
University Of Nottingham

School of Mathematical Sciences

Applications of Perturbation Theory
to Power Electronic Converters

Author:

Marta Laterza

Supervisors:

Dr Stephen C. Creagh

Prof Pericle Zanchetta

Dr Martin Richter

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy

24th August 2022





a

To Alessandro





Abstract

Power Electronic converters usually require complex controllers, involving large

numbers of state-space variables; their models, moreover, tend to include multi-

ple nonlinearities. These characteristics make assessing the stability of systems

dominated by power electronics converters particularly challenging.

This work concerns the application of mathematical methods (in particular,

attention focused on Singular Perturbation Theory) to power electronic systems,

in order to model effectively their behaviour, reduce the size of their state-space

systems, and assess their operating stability using simplified methods.

Some preliminary work was performed on the ripple modelling of a DC-DC

boost converter and a single-phase full-bridge inverter; second-order approxima-

tions of the ripple and average behaviour, computed by applying Singular Per-

turbation methods, were found to agree very well to the solutions computed for

the initial-value problem ODEs.

Singular Perturbation theory was subsequently applied to perform model re-

ductions of power-electronic-based systems. First, a single-phase rectifier was

considered, then AC microgrids. From a mathematical point of view, a similar

approach was adopted in both cases to achieve the model reduction, but, given

the different technical nature of such systems, they required separate literature

reviews and preparatory work. The reductions were performed gradually, and

several stages are here presented; results were tested in simulations, and stabil-

ity analyses were compared to analogous analyses performed on the non-reduced

full-sized systems.
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Chapter 1

Introduction

This thesis concerns the application of mathematical methods to power electronic

systems, in order to obtain effective models of such systems, perform reliable

model reductions and assess their operating stability. Power electronic converters,

introduced in §1.1, in general, need complex controllers to operate effectively;

the state-space systems describing their behaviour tend to be “large”. Hence,

power-electronic-based systems could particularly benefit from the application of

techniques aimed at reducing the number of their variables without compromising

the accuracy of their models.

In particular, in this work attention is focused on:

• Mathematical modelling of the ripple of a Boost direct current (DC)-DC

converter and a single-phase (SP) Full-Bridge inverter;

• Model reduction of a Single-Phase Active-Front-End (AFE);

• Model reduction of alternating current (AC) microgrids.

The present chapter contains theoretical introductions to both mathematical

and engineering topics. §1.1 gives a short induction to Power Electronics, while

the mathematical bases for the different parts of the project will be given at the

beginning of the relevant chapters, together with the corresponding literature re-

view.

§2 concerns the application of perturbation theory to a DC-DC boost converter

and a Single-Phase Full-Bridge inverter, presenting different approximations of

their average behaviour and ripple.

In §3, a model reduction of a Single-Phase Active-Front-End rectifier is presented.
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Applications of Perturbation Theory to Power Electronic Converters

A literature review opens the chapter, where nonlinear and linear time-periodic

systems are analysed. Results are achieved through the application of perturba-

tion theory, and different levels of reduction are treated, according to different

choices that can be performed during nondimensionalisation. Stability analyses

are performed to full and reduced systems according to Linear Time-Periodic

theory.

§4 contains an introduction to AC microgrids, together with a relevant literature

review.

An analysis of the controller structure of inverters connected to AC microgrids is

presented in §5. After discussing each part of the controller, a model reduction is

performed on a system formed by a single inverter operating as an AC microgrid

converter.

§6 concerns the model reduction of an AC microgrid formed by two inverters.

Results are achieved by applying perturbation theory to the system, and differ-

ent degrees of reduction are proposed. Time-domain simulations and stability

analyses are used to compare the reduced models with the full-model behaviour.

Conclusions and potential future work topics are summarised in §7.

1.1 Brief introduction to Power Electronics and main chal-

lenges of operating power electronic converters

Power electronic converters are semiconductor-based devices which are em-

ployed to control and convert electrical power by high-frequency switching [1] [2].

As power can flow through alternating current (AC) or direct current (DC), con-

versions are needed in order to make voltages and currents meet the requirements

of the load or a certain section of the considered electrical systems. Conversions

are possible when a change from DC to AC or vice versa is needed, but also

if a different value of the voltage or current is demanded without changing the

type of flow, as in DC-DC and AC-AC conversions. In particular, applications

of rectifiers (AC-DC converters) include: supplying power to electronic devices

(e.g. computer, phones, televisions, etc.), DC electrical motors and some railway

2



CHAPTER 1. INTRODUCTION

and metro lines, charging batteries, feeding high-voltage direct current (HVDC)

transmission systems, which are in general employed for underwater power ca-

bles. Inverters, instead, are DC-AC converters and are necessary to connect

DC-generated power (e.g. power from photovoltaic systems) to the grid, or to

link DC storages, consisting of batteries or other charge accumulators, to AC

loads.

The switching frequency used by power electronic converters is usually of the

order of 10 kHz; the switching period tends then to be at least one or two or-

ders smaller than the other time scales of the electrical systems connected to the

switches, which are, in general, a low-pass filter followed by the grid or a load

(e.g. resistive load, inductive-resistive load, electrical motor, etc.).

The presence of a parameter that is small compared to the others of the sys-

tem (e.g. the ratio of the switching period to the other time scales) suggests that

perturbation methods could be applied to generate simpler models. This could be

achieved by averaging (or a generalisation of averaging) and/or by model reduc-

tion, reducing the number of governing ordinary ordinary differential equations

(ODEs) if some variables appear to be “slaved” to others.

Traditionally, electrical engineers compute an averaged system of convert-

ers by applying an averaging method (such as state-space averaging, Krylov-

Bogoliubov-Mitropolsky theories, [3, 4, 5]). The so-obtained simplified systems

are free from high-frequency oscillations and are characterised by having fewer

nonlinearities; they can be utilised in model implementation and controller design

([6], [7], [8], [9], etc.). Neglecting the ripple caused by the high-frequency switch-

ing, it is possible to work with an average model where the system evolution is

noticeable only on a larger time scale (e.g. the AC grid period or other time scales

of the same order of the system time constants), while they are quasi-constant if

a single switching period is considered. Considering the average behaviour only,

though, can lead to the formulation of an inaccurate controller and to possible

errors in the prediction of the system stability. ([6], [8], [10]).

When symmetric three-phase systems are considered (i.e., each phase carries

an alternating current of the same frequency and voltage amplitude relative to
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a common reference, with a phase difference of 2π/3), a direct-quadrature-zero

(DQ0) transformation can often be applied (in the case of negligible harmonics

with order greater than one, compared to the amplitude of the fundamental).

DQ0 transformation projects a three-phase quantity onto a rotating reference

frame whose frequency is equal to that of the alternating voltage. This proce-

dure allows one, in steady-state, to consider two constant values instead of three

sinusoidal quantities [11][12].

However, if a single-phase converter is considered or if in the analysed system

some harmonics of order greater than one cannot be neglected, DQ0 transfor-

mation cannot be applied. Therefore, even though the system model can be

simplified by averaging it and neglecting high frequencies, stability analysis is al-

gebraically involved. Indeed, when state-space systems are computed for control

and stability purposes, some of their variables are characterised by time-periodic

behaviours. Those systems, moreover, are often nonlinear. Performing their lin-

earisation, then, includes the computation of time-periodic steady-states. When

looking at the behaviour of perturbations of the steady-state, a linearised system

with time-periodic coefficients is obtained, in the form of a Linear Time Periodic

(LTP) system. The stability analysis, thus, follows from Floquet theory [13] [14].

Engineering custom tends to deal with dimensional systems and to apply ad-

hoc approximations. For the purpose of performing perturbation methods or

other reduction techniques, the system parameter magnitudes must be compared

to each other, in order to identify relatively big and small quantities. Keeping

the system dimensional, however, makes this comparison hard because of the

inconsistency between the parameters.

To improve those results and obtain a more systematic way of approximating

and reducing power electronic models, a different approach has been considered

here. Nondimensionalisation has been applied to power electronic systems in

order to identify small parameters and to lead to the formulation of systematic

reduction techniques.
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Chapter 2

DC-DC Boost Converter and Single-Phase

Full-Bridge Inverter Analysis

In this chapter, the behaviour of a DC-DC converter and a single-phase inverter

are analysed through the computation of the averaged state-space ODEs and of

the ripple. Those systems are relatively simple from an engineering point of view,

but were chosen for familiarising with the application of perturbation theories to

power electronics, as a preliminary step before moving to more complex systems

described in the following chapters.

In §2.1 is given an introduction to singular perturbed systems and their averag-

ing, while 2.2 reports some examples of averaged systems from the engineering

literature. The following sections contain the averaging and ripple modelling of

the two analysed converters.

2.1 Averaging of Singular Perturbed Systems

According to the Krylov-Bogoliubov-Mitropolsky (KBM) technique, the exact

differential equation describing a singularly perturbed system can be decomposed

into the approximation of its averaged ODEs and the approximation of its ripple.

The averaged problem and the ripple can each be further decomposed into a se-

ries, whose terms decrease according to the power of a small scalar parameter ε.

The terms of each series can be computed sequentially by an iterative method, as

shown below. Iterating the computation of the averaged system and the ripple

leads the sum of the series terms to converge to the exact system solution ([3],

5
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[4], [5], [10]).

If a system can be described by

ẇ = εh(t, w) , (2.1)

where h is a continuous function and ε is a small scalar parameter, the following

change of variables can be considered:

w(t) = y(t) + εΨ 1(t, y) + ε2 Ψ 2(t, y) + · · · , (2.2)

where Ψ i are functions with a zero average with respect to t and are continuous

in t, y.

In (2.2), y behaves like the average of w, while
N∑
i=1

εi Ψ i represents the ripple of

x.

The averaged-variables vector y can be computed as the solution of a time-

invariant system

ẏ = εG1(y) + ε2G2(y) + · · · . (2.3)

Therefore, (2.2) can be differentiated with respect to time, substituting ẏ(t) with

(2.3):

ẇ(t) =
N∑
i=1

εiGi(y) +
N∑
i=1

εi

{
∂Ψ i

∂ t
+

∂Ψ i

∂y

[
N∑
m=1

εmGm(y)

]}
. (2.4)

The computation of Gi and Ψ i can be performed by equating identical powers

of ε and setting the average value of Ψ i equal to 0, as follows.

〈Ψ i(t, y)〉 = 〈Ψ i〉 = 0 , (2.5)

where

〈Ψ i(t, y)〉 =
1

T

n+Tˆ
n

h(w) dt (2.6)

and T is the period of the ripple.
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While a short time scale in variations of h needs to be resolved in (2.1), no

short time scale has to be resolved in (2.3), requiring a smaller computational

effort.

2.2 Applications of Singular Perturbation Theory in the

Power Electronics Literature

Since in a power electronic converter the switching period is small compared

to the system time constants, voltages and currents measured on the passive

components (i.e. resistors, capacitors, inductors) are never allowed to complete

their exponential-shaped transients after a switch changes its position from open

to closed or vice versa. Long before the system reaches its steady state, the

switches change their configuration again, leading to a high-frequency oscillatory

behaviour. Due to the different order of the switching period and the system time

constants, the shape of the ripple looks almost like a triangle wave. After the

switches, capacitive and/or inductive filters are usually placed to obtain smoother

voltages and currents: high-frequency ripples are an unwanted consequence of the

switching and are added to the desired output values, which are in general con-

stant (AC-DC and DC-DC cases) or sinusoidal (DC-AC and AC-AC cases).

The KBM averaging method has been applied to DC-DC converters in [7], [8]

and [9]. In particular, [8] highlights how the application of KBM averaging to

closed-loop systems allows a better stability than the utilisation of other, heuristic

methods. In [9], a separation between “slow” and “fast” variables is applied and

some considerations about the system stability are given. The system (2.1) is

then split into

ẋ = f(x, z, ε), (2.7a)

εż = g(x, z, ε) (2.7b)

where the variables of w are split into x, the vector of “slow” variables, and z,

7
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the vector of “fast” ones. On the fast timescale, x are considered as constant and

only the dynamics of z are taken into account.

The same separation of variables is performed in [15], where a DC-AC con-

verter is modelled as a singularly perturbed system and a stability analysis has

been performed. In both cases, stability has not been studied for systems in which

the separation of variables is not possible due to excessively close time scales.

In none of the cited articles has nondimensionalisation been performed and the

choice of the small scalar parameter ε is sometimes not clear. Traditionally,

indeed, the engineering modelling procedures tend to deal with dimensional sys-

tems; this can sometimes obscure any separation of fast and slow dynamics and

make the identification of small parameters harder. By contrast, in mathematical

methods the systems tend to be nondimensionalised, which allows a clear indica-

tion of any small or large parameter groups. In [7], for example, ε results from

an inconsistent comparison between quantities with differing dimensions, while in

[8] and [9] it is defined as “small”, but its relation to the system constants is not

explicitly clarified; in [15], ε is declared as being not scalar and is dimensionally

an inductance.

2.3 Boost DC-DC Converter Analysis

This section describes the work performed on a standard boost DC-DC con-

verter. The presented analysis aims to study its behaviour applying perturbation

theory. The system is first described in §2.3.1, and is then nondimensionalised as

explained in §2.3.2. Its averaged are computed, and its ripple is approximated.

The proposed model is tested in simulations.

2.3.1 Model Description

Figure 2.1 depicts a standard boost DC-DC converter. Boost converters are

used to increase the value of a DC voltage to a desired reference. Vin is the input

DC voltage; Vout is the output voltage; q is a silicon-based controllable switch.
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Figure 2.1: Boost DC-DC converter scheme

An inductor, whose inductance and parasitic resistance are denoted by L and

RL, respectively, is placed between the input voltage source and the switch; a

capacitor, with capacitance C and parasitic resistance RC , is in parallel with the

load resistor. The values of the system parameters used in simulations are listed

in Table 2.1.

TS Switching period [s] 4.00 · 10−5

R Load resistance [Ω] 100

L Inductor inductance [H] 657 · 10−6

RL Inductor resistance [Ω] 0.584

C Capacitor capacitance [F] 77 · 10−6

RC Capacitor resistance [Ω] 0.381

Vin Input DC voltage [V] 12

Table 2.1: System parameters used to model a boost DC-DC converter.

The inductor current iL and the capacitor voltage vC are the chosen state

variables.

Applying Kirchhoff laws to the depicted circuit, it is possible to compute the

9
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following state-space equations:

dvC(t)

dt
= − 1

C(R +RC)
vC(t) + h(t)

R

C(R +RC)
iL(t), (2.8a)

diL(t)

dt
= − h(t)

R

L(R +RC)
vC(t) − h(t)

RRC

L(R +RC)
iL −

RL

L
iL(t) +

vin(t)

L
,

(2.8b)

where h(t) is a switching function, whose value depends on the state of the switch

q: h is equal to 1 when q is open (OFF) and equal to 0 when it is closed (ON),

as shown in Figure 2.2.

Figure 2.2: Behaviour of h(t)

Then, in steady-state, h(t) can be expressed as

h(t) =


1 if nTS < t < (n+ 〈h〉)TS,

0 if (n+ 〈h〉)TS < t < (n+ 1)TS,

n ∈ N. (2.9)

In (2.9), TS is the switching period, while 〈h〉 is the average value of h, given by

〈h〉 =
1 · tOFF
TS

=
1 · (TS − tON)

TS
= 1 − δ , (2.10)

where δ is the duty cycle of the switch.

2.3.2 Nondimensionalisation

Let Vb, Ib, Tb be the base unit values for voltage, current and time, respectively,

and let Ib = Vb/R.
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The system variables can then be expressed as

vC = v̂C Vb , (2.11a)

iL = ı̂L Ib = ı̂L
Vb
R
, (2.11b)

t = t̂ Tb , (2.11c)

Vin = ŵ Vb , (2.11d)

where v̂C , ı̂L, t̂ and ŵ are nondimensional time-dependent variables.

Substitution of (2.11a)-(2.11d) into (2.8) leads to

dv̂C(t̂)

dt̂
= − Tb

C(R +RC)
v̂C(t̂) + h(t̂)

Tb
C(R +RC)

ı̂L(t̂) (2.12a)

dı̂L

dt̂
= −h(t̂)

R2 Tb
L(R +RC)

v̂C(t̂) − h(t̂)
RRCTb

L(R +RC)
ı̂L(t̂) − RLRTb

LR
ı̂L(t̂)

(2.12b)

+
RTb
L

ŵ(t̂).

Now, let the time constant τ1, τ2 and their ratio k12 be defined as

τ1 = C(R + RC) , (2.13a)

τ2 =
L

R
, (2.13b)

k12 =
τ2

τ1

. (2.13c)

Then, using (2.13a)-(2.13c), and dropping the hats from the notation, equations

(2.12) can be written as

dvC(t)

dt
= − Tb

τ1

vC + h(t)
Tb
τ1

iL (2.14a)

diL(t)

dt
= −h(t)

R

(R +RC)

Tb
k12τ1

vC(t)− h(t)
RC

R +RC

Tb
k12τ1

iL(t)+ (2.14b)

− RL

R

Tb
k12τ1

iL(t) +
Tb
k12τ1

w(t).

System (2.14) is the dimensionless system corresponding to (2.8).
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2.3.3 Small Parameter and Perturbed System Definition

Since the system is considered to be “fast switching” (i.e. the switching period

is negligible compared to the other time constants characteristic of the system),

the small dimensionless parameter ε is set to be proportional to TS and inversely

proportional to one of the system time constants.

For the considered system, the following values are chosen as the time base unit

and ε, respectively:

Tb = TS , (2.15a)

ε =
TS
τ1

. (2.15b)

The choice of setting the time base unit equal to the switching period, more-

over, allows one to compute the average values in a nondimensional time interval

from 0 to 1.

For the values listed in Table 2.1, ε is equal to 5.2 · 10−3. Therefore, substitution

of (2.15) into (2.14) leads to

dvC(t)

dt
= − ε vC(t) + h(t) ε iL(t), (2.16a)

diL(t)

dt
= −h(t)

ε

k12

R

R +RC

vC(t) − h(t)
ε

k12

RC

R +RC

iL(t) +
ε

k12

w(t),

(2.16b)

which, in matrix form, corresponds to

v̇C(t)

i̇L(t)

 = ε



−1 0

0 − RL

k12R

 +

+ h(t)

 0 1

− R

k12(R +RC)
− RC

k12(R +RC)



vC(t)

iL(t)

 +

 0

w(t)

k12


 .

(2.17)

Let M1, M2 and b be defined, respectively, as:
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M1 =

−1 0

0 − RL

k12R

 , (2.18a)

M2 =

 0 1

− R

k12(R +RC)
− RC

k12(R +RC)

 , (2.18b)

b(t) =

 0

w(t)

k12

 . (2.18c)

Then, substitution of (2.18) into (2.17) allows (2.17) to be written in the following

more compact form:

ẋ(t) = ε
[(
M1 + h(t)M2

)
x(t) + b(t)

]
, (2.19)

where

x(t) =
[
vC(t) iL(t)

]T
. (2.20)

2.3.4 Average System and Ripple Computation

According to the procedure explained in §2.1, the averaged system can be

found by equating the RHS of (2.4) and (2.19):

N∑
i=1

εiGi(y) +
N∑
i=1

εi

{
∂Ψ i

∂ t
+

∂Ψ i

∂y

[
N∑
m=1

εmGm(y)

]}
=

= ε [(M1 + h(t)M2)x(t) + b(t)] . (2.21)

Moreover, substituting (2.2) into the RHS of (2.21) leads to

N∑
i=1

εi

{
Gi(y) +

∂Ψ i

∂ t
+
∂Ψ i

∂y

[
N∑
m=1

εmGm(y)

]}
=

13
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= ε

[(
M1 + h(t)M2

)(
y +

N∑
i=1

εiΨ i

)
+ b(t)

]
. (2.22)

Equation (2.22) corresponds to equation (2.4). Then, its LHS terms can be

equated to the RHS terms according to the power order of ε, allowing the explicit

computation of Gi and Ψ i.

2.3.4.1 Ripple computation, O(ε) terms and first-order approxi-

mation

Selection in (2.22) of the terms of order ε leads to

G1(y) +
∂Ψ 1

∂t
=
(
M1 + h(t)M2

)
y + b(t) . (2.23)

Since, according to (2.15), the time base unit has been set equal to the switching

period, the average value of (2.23) can be computed by integrating each term

with respect to the nondimensionalised time from 0 to 1:

1ˆ

0

G1(y) dt +

1ˆ

0

∂Ψ 1

∂t
(t, y) dt =

1ˆ

0

(
M1 + h(t)M2

)
y dt +

1ˆ

0

b dt , (2.24)

where

´ 1

0

∂Ψ 1

∂t
(t, y) dt = 0 and G1(y) and b are time invariant by definition.

Therefore,

G1(y) =

1ˆ

0

(
M1 + h(t)M2

)
y dt + b =

(
M1 + 〈h〉M2

)
y + b . (2.25)

Thus, in first approximation, the averaged system can be expressed as

ẏ = ε
[(
M1 + 〈h〉M2

)
y + b

]
+ o(ε) . (2.26)

Ψ 1 can be computed by substituting (2.25) in (2.23) and integrating the resulting
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equation with respect to time, as shown below.

(
M1 + 〈h〉M2

)
y + b +

∂Ψ 1(t,y)

∂t
=
(
M1 + h(t)M2

)
y + b (2.27)

=⇒ ∂Ψ 1(t,y)

∂t
=
(
h(t) − 〈h〉

)
M2 y (2.28)

Let now the scalar function f1(t) be continuous in t and defined as follows:

f ′1(t) = h(t)− 〈h〉 , (2.29a)

〈f1〉 = 0 , (2.29b)

where 〈fi〉 is the average value of fi.

The derivative of Ψ 1 with respect to time, displayed in (2.28), then, can also be

written as:
∂Ψ 1

∂t
(t,y) = f ′1(t)M2 y . (2.30)

Integrating (2.30) leads to

Ψ 1(t, y) =

ˆ
f ′1(t)M2 y dt =

(ˆ
f ′1(t) dt

)
M2 y = f1(t)M2 y . (2.31)

Since Ψ 1 is an approximation of the ripple, it is defined as a zero-average

function; f1 is the only element in (2.31) directly dependent on time. Then, f1

must be chosen by integrating the first equation of (2.29) and imposing that the

function should have a zero average between 0 and 1.

Considering that the equation of h displayed in (2.9) can be expressed for the

nondimensional time as

h(t) =


1 if n < t < n+ 〈h〉

0 if n+ 〈h〉 < t < n+ 1

n ∈ N , (2.32)

substitution of (2.32) into (2.29) leads to

f ′1(t) =


1 − 〈h〉 if n < t < n+ 〈h〉

− 〈h〉 if n+ 〈h〉 < t < n+ 1

(2.33)
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Therefore, f1 can be computed integrating (2.33) with respect to time:

f1(t) =


(1 − 〈h〉) (t − n) + c1 if n < t < n+ 〈h〉

− 〈h〉 (t − n) + c2 if n+ 〈h〉 < t < n+ 1 ,

(2.34)

where c1 and c2 are constants of integration, which can be computed by imposing

continuity in t and a zero average between 0 and 1. The result is

f1(t) =


(1 − 〈h〉)(t − n − 1/2〈h〉) if n < t < n+ 〈h〉

〈h〉
(
〈h〉+ 1

2
− t + n

)
if n+ 〈h〉 < t < n+ 1

(2.35)

Finally, x can be approximated to first order as follows:

x = y + ε f1(t)M2 y + o(ε) , (2.36)

where y is the solution of (2.26). An explicit solution for y is not explicitly

found here, but the ODE of (2.26) has been solved numerically as an initial value

problem by MATLAB, and its results are shown in §2.3.5.

2.3.4.2 Ripple computation, O(ε2) terms and second-order approx-

imation

This section concerns the computation of second-order terms of the approx-

imation of the ripple, performed in an analogous manner of first-order terms.

Analogously to (2.23), terms of order ε2 are selected in (2.22):

G2(y) +
∂Ψ 2(t, y)

∂y
G1(y) +

∂Ψ 2(t, y)

∂t
=
(
M1 + h(t)M2

)
Ψ 1(t, y) . (2.37)

Substituting Ψ 1 from (2.31) and averaging (2.37) from 0 to 1 leads to

1ˆ

0

G2(y) dt +

1ˆ

0

∂Ψ 2(t, y)

∂t
(t, y) dt =
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=

1ˆ

0

M1

[
f1(t)M2 y

]
dt +

1ˆ

0

h(t) f1(t)M2
2 y dt , (2.38)

where G1 and G2 are time-invariant, and

1̂

0

∂Ψ 2(t, y)

∂t
= 0, (2.39a)

1̂

0

f1(t) dt =

1̂

0

f2(t) dt = 0 . (2.39b)

Hence, the second term in the LHS of (2.38) and the first of the RHS are equal

to 0. G2 can be computed using the expression for h and f1 displayed in (2.32)

and (2.35), respectively, as follows

G2(y) =

1ˆ

0

h(t)f1(t)M2
2ydt

=

 〈h〉ˆ
0

(
1− 〈h〉

)(
t− n− 1

2
〈h〉
)

dt−
1ˆ

〈h〉

0 · 〈h〉
(
〈h〉+ 1

2
− t+ n

)
dt

M2
2y

=
(1− 〈h〉)

2

[(
t− n− 1

2
〈h〉
)2
]〈h〉

0

M2
2y =

(1− 〈h〉)
2

[
〈h〉2

4
− 〈h〉

2

4

]
M2

2y

= 0 .

(2.40)

Since G2 is identically equal to 0, the expression for y at second order remains

of the form given in (2.26):

ẏ = εG1 + o(ε2) = ε
[(
M1 + 〈h〉M2

)
y + b

]
+ o(ε2) . (2.41)

The second-order ripple contribution Ψ 2 can then be computed by substitut-
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ing the respective expressions for G1, G2 and Ψ 1 into (2.37):

f1(t)M2

[
(M1 + 〈h〉M2)y + b

]
+

∂Ψ 2(t, y)

∂t
=
(
M1 + h(t)M2

)
f1(t)M2 y .

(2.42)

Therefore, the partial derivative of Ψ 2 with respect to time is equal to

∂Ψ 2(t, y)

∂t
= f1(t)

(
M1M2 − M2M1

)
y + f1(t)

(
h(t) − 〈h〉

)
M2

2 y − f1(t)M2b ,

(2.43)

where, according to (2.29), h(t)− 〈h〉 = f ′1(t).

Let the auxiliary scalar function f2(t) be defined by the conditions

f ′2(t) = f1(t) , (2.44a)

〈f2〉 = 0 . (2.44b)

Integrating (2.43) with respect to time leads to

Ψ 2(t, y) = f2(t)
[
(M1M2 − M2M1)y − M2b

]
+

1

2
[f1(t)]2M2

2 y . (2.45)

Analogously to (2.34), f2 can be found by integrating (2.35) with respect to time:

f2(t) =


(t − n)

(
t − n − 〈h〉

2

)(
1 − 〈h〉

)
+ c3 if n < t < n+ 〈h〉

〈h〉(t − n)

(
〈h〉 + 1 − t + n

2

)
+ c4 if n+ 〈h〉 < t < n+ 1 ,

(2.46)

where c3 and c4 are constants of integration and can be computed analogously

to c1 and c2 by imposing continuity in t = 〈h〉 and the average from 0 to 1 to be

null.
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Then, f2 is found to be equal to

f2(t) =



1

2

(
t − n

)(
t − n − 〈h〉

)(
1 − 〈h〉

)
− 〈h〉

3

6
+
〈h〉2

4
− 〈h〉

12

if n < t < n+ 〈h〉,

〈h〉
2

(
t − n

)(
〈h〉 + 1 − t + n

)
− 〈h〉

3

6
− 〈h〉

2

4
− 〈h〉

12

if n+ 〈h〉 < t < n+ 1.

(2.47)

2.3.4.3 Ripple computation, O(ε3) terms and third-order approxi-

mation

This section regards the computation of third-order approximation of the rip-

ple, following the same method shown for first and second-order approximation.

Analogously to (2.23), and (2.37), terms of order ε3 can be isolated in (2.22) as

follows:

G3(y) +
∂Ψ 1(t, y)

∂y
G2(y) +

∂Ψ 2(t, y)

∂y
G1(y) +

∂Ψ 3(t, y)

∂t
=

=
(
M1 + h(t)M2

)
Ψ 2(t, y) , (2.48)

where, according to (2.40), G2(y) = 0.

Averaging (2.48) with respect to t leads to

1ˆ

0

G3(y) dt +

1ˆ

0

∂Ψ 2(t, y)

∂y
(t, y)G1(y) dt +

1ˆ

0

∂Ψ 3(t, y)

∂t
(t, y) =

=

1ˆ

0

(M1 + h(t)M2)Ψ 2 dt . (2.49)

Solving (2.49) for G3 gives

G3 = − 〈h〉
2

12
(1−〈h〉)2M2

[
(M1M2−M2M1)y−M2b

]
+
〈h〉3

24
(1−〈h〉)M3

2y . (2.50)
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Therefore, y can be approximated as

ẏ = εG1 + ε3G3 + o(ε3). (2.51)

2.3.5 Constant 〈h〉: Simulations

In this section, some results from simulations are displayed. Ordinary differ-

ential equations (ODEs) describing the behaviour of the system, its average, and

its ripple, as computed in the previous sections, have been solved by MATLAB

as initial value problems. The results have been re-dimensionalised and plotted

in the figures below.

Figure 2.3: DC-DC converter, constant 〈h〉: comparison between the solution of the
exact differential equation (blue) and the solution of the averaged system (red)

As shown in Figure 2.3 and according to (2.2), the solution of the exact

differential equation (2.19) behaves like the sum of the solution of the averaged

system (2.26) and a periodic ripple.
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Figure 2.4: DC-DC converter, constant 〈h〉: exact solution (blue) compared with the
averaged one (red) plus the first approximation of the ripple (green dashes) and the
second approximation of the ripple (magenta dash-dots).

The first approximation of the ripple, presented in (2.36) and depicted in

Figure 2.4 with green dashes, agrees with the behaviour of the exact solution,

even though some small discrepancies can be observed in the capacitor voltage

plot (never exceeding 0.01 V). A better agreement can be observed in the same

figure between the second approximation and the exact solution.

The addition of the time-invariant function G3, shown in (2.50), for the com-

putation of the average vector y, does not bring significant improvements and

has been neglected: y has been computed first according to (2.26), using G1

only, then according to (2.51), adding ε3G3. The difference between the results

is plotted in Figure 2.5: even in the worst cases, occurring during transients, the

discrepancy keeps its values two orders of magnitude below the amplitude of the

ripple.

As shown in Figure 2.6, the steady-state average value of the system variables

depends also on the switching period: when TS increases, the equilibrium values

drift away from those of the averaged system (2.26). Moreover, since, according

to its definition (2.15), the small parameter ε is proportional to TS, if the latter

increases, ε can lose its negligibility if compared with the other parameters of the

system and the assumptions of (2.2) are not valid any more.
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Figure 2.5: DC-DC converter, constant 〈h〉: error between voltage (top) and current
(bottom) of the exact system and the approximated system

Figure 2.6: DC-DC converter, constant 〈h〉: equilibrium value computed by solving
the exact differential equation (2.8) and the averaged system (2.26), depending on the
switching period Ts.

In Figure 2.7 is depicted the behaviour of the system obtained by using a switching

period ten times bigger than the nominal one.

In Figure 2.8, TS has been kept equal to the nominal switching period, while the

time constant τ1, inversely proportional to ε, has been reduced by setting the

capacitance C equal to a tenth of the nominal value. Hence, in this case ε is

increased by ten times, as well as in Figure 2.7, while TS is still equal to 4.0 ·10−5

s.

These results highlight the importance of checking that enough difference is

present between “fast” and “slow” time scales, in case a similar technique is applied

to model average and ripple.
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Figure 2.7: DC-DC converter, constant 〈h〉: comparison between the exact solution
(blue), its average (magenta dash-dots) and the averaged solution (red). TS = 4.0 ·10−4

s

Figure 2.8: DC-DC converter, constant 〈h〉: comparison between the system exact
solution (blue), its average (magenta dash-dots) and the averaged system solution (red).
C = 7.7 µF
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2.3.6 Varying duty-cycle

In closed-loop systems, the average value 〈h〉 of the switching function h

is computed by the controller in order to obtain an output voltage as close as

possible to a set reference. In this case, 〈h〉 cannot be considered as constant. To

model this, the expression (2.9) is changed into:

h(t, τ) =


1 if nTS < t < (n+ q(τ))TS

0 if (n+ q(τ))TS < t < (n+ 1)TS

, n ∈ N, (2.52)

where q(τ) is a scalar function: 0 ≤ q(τ) ≤ 1.

In the examined model, the switching behaviour is supposed to be “fast” if com-

pared to the electrical transients or q(τ). Then, τ is a slow time scale, defined

as

τ = kt ε t, (2.53)

where kt is a scalar constant and ε is a “small” scalar parameter, as defined in

(2.15).

After performing nondimensionalisation, the system equations can be written

in terms of t and τ , as follows:

dx

dt
(t, τ) = ε

[
(M1 + h(t, τ)M2)x(t, τ) + b

]
, (2.54)

where M1, M2, b and x are as defined in in (2.18) and (2.20).

According to the Krylov-Bogoliubov-Mitropolsky averaging method, x can be

approximated as

x(t, τ) = y(t, τ) + εΨ 1(t, y, τ) + ε2Ψ 2(t, y, τ) + ... , (2.55)

where y is the average of x(t, τ) over t and is the solution of the system of

differential equations shown in (2.56), analogously to (2.3). Since
N∑
i=1

εiΨ i(t, y, τ)

represents the ripple of x, functions Ψ i have zero average. Hence,

dy

dt
(τ) = εG1(y, τ) + ε2G2(y, τ) + ... . (2.56)
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Differentiation of (2.55) with respect to time leads to

dx

dt
(t, τ) =

dy

dt
(τ) + ε

[
∂Ψ 1

∂t
+
∂Ψ 1

∂y

∂y

∂t
+
∂Ψ 1

∂τ

∂τ

∂t

]
+

+ ε2
[
∂Ψ 2

∂t
+
∂Ψ 2

∂y

∂y

∂t
+
∂Ψ + 2

∂τ

∂τ

∂t

]
+ ... (2.57)

According to (2.53),
∂τ

∂t
= ktε. (2.58)

Substitution of (2.56) and (2.58) into (2.57) leads to

dx

dt
(t, τ) =

N∑
i=1

εiGi(y, τ) +

+
N∑
i=1

εi

{
∂Ψ i

∂ t
+

∂Ψ i

∂y

[
N∑
m=1

εmGm(y)

]
+ ε kt

∂Ψ i

∂τ

}
. (2.59)

Moreover, (2.55) can be substituted also into (2.54). Equation (2.60) can then

be obtained by equating the RHS of the modified equation (2.54) to (2.59), as

shown below:

ε

{
[M1 + h(t, τ)M2]

[
y(τ) +

N∑
i=1

εiΨ i(t, y, τ)

]
+ b

}
=

=
N∑
i=1

εi

{
Gi(y, τ) +

∂Ψ i

∂ t
(t,y, τ) +

∂Ψ i

∂y
(t,y, τ)

[
N∑
m=1

εmGm(y, τ)

]
+

+ ε kt
∂Ψi

∂τ
(t,y, τ)

}
,

(2.60)

where Gi and Ψ i can be computed analogously to the fixed 〈h〉 case, selecting in

each member of (2.60) terms with the same power of ε and solving the resulting

equations.
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2.3.6.1 First-order approximation of the ripple, O(ε) terms

This section and the following proceed analogously to the ripple computation

for constant 〈h〉. Selection in (2.60) of the terms of order ε leads to

G1(y, τ) +
∂Ψ 1

∂t
(t, y, τ) =

(
M1 + h(t, τ)M2

)
y + b . (2.61)

Comparison between (2.61) and (2.23) allows one to notice that the two equations

have the same structure and, then, to write G1(t, τ) similarly to (2.25), as shown

below:

G1(y, τ) =

1ˆ

0

(
M1 + h(t, τ)M2

)
y dt + b =

(
M1 + q(τ)M2

)
y+b . (2.62)

In this case, G1 depends on τ in addition to y, since the average value of h

computed in one switching period is not fixed, but depends in turn on τ .

The averaged system can then be expressed in first approximation as

ẏ(τ) = εG1(y, τ) + o(ε) = ε
[(
M1 + q(τ)M2

)
y + b

]
+ o(ε) . (2.63)

Equations (2.64) and (2.65), where only Ψ 1 is unknown, can be obtained by

substituting the expression of G1 shown in (2.62) into (2.61). Then

(
M1 + q(τ)M2

)
y + b +

∂Ψ 1(t,y, τ)

∂t
=
(
M1 + h(t, τ)M2

)
y + b, (2.64)

=⇒ ∂Ψ 1(t,y, τ)

∂t
=
(
h(t) − q(τ)

)
M2 y. (2.65)

Let the auxiliary scalar function f1(t, τ), defined in (2.66), be continuous in t and

τ .

∂f1(t, τ)

∂t
= h(t, τ)− q(τ) , (2.66a)

〈f1〉 = 0 , (2.66b)

where 〈fi〉 is the average value of fi computed for one switching period and h has
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been nondimensionalised.

Then, (2.65) can also be stated as:

∂Ψ 1(t,y, τ)

∂t
=

∂f1(t, τ)

∂t
M2 y . (2.67)

Integrating (2.67) leads to

Ψ 1(t, y, τ) =

ˆ
∂f1(t, τ)

∂t
M2 y dt =

(ˆ
∂f1(t, τ)

∂t
dt

)
M2 y = f1(t, τ)M2 y .

(2.68)

Analogously to (2.33)-(2.35), f1 can be found by integrating the first equation

of (2.66) with respect to time t and imposing both continuity and zero-average

conditions. Then

∂f1(t, τ)

∂t
=


1 − q(τ) if n < t < n+ q(τ)

− q(τ) if n+ q(τ) < t < n+ 1 ,

(2.69)

so,

f1(t, τ) =


(1 − q(τ))(t − n ) + c1 if n < t < n+ q(τ)

− q(τ)(t − n) + c2 if n+ q(τ) < t < n+ 1 ,

(2.70)

⇒ f1(t, τ) =


(

1 − q(τ)
)(

t − n − q(τ)

2

)
if n < t < n+ q(τ)

q(τ)

(
q(τ) + 1

2
− t + n

)
if n+ q(τ) < t < n+ 1 .

