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Abstract

Molecular simulations are a powerful tool for translating information about the

intermolecular interactions within a system to thermophysical properties via sta-

tistical mechanics. However, the accuracy of any simulation is limited by the

potentials that model the microscopic interactions. Most first principles meth-

ods are too computationally expensive for use at every time-step or cycle of

a simulation, which require typically thousands of energy evaluations. Mean-

while, cheaper semi-empirical potentials give rise to only qualitatively accurate

simulations. Consequently, methods for efficient first principles predictions in

simulations are of interest.

Machine-learned potentials (MLPs) have shown promise in this area, offering

first principles predictions at a fraction of the cost of ab initio calculation. Of

particular interest are Gaussian process (GP) potentials, which achieve equivalent

accuracy to other MLPs with smaller training sets. They therefore offer the best

route to employing information from expensive ab initio calculations, for which

building a large data set is time-consuming.

GP potentials, however, are among the most computationally intensive MLPs.

Thus, they are far more costly to employ in simulations than semi-empirical

potentials. This work addresses the computational expense of GP potentials by

both reducing the training set size at a given accuracy and developing a method

to invoke GP potentials efficiently for first principles prediction in simulations.

By varying the cross-over distance between the GP and a long-range function

with the accuracy of the former, training by sequential design requires up to 40 %

fewer training points at fixed accuracy. This method was applied successfully to

the CO-Ne, HF-Ne, HF-Na+, CO2-Ne, (CO)2, (HF)2 and (HCl)2 systems, and can

be extended easily to other interactions and methods of prediction. Meanwhile,

a significant reduction in the time taken for Monte Carlo displacement and vol-

ume change moves is achieved by parallelisation of the requisite GP calculations.

Though this exploits in part the framework of GP regression, the distribution of

the calculations themselves is general to other methods of prediction. The work

also shows that current kernels and input transforms for modelling intermolecular

interactions are not improved easily.

9



Acknowledgements

Firstly, I would like to express my unreserved gratitude to my supervisors, Richard

Graham and Richard Wheatley. The constant guidance and encouragement with

which you supplied me was beyond what I had any right to expect. You have both

not only made this work possible but made undertaking it a great experience.

I would also like to thank my parents and grandparents, Debbie, Mark, Ivy

and Bernie. Throughout my life you have all been sources of limitless support;

your presence has always made me feel secure such that I could focus on the tasks

in front of me and in that way you have all been instrumental in the production

of the work laid out here.

And finally I would like to thank Tom and Cami. At different times and in

different ways you both helped me through difficult situations. Though I am not

sure either of you fully realised it, I hope my writing this shows in some small

way my appreciation for the significance you both have in the development of

this work.

10



Chapter 1

Introduction and overview

1.1 Introduction

Molecular simulations are useful in predicting properties of materials such as liq-

uids for which first principles equations of state cannot be derived easily. In any

simulation, approximations of the potential energy surfaces (PESs) that describe

the relevant molecular interactions are a pre-requisite. Traditionally, these ap-

proximations have been made using semi-empirical potentials (force-fields) [1,2].

An example of such a force-field is AMOEBA [3–5], which now includes polar-

isable three-body energies [6, 7]. This force-field has been applied recently to

simulations of a variety of systems, from nucleic acids [8] to protein-metal inter-

actions [9, 10].

However, AMOEBA models the interactions in the system via the multipole

expansion, which does not account for short-range repulsion between electrons.

This effect is instead accounted for empirically using a dampening function. Its

predictions are therefore not of the quality of those derived from first principles.

In general, force-fields are limited by closed functional forms that require fitted

parameters. Such forms restrict their capacity to capture the complicated topog-

raphy of the PES. Furthermore, force-fields fitted to ab initio or experimental

data are laborious to produce and may fail to capture accurately even the fit-

ted data. As the accuracy of a simulation depends on the potential employed,

much work has been devoted to developing force-fields that provide approxima-

tions of PESs with quantum-mechanical accuracy. Because quantum mechanics
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can be used to derive first principles predictions of the intermolecular interaction

energies, such potentials would achieve first principles accuracy and facilitate

quantitatively accurate simulations. These simulations would eliminate the need

for experiment when assessing, for example, phase coexistence in fluids. This is

of particular interest where experiments are dangerous, laborious, expensive or

inaccurate.

One method to invoke first principles predictions in simulations is to generate

ab initio force-fields [11]. These derive functional forms for the potential from

first principles and work by treating intermolecular interaction energies as pertur-

bations of the individual molecular energies. However, many of these force-fields

are not based entirely on first principles. For example, the effective fragment

potential [12] and sum of interaction between fragments ab initio potential [13]

contain empirical terms that must be fitted to experimental or ab initio data.

