flow fluid mechanics refers to flows in which two fluids are

present together. This could involve the same fluid in two different phases such

as liquid water and vapour water, or two different fluids in the same phase

such as liquid water and oil, or even two different fluids in different phases

like liquid water and air for example. The behaviour of a two-phase flow can

14 Background knowledge on two-phase flows and numerical methods

strongly differ from behaviours found in single-phase flows and this is why the

formulation and prediction of two-phase flows is still a great challenge in fluid

mechanics and computational fluid dynamics.

The behaviour of a two-phase flow varies significantly regarding numerous

parameters such as the types of fluid and phase involved, the geometry and

configuration of the studied system, the temperature of the system, the fluid

velocities, etc. Amongst the various possible two-phase flow configurations,

stratified flows and dispersed flows are very common when studying gas/liquid

mixtures:

• Stratified flows are often encountered in setups using low to moderate flow-

rates at which the interface between the two phases remains continuous

and sharp. In this configuration, the phases stay separated because of

gravity and surface tension forces. The denser fluid remains at the bottom

and the shape of the interface is controlled by the competition between

inertia forces, which tend to deform it, and gravitational and superficial

tension forces, which tend to maintain its sharpness. The domination of

the gravity and superficial tension forces results in the interface waviness

damping. Examples of stratified flows are shown in figure 2.1.

• Dispersed flows are usually observed when the relative flow-rate between

the two fluids is important and inertia forces are so important that the

interface is strongly deformed and cannot remain sharp, triggering the

mixing of the two phases and causing the formation of bubbles or droplets.

Examples of dispersed flows are shown in figure 2.1.

This dissertation focuses on the study of gas/liquid stratified flow configu-

rations that can be observed in aero-engine bearing chambers. At high flow

2.2 Numerical modelling of two-phase flows 15

Figure 2.1 Schematics of different gas/liquid two-phase flow configurations

rates, those configurations show high gradients of velocity between the two

phases and observable high shear forces at the interface, which is therefore

deformed and made wavy. Even though dispersed flows are also present in

bearing chambers, the present research remains in the framework of stratified

flows and does not study dispersed flow configurations that would happen at

even higher flow rates. Hence the two-phase flows’ interface remains continuous

and sharp in all studied cases of this dissertation. This type of flow is mainly

observed on the external wall of the bearing chambers (c.f. figures 1.2 and 1.3).

2.2 Numerical modelling of two-phase flows

The complexity of the physics involved in two-phase flows, involving the

direct impact of the turbulence on the flow behaviour and more specifically on

16 Background knowledge on two-phase flows and numerical methods

the interface deformation, is investigated experimentally for the development

of analytical or empirical models, as well as numerically in order to apply

experimental findings and reproduce physical phenomena. The present research

focuses on the development of numerical tools for turbulence models based on

approximations made on the the Navier-Stokes equations, which are used to

describe the behaviour of fluids and can be written as follows [30]:

∂ρ

∂t
+ ρ∇ · u = 0 (2.1a)(

∂ρu
∂t

+ ∇ · (ρu × u)
)

= −∇p+ ρg + ∇ · τ (2.1b)

with the strain rate symmetrical tensor τ :

τ = µ(∇u + ∇u⊺) (2.2)

where u is the velocity, p is the pressure, ρ is the fluid density, µ is the fluid

dynamic viscosity, and g is the gravitational acceleration. Equation 2.1a refers

to the continuity equation or the mass conservation equation, while equation

2.1b refers to the momentum equation.

For the sake of this research, one considers all fluids as Newtonian viscous

and incompressible. Thus, one can rewrite equations 2.1a and 2.1b as:

∇ · u = 0 (2.3a)

ρ

(
∂u
∂t

+ ∇ · (u × u)
)

= −∇p+ ρg + ∇ · τ (2.3b)

2.2 Numerical modelling of two-phase flows 17

Solving numerically the Navier-Stokes equations (2.1a and 2.1b) is a com-

plex task, especially for two-phase flows. For the last decades, predicting the

behaviour of a flow phenomena containing two-phases or more within the same

computational domain has been widely investigated by researchers. Numer-

ous approaches were developed [91], using the single fluid formulation with

interface identification methods when the interface between the two fluids is

well defined, or the two-fluid formulation when dealing with dispersed phases

for example. In order to numerically treat the interface, one can distinguish

two main methods: Lagrangian and Eulerian methods [105]. The difference

between the two methods stands in the way the interface is represented. In

Lagrangian methods, the interface is tracked explicitly using adapting meshes

that fit the deforming interface with time. Meanwhile, Eulerian methods use

fixed meshes and the interface is not tracked explicitly but reconstructed using

the phase volume fraction [8].

The Lagrangian approach keeps the interface as a discontinuity and explic-

itly tracks its evolution without using any model for its definition or impact

on the rest of the flow. In this approach, boundary conditions can be applied

directly at the interface [33]. The Lagrangian approach is used in the particle-

in-cell (PIC) method [55] in which particles are described by their finite mass,

implying that their movement causes a mass, momentum and energy change

which are computed. In the smooth particle hydrodynamics (SPH) method

[46], each particle of the flow have finite volumes that travels continuously from

cell to cell in the computational domain, and in which more than one particle

at the time can be present in one cell.

18 Background knowledge on two-phase flows and numerical methods

Eulerian methods require additional modelling or equations to obtain the

location of the phases and interface [132][127]. In these methods, the interface

is not tracked explicitly and a scalar function is introduced to indicate the

phases and set the initial and boundary conditions of the phases. This function

is defined for the entire computational domain and allows for the reconstruction

of the interface at each time step of the simulation. In Eulerian methods, the

interface is diffused and requires a well refined mesh where it is located to

reduce the inaccuracies.

Some hybrid Eulerian-Lagrangian methods such as the front-tracking method

couple the advantages of both methods to predict multiphase flows. This method

uses a fixed Eulerian computational grid, and the interface is tracked and moves

through the grid [136].

Because of the the available computational resources and tools in an in-

dustrial context, it was decided to solve the Navier-Stokes equations using

Eulerian approaches. Eulerian methods are indeed widely used in the research

field for CFD problems [105] by means of the discretisation of the transport

equations in finite elements [62]. As previously mentioned, one can predict

the behaviour of two phases occupying the same computational domain using

different methods that can be classified into two groups [89]: the interface

identification methods in which the two phases are separated by a defined sharp

interface and which quality depends on the local mesh refinement; and the

interface modelling methods that model the momentum transfer with respect

to each phase’s relative motion and the size of the dispersed parts of the fluids.

Both approaches are available in OpenFOAM and will later be compared using

Volume of Fluid (VOF) as a method of interface identification [63][28], and

2.2 Numerical modelling of two-phase flows 19

the two-fluid model or Euler-Euler model as a method of interface modelling

[70][110]. In order to decide on the best approach for our two-phase shearing

flow problem, a preliminary study was carried out in chapter 4. It compares

the VOF and Euler-Euler methods against experiments of a stratified flow in a

horizontal channel containing a liquid phase (water) and a gaseous phase (air).

2.2.1 The Volume of Fluid method

The VOF method has become one of the most used methods amongst

interface identification methods and was first introduced in 1976 [96] and

published in a journal for the first time in 1981 [63]. The reasons this method

is widely used in two-phase flow CFD include its simplicity of implementation

in CFD codes and its ability to deal with relatively complex flow configurations

involving strong deformations of the interface. In the VOF method, the two

phases share the same velocity field and pressure field. A scalar function is

defined to indicate the phase: I(x, t), which is advected by the velocity field

u(x, t). Assuming the studied problem is a two-phase flow, one can define

I(x, t) such as:

I(x, t) =


1, if x is in primary at time t

0, if x is in secondary phase at time t
(2.4)

And so, the phase volume fraction α(x, t) can be defined as the integrated

value of this function on each cell volume Vc (control volume) of the domain

mesh, i.e.:

α(x, t) = 1
Vc

∫
Vc

I(x, t)dVc (2.5)

20 Background knowledge on two-phase flows and numerical methods

Figure 2.2 Illustration of the volume of fluid method applied to a stratified flow
with a sharp interface

The phase volume fraction designates the ratio of volume of cell that is

filled with the selected primary phase. According to equation 2.5, the phase

volume fraction takes the value of 1 in cells entirely filled by the primary phase

and the value of 0 in cells where there the presence of the primary phase

is not detected i.e. entirely filled with the secondary phase. Elsewhere, the

phase volume fraction respects the strict condition 0 < α < 1. In order to

capture the interface, two categories of VOF methods namely the geometric

and algebraic methods are employed. An illustration of this method is shown

in figure 2.2 applied to a stratified flow in which the primary phase is the

liquid. In geometric VOF methods, an approximation of the interface height is

obtained geometrically (e.g. plane, line), while it is depicted by an analytic

function in algebraic VOF methods (e.g. polynomial function, trigonometric

function). OpenFOAM uses an algebraic VOF method to capture the interface.

Assuming the indices 1 and 2 respectively refer to phase 1 (primary phase)

and 2 (secondary phase) at all time t, one can for example write α1(x, t) = α

2.2 Numerical modelling of two-phase flows 21

and so, α2(x, t) = 1 − α1(x, t) = 1 − α. Hence, one can describe the physical

properties of the flow in the entire domain using the phase volume fraction,

such as the flow density ρ writes ρ = αρ1 + (1 − α)ρ2 and analogously the

dynamic viscosity µ writes µ = αµ1 + (1 − α)µ2.

Therefore, the two-phase flow can be treated as a unique fluid. α becomes

a variable of the problem and is advected by the velocity field. Hence, one can

then reformulate the continuity equation 2.1a as follows:

∂α

∂t
+ ∇ · (αu) = 0 (2.6)

Introducing the resulting interaction forces between the phases F, caused

by the surface tension between the two-phases σ and defined as:

F = σ∇ · n∇α (2.7)

with n the unit vector giving the normal to the interface that can be written

as n = ∇α/|∇α|, one can rewrite the momentum equation such as:

ρ

(
∂u
∂t

+ ∇ · (u × u)
)

= −∇p+ ∇ · τ + F + ρg (2.8)

Solving the advection of the quantity α in two-phase flow problems remains

a problem of a considerable complexity as the choices of solution methods

and discretisation schemes order have great impacts on the solution. The

discontinuous character of the α field makes those choices delicate: a first

order discretisation scheme produces very stable solutions but also very diffu-

sive, increasing the inaccuracies in the interface prediction, while a high order

scheme provides accurate solutions with a sharp interface but is unstable [82][20].

22 Background knowledge on two-phase flows and numerical methods

It thus becomes important to find a compromise between stability and accuracy.

In order to address this issue, numerical schemes with flux limiters such as

the total variation diminishing (TVD) scheme [57] were introduced and combine

the bounded character of the upwind schemes (first order) and the sharpening

property of the higher order schemes. The TVD schemes are working in a way

that they adapt their capacity regarding the numerical needs of the simulation.

The VOF method remains one of the most used multiphase flow modelling

methods due to its numerous applications in diverse domains. Free surface

problems even with strong instabilities at the interface are usually well modelled

by VOF under the condition that the mesh is fine enough in the interface area

including the regions where the interface travels locally [36]. The simulations

presented in this dissertation remain in the context of smooth to fairly wavy free

surfaces, which essentially keep the interface in the same level area depending

on the simulated flow regime. Thus a fixed mesh with refinements in the in-

terfacial area is needed, with more refinement adjustments for the waviest flows.

In order to perform the VOF simulations, the interFoam solver of Open-

FOAM was used. This solver was implemented following equations 2.6 and

2.8 with an additional compression term in the volume fraction equation that

amplifies the sharpening of the interface between the two phases [139]. The

interface compression method was developed by Wardle and Weller [148] in

order to capture large scale sharp interfaces in two-phase flow simulations. This

feature proves to be particularly useful for shear-driven flows [88] where the

high gradients of velocity at the interface can cause diffusion inaccuracies. The

2.2 Numerical modelling of two-phase flows 23

artificial interface compression term is activated by an interface compression

coefficient Cα in the interfacial region. The phase volume fraction then reads:

∂α

∂t
+ u · ∇α + ∇ · [ucomp · α(1 − α)]︸ ︷︷ ︸

artificial compression term

= 0 (2.9)

where ucomp is the compression velocity applied normally to the interface and

that controls the compression level with a compression coefficient Cα such as:

ucomp = min {Cα|u|; max{|u|}} ∇α
|∇α|

(2.10)

where the unit vector ∇α/|∇α| provides the compression velocity direction

that will be applied normally to the surface. A value of 0 of the compression

coefficient Cα will simply cancel the interface compression term; a value of 1

corresponds to conservative compression and is generally used; and larger values

correspond to enhanced compression of the interface [40][148]. In order to avoid

any unphysical, extreme values of the phase volume fraction i.e. outside of

the interval [0, 1], the multi-dimensional limiter for explicit solution (MULES)

algorithm [156] was implemented in OpenFOAM to bound α. A semi-implicit

version of the MULES algorithm was added to OpenFOAM [51] allowing for

less restraining simulation conditions i.e. for the use of higher Courant (CFL)

numbers [24].

2.2.2 The Euler-Euler method

The Euler-Euler method also called two-fluid model [70][71] distinguishes

itself from single-fluid approaches by modelling the interfaces instead of recon-

structing it. Similarly to the VOF method, the Euler-Euler method defines

each phase by a phase indicator Ii(x, t) where the subscript i designates phase

24 Background knowledge on two-phase flows and numerical methods

1 or 2 in two-phase flows. In the Euler-Euler approach, the velocity field is

described separately for each phase but the pressure field is shared by the

two phases. Therefore, each phase has its own set of mass and momentum

equations and own phase volume fraction field denoted αi(x, t). Moreover, each

phase possesses its own flow characteristics such as the densities can be noted

ρi and the dynamic viscosities µi. Thus, mass and momentum equations for

incompressible and viscous Newtonian flows can be written as follows:

∂αi

∂t
+ ∇ · (αiui) = 0 (2.11a)

∂αiρiui

∂t
+ ∇ · (αiρiui × ui) = −αi∇p+ αiρig + ∇ · (αiµi∇ui) + FD,i + FS,i

(2.11b)

In two-fluid models, the interfacial forces are reduced to the drag force FD

and surface tension FS. In order to model the resulting transfer of momentum

between the two phases, the drag force is applied such as one phase is considered

as continuous and the other dispersed. Using the subscripts d and c respectively

for the dispersed and continuous phase, the drag force for interpenetrating

phases writes:

FD,i = 3
4αcαdρcCD

|ud − uc|(ud − uc)
dd

(2.12)

where dd is the particle diameter of the dispersed phase and CD is the drag

coefficient and can be calculated using the empirical Schiller-Naumann model

[117], which writes:

2.2 Numerical modelling of two-phase flows 25

CD =


24
(
1 + 0.15Re0.687

p

)
if Rep ≤ 1000

0.44 else
(2.13)

with Rep the particle Reynolds number, defined as:

Rep = 2rd|ud − uc|
νc

(2.14)

where νc is the kinematic viscosity of the continuous phase.

Because of its popularity in two-phase flows and its availability in Open-

FOAM, the Euler-Euler method was investigated in this thesis. However,

equations 2.2.2 and 2.2.2 are not designed for stratified flows and one should

thus not expect to obtain the best results with the Euler-Euler method. This

assumption will be confirmed in chapter 4.

The interfacial compression of the interface was originally developed for two-

fluid models [148] before being implemented in the VOF solvers of OpenFOAM.

The Euler-Euler simulations presented in this dissertation were carried out

using the solver multiPhaseEulerFoam [110] and includes the artificial interface

compression term that is also activated by the interface compression coefficient

Cα in the interfacial region. The transport equation of the phase volume

fraction αi is identical to the one described in the VOF method for α (equation

2.9). Similarly to the VOF method, the compression coefficient Cα is usually

taken as 1 for Euler-Euler simulations and a value of 0 would leave the phase

dispersion unaltered.

26 Background knowledge on two-phase flows and numerical methods

2.3 Additional numerical methods for CFD

simulations

2.3.1 OpenFOAM

OpenFOAM was chosen to perform all the numerical simulations presented in

this dissertation, as it features many advantages. Open∇FOAM® (Open Field

Operation and Manipulation) [40] is a multi-physics toolbox mainly focusing

on the solving of fluid mechanics equations. It has been distributed under

a free and open-source GNU GPL licence since 2004 by the British society

OpenCFD Ltd. Initially, OpenFOAM was developed by the Imperial College

London in C++, which wanted a code based on the finite volume method (FVM)

and benefiting from latest programming language advances. The software is

yearly upgraded and actively maintained with regular corrections and updates.

It benefits from a large community contributing to its development (around

10000 users [52]). It is mainly composed by a free C++ software library and

different tools in the form of libraries and application solvers. Numerous solvers

are available in OpenFOAM for a wide range of physical applications, such as

compressible and incompressible flows, multiphase flows, combustion, chemical

reactions, heat transfer, etc. Multiple turbulence models are also available such

as several RANS and LES models. OpenFOAM seen as a C++ library is of

great interest when it comes to developing and testing new models. Unlike the

majority of most scientific codes written sequentially –usually with Fortran– it

benefits from the power of object-oriented languages. This structure under the

form of classes permits to be closer to the mathematical writing in terms of

divergence, gradient, Laplacian, rotational operators, temporal derivative, etc.

For example, take the momentum equation for the velocity field u:

2.3 Additional numerical methods for CFD simulations 27

∂t(ρu) + ∇ · (ϕU) = −∇p+ µ∇2u (2.15)

Then, equation (2.15) would simply be implemented in OpenFOAM as follows:

solve

(

fvm::ddt(rho,U)

+ fvm::div(phi,U)

==

- fvm::grad(p)

+ fvm::laplacian(mu,U)

);

While the discretisation of the different mathematical operators occupies a

prominent place in the creation of sequential codes, OpenFOAM users do not

have to worry about it when writing the scripts and thus can entirely focus on

the representation of the physical models. The different discretisation methods

are actually already coded in the classes of each operator. Users can also create

and add the discretisation methods they desire in the corresponding operator

class if not present in OpenFOAM already.

2.3.2 Finite volume spatial discretisation method

OpenFOAM uses a three dimensional Cartesian coordinate system with a

finite volume method but allows for 2D and 3D problem solving. The finite

volume spatial discretisation method is a spatial discretisation scheme that

allows for the application of a set of equations in a computational domain.

Most of the time OpenFOAM is used for the solving of non-linear transport

28 Background knowledge on two-phase flows and numerical methods

equations of fluid dynamics problems. The FVM consists in the division of the

computational domain into a chosen number of control volumes (CV) using

the integral forms of the equations as a starting point. These equations are

integrated using the mid-point rule (second order accurate) and Gauss’ theorem

to convert volume integrals into surface integrals resulting in matrices. Fluid

dynamic quantities can either be all defined at a single node of CV (co-located

grid) [107] or separately defined. Thus, the scalar quantities (pressure, density,

temperature, etc.) are located at the cell centre of the CV and flux quantities

(velocity and momentum) are located on the cell faces (staggered grid) [56]

as shown on figure 2.3. At other locations, quantity values are interpolated

according to the chosen interpolation method.

Figure 2.3 Examples of a 2D co-located grid (left) and of a 2D staggered grid
(right)

2.3.3 Discretisation schemes

OpenFOAM can run CFD simulations with up to second order accuracy

schemes. Those available schemes rely on the FVM method (see section 2.3.2)

solving the general transport equation (second order) of ϕ, a continuous and

differentiable physical function of the flow:

2.3 Additional numerical methods for CFD simulations 29

∂ρϕ

∂t︸ ︷︷ ︸
time derivative

+ ∇ · (ρϕu)︸ ︷︷ ︸
convection term

= ∇ · (Γ∇ϕ)︸ ︷︷ ︸
diffusion term

+ Sϕ︸︷︷︸
source term

(2.16)

As required by FVM, one integrates the previous equation on a 3D cell

control volume VC :

∫∫∫
VC

∂ρϕ

∂t
dVC +

∫∫∫
VC

∇ · (ρϕu)dVC =
∫∫∫

VC

∇ · (Γ∇ϕ)dVC +
∫∫∫

VC

SϕdVC

(2.17)

Using Green-Gauss theorem to write the volume integrals into surface

integrals over the control surface SC and obtain fluxes:
∫∫∫

VC
∇·ϕdV =

∫∫
SC
dS·ϕ

One finally obtains the following:

∂

∂t

∫∫∫
VC

ρϕdVC +
∫∫

SC

(ρϕu) · dSC︸ ︷︷ ︸
convection flux

−
∫∫

SC

(Γ∇ϕ) · dSC︸ ︷︷ ︸
diffusion flux

=
∫∫∫

VC

SϕdVC (2.18)

Spatial discretisation

The flux terms are then interpolated using interpolation schemes. Solving

a second order equation requires a second order or higher for discretisation in

order to obtain higher accuracy. Linear interpolation or central differencing

schemes are second order accurate, although, they are unstable as unbounded.

A first order scheme such as the upwind differencing scheme is bounded but

diffusive. As we are interested in solving two-phase flows with sharp interfaces,

the second order total variation diminishing (TVD) scheme is found to be

an appropriate compromise between stability and accuracy [57], as already

mentioned in section 2.2.1. The addition of a limiter function ψ allows for a

bounded and accurate scheme in TVD methods. Assuming a convective flux

30 Background knowledge on two-phase flows and numerical methods

Figure 2.4 Convective flux F across a control volume of volume centroid P and
face centroid f

F across a control volume of volume centroid P and face centroid f and the

neighbour control volumes of centroid PP , N , and NN (see figure 2.4), a TVD

scheme must respect the following conditions [128]:

ϕf =


ϕP + 1

2ψ
−
P (ϕP − ϕP P) for F ≥ 0

ϕN − 1
2ψ

+
P (ϕNN − ϕN) for F < 0

(2.19)

The slope limiter function ψ prevents oscillations by making the scheme

bounded. In order to solve the diffusion fluxes one can use a second order

upwind differencing such as ϕf = ϕP + (2∇ϕP − ∇ϕf) · dP f where dP f is the

vector pointing to f from the centroid P .

Temporal discretisation

In order to solve the time derivative one may use any second order accurate

scheme. The second order backward difference scheme for example can be

described in two steps. The first order backward difference approximation of ϕ

writes:

∂ϕ(t)
∂t

= ϕ(t) − ϕ(t− ∆t)
∆t + O(∆t2) (2.20)

2.3 Additional numerical methods for CFD simulations 31

The second order approximation is obtained by using more terms in the Taylor

series development. Hence the second order backward difference approximation

of ϕ writes:

∂ϕ(t)
∂t

= 3ϕ(t) − 4ϕ(t− ∆t) + ϕ(t− 2∆t)
2∆t + O(∆t2) (2.21)

The second order backward time discretisation scheme is implicit and

conditionally stable. As an alternative, the Crank-Nicolson method can be used

to discretise the temporal derivative. It is implicit and unconditionally stable.

In the Crank-Nicolson scheme [25], the spatial derivatives are half evaluated at

the time n and half at the time n+ 1. By taking the Taylor series development

around (j, n+ 1
2):

ϕn+1
j − ϕn

j

∆t = α

2∆xn

[
(ϕn

j+1 − 2ϕn
j + ϕn

j−1) + (ϕn+1
j+1 − 2ϕn+1

j + ϕn+1
j−1)

]
+ O(∆t2,∆x2)

(2.22)

2.3.4 Turbulence modelling

Shear-driven flows are mainly investigated in this dissertation, and the

studied regimes show turbulence generation in shearing areas like walls and

interfaces. Thus, brief descriptions of the main approaches for solving and/or

modelling the turbulence are presented in this section.

In CFD, the choice of a methodology to predict the turbulence depends

on different factors. Turbulence can for example be solved directly by solving

the Navier-Stokes equations without any models. This approach is known as

direct numerical simulations (DNS) and they require to solve all the scales of

32 Background knowledge on two-phase flows and numerical methods

the turbulence of the flow, the Kolmogorov scale being the smallest scale of

the turbulence [97]. Hence, employing DNS demands unrealistic computational

resources for industrial and engineering applications, especially when the stud-

ied geometry are often very complex. DNS is thus mainly used in research

with simplified geometry in order to improve our vision of the turbulence and

understand better complex turbulent phenomena [92].

Alternatively to DNS, quasi-DNS (qDNS) and large eddy simulations (LES)

can be performed, requiring less resources that DNS. LES solves the largest

scales of the turbulence and applies turbulence models to predict the smallest

scales, called subgrid models. Therefore, the use of models allows for coarser

computational meshes than DNS. qDNS uses numerical dissipation to act as a

subgrid scale model, so that the DNS mesh size can be considerably reduced

[133]. One might also call it numerical LES (nLES). Although those meth-

ods remains computationally too expensive for typical engineering purposes,

this dissertation employed qDNS simulations to generate large high-quality

databases for the training of machine learning models. This choice was based

on a study comparing both LES and qDNS simulations in chapter 4. It allowed

for the production of high-fidelity results at reasonable computational costs.

For industrial applications, the Reynolds averaged Navier-Stokes (RANS)

equations method is often chosen. One talks about RANS modelling and

as its name suggests, it is obtained by applying averaging operations to the

Navier-Stokes equations. Unsteady RANS (URANS) is also performed for

industrial problems showing fluctuations. RANS models allows for the use of

larger computational domains than in the previously described methods [95]

as coarser mesh resolutions required in RANS simulations, which makes them

2.3 Additional numerical methods for CFD simulations 33

Figure 2.5 Classification of the main turbulence simulation methods. Adapted
from [114]

potentially very interesting for complex engineering problems.

One can place all those turbulence simulation methods in a diagram (see

figure 2.5) to better illustrate how each of them compares to the others in terms

of computational resources needed, and accuracy of the solution.

The RANS model

The so called Reynolds decomposition of the velocity field leads to the

RANS equations. It consists in substituting the instantaneous velocity field

described in the momentum Navier-Stokes equation by the sum of the time

averaged velocity and fluctuation velocity, such as:

ui(xi, t) = ui(xi, t) + u′
i(xi, t) (2.23)

with ui = u and xi = x. Note that this decomposition also applies to the

pressure field such as p(xi, t) = p(xi, t) + p′(xi, t). Applying the Reynolds

decomposition to the momentum equation and considering that the time

averaged fluctuation velocity is 0, gives the following:

34 Background knowledge on two-phase flows and numerical methods

ρ

(
∂ūi

∂t
+ ∇ · (ūiūi)

)
= ∇p̄+ ∇ · (µ∇ūi) + ρg − ρ∇ · u′

iu
′
i (2.24)

Applying the Reynolds decomposition to the momentum equation results in

the creation of an additional term in the right hand side (equation 2.24). The

nonlinear term u′
iu

′
i is also known as the Reynolds stress Rii and is responsible

for the turbulence flow physics, its production, destruction, and diffusion.

As for the turbulent kinetic energy (TKE) k, it is obtained by calculating

the trace of the Reynolds stress tensor, such as:

k = 1
2tr(Rij) (2.25)

Many RANS models can be selected to predict the turbulence in a flow

simulation. In this dissertation, the standard RANS k−ω model is investigated.

Therefore, only a detailed presentation of this model is provided. One could

cite some of the other most widely used RANS models [143] in the industry

such as the Spalart-Allmaras (SA) model, the k − ε model, or the k − ω SST

model. Those models all present pros and cons depending on the flows that

need to be predicted:

• The standard SA model [123] is a very stable one-equation model solving

for the kinetic turbulent viscosity that is commonly used for aerodynamics

problems but presents some limitations for shear flows and decaying

turbulence problems [7];

• The Launder k − ε model [80] is a two-equation model solving for the

TKE k and turbulence dissipation ε that is often used for free-shear flows,

2.3 Additional numerical methods for CFD simulations 35

external flow interaction problems, however presents limitations to predict

near-wall TKE [10];

• The Wilcox k−ω model [151] is also a two-equation model solving for the

TKE and the specific turbulence dissipation rate ω. It is usually convenient

for channel and walled flows and deals better than the k − ε model with

near-wall interaction, although it shows some excessive sensibility to ω in

free stream flows and inlet boundary conditions which is normally not the

case for the k− ε model [38]. The latter version of k− ω aims to address

this issue. More details about this model are presented thereafter;

• The Menter k − ω SST model [90] is a two-equation model based on

the combination of the k − ε in the free stream regions model and k − ω

model in the near-wall regions. It takes advantages of the standard k − ε

and k − ω models.

The governing equations of the standard RANS original Wilcox k−ω model

[151] for the turbulent kinetic energy k and for the specific dissipation rate ω

write:

∂ρk

∂t
+ ∂ρuik

∂xi

= ρPk − β∗ρkω + ∂

∂xi

[
(µ+ σkµt)

∂k

∂xi

]

(2.26a)
∂ρω

∂t
+ ∂ρuiω

∂xi

= α
ω

k
Pω − βρω2 + σd

ρ

ω

∂k

∂xi

∂ω

∂xi

+ ∂

∂xi

[
(µ+ σωµt)

∂ω

∂xi

]

(2.26b)

Here, ρ is the fluid density, µ = ρν is the fluid dynamic viscosity with ν the

fluid kinematic viscosity, t is time, ui are the components of the velocity and

xi the Cartesian coordinates with i = J1, 3K. α = 13
25 , β = 0.0708, β∗ = 9

100 ,

36 Background knowledge on two-phase flows and numerical methods

σk = 3
5 , σω = 1

2 and σd = 1
8 are the closure coefficients of Wilcox’s problem.

The production of kinetic energy Pk for incompressible flow writes:

Pk = τij
∂ui

∂xj

(2.27)

where the Reynolds stress tensor τij according to the Boussinesq approximation

[14] writes:

τij = −u′
iu

′
j = 2νtS̄ij − 2

3kδij (2.28)

where νt = k/ω is the kinematic eddy turbulent viscosity with µt the turbulence

dynamic eddy viscosity, which writes:

µt = ρk

ω
(2.29)

and S̄ij is the mean strain rate tensor, such as:

S̄ij = 1
2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(2.30)

The Wilcox’s standard k−ω model as well as the other above presented two-

equation turbulence models use wall functions in order to treat the turbulence

in the near-wall region, in the boundary layer. Therefore, the way those models

are calibrated depends directly on the so called ’law of the wall’ introduced by

Von Kármán in 1930 [146]. This law stipulates the existence of three regions in

the near-wall region of the flow:

2.3 Additional numerical methods for CFD simulations 37

• The viscous sublayer or laminar sublayer which is the closest to the wall,

dominated by the viscous effect of the flow and in which the turbulent

scales are more dissipated that produced;

• The inertial sublayer or log-layer which is the furthest from the wall in

the near-wall region and in which the flow is dominated by inertia forces

(inertia scales);

• The buffer layer which is the intermediary layer between the viscous and

inertial sublayers and in which inertia forces and dissipation compensate.

One can define the dimensionless friction velocity uτ as a function of the

wall shear stress τw in the viscous sublayer such as:

uτ =
√
τw

ρ
(2.31)

and assuming the normal to the wall is the y direction:

τw = µ

(
∂u

∂y

)
y=0

(2.32)

One defines two dimensionless quantities from the friction velocity and wall

shear stress: the dimensionless velocity u+ and wall distance y+:

u+ = ū

uτ

(2.33a)

y+ = yuτ

ν
(2.33b)

Using the turbulent viscosity, one can rewrite the momentum equation

under the following simplified form:

38 Background knowledge on two-phase flows and numerical methods

(µ+ µt)
∂u

∂y
= τw (2.34)

Using the formulations 2.33a and 2.33b along with the definition of the wall

shear stress in equation 2.32, and noting νt = µt/ρ one can rewrite equation

2.34:

(
1 + νt

ν

)
∂u+

∂y+ = 1 (2.35)

This formulation describes both viscous and turbulent (inertial) contribu-

tions. When studying the flow very close to the wall in the viscous sublayer,

the turbulent effects are dominated by the viscous ones and can be neglected

in equation 2.35 such as:

u+ = y+ (2.36)

This equation describes a linear velocity profile which is proportional to

the wall distance. When moving away from the wall, the influence of the

viscous terms diminishes until the turbulent effects become dominant and so

one obtains the following:

(
νt

ν

)
∂u+

∂y+ = 1 (2.37)

One can then use the Prandtl hypothesis that defines the turbulent viscosity

as a function of the mixing length lmix [102] and write the following for near-wall

application: lmix = κy where κ = 0.42 is the Von Kármán constant. Moreover,

a dimensional analysis leads to |∂ū/∂y| = uτ (κy). One can then deduct the

following:

2.3 Additional numerical methods for CFD simulations 39

νt

ν
= κy+ (2.38)

After integrating the equation 2.37 with respect to y+ including the formu-

lation 2.38, we obtain the following:

u+ = 1
κ

ln(y+) + C , C ∈ R (2.39)

Or, using the empirical integration constant E = eκC = 9.79 representing

the wall rugosity:

u+ = 1
κ

ln(Ey+) (2.40)

The three near-wall regions are represented in figure 2.6. The choice of the

upper limit of the log-law region is subjective but most of the time is fixed at

y+ ≈ 300 and normally depends on the Reynolds number Re. The higher Re,

the greater upper log-law region limit.

The LES simulation

An alternative method for turbulent flow simulation is the large eddy

simulation (LES). Similarly to the RANS method, LES is based on the decom-

position of the instantaneous velocity field, which is partly numerically solved

directly with the Navier-Stokes equations, and partly modelled then integrated

in the final solution. The largest scales of the turbulence in the inertial range

are solved while the effects of the smallest ones are modelled. The field is once

again decomposed similarly to the Reynolds decomposition, although this time,

using filter operations instead of average. The decomposition is theoretically

obtained by use of a low-pass filter, as the convolution of a function with a

filtering kernel G [113] is characterised by a cutoff length scale in the physical

40 Background knowledge on two-phase flows and numerical methods

Figure 2.6 Standard law of the wall with sublayers ranges

space that depends on the choice of the filter model (e.g. the Smagorinsky

sub-grid scale model [120]). Thus, the velocity ui(x, t) field is decomposed [17]

as the sum of the filtered velocity ũi(x, t) and its residual field ûi(x, t) such as:

ui(x, t) = ũi(x, t) + ûi(x, t) (2.41)

Then, the velocity field u(x) can be filtered such as:

ũi(x) =
∫ ∞

−∞
G(x − ξ)u(ξ)dξ (2.42)

Applying the decomposition and filtering to the Navier-Stokes equations:

2.3 Additional numerical methods for CFD simulations 41

∂ũi

∂t
+ ũj

∂ũi

∂xj

= −1
ρ

∂p̃i

∂xi

+ ∂

∂xj

(
ν
∂ũi

∂xj

)
+ 1
ρ

∂τij

∂xj

(2.43)

where τij = ũiūj − ũiuj results from the non-linear advection terms and was

already introduced as the Reynolds stress in equations 2.24 and 2.27.

When using the filtered strain rate tensor S̃ij already introduced in equation

2.30 in the mean form, for the resolved scale and the Boussinesq hypothesis

[14] (equation 2.28), one can write:

τij − 1
3τkkδij = −2µtS̃ij (2.44)

Similarly to equation 2.34, we get:

∂ũi

∂t
+ ũj

∂ũi

∂xj

= −1
ρ

∂p̃i

∂xi

+ ∂

∂xj

[
(ν + νt)

∂ũi

∂xj

]
(2.45)

where the pressure term includes the trace term 1
3τkkδij.

While LES remains a cheaper alternative to DNS when it comes to compu-

tational resources, it is advised to apply necessary grid refinements following

classical guidelines to capture all the largest turbulent structures, especially the

near wall structures that have a great impact on the flow and of smaller size

than those found in the free-stream. A y+ ≈ 1 for the wall distance, ∆x+ ≈ 50

in the flow direction, and ∆z+ ≈ 15 in the remaining cross-stream direction, are

recommended for LES [112]. Spalart et al. [124] recommended a grid resolution

of at most ten times less refined than in DNS.

42 Background knowledge on two-phase flows and numerical methods

The quasi-DNS simulation

Quasi-DNS simulations (qDNS) are employed as realistic alternatives to

DNS to carry out high fidelity simulations. As opposed to LES, qDNS do

not use any sub-grid model to predict the behaviour of the smallest turbulent

scales, it uses numerical dissipation instead, and as a consequence qDNS is

often called numerical LES. The mesh must be refined without aiming for the

Kolmogorov microscale η as one would do in DNS.

For two-phase flow simulations, the Kolmogorov number η varies depending

on the phase type and regime. One formulation of this number is [100]:

η = (ν3/ε)1/4 (2.46)

Where ε is the rate of energy dissipation of the phase and can be estimated

as follows: ε ∼ U3
b /L where Ub and L are the bulk velocity of each phase and

the characteristic length scale of the flow (e.g. phase thickness, channel height,

etc.) respectively. Hence we obtain the following estimation of the Kolmogorov

spatial scale:

η =
(
ν3L

U3
b

)1/4

(2.47)

τ = η2

ν
(2.48)

While a DNS simulation would require a refinement in the flow direction to

the size ∆x = 2η [147], according to Tiselj et al. [133], qDNS needs around

two to five times less resolution than DNS in the flow direction in terms of

2.3 Additional numerical methods for CFD simulations 43

number of cells in order to capture the necessary turbulent scales.

2.3.5 Solution methods

In this part, the methods employed to solve the pressure and velocity fields

in the simulations are presented.

Pressure-velocity algorithms

In order to couple the momentum and the mass conservation, CFD solvers

use solving algorithms such as the pressure-implicit split-operator (PISO) algo-

rithm [72] most of the time for transient problems, or the semi-implicit method

for pressure-linked equations (SIMPLE) algorithm [18][98] for steady-state

problems.

The PIMPLE algorithm available in OpenFOAM is used for transient prob-

lems and is a combination of the PISO and SIMPLE algorithms. All those

algorithms solve a pressure equation to satisfy the mass conservation and

provide a corrected velocity to satisfy the momentum equation. The PIMPLE

algorithm starts by solving the momentum equation – this step is called the

momentum predictor – and then enters the PISO loop, in which it iterates

to solve for the pressure until a converged pressure solution is found. Once

the PISO loop is complete, it assesses the convergence of the coupled velocity-

pressure p− u solution and reiterates the PIMPLE loop if not converged (new

momentum predictor). A flowchart of the PIMPLE process is shown in figure

2.7 in which ∆t is the time step and tend is the simulation end time.

44 Background knowledge on two-phase flows and numerical methods

Figure 2.7 Flowchart of the PIMPLE algorithm process

When discretising the simple momentum equation for incompressible and

inviscid flows:

∂u
∂t

+ ∇ · (u × u) = −∇p (2.49)

One obtains the following system of equations using matricial form:

2.3 Additional numerical methods for CFD simulations 45

M [u] = −∇p (2.50)

Where the matrix M [u] can by decomposed as the difference between a

diagonal matrix A and an off-diagonal matrix H of the contributions:

Au − H = ∇p (2.51)

Hence, one can solve for the velocity u using the following matrix system:

u = H
A

− 1
A

∇p (2.52)

In order to solve for the pressure p, one can use the volumetric flux corrector

equation obtained by interpolating the velocity to the faces of the discretisation

control volume and applying the surface vector Sf such as:

ϕ = ufSf =
(H
A

)
f

· Sf −
(1
A

)
f

Sf · ∇p (2.53)

Using the continuity equation ∇ · ϕ = 0 one finally obtains the following

matrix system to solve for the pressure p:

∇ ·
[(1
A

)
f

∇p

]
= ∇ ·

(H
A

)
f

(2.54)

Several methods can be used to solve matrix systems.