(2.71)

Therefore, x at first order is approximated by

x(t, τ) = y(τ) + ε f1(t, τ)M2 y + o(ε) , (2.72)

where y is the solution of (2.63). Also in this case, an explicit solution of (2.63)

has not been computed, but the ODE has been solved numerically in MATLAB,

and the results are presented in §2.3.6.3.
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2.3.6.2 Second-order approximation of the ripple, O(ε2) terms

This section contains the second-order approximation of the system ripple. It

follows the same methodology applied for the first-order approximation.

Selection of terms of order ε2 in (2.60) leads to

G2(y, τ) +
∂Ψ 1(t, y, τ)

∂y
G1(y, τ) + kt

∂Ψ1 (t, y, τ)

∂τ
+

∂Ψ 2(t, y, τ)

∂t
=

=
(
M1 + h(t, τ)M2

)
Ψ 1(t, y, τ).

(2.73)

Equations (2.62) and (2.68) are now substituted into (2.73) for G1 and Ψ 1,

respectively, while (2.73) is integrated from 0 to 1 with respect to time. Since in

§2.3.4.2 all the other terms are found to have a null average, G2 is equal to

G2(y, τ) = − kt
ˆ 1

0

∂Ψ 1(t, y, τ)

∂τ
dt = − kt

ˆ 1

0

∂f1(t, τ)

∂τ
dtM2 y . (2.74)

The partial derivative
∂Ψ 1

∂τ
has been computed by applying the definition of

derivative as the limit of the increment ratio. Modifying (2.71) for the instant

τ + δτ leads to

f1(t, τ+δτ) =



(
1 − q(τ + δτ)

)(
t − n − 1

2
q(τ + δτ)

)
if n < t < n+ q(τ + δτ)

q(τ + δτ)

(
q(τ + δτ) + 1

2
− t + n

)
if n+ q(τ + δτ) < t < n+ 1 .

.

(2.75)

For small δτ ,

q(τ + δτ) = q(τ) + δτ q′(τ) , (2.76)

where

q′(τ) =
dq(τ)

dτ
. (2.77)

∂Ψ 1

∂τ
has then been computed for both q(τ) increasing and decreasing, substitut-
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ing (2.71) and (2.75) in (2.78).

∂f1(t, τ)

∂τ
= lim

δτ→0

f1(t, τ + δτ) − f1(t, τ)

δτ
(2.78)

For the sake of clarity, computations are performed separately, considering first a

decreasing q, then an increasing q. This is needed because f1 is defined by parts,

but the time extrema of each part differ according to the sign of q′, as observable

in (2.79) and (2.80).

1. q′(τ ) > 0

∂f1(t, τ)

∂τ
=



− 1

2
q′(τ) + q(τ) q′(τ) − (t − n) q′(τ)

if n < t < n+ q(τ)

(
lim
δτ→0

t− n− q(τ)

δ τ

)
− 1

2
q′(τ) + q(τ)q′(τ)− (t− n)q′(τ)

if n+ q(τ) < t < n+ q(τ + δτ)

q(τ) q′(τ) +
1

2
q′(τ) − (t − n) q′(τ)

if n+ q(τ + δτ) < t < n+ 1

(2.79)

2. q′(τ ) < 0

∂f1(t, τ)

∂τ
=



− 1

2
q′(τ) + q(τ) q′(τ) − (t − n) q′(τ)

if n < t < n+ q(τ + δτ)

(
lim
δτ→0

q(τ)− t+ n

δ τ

)
− 1

2
q′(τ) + q(τ)q′(τ)− (t− n)q′(τ)

if n+ q(τ + δτ) < t < n+ q(τ)

q(τ) q′(τ) +
1

2
q′(τ) − (t − n) q′(τ)

if n+ q(τ) < t < n+ 1

(2.80)
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Therefore, using (2.79) and (2.80) in (2.74) leads to the computation of G2,

which, in both cases, is equal to a null vector:

G2(y, τ) = 0 . (2.81)

Substituting (2.81) and (2.68) in (2.73) leads to

∂Ψ 2(t,y, τ)

∂t
= − f1(t, τ)M2G1(y, τ) − kt

∂Ψ1 (t,y, τ)

∂τ
+

+ f1(t, τ)
(
M1 + h(t, τ)M2

)
M2G1(y, τ)

= f1(t, τ)
[
(M1M2 − M2M1)y − M2 b

]
+

+ f1(t, τ)
∂f1(t, τ)

∂t
M2

2 y − kt
∂f1(t, τ)

∂τ
M2 y .

(2.82)

Thus, Ψ 2 can be obtained by integrating (2.82) with respect to time:

Ψ 2(t, y, τ) = f2(t, τ)
[
(M1M2 − M2M1)y − M2 b

]
+

+
1

2
f 2

1 (t, τ)M2
2 y − kt

ˆ
∂f1(t, τ)

∂τ
dtM2 y ,

(2.83)

where the auxiliary scalar function f2(t, τ) is defined by the conditions

∂f2(t, τ)

∂t
= f1(t, τ) , (2.84a)

〈f2〉 = 0 , (2.84b)

and can be computed analogously to (2.47), giving

f2(t, τ) =



1

2

(
t − n

)(
t − n − q(τ)

)(
1 − q(τ)

)
− q3(τ)

6
+
q2(τ)

4
− q(τ)

12

if n < t < n+ q(τ)

q(τ)

2

(
t − n

)(
q(τ) + 1 − t + n

)
− q3(τ)

6
− q2(τ)

4
− q(τ)

12

if n+ q(τ) < t < n+ 1

(2.85)
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Considering
∂f1(t, τ)

∂τ
= lim

δτ→0

f1(t, τ + δτ) − f1(t, τ)

δτ
, (2.86)

and defining another auxiliary scalar function f1τ by the conditions

∂f1τ (t, τ)

∂t
=
∂f1(t, τ)

∂τ
, (2.87a)

〈f1τ 〉 = 0, (2.87b)

it can be observed that f1τ can be computed by integrating (2.79) and (2.80) with

respect to time. Again, the computation is split into increasing and decreasing

q, due to the different integration extrema of the two cases.

1. q′(τ ) > 0

f1τ (t, τ) =



[
− 1

2
q′(τ) + q(τ) q′(τ)

]
(t − n) − (t − n)2

2
q′(τ) + c1

if n < t < n+ q(τ)

[
−1

2
q′(τ) + q(τ)q′(τ)− q(τ)

δτ

]
(t− n) +

(t− n)2

2

[
1

2δτ
− q′(τ)

]
+ c2

if n+ q(τ) < t < n+ q(τ + δτ)

[
q(τ) q′(τ) +

1

2
q′(τ)

]
(t − n) − (t − n)2

2
q′(τ) + c3

if n+ q(τ + δτ) < t < n+ 1

(2.88)
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2. q′(τ ) < 0

f1τ (t, τ) =



[
− 1

2
q′(τ) + q(τ) q′(τ)

]
(t − n) − (t − n)2

2
q′(τ) + c4

if n < t < n+ q(τ + δτ)

[
−1

2
q′(τ) + q(τ)q′(τ) +

q(τ)

δτ

]
(t− n)− (t− n)2

2

[
1

2δτ
+ q′(τ)

]
+ c5

if n+ q(τ + δτ) < t < n+ q(τ)

[
q(τ) q′(τ) +

1

2
q′(τ)

]
(t − n) − (t − n)2

2
q′(τ) + c6

if n+ q(τ) < t < n+ 1

(2.89)

Continuity of (2.88) and (2.89) cannot be achieved in n+ q(τ) and n+ q(τ + δτ),

but setting all the constants of integration equal to zero allows to obtain a zero

average.

Finally, (2.83) can then be rewritten as

Ψ 2(t, y, τ) = f2(t, τ)
[
(M1M2 − M2M1)y − M2 b

]
+

+
1

2
f 2

1 (t, τ)M2
2 y − kt f1τ (t, τ)M2 y .

(2.90)

The expression (2.90) for Ψ 2 has the same structure of (2.45), but with an addi-

tional term − kt f1τ (t, τ)M2 y.

2.3.6.3 Varying duty-cycle: simulations

Some MATLAB simulations have been performed, solving the system ODEs

numerically as initial value problems. The results are shown below.

In particular, attention focused on the evaluation of the contribution of the term

− kt f1τ (t, τ)M2 y, which is not present in case the duty cycle is constant. The

contribution of that term is found to be relatively small, as shown in Figure 2.10

for the voltage. The first and second-order approximations found in the previous

sections for a constant duty cycle system, then, are found to be in general good

enough also for the case of a varying duty cycle.
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Figure 2.9: DC-DC converter, varying 〈h〉: comparison between the system exact
solution (blue), its average (red), its average plus the first approximation of ripple (green
dashes), its average plus the second approximation of ripple neglecting the derivative
∂f1

∂τ
(yellow dash-dots) and its average plus the complete second approximation of the

ripple (magenta dots)

Figure 2.10: DC-DC converter, varying 〈h〉: Contribution of − kt f1τ (t, τ)M2 y on the
voltage.
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2.4 Single Phase Full-Bridge Inverter Analysis

Figure 2.11: Full-bridge inverter model

The second analysed system is a single-phase full-bridge inverter, whose scheme

is depicted in Figure 2.11. Inverters are in general used as DC-AC converters, but

they can be controlled in order to obtain a DC output. In the AC case, another

time scale is introduced in the system, since the period of the output voltage,

which is in general the grid period, is “big” if compared with the switching period

of the device. The filter and load time constants can be small if compared with

the output period or of the same order. Both cases have been taken into consid-

eration for the perturbed system analysis described in the following sections.

TS Switching period [s] 4.00 · 10−5

R Load resistance [Ω] 100

L1 First inductor inductance [H] 657 · 10−6

L2 Second inductor inductance [H] 500 · 10−6

C Capacitor capacitance [F] 77 · 10−6

Vac Grid RSM voltage [V] 230

Vin Input DC voltage [V] 400

Table 2.2: System parameters used to model a single-phase full-bridge inverter.
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2.4.1 Model Formulation

The considered state-space system describes the behaviour of the system

shown in Figure 2.11, and whose parameters are listed in table 2.2. In this

case, the inverter is connected to an AC grid, whose voltage amplitude is
√

2Vac.

Considering ic, il1 and il2 as state variables leads to the following model

dvc(t)

dt
=

il1(t)(t) − il2(t)

C
(2.91a)

dil1(t)

dt
=
− vc(t) + h(t)Vin

L1

(2.91b)

dil2(t)

dt
=

vc(t) −
√

2Vac sin(ω t)

L2

(2.91c)

where ω is the grid angular frequency and h(t) is the switching function, given by

a Pulse-Width Modulator (PWM). This modulation is performed by comparing

a sine wave with the same frequency of the desired AC output, while the triangle

wave is characterised by high frequency. The output signal of the PWM is then

given by

h(t) =

1 m(ω t) > p(t)

−1 m(ω t) < p(t)

, (2.92)

where m and p are the sinusoids and the triangular wave, respectively, and are

defined by.

m(ω t) = Am sin(ω t), (2.93)

p(t) =


− 4AP

TP
(t − nTP ) + AP , TP n < t < TP

(
n +

1

2

)
,

4AP
TP

(t − nTP ) − 3AP , TP

(
n +

1

2

)
< t < TP (n + 1) .

(2.94)

According to Figure 2.11, h is equal to 1 when S1 and S4 are closed and to -1

when S2 and S3 are closed.

The behaviour of m, p and h is displayed in Figure 2.12.
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Figure 2.12: PWM - m(ω t) (red), p(t) (blue), h(t) (black), plotted for:ω = 2π50

rad/s, AP = 15, AM = 10, TP =
1

18 fm
≈ 1.11 · 10−3s

2.4.2 Nondimensionalisation and singular perturbed model

Let Vb, Ib, TP be the base unit values for voltage, current and time, respec-

tively. Thus, the system variables can be expressed as

vc = v̂c Vb , (2.95a)

il1 = ı̂l1 Ib , (2.95b)

il2 = ı̂l2 Ib , (2.95c)

Vin = v̂in Vb , (2.95d)

t = t̂ TP . (2.95e)

The nondimensional variable for time, t̂, is thus scaled according to the triangle

wave period.

Substitution of (2.95) into (2.91) leads to

Vb
TP

dv̂c(t̂TP )

dt̂
=

Ib
C

(
ı̂l1(t̂TP ) − ı̂l2(t̂TP )

)
, (2.96a)
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Ib
TP

dı̂l1(t̂TP )

dt̂
=

Vb
L1

(
− v̂c(t̂TP ) + h(TP t̂) v̂in

)
, (2.96b)

Ib
TP

dı̂l2(t̂TP )

dt̂
=

Vb
L2

(
v̂c(t̂TP ) −

√
2 v̂ac sin(ω TP t̂) .

)
(2.96c)

Let the hats drop from the notation. Let also TC , T1, T2, k1 and k2 be defined as

TC =
VbC

Ib
, (2.97a)

T1 =
Ib L1

Vb
= k1 TC (2.97b)

k1 =
L1

C

(
Ib
Vb

)2

, (2.97c)

T2 =
Ib L2

Vb
= k2 TC (2.97d)

k2 =
L2

C

(
Ib
Vb

)2

. (2.97e)

Then, (2.96) can be rewritten as

dvc(tTP )

dt
=

TP
TC

(
il1(tTP ) − il2(tTP )

)
, (2.98a)

dil1(tTP )

dt
=

TP
k1 TC

(
− vc(tTP ) + h(TP t) vin

)
, (2.98b)

dil2(tTP )

dt
=

TP
k2 TC

(
vc(tTP ) −

√
2vac sin(ω TP t)

)
. (2.98c)

Let ε� 1 be a scalar parameter. In PWM converters, the period of the triangular

wave TP is usually “small” if compared to the one of the sinusoidal wave, leading

to multiple intersections of m and p in each period of m. Depending on the kind

of system, its time constants can be “fast”, if compared to the grid period, or of

its same order. Hence, two different cases are analysed.
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2.4.3 Large capacitor, TC ∼ Tg

The first case analyses a system with “slow” time constants, which are assumed

to be of the same order of the grid period Tg. Therefore, the scalar parameter ε

can be defined as

ε =
TP
TC

. (2.99)

Let also θ be the “slow” time scale, given by

θ = ω t = ω TP t̂ = ε kθ t̂ , (2.100)

where

kθ =
ω TP
ε

= ω TC = ω
VbC

Ib
. (2.101)

Substituting (2.99) and (2.100) in (2.98) leads to

dx

dt
= ε

[
M x(t, θ) + h(t, θ) b1 + sin(θ) b2

]
, (2.102)

where

x =


vc

il1

il2

 , b1 =


0

vin
k1

0

 , b2 =


0

0

−
√

2vac
k2

 ,

M =



0 1 −1

− 1

k1

0 0

1

k2

0 0


,

(2.103)

h(θ, t) =

1 m(θ) > p(t)

−1 m(θ) < p(t)

, (2.104)
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m(θ) = Am sin(θ) , (2.105)

p(t) =


− 4AP (t − n) + AP n < t < n + 1/2

4AP (t − n) − 3AP n + 1/2 < t < n + 1 .

(2.106)

Both m and p can be further rescaled by AP :

m̂(θ) =
Am
AP

sin(θ) = µ sin(θ) = γ(θ), (2.107)

p̂(t) =


− 4 (t − n) + 1 n < t < n + 1/2

4 (t − n) − 3 n + 1/2 < t < n + 1 .

(2.108)

2.4.3.1 First approximation, O(ε) terms

In this section, the first approximation of the average and ripple of the system

are computed. Applying the same procedure of §2.3.4, and equating the RHS of

(2.102) to the RHS of (2.2) gives

M y + h(t, θ) b1 + sin(θ) b2 = G1(θ, y) +
∂Ψ 1(t, θ, y)

∂t
(2.109)

Averaging (2.109) for 0 < t < 1 leads to

G1(y, θ) = M y + 〈h〉 b1 + sin

(
θ +

ε kθ
4

)
b2 , (2.110)

where

〈h〉 = 〈h〉(θ) = γ(θ) . (2.111)

Substituting (2.110) into (2.109) leads to

∂Ψ 1(t, θ, y)

∂t
=
[
h(θ, t) − 〈h〉

]
b1 . (2.112)

Hence, Ψ 1 can be obtained by integrating (2.112) with respect to t:

Ψ 1(θ, t, y) = f1(θ, t) b1 , (2.113)
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where f1(θ, t) is a scalar zero-average function, defined by the conditions

∂f1(θ, t)

dt
= h(θ, t) − 〈h〉(θ) , (2.114a)

〈f1〉 = 0 . (2.114b)

Integrating (2.114) with respect to t and using (2.111) leads to

f1(θ, t) =



−(1 + γ)(t − n) + f1(θ, 0)

n < t < n+
1− γ

4

(1 − γ)

(
t − n − 1− γ

4

)
+ f1

(
θ,

1− γ
4

)
n+

1− γ
4

< t < n+
3 + γ

4

−(1 + γ)

(
t − n − 3 + γ

4

)
+ f1

(
θ,

3 + γ

4

)
n+

3 + γ

4
< t < n+ 1 ,

(2.115)

where the dependence of γ on θ has been dropped from the notation.

Imposing both continuity and zero-average on f1 leads to

f1(θ, t) =



−(1 + γ)(t − n) n < t < n+
1− γ

4

(1 − γ) (t − n) +
γ − 1

2
n+

1− γ
4

< t < n+
3 + γ

4

−(1 + γ) (t − n) + 1 + γ n+
3 + γ

4
< t < n+ 1

(2.116)

2.4.3.2 Second approximation, O(ε2) terms

Proceeding analogously with the terms O(ε2) gives

G2(θ, y) +
∂Ψ 2(θ, t, y)

∂t
+

∂Ψ 1(θ, t, y)

∂y
G1(θ, y) + kθ

∂Ψ 1(θ, t, y)

∂θ
=

= M Ψ 1(θ, t, y) ,

(2.117)
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where
∂Ψ 1(θ, t, y)

∂y
= 0 . (2.118)

Following the same method as applied to (2.110)-(2.112) leads to

G2(θ, y) = − kθ
ˆ 1

0

∂Ψ 1(t, θ, y)

∂θ
dt = − kθ

ˆ 1

0

∂f1(θ, t)

∂θ
dt b1 . (2.119)

Applying the definition of γ shown in (2.111), γ′ can be defined as

γ′(θ) =
dγ(θ)

dθ
=

d

dθ

[
µ sin

(
θ +

ε kθ
4

)]
= µ cos

(
θ +

ε kθ
4

)
. (2.120)

Therefore, the partial derivative of f1 with respect to θ can be expressed as

∂f1(θ, t)

∂θ
=



− (t − n) γ′ n < t < n+
1− γ

4

− (t − n) γ′ +
γ′

2
n+

1− γ
4

< t < n+
3 + γ

4

− (t − n) γ′ + γ′ n+
3 + γ

4
< t < n+ 1

(2.121)

Hence, the expression of G2 can then be computed by integrating (2.121) for

0 < t < 1:

G2(θ, y) = − kθ
ˆ 1

0

∂f1(θ, t)

∂θ
dt b1 = 0 . (2.122)

Substitution of (2.122) and (2.113) in (2.119) leads to

∂Ψ 2(t, θ, y)

∂t
= M Ψ1(t, θ, y) − kθ

∂Ψ 1(t, θ, y)

∂θ
. (2.123)

Integrating (2.21) with respect to t leads to

Ψ 2(t, θ, y) = [f2(θ, t)M − kθ f1θ(θ, t)] b1 , (2.124)

where f2 and f1θ are defined, respectively, by

∂f2(t, θ)

∂t
= f1(θ, t) , 〈f2〉 = 0 (2.125)
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and
∂f1θ(t, θ)

∂t
=

∂f1(θ, t)

∂θ
, 〈f1θ〉 = 0 . (2.126)

Imposing both the zero-average condition and continuity on f2 leads to the fol-

lowing equation:

f2(t, θ) =



−1

2
(1 + γ)(t − n)2 + c1

n < t < n+
1− γ

4

1

2
(1 − γ) (t − n)2 +

γ − 1

2
(t − n) + c2

n+
1− γ

4
< t < n+

3 + γ

4

−1

2
(1 + γ) (t − n)2 + (1 + γ)(t − n) + c3

n+
3 + γ

4
< t < n+ 1

,

(2.127)

where

c1 =
(3 + γ)(1 − γ)(1 + γ)

96
, (2.128)

c2 =
(3 + γ)(1 − γ)(1 + γ)

96
+

(
1 − γ

4

)2

, (2.129)

and

c3 =
(3 + γ)(1 − γ)(1 + γ)

96
+

(
1 − γ

4

)2(
3 + γ

4

)2

. (2.130)
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Proceeding analogously for f1θ leads to

f1θ(t, θ) =



− 1

2
(t − n)2 γ′ + c1θ

n < t < n+
1− γ

4

− 1

2
(t − n)2 γ′ +

γ′

2
(t − n) + c2θ

n+
1− γ

4
< t < n+

3 + γ

4

− 1

2
(t − n)2 γ′ + γ′(t − n) + c3θ

n+
3 + γ

4
< t < n+ 1

,

(2.131)

where

c1θ = γ′
(

16 − 3γ2

96

)
, (2.132)

c2θ = γ′
(

4 + 12γ − 3γ2

96

)
, (2.133)

c3θ = − γ′
(

32 + 3 γ2

96

)
. (2.134)

Then, some continuous functions are found that satisfy the conditions for the

second approximation of the average and ripple of the system.

2.4.4 Small capacitor, TP � TC � Tg

In the second case, the triangular wave period TP is assumed to be negligible

compared to the time constants of the systems, which are, in turn, negligible

compared to the grid period Tg, as expressed in (2.135).

TP � TC � Tg. (2.135)

According to the definition of ε and t̂ shown in (2.95) and (2.99), respectively, in

this case θ can be defined as

θ = ω t = ω TP t̂ = ε2 kθ t̂ , (2.136)
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where

kθ =
ω TP
ε2

=
ω T 2

C

TP
. (2.137)

Substituting (2.99) and (2.136) into (2.98) and dropping the hats from the nota-

tion leads to
dx

dt
= ε

[
M x(t, θ) + h(t, θ) b1 + sin(θ) b2

]
, (2.138)

where x, b1, b2, M , h, m and p are as defined in (2.103)-(2.106). Furthermore,

m̂ and p̂ are obtained by rescaling m and p by AP , analogously to (2.107) and

(2.108). Equation (2.138) is found to be the same as (2.102), but approximation

terms might differ due to the different orders of the system time scales.

2.4.4.1 First approximation, O(ε) terms

Analogously to the previous cases,

M y + h(t, θ) b1 + sin(θ) b2 = G1(θ, y) +
∂Ψ 1(t, θ, y)

∂t
. (2.139)

Averaging (2.139) for 0 < t < 1 leads to

G1(y, θ) = M y + 〈h〉 b1 + sin

(
θ +

ε kθ
4

)
b2 , (2.140)

where

〈h〉 = 〈h〉(θ) = γ(θ) . (2.141)

Substituting (2.140) into (2.139) leads to

∂Ψ 1(t, θ, y)

∂t
=
[
h(θ, t) − 〈h〉

]
b1 , (2.142)

while integrating (2.16) with respect to t gives

Ψ 1(θ, t, y) = f1(θ, t) b1 , (2.143)

where f1(θ, t) is defined in (2.116).

Therefore, G1 and Ψ 1 have the same structure in both of the analysed cases,

and no difference is found so far due to the system time constant being negligible
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compared to the grid period.

2.4.4.2 Second approximation, O(ε2) terms

The same method is applied here to compute the second-order terms.

Equating the O(ε2) terms leads to

G2(θ, y) +
∂Ψ 2(θ, t, y)

∂t
+

∂Ψ 1(θ, t, y)

∂y
G1(θ, y) = M Ψ 1(θ, t, y) , (2.144)

where
∂Ψ 1(θ, t, y)

∂y
= 0 . (2.145)

Equation (2.144) has one term less than its equivalent with the previous scaling.

Averaging (2.144) for 0 < t < 1 gives

G2(θ, y) = 0 . (2.146)

Substitution of (2.146) and (2.143) in (2.144) then leads to

∂Ψ 2(t, θ, y)

∂t
= M Ψ 1(t, θ, y) , (2.147)

and integrating (2.147) with respect to τ leads to

Ψ 2(t, θ, y) = f2(t, θ)M b1 , (2.148)

where f2 is defined in (2.127). Again, no difference is found so far in the approx-

imation of systems with “big” or “small” capacitors.

2.4.5 PI controller implementation

Inverters need a controller which regulates their duty cycle. In general, it is not

possible to operate an inverter in open loop, and the controller output depends

on the value of selected variables of the system.

Hence, a Proportional-Integral (PI) controller has been implemented for the
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Figure 2.13: Full-bridge grid-connected inverter

model analysed in the previous sections, re-displayed in Figure 2.13 for the sake

of clarity. Different hypotheses have been considered in each case concerning the

system parameters and the output voltage vC , while the complete state-space

system is given by

dvc(t)

dt
=
il1(t) − il2(t)

C
, (2.149a)

dil1(t)

dt
=
h(θ, t)Vin − vc(t)

L1

, (2.149b)

dil2(t)

dt
=
vc(t) − R il2(t) −

√
2Vac sin(ωt)

L2

. (2.149c)

2.4.5.1 Inverter operating in DC-DC

The first system taken into account is not connected to the grid and supplies a

purely resistive load with a DC voltage. In this case, then, L2 = 0 and Vac = 0,

as shown in figure 2.14.

Since, in this case, the current il2 is proportional to the voltage vC with pro-

portional constant R, the third equation of (2.149) can be eliminated from the
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Figure 2.14: Full-bridge inverter operating as a DC-DC converter, L2 = 0, Vac = 0

system, in order to remove the linear dependence between two state variables:

il2 =
vc
R

=⇒ dil2
dt

=
1

R

dvc
dt

(2.150)

The final system is hence given by

dvc
dt

=
R il1 − vc

RC
, (2.151a)

dil1
dt

=
h(t)Vin − vc

L1

. (2.151b)

For the DC-DC conversion, the switching function h is

h(t) =

1 if t− nTS < 〈h〉

−1 if t− nTS > 〈h〉
, (2.152)

where TS is the switching period of the switches and 〈h〉 is the duty cycle, whose

value is equal to the average of h computed in the considered period.

The nondimensionalisation procedure follows 2.4.2, and the following base values

are chosen:

Vb = Vin, (2.153a)

Rb = R, (2.153b)
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Tb = Ts . (2.153c)

Let additional time constants and dimensionless parameter be defined by

TC = RC, (2.154a)

T1 =
L1

R
, (2.154b)

k1 =
T1

TC
. (2.154c)

If TC >> Ts, the small dimensionless parameter ε is computed as

ε =
Ts
TC

. (2.155)

Therefore, the nondimensionalised system is

dvc(t)

dt
=ε
(
il1(t) − vc(t)

)
, (2.156a)

dil1(t)

dt
=
ε

k1

(
h(t)vin − vc(t)

)
, (2.156b)

where all the variables and parameters are dimensionless. (2.156) can be written

in matrix form as
∂x(t)

∂t
= ε

[
M x(t) + h(t)b1

]
, (2.157)

where

x(t) =

vc(t)
il1(t)

 , M =


1 −1

− 1

k1

0

 , b1 =


0

vin
k1

 . (2.158)

Since, from a control point of view, working with transfer functions is in general

easier than dealing with differential equations, the Laplace transform has been

applied to the system (2.156) to facilitate the controller design. This has been

possible thanks to the system being linear. First, the average equations of the

system are computed, in order to remove the discontinuities of the switching
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function h. A proportional-integral controller is then implemented to force the

average of the capacitor voltage vC to follow a reference signal and obtain a null

steady-state error. The ripple is computed in simulations on the side and added

to the average, but is not directly controlled. The average value of the duty cycle

〈h〉 is the output of the PI controller and the input of the switching function h.

Averaging (2.157) for 0 < τ < 1 leads to

G1 = My + 〈h〉b1 . (2.159)

As shown in (2.159), the average values of the system variables depend on the

average value 〈h〉 of the duty cycle h. A controller is designed to act on the value

of 〈h〉, and the design is performed in the Laplace domain.

Applying the Laplace transform to (2.159) leads to

s Vc(s) =ε
(
Il1(s) − Vc(s)

)
, (2.160a)

s Il1(s) =
ε

k1

(
〈h〉Vin(s) − Vc(s),

)
(2.160b)

where, about the notation, the Laplace transform of a time-domain variable a(t)

is denoted as A(s).

The Laplace transform of the current Il1(s) can be expressed as a function of the

duty cycle 〈h〉 and the transform of the output voltage Vc(s):

Il1(s) =
ε

s k1

(
〈h〉Vin(s) − Vc(s)

)
. (2.161)

Substituting (2.161) into the first equation of (2.160) leads to

Vc(s)

(
1 +

ε

s
+

ε2

k1 s2

)
=

ε2 〈h〉Vin(s)

k1 s2
. (2.162)

Let G(s) be the transfer function between the output voltage Vc and the switches

duty cycle 〈h〉. Then, from (2.162) it can be expressed as

G(s) =
Vc(s)

〈h〉
=

ε2Vin(s)

k1 s2 + k1 ε s + ε2
. (2.163)

The transfer function G(s) has two poles, p1 and p2, located in the left-hand plane
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as shown by

p1,2 =
ε

2

(
−1 ±

√
1 − 4

k1

)
. (2.164)

Computing their values using the current parameters (L2 = 0, Vac = 0, all the

other parameters according to table 2.2), p1 and p2 can be approximated as

p1,2 = −0.0361 ± 0.4232 j , (2.165)

where j is the imaginary unit.

Bode diagrams of G(s) are depicted in Figure 2.15.

Figure 2.15: Bode diagram of the transfer function G

Let e be the error in the capacitor voltage vc compared to its reference value vref .

A Proportional-Integral (PI) controller can be implemented to obtain a desired

behaviour of vc. It modifies the duty cycle 〈h〉 of the switches according to the

value of e:

〈h〉 = C(s) e(s) =

(
Kp +

Ki

s

)
e(s) , (2.166)

where Kp and Ki are the proportional and the integral constants, whose settings

depend on the desired bandwidth1 or other requirements chosen by the user.

According to the scheme depicted in Figure 2.16, the closed-loop equation of the

1A definition of bandwidth is given in §.1
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Figure 2.16: Control block scheme

system can be expressed as

Vc(s) = G(s)C(s)
(
Vref − Vc(s)

)
, (2.167)

and the closed-loop transfer function F (s) between Vc and Vref can be defined as

F (s) =
Vc
Vref

=
G(s)C(s)

1 + G(s)C(s)
=

L(s)

1 + L(s)
, (2.168)

where L(s) is defined by

L(s) = G(s)C(s) . (2.169)

Substituting the expressions for G(s) and C(s) shown in (2.163) and (2.166),

respectively, for the examined system, L(s) and F (s) are equal to

L(s) =
ε2 Vin(s)(Kp s + Ki)

k1 s3 + k1 ε s2 + ε2 s
(2.170)

and

F (s) =
ε2 Vin(s)

(
Kp s + Ki

)
k1 s3 + k1 ε s2 + ε2

(
1 + Vin(s)Kp

)
s + ε2 VinKi

. (2.171)

The open-loop transfer function L has the same poles as G and another at the

origin, while a zero is located at −Ki/Kp.

To reduce the system oscillations, the following bounds on the gain margin and

the phase margin are set:

γm ≥ 3 , φm ≥ 90◦ , (2.172)
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where γm is the gain margin and φm is the phase margin. Moreover, a minimum

bandwidth has been imposed for the closed-loop system:

BWmin = 10−2 radTb
s

, (2.173)

where BW is the nondimensionalised bandwidth.

Choosing

Kp = 0.010 , Ki = 0.015 , (2.174)

the following values can be obtained for phase margin, gain margin and band-

width, respectively:
φm = 90.3780◦ ,

γm = 3.0589 dB ,

BW = 0.0246
radTb

s
.

(2.175)

In Figure 2.17 and Figure 2.18 are depicted, respectively, the Bode diagram and

the zeros and poles location of the open-loop transfer function L for the selected

valued of Kp and Ki, while Figure 2.19 shows the Bode diagram of the closed-loop

transfer function F . Since the PI controller defined in (2.166) is continuous, but

Figure 2.17: Bode diagram of the transfer function L

the average value 〈h〉 can be modified once during each sample interval, C(s)

has been discretised according to the Tustin method. During MATLAB simula-
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Figure 2.18: Plot of zeros and poles of L

Figure 2.19: Bode diagram of the transfer function F

tions, the system variables have been computed by solving the continuous-time

differential equations (2.151), while a discrete-time controller has been utilised to

impose the capacitor voltage vc to follow the reference value.

According to (2.166),

s 〈h〉(s) = Kp e(s) s + Ki e(s) . (2.176)

Therefore, applying the Tustin bilinear discretisation method, the control equa-

tion becomes
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Figure 2.20: Overall control block scheme

〈h〉z+1 − 〈h〉z−1

2Td
=

Kp(ez+1 − ez−1)

2Td
+ Ki ez . (2.177)

Hence, operating a shift equal to 1 to z in (2.177) and computing 〈h〉z leads to

〈h〉z = 〈h〉z−2 − Kp ez−2 + 2Ki Td ez−1 − Kp ez , (2.178)

where Td is the sampling time used for the discretisation.

The transfer functions are computed by applying the Laplace transform to the

nondimensional system (2.151), where the base value for time Tb is set equal to

the switching period Ts. In this case, therefore, Td has been set equal to 1. The

selected value is compatible with the bandwidth, since it is of a greater order.

The overall control scheme, including the Analog-to-Digital-Converter and the

Digital-to-Analog-Converter blocks, is depicted in Figure 2.20. The discretisation

is performed according to Tustin method to avoid the occurrance of instabilities,

while the DAC block operates a zero-order-hold conversion, since 〈h〉 is piecewise

constant. The system’s re-dimensionalised response after a step in the reference

voltage from 230 V to 150 V is shown in Figure 2.21.
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Figure 2.21: Closed-loop inverter operating in DC-DC - System behaviour (blue) after
a step in the reference voltage value (red)

2.4.5.2 DC-AC conversion

This system is the same as depicted in Figure 2.14, but this time an alternate

voltage is required on the load. As well as in the DC-DC case, the second inductor

L2 is set equal to 0 and the inverter is not connected to the grid (i.e. Vac = 0 in

the equations).

In this case, the switching function is given by

h(t) =

1 m̂(t) > p̂(t)

−1 m̂(t < p̂(t)

, (2.179)

where p̂(τ) is the nondimensionalised triangular carrier wave defined in (2.108)

and m̂(τ) is a piecewise constant function, whose value is the output of the

controller and can vary once in each period of the carrier.

Since, according to (2.111), the average of the switching function h computed in

one switching period is equal to the nondimensional value m̂ in the same period,

the output of the controller directly changes 〈h〉. Therefore, the block scheme

shown in Figure 2.20 is still valid. In the previous example, the reference voltage
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was constant, while Vref is now sinusoidal, with a frequency equal to 50 Hz.

A first attempt is made by applying the same PI controller of the DC-DC case.

However, even though the system is stable, it does not appear fast enough to

effectively follow a sinusoidal reference: the output voltage wave has a delay of

about π
2
, and its amplitude is less than half of the reference. The system behaviour

is depicted in Figures 2.22 and 2.23.

Figure 2.22: System behaviour (blue) with a 50 Hz sinusoidal reference voltage (purple)

Figure 2.23: Carrier wave (blue), dimensionalised 〈h〉 (red), switching signal (black)

Applying a PI controller on the capacitor voltage only, indeed, is in general not

sufficient to achieve a good performance from a power electronic converter, as
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the bandwidth cannot be increased significantly without compromising stability.

More complex controllers are usually required, and some examples are included

in the next chapters.

In particular, §3 concerns the analysis of the behaviour of an inverter working as

a single-phase rectifier. In that case, singular perturbation is applied in order to

achieve a model reduction in the state-space analyses of the system.

In the following chapters, the switching behaviour of power electronic converters

will not be taken into account directly, and further analyses will be performed

on the average systems. This is possible thanks to the preliminary work de-

scribed in the first two chapters: if the switching period is negligible compared to

the other time constants of the system, and if the considered phenomena occur

over time intervals much longer than a switching period, then the average model

approximates well enough the overall behaviour of the system.
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Chapter 3

Model Reduction of a Single-Phase Active

Front-End

This chapter concerns the work which was performed on a single phase rectifier.

These kinds of devices, despite being structurally simple and being formed of

few components, present some challenges when their stability needs evaluation.

Their state-space systems, indeed, are characterised by nonlinear time-periodic

behaviours. Their models are usually linearised, and Linear Time-Periodic (LTP)

analyses are employed to evaluate the stability of the linearised systems. This

overall process is more complicated than that of other power electronic converters,

and dealing with fewer variables and ODEs could be beneficial for the simplifica-

tion of this process.

§3.1 gives an introduction to the topic of LTP theory; §3.2 illustrates a literature

review about the application of LTP techniques in engineering. The following

sections regards the examined case: first, the single-phase rectifier is described,

and its state-space system is presented; the state-space system is then linearised

and nondimensionalised; singular perturbation is then applied to the system, and

a model reduction is performed. Initial-value problem solutions (i.e. time-domain

simulations) and stability analyses are computed for both full and reduced sys-

tem, in order to validate the model reduction. Good agreement is found in both

simulations and stability analyses, whose results are shown in §3.3.3.
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3.1 Linear Time Periodic Theory

A Linear Time-Periodic (LTP) system of period T is defined by

ẋ(t) = A(t)x(t) , (3.1)

where x(t) ∈ Rn and A(t) ∈ Rn×n is a T -periodic matrix.

Now, let (3.1) be expressed in matrix form as

ẋ(t) =
+∞∑

n=−∞

An ejnωg t x(t) , (3.2)

where j is the imaginary unit, j2 = −1.