The work presented here pertains to an alternative approach: attempts to

‘learn’ the PES via a machine learning algorithm [14, 15]. Supervised machine

learning algorithms, which have also been applied in other fields in chemistry

and materials science [16–18], update their parameters using data. In the con-

text of machine-learned potentials (MLPs), the approach proceeds by training

a statistical technique on a relatively small set of data from quantum-chemical

calculations on the PES of interest. This small data set is known as the training

set. Many techniques have been employed to predict the energy in these algo-

rithms, including neural networks [19–23], moment tensors [24–26] and Gaussian

processes (GPs) [27–45]. MLPs offer a route to employ first principles predictions

in simulations at massively reduced cost compared with using ab initio methods

directly.

The first MLPs invoked neural networks (NNs) [46] as the method of predic-

tion. NN potentials were then used to model the high-dimensional PES of Si in

both solid and liquid states [19] before applications to systems of more than one

element such as ZnO2 [20] and ZnO2 with Cu clusters [21]. These NN potentials

modelled the energy at a given atom as the sum of the energies of the interatomic

interactions within a pre-ordained cross-over distance, Rcross, of 6 Å. In systems

of more than one element, interactions beyond Rcross were approximated as the
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energy of the electrostatic interactions between the atoms. This accounted for

potential charge transfer between different atomic species [20]. Meanwhile, for

systems comprising only one element, the energy of interaction above Rcross was

assumed to be zero [19].

These NN potentials achieved promising results. The energy versus volume

curves produced for a number of Si crystal structures were in good agreement

with the data from density functional theory (DFT) [19], while the NN-predicted

energies of various Zn4O4 clusters were found to match closely those from DFT

[20]. However, it has since been found that Gaussian Processes [47, 48] have the

capacity to outperform NNs in terms of predictive accuracy at a fixed training

set size [31, 49, 50]. This advantage, though, comes with a larger computational

cost of prediction for a given size of training set [31, 49, 50]. The disparity in

cost between GP potentials and traditional force-fields is yet larger, meaning

reducing the amount of training data required for a GP potential is paramount.

The smaller training set sizes for GPs make them ideal candidates for transfer

learning [51,52], which in this context entails upgrading the training set energies

to a more accurate ab initio method once they have been selected from a reference

set. GP potentials, therefore, represent an excellent route to apply the most

accurate first principles predictions to simulations.

Resultantly, all work herein is concerned with GP potentials. An existing

example of a force-field that uses GP potentials is FFLUX [53], which has been

used to approximate the energies of weakly bound complexes [54] and water clus-

ters [55], among other applications [56–58]. Furthermore, in the field of materials

science, GP models that invoke a smooth overlap of atomic positions (SOAP)

kernel [59] have seen successful applications to many systems [40–42,60–63].

GP potentials have also produced promising results in applications to inter-

molecular interactions [27–30]. Initially [27], the training sets for these mod-

els were constructed with Latin hypercube sampling [64–66]. Sequential design

strategies [67,68], which achieve a prescribed accuracy with a smaller training set,

have since been shown to outperform such methods [29]. Regardless of training

set design, Rcross was imposed prior to training, just as for the NN potentials.

This parameter defined a boundary beyond which a simple, long-range asymp-
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totic function took over prediction from the GP [27, 29]. A similar approach is

used in materials science, in which the contribution by one atom to the neighbour

density of another was assumed to be zero if the two were separated by a distance

in excess of Rcross [42,62]. Cross-over distances have been applied alongside other

statistical methods of prediction too [15,50], with moment tensor [25] potentials

employing fixed, pre-determined cross-over distances. These distances are applied

as they prevent the use of data to fit the long-range portion of the PES, where

the energy tends asymptotically to zero.

Methods to achieve linear scaling for density functional theory (DFT) calcu-

lations have been produced [69, 70], offering an alternative to MLPs. However,

said scaling is linear in the number of atoms in the simulation, which will exceed

the size of a sequentially-designed training set. This is significant as the com-

putational cost of prediction with GPs scales linearly with the size of this set.

Moreover, for systems where dispersion interactions comprise a significant por-

tion of the intermolecular energy DFT is a poor choice as it does not approximate

these interactions from first principles.

Thus MLPs offer a more flexible route to apply ab initio-quality potentials

because they in general allow the same algorithm to be used for predicting PESs

of various chemical systems. Moreover, they allow the quality of the training

data to be easily modified. GP potentials are particularly promising due to

their suitability to transfer learning, which renders them ideal for applying high-

level first principles predictions to simulations. A possible application of these

potentials is to the operation of carbon capture and storage (CCS) pipelines,

which transport impure CO2 mixtures at pressures near to the critical point to

maximise flow rate.