The preconditioned conjugate gradient method

The preconditioned conjugate gradient (PCG) method [60] [150] is used as

an iterative algorithm. Let us take the linear system of equations of unknowns

x:

46 Background knowledge on two-phase flows and numerical methods

Ax = b (2.55)

where A is a known real, symmetric, positive-definite matrix of size n× n

and b known too. Let us note x∗ the solution of (2.55). The iterative method

implies that x∗ must also be the unique minimiser of the function f expressed

as:

f(x) = 1
2xTAx − xTb, x ∈ Rn (2.56)

Note rk the residual at the kth iteration step, such as rk = Axk.

Note p the conjugate vectors such as:

pk = rk −
∑
i<k

pT
i Ark

pT
i Api

pi (2.57)

The solution is obtained in converging the solution given by the following

linear combination:

xk+1 = xk + αkpk (2.58)

(note that the iteration process starts with a "guessed solution" x0) such as

p0 = b − Ax0

x∗ =
n∑

i=1
αipi (2.59)

where:

αk = pT
k rk

pT
k Apk

(2.60)

2.3 Additional numerical methods for CFD simulations 47

The Gauss-Seidel method

The Gauss-Seidel method [45] is an iterative method for the resolution of

linear systems. Let us take:

Ax = b (2.61)

The matrix linear system to solve, where A ∈ Rn×n and b ∈ Rn. We note

aij the elements of A and bi the elements of b such as:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...

an1 an2 · · · ann


et b =



b1

b2

...

bn


(2.62)

The algorithm assumes that diagonal of A is composed by non-zero numbers.

Note xk =
(
xk

1, ..., x
k
n

)
∈ Rn the current iterated solution.

The next iterated xk+1 =
(
xk+1

1 , ..., xk+1
n

)
∈ Rn is calculated in n steps as

follows:

1st step: Assuming that a11 ̸= 0 and knowing
(
xk+1

2 , ..., xk+1
n

)
, one can

calculate xk+1
1 with the first equation of the linear system Ax = b. More

specifically, xk+1
1 is taken as the solution of:

a11x
k+1
1 + a12x

k
2 + ...+ a2nx

k
n = b1 (2.63)

48 Background knowledge on two-phase flows and numerical methods

2nd step: Assuming that a22 ≠ 0 and knowing
(
xk+1

1 , xk
3, ..., x

k
n

)
, one can

calculate xk+1
2 with the second equation of the linear system Ax = b. More

specifically, xk+1
2 is taken as the solution of:

a21x
k+1
1 + a22x

k+1
2 + a23x

k
3 + ...+ a2nx

k
n = b2 (2.64)

ith step, i ∈ J1, nK: Assuming that aii ̸= 0 and knowing
(
xk+1

1 , ..., xk+1
i−1 , x

k
i+1, ..., x

k
n

)
,

one can calculate xk+1
i with the ith equation of the linear system Ax = b. More

specifically, xk+1
i is taken as the solution of:

ai1x
k+1
1 ++ ai,i−1x

k+1
i−1 + aiix

k+1
i + ai,i+1x

k
i+1 + ...+ ainx

k
n = bi (2.65)

Hence, assuming the diagonal components of A are not equal to 0, the

general solution to calculate the components xk+1
i of xk+1 for i = 1, ..., n can

be written:

xk+1
i = 1

aii

bi −
i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

 (2.66)

The algorithm can be written under matrix form assuming A decomposes

as follows:

A = L + D + U (2.67)

where D is the diagonal part of A, L its strict lower triangular part and U

its strict upper triangular part [49]. Hence, one iteration of the Gauss-Seidel

method from xk to xk+1 consists in solving the inferior triangular system:

2.4 Introduction to machine learning 49

(L + D)xk+1 = b− Uxk (2.68)

from top to bottom i.e. by successively determining xk+1
1 , xk+1

2 , ..., xk+1
n .

2.4 Introduction to machine learning

Machine learning (ML) is a way to model phenomena in order to opti-

mise modelling processes. It aims to synthesise the different variables that

come at stake in the problem and enable the visualisation of the behaviours

and correlations involved within the data. In data science, ML is the step

where the computer tries to model the data we are feeding it with. In this

case, "modelling" means representing the behaviour of the studied phenomenon.

Supervised machine learning algorithms are generally used when the handled

data is concrete and corresponds to physical quantities. In this dissertation,

supervised machine learning methods were used as the relationships between

flow quantities and how they affect transport equations are investigated.

2.4.1 Machine learning process and neural network

The ML process can roughly be decomposed into the following steps:

• First comes the problem definition phase in which we define the nature

of the problem and the behaviour we want to model and which tools are

available for the treatment of data and other technical requirements.

• Then comes the exploration phase in which we look at the data available,

how it is structured, where it can be collected and which data will be the

50 Background knowledge on two-phase flows and numerical methods

most relevant to use. In this phase we also want to draw the form of the

solution, decide on the architecture of the Neural Network (NN) and the

language that will be used for the algorithm setup.

• The next step is the collection of the relevant data. In this step we want

to collect as much data as needed to obtain the best ML model. The

data must avoid redundancy so that our ML model can adapt to different

cases efficiently. In ML, more quality data will enable the improvement

of the model.

• The data is then pre-processed for the ML model. In this phase we need

to ensure that the data that will be provided to the ML model is clean

i.e. no irrelevant or aberrant data is present in the set, and normalised

so that all the data the ML model takes at the same order of magnitude.

• Then comes the implementation of the ML model. In this phase the ML

model is fed with input data and the desired corresponding solution for

each given input. The solution is called the output. The ML model will

be modelling the relationship between the inputs and the outputs. ML

can use a parametric method in which the number of parameters can

be fixed to find a fitting for the relationship. In this case we already

assume the behaviour adopted by the modelled phenomenon, and can

tell the ML the structure of the function it has to use. When we have

no knowledge about how the outputs and inputs are linked, ML can

use a non-parametric method in which a mapping function will be used

to fit the data. For example, the k-nearest neighbours algorithm is a

non-parametric method in which the algorithm will make predictions

based on the k most similar trained patterns for each new input. This

2.4 Introduction to machine learning 51

method estimates the behaviour of the closest neighbours based on how

one behaves near them.

• The training of the ML model comes next in which a comparison between

each model predicted value and the output value is made. The ML

improves by backpropagation within the neural network (NN) in which

the ML model minimises the gap between the predicted and true values

thanks to loss functions.

• Then the ML model is tested with a new dataset which solutions are

known and its performance is evaluated.

• Finally the ML model is used to predict unknown solutions in new cases.

In this dissertation, machine learning models were implemented with super-

vised learning using feed-forward neural networks (FFNN). FFNN are flexible

non-parametric regression models [108]. NN are systems of neurons that can be

structured as layers such as the first layer is the input layer and the last layer is

the output layer. Between the input and output are a number of hidden layers

that will apply a function – an activation function – to the neurons of the previ-

ous layer and communicate the result of the application to the next layer until

the output, which is the prediction of the NN. The input layer is constituted

of neurons containing each an input feature vector x = (xl,1, ..., xl,i, ...xl,nl
) for

a network of l layers with nl neurons in the lth layer and with i ∈ J1, nlK. In

that same network, the values of the nodes of the lth layer xl,nl
are obtained by

doing the weighted sum of the values of the (l− 1)th layer i.e. xl−1,nl−1 , such as:

xl,nl
= al,nl

(
w0

l,kl
+

nl−1∑
k=1

wj
l,kl

· xl−1,j

)
(2.69)

52 Background knowledge on two-phase flows and numerical methods

Where wj is the weight applied to the jth neuron of the layer l, j ∈ J1, nl−1K)

and the additional term w0 is the bias term. al,nl
is the activation function

associated with the layer l − 1. Some activation functions are commonly used

in ML algorithms: the sigmoid x → 1/(1 + e−x), the tanh function x → tanh x,

and the ReLU function x → max{0, x} because they are monotonic, non-linear

and bounded. A representation of an example of FFNN is given in figure 2.8.

Figure 2.8 Representation of a feed-forward neural network containing three
inputs, two hidden layers of six and five neurons and two outputs.

2.4.2 Data normalisation

The choice of the input features ηi is of great importance in the process of

implementation of the ML model. They are features available for the training

2.4 Introduction to machine learning 53

of the model and later for its use in new cases. Ideally, those inputs must

depict the characteristic of the data. For example, for stratified two-phase

flows, it seems important to inform the ML model with features describing the

position of each phase and where the high gradients of velocities are located to

locate the interface and the walls. Geometry characteristics can also be used

to add more precision on the environment of the flow. However, too many

input features might reduce the ability of the ML model to adapt to new cases

that are different from the training dataset cases. Too much data on a few

particular cases could as well result in over-fitting, which negatively impacts the

ML model performance in making accurate predictions in new cases. Choosing

non-dimensional inputs also helps the model to perform well in new scenarios.

All input and output features of the machine learning model are normalised

in order to maximise the chances of obtaining an effective model and to improve

the training speed [69]. When manipulating different inputs with different

orders of magnitude, normalisation helps put all the data in the same range

of the activation functions, usually between 0 and 1. It allows for non-zero

gradients during the training and thus, a faster learning. Especially since that

in fluid dynamics, it is common to handle data with very disparate orders

of magnitude, such as the kinematic viscosity of order of magnitude O(10−6)

for water, or O(108) for the specific turbulence dissipation rate in the air in

shearing regions of a flow. Each input and output feature is normalised prior

to the training phase using standardisation such as:

X̂i = Xi − µX

σX

(2.70)

54 Background knowledge on two-phase flows and numerical methods

where Xi is the quantity to scale in the vector X, X̂i is the standardised

value of Xi, µX is the mean of all the components of X and σX is its standard

deviation. This operation is implemented along with the ML model and saved

as "scaler" for the training data but later also for the testing data and the

future predictions of the ML model.

2.4.3 Loss function and training quality

During the training phase, the ML model minimises the gap between its

predicted solution and the true solution. In the context of this study, the gap

to minimise is between the predicted solution and the high fidelity solution,

that is denoted by the subscript true. For each cell of the domain, a set of

inputs based on the flow features φ and domain characteristics and one output

i.e. a correction term for the k−ω model equations, denoted as β(φ), are given

to the model. To minimise the gap between the predicted solution βi,pred and

the true solution βi,true, the ML model sets the parameters of the algorithm so

that the sum L of the loss functions L(βi,true, βi,pred) calculated for each cell is

minimised. In a domain of n cells using a squared loss function for example,

the sum writes:

L =
n∑

i=1
(βi,true − βi,pred)2 (2.71)

As previously mentioned, one would aim for a model accuracy that allows

for good predictions in agreement with the true solutions. Too much accuracy

in the model training could lead to the over-fitting of the training data, making

the model irrelevant for predictions of unseen data. The model must remain

capable of adapting to cases that differ from the training cases. There is no

2.4 Introduction to machine learning 55

rule to know in advance which training accuracy is optimal and tests with

different levels of accuracy are generally carried out from one case to another.

The accuracy of the model during the training phase is calculated using the

coefficient of determination or "R2 score". Considering a set of n true values:

βtrue = {β1,true, β2,true, ..., βn,true}, and its set of predicted solutions by the

ML model: βpred = {β1,pred, β2,pred, ..., βn,pred}, one can write the R2 score as

follows:

R2 = 1 − L
i=1∑
n

(βi,true − β̄true)2
(2.72)

One can see R2 as the model error or loss function divided by the basic

model error that always predicts the mean of the predicted quantity. The R2

becomes higher when increasing the model accuracy and its maximum is 1 or

100% when all the predictions are exact. There is no minimum score but a

model that always predict the mean value will reach a score of 0, meaning

that a model presenting a negative R2 score is worse than a model that would

always predict the mean value.

The gradient descent algorithm

The gradient descent is a method in which the minimum value of a function

is searched in an iterative algorithm. It is widely used in machine learning in

order to minimise the loss function and the optimal parameters for the model.

Every iteration, the algorithm calculates the next point of the regression using

the gradient at the current position of the iteration. Then the gradient is scaled

by a parameter, λ, the learning rate, and substracted from the current position.

During the training of the ML model, one seeks to minimise the loss function

56 Background knowledge on two-phase flows and numerical methods

L and update the weight wt at the time t. Thus, the gradient descent process

applied to the linear regression of a ML model can translate to:

wj+1 = wt − λ
∂L
∂w

(2.73)

The learning rate must be chosen carefully as it influences the performance

of the ML training process. If λ is set too small, the algorithm would take a

longer time to converge, however, if λ is set too large, the gradient descent

might not converge at all to the optimal minimum and may diverge.

In order to optimise the gradient descent algorithm, one can use optimisation

algorithms that will make the algorithm converge faster. The Adam optimisation

algorithm [77] has proven to be one of the most efficient extensions of the

gradient descent algorithm to be used in machine learning. It combines the

gradient descent with the momentum algorithm and the root mean square

propagation (RMSprop) algorithm. The momentum gradient [104] boosts the

algorithm by applying an exponentially weighted average of the calculated

gradients and writes:

wt+1 = wt − ηmt (2.74)

where mt is the aggregate of gradients and writes:

mt = γmt−1 + (1 − γ) ∂L
∂wt

(2.75)

in which γ is the moving average parameter or momentum term taken at

0.9. The RMSprop algorithm takes an exponential moving average and can be

described as:

2.4 Introduction to machine learning 57

wt+1 = wt − η√
vt + ϵ

∂L
∂wt

(2.76)

where ϵ is a strictly positive and small constant (10−8) to avoid division

by zero, and where vt is the sum of the squares of the previous gradients and

writes:

vt = γvt−1 + (1 − γ)
(
∂L
∂wt

)2

(2.77)

Therefore, from equations 2.75 and 2.77, one can write:


mt = γ1mt−1 + (1 − γ1)

∂L
∂wt

vt = γ2vt−1 + (1 − γ2)
(
∂L
∂wt

)2 (2.78)

where γ1 = 0.9 and γ2 = 0.999 as suggested by the developers of the Adam

algorithm [77] and are called decay rates. It was observed that mt and vt are

biased towards zero as they are initialised as zero vectors, more specifically

during the first time steps of the process. This is accounted for by computing

bias-corrected values for mt and vt respectively noted m̂t and v̂t and write:


m̂t = mt

1 − γ1

v̂t = vt

1 − γ2

(2.79)

Finally, the Adam optimiser can be described as follows:

wt+1 = wt − η
m̂t

v̂t

(2.80)

58 Background knowledge on two-phase flows and numerical methods

2.5 Remarks

In this second chapter, the numerical methods employed for the numerical

work carried out in this thesis were introduced. More particularly, the averaged

CFD RANS k − ω model was presented. Note that the k − ω SST model was

not employed in this work because the complexity to implement appropriate

corrections in comparison to the standard Wilcox’s model. It will be seen

that very satisfying results were obtained with this model. Moreover, the two

multiphase methods available in OpenFOAM namely the VOF and Euler-Euler

methods were introduced, with an emphasis on the fact that it is expected

from the VOF method to perform much better than the Euler-Euler method

as the latter one was not designed for two-phase stratified flows. Finally, the

mesh requirements for the DNS, qDNS and LES simulations were given. The

choice of qDNS over LES will be justified in chapter 4.

Chapter 3

Literature review: two-phase

shear flows and ML applications

in CFD

In this chapter, a state of the art on two-phase shear flow is presented in section

3.1 and in particular on stratified two-phase shear flows that one can expect

observe in aero-engine bearing chambers. Additionally, some of the existing

work on the use of machine learning methods in computational fluid dynamics

is examined in section 3.2.

3.1 Existing work on two-phase shear-flows

As stated in the Introduction chapter, one of the objectives of this dissertation

was to investigate the behaviour of stratified shear flows in order to provide

an appropriate correction for the interfacial turbulence intensity in standard

averaged RANS models. In this section, some existing experiments on two-

phase shear flows that are later used at a reference and base for the simulations

60 Literature review: two-phase shear flows and ML applications in CFD

carried out in this dissertation are presented. Existing work on two-phase flow

simulations is also presented in a second part in order to make note of the

current existing methods and understand their limits.

3.1.1 Experimental work

Two-phase flows can be encountered everywhere in the nature (rivers,

clouds, waterfalls, ocean, etc.), in the engineering industry (nuclear engineering,

aerospace, chemical engineering) and show a variety of patterns. When studying

gas-liquid flows, one can observe many phase configurations depending on the

flow rate of each phase. One can describe those configurations based on visual

examination, most of the time being a subjective and qualitative assessment

[5, 4]. The description of those configurations takes into account the geometrical

structure of the interfaces (bubble, plug, slug, stratified, annular, etc.) and the

characteristic dimensions of the flow (bubble size, pocket size, interface height

or film thickness, etc.). Co-current horizontal gas-liquid flows have been classi-

fied into a few main configurations: bubbly, smooth stratified, wavy stratified,

slug and annular [27]. Some of the main two-phase flow configurations can

be seen in figure 2.1, chapter 2 and in figure 3.1 for co-current and horizontal

gas-liquid flows. Similar patterns were observed for immiscible liquid-liquid

two-phase flows: experiments were conducted for oil-water flows for instance [1].

Many experiments have been conducted to better understand two-phase flow

physics and patterns, and improve the existing numerical models available for

two-phase flows. Krepper et al. [79] studied the bubble rising in a vertical water

column that are commonly seen in nuclear and chemical reactors. Air-water

flow around an obstacle in a vertical column was experimentally investigated

by Prasser et al. [103] in order to develop models for bubble coalescence and

3.1 Existing work on two-phase shear-flows 61

Figure 3.1 Main gas-liquid co-current flow configurations in channels with liquid
in red and gas in white

fragmentation in gas-liquid two-phase flows. Stäbler et al. [125] carried out

experiments for counter-current two-phase gas-liquid flows in a horizontal chan-

nel and their experiments were used as a reference for many numerical works

[152][9][130][101]. More recently, Gordino et al. [48] conducted experiments

on air injection in a vertical water column in order to assess blending models’

performances of two-fluid models, under unsteady flow conditions while former

experimental research focused on steady-state results.

62 Literature review: two-phase shear flows and ML applications in CFD

Experiments also serve the purpose of validation for the improvement of

CFD models. Once more in this dissertation, most of the presented numer-

ical results are based on existing experimental results obtained in different

gas-liquid stratified flow configurations in horizontal channels. A particular

care is given to the investigation of the interfacial shear forces and turbulence.

Stratified flows are characterised by the shape of the interface between the

liquid and gaseous phases. The interface can be defined as smooth or wavy

depending on the flow regime. A smooth interface is usually observed at low

gas speeds, while two and three-dimensional waves appear at higher speeds

[84]. Smooth interfaces are observed when the gas velocity is not too large and

the gravity and surface tension maintains the interface sharp and non-wavy.

Experiments on co-current flows of air and liquid have shown that the gaseous

phase transmits its energy to the waves via shear stress forces and pressure

forces [22]. The formation of two-dimension waves with small amplitudes and

large wavelengths was experimentally observed for low-viscosity liquid phases

induced by air [74]. Those waves can be called the J-waves. It was also shown

that increasing the velocity led to the formation of two-dimension waves with

larger amplitudes and shorter wavelengths [3]. One talks about the KH-waves

as a reference to the Kevin-Helmholtz instabilities occurring at similar flow

conditions. At even higher gas velocities, steeper waves are observed and are

known for breaking at large enough amplitude. They are called roll waves

and their wavelength and amplitude is not constant [145][126]. Hashmi [59]

performed experiments on stratified flow in co- and counter-current configu-

rations of air-water flows and for very small levels of liquid (thin film flow).

They calculated the transferred momentum to the film and investigated the

correlation between momentum transfer and flow rate by carrying out many

flow conditions from smooth interface states to very wavy and three-dimensional

3.1 Existing work on two-phase shear-flows 63

interface states in order to develop an enhanced version of the VOF method

for wavy films. More detail on their numerical work is provided later in sec-

tion 3.1.2. They observed droplet shedding for reasonably high superficial gas

velocities in the co-current flow configuration due to shear forces entraining

the liquid film. In the counter-current configuration, only a small gas velocity

triggered droplet shedding. The droplet shedding state is out of the scope of

this thesis and only smooth and wavy sharp interface states are investigated.

Wintterle et al. [152] conducted experiments on counter-current flow of air and

water in order to establish statistical correlation models between the phase

volume fraction and the turbulent kinetic energy calculated from the velocity

fluctuations. With this correlation, they highlighted the important impact of

the turbulent and potential energy of the liquid phase on the wavy interface

region. They implemented the derived differential equation obtained from this

correlation into a CFD code in order to inform interaction numerical models

for stratified flows. They obtained satisfying results, in good conformity with

the experiments. The approach developed by Wintterle et al. [152] shows that

informing the interfacial turbulence of CFD models with experimental results

is a promising and operational method. More details on their numerical work

is provided in section 3.1.2

Reference experiments on stratified two-phase flows in horizontal

channels

The two-phase flow simulations presented in this dissertation can be split in

two configuration groups that can be described as a "deep water" or "thick-film"

configuration and a "shallow water" or "thin film" configuration. The latter

being being the configuration that comes closest to the oil film found in aero-

64 Literature review: two-phase shear flows and ML applications in CFD

engine bearing chambers.

Thick-film experiments:

The simulations of the first deep water, thick-film configuration were based

on the experiments of Fabre et al. [35]. Their work was used to perform the

preliminary studies with OpenFOAM for the choice of multiphase solver and

discretisation schemes, and later for the proof of concept of the dissertation.

Fabre et al. [35] carried out laser Doppler anemometry (LDA) measurements

on stratified flows in a 12 m long, 0.1 m high, and 0.2 m wide closed horizontal

and rectangular channel. The experimental setup is shown in figure 3.2. The

gaseous phase used in their experiments was air and the liquid phase was water.

In this ’deep water’ configuration, the mean liquid thickness represents between

22% and 38.0% of the channel height. The researchers studied three flow

regimes namely ’RUN 250’, ’400’ and ’600’ in which the gaseous phase velocity

was set at least 9 times larger than the liquid phase velocity and up to 11 times

larger. The difference in phase velocity resulted in the generation of high shear

forces across the interface, inducing its waviness. The researchers aimed to

investigate the interfacial transfers between the two phases that are increased

by the generation of interfacial turbulence caused by the velocity gradients

between the two phases. They measured the mean velocity, turbulent kinetic

energy and Reynolds stress vertically in the centre of the channel in both phases.

Figure 3.3 shows the mean velocity profiles they obtained with U+
G and U+

L

being the mean axial velocity normalised by the friction velocity in the gaseous

phase and in the liquid phase respectively. η
G

and η
L

are the vertical coordi-

nates normalised by the water depth. Those experiments have been largely used

3.1 Existing work on two-phase shear-flows 65

Figure 3.2 General scheme of the experiments of Fabre et al. [35]

Figure 3.3 Mean axial velocity profiles measured in [35]

66 Literature review: two-phase shear flows and ML applications in CFD

by many researchers as reference for their numerical results [41][29][37]. Fabre

et al. [35] observed the generation of secondary flows in both phases for the

two highest flow regimes and underlined the difficulty to realise measurements

in the interfacial region especially for the waviest cases. The case ’RUN 250’ is

presented more in depth in chapter 4 and has served as the reference for the

previously mentioned preliminary study (chapter 4) with OpenFOAM and for

the proof of concept (chapter 5).

Thin-film experiments:

The high-fidelity simulations performed in order to train the machine learn-

ing models and the test cases using the coupled RANS-ML model presented in

this dissertation were based on the work of Hann et al [54] and Kim et al. [76],

who developed and carried out particle image velocimetry (PIV) measurement

techniques on stratified flows in a shallow water, thin-film configuration in a

closed horizontal and rectangular channel, which was 2 m long, 0.026 m high

and 0.166 m wide. Their experimental setup is presented in figure 3.4. Similarly

Figure 3.4 General scheme of the experiments of Kim et al. [76]

3.1 Existing work on two-phase shear-flows 67

to Fabre et al. experiments [35], the researchers have used water for the liquid

phase and air for the gas. In this thin-film configuration, the film thickness was

comprised between 9% and 24% of the channel height. A range of 23 cases was

investigated by Kim et al. [76] with a gas velocity of at least 58 times larger

than the liquid velocity and up to 722 times larger. Most of the cases investi-

gated by the researchers were wavy in two or three dimensional manner. As

opposed to Fabre et al. experiments [35], the researchers have examined regimes

for which the liquid phase is not turbulent. The 2 or 3 dimensionality of the

interface was mainly due to an entrainment of the liquid phase by the gaseous

phase. Most of the measurements made by Kim et al. [76] focused on the in-

Figure 3.5 Image processing procedure for the detection of the interfaces
developed by Hann et al. [54] and performed in [76]

68 Literature review: two-phase shear flows and ML applications in CFD

Figure 3.6 Kim et al. [76] raw PIV image of the air flow field (top left),
velocity vector field obtained using the adaptive PIV algorithm (bottom left),
corresponding mask (centre left), averaged velocity profiles for different flow
regimes probed vertically in the channel (top right), and instantaneous velocity
profile (bottom right). Superficial velocity: 3.6 m/s (air), 0.019 m/s (water).

ferior part of the gaseous phase with a special care given to the interfacial region.

Hann et al. [54] and Kim et al. [76] developed PIV measurement techniques

for the detection of the interfaces (c.f. figure 3.6), and simultaneous time-

resolved PIV measurements in both of the phases of the thin-film flow (c.f.

figure 3.6). The researchers managed to perform the velocity measurements

in the two phases simultaneously by splitting the laser beam and illuminating

the channel from the two sides. They highlighted the presence of clear vortex

structures in the gaseous turbulent flow. Kim et al. [76] also demonstrated a

strong influence of the waviness of the interface on the root mean square of

3.1 Existing work on two-phase shear-flows 69

fluctuation velocity profiles. Nearly constant profiles were obtained for smooth

interface flow conditions, while the same profiles showed important variations

across the gaseous phase for wavy interface flow conditions.

3.1.2 Numerical work

While experiments have continuously provided validation for CFD models

in many applications, CFD always offers new challenges when it comes to

improving the modelling and especially in the field of two-phase flow sim-

ulation. Some of the initial work on predicting two-phase stratified flows

investigated the correlations in the shear stresses in two-phase flows from the

known correlations existing in single-phase flows based on the mean veloc-

ity [111]. Empirical correlation for wavy interfaces’ shear-stress in stratified

flows were proposed by researchers in the late 90’s [2, 4]. When it comes

to numerically modelling stratified flows, CFD struggles to model the sharp

interface between the gas and the liquid. The sharp interface is characteristic

of strong velocity discontinuities between the two phases and RANS models

over-predict the turbulent kinetic energy in the interfacial area resulting in

poor predictions of the momentum transfer between the phases [84, 41]. An

important factor is that RANS turbulence models commonly used for two-phase

flows are identical to the ones used for single phase flows and this can lead

to the poor prediction of the interfacial turbulence. The first model to treat

stratified flows was proposed by Taitel and Dukler [129] for low-viscosity liquids.

Their two-fluid model assumed a smooth interface in which the interfacial

stress was underestimated, which is inconsistent with the interfacial friction

increasing with the gaseous Reynolds number. More recent models proposed

to use a single-phase flow approach in which the interface in characterised by

a roughness from the gas perspective [34]. However predicting this interfacial

70 Literature review: two-phase shear flows and ML applications in CFD

roughness is another difficult problem to address, as it depends on many flow

characteristics such as the phase velocities and the fluctuations of the liquid

height [23]. Mouza et al. [94] also highlighted the fact that this roughness

methodology cannot be used to model the dynamic interactions between the

phases that are responsible of the generation, expansion and propagation of the

waves, especially for cases presenting large secondary flows as the ones observed

in the experiments of Fabre et al. [35] in a rectangular channel at high velocities.

The difficulty to correctly predict the turbulent kinetic energy near the

interface led to the development of new numerical models. In the early 2000’s,

approaches were based on the smooth interface theory in which one assumes

that the interface may be represented as a solid wall moving with the shear

velocity [13]. The small disturbances occurring in these types of flow are

accounted for using the previously mentioned interface roughness. The idea

that the gaseous phase of a stratified flow sees the much heavier liquid phase

as a solid wall at the interface was widely used in the most recent numerical

models [41]. Egorov et al. [32] developed an approach using this assumption

and in which they suggested a wall-like treatment of the interface in the gas by

adding damping of the turbulence in the interfacial area. The Egorov approach

has been widely used to perform RANS simulations and showed significant

improvements in the prediction of the velocity field near the interface [131] and

even agreeing with experimental results [141, 64]. Some issues emerge from

the way the Egorov approach is implemented in standard RANS models. One

of them is the fact that the damping of the interfacial turbulence rests on a

parameter B called the turbulence damping parameter. No guidelines exist for

the choice of its value even though Egorov et al. [32] suggested that B should

be set higher than 10. Numerical works have shown that much larger values

3.1 Existing work on two-phase shear-flows 71

Figure 3.7 Oil film thickness distribution in an aero-engine’s bearing chamber
by Bristot et al. [15] for B = 100 (left) and B = 10 (right)

of B gave consistent results [86]. Furthermore, the choice of the coefficient

greatly impacts the predictions of the flow as shown by Bristot et al. [15]. They

emphasised on the fact that the choice of B is particularly difficult when the

expected flow conditions are not known. Figure 3.7 shows the impact of the

choice of the turbulence damping parameter in an air-oil flow in a simplified

version of an aero-engine’s bearing chamber rotating with the RANS k − ω

shear stress transport (SST) turbulence model and a VOF solver and for the

values B = 10 and B = 100.

It was also observed that the models using the Egorov approach are mesh

dependent [125, 44, 37]. Moreover, those models treat the two-phases symmet-

rically [37, 41]. This causes the liquid phase to also see the interface with the

gaseous phase as a non-slip wall boundary condition, while it should rather be

seen as a slip-wall boundary condition instead.

In order to damp the interfacial turbulence, Egorov et al. [32] suggested to

reduce the Wilcox standard k − ω turbulence model’s (see system of equations

72 Literature review: two-phase shear flows and ML applications in CFD

2.26) eddy viscosity (see equation 2.29) by taking large values of ω and to

apply this treatment in the interface area only. Hence Egorov et al. [32]

proposed to add a source term similar to the destruction term βρω2 in the

specific dissipation rate equation of the system 2.26. The following source term

correction was proposed:

Sω,i = Ai∆xiβρi

(
B

6µi

βρi∆x2
i

)2

(3.1)

where the subscript i denotes the phase meaning that there is one source term

per phase i. Ai is the interfacial area density used as a switching term to

ensure that the source term is activated in the interfacial region only. Ai is

indeed zero in regions where only one phase is present and Ai = |∇αi|. ∆xi is

the cell size across the interface and in the direction normal to the interface.

As the interface is assumed to behave like a wall in smooth interface theory,

the wall distance y+ must be taken into account in order to choose cell sizes

in the interfacial area. Thus, usually the cell size across the interface writes

∆xi = ∆y. B is the damping parameter that Egorov et al. recommended to be

higher than 10. However, it was shown that Ai is mesh dependent implying

that B must be chosen with respect to the refinement of the mesh [86].

Frederix et al. [41] showed the impact of the over-production of the inter-

facial turbulence in the standard RANS k − ε and k − ω models using the

Euler-Euler method [70] in a shear-driven flow in a channel containing water

and air and based on the ’RUN 250’ case (smooth interface flow regime) from

the experiments of Fabre et al. [35] described in the previous section. Frederix

et al. [41] used the Egorov correction to develop modified versions of the RANS

3.1 Existing work on two-phase shear-flows 73

k − ω and k − ε turbulence models for cases in which the smooth interface

assumption could be applied. Figure 3.8 shows the predictions of the mean

axial velocity profiles ux using the modified RANS models, highlighting the

difference with the standard models. The interface between the two phases is

illustrated by a strong discontinuity in the axial velocity profile as seen on the

same figure. The numerical curves of the mean axial velocity predicted by the

standard models are shifted upwards indicating an over-estimation of the tur-

bulence in the gaseous phase above the interface. Frederix et al. [41] obtained

very good agreement with the experiments using the Egorov approach in the

models they implemented. However, the improved Egorov method developed

by Frederix et al. holds some of the downsides of the standard Egorov ap-

proach. The symmetry of the model based on the fact that both phases receive

the same interface treatment has yet to be addressed. The researchers also

showed that the addition of the interfacial turbulence damping term led to sig-

nificant under-prediction of the turbulent kinetic energy in the interfacial region.

Numerical models developed for the simulation of stratified shear flows

should therefore take into account a wall-like damping of the interfacial turbu-

lence. Reboux et al. [106] employed LES to model a gas-liquid flow following

the DNS study carried out by Fulgosi et al [43]. They developed a corrected

Smagorinsky subgrid model integrating a near-interface damping DNS-based

function and a variational multiscale (VMS)-based approach that was initially

introduced by Hughes et al. [66]. They obtained promising results in modelling

turbulent shear flows, especially with the VMS based approach.

Recent developments on improving the Egorov method were proposed and

more particularly to adress the previously mentioned issues concerning the

74 Literature review: two-phase shear flows and ML applications in CFD

Figure 3.8 Mixture velocity profiles of the corrected and standard RANS models
obtained by Frederix et al. [41] compared with Fabre et al. experiments [35]

lack of guidelines on the choice of B, the symmetrical treatment of the two

phases and the mesh dependency. Polansky and Schmelter [99] implemented the

Egorov method in OpenFOAM in the k − ω model and compared results with

Fabre et al. experiments. They proposed a novel method to choose B by consid-

ering the pressure drop in a scheme. Fan et al. [37] proposed a novel approach

with more physics and made the Egorov method mesh independent with an

asymmetric treatment of the two phases, leading to more physical predictions of

the flow turbulent kinetic energy and velocity especially in the interfacial region.

Wintterle et al [152] developed a phase interaction model to simulate strat-

ified flows and tested their method using the Prandtl mixing length scale

approach and an extended RANS k − ω turbulence model containing an ad-

ditional term to improve the turbulence behaviour in the interfacial region.

Their derived their method from a statistical approach that correlated the

3.1 Existing work on two-phase shear-flows 75

turbulent kinetic energy of the liquid phase within the phase volume fraction

distribution in experiments on counter-current gas-liquid flow. The researchers

showed the considerable impact of the turbulent energy of the liquid on the

interfacial region [153]. They obtained numerical predictions in agreement with

the experiments.

Hashmi [58] investigated thin-film flow modelling in the context of the

thermal management of bearing chambers in which oil fire and coking must be

prevented. The researcher aimed to effectively quantify the oil film dynamics

for various operating conditions and temperatures and performed experimental

work on co-current and counter-current stratified gas-liquid flow in a hori-

zontal channel in order to better understand the mechanisms of thick-film

flows. Hashmi et al. [59] developed an ‘enhanced VOF model’ with a refined

interface treatment and obtained promising results when applying their method

on stratified flow cases using the RANS k − ε model. Their methodology was

based on an alteration of the turbulent viscosity in the vicinity of the gas-liquid

interface. This was achieved by adding locally turbulence production in the

dissipation ε or specific dissipation rate ω transport equation. They successfully

tested their method against the experiments of Fabre et al. [35] on stratified

gas-liquid flow in co-current configurations.

Fulgosi et al. [43] carried out Direct Numerical Simulations (DNS) of a

countercurrent air-water flow in order to investigate the behaviour of the in-

terface and more specifically the turbulence in the interfacial area. Results

showed that the lighter phase can indeed see the interface like a deformable

solid wall in the limit of non-breaking waves in numerous tested flow conditions.

When fields were time-averaged, they observed that the turbulent fluctuating

76 Literature review: two-phase shear flows and ML applications in CFD

Figure 3.9 Mean streamwise velocity profile above the interface obtained by
Fulgosi et al. [43]

field was indeed damped in the interfacial area, which conducts to an increase

in the interfacial dissipation. Figure 3.9 shows the mean streamwise velocity

profiles obtained by the DNS of Fulgosi et al. [43] (namely FDI) compared

with experimental measurements (namely OCH) and another DNS study [65].

Results indicate that there is a clear similarity between wall turbulence and

interfacial turbulence as it can be compared to the law of the wall previously

described in figure 2.6. Fulgosi et al. [43] affirm that differences exist but

are very subtle. This confirms the assumption that the lighter phase sees the

heavier phase and must be taken into account in the methods developed for

the treatment of interfaces.

Marschall [89] proposed a segregated model for the simulation of co-current

two-phase liquid-liquid flows in a horizontal channel. The approach developed

by the researcher is a multi-scale two-fluid model allowing for the capture of

under-resolved flow structures and remain scale-consistent with DNS simula-

3.1 Existing work on two-phase shear-flows 77

tions performed with two-fluid methods. Very good agreement were obtained

with the analytical solution of the fluid velocity profile.

Godino et al. [48] reviewed the performances of the Eulerian two-fluid model

for the prediction of dispersed and segregated two-phase flows investigated by

researchers who conducted experiments to obtain validation of their numerical

results. The previously mentioned researchers Krepper et al. [79] reproduced

their experiments using different numerical methods to better model bubble

rising cases, including the Euler-Euler method with the RANS k−ω SST model

and concluded that their model was improvable due to errors caused by gas

flow instabilities. Prasser et al. [103] also used the two-fluid method along

with the k − ω SST model to reproduce their experiments on an air-water flow

around an obstacle and found good agreements except for an overestimation of

the phase volume fraction in the region located behind the obstacle. Porombka

and Höhne [101] reproduced Stäbler et al. [125] experiments on counter-current

two-phase gas-liquid flows with an improved free-surface drag model based on

local shear stress with an interfacial damping function in the k−ω model similar

to the Egorov’s approach and achieved satisfactory quantitative agreements.

Tekavcic et al. [130] also reproduced the experiments of Stäbler et al. using

URANS simulations with the k − ω SST turbulence model and accounted for

the interfacial turbulence damping by implementation of the method developed

by Federix et al. [41] based on the Egorov’s approach. The researchers demon-

strated that an asymmetric treatment of the damping approach with damping

applied only to the gas phase, significantly improves turbulent kinetic energy

predictions.

78 Literature review: two-phase shear flows and ML applications in CFD

The research presented in this dissertation aims to find an alternative

method to the Egorov correction for RANS models using a similar foundation

that is the addition of a source term to re-balance the budget of the transport

equation of the specific turbulence dissipation rate. The new approach should

also be case, parameter and mesh independent, unlike prior research.

3.2 Existing applications of machine learning

in CFD

With the increasing efficiency of flow modelling methods, it has become

more and more common to reach excellent accuracy using CFD simulations

in the past decade, provided that computational resources are not an issue.