According to Floquet theory, solutions of (3.2) can be found in the form

x(t) = P (t) eR t , (3.3)

where P (t+ T ) = P (t) and R is some constant matrix. Assuming the eigenvalues

of R to be distinct leads one to seek so-called exponentially modulated time-

periodic signals as solutions of (3.2). These are of the form

x(t) =
+∞∑

m=−∞

xm e(σ+ jmωg)t . (3.4)

The eigenvalues σ must in general be determined numerically, as described later.

From (3.4), the derivative ẋ(t) can be computed in two ways: first, by differen-

tiating (3.4) as shown below:

ẋ(t) = eσ t
+∞∑

m=−∞

(σ + jmωg)xmejmωg t , (3.5)

then by substituting (3.4) into (3.2):

ẋ(t) =
+∞∑

n=−∞
An ejnwgt

+∞∑
m=−∞

xm e(σ+ jmωgt)

= eσt
+∞∑

n=−∞

+∞∑
m=−∞

Amxn−mejnωgt.

(3.6)
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Equating the RHS of (3.5) and (3.6) leads to

(σ + jnωg)xn =
+∞∑

m=−∞

Amxn−m . (3.7)

In solving (3.7), it is useful to introduce the infinite matrices A, N and X , which

are defined, respectively, by

A =



. . . ...
...

...

· · · A0 A−1 A−2 · · ·

· · · A1 A0 A−1 · · ·

· · · A2 A1 A0 · · ·
...

...
... . . .


, (3.8)

N =



. . .

−2jωgI 0
−jωgI

Z

jωgI

0 2jωgI

. . .



, (3.9)

X =



...

x−2

x−1

x0

x1

x2

...


, (3.10)

where I is an identity matrix of suitable dimensions and Z a zero matrix of

suitable dimensions.
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Then, (3.7) can be expressed in matrix form as

σX = (A − N )X . (3.11)

From (3.11), solutions σ are the eigenvalues of (A − N ). The system is stable if

<(σ) < 0 for all σ [13] [14].

For the LTP system (3.2), if σ is an eigenvalue, then so is σ + jnωg for

any given integer n. Therefore, the eigenvalues form columns parallel to the

imaginary axis when plotted in the complex plane. For practical purposes, the

system (3.7), and hence the infinite matrix problem (3.11), is truncated. As a

result, the eigenvalue columns distorted far from the real axis as an artefact of

truncation.

3.2 Applications of Linear Time-Periodic Theories in the

Power Electronics Literature

LTP systems are ubiquitous in physics and dynamical systems theory (e.g.

Hill’s equation [16], Arnol’d tongues [17], etc). In engineering applications, a

LTP stability analysis, as presented in [13] and [14], was initially developed for

aeronautical applications characterised by periodic behaviour. In particular, they

focused on helicopter blades and the forces applied to them.

In the last two decades, the same techniques have begun to be applied to power

electronic systems too. A general method to derive harmonic state-space models

for linear and switching subsystems is explained in [18]. More specific examples

are given in [19] and [20], where harmonic state-space models are computed for

a thyristor-controlled reactor and a grid-connected converter, respectively.

Stability analysis through LTP techniques is performed on a locomotive single-

phase grid-connected inverter in [21]. Stability is analogously assessed in [20], [22]

and [23] for different kinds of power electronic systems. In [23] a comparison be-

tween stability analysis carried out through linear time-invariant (LTI) and LTP

approaches is shown, highlighting the limits and inaccuracies that are obtained
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when the harmonic behaviour of the system is neglected. Even though from a

mathematical point of view it is obvious that the time-periodic nature of the

steady-state solution must be taken into account when assessing its stability, en-

gineers often ignore this and try to apply techniques to LTP problems which are

suitable only for problems with constant steady-states, where the coefficients in

the linearised problem are constant. In [23], stability analyses performed with this

approximation are close to the LTP ones only if relatively big filtering components

(e.g. inductors, capacitors, ...) are added to reduce the ripple amplitudes and

the controller behaviour is kept slow by reducing its bandwidth1. Consequently,

the system cost increases because of the increased size of passive components

and its performance deteriorates through the controller slowness. Therefore, this

engineering ad hoc approximation is not good enough for practical purposes and

will not be used in this work. When nonlinear time-periodic (NLTP) systems

are analysed, time-periodic steady states will be computed and the LTP system

stability will be assessed as explained in §3.1.

A stability analysis based on LTP techniques is presented in [24] for a mod-

ular multilevel converter (MMC), even though time-domain simulations of the

considered systems do not completely agree with the stability analysis previously

performed. These discrepancies are not further discussed or justified in the paper.

In general, power-electronic-based systems can be modelled as NLTI or LTI sys-

tems when they are three-phase and symmetrical. In order to do so, a DQ0

transform is usually applied to the ABC sinusoidal model. When single-phase

systems are taken into account, though, or in case a three-phase system is un-

balanced, the DQ0 Park transform cannot be applied effectively to the models.

State-space variables, then, will show periodic behaviours, and the models will

be LTP or NLTP.
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Figure 3.1: Scheme of the SP-AFE converter and relative controller (red dashed box)

3.3 Single-Phase Active-Front-End Model Formulation

In this section, a brief introduction of the analysed power electronic system is

given and the different procedures used to evaluate its stability are summarised.

The system depicted in Figure 3.1 shows a standard AC-DC converter and

its control scheme. A standard device has been chosen to allow us to focus on

developing techniques for a model reduction. Parameters and controllers are as

explained in [23], so that an easy comparison can be made between the results of

non-reduced and reduced models.

In this case, the conversion is performed by a Single-Phase Active Front End

(SP-AFE); both the grid voltage vg and grid current ig are measured and their

values are sent to a feedback controller, whose aim is to keep the voltage on the

DC-link capacitor Cdc as close as possible to a reference Vref . First, the error

on the DC-link voltage vdc is computed and then filtered by a notch filter to

attenuate the voltage ripple at 2ωg (the harmonic at 2ωg is the main component

of the ripple on the capacitor voltage, as further explained in 3.3.2.2). The filtered

signal constitutes the input of a Proportional-Integral (PI) controller, while its

1See Appendix A
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output is suitably scaled by the value of vg to compute a reference for ig. The

error on ig enters a further PI, whose output is subtracted from the grid voltage

vg, rescaled by Vref , and discretised by a Zero-Order Hold. The exponential e−sTs

is added due to computational delays happening with sampling period Ts. The

resulting signal is finally sent to a PWM in order to obtain the control signals for

the four switches S1, S̄1, S2 and S̄2.

The state-space model of the system, including the control variables, is formed

of eight ODEs and eight independent variables, which, in this case, are chosen as

follows:

− x1, x2 are additional variables describing the dynamics of the notch filter;

− x3 and x4 are the states associated with the voltage PI control and the current

PI control, respectively (they behave like the integral of the error between the

value of the current or voltage and its respective reference);

− x5 and x6 represent the internal dynamics involving the computational delay,

Zero-Order Hold discretiser and PWM;

− x7 is the current ig drawn from the grid;

− x8 is the voltage vdc measured on the DC-link capacitor;

− vg(t) is the alternating grid voltage, which is assumed to be purely sinusoidal

and is given by

vg(t) = Vg sin(ωgt) . (3.12)

In practice, the assumption stated in (3.12) is valid since vg is taken from an AC

grid: this makes eventual deviations from the sinusoidal shape extremely small.

The delays due to both discretised control and PWM Zero-Order Hold are

approximated by the continuous-time transfer function

H(s) =
e−sTs

[
1 − esTs

]
sTs

. (3.13)

If the complex exponential in (3.13) is replaced by a first-order Padé approxima-
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tion of the form

e−sTs =
n1s + n0

d1s + d0

, (3.14)

where n1, n0, d1, and d0 are suitable real coefficients, then (3.13) becomes

H(s) =
γ1s + γ0

s2 + σ1s + σ0

, (3.15)

where γ1, γ0, σ1, and σ0 can be derived from (3.13) and (3.14).

The notch filter transfer function is given by

N(s) = kn +
p1 s + p0

s2 + q1s + q0

, (3.16)

where p1, p0, q1, q0, and kn are real parameters tuned to attenuate functions with

frequency 2ωg.

Transforming H(s) and N(s) as expressed in (3.15) and (3.16), respectively,

into time domain, and neglecting the switching behaviour of the converter leads

to the following average state-space system:

ẋ1 = x2 , (3.17a)

ẋ2 = − q0 x1 − q1 x2 + Vref − x8 , (3.17b)

ẋ3 = p0 x1 + p1 x2 + kn(Vref − x8) , (3.17c)

ẋ4 = kivvg(t)x3 + kpvp0vg(t)x1 + kpvp1vg(t)x2 + kpvkn(Vref − x8)vg(t)− x7,

(3.17d)

ẋ5 = x6 , (3.17e)

ẋ6 = −σ0x5 − σ1x6 + V −1
ref {vg(t)− [kiix4 + kpikivvg(t)x3 + kpikpvp0vg(t)x1 +

+ kpi kpv p1 vg(t)x2 + kpi kpv vg(t)(Vref − x8) − kpi x7]} ,

(3.17f)

ẋ7 = L−1
g [vg(t) − Rg x7 − (γ0 x5 + γ1 x6)x8] , (3.17g)
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ẋ8 = C−1
dc

[
(γ0 x5 + γ1 x6)x7 − R−1

dc x8

]
. (3.17h)

In general, the approximations which have been employed both above and in

what follows are ad hoc more than systematic and follow electrical engineering

custom. However, each of them will be explained and justified and comparative

plots will be shown to demonstrate their effectiveness.

The meanings and respective values of parameters in (3.17) are reported in

Table 3.1. Explicit mention of the time dependency of the state variables has

been omitted in (3.17), for the sake of notational brevity.
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Vg Peak grid voltage 115
√

2 V

fg Grid frequency 50 Hz

Tg Grid period 0.020 s

Lg Grid inductance 0.87 mH

Rg Grid resistance 0.2 Ω

Rdc Load resistance 120 Ω

Cdc DC-link capacitance 600 µF

fpwm PWM frequency 1000 Hz

fs Sampling frequency 2000 Hz

Vref Reference DC-link voltage 300 V

γ0 Zero-order hold parameter 1.6 · 109 s−2

γ1 Zero-order hold parameter −4.0 · 104 s−1

σ0 Zero-order hold parameter 1.6 · 109 s−2

σ1 Zero-order hold parameter 8.0 · 104 s−1

p0 Notch filter parameter 0 s−2

p1 Notch filter parameter −31.4159 s−1

q0 Notch filter parameter 3.9 · 105 s−2

kn Notch filter parameter 1

q1 Notch filter parameter 31.4159 s−1

kpi Current PI proportional coefficient 5.009 Ω

kii Current PI integral coefficient 1279.3 Ωs−1

kiv Voltage PI proportional coefficient 0.0079 (ΩV)−1

kpv Voltage PI integral coefficient 2.0609 (ΩVs)−1

Table 3.1: System parameters
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In the engineering literature, the ODE system (3.17) is referred to as a Non-

linear Time Periodic (NLTP) system. To analyse such a system, a “steady-state”

time-periodic solution is first found, then its stability is examined by linearising

the system about that solution.

Let the following more compact notation be used to express the NLTP system

(3.17):

ẋ(T + t) = ẋ(t) = f(x(t), u(t)) , (3.18)

where x ∈ Rn is the state vector and the input u(t) is here the grid voltage vg(t).

Since vg(t) is the grid sinusoidal voltage, the input u(t) is Tg-periodic:

u(t + Tg) = u(t) . (3.19)

Given the signal xi, its steady-state component can be separated from the per-

turbation as follows

xi(t) = x̄i(t) + x̃i(t) , (3.20)

where x̄i is the steady state of xi and x̃i its perturbation.

Then, the corresponding linearised system is given by

˙̃x(t) =
∂f

∂x

∣∣∣∣
x̄, ū

x̃(t) +
∂f

∂u

∣∣∣∣
x̄, ū

u(t) . (3.21)

Assuming that the perturbations are small if compared with the steady-state

values and applying linearisation to (3.17) lead to

˙̃x1 = x̃2 , (3.22a)

˙̃x2 = − q0 x̃1 − q1 x̃2 − x̃8 , (3.22b)

˙̃x3 = p0 x̃1 + p1 x̃2 − kn x̃8 , (3.22c)

˙̃x4 = kpvp0vg(t)x̃1 + kpvp1vg(t)x̃2 + kivvg(t)x̃3 − x̃7 − kpvknvg(t)x̃8, (3.22d)

˙̃x5 = x̃6 , (3.22e)
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˙̃x6 = −σ0 x̃5 − σ1 x̃6 + V −1
ref [− kii x̃4 − kpi kiv vg(t) x̃3 − kpi kpv p0 vg(t) x̃1 +

− kpi kpv p1 vg(t) x̃2 + kpi kpv vg(t) x̃8 + kpi x̃7] ,

(3.22f)

˙̃x7 = L−1
g [− γ0x̄8(t)x̃5 − γ1x̄8(t)x̃6 −Rgx̃7 − (γ0x̄5(t) + γ1x̄6(t))x̃8], (3.22g)

˙̃x8 = C−1
dc

[
γ0x̄7(t)x̃5 + γ1x̄7(t)x̃6 + (γ0x̄5(t) + γ1x̄6(t))x̃7 −R−1

dc x̃8

]
, (3.22h)

where x̄i denotes the steady state of xi and x̃i its perturbation.

In (3.22), the grid voltage and the steady states are explicitly written as time-

dependent to highlight the LTP nature of the system.

To evaluate the steady-state stability of (3.22), various approximations have

been considered (some systematic, some ad hoc). In §3.3.2, their effect on the

steady-state and its stability is analysed.
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3.3.1 Procedure Summary

For the sake of clarity, the steps for performing a system reduction and its

relative validation are depicted in Figure 3.2 and summarised below.

− First, the “exact” solution of the initial-value problem composed by the ODEs

of (3.17) has been obtained by solving the state-space equations through high-

accuracy simulations (in the present case, MATLAB ode45 has been used).

The simulations have been run for a time-span long enough to assume that

the system transients have finished. The so-obtained time-domain results,

therefore, can be considered as steady-state solutions.

− The solution in time domain of the full system has been sampled and its Fourier

coefficients have been found by applying the MATLAB function for the Fast

Fourier Transform fft to the sampled values of the variables.

− The Fourier coefficients for the steady states of system (3.17) have also been

computed by truncating and then solving numerically a system of equations

obtained by substituting each state variable of (3.17) with the corresponding

Fourier series, as explained in §3.3.2.1. In the present case, the MATLAB

function fsolve has been used to solve the resulting system of equations.

− Due to the difficulty of finding a suitable starting point for fsolve (and to

the non-convexity of the problem), another approach for finding the Fourier

coefficients of the steady-states has been applied. As shown in §3.3.2.2 , some

engineering approximations, suggested by experimental evidence, have been

investigated. The corresponding approximate Fourier coefficients have been

compared with both the coefficients from fsolve and the coefficients obtained

by sampling the time domain steady-state solution. Those comparisons are

given in §3.3.2.3.

− After assessing the validity of the steady states obtained from engineering

approximations, the full state-space system (3.17) has been linearised about

these steady -states and its corresponding LTP system has been computed.

− By applying LTP techniques, the eigenvalues of the so-obtained full LTP sys-

tem have been found and stability of the full LTP system has been analysed.
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− As explained in §3.3.3, the full state-space system has been nondimension-

alised, small parameters have been identified and a model reduction has been

performed. Time-domain simulations of the reduced system have been ob-

tained through MATLAB ode45. These results have then been compared with

the corresponding time domain results of the full system. Different possibili-

ties have been explored for the reduction, leading to reduced systems with a

different number of ODEs and different levels of approximation.

− The time-domain simulations for the reduced models have been sampled and

the Fourier coefficients have been computed by applying MATLAB fft, anal-

ogously to the procedure followed for the full system. The coefficients of the

full and the reduced models have been compared.

− The steady-state expressions for the reduced model have been found by ap-

plying the same engineering approximations that have been validated for the

full system.

− The reduced systems have been linearised about those approximated steady

states and the corresponding reduced LTP system has been computed.

− The eigenvalues for the reduced models have been computed and then com-

pared with the eigenvalues of the full system. Stability analyses have been

compared for different values of the controller parameters.
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Figure 3.2: Scheme of the overall analyses performed on the SP-AFE
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3.3.2 Computation of the Steady-State Operating Point

In this subsection, the steady-state operating points of the full system (3.17)

are computed in two different ways, later compared.

First, as explained in §3.3.2.1, the time-periodic steady-states and input vg are

written as Fourier series; by substituting those expressions into the state-space

system, an infinite system of algebraic equations is derived; truncating and solv-

ing numerically, the so-obtained system leads to the computation of the Fourier

coefficients of the unknown steady-states.

As a second approach to computing the steady states of the analysed system,

detailed in §3.3.2.2„ the “power balance approach” from engineering has been ap-

plied. This includes a drastic truncation of the Fourier series of the system based

on engineering insight for the computation of the Fourier coefficients.

These two ways of approximating the system steady-states are compared in

§3.3.2.3, where their corresponding Fourier coefficients are plotted, together with

the Fourier coefficients obtained from sampling the steady-state time domain sim-

ulations of the system and processing the values applying the MATLAB function

fft.

Only the steady-state solutions x̄5(t), x̄6(t), x̄7(t) and x̄8(t) appear in the

linearised time-periodic system (3.22). Therefore, attention has been mainly fo-

cused on the computation of these, rather than on the steady states of the other

four state variables.

3.3.2.1 Steady-State Point from Truncated Infinite System of Equa-

tions

Assuming that the steady-state solution of the NLTP system (3.17) is periodic,

each variable can be written as a Fourier series

x̄i(t) = 〈x̄i〉 +

+∞∑′

n=−∞

x̄
(n)
i ejnωgt , (3.23)

where

• i = 1, 2, ..., 8 labels the state degrees of freedom;
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• 〈x̄i〉 is the average of x̄i(t);

• x̄(n)
i are its Fourier coefficients;

•
+∞∑′

n=−∞

an =
−1∑

n=−∞

an +
+∞∑
n=+1

an .

Defining x̄(0)
i as

x̄
(0)
i = 〈x̄i〉 , (3.24)

the equation (3.23) can be written more compactly as

x̄i(t) =
+∞∑

n=−∞

x̄
(n)
i ejnωgt . (3.25)

Differentiating (3.25) with respect to time leads to

˙̄xi(t) =
+∞∑

n=−∞

jnωg x̄
(n)
i ejnωgt . (3.26)

The input voltage vg can be written exponentially according to Euler’s formula:

vg(t) =
Vg
2j

(ejωg t − e−jωg t) . (3.27)

Now, substitution of (3.25), (3.26) and (3.27) into (3.17) leads to a new system

whose equations are composed of constant parameters and parameters modulated

by time-dependent exponential signals ejnωg t. The system unknowns are the

infinite number of Fourier coefficients of the steady-state solution, x̄(n)
i .

For practical purposes, it is necessary to truncate the Fourier series up to a

positive integer N , obtaining 8(2N + 1) unknowns. Selecting in each equation

the terms of the same frequency, 8(2N + 1) equations can be written.

For example, for the first equation of (3.17), this gives rise to

˙̄x1(t) = x̄2(t), (3.28)

+∞∑
n=−∞

jnωg x̄
(n)
1 ejnωg t =

+∞∑
n=−∞

x̄
(n)
2 ejnωg t . (3.29)
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Truncation of (3.29) at n = ±N leads to

+N∑
n=−N

jnωg x̄
(n)
1 ejnωg t =

+N∑
n=−N

x̄
(n)
2 ejnωg t . (3.30)

Equating the LHS and RHS terms with the same frequency leads to

jnωg x̄
(n)
1 = x̄

(n)
2 , (3.31)

where

n = −N, −N + 1, ..., N − 1, N . (3.32)

The same procedure can be applied to all the equations of (3.17), obtaining

a system of 8(2N + 1) time-invariant equations in 8(2N + 1) unknowns. The

equations originating from the last two equations of (3.17), which are nonlinear,

are still nonlinear in this spectral representation. The system can be solved nu-

merically: in the considered case, the MATLAB function fsolve has been used.

However, this function needs an initial guess to operate. If the problem is not

convex and the absolute minimum is far from the initial condition, some local

minima can be mistaken for optimal points by the function, leading to inaccura-

cies.

Since stating an initial guess for big systems is in general hard, in the engi-

neering practice a more approximated method for computing the steady-states is

usually applied, as described in §3.3.2.2. In order to validate this approximated

technique, the infinite system of equations obtained by substituting (3.25), (3.26)

and (3.27) into (3.17) has been truncated at n = ±4 and solved by fsolve. The

resulting Fourier coefficients have been compared with the Fourier coefficients

obtained by following the method illustrated in §3.3.2.2. The values obtained by

applying the engineering custom approximations have also been used as an initial

guess for fsolve: the Fourier coefficients which are neglected by this method have

been set equal to 0 in the initial guess.

In order to reduce the number of unknowns, the grid current ig(t) has been

assumed to be mainly constituted by odd harmonics, and the voltage vdc by even
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harmonics; this approximation is common in engineering and is supported by

experimental evidence. Following these assumptions and observing the ODEs of

the full system (3.17), only the odd harmonics have been considered for x4, x5,

x6 and x7, while only even harmonics have been considered for x1, x2, x3 and

x8. All the other harmonic contributions have been treated and approximated as

equal to 0.

Considering x7 as constituted by odd harmonics only and x8 by even only,

indeed, forces x5 and x6 to be formed by odd harmonics to avoid imbalances in

(3.17g) and (3.17h). Considering x5 and x6 as odd-harmonics-only, moreover, and

observing (3.17f), leads to treating x4 as composed by odd harmonics and x1, x2,

x3 by even. These choices are consistent if (3.17a), (3.17b), (3.17c), (3.17d) and

(3.17e) are also taken into account.

This approximation has been validated by sampling the steady-state time-

domain solutions from MATLAB ode45: the harmonics which have been consid-

ered equal to zero in solving the truncated infinite system are verified in this way

to be negligible compared to the other harmonic amplitudes.

The comparison between the steady-state computation methods explained in

§3.3.2.1 and §3.3.2.2 is shown in §3.3.2.3. The engineering custom approximations

have been considered good enough for the computation of the steady-states and

have been used for the formulation of LTP systems in the following subsections.

3.3.2.2 Approximated Steady-State Point

Since x5 and x6 represent the internal dynamics of the computational delay,

they can be considered “slow” compared to the other states. Corroboration for

this assumption will be provided later, after performing nondimensionalisation of

the system.

Grouping the last terms of (3.17f), a variable d is defined by

d(t) = V −1
ref

{
vg(t)[1 − kpi kpv(p0 x1 + p1 x2 + kn Vref − kn x8) − kpi kiv x3]

− kii x4 + kpi x7

}
.

(3.33)

By comparing the equation of d and the scheme depicted in Figure 3.1, the mean-
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ing of d can be identified with the controller action, but without considering its

internal delays, described by the fifth and sixth ODEs of (3.17).

The fifth and sixth equations from (3.17), for the steady-state case, lead to

the state-space system

 ˙̄x5(t)

˙̄x6(t)

 = Aσ

 x̄5(t)

x̄6(t)

 + Bσ d̄(t) , (3.34)

where

Aσ =

 0 1

−σ0 −σ1

 , Bσ =

 0

1

 . (3.35)

Since (3.34) is linear, it can be solved in terms of the Laplace transforms

of x̄5(t), x̄6(t) and d̄(t), denoted by X5(s), X6(s) and D(s), respectively. The

transfer function Hσ(s) between [X5(s) X6(s)]T and D̄(s) can be computed by

applying the Laplace transform to (3.34) and isolating [X5(s) X6(s)]T in the

LHS: X5(s)

X6(s)

 = Hσ(s)D(s) = (s I − Aσ)−1BσD(s) , (3.36)

where s = jωg and I is an identity matrix of suitable dimensions.

An ad hoc approximation is now introduced for d̄(t) and equates it to the

ratio of the input voltage to the reference value for the DC-link voltage:

d̄(t) ∼ vg(t)

Vref

. (3.37)

This approximation leading to (3.37) can be intuitively justified by interpreting

d(t) as the controller action before considering the internal delays of the system.

It can be considered valid only if x5(t) and x6(t) are slow if compared with the

other variables implicitly contained in d(t).

Therefore, substituting equation (3.12) for vg and (3.37) into (3.36) and ap-
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plying an inverse Laplace transform, x̄5(t) and x̄6(t) are found to be of the forms

x̄5(t) ∼ |H5(jωg)|
Vg
Vref

sin
(
ωg t + H5(jωg)

)
= =

(
H5(jωg)

Vg
Vref

ejωg t

)
,

x̄6(t) ∼ |H6(jωg)|
Vg
Vref

sin
(
ωg t + H6(jωg)

)
= =

(
H6(jωg)

Vg
Vref

ejωg t

)
,

(3.38)

where Hi denotes the phase of Hi, and the transfer function Hσ(s) has been

split into

Hσ(s) =

H5(s)

H6(s)

 . (3.39)

Due to the nonlinearity of the system, additional approximations are adopted

for the computation of x̄7 and x̄8. In particular, x̄7 is approximated by a pure

sinusoid with period equal to Tg and peak value Ig:

x̄7(t) ∼ ı̄g(t) = Ig sin(ωg t) , (3.40)

where Ig is unknown and needs to be estimated.

This choice is originated by the need for the grid current to be a sinusoid in

phase with the grid voltage in order to maximise the efficiency of the system and

to have a power factor equal to one. The power factor (PF) is defined as the ratio

of the real power to the apparent power entering the system and its value should

lie between -1 and 1. If the input voltage vg is a sinusoid with period Tg, a unity

PF can be demonstrated to be possible only by absorbing from the grid a current

ig that is sinusoidal, in phase with vg and free from further harmonics, as shown

below.

If, in an AC system of angular frequency ωg, if voltage and current are given,

respectively, by

v(t) = V sin(ωgt + θv), (3.41a)

i(t) = I sin(ωgt+ θi), (3.41b)
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then the average active power is equal to

Pave =
1

2
V I cos(φ) , (3.42)

where φ is the phase shift between current and voltage, defined as φ = θv − θi.

In this case, the PF is equal to cos(φ).

Analogously, if harmonics of order greater then 1 are present, the average

active power is given by

Pave =
1

2

+∞∑
k=1

Vk Ik cos(φk) , (3.43)

where Vk, Ik and φk are, respectively, the voltage amplitude, current amplitude

and phase shift for the k-th order harmonic.

From (3.43), it follows that, if the voltage is constituted by a pure sinusoid, as

assumed in (3.12) for the grid voltage, the current harmonics of order greater than

1 do not contribute in the active power computation. Moreover, to obtain a PF

equal to 1, the current fundamental must be in phase with vg, leading to (3.40).

Therefore, the approximation on x̄7 implies neglecting its eventual phase shift

and its harmonics of order greater than one. This assumption will be checked by

simulating the system (3.17) and comparing the amplitudes of the steady-state

fundamental of ig with its higher-order harmonics.

In order to determine x̄7(t) and x̄8(t), the so-called power balance approach

has been applied. This method, based on engineering approximations, originates

from neglecting the converter internal losses and equating the input and the

output power of the system. In the next few paragraphs, the power balance

approach will be explained.

The input power of the system is defined as the product of the AC variables

ig and vg. The output power is defined as the power flowing downstream of the

switches, absorbed by the DC-link and the load resistor.

The input steady-state power P̄in can be computed as the product of vg and

80



CHAPTER 3. MODEL REDUCTION OF A SINGLE-PHASE ACTIVE
FRONT-END

ı̄g, as given in (3.12) and (3.40):

P̄in(t) = vg(t) ı̄g(t) = Vg Ig sin2(ωg t)

= Vg Ig

[
1 − cos(2ωg t)

2

]
=

Vg Ig
2
− Vg Ig

2
cos(2ωgt) .

(3.44)

The output steady-state power P̄out, instead, can be computed by applying

Ohm’s law on the DC-resistor and DC-link and is equal to

P̄out(t) = x̄8(t)

[
Cdc

dx̄8(t)

dt
+
x̄8(t)

Rdc

]
= x̄8(t)

{[
γ0 x̄5(t) + γ1 x̄6(t)

]
x̄7(t) − x̄8(t)

Rdc

+
x̄8(t)

Rdc

}
= x̄7(t) x̄8(t)

[
γ0 x̄5(t) + γ1 x̄6(t)

]
.

(3.45)

Comparing (3.45) and (3.17g) leads to

P̄out(t) = x̄7(t)

[
−Lg

dx̄7(t)

dt
+ vg(t) − Rg x̄7(t)

]
= vg(t)x̄7(t) − Lg x̄7(t)

dx̄7(t)

dt
− Rg x̄

2
7(t)

= vg(t)̄ıg(t) −
1

2
Lg

dı̄2g(t)

dt
− Rg ı̄

2
g(t) .

(3.46)

Hence, in steady state, the difference between input and output power is given

by

P̄in(t) − P̄out(t) =
1

2
Lg

dı̄2g(t)

dt
+ Rg ı̄

2
g(t) , (3.47)

where

• 1

2
Lg

dı̄2g(t)

dt
is the power stored in the grid inductance Lg;

• Rg ı̄
2
g(t) is the power dissipated on the grid resistance Rg.

The power balance approach ignores those fluctuations in the power to equate

input and output power and to compute an approximation for the steady states.

Considering the RHS of (3.47) as negligible,

P̄in ∼ P̄out. (3.48)

Assuming the steady state of vdc to be equal to its reference value plus a
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ripple, and then averaging (3.48), leads to

Vg Ig
2
∼ V 2

ref

Rdc

. (3.49)

In (3.49), Ig is the only unknown; isolating it leads to

Ig ∼
2V 2

ref

Vg Rdc

. (3.50)

Then, the approximated steady-state equation of ig is given by

x̄7(t) = ı̄g(t) ∼
2V 2

ref

Vg Rdc

sin(ωgt) . (3.51)

The ripple on P̄in is assumed to be equal to the power periodically absorbed and

released by the DC-link capacitor, while the power flowing through Lg and Rg is

neglected. Assuming also v̄dc ∼ Vref leads to

P̄in, ripple(t) ∼ Vref Cdc
dv̄dc(t)

dt
. (3.52)

Substitution of (3.50) in the non-constant part of (3.44) leads to

P̄in,ripple(t) = − V 2
ref

Rdc

cos(2ωg t) . (3.53)

The derivative of v̄dc with respect to time can be obtained by equating the RHS

of (3.52) and (3.53) and is given by

dv̄dc(t)

dt
= − Vref

CdcRdc

cos(2ωg t) . (3.54)

Integrating (3.54) with respect to time and assuming the constant component of

v̄dc(t) to be equal to Vref leads to

x̄8(t) = v̄dc(t) = − Vref

2ωg CdcRdc

sin(2ωg t) + Vref . (3.55)

Then, since also x̄7(t) and x̄8(t) are Tg-periodic, in the linearised system (3.22)

all the coefficients are constant or Tg-periodic, (3.22) is an LTP system and each

variable can be written as a Fourier series.
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3.3.2.3 Comparison Between the two Approximations for the Steady-

State

In Figure 3.3 are depicted the steady-state behaviours of ig and vdc in the

time domain: solutions obtained by applying MATLAB ode45 to (3.17) and the

approximated steady-state from the engineering custom are shown, while the er-

rors are plotted in Figure 3.4. The error amplitudes are small if compared with

the current amplitude and the voltage ripple amplitude (about 2% and 4%, re-

spectively).

Figure 3.3: ig and vdc behaviour: comparison between time-domain solution (blue),
the reference (red) and the steady-state solution obtained through engineering approx-
imations

An harmonic analysis has been performed on the state variables of the system

by solving it first in the time domain by applying MATLAB ode45 (the chosen

time span has been assumed to be long enough to consider the transients fin-

ished at the end), then sampling each variable and finally applying the MATLAB

fast Fourier transform fft to compute the Fourier coefficients. Simulations have

been run for an integer number of grid periods and final state values have been
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Figure 3.4: Errors between the time-domain steady-state solution of ig and vdc and
the steady-states obtained through engineering approximations

compared with the initial ones: as the difference between initial and final value

is negligible, the system can be considered to be in steady state and free from

transients. Figure 3.5 shows the absolute values of the Fourier coefficients com-

puted for ig and vdc and validate the assumption explained in §3.3.2.1 about their

harmonic content: ig shows only odd harmonics with a non-negligible absolute

value, decaying geometrically with the harmonic order n; the voltage vdc, on the

contrary, shows just even harmonics decaying with n, while the odd harmonics

are negligible.

The Fourier coefficients obtained by sampling the time-domain solutions have

been compared with the corresponding coefficients computed as described in both

§3.3.2.1 and §3.3.2.2. The comparative plot is depicted in Figure 3.6.

To validate the harmonic analysis performed by sampling and fft, ig and vdc

have been reconstructed in time domain from their relative Fourier coefficients by

adding first, third and fifth harmonic for the former and continuous component,

second, fourth and sixth harmonic for the latter, as shown in Figure 3.7.
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Figure 3.5: Semi-logarithmic plots of the absolute values of the Fourier coefficients
computed for ig and vdc in SF-ETS

Figure 3.6: Fourier coefficients comparison of steady-state solutions - Absolute values:
samples of time-domain simulations after the end of transients (green diamonds), non-
approximated steady-state Fourier coefficients (blue circles), approximated solution (red
crosses)
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Figure 3.7: SP-AFE time-domain simulations and harmonic contributions comparison.
For ig (only odd harmonics): ode45 solution (red), ig1(t) (orange), ig1(t)+ig3(t) (green),
ig1(t) + ig3(t) + ig5(t) (blue); for vdc (only even harmonics): ode45 solution (red), vdc0 +
vdc2(t) (orange), vdc0 + vdc2(t) + vdc4(t) (green), vdc0 + vdc2(t) + vdc4(t) + vdc6(t) (blue)
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3.3.3 Nondimensionalisation and System Reduction

In this subsection, nondimensionalisation has been applied to the ODE sys-

tem (3.17), in order to allow the clearer identification of small (dimensionless)

parameters.

By evaluating the numerical values of the various dimensionless parameters for

typical values of the system parameters, it is possible to identify likely candidates

to be considered “small” dimensionless parameters.

While performing nondimensionalisation, Vg, Rdc and Tg have been chosen as base

values for voltage, resistance and time, respectively. The nondimensional vari-

ables and parameters of the system are reported in the second column of Table

3.2. The nondimensionalised system is then

˙̂x1 = x̂2 (3.56a)

˙̂x2 = − q̂0 x̂1 − q̂1 x̂2 + V̂ref − x̂8 , (3.56b)

˙̂x3 = p̂0 x̂1 + p̂1 x̂2 + k̂n(V̂ref − x̂8) , (3.56c)

˙̂x4 = v̂g(t̂)[k̂iv x̂3 + k̂pv p̂0 x̂1 + k̂pv p̂1 x̂2 + k̂pv(V̂ref − x̂8)] − x̂7 , (3.56d)

˙̂x5 = x̂6 , (3.56e)

˙̂x6 = − σ̂0 x̂5 − σ̂1 x̂6 + d̂(t̂) , (3.56f)

˙̂x7 = L̂−1
g (v̂g(t̂) − R̂g x̂7 − γ̂0 x̂5 x̂8 − γ̂1 x̂6 x̂8) , (3.56g)

˙̂x8 = Ĉ−1
dc [(γ̂0 x̂5 + γ̂1 x̂6)x̂7 − R̂−1

dc x̂8] , (3.56h)

where the nondimensional variable d̂(t̂) is defined by

d̂(t̂) = V̂ −1
ref

{
v̂g(t̂)[1−k̂pik̂pv(p̂0x̂1+p̂1x̂2+k̂nV̂ref−k̂nx̂8)−k̂pik̂ivx̂3]−k̂iix̂4+k̂pix̂7

}
,

(3.57)

and the nondimensional expression of the grid voltage v̂g(t̂) is given by

v̂g(t̂) = V̂g sin(ω̂g t̂) = V̂g sin(2π fg Tb t T
−1
b ) = V̂g sin(ωg t) . (3.58)

A small parameter ε is now introduced, in order to assign to each dimensionless
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State-Space
Variables

x̂1 = x1(Vg T
2
g )−1

x̂2 = x2(Vg Tg)
−1

x̂3 = x3(Vg Tg)
−1

x̂4 = x4Rdc(Vg Tg)
−1

x̂5 = x5(Tg)
−2

x̂6 = x6T
−1
g

x̂7 = x7Rdc V
−1
g

x̂8 = x8V
−1
g

Grid
Parameters

L̂g = Lg(Rdc Tg)
−1 = 3.6250 · 10−4

R̂dc = Rg R
−1
dc ≈ 1.6667 · 10−3

V̂g = Vg V
−1
g = 1

f̂g = fg Tg = 1

O(1) or O(ε)

O(ε)

O(1)

O(1)

Load
Parameters

Ĉdc = CdcRdc T
−1
g ≈ 3.6000

R̂dc = RdcR
−1
dc = 1

O(1)

O(1)

PWM and Switch
Parameters

f̂pwm = fpwm Tg = 200

f̂s = fs Tg = 400

O(1)

O(1)

Zero-Order Hold
and Delay

Parameters

γ̂0 = γ0 T
2
g = 640000

γ̂1 = γ1 Tg = −800

σ̂0 = σ0 T
2
g = 640000

σ̂1 = σ1 Tg = 1600

O(ε−2)

O(ε−1)

O(ε−2)

O(ε−1)

Notch Filter
Parameters

p̂0 = p0 T
2
g = 0

p̂1 = p1 Tg ≈ − 0.6283

q̂0 = q0 T
2
g = 156

q̂1 = q1 Tg ≈ 0.6283

k̂n = kn = 1

O(1)

O(1)

O(1) or O(ε−1)

O(1)

O(1)

Voltage PI
Parameters

k̂pv = kpv Rdc Vg ≈ 154.3091

k̂iv = kiv Rdc Vg Tg ≈ 804.4166

O(1)

O(1)

Current PI
Parameters

k̂pi = kpiR
−1
dc ≈ 4.2236 · 10−2

k̂ii = kiiTg R
−1
dc ≈ 0.2132

O(1)

O(1)

Reference V̂ref = Vref V
−1
g ≈ 1.8466 O(1)

Table 3.2: Nondimensionalised system variables and parameters
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group a “size” (i.e. assign some power α to each, so that it is O(εα)). This

assignment is somewhat arbitrary and subjective. In the present case, significant

progress in this regard can be made by supposing ε to be of order 10−3, which

is typical of values found in detailed calculation later. The orders of the system

parameters have been assigned based on this choice and are listed in the third

column of Table 3.2. Some variables have a clear suggestion for their associated

“size” (e.g. γ̂0, σ̂0, σ̂1), while others require a greater degree of judgement.