However, the exact temperature and pressure required to reach the critical

point for different mixtures varies based on their composition. Re-creating this

composition exactly to parameterise force-fields for simulations is difficult, but

without such force-fields only qualitatively accurate estimates of the phase bound-

ary are possible. Furthermore, dispersion interactions will form a significant con-

tribution to the energy, rendering DFT unsuitable.

Applying GP potentials to simulations of CCS pipelines represents a possible
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solution: build potentials for each interaction between the small molecules in

the mixture and apply these to the simulation. Using first principles predictions

from these potentials will result in a simulation that itself achieves first principles

accuracy, which will permit the various thermophysical properties that affect

transport through CCS pipelines to be determined for different mixtures without

experiment. As the compositions of the mixtures vary greatly between pipelines,

modelling these properties would otherwise require extensive data from laborious

experiment. Owing to the expected importance of simulations in CCS operations

[71], GP potentials could have an important role in combating climate change. For

example, the UK government has said that CCS “has the potential to decarbonise

the economy and maximise economic opportunities for the UK” [72] once sufficient

cost reductions are made to its deployment and safety concerns are addressed.

These are processes in which GP potentials may prove instrumental.

Currently, the derivation of virial coefficients [73] to develop an equation of

state (EoS) is a common method for determining first principles thermophysi-

cal properties of gases. Recently, these have been developed for helium [74] and

used to determine several properties of pure ethane [75]. Virial EoS are produced

relatively easily by integrating an appropriate PES. However, CCS pipelines com-

monly contain N2, O2, Ar and H2 in addition to CO2 [28]. In such cases, virial

EoS are harder to produce due to the variety of two- and three-body interactions.

This, though, is mitigated by the use of GPs, which allow PES models to be found

straightforwardly. All possible combinations of two- and three-body interactions

are needed for a virial EoS, which accounts for all possible two-body interactions

in its second coefficient, all possible three-body terms in its third coefficient and

so on. Higher-order coefficients are often negligible, however.

Despite their utility in the gas phase, virial EoS are not produced readily for

liquids. Though empirical EoS can be developed in the liquid phase, these are

inaccurate for mixtures of different compositions to those used in fitting and so

require extensive experimental data. In addition, they do not offer first principles

accuracy. Hence the use of molecular simulations for CCS pipelines is preferred.

Use of a GP potential in such a simulation would permit the derivation of a first

principles liquid EoS via a method to systematically derive such an equation from
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the simulation [76,77].

Improvements to the training and implementation of GP potentials are sig-

nificant for two reasons: MLPs are in general more computationally intensive

than force-fields, and GP potentials are among the most expensive MLPs. The

aforementioned eligibility of GPs in transfer learning means their efficient im-

plementation offers the best route to applying high-level (e.g. coupled cluster)

ab initio information in simulations. This is because minimising the number of

these expensive calculations is also important from a computational standpoint.

Methods for the efficient training and implementation of GP potentials are there-

fore of great interest. Holistically, this work details strategies that could improve

vastly the accuracy of computationally tractable molecular simulations by reduc-

ing the training set size of GP potentials and implementing them in simulations

efficiently.

This is achieved via improvements to the methodology employed to train and

implement GP potentials. Regarding training, this work postulates that GP po-

tentials can be developed more efficiently if the value of Rcross is not fixed but

learned from the reference data. This method is explored in Chapter 3 and is

applicable to other methods of prediction or modelling problems. The effect of

alternative kernel functions and transforms on the inputs and outputs on training

efficiency is then interrogated in Chapter 4. This was undertaken with the ex-

pectation that enhancing the stationarity of the data or making the kernel more

robust to non-stationarity would improve training outcomes for certain systems.

The work also posits that the application of GP potentials to simulations can be

made more efficient via parallelisation, which is discussed in Chapter 5. Parallel

calculations pervade many branches of science, which is reflected in their breadth

of applications ranging from Monte Carlo simulation of photon transport for

medical applications [78] to simulation of the fragmentation of soil following an

explosion [79]. More recently, a parallel program for executing lattice-Boltzmann

simulations was developed [80], which was designed to work across varied com-

putational set-ups. This follows the principles of map-reduce parallel program-

ming [81], which aims to permit automatic optimisation of parallel code across

various devices.
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1.2 Overview of structure

This work begins with a discussion of relevant background information in Chapter

2, which includes a discussion of GPs, how they make predictions and the root of

their large computational cost. This precedes an overview of PESs and ab initio

methods, before a discussion of intermolecular interactions. The former outlines

what PESs are and how a range of ab initio methods work. The overview of

intermolecular interactions includes common interaction types, as well as a brief

outline of the multipole expansion. Finally, statistical mechanics and molecular

simulations are considered in order to motivate the work shown in Chapter 5.