However, the most realistic and precise results are usually obtained when the

smallest scales of the turbulence are resolved. It has previously seen that

solving those scales needs very high grid resolution and thus is computationally

too expensive. Therefore, alternative methods are employed to make up for

this deficit in resolution and machine learning has proven to be a useful tool to

aid CFD when it comes to increase computation speeds, enhance simulation

accuracy, or even improve simulation post-processing [78, 144, 50, 140, 121].

Artificial intelligence has known a growth of success for numerous of applica-

tions in science and technology. Neural networks (NN) have been the most used

machine learning method in the context of CFD such as feed forward neural

networks (FFNN), convolution neural networks (CNN) or physics informed

neural networks (PINN). Those neural networks have been particularly used in

CFD for multidimensional regression tools to predict the temporal evolution of

specific aero- or hydrodynamics properties from experimental data, or in order

to allow for the reconstruction of specific flow fields from CFD simulation results.

3.2 Existing applications of machine learning in CFD 79

More particularly, encouraging developments in machine learning techniques to

assist CFD for turbomachinery applications have been implemented recently

over the past few years. They aim to carry out more robust and faster design

analyses enabling improved efficiencies and cost reductions, as reviewed by

Hammond et al. [53].

In the context of this thesis, we are particularly interested in ML techniques

that could be used to improve existing averaged turbulence models, such as

RANS models. Literature has shown promising work on data-driven RANS

models to produce more accurate results [73, 154, 155]. Experimental and high-

fidelity data, such as DNS or LES data, can be employed to drive RANS models.

With the aim to train a ML model to inform a RANS model, high-fidelity CFD

data seems ideal as it can potentially provide any needed flow information in

any location of the domain, where experiments might struggle to gather data.

Therefore, using high-fidelity simulations instead of experiments to train a ML

model has pros and cons. On the one hand, experiments provide with the best

quality results, but are very expensive to carry out especially when it comes to

train a neural network that needs large datasets to be reliable. When it comes

to modelling two-phase flows with sharp interfaces, measurements are especially

hard to carry out in the interfacial area and in the context of the present

research, that is the region where we need the most information. As a matter of

fact, the quantities needed in the training of the ML models developed in this

thesis required the measurements of the fluctuation velocities in all directions

as well as their gradient and Laplacian, which would be very challenging to

carry out from an experimental point of view. On the other hand, high-fidelity

simulations are much cheaper than experiments and can provide data anywhere

in the flow and more specifically in the region of the interface in order to feed

80 Literature review: two-phase shear flows and ML applications in CFD

the ML model training with. Thus, high-fidelity simulations are a good choice

for the training of ML models in two-phase flow simulation as long as the

simulation data is of great quality. In order to obtain such data quality, one has

always to be cautious on the the number of computational cells in the studied

domain in order to capture the smallest scales of the turbulence. Moreover, the

high-fidelity simulations are compared against the reference experiments for

the validation of the numerical results.

3.2.1 ML applications in single-phase flows

Existing work has shown that machine learning models could even replace

CFD models [16] for the prediction of turbulence for instance. In fact, ML

models can be trained to reproduce some RANS turbulence models outputs

such as the prediction of turbulent source terms in transport equations. It was

seen by Tracey [135] that machine learning models could be used to learn the

standard Spalart-Allmaras source term for example. The researcher trained

his model on two single-phase flow configurations: a turbulent flat plate and

air around an airfoil. When looking at the friction coefficient, Tracey [135]

found very good agreement between the ML model and the Spalart-Allmaras

model as shown in figure 3.10. Here the ML model replaces the source term

in the boundary layer. When looking at the residuals, differences between the

ML model and the standard Spalart-Allmaras models are the greatest in the

near-wall region and tail of the airfoil as seen in figure 3.11, even though it

does not have an important impact on the skin friction coefficient. Despite

the ML model providing promising results, Tracey [135] affirmed that such

differences between prediction and truth could be explained by the fact that

the ML algorithm was trained on only converged flow solutions. Using the same

3.2 Existing applications of machine learning in CFD 81

approach with a ML model trained with high-fidelity data this time, Tracey et

al. [134] obtained even more accurate predictions.

Figure 3.10 Example of a comparison obtained replacing the source term in
the SA model within the boundary layer of the NACA 0012 airfoil at 8 degrees
using training data from the flat plate solutions [135]

Figure 3.11 Difference in the true Spalart-Allmaras source term and the machine
learning prediction in a global view (left) and a zoomed view on the tail (right)
[135]

82 Literature review: two-phase shear flows and ML applications in CFD

Similarly, in another example of a RANS data-driven machine learning

model, Singh et al. [118] used multiple sources of data for the ML training

such as DNS, LES and experiments. They carried out an inverse modelling

approach to infer the spatial distribution of model discrepancies and trained

the ML model to predict the discrepancy in the form of a correction term for

the RANS model equations. Here, ML was employed to improve the Wilcox’s

k − ω model for single-phase adverse pressure gradient flows such as flows

over a bump. The researchers focused on adding a correction function in the

k − ω equations applied to the production term. Their ML model was trained

to provide a correction term applied to correct the net balance of the source

terms and resulting in an improvement of the standard model. The correction

term was introduced in the ω transport equation only as the authors affirmed

that it is more ad-hoc than the k equation [118]. Results showed a great

improvement of the solution when looking at the friction coefficient for example,

presented in figure 3.12. The researchers demonstrated the portability of this

approach in other applications of a single-phase turbulent flow over airfoils [119].

Using high-fidelity data to train machine learning models to inform RANS

turbulence models has then become more popular as Ling et al. [85] employed

this approach to directly operate on the model eddy-viscosity. The novelty

of their research also resides in the use of a deep neural network to learn

the Reynolds stress anisotropy tensor. A neural network is more likely to

be qualified as ’deep’ when it is structured with numerous hidden layers and

perceptrons, and used with high volumes of training data. Ling et al. developed

an improved and advanced multi-layer perceptron (MLP) neural network and

obtained significant improvements compared to simple MLP neural networks

3.2 Existing applications of machine learning in CFD 83

Figure 3.12 Skin friction prediction for a case example of a flow over a bump.
The magenta lines represent predictions using an ensemble of machine-learned
models trained on different combinations of the inverse solutions. LES is
represented in blue and the standard Wilkox’s k − ω in green. [118]

to inform RANS models.

More recent research [26] employed ML to correct the Reynolds force vector

field and the divergence of the Reynolds stress tensor separately in the stan-

dard RANS k − ε model using a DNS training dataset of a square duct. An

attenuation of the error in the prediction of the mean velocity field was found

with a better efficiency when applying the correction to the stress tensor for

the representation of secondary flows.

ML has also proven to be useful in the optimisation of the existing standard

turbulence models. For example, Luo et al. [87] implemented a ML model

capable of modifying the closure coefficients of the RANS k − ε model for the

simulation of a flow over a bump. The ML model they used was trained with

DNS data. Results showed some improvement of the RANS simulation with in-

ferred parameters from the ML model. The mean absolute error of the velocity

84 Literature review: two-phase shear flows and ML applications in CFD

profile between RANS and DNS decreased by 22% with the implemented model.

3.2.2 ML applications in two-phase flows

While numerous cases have been investigated in single-phase flow appli-

cations over the past decade, research on the potential of the use of ML for

two-phase flow application remains rarer. Evidently, many ML methods devel-

oped in single-phase flow configurations have the potential to find relevancy in

two-phase flow configurations. In fact, it will be seen in this dissertation that

the method developed to improve the performance of the RANS k − ω model

is based on the ML prediction of correction terms for the turbulence trans-

port equations, similarly to the correction provided in previous research [119?].

ML have been massively employed and for a long time for the classification

of two-phase flow patterns in pipes [83, 115, 6] in order to identify a given flow

regime instead of basing the identification on visual observation [137]. More

recently, researchers [116, 75, 93] made use of machine learning to predict the

pressure drop in channel two-phase flows by including more physics in the

process.

3.2.3 Concluding remarks

From simple MLP neural networks to deep MLP neural networks, the com-

plexity of a machine learning model can vary a lot. And it is legitimate to ask:

how complex should the neural network used to train a machine learning model

be? Obviously the answer to this question depends on the ML application.

Vinuesa and Brunton [144] discussed the relevancy of the use of neural networks

3.2 Existing applications of machine learning in CFD 85

for CFD applications. They highlighted the potential of machine learning to

aid CFD in numerous applications while pointing out that classical methods

still remain efficient in many cases. Finding the appropriate structure of neural

network for a given application and generate the high-fidelity or experimental

data for the ML model training is highly time consuming, especially considering

that ML model usually need large amounts of data. It should be of great

importance to consider the portability of a method when developing a new ML

model and generating the training datasets.

Chapter 4

High-fidelity simulation of a

stratified flow in a channel

In this chapter, a preliminary study on the comparison between two available

multiphase flow solvers using large eddy simulation (LES) in OpenFOAM is

presented in section 4.1 for the prediction of a two-phase stratified flow in a

horizontal and rectangular channel. Accuracy towards experiments and compu-

tational speed are assessed. Then, further results using the chosen multiphase

method on channel stratified flow behaviours using quasi-direct numerical simu-

lation (qDNS) are presented in section 4.2. The aim of this section is to better

comprehend how the turbulence develops in these types of flow and identify the

most turbulent regions of the flow with high-fidelity simulation.

4.1 Preliminary study: comparison of the VOF

and Euler-Euler methods

The first objective of this study is to identify which multiphase flow

method between the VOF and the Euler-Euler methods is the most appropriate

88 High-fidelity simulation of a stratified flow in a channel

to predict stratified shear-driven flows encountered in aero-engine’s bearing

chambers. As seen previously, the flow of interest is located on the circular

wall of the bearing chamber as presented in a schematic on figure 1.3 in

chapter 1. For the purpose of this research, it was assumed that this oil-air

entrained flow could be assimilated to a two-phase co-current air-water flow

in a rectangular and horizontal closed channel. As previously mentioned in

chapter 3, the experiments of Fabre et al. [35] were used as a first reference

for the realisation of the preliminary "thick-film" high-fidelity two-phase flow

simulations. This primary investigation is based on the comparison between

the mean axial velocity, TKE and Reynolds stress profiles measured at the

centre of the channel in both phases obtained numerically in LES with the

VOF and Euler-Euler methods and obtained experimentally. The performance

of each multiphase solver is also assessed on their respective computational

times. In this section, the index l is used to describe the liquid phase and g

the gaseous phase.

4.1.1 Simulation setup and methodology

In this part, the geometry and mesh of the computational domain used

for the high-fidelity simulations are presented along with the fluid properties

of each phase, the simulated flow regime and the numerical time and spatial

discretisation schemes employed for the simulations in OpenFOAM.

Description of the computational domain

The experimental work of Fabre et al. [35] was briefly introduced in chapter

3, section 3.1.1. They investigated the air-water stratified flow with co-current

phases in a channel of 12 m in length, 0.1 m in height and 0.2 m in width.

The channel was entirely closed with walls at the top and bottom as well as

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 89

Figure 4.1 2D schematic of the simplified channel with boundary conditions
(side view)

on the sides. In this chapter, we are interested in numerically representing

the flow regime in which only small amplitude waves are generated. In Fabre

et al. experiments, this flow regime is called ’RUN 250’ and in this case, the

channel is filled with air and water in such a way that the liquid thickness

represents 38% of the total channel height. In the RUN 250 flow regime, the

gas bulk velocity is Ub,g = 4.2 m/s while the liquid bulk velocity is Ub,l = 0.45

m/s corresponding to a gaseous phase flowing 9.3 times faster than the liquid

phase. The gradient in phase velocity results in the generation of high shearing

forces across the interface, inducing wavy patterns.

The geometry adopted for the comparison of the VOF and Euler-Euler

methods is a periodic (recycled or cyclic) version of the experimental con-

figuration used by Fabre et al. High-fidelity simulations require high mesh

resolutions, and carrying out simulations on the full length of the original

channel would be unrealistic, as computationally too expensive. Therefore,

cyclic boundary conditions were set in the axial flow direction and a length of 1

m was initially chosen in order to carry out the preliminary simulations. Both

90 High-fidelity simulation of a stratified flow in a channel

Table 4.1 Case description based on Fabre et al. [35]

Characteristic Symbol Units Value
Gas bulk velocity Ub,g m·s−1 4.20
Liquid bulk velocity Ub,l m·s−1 0.45
Interface mean height hint m 0.038
Gas hydraulic diameter Dh,g m 0.095
Liquid hydraulic diameter Dh,l m 0.055
Gas Reynolds number ReDh,g – 2.7 · 104

Liquid Reynolds number ReDh,l – 2.5 · 104

Gas density ρg kg·m−3 1.00
Liquid density ρl kg·m−3 1.00 · 103

Gas kinematic viscosity µg kg·m−1.s−1 1.48 · 10−5

Liquid kinematic viscosity µl kg·m−1.s−1 1.00 · 10−6

Gas/Liquid surface tension σ N·m−1 7.00 · 10−2

phases are driven towards the streamwise direction using velocity sources added

to the velocity transport equations and applied to each phase. The option is

specified using the meanVelocityForce keyword within the fvOptions dictionary

in the OpenFOAM simulation directory. This feature enables the application

of a force to maintain a user-specified volume-averaged mean velocity, and

more specifically one bulk velocity for each phase in the context of this study.

The channel height H and width w were kept identical as the values used in

the experiments. Figure 4.1 shows a two-dimensional schematic of the cyclic

channel and highlights the boundary conditions of the domain and the initial

phase distribution field. Scales are not respected in the axial direction (x⃗),

however the domain aspect ratio x : y is normally of 10.

To characterise the flow in the liquid phase, a hydraulic Reynolds number

Rel,Dh
based on the hydraulic diameter Dh, was calculated as follows:

ReDh,l = Ub,l ·Dh,l

νl

(4.1)

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 91

For partially filled rectangular ducts, the hydraulic diameter writes Dh,l =

4wh/(w + 2h) where h is the approximate interface height. In the upper

part of the channel, one can consider that the gas is flowing in a fully filled

duct of height H − h and the equivalent hydraulic diameter writes Dh,g =

2w(H − h)/(w +H − h). The corresponding Reynolds number is:

ReDh,g = Ub,g ·Dh,g

νg

(4.2)

The characteristics of the case are presented in Table 4.1.

The length of the cyclic channel must be long enough in order to avoid

turbulent structures to overlap themselves in the axial direction. The side, top

and bottom boundary conditions of the channel are set as walls with a non-slip

condition. An analysis on the cyclic lengths of the channel is proposed later in

this chapter (section 4.2) in order to further simplify the geometry and save

computational resources. It will also be seen that the use of cyclic boundary

conditions in the z direction instead of walls allows for computational cost

reductions without any loss of accuracy.

The computational mesh was generated in order to meet the guidelines

for LES simulation i.e. between (∆x+ ≈ 50, y+ ≈ 1, ∆z+ ≈ 15) [112] and

(∆x+ ≈ 100, y+ ≈ 1, ∆z+ ≈ 20) [138], which are classically required in LES

to capture near wall turbulent structures [122]. y+ is calculated as the first

off-wall grid node such as y+ = y
√
ρτw/µ. The dimensionless ∆x+ and ∆z+

are the needed non-dimensional grid spacing respectively in the flow direction

(x⃗) and the spanwise direction (z⃗). Far from the wall, one can take ∆y+ = ∆z+.

A mesh refinement similar to the wall mesh refinement was also applied in the

92 High-fidelity simulation of a stratified flow in a channel

interfacial region using a fixed grid with a chosen dimensionless wall distance

from the mean interface level y+. This was set as follows: ȳ+
max ≈ 1 and

ȳ+
mean ≈ 0.5, with y+

mean the spatial mean y+ in the domain at a given time, ȳ+

the time averaged of y+, and y+
max the spatial maximum of y+. The resulting

maximum grid spacing respectively in the streamwise and cross-stream direc-

tions was ∆x = 3 · 10−3 m and ∆z = 1 · 10−3 m in order to respect the above

recommendations. The mesh contains respectively in the x, y and z directions

330, 96 and 160 cells for a total of 5 068 800 cells.

4.1.2 Numerical methods

Multiphase solvers

The two-fluid Euler-Euler method was employed with the OpenFOAM solver

multiphaseEulerFoam and the VOF method was selected with the interFoam

solver. In both approaches, the interface compression method was employed

with a compression coefficient Cα = 1 in order to render more sharpness at the

interface.

Simulation model

For both the VOF and the Euler-Euler methods, LES were performed with

the Smagorinsky subgrid model [120] available in OpenFOAM. The turbulence

viscosity is given by:

νt = Ck∆k1/2 (4.3)

where ∆ is the grid size defining the subgrid length scale, and the turbulent

kinetic energy k is obtained by solving the following quadratic equation for k:

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 93

Ce

∆ k2 + 2
3tr(S̄)k + 2Ck∆S̄ : S̄ = 0 (4.4)

where Ce = 1.048 and Ck = 0.094 are default model coefficients and S is the

mean rate of strain as defined in 2.30: S̄ = 1
2(∇u + ∇uT).

Discretisation schemes and algorithms

For the time discretisation scheme, the second order Crank Nicolson

scheme [25] was selected with a coefficient of 0.9. The second order TVD

"van Leer" scheme [142] was selected to solve the gradient and divergence

terms, the Gauss limited linear scheme for the Laplacian term and components

of gradient normal to cell faces. The pressure-velocity coupling is managed

by the PIMPLE algorithm, a combination of the SIMPLE [39] and PISO

[72] algorithms as described in chapter 2. The PIMPLE algorithm reaches

convergence with sub-iterations and is relevant for the simulation of tran-

sient incompressible flows. For both methods, pressure was solved using the

Preconditioned Conjugate Gradient (PCG) method, while the phase volume

fraction, velocity and kinetic energy were solved using the Gauss-Seidel method.

The time step was adaptive and restrained by a chosen Courant number of

maximum value 0.5 for all the simulations.

Velocity probing

In order to compare the numerical results to the experiments, the velocity

field was probed along vertical lines in the centre of the width of the channel.

The velocity field was measured in both phases allowing for the calculation of

the instantaneous velocity and fluctuation velocity, mean velocities, turbulent

kinetic energy (TKE), and Reynolds stresses and TKE spectra.

94 High-fidelity simulation of a stratified flow in a channel

100 101 102

Frequency (Hz)

10−5

10−4

10−3

10−2

T
K

E
(m

2
/s

2
)

LES VOF (air)

-5/3 slope

(a) Using the VOF method

100 101 102

Frequency (Hz)

10−5

10−4

10−3

10−2

T
K

E
(m

2
/s

2
)

LES Euler-Euler (air)

-5/3 slope

(b) Using the Euler-Euler method

Figure 4.2 Turbulent kinetic energy spectrum measured in the gaseous phase

Turbulence development and field averaging

The TKE spectra are used to monitor how the energy cascade behaves and

to check whether large and small turbulent structures are observable in the

LES simulations. The TKE spectra for the VOF and Euler-Euler methods were

calculated by measuring the velocity fluctuations in the centre of the gaseous

phase. The TKE spectra of the two multiphase methods employed are shown

in figure 4.2.

The large turbulent structures are visible in the left part of the spectrum

in the low frequencies. The Kolmogorov cascade is well represented here as

the decrease in the turbulent kinetic energy is fitting the typical Kolmogorov

-5/3 slope of equation y = Cx−5/3 (with C ∈ R), characteristic of the inertial

subrange turbulent scales. This slope suggests that energy is transmitted from

the large structure to the small ones. Moreover, figure 4.2 tells us that the

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 95

Euler-Euler method tends to predict larger values of TKE than the VOF method.

Once a developed flow had been obtained in each phase, field averaging oper-

ations were applied to the velocity field in order to obtain the mean velocity, the

shear-stress tensor and the TKE over a period of 10 s. One liquid flow-through

is approximately 2.2 s. It corresponds to the time needed by the liquid phase

to go through the full length of the cyclic domain. It takes only 0.24 s for the

gaseous phase to make one flow-through. A field averaging over 10 s allowed for

a convergence of the mean axial velocity, shear stress and TKE profiles in the

two phases, measured in the centre of the domain. The computational time to

simulate one through-flow of the gaseous phase once the turbulence established

in the entire domain was about 5 hours with the Euler-Euler method and less

than 1 hour with the VOF method. The simulations were performed in parallel

on 200 cores (Intel Skylake 6138 processors, 2.0 GHz). Thus, 25 344 cells

per processor were allocated for optimal computational speeds after a scaling

analysis was performed.

The function object fieldAverage was used to perform the field averaging

operations. Two types of averages are calculated with this feature: the arith-

metic mean of the velocity field and the prime-squared mean. Those operations

are applied to a discrete sample of values and thus, the average velocity is

obtained such as follows:

ū = 1
T

t0+T∑
k=t0

uk (4.5)

96 High-fidelity simulation of a stratified flow in a channel

where t0 corresponds to the time, the averaging starts and T is the period of

time over which one wants to average the velocity field ui.

The prime-squared mean velocity writes:

ū′2 = 1
T

t0+T∑
t0

(uk − ū)2 (4.6)

The averages are calculated "on the fly" i.e. as the simulation progresses.

The prime-square mean velocity corresponds to the Reynolds stress tensor

Rij. Therefore the turbulent kinetic energy can directly be obtained as

k = 1
2tr(Rij) = 1

2tr(ū′2) = 1
2tr(u′

iu
′
i).

4.1.3 Results and comparison between the VOF and

Euler-Euler methods

Profiles comparison

The vertical profiles of the mean axial velocity obtained with both multi-

phase methods are shown in figure 4.3 and compared with a few instantaneous

profiles. One can observe that the VOF profiles are more symmetrical in the

gaseous phase than the Euler-Euler ones, which slightly tend to be shifted

upward. In the liquid phase, the Euler-Euler method seems to predict slightly

smaller values of the axial velocity in the bottom wall region.

The mean axial velocity profiles obtained with the VOF and the Euler-Euler

methods are compared together with the experiments of Fabre et al. [35]

in figure 4.4. Results were plotted on a logarithmic scale to better see the

comparison in the liquid phase in which the bulk velocity is nearly ten times

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 97

0.00 0.25 0.50 0.75 1.00

Ux/Ub (m/s)

0.0

0.2

0.4

0.6

0.8

1.0
y
/H

Averaged field

Intantaneous field

(a) Using the VOF method

0.00 0.25 0.50 0.75 1.00

Ux/Ub (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Averaged field

Intantaneous field

(b) Using the Euler-Euler method

Figure 4.3 Mean and instantaneous velocity profiles obtained with the two
multiphase methods

smaller than the gaseous bulk velocity. According to the plots, both multiphase

methods predicted results in good agreement with the experiments. The VOF

method performed significantly better than the Euler-Euler as one observed

that VOF is fitting almost perfectly the experiments. In the gaseous phase,

the VOF slightly underestimated the velocity in the interfacial region and

slightly under-predicted the velocity in the liquid phase near bottom wall. In

contrast, the Euler-Euler method considerably underestimated the velocity in

the gaseous phase near the interface, and overestimated it in the upper part of

the channel, presenting an asymmetrical profile as mentioned above. In the

liquid phase, the Euler-Euler method overestimated the velocity in comparison

with the VOF and the experiments.

98 High-fidelity simulation of a stratified flow in a channel

10−1 100

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

VOF

Euler-Euler

Experiments

Figure 4.4 Mean axial velocity profiles

When comparing the predicted Reynolds shear stress Ruv with the experi-

ments, it is observed that overall, the VOF method is performing better than

the Euler-Euler method. It is seen in figure 4.5 that the Euler-Euler method

underestimated Ruv in the near wall region of the liquid phase and slightly in

the entire gaseous phase. Besides, the Euler-Euler prediction overestimated

the shear stress in the liquid interfacial region. The poor performance of the

Euler-Euler method in the interfacial area was expected from its inability to

represented stratified flows with a sharp interface as mentioned in chapter 2.

The VOF method overestimated the shear stress in the lower part of gaseous

phase but overall fitted the experiments very well.

The TKE profiles were plotted in figure 4.6 using a logarithmic scale in

order to better visualise the results in the liquid. It is obvious from the graph

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 99

10−5 10−4 10−3 10−2

Ruv (m2/s2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
y
/H

VOF

Euler-Euler

Experiments

(a) Reynolds stress in the liquid

−0.10 −0.05 0.00 0.05 0.10

Ruv (m2/s2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
/H

VOF

Euler-Euler

Experiments

(b) Reynolds stress in the gas

Figure 4.5 Axial velocity profiles

that the VOF method predicted much better TKE values than the Euler-Euler

method when compared to the experiments. The VOF method overestimated

the TKE in the lower part of the gaseous phase and lower part of the liquid

phase, but overall, results were in good agreement with the experiments. On the

contrary, the Euler-Euler method performed significantly much less, especially

in the gaseous phase where the TKE was largely overestimated, as anticipated

by the TKE spectra plots in figure 4.2.

Interfacial vortex identification

In order to observe the behaviour and shapes of the turbulent flow structures

and especially in the interface region, the vorticity magnitude was calculated

in each phase to highlight the presence of large turbulent structures. Vorticity

100 High-fidelity simulation of a stratified flow in a channel

10−4 10−3 10−2 10−1

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

VOF

Euler-Euler

Experiments

Figure 4.6 Turbulent kinetic energy profiles

magnitude contours obtained with the VOF and Euler-Euler methods are shown

in figure 4.7 and 4.8. In figure 4.7, the contour plane (x,z) was placed just

above the interface at y = 0.040 m in order to observe the interfacial turbulence

in the air phase and in figure 4.8 the plane was placed a little further away up

from the interface level at y = 0.045 m.

Figure 4.7 shows no clear difference between the two multiphase methods

on the horizontal plane just above the interface in the gaseous phase. The

VOF method appeared to present periodic wave-like turbulent structures in

the flow stream direction. No remarkable differences in the vorticity contours

between the two methods are visible in figure 4.8 when looking further away

from the interface. The coherent structures expanding in the flow direction are

assimilated as vortices and can be better identified with a vortex identification

4.1 Preliminary study: comparison of the VOF and Euler-Euler methods 101

Figure 4.7 Contours (x, z) of vorticity magnitude with the VOF (top) and Euler-
Euler method (bottom) on a plane located above the interface at y = 0.040 m

Figure 4.8 Contours (x, z) of vorticity magnitude with the VOF (top) and Euler-
Euler method (bottom) on a plane located above the interface at y = 0.045 m

method. The Q-criterion method [67] was employed for that purpose. It can

be written as follows: Q = 0.5 · (||Ω|| − ||S||). Those regions corresponds to

a positive value of Q. Filtering the regions in which Q >> 0 is equivalent

to selecting the regions where the vorticity is much greater than the rate of

strain and where we would expect to see the largest scales of the turbulence.

Three-dimensional isosurfaces of Q-criterion are plotted in figure 4.9.

Vortices and large eddies are identified in the gaseous phase near the wall

and the interface. As can be seen the two approaches do not show any major

differences. We notice that there are turbulent structures detaching from the

interface that enter the bulk air flow and decay in both multiphase methods.

102 High-fidelity simulation of a stratified flow in a channel

Figure 4.9 3D isosurfaces of Q for Q > 4 500 with contours of vorticity
magnitude with the VOF method (top) and with the Euler-Euler model (bottom)

Conclusions on the results

Large eddy simulations of an air-water stratified flow in a "thick film"

configuration in a horizontal, closed, cyclic, and rectangular channel were

performed. The two main multiphase methods available in OpenFOAM, namely

the Euler-Euler method and the volume of fluid method, were employed for

the LES simulations. The numerical results were compared to the experiments

of Fabre et al. [35] conducted on stratified flows in a rectangular channel.

Overall, numerical results showed good agreements with the experiments when

comparing the mean axial velocity and shear stress profiles. The main difference

between the two multiphase methods was observed in the TKE profiles in which

the Euler-Euler approach performed poorly in the gaseous phase by significantly

4.2 Further analyses using the VOF method 103

overestimating the values in the centre of the phase. This is an interesting find

given the Euler-Euler approach solves a set of Navier-Stokes equations for each

phase and is hence at least twice as expensive. It was indeed found that the

VOF method was actually five times less expensive than the Euler-Euler method

for the fully developed flow. There are however more significant variations

in root mean square turbulent kinetic energy and cross-Reynolds stress. In

high-fidelity eddy-resolving approaches such quantities are well known to be

highly sensitive to CFD code numerics and model implementations. In fact,

such variations can be significantly greater than those relating to choice of

model itself, see for example Eastwood et al. [31]. From a practical engineering

perspective the small variation observed in the mean velocity profiles between

the two models of quite different complexity is a very useful find. TKE spectra

were also plotted in order to examine the presence of turbulent-scales following

the Kolmogorov cascade. Isosurfaces of Q-criterion highlighted the presence of

large turbulent structures near walls and near the interface. In conclusion, the

VOF method was retained to perform all the other simulations presented in

this dissertation.

4.2 Further analyses using the VOF method

In this second part, it was aimed to observe the turbulent eddies generated

in the flow. More specifically, the vorticity magnitude in the interfacial region

of the stratified flow was studied in order to identify vortices and large coherent

structures generated by the shearing forces. The Q-criterion method was

also employed to help this flow identification and will be further described

in this section. In this part, quasi-DNS simulations were performed with the

VOF method and the same VOF solver, discretisation schemes, algorithms

104 High-fidelity simulation of a stratified flow in a channel

and field averaging techniques as described in section 4.1.2 were employed. A

methodology was proposed to simplify the previously presented computational

domain.

4.2.1 Domain geometry

In order to further analyse the two-phase flow based on the experiments of

Fabre et al. [35], a simplified geometry was developed using the same boundary

conditions (BC) as previously (c.f. figure 4.1) and the same flow conditions

as also described previously (c.f. table 4.1), only this time the length of the

channel was reduced and recycled boundary conditions were set in place of

the side walls, as well as a reduction of the channel. This simplification was

carried out in order to increase the mesh density while saving computational

resources. The cyclic length L in the flow direction (x⃗) was reduced to 0.1 m

and the cyclic width w in the span-wise direction (z⃗) was set to 0.025 m. An

autocorrelation analysis of the fluctuation velocity in the two cyclic directions

is presented in section 4.2.4 in order to check that such simplifications do not

trigger any unphysical results. Moreover, as the channel is now also cyclic in

the width direction, the hydraulic diameter is evaluated differently. One can

use Dh,l = 4h in the liquid phase and Dh,g = 2(H − h) in the gaseous phase. A

3D schematic of the new domain geometry is shown in figure 4.10.

4.2.2 Quasi-DNS and small turbulent scales

In the preliminary study, results using LES with a Smagorinsky subgrid

model on a stratified flow in a horizontal channel were presented. Better results

were obtained using numerical LES, also named quasi-DNS (qDNS) in this

research. It means that the simulations were carried out without any subgrid

4.2 Further analyses using the VOF method 105

Figure 4.10 Schematic of the simplified domain’s geometry and boundary
conditions

model and use numerical dissipation in its place. No wall function were used to

model the flow in near-wall regions. The grid cell size ∆y must be sufficiently

small to capture the important small scales of the turbulence, as no subgrid

model is used to model them. To assess the mesh resolution, a comparison to

the Kolmogorov turbulent scale η can be performed. One Kolmogorov scale

for each phase is calculated using ηi = (ν3
i /εi)1/4 as described in chapter 2,

section 2.3.4, where εi is the rate of energy dissipation in each phase and can

be estimated as follows: εi ∼ U3
b,i/Li where Ub,i and Li are the bulk velocity

of each phase and the characteristic scale of the flow respectively. Hence, the

following estimation of the phase Kolmogorov scale can be made:

ηi =
(
ν3

i Li

U3
b,i

)1/4

(4.7)

106 High-fidelity simulation of a stratified flow in a channel

For the studied stratified flow, the characteristic scale of each phase is the

phase height in the channel, as channel periodicity in the width direction is

equivalent to an infinitely wide channel. The role of the smallest turbulent

scales is to convert the TKE into internal energy and when slightly under-

resolved mesh is used, the role of those smallest scales can still be completed by

the remaining resolved scales. For under-resolved mesh (∆y > 20η), numerical

instabilities are more likely to happen and lead to nonphysical results. Typically,

qDNS needs at least a resolution two to five times coarser than the Kolmogorov

scale [133]. In this work, interfacial regions were refined similarly to the wall

refinements and on both sides of the interface.

The calculated Kolmogorov length scale for the gaseous phase was ηg =

1.2 · 10−4 m and for the liquid phase ηl = 2.4 · 10−5 m. Hence the qDNS

guidelines recommend a refinement corresponding to the interval [2ηg, 5ηg] in

the gas and [2ηl, 5ηl] in the liquid to capture the physics in the wall regions.

The interface region must also be refined to capture wall-like physics. In

order to keep consistency with physics, the grid size in the interfacial region

should ideally be smaller than 5ηi on both sides of the interface. To avoid any

nonphysical results, the interfacial grid size should remain smaller than 20ηi

[133].

4.2.3 Mesh resolution

Six levels of refinement "s0", "s1", "s2", "s3", "s4", and "s5" were tested to

study the mesh convergence on the mean axial velocity, TKE and Reynolds

stress. "s0" corresponds to the maximum level of mesh refinement and "s5" the

coarsest mesh. The computational meshes were generated in order to meet

the qDNS requirements as previously described. The mesh characteristics for

4.2 Further analyses using the VOF method 107

the six meshes are presented in table 4.2. The mesh density of each case is

given by the table, calculated on a computational domain volume of 250 cm3.

The table also provides the average dimensionless wall distances ȳ+ and a

comparison of the first off-wall and -interface grid size vertically (∆y) with the

Kolmogorov length scale. The directions x⃗ and z⃗ were uniformly discretised as

they correspond to the cyclic directions. Thus, the grid size in the both cyclic

directions is obtained as follows: ∆x = L/Nx in the flow-stream direction and

∆z = w/Nz in the span-wise direction, where Nx and Nz correspond to the

number of cells in the x and z direction respectively.

The three cases with the most refined meshes s0, s1, and s2 all meet the

guidelines for qDNS simulations when comparing wall and interface grid sizes

to the Kolmogorov microscale i.e. they were constructed with refinements

allowing for wall and interface grid sizes ∆y belonging to [2ηg, 5ηg] in the gas

and to [2ηl, 5ηl] in the liquid. The three other cases with the coarsest meshes

s3, s4, and s5 also meet the guidelines for the interface and wall refinements

in gaseous phase and for the liquid wall refinements, however, they are under-

refined in the liquid interfacial region i.e. ∆yl > 5ηl from the refinement level s3.

4.2.4 Results

Convergence study

In terms of computational times, every simulation costed on average 13.8

core-hours by distributing on average 20000 cells per processor. In order to

assess the quality of the qDNS results for the six levels of mesh refinement, the

root mean square errors the mean axial velocity, TKE, and Reynolds stress

108 High-fidelity simulation of a stratified flow in a channel

Table 4.2 Characteristics of the six meshes

Feature s5 s4 s3 s2 s1 s0
Nb. cells mesh 8k 18k 30k 114k 250k 1011k
Nb. cells x 16 22 26 38 50 80
Nb. cells y 64 82 96 158 200 316
Nb. cells z 8 10 12 19 25 40
Nb. cells/cm3 33 72 120 456 1000 4045
ȳ+ 1.9 1.4 1.2 0.81 0.67 0.41
Wall ∆yl 2.2ηl 1.8ηl 1.5ηl 0.8ηl 0.6ηl 0.4ηl

Wall ∆yg 1.8ηg 1.2ηg 1.1ηg 0.8ηg 0.6ηg 0.4ηg

Interface ∆yl 17ηl 14ηl 9.5ηl 5.0ηl 4.7ηl 3.1ηl

Interface ∆yg 3.2ηg 2.5ηg 2.3ηg 1.4ηg 1.1ηg 0.7ηg

between the interpolated experimental measurements and the profiles obtained

in qDNS were calculated. Results are shown in figure 4.11 and give a rough

idea of the trend within the numerical simulations. One can observe that the

most refined meshes are closer to the experiments, although the level s1 seemed

to produce results closer to the experiments for the shear stress.

One can better visualise the mesh convergence by looking at the mean axial

velocity, TKE and shear stress profiles plotted in figure 4.12. The Reynolds

stress profiles seem indeed to converge towards a certain profile that was pre-

dicted in the s0, s1 and s2 refinement levels. Results were plotted in the gaseous

phase only in order to better visualise the convergence of the profiles. Re-

sults plotted in the gaseous were clearly in good agreement with the experiments.

In order to further study the thick film configuration, the results obtained

with the refinement level s1 were investigated. According to table 4.2, mesh s1

meets the qDNS guidelines. Figure 4.14 shows a side view and cross-section

view of the refinement level s1. The other two meshes use the same type of

4.2 Further analyses using the VOF method 109

108 109

Mesh density (ncells/m
3)

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34
R

M
S

E
Ū
x
(m

/s
)

s0

s1

s2

s3

s4

s5

108 109

Mesh density (ncells/m
3)

0.040

0.045

0.050

0.055

0.060

0.065

R
M

S
E
k

(m
2
/s

2
)

s0

s1

s2

s3

s4

s5

108 109

Mesh density (ncells/m
3)

0.008

0.009

0.010

0.011

R
M

S
E
R
u
v

(m
2
/s

2
) s0

s1

s2

s3

s4

s5

Figure 4.11 Root mean square error of the mean axial velocity (top left),
turbulent kinetic energy (top right), and Reynolds stress (bottom) between
Fabre et al. experiments [35] and the VOF simulations, against the mesh
density

grading for the interface and wall regions. Moreover, its predictions were very

close to s0 refinement level’s predictions. The computational cost of the case s1

is reasonable, being nearly five times lower than the s0 case at 0.69 core-seconds.

For instance, it would take 7.6 hours on 10 cores for the case s1 to simulate ten

physical seconds, while s0 would need 39.4 hours to simulate the same amount

of physical time.

110 High-fidelity simulation of a stratified flow in a channel

3.0 3.5 4.0 4.5 5.0

Ux (m/s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
/H

s5

s4

s3

s2

s1

s0

Exp.

0.0 0.1 0.2 0.3

k (m2/s2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
/H

s5

s4

s3

s2

s1

s0

Exp.

−0.04 −0.02 0.00 0.02 0.04

Ruv (m2/s2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
/H

s5

s4

s3

s2

s1

s0

Exp.

Figure 4.12 Mesh convergence analysis for the mean axial velocity (top left),
turbulent kinetic energy (top right), and Reynolds stress (bottom)

4.2 Further analyses using the VOF method 111

10−1 100

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

qDNS

LES

Exp.

10−4 10−3 10−2 10−1

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

qDNS

LES

Exp.

10−5 10−4 10−3

Ruv (m2/s2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

y
/H

qDNS

LES

Exp.

−0.1 0.0 0.1

Ruv (m2/s2)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y
/H

qDNS

LES

Exp.