In particular, k̂iv is considered to be of order 1, despite being closer to ε−1, because

its value can vary depending on the selected control bandwidth2. Even though

in this example p̂0 = 0, in order to retain flexibility, p̂0 is assigned the size

p̂0 = O(1). About the order of L̂g and q̂0, two options have been considered for

each, leading to different possible approximations of the system.

To clarify the size of the various dimensionless groups, some O(1) parameters

are now introduced by factoring out the assumed ε-dependence of the “raw” hatted

dimensionless parameters. Hence, σ̄0, σ̄1, γ̄0, γ̄1, R̄g, L̄g and q̄0 are defined by:

σ̄0 = σ̂0 ε
2 ,

σ̄1 = σ̂1 ε ,

γ̄0 = γ̂0 ε
2 ,

γ̄1 = γ̂1 ε ,

R̄g = R̂g ε
−1 ,

L̄g = L̂g β ,

q̄0 = q̂0 α
−1 ,

(3.59)

where
α = 1 or α = ε−1,

β = 1 or β = ε−1 .

(3.60)

Then, substitution of (3.59) into (3.56) leads to

˙̂x1 = x̂2 (3.61a)

2See Appendix .1

89



Applications of Perturbation Theory to Power Electronic Converters

˙̂x2 = − α q̄0 x̂1 − q̂1 x̂2 + V̂ref − x̂8 , (3.61b)

˙̂x3 = p̂0 x̂1 + p̂1 x̂2 + k̂n(V̂ref − x̂8) , (3.61c)

˙̂x4 = v̂g(t̂)[k̂iv x̂3 + k̂pv p̂0 x̂1 + k̂pv p̂1 x̂2 + k̂pv(V̂ref − x̂8)] − x̂7 , (3.61d)

˙̂x5 = x̂6 , (3.61e)

˙̂x6 = − ε−2 σ̄0 x̂5 − ε−1 σ̄1 x̂6 + d̂(t̂) , (3.61f)

˙̂x7 = β L̄−1
g (v̂g(t̂) − ε R̄g x̂7 − ε−2 γ̄0 x̂5 x̂8 − ε−1 γ̄1 x̂6 x̂8) , (3.61g)

˙̂x8 = Ĉ−1
dc [(ε−2 γ̄0 x̂5 + ε−1 γ̄1 x̂6)x̂7 − R̂−1

dc x̂8] , (3.61h)

where d̂ has been defined in (3.57).

Now, the equations (3.61) are considered for model reduction. Different cases

have been taken into account according to the different “sizes” which can be

attributed to L̂g and q̂0.

Since (3.61e) and (3.61f) are the only ODEs of the system which do not

depend on α or β, they will be considered first. After that, (3.61g) and (3.61h)

will follow, as they depend on the value of β and contain only the state variables

x̂5, x̂6, x̂7 and x̂8. Then, (3.61a) and (3.61b), according to the selected value of

α, will be taken into account. Last, (3.61c) and (3.61d) will be considered, since

they depend both on α and on the expressions for x̂1 and x̂2 following from the

reduction of (3.61a) and (3.61b).

equations for x5 and x6

Since d(t) has the physical meaning of a controller action neglecting the inter-

nal delays of the system, d̂(t) is assumed to be O(1), along with its steady-state

d̄(t). Thus, to avoid imbalance in (3.61f),

x̂5 = O(ε2) . (3.62)

Therefore, x̂5 can be expressed as

x̂5 = ε2 x̂52 + O(ε3) (3.63)
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and, correspondingly,

x̂6 = ε2 x̂62 + O(ε3). (3.64)

Then, the governing equations from (3.61e) and (3.61f) are, respectively,

x̂62 = ˙̂x52 , (3.65a)

x̂52 =
d̂

σ̄0

. (3.65b)

With the chosen value for ε, the system size can therefore be reduced by two

degrees of freedom irrespective of the values of α and β.

equations for x7 and x8

The leading order of the eighth ODE, irrespective of the orders of α and β, is

˙̂x8 = C−1
dc

(
γ̄0 x̂52(t̂) x̂7 − R̂−1

dc x̂8

)
+ O(ε). (3.66)

At leading order, the seventh equation is

˙̂x7 = β L̄−1
g

(
v̂g(t̂) − γ̄0 x̂52(t̂) x̂8

)
+ O(ε), (3.67)

which for β = 1 leads to the ODE

˙̂x7 = L̄−1
g

(
v̂g(t̂) − γ̄0 x̂52(t̂) x̂8

)
= L̂−1

g

(
v̂g(t̂) − γ̄0 x̂52(t̂) x̂8

)
+ O(ε), (3.68)

while for β = ε−1 it leads to the algebraic equation

0 = v̂g(t̂) − γ̄0 x̂52(t̂) x̂8 + O(ε) . (3.69)

Therefore, if L̂g is considered of O(ε), the system can be reduced by one further

degree of freedom.

equations for x1 and x2

In the case α = 1, no reduction is possible of the first two ODEs of the system,
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leading to
˙̂x1 = x̂2 ,

˙̂x2 = − q̄0 x̂1 − q̂1 x̂2 + V̂ref − x̂8 .
(3.70)

If, instead, α = ε−1, the second equation becomes

˙̂x2 = ε−1 q̄0 x̂1 − q̂1 x̂2 + V̂ref − x̂8 . (3.71)

To avoid imbalance,

x̂1 = O(ε) , (3.72)

and x̂1 can be expressed as

x̂1 = ε x̂11 + O(ε2) + ... , (3.73)

where x̂11 = O(1). Substituting (3.73) into (3.61a) leads to

ε ˙̂x11 = x̂2 + O(ε2) . (3.74)

Therefore, x̂2 must be O(ε) and can be analogously written as

x̂2 = ε x̂21 + O(ε2) + ... . (3.75)

Thus, substituting (3.73) and (3.75) into (3.71) and selecting the leading order

terms leads to

x̄1 =
V̂ref − x̂8

q̄0

. (3.76)

From (3.61a),

x̄2 = ˙̄x1 = −
˙̂x8

q̄0

= − 1

Cdc q̄0

[
γ̄0 x̂52

(
t̂
)
x̂7 − x̂8

]
. (3.77)

In this case, both ODEs are turned into algebraic equations. Moreover, since x̂1

and x̂2 are of O(ε), they are not present in the leading order expression for d̂,

which is simplified as
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d̂(t̂) = V̂ −1
ref

[
v̂g
(
t̂
)
− k̂pik̂ivv̂g

(
t̂
)
x̂3 (3.78a)

−k̂iix̂4 + k̂pix̂7 − k̂nk̂pik̂pvv̂g
(
t̂
) (
V̂ref − x̂8

)]
+O(ε).

equations for x3 and x4

Following from (3.70), if α = 1, (3.61c) and (3.61d) become

˙̂x3 = p̂0 x̂1 + p̂1 x̂2 + k̂n

(
V̂ref − x̂8

)
, (3.79a)

˙̂x4 = k̂pv v̂g
(
t̂
) [
p̂0 x̂1 + p̂1x̂2 + k̂n

(
V̂ref − x̂8

)]
+ k̂iv v̂g

(
t̂
)
x̂3 − x̂7 .

(3.79b)

For α = ε−1, x̂1 and x̂2 are O(ε), leading to

˙̂x3 = k̂n

(
V̂ref − x̂8

)
+ O(ε) , (3.80a)

˙̂x4 = v̂g
(
t̂
) [
k̂iv x̂3 + k̂pv

(
V̂ref − x̂8

)]
− x̂7 + O(ε) . (3.80b)

Reduction Summary

The reduced system size varies according to the different combinations of choices

for α and β values. A summary of the possible cases is displayed in Table 3.3 and

their respective agreement with the full system behaviour is shown in the next

subsections.

α = 1 α = ε−1

β = 1 6 4

β = ε−1 5 3

Table 3.3: Number of system ODEs depending on the chosen values of α and β

From a physical point of view, in the 6-equations-reduced model, the ODEs

describing the behaviour of the internal delays and ZOH are not present (despite

their contribution being represented by the algebraic term x̂52(t)). This reduction
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is included in all four of the possibilities shown in Table 3.3.

Making the assumption that α = ε−1 leads to neglect of the first two ODEs of the

full system, corresponding to the dynamics of the notch filter. When β = ε−1,

one equation modelling the control on the grid current ig is not included in the

reduced system.

3.3.3.1 6-Equation Reduced Model

In the case α = β = 1, then both L̂g and q̂0 are of O(1). Let now the hats

drop from the notation. Therefore, substituting (3.63) and (3.64) into the system

(3.61), selecting the leading order terms and neglecting the terms of O(ε) and

O(ε2) leads to

ẋ1 = x2 , (3.81a)

ẋ2 = − q0 x1 − q1 x2 + Vref − x8 , (3.81b)

ẋ3 = p0 x1 + p1 x2 + kn(Vref − x8) , (3.81c)

ẋ4 = kiv vg(t)x3 + kpv p0 vg(t)x1 + kpv p1 vg(t)x2 (3.81d)

+ kpv kn(Vref − x8)vg(t) − x7 ,

ẋ7 = L−1
g [vg(t) − γ̄0 x52(t)x8] , (3.81e)

ẋ8 = C−1
dc [γ̄0 x52(t)x7 − R−1

dc x8] , (3.81f)

where

x52(t) =
d(t)

σ̄0

, (3.82a)

d(t) = V −1
ref

{
vg(t)[1− kpikpv(p0x1 + p1x2 + knVref − knx8)− kpikivx3] (3.82b)

− kiix4 + kpix7

}
.

Following this procedure, two out of the eight ODEs from (3.17) are neglected
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and two algebraic equations are added. In (3.82), the variable x̂62(t), representing

the governing equation of x6, is not included. If needed, it can be found from

(3.65a) and computed as a function of x52.

To assess the validity of the reduction, solutions of the system (3.81) have

been compared to solutions of the full system (3.17) in both time domain and

Fourier coefficients. First, (3.81) has been solved by MATLAB ode45 and those

results have been compared with the corresponding time-domain solution of the

full system. This comparison is plotted in Figure 3.8., while the error between full

and reduced time-domain solutions is shown in Figure 3.9: the error amplitude

on ig is the 1.29% of the current amplitude, while the error amplitude on vdc is

equal to the 0.01% of the reference value for vdc and the 0.47% of its ripple. The

relative error on vdc is much smaller than that on ig due to the nature of their

steady-state behaviours: ig is a sinusoid, while vdc is the sum of a constant of the

order of 100 V and a sinusoidal ripple. The error amplitude on the voltage, then,

is more significant compared to the amplitude of the voltage ripple.

After this, the reduced time-domain solution has been sampled and analysed

by MATLAB fft, analogously to the procedure applied to compute the full solu-

tion Fourier coefficients. A comparison between full and reduced model Fourier

coefficients is depicted in Figure 3.10.

In both time domain simulations and Fourier coefficients, a good agreement

is observable between the behaviour of the full and the reduced model.
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Figure 3.8: Comparison in time-domain between exact solution (blue) and reduced
solution (green)

Figure 3.9: Errors between the full system time domain simulations and the 6-equation
model
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Figure 3.10: Absolute values of the Fourier coefficients computed for ig and vdc: exact
solution (blue circles) and reduced solution (green crosses)

3.3.3.2 Approximated Steady-State Calculation for the Reduced

Model

To obtain the steady state of the 6-equation reduced model, engineering ap-

proximations have been applied to the system, analogously to §3.3.2.2.

Since, in §3.3.2.3, (3.40) and (3.55) have been shown to be good approxima-

tions of the steady state of ig and vdc, respectively, the same expressions have been

considered for the corresponding 6-equation steady states. (3.81e) and (3.81f),

indeed, describe the behaviour of the grid current and DC-link voltage, respec-

tively; if the reduced model approximates the full one well enough, there will not

be big discrepancies between corresponding steady-states.

As x5 and x6 do not appear in the reduced model (3.81), their steady states

do not need to be computed.

The steady states for the first four variables, instead, can be found by writ-

ing each as a (truncated) Fourier series and equating coefficients of the Fourier

components ejnωgt.
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3.3.3.3 5-Equation Reduced Model

To reduce the system by a further equation, α = 1, while β = ε−1. Then,

L̂g is of O(ε) and q̂0 of O(1). Let the hats drop from the notation. Proceeding

analogously to §3.3.3.1 (i.e. substituting leading-order terms and neglecting O(ε)

terms or smaller) leads to

ẋ1 = x2 , (3.83a)

ẋ2 = − q0 x1 − q1 x2 + Vref − x8 , (3.83b)

ẋ3 = p0 x1 + p1 x2 + kn(Vref − x8) , (3.83c)

ẋ4 = kiv vg(t)x3 + kpv p0 vg(t)x1 + kpv p1 vg(t)x2 (3.83d)

+ kpv kn(Vref − x8)vg(t) − x7(t) ,

ẋ8 = C−1
dc [γ̄0 x52(t)x7(t) − R−1

dc x8] , (3.83e)

where

x7(t) = k−1
pi

{
vg(t)

[
Vref σ̄0

x8γ̄0

− 1 + kpikpv (p0x1 + p1x2 + knVref − knx8) (3.84a)

+kpikivx3] + kiix4} ,

d(t) =
σ̄0 vg(t)

γ̄0 x8

, (3.84b)

x52(t) =
d(t)

σ̄0

. (3.84c)

Proceeding in this way, three degrees of freedom from (3.17) have been eliminated.

Time domain simulations have been run to validate the reduced system, as

plotted in Figure 3.11. The differences between the full system and the 5-equation

reduced model in time domain, computed for ig and vdc, are plotted in Figure

3.12.

The 5-equation model seems to agree well with the full model voltage, but the

approximation for the current displayed in (3.84) has a different shape and shows

a greater contribution of the third harmonic. In particular, the error amplitude
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Figure 3.11: Comparison in time-domain between exact solution (blue), 6-equations
reduced solution (green) and 5 equations reduced solution (orange)

Figure 3.12: Error between the time-domain solutions computed for ig and vdc: full
system simulations - 5-equations-reduced model

for ig is of the same order as its amplitude, while the error amplitude for the

voltage is equal to about the 2% of the ripple amplitude on vdc.

This may be caused by the absence of the seventh ODE of the full system

(3.17) from the 5-equation reduced system. In this model, as shown in (3.84a),
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the value of x7, corresponding to the current ig, is not computed by solving an

ODE, but algebraically.

The system (3.83) is characterised by a high influence of nonlinearities: equa-

tion (3.83e), modelling the behaviour of the DC-link voltage, contains the prod-

uct of d(t) and x7(t), both computed algebraically from the state variable values.

Thus, in this case, the computation of its corresponding linearised system and

LTP stability analysis would be challenging (in particular in writing the LTP

system matrices). Therefore, the 5-equation reduced system analysis will be per-

formed only by observing the system behaviour in time domain for different values

of the controller parameters, as explained in §3.3.4. This makes the computation

of the steady-state expressions not necessary.

3.3.3.4 4-Equation Reduced Model

Here, α has been considered equal to ε−1, while β to 1. Then, L̂g is of O(1)

and q̂0 of O(ε−1). Therefore, selecting the leading order terms and neglecting the

terms of O(ε) and O(ε2) lead to

ẋ3 = kn(Vref − x8) , (3.85a)

ẋ4 = kiv vg(t)x3 + kpv kn(Vref − x8)vg(t) − x7(t) , (3.85b)

ẋ7 = L−1
g [vg(t) − γ̄0 x52(t)x8] , (3.85c)

ẋ8 = C−1
dc [γ̄0 x52(t)x7(t) − R−1

dc x8] , (3.85d)

where

d(t) = V −1
ref [vg (t) − kpikivvg (t)x3 − kiix4 (3.86a)

+ kpix7 − knkpikpvvg (t) (Vref − x8)] ,

and

x52(t) =
d(t)

σ̄0

. (3.87)
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Therefore, four degrees of freedom of the full system have been eliminated.

Figure 3.13 shows a time-domain simulation of the system. In this case, both ig

and vdc show distortions. The first two ODEs of (3.17), here neglected, represent

the action of the notch filter on the system. Removing the filter from the system

behaviour leads to significant errors in the solutions. The error between the 4-

equation reduced model and the full system in time domain is depicted in Figure

3.14. In this case, the error amplitude on ig is close to the current amplitude,

while the error amplitude on vdc is of the same order of the ripple on vdc.

Figure 3.13: Comparison in time-domain between exact solution (blue), 6-equation
reduced solution (green), 5-equation reduced solution (orange) and 4-equation reduced
solution (purple)

The 4-equation time domain solutions computed by ode45 have then been

sampled and analysed by fft, as previously performed on the full system and

on the 6-equation reduced model, in order to obtain the Fourier coefficients of

the steady-state solution. As depicted in Figure 3.15, some discrepancies can be

observed between the Fourier coefficients of the full model and the corresponding

coefficients of the 4-equation reduced model.

Therefore, this reduction cannot be considered to be a good approximation of

the behaviour of the system in time domain.
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Figure 3.14: Error between the time-domain solutions computed for ig and vdc: full
system simulations - 4-equation reduced model

Figure 3.15: Fourier coefficients: full model (blue circles) and 4-equation reduced
model (purple diamonds).
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3.3.4 SP-AFE Eigenvalues and Stability Analysis

Applying linearisation to full and reduced systems and exploiting LTP theory,

a plot of the system eigenvalues can be obtained, as depicted in Figure 3.16 for the

full and 6-equations reduced models. Bifurcations that are visible at the ends of

the eigenvalue columns are artefacts due to the truncation of the infinite matrices

of the LTP system, and are, then, not significant.

Figure 3.16: Full system eigenvalues (blue) and 6-equation reduced system eigenvalues
(red), plotted in the complex plane

The eigenvalue columns far from the imaginary axes show some mismatch be-

tween the full and 6-equation reduced system (the two furthest are even missing),

but the closer ones, more significant for the stability assessment, show a better

agreement, as observable in Figure 3.17.

The same stability analysis has been repeated for different voltage PI param-

eters, corresponding to different control bandwidths, in order to find a stability

threshold for the voltage PI control BW. A consistency in both time domain sim-

ulations and stability analysis has been found for voltage PI BWs varying from

10 to 260 Hz. It can be observed that the real part of the eigenvalue column

on the extreme right (i.e., the first to make the system unstable) computed for

the reduced model differs by an error of order 10−4 or less from the equivalent

eigenvalue real part computed for the full model.
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Figure 3.17: Zoom on the eigenvalues which are closest to the imaginary axis: full
system (blue) and 6-equation reduced system (red) comparison

In the full model stability analysis, a voltage design BW equal to 255.6 Hz

has been found as a threshold for stability. For the reduced model, the equivalent

threshold is equal to 256.1 Hz. The relative error is then equal to 0.2%. This can

be considered a very good agreement, as in practical applications a control BW

would never be set exactly equal or extremely close to the stability threshold due

to the nonlinear nature of the real system, and possible inaccuracies on parameter

values or other uncertainties.

The same procedure could be applied to the 5-equations reduced model, which,

however, due to the high presence of nonlinearities would lead to difficulties in

computing the LTP matrices and lead to more significant errors, as explained in

§3.3.3.3. Then, additional time-domain simulations with increasing BWs have

been run, in order to find empirically the stability threshold. In this case, the

threshold is found at 265 Hz, with a relative error equal to 3.5% with respect to

the full-system threshold.

Concerning the 4-equation reduced system, both time-domain simulations and

LTP stability analysis have been performed. However, as displayed in Figure 3.18

and 3.19 for a BW = 260Hz, the closest eigenvalue column to the imaginary axis

is not present for the reduced model, making s stability assessment qualitatively

incorrect.
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Figure 3.18: Full system eigenvalues (blue) and 4-equation reduced system eigenvalues
(purple), plotted in the complex plane. (BW = 260Hz)

Figure 3.19: Zoom on the eigenvalues which are closest to the imaginary axis: full
system (blue) and 4-equation reduced system (purple) comparison

3.3.5 Conclusions

In this work, a system reduction through nondimensionalisation, identification

of a small dimensionless parameter, then retention of only leading-order terms has

been presented and applied to a SP-AFE.

It can be observed that a moderate reduction in the size of the model (reduc-
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tion from 8 to 6 in the number of variables and ODEs) can be achieved through a

rational reduction strategy based on identifying a small dimensionless parameter.

This reduced model performs well and agrees with the full model in both time

domain simulations and stability analysis.

A more ambitious reduction leading to 5 or 4 degrees of freedon does not, in

this case, perform so well. Since only the leading-order terms have been taken

into account, those results may be improved by including further terms in an

expansion of some of the variables. However, the system describes some physical

processes which sometimes cannot be neglected without affecting the model reli-

ability. In general, drastic approximations of those phenomena are unlikely to be

effective.

Similar procedures may be attempted to perform model reductions of more

complex systems, characterised by more both physical and control variables, as,

for example, three-phase controllers in unbalanced systems, or in systems where

the contribution of harmonics of second or higher order cannot be neglected. In

such cases, it is not possible to apply a Park DQ0 transform, and the state-space

systems describing their behaviours are inherently LTP or, more often, NLTP.

Their stability analysis can therefore be computationally challenging, and model

reductions might be beneficial for both stability assessment and control design

purposes.
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Chapter 4

AC Microgrids: Theory and Literature

Review

This chapter and the two following concern the work which was performed about

AC microgrids. In particular, the present chapter regards the theoretical aspects

of AC microgrids and gives a general overview about the related literature. The

current project is about the application of mathematical methods to power elec-

tronic systems, in order to model them effectively, and eventually achieve a deeper

understanding about their operation, through a systematic reduction in the size

of their associated mathematical model using perturbation methods.

This chapter will help a reader without a strong technical background in Electri-

cal Engineering achieve an easier understanding of §5-6, while guiding engineers

through the main aspects which have concerned our work.

4.1 Introduction to AC microgrids

Because of environmental concerns, in the last decades the production of elec-

trical energy has been gradually shifting towards renewable sources. Hence, the

shape of the electrical grid has changed from a traditional model, where few big

power stations (mostly fuelled by fossil or nuclear fuels) produce high voltage

(HV) energy, to a distributed generation system, where many small generation

plants inject electrical energy into the grid, mostly in low voltage (LV) [25], [26].

Due to the large number of generators involved, it is harder to control the voltage

amplitude and frequency of the system in every point; for the same reason, assess-
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ing the stability of electrical grids is a problem that is now growing in complexity.

A microgrid is a small autonomous system based on distributed generation,

formed by a group of interconnected loads and distributed energy sources within

clearly defined electrical boundaries. Microgrids act as single controllable entities

with respect to the main grid, from which they can connect and disconnect, being

able to operate in both grid-connected or island mode. Distributed generation

sources are generally interfaced to the grid by power electronic converters [25],

[26]. When not in island mode, microgrids can be controlled in ways that force

them to behave similarly to synchronous generators, following transients due to

mechanical rotating inertiae and synchronous generators exciting circuits; this

technique is known as “grid supporting”, and allows the microgrid’s converters to

influence the network frequency and voltage amplitude. When, instead, micro-

grids are demanded to provide power to the network without interfering with its

governing dynamics, a phase-locked loop (PLL) is added to the controller, in or-

der to passively follow the grid frequency and phase; this is possible thanks to the

converters time constants, which tend to be negligible compared to synchronous

generators time constants, and make converters controls “fast”.

Due to the electromechanical properties of synchronous generators, when the

power load changes, traditional grids naturally vary their voltage amplitude and

frequency until a new equilibrium is reached. In microgrids, however, this does

not happen, and controllers included in microgrids need additional controllers to

achieve a similar self-regulatory behaviour, which is generally needed when in

island or “grid supporting” mode [27], [26], [25]. Moreover, while in a thermal

power station it is in general possible to choose the amount of produced power

(typically, by varying the amount of input fuel), power provided by renewable

sources cannot be controlled and is by nature intermittent.

The controller of a converter in an AC microgrid, thus, generally includes nested

loops: traditional and widespread proportional-integral (PI) controllers which act

directly on the values of currents and voltages, and some more controllers that

modify the references for the PIs [28].
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4.2 Model Reduction of AC Microgrids

When grids formed by a large number (at least 10) of converters are taken

into account, the usual approach in engineering practice is to neglect the effect

that a grid-connected converter has on the grid voltage and frequency. Those

parameters are usually considered as constant and to be uninfluenced by the ac-

tion of any single device. However, when smaller grids are considered (e.g. a

microgrid in island mode), this approximation cannot be valid and the mutual

interactions between the converters cannot be neglected. For this reason, when

a microgrid is modelled, all the variables from each power electronic converter

must be taken into account, leading to large systems of equations. In our case,

a state-space system has a dimension that is 15 times the number of converters

involved; similar system sizes can be found in the engineering literature [29], [30],

[31], [28], [32]. Moreover, island mode microgrids are more prone to instability

than larger grids, but the size of their models can make evaluating their stability

quite challenging [25], [26].

Several attempts have been performed in order to reduce the size of state-space

models of microgrids, mostly in order to achieve reliable stability analyses with

a smaller computational effort and requiring fewer variables. In traditional grids,

dominated by synchronous generators, stability is easier to obtain thanks to the

nature of such generators: they are rotating machines with big inertiae, and

their spinning frequency cannot vary instantly, but need instead to go through a

transient phase. Power electronic converters, instead, generate sinusoidal voltage

through filtered high-frequency switching. They are then able to change phase

and frequency of the voltage almost instantly (the switching period of converters

is in general negligible compared with the other time constants of the electrical

grids). These behaviours make the stability of microgrids heavily dependent on

the good functioning of the controllers. Preliminary stability analyses are hence

particularly critical before running physical models of microgrids, and reliable

reduced models are very desirable for this purpose.

Several approaches can be found in the literature regarding the model reduc-
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tion of AC microgrids. Most of them are based on singular perturbation.

In [33], singular perturbation is explicitly mentioned, and boundaries are set for

some parameters to provide stability. Small parameters ε, with the dimension of

time, are chosen by comparing combinations of parameters found in the state-

space ODEs.

A similar approach can be found in [34], where the variables are subsequently

divided into “fast” and “slow” to allow simulations of both fast transients and

quasi-stable behaviour. The separation is achieved by grouping the eigenvalues

of the Jacobian matrix of the system into those that are “near” and “far” from

the imaginary axis.

A method based on fast and slow variables is also presented in [30], which presents

an analogous eigenvalue-based technique.

Ref. [35], instead, combines a Kron reduction (a method generally employed for

power systems, based on combinations of electrical parameters) with a subsequent

reduction based on singular perturbation theory. In [29], a model reduction based

on singular perturbation is first performed. Then, observing how the system be-

haves in simulations, additional variables are removed from the reduced model.

Copious examples of similar results can be found in the engineering literature.

A common feature of those articles is that they keep the systems dimensional.

This choice often limits the comparability of the linearised system’s eigenvalues,

while preventing a full identification of the negligible terms. This is sometimes

compensated by the practical knowledge obtained by researchers through exper-

imental practice: in a chosen system, some variables will naturally tend to be

slow and some others fast. However, these hindsight-based procedures may lead

to inaccuracies, especially when the system parameters vary.

In the following chapters, perturbation theory is applied to dimensionless sys-

tems, hoping to compute a more systematic procedure for the model reduction

of AC microgrid systems, that could be applied to a wide variety of engineering

systems with a similar structure.
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Chapter 5

Analysis of a Single Inverter Controlled as

an AC Microgrid Converter

5.1 Introduction and Chapter Summary

As a preliminary stage, attention is focused on a system formed by a sin-

gle inverter, whose controller, however, acts analogously to controllers of general

AC microgrids including more devices. For the present study, the microgrid is

assumed to behave in island mode. The state-space model of such system is de-

rived in §5.2.

In practice, a microgrid is not likely to be composed of only one device, but this

preliminary step allowed us to familiarise ourselves with the controller and its

operation. The purpose of this first model is obtaining a general understand-

ing the structure of the controllers, knowing better their way of operation, and

identifying the variables and parameters that are more significant for the model

reduction, in the expectation that this identification will be applicable even when

a system with more devices is taken into account.

After the state-space model of the system is computed, its ODEs are simulated

and the results compared with the behaviour of a second system where the same

controller is applied to some pre-built MATLAB switching elements. Since the

average model agrees with the average of the switching system, the work proceeds

with the reduction of the model, as illustrated in §5.3.

First, the system is nondimensionalised, then some small parameters are identi-

fied, and finally the system ODEs are reduced according to singular perturbation

theory. In the reduction process, each parameter is given an estimated “size”,
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defined as a power of a small dimensionless parameter ε. For some of the param-

eters, this choice is not unequivocal and different reduced models can reasonably

be obtained by different choices. In §5.3.2.9, the different reduced models are

listed and some results obtained through simulations are shown. Simulations

were run in parallel to compare the behaviour of the reduced systems with the

full model. Good agreement was found between the full model and the reduced

models where 4 or more state-space variables are kept and defined by ODEs,

while the others are neglected or modelled by algebraic equations.

5.2 Single inverter model

This section is about the model and the operation of an AC microgrid formed

by one inverter and one resistive load. This system has been analysed as a pre-

liminary step before working with bigger grids, as converters forming microgrids

necessitate complex nested controllers. §5.2.1 describes the physical system and

derives the average state-space ODEs of its variables, §5.2.2 analyses the con-

troller, considering its components one by one, §5.2.3 shows the overall state-space

model of the system. The model reduction relevant to this model is performed in

§5.3.

5.2.1 Physical Variable Behaviours

Figure 5.1: Overall scheme of the system

In Figure 5.1, a scheme of a three-phase voltage-source inverter, its load and
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the line connecting them is shown. The system is assumed to be symmetric; the

corresponding parameters are assumed to be identical in each phase. Therefore,

the sum of three corresponding currents or voltages is always equal to zero (e.g.

iia(t) + iib(t) + iic(t) = 0) and the centres of three-phase Y-connections are as-

sumed to have zero voltage even if not grounded. This voltage is found to be

small in experimental practice and assuming it to be equal to zero allows the

DQ0 transform to be applied to the system.

Notation: in this work, vectors expressed as xabc(t) denote the three-phase

[xa(t) xb(t) xc(t)]
T, while xdq(t) is the equivalent of xabc(t) expressed in the

DQ0 reference frame.

xdq(t) = T (θ)xabc(t) , (5.1)

where θ is the phase angle of the electrical phase A and T (θ) is the Park trans-

formation matrix computed for θ [11]-[12].

As depicted in Figure 1, VDC is the input DC voltage source of the inverter

and is assumed to be constant. Six switches, included in the switching block in

the picture, are controlled by Pulse-Width Modulation (PWM) signals, which

in turn depend on the output of the controller. In this analysis, the switching

behaviour of the system is neglected and only average equations are computed.

This simplification is allowed by the switching period being much smaller than

the other time constants of the system. Simulations have been run in MATLAB

Simulink to demonstrate the effectiveness of these simplifications, comparing the

average system behaviour with a switching system having the same controller,

but whose physical variables have been modelled by Simulink pre-built electrical

components (including a switching three-phase inverter). The simulations show

good agreement in both steady state and transients between switching and aver-

age models: the average system variables behave like the average of the switching

variables and the ripple amplitude caused by the switching is small compared

with the sinusoid amplitude of the average system.

After the switching block, an LC filter is present, whose inductance, capacitance

and parasitic resistance are represented by the parameters Lf , Cf and Rf , re-

spectively. The average currents flowing out of the switches through the filter in-

ductors are represented by iiabc(t), the voltages on the filter capacitors by viabc(t).
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After the filter, a three-phase line connects the inverter to the load. The line

impedance is modelled by a series of a resistor and an inductor, whose resistance

and inductance are given, respectively, by Rl and Ll. The load is assumed to be

a single, balanced, three-phase resistor; its resistance is denoted by Rload. Cur-

rents ioabc(t) denote the three-phase current flowing through the line and the load.

5.2.1.1 ABC reference frame, physical variable behaviours

The presence of the inductors and the capacitors leads to the following set of

ODEs describing the behaviour of the physical variables of the system:

diiabc(t)

dt
=
VDC
2Lf

mabc(t) −
Rf

Lf
iiabc(t) −

viabc(t)

Lf
, (5.2a)

dviabc(t)

dt
=
iiabc(t)

Cf
− ioabc(t)

Cf
, (5.2b)

dioabc(t)

dt
=
viabc(t)

Ll
− Rl +Rload

Ll
ioabc(t) , (5.2c)

where mabc(t) is the vector of the modulation indices. Modulation indices are

dimensionless signals which are the output of the controller and the input of the

PWM; they can vary continuously from -1 to 1. Ideally, the output voltage after

the switches would be a three-phase sinewave. In practice, the voltage oscillates

between its maximum and its minimum value (in this case, +VDC/2 or −VDC/2),

according to the switches’ configuration. At each switching period, the fraction of

time spent at VMAX or VMIN is determined by the modulation index correspond-

ing to the considered phase. Since the switching period is much smaller than

the grid period, additional low-pass filters can be placed after the converter, in

order to reduce the amplitude of the ripple and provide voltage waves close to the

sinusoidal reference. In this work, the high-frequency switching is neglected and

only the average behaviour is analysed. Since the maximum voltage difference

is the DC source voltage VDC . Thus, the voltages after the switching block are

considered equal to the product of half of the DC source and the corresponding

modulation indices.
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5.2.1.2 DQ0 reference frame, physical variable behaviours

Applying the Park transformation to (5.2) leads to

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ω(t) iiq(t) , (5.3a)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t) −

viq(t)

Lf
− ω(t) iid(t) , (5.3b)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ω(t) viq(t) , (5.3c)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ω(t) vid(t) , (5.3d)

diod(t)

dt
=

vid(t)

Ll
− Rl +Rload

Ll
iod(t) + ω(t) ioq(t) , (5.3e)

dioq(t)

dt
=

viq(t)

Ll
− Rl +Rload

Ll
ioq(t) − ω(t) iod(t) , (5.3f)

where ω(t) is the fundamental frequency of the AC average variables and its value

is one of the two outputs of the droop controller, as explained in §5.2.2.1.

The six equations listed in (5.3) model the physical behaviour of the average

system. However, the value of the modulation indices has not yet been specified.

For the system to be self-consistent, further ODEs describing the controller action

(and hence the modulation indices) must be added to it.

5.2.2 Controller

This subsection describes the controller that is applied to the inverter. It

is formed of a droop control, a virtual inductance, a proportional-integral (PI)

controller for the voltage, and a PI controller for the current. A subsubsection is

dedicated to each.
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5.2.2.1 Droop Control

The aim of the droop control is to force an inverter to behave like a syn-

chronous generator. Since power electronic converters have in general a small

physical inertia, they are more prone to instability than rotating generators.

Increasing the output frequency of a rotating generator, for example, involves

accelerating its spinning mass; this has physical limits due to mechanical inertia

and large inductance of the generator. A change in the output frequency or volt-

age amplitude of a rotating generator can be performed with time constants of

order 0.1 s-1 s. A power-electronic converter, instead, could change its switching

frequency almost instantaneously, in the switching period next to the actual one,

after 10−5 s - 10−6 s. Sudden changes in the grid voltage of frequency are likely

to cause instability, especially if the grid is small.

Moreover, because of electromagnetic and mechanical phenomena, synchronous

generators tend naturally to modify their spinning frequency and voltage ampli-

tude depending on the amount of active and reactive power which are drawn from

them, tending to a natural equilibrium point. Power electronic converters need to

be properly controlled to achieve their operating steady states. If the controller

is not implemented properly, the system becomes unstable.

Droop controllers were first implemented by engineers that tried to make power

electronic converters mimic the behaviour of rotating generators. This process

involves a certain degree of approximation from the engineering custom, but is

widely used in practical application and is known to work well enough for con-

trolling grid-connected inverters [25, Chapter 3.3.3] [26, Chapter 5.3].

The general derivation of droop controllers is reported below: it starts with the

description of the behaviour of a grid-connected rotating generator, proceeds with

an approximated computation of how phase difference and voltage amplitude dif-

ference influence the power exchange between the generator and the grid, and

provides a description of how the droop controller is normally implemented.

5.2.2.1.1 Single-phase approximated generator and grid model

This section describes the behaviour of a system formed of one monophase genera-

tor, a connecting line and one phase of the main grid. The grid voltage amplitude
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and frequency are assumed to be constant.

Figure 5.2: Approximated model of one phase

Figure 5.2 depicts an approximated model of one phase. The AC source

denoted by Vi represents a synchronous generator, while Vg represents the grid AC

voltage. Between them, a RL impedance models the connecting line. If the phase

difference between generator and grid is zero and they have the same voltage

amplitude, there is no power exchange between them, since the instantaneous

voltage at the opposite ends of the RL impedance is always the same and, hence,

no current flows in the impedance.

Neglecting eventual variations in the grid voltage amplitude and frequency, vg

can be expressed as

vg(t) = Vg sin(ωt), (5.4)

where Vg is the amplitude of vg.

Regarding the inverter voltage, in steady state its voltage is also given by a

sinusoid,

vi(t) = V̄i sin(ωt + δ̄) , (5.5)

where V̄i is the steady state of the inverter voltage amplitude and δ̄ is the steady-

state phase difference between the generator and the grid. In steady state, vg and

vi have exactly the same frequency ω, while Vg and Vi can differ slightly (by about

10% of their value in practice). If Vg = Vi and δ = 0, there is no power exchange

between the generator and the grid. Active and reactive power transmitted to the

grid depend on Vi and δ, as explained below. While the voltage amplitude Vi can

be varied by the system controller, in general the phase difference between the
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generator and the grid cannot be modified directly, as synchronous generators are

rotating machines that cannot move instantaneously from one angle to another.

During transients, (small) variations are allowed in the generator frequency in

order to change δ. Given the large mechanical inertia of synchronous generators,

their frequency usually varies according to time constants that are much bigger

than all the other inherent time constants of the system.

5.2.2.1.2 Power computation for the approximated model

In order to understand the theoretical bases for droop controllers, the steady-

state power exchanges between the generator and the grid are computed; then,

perturbations on the generator voltage amplitude and phase difference are applied

to the steady state equations.

From Figure 5.2, the following differential equation can be derived:

Ll
di(t)

dt
+ Rli(t) = vi(t) − vg(t) , (5.6)

where i(t) is the current flowing between the inverter and the grid through the

line. Voltages vg and vi can also be expressed as the imaginary part of complex

exponential, as follows.

vg(t) = =
{
Vg(t)e

jω t
}
, (5.7)

vi(t) = =
{
V̄ie

j(ω t+ δ̄)
}
. (5.8)

Hence, the complex solution of the problem will be evaluated, and successively

the imaginary part will be selected as the expression for the line current.

Since (5.6) is linear, its complex solution can be expressed as

ic(t) = I(t)ejω t . (5.9)

Its time derivative, therefore, can be computed by differentiating (5.9) to give

dic(t)

dt
=

(
dI(t)

dt
+ jω I(t)

)
ejω t. (5.10)
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Substituting (5.10) into (5.6) leads to

Ll
dI(t)

dt
+ (jω Ll + Rl) I(t) = V̄ie

j δ̄ − Vg. (5.11)

Considering a quasi-steady-state condition where the current amplitude does not

vary significantly leads to neglect the first term of the equation, based on the

following assumption: ∣∣∣∣LldI(t)

dt

∣∣∣∣� |(jω Ll + Rl) I(t)| . (5.12)

Applying the approximation stated in (5.12), I(t) can be computed as

I(t) ∼ V̄ie
jδ̄ − Vg

jω Ll + Rl

. (5.13)

Therefore, the current flowing in the system can be approximated by

i(t) = =
{
I(t) ejωt

}
∼ =

{
V̄ie

jδ̄ − Vg
jω Ll + Rl

ejωt

}
. (5.14)

From (5.14), it can be noticed that I(t) is equal to the phasor I(t) for i(t).

Proceeding further with (5.13) leads to

I(t) = I(t) =
V̄ie

jδ̄ − Vg
Rl + jωLl

=
V̄iωLl sin(δ̄) + Rl[V̄i cos(δ̄) − Vg]

R2
l + ω2L2

l

+ j
ωLl[−V̄i cos(δ̄) + Vg] + RlV̄i sin(δ̄)

R2
l + ω2L2

l

(5.15)

Assuming that the system is purely sinusoidal, the apparent exchanged power is

given by

S(t) = P (t) + jQ(t) =
Vg(t) I

∗(t)

2
, (5.16)

where S is the apparent power, P is the real power, Q is the reactive power, Vg is

the phasor corresponding to vg, I∗ is the complex conjugate of the current phasor

I.
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Therefore, from (5.15) and (5.16), the power flowing into the grid can be computed

as

S(t) = Vg
V̄iωLl sin(δ̄) + Rl[V̄i cos(δ̄) − Vg]

2(R2
l + ω2L2

l )

+ jVg
ωLl[V̄i cos(δ̄) − Vg] − RlV̄i sin(δ̄)

2(R2
l + ω2L2

l )
. (5.17)

From (5.17), the active and reactive powers of the system are expressed, respec-

tively, as

P (t) = <{S(t)} =
Vg{V̄iωLl sin(δ̄) + Rl[V̄i cos(δ̄) − Vg]}

2(R2
l + ω2L2

l )
, (5.18)

Q(t) = ={S(t)} =
Vg{ωLl[V̄i cos(δ̄) − Vg] − RlV̄i sin(δ̄)}

2(R2
l + ω2L2

l )
. (5.19)

Since the angle δ is small in practical applications , the following approximations

are valid:

sin(δ) ≈ δ , cos(δ) ≈ 1 . (5.20)

Using (5.20) into (5.18) and (5.19) leads to

P (t) ≈ Vg{V̄iωLlδ̄ + Rl[V̄i − Vg]}
2(R2

l + ω2L2
l )

, (5.21)

Q(t) ≈ Vg{ωLl[V̄i − Vg] − RlV̄iδ̄}
2(R2

l + ω2L2
l )

. (5.22)

In medium and high voltage the line resistance is negligible compared with the

line reactance. Since synchronous generators are usually connected to the MV or

HV grid, the following approximation can be considered valid.

Rl � ωL . (5.23)

Therefore, the expressions for the current phasor, active and reactive power can

be approximated, respectively, as follows:

I(t) ≈ V̄i δ̄

ω Ll
+ j

[−V̄i + Vg]

ω Ll
, (5.24)
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P (t) ≈ V̄i Vg δ̄

2ω Ll
, (5.25)

Q(t) ≈ Vg[V̄i − Vg]

2ω Ll
, (5.26)

Equations (5.25) and (5.26) approximate the steady-state values of active and

reactive powers, respectively. In order to design the droop controller correctly,

equations (5.25)-(5.26) are linearised to obtain the equation governing small per-

turbations of the system. In the notation adopted, x̄ is the steady-state value

of x, while x̃ is the variable modelling its perturbed behaviour. Linearising the

steady-state equations listed above and considering small variations of δ and Vi

leads to

P̃ (t) ≈ V̄i Vg
2ω Ll

δ̃(t) +
Vg δ̄

2ω Ll
Ṽi(t) , (5.27)

and

Q̃(t) ≈ VgṼi(t)

2ω Ll
. (5.28)

Therefore, a change in the phase leads to a change in the active power only, while

a variation in Vi influences both active and reactive power. Equations (5.27) and

(5.28) are the bases for the implementation of droop controllers, as reported in

the next section.

5.2.2.1.3 Droop control implementation

The actual implementation of droop controllers, based on (5.27) and (5.28), is

adapted to the limits and requirements of the physical device and the operating

functioning of controllers. This process can be split into the elements listed below.

1) Inverse implementation need

Since the aim of the droop control is to force the inverter to behave like a syn-

chronous generator, theoretically good results could be achieved by imposing on

the inverter that it produces P and Q according to (5.27) and (5.28). However,

in practical applications, an accurate measurement of the frequency is in general

harder to perform than the power measurement. Measuring the frequency typi-

cally requires the presence of a Phase-Locked Loop (PLL), which would make the

controller more complicated. Therefore, an inverse control is usually preferred: a
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reference value is set for P and Q, and δ and Vi vary.

2) Approximation: neglect of cross-coupling terms

In order to keep the controller simple, the term in (5.27) depending on the per-

turbation of the voltage amplitude is in general not considered. This makes the

power control physically less accurate, but in the literature there is some evidence

demonstrating the effectiveness of this ad hoc approximation in laboratory prac-

tice [36] [37].

3) Frequency-based implementation

In this section, the actual form of the droop controller used in practice is obtained,

starting from (5.25)-(5.26). An ideal droop controller is depicted in Figure 5.3,

while some manipulations to the block diagram are performed in the following

pictures to guide the reader towards the formulation of the droop control that

is used in practice. In Figure 5.3 and following, the Laplace domain notation is

used for feedback loop diagrams.

Figure 5.3: Ideal droop control scheme, Laplace domain

Ideally, a droop controller would be implemented as depicted in Figure 5.3: δ

is the phase difference between the generator and the grid; the reference for the

phase difference, in the picture denoted as δref , is computed proportionally (with

coefficient K) to the reference Pref for the active power. The phase error δerr

enters a proportional-integral (PI) controller that sets the frequency ω of the sys-

tem. The generator phase θ is found by integrating ω, and the phase difference

δ by subtracting the grid phase, given by ωgt, from θ. In case the generator is
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constituted of a grid-connected inverter, ω is the modulation frequency used by

the PWM, while the phase θ is needed for the Park transforms operated by the

controller.

The scheme of Figure 5.3 can be modified by moving the proportional gain K

inside the loop, as shown in Figure 5.4. In this case, the error is computed on the

active power P instead of the phase difference. P is computed by multiplying δ by

the inverse of K, previously used to pass from power reference to phase difference

reference. The coefficients of the new PI controller, denoted by PI2, can be simply

obtained by multiplying the original PI’s coefficients by K. Moreover, the phase

difference can be substituted by the frequency difference, computed before the

integrator, given a correct setting of the initial condition of the integral block.

Hence, the phase difference δ is now the output of the integrator.

Figure 5.4: Modified droop control scheme with the error computed on the active
power, Laplace domain.

A PI controller in general gives a null steady-state error. In this case, however,

a steady-state error is preferable to an inverter frequency that differs too much

from the grid frequency, as this could cause issues to the appliances that are fed

by the grid. Thus, the PI controller is replaced by the proportional constant Kp

only.

Figure 5.5 depicts the droop control scheme as usually implemented in the engi-

neering literature. The red proportional block represents the physical generator

system.
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Figure 5.5: Proportional droop control scheme

5.2.2.1.4 Droop control equations

Considering both active and reactive power, the overall action of the droop con-

troller is given by

ω(t) = ωn + Kdp (Pref − P (t)) , (5.29a)

Vdref (t) = Vdn + Kdq (Qref − Q(t)) , (5.29b)

where Pref and Qref are the reference values for P and Q, respectively, ωn and

Vdn are the nominal values for the angular frequency and the d-component of the

inverter output voltage, Kdp and Kdq are the control proportional constants used

by the droop controller. In particular, Kdp corresponds to Kp of Figure 5.5.

5.2.2.1.5 Low-pass filter

Generally, P and Q are low-pass filtered to avoid excessive oscillations of ω and

Vdref during transients.

Therefore, two ODEs are added to the system:

dPlp(t)

dt
= ωcd[P (t) − Plp(t)] = ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] ,

(5.30a)

dQlp(t)

dt
= ωcd[Q(t) − Qlp(t)] = ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] ,

(5.30b)

where Plp(t) and Qlp(t) are the variables expressing the low-passed value of active
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and reactive power, respectively, ωcd is the cut-off frequency of the low-pass filter

and its value must be chosen to be small if compared with the cut-off frequency

of the voltage PI (§5.2.2.3).

Substituting P (t) and Q(t) with Plp(t) and Qlp(t) in (5.29) leads to

ω(t) = ωn + Kdp (Pref − Plp(t)) , (5.31a)

Vdref (t) = Vdn + Kdq (Qref − Qlp(t)) . (5.31b)

The phase of via(t), θ(t), is estimated by integrating ω(t), adding a further ODE

to the system:
dθ

dt
= ω(t) = ωn + Kdp (Pref − Plp(t)) . (5.32)

The angle θ must be computed explicitly because it is needed to perform the

Park transformations. Currents and voltages are measured and transformed to

the DQ0 reference frame. The controller computes the modulation indices as

DQ0 variables first, but their values must be transformed into ABC reference

before being sent to the PWM.

5.2.2.2 Virtual Inductance

The power computation performed in §5.2.2.1, analysing the theoretical bases

for the droop controller, includes the assumption of the resistive component of

the connecting line being small compared with the reactance. This is generally

true for high voltage (HV) and medium voltage (MV) systems, but in low voltage

(LV) this assumption does not hold. The droop controller is hence prevented from

operating properly, and a further controller component is added to compensate

for this behaviour.

The virtual inductance method enhances the stability of the system through the

introduction of an auxiliary variable, computed as the voltage drop on an induc-

tance Lv. The inductance Lv, however, is not real, but is a parameter of the

controller having the dimension of an inductance.

The next paragraph describes what happens when a droop controller is applied
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to a LV system, without a virtual inductance; in the following, the action of a

virtual inductance is added, its effects on the power control are analysed and its

implementation is described.

5.2.2.2.1 Low voltage systems without virtual inductance

In low voltage, the line reactance is negligible compared with the line resistance:

ωLl � Rl. (5.33)

This is actually the opposite of what was assumed in (5.23); thus, the power com-

putations performed from (5.24) onwards are not valid in the present case. The

approximated steady-state current, active and reactive power can be computed

by applying (5.33) to the equations (5.15), (5.21)-(5.22), that are here reported

for the sake of clarity.

I(t) ≈ V̄iωLl sin(δ̄) + Rl[V̄i cos(δ̄) − Vg]

R2
l + ω2L2

l

+ j
ωLl[−V̄i cos(δ̄) + Vg] + RlV̄i sin(δ̄)

R2
l + ω2L2

l

(5.34)

P (t) ≈ Vg{V̄iωLlδ̄ + Rl[V̄i − Vg]}
2(R2

l + ω2L2
l )

, (5.35)

Q(t) ≈ Vg{ωLl[V̄i − Vg] − RlV̄iδ̄}
2(R2

l + ω2L2
l )

. (5.36)

Considering (5.33), the reactive component of the line impedance can be ne-

glected. Applying this approximation, together with the small-δ approximation

in (5.20), leads to the following steady-state expressions for the line current and

active and reactive powers:

Ī ≈ V̄i − Vg
Rl

+ j
V̄iδ̄

Rl

, (5.37)

P̄ ≈ Vg[V̄i − Vg]

2Rl

, (5.38)

Q̄ ≈ V̄i Vg δ̄

2Rl

. (5.39)
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The same notation applied to the droop controller equations is used here to de-

note steady-state values and perturbed variables.

Thus, linearising (5.38)-(5.39) and considering small perturbations about the

equilibrium point, the perturbed expressions for the powers in this case are given

by

P̃ (t) ≈ VgṼi(t)

2Rl

, (5.40)

Q̃(t) ≈ V̄i Vg
2Rl

δ̃(t) +
Vg δ̄

2Rl

Ṽi(t) . (5.41)

From (5.40) and (5.41), it can be noticed that nature of the dependence of P̃ and

Q̃ on Ṽi and δ̃ is swapped if compared with (5.27) and (5.41).

5.2.2.2.2 Low voltage systems with virtual inductance

In this section, a virtual inductance is added to the controller and the powers are

recomputed according to the new system.

Assuming that the output voltage of the inverter is instantaneously equal to the

droop output (5.31b) gives

vidq(t) =

Vd(t)
0

 , (5.42)

where Vd is the amplitude of the droop voltage and the q component of the voltage

is set to 0.

Adding a virtual inductance means modifying the reference voltage by subtracting

a voltage drop on a fictitious inductor, as follows:

vidq(t) =

Vd(t)
0

 − jω Lv I(t) , (5.43)

where Lv has the dimensions of an inductance and its value is chosen so that

Rl � ωLv. (5.44)

The current phasor I can be computed substituting (5.43) into (5.34) and ne-
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glecting the inductive component of the impedance, leading to

I(t) ≈
vidq(t) − Vg + jVgδ(t)

Rl

=
Vd(t) − jω LvI(t) − Vg + jVgδ(t)

Rl

. (5.45)

Isolating I in (5.45) leads to

I(t) ∼ Vd(t) − Vg + jVgδ(t)

Rl + jω Lv
. (5.46)

Using (5.44) in (5.46) allows a further approximation to be performed:

I(t) ∼ Vg δ(t)

ω Lv
− j

Vd(t) − Vg
ω Lv

. (5.47)

Using (5.47) and (5.43) to compute the apparent power leads to

S(t) ∼ (Vd(t) − jω Lv I(t)) I(t)∗

2

=
Vd(t)I(t)∗ − jω Lv|I(t)|2

2

=
Vg δ(t)Vd(t)

2ω Lv
+ j

Vd(t) [Vd(t) − Vg] − V 2
g (δ(t))2 − [Vd(t) − Vg]

2

2ω Lv

=
Vg δ(t)Vd(t)

2ω Lv
+ j

Vg Vd(t) − V 2
g − V 2

g (δ(t))2

2ω Lv
.

(5.48)

Let V̄d be the steady-state value for Vd(t). Therefore, the steady-state expressions

for P and Q, depending on Vd and δ, in this case can be approximated by

P̄ ≈ Vg δ̄ V̄d
2ω Lv

, (5.49)

Q̄ ≈
Vg V̄d − V 2

g − V 2
g δ̄

2

2ω Lv
. (5.50)

Since δ̄ is small,

V 2
g δ̄

2 � Vg V̄d , (5.51a)

V 2
g δ̄

2 � V 2
g . (5.51b)
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Hence, (5.50) can be approximated as

Q̄ ∼
Vg V̄d − V 2

g

2ω Lv
. (5.52)

Equations (5.49) and (5.52) are the steady-state equations for active and reactive

power, respectively. If (5.49)- (5.52) are linearised, their behaviours for small

perturbations become

P̃ (t) ≈ Vg δ̄

2ω Lv
Ṽd(t) +

Vg V̄d
2ω Lv

δ̃(t) , (5.53)

Q̃(t) ≈ Vg
2ω Lv

Ṽd(t) . (5.54)

The relationships stated in (5.53) and (5.54) between active and reactive powers,

voltage amplitude and phase have the same structure observable in (5.27) and

(5.28). This allows the droop controller to be applied effectively to the system.

5.2.2.2.2 Low-pass filter

In the examined case, a second low-pass filter is added to the measure of the

current iodq to avoid excessive oscillations. This adds two more variables and

ODEs to the system.

The filtered DQ currents are defined by

dilpd
(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.55a)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] . (5.55b)

5.2.2.2.3 Joint action of droop control and virtual inductance

The droop controller, or the joint presence of the droop controller and the virtual

inductance, determines how the output frequency and voltage of the converter

change. In particular, a change in the voltage computed by the droop does not

have a direct effect, but it represents a reference for the PI voltage controller,

described in the next subsubsection.

The voltage references computed by applying a droop controller and a virtual
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reference are given by

vrefd(t) = Vdn +Kdq(Qref −Qlp(t)) + Lv{[ωn +Kdp(Pref − Plp(t))]ilpq(t) (5.56a)

+ ωci(ilpd
(t)− iod(t))},

vrefq(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp(t))]ilpd
(t) + ωci(ilpq(t)− ioq(t))}.

(5.56b)

Equations (5.56) are the final expressions for the output voltage references: they

combine the action of droop controller and virtual inductance, and constitute the

input of the voltage proportional-integral controller, which is analysed in the next

section.

5.2.2.3 Voltage Proportional-Integral Control

The voltage PI receives the angular frequency ω(t) from the droop controller

and the voltage references vrefdq(t) from the virtual inductance block, as stated in

(5.56).

Its output is the DQ0 reference for the currents iidq(t):

irefd(t) = Kvp[vrefd(t) − vid(t)] + Kvi xint,vd
(t) − ω(t)Cf viq(t), (5.57a)

irefq(t) = Kvp[vrefq(t) − viq(t)] + Kvi xint,vq(t) + ω(t)Cf vid(t) , (5.57b)

where Kvp and Kvi are the proportional and the integral coefficients of the voltage

PI, xint,vdq
(t) are the integral variables for the voltage error and are defined by

dxint,vdq
(t)

dt
= vrefdq(t) − vidq(t) . (5.58)

5.2.2.4 Current Proportional-Integral Control

The current PI receives as inputs the angular frequency ω(t) from the droop

controller and the current references irefdq(t) from the voltage PI, computed as

(5.57).
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Its output is the DQ0 vector of the modulation indices, scaled by VDC/2.

md(t) =
{
Kip[irmrefd(t) − iid(t)] + Kii xint,id(t) − ω(t)Lf iiq(t)

} 2

VDC
,

(5.59a)

mq(t) =
{
Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) + ω(t)Lf iid(t)

} 2

VDC
, (5.59b)

where Kip and Kii are the proportional and the integral coefficients of the current

PI, xint,idq(t) are the integral variables for the current error and are defined by

dxint,idq(t)

dt
= irefdq(t) − iidq(t) . (5.60)

5.2.3 Complete State-Space Model

As explained in §5.2.1, the average behaviour of the system physical variables

can be modelled by six ODEs. In order to model also the controller action, an-

other nine ODEs must be added: two for the power low-pass filter, two for the

current low-pass filter, one for the phase, two for the voltage integral variables,

and two for the current integral variables.

The complete state-space model of the system is given by (5.61), where the

system variables are listed in Table 5.1 and the system parameters in Table 5.2.

131



Applications of Perturbation Theory to Power Electronic Converters

iiabc Average currents entering the LC filter, ABC reference frame

iidq Average currents entering the LC filter, DQ0 reference frame

viabc Average voltages on the filter capacitors, ABC reference frame

vidq Average voltages on the filter capacitors, DQ0 reference frame

ioabc Average currents entering the transmission line, ABC reference frame

iodq Average currents entering the transmission line, DQ0 reference frame

mabc Inverter modulation indices, ABC reference frame

mdq Inverter modulation indices, DQ0 reference frame

Plp Low-pass-filtered active power

Qlp Low-pass-filtered reactive power

ilpdq
Low-pass filter on iodq

xint,vdq
Integral variable of the error on vidq

xint,idq Integral variable of the error on iidq
θ Phase angle of via , used in the Park transformation matrices

Table 5.1: AC microgrids, single inverter - List of the system variables

132



CHAPTER 5. ANALYSIS OF A SINGLE INVERTER CONTROLLED
AS AN AC MICROGRID CONVERTER

ωcd Power low-pass filter cut-off angular frequency 10 · 2π rad/s

ωci Current low-pass filter cut-off angular frequency 20 · 2π rad/s

Vg Grid nominal peak voltage
√

2 · 230 V

fg Grid nominal frequency 50 Hz

Tg Grid nominal period 0.020 s

ωn Grid nominal angular frequency 50 · 2π rad/s

Kdp Droop control active power coefficient 2.0 · 10−4 rad/J

Kdq Droop control reactive power coefficient 2.5 · 10−3 V/VAR

Pref Active power reference for droop control 5202.7 W
Qref Reactive power reference for droop control 2439.3 VAR

Vdn Reference for vid without droop control and virtual
inductance

398.79 V

Vqn Reference for viq without droop control and virtual
inductance

41.03 V

Lv Virtual inductance 0.010 H

Kvp Voltage PI proportional coefficient 0.1257 (Ω)−1

Kvi Voltage PI integral coefficient 78.9568 (Ωs)−1

Kip Current PI proportional coefficient 16.8646 Ω

Kii Current PI integral coefficient 5.3296 · 104 Ω/s

Lf Filter inductance 1.35 · 10−3 H

Rf Filter resistance 0.1 Ω

Cf Filter capacitance 50 · 10−6 F

Ll Line inductance 1.0 · 10−3 H
Rl Line resistance 0.5 Ω

Rload Load resistance 30 Ω

VDC DC source voltage 800 V

Table 5.2: AC microgrids, single inverter - System parameters: symbol, descrip-
tion, value.

133



Applications of Perturbation Theory to Power Electronic Converters

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.61a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.61b)

dθ(t)

dt
= ω(t) , (5.61c)

dilpd(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.61d)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.61e)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.61f)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.61g)

dxint,id(t)

dt
= irefd(t) − iid(t) , (5.61h)

dxint,iq(t)

dt
= irefq(t) − iiq(t) (5.61i)

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ω(t) iiq(t) , (5.61j)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t) −

viq(t)

Lf
− ω(t) iid(t) , (5.61k)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ω(t) viq(t) , (5.61l)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ω(t) vid(t) , (5.61m)

diod(t)

dt
=

vid(t)

Ll
− Rl +Rload

Ll
iod(t) + ω(t) ioq(t) , (5.61n)

dioq(t)

dt
=

viq(t)

Ll
− Rl +Rload

Ll
ioq(t) − ω(t) iod(t) , (5.61o)

where ω(t), vrefdq(t), vidq(t), irefdq(t), mdq(t) are given by the following algebraic

equations:
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ω(t) = ωn + Kdp (Pref − Plp(t)) , (5.62a)

vrefd(t) = Vdn +Kdq(Qref −Qlp(t)) (5.62b)

+ Lv{[ωn +Kdp(Pref − Prmlp(t))]ilpq(t) + ωci(ilpd
(t)− iod(t))},

vrefq(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp(t))]ilpd
(t) (5.62c)

+ ωci(ilpq(t)− ioq(t))},

irefd(t) = Kvp[vrefd(t) − vid(t)] + Kvi xint,vd
(t) − ω(t)Cf viq(t), (5.62d)

irefq(t) = Kvp[vrefq(t) − viq(t)] + Kvi xint,vq(t) + ω(t)Cf vid(t) , (5.62e)

md(t) =
{
Kip[irefd(t) − iid(t)] + Kii xint,id(t) − ω(t)Lf iiq(t)

} 2

VDC
, (5.62f)

mq(t) =
{
Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) + ω(t)Lf iid(t)

} 2

VDC
. (5.62g)
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5.3 Single Inverter Model Reduction

5.3.1 Nondimensionalisation

In order to proceed with the reduction of the model described in §5.2, all

the parameters listed in Table 3.1 have been nondimensionalised. Parameters

Tb, Rb and Vb have been chosen as base values for time, resistance and voltage,

respectively, and their values are given by

Tb = 0.25 s, (5.63a)

Vb =
√

1.5Vg =
√

3 · 230 V, (5.63b)

Rb = 30 Ω. (5.63c)

The base value for the time is bigger than the grid nominal period (0.02 s) be-

cause the droop control action is in general slow, with time constants of order 1 s

or 0.1 s. The base value for the voltage is equal to the nominal value of the grid

voltage in the DQ reference frame; it corresponds to an amplitude of
√

2 230 V.

The resistance base value is the resistance of the load.

Using (5.63) to nondimensionalise the system, the variables of Table 5.3 and the

parameters of Table 5.4 can be obtained. In this section, x̂ is used to denote

the dimensionless parameter/variable corresponding to the dimensional variable

x. In Table 5.3, the modulation indices and the phase angle are reported without

modifications, as they are already dimensionless. To each nondimensionalised

parameter, a magnitude order is attributed in terms of powers of a small dimen-

sionless parameter ε.
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ı̂iabc(t̂) = iiabc(t)V
−1
b Rb Average currents entering the LC filter, ABC

reference frame

ı̂idq(t̂) = iidq(t)V −1
b Rb Average currents entering the LC filter, DQ0

reference frame

v̂iabc(t̂) = viabc(t)V
−1
b Average voltages on the filter capacitors,

ABC reference frame

v̂iabc(t̂) = vidq(t)V −1
b Average voltages on the filter capacitors, DQ0

reference frame

ı̂oabc(t̂) = ioabc(t)V
−1
b Rb Average currents entering the transmission

line, ABC reference frame

ı̂odq(t̂) = iodq(t)V −1
b Rb Average currents entering the transmission

line, DQ0 reference frame

mabc(t̂) Inverter modulation indices, ABC reference
frame

mdq(t̂) Inverter modulation indices, DQ0 reference
frame

P̂lp(t̂) = Plp(t)V −2
b Rb Low-pass-filtered active power

Q̂lp(t̂) = Qlp(t)V −2
b Rb Low-pass-filtered reactive power

ı̂ilp(t̂) = iilp(t)V −1
b Rb Low-pass filter on ı̂odq(t̂)

x̂int,vdq
(t̂) = xint,vdq

(t)V −1
b T−1

b Integral variable of the error on v̂idq(t̂)

x̂int,idq(t̂) = xint,idq(t)V −1
b T−1

b Integral variable of the error on ı̂idq(t)

θ(t̂) Phase angle of v̂ia , used in the Park transfor-
mation matrices

t̂ = tT−1
b Time

Table 5.3: AC microgrids, single inverter - System dimensionless variables
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The overall nondimensionalised system is thus

dP̂lp(t̂)

dt̂
= ω̂cd[v̂id(t̂) ı̂od(t̂) + v̂iq(t̂) ı̂oq(t̂) − P̂lp(t̂)] , (5.64a)

dQ̂lp(t̂)

dt̂
= ω̂cd[v̂id(t̂) ı̂oq(t̂) − v̂iq(t̂) ı̂od(t̂) − Q̂lp(t̂)] , (5.64b)

dθ(t̂)

dt̂
= ω̂n + K̂dp[P̂ref − P̂lp(t)] , (5.64c)

dı̂lpd
(t̂)

dt̂
= ω̂ci [̂ıod(t̂) − ı̂lpd

(t̂)] , (5.64d)

dı̂lpq(t̂)

dt̂
= ω̂ci [̂ıoq(t̂) − ı̂lpq(t̂)] , (5.64e)

dx̂int,vd
(t̂)

dt̂
= v̂refd(t̂) − v̂id(t̂) , (5.64f)

dx̂int,vq(t̂)

dt̂
= v̂refq(t̂) − v̂iq(t̂) , (5.64g)

dx̂int,id(t̂)

dt̂
= ı̂refd(t̂) − ı̂id(t̂) , (5.64h)

dx̂int,iq(t̂)

dt̂
= ı̂refq(t̂) − ı̂iq(t̂) (5.64i)

dı̂id(t̂)

dt̂
=

V̂DC

2 L̂f
md(t̂) − R̂f

L̂f
ı̂id(t̂) − v̂id(t̂)

L̂f
+ ω̂(t̂) ı̂iq(t̂) , (5.64j)

dı̂iq(t̂)

dt̂
=

V̂DC

2 L̂f
mq(t̂) − R̂f

L̂f
ı̂iq(t̂) −

v̂iq(t)

L̂f
− ω̂(t̂) ı̂id(t̂) , (5.64k)

dv̂id(t̂)

dt̂
=

ı̂id(t̂)

Ĉf
− ı̂od(t̂)

Ĉf
+ ω̂(t̂) v̂iq(t̂) , (5.64l)

dv̂iq(t̂)

dt̂
=

ı̂iq(t̂)

Ĉf
−
ı̂oq(t̂)

Ĉf
− ω̂(t̂) v̂id(t̂) , (5.64m)

dı̂od(t̂)

dt̂
=

v̂id(t̂)

L̂l
− R̂l + R̂load

L̂l
ı̂od(t̂) + ω̂(t̂) ı̂oq(t̂) , (5.64n)

dı̂oq(t̂)

dt̂
=

v̂iq(t̂)

L̂l
− R̂l + R̂load

L̂l
ı̂oq(t̂) − ω̂(t̂) ı̂od(t̂) , (5.64o)

where

ω̂(t̂) = ω̂n + K̂dp

(
P̂ref − P̂lp(t̂)

)
, (5.65a)
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v̂refd(t̂) = V̂dn + K̂dq(Q̂ref − Q̂lp(t̂)) + L̂v{[ω̂n + K̂dp(P̂ref − P̂lp(t̂))]̂ılpq(t̂) (5.65b)

+ ω̂ci(̂ılpd
(t̂)− ı̂od(t̂))},

vrefq(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp(t))]ilpd
(t) + ωci(ilpq(t)− ioq(t))},

(5.65c)

ı̂refd(t̂) = K̂vp[v̂refd(t̂) − v̂id(t̂)] + K̂vi x̂int,vd
(t̂) − ω̂(t̂) Ĉf v̂iq(t̂), (5.65d)

ı̂refq(t̂) = K̂vp[v̂refq(t̂) − v̂iq(t̂)] + K̂vi x̂int,vq(t̂) + ω̂(t̂) Ĉf v̂id(t̂) , (5.65e)

md(t̂) =
{
K̂ip [̂ırefd(t̂) − ı̂id(t̂)] + K̂ii x̂int,id(t̂) − ω̂(t̂) L̂f ı̂iq(t̂)

} 2

V̂DC
, (5.65f)

mq(t̂) =
{
K̂ip [̂ırefq(t̂) − ı̂iq(t̂)] + K̂ii x̂int,iq(t̂) + ω̂(t̂) L̂f ı̂id(t̂)

} 2

V̂DC
. (5.65g)
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Power low-pass filter cut-off
angular frequency

ω̂cd = ωcdTb = 2π 2.50 ≈
15.7080

O(1)

Current low-pass filter cut-off
angular frequency

ω̂ci = ωcdTb = 2π 10.0 ≈
62.8319

O(1) or O(ε−1)

Grid nominal peak voltage V̂g = VgV
−1
b =

√
2/3 ≈

0.8165
O(1)

Grid nominal frequency f̂g = fgTb = 12.50 O(1)

Grid nominal period T̂g = TgT
−1
b = 0.0800 O(1)

Grid nominal angular fre-
quency

ω̂n = ωn Tb = 2π 12.5 ≈
78.5398

O(ε−1)

Droop control active power
coefficient

K̂dp = KdpRb V
2
b Tb ≈

0.2645
O(1)

Droop control reactive power
coefficient

K̂dq = KdqVbR
−1
b ≈ 0.0332 O(1)

Active power reference for
droop control

P̂ref = PrefV
−2
b Rb ≈ 0.9835 O(1)

Reactive power reference for
droop control

Q̂ref = QrefV
−2
b Rb ≈ 0.4611 O(1)

Reference for v̂id entering the
virtual inductance

V̂dn = VdnV
−1
b ≈ 1.0011 O(1)

Reference for v̂iq entering the
virtual inductance

V̂qn = VqnV
−1
b ≈ 0.1030 O(1)

Virtual inductance L̂v = LvR
−1
b T−1

b ≈ 1.333 ·
10−3

O(•)

Voltage PI proportional coef-
ficient

K̂vp = KvpRb ≈ 3.7699 O(1)

Voltage PI integral coefficient K̂vi = KviRb Tb ≈ 592.1763 O(ε−1)

Current PI proportional coef-
ficient

K̂ip = KipR
−1
b ≈ 0.5622 O(1)

Current PI integral coeffi-
cient

K̂ii = KiiR
−1
b Tb ≈ 444.1322 O(ε−1)

Filter inductance L̂f = LfR
−1
b T−1

b = 1.8000 ·
10−4

O(ε)

Filter resistance R̂f = RfR
−1
b ≈ 3.3333 · 10−3 O(ε)

Filter capacitance Ĉf = CfRbT
−1
b = 6.0 · 10−3 O(ε)

Line inductance L̂l = LlR
−1
b T−1

b = 1.3333 ·
10−4

O(ε)

Line resistance R̂l = RlR
−1
b ≈ 1.6667 · 10−2 O(1)

Load resistance R̂load = RloadR
−1
b = 1 O(1)

DC source voltage V̂DC = VDC V
−1
b ≈ 2.0082 O(1)

Table 5.4: AC microgrids - System nondimensionalised parameters: description,
dimensionless value, “size”
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5.3.2 Model reduction

In this work, the system is reduced by using perturbation theory and retaining

the leading-order terms of each equation. In order to proceed with this, a single

small dimensionless parameter ε is introduced. The choice of the value of ε,

together with the attribution of the system parameters to powers of ε involves a

certain degree of judgement about the importance of some aspects of the model.

The attribution of a parameter to a power of εmay, in fact, lead one to ignore some

physical processes and to retain only fewer aspects in the reduced model. Some

informed judgements about the nature of the system and its working conditions

are needed and the process involves some trial-and-error. In the present case, ε is

assumed to be equal to 10−3. Assigning particular powers of ε to quantities has

been performed. In this section, ε is assumed to be of order 10−3.

For the remainder of this section, the hats will be dropped from the notation

of dimensionless variables. Since everything has been nondimensionalised before,

this will not cause any ambiguity, but aid clarity of notation.

Before the system (5.64) is considered for reduction, performed in the following

subsections, §5.3.2.1 gives a brief overview of the singular perturbation principles

that are used later on in the section, to both help the reader understand the

theoretical bases which have been applied while reducing the system, and describe

the followed procedure in a more symbolic and compact way.

5.3.2.1 Introduction to Singular Perturbation Systems

In general, a system is singularly perturbed system if it can be modelled in the

form

dx

dt
= f(t, x, z, ε), (5.66a)

ε
dz

dt
= g(t, x, z, ε), (5.66b)

where x ∈ Rn and z ∈ Rm are vectors of state-space variables and ε is a “small”

dimensionless parameter. System (5.66) highlights the presence of a double option

for the time scaling: variables grouped in x are “slow”, while variables grouped
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in z are “fast”.

Letting ε→ 0 turns the ODEs (5.66b) into the algebraic or transcendental equa-

tion

0 = g(t, x, z, 0). (5.67)

A system is said to be in standard form if (5.67) has at least one real root

z = h(t, x). (5.68)

Substituting (5.68) into (5.66a) and assuming ε→ 0 leads to the reduced system

dx

dt
= f(t, x, h(t, x), ε), (5.69)

of dimension n [10].

The behaviour of the fast variables is more precisely modelled by ODEs, but in

(5.69) is approximated by algebraic equations (5.68). In general, the approxi-

mation holds when bigger time scales/slow processes are considered, while some

discrepancies occur during transients and observing faster phenomena. During

transients, the algebraic or transcendental equations are not likely to model the

system behaviour effectively, and the original ODEs are needed to provide an

accurate determination of this transient behaviour.

Application of this approach to the microgrid systems defined in the previous

sections is described next.