Figure 4.13 Mean axial velocity (top left), TKE (top right), shear stress in the
liquid (bottom left) and in the gas (bottom right)

A comparison between the qDNS predictions using the refinement level s1

and the LES predictions with the VOF method presented in the preliminary

study is shown in figure 4.13. Results show clearly that the qDNS simulation

112 High-fidelity simulation of a stratified flow in a channel

(a) Side view

(b) Cross-section view

Figure 4.14 Mesh representation corresponding to the refinement level s1

provided excellent predictions of the mean axial velocity, TKE, and shear stress

profiles. Overall, the qDNS simulation fitted the experiments better than the

LES simulation, especially in the wall and interfacial regions. One can note,

however, that the liquid velocity was slightly overestimated by the qDNS in the

upper part of the film. In their experiments Fabre et al. [35] used the well-tried

4.2 Further analyses using the VOF method 113

method to determine the stress profiles i.e. they deducted it from the difference

between the measured intensities corresponding to a beam plane angle of +45,

–45 degrees. They also smoothed the data to avoid scattering, which contributed

to a decrease in accuracy. Despite this methodology, the predicted Reynolds

stress profiles were found to agree very well with the experiments.

Autocorrelation and integral length scales

The computational domain was made cyclic for computational cost reduction.

To examine the extent of the cyclic dimensions an autocorrelation study of the

flow was performed. The autocorrelation function can be used to determine the

minimum cyclic length of a computational domain that is needed to avoid any

nonphysical results when it comes to represent the largest turbulent structures

of the flow. If the cyclic length is too small then large turbulent structures

might overlap and lead to unphysical results. It is safe to affirm that the cyclic

length is sufficiently long if the autocorrelation function of the fluctuation

velocity drops to zero halfway or very small [42]. The autocorrelation of a

quantity is a function of the time lag ∆t and space lag ∆x where xi = x in the

flow direction and xi = z in the cross-flow direction. The autocorrelation of

the fluctuation velocity is calculated as follows:

Rxixi
(∆xi,∆t) = u′

x(x, t)u′
x(x+ ∆x, t+ ∆t)√

u′2
x (x, t)

√
u′2

x (x+ ∆x, t+ ∆t)
(4.8)

Rxixi
is bounded by -1 and 1. A value of 1 indicates that the flow is perfectly

correlated and a value of 0 indicates no correlation of the flow. Figure 4.15

shows the spatial autocorrelation of the axial fluctuation velocity which is

the quantity of interest, Rxx(∆x, 0), averaged over a period of 10 seconds. It

114 High-fidelity simulation of a stratified flow in a channel

0.00 0.05 0.10

x

0.0

0.5

1.0

R
u
′ xu
′ x(

∆
x
,0

)

0.00 0.05 0.10

x

0.0

0.5

1.0

R
u
′ yu
′ y(

∆
x
,0

)

0.00 0.05 0.10

x

0.0

0.5

1.0

R
u
′ zu
′ z(

∆
x
,0

)

0.0875 0.1000 0.1125

z

0.0

0.5

1.0

R
u
′ xu
′ x(

∆
z,

0)

0.0875 0.1000 0.1125

z

0.0

0.5

1.0

R
u
′ yu
′ y(

∆
z,

0)

0.0875 0.1000 0.1125

z

0.0

0.5

1.0

R
u
′ zu
′ z(

∆
z,

0)

Figure 4.15 Spatial autocorrelations of the x, y and z-components of the
fluctuation velocity measured in the centre of the gaseous phase in the flow
direction (top) and in cross-flow direction (bottom)

was evaluated at the height y = 0.069 m in the centre of the gaseous phase,

where the largest turbulent structures are generated. One can deduct from

the spatial autocorrelation plots that the cyclic length is sufficient in the flow

direction as Rxx drops to 0 before the half of the length. The autocorrelation

in the spanwise direction also reaches very small values halfway through the

width of the channel and indicates a sufficient decorrelation of the flow in the

cross-stream direction.

Figure 4.16 shows the contours of autocorrelation of the axial fluctuation

velocity over space and time in the gaseous phase. The map was obtained

4.2 Further analyses using the VOF method 115

Figure 4.16 Autocorrelation contour map Rxx(∆x,∆t) of the axial fluctuation
velocity in the gaseous phase measured in the streamwise direction for 50∆t =
0.05 s.

by probing two lines horizontally in the (x, z) plane the centre of the phase

(y = 0.069 m) over time. We observe a contour line of strong autocorrelation

of the flow moving at the velocity x/∆t where ∆t = 0.005 s. The full time

interval over which the autocorrelation was plotted corresponds to one flow

through over time of the cyclic length. The flow was partially averaged over

each ∆t letting us see variations of the autocorrelation with time and space.

Turbulence analysis

As already mentioned in the previous section, the refinement level s1 was

used for the rest of the analysis, corresponding to a mesh density of 1000

cells/cm3 (c.f. table 4.2). In comparison, the LES results presented in the

preliminary study were performed on a mesh density of 253 cells/cm3, which

is four times less dense than s1. The LES mesh lies between the s2 and s3

refinement levels. Therefore, one expects to resolve much more turbulent scales

in qDNS using the mesh s1 than in the former LES study. The TKE spectra

116 High-fidelity simulation of a stratified flow in a channel

measured in the centre of the gaseous phase in qDNS using the mesh s1 and in

LES using the VOF method are compared together in figure 4.17.

Figure 4.17 Energy spectrum measured in the gaseous phase in qDNS compared
with the LES measurements

According to the TKE spectra, both the LES and the qDNS simulations

solved similar levels of turbulent energy in the lower frequency domain, cor-

responding to the largest turbulent structures. When moving to the higher

frequency range in the inertial subrange of turbulent scales, the qDNS TKE

spectrum also follows the Kolmogorov slope. Furthermore, one can observe

that the qDNS solved higher frequency turbulent scales, which was expected

as qDNS was performed with a better resolved mesh and without any subgrid

model. It is clear that qDNS solved high energy turbulent structures until

nearly 2 · 103 Hz, while LES could only solve lower energy structures and at

lower maximum frequencies (≈ 7 · 102 Hz). The high energetic small eddies

resolved in qDNS made a difference in the accuracy of the flow prediction, as

4.2 Further analyses using the VOF method 117

Figure 4.18 Isosurfaces of Q-criterion and contours of vorticity magnitude on a
3D view of the cyclic channel using the refinement level s1. The Q-criterion
threshold is 100 times higher in the gaseous phase than the liquid phase

previously shown in the profile plots in figure 4.13. However, those differences

could also be explained by differences in the mesh resolution between the two

simulation methods, which impacts directly the time step of the simulation

through the Courant number.

The strongest discontinuities in the velocity and energy fields were found

in the interfacial regions, where the biggest differences with the experiments

were also found. This section focuses on identification of the type of turbulent

structures that are observed in this region of the channel. Again, in order to

highlight the regions where the flow is dominated by the vorticity Ω rather

than by the rate of strain S, the Q-criterion method was employed. Three-

dimensional isosurfaces of Q-criterion are shown in figure 4.18 with contours of

instantaneous vorticity magnitude.

118 High-fidelity simulation of a stratified flow in a channel

Large coherent structures expanding from the interface and walls are ob-

served in the flow direction in both phases. Thus the lowest turbulence intensi-

ties are located in regions where no isosurface is represented i.e. in the centre of

each phase. The turbulence cascade of Kolmogorov is well described with the

creation of large turbulent structures with high energy values i.e. high vorticity

magnitudes are detected near the walls and above the interface, generating

eddies that detach and flow towards the centre of the phase and dissipate.

This process was already visible in the TKE profiles in figures 4.12 and 4.13

where high peaks of turbulent energy were visible near the walls and above the

interface and a decreasing in energy by a factor of at least 10 compared to the

top wall and interface was observed in the centre of the gaseous phase as well

as a decrease in energy in the upper part of the liquid phase far from the wall.

Figure 4.19 shows the distribution of the instantaneous vorticity magnitude

along the channel and enhances the view of the energy dissipation in the centre

of the gaseous phase and in the upper part of the liquid phase. It also shows

the liquid volume fraction at the interface.

In order to observe the flow in the cross-stream direction, maps of instan-

taneous vorticity with its velocity vector fields are given in figure 4.20. A

logarithmic scale was used in order to better see the variation of vorticity mag-

nitude in both phases as the vorticity in the liquid phase is up to a thousand

times lower than the vorticity in the gaseous phase. The mesh was duplicated

four times in the direction of the cyclic width Lz to enhance the visualisation

of the vortices. It is seen that large coherent structures are formed along the

width and the sharp discontinuity between the two phases is well exposed.

4.2 Further analyses using the VOF method 119

Figure 4.19 Contours of vorticity magnitude and liquid phase fraction on a 3D
view of the cyclic channel with the refinement level s1

Conclusions on the qDNS results using the VOF method

Quasi-DNS of turbulence in a shear-driven co-current flow in a rectangular

horizontal cyclic channel in a thick film configuration was investigated. The

flow presented high discontinuities in all studied quantities in the interfacial

region. The qDNS methodology presented in this work was later used to inform

the interfacial turbulence in the standard Wilcox’s RANS turbulence model in

order to improve the modelling of wavy films in aero-engine bearing chambers

in the context of industry. Previous work showed some promising results using

OpenFOAM with the VOF method for this type of flow using LES with a

Smagorinsky subgrid model (Bertolotti et al. [11][12] and section 4.1), thus the

same multiphase method was employed with qDNS and mesh refinement with

interface sharpening, to represent the averaged velocity, turbulent kinetic energy

and shear stress profiles. Results were compared with existing experiments.

The averaged velocity profiles obtained numerically showed very good results in

120 High-fidelity simulation of a stratified flow in a channel

Figure 4.20 Contours of vorticity magnitude on a cross-flow plane (y, z) dupli-
cated 4 times for a total width of 0.1 m (left) and contours of vorticity magnitude
with velocity vector field on a single cyclic domain in the cross-stream direction
with the refinement level s1

agreement with the experiments. Only very small differences were found in the

interfacial region in the gaseous phase where the turbulence was found to be the

highest. The turbulent kinetic energy was very well represented too especially

in the gaseous phase and the shear stress was also well represented particularly

in the interfacial region. A vortex analysis was carried out using Q-criterion and

vorticity magnitude and results showed a dissipation of energy from the large

turbulent scales localised near the walls and above the interface towards the

centre of each phase, supporting the turbulent kinetic energy profiles. Quasi-

DNS has given very promising results for this type of shear-driven flow and

for reasonable computational times. The feasibility of qDNS simulation for

4.2 Further analyses using the VOF method 121

stratified shear-driven flows was confirmed and the same methodology was later

employed to create the training datasets for the machine learning models in

the implementation of new improved RANS k − ω turbulence models. The

qDNS seemed to predict less turbulence dissipation than the LES in the wall

and interfacial regions, and this was reflected by the qDNS results being closer

to the experiments than the LES in the predictions of the mean axial velocity,

TKE and cross-stress.

Chapter 5

Proof of concept:

implementation of a data-driven

turbulence model

In this chapter, the thick-film stratified flow based on the experiments of Fabre et

al. [35] investigated in the previous chapter is considered for the implementation

of a proof of concept to inform the standard Wilcox’s RANS k − ω turbulence

model with high-fidelity simulation data. The aim of this concept is to show that

one can produce an appropriate source term to add to the specific turbulence

dissipation rate equation ω in order to correct the prediction of the turbulence,

especially in the interfacial region where levels of turbulence are overestimated by

the model. In the first place, the methodology used to implement the correction

source term for the ω equation is presented in section 5.1. Secondly, the

concept is applied to the modelling of thick-film stratified flow configurations

with the standard RANS k − ω model in section 5.2, starting with the flow

conditions introduced in chapter 4. Finally, a simple machine learning model

was implemented in order to test the developed concept in section 5.3.

124 Proof of concept: implementation of a data-driven turbulence model

5.1 Informing the k−ω model with high-fidelity

data

5.1.1 Performance of the standard k − ω model in two-

phase shear flows

As discussed in chapter 3, Frederix et al. [41] and Fan et al. [37] reproduced

the Fabre et al. [35] experiments with the Wilocox’s k−ω model. They observed

that the turbulence model tends to overestimate interfacial turbulence levels in

stratified shear flows because of the presence of high velocity gradients across

the interface, which leads to inaccuracies in the prediction of the velocity field.

The thick-film case and smooth interface case Fabre 250 investigated in chapter

4 in LES and qDNS was reproduced here using the standard Wilcox’s model.

Using the VOF method, the RANS simulation was performed on the simplified

geometry presented in section 4.2 of chapter 4 with the same cyclic conditions

in the length and width of the channel. A mesh containing 25992 cells and

providing the wall distance y+ < 1 was employed for the simulation. The case

characteristics remained unchanged from table 4.1. The vertical profiles of

the mean axial velocity, TKE and absolute values of the cross Reynolds stress

across the channel predicted by the standard k − ω turbulence model were

compared with the qDNS results obtained with the refinement level s1 and the

Fabre et al. experiments [35]. The plots are presented in figure 5.1. Results

clearly show that the mean axial velocity predicted by the RANS model is

completely shifted towards the upper wall in the gaseous phase in comparison

with the reference. This confirms the results obtained with the Euler-Euler

method by Frederix et al. [41] and Fan et al. [37] presented in chapter 3. The

TKE profile was largely over-predicted by the standard turbulence model by

5.1 Informing the k − ω model with high-fidelity data 125

one order of magnitude in the gas and nearly two in the liquid. Besides, the

predictions made by the standard model did not show any discontinuity at the

interface, where a decrease of the values should be observed in the liquid phase.

This illustrate well the need of interfacial turbulence damping. The Reynolds

stress was also over-predicted by the standard model in both phases showing

also a shift profile towards the upper wall in the gas.

0 5

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Exp.

qDNS

RANS

10−2 101

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−3 100

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.1 Mean axial velocity (left), TKE (centre), and absolute shear stress
(right) profiles comparison between Fabre et al. experiments [35], qDNS
predictions with mesh s1, and standard RANS k − ω model predictions

Now that the necessity of a correction of the turbulence production in the

standard RANS k − ω model has been highlighted, a method to re-balance the

budget of the specific turbulence dissipation rate ω is suggested next.

5.1.2 Methodology

In this section, a methodology for the correction of the standard Wilcox’s

RANS k−ω turbulence model [151] is proposed. The correction can be injected

126 Proof of concept: implementation of a data-driven turbulence model

in one or both of the k − ω model’s equations namely the transport equation

of the turbulent kinetic energy k and the transport equation of the specific

turbulence dissipation rate ω. According to Singh [118], applying a correction

to the ω transport equation may be preferable as both the k and ω terms are

present in the transport equation of the specific dissipation rate and ω ∝ k/ε

where ε is the turbulence dissipation rate. It was indeed seen in the literature

that most corrections proposed to improve the k− ω model focused on altering

the ω transport equation, which is the case of the widely used Egorov method

[32] for instance, in which the turbulence damping term is added to same

transport equation.

Correction source term

The correction was introduced in the model ω equation in the form of

an additional source term calculated in the high-fidelity qDNS simulation.

Similarly to the Egorov method, this additional term acts such as the ω budget

is rebalanced and provides informed interfacial turbulence in the k − ω model.

This single correction was found to be adequate and sufficient to drive the

RANS solution towards the high-fidelity data. One can rewrite the ω transport

equation (eq. 2.26b) for incompressible flow such as:

∂ρω

∂t
+ Sadv(ω, F) = Sprod(ω, F) − Sdes(ω) + Sdiff(ω, F) (5.1)

where:
• Sadv = ∂ρuiω

∂xi
is the advection term

• Sprod = γ ω
k
Pω is the production term

• Sdes = βρω2 is the destruction term

• Sdiff = ∂
∂xi

[(
µ+ ρk

2ω

)
∂ω
∂xi

]
is the diffusion term

5.1 Informing the k − ω model with high-fidelity data 127

and where F represents flow field quantities. In order to drive the RANS

solution towards the qDNS data, each term from the above description was

calculated in the qDNS simulation. This way, a source term Sω calculated in

qDNS and corresponding to an adjusted budget could be introduced in the

RANS ω equation. Note that as qDNS velocity quantities were averaged "on

the fly" i.e. as the simulation progresses, the local time derivative ∂ρω/∂t could

be taken as 0. Therefore, one obtains the following correction source term to

adjust the budget of the specific turbulence dissipation rate ω:

Sω(ω, F) = Sadv(ω, F) − Sprod(ω, F) + Sdes(ω) − Sdiff(ω, F) (5.2)

In order to calculate each term of the Sω, it was first needed to calculate ω,

which is not natively provided for direct numerical simulations in OpenFOAM.

The specific turbulence dissipation rate is defined as:

ω = ε

β∗k
(5.3)

where β∗ is a model constant taken at 0.09. It was previously seen in chapter 4

that the turbulent kinetic energy could be calculated in OpenFOAM by calculat-

ing the trace of the Reynolds stress tensor, which is obtained while performing

the velocity field averaging operation with the function object fieldAverage,

as shown in appendix A.1.2. The calculation of k was implemented in the

simulation control dictionary using a codedFunctionObject. The piece of code

is available in appendix A.1.2. Following the definition proposed by Hinze [61],

the turbulence dissipation rate ε writes:

ε = 1
2ν
(
∂u′

i

∂xj

+
∂u′

j

∂xi

)2

(5.4)

128 Proof of concept: implementation of a data-driven turbulence model

However, ε is not natively calculated by OpenFOAM in qDNS simulations

either and had to be implemented. Its calculation consisted of two steps: first,

the quantity qε =
(

∂u′
i

∂xj
+ ∂u′

j

∂xi

)2
was added to the field objects calculated within

the VOF solver interFoam in the file createFields.H as shown in appendix

A.1.1; and secondly, the averaging of qε was enabled in the simulation control

dictionary and ϵ could be calculated using another codedFunctionObject,

available in appendix A.1.2, such as ε = 1
2νqε.Finally, ω was also added to the

coded function objects (c.f. appendix A.1.2) such as ω = ε/(β∗k + rk) where

rk was artificially added and taken to be very (O(10−9) to O(10−10)) in order

to prevent from any division by zero.

The time averaging of the velocity field is activated first, with the field qε.

Thus, after an averaging period of 10 s, the field ω could be calculated, as

well as each term of equation 5.4 in order to obtain the final budget correction

source term Sω. The terms Sadv, Sprod, Sdes, Sdiff, and Sω were all implemented

in the control simulation directory (c.f. appendix A.1.2).

Figure 5.2 shows the profiles of ω, ε, and k after the two averaging operations

were performed in qDNS, compared with the standard k−ω model predictions.

While no experimental results are available for the ω and ε profiles, the standard

RANS simulation clearly produced over-predicted values for all three quantities

in the centre of both of the phases, without picking up the discontinuity at the

interface at y/H = 0.38, while the qDNS illustrates it very well with peaks

in turbulence dissipation near the walls and near the interface. It thus is

expected that the correction term calculated in qDNS will add dissipation in

those regions, and specifically providing damping of the interfacial turbulence

in the RANS k − ω model.

5.1 Informing the k − ω model with high-fidelity data 129

102 104

ω (s−1)

0.0

0.2

0.4

0.6

0.8

1.0
y
/H

qDNS

RANS

10−1 102

ε (m2/s3)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−2 100

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.2 Specific turbulence dissipation rate (left), turbulence dissipation
(centre), and TKE (right) profiles comparison between qDNS predictions with
mesh s1, and standard RANS k − ω model predictions

Correction for RANS simulations in smooth interface conditions

In order to perform the field correction in the standard k − ω turbulence

model, the budget of specific turbulence dissipation rate calculated in qDNS

was injected in the model’s ω transport equation as an additional ω source term

using the fvOptions dictionary. This dictionary also contains the information

on the velocity momentum source that is defined prior the simulation in order

to set the bulk velocity in each phase, as already described in chapter 4. In

order to apply the correction source term, the field Sω calculated in qDNS was

interpolated from the qDNS mesh to the RANS mesh, after all of the average

operations were completed. The interpolated values were contained in a file

readable by the model, and called in the fvOptions dictionary, as shown in

appendix A.1.3. The "frozen field" containing the corrected budget of ω values

Sω,i for every cell of the RANS mesh, could then be injected into the transport

130 Proof of concept: implementation of a data-driven turbulence model

equation from the start of the simulation. In this proof of concept, as the

correction field Sω is frozen in time, the additional source term injected in the

ω transport equation does not vary in time. This method is thus expected to

be most efficient for flows presenting a smooth interface, as it is the case with

the Fabre 250 flow regime that is investigated here.

102 105 108 1011 1014 1017

|Sω| (s−1)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Time-averaged from qDNS

Time-space averaged & interpolated

Figure 5.3 Correction source term Sω calculated and time-averaged in qDNS
(black cross) and with additional spatial averaging, mapped on the RANS mesh
(green line)

Even with long periods of time averaging, some of the terms still indicated

difficulties converging. In order to improve the field average convergence, the

correction field Sω calculated and time-averaged (over 10 s) in qDNS was addi-

tionally spatially-averaged in both of the cyclic directions x⃗ and z⃗. Therefore,

one obtains constant values of Sω in the two cyclic directions after the two

time and spatial averaging operations. Figure 5.3 shows the profiles of the

5.2 Data-driven thick-film flow turbulence modelling 131

absolute values of the correction field taken across the channel before and after

the space-average and interpolation operations. The final results presented

the highest budget correction values in the wall regions and in the interfacial

region, which was coherent with the necessity of a turbulence damping in the

interface area. Note that the correction source term was added to the transport

equation with the negative sign similarly to the destruction term in order to

apply turbulence damping to the areas of interest.

5.2 Data-driven thick-film flow turbulence mod-

elling

The methodology described in section 5.1.2 was applied to four test cases in

order to test the ability of a "frozen field" correction to drive the model towards

the high-fidelity data. The four tests were performed first in qDNS to obtain

the appropriate averaged correction field for the ω transport equation, and then

in RANS using the additional source term introduced from the qDNS. All of

the test geometries were based on the geometry described in chapter 4, section

4.2.1 i.e. a 0.1 m high horizontal channel filled with air and water. The liquid

thickness in all the tests was 38 mm corresponding to the thickness employed in

the Fabre 250 flow regime. The four tests were performed with the same cyclic

conditions in the x and z directions. The first two test cases were performed in

the smooth interface condition, obtained with the bulk velocities of the Fabre

250 flow regime: Ub,g = 4.2 m/s and Ub,l = 0.45 m/s while the remaining two

other tests used a larger liquid bulk velocity Ub,g = 10 m/s, increasing the gas

Reynolds number from 3.5 · 104 to 8.3 · 104. This increase was sufficient to

trigger the generation of two-dimensional surface waves of significantly higher

132 Proof of concept: implementation of a data-driven turbulence model

amplitudes than the Fabre 250 flow regime. For each of those flow regimes,

two simulations were conducted: the first one with non-slip BC for the top and

bottom walls, and the second one with a slip BC for the top wall and non-slip

BC for the bottom wall. The two flow regimes are illustrated in figure 5.4 using

non-slip BC for both the bottom and top walls. The liquid volume fraction, the

instantaneous axial velocity, as well as the vorticity magnitude fields obtained

in qDNS are represented. The configuration in which both the top and bottom

walls are non-slip BC will be named the "closed channel" configuration, while

the configuration using a slip-wall BC at the top wall will be named the "open

channel" configuration.

5.2.1 Application to the smooth interface flow regime

In the closed channel configuration, the smooth interface flow regime was

performed in qDNS, as previously presented in chapter 4, section 4.2.1 with

the refinement level s1. This simulation was used to generate a correction

field introduced in figure 5.3, which was applied to the corresponding RANS

simulation. Note that in the closed channel configuration, mesh refinements

were performed in the wall and interface regions. Using the same geometry

base, the open channel configuration employed a slightly different mesh with

the same refinement levels to s1 at the bottom wall and in the interface region,

although, the slip-wall BC at the top was coarsened as no refinement was

needed in this region anymore. This coarsening of the top wall region led to a

reduction of the overall mesh size by 20% in comparison with the refinement

level s1.

5.2 Data-driven thick-film flow turbulence modelling 133

Figure 5.4 Smooth interface regime (left column) compared with the two-
dimensional wavy interface regime (right column) in terms of liquid volume
fraction (top row), instantaneous axial velocity in m·s−1 (centre row), and
vorticity magnitude in s−1 (bottom row)

134 Proof of concept: implementation of a data-driven turbulence model

Applying the additional source field Sω led to a correction of the budget of

specific turbulence dissipation rate. This budget correction resulted in more

turbulence dissipation as intended in order to damp the interfacial turbulence.

This adjustment was highlighted in figure 5.5, in which each term of the ω

transport equation was plotted across the interface using the standard RANS

k − ω model and the qDNS-informed k − ω model, in the closed channel

configuration.

0.4 0.5 0.6 0.7

y/H

−15000

−10000

−5000

0

5000

10000

15000

20000

T
ra

n
sp

or
t

of
ω
/ρ

te
rm

s
(s
−

2
) Sadv

Sdes
Sdiff
Sprod

budget

(a) Standard k − ω model

0.38 0.40 0.42

y/H

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

T
ra

n
sp

or
t

of
ω
/ρ

te
rm

s
(s
−

2
)

×106

Sadv
Sdes
Sdiff
Sprod

Sω
budget−Sω

(b) Corrected k − ω model

Figure 5.5 Specific turbulence dissipation budget across the interface

The corrected model adapted in increasing its destruction term Sdes, re-

sulting in an amplification of the interfacial turbulence damping. While no

change in the destruction term across the interface is observed in the standard

model with values lower than −1.0 ·104 s−2, the corrected model added a strong

gradient of dissipation of energy with destruction values reaching −2.2 · 106 s−2.

However, as the other transport terms produced by the standard model seemed

to pick up the interface by showing sharp discontinuities around y/H ≈ 0.38,

5.2 Data-driven thick-film flow turbulence modelling 135

this sharpness was found to be attenuated by the corrected model. This is

a consequence of the use of a frozen field correction, whereas the interface is

not really "frozen" and still presents some disturbances as shown previously

in figure 5.4. As a consequence, some additional turbulence dissipation was

involuntary added in the region below the interface, in the liquid phase. From

this observation, one could expect to obtain better results using the frozen field

method in the conditions of a smooth interface rather than in the conditions

of a wavy interface, particularly for the TKE predictions, which might be

underestimated in the interfacial region of the liquid phase.

Deploying the frozen correction field method in the k − ω model provided

appropriate results for the fields of interest in comparison to the standard

turbulence model. Both configurations namely the closed channel and the

open channel were investigated and the corrected RANS k−ω model produced

predictions in very good agreement with the corresponding qDNS simulation

as seen in figure 5.6 and figure 5.7.

The addition of a correction source term in the ω transport equation was

sufficient to drive the RANS predictions towards the qDNS solutions as it can

be seen in the plots of the mean axial velocity, TKE and cross-Reynolds stress.

In both configurations, the standard k − ω model over-predicted the TKE by a

factor of at least 102 in the two phases in comparison with the qDNS reference.

The standard RANS did not predict any discontinuity of the TKE profile in

the interfacial region, indicating an important overproduction of turbulence

levels in the gaseous phase above the interface. This was passed on to the

mean velocity profile, which was shifted upwards in the gas in both the closed

channel configuration as previously observed in section 5.1.1, and the open

136 Proof of concept: implementation of a data-driven turbulence model

channel configuration. An underestimation of the TKE levels by the corrected

k − ω model below the interface in the liquid phase was observed in the closed

channel configuration and can be explained by the application of a frozen

correction field while the interface was not perfectly smooth, as anticipated

with the observation of the ω budget in figure 5.5. This underestimation was

also slightly reported in the open channel configuration, in which the TKE

profile seemed smoother in the interfacial region. The mean velocity profile was

also slightly underestimated by the corrected model right above the interface in

the gas in the open channel configuration. The shear stress profiles predicted

by the corrected model matched the reference very well in both configurations.

0.0 2.5 5.0

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Exp.

qDNS

stand. k − ω
corr. k − ω

10−4 10−1

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−4 100

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.6 Mean axial velocity (left), TKE (centre), and cross Reynolds stress
profiles comparison between the qDNS, the standard k−ω model (stand.), and
the corrected k−ω model (corr.) predictions in the closed channel configuration
and smooth interface regime

5.2 Data-driven thick-film flow turbulence modelling 137

0.0 2.5 5.0

Ux (m/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y
/H

qDNS

stand. k − ω
corr. k − ω

10−2 101

k (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

10−4 100

|Ruv| (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

Figure 5.7 Mean axial velocity (left), TKE (centre), and cross Reynolds stress
profiles comparison between the qDNS, the standard k−ω model (stand.), and
the corrected k−ω model (corr.) predictions in the open channel configuration
and smooth interface regime

The predictions of ω and ε are presented in figure B.1 for the closed channel

configuration and figure B.2 for the open channel configuration, in appendix

B.1. Both ω and ε predicted by the corrected turbulence model were in good

agreement with the qDNS.

5.2.2 Limitations of the frozen film correction: applica-

tion to wavy-films

Similar mesh qualities and refinement levels were employed for the additional

two test cases in which a higher gas velocity was simulated. The new bulk

velocity of 10 m/s allowed for the generation of small 2D waves, putting us in

the wavy-film flow regime. In this regime, one would expect to observe results

of poorer quality when using the frozen correction field method with the RANS

138 Proof of concept: implementation of a data-driven turbulence model

k − ω model, due to the application of additional non-necessary turbulence

damping in the liquid phase below the interface.

The predictions made by the standard and corrected k − ω models were

compared with the corresponding qDNS results in figure 5.8 for the closed

channel configuration and in figure 5.9 for the open channel configuration.

Overall, the corrected turbulence model performed much better than the

standard model when comparing with the qDNS predictions. It was noted

that better results were obtained by the corrected model in the open channel

configuration as only slight underestimations were observed for the TKE and

Reynolds stress profiles in the gaseous phase.

0 10

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

qDNS

stand. k − ω
corr. k − ω

10−3 100

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−4 100

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.8 Mean axial velocity (left), TKE (centre), and cross Reynolds stress
profiles comparison between the qDNS, the standard k−ω model (stand.), and
the corrected k−ω model (corr.) predictions in the closed channel configuration
and wavy interface regime

5.2 Data-driven thick-film flow turbulence modelling 139

0 5 10

Ux (m/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y
/H

qDNS

stand. k − ω
corr. k − ω

10−2 101

k (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

10−3 101

|Ruv| (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

Figure 5.9 Mean axial velocity (left), TKE (centre), and cross Reynolds stress
profiles comparison between the qDNS, the standard k−ω model (stand.), and
the corrected k−ω model (corr.) predictions in the open channel configuration
and wavy interface regime

In the closed channel configuration, the underestimation of the TKE levels

were more noticeable especially in interfacial region, as well as for the shear

stress in the same area. Moreover, while the qDNS predicted asymmetrical TKE

and Reynolds stress profiles, which were slightly shifted upwards in the gaseous

phase in the closed channel configuration, the corrected RANS predictions were

rather shifted downwards the interface. This difference in the lower part of

the gaseous phase and the under-prediction in the upper part of the liquid

film could be explained by the non-varying character of the frozen correction.

In fact, the correction profile should ideally shift upwards as a wave comes

(crest) to provide more turbulence damping in the gas and less in the liquid,

and reciprocally it should shift downwards as a wave has passed (trough), as

illustrated in figure 5.10.

140 Proof of concept: implementation of a data-driven turbulence model

Figure 5.10 Adjustment of the correction field Sω according to the interface
position. Sω profile is represented in green, the liquid film is represented in
light red

In both configurations, the mean axial velocity profiles were well predicted

by the corrected model. An underestimation of the velocity was observed in

the region just above the interface in the open channel configuration. The

predicted profiles of ω and ε are visible in figures B.3 and B.4 of appendix

B.1. The corrected model performed overall very well to predict the turbulence

dissipation rates, in the two configurations.

5.3 Turbulence correction prediction by a ma-

chine learning model

In order to finalise this proof of concept, a simple machine learning

(ML) model noted "M1" was implemented using a feed-forward neural network

5.3 Turbulence correction prediction by a machine learning model 141

(FFNN) multilayer perceptron (MLP). The idea was to train the ML model

to predict the frozen correction field Sω prior the beginning of the simulation,

given a few number of initial known flow conditions and geometry setup. The

predicted correction field is called the output of the ML model, while the flow

and geometry features are inputs of the model. In this proof of concept, only

the closed channel configuration in the smooth interface condition was tested.

5.3.1 Structure of the ML model

The choice of the inputs has an important impact on the performance

of the ML model. They can affect the accuracy and duration of the model

training, the accuracy of the model when making predictions, the capacity of

the model to adapt to new cases in new flow conditions and flow configurations,

etc. In order to make the model more versatile, one can for example use

non-dimensional inputs that are based easily accessible flow features. They

should represent the flow as a whole. Choosing too many inputs might also

create an overfitted model. The model overfitting is usually obtained when

the training accuracy is too high, resulting in poor abilities of the model to

predict new scenarios as it is only performing well at reproducing the training

data [149]. However, for the purpose of this proof of concept, as the training

and testing cases are the same, the choice of input did not have to be made

regarding the portability of the model, or its overfitting. The model M1 was

implemented and used only in the configuration described: closed channel and

Fabre 250 flow regime. Four easily accessible input features were selected: a

Reynolds number-like noted η1 based on the phase height hphase in the channel,

the liquid volume fraction η2, the distance from the mean interface level η3,

and the distance from the wall η4. The one output of the model β was the

budget of ω, that is added to the ω transport equation in the Wilcox’s RANS

142 Proof of concept: implementation of a data-driven turbulence model

k − ω model under the form of the source term. Those features are all known

and chosen prior starting the simulation. The inputs and output of the model

M1 are:

• η1 = Ub · hphase/ν = αUb,l · h̄/νl + (1 − α)Ub,g(H − h̄)/νg

• η2 = αl

• η3 = dinterf

• η4 = dwall

• β = Sω

The simple FFNN implemented for the proof of concept consisted of a first

input layer of 4 input neurons, two hidden layers of 256 neurons and one output

layer of 1 output neuron. The ReLU non-linear activation function was used.

More details on the ML methods are given in chapter 2, section 2.4.

5.3.2 Model training

The training dataset was taken from the qDNS results obtained with

the refinement level s1 in the two regimes investigated previously, in the

configuration of the closed channel. The model was tested on the configuration

of the closed channel in the smooth interface flow regime, which is part of

its training. The training dataset was fairly small as each of the training

inputs/output consisted of 200 values. Therefore, as one qDNS provided five

lists of 200 values, the training dataset contained 2000 values in total. The

distribution of the training values for each input and output was represented in

histograms, in figure 5.11. For the training of the ML model, the mean squared

error function was employed for the loss and 256 epoch were carried out, with

5.3 Turbulence correction prediction by a machine learning model 143

a batch size of 64. The Adam optimiser algorithm was used for our gradient

descent optimisation, with a learning rate of 10−4. The data was scaled with

the standardisation method described in equation 2.70.

10000 20000 30000 40000
0

25

50

75

100

η1

0.0 0.5 1.0
0

50

100

150

200

η2

0.00 0.02 0.04 0.06
0

20

40

60

80

η3

0.00 0.02 0.04 0.06
0

20

40

60

η4

5 10 15
0

20

40

60

log(β)

Figure 5.11 Histogram of the inputs and output used in the training of the
model M1

In order to improve further the performance of the model training, the

logarithm of the output Sw was taken during the training in order to better

144 Proof of concept: implementation of a data-driven turbulence model

homogenise the data. Sω contains values varying from approximately 100 to

1013, and without this operation, the model would have struggled to perform the

gradient descent over such an non-homogeneous dataset, even after standard

scaling.

The dataset was split randomly such as 80% of its data was used for the

training of the model, 20% for the validation. The training reached a prediction

accuracy of 97.3%, which was intentionally set high in order to overfit the

training data. One would expect from such a training accuracy that the model

M1 will be fully capable of reproducing the correction source term calculated

in qDNS. Figure 5.12 illustrates the training process, showing the loss and

accuracy progress against the number of epochs carried out. The best model

was obtained at the 249th epoch. According to figure 5.12, good accuracy values

were attained quickly.

0 50 100 150 200 250

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

L
os

s

Train

Validation

Best validation loss

0 50 100 150 200 250

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Train

Validation

Best validation accuracy

Figure 5.12 Training and validation loss (left) and accuracy (right) against the
number of epochs obtained during the training of the ML model M1

5.3 Turbulence correction prediction by a machine learning model 145

5.3.3 ML model predictions

The simulation setup employed for the test of the implemented model M1

is the same as the one introduced in section 5.1.1, also referred as the closed

channel configuration in the smooth interface flow regime.

0 1 2 3 4 5 6

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Exp.

qDNS

stand. k − ω
corr. k − ω
M1-k − ω

10−6 10−4 10−2 100

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−5 10−3 10−1 101

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

100 104

ω (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

100

ε (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.13 Profile predictions obtained with the ML-informed k − ω model
(blue line), the former corrected k − ω model (green dash line), the standard
k−ω model (orange point line) and the qDNS (black line) in the closed channel
configuration, smooth interface regime

146 Proof of concept: implementation of a data-driven turbulence model

Once the machine learning model was trained and saved, the RANS simu-

lation was initialised in order to produce the necessary input features for the

prediction of the frozen correction field Sω. After the prediction was made by

the model M1, the predicted correction field was written in the relevant location

to be read as a source term the same way as presented in the previous section 5.2.

The results obtained with the ML-informed k−ω model were compared with

the previous results in figure 5.13. As expected, the trained model managed to

predict a correction field that was able to drive the informed turbulence model’s

predictions towards the qDNS solutions, similarly to the method introduced in

the previous section 5.2. No important difference is noticeable except in the

prediction of the shear-stress profiles where the ML-informed turbulence model

produced results closer to the experiments and farther from the qDNS than

the former corrected model.

5.4 Conclusions and discussions

This chapter introduced a methodology to inform the standard RANS k−ω

model’s interfacial turbulence and more specifically to adjust the budget of the

transport of specific turbulence dissipation rate ω by adding a correction source

term calculated in high-fidelity simulation. The additional source term was

here applied as a frozen correction field and results showed that this correction

achieved to drive the model predictions towards the reference solutions for

all the quantities observed, namely the mean velocity, the turbulent kinetic

energy, the cross-shear stress, the specific turbulence dissipation rate, and the

turbulence dissipation rate. Two channel configurations and two flow regimes

were tested for a total of four test cases: the closed channel and open channel

5.4 Conclusions and discussions 147

0 10

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0
y
/H

qDNS

stand. k − ω
corr. k − ω
New corr. k − ω

10−3 100

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−4 100

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 5.14 Mean axial velocity (left), TKE (centre), and cross Reynolds stress
profiles predictions compared between the qDNS, the standard k − ω model
(stand.), the corrected k−ω model (corr.) and the corrected k−ω model without
correction in the liquid denoted as "New", in the closed channel configuration
and wavy interface regime

configurations, and the smooth interface and wavy film flow regimes. Very

satisfying results were obtained with the corrected model for both channel

configurations in the smooth interface condition, and great improvements

were shown in comparison to the standard model’s predictions. Increasing

the flow rate resulted in overall much better predictions than the standard

model. However the corrected model started to show some weaknesses from its

under-prediction of the TKE and Reynolds stress in the interfacial region, due

to the lack of adaptation of the frozen correction field in wavy film conditions.