5.3.2.2 Constant frequency

Assuming that ωn = O(ε−1), an auxiliary variable ω̄n = O(1) can be defined by

ω̄n = ε ωn . (5.70)

Substituting (5.70) into (5.64c) leads to

ω(t) = ε−1ω̄n + Kdp[Pref − Plp(t)] . (5.71)

Since, according to the simulations, P is O(1), to avoid imbalance in (5.71) ω(t)
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must be O(ε−1). A new O(1) variable can therefore be defined by

ω̄(t) = ε ω(t) = ω̄n + εKdp[Pref − Plp(t)] . (5.72)

Hence, ω̄(t) can be approximated by

ω̄(t) ∼ ω̄n + O(ε) . (5.73)

Considering ω to constant and equal to ωn leads to a reduction of the system

(5.64) by one ODE and one state-space variable. The system is then given by

dPlp(t)

dt
= ωcd[vid(t) iod(t) − viq(t) ioq(t) − Plp(t)] , (5.74a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.74b)

dilpd
(t)

dt
= ωci[iodt) − ilpd

(t)] , (5.74c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.74d)

dxint,vd
(t)

dt̂
= vrefd(t) − vid(t) , (5.74e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.74f)

dxint,id(t)

dt
= irefd(t̂) − iid(t̂) , (5.74g)

dxint,iq(t)

dt
= irefq(t) − iiq(t) (5.74h)

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ωn iiq(t) , (5.74i)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t̂) −

viq(t)

Lf
− ωn iid(t) , (5.74j)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.74k)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ωn(t) vid(t) , (5.74l)

diod(t)

dt
=

vid(t)

Ll
− Rl +Rload

Ll
iod(t) + ωn ioq(t) , (5.74m)
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dioq(t)

dt
=

viq(t)

Ll
− Rl +Rload

Ll
ioq(t) − ωn iod(t) , (5.74n)

where

vrefd(t) = Vdn +Kdq(Qref −Qlp(t))+ (5.75a)

Lv{[ωn +Kdp(Pref − Plp(t))]ilpq(t) + ωci(ilpd
(t)− iod(t))},

vrefq(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp(t))]ilpd
(t) + ωci(ilpq(t)− ioq(t))},

(5.75b)

irefd(t) = Kvp[vrefd(t) − vid(t)] + Kvi xint,vd
(t) − ωnCf viq(t), (5.75c)

irefq(t) = Kvp[vrefq(t) − viq(t)] + Kvi xint,vq(t) + ωnCf vid(t) , (5.75d)

md(t) =
{
Kip[irefd(t) − iid(t)] + Kii xint,id(t) − ωn Lf iiq(t)

} 2

VDC
, (5.75e)

mq(t) =
{
Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) + ωn Lf iid(t)

} 2

VDC
. (5.75f)

The system obtained through this approximation has been simulated in par-

allel with the full system. In order to observe the systems’ agreement during

transients, an instantaneous change in the load resistance Rload is introduced at

t = 0.5s (in particular, the resistance is halved.). In Figure 5.6, the behaviour

of iid is depicted. The full and reduced system show a good agreement in both

steady state and transients: in the picture, they are overlapped. The error be-

tween them is shown in Figure 5.7. Due to the large size of the system, only one

variable is shown in the pictures as an example. Considering all the variables of

the system, the maximum dimensionless error is order 10−5.

144



CHAPTER 5. ANALYSIS OF A SINGLE INVERTER CONTROLLED
AS AN AC MICROGRID CONVERTER

Figure 5.6: Single inverter - Behaviour of iid : full system (blue) and reduced system
(red), at a sudden halving of Rload.

Figure 5.7: Dimensionless error on iid , computed between the full system and the first
reduced system.
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5.3.2.3 Small line inductance

The second approximation is based on the assumption that the line inductance Ll

is “small”. Therefore, inductive behaviours on the electrical lines connecting the

inverter to the load are neglected, and there are reasonable expactations that the

two ODEs describing the inductance behaviour will be substituted by algebraic

equations.

If Ll is O(ε) another auxiliary variable L̄l can be introduced, given by

L̄l = ε−1Ll . (5.76)

Then, equations (5.64n)-(5.64o) become

diod(t)

dt
=

vid(t)

εL̄l
− Rl +Rload

εL̄l
iod(t) + ε−1ω̄n ioq(t) , (5.77a)

dioq(t)

dt
=

viq(t)

εL̄l
− Rl +Rload

εL̄l
ioq(t) − ε−1ω̄n iod(t) , (5.77b)

where the approximation (5.73) is used for ω. Multiplying (5.77) by ε and keeping

only the leading-order terms leads to

0 =
vid(t)

L̄l
− Rl +Rload

L̄l
iod(t) + ω̄n ioq(t) + O(ε) , (5.78a)

0 =
viq(t)

L̄l
− Rl +Rload

L̄l
ioq(t) − ω̄n iod(t) + O(ε) . (5.78b)

Therefore, iod and ioq can be considered among the fast variables and (5.78)

correspond to (5.67). Algebraic expressions for iod and ioq can be found by solving

(5.78) for iod and ioq , leading to

iod(t) ∼
(Rl +Rload) vid(t) + ω̄nL̄lviq(t)(

ω̄nL̄l
)2

+ (Rl +Rload)2
, (5.79a)

ioq(t) ∼
(Rl +Rload) viq(t) − ω̄nL̄lvid(t)(

ω̄nL̄l
)2

+ (Rl +Rload)2
. (5.79b)

Again, equations (5.79) correspond to (5.68). Using the algebraic equations (5.79)

instead of the ODEs (5.64n)-(5.64o) allows a reduction of the system by two

further ODEs and two corresponding state-space variables. This corresponds to
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assuming that iod and ioq constitute the “fast” variable vector z, whose behaviour

is approximated by algebraic equations. All the other variables belong to the

“slow” variable vector x. In particular, ω is slow and quasi-constant.

dPlp(t)

dt
= ωcd[vid(t) iod(t) − viq(t) ioq(t) − Plp(t)] , (5.80a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.80b)

dilpd
(t)

dt
= ωci[iodt) − ilpd

(t)] , (5.80c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.80d)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.80e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.80f)

dxint,id(t)

dt
= irefd(t̂) − iid(t̂) , (5.80g)

dxint,iq(t)

dt
= irefq(t) − iiq(t) (5.80h)

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ωn iiq(t) , (5.80i)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t̂) −

viq(t)

Lf
− ωn iid(t) , (5.80j)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.80k)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ωn vid(t) , (5.80l)

and iod and ioq are given by (5.79).

The system (5.80) has been simulated in parallel with the full system. The same

instantaneous change in the load resistance Rload is introduced at t = 0.5s and

the behaviour of iid is depicted in Figure 5.8. The full and reduced system show

a good agreement in steady state, with dimensionless errors of order 10−4. As

observable in Figure 5.9, in this case errors during transients can reach order 10−1

(it must be noted that this kind of sudden, step-like change in the load resistance

can be considered a worst-case scenario for the system, while slower changes

would cause better transient agreements). Similar error plots are obtained from
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the remaining system variables.

Figure 5.8: Single inverter - Behaviour of iid : full system (blue) and 12-equation-
reduced system (orange); sudden halving of Rload.

Figure 5.9: SIngle inverter - Dimensionless error on iid , computed between the full
system and the second reduced system.
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5.3.2.4 Small filter inductance

A further approximation is considering the filter inductance Lf and the filter

resistance Rf “small”. Neglecting the inductance corresponds, in practice, to

eliminate from the system the two ODEs that describe the behaviour of voltages

across the inductors. It is expected that such ODEs will be approximated by

algebraic equations.

Defining

L̄f = ε−1 Lf = O(1), (5.81a)

R̄f = ε−1Rf = O(1), (5.81b)

a procedure similar to that explained in §5.3.2.3 can be applied to (5.64j) and

(5.64k), leading to

diid(t)

dt
∼ VDCmd(t)

2εL̄f
− R̄f

L̄f
iid(t) − vid(t)

εL̄f
iid(t) + ε−1ω̄n ioq(t) , (5.82a)

diiq(t)

dt
∼ VDCmq(t)

2εL̄f
− R̄f

L̄f
iiq(t) −

viq(t)

εL̄f
iiq(t) − ε−1ω̄n iod(t) , (5.82b)

Two more algebraic equations can be obtained by retaining the leading-order

terms only in (5.82):

vid(t) − L̄f ω̄niiq(t) ∼ VDC
2
md(t) , (5.83a)

viq(t) − L̄f ω̄niid(t) ∼ VDC
2
mq(t), (5.83b)

where the RHSs of (5.83), according to (5.59), are given by

VDC
2
md(t) = Kip[irefd(t) − iid(t)] + Kii xint,id(t) − ω(t)Lf iiq(t)

∼ Kip[irefd(t) − iid(t)] + Kii xint,id(t) − ω̄n L̄f iiq(t),

(5.84a)

VDC
2
mq(t) = Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) + ω(t)Lf iid(t)

∼ Kip[irefq(t) − iiq(t)] + Kii xint,id(t) − ω̄n L̄f iiq(t).

(5.84b)
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Substituting (5.84) into (5.83) leads to

vid(t) ∼ Kip[irefd(t) − iid(t)] + Kii xint,id(t) , (5.85a)

viq(t) ∼ Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) . (5.85b)

Algebraic expressions for the internal currents can therefore be found by solving

(5.85) for iid and iiq , leading to

iid(t) ∼ irefd(t) +
Kii xint,id − vid(t)

Kip

, (5.86a)

iiq(t) ∼ irefq(t) +
Kii xint,iq − viq(t)

Kip

. (5.86b)

Hence, considering the filter inductance and resistance to be “small” allows reduc-

tion of the system by two ODEs and elimination of the corresponding state-space

variables.

In this case, the “fast” variable vector z is defined by

z(t) =


iid(t)

iiq(t)

iod(t)

ioq(t),

 (5.87)

and the angular frequency ω is quasi-constant and assumed to be equal to its

nominal value ωn. All the other state-space variables belong to the “slow” variable

vector x.

5.3.2.5 Neglect of integral error on the currents

After assuming that the internal currents are “fast”, and eliminating their

corresponding ODEs from the system, it is quite natural to assume that the two

state-space variables describing the behaviour of the integral errors on the internal

currents are “fast” as well. This will allow a further reduction of the system by

two ODEs.
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A more rigorous explanation of this choices is given below.

Since VDC = O(1) and md(t) can vary between -1 and 1, the LHS of (5.84) is

O(1). Kip, irefd(t) and iid(t) are O(1), but Kii = O(ε−1). To avoid imbalance,

xint,id(t) must be O(ε). Let the auxiliary parameter K̄ii and the auxiliary variable

x̄int,id(t) be defined, respectively, by

K̄ii = εKii , (5.88)

x̄int,id(t) = ε−1 xint,id(t) . (5.89)

Substituting (5.88) and (5.89) into (5.85) leads to

iid(t) − irefd(t) ∼ K̄ii x̄int,id − vid(t)

Kip

, (5.90a)

iiq(t) − irefq(t) ∼
K̄ii x̄int,iq − viq(t)

Kip

. (5.90b)

Substituting (5.89) into (5.64h) gives

ε
dx̄int,id(t)

dt
= irefd(t) − iid(t) , (5.91a)

ε
dx̄int,iq(t)

dt
= irefq(t) − iiq(t) , (5.91b)

where results from simulations support the assumption that irefd(t), iid(t), irefq(t),

iiq(t) are all O(1). Therefore, the following approximation can be adopted:

iid(t) ∼ irefd(t) , (5.92a)

iiq(t) ∼ irefq(t) . (5.92b)

This approach reduces the system by two further ODEs and state-space variables,

corresponding to the integral errors on the internal currents. Adopting this re-

duction eliminates the variables xint,id and xint,iq from the state-space system. In

case one would need to compute their approximate values, they can be obtained

algebraically from (5.90); considering the LHSs to be O(ε) and then solving for
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x̄int,id and x̄int,iq allow one to the following approximation:

x̄int,id(t) ∼ vid(t)

K̄ii

, (5.93a)

x̄int,iq(t) ∼
viq(t)

K̄ii

. (5.93b)

This approximated system corresponds to assuming that the “fast” and “slow”

variables are grouped as

z(t) =
[
xint,id(t) xint,iq(t) iid(t) iiq(t) iod(t) ioq(t)

]T

, (5.94a)

x(t) =
[
Plp(t) Qlp(t) ilpd

(t) ilpq(t) xint,vd
(t) xint,vq(t) vid(t) viq(t)

]T

.

(5.94b)

One state-space variable of the original full system, ω, is approximated by its

nominal value ωn.

At this point, 8 ODEs are left in the state-space model of the system, leading to

dPlp(t)

dt
= ωcd[vid(t) iod(t) − viq(t) ioq(t) − Plp(t)] , (5.95a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.95b)

dilpd
(t)

dt
= ωci[iodt) − ilpd

(t)] , (5.95c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.95d)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.95e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.95f)

dvid(t̂)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.95g)

dviq(t)

dt
=

iiq(t)

Ĉf
−
ioq(t)

Cf
− ωn vid(t) , (5.95h)

where iid and iiq are given by (6.49), while iod and ioq by (5.79).

Figure 5.10 has been obtained by simulating the system (5.95) in parallel with
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Figure 5.10: Behaviour of iid : full system (blue) and reduced system (purple).

Figure 5.11: Dimensionless error on iid , computed between the full system and the
third reduced system.

the full system. In steady state, the maximum dimensionless error among the

system variables is order 10−3. As shown in Figure 5.11, during transients it can

reach order 10−1.
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5.3.2.6 Small filter capacitance

Now, the filter inductance Cf is assumed to be “small”. If so, the current be-

haviours caused by the presence of the capacitors are neglected, and two more

ODEs might be eliminated from the system.

Considering the dimensionless parameter Cf to be O(ε), an O(1) variable C̄f can

be defined by

C̄f = ε−1Cf . (5.96)

Substituting (5.96) and (5.72) into (5.64l)-(5.64m) leads to

dvid(t)

dt
∼ iid(t)

ε C̄f
− iod(t)

εC̄f
+ ε−1ω̄n viq(t) , (5.97a)

dviq(t)

dt
∼

iiq(t)

ε C̄f
−
ioq(t)

εC̄f
− ε−1ω̄n vid(t) . (5.97b)

Multiplying (5.97) by ε and retaining only the O(1) terms leads to

iid(t) ∼ iod(t) − ω̄n C̄f viq(t) , (5.98a)

iiq(t) ∼ ioq(t) + ω̄n C̄f vid(t) , (5.98b)

where iid and iiq are given by (6.49), iod and ioq by (5.79). Substituting 6.49) and

(5.79) into (5.98) and solving for vid and viq leads to the algebraic expressions

of the voltages, while their two corresponding ODEs can be eliminated from the

so-reduced system. Before proceeding with the computation of the state-space

system based on this approximations, attention focuses on the variables modelling

the behaviour of the integral errors on the voltages. Since the voltages are now

assumed to be “fast” variables, so should be their integral errors. This is explained

more in details in the next section.

5.3.2.7 Neglect of voltage integral errors

In this section, the system is reduced by two more ODEs, according to the as-

sumption that the variables modelling the behaviour of the integral errors on the

voltages are “fast”. This assumption is based on the computations shown below.
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The reference currents irefd(t) and irefq(t), according to (5.57), are computed as

irefd(t) ∼ Kvp[vrefd(t) − vid(t)] + Kvi xint,vd
(t) − ω̄n C̄f viq(t) , (5.99a)

irefq(t) ∼ Kvp[vrefq(t) − viq(t)] + Kvi xint,vq(t) + ω̄n C̄f vid(t) , (5.99b)

where (5.72) is used for ω.

Employing the same procedure for (5.84), since Kvi is O(ε−1), while all the other

terms in the equation are O(1) or smaller, xint,vd
(t) must be O(ε) to avoid imbal-

ance, leading to

irefd(t) ∼ Kvp[vrefd(t) − vid(t)] + K̄vi x̄int,vd
(t) − ω̄n C̄f viq(t) , (5.100a)

irefq(t) ∼ Kvp[vrefq(t) − viq(t)] + K̄vi x̄int,vq(t) + ω̄n C̄f vid(t) , (5.100b)

where

K̄iv = εKiv, (5.101)

and

x̄int,vd
(t) = ε−1 xint,vd

(t) , (5.102a)

x̄int,vq(t) = ε−1 xint,vq(t) . (5.102b)

Analogously to (5.91), the ODEs (5.64f)-(5.64g) become

ε
dx̄int,vd

(t)

dt
= vrefd(t) − vid(t) , (5.103a)

ε
dx̄int,vq(t)

dt
= vrefq(t) − viq(t) , (5.103b)

where vrefd(t), vid(t), vrefq(t) and viq(t) are O(1). Therefore, considering leading

orders only leads to

vid(t) ∼ vrmrefd(t) , (5.104a)

vRmiq(t) ∼ vrmrefq(t) , (5.104b)
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Following the definition (5.56) of vrmrefd(t) and substituting (5.72) gives

vrefd(t) = Vdn +Kdq[Qref −Qlp(t)]

+ Lv{[ε−1ω̄n +Kdp(Pref − Plp(t))]ilpq(t) + ωci(ilpd
(t)− iod(t))},

(5.105)

where, according to Table 5.4, Lv ∼ ε. A further parameter L̄v = O(1) can thus

be defined by

L̄v = ε−1 Lv. (5.106)

Substituting (5.106) into (5.105) leads to

vrefd(t) = Vdn +Kdq[Qref −Qlp(t)] + εL̄v{[ε−1ω̄n +Kdp(Pref − Plp(t))]ilpq(t)

+ ωci(ilpd
(t)− iod(t))}

∼ Vdn +Kdq[Qref −Qlp(t)] + L̄v ω̄n ilpq(t) .

(5.107)

Analogously, for vrefq(t),

vrefq(t) ∼ Vqn − L̄v ω̄n ilpd
(t) . (5.108)

Equating the RHS of (5.107)-(5.108) and (5.104) leads to

vid(t) ∼ Vdn +Kdq[Qref −Qlp(t)] + L̄v ω̄n ilpq(t) , (5.109a)

viq(t) ∼ Vqn − L̄v ω̄n ilpd
(t) . (5.109b)

Thus, this approximation leads to a further reduction by two ODEs and variables,

leading to the fourth reduced state-space system (5.111). In this case, the “slow”

variable vector is defined by

x(t) =
[
Plp(t) Qlp(t) ilpd

(t) ilpq(t)
]T

, (5.110)

while the angular frequency ω is assumed to be constantly equal to its reference

ω̄n, and all the remaining variables belong to the “fast” variable vector z. The

behaviour of the elements of z is approximated by algebraic equations depending
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on the state of x. The reduced state-space system is then given by

dPlp(t)

dt
= ωcd[vid(t) iid(t) − viq(t) iiq(t) − Plp(t)] , (5.111a)

dQlp(t)

dt
= ωcd[vid(t) iiq(t) − viq(t) iid(t) − Qlp(t)] , (5.111b)

dilpd
(t)

dt
= ωci[iodt) − ilpd

(t)] , (5.111c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] . (5.111d)

The external and internal currents, in this case, can be computed from (5.79) and

(5.98), respectively, while vid and viq from (5.109).

Figure 5.12: SIngle inverter - Behaviour of iid : full system (blue) and reduced system
with four ODEs (green), during a sudden change in the value of Rload.

As depicted in Figure 5.12, this reduced system does not agree very well with

the full one during transients (their dimensionless errors are of order 1), but the

steady-state behaviour show errors of order 10−3. This is valid also for the rest

of the state-space variables, whose picture are not included in this documents in

order to avoid repetition.
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Figure 5.13: Dimensionless error on iid , computed between the full system and the
reduced system characterised by four ODEs.

5.3.2.8 Neglect of Low-Pass Filter on the Current

The last approximation that is considered is assuming that the frequency ωci of

the low-pass filter on the external currents is “big”. This corresponds to assuming

that the low-pass-filtered currents are “fast”. Given the presence of a low-pass

filter, this might seem counter-intuitive, but, in general, the cut-off frequency

required to implement a virtual inductance is relatively high.

If the cut-off frequency ωci, used to low-pass filter the external currents, is O(ε−1),

an auxiliary variable ω̄ci can be defined using

ω̄ci = ε ωci. (5.112)

Substitution of (5.112) into (5.64d)-(5.64e) leads to

dilpd
(t)

dt
= ε−1ω̄ci[iod(t) − ilpd

(t)] , (5.113a)

dilpq(t)

dt
= ε−1ω̄ci[ioq(t) − ilpd

(t)] . (5.113b)

Algebraic expressions for ilpd
and ilpq can be found by retaining the leading-order

terms of (5.113):

ilpd
(t) ∼ iod(t), (5.114a)
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ilpq(t) ∼ ioq(t). (5.114b)

Using (5.114) and (5.79) in (5.109) and solving for vid and viq lead to

vid(t) ∼ α

[
Vdn +

ω̄nL̄v
Rload +Rl

Vqn + Kdq(Qref − Qlp(t))

]
, (5.115a)

viq(t) ∼ Vqn − β

[
Vdn +

ω̄nL̄v
Rload +Rl

Vqn + Kdq(Qref − Qlp(t))

]
, (5.115b)

(5.115c)

where

α =
(Rload + Rl)

2

(Rload + Rl)
2 + (ω̄nL̄v)

2 , (5.116a)

β =
(Rload + Rl)ω̄nL̄v

(Rload + Rl)
2 + (ω̄nL̄v)

2 . (5.116b)

The final reduced state-space model comprises two equations only. In fact, the

“slow” vector x is formed of Plp and Qlp only, while all the other variables belong

to the “fast” vector z and are modelled by algebraic equations.

The state-space system is given by

dPlp(t)

dt
= ωcd[vid(t) iid(t) − viq(t) iiq(t) − Plp(t)] , (5.117a)

dQlp(t)

dt
= ωcd[vid(t) iiq(t) − viq(t) iid(t) − Qlp(t)] , (5.117b)

where voltages and currents are given by (5.109) and (5.98), respectively.

This system, however, leads to some discrepancies in both transients and the

steady state, with dimensionless errors order 10−1 also in steady state, as depicted

in Figures 5.14 and 5.15. The accuracy is not considered to be good enough for

analysing phenomena of the system.
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Figure 5.14: Behaviour of iid : full system (dark blue) and reduced system (light blue).

Figure 5.15: Dimensionless error on iid , computed between the full system and the
fifth reduced system.
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5.3.2.9 Reduction Summary

The system reduction described in earlier sections has been tested through sim-

ulations, gradually adding the approximations presented in this subsection.

CASE 1 : ω(t) ∼ ωn

“Slow” variables: Plp, Qlp, ilpd
, ilpq , xint,vd

, xint,vq , xint,id , xint,iq , iid , iiq , vid , viq , iod ,

ioq .

Constant variable: ω.

The system has 14 ODEs, given by

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.118a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.118b)

dilpd
(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.118c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.118d)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.118e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.118f)

dxint,id(t)

dt
= irefd(t) − iid(t) , (5.118g)

dxint,iq(t)

dt
= irefq(t) − iiq(t) (5.118h)

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ωn iiq(t) , (5.118i)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t) −

viq(t)

Lf
− ωn iid(t) , (5.118j)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.118k)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ωn vid(t) , (5.118l)

diod(t)

dt
=

vid(t)

Ll
− Rl +Rload

Ll
iod(t) + ωn ioq(t) , (5.118m)
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dioq(t)

dt
=

viq(t)

Ll
− Rl +Rload

Ll
ioq(t) − ωn iod(t), (5.118n)

where

vrefd(t) = Vdn +Kdq(Qref −Qlp(t)) + Lv{[ωn +Kdp(Pref − Plp(t))]ilpq(t)

(5.119a)

+ ωci(ilpd
(t)− iod(t))},

vrefq(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp(t))]ilpd
(t) + ωci(ilpq(t)− ioq(t))},

(5.119b)

irefd(t) = Kvp[vrefd(t) − vid(t)] + Kvi xint,vd
(t) − ω(t)Cf viq(t), (5.119c)

irefq(t) = Kvp[vrefq(t) − viq(t)] + Kvi xint,vq(t) + ω(t)Cf vid(t) , (5.119d)

md(t) =
{
Kip[irefd(t) − iid(t)] + Kii xint,id(t) − ωn Lf iiq(t)

} 2

VDC
, (5.119e)

mq(t) =
{
Kip[irefq(t) − iiq(t)] + Kii xint,iq(t) + ωn Lf iid(t)

} 2

VDC
. (5.119f)

If the full and the above systems are simulated in parallel, the dimensionless

steady-state errors are of order 10−6− 10−5 and can therefore be considered neg-

ligible.

CASE 2 : ω(t) ∼ ωn, algebraic external currents

“Slow” variables: Plp, Qlp, ilpd
, ilpq , xint,vd

, xint,vq , xint,id , xint,iq , iid , iiq , vid , viq .

“Fast” variables: iod , ioq .

Constant variable: ω.

The system has 12 ODEs:

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.120a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.120b)

dilpd
(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.120c)
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dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.120d)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.120e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.120f)

dxint,id(t)

dt
= irefd(t) − iid(t) , (5.120g)

dxint,iq(t)

dt
= irefq(t) − iiq(t) (5.120h)

diid(t)

dt
=

VDC
2Lf

md(t) − Rf

Lf
iid(t) − vid(t)

Lf
+ ωn iiq(t) , (5.120i)

diiq(t)

dt
=

VDC
2Lf

mq(t) − Rf

Lf
iiq(t) −

viq(t)

Lf
− ωn iid(t) , (5.120j)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.120k)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ωn vid(t) , (5.120l)

where vrefd , vrefq , irefd , irefq , md and mq are defined in (5.119), while iod and ioq

are given by

iod(t) ∼ vid(t)

Rl +Rload

+
ω̄nL̄lviq(t)

(Rl +Rload)2 , (5.121a)

iod(t) ∼
viq(t)

Rl +Rload

− ω̄nL̄lvid(t)

(Rl +Rload)2 . (5.121b)

Comparing the simulations of system (5.120) with the simulations of the full sys-

tem, the dimensionless recorded steady-state errors are of order 10−4 or smaller.

CASE 3 : ω(t) ∼ ωn, algebraic external currents, no current PI

“Slow” variables: Plp, Qlp, ilpd
, ilpq , xint,vd

, xint,vq , vid , viq .

“Fast” variables: iid , iiq , xint,id , xint,iq , iod , ioq .

Constant variable: ω.
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The system has 8 ODEs:

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.122a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.122b)

dilpd
(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.122c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , (5.122d)

dxint,vd
(t)

dt
= vrefd(t) − vid(t) , (5.122e)

dxint,vq(t)

dt
= vrefq(t) − viq(t) , (5.122f)

dvid(t)

dt
=

iid(t)

Cf
− iod(t)

Cf
+ ωn viq(t) , (5.122g)

dviq(t)

dt
=

iiq(t)

Cf
−
ioq(t)

Cf
− ωn vid(t) , (5.122h)

where the references for the voltages are defined in (5.119), while iod-ioq and iid-iiq

are given, respectively, by

iod(t) ∼ vid(t)

Rl +Rload

+
ω̄nL̄lviq(t)

(Rl +Rload)2 , (5.123a)

ioq(t) ∼
viq(t)

Rl +Rload

− ω̄nL̄lvid(t)

(Rl +Rload)2 , (5.123b)

and

iid(t) ∼ iod(t) − ω̄n C̄f viq(t) , (5.124a)

iiq(t) ∼ ioq(t) + ω̄n C̄f vid(t) . (5.124b)

Simulations show a steady-state error of order 10−4 or smaller, for every variable.

CASE 4 : ω(t) ∼ ωn, algebraic currents and voltages

“Slow” variables: Plp, Qlp, ilpd
, ilpq .

“Fast” variables: xint,vd
, xint,vq , xint,id , xint,iq , iid , iiq , vid , viq , iod , ioq .

Constant variable: ω.

164



CHAPTER 5. ANALYSIS OF A SINGLE INVERTER CONTROLLED
AS AN AC MICROGRID CONVERTER

The system has 4 ODEs:

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.125a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.125b)

dilpd
(t)

dt
= ωci[iod(t) − ilpd

(t)] , (5.125c)

dilpq(t)

dt
= ωci[ioq(t) − ilpq(t)] , , (5.125d)

where vid-viq and iod-ioq are given, respectively, by

vid(t) ∼ Vdn +Kdq[Qref −Qlp(t)] + L̄v ω̄n ilpq(t) , (5.126a)

viq(t) ∼ Vqn − L̄v ω̄n ilpd
(t) . (5.126b)

and

iod(t) ∼ vid(t)

Rl +Rload

+
ω̄nL̄lviq(t)

(Rl +Rload)2 , (5.127a)

iod(t) ∼
viq(t)

Rl +Rload

− ω̄nL̄lvid(t)

(Rl +Rload)2 . (5.127b)

If the internal currents iid-iiq need to be known, they can be computed as

iid(t) ∼ iod(t) − ω̄n C̄f viq(t) , (5.128a)

iiq(t) ∼ ioq(t) + ω̄n C̄f vid(t) . (5.128b)

Simulations show a steady-state error of order 10−4 or smaller, for every variable.

CASE 5 : ω(t) ∼ ωn, algebraic equations for currents and voltages, no low-

pass filter on the external currents

“Slow” variables: Plp, Qlp.

“Fast” variables: ilpd
, ilpq , xint,vd

, xint,vq , xint,id , xint,iq , iid , iiq , vid , viq , iod , ioq .

Constant variable: ω.

165



Applications of Perturbation Theory to Power Electronic Converters

The system has 2 ODEs:

dPlp(t)

dt
= ωcd[vid(t) iod(t) + viq(t) ioq(t) − Plp(t)] , (5.129a)

dQlp(t)

dt
= ωcd[vid(t) ioq(t) − viq(t) iod(t) − Qlp(t)] , (5.129b)

where

vid(t) ∼ α[Vdn +
ω̄nL̄v

Rload +Rl

Vqn + Kdq(Qref − Qlp(t))] , (5.130a)

viq(t) ∼ Vqn − β[Vdn +
ω̄nL̄v

Rload +Rl

Vqn + Kdq(Qref − Qlp(t))] , (5.130b)

(5.130c)

α =
(Rload + Rl)

2

(Rload + Rl)
2 + (ω̄nL̄v)

2 , (5.131a)

β =
(Rload + Rl)ω̄nL̄v

(Rload + Rl)
2 + (ω̄nL̄v)

2 , (5.131b)

and

iod(t) ∼ vid(t)

Rl +Rload

+
ω̄nL̄lviq(t)

(Rl +Rload)2 , (5.132a)

iod(t) ∼
viq(t)

Rl +Rload

− ω̄nL̄lvid(t)

(Rl +Rload)2 . (5.132b)

The internal currents can eventually be computed as

iid(t) ∼ iod(t) − ω̄n C̄f viq(t) , (5.133a)

iiq(t) ∼ ioq(t) + ω̄n C̄f vid(t) . (5.133b)

Simulations of this system run in parallel with the full system show errors of

order 10−1, which is not considered good enough for using the reduced system as

a faithful representation of the full model’s behaviour.
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5.4 Chapter Summary

In this chapter, a three-phase inverter controlled as an islanded AC microgrid

converter is considered.

First, the physical variables are described and listed, and an approximate expla-

nation of the inverter way of operating is given in §5.2.

In the second part of the section, the controller structure is described, and the

state-space ODEs describing the behaviour of the control variables are derived.

In §5.3, a model reduction based on singular perturbation is performed on the

system. The model is nondimensionalised, and a gradual reduction is applied

according to assumptions on the “size” of some systems parameters. The vari-

ables are then split into “fast” and “slow”, and the ODEs of the “fast” variables

are approximated by algebraic equations. The reduction is validated at each

stage through simulations comparing the behaviour of the full and of the reduced

model, and computing the relative error between them.

Good results are found for reduced model with as few as four ODEs (the full

system has fifteen). The smaller reduced model, having two ODEs only, does not

perform so well in simulations, and hence should not be used to approximate the

system’s behaviour.

If droop controllers are added to multiple converters belonging to the same

microgrid, their reciprocal interactions might cause instabilities in the system.

These phenomena are not observable in the single-inverter system analysed in

the present chapter. In the following sections, a larger AC microgrid composed

by two inverters is analysed, and a similar model reduction is applied to the

system.
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Chapter 6

Two-Inverter AC Microgrid

6.1 Introduction and Work Summary

In this chapter, a two-inverter AC microgrid, working in island mode, is anal-

ysed. The system is composed of two inverters and one resistive load. The con-

trollers of the two inverters and the LC filters through which they are interfaced

to the line are identical, but the three-phase lines that connect the inverters to

the load have different lengths, and, thus, different impedance values. The state-

space model of the system is computed as explained in §6.2; subsequently, the

equilibrium values of the variables is found (most of them, analytically, some,

numerically).Then, the system is linearised about its the steady-state point and

stability is analysed by computing the eigenvalues of the linearised system. When

plotting the eigenvalues on the complex plane, some of them appear to be grouped

relatively far away from the imaginary axis. These are interpreted as representing

the fast phenomena of the system, whose ODEs are more likely to be neglected

or turned into algebraic equations in the reduction process. The eigenvalues are

computed for different values of the controller parameters and some parameters

have been identified as being more significant for the system stability.

A model reduction similar to that performed on the single inverter is applied

to the two inverter system, as explained in §6.3. As in the single-inverter case,

a gradual reduction is performed, as four different reduced models are consid-

ered, corresponding to different degrees of reduction. The equilibrium points and

corresponding linearised models are computed for each reduced system. The ef-

fectiveness of each reduction was tested by MATLAB simulation and eigenvalue
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comparison. The full state-space model is formed of 30 ODEs; good agreement

in the steady-state behaviour can be achieved by reduced models with 10 or more

ODEs. However, the 10-ODE reduced model behaves quite differently during

transients and there is a discrepancy regarding the models’ prediction of sta-

bility: in the case where the controller parameters are modified in a way that

makes the full system unstable, the stability of the reduced model is not affected.

Therefore, for stability analysis purposes, reduced systems with 14 or more ODEs

should be used.

Comparing the so-obtained results with other reductions performed on similar

systems in the engineering literature, some analogies and some differences are ob-

served regarding which variables need to be kept in the reduced models in order

to achieve effective stability analyses.

6.2 Two-Inverter Model

6.2.1 Physical Variable Behaviours

In this case, a system composed of two inverters and a resistive load is con-

sidered. While the DC-source value, the filter and the controller parameters are

assumed to be the same in both inverters, the line impedances are, in general,

different. In the following simulations, values used are

Ll2 = 3Ll1 = 3.0 · 10−3 H, (6.1a)

Rl2 = 3Rl1 = 1.50 Ω , (6.1b)

where Ll1 and Rl1 have the same values, respectively, of Ll and Rl used for the

case of the single inverter, as listed in Table 3.1.

The average state-space system of the model is therefore given by

diiabc1
(t)

dt
=
VDC
2Lf

mabc1(t) − Rf

Lf
iiabc1

(t) − viabc1
(t)

Lf
, (6.2a)
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Figure 6.1: Overall scheme of the two-inverter system

dviabc1
(t)

dt
=
iiabc1

(t)

Cf
− ioabc1

(t)

Cf
, (6.2b)

dioabc1
(t)

dt
=
viabc1

(t)

Ll1
− Rl

Ll1
ioabc1

(t) − Rload

Ll1
[ioabc1

(t) + ioabc2
(t)] (6.2c)

diiabc2
(t)

dt
=
VDC
2Lf

mabc2(t) − Rf

Lf
iiabc2

(t) − viabc2
(t)

Lf
, (6.2d)

dviabc2
(t)

dt
=
iiabc2

(t)

Cf
− ioabc2

(t)

Cf
, (6.2e)

dioabc2
(t)

dt
=
viabc2

(t)

Ll1
− Rl

Ll2
ioabc2

(t) − Rload

Ll2
[ioabc1

(t) + ioabc2
(t)] . (6.2f)

When transforming (6.2) into the DQ0 reference frame, two different phases must

be taken into account: each phase depends only on the controller of the relative

inverter.

A phase difference α2 can thus be defined as

α2(t) = θ2(t) − θ1(t) , (6.3)

where θ1 and θ2 are the phases of via1 and via2 , respectively.
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Therefore, (6.2a)-(6.2c) are transformed by applying the Park matrix T (θ1), while

(6.2d)-(6.2f) by applying T (θ2). Hence, the DQ0 average state-space system of

the model is given by

diid1(t)

dt
=

VDC
2Lf

md1(t) − Rf

Lf
iid1(t) −

vid1(t)

Lf
+ ω1(t) iiq1(t) , (6.4a)

diiq1(t)

dt
=

VDC
2Lf

mq1(t) − Rf

Lf
iiq1(t) −

viq1(t)

Lf
− ω1(t) iid1(t) , (6.4b)

dvid1(t)

dt
=

iid1(t)

Cf
− iod1(t)

Cf
+ ω1(t) viq1(t) , (6.4c)

dviq1(t)

dt
=

iiq1(t)

Cf
−
ioq1(t)

Cf
− ω1(t) vid1(t) , (6.4d)

diod1(t)

dt
=

vid1(t)

Ll1
− Rl1

Ll1
iod1(t) −

Rload

Ll1
[iod1(t) + iod21(t)] + ω1(t) ioq1(t) ,

(6.4e)

dioq1(t)

dt
=

viq1(t)

Ll1
− Rl1

Ll1
ioq1(t) −

Rload

Ll1

[
ioq1(t) + ioq21(t)

]
− ω1(t) iod1(t) ,

(6.4f)

diid2(t)

dt
=

VDC
2Lf

md2(t) − Rf

Lf
iid2(t) −

vid2(t)

Lf
+ ω2(t) iiq2(t) , (6.4g)

diiq2(t)

dt
=

VDC
2Lf

mq2(t) − Rf

Lf
iiq2(t) −

viq2(t)

Lf
− ω2(t) iid2(t) , (6.4h)

dvid2(t)

dt
=

iid2(t)

Cf
− iod2(t)

Cf
+ ω2(t) viq2(t) , (6.4i)

dviq2(t)

dt
=

iiq2(t)

Cf
−
ioq2(t)

Cf
− ω2(t) vid2(t) , (6.4j)

diod2(t)

dt
=

vid2(t)

Ll2
− Rl2

Ll2
iod2(t) −

Rload

Ll2
[iod2(t) + iod12(t)] + ω2(t) ioq2(t) ,

(6.4k)

dioq2(t)

dt
=

viq2(t)

Ll2
− Rl2

Ll2
ioq2(t) −

Rload

Ll2

[
ioq2(t) + ioq12(t)

]
− ω2(t) iod2(t) ,

(6.4l)

where iod12 and ioq12 are the corresponding of iod1 and ioq1 , respectively, trans-

formed in the θ2 DQ0 reference frame, while iod21 and ioq21 are the corresponding
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of iod2 and ioq2 , respectively, transformed in the θ1 DQ0 reference frame.

iod12(t) = + cosα2(t) iod1(t) + sinα2(t) ioq1(t) , (6.5a)

ioq12(t) = − sinα2(t) iod1(t) + cosα2(t) ioq1(t) , (6.5b)

iod21(t) = + cosα2(t) iod2(t) − sinα2(t) ioq2(t) , (6.5c)

ioq21(t) = + sinα2(t) iod2(t) + cosα2(t) ioq2(t) , (6.5d)

where α2 has been defined in (6.3).

6.2.2 Controllers

For both inverters, the same controller as described in §5.2.2 has been used.

The parameters are the same and their values are as listed in Table 3.1. The

phase of the first inverter, θ1, has been chosen to be a reference for the system.