In order to account for the under-prediction of those quantities in the liquid

interface region, a first simple patch would consist in cancelling the correction

field in the liquid phase and let the standard model take over in this phase.

This was implemented and tested in the wavy film regime, and in the closed

148 Proof of concept: implementation of a data-driven turbulence model

channel configuration in which the under-predictions were the most noticeable.

Results are shown in figure 5.14. Despite the slight improvement in the es-

timation of the TKE and shear-stress in the interfacial region using the new

corrected model, both quantities were overestimated in most the liquid phase

in comparison with the qDNS predictions. Elsewhere, the new corrected model

predicted identical solutions as the unaltered corrected model.

The treatment of the interface has proven to be a difficult task in waviness

conditions. Applying a frozen field to the Wilcox’s model resulted in augmented

predictions in RANS, however, improvements were still needed regarding the

way the correction was applied. The necessity of an adaptive correction was

highlighted in this chapter, and the next step of this research was to find a way

to update the correction field "on the fly" in time, as often as needed, regarding

the wave period of the simulated flow regime.

Finally, a simple machine learning model employing a FFNN trained with

the two qDNS cases performed in the closed channel configuration was im-

plemented in order to reproduce the results obtained in the closed channel

configuration for the smooth interface flow regime. The model proved to be

able to produce nearly identical results, demonstrating that it was capable of

predicting the appropriate frozen field correction as it was taught to. This

completed the proof of concept, showing that a machine learning can be poten-

tially trained by high-fidelity data from a range of different flow conditions in

order to predict appropriate corrections for the budget of specific turbulence

dissipation rate in the k − ω turbulence model.

5.4 Conclusions and discussions 149

In the next chapter, thin-film flows were investigated in gas regimes that

triggered the generation of waves of lower or higher amplitudes and frequencies.

A novel methodology based on the introduction of a correction source term in

the ω transport equation was developed in order to account the strong variations

of the interface level. This methodology relied on an adaptive correction of

the ω equation predicted by a newly trained ML model producing updated

corrections as the simulation progresses.

Chapter 6

Application to thin-film

two-phase channel flows

Predicting thin-film flows is particularly important in the framework of bearing

chambers: it is part of a larger work scope concerning the aero-engine’s thermal

management. As demonstrated by the experiments of Hann et al. [54] and

Kim et al. [76], the superficial gas velocity significantly impacts the liquid film

thickness in co-current stratified shear flows. Moreover, standard RANS models,

such as the k−ω model, perform poorly when it comes to predict the superficial

gas velocity (c.f. chapter 5, section 5.1.1). Therefore, developing new methods

for their improvement is essential, as the liquid film thickness prediction plays

a major role in anticipating the oil distribution in the lubrication system of the

aero-engine by the bearing chamber, as well as predicting risks of oil burning

and coking in the bearing chamber itself.

In this final chapter, the methodology developed in chapter 5 was employed

in order to inform the k−ω turbulence model’s interfacial turbulence in thin-film

channel flows. Two machine learning models were implemented and trained

152 Application to thin-film two-phase channel flows

with high-fidelity qDNS simulations presented in section 6.1, which setups were

based on the experimental work of Hann and Kim [54][76] investigating thin-film

stratified flows in a horizontal and rectangular closed channel containing water

for the liquid phase and air for the gaseous phase (c.f chapter 3, section 3.1.1).

The results of a first ML model "M2" based on the frozen correction field method

and employed with the k − ω model are presented in section 6.2. Then, an

adaptive correction method was developed for a new ML model "M3", which

was implemented and coupled with the k − ω turbulence model. Its results are

presented in section 6.3.

6.1 Simulation setup and creation of the train-

ing dataset

6.1.1 Geometry and flow characteristics

Thin-film flow reference experiments

Hann and Kim [54][76] carried out a range of experiments on thin-film

flows in a 2 m long, 0.026 m high and 0.166 wide horizontal and rectangular

channel. Despite the large aspect ratio width/height of this channel i.e. more

than 6, it was observed that the presence of the side walls had an impact on

the waves’ dimensionality, allowing for the generation of 3D waves in high flow

rates, while 2D waves were observed in the lower regimes. A map identifying

the wave patterns in the experiments and based on the flow pattern map of

Andritsos and Hanratty [5] is presented in figure 6.1, in which Ub,l stands for

the liquid bulk velocity and Ub,g the gas bulk velocity.

6.1 Simulation setup and creation of the training dataset 153

Figure 6.1 Map of flow patterns identified by Andritsos and Hanratty [5]:
smooth interface (smooth), 2D waves (2D), and large amplitude waves (LA),
overlaid with the experimental conditions of Hann and Kim [54][76] (marked
symbols) identifying wave patterns: stratified smooth (SS), 2D small amplitude
(2D), and 3D small amplitude(3D)

Hann and Kim investigated a range of 24 flow conditions, including 3

different liquid bulk velocities Ub,l: 0.008 m/s, 0.019 m/s, and 0.031 m/s and 8

different gas bulk velocities Ub,g for each liquid flow regime ranging from 3.1

m/s to 5.2 m/s. The high-fidelity qDNS simulations used to train the developed

machine learning models of this chapter were based on the 15 most turbulent

flow regimes investigated by the experimental researchers i.e. 5 cases for each

of the 3 liquid flow regimes. The 15 cases used as a reference for the qDNS

simulations are shown in table 6.1. Every studied case presented different film

thicknesses ranging from 8.9% to 24.0% of the channel height. The thinnest

films were investigated in the lowest liquid flow regime (Ub,l = 0.008 m/s).

154 Application to thin-film two-phase channel flows

Table 6.1 Flow regimes description and names

Ub,g

Ub,l 0.008 m/s 0.019 m/s 0.031 m/s

3.1 m/s 1.a 2.a 3.a

3.6 m/s 1.b 2.b 3.b

4.2 m/s 1.c 2.c 3.c

4.7 m/s 1.d 2.d 3.d

5.2 m/s 1.e 2.e 3.e

Computational domain, simplifications and flow characteristics

Similarly to the computational domain’s simplifications made in the thick-

film case that was investigated previously in chapters 4 and 5, the channel

of the reference experiments was simplified by the use of periodic conditions

in the flow stream and cross-stream directions. As many qDNS simulations

were needed to build a sufficiently large dataset for the training of the machine

learning models, employing periodic conditions allowed for important savings

in terms of computational resources. The present study used similar case

configurations as presented previously in figure 4.1, chapter 4. Non-slip wall

boundary conditions were used at the bottom and top of the channel, and

periodic conditions were set in the x and z directions of the channel. The

periodic length was set to 0.04 m in the flow stream (x⃗) and 0.008 m in the

spanwise direction (z⃗). The same height as the experiments was used.

In order to prevent from any unphysical results in qDNS, the periodic

simplifications were backed up by the computations of the fluctuation velocity

autocorrelations in the two periodic directions, using measurement probes in the

6.1 Simulation setup and creation of the training dataset 155

0.00 0.02 0.04

x

−0.5

0.0

0.5

1.0
R
u
′ xu
′ x(

∆
x
,0

)

0.00 0.02 0.04

x

−0.5

0.0

0.5

1.0

R
u
′ yu
′ y(

∆
x
,0

)
0.00 0.02 0.04

x

−0.5

0.0

0.5

1.0

R
u
′ zu
′ z(

∆
x
,0

)

−0.004 0.000 0.004

z

0.0

0.5

1.0

R
u
′ xu
′ x(

∆
z,

0)

−0.004 0.000 0.004

z

0.0

0.5

1.0

R
u
′ yu
′ y(

∆
z,

0)

−0.004 0.000 0.004

z

0.0

0.5

1.0

R
u
′ zu
′ z(

∆
z,

0)

Figure 6.2 Spatial autocorrelations of the x, y and z-components of the fluctu-
ation velocity measured in the centre of the gaseous phase in the flow direction
(top) and in cross-flow direction (bottom)

centre of the gaseous phase, where the largest turbulent structures are observed.

Figure 6.2 shows the spatial autocorrelation of the axial fluctuation velocity

averaged over 10 seconds. According to the plots of the spatial autocorrelation

in the streamwise direction Ru′
iu

′
i
(∆x), the periodic length was found to be

sufficient as all quantities dropped to zero at or before the half of the length.

In the spanwise direction, very small values were also observed halfway through

the width of the channel, indicating a decorrelation of the flow.

The flow conditions with corresponding ratios of film thickness over channel

height rfilm, and Reynolds numbers based on the hydraulic diameter in the

156 Application to thin-film two-phase channel flows

liquid phase Rel = 4h̄Ub,l/νl and in the gaseous phase Reg = 2(H − h̄)Ub,g/νg,

are presented in table 6.2. While all of the gaseous Reynolds numbers indicated

a turbulent gas flow, the liquid film flow conditions were laminar [21]. Despite

the fact that only one of the two phases was turbulent, waviness is triggered

by the gas shear entrainment. The investigated cases employed gas bulk ve-

locities 100 to 650 times higher than the liquid bulk velocities, creating high

velocity gradients and strong shear stresses across the interface, highlighted

by a discontinuity of the vertical profiles of all flow quantities at the interface

level. As the k − ω turbulence model was not design to predict laminar flows,

the results presented in this chapter focus on the gaseous phase only, using the

scaling (y − h̄)/(H − h̄) where y is the vertical position, h̄ the mean interface

level or mean film thickness, and H the channel height.

Table 6.2 Description of the flows conditions of the 15 qDNS cases

Bulk vel. Ub,l = 0.008 m/s Ub,l = 0.019 m/s Ub,l = 0.031 m/s

Ub,g Reg Rel rfilm Reg Rel rfilm Reg Rel rfilm

3.1 m/s 9.39·103 118 13.8% 9.01·103 346 17.3% 8.52·103 700 24.0%

3.6 m/s 1.10·104 112 13.2% 1.06·104 330 16.5% 1.00·104 668 21.8%

4.2 m/s 1.32·104 82 10.3% 1.28·104 266 13.2% 1.23·104 526 16.4%

4.7 m/s 1.49·104 76 9.5% 1.44·104 252 12.5% 1.39·104 498 15.5%

5.2 m/s 1.66·104 72 8.9% 1.61·104 236 11.7% 1.59·104 462 14.4%

Each of the 15 cases simulated in qDNS employed a mesh size of 320000

cells. The meshes were refined near the walls providing the wall distance y+ < 1

and around the interface in order to capture the small turbulent scales and

maintain physical results by using wall and interface cell sizes smaller than

five times the Kolmogorov length scales. 200 cells were employed to discretise

the domain vertically in all cases, using different mesh refinements adapted

6.1 Simulation setup and creation of the training dataset 157

to the artificially set interface levels. In the liquid phase, ∆y was taken at

approximately η/12 at the walls and η/8 at the interface, while in the gaseous

phase ∆y was η at the top wall and 2η at the interface. In terms of wall units,

∆y+ ≈ 0.3, ∆x+ ≈ 8 and ∆z+ ≈ 6.

6.1.2 Quasi-DNS simulations and comparison with ex-

periments

All qDNS simulations were carried out using the VOF method, and the

numerical discretisation schemes and solution algorithms employed in the pre-

vious chapters, introduced in chapter 4, section 4.1.2. Similarly as before, each

phase’s bulk velocity was set to its value by use of a velocity momentum source.

For each of the 15 cases, the budget of transport of the specific turbulence

dissipation rate was calculated following the methodology developed in chapter

5. This term noted Sω was part of the training dataset in both the new machine

learning models implemented in the present chapter. It was employed as the

output of the developed machine learning models. Figure 6.3 shows the mean

axial velocity Ux and ω transport budget Sω vertical profiles across the channel

obtained in the 15 simulated cases.

It was observed from the budget plots that the highest values were found

near the top wall (up to 1013 s−2), the bottom wall (up to 106 s−2) and in the

interfacial region (up to 109 s−2). According to the results obtained in chapter

5, those locations correspond to regions where the turbulent kinetic energy

reaches its highest levels. Applying the budget correction Sω to the ω transport

equation of the k − ω model would consequently result in an increase of the

turbulence dissipation in those areas, especially in the interface region, and

158 Application to thin-film two-phase channel flows

thus would lead to the desired damping of the interfacial turbulence levels.

0 1 2 3 4 5 6

Ux (m/s)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Ub,l = 0.008 m/s

Ub,l = 0.019 m/s

Ub,l = 0.031 m/s

101 103 105 107 109 1011 1013

Sω (s−2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure 6.3 Range of mean axial velocity and correction source term profiles
obtained in qDNS in cases "1." (Ub,l = 0.008 m/s), "2." (Ub,l = 0.019 m/s), and
"3." (Ub,l = 0.031 m/s)

Figure 6.4 Q-criterion isosurfaces with axial velocity contours & vorticity
magnitude contour map obtained in qDNS, case 1.e

6.1 Simulation setup and creation of the training dataset 159

Figure 6.4 highlights the highest turbulence levels across the channel with

the Q-criterion isosurfaces and a map of the vorticity magnitude obtained in

qDNS in case 1.e. Once again, the figure clearly identified the above-mentioned

interfacial and wall regions as locations showing the highest levels of turbulence.

According to table 6.2, case 1.e corresponds to the configuration with the

highest Reynolds number (1.66 · 104), and the smaller film thickness (8.9% of

the channel height). Despite figure 6.1 indicates that 3D wave patterns must

be observed the flow regime of case 1.e, 2D wave patterns were observed in the

corresponding qDNS. Note that only 2D waves were observed in all the 15 cases,

as no side walls were used for the qDNS simulations. Figure 6.5 shows side

views (x, y) of the instantaneous liquid volume fraction, axial velocity (m/s)

and vorticity magnitude (s−1) fields obtained with qDNS in cases 1.a, to 1.e, at

the liquid film bulk velocity 0.008 m/s.

The results obtained using the two other liquid film bulk velocities 0.019

m/s and 0.031 m/s are shown in appendix B.2, in figure B.10 for cases 2.a to 2.e,

and in figure B.11 for cases 3.a to 3.e. In the lowest film velocity configuration,

case 1.a presented quasi-smooth interface patterns. All other cases presented

at least small wave amplitude patterns, while the wave amplitudes increased

with the increasing gas superficial velocity. The largest wave amplitudes were

observed for the highest gas Reynolds numbers and thinnest films. The waves

observed in those cases were identified as 3D according to the pattern map

introduced in figure 6.1.

160 Application to thin-film two-phase channel flows

Figure 6.5 qDNS simulations performed at the liquid film velocity 0.008 m/s

Among the 15 simulations, 12 were used for the training of both machine

learning models presented in the present chapter. The remaining 3 simulations

corresponded to cases 1.e, 2.c and 3.d. The three simulations were kept out

of the machine learning training and used as test data for comparison with

the results obtained with the ML-informed RANS simulations, which were

6.1 Simulation setup and creation of the training dataset 161

carried out in the flow condition of the test cases 1.e, 2.c and 3.d. Those three

cases were used for the tests as they presented various flow rates and interface

heights belonging to the framework of the training of the ML model. The

qDNS data of the test cases were compared with the experiments in terms of

mean axial velocity Ux, Reynolds stress u′v′, and mean fluctuation velocity u′

and v′ profiles. The comparison plot of those quantities in the gaseous phase

between qDNS and the experiments are shown in figures 6.6, 6.7, 6.8, and 6.9.

In the test cases 1.e, 2.c, and 3.d, the mean axial velocity profiles and mean

fluctuation velocity profiles obtained in qDNS matched the experiments very

well. The absolute value of the Reynolds stress profiles were found to slightly

overestimate the experimental results in the region just above the interface.

Such differences might be due to a sharpness diffusion in the velocity disconti-

nuity across the interface. In fact, cases 1.e, 2.c and 3.d showed relatively high

amplitude interface wave patterns and the velocity could only be averaged in

time.

The mean axial velocity profiles obtained in qDNS in the 12 training cases

were also compared with the experimental results and are shown in appendix

B.2, in figures B.6, B.7, B.8, B.9. The mean velocity profiles obtained in qDNS

in the 12 other cases were also in very good agreement with the experiments.

The best fits were obtained for the cases employing the highest gas bulk

velocities.

162 Application to thin-film two-phase channel flows

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: Exp.

Figure 6.6 Mean axial velocity profiles obtained in qDNS and compared with
the experiments in case 1.e (left), 2.c (centre), and 3.d (right)

−0.01 0.00 0.01

|Ruv|/Ux2

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 1.e: qDNS

1.e: Exp.

−0.01 0.00 0.01

|Ruv|/Ux2

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 2.c: qDNS

2.c: Exp.

−0.01 0.00 0.01

|Ruv|/Ux2

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 3.d: qDNS

3.d: Exp.

Figure 6.7 Absolute value of the Reynolds stress profiles obtained in qDNS and
compared with the experiments in case 1.e (left), 2.c (centre), and 3.d (right)

6.1 Simulation setup and creation of the training dataset 163

0.0 0.5

u′/Ux

0.0

0.2

0.4

0.6

0.8

1.0
(y
−
h̄

)/
(H
−
h̄

) 1.e: qDNS

1.e: Exp.

0.0 0.5

u′/Ux

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 2.c: qDNS

2.c: Exp.

0.0 0.5

u′/Ux

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 3.d: qDNS

3.d: Exp.

Figure 6.8 Mean axial fluctuation velocity profiles obtained in qDNS and
compared with the experiments in case 1.e (left), 2.c (centre), and 3.d (right)

0.0 0.2

v′/Ux

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 1.e: qDNS

1.e: Exp.

0.0 0.2

v′/Ux

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 2.c: qDNS

2.c: Exp.

0.0 0.2

v′/Ux

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

) 3.d: qDNS

3.d: Exp.

Figure 6.9 Mean vertical fluctuation velocity profiles obtained in qDNS and
compared with the experiments in case 1.e (left), 2.c (centre), and 3.d (right)

164 Application to thin-film two-phase channel flows

The high-fidelity qDNS simulations carried out on 15 different flow conditions

provided decent detailed datasets for the training of the two machine learning

models developed to produce appropriate corrections for the k − ω turbulence

model. As previously mentioned, 12 of the those 15 simulations formed the

training dataset of the ML models, while the remaining 3 simulations were not

included in the training and used for the testing of the ML model coupled with

the RANS turbulence model. The training dataset included the flow conditions

of the three different film velocities 0.008 m/s, 0.019 m/s, and 0.031 m/s. The

five gas bulk velocities were also represented in the training dataset. The test

cases 1.e, 2.c and 3.d were chosen in order to test the ML models using the

three film velocities and different gas velocities. They account 20% of the whole

qDNS dataset. Indeed, in order to obtain effective ML models the training

dataset must include a sufficient number of different flow conditions.

6.2 Frozen correction field method

6.2.1 Process description

Similarly to the method developed in chapter 5, section 5.3, a new machine

learning model "M2" was trained using the 12 cases described previously in

order to be able to provide a frozen correction field that can be applied to the

transport equation of the specific turbulence dissipation rate ω in the k − ω

turbulence model. However, this time the training cases and the testing cases

were separated so that the machine learning model M2 could provide predictions

in new flow conditions.

6.2 Frozen correction field method 165

Figure 6.10 Flowchart of the process of a RANS simulation carried out with the
M2-informed k − ω turbulence model and the frozen correction field method

Model M2 was trained to make predictions of the correction source term

Sω right after the initialisation of the RANS case, based on the initial flow

conditions. In the process of informing the k − ω model with the ML model

M2, the treatment of the initial flow features was automatised in order to

obtain data files that were readable by the ML model. A script was used to

automatically add the predicted correction source to the ω transport equation

and then resume the now corrected RANS simulation. The flowchart figure

6.10 illustrates that process. Additionally, the predicted frozen correction field

was set to only apply in the gas. In fact, the application of large values of

turbulence dissipation below the interface level in wavy flows in the present

context of thinner films appeared to increase the risk of numerical instabilities

during the simulation. Moreover, the k−ω model is only relevant for turbulent

flow modelling, whereas the film is laminar in the three liquid flow regimes.

166 Application to thin-film two-phase channel flows

6.2.2 Implementation of the machine learning model M2

Model M2 structure and training

The training Python notebook of model M2 is available in appendix A.3.

M2 used a similar structure to the one used for model M1 in chapter 5. Once

again, a simple feed-forward neural network (FFNN) multilayer perceptron

(MLP) was used to implement the ML model using the PyTorch library. Four

similar flow features were used for the input layer of the neural network: the

Reynolds number noted η1 based on the hydraulic diameter of each phase (c.f.

table 6.2), the liquid volume fraction η2, the distance from the mean interface

level η3, and the distance from the wall η4. The one output of the model, noted

β, was still the correction budget of ω. The four input features are all known

after the initialisation of the RANS simulation, which makes model M2 rather

easy to operate. The inputs and output of the model M2 are:

• η1 = αRel + (1 − α)Reg

• η2 = α

• η3 = dinterf = |y − h̄|

• η4 = dwall = αy + (1 − α)|H − y|

• β = Sω

Where α indicates the volume fraction of the primary phase: it is 1 in the

liquid and 0 in the gas. Figure 6.11 shows the histogram of the four inputs

and one output (log scale) of model M2. For each feature, 200 profile values

were collected from each of the 12 qDNS training cases, corresponding to time

and space-averaged values of the feature measured in qDNS in the discretised

volumes vertically in the channel.

6.2 Frozen correction field method 167

0 5000 10000 15000
0

200

400

600
η1

0.0 0.5 1.0
0

500

1000

1500

η2

0.00 0.01 0.02
0

200

400

600

η3

0.00 0.01 0.02
0

200

400

η4

5 10
0

200

400

600

800

log(β)

Figure 6.11 Histogram of the inputs and output used in the training of the ML
model M2

One can observe from the distribution of the phase volume distribution η2

that the training data measured in the liquid accounted for one fourth of the

total training data, which matched the average film thickness to channel height.

A slightly unbalanced distribution of the training data is also noticed in for

η1, suggesting that some flow conditions were covered twice by the training.

Increasing the number of cases with different flow conditions would smooth the

distribution. Additionally, as previously seen in chapter 5, the correction source

term ranges from very small to very large values. In the present context, it

ranged from 7 to 1013, and once again the logarithm with base 10 was applied to

168 Application to thin-film two-phase channel flows

β in order to homogenise the data a first time. It is also seen that all data did

not belong to the same range from an input feature to an other. For instance,

the wall and interface distances ranged from 0 to 0.024, while the Reynolds

number ranged from 76 to 1.6 · 104. This is highlighted in the statistics of the

inputs and output given in table 6.3. The need of a scaling was indeed well

illustrated and a standard scaling was applied to the data prior the training

as previously described in eq. 2.70. This operation allowed to obtain all data

in the same range with a common mean of approximately 0 and a common

standard deviation of approximately 1. The statistics after the standardisation

of the data are available in table 6.4. In total, the training dataset contained

5 × 200 × 12 values i.e. 5×2400 values.

Table 6.3 M2 training data statistics before standardisation

Feature Count µ σ Min Max

η1 2400 9299.5 5573.3 76.56000 16125

η2 2400 0.2442 0.4297 0.000000 1.000

η3 2400 0.0082 0.0080 0.000009 0.023

η4 2400 0.0096 0.0084 0.000010 0.024

log(β) 2400 4.8718 1.7995 0.838317 12.97

Table 6.4 Standardised data statistics used for the training of model M2

Feature Count µ σ Min Max

η1 2400 -2.5·10−7 1.000210 -1.63 1.19

η2 2400 -5.6·10−8 1.000200 -0.57 1.76

η3 2400 -1.0·10−8 1.000208 -1.02 1.92

η4 2400 -5.2·10−8 1.000209 -1.14 1.66

log(β) 2400 -1.4·10−8 1.000208 -2.24 4.50

6.2 Frozen correction field method 169

The neural network used in model M2 consisted of a first input layer of

4 input neurons, two hidden layers of 256 neurons and one output layer of

1 output neuron, similarly to the neural network used in model M1. ReLU

activation functions were used. For the training of model M2, the gradient

descent method was employed with the Adam optimiser. The mean squared

error (MSE) function was used to compute the model loss. 512 epochs with a

batch size of 64 were enough to reach satisfying accuracy. A learning rate of

10−4 was selected for the training. The training dataset split was the following:

78% for the training, 17% for the validation, and the remaining 5% for the

testing phase. In the context of the model training, the testing data corresponds

to training data that was taken out of the training process in order to directly

test the model efficiency. This gives a first glance at how effective is the trained

model, before using it for predictions in the 3 test cases 1.e, 2.c, and 3.d. In

order to increase the efficiency of the training, the data was shuffled randomly

at each epoch over the batch size.

The R2 score was used to compute the accuracy of the training. The latter

provided the satisfying training accuracy of 90.9% and validation accuracy of

90.4%. The training progress is shown in figure 6.12, including the loss and

accuracy evolution against the number of epochs during the training. The best

model was obtained at the 508th epoch. According to the graphs’ trends, a

longer training would have provided a slightly better training accuracy, however,

the model was intentionally not over-trained to avoid any over-fitting of the

training data.

After the training, the best version of model M2 was saved. During the

testing phase, the model M2 was reloaded and employed to perform predictions

170 Application to thin-film two-phase channel flows

on the same training, validation and test data. The R2 scores obtained were

92% with the training data, 89% with the validation data, and 87% on the test

data.

0 100 200 300 400 500

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

L
os

s

Train

Validation

Best validation loss

0 100 200 300 400 500

Epoch

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Train

Validation

Best validation accuracy

Figure 6.12 Training and validation loss (left) and accuracy (right) against the
number of epoches obtained during the training of the ML model M2

6.2.3 Model M2 prediction results and discussions

The model was reloaded again to perform on the three test cases 1.e, 2.c,

and 3.d. The results of the correction predictions are shown in figure 6.13 for

the three cases, with a representation of the qDNS correction profile (’True’)

and the profile predicted by model M2. The model M2 predicted the profile 1.e

with a R2 score of 92% and MSE of 0.22, the profile 2.c with a R2 score of 93%

and MSE of 0.24, and the profile 3.d with a R2 score of 95% and MSE of 0.19.

One could then expect to obtain the best results in case 3.d when employing

model 2 with the k − ω model. As the prediction made in case 2.c presented

the highest MSE, one could expect to see a less performing model in the flow

conditions of this case with the k − ω model.

6.2 Frozen correction field method 171

5 10

log(β)

0

2

4

6

8

10
y
/H

True

Predicted

5 10

log(β)

0

2

4

6

8

10

y
/H

True

Predicted

5 10

log(β)

0

2

4

6

8

10

y
/H

True

Predicted

Figure 6.13 Predictions of model M2 in test cases 1.e (left), 2.c (centre), and
3.d (right)

Following the process detailed in the flowchart of figure 6.10, the model M2

was then employed with the k − ω model in the three test cases 1.e, 2.c, and

3.d. The RANS simulations were performed on the same geometry used for the

corresponding qDNS cases but with a coarser mesh resolution. The 3 meshes

consisted of 16128 cells. No difference in computational times were observed

between the standard RANS simulations and the ML-informed ones. The pre-

dictions of the mean axial velocity, the absolute value of Reynolds stress, and

turbulent kinetic energy profiles in the gaseous phase are shown in figures 6.14,

6.15, and 6.16. The comparisons between the qDNS, the RANS with the stan-

dard k−ω model, and the RANS with the ML-informed model k−ω were made.

Overall, the predictions obtained by with the k − ω model coupled with

M2 are in very good agreement with the qDNS results. One observed the best

predictions in the case 3.d, for which the mean axial velocity, Reynolds stress,

172 Application to thin-film two-phase channel flows

and TKE predictions seemed the most accurate amongst all test results. In all

three cases, the mean axial velocity was slightly underestimated in the wall and

interfacial regions, and the same observation was made in the absolute value

of Reynolds stress profiles. The absolute value of the Reynolds stress profiles

were slightly underestimated across the channel. The TKE profiles were also

moderately under-predicted by the corrected model, and some disturbance were

noticed just above the interface. These disturbances were due to the way the

TKE was calculated and to the waviness of the interface. Indeed, the total

TKE was calculated such as: ktot = km + ks where km is the modelled TKE and

ks is the resolved TKE. While the modelled part of the total TKE is updated

after every iteration, the resolved part is obtained by calculating the trace

of the tensor u′
iu

′
j which is averaged over time and does not account for the

waviness of the interface.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M2-k − ω

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: stand. k − ω
2.c: M2-k − ω

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M2-k − ω

Figure 6.14 Comparison of the mean axial velocity profiles obtained in qDNS,
in RANS using the M2-informed k−ω model, and in RANS using the standard
k − ω model in cases 1.e (left), 2.c (centre), and 3.d (right)

6.2 Frozen correction field method 173

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0
(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M2-k − ω

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)
2.c: qDNS

2.c: stand. k − ω
2.c: M2-k − ω

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M2-k − ω

Figure 6.15 Comparison of the absolute values of Reynolds stress profiles
obtained in qDNS, in RANS using the M2-informed k−ω model, and in RANS
using the standard k − ω model in cases 1.e (left), 2.c (centre), and 3.d (right)

10−3 100

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M2-k − ω

10−3 101

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: stand. k − ω
2.c: M2-k − ω

10−3 101

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M2-k − ω

Figure 6.16 Comparison of the TKE profiles obtained in qDNS, in RANS using
the M2-informed k − ω model, and in RANS using the standard k − ω model
in cases 1.e (left), 2.c (centre), and 3.d (right)

174 Application to thin-film two-phase channel flows

The profiles predicted in case 2.c were the less accurate, as it was expected

from the tests made prior the simulation. Note that the slightly less accurate

results obtained in 2.c might also be due to less accurate predictions of the

correction source term by the qDNS obtained for the lowest Reynolds numbers.

The RMSE of the mean axial velocity, Reynolds stress, and TKE profiles in

the gaseous phase between the standard k−ω model and the qDNS predictions,

and between the M2-informed k − ω model and the qDNS predictions were

also calculated. The results are shown in table 6.5 and confirmed the previous

observations made on the best performance of the model in the test cases.

Table 6.5 RMSEs of the standard ("Stand.") and the ML-informed ("M2")
models

Case name 1.e 2.c 3.d

Model M2 Stand. M2 Stand. M2 Stand.

RMSE ūx (m/s) 0.29 1.85 0.35 1.70 0.28 2.00

RMSE Ruv (m2/s2) 0.0262 1.62 0.0174 1.64 0.0165 2.48

RMSE k (m2/s2) 0.11 5.12 0.10 4.89 0.10 7.16

The machine learning model M2 was found to provide appropriate correc-

tions for the three test cases 1.e, 2.c, and 3.d with only quick training on few

data using simple inputs flow features that are easily accessible and calculated

for the predictions. However, three main weaknesses can be reported through

the use of model M2:

• The frozen field method was not adapted for the calculation of the

total TKE in the present test cases showing wavy interface patterns

6.3 Adaptive correction field method 175

and demonstrated once again the need of an updated correction as the

simulation progresses.

• The model can only work in closed channel configurations one of its four

inputs includes distance from the top wall.

• The distance from the mean interface level is not an accurate quantity

when investigating wavy films.

6.3 Adaptive correction field method

In order to increase the portability of the model M2 and improve the

predictions of TKE in the interfacial region, an other machine learning model

"M3" was implemented, using an adaptive correction method, and without the

use of any geometry-dependant input features.

6.3.1 Process description

As it was discussed in the section 5.4 of chapter 5, providing an updated

correction field for the ω transport equation would account for the waviness of

the interface. The machine learning model M3 was developed and employed in

order to do so, thanks to automatisation scrips (c.f. appendix A.2), which made

the ML model produce new predictions at regular intervals in order to adapt

to the change in interface levels, and apply the correction in the ω transport

equation. Every n iterations, the model M3 makes new predictions of the

correction budget Sω to inform the k − ω model, as the simulation progresses.

Note that more frequent ML predictions are needed for flows with shorter wave

periods and larger wave amplitudes. In the present study, no methodology

was developed to automatically set up the prediction frequency and it was set

176 Application to thin-film two-phase channel flows

manually depending on the case investigated and the flow pattern obtained in

qDNS. Every time a new prediction is made, the model corrects itself as the

simulation progresses, and all modelled quantities adapt and converge towards

the corrected solution. The process of a RANS simulation using the model M3

is presented in a flowchart in figure 6.17

Figure 6.17 Flowchart of the process of a RANS simulation carried out with the
M3-informed k−ω turbulence model and the adaptive correction field method

6.3.2 Implementation of a new machine learning model:

model M3

Model M3 structure and training

The training Python notebook of model M3 is available in appendix A.3.

M3 was implemented using the PyTorch library with a similar neural network

6.3 Adaptive correction field method 177

as model M2, also with four inputs features, and the same correction output.

This time the distance from the wall was not used in order to improve the

portability of the model, which ideally could also be used in open channel

configurations. As the M3 model was used in the context of an adaptive method,

the distance from the mean interface levels was also not used, as it is not an

accurate measurement in wavy flows and that remains constant in time. The

input based on the phase Reynolds number input was replaced by the axial

velocity for the same reason, as the phase Reynolds number is calculated by

use of the mean thickness of each phase. The input based on the phase volume

fraction of the primary phase α remained unchanged. The four inputs and one

output of model M3 are:

• η1 = αux,l + (1 − α)ux,g

• η2 = α

• η3 = ||∇α||

• η4 = αktot,l + (1 − α)ktot,g

• β = Sω

The input η3 corresponds to the magnitude of the gradient of the primary

phase volume fraction. This input was added in order to give the ML model a

view on the location of the interface. The distance from the real time interface

level would be the base of an ideal input, although, the implementations that

were made to solve it appeared to impact the simulation times unreasonably.

The input η4 is the phase turbulent kinetic energy and was used for its sensi-

tivity towards the presence of interfaces and walls. This quantity also adapts

to the changes in interface levels as the simulation progresses.

178 Application to thin-film two-phase channel flows

0 2 4 6
0

500

1000

1500

η1

0.0 0.5 1.0
0

2500

5000

7500

10000

η2

0 5000 10000 15000
0

5000

10000

η3

0.00 0.25 0.50 0.75
0

1000

2000

3000

η4

5 10
0

2000

4000

6000

log(β)

Figure 6.18 Histogram of the inputs and output used in the training of the ML
model M3

Figure 6.18 shows the histogram of these four input features and the one

output feature (log scale). This time, in order to increase the size of the

training dataset, 1001 interpolated point values from the qDNS were employed

for each of the five features, and were measured vertically in the channel.

Unlike the distribution of the phase Reynolds number inputs of the model M2,

the velocity-based new input η1 allows for a distribution without gaps in the

training, fully covering the studied range. As the input η3 is expected to be

zero in the whole domain except around the interface, its distribution is very

6.3 Adaptive correction field method 179

unbalanced. η4 shows a normal-like distribution without gaps. The fifteen

qDNS cases are represented in figure 6.19 showing the mean axial velocity

profiles and corresponding correction source term profiles calculated in qDNS.

The axis of abscissa is the count of interpolated points. The three test cases

1.e, 2.c, and 3.d excluded from the ML training are boxed in red.

Figure 6.19 Illustration of the qDNS dataset in terms of mean axial velocity
(m/s) and log10 correction source term (s−2) including the test cases 1.e, 2.c,
and 3.d highlighted in red

The statistics of the training dataset are provided in table 6.6. The training

dataset was standardised in order to scale the data in the same range before

the training. The statistics after the standardisation for the model M3 are

given in table 6.7. In total, the training dataset contained 5 × 1001 × 12 values

i.e. 5×12012 values.

180 Application to thin-film two-phase channel flows

Table 6.6 M3 training data statistics before standardisation

Feature Count µ σ Min Max

η1 12012 3.5420 1.8566 -0.0107 6.459

η2 12012 0.1455 0.3520 0.0000 1.000

η3 12012 38.611 613.01 0.0000 15296

η4 12012 0.0097 0.0068 0.0000 0.024

log(β) 12012 4.2372 1.7995 0.9293 13.14

Table 6.7 Standardised data statistics used for the training of model M3

Feature Count µ σ Min Max

η1 12012 -1.1·10−7 1.000040 -1.91 1.57

η2 12012 -2.0·10−6 1.000096 -0.41 2.43

η3 12012 -2.1·10−7 1.000018 -0.06 24.9

η4 12012 -5.7·10−8 1.000041 -1.13 7.62

log(β) 12012 -6.9·10−8 1.000040 -2.65 7.14

The neural network of M3 consisted of a first input layer of 4 input neurons,

two hidden layers of 512 neurons and one output layer of 1 output neuron. The

number of neurons per hidden layer was doubled in comparison to M2’s neural

network in order to reach a higher training accuracy faster. Similarly to model

M2, ReLU activation functions were used, the gradient descent method was

employed with the Adam optimiser and a learning rate of 10−4, and the MSE

function was used for the loss. This time, 1024 epochs with a batch size of 64

were carried out in order to reach satisfying accuracy. The training dataset was

split such as 78% of the data were used for the training, 17% for the validation,

and the remaining 5% for the testing phase, similarly to the split carried out

in the training of M2. Moreover, the data was randomly shuffled at each epoch

6.3 Adaptive correction field method 181

over the batch size.

The training accuracy obtained was 83.6% and the validation accuracy of

87.6%. The evolution of the training is shown in figure 6.20 using the loss

and accuracy against the number of epochs carried out. The best model was

obtained epoch number 982. During the testing phase of model M3, the R2

scores obtained were 86% with the training data, 87% with the validation data,

and 81% with the test data.

0 200 400 600 800 1000

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

L
os

s

Train

Validation

Best validation loss

0 200 400 600 800 1000

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Train

Validation

Best validation accuracy

Figure 6.20 Training and validation loss (left) and accuracy (right) against the
number of epochs obtained during the training of the ML model M3

6.3.3 Model M3 prediction results and discussions

The model was reloaded to perform on the three test cases 1.e, 2.c, and

3.d. The results of the predictions are shown in figure 6.21 for the three test

cases. The profile 1.e was predicted with a R2 score of 70% and MSE of 0.36,

the profile 2.c with a R2 score of 87% and MSE of 0.21, and the profile 3.d

with a R2 score of 87% and MSE of 0.22.

182 Application to thin-film two-phase channel flows

Figure 6.21 Predictions of model M3 in test cases 1.e (left), 2.c (centre), and
3.d (right)

The newly implemented ML model M3 was coupled with the RANS simula-

tions with a Python shell script. The shell script is employed to:

• Call OpenFOAM functions to initialise and run the simulation;

• Execute a secondary script to pre-process the data for the ML model

before every new ML prediction;

• Convert the prediction notebook that contains the saved ML model M3

into a Python executable;

• Execute the Python executable to make the new predicted correction

field, rescale it, and write it as a readable source in the OpenFOAM

simulation directory;

• Resume the simulation after every prediction made by M3.