Therefore, α2 will be present in the state-space system instead of θ2. The other

control variables depend on the variables of their corresponding inverter only and

there is no explicit coupling in their ODEs.

6.2.3 Overall Average State-Space System

The complete system of equations can be computed by adding eighteen ODEs

modelling the controller actions (nine for each inverter) to the system (6.4) de-

scribing the physical variable behaviours. As observable in (6.4), among the

physical variables only the equations modelling the behaviour of iodq1
and iodq2

have an explicit presence of variables from the other inverter. The ODE relative

to the phase difference α2 is the only other equation containing variables from

both inverters.

The overall state-space model of the system is then given by

dPlp1(t)

dt
= ωcd[vid1(t) iid1(t) + viq1(t) iiq1(t) − Plp1(t)] , (6.6a)

dQlp1(t)

dt
= ωcd[vid1(t) iiq1(t) − viq1(t) iid1(t) − Qlp1(t)] , (6.6b)
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dθ1(t)

dt
= ωn +Kdp[Pref1 − Plp1(t)] , (6.6c)

dilpd1(t)

dt
= ωci[iod1(t) − ilpd1(t)] , (6.6d)

dilpq1(t)

dt
= ωci[ioq1(t) − ilpq1(t)] , (6.6e)

dxint,vd1(t)

dt
= vrefd1(t) − vid1(t) , (6.6f)

dxint,vq1(t)

dt
= vrefq1(t) − viq1(t) , (6.6g)

dxint,id1(t)

dt
= irefd1(t) − iid1(t) , (6.6h)

dxint,iq1(t)

dt
= irefq1(t) − iiq1(t) (6.6i)

diid1(t)

dt
=

VDC
2Lf

md1(t) − Rf

Lf
iid1(t) −

vid1(t)

Lf
+ ω1(t) iiq1(t) , (6.6j)

diiq1(t)

dt
=

VDC
2Lf

mq1(t) − Rf

Lf
iiq1(t) −

viq1(t)

Lf
− ω1(t) iid1(t) , (6.6k)

dvid1(t)

dt
=

iid1(t)

Cf
− iod1(t)

Cf
+ ω1(t) viq1(t) , (6.6l)

dviq1(t)

dt
=

iiq1(t)

Cf
−
ioq1(t)

Cf
− ω1(t) vid1(t) , (6.6m)

diod1(t)

dt
=

vid1(t)

Ll1
− Rl1

Ll1
iod1(t) −

Rload

Ll1
[iod1(t) + iod21(t)] + ω1(t) ioq1(t) ,

(6.6n)

dioq1(t)

dt
=

viq1(t)

Ll1
− Rl1

Ll1
ioq1(t) −

Rload

Ll1

[
ioq1(t) + ioq21(t)

]
− ω1(t) iod1(t) ,

(6.6o)

dPlp2(t)

dt
= ωcd[vid2(t) iid2(t) + viq2(t) iiq2(t) − Plp2(t)] , (6.7a)

dQlp2(t)

dt
= ωcd[vid2(t) iiq2(t) − viq2(t) iid2(t) − Qlp2(t)] , (6.7b)

dα2(t)

dt
= Kdp[Pref2 − Pref1 − Plp2(t) + Plp1(t)] , (6.7c)

dilpd2(t)

dt
= ωci[iod2(t) − ilpd2(t)] , (6.7d)
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dilpq2(t)

dt
= ωci[ioq2(t) − ilpq2(t)] , (6.7e)

dxint,vd2(t)

dt
= vrefd2(t) − vid2(t) , (6.7f)

dxint,vq2(t)

dt
= vrefq2(t) − viq2(t) , (6.7g)

dxint,id2(t)

dt
= irefd2(t) − iid2(t) , (6.7h)

dxint,iq2(t)

dt
= irefq2(t) − iiq2(t) (6.7i)

diid2(t)

dt
=

VDC
2Lf

md2(t) − Rf

Lf
iid2(t) −

vid2(t)

Lf
+ ω2(t) iiq2(t) , (6.7j)

diiq2(t)

dt
=

VDC
2Lf

mq2(t) − Rf

Lf
iiq2(t) −

viq2(t)

Lf
− ω2(t) iid2(t) , (6.7k)

dvid2(t)

dt
=

iid2(t)

Cf
− iod2(t)

Cf
+ ω2(t) viq2(t) , (6.7l)

dviq2(t)

dt
=

iiq2(t)

Cf
−
ioq2(t)

Cf
− ω2(t) vid2(t) , (6.7m)

diod2(t)

dt
=

vid2(t)

Ll2
− Rl2

Ll2
iod2(t) −

Rload

Ll2
[iod2(t) + iod12(t)] + ω2(t) ioq2(t) ,

(6.7n)

dioq2(t)

dt
=

viq2(t)

Ll2
− Rl2

Ll2
ioq2(t) −

Rload

Ll2

[
ioq2(t) + ioq12(t)

]
− ω2(t) iod2(t) ,

(6.7o)

where

ω1,2(t) = ωn + Kdp (Pref − Plp1,2(t)) , (6.8a)

vrefd1,2(t) = Vdn +Kdq(Qref −Qlp1,2(t)) (6.8b)

+ Lv{[ωn +Kdp(Pref − Plp1,2(t))]ilpq1,2(t) + ωci(ilpd1,2(t)− iod1,2(t))},

vrefq1,2(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp1,2(t))]ilpd1,2(t) + ωci(ilpq1,2(t)− ioq1,2(t))}.

(6.8c)

irefd1,2(t) = Kvp[vrefd1,2(t) − vid1,2(t)] + Kvi xint,vd1,2(t) − ω1,2(t)Cf viq1,2(t),

(6.8d)
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irefq1,2(t) = Kvp[vrefq1,2(t) − viq1,2(t)] + Kvi xint,vq1,2(t) + ω1,2(t)Cf vid1,2(t) ,

(6.8e)

md1,2(t) =
{
Kip[irefd1,2(t) − iid1,2(t)] + Kii xint,id1,2(t) − ω1,2(t)Lf iiq1,2(t)

} 2

VDC
,

(6.8f)

mq1,2(t) =
{
Kip[irefq1,2(t) − iiq1,2(t)] + Kii xint,iq1,2(t) + ω1,2(t)Lf iid1,2(t)

} 2

VDC
.

(6.8g)

In particular, (6.6) describe the behaviour of the first inverter variables, while

(6.7) of the second inverter variables. The algebraic terms are computed according

to (6.8): the index 1 is used for variables of the first inverter, index 2 for the

second inverter. Even though θ1 does not appear anywhere in the ODE system,

its value is used in practice for the Park transforms: the voltages and currents are

measured in abc reference frame, then brought to dq0 to perform the control. The

modulation indices are then transformed back to the abc reference frame before

being sent to the switches.

6.2.4 Equilibrium point

In order to analyse the system stability, the equilibrium points of the ODE

system formed by (6.6) and (6.7) must be computed. Subsequently, the system

is linearised about its steady state operating point. The equilibrium points are

found by setting the RHS of all the ODEs equal to 0, excepting (6.6c). In a

steady-state condition, the system phase would in fact not be constant, but it

would instead keep increasing with constant speed ω̄, given by

ω̄ = ωn + Kdp

(
Pref1 − P̄lp1

)
. (6.9)

The equilibrium frequency is the same for both inverters. In an AC system, where

the generators are synchronous machines or droop-regulated inverters, in steady

state all the generators work with the same frequency ω̄. Hence, in this case ω̄ is

the equilibrium frequency for both inverters and the phase difference α2 in steady
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state is constant. Setting the RHS of (6.7c) equal to 0 leads to

Pref2 − P̄lp2 = Pref1 − P̄lp1 . (6.10)

In both inverters, the steady state of the low-filtered powers is given by setting

their corresponding derivatives (6.6a), (6.6b), (6.7a) and (6.7b) equal to zero:

P̄lp1 = v̄id1 ı̄id1 + v̄iq1 ı̄iq1 , (6.11a)

Q̄lp1 = v̄id1 ı̄iq1 − v̄iq1 ı̄id1 , (6.11b)

P̄lp2 = v̄id2 ı̄id2 + v̄iq2 ı̄iq2 , (6.11c)

Q̄lp2 = v̄id2 ı̄iq2 − v̄iq2 ı̄id2 . (6.11d)

Substituting (6.11) into (6.9) and (6.10) leads to

ω̄ = ωn + Kdp

(
Pref1 − v̄id1 ı̄id1 − v̄iq1 ı̄iq1

)
, (6.12)

Pref2 − Pref1 − v̄id2 ı̄id2 − v̄iq2 ı̄iq2 + v̄id1 ı̄id1 + v̄iq1 ı̄iq1 = 0 . (6.13)

Proceeding analogously with (6.6d), (6.6e), (6.7d) and (6.7e), the steady-state

low-pass-filtered currents are given by

ı̄lpd1 = ı̄od1 , (6.14a)

ı̄lpq1 = ı̄oq1 , (6.14b)

ı̄lpd2 = ı̄od2 , (6.14c)

ı̄lpq2 = ı̄oq2 . (6.14d)

Substituting the explicit expressions for irefdq
andmdq into (6.6h)-(6.6k), (6.7h)-

(6.7k) and setting them equal to zero leads to

x̄int,vd1 =
ı̄id1 + ω̄ Cf v̄iq1

Kvi

, (6.15a)

x̄int,vq1 =
ı̄iq1 − ω̄ Cf v̄id1

Kvi

, (6.15b)
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x̄int,id1 =
Rf ı̄id1 + v̄id1

Kii

, (6.15c)

x̄int,iq1 =
Rf ı̄iq1 + v̄iq1

Kii

, (6.15d)

x̄int,vd2 =
ı̄id2 + ω̄ Cf v̄iq2

Kvi

, (6.15e)

x̄int,vq2 =
ı̄iq2 − ω̄ Cf v̄id2

Kvi

, (6.15f)

x̄int,id2 =
Rf ı̄id2 + v̄id2

Kii

, (6.15g)

x̄int,iq2 =
Rf ı̄iq2 + v̄iq2

Kii

. (6.15h)

Therefore, apart from ᾱ2, the steady-state values of the control variables depend

only on the physical variables of the corresponding inverter. The controllers are

hence not directly coupled.

Applying equilibrium conditions to (6.6f)-(6.6g) and (6.7f)-(6.7g) leads to

0 = −v̄id1 + Vdn1 +Kdq(Qref,1 − v̄id1 ı̄iq1 + v̄iq1 ı̄id1) + Lv ω̄ ı̄oq1 , (6.16a)

0 = −v̄iq1 + Vqn1 − Lv ω̄ ı̄od1 , (6.16b)

0 = −v̄id2 + Vdn2 +Kdq(Qref,2 − v̄id2 ı̄iq2 + v̄iq2 ı̄id2) + Lv ω̄ ı̄oq2 , (6.16c)

0 = −v̄iq2 + Vqn2 − Lv ω̄ ı̄od2 . (6.16d)

The relationship between ı̄idq and ı̄odq
can be derived from the equilibrium con-

ditions on (6.6l)-(6.6m) and (6.7l)-(6.7m), as follows.

ı̄id1 = +ı̄od1 − Cf ω̄ v̄iq1 , (6.17a)

ı̄iq1 = +ı̄oq1 + Cf ω̄ v̄id1 , (6.17b)

ı̄id2 = +ı̄od2 − Cf ω̄ v̄iq2 , (6.17c)

ı̄iq2 = +ı̄oq2 + Cf ω̄ v̄id2 . (6.17d)

Coupling between the steady states of the two inverters is described by setting
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the RHS of (6.6n)-(6.6o) and (6.7n)-(6.7n) equal to zero:

0 = v̄id1 − (Rl1 +Rload)̄ıod1 + ω̄ Ll1ı̄oq1 −Rload

[
cos(ᾱ2)̄ıod2 − sin(ᾱ2)̄ıoq2

]
,

(6.18a)

0 = v̄iq1 − (Rl1 +Rload)̄ıoq1 + ω̄ Ll1ı̄od1 −Rload

[
sin(ᾱ2)̄ıod2 + cos(ᾱ2)̄ıoq2

]
,

(6.18b)

0 = v̄id2 − (Rl2 +Rload)̄ıod2 + ω̄ Ll2ı̄oq2 −Rload

[
cos(ᾱ2)̄ıod1 + sin(ᾱ2)̄ıoq1

]
,

(6.18c)

0 = v̄iq2 − (Rl2 +Rload)̄ıoq2 + ω̄ Ll2ı̄od2 −Rload

[
− sin(ᾱ2)̄ıod1 + cos(ᾱ2)̄ıoq1

]
.

(6.18d)

The interactions between the output currents of both inverters and the nonlineari-

ties due to the steady state expression (6.12) for ω̄ make the analytical expressions

for ı̄idq , v̄idq , ı̄odq
and ᾱ2 complicated and inconvenient for practical purposes. A

numerical solution has therefore been used in this work. (6.12) has been substi-

tuted into (6.16), (6.17) and (6.18). The so-obtained twelve equations and (6.13)

form a nonlinear system of thirteen equations for the thirteen unknowns ᾱ2, ı̄id1 ,

ı̄iq1 , v̄id1 , v̄iq1 , ı̄od1 , ı̄oq1 , ı̄id2 , ı̄iq2 , v̄id2 , v̄iq2 , ı̄od2 , ı̄oq2 . The system has been solved by

the MATLAB function fsolve and its solutions have been substituted into (6.12),

(6.11), (6.14) and (6.15) to compute the remaining seventeen steady states.

6.2.5 Linearised System

Since the system formed by (6.6) and (6.7) is nonlinear, in order to evaluate

its steady-state stability it must first be linearised about equilibrium.

Let x1(t) and x2(t) be the variable vectors for the first and the second inverter,

respectively. Let x̄1(t) and x̄2(t) be their corresponding steady states and x̃1(t)

and x̃2(t) the corresponding perturbations.

Therefore, the linearised system is given by
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
dx̃1(t)

dt

dx̃2(t)

dt

 =

 A11 A12

A21 A22


 x̃1(t)

x̃2(t)

 , (6.19)

where

A11 =



−ωcd 0 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 0 · · ·

Kdp 0 0 0 0 0 0 · · ·

0 0 0 −ωci 0 0 0 · · ·

0 0 0 0 −ωci 0 0 · · ·

−Kdp Lv ı̄lpq1 −Kdq 0 Lvωci Lvω̄ 0 0 · · ·

Kdp Lv ı̄lpd1 0 0 −Lvω̄ Lvωci 0 0 · · ·

Kdp(Cf v̄iq1 −KvpLv ı̄oq1 ) −KdqKvp 0 KvpLvωci Lvω̄Kvp Kvi 0 · · ·

Kdp(LvKvp ı̄od1 − v̄id1Cf ) 0 0 −KvpLvω̄ LvωciKvp 0 Kvi · · ·
KdpKip

Lf
(Cf v̄iq1 −KvpLv ı̄oq1 ) −

KdqKvpKip

Lf
0

KipKvpLvωci

Lf

Lvω̄KvpKip

Lf

KviKip

Lf
0 · · ·

KdpKip

Lf
(LvKvp ı̄od1 − v̄id1Cf ) 0 0 −

KipKvpLvω̄

Lf

KipLvωciKvp

Lf
0

KviKip

Lf
· · ·

−v̄iq1Kdp 0 0 0 0 0 0 · · ·

v̄id1Kdp 0 0 0 0 0 0 · · ·

−ı̄oq1Kdp 0 0 0 0 0 0 · · ·

ı̄od1Kdp 0 0 0 0 0 0 · · ·

· · · 0 0 v̄id1 ωcd v̄iq1 ωcd ı̄id1 ωcd ı̄iq1 ωcd 0 0

· · · 0 0 −v̄iq1 ωcd v̄id1 ωcd ı̄iq1 ωcd −ı̄id1 ωcd 0 0

· · · 0 0 0 0 0 0 0 0

· · · 0 0 0 0 0 0 ωci 0

· · · 0 0 0 0 0 0 0 ωci

· · · 0 0 0 0 −1 0 −Lvωci 0

· · · 0 0 0 0 0 −1 0 −Lvωci

· · · 0 0 −1 0 −Kvp −ω̄Cf −KvpLvωci 0

· · · 0 0 0 −1 ω̄Cf −Kvp 0 −KvpLvωci

· · ·
Kii

Lf
0 −

Kip +Rf

Lf
0 −

KvpKip + 1

Lf
−
ω̄CfKip

Lf
−
KvpLvωciKip

Lf
0

· · · 0
Kii

Lf
0 −

Kip +Rf

Lf
ω̄CfKipLf −

KvpKip + 1

Lf
0 −

KvpLvωciKip

Lf

· · · 0 0 C−1
f 0 0 ω̄ −C−1

f 0

· · · 0 0 0 C−1
f −ω̄ 0 0 −C−1

f

· · · 0 0 0 0 L−1
l1 0 −

Rload +Rl1

Ll1
ω̄

· · · 0 0 0 0 0 L−1
l1 −ω̄ −

Rload +Rl1

Ll1



,

(6.20)
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A12 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
Rload ı̄oq21

Ll1
0 0 0 0 0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll1

Rload sin (ᾱ2)

Ll1

0 0 −Rload ı̄od21
Ll1

0 0 0 0 0 0 0 0 0 0 −Rload sin (ᾱ2)

Ll1
−Rload cos (ᾱ2)

Ll1



,

(6.21)

A21 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kdp 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll2
−Rload sin (ᾱ2)

Ll2

0 0 0 0 0 0 0 0 0 0 0 0 0
Rload sin (ᾱ2)

Ll2
−Rload cos (ᾱ2)

Ll2



,

(6.22)
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A22=



−ωcd 0 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 0 · · ·

−Kdp 0 0 0 0 0 0 · · ·

0 0 0 −ωci 0 0 0 · · ·

0 0 0 0 −ωci 0 0 · · ·

−Kdp Lv ı̄lpq2 −Kdq 0 Lvωci Lvω̄ 0 0 · · ·

Kdp Lv ı̄lpd2 0 0 −Lvω̄ Lvωci 0 0 · · ·

Kdp(Cf v̄iq2 −KvpLv ı̄oq2 ) −KdqKvp 0 KvpLvωci Lvω̄Kvp Kvi 0 · · ·

Kdp(LvKvp ı̄od2 − v̄id2Cf ) 0 0 −KvpLvω̄ LvωciKvp 0 Kvi · · ·
KdpKip

Lf
(Cf v̄iq2 −KvpLv ı̄oq2 ) −

KdqKvpKip

Lf
0

KipKvpLvωci

Lf

Lvω̄KvpKip

Lf

KviKip

Lf
0 · · ·

KdpKip

Lf
(LvKvp ı̄od2 − v̄id2Cf ) 0 0 −

KipKvpLvω̄

Lf

KipLvωciKvp

Lf
0

KviKip

Lf
· · ·

−v̄iq2Kdp 0 0 0 0 0 0 · · ·

v̄id2Kdp 0 0 0 0 0 0 · · ·

−ı̄oq2Kdp 0 −
Rload ı̄oq12

Ll2
0 0 0 0 · · ·

ı̄od2Kdp 0
Rload ı̄od12

Ll2
0 0 0 0 · · ·

· · · 0 0 v̄id2 ωcd v̄iq2 ωcd ı̄id2 ωcd ı̄iq2 ωcd 0 0

· · · 0 0 −v̄iq2 ωcd v̄id2 ωcd ı̄iq2 ωcd −ı̄id2 ωcd 0 0

· · · 0 0 0 0 0 0 0 0

· · · 0 0 0 0 0 0 ωci 0

· · · 0 0 0 0 0 0 0 ωci

· · · 0 0 0 0 −1 0 −Lvωci 0

· · · 0 0 0 0 0 −1 0 −Lvωci

· · · 0 0 −1 0 −Kvp −ω̄Cf −KvpLvωci 0

· · · 0 0 0 −1 ω̄Cf −Kvp 0 −KvpLvωci

· · ·
Kii

Lf
0 −

Kip +Rf

Lf
0 −

KvpKip + 1

Lf
−
ω̄CfKip

Lf
−
KvpLvωciKip

Lf
0

· · · 0
Kii

Lf
0 −

Kip +Rf

Lf
ω̄CfKipLf −

KvpKip + 1

Lf
0 −

KvpLvωciKip

Lf

· · · 0 0 C−1
f 0 0 ω̄ −C−1

f 0

· · · 0 0 0 C−1
f −ω̄ 0 0 −C−1

f

· · · 0 0 0 0 L−1
l1 0 −

Rload +Rl1

Ll1
ω̄

· · · 0 0 0 0 0 L−1
l1 −ω̄ −

Rload +Rl1

Ll1



,

(6.23)

where

ı̄od12 = + cos(ᾱ2)̄ıod1 + sin(ᾱ2)̄ıoq1 , (6.24a)

ı̄oq12 = − sin(ᾱ2)̄ıod1 + cos(ᾱ2)̄ıoq1 , (6.24b)

ı̄od21 = + cos(ᾱ2)̄ıod2 − sin(ᾱ2)̄ıoq2 , (6.24c)
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ı̄oq21 = + sin(ᾱ2)̄ıod2 + cos(ᾱ2)̄ıoq2 . (6.24d)

Despite the fact that the mutual actions of the inverters are symmetrical, A21

and A12 are not identical because the first inverter is chosen as a reference for the

phase: the third ODE of the inverter 1 describes the behaviour of θ1, while the

third variable of the inverter 2 describes the behaviour of α2, corresponding to

the phase difference between the two devices. α2 is used to transform the output

currents between dq0 reference frames having different phases.
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6.3 Two-Inverter Model Reduction

In this section, a model reduction analogous to that performed in §5.3 is

applied to the system described in §6.2. The ODE system (6.6)-(6.7) is nondi-

mensionalised; the dimensionless parameters are assigned to a “class” according

to the closest power of a small parameter ε; small parameters are identified; the

leading-order terms are retained. Similarly to the case of single-inverter reduc-

tion, some ODEs are turned into algebraic equations and their corresponding

state-space variables become terms which are dependent on the other variables.

Again, as for some parameters the attribution to a certain power of ε is not un-

equivocal, a gradual model reduction is performed. Each step of the reduction is

then validated through time-domain simulations and stability analysis.

6.3.1 Nondimensionalisation

Analogously to the single-inverter model reduction, the two-inverter model is

nondimensionalised before proceeding with the model reduction.

Since the same base values as in §5.3 are used for nondimensionalisation here, the

dimensionless parameters for both inverters are the same as in Table 5.4, with

the exception of the line resistances and inductances. According to (6.1), the

line impedance of the second inverter is three times the impedance of the first

inverter. Hence, Rl1 and Ll1 have the same values reported in Table 5.4, while

for the second inverter the following parameters are computed:

R̂l2 = 3R̂l1 = 5.0× 10−2 , (6.25a)

L̂l2 = 3L̂l1 = 4.0× 10−4 . (6.25b)

Regarding the attribution of the power of ε, Rl2 is considered O(1), while L12 is

assumed to be O(ε).

The full nondimensionalised state-space system is therefore given by

dP̂lp1(t̂)

dt̂
= ω̂cd[v̂id1(t̂) ı̂od1(t̂) + v̂iq1(t̂) ı̂oq1(t̂) − P̂lp1(t̂)] , (6.26a)
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dQ̂lp1(t̂)

dt̂
= ω̂cd[v̂id1(t̂) ı̂oq1(t̂) − v̂iq1(t̂) ı̂od1(t̂) − Q̂lp1(t̂)] , (6.26b)

dθ(t̂)

dt̂
= ω̂n + K̂dp[P̂ref − P̂lp1(t)] , (6.26c)

dı̂lpd1(t̂)

dt̂
= ω̂ci [̂ıod1(t̂) − ı̂lpd1(t̂)] , (6.26d)

dı̂lpq1(t̂)

dt̂
= ω̂ci [̂ıoq1(t̂) − ı̂lpq1(t̂)] , (6.26e)

dx̂int,vd1(t̂)

dt̂
= v̂refd1(t̂) − v̂id1(t̂) , (6.26f)

dx̂int,vq1(t̂)

dt̂
= v̂refq1(t̂) − v̂iq1(t̂) , (6.26g)

dx̂int,id1(t̂)

dt̂
= ı̂refd1(t̂) − ı̂id1(t̂) , (6.26h)

dx̂int,iq1(t̂)

dt̂
= ı̂refq1(t̂) − ı̂iq1(t̂) (6.26i)

dı̂id1(t̂)

dt̂
=

V̂DC

2 L̂f
md1(t̂) − R̂f

L̂f
ı̂id1(t̂) −

v̂id1(t̂)

L̂f
+ ω̂1(t̂) ı̂iq1(t̂) , (6.26j)

dı̂iq1(t̂)

dt̂
=

V̂DC

2 L̂f
mq1(t̂) − R̂f

L̂f
ı̂iq1(t̂) −

v̂iq1(t)

L̂f
− ω̂1(t̂) ı̂id1(t̂) , (6.26k)

dv̂id1(t̂)

dt̂
=

ı̂id1(t̂)

Ĉf
− ı̂od1(t̂)

Ĉf
+ ω̂1(t̂) v̂iq1(t̂) , (6.26l)

dv̂iq1(t̂)

dt̂
=

ı̂iq1(t̂)

Ĉf
−
ı̂oq1(t̂)

Ĉf
− ω̂1(t̂) v̂id1(t̂) , (6.26m)

dı̂od1(t̂)

dt̂
=

v̂id1(t̂)

L̂l1
− R̂l1

L̂l1
ı̂od1(t̂) −

R̂load

L̂l1
[̂ıod1(t̂) + ı̂od21(t̂)] + ω̂1(t̂) ı̂oq1(t̂) ,

(6.26n)

dı̂oq1(t̂)

dt̂
=

v̂iq1(t̂)

L̂l1
− R̂l1

L̂l1
ı̂oq1(t̂) −

R̂load

L̂l1
[̂ıoq1(t̂) + ı̂oq21(t̂)] − ω̂1(t̂) ı̂od1(t̂) ,

(6.26o)

dP̂lp2(t̂)

dt̂
= ω̂cd[v̂id2(t̂) ı̂id2(t̂) + v̂iq2(t̂) ı̂iq2(t̂) − P̂lp2(t̂)] , (6.27a)

dQ̂lp2(t̂)

dt̂
= ω̂cd[v̂id2(t̂) ı̂iq2(t̂) − v̂iq2(t̂) ı̂id2(t̂) − Q̂lp2(t̂)] , (6.27b)
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dα2(t̂)

dt̂
= +K̂dp[P̂ref2 − P̂ref1 − P̂lp2(t) +−P̂lp1(t)] , (6.27c)

dı̂lpd2(t̂)

dt̂
= ω̂ci [̂ıod2(t̂) − ı̂lpd2(t̂)] , (6.27d)

dı̂lpq2(t̂)

dt̂
= ω̂ci [̂ıoq2(t̂) − ı̂lpq2(t̂)] , (6.27e)

dx̂int,vd2(t̂)

dt̂
= v̂refd2(t̂) − v̂id2(t̂) , (6.27f)

dx̂int,vq2(t̂)

dt̂
= v̂refq2(t̂) − v̂iq2(t̂) , (6.27g)

dx̂int,id2(t̂)

dt̂
= ı̂refd2(t̂) − ı̂id2(t̂) , (6.27h)

dx̂int,iq2(t̂)

dt̂
= ı̂refq2(t̂) − ı̂iq2(t̂) (6.27i)

dı̂id2(t̂)

dt̂
=

V̂DC

2 L̂f
md2(t̂) − R̂f

L̂f
ı̂id2(t̂) −

v̂id2(t̂)

L̂f
+ ω̂2(t̂) ı̂iq2(t̂) , (6.27j)

dı̂iq2(t̂)

dt̂
=

V̂DC

2 L̂f
mq2(t̂) − R̂f

L̂f
ı̂iq2(t̂) −

v̂iq2(t)

L̂f
− ω̂2(t̂) ı̂id2(t̂) , (6.27k)

dv̂id2(t̂)

dt̂
=

ı̂id2(t̂)

Ĉf
− ı̂od2(t̂)

Ĉf
+ ω̂2(t̂) v̂iq2(t̂) , (6.27l)

dv̂iq2(t̂)

dt̂
=

ı̂iq2(t̂)

Ĉf
−
ı̂oq2(t̂)

Ĉf
− ω̂2(t̂) v̂id2(t̂) , (6.27m)

dı̂od2(t̂)

dt̂
=

v̂id2(t̂)

L̂l2
− R̂l2

L̂l2
ı̂od2(t̂) −

R̂load

L̂l2
[̂ıod2(t̂) + ı̂od12(t̂)] + ω̂2(t̂) ı̂oq1(t̂) ,

(6.27n)

dı̂oq2(t̂)

dt̂
=

v̂iq2(t̂)

L̂l2
− R̂l2

L̂l2
ı̂oq2(t̂) −

R̂load

L̂l2
[̂ıoq2(t̂) + ı̂oq12(t̂)] − ω̂2(t̂) ı̂od2(t̂) ,

(6.27o)

where

ω̂1,2(t̂) = ω̂n + K̂dp

(
P̂ref − P̂lp1,2(t̂)

)
, (6.28a)

v̂refd1,2(t̂) = V̂dn + K̂dq(Q̂ref − Q̂lp1,2(t̂)) (6.28b)

+ L̂v{[ω̂n + K̂dp(P̂ref − P̂lp1,2(t̂))]̂ılpq1,2(t̂) + ω̂ci(̂ılpd1,2(t̂)− ı̂od1,2(t̂))},

vrefq1,2(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp1,2(t))]ilpd1,2(t) (6.28c)
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+ ωci(ilpq1,2(t)− ioq1,2(t))},

ı̂refd1,2(t̂) = K̂vp[v̂refd1,2(t̂) − v̂id1,2(t̂)] + K̂vi x̂int,vd1,2(t̂) − ω̂1,2(t̂) Ĉf v̂iq1,2(t̂),

(6.28d)

ı̂refq1,2(t̂) = K̂vp[v̂refq1,2(t̂) − v̂iq1,2(t̂)] + K̂vi1,2 x̂int,vq1,2(t̂) + ω̂1,2(t̂) Ĉf v̂id1,2(t̂) ,

(6.28e)

md1,2(t̂) =
{
K̂ip [̂ırefd1,2(t̂) − ı̂ı̂d1,2(t̂)] + K̂ii x̂int,id1,2(t̂) − ω̂1,2(t̂) L̂f ı̂iq1,2(t̂)

} 2

V̂DC
,

(6.28f)

mq1,2(t̂) =
{
K̂ip [̂ırefq1,2(t̂) − ı̂iq1,2(t̂)] + K̂ii x̂int,iq1,2(t̂) + ω̂1,2(t̂) L̂f ı̂id1,2(t̂)

} 2

V̂DC
.

(6.28g)

The system formed of (6.26), (6.27) and (6.28) is reduced gradually in the follow-

ing sections.

For the sake of clarity, the hats will be dropped from the notation from now on.

6.3.1.1 Constant frequency

Given the good approximation obtained by considering ωn = O(ε−1) in the case

of a single inverter, the analogous procedure is replicated here for the two-inverter

model. Again, an auxiliary variable ω̄n = O(1) is defined as

ω̄n = ε ω . (6.29)

Substituting (6.29) into the equations for the angular frequancies leads to

ω1,2(t) = ε−1ω̄n + Kdp[Pref − Plp1,2(t)] . (6.30)

As, Plp1,2 is O(1) (data available from simulations), ω1,2(t) must be O(ε−1).

Hence, two new O(1) variables are defined as

ω̄1,2(t) = ε ω1,2(t) = ω̄n + εKdp[Pref − Plp1,2(t)] . (6.31)
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Thus, ω̄1,2(t) can be approximated by

ω̄1,2(t) ∼ ω̄n + O(ε) . (6.32)

This approximation, besides reducing slightly the size of the system (by 1 ODE

and its respective state-space variable), eliminates some of the nonlinearities due

to the dq0 coupling terms (e.g. ω1(t) iiq1(t), ω1(t) vid2(t),...). In steady state, ω1

will always be equal to ω2, because of physical laws of electrical systems. In

transients, however, the two frequencies might differ slightly to allow their phase

difference α2 to change value. The errors due to these inaccuracies are usually

negligible, as shown later in simulations.

The overall reduced system is then given by

dPlp1,2(t)

dt
= ωcd[vid1,2(t) iod1,2(t) − viq1,2(t) ioq1,2(t) − Plp1,2(t)] , (6.33a)

dQlp1,2(t)

dt
= ωcd[vid1,2(t) ioq1,2(t) − viq1,2(t) iod1,2(t) − Qlp1,2(t)] , (6.33b)

dα2(t)

dt
= Kdp[Pref2 − Pref1 − Plp2(t) + Plp1(t)] , (6.33c)

dilpd1,2(t)

dt
= ωci[iod1,2t) − ilpd1,2(t)] , (6.33d)

dilpq1,2(t)

dt
= ωci[ioq1,2(t) − ilpq1,2(t)] , (6.33e)

dxint,vd1,2(t)

dt
= vrefd1,2(t) − vid1,2(t) , (6.33f)

dxint,vq1,2(t)

dt
= vrefq1,2(t) − viq1,2(t) , (6.33g)

dxint,id1,2(t)

dt
= irefd1,2(t̂) − iid1,2(t̂) , (6.33h)

dxint,iq1,2(t)

dt
= irefq1,2(t) − iiq1,2(t) , (6.33i)

diid1,2(t)

dt
=

VDC
2Lf

md1,2(t) − Rf

Lf
iid1,2(t) −

vid1,2(t)

Lf
+ ωn iiq1,2(t) , (6.33j)

diiq1,2(t)

dt
=

VDC
2Lf

mq1,2(t) − Rf

Lf
iiq1,2(t̂) −

viq1,2(t)

Lf
− ωn iid1,2(t) , (6.33k)
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dvid1,2(t)

dt
=

iid1,2(t)

Cf
−
iod1,2(t)

Cf
+ ωn viq1,2(t) , (6.33l)

dviq1,2(t)

dt
=

iiq1,2(t)

Cf
−
ioq1,2(t)

Cf
− ωn(t) vid1,2(t) , (6.33m)

diod1(t)

dt
=

vid1(t)

Ll1
− Rl1

Ll1
iod1(t) −

Rload

Ll1
[iod1(t) + iod21(t)] + ωn ioq1(t) ,

(6.33n)

dioq1(t)

dt
=

viq1(t)

Ll1
− Rl1

Ll1
ioq1(t) −

Rload

Ll1

[
ioq1(t) + ioq21(t)

]
− ωn iod1(t) ,

(6.33o)

diod2(t)

dt
=

vid2(t)

Ll2
− Rl2

Ll2
iod2(t) −

Rload

Ll2
[iod2(t) + iod12(t)] + ωn ioq2(t) ,

(6.33p)

dioq2(t)

dt
=

viq2(t)

Ll2
− Rl2

Ll2
ioq2(t) −

Rload

Ll2

[
ioq2(t) + ioq12(t)

]
− ωn iod2(t) ,

(6.33q)

where

vrefd1,2(t) = Vdn +Kdq(Qref −Qlp1,2(t)) (6.34a)

+ Lv{[ωn +Kdp(Pref − Plp1,2(t))]ilpq1,2(t) + ωci(ilpd1,2(t)− iod1,2(t))},

vrefq1,2(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp1,2(t))]ilpd1,2(t) (6.34b)

+ ωci(ilpq1,2(t)− ioq1,2(t))},

irefd1,2(t) = Kvp[vrefd1,2(t) − vid1,2(t)] + Kvi xint,vd1,2(t) − ωnCf viq1,2(t),

(6.34c)

irefq1,2(t) = Kvp[vrefq1,2(t) − viq1,2(t)] + Kvi xint,vq1,2(t) + ωnCf vid1,2(t) ,

(6.34d)

md1,2(t) =
{
Kip[irefd1,2(t) − iid1,2(t)] + Kii xint,id1,2(t) − ωn Lf iiq1,2(t)

} 2

VDC
,

(6.34e)

mq1,2(t) =
{
Kip[irefq1,2(t) − iiq1,2(t)] + Kii xint,iq1,2(t) + ωn Lf iid1,2(t)

} 2

VDC
,

(6.34f)
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iod12(t) = + cosα2(t) iod1(t) + sinα2(t) ioq1(t) , (6.35a)

ioq12(t) = − sinα2(t) iod1(t) + cosα2(t) ioq1(t) , (6.35b)

iod21(t) = + cosα2(t) iod2(t) − sinα2(t) ioq2(t) , (6.35c)

ioq21(t) = + sinα2(t) iod2(t) + cosα2(t) ioq2(t) . (6.35d)

The system obtained through this approximation is simulated in parallel with the

full system. The system behaviour is observed in both steady state and transients.

In particular, Figure 6.2 depicts the dimensionless error on the system variable

iid1; the transient is caused by an instantaneous change in the load resistance

(Rload is instantaneously halved). In the picture, an oscillating behaviour due

to the mutual interactions of the two inverters is observable. The maximum

dimensionless steady-state error is order 10−4, but it increases to order 10−3

during transients.

Figure 6.2: Dimensionless error on iid1, computed between the full system and the
first reduced system.

EQUILIBRIUM POINT

Before analysing the system stability, the equilibrium points of the ODE system

are found and the system is linearised about its steady state point. In this case,

given the good agreement between the full-system and the reduced-system simu-
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lations, the steady-state values are assumed to be equal.

LINEARISEDSY STEM

Given the nonlinearities present in (6.33), the system is linearised before proceed-

ing with the stability analysis.