6.3 Adaptive correction field method 183

The process of ML pre-processing, ML prediction, and ML post-processing

lasted ≈ 6 seconds during a RANS simulation employing a coarse mesh of 8064

cells, ≈ 8 seconds when using a 16128 cell mesh, and ≈ 12 seconds using a

finer mesh of 32256 cells. Therefore, the trend showed that approximately two

additional seconds were needed to the process when increasing the mesh by

8064. Within this process, the ML prediction is almost instantaneous, and

the most time consuming step is the reading and writing of the data before

and after the prediction. Table 6.8 shows the simulation times tsim that the

M3-informed k − ω model took to simulate 1 physical second (p.s.) of the flow

using one core for different prediction frequencies fpred of M3, compared to the

simulation time of the standard k−ω model (Std.). Those times were recorded

on tests carried out in case 2.c with the 16128 cell mesh.

Table 6.8 Simulation times of the M3-informed model

Simulation/Model fpred (1/s) tsim (s) Comparison to Std. Comparison to qDNS

qDNS. - 51463 ×29 -

Std. - 1796 - ÷29

M3 1/0.050 1935 ×1.1 ÷26

M3 1/0.020 2128 ×1.2 ÷24

M3 1/0.010 2564 ×1.5 ÷19

M3 1/0.005 3736 ×2 ÷14

As expected, increasing the prediction frequency also increased the simula-

tion times. Every time the frequency was doubled, the difference between the

standard model simulation time and the M3-informed model simulation time

was doubled as well.

184 Application to thin-film two-phase channel flows

Figure 6.22 shows the evolution of the axial velocity and predicted correction

source profiles across the channel vertically as the simulation progresses in case

1.e. The first predicted correction source was applied after the initialisation

time at t = 0.02 s. The plots located to the right of the figure correspond to

the converged solution (t = tend).

Figure 6.22 Evolution of the corrected axial velocity (first row) and predicted
(second row) source using the M3-informed k − ω model

The coupling of M3 with the k − ω model was tested in the three test cases

1.e, 2.c, and 3.d using the 16128 cell mesh. A prediction frequency of 1/0.02

s−1 was employed for cases 1.e and 2.c and of 1/0.01 s−1 for case 3.d. The

predictions of the mean axial velocity, the absolute value of Reynolds stress, and

6.3 Adaptive correction field method 185

turbulent kinetic energy profiles in the gaseous phase are shown in figures 6.23,

6.24, and 6.25. The predictions obtained with the coupling between the k − ω

model and the ML model M3 appeared to surpass model M2 performances.

The M3-informed model’s predictions were particularly improved compared to

the M2-informed model in the wall and interface regions in which the absolute

value of the Reynolds stress and TKE profiles were closer to the qDNS results.

The disturbance that was visible in the TKE profiles obtained with the M2

model were no longer visible with M3. The predicted axial velocity agreed

particularly well with the qDNS in cases 1.e and 3.d. The Reynolds stress

and TKE predictions were also in very good agreement with the qDNS results.

The TKE profile was slightly underestimated across the channel height in case

2.c, although, the waviness of the interface appeared to have been accounted

thanks to the adaptive correction process, and for the three test cases.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M3-k − ω

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: stand. k − ω
2.c: M3-k − ω

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M3-k − ω

Figure 6.23 Comparison of the mean axial velocity profiles obtained in qDNS,
in RANS using the M3-informed k−ω model, and in RANS using the standard
k − ω model in cases 1.e (left), 2.c (centre), and 3.d (right)

186 Application to thin-film two-phase channel flows

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M3-k − ω

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: stand. k − ω
2.c: M3-k − ω

10−6 10−3 100 103

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M3-k − ω

Figure 6.24 Comparison of the absolute value of Reynolds stress profiles obtained
in qDNS, in RANS using the M3-informed k − ω model, and in RANS using
the standard k − ω model in cases 1.e (left), 2.c (centre), and 3.d (right)

10−4 10−1 102

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M3-k − ω

10−4 10−1 102

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: stand. k − ω
2.c: M3-k − ω

10−4 10−1 102

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: stand. k − ω
3.d: M3-k − ω

Figure 6.25 Comparison of the TKE profiles obtained in qDNS, in RANS using
the M3-informed k − ω model, and in RANS using the standard k − ω model
in cases 1.e (left), 2.c (centre), and 3.d (right)

6.3 Adaptive correction field method 187

The RMSEs of the mean axial velocity, Reynolds stress, and TKE profiles

between the qDNS and the two RANS standard and M3-informed turbulence

models are presented in table 6.9 for the three test cases. The evolution of the

RMSE calculated for each of the previously mentioned quantities is also pro-

vided in comparison with the previous RMSEs obtained with the M2-informed

model. A down arrow identifies as a smaller error obtained with M3, and an

up arrow as an increase of the error.

Table 6.9 RMSEs of the standard ("Stand.") and M3-informed ("M3") models
and evolution ("Evol.") of RMSEs in comparison with results of M3

Case name 1.e 2.c 3.d

Model Ev. M3 Stand. Ev. M3 Stand. Ev. M3 Stand.

RMSE ūx (m/s) ↘ 0.10 1.85 ↗ 0.36 1.70 ↘ 0.16 2.00

RMSE Ruv (m2/s2) ↘ 0.007 1.62 ↘ 0.016 1.64 ↘ 0.009 2.48

RMSE k (m2/s2) ↘ 0.07 5.12 = 0.10 4.89 ↘ 0.07 7.16

Overall, the new M3 model used with the adaptive method enabled better

results than with M2 and the frozen field method in the test cases. The case

2.c showed similar results in terms of RMSEs, despite improved predictions

near the interface and upper wall. The corrected model performed best in

case 1.e, even though this case was predicted with the lowest test accuracy

during the test phase of the training. This demonstrates that despite the model

ability to predict corrections as it was trained to, the quality of the training

is important. Figure 6.19 showed indeed that some Sω correction profiles

obtained in qDNS and used in the training (profiles of cases 1.a, 2.a, and 3.a

specifically) showed disturbance and may need to be excluded from the training.

188 Application to thin-film two-phase channel flows

To conclude, the k − ω turbulence model employed with the adaptive

method and coupled with the M3 machine learning model achieved very good

predictions of the quantities of interest in comparison with the standard k − ω

model. In order to better appreciate the great improvement provided by the

corrected RANS model, figure 6.26 shows the Reynolds stress and TKE profiles

obtained in RANS with the standard and corrected models, and in qDNS, using

linear scales for the x−axis, in case 1.e.

−3 −2 −1 0

Ruv (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M3-k − ω

0 2 4 6 8

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0
(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: stand. k − ω
1.e: M3-k − ω

Figure 6.26 Comparison of the Reynolds stress (left) and TKE (right) profiles
obtained in qDNS, in RANS with the M3-informed k − ω model and the
standard k − ω model, for case 1.e using linear scales

6.3.4 Test of model M3 in an open channel

The M3-informed k−ω model was then employed with the adaptive method

in an "open channel" configuration, by setting the top wall BC as a slip-wall

BC. The mesh employed in this configuration was similar to the ones used in

the previous cases except this time the slip-wall region did not require any grid

refinement. The RANS simulation of a thin-film flow using the flow regimes

6.3 Adaptive correction field method 189

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

(y
−
h̄

)/
(H
−
h̄

)

qDNS

stand. k − ω
M3-k − ω

10−15 10−9 10−3

|Ruv| (m2/s2)

0.0

0.2

0.4

0.6

0.8

(y
−
h̄

)/
(H
−
h̄

)
qDNS

stand. k − ω
M3-k − ω

10−11 10−5

k (m2/s2)

0.0

0.2

0.4

0.6

0.8

(y
−
h̄

)/
(H
−
h̄

)

qDNS

stand. k − ω
M3-k − ω

Figure 6.27 Comparison of the mean axial velocity (left), absolute value of
Reynolds stress (centre), and TKE (right) profiles obtained in qDNS and in
RANS using the M3-informed k−ω model and the standard k−ω model cases
3.d with a slip BC at the top wall

described in case 3.d was carried out with the M3-informed k − ω model and

the adaptive correction method. The predictions obtained for the axial velocity,

the absolute value of the Reynolds stress, and the TKE profiles are shown in

figure 6.27. The M3-informed model under-predicted the three quantities in the

interfacial region. The Reynolds stress and TKE were in very good agreement

with the qDNS in the rest of the channel. The axial velocity profile was slightly

shifted upwards, resulting in an over-prediction of the values in the centre of

the gaseous phase.

Despite the significant margin of improvement of the corrected model pre-

dictions, the standard k − ω model was outperformed by the M3-informed

model employed with the adaptive correction method. This was highlighted by

the calculated RMSEs between the qDNS predictions and the corrected and

190 Application to thin-film two-phase channel flows

standard k − ω models, presented in table 6.10.

Table 6.10 RMSEs of the M3-informed model ("M3") compared to the standard
model ("Stand.") in the open channel configuration

Model M3 Stand.

RMSE ūx (m/s) 0.33 1.24

RMSE Ruv (m2/s2) 0.01 0.02

RMSE k (m2/s2) 0.07 0.11

6.4 Conclusions and discussions

In this chapter, two machine learning models to inform the k−ω turbulence

model were implemented in order to carry out RANS simulations of thin-film

flows. The high-fidelity qDNS simulations which were carried out to obtain the

training dataset of the two machine learning models that were introduced. The

qDNS results were compared against the existing experiments of Hann and

Kim [54][76] on thin-film flows in a horizontal, rectangular, and closed channel.

The high-fidelity results were in very good agreement with the experiments.

This demonstrated that the computational domain simplifications with periodic

boundary conditions enabled the production of high-quality qDNS data at least

computational cost.

The new machine learning models were employed to inform RANS k − ω

simulations in three test cases of thin-film flows in a horizontal and closed

channel. The qDNS solutions of these test cases were excluded from the training

of the two machine learning models, and they featured flow conditions that

6.4 Conclusions and discussions 191

were covered by the range of the training.

The frozen field correction method introduced in chapter 5 was then reem-

ployed with a new machine learning model "M2" and performed for the RANS

k − ω simulations of the three test cases. The model M2 used four flow input

features to predict the ω budget correction Sω, which were based on flow

characteristics that are known at the simulation initialisation or based on the

geometry of the channel. Good agreement between the M2-informed k − ω

model and the qDNS predictions were obtained. However, as this method

does not account for the waviness of the interface, some disturbances were

observed in the region above the interface in the TKE profiles. Moreover, the

M2-informed model under-predicted the axial velocity, absolute value of the

Reynolds stress, and the TKE profiles in both the top wall and interfacial

regions. The predictions obtained by the corrected model were still showing

great improvements in comparison with the standard k − ω turbulence model.

In order to account for the disturbances observed in the interfacial regions

and the slight under-predictions of the profiles by the corrected model in the

interface and top wall regions, an adaptive correction field method was imple-

mented as well as a new machine learning model "M3". The model was also

implemented in a way that no input features depended on geometry character-

istics such as the distance from the wall in the model M2. It was also ensured

that no input depended on inaccurate quantities such as the distance from the

mean interface level in wavy film conditions, which was used in the model M2.

The adaptive correction field method was employed for RANS simulations of

the three test cases using the k−ω turbulence model coupled with the machine

learning model M3. The new method enabled the elimination of the distur-

bances originally observed in the interfacial region and the predictions of the

192 Application to thin-film two-phase channel flows

axial velocity, Reynolds stress, and TKE profile across the channel were overall

in better agreement with the qDNS than the predictions made using the frozen

field correction method. It was observed that the use of the adaptive method

increased the RANS simulation times in different ways depending on the fre-

quency of the model prediction needed by the simulation. The test cases showed

reasonable increases in the simulation times when using the M3-informed model,

in comparison with a standard RANS: from approximately 18 to 43% of increase.

Despite the high accuracy obtained during the testing phase of the machine

learning models, some differences with the qDNS were still observed for one

of the three test cases, in which the Reynolds employed was the lowest. The

RMSEs of the velocity, Reynolds stress and TKE profiles remained significantly

larger in this case than the ones calculated in the two others cases. This

observation might indicate that some of the training data was not adapted,

particularly in low Reynolds cases.

The adaptive method with the model M3 were also tested for the RANS

simulation in one of test cases in an "open channel" configuration. The pre-

dictions made by the corrected model showed significant improvements in

comparison with the standard model predictions. Although results were not

perfect, the test demonstrated the potential of the adaptive method coupled

with a machine learning trained with geometry-independent inputs. In order to

improve the results in the open channel configuration, some cases with larger

channel heights could be included in the training, or even cases using both the

slip and non slip wall BC at the top of the channel.

Chapter 7

Conclusions and future work

7.1 Conclusions

7.1.1 Summary of the work

The aim of this research project was to develop new strategies for the pre-

diction of two-phase flows and more particularly for the prediction of co-current

stratified gas-liquid shear flows with large scale sharp interfaces encountered

in aero-engine bearing chambers. The present work focused on improving an

existing low order RANS CFD model, the k − ω turbulence model, which is

widely used in the industry to serve engineering and design purposes. The

main objective of the research was to address the inability of this averaged

turbulence model to predict appropriate interfacial turbulence levels in two-

phase shearing flows, due to the high velocity gradients across the interface.

The over-prediction of the interfacial turbulence levels by the standard k − ω

model leads to inaccuracies in the prediction of the film thickness. Predicting

the film distribution in aero-engines bearing chambers is required to ensure

the good lubrication of the engine and to avoid oil burning and coking, which

could have important repercussions on the engine operation. Therefore, it is

194 Conclusions and future work

essential to address the CFD averaged model’s weakness to correctly predict

interfacial turbulence levels, wall shear, and hence transfer.

After having carried out a review of the existing numerical methods to

account for the standard RANS model’s overestimation of the interfacial tur-

bulence production, the Egorov method was found to address this issue, by

adding destruction source term in the specific turbulence dissipation rate ω

transport equation of the RANS k−ω turbulence model. However, this method

requires to manually set a damping parameter in order to adjust the turbulence

dissipation intensity, without any proper guidelines, despite many different

recommendations have been produced by researchers in various contexts. More-

over, the Egorov method is based on the assumption that the heavier phase

can be seen as a wall by the lighter phase. However, this method was found

to be valid in smooth interface flow configurations only, while the film flows

observed in bearing chambers show wavy interface patterns.

In order to be able to develop new methods to inform the averaged CFD

models’ interfacial turbulence, the open source CFD code OpenFOAM was

chosen to perform all the simulations needed. The two main multiphase meth-

ods available in OpenFOAM, namely the volume of fluid method and the

Euler-Euler method, were compared in thick-film flow configurations by means

of large eddy simulations. Results were compared to the existing experimental

results obtained by Fabre et al. on the stratified air-water flow in a horizontal

and rectangular channel. The VOF method appeared to perform better than

the Euler-Euler method for this type of flow, providing predictions closer to the

experiments and significantly shorter computational times. The VOF method

7.1 Conclusions 195

was then employed for all the simulations carried out in the research.

In order to investigate the two-phase flow more in detail, quasi-DNS simula-

tions of the thick-film were conducted in the horizontal channel. A simplification

of the channel using cyclic boundary conditions in the flow stream and spanwise

directions was performed, based on an autocorrelation study of the fluctuation

velocities in the two cyclic directions. This allowed for the saving of computa-

tional resources, reducing computational times significantly without altering

the quality of the solution. A vortex identification analysis was also carried

out using Q-criterion and vorticity magnitudes and results illustrated well the

turbulent cascade of energy dissipation from the large turbulent scales, near

the walls and above the interface towards the centre of the gaseous phase, and

near the bottom wall towards the centre of the liquid phase. This supported

the predicted turbulent kinetic energy profiles.

Next, a methodology to inform the standard RANS k − ω model’s inter-

facial turbulence levels was developed. It consisted in the adjustment of the

budget of the transport of ω in the standard k − ω model by the addition of a

correction source term calculated in high-fidelity simulation. The correction

source term was injected in the transport equation as a "frozen correction field".

The high-fidelity-informed added source term showed to be sufficient to drive

the model predictions towards the reference solutions in the thick-film flow

configuration studied beforehand. A total of four cases were tested using this

method, at low and high gas speed, in both a closed channel (top wall non-slip

boundary condition) and an open channel configuration (top wall slip boundary

condition). The low speed gas regime generated a smooth interface pattern and

the faster regime generated a wavy film pattern. The results obtained in the

196 Conclusions and future work

smooth interface regime were very satisfying, supporting the frozen correction

field method to be employed with the RANS k − ω model. In the wavy film

regime, the results were overall in very good agreement with the high-fidelity

solution, however, more inaccuracies were detected near the interface. In com-

parison to the standard model predictions, great improvements were shown in

both regimes and both channel configurations. The decrease in accuracy of the

qDNS informed model in the interfacial region in the wavy film regime was

assumed to be due to the absence of adaptation of the implemented method.

A simple machine learning model based on a feed forward neural network was

trained to predict the frozen correction field using simple flow features inputs

that are available from the initialisation of the RANS simulation. The model

was trained with the qDNS data obtained in both flow regimes in the closed

channel configuration. The machine learning model performed a correction

field prediction in the smooth interface flow regime, which was applied into

the ω transport equation. The k − ω model informed by the ML model’s

correction prediction produced nearly identical results as the qDNS-informed

k − ω model, demonstrating the feasibility of the concept i.e. being able to

predict an appropriate correction field for the budget of specific turbulence

dissipation rate in the k − ω turbulence model, within a particular training

framework.

The following step consisted in building a reasonably extensive dataset for

the training of future machine learning models to be used in thin-film flow

conditions, including wavy film patterns. The quasi-DNS of 15 cases based on

the experimental work of Hann and Kim on thin-film flows in a horizontal and

rectangular closed channel were carried out to provide the training data. The

15 cases covered 5 different gas flow rates and 3 liquid flow rates, constituting

7.1 Conclusions 197

a fairly mixed set of flow conditions. The computational domain simplification

methodology carried out in the thick-film configuration was reproduced for

the 15 cases in order to perform qDNS as reasonable computational costs.

The budget of transport of ω was calculated in each case and provided the

output of the implemented machine learning models during the training phase.

The qDNS results were validated by the experiments and the 15 cases were

separated in a training group of 12 cases and a test group of 3 cases. This

enabled the test of the machine learning models on unseen data. Two machine

learning models employed with two methods for the correction of the transport

of specific turbulence dissipation rate budget were developed:

• The frozen correction field method was first employed with a newly

implemented machine learning model called "M2" based on a feed forward

neural network using four inputs known at the start of a RANS simulation:

one was based on the phase Reynolds number, one on the liquid volume

fraction distribution, one on the distance from the mean interface level,

and one on the distance from the walls. A high training and validation

accuracy was achieved during the training phase of M2 allowing for very

good predictions of the frozen correction field to be applied into the ω

transport equation. The results obtained when informing the k−ω model

with M2 predictions as a frozen correction field showed great improvements

in comparison with the standard k − ω model. More specifically, quasi-

symmetric axial velocity profiles were predicted with the corrected model,

matching the qDNS results, unlike the profiles predicted by the standard

turbulence model which are shifted towards the upper part of the channel

in the gas. Underestimations of the axial velocity, absolute value of

Reynolds stress, and turbulent kinetic energy profiles were observed in

the M2-informed model in the interfacial region and in the upper wall

198 Conclusions and future work

region. Besides, some disturbances in the interfacial turbulent kinetic

energy profiles predicted by the corrected model were also detected. The

cause of the under-predicted values and the disturbances observed in the

interfacial region was assumed to be associated with the frozen character

of the correction applied to the model which does not account for the

waviness of the interface as previously noticed in the proof of concept

of the same method, but also the use of time averaging methods and

unreliable inputs used by M2 like the distance from the mean interface

level, which are not adapted to wavy films.

• An adaptive correction field method was therefore implemented in order

to provide updated predictions for the ω transport equation as frequently

as required according to the wave frequency and amplitude of the film.

The method was developed along with a new ML model "M3", which

input features are computable at any time while the simulation progresses

for the ML model M3 to be able to perform the prediction update of

the correction field. The profiles predicted by the M3-informed k − ω

model used with the adaptive correction field method were in very good

agreement with the qDNS results. The former disturbances seen in the

turbulent kinetic energy profiles in the interfacial region were no longer

observed and less underestimation of the quantities were noticed in the

top wall and interface areas. The calculated RMSEs between the qDNS

and the M2-informed k − ω model, and between the qDNS and the M3-

informed k − ω model highlighted this improvement and also emphasised

the k − ω enhancement in comparison with the standard model. The

newly developed adaptive method appeared to increase the simulation

times accordingly to the chosen frequency of the predictions to be made

by the ML model. For the tested cases, a prediction frequency of one

7.1 Conclusions 199

every 2 ms to one every 1 ms was enough to obtain satisfying results,

resulting in an increase of the simulation time by 18 to 43% in comparison

with the standard k − ω model. Finally, the method was employed in

an open channel configuration in order to test the portability of the ML

model M3, as it was implemented free of geometry-dependent inputs.

Results showed significant improvements in comparison with the standard

model performance, despite flawed predictions of the velocity profile,

which appeared slightly shifted upwards in comparison with the qDNS.

The implemented adaptive correction field method employed with a more

portable machine learning model like M3 demonstrated the potential of the

use of machine learning to inform averaged models without exacerbating the

computational times.

7.1.2 Key contributions

The key contributions provided in this thesis can be listed as follows:

• Experimentally validated high-fidelity qDNS simulation datasets were

generated for the training of machine learning models to inform lower

order RANS models.

• Two correction methods namely the "frozen field" and "adaptive" correction

methods were implemented in order to inform the interfacial turbulence

in the standard RANS k − ω model

• The two methods were employed for applications with several trained

machine learning models to inform the interfacial turbulence in stratified

two-phase channel flows simulations carried out with the RANS k − ω

model for two flow configurations (thick and thin films) in two channel

geometries (closed and open)

200 Conclusions and future work

• Excellent agreements with the experimental and high-fidelity data were

obtained using both methods in the two film configurations, however

limitations with still good results were noticed in the open channel

geometry as it falls outside of the machine learning model’s training

framework. Note also that the frozen field correction method allows for

the best results in the smooth interface regime.

7.2 Recommendations for future improvements

Optimising the coupling OpenFOAM–PyTorch

Despite the higher training and validation accuracy of M2 employed with

the frozen correction field method, improved results were obtained using M3

with the adaptive correction method, demonstrating that it is essential to

account for the film waviness. Therefore, a method in which a prediction

update of the correction field at each iteration would be ideal. However, this

would imply an excessive increase in computational costs. The prediction

update phases carried out during the adaptive correction method include the

pre-processing data reading and writing, the model prediction, and the post-

processing data writing. Those pre and post-processing steps account for

the greater computational times of the prediction update phases. Therefore,

the optimisation of those steps is essential in order to reduce the simulation cost.

The integration of the machine learning model within the OpenFOAM

turbulence model’s source code was considered by using the C++ API of

PyTorch instead of the currently used Python API. The embedded model

might perform the whole prediction process faster than when using a python

shell script. However, this method was not yet tested because of a lack of time.

7.2 Recommendations for future improvements 201

Enhancing the machine learning model performances

In order to improve the portability of the machine learning models, dimen-

sionless inputs could be used. This would allow for the use of the model in

similar flow regimes as the ones that were included in the training, but in new

flow and geometry configurations.

An input based on the distance from the real time interface level would

be a real asset to the machine learning model, as it is a very well distributed

quantity as seen on the similar distribution of the distance from the mean

interface level. Attempts to compute the real time distance from the interface

in OpenFOAM were made using the interfaceHeight function object with

measurement probes generated in every mesh cell in order to capture the inter-

face distances in all mesh coordinates. However, the estimation of the real time

interface distances from every mesh cell with this method was an excessively

long task and consequently, it was omitted. Instead, the distances from the

mean interface level were used.

Improving the training data

It was observed that despite the very high test accuracy produced by the

implemented machine learning models, the predicted corrections made in one of

the test cases did not produce results quite as good as the ones obtained in the

other cases. This could easily be explained by a poorer quality training data

provided by part of the qDNS simulations. A different averaging methodology

is proposed in order to improve the quality of the training for future research.

It consists in carrying out a phase averaging instead of a time averaging, and

the process would be the following:

202 Conclusions and future work

• The wave period and wave length of the wavy interface must acquired

first, using for example the Fourier decomposition of the time series of

interface level variations to find the physical natural frequency

• Multiple vertical measurement probes are then placed in the flow stream

direction over one wave length, in order to write the data of interest every

wave period. This allows for the generation of multiple datasets of a

"frozen image" of the two-phase flow, corresponding to the same phase

• As the written data are all supposed to capture the same wave phase,

the averaging operation can now be applied over the written data on the

quantity of interest.

Consequently, it will prevent from any diffusion of the fields when time

averaging around the interface, and result in an improvement of the quality of

the training data. Note that this methodology would only work for 2D wave

flow regimes.

Even though it was observed that only 2D wave patterns could be obtained

when using cyclic condition in the spanwise direction, 3D wave flow regimes

could be incorporated to the training data by carrying out high-fidelity sim-

ulations in rectangular channels with non-slip side walls. Experimental data

could theoretically be added to the training dataset but one must beforehand

implement an accurate and easy method to calculate the ω transport budget

currently used as the output of the developed machine learning models.

Another way to improve the training data is evidently to expend the range of

flow conditions to include in the dataset. This means that more flow geometries

7.2 Recommendations for future improvements 203

(channel heights, film thicknesses) and/or more flow regimes (lower and higher

gas and liquid Reynolds) must be investigated in high-fidelity simulations.

Further work on the adaptive correction method

In the adaptive correction method, the frequency of prediction of the

correction field is currently set manually in the simulation settings: the Python

shell script triggers the OpenFOAM solver and the latter stops after the selected

writing interval using the keywork nextWrite. A guidelines table could be

produced in order to know in advance the optimal update frequency depending

on the flow regime, similarly to the pattern map introduced by Andritsos and

Hanratty for the identification of the interface pattern according to the film

and gas superficial velocities.

Application to other averaged models

It was reviewed in the numerical work of Federix et al. that the weakness of

the k−ω model in over-predicting the interfacial turbulence levels in two-phase

shearing flows is also shared by the k − ε model. One could then apply the

methods developed for the k − ω model to the k − ε model by introducing a

correction source term for the transport of the turbulence dissipation rate ε.

Similar developments could also be provided to the k − ω SST model in

order to benefit from the modelling advantages of both the k − ω model in the

near wall regions and of the k − ε in the flow stream.

The possibility in providing relevant corrections for transition models such

as the γ−Reθ model was not yet investigated, although could be also of interest

for two-phase flow regimes in which both turbulent and laminar flow conditions

204 Conclusions and future work

are present, while the standard k − ω and k − ε models are unable to provide

appropriate predictions in laminar flows.

Application to new geometries

The test of model M3 in an open channel configuration investigated in

section 6.3.4 demonstrated the potential of the methodology developed and the

ability of the ML-enhanced model to adapt to unseen geometries. Therefore, it

would be interesting to employ the same methods to model two-phase flows in

other types of geometry, such as modelling annular flows or stratified flows in

circular pipe channels for instance.

Figure 7.1 Two-phase flow in periodic section of bearing chamber with boundary
conditions (BC)

Finally, with the aim to correctly model the shear flows present in a true aero-

engine bearing chamber, the developed methods could be tested in intermediate

geometries. More elaborate versions of the horizontal channel investigated in

this thesis could be tested, such as a periodic section of a rectangular channel

with curved bottom and top walls and without gravity force, as illustrated

in figure 7.1. Next, the ML-enhanced model could be tested in a simplified

7.2 Recommendations for future improvements 205

version of a full-scale bearing chamber similar to the geometry employed by

Bristot et al. [15] presented in chapter 3 (figure 3.7).

List of publications

Published work:

Bertolotti, L, Jefferson-Loveday, R, Ambrose, S, and Korsukova, E. "A

Comparison of VOF and Euler-Euler Approaches in CFD Modelling of Two-

Phase Flows With a Sharp Interface." Proceedings of the ASME Turbo Expo

2020: Turbomachinery Technical Conference and Exposition. Volume 2C:

Turbomachinery. Virtual, Online. September 21–25, 2020. V02CT35A018.

ASME. (2021).

http://doi.org/10.1115/GT2020-14681.

Bertolotti, L., Jefferson-Loveday, R., Ambrose, S., and Korsukova, E. "A

Comparison of Volume of Fluid and Euler–Euler Approaches in Computational

Fluid Dynamics Modeling of Two-Phase Flows With a Sharp Interface." ASME.

J. Turbomach. December 2021; 143(12): 121005. (2021).

http://doi.org/10.1115/1.4051554.

Accpeted paper:

Bertolotti, L., Jefferson-Loveday, R., Ambrose, S., and Korsukova, E. “High

Fidelity CFD-Trained Machine Learning to Inform RANS-Modelled Interfacial

Turbulence” Proceedings of Global Power and Propulsion Society. (2022).

208 List of publications

Future submissions:

Bertolotti, L., Jefferson-Loveday, R., Ambrose, S., and Korsukova, E.

"Two-Phase Stratified Flow Modelling Using a Machine Learning-Driven RANS

Model" to be submitted to the International Journal of Multiphase Flow.

Korsukova, E., Ambrose, S., Bertolotti, L., and Jefferson-Loveday, R. "Scale

Resolving Simulations of Wavy Shear Driven Stratified Gas-Liquid Flow in a

Horizontal Channel" to be submitted to the ICMF 2023 (11th International

Conference on Multiphase Flow, Kobe, Japan, April 2-7, 2023).

⋆

References

[1] Al-Wahaibi, T., Yusuf, N., Al-Wahaibi, Y., and Al-Ajmi, A. (2012). Experi-

mental study on the transition between stratified and non-stratified horizontal

oil–water flow. International Journal of Multiphase Flow, 38(1):126–135.

https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.007.

[2] Andreussi, P. and Persen, L. (1987). Stratified gas-liquid flow in downwardly

inclined pipes. International Journal of Multiphase Flow, 13(4):565–575.

https://doi.org/10.1016/0301-9322(87)90022-X.

[3] Andritsos, N. (1986). Effect of pipe diameter and liquid viscosity on

horizontal stratified flow.

[4] Andritsos, N. and Hanratty, T. (1987a). Influence of interfacial

waves in stratified gas-liquid flows. AIChE Journal, 33(3):444–454.

https://doi.org/10.1002/aic.690330310.

[5] Andritsos, N. and Hanratty, T. (1987b). Interfacial instabilities for horizon-

tal gas-liquid flows in pipelines. International Journal of Multiphase Flow,

13(5):583–603. https://doi.org/10.1016/0301-9322(87)90037-1.

[6] Arteaga-Arteaga, H., Mora-Rubio, A., Florez, F., Murcia-Orjuela, N., Diaz-

Ortega, C., Orozco-Arias, S., delaPava, M., Bravo-Ortíz, M., Robinson,

M., Guillen-Rondon, P., and Tabares-Soto, R. (2021). Machine learning

applications to predict two-phase flow patterns. PeerJ Computer Science

7:e798 https://doi.org/10.7717/peerj-cs.798.

210 References

[7] Ashton, N. and Revell, A. (2014). Investigation into the predictive ca-

pability of advanced reynolds-averaged navier-stokes models for the dri-

vaer automotive model. In Park, H., editor, The International Vehicle

Aerodynamics Conference, pages 125–137. Woodhead Publishing, Oxford.

https://doi.org/10.1533/9780081002452.4.125.

[8] Batchelor, G. (1967). An introduction to fluid dynamics. Cambridge,

England: Cambridge University Press. Applied Mathematics, University of

Cambridge, England.

[9] Benz, M. and Schulenberg, T. (2015). A novel approach for turbulence

modelling of wavy stratified two-phase flow. 16th International Topical

Meeting in Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago,

Ill, August 30-September 4.

[10] Bernard, P. (1986). Limitations of the near-wall k-epsilon turbulence

model. AIAA Journal, 24(4):619–622. https://doi.org/10.2514/3.9316.

[11] Bertolotti, L., Jefferson-Loveday, R., Ambrose, S., and E., K. (2020).

A comparison of VOF and Euler-Euler approaches in CFD modelling

of two-phase flows with a sharp interface. volume Volume 2C: Tur-

bomachinery. Virtual. of Proceedings of the ASME Turbo Expo 2020:

Turbomachinery Technical Conference and Exposition, Online. ASME.

http://doi.org/10.1115/GT2020-14681.

[12] Bertolotti, L., Jefferson Loveday, R., Ambrose, S., and Korsukova,

E. (2021). A Comparison of Volume of Fluid and Euler–Euler Ap-

proaches in Computational Fluid Dynamics Modeling of Two-Phase

Flows With a Sharp Interface. Journal of Turbomachinery, 143(12).

https://doi.org/10.1115/1.4051554.

[13] Biberg, D. (2005). Mathematical models for two-phase stratified pipe flow.

Ph.D. Thesis, University of Oslo, Norway.

References 211

[14] Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Mémoires

présentées par divers savants à l’Académie des Sciences de l’Institut National

de France, 13:1–680. Imprimerie Nationale, Paris.

[15] Bristot, A., Morvan, H., Simmons, K., and Klingsporn, M. (2017). Effect

of turbulence damping in VOF simulation of an aero-engine bearing chamber.

volume Volume 2B: Turbomachinery, pages 1–10, Charlotte, North Carolina,

USA. ASME. http://doi.org/10.1115/GT2017-63436.

[16] C., G. and L., W. (2021). Deep learning to replace, improve, or aid

CFD analysis in built environment applications: A review. Building and

Environment, 206:108315. https://doi.org/10.1016/j.buildenv.2021.108315.

[17] Cantwell, B. and Coles, D. (1983). An experimental study of entrainment

and transport in the turbulent near wake of a circular cylinder. Journal of

Fluid Mechanics, 136:321–374. http://doi.org/10.1017/S0022112083002189.

[18] Caretto, L. S., Gosman, A. D., Patankar, S. V., and Spalding, D. B.

(1973). Two calculation procedures for steady, three-dimensional flows

with recirculation. In Cabannes, H. and Temam, R., editors, Proceed-

ings of the Third International Conference on Numerical Methods in Fluid

Mechanics, pages 60–68, Berlin, Heidelberg. Springer Berlin Heidelberg.

http://doi.org/10.1007/BFb0112677.

[19] Chen, B., Chen, G., Sun, H., and Zhang, Y. (2014). Effect of oil droplet

deformation on its deposited characteristics in an aeroengine bearing chamber.

Proceedings of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, 228(2):206–218.

[20] Chourushi, T. (2017). Effect of fluid elasticity on the numerical sta-

bility of high-resolution schemes for high shearing contraction flows us-

ing openfoam. Theoretical and Applied Mechanics Letters, 7(1):41–51.

https://doi.org/10.1016/j.taml.2017.01.005.

212 References

[21] Cioncolini, A., Del Col, D., and Thome, J. R. (2015). An indirect criterion

for the laminar to turbulent flow transition in shear-driven annular liquid

films. International Journal of Multiphase Flow, 75:26–38.

[22] Cohen, L. and Hanratty, T. (1965). Generation of waves in the

concurrent flow of air and a liquid. AIChE Journal, 11(1):138–144.

https://doi.org/10.1002/aic.690110129.

[23] Cohen, L. and Hanratty, T. (1968). Effect of waves at a gas—liquid

interface on a turbulent air flow. Journal of Fluid Mechanics, 31(3):467–479.

http://doi.org/10.1017/S0022112068000285.

[24] Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen

Differenzengleichungen der mathematischen Physik. Math. Ann., 100:32–74.

10.1007/BF01448839.

[25] Crank, J. and Nicolson, P. (1947). A practical method for numerical

evaluation of solutions of partial differential equations of the heat-conduction

type. Mathematical Proceedings of the Cambridge Philosophical Society,

43(1):50–67.

[26] Cruz, M. A., Thompson, R. L., Sampaio, L. E., and Bacchi, R. D. (2019).

The use of the reynolds force vector in a physics informed machine learn-

ing approach for predictive turbulence modeling. Computers and Fluids,

192:104258.

[27] Delhaye, J., Collier, J., Herwitt, G., Mayinger, F., and Bergles, A.

(1981). Two-phase flow and heat transfer in the process and power in-

dustries. Hemisphee Publishing Corporation, Edition McGraw-Hill, New

York.

[28] Deshpande, S. (2012). Evaluating the performance of the two-phase

flow solver interfoam. Computational Science and Discovery, 5(1).

https://doi.org/10.1088/1749-4699/5/1/014016.

References 213

[29] Dong, Z., Bürgler, M., Hohermuth, B., and Vetsch, D. (2022).

Density-based turbulence damping at large-scale interface for reynolds-

averaged two-fluid models. Chemical Engineering Science, 247:116975.

https://doi.org/10.1016/j.ces.2021.116975.

[30] Drazin, P. G. and Riley, N. (2006). The Navier-Stokes Equa-

tions: A Classification of Flows and Exact Solutions. London Math-

ematical Society Lecture Note Series. Cambridge University Press.

https://doi.org/10.1017/CBO9780511526459.

[31] Eastwood, S., Tucker, P., Xia, H., and Klostermeir, C. (2009). Develop-

ing large eddy simulation for turbomachinery applications. Philosophical

Transaction of the Royal Society, 367:2999–3013.

[32] Egorov, Y., Martin, A., Boucker, M., Pigny, S., Scheurer, M., and Willem-

sen, S. (2004). Validation of CFD codes with pts-relevant test cases. volume

5th Euratom Framework Programme ECORA project, pages 91–116.

[33] Evans, M., Harlow, F., and Bromberg, E. (1957). The Particle-In-Cell

Method for Hydrodynamic Calculations. Los Alamos National Lab, New

Mexico, Oak Ridge, TN, USA. Technical Report.

[34] Fabre, J., Masbernat, L., Fernandez-Flores, R., and Suzanne, C. (1987a).

Stratified flow, Part II: interfacial and wall shear stress. Multiphase Science

and Technology, Volume 3, G. F. Hewitt, J. M. Delhaye and N. Zuber, eds.

Hemisphere.

[35] Fabre, J., Masbernat, L., and Suzanne, C. (1987b). Experimental data

set No. 7: Stratified flow, Part I: Local structure. Multiphase Science and

Technology, 3(1-4):285–301.

[36] Faghri, A. and Zhang, Y. (2006). Solid-liquid-vapor phenomena and interfa-

cial heat and mass transfer. In Transport Phenomena in Multiphase Systems,

214 References

pages 331–420. Academic Press, Boston. https://doi.org/10.1016/B978-0-12-

370610-2.50010-6.

[37] Fan, W. and Anglart, H. (2019). Progress in phenomenological mod-

eling of turbulence damping around a two-phase interface. Fluids, 4:136.

http://doi.org/10.3390/fluids4030136.

[38] Farhadi, A., Mayrhofer, A., Tritthart, M., Glas, M., and Habersack,

H. (2018). Accuracy and comparison of standard k-epsilon with two

variants of k-omega turbulence models in fluvial applications. Engi-

neering Applications of Computational Fluid Mechanics, 12(1):216–235.

https://doi.org/10.1080/19942060.2017.1393006.

[39] Ferziger, J. and Peric, M. (2002). Computational Methods for Fluid

Dynamics. Springer, Berlin, 3 edition. http://dx.doi.org/10.1007/978-3-642-

56026-2.

[40] Foundation, T. O. (2018). OpenFOAM User Guide version 6.

[41] Frederix, E., Mathur, A., Dovizio, D., Geurts, B., and Komen, E. (2018).

Reynolds-averaged modeling of turbulence damping near a large-scale in-

terface in two-phase flow. Nuclear Engineering and Design, 333:122–130.

https://doi.org/10.1016/j.nucengdes.2018.04.010.

[42] Fröhlich, J., Mellen, C., RODI, W., Temmerman, L., and LESCHZINER,

M. (2005). Highly resolved large-eddy simulation of separated flow in a

channel with streamwise periodic constriction. Journal of Fluid Mechanics,

526:19 – 66.

[43] Fulgosi, M., Lakehal, D., Banerjee, S., and De Angelis, V. (2003).

Direct numerical simulation of turbulence in a sheared air–water flow

with a deformable interface. Journal of Fluid Mechanics, 482:319–345.

http://doi.org/10.1017/S0022112003004154.

References 215

[44] Gada, V., Tandon, M., Elias, J., Vikulov, R., and Lo, S.

(2017). A large scale interface multi-fluid model for simulat-

ing multiphase flows. Applied Mathematical Modelling, 44:189–204.

https://doi.org/10.1016/j.apm.2017.02.030.

[45] Gauss, C. (1903). Werke, volume 9 of Werke. Springer, Königlichen

Gesellschaft der Wissenschaften, Göttingen.

[46] Gingold, R. A. and Monaghan, J. J. (1977). Smoothed par-

ticle hydrodynamics: theory and application to non-spherical stars.

Monthly Notices of the Royal Astronomical Society, 181(3):375–389.

https://doi.org/10.1093/mnras/181.3.375.

[47] Global Carbon Project (2019). Supplemental data of Global Carbon Budget

2019. (Version 1.0).

[48] Godino, D., Corzo, S., and Ramajo, D. (2020). Two-phase modeling of

water-air flow of dispersed and segregated flows. Annals of Nuclear Energy,

149:107766.

[49] Golub, G. and van Loan, C. (1996). Matrix computations. Springer,

University of John Hopkins, Baltimore, 3 edition.

[50] Gomez-Fernandez, M., Higley, K., Tokuhiro, A., Welter, K., Wong, W.,

and Yang, H. (2020). Status of research and development of learning-based

approaches in nuclear science and engineering: A review. Nuclear Engineering

and Design, 359:110479.

[51] Greenshields, C. (2015). Openfoam user guide. Openfoam Foundation Ltd,

3(1).

[52] Greenshields, C. (2018). Funding OpenFOAM in 2019. [accessed May 27,

2022].

216 References

[53] Hammond, J., Pepper, N., Montomoli, F., and Michelassi, V. (2022).

Machine learning methods in CFD for turbomachinery: A review. In-

ternational Journal of Turbomachinery, Propulsion and Power, 7(2).

http://doi.org/10.3390/ijtpp7020016.

[54] Hann, D., Loizou, K., Vasques, J., Tokarev, M., and Cherdantsev, A.

(2018). The use of POD filtering to study the transition from 2D to 3D in

stratified two-phase flow. 19th International Symposium on the Application

of Laser and Imaging Techniques to Fluid Mechanics. 2018: Lisbon, Portugal.

[55] Harlow, F. (1955). A Machine Calculation Method for Hydrodynamic

Problems. Los Alamos Scientific Laboratory report LAMS-1956.

[56] Harlow, F. and Welch, J. (1965). Numerical Calculation of Time-Dependent

Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids,

8(12):2182–2189. http://doi.org/10.1063/1.1761178.

[57] Harten, A. (1983). High resolution schemes for hyperbolic con-

servation laws. Journal of Computational Physics, 49(3):357–393.

https://doi.org/10.1016/0021-9991(83)90136-5.

[58] Hashmi, A. (2012). Oil Film Dynamics in Aero Engine Bearing Cham-

bers - Fundamental Investigations and Numerical Modelling. PhD thesis.

Forschungsberichte aus dem Institut für Thermische Str"omungsmaschinen.

KIT.

[59] Hashmi, A., Dullenkopf, K., Koch, R., and Bauer, H. (2010). CFD methods

for shear driven liquid wall films. volume Volume 4: Heat Transfer, Parts

A and B of Turbo Expo: Power for Land, Sea, and Air, pages 1283–1291,

Glasgow, UK. ASME. http://doi.org/10.1115/GT2010-23532.

[60] Hestenes, M. and Stiefel, E. (1952). Methods of conjugate gradients

for solving linear systems. Journal of Research of the National Bureau of

Standards, 49:409 – 435. http://dx.doi.org/10.6028/jres.049.044.

References 217

[61] Hinze, J. (1975). Turbulence. 2nd edition. McGraw-Hill.

[62] Hirsch, C. (2007). Numerical Computation of Internal and External

Flows. Butterworth-Heinemann. The Fundamentals of Computational Fluid

Dynamics. 2nd edition. https://doi.org/10.1016/B978-0-7506-6594-0.X5037-

1.

[63] Hirt, C. and Nichols, B. (1981). Volume of fluid (VOF) method for the

dynamics of free boundaries. Journal of Computational Physics, 39(1):201–

225. https://doi.org/10.1016/0021-9991(81)90145-5.

[64] Höhne, T. and Vallée, C. (2009). Modelling of stratified two phase flows

using an interfacial area density model. Proc. Multiphase Flow, pages 123–133.

http://doi.org/10.2495/MPF090111.

[65] Hu, Z. and Sandham, N. (2001). Large–domain simulation of couette and

poiseuille flow. Proc. 2nd Intr. Symposium on Turbulent and Shear Flow

Phenomena, (Ed. E. Lindlorg et al.), KTH, Stockholm, Sweden.

[66] Hughes, T. R., Oberai, A., and Mazzei, L. (2001). Large eddy simulation

of turbulent channel flows by the variational multiscale method. Physics of

Fluids, 13(6):1784–1799. http://doi.org/10.1063/1.1367868.

[67] Hunt, J., Wray, A., and Moin, P. (1988). Eddies, stream, and convergence

zones in turbulent flows. Center for Turbulence Research Report CTR-S88.

[68] IATA (2021). Net-Zero Carbon Emissions by 2050. Press Release No: 66.

Date: 4 October 2021. [accessed May 17, 2022].

[69] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep

network training by reducing internal covariate shift. CoRR, abs/1502.03167.

[70] Ishii, M. and Hibiki, T. (2010). Thermo-Fluid Dynamics of Two-PhaseFlow.

Springer, New-York, 2 edition. http://dx.doi.org/10.1007/978-1-4419-7985-8.

218 References

[71] Ishii, M. and Mishima, K. (1984). Two-fluid model and hydrodynamic

constitutive relations. Nuclear Engineering and Design, 82(2):107–126.

https://doi.org/10.1016/0029-5493(84)90207-3.

[72] Issa, R. (1986). Solution of the implicitly discretised fluid flow equations

by operator-splitting. Journal of Computational Physics, 62(1):40 – 65.

http://doi.org/10.1016/0021-9991(86)90099-9.

[73] Iungo, G., Viola, F., Ciri, U., Rotea, M., and Leonardi, S. (2015).

Data-driven rans for simulations of large wind farms. In Journal of

Physics: Conference Series, volume 625, page 012025. IOP Publishing.

https://doi.org/10.1088/1742-6596/625/1/012025.

[74] Jeffreys, H. and Taylor, G. (1925). On the formation of water waves

by wind. Proceedings of the Royal Society of London. Series A, Contain-

ing Papers of a Mathematical and Physical Character, 107(742):189–206.

http://doi.org/10.1098/rspa.1925.0015.

[75] Khosravi, A., Pabon, J., Koury, R., and Machado, L. (2018). Us-

ing machine learning algorithms to predict the pressure drop dur-

ing evaporation of r407c. Applied Thermal Engineering, 133:361–370.

https://doi.org/10.1016/j.applthermaleng.2018.01.084.

[76] Kim, J., Hann, D., and Johnson, K. (2021). Time-resolved simultaneous

PIV measurements of an air-shear-driven thin film flows in a rectangular

duct. RR UTC Tech. report, CornerStone WP 5.2 – Experimental [internal].

[77] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization.

3rd International Conference for Learning Representations, San Diego, 2015.

[78] Kochkov, D., Smith, J., Alieva, A., Wang, Q., Brenner, M., and Hoyer,

S. (2021). Machine learning-accelerated computational fluid dynamics.

Proceedings of the National Academy of Sciences, 118(21):e2101784118.

http://doi.org/10.1073/pnas.2101784118.

References 219

[79] Krepper, E., Reddy Vanga, N., Zaruba, A., Prasser, H., and Lopez de

Bertodano, M. (2007). Experimental and numerical studies of void fraction

distribution in rectangular bubble columns. Nuclear Engineering and Design,

237(4):399–408. https://doi.org/10.1016/j.nucengdes.2006.07.009.

[80] Launder, B. and Sharma, B. (1974). Application of the energy-dissipation

model of turbulence to the calculation of flow near a spinning disc. Letters

Heat Mass Transfer, 1:131–137. https://doi.org/10.1016/0094-4548(74)90150-

7.

[81] Lee, D., Fahey, D., Skowron, A., Allen, M., Burkhardt, U., Chen, Q.,

Doherty, S., Freeman, S., Forster, P., Fuglestvedt, J., Gettelman, A., De

León, R., Lim, L., Lund, M., Millar, R., Owen, B., Penner, J., Pitari, G.,

Prather, M., Sausen, R., and Wilcox, L. (2021). The contribution of global

aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric

Environment, 244:117834.

[82] Leonard, B. (1991). The ultimate conservative difference scheme ap-

plied to unsteady one-dimensional advection. Computer Methods in Applied

Mechanics and Engineering, 88(1):17–74. https://doi.org/10.1016/0045-

7825(91)90232-U.

[83] Lin, Z., Liu, X., Lao, L., and Liu, H. (2020). Prediction of two-phase flow

patterns in upward inclined pipes via deep learning. Energy, 210:118541.

https://doi.org/10.1016/j.energy.2020.118541.

[84] Line, A. and Fabre, J. (1997). Stratified gas-liquid flow, pages 1097–

1101. A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Flu-

ids Engineering. CRC Press. http://doig.org/10.1615/AtoZ.s.stratified_gas-

liquid_flow.

[85] Ling, J., Kurzawski, A., and Templeton, J. (2016). Reynolds

averaged turbulence modelling using deep neural networks with

220 References

embedded invariance. Journal of Fluid Mechanics, 807:155–166.

http://doi.org/10.1017/jfm.2016.615.

[86] Lo, S. and Tomasello, A. (2010). Recent progress in CFD modelling of

multiphase flow in horizontal and near-horizontal pipes. volume BHR Group

of 7th North American Conference on Multiphase Technology, Banff, Canada.

[87] Luo, S., Vellakal, M., Koric, S., Kindratenko, V., and Cui, J. (2020).

Parameter identification of rans turbulence model using physics-embedded

neural network. In Jagode, H., Anzt, H., Juckeland, G., and Ltaief, H., editors,

High Performance Computing, pages 137–149, Cham. Springer International

Publishing.

[88] Maiwald, A. and Schwarze, R. (2011). Numerical analysis of flow-induced

gas entrainment in roll coating. Applied Mathematical Modelling, 35(7):3516–

3526. https://doi.org/10.1016/j.apm.2011.01.004.

[89] Marschall, H. (2011). Towards the numerical simulation of multi-scale

two-phase flows.

[90] Menter, F. (1994). Two-equation eddy-viscosity turbulence mod-

els for engineering applications. AIAA Journal, 32(8):1598–1605.

https://doi.org/10.2514/3.12149.

[91] Mirjalili, S., Jain, S., and Dodd, M. (2017). Interface-capturing methods

for two-phase flows: An overview and recent developments. Center for

Turbulence Research - Annual research brief, pages 117–135.

[92] Moin, P. and Mahesh, K. (1998). Direct numerical simulation: A tool

in turbulence research. Annual Review of Fluid Mechanics, 30(1):539–578.

http://doi.org/10.1146/annurev.fluid.30.1.539.

[93] Montanez-Barrera, J. A., Barroso-Maldonado, J. M., Bedoya-Santacruz,

A. F., and Mota-Babiloni, A. (2022). Correlated-informed neural networks: a

References 221

new machine learning framework to predict pressure drop in micro-channels.

http://doi.org/10.48550/ARXIV.2201.07835.

[94] Mouza, A., Paras, S., and Karabelas, A. (2001). CFD code application to

wavy stratified gas-liquid flow. Chemical Engineering Research and Design,

79(5):561–568. Fluid Flow.

[95] Mukerji, S. (1997). Turbulence computations with 3-d small-scale additive

turbulent decomposition and data-fitting using chaotic map combinations.

http://doi.org/10.2172/666048.

[96] Noh, W. and Woodward, P. (1976). SLIC (Simple Line In-

terface Calculation). [Usable in 1, 2, or 3 space dimensions].

https://doi.org/10.2172/7261651.

[97] Orszag, S. (1970). Analytical theories of turbulence. Journal of Fluid

Mechanics, 41(2):363–386. https://doi.org/10.1017/S0022112070000642.

[98] Patankar, S. V. (2018). Numerical heat transfer and fluid flow. CRC press.

[99] Polansky, J. and Schmelter, S. (2022). Implementation of turbulence damp-

ing in the openfoam multiphase flow solver interfoam. Archives of Thermo-

dynamics, vol. 43(No 1):21–43. http://doi.org/10.24425/ather.2022.140923.

[100] Pope, S. (2000). Turbulent flows. Cambridge University Press, United

Kingdom.

[101] Porombka, P. and Höhne, T. (2015). Drag and turbulence modelling

for free surface flows within the two-fluid euler–euler framework. Chemical

Engineering Science, 134:348–359.

[102] Prandtl, L. (1925). Bericht über Untersuchungen zur ausgebildeten Tur-

bulenz, Z. Angew. Math, Meth., 5, 136-139.

222 References

[103] Prasser, H., Frank, T., Beyer, M., Carl, H., Pietruske, H., and Schütz, P.

(2008). Gas-liquid flow around an obstacle in a vertical pipe - experiments

and CFD simulation. Nuclear engineering and design, 238(7):1802–1819.

[104] Qian, N. (1999). On the momentum term in gradient descent learning

algorithms. Neural Networks, 12(1):145–151. https://doi.org/10.1016/S0893-

6080(98)00116-6.

[105] Rakhsha, M., Kees, C., and Negrut, D. (2021). Lagrangian vs. eulerian:

An analysis of two solution methods for free-surface flows and fluid solid

interaction problems. Fluids, 6(12). https://doi.org/10.3390/fluids6120460.

[106] Reboux, S., Sagaut, P., and Lakehal, D. (2006). Large-eddy simulation

of sheared interfacial flow. Physics of Fluids, 18(10):105105.

[107] Rhie, C. and Chow, W. (1983). Numerical study of the turbulent flow past

an airfoil with trailing edge separation. AIAA Journal, 21(11):1525–1532.

http://doi.org/10.2514/3.8284.

[108] Rios, D. and Muller, P. (1998). Feedforward neural networks for nonpara-

metric regression.

[109] Rolls-Royce Plc (2019). Advance and UltraFan. [accessed October 28,

2019].

[110] Rusche, H. (2002). Computational Fluid Dynamics of Dispersed Two-

Phase Flows at High Phase Fractions. PhD thesis.

[111] Russell, T. W. F., Etchells, A. W., Jensen, R. H., and Arruda, P. J.

(1974). Pressure drop and holdup in stratified gas-liquid flow. AIChE

Journal, 20(4):664–669. https://doi.org/10.1002/aic.690200406.

[112] Sagaut, P. and Deck, S. (2009). Large eddy simulation for aero-

dynamics: Status and perspectives. Philosophical transactions. Se-

References 223

ries A, Mathematical, physical, and engineering sciences, 367:2849–60.

http://doi.org/10.1098/rsta.2008.0269.

[113] Sagaut, P., Deck, S., and Terracol, M. (2013a). LES, DES and Hybrid

RANS/LES Methods: Appliction and Guidelines. Imperial College Press.

[114] Sagaut, P., Deck, S., and Terracol, M. (2013b). Multiscale and multireso-

lution approaches in turbulence (second edition), volume 2. Imperial College

Press.

[115] Santamaria, A., Mortazavi, M., Chauhan, V., and Benner, J.

(2019). Two-phase flow characterization in PEM fuel cells using

machine learning. ECS Meeting Abstracts, MA2019-01(30):1538–1538.

https://doi.org/10.1149/ma2019-01/30/1538.

[116] Santamaria, A., Mortazavi, M., Chauhan, V., Benner, J., Philbrick, O.,

Clemente, R., Jia, H., and Ling, C. (2021). Machine learning applications of

two-phase flow data in polymer electrolyte fuel cell reactant channels. Journal

of The Electrochemical Society, 168(5):054505. https://doi.org/10.1149/1945-

7111/abfa5c.

[117] Schiller, L. and Naumann, A. (1935). A drag coefficient correlation.

Zeitschrift des Vereins Deutscher Ingenieure, 77:318–320.

[118] Singh, A. (2018). A Framework to improve Turbulence Models using

Full-field Inversion and Machine Learning. The University of Michigan.

[119] Singh, A., Medida, S., and Duraisamy, K. (2017). Machine-learning-

augmented predictive modeling of turbulent separated flows over airfoils.

AIAA Journal, 55(7):2215–2227. https://doi.org/10.2514/1.J055595.

[120] Smagorinsky, J. (1963). General circulation experiments with

the primitive equations. Monthly Weather Review, 91(3):99–164.

http://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

224 References

[121] Sofos, F., Stavrogiannis, C., Exarchou-Kouveli, K., Akabua, D.,

Charilas, G., and Karakasidis, T. (2022). Current trends in fluid re-

search in the era of artificial intelligence: A review. Fluids, 7(3).

http://doi.org/10.3390/fluids7030116.

[122] Spalart, P. (2000). Strategies for turbulence modelling and simu-

lations. International Journal of Heat and Fluid Flow, 21(3):252–263.

https://doi.org/10.1016/S0142-727X(00)00007-2.

[123] Spalart, P. and Allmaras, S. (1992). A one-equation turbulence model

for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit.

http://doi.org/10.2514/6.1992-439.

[124] Spalart, P., Jou, W., Strelets, M., and Allmaras, S. (1998). Comments

on the feasibility of LESfor wings and on a hybrid RANS/LES approach. In

Proc. 1st AFSOR Int. Conf. on DNS/LES,Ruston, LA, pp. 137–147.

[125] Stäbler, T. D. (2007). Experimentelle untersuchung und physikalische

beschreibung der schichtenströmung in horizontalen kanälen.

[126] Strand, O. (1983). An Experimental Investigation of Stratified Two-Phase

Flow in Horizontal Pipes. Ph.D. Thesis, University of Oslo, Norway.

[127] Sussman, M., Smereka, P., and S., O. (1994). A level set approach for com-

puting solutions to incompressible two-phase flow. Journal of Computational

Physics, 114(1):146–159. https://doi.org/10.1006/jcph.1994.1155.

[128] Sweby, P. (1984). High-Resolution Schemes Using Flux Limiters for Hyper-

bolic Conservation-Laws. Siam Journal on Numerical Analysis. Siam Journal

on Numerical Analysis, 21, 995-1011. http://dx.doi.org/10.1137/0721062.

[129] Taitel, Y. and Dukler, A. (1976). A model for predicting flow regime

transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal,

22(1):47–55. https://doi.org/10.1002/aic.690220105.

References 225

[130] Tekavcic, M., Meller, R., Schlegel, F., and Koncar, B. (2020). Two-

fluid Model Simulations of Isothermal Stratified Counter-current Flow of

Air and Water with Interface Compression and Turbulence Damping. 29th

International conference nuclear energy for new europe, Sept. 7-10 2020,

Portoroz, Slovenia.

[131] Terzuoli, F., Galassi, M., Mazzini, D., and D’Auria, F. (2008).

CFD code validation against stratified air-water flow experimen-

tal data. Science and Technology of Nuclear Installations, 2008.

https://doi.org/10.1155/2008/434212.

[132] Tezduyar, T. E. (2006). Interface-tracking and interface-capturing tech-

niques for finite element computation of moving boundaries and interfaces.

Computer Methods in Applied Mechanics and Engineering, 195(23):2983–3000.

Incompressible CFD.

[133] Tiselj, I., Flageul, C., and Oder, J. (2019). Direct numerical simulation

and wall-resolved large eddy simulation in nuclear thermal hydraulics. Nuclear

Technology, pages 1–15. http://doi.org/10.1080/00295450.2019.1614381.

[134] Tracey, B., Duraisamy, K., and Alonso, J. (2013). Application of Su-

pervised Learning to Quantify Uncertainties in Turbulence and Combustion

Modeling. http://doi.org/10.2514/6.2013-259.

[135] Tracey, D. (2015). Machine learning for model uncertainties in turbu-

lence models and Monte Carlo integral approximation. Stanford University,

Department of Aeronautics and Astronautics.

[136] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N.,

Tauber, W., Han, J., Nas, S., and Jan, Y.-J. (2001). A front-tracking method

for the computations of multiphase flow. Journal of Computational Physics,

169(2):708–759. https://doi.org/10.1006/jcph.2001.6726.

226 References

[137] Tsoukalas, L., Ishii, M., and Mi, Y. (1997). A neurofuzzy methodology

for impedance-based multiphase flow identification. Engineering Applica-

tions of Artificial Intelligence, 10(6):545–555. https://doi.org/10.1016/S0952-

1976(97)00037-7.

[138] Tucker, P. and Davidson, L. (2004). Zonal k–l based large eddy simula-

tions. Computers and Fluids, 33(2):267 – 287. http://doi.org/10.1016/S0045-

7930(03)00039-2.

[139] Ubbink, O. (1997). Numerical prediction of two fluid systems with sharp

interfaces.

[140] Usman, A., Rafiq, M., Saeed, M., Nauman, A., Almqvist, A., and Li-

wicki, M. (2021). Machine learning computational fluid dynamics. In

2021 Swedish Artificial Intelligence Society Workshop (SAIS), pages 1–4.

http://doi.org/10.1109/SAIS53221.2021.9483997.

[141] Vallée, C., Höhne, T., Prasser, H.-M., and Sühnel, T. (2008). Experimen-

tal investigation and CFD simulation of horizontal stratified two-phase flow

phenomena. Nuclear Engineering and Design, 238(3):637–646. Benchmarking

of CFD Codes for Application to Nuclear Reactor Safety.

[142] van Leer, B. (1979). Towards the ultimate conservative difference scheme.

v. a second-order sequel to godunov’s method. Journal of Computational

Physics, 32(1):101 – 136.

[143] Versteeg, H. and Malalasekera, W. (2007). An introduction to computa-

tional fluid dynamics: the finite volume method. Harlow, England: Pearson

Education Ltd.

[144] Vinuesa, R. and Brunton, S. (2021). The potential of machine learning

to enhance computational fluid dynamics.

References 227

[145] Vlachos, N., Paras, S., and Karabelas, A. (1997). Liquid-to-wall

shear stress distribution in stratified/atomization flow. International Jour-

nal of Multiphase Flow, 23(5):845–863. https://doi.org/10.1016/S0301-

9322(97)00007-4.

[146] Von Kármán, T. (1930). Mechanische Ähnlichkeit und Turbulenz. Son-

derdrucke aus den Nachrichten von der Gesellschaft der Wissenschaften zu

Göttingen : Mathematisch-physische Klasse. Weidmannsche Buchh.

[147] Vreman, A. and Kuerten, J. (2014). Comparison of direct numerical

simulation databases of turbulent channel flow at Ret = 180. Physics of

Fluids, 26(1):015102. http://doi.org/10.1063/1.4861064.

[148] Wardle, K. and Weller, H. (2013). Hybrid multiphase CFD

solver for coupled dispersed/segregated flows in liquid-liquid extrac-

tion. International Journal of Chemical Engineering, 2013:13 pages.

http://dx.doi.org/10.1155/2013/128936.

[149] Webb, G. (2010). Overfitting, pages 744–744. Springer US, Boston, MA.

https://doi.org/10.1007/978-0-387-30164-8_623.

[150] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tenso-

rial approach to computational continuum mechanics using object-oriented

techniques. Computers in physics, 12(6):620–631.

[151] Wilcox, D. (2008). Formulation of the k − ω turbulence model revisited.

AIAA Journal, 46(11):2823–2838. http://doi.org/10.2514/1.36541.

[152] Wintterle, T., Laurien, E., Stäbler, T., Meyer, L., and Schulenberg,

T. (2006). Experimental and Numerical Investigation of Counter-Current

Stratified Flows in Horizontal Channels. CFD4NRS, Garching, Munich, 5-7

September, 2006, Germany.

[153] Wintterle, T., Laurien, E., Stäbler, T., Meyer, L., and Schulenberg, T.

(2008). Experimental and numerical investigation of counter-current stratified

228 References

flows in horizontal channels. Nuclear Engineering and Design, 238(3):627–636.

Benchmarking of CFD Codes for Application to Nuclear Reactor Safety.

[154] Wu, J.-L., Wang, J.-X., and Xiao, H. (2016). A bayesian calibration–

prediction method for reducing model-form uncertainties with application

in rans simulations. Flow, Turbulence and Combustion, 97(3):761–786.

https://doi.org/10.1007/s10494-016-9725-6.

[155] Xiao, H., Wu, J.-L., Wang, J.-X., Sun, R., and Roy, C.

(2016). Quantifying and reducing model-form uncertainties in reynolds-

averaged navier–stokes simulations: A data-driven, physics-informed

bayesian approach. Journal of Computational Physics, 324:115–136.

https://doi.org/10.1016/j.jcp.2016.07.038.

[156] Zalesak, S. (1979). Fully multidimensional flux-corrected transport algo-

rithms for fluids. Journal of Computational Physics, 31(3):335–362.

⋆

Appendix A

Code implementations

A.1 C++ pieces of code

A.1.1 Field objects implemented in the solver interFoam

Listing A.1 Implementation of qε (here called magsqrDU) in createFields.H
1 volScalarField magsqrDU
2 (
3 IOobject
4 (
5 " magsqrDU ",
6 runTime . timeName (),
7 mesh ,
8 IOobject :: MUST_READ ,
9 IOobject :: AUTO_WRITE

10),
11 magSqr (symm(fvc :: grad(U)))
12);

NB: the following line must be added to the VOF solver file interFoam.C in
order to update the created field:

1 magsqrDU == magSqr (symm(fvc :: grad(U)));

A.1.2 Function objects coded in the OpenFOAM simu-
lation control dictionary controlDict

Listing A.2 Use of the fieldAverage feature
1 fieldAverage
2 {
3 type fieldAverage ;
4 libs (" libfieldFunctionObjects .so");

230 Code implementations

5 cleanRestart true;
6 writeControl 1;
7

8 fields
9 (

10 U
11 {
12 mean on;
13 prime2Mean on;
14 base time;
15 }
16 magsqrDU
17 {
18 mean on;
19 prime2Mean off;
20 base time;
21 }
22);
23 }

Listing A.3 Implementation of k
1 tke
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name tke;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volSymmTensorField & UPrime2Mean = mesh (). lookupObject
< volSymmTensorField >(" UPrime2Mean ");

11

12 volScalarField tke
13 (
14 IOobject
15 (
16 "tke",
17 mesh ().time (). timeName (),
18 mesh (),
19 IOobject :: NO_READ ,
20 IOobject :: AUTO_WRITE
21),
22 0.5* tr(UPrime2Mean)
23 // UPrime2Mean is the Reynolds tensor obtained by field

averaging
24);
25 tke.write ();
26 #};
27 }

Listing A.4 Implementation of ε

A.1 C++ pieces of code 231

1 epsilon
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name epsilon ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & nu = mesh (). lookupObject <
volScalarField >("nu");

11 const volScalarField & magsqrDUMean = mesh (). lookupObject <
volScalarField >(" magsqrDUMean ");

12

13 volScalarField epsilon
14 (
15 IOobject
16 (
17 " epsilon ",
18 mesh ().time (). timeName (),
19 mesh (),
20 IOobject :: NO_READ ,
21 IOobject :: AUTO_WRITE
22),
23 2*nu* magsqrDUMean
24);
25 epsilon .write ();
26 #};
27 }

Listing A.5 Implementation of ω
1 omega
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name omega;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & nu = mesh (). lookupObject <
volScalarField >("nu");

11 const volScalarField & epsilon = mesh (). lookupObject <
volScalarField >(" epsilon ");

12 const volScalarField & tke = mesh (). lookupObject <
volScalarField >("tke");

13 const uniformDimensionedVectorField & g = mesh ().
lookupObject < uniformDimensionedVectorField >("g");

14

15 volScalarField omega
16 (
17 IOobject
18 (

232 Code implementations

19 "omega",
20 mesh ().time (). timeName (),
21 mesh (),
22 IOobject :: NO_READ ,
23 IOobject :: AUTO_WRITE
24),
25 epsilon /(0.09* tke +0.00001* pow(nu*mag(g) ,2.0/3.0))
26 //nu and g used here to add a residual to the ke with

the same units (m^2/s^2)
27);
28 omega.write ();
29 #};
30 }

Listing A.6 Implementation of Sdes

1 Destruction
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name Destruction ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & omega = mesh (). lookupObject <
volScalarField >("omega");

11

12 volScalarField Destruction
13 (
14 IOobject
15 (
16 " Destruction ",
17 mesh ().time (). timeName (),
18 mesh (),
19 IOobject :: NO_READ ,
20 IOobject :: AUTO_WRITE
21),
22 0.072* pow(omega ,2) // beta = 0.072
23);
24 Destruction .write ();
25 #};
26 }

Listing A.7 Implementation of Sprod

1 Production
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name Production ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite

A.1 C++ pieces of code 233

9 #{
10 const volVectorField & U = mesh (). lookupObject <

volVectorField >("UMean");
11

12 volScalarField Production
13 (
14 IOobject
15 (
16 " Production ",
17 mesh ().time (). timeName (),
18 mesh (),
19 IOobject :: NO_READ ,
20 IOobject :: AUTO_WRITE
21),
22 0.52* dev(twoSymm (fvc :: grad(U))) && fvc :: grad(U)
23);
24 Production .write ();
25 #};
26 }

Listing A.8 Implementation of Sdiff

1 Diffusion
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name Diffusion ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & nu = mesh (). lookupObject <
volScalarField >("nu");

11 const volScalarField & k = mesh (). lookupObject <
volScalarField >("tke");

12 const volScalarField & omega = mesh (). lookupObject <
volScalarField >("omega");

13 const uniformDimensionedVectorField & g = mesh ().
lookupObject < uniformDimensionedVectorField >("g");

14

15 volScalarField Diffusion
16 (
17 IOobject
18 (
19 " Diffusion ",
20 mesh ().time (). timeName (),
21 mesh (),
22 IOobject :: NO_READ ,
23 IOobject :: AUTO_WRITE
24),
25 fvc :: grad ((fvc :: grad(omega))*(nu +0.5*k/(omega

+0.0000001* pow(magSqr (g)/nu ,1.0/3.0)))) && I
26 // residual must be added to avoid division by zero
27);

234 Code implementations

28 Diffusion .write ();
29 #};
30 }

Listing A.9 Implementation of Sadv

1 Advection
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name Advection ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & omega = mesh (). lookupObject <
volScalarField >("omega");

11 const volVectorField & U = mesh (). lookupObject <
volVectorField >("UMean");

12

13 volScalarField Advection
14 (
15 IOobject
16 (
17 " Advection ",
18 mesh ().time (). timeName (),
19 mesh (),
20 IOobject :: NO_READ ,
21 IOobject :: AUTO_WRITE
22),
23 fvc :: grad(omega*U) && I
24);
25 Advection .write ();
26 #};
27 }

Listing A.10 Implementation of Sω

1 budgetOmega
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name budgetOmega ;
6 writeControl runTime ;
7 writeInterval 1;
8 codeWrite
9 #{

10 const volScalarField & Advection = mesh (). lookupObject <
volScalarField >(" Advection ");

11 const volScalarField & Destruction = mesh (). lookupObject <
volScalarField >(" Destruction ");

12 const volScalarField & Production = mesh (). lookupObject <
volScalarField >(" Production ");

A.1 C++ pieces of code 235

13 const volScalarField & Diffusion = mesh (). lookupObject <
volScalarField >(" Diffusion ");

14

15 volScalarField budgetOmega
16 (
17 IOobject
18 (
19 " budgetOmega ",
20 mesh ().time (). timeName (),
21 mesh (),
22 IOobject :: NO_READ ,
23 IOobject :: AUTO_WRITE
24),
25 Advection -Production - Diffusion + Destruction
26);
27 budgetOmega .write ();
28 #};
29 }

Listing A.11 Implementation of ||∇α||
1 magGradApha
2 {
3 functionObjectLibs (" libutilityFunctionObjects .so");
4 type coded;
5 name magGradAlpha ;
6 writeControl runTime ;
7 writeInterval 0.005;
8 codeWrite
9 #{

10 const volScalarField & Alpha1 = mesh (). lookupObject <
volScalarField >("alpha.water");

11 volScalarField magGradAlpha
12 (
13 IOobject
14 (
15 " magGradAlpha ",
16 mesh ().time (). timeName (),
17 mesh (),
18 IOobject :: NO_READ ,
19 IOobject :: AUTO_WRITE
20),
21 mag(fvc :: grad(Alpha1))
22);
23 magGradAlpha .write ();
24 #};
25 }

A.1.3 Coded source terms in the fvOptions dictionary

Listing A.12 Creation of the velocity sources for each phase
1

236 Code implementations

2 momentumSource0
3 {
4 type meanVelocityForce ;
5 active yes;
6

7 meanVelocityForceCoeffs
8 {
9 selectionMode cellSet ;

10 cellSet setAir ;
11 fields (U);
12 Ubar (4.2 0 0);
13 relaxation 1.0;
14 }
15 }
16

17 momentumSource1
18 {
19 type meanVelocityForce ;
20 active yes;
21

22 meanVelocityForceCoeffs
23 {
24 selectionMode cellSet ;
25 cellSet setWater ;
26 fields (U);
27 Ubar (0.45 0 0);
28 relaxation 1.0;
29 }
30 }

Listing A.13 Implementation of the ω correction source term
1 omegaSource
2 {
3 type scalarCodedSource ;
4 active yes;
5 name omegaSource ;
6 selectionMode all;
7

8 scalarCodedSourceCoeffs
9 {

10 selectionMode all;
11 fields (omega);
12 codeInclude
13 #{
14 # include <IFstream .H>
15 # include <OFstream .H>
16 #};
17 codeCorrect
18 #{
19 #};
20 codeAddSup
21 #{
22 const scalarField & V = mesh_.V();

A.1 C++ pieces of code 237

23 const vectorField & C = mesh_.C();
24 // reading the correction source field interpolated

from qDNS:
25 const scalarField & CORR = IFstream ("./ constant /

budgetOmega ")();
26 scalarField & budgetOmegaSource = eqn. source ();
27

28 forAll (C,i)
29 {
30 budgetOomegaSource [i] = -(CORR[i]) * V[i];
31 }
32 #};
33 codeSetValue
34 #{
35 #};
36 code
37 #{
38 $codeInclude
39 $codeCorrect
40 $codeAddSup
41 $codeSetValue
42 #};
43 }
44 sourceTimeCoeffs
45 {
46 selectionMode all;
47 }
48 }

A.1.4 Modified turbulence model
The RANS k − ω turbulence model was modified in order to be able to print
out the different terms of the transport of ω and check the budget and the
corrected source evolution progressions during simulations.