Considering the submatrix division


dx̃1(t)

dt

dx̃2(t)

dt

 =

 A11 A12

A21 A22


 x̃1(t)

x̃2(t)

 , (6.36)

the linearised system is given by

A11 =



−ωcd 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 · · ·

0 0 0 −ωci 0 0 · · ·

0 0 0 0 −ωci 0 · · ·

−Kdp Lv ı̄lpq1 −Kdq Lvωci Lvω̄ 0 0 · · ·

Kdp Lv ı̄lpd1 0 −Lvωn Lvωci 0 0 · · ·

Kdp(Cf v̄iq1 −KvpLv ı̄oq1 ) −KdqKvp KvpLvωci LvωnKvp Kvi 0 · · ·

Kdp(LvKvp ı̄od1 − v̄id1Cf ) 0 −KvpLvωn LvωciKvp 0 Kvi · · ·
KdpKip

Lf
(Cf v̄iq1 −KvpLv ı̄oq1 ) −

KdqKvpKip

Lf

KipKvpLvωci

Lf

LvωnKvpKip

Lf

KviKip

Lf
0 · · ·

KdpKip

Lf
(LvKvp ı̄od1 − v̄id1Cf ) 0 −

KipKvpLvωn

Lf

KipLvωciKvp

Lf
0

KviKip

Lf
· · ·

−v̄iq1Kdp 0 0 0 0 0 · · ·

v̄id1Kdp 0 0 0 0 0 · · ·

−ı̄oq1Kdp 0 0 0 0 0 · · ·

ı̄od1Kdp 0 0 0 0 0 · · ·
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· · · 0 0 v̄id1 ωcd v̄iq1 ωcd ı̄id1 ωcd ı̄iq1 ωcd 0 0

· · · 0 0 −v̄iq1 ωcd v̄id1 ωcd ı̄iq1 ωcd −ı̄id1 ωcd 0 0

· · · 0 0 0 0 0 0 ωci 0

· · · 0 0 0 0 0 0 0 ωci

· · · 0 0 0 0 −1 0 −Lvωci 0

· · · 0 0 0 0 0 −1 0 −Lvωci

· · · 0 0 −1 0 −Kvp −ωnCf −KvpLvωci 0

· · · 0 0 0 −1 ωnCf −Kvp 0 −KvpLvωci

· · ·
Kii

Lf
0 −

Kip +Rf

Lf
0 −

KvpKip + 1

Lf
−
ωnCfKip

Lf
−
KvpLvωciKip

Lf
0

· · · 0
Kii

Lf
0 −

Kip +Rf

Lf
ωnCfKipLf −

KvpKip + 1

Lf
0 −

KvpLvωciKip

Lf

· · · 0 0 C−1
f 0 0 ωn −C−1

f 0

· · · 0 0 0 C−1
f −ωn 0 0 −C−1

f

· · · 0 0 0 0 L−1
l1 0 −

Rload +Rl1

Ll1
ωn

· · · 0 0 0 0 0 L−1
l1 −ωn −

Rload +Rl1

Ll1



,

(6.37)

A12 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
Rload ı̄oq21

Ll1
0 0 0 0 0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll1

Rload sin (ᾱ2)

Ll1

0 0 −Rload ı̄od21
Ll1

0 0 0 0 0 0 0 0 0 0 −Rload sin (ᾱ2)

Ll1
−Rload cos (ᾱ2)

Ll1



,

(6.38)
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A21 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kdp 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll2
−Rload sin (ᾱ2)

Ll2

0 0 0 0 0 0 0 0 0 0 0 0
Rload sin (ᾱ2)

Ll2
−Rload cos (ᾱ2)

Ll2



,

(6.39)

A22=



−ωcd 0 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 0 · · ·

−Kdp 0 0 0 0 0 0 · · ·

0 0 0 −ωci 0 0 0 · · ·

0 0 0 0 −ωci 0 0 · · ·

−Kdp Lv ı̄lpq2 −Kdq 0 Lvωci Lvωn 0 0 · · ·

Kdp Lv ı̄lpd2 0 0 −Lvωn Lvωci 0 0 · · ·

Kdp(Cf v̄iq2 −KvpLv ı̄oq2 ) −KdqKvp 0 KvpLvωci LvωnKvp Kvi 0 · · ·

Kdp(LvKvp ı̄od2 − v̄id2Cf ) 0 0 −KvpLvωn LvωciKvp 0 Kvi · · ·
KdpKip

Lf
(Cf v̄iq2 −KvpLv ı̄oq2 ) −

KdqKvpKip

Lf
0

KipKvpLvωci

Lf

LvωnKvpKip

Lf

KviKip

Lf
0 · · ·

KdpKip

Lf
(LvKvp ı̄od2 − v̄id2Cf ) 0 0 −

KipKvpLvωn

Lf

KipLvωciKvp

Lf
0

KviKip

Lf
· · ·

−v̄iq2Kdp 0 0 0 0 0 0 · · ·

v̄id2Kdp 0 0 0 0 0 0 · · ·

−ı̄oq2Kdp 0 −
Rload ı̄oq12

Ll2
0 0 0 0 · · ·

ı̄od2Kdp 0
Rload ı̄od12

Ll2
0 0 0 0 · · ·
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· · · 0 0 v̄id2 ωcd v̄iq2 ωcd ı̄id2 ωcd ı̄iq2 ωcd 0 0

· · · 0 0 −v̄iq2 ωcd v̄id2 ωcd ı̄iq2 ωcd −ı̄id2 ωcd 0 0

· · · 0 0 0 0 0 0 0 0

· · · 0 0 0 0 0 0 ωci 0

· · · 0 0 0 0 0 0 0 ωci

· · · 0 0 0 0 −1 0 −Lvωci 0

· · · 0 0 0 0 0 −1 0 −Lvωci

· · · 0 0 −1 0 −Kvp −ωnCf −KvpLvωci 0

· · · 0 0 0 −1 ωnCf −Kvp 0 −KvpLvωci

· · ·
Kii

Lf
0 −

Kip +Rf

Lf
0 −

KvpKip + 1

Lf
−
ωnCfKip

Lf
−
KvpLvωciKip

Lf
0

· · · 0
Kii

Lf
0 −

Kip +Rf

Lf
ωnCfKipLf −

KvpKip + 1

Lf
0 −

KvpLvωciKip

Lf

· · · 0 0 C−1
f 0 0 ωn −C−1

f 0

· · · 0 0 0 C−1
f −ωn 0 0 −C−1

f

· · · 0 0 0 0 L−1
l1 0 −

Rload +Rl1

Ll1
ωn

· · · 0 0 0 0 0 L−1
l1 −ωn −

Rload +Rl1

Ll1



,

(6.40)

STABILITY ANALY SIS

If a linear system is stable, all its eigenvalues must be in the LHS of the complex

plane.

The eigenvalues of the linearised matrix of the full system are plotted together

with the eigenvalues of the reduced system linearised matrix. The comparison is

shown in Figure 6.3, where they are plotted in the complex plane.

Figure 6.3: Full system eigenvalues (red crosses) and reduced system eigenvalues (blu
dots), plotted on the complex plane.
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The agreement between the two stability analyses is good also near the imaginary

axis, as observable in the zoom of Figure 6.4.

Figure 6.4: Full system eigenvalues (red crosses) and reduced system eigenvalues (blue
dots); zoom on the area close to the imaginary axis.

Hence, the first step of the model reduction is assumed to be valid and to be

working well with this kind of systems.

6.3.1.2 Small line inductance

The line inductances are small enough, in both inverters, to be considered

O(ε). However, proceeding with the approximations following from this assump-

tion would mean turning the ODEs of the external currents iodq1,2 into algebraic

equations. These equations describe the coupling between the actions of the in-

verters and are of primary importance concerning the stability of the system.

Moreover, an eventual reduction would involve complicated algebraic expressions

for the computation of the external currents; these expressions should substitute

the external currents every time they appear in the other ODEs, increasing the

complexity and number of nonlinearities.

For these reasons, a choice has been made, in contrast to the single-inverter case,

to keep them as differential equations.
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6.3.1.3 Small filter impedance

Considering, analogously to §5.3.2.4, the filter inductance and resistance to be

O(ε), two O(1) parameters can be defined as

L̄f = ε−1 Lf = O(1), (6.41a)

R̄f = ε−1Rf = O(1). (6.41b)

Analogously to the single inverter case, the internal current ODEs can be approx-

imated as follows:

diid1,2(t)

dt
∼ VDCmd1,2(t)

2εL̄f
− R̄f

L̄f
iid1,2(t) −

vid1,2(t)

εL̄f
iid1,2(t) + ε−1ω̄n ioq1,2(t) ,

(6.42a)

diiq1,2(t)

dt
∼ VDCmq1,2(t)

2εL̄f
− R̄f

L̄f
iiq1,2(t) −

viq1,2(t)

εL̄f
iiq1,2(t) − ε−1ω̄n iod1,2(t) .

(6.42b)

Retaining the leading-order terms only in (6.42), four algebraic equations can be

obtained:

vid1,2(t) − L̄f ω̄niiq1,2(t) ∼ VDC
2
md1,2(t) , (6.43a)

viq1,2(t) − L̄f ω̄niid1,2(t) ∼ VDC
2
mq1,2(t), (6.43b)

where the RHSs of (6.43) are given by

VDC
2
md1,2(t) = Kip[irefd1,2(t) − iid1,2(t)] + Kii xint,id1,2(t) − ω(t)Lf iiq1,2(t)

∼ Kip[irefd1,2(t) − iid1,2(t)] + Kii xint,id1,2(t) − ω̄n L̄f iiq1,2(t),

(6.44a)
VDC

2
mq1,2(t) = Kip[irefq1,2(t) − iiq1,2(t)] + Kii xint,iq1,2(t) + ω1,2(t)Lf iid1,2(t)

∼ Kip[irefq1,2(t) − iiq1,2(t)] + Kii xint,id1,2(t) − ω̄n L̄f iiq1,2(t).

(6.44b)
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Substituting (6.44) into (6.43) leads to

vid1,2(t) ∼ Kip[irefd1,2(t) − iid1,2(t)] + Kii xint,id1,2(t) , (6.45a)

viq1,2(t) ∼ Kip[irefq1,2(t) − iiq1,2(t)] + Kii xint,iq1,2(t) . (6.45b)

Solving (5.85) for iid and iiq , allows one to find the algebraic equations for the

internal currents:

iid1,2(t) ∼ irefd1,2(t) +
Kii xint,id1,2 − vid1,2(t)

Kip

, (6.46a)

iiq1,2(t) ∼ irefq1,2(t) +
Kii xint,iq1,2 − viq1,2(t)

Kip

. (6.46b)

Considering the filter inductance and resistance to be “small” allows the reduction

of the system by four ODEs (two for each inverter) and four corresponding state-

space variables.

6.3.1.4 Neglect of integral error on the currents

Noting the analogies that have been achieved so far between the single-inverter

reduction and the two-inverter reduction, and considering that the controllers of

the two inverters are identical to the single inverter controller, for the sake of

brevity some passages are omitted in this section.

Assuming

K̄ii = εKii , (6.47)

x̄int,id1,2(t) = ε−1 xint,id1,2(t) , (6.48)

four further ODEs can be eliminated from the system, analogously to §5.3.2.5.

In fact, following these assumptions leads to

iid1,2(t) ∼ irefd1,2(t) , (6.49a)

iiq1,2(t) ∼ irefq1,2(t) , (6.49b)

while the state-space variables representing the integral errors on the currents are

no longer present in the system, even though they are computable through the
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following approximation:

x̄int,id1,2(t) ∼ vid1,2(t)

K̄ii

, (6.50a)

x̄int,iq1,2(t) ∼
viq1,2(t)

K̄ii

. (6.50b)

The corresponding reduced system is formed of 21 ODEs and is given by

dPlp1,2(t)

dt
= ωcd[vid1,2(t) iid1,2(t) − viq1,2(t) iiq1,2(t) − Plp1,2(t)] , (6.51a)

dQlp1,2(t)

dt
= ωcd[vid1,2(t) iiq1,2(t) − viq1,2(t) iid1,2(t) − Qlp1,2(t)] , (6.51b)

dα2(t)

dt
= Kdp[Pref2 − Pref1 − Plp2(t) + Plp1(t)] , (6.51c)

dilpd1,2(t)

dt
= ωci[iod1,2t) − ilpd1,2(t)] , (6.51d)

dilpq1,2(t)

dt
= ωci[ioq1,2(t) − ilpq1,2(t)] , (6.51e)

dxint,vd1,2(t)

dt
= vrefd1,2(t) − vid1,2(t) , (6.51f)

dxint,vq1,2(t)

dt
= vrefq1,2(t) − viq1,2(t) , (6.51g)

dvid1,2(t)

dt
=

iid1,2(t)

Cf
−
iod1,2(t)

Cf
+ ωn viq1,2(t) , (6.51h)

dviq1,2(t)

dt
=

iiq1,2(t)

Cf
−
ioq1,2(t)

Cf
− ωn vid1,2(t) , (6.51i)

diod1(t)

dt
=

vid1(t)

Ll1
− Rl1

Ll1
iod1(t) −

Rload

Ll1
[iod1(t) + iod21(t)] + ωn ioq1(t) ,

(6.51j)

dioq1(t)

dt
=

viq1(t)

Ll1
− Rl1

Ll1
ioq1(t) −

Rload

Ll1

[
ioq1(t) + ioq21(t)

]
− ωn iod1(t) ,

(6.51k)

diod2(t)

dt
=

vid2(t)

Ll2
− Rl2

Ll2
iod2(t) −

Rload

Ll2
[iod2(t) + iod12(t)] + ωn ioq2(t) ,

(6.51l)

dioq2(t)

dt
=

viq2(t)

Ll2
− Rl2

Ll2
ioq2(t) −

Rload

Ll2

[
ioq2(t) + ioq12(t)

]
− ωn iod2(t) ,

(6.51m)
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where

vrefd1,2(t) = Vdn +Kdq(Qref −Qlp1,2(t)) (6.52a)

+ Lv{[ωn +Kdp(Pref − Plp1,2(t))]ilpq1,2(t) + ωci(ilpd1,2(t)− iod1,2(t))},

vrefq1,2(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp1,2(t))]ilpd1,2(t) (6.52b)

+ ωci(ilpq1,2(t)− ioq1,2(t))},

iid1,2(t) = Kvp[vrefd1,2(t) − vid1,2(t)] + Kvi xint,vd1,2(t) − ωnCf viq1,2(t),

(6.52c)

iiq1,2(t) = Kvp[vrefq1,2(t) − viq1,2(t)] + Kvi xint,vq1,2(t) + ωnCf vid1,2(t) ,

(6.52d)

iod12(t) = + cosα2(t) iod1(t) + sinα2(t) ioq1(t) , (6.52e)

ioq12(t) = − sinα2(t) iod1(t) + cosα2(t) ioq1(t) , (6.52f)

iod21(t) = + cosα2(t) iod2(t) − sinα2(t) ioq2(t) , (6.52g)

ioq21(t) = + sinα2(t) iod2(t) + cosα2(t) ioq2(t) . (6.52h)

Simulating the system (6.51) in parallel with the full system, in a condition equal

to the previous case, the maximum dimensionless error is still order 10−4, while

during transients dimensionless errors are order 10−1, os observable in Figure 6.5.

LINEARISEDSY STEM

Considering the good steady-state agreement between (6.51) and the full system,

the equilibrium point of the variables in common is assumed to be the same.

In this case, the linearised system is

199



Applications of Perturbation Theory to Power Electronic Converters

Figure 6.5: Dimensionless error on iid1, computed between the full system and the
second reduced system.

A11 =



−ωcd 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 · · ·

0 0 −ωci 0 0 0 · · ·

0 0 0 −ωci 0 0 · · ·

0 −Kdq Lvωci Lvwn 0 0 · · ·

0 0 −Lvωn Lvωci 0 0 · · ·

0 −Kdq
Kvp

Cf
KvpLvωciC

−1
f KvpLvωnC

−1
f KviC

−1
f 0 · · ·

0 0 −KvpLvωnC
−1
f KvpLvωciC

−1
f 0 KviC

−1
f · · ·

0 0 0 0 0 0 · · ·

0 0 0 0 0 0 · · ·
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· · · ωcdı̄od1 ωcdı̄oq1 ωciv̄id1 ωcdv̄iq1

· · · ωcdı̄oq1 −ωcdı̄od1 −ωcdv̄iq1 ωcdv̄id1

· · · 0 0 ωci 0

· · · 0 0 0 ωci

· · · −1 0 −Lvωci 0

· · · 0 −1 0 −Lvωci
· · · −KvpC

−1
f 0 −(1 +KvpLvωci)C

−1
f 0

· · · 0 −KvpC
−1
f 0 −(1 +KvpLvωci)C

−1
f

· · · L−1
l1 0 −(Rload +Rl1)L−1

l1 ωn

0 L−1
l1 −ωn −(Rload +Rl1)L−1

l1



,

(6.53)

A12 =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0
Rload ı̄oq21

Ll1
0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll1

Rload sin (ᾱ2)

Ll1

0 0 −Rload ı̄od21
Ll1

0 0 0 0 0 0 −Rload sin (ᾱ2)

Ll1
−Rload cos (ᾱ2)

Ll1



,

(6.54)
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A21 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Kdp 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −Rload cos (ᾱ2)

Ll2
−Rload sin (ᾱ2)

Ll2

0 0 0 0 0 0 0 0
Rload sin (ᾱ2)

Ll2
−Rload cos (ᾱ2)

Ll2



,

(6.55)

A22 =



−ωcd 0 0 0 0 0 0 · · ·

0 −ωcd 0 0 0 0 0 · · ·

−Kdp 0 0 0 0 0 0 · · ·

0 0 0 −ωcd 0 0 0 · · ·

0 0 0 0 −ωcd 0 0 · · ·

0 −Kdq 0 Lvωcd Lvωn 0 0 · · ·

0 0 0 −Lvωn Lvωcd 0 0 · · ·

0 −KdqKvp

Cf
0

KvpLvωcd

Cf

KvpLvωn

Cf

Kvi

Cf
0 · · ·

0 0 0 −KvpLvωn

Cf

KvpLvωcd

Cf
0

Kvi

Cf
· · ·

0 0
Rload

Ll2
(̄ıod1 sin(ᾱ2)− ı̄oq1 cos(ᾱ2)) 0 0 0 0 · · ·

0 0
Rload

Ll2
(̄ıod1 cos(ᾱ2) + ı̄oq1 sin(ᾱ2)) 0 0 0 0 · · ·
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· · · ωcd ı̄od2 ωcd ı̄oq2 ωcd v̄id2 ωcd v̄iq2

· · · ωcd ı̄oq2 −ωcd ı̄od2 ωcd v̄iq2 ωcd v̄id2

· · · 0 0 0 0

· · · 0 0 ωci 0

· · · 0 0 0 ωci

· · · −1 0 −Lvωci 0

· · · 0 −1 0 −Lvωci

· · · −Kvp

Cf
0 −(1 +KvpLvωcd)

Cf
0

· · · 0 −Kvp

Cf
0 −(1 + LvωcdKvp)

Cf

· · · L−1
l2 0 −(Rload +Rl2)

Ll2
ωn

· · · 0 L−1
l2 −ωn −(Rload +Rl2)

Ll2



, (6.56)

STABILITY ANALY SIS

Again, the eigenvalues of the full linearised systems are compared with the eigen-

values of the second reduced system, as depicted in Figure 6.6.

Figure 6.6: Full system eigenvalues (red crosses) and second reduced system eigenval-
ues (green circles).

In this case, the agreement between the two stability analyses show significant
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discrepancies far from the imaginary axis. However, better agreement is observed

closer to it, corresponding to the eigenvalues that are more critical for the system

stability, as shown in Figure 6.7.

Figure 6.7: Full system eigenvalues (red crosses) and second reduced system eigenval-
ues (green circles); zoom on the area close to the imaginary axis.

Hence, some errors are likely to be present when fast transients are considered,

while the steady-state behaviour of the system and its slower dynamics are well

represented by the second reduced model.

6.3.1.5 Small filter capacitance

Since the value of the filter capacitance Cf is unchanged with respect with

the single inverter model, analogous considerations can be taken into account and

the system can be reduced further.

Considering the O(1) parameter C̄f , defined as

C̄f = ε−1Cf , (6.57)

the dynamics described by the voltages ODEs can be approximated by algebraic

equations, as well as examined in §5.3.2.6. In particular, this approximation

gives new algebraic expressions for the internal currents, obtained through the

retention of the leading order terms:
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iid1,2(t) ∼ iod1,2(t) − ω̄n C̄f viq1,2(t) , (6.58a)

iiq1,2(t) ∼ ioq1,2(t) + ω̄n C̄f vid1,2(t) . (6.58b)

Substituting (6.52c)-(6.52d) into (6.58) and solving for vid and viq leads to the

algebraic expressions of the voltages, while their four corresponding ODEs can

be eliminated from the so-reduced system.

6.3.1.6 Neglect of voltage integral errors

Following the same considerations of §5.3.2.7, the integral errors on the volt-

ages can drop from the system, while their corresponding ODEs are turned into

algebraic equations. This follows from the assumption that the parameter Kiv is

O(ε−1), leading to

ε
dx̄int,vd1,2(t)

dt
= vrefd1,2(t) − vid1,2(t) , (6.59a)

ε
dx̄int,vq1,2(t)

dt
= vrefq1,2(t) − viq1,2(t) , (6.59b)

where vrefd1,2(t), vid1,2(t), vrefq1,2(t) and viq1,2(t) areO(1). Considering the leading

orders only,

vid1,2(t) ∼ vrefd1,2(t) , (6.60a)

viq1,2(t) ∼ vrefq1,2(t) , (6.60b)

where vrefd1,2 and vrefq1,2 are given by

vrefd1,2(t) ∼ Vdn +Kdq[Qref −Qlp1,2(t)] + L̄v ω̄n ilpq1,2(t) (6.61a)

vrefq1,2(t) ∼ Vqn − L̄v ω̄n ilpd1,2(t) . (6.61b)

Hence, this approximation allows a further reduction by four ODEs and variables,
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leading to the following reduced state-space system:

dPlp1,2(t)

dt
= ωcd[vid1,2(t) iid1,2(t) − viq1,2(t) iiq1,2(t) − Plp1,2(t)] , (6.62a)

dQlp1,2(t)

dt
= ωcd[vid1,2(t) iiq1,2(t) − viq1,2(t) iid1,2(t) − Qlp1,2(t)] , (6.62b)

dα2(t)

dt
= Kdp[Pref2 − Pref1 − Plp2(t) + Plp1(t)] , (6.62c)

dilpd1,2(t)

dt
= ωci[iod1,2t) − ilpd1,2(t)] , (6.62d)

dilpq1,2(t)

dt
= ωci[ioq1,2(t) − ilpq1,2(t)] , (6.62e)

diod1(t)

dt
=

vid1(t)

Ll1
− Rl1

Ll1
iod1(t) −

Rload

Ll1
[iod1(t) + iod21(t)] + ωn ioq1(t) ,

(6.62f)

dioq1(t)

dt
=

viq1(t)

Ll1
− Rl1

Ll1
ioq1(t) −

Rload

Ll1

[
ioq1(t) + ioq21(t)

]
− ωn iod1(t) ,

(6.62g)

diod2(t)

dt
=

vid2(t)

Ll2
− Rl2

Ll2
iod2(t) −

Rload

Ll2
[iod2(t) + iod12(t)] + ωn ioq2(t) ,

(6.62h)

dioq2(t)

dt
=

viq2(t)

Ll2
− Rl2

Ll2
ioq2(t) −

Rload

Ll2

[
ioq2(t) + ioq12(t)

]
− ωn iod2(t) ,

(6.62i)

where

vid1,2(t) = Vdn +Kdq(Qref −Qlp1,2(t)) (6.63a)

+ Lv{[ωn +Kdp(Pref − Plp1,2(t))]ilpq1,2(t) + ωci(ilpd1,2(t)− iod1,2(t))},

viq1,2(t) = Vqn + Lv{ − [ωn +Kdp(Pref − Plp1,2(t))]ilpd1,2(t) (6.63b)

+ ωci(ilpq1,2(t)− ioq1,2(t))},

iod12(t) = + cosα2(t) iod1(t) + sinα2(t) ioq1(t) , (6.63c)

ioq12(t) = − sinα2(t) iod1(t) + cosα2(t) ioq1(t) , (6.63d)

iod21(t) = + cosα2(t) iod2(t) − sinα2(t) ioq2(t) , (6.63e)

ioq21(t) = + sinα2(t) iod2(t) + cosα2(t) ioq2(t) . (6.63f)
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This system is formed of 13 ODES.

Figure 6.8: Dimensionless error on iid1, computed between the full system and the
third reduced system.

As depicted in Figure 6.8, this reduced system does not agree very well with

the full one during transients (dimensionless errors of order 1), but the steady-

state behaviour show errors of order 10−3. Even though the error of only one

variable is shown in pictures, similar results are achieved in simulations for all

the state-space variables of the system (including both inverters).

LINEARISEDSY STEM

Linearising the system (6.62) about its steady-state operating point leads to

A11 =



−ωcd −ωcdKdq ı̄od1 Lvωcd(ωciı̄od1 − ωnı̄oq1) Lvωcd(ωnı̄od1 + ωciı̄oq1) · · ·

0 −ωcd(1 +Kdq ı̄oq1 Lvωcd(ωciı̄oq1 + ωnı̄od1) Lvωcd(ωnı̄oq1 − ωciı̄od1) · · ·

0 0 −ωci 0 · · ·

0 0 0 −ωci · · ·

0 −Kdq/Ll1
Lvωci
Ll1

Lvωn
Ll1

· · ·

0 0 −Lvωn
Ll1

Lvωci
Ll1

· · ·
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,

· · · ωcd(−Lvωciı̄od1 + v̄id1) ωcd(−Lvωciı̄oq1 + v̄iq1)

· · · ωcd(−Lvωciı̄od1 + v̄id1) ωcd(−Lvωciı̄oq1 + v̄iq1)

· · · ωci 0

· · · 0 ωci

· · · −Lvωci +Rl1 +Rload

Ll1
ωn

· · · −ωn −Rload +Rl1 + Lvωci
Ll1


(6.64)

A12 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
Rload ı̄oq21

Ll1
0 0 −Rload cos (ᾱ2)

Ll1

Rload sin (ᾱ2)

Ll1

0 0 −Rload ı̄od21
Ll1

0 0 −Rload sin (ᾱ2)

Ll1
−Rload cos (ᾱ2)

Ll1


, (6.65)

A21 =



0 0 0 0 0 0

0 0 0 0 0 0

Kdp 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −Rload cos (ᾱ2)

Ll2
−Rload sin (ᾱ2)

Ll2

0 0 0 0
Rload sin (ᾱ2)

Ll2
−Rload cos (ᾱ2)

Ll2



, (6.66)

208



CHAPTER 6. TWO-INVERTER AC MICROGRID

A22 =



−ωcd −ωcdKdq ı̄od1 Lvωcd(ωciı̄od1 − ωnı̄oq1) Lvωcd(ωnı̄od1 + ωciı̄oq1) · · ·

0 −ωcd(1 +Kdq ı̄oq1 Lvωcd(ωciı̄oq1 + ωnı̄od1) Lvωcd(ωnı̄oq1 − ωciı̄od1) · · ·

0 0 −ωci 0 · · ·

0 0 0 −ωci · · ·

0 −Kdq/Ll1
Lvωci
Ll1

Lvωn
Ll1

· · ·

0 0 −Lvωn
Ll1

Lvωci
Ll1

· · ·

,

· · · ωcd(−Lvωciı̄od1 + v̄id1) ωcd(−Lvωciı̄oq1 + v̄iq1)

· · · ωcd(−Lvωciı̄od1 + v̄id1) ωcd(−Lvωciı̄oq1 + v̄iq1)

· · · ωci 0

· · · 0 ωci

· · · −Lvωci +Rl1 +Rload

Ll1
ωn

· · · −ωn −Rload +Rl1 + Lvωci
Ll1


. (6.67)

STABILITY ANALY SIS

The comparison between the eigenvalues of the full linearised system and the

eigenvalues of the third reduced system is depicted in Figure 6.9.

Figure 6.9: Full system eigenvalues (red crosses) and third reduced system eigenvalues
(black circles).

Similarly to the previous case, some “fast” eigenvalues far from the imaginary axes

are missing in the reduced model and some others are distorted. This time, how-
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ever, a worse agreement is found also among the eigenvalues closer to the imagi-

nary axis, as observed in Figure 6.10: a couple of complex conjugate eigenvalues

are much further from the imaginary axis than the corresponding full-system pair.

This would be problematic when assessing the system stability.

Figure 6.10: Full system eigenvalues (red crosses) and third reduced system eigenvalues
(black circles); zoom on the area close to the imaginary axis.

In fact, if, for example, the value of the virtual inductance parameter is mul-

tiplied by a factor 5, the full system becomes unstable, while the third reduced

system keeps its stable condition. This is observable in both time-domain simu-

lations and eigenvalue plots (a zoom on the imaginary axis for this case is plotted

in Figure 6.11). The complex conjugate eigenvalues that do not agree well in

Figure 6.7 now are on the opposite sides of the imaginary axes.

Thus, the third reduced model might be used for a rough estimation of how the

system behaves, but cannot be trusted for stability concerns.
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Figure 6.11: Stability disagreement: full system eigenvalues (red crosses) and third
reduced system eigenvalues (black circles); zoom on the area close to the imaginary axis.
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6.4 Chapter Summary

An AC microgrid system formed of two identical inverters connected to a re-

sistive load by lines of different impedances has been considered in this section

for a model reduction based on singular perturbation methods. The microgrid is

assumed to run in island mode.

The full state-space system is formed of 30 ODEs and corresponding state-space

variables.

A first approximation involved considering the frequency of the inverters as con-

stant, despite it being dependent on the action of the droop controller in real

systems. This allows a reduction of only one ODE, but reduces the number of

nonlinearities and makes the linearisation of the system easier. Very good agree-

ment is found between the full system and this first reduced system, in both

time-domain simulations and stability analysis based on linearised-system eigen-

value computation.

A second reduction consisted in neglecting the current PI controller and its dy-

namics. The second reduced model is formed of 21 equations and agrees very

well with the full model in steady-state, while some errors are present during

transients. The stability analysis agrees well with that of the full system.

If a third reduction is performed, the voltage PI controller is neglected as well and

the system is formed of 13 equations only. In this case, though, the reduced model

behaves stably also in some conditions that cause the full model’s instability. This

can be observed in both simulations and stability analysis. This last finding is

particularly interesting, as commonly used engineering model reductions involve

the same procedure [29]. It is possible that this technique is more reliable when

bigger systems (three or more inverters) are considered. The mutual interactions

between the inverters, in fact, make AC microgrids sensitive to parameter changes

and prone to instability, if not adequately controlled. As the number of inverters

increases, the grid behaves more like an ideal grid with constant voltage and fre-

quency, which is hardly influenced by the action of a single device. In particular,

[29] considers three inverters and two loads. The importance of the number of

devices for the validity of model reductions is currently under investigation.
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The model reduction shown in the present chapter can be applied to other anal-

ogous microgrids, assuming that their parameters respect the assumptions made

in terms of orders of magnitude. At each step of a new model reduction, if a

parameter belongs to the same “size” with respect to ε, the same passages shown

here can be followed. This offers a systematic way of reducing the state-space

system models of AC microgrids, which might be expanded in the future once

systems with more than two inverters will be analysed and reduced as well.
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Chapter 7

Conclusions

7.1 Thesis Summary and General Conclusions

In this thesis, various applications of mathematical methods to power elec-

tronic systems have been considered. The aim of the work was to obtain effective

models of such systems, perform reliable model reductions and assess their op-

erating stability. Chapter §1 contains a short introduction to power electronic

converters and explains the general structure of this thesis.

The following chapter concerns the mathematical modelling of average behaviour

and the ripple of a Boost direct current (DC)-DC converter and a single-phase

(SP) Full-Bridge inverter; this chapter was meant to be propaedeutic for the

subsequent work. The average and ripple approximations, obtained through the

application of perturbation theories, were observed to be effective in simulations.

Similar approaches are found in the engineering literature; despite the lack of tech-

nical novelty, the procedure is here followed in a more rigorous manner. Since,

in §2, the validity of the average model is proven when the switching period is

negligible compared to the analysed time span, in the following chapters atten-

tion focuses on average models only, and the switching behaviour of the analysed

devices is not considered further.

In chapter §3, a system reduction based on singular perturbation has been pre-

sented and applied to a SP-AFE. This kind of device is characterised by nonlinear

time-periodic behaviour; the model reduction is achieved through nondimension-

alisation, identification of a small dimensionless parameter, then retention of only

leading-order terms. It can be observed that a moderate reduction in the size of
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the model (reduction from 8 to 6 in the number of variables and ODEs) can be

achieved through a rational reduction strategy based on identifying a small di-

mensionless parameter. This reduced model performs well and agrees with the

full model in both time domain simulations and stability analysis. A further re-

duction leading to 5 or 4 degrees of freedom does not, in this case, perform so well.

An acceptable model reduction for the system, then, involves a reduced model

with 6 state-space variables and corresponding ODEs. This model reduction can

be applied to any analogous device (in this case, SP-AFEs) whose physical and

control parameters belong to the same categories as in the analysed converter.

Partial model reductions can be used instead where only some parameters appear

to be the same size, and the applicability of reduction procedure can be assessed

stage by stage. This provides a flexible method of reducing the size of the system,

that would not need to undergo further comparisons of full and reduced models

in order to be validated.

Model reductions of AC microgrids are discussed in §5 and §6. First, a system

formed of a single inverter is considered; subsequently, a system formed of two

inverters. Results are achieved by applying perturbation theory to the system,

and different degrees of reduction are proposed. Time-domain simulations and

stability analyses are used to compare the reduced models with the full-model

behaviour. The models are nondimensionalised, and a gradual reduction is ap-

plied according to assumptions on the “size” of some systems parameters. The

variables are then split into “fast” and “slow”, and the ODEs of the “fast” variables

are approximated by algebraic equations. The reductions are validated at each

stage through simulations comparing the behaviour of the full and of the reduced

model, and computing the relative error between them.

About the single-inverter system, good results are found for reduced model with

as few as four ODEs (the full system has fifteen). The smaller reduced model,

having two ODEs only, does not perform so well, and hence should not be used

to approximate the system’s behaviour.

Concerning the two-inverter model reduction, a first approximation involved con-

sidering the frequency of the inverters as constant; very good agreement is found

between the full system and this first reduced system, in both time-domain simu-
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lations and stability analysis based on linearised-system eigenvalue computation.

Neglecting the current PI controller and its dynamics allows a reduction to 21

equations (the full model is formed of 30 independent variables and corresponding

ODEs); such reduced model agrees very well with the full model in steady-state,

while some errors are present during transients. The stability analysis agrees well

with that of the full system. If the voltage PI controller dynamics are neglected

as well (and the system is formed of 13 equations), discrepancies are found be-

tween the full and reduced model stability analyses. This can be observed in

both simulations and eigenvalue plots. This kind of reduction is relatively com-

mon in the engineering literature (e.g. [29] [27] [34] [38]). It is possible that this

technique is more reliable when larger systems (three or more inverters, multiple

loads) are considered: the mutual interactions between the inverters make AC

microgrids sensitive to parameter changes and prone to instability, if not ade-

quately controlled. As the number of inverters increases, the grid behaves more

like an ideal grid with constant voltage and frequency, which is hardly influenced

by the action of a single device. However, the overall reliability of reduced models

obtained through this method should be investigated further, since there might

be more cases where a more conservative approach (e.g. stopping the reduction

after neglecting the current PI) should be recommended.

7.2 Future Work

In the model reduction performed in §3 on a SP-AFE, results could be im-

proved by including further terms in the expansion of some of the variables. In

the presented case, in fact, only the leading-order terms have been taken into ac-

count. However, the system describes some physical processes which sometimes

cannot be neglected without affecting the model reliability. In general, drastic

approximations of those phenomena are unlikely to be effective, but further at-

tempt might be included in future work.

Results obtained in §6 differ from several AC microgrid model reductions found

in the engineering literature. Further studies should be carried out to understand
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how the reduction validity is affected by the number of devices included in the

system. Different models can be considered according to the number of inverters

and loads that are present in the analysed grid, in order to observe how this in-

fluences the disposition of the linearised systems’ eigenvalues and, consequently,

their stability analyses. Ideally, research should aim at identifying a minimum

“threshold” number of devices, below which the voltage PI dynamics must be

taken into account while computing reduced models for AC microgrids.

Besides this, more complex microgrids can be taken into account, involving induc-

tive loads, constant-power loads, and eventually more intricate network topolo-

gies. Applying and analysing the same model reduction to a wide variety of

microgrids should allow the identification of some parameter ranges that guaran-

tee its reliability.

As a general result, this thesis presents some examples of how the application

of perturbation theory (in particular, singular perturbation) can generate the

computation of reduced models, together with a list of requirements about the

system’s parameters in order for the reduction to be valid. At each stage of the

model reduction, some assumptions are made about the “size” of some parame-

ters. If a similar system needs to be reduced in an analogous manner, the same

model reduction can be directly applied to it, provided that its parameters be-

long to the same “sizes” as in the first model, which has been validated through

simulations and stability analyses comparisons.

A “small” dimensionless parameter ε is used throughout this thesis. In the de-

scribed works, ε is assumed to be 10−3. Some attempts have been made assuming

ε = 10−2, but the reduced models based on this assumptions do not perform very

well in comparative simulations with the full systems. On the opposite side, the

assumption that ε = 10−4 prevented the reduction from reaching the same stages

as with ε = 10−3, and was hence considered too conservative. However, the pos-

sibility that a suitable value for ε depends on the nature of the analysed system

cannot be excluded, and further studies can be conducted on that regard.

Collection of experimental results was beyond the main purposes of this work.

The content of each chapter of this thesis might benefit from the addition of ex-
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periments, which would prove that no mistake has been made in the various

modelling stages (physical system-switching model, switching model-full average

model, full average model-reduced average model). However, the main focus of

this work concerns the mathematical modelling and model reduction of the anal-

ysed power electronic systems, and its validity is hence not affected by the lack

of experiments.
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.1 Definition of Bandwidth in Control Theory

In control theory, the bandwidth of a closed-loop system is defined as the

frequency range where the magnitude of the closed-loop gain in the frequency

response is greater than −3.01 dB. The frequency which provides a -3.01 dB gain

is defined as cutoff frequency (ωB), where a gain equal to -3.01 dB corresponds

to an attenuation of the input equal to half of its value.

Indeed, since a decibel ratio of the output power Pout of the input power Pin

is defined as

GP = 10 log10

Pout

Pin

, (1)

if Pout is half of the input, the corresponding dB gain is equal to

GP = 10 log10

1

2
≈ −3.01dB . (2)

Figure 1: Bode plots of the frequency response of a low-pass filter
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