Listing A.14 Modified k − ω model: newkOmega.C
1 # include " newkOmega .H"
2 # include " fvOptions .H"
3 # include "bound.H"
4

5 namespace Foam
6 {
7 namespace RASModels
8 {
9

10 // * * * * * * * * * * * * Protected Member Functions * * * *
* * * * * * * //

11 template <class BasicTurbulenceModel >
12 void pkOmega3 < BasicTurbulenceModel >:: correctNut ()
13 {
14 this ->nut_ = k_/ omega_ ;
15 this ->nut_. correctBoundaryConditions ();

238 Code implementations

16 fv:: options :: New(this ->mesh_). correct (this ->nut_);
17

18 BasicTurbulenceModel :: correctNut ();
19 }
20 template <class BasicTurbulenceModel >
21 tmp < fvScalarMatrix > pkOmega3 < BasicTurbulenceModel >:: kSource ()

const
22 {
23 return tmp < fvScalarMatrix >
24 (
25 new fvScalarMatrix
26 (
27 k_ ,
28 dimVolume *this ->rho_. dimensions ()*k_. dimensions ()
29 / dimTime
30)
31);
32 }
33 template <class BasicTurbulenceModel >
34 tmp < fvScalarMatrix > pkOmega3 < BasicTurbulenceModel >:: omegaSource

() const
35 {
36 return tmp < fvScalarMatrix >
37 (
38 new fvScalarMatrix
39 (
40 omega_ ,
41 dimVolume *this ->rho_. dimensions ()* omega_ . dimensions

()/ dimTime
42)
43);
44 }
45 // * * * * * * * * * * * * * * * * Constructors * * * * * * *

* * * * * * * //
46 template <class BasicTurbulenceModel >
47 pkOmega3 < BasicTurbulenceModel >:: pkOmega3
48 (
49 const alphaField & alpha ,
50 const rhoField & rho ,
51 const volVectorField & U,
52 const surfaceScalarField & alphaRhoPhi ,
53 const surfaceScalarField & phi ,
54 const transportModel & transport ,
55 const word& propertiesName ,
56 const word& type
57)
58 :
59 eddyViscosity <RASModel < BasicTurbulenceModel >>
60 (
61 type ,
62 alpha ,
63 rho ,
64 U,

A.1 C++ pieces of code 239

65 alphaRhoPhi ,
66 phi ,
67 transport ,
68 propertiesName
69),
70 Cmu_
71 (
72 dimensioned <scalar >:: lookupOrAddToDict
73 (
74 " betaStar ",
75 this -> coeffDict_ ,
76 0.09
77)
78),
79 beta_
80 (
81 dimensioned <scalar >:: lookupOrAddToDict
82 (
83 "beta",
84 this -> coeffDict_ ,
85 0.072
86)
87),
88 gamma_
89 (
90 dimensioned <scalar >:: lookupOrAddToDict
91 (
92 "gamma",
93 this -> coeffDict_ ,
94 0.52
95)
96),
97 alphaK_
98 (
99 dimensioned <scalar >:: lookupOrAddToDict

100 (
101 " alphaK ",
102 this -> coeffDict_ ,
103 0.5
104)
105),
106 alphaOmega_
107 (
108 dimensioned <scalar >:: lookupOrAddToDict
109 (
110 " alphaOmega ",
111 this -> coeffDict_ ,
112 0.5
113)
114),
115 k_
116 (
117 IOobject

240 Code implementations

118 (
119 IOobject :: groupName ("k", alphaRhoPhi .group ()),
120 this -> runTime_ . timeName (),
121 this ->mesh_ ,
122 IOobject :: MUST_READ ,
123 IOobject :: AUTO_WRITE
124),
125 this ->mesh_
126),
127 omega_
128 (
129 IOobject
130 (
131 IOobject :: groupName ("omega", alphaRhoPhi .group ()),
132 this -> runTime_ . timeName (),
133 this ->mesh_ ,
134 IOobject :: MUST_READ ,
135 IOobject :: AUTO_WRITE
136),
137 this ->mesh_
138),
139 fieldDDT_
140 (
141 IOobject
142 (
143 IOobject :: groupName (" DDTOmega ", alphaRhoPhi .group ()

),
144 this -> runTime_ . timeName (),
145 this ->mesh_ ,
146 IOobject :: NO_READ ,
147 IOobject :: AUTO_WRITE
148),
149 this ->mesh_ ,
150 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
151),
152 fieldADV_
153 (
154 IOobject
155 (
156 IOobject :: groupName (" AdvectionOmega ", alphaRhoPhi .

group ()),
157 this -> runTime_ . timeName (),
158 this ->mesh_ ,
159 IOobject :: NO_READ ,
160 IOobject :: AUTO_WRITE
161),
162 this ->mesh_ ,
163 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
164),
165 fieldDIFF_
166 (
167 IOobject
168 (

A.1 C++ pieces of code 241

169 IOobject :: groupName (" DiffusionOmega ", alphaRhoPhi .
group ()),

170 this -> runTime_ . timeName (),
171 this ->mesh_ ,
172 IOobject :: NO_READ ,
173 IOobject :: AUTO_WRITE
174),
175 this ->mesh_ ,
176 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
177),
178 fieldDESTR_
179 (
180 IOobject
181 (
182 IOobject :: groupName (" DestructionOmega ", alphaRhoPhi

.group ()),
183 this -> runTime_ . timeName (),
184 this ->mesh_ ,
185 IOobject :: NO_READ ,
186 IOobject :: AUTO_WRITE
187),
188 this ->mesh_ ,
189 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
190),
191 fieldPROD_
192 (
193 IOobject
194 (
195 IOobject :: groupName (" ProductionOmega ", alphaRhoPhi .

group ()),
196 this -> runTime_ . timeName (),
197 this ->mesh_ ,
198 IOobject :: NO_READ ,
199 IOobject :: AUTO_WRITE
200),
201 this ->mesh_ ,
202 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
203),
204 fieldPROD2_
205 (
206 IOobject
207 (
208 IOobject :: groupName (" ProductionOmega2 ", alphaRhoPhi

.group ()),
209 this -> runTime_ . timeName (),
210 this ->mesh_ ,
211 IOobject :: NO_READ ,
212 IOobject :: AUTO_WRITE
213),
214 this ->mesh_ ,
215 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
216),
217 fieldSOURCE_

242 Code implementations

218 (
219 IOobject
220 (
221 IOobject :: groupName (" SourceOmega ", alphaRhoPhi .

group ()),
222 this -> runTime_ . timeName (),
223 this ->mesh_ ,
224 IOobject :: NO_READ ,
225 IOobject :: AUTO_WRITE
226),
227 this ->mesh_ ,
228 dimensionedScalar ("0",omega_ . dimensions ()/dimTime ,0)
229)
230 {
231 bound(k_ , this ->kMin_);
232 bound(omega_ , this -> omegaMin_);
233

234 if (type == typeName)
235 {
236 this -> printCoeffs (type);
237 }
238 }
239 // * * * * * * * * * * * * * * * Member Functions * * * * * *

* * * * * * * //
240 template <class BasicTurbulenceModel >
241 bool pkOmega3 < BasicTurbulenceModel >:: read ()
242 {
243 if (eddyViscosity <RASModel < BasicTurbulenceModel >>:: read ())
244 {
245 Cmu_. readIfPresent (this -> coeffDict ());
246 beta_. readIfPresent (this -> coeffDict ());
247 gamma_ . readIfPresent (this -> coeffDict ());
248 alphaK_ . readIfPresent (this -> coeffDict ());
249 alphaOmega_ . readIfPresent (this -> coeffDict ());
250

251 return true;
252 }
253 else
254 {
255 return false;
256 }
257 }
258 template <class BasicTurbulenceModel >
259 void pkOmega3 < BasicTurbulenceModel >:: correct ()
260 {
261 if (!this -> turbulence_)
262 {
263 return ;
264 }
265 // Local references
266 const alphaField & alpha = this -> alpha_ ;
267 const rhoField & rho = this ->rho_;
268 const surfaceScalarField & alphaRhoPhi = this -> alphaRhoPhi_ ;

A.1 C++ pieces of code 243

269 const volVectorField & U = this ->U_;
270 volScalarField & nut = this ->nut_;
271 fv:: options & fvOptions (fv:: options :: New(this ->mesh_));
272 eddyViscosity <RASModel < BasicTurbulenceModel >>:: correct ();
273 volScalarField :: Internal divU
274 (
275 fvc :: div(fvc :: absolute (this ->phi (), U))().v()
276);
277 tmp < volTensorField > tgradU = fvc :: grad(U);
278 volScalarField :: Internal G
279 (
280 this ->GName (),
281 nut.v()*(dev(twoSymm (tgradU ().v())) && tgradU ().v())
282);
283 tgradU .clear ();
284

285 // Update omega and G at the wall
286 omega_ . boundaryFieldRef (). updateCoeffs ();
287 // Turbulent frequency equation
288 fvScalarMatrix omegaEqn1
289 (
290 fvm :: ddt(alpha , rho , omega_)
291);
292 fvScalarMatrix omegaEqn2
293 (
294 fvm :: div(alphaRhoPhi , omega_)
295);
296 fvScalarMatrix omegaEqn3
297 (
298 fvm :: laplacian (alpha*rho* DomegaEff () , omega_)
299);
300 fvScalarMatrix omegaEqn4
301 (
302 fvm ::Sp(beta_*alpha ()*rho ()* omega_ (), omega_)
303);
304 fvScalarMatrix omegaEqn5
305 (
306 fvm :: SuSp(gamma_ *alpha ()*rho ()*G/k_() , omega_)
307);
308 fvScalarMatrix omegaEqn52
309 (
310 fvm :: SuSp (((2.0/3.0) * gamma_)*alpha ()*rho ()*divU ,

omega_)
311);
312 fvScalarMatrix omegaEqn6
313 (
314 (
315 0.0* fvm :: ddt(alpha , rho , omega_) // 0
316 + omegaSource ()
317 + fvOptions (alpha , rho , omega_)
318)
319);
320 tmp < fvScalarMatrix > omegaEqn

244 Code implementations

321 (
322 omegaEqn1
323 + omegaEqn2
324 ==
325 omegaEqn3
326 - omegaEqn4
327 + omegaEqn5
328 - omegaEqn52
329 + omegaEqn6
330);
331 omegaEqn .ref ().relax ();
332 fvOptions . constrain (omegaEqn .ref ());
333 omegaEqn .ref (). boundaryManipulate (omega_ . boundaryFieldRef ()

);
334 solve(omegaEqn);
335 fvOptions . correct (omega_);
336 bound(omega_ , this -> omegaMin_);
337 //- Update fields
338 fieldDDT_ = omegaEqn1 .A()* omega_ - omegaEqn1 .H();
339 fieldADV_ = omegaEqn2 .A()* omega_ - omegaEqn2 .H();
340 fieldDIFF_ = omegaEqn3 .A()* omega_ - omegaEqn3 .H();
341 fieldDESTR_ = omegaEqn4 .A()* omega_ - omegaEqn4 .H();
342 fieldPROD_ = omegaEqn5 .A()* omega_ - omegaEqn5 .H();
343 fieldPROD2_ = omegaEqn52 .A()* omega_ - omegaEqn52 .H();
344 fieldSOURCE_ = omegaEqn6 .A()* omega_ - omegaEqn6 .H();
345 // Turbulent kinetic energy equation
346 tmp < fvScalarMatrix > kEqn
347 (
348 fvm :: ddt(alpha , rho , k_)
349 + fvm :: div(alphaRhoPhi , k_)
350 - fvm :: laplacian (alpha*rho*DkEff (), k_)
351 ==
352 alpha ()*rho ()*G
353 - fvm :: SuSp ((2.0/3.0) *alpha ()*rho ()*divU , k_)
354 - fvm ::Sp(Cmu_*alpha ()*rho ()* omega_ (), k_)
355 + kSource ()
356 + fvOptions (alpha , rho , k_)
357);
358 kEqn.ref ().relax ();
359 fvOptions . constrain (kEqn.ref ());
360 solve(kEqn);
361 fvOptions . correct (k_);
362 bound(k_ , this ->kMin_);
363

364 correctNut ();
365 }
366 // *

* * * * * * * //
367 } // End namespace RASModels
368 } // End namespace Foam

A.2 Python scripts 245

A.2 Python scripts

Listing A.15 shell_input.py: Pre-processing of the inputs for the ML model
M3 prediction phase, to be used with shell_script.py

1 # ##
2 # Should be automatically imported with iPython
3 # Uncomment / comment if needed
4 import numpy as np
5 import pandas as pd
6 import os
7 # ##
8 # EDIT BELOW
9 # numbers of cells:

10 ny_air = 57
11 ny_water = 15
12 nx = 28
13 nz = 8
14 ny = ny_air + ny_water
15 # geometry vertically : (only needed if geometry dependant input

selected)
16 y_top = 0.02600 # top wall y- coordinate
17 y_bott = 0.00000 # bottom wall y- coordinate
18 y_interf = 0.00233 # mean interface setting y- coordinate
19

20 dirpath =’./’
21 dirs = [s for s in os. listdir (dirpath) if os.path.isdir(os.path

.join(dirpath , s))]
22 dirs.sort(key= lambda s: os.path. getmtime (os.path.join(dirpath ,

s)), reverse =True)
23 mostRecent_dirPath = dirpath +str(dirs [0])+"/"
24 print (’LAST WRITTEN TIME_STEP = ’, dirs [0], ’ s’)
25

26 # lines to skip in OpenFOAM files access true data
27 skipFirstLines = 22
28

29 file = open(’./0/ Cy’, ’r’) #y mesh coordinates
30 lines = file. readlines ()
31 file.close ()
32 del lines[nx*ny*nz+ skipFirstLines :]
33 del lines [0: skipFirstLines]
34 new_file = open(’Cy’, ’w+’)
35 for line in lines:
36 new_file .write(line)
37 new_file .close ()
38

39 y_line_mesh = np. loadtxt (’./Cy’). tolist ()
40

41 # ############
42 # ML FEATURES
43 # ############
44

45 # phase volume distribution

246 Code implementations

46 a_file = open(mostRecent_dirPath +’alpha.water ’, ’r’)
47 lines = a_file . readlines ()
48 a_file .close ()
49 del lines[nx*ny*nz+ skipFirstLines :]
50 del lines [0: skipFirstLines]
51 new_file = open(’alpha ’, ’w+’)
52 for line in lines:
53 new_file .write(line)
54 new_file .close ()
55

56 alpha = np. loadtxt (’./ alpha ’)
57

58 # || grad(alpha)||
59 a_file = open(mostRecent_dirPath +’magGradAlpha ’, ’r’)
60 lines = a_file . readlines ()
61 a_file .close ()
62 del lines[nx*ny*nz+ skipFirstLines :]
63 del lines [0: skipFirstLines]
64 new_file = open(’magGradAlpha ’, ’w+’)
65 for line in lines:
66 new_file .write(line)
67 new_file .close ()
68

69 maggradalpha = np. loadtxt (’./ magGradAlpha ’)
70

71 # mean axial velocity
72 a_file = open(mostRecent_dirPath +’U’, ’r’)
73 lines = a_file . readlines ()
74 a_file .close ()
75 del lines[nx*ny*nz+ skipFirstLines :]
76 del lines [0: skipFirstLines]
77 new_file = open(’velocity ’, ’w+’)
78 for line in lines:
79 new_file .write(line)
80 new_file .close ()
81 with open(’./ velocity ’, ’r’) as file1 :
82 filedata = file1.read ()
83 filedata = filedata . replace (’(’, ’ ’)
84 filedata = filedata . replace (’)’, ’ ’)
85 with open(’velocity ’, ’w’) as file:
86 file.write(filedata)
87

88 u = np. loadtxt (’./ velocity ’)[: ,0]
89

90 # TKE
91 a_file = open(mostRecent_dirPath +’k’, ’r’)
92 lines = a_file . readlines ()
93 a_file .close ()
94 del lines[nx*ny*nz+ skipFirstLines :]
95 del lines [0: skipFirstLines]
96 new_file = open(’tke ’, ’w+’)
97 for line in lines:
98 new_file .write(line)

A.2 Python scripts 247

99 new_file .close ()
100

101 tke = np. loadtxt (’./ tke ’)
102

103 # #######################################
104 # Cration of dataframe for ML prediction
105 # #######################################
106 unitaire = [1]* nx*ny*nz
107

108 datalabels = {’eta1 ’: u, ’eta2 ’: alpha , ’eta3 ’: maggradalpha , ’
eta4 ’: tke , ’unitaire ’: unitaire }

109 df = pd. DataFrame (data = datalabels)
110

111 df. to_csv (" dataset_test .csv", index=False)

Listing A.16 shell_script.py: Shell script used to perform the adaptive
correction method with M3 (coupling OpenFOAM/ML

1 import os
2 import time
3

4 SIMULATION_DURATION = 7200 # second is the unit
5 dirpath =’./’
6

7 # Makes of ./0 the most recent dir
8 os. system (">> ./0/ hop")
9 os. system ("rm ./0/ hop")

10

11 time.sleep (1)
12 time_0 = time.time () # reference start time
13

14 while (time.time ()-time_0) < SIMULATION_DURATION :
15 dirs = [s for s in os. listdir (dirpath) if os.path.isdir(os.

path.join(dirpath , s))]
16 dirs.sort(key= lambda s: os.path. getmtime (os.path.join(

dirpath , s)), reverse =True)
17 # Initialisation loop
18 if float(dirs [0]) == 0:
19 print(" >>>>>>>>>>> ONLY dir 0 DETECTED --> USING INIT

FVOPTIONS ... <<<<<<<<<<<<")
20 os. system ("cp ./ constant / fvOptions_init ./ constant /

fvOptions ")
21 os. system (" postProcess -func write CellCentres ")
22 os. system (" setFields ")
23 os. system (" topoSet ")
24 print(" >>>>>>>>>>> CONVERTING NOTEBOOK <<<<<<<<<<<<")
25 os. system (" jupyter nbconvert --to script prediction .

ipynb")
26 time.sleep (0.1)
27 os. system (" interFoam ") # to initialise field for inputs

ML (U, omega)
28 time.sleep (0.1)
29 os. system (" ipython shell_input .py")
30 os. system (" ipython prediction .py")

248 Code implementations

31 os. system ("cp ./ constant / fvOptions_run ./ constant /
fvOptions ")

32 time.sleep (0.1)
33 os. system (" interFoam ")
34 time.sleep (0.1)
35 if float(dirs [0]) != 0:
36 print(" Sorting inputs ...")
37 os. system (" ipython shell_input .py")
38 time.sleep (0.1)
39 print(" Making predictions ...")
40 os. system (" ipython prediction .py")
41 time.sleep (0.1)
42 os. system (" interFoam ")
43 time.sleep (0.1)

Listing A.17 clean.py: script used to clean data after simulation performed
with the adaptive method

1 import os
2

3 os. system ("rm ./ constant / fvOptions ")
4 os. system ("rm -r 0.* 1.* 2.* 3.* 4.* 5.* 6.* 7.* 8.* 9.*")
5 os. system ("rm ./0/C*")
6 os. system ("rm ./0/ alpha.water")
7 os. system ("rm prediction .py")
8 os. system ("rm alpha")
9 os. system ("rm dataset_ *")

10 os. system ("rm velocity ")
11 #os. system ("rm -r dynamicCode ")
12 os. system ("rm ./ constant / budget *")
13 os. system ("rm ./0/ hop")
14 os. system ("rm ./ magGradAlpha ")
15 os. system ("rm ./Cy")

A.3 PyTorch model notebooks

Listing A.18 training.ipynb: jupyter notebook used to implement the neural
network of M3 and perform the training of the model

1 import pandas as pd
2 import torch
3 import matplotlib . pyplot as plt
4 import numpy as np
5 import os
6

7 torch. __version__
8

9 # Source data path (. csv format)
10 dataset_path = ’dataset .csv ’
11 # Number of outputs for the regression problem
12 n_outputs = 1

A.3 PyTorch model notebooks 249

13 # Scaling technique
14 scaler = ’standard ’ # standard . maxmin . maxabs . None
15 # Saving path for my best torch model state dictionary and

params dictionary
16 save_path = ’./ model_M3 /’
17 # data shuffle
18 shuffle_data = True
19 # Number of neurons for the layers of the MLP
20 neurons = [512 , 512]
21 # Activation function for hidden layers
22 activation = ’relu ’ # relu . tanh
23 dropout_rate = 0.2
24 learning_rate = 10** -4
25 batch_size = 64
26 # Training epochs
27 epochs = 1024
28 # Loss function
29 loss = ’mse ’ # mse # mae
30 # Optimizer
31 optimizer_type = ’adam ’ # adam . sgd . rmsprop
32

33 if not os.path. exists (save_path):
34 os.mkdir(save_path)
35

36 params_dict = {
37 ’dataset_path ’: dataset_path ,
38 ’drop_columns ’: drop_columns ,
39 ’n_outputs ’: n_outputs ,
40 ’beta_threshold ’: beta_threshold ,
41 ’scaler ’: scaler ,
42 ’save_path ’: save_path ,
43 ’shuffle_data ’: shuffle_data ,
44 ’neurons ’: neurons ,
45 ’dropout_rate ’: dropout_rate ,
46 ’learning_rate ’: learning_rate ,
47 ’batch_size ’: batch_size ,
48 ’epochs ’: epochs ,
49 ’loss ’: loss ,
50 ’optimizer_type ’: optimizer_type ,
51 }
52

53 dataset = pd. read_csv (dataset_path ,
54 dtype=np.float32 ,
55 na_values =[’?’])
56

57 print(f’Original Dataset shape: { dataset .shape}’)
58 if not dataset . isnull (). values .any ():
59 print(’No NaN in dataset ’)
60 else:
61 print(’Removing NaN values ...\n’)
62 dataset . dropna (inplace =True)
63 print(f’New Dataset shape: { dataset .shape}’)
64

250 Code implementations

65 print(’Checking data distribution ... \n’)
66 plt.style.use(’seaborn - darkgrid ’)
67 dataset .hist(figsize =(16 , 10) , bins =20)
68 plt.show ()
69

70 from sklearn . preprocessing import MinMaxScaler , StandardScaler ,
MaxAbsScaler

71 from sklearn . model_selection import train_test_split
72

73 def scale(df: pd.DataFrame ,
74 scaler : str = ’standard ’) -> pd. DataFrame :
75 if scaler == ’standard ’:
76 scaler = StandardScaler ()
77 elif scaler == ’maxmin ’:
78 scaler = MinMaxScaler ()
79 elif scaler == ’maxabs ’:
80 scaler = MaxAbsScaler ()
81 else:
82 return df
83

84 scaler .fit(df)
85 return pd. DataFrame (scaler . transform (df), columns =df. columns)

, scaler
86

87 normed_dataset , my_scaler = scale(dataset , scaler)
88

89 print(f’Splitting data in 3 dataset for training - validation -
test ... (shuffle : { shuffle_data })\n’)

90

91 if shuffle_data :
92 train , validate , test = np.split(normed_dataset . sample (frac

=1, random_state =22) ,
93 [int (.78* len(normed_dataset))

, int (.95* len(normed_dataset))])
94 else:
95 train , validate , test = np.split(normed_dataset ,
96 [int (.78* len(normed_dataset))

, int (.95* len(normed_dataset))])
97

98 import torch.nn as nn
99 import torch

100

101 # Implementation of the feed - forward neural network
102 class RegNet1D (nn. Module):
103 def __init__ (self ,
104 num_feature : int = 4,
105 num_class : int = 1,
106 dropout_rate : float = 0.0,
107 neurons : list = neurons ,
108 activation : str = ’relu ’) -> None:
109

110 super(RegNet1D , self). __init__ ()
111

A.3 PyTorch model notebooks 251

112 self.fc1 = nn. Linear (num_feature , neurons [0])
113 self.fc2 = nn. Linear (neurons [0], neurons [1])
114

115 self. layer_out = nn. Linear (neurons [1], num_class)
116

117 if activation == ’relu ’:
118 self.act = nn.ReLU ()
119 elif activation == ’tanh ’:
120 self.act = nn.Tanh ()
121 else:
122 self.act = nn.ReLU ()
123

124 self. dropout = nn. Dropout (p= dropout_rate)
125 self.bn1 = nn. BatchNorm1d (neurons [0])
126 self.bn2 = nn. BatchNorm1d (neurons [1])
127

128 def forward (self , x) -> torch. Tensor :
129 x = self.fc1(x)
130 x = self.bn1(x)
131 x = self.act(x)
132 x = self. dropout (x)
133

134 x = self.fc2(x)
135 x = self.bn2(x)
136 x = self.act(x)
137 x = self. dropout (x)
138

139 x = self. layer_out (x)
140

141 return x
142

143 device = torch. device ("cuda :0" if torch.cuda. is_available ()
else "cpu")

144 print(f’working on { device }’)
145

146 model = RegNet1D (
147 num_feature =train.shape [1] - n_outputs ,
148 num_class =1,
149 neurons =neurons ,
150 dropout_rate = dropout_rate ,
151 activation = activation
152).to(device)
153

154 # import torchsummary
155 # torchsummary . summary (model , (train.shape [1] - n_outputs ,),

batch_size = batch_size)
156

157 print(f’Loss function : {loss }\n’)
158 if loss == ’mse ’:
159 criterion = nn. MSELoss ()
160 elif loss == ’mae ’:
161 criterion = nn. L1Loss ()
162 else:

252 Code implementations

163 criterion = nn. MSELoss ()
164

165 print(f’optimizer : { optimizer_type }\n’)
166

167 if optimizer_type == ’adam ’:
168 optimizer = torch.optim.Adam(model. parameters (), lr=

learning_rate)
169 elif optimizer_type == ’sgd ’:
170 optimizer = torch.optim.SGD(model. parameters (), lr=

learning_rate , momentum =0.9 , nesterov =True)
171 elif optimizer_type == ’rmsprop ’:
172 optimizer = torch.optim. RMSprop (model. parameters (), lr=

learning_rate)
173 else:
174 optimizer = torch.optim.Adam(model. parameters (), lr=

learning_rate)
175

176 class CustomLogger (object):
177 def __init__ (self):
178 self. accuracy = {
179 ’train ’: [],
180 ’val ’: []
181 }
182 self.loss = {
183 ’train ’: [],
184 ’val ’: []
185 }
186

187 n_inputs = train.shape [1] - n_outputs
188 X_train = train. to_numpy ()[:, : n_inputs]
189 X_val = validate . to_numpy ()[:, : n_inputs]
190 X_test = test. to_numpy ()[:, : n_inputs]
191 y_train = train. to_numpy ()[:, n_inputs : n_inputs + n_outputs]
192 y_val = validate . to_numpy ()[:, n_inputs : n_inputs + n_outputs]
193 y_test = test. to_numpy ()[:, n_inputs : n_inputs + n_outputs]
194

195 from torch.utils.data import Dataset , DataLoader
196

197 class RegressionDataset (Dataset):
198

199 def __init__ (self , X_data , y_data):
200 self. X_data = X_data
201 self. y_data = y_data
202

203 def __getitem__ (self , index):
204 return self. X_data [index], self. y_data [index]
205

206 def __len__ (self):
207 return len(self. X_data)
208

209 train_dataset = RegressionDataset (torch. from_numpy (X_train).
float (), torch. from_numpy (y_train).float ())

A.3 PyTorch model notebooks 253

210 val_dataset = RegressionDataset (torch. from_numpy (X_val).float ()
, torch. from_numpy (y_val).float ())

211

212 from sklearn . metrics import r2_score
213 import copy
214

215 # Training of the model
216 print(" Starting Training ...\n")
217 Logger = CustomLogger ()
218 train_loader = DataLoader (train_dataset , batch_size =batch_size ,

shuffle = shuffle_data , drop_last =True)
219 val_loader = DataLoader (val_dataset , batch_size =batch_size ,

shuffle = shuffle_data , drop_last =True)
220

221 model.train ()
222 best_model = None
223 best_acc = -1000
224

225 for epoch in range (0, epochs):
226 train_epoch_loss = 0
227 train_epoch_acc = 0
228 for X_train_batch , y_train_batch in train_loader :
229 X_train_batch , y_train_batch = X_train_batch .to(device)

, y_train_batch .to(device).view (-1, 1)
230

231 optimizer . zero_grad ()
232

233 y_train_pred = model(X_train_batch)
234 train_loss = criterion (y_train_pred , y_train_batch)
235

236 train_acc = r2_score (y_train_pred .cpu (). detach ().numpy
(),

237 y_train_batch .cpu (). detach ().numpy
())

238

239 train_loss . backward ()
240 optimizer .step ()
241

242 train_epoch_loss += train_loss .item ()
243 train_epoch_acc += train_acc .item ()
244

245 with torch. no_grad ():
246

247 val_epoch_loss = 0
248 val_epoch_acc = 0
249

250 model.eval ()
251 for X_val_batch , y_val_batch in val_loader :
252 X_val_batch , y_val_batch = X_val_batch .to(device),

y_val_batch .to(device).view (-1, 1)
253

254 y_val_pred = model(X_val_batch)
255

254 Code implementations

256 val_loss = criterion (y_val_pred , y_val_batch)
257 val_acc = r2_score (y_val_pred .cpu (). detach ().numpy

(),
258 y_val_batch .cpu (). detach ().numpy

())
259

260 val_epoch_loss += val_loss .item ()
261 val_epoch_acc += val_acc .item ()
262

263 Logger .loss[’train ’]. append (train_epoch_loss /len(
train_loader))

264 Logger .loss[’val ’]. append (val_epoch_loss /len(val_loader))
265 Logger . accuracy [’train ’]. append (train_epoch_acc /len(

train_loader))
266 Logger . accuracy [’val ’]. append (val_epoch_acc /len(val_loader)

)
267

268 print(f’Epoch {epoch +1+0:04}: | Train Loss: {
train_epoch_loss /len(train_loader):.5f} | Val Loss: {
val_epoch_loss /len(val_loader):.5f} | Train Acc: {
train_epoch_acc /len(train_loader):.3f} | Val Acc: {
val_epoch_acc /len(val_loader):.3f} |’)

269

270 if val_epoch_acc > best_acc :
271 print(’Saving a new best model ’)
272 best_model = copy. deepcopy (model)
273 best_acc = val_epoch_acc
274

275

276 plt.style.use(’seaborn - darkgrid ’)
277 fig , axs = plt. subplots (ncols =2, figsize =(10 , 4))
278 axs [0]. plot(Logger .loss[’train ’], label=’Train loss ’)
279 axs [0]. plot(Logger .loss[’val ’], label=’Val loss ’)
280 axs [0]. legend ()
281 axs [1]. plot(Logger . accuracy [’train ’], label=’Train accuracy ’)
282 axs [1]. plot(Logger . accuracy [’val ’], label=’Val accuracy ’)
283 axs [1]. legend ()
284 plt.show ()
285

286 # Saving the model
287 print(’Saving best model to file ... \n’)
288 model = best_model
289 torch.save(model. state_dict (), os.path.join(save_path , ’

model_line1 .pth ’))
290 print(’Saving my simulation parameters ...\n’)
291 import json
292 with open(os.path.join(save_path , ’params .json ’), ’w’) as fp:
293 json.dump(params_dict , fp)
294 model.eval ()
295

296 # Testing phase
297 print(’Making predictions ... ’)

A.3 PyTorch model notebooks 255

298 train_preds = model(torch. Tensor (X_train).to(device)).cpu ().
detach ().numpy ()

299 val_preds = model(torch. Tensor (X_val).to(device)).cpu (). detach
().numpy ()

300 test_preds = model(torch. Tensor (X_test).to(device)).cpu ().
detach ().numpy ()

301

302 from sklearn . metrics import mean_absolute_error ,
mean_squared_error

303

304 def results_log (_t , _p , set:str = ’’):
305 print(f’Dataset : {set} - mae: { mean_absolute_error (_t , _p)} -

mse: { mean_squared_error (_t , _p)} - r2: { r2_score (_t , _p)}\
n’)

306

307 results_log (train_preds , y_train , ’train ’)
308 results_log (val_preds , y_val , ’val ’)
309 results_log (test_preds , y_test , ’test ’)
310

311 print(’Reloading parameters if needed ... ’)
312 with open(os.path.join(save_path , ’params .json ’)) as f:
313 params = json.load(f)
314

315 # Save the scaler
316 from pickle import dump
317 dump(my_scaler , open(save_path +’/ scaler_M3 .pkl ’, ’wb’))

Listing A.19 prediction.py: Converted jupyter notebook used to perform the
predictions of the ML model M3

1

2 #!/ usr/bin/env python
3 # coding : utf -8
4

5 # import torch.nn as nn
6 # import torch
7 # import pandas as pd
8 # import numpy as np
9 # import os

10 #from pickle import load
11

12 save_path = ’./ model_M3 /’
13 saved_scalar_name = ’scaler_M3 .pkl ’
14 saved_model = ’model_M3 .pth ’
15 dataSet_name = ’./ dataset .csv ’
16 neurons = 512
17 num_inputs = 4
18 neurons = [neurons , neurons ,]
19 activation = ’relu ’
20 dropout_rate = 0.2
21

22 class RegNet1D (nn. Module):
23 def __init__ (self ,
24 num_feature : int = 10,

256 Code implementations

25 num_class : int = 1,
26 dropout_rate : float = 0.0,
27 neurons = neurons , # Number of neurons for the

layers of the MLP
28 activation : str = ’relu ’) -> None:
29

30 super(RegNet1D , self). __init__ ()
31

32 self.fc1 = nn. Linear (num_feature , neurons [0])
33 self.fc2 = nn. Linear (neurons [0], neurons [1])
34

35 self. layer_out = nn. Linear (neurons [1], num_class)
36

37 if activation == ’relu ’:
38 self.act = nn.ReLU ()
39 elif activation == ’tanh ’:
40 self.act = nn.Tanh ()
41 else:
42 self.act = nn.ReLU ()
43

44 self. dropout = nn. Dropout (p= dropout_rate)
45 self.bn1 = nn. BatchNorm1d (neurons [0])
46 self.bn2 = nn. BatchNorm1d (neurons [1])
47

48 def forward (self , x) -> torch. Tensor :
49 x = self.fc1(x)
50 x = self.bn1(x)
51 x = self.act(x)
52 x = self. dropout (x)
53 x = self.fc2(x)
54 x = self.bn2(x)
55 x = self.act(x)
56 x = self. dropout (x)
57 x = self. layer_out (x)
58

59 return x
60

61 device = torch. device ("cuda :0" if torch.cuda. is_available ()
else "cpu")

62 reloaded_model = RegNet1D (
63 num_feature = num_inputs ,
64 num_class =1,
65 neurons =neurons ,
66 dropout_rate = dropout_rate
67).to(device)
68 reloaded_model . load_state_dict (torch.load(os.path.join(

save_path , saved_model)))
69 reloaded_model .eval ()
70

71 dataset = pd. read_csv (dataSet_name , dtype=np.float32 , na_values
=[’?’])

72

73 scaler = ’standard ’

A.3 PyTorch model notebooks 257

74 scaler_model = load(open(save_path + saved_scalar_name , ’rb’))
75 normed_dataset = scaler_model . transform (dataset)
76 X_data = normed_dataset [:, :-1]
77 pred_data = reloaded_model (torch. Tensor (X_data).to(device)).cpu

(). detach ().numpy ()
78 # remove ’unitaire ’ that was used for scaling :
79 stacked_dataset = np. hstack ((normed_dataset [:,:-1], pred_data))
80 inv_normed_dataset = scaler_model . inverse_transform (

stacked_dataset)
81 beta_rescaled = inv_normed_dataset [:,-1]
82 beta_rescaled_nolog = [10**(beta_rescaled [i]) for i in range(

len(beta_rescaled))]
83 beta_rescaled_ = [’(’]+ beta_rescaled_nolog +[’)’]
84 np. savetxt (’./ constant / budgetOmega ’, beta_rescaled_ , fmt=’%s’)

⋆

Appendix B

Additional figures

B.1 Additional figures from chapter 5

100 103 106

ω (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−2 101

ε (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure B.1 Specific turbulence dissipation rate (left) and turbulence dissipation
rate (right) profiles comparison between the qDNS, the standard k − ω model
(stand.), and the corrected k−ω model (corr.) predictions in the closed channel
configuration and wavy interface regime

260 Additional figures

102 104

ω (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

10−1 102

ε (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

Figure B.2 profiles comparison between the qDNS, the standard k − ω model
(stand.), and the corrected k− ω model (corr.) predictions in the open channel
configuration and smooth interface regime

100 103 106

ω (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

10−1 103

ε (m2/s2)

0.0

0.2

0.4

0.6

0.8

1.0

y
/H

Figure B.3 Specific turbulence dissipation rate (left) and turbulence dissipation
rate (right) profiles comparison between the qDNS, the standard k − ω model
(stand.), and the corrected k−ω model (corr.) predictions in the closed channel
configuration and smooth interface regime

B.2 Additional figures from chapter 6 261

102 104

ω (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y
/H

10−1 102

ε (m2/s2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y
/H

Figure B.4 profiles comparison between the qDNS, the standard k − ω model
(stand.), and the corrected k− ω model (corr.) predictions in the open channel
configuration and wavy interface regime

B.2 Additional figures from chapter 6

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.a: qDNS

1.a: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.a: qDNS

2.a: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.a: qDNS

3.a: Exp.

Figure B.5 Mean axial velocity profiles for Ub,g = 3.1 m/s and using Ub,l = 0.008
m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s (right)

262 Additional figures

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.b: qDNS

1.b: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.b: qDNS

2.b: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.b: qDNS

3.b: Exp.

Figure B.6 Mean axial velocity profiles for Ub,g = 3.6 m/s and using Ub,l = 0.008
m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s (right)

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.c: qDNS

1.c: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.c: qDNS

2.c: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.c: qDNS

3.c: Exp.

Figure B.7 Mean axial velocity profiles for Ub,g = 4.2 m/s and using Ub,l = 0.008
m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s (right)

B.2 Additional figures from chapter 6 263

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0
(y
−
h̄

)/
(H
−
h̄

)

1.d: qDNS

1.d: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.d: qDNS

2.d: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.d: qDNS

3.d: Exp.

Figure B.8 Mean axial velocity profiles for Ub,g = 4.7 m/s and using Ub,l = 0.008
m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s (right)

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

1.e: qDNS

1.e: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

2.e: qDNS

2.e: Exp.

0.0 0.5 1.0

Ux/(Umax − Ufilm)

0.0

0.2

0.4

0.6

0.8

1.0

(y
−
h̄

)/
(H
−
h̄

)

3.e: qDNS

3.e: Exp.

Figure B.9 Mean axial velocity profiles for Ub,g = 5.2 m/s and using Ub,l = 0.008
m/s (left), Ub,l = 0.019 m/s (centre), and Ub,l = 0.031 m/s (right)

264 Additional figures

Figure B.10 qDNS simulations performed at the liquid film velocity 0.019 m/s

B.2 Additional figures from chapter 6 265

Figure B.11 qDNS simulations performed at the liquid film velocity 0.031 m/s

⋆

B.2 Additional figures from chapter 6 267

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Context of the research
	1.2 Problem statement
	1.3 Contribution to knowledge and objectives
	1.4 Thesis layout

	2 Background knowledge on two-phase flows and numerical methods
	2.1 General knowledge on two-phase flows
	2.2 Numerical modelling of two-phase flows
	2.2.1 The Volume of Fluid method
	2.2.2 The Euler-Euler method

	2.3 Additional numerical methods for CFD simulations
	2.3.1 OpenFOAM
	2.3.2 Finite volume spatial discretisation method
	2.3.3 Discretisation schemes
	2.3.4 Turbulence modelling
	2.3.5 Solution methods

	2.4 Introduction to machine learning
	2.4.1 Machine learning process and neural network
	2.4.2 Data normalisation
	2.4.3 Loss function and training quality

	2.5 Remarks

	3 Literature review: two-phase shear flows and ML applications in CFD
	3.1 Existing work on two-phase shear-flows
	3.1.1 Experimental work
	3.1.2 Numerical work

	3.2 Existing applications of machine learning in CFD
	3.2.1 ML applications in single-phase flows
	3.2.2 ML applications in two-phase flows
	3.2.3 Concluding remarks

	4 High-fidelity simulation of a stratified flow in a channel
	4.1 Preliminary study: comparison of the VOF and Euler-Euler methods
	4.1.1 Simulation setup and methodology
	4.1.2 Numerical methods
	4.1.3 Results and comparison between the VOF and Euler-Euler methods

	4.2 Further analyses using the VOF method
	4.2.1 Domain geometry
	4.2.2 Quasi-DNS and small turbulent scales
	4.2.3 Mesh resolution
	4.2.4 Results

	5 Proof of concept: implementation of a data-driven turbulence model
	5.1 Informing the k- model with high-fidelity data
	5.1.1 Performance of the standard k- model in two-phase shear flows
	5.1.2 Methodology

	5.2 Data-driven thick-film flow turbulence modelling
	5.2.1 Application to the smooth interface flow regime
	5.2.2 Limitations of the frozen film correction: application to wavy-films

	5.3 Turbulence correction prediction by a machine learning model
	5.3.1 Structure of the ML model
	5.3.2 Model training
	5.3.3 ML model predictions

	5.4 Conclusions and discussions

	6 Application to thin-film two-phase channel flows
	6.1 Simulation setup and creation of the training dataset
	6.1.1 Geometry and flow characteristics
	6.1.2 Quasi-DNS simulations and comparison with experiments

	6.2 Frozen correction field method
	6.2.1 Process description
	6.2.2 Implementation of the machine learning model M2
	6.2.3 Model M2 prediction results and discussions

	6.3 Adaptive correction field method
	6.3.1 Process description
	6.3.2 Implementation of a new machine learning model: model M3
	6.3.3 Model M3 prediction results and discussions
	6.3.4 Test of model M3 in an open channel

	6.4 Conclusions and discussions

	7 Conclusions and future work
	7.1 Conclusions
	7.1.1 Summary of the work
	7.1.2 Key contributions

	7.2 Recommendations for future improvements

	List of publications
	References
	Appendix A Code implementations
	A.1 C[4]++ pieces of code
	A.1.1 Field objects implemented in the solver interFoam
	A.1.2 Function objects coded in the OpenFOAM simulation control dictionary controlDict
	A.1.3 Coded source terms in the fvOptions dictionary
	A.1.4 Modified turbulence model

	A.2 Python scripts
	A.3 PyTorch model notebooks

	Appendix B Additional figures
	B.1 Additional figures from chapter 5
	B.2 Additional figures from chapter 6