Chapters 3, 4 and 5 are the chapters containing original research. The results

in Chapter 4 show that more complicated transformations on the inputs and out-

puts, and more complex kernel functions do not significantly affect the efficiency

of training. The results in Chapters 3 and 5, meanwhile, contribute directly to the

stated aims of increasing the efficiency of training and implementation of GPs.

The first of these chapters details the methods for optimising Rcross, leading to an

up to 40 % reduction in training set size for fixed accuracy. The latter explores

implementing GP potentials in simulations using parallel programming to exploit

that the GP predictions are a product of nested sums over exponentials. All of

these exponentials can be pre-computed and the nested sums parallelised. This

leads to a nearly five-fold reduction in computational time for a non-additive

energy calculation over five processes and a 15-fold reduction over 40 processes.

1.3 List of publications

The work in Chapter 3 has already been published. Other than my supervisors,

I was the only person working on this project and am responsible for the work in

its entirety. The same is true of both chapters said work precedes. Though the

work in Chapter 4 will not be published, the work in Chapter 5 will be suitable

once the modifications in the future work section are added.
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Chapter 2

Background theory

2.1 Gaussian processes

Gaussian processes (GPs) [47] are non-parametric statistical methods of predic-

tion that can be employed in both regression and classification tasks. This work

focuses on the former, where GPs have seen recent applications ranging from the

estimation of the critical temperature of an Fe-based superconductor [82] to the

solution of partial differential equations [83]. The prevalence of GPs is highlighted

further by the development of deep GPs [84], which share the same structure as

neural networks but with a GP at each hidden layer. This method exploits the

fact that a GP is equivalent to a neural network with a single hidden layer com-

prising an infinite number of nodes [85]. Deep GPs are becoming so commonplace

that a library for their implementation was recently developed for Python [86].

In the context of models of potential energy surfaces, the ability of GPs to

interpolate multi-dimensional functions is paramount. This property allows them

to capture the underlying potential energy surface from a relatively small number

of ab initio calculations. This means that GPs are well-suited to the development

of potentials that produce first principles predictions. Their success in doing

so has been illustrated in a variety of chemical contexts, from intermolecular

interactions [27,29] to solid-state interactions [87]. It has also been shown that the

vibrational spectrum of H2CO is predicted with more accuracy and less variability

between fits by a GP when compared with a neural network [49]. GP potentials

in addition achieve the lowest error per atom for simulations of various metals
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when compared with a variety of machine learning methods [50]. Furthermore,

GPs were shown to predict the energies of (H2O)x clusters with greater accuracy

than neural networks for x ≥ 3 [31]. In all of these examples, however, the

computational cost of prediction of the GP exceeded that of the other methods.

As this cost scales linearly with training set size, methods to reduce this set for

GP potentials are of interest.

This section introduces GPs and GP regression to describe their use in mod-

elling potential energy surfaces. The main purpose is to address what GPs are;

how they make predictions; why prediction and re-optimisation of Gaussian pro-

cesses is so computationally intensive; what different kernel functions are avail-

able; and how GP potentials were developed previously. None of these sections

are exhaustive, with more detail available in the given references, but they aim

to introduce these topics to facilitate and frame subsequent discussions.

This section draws heavily on ‘Gaussian Processes for Machine Learning’ by

Rasmussen and Williams [47], specifically chapters two, four and five. Additional

information was also taken from other sources [88,89] where required. Meanwhile,

subsection 2.1.4 describes briefly the work of Uteva et al. [27, 29], providing an

overview of how Gaussian process models of potential energy surfaces were trained

and the results obtained from this training.

2.1.1 An introduction to Gaussian processes

Any function, f(x) ∈ R, comprises an infinite number of points whether x ∈ [0, 1]

or x ∈ [−∞,∞]. As such, f(x) is described by an infinite dimensional distribu-

tion. Given a finite number of observations Nt, the finite dimensional distribution

required to approximate the underlying distribution of f(x) can be inferred [89].

When approximating f(x) as a Gaussian process (GP), the finite dimensional

distribution is assumed to be multivariate Gaussian with Nt dimensions.

This work is concerned with the approximation of potential energy surfaces.

These are discussed in detail in Section 2.2, but for now it is sufficient to consider

a potential energy surface as a multivariate function f(x), x ∈ RNd , with x a

set of coordinates describing a point on the multidimensional surface and Nd the

length of x. Once more, only Nt instances of x need be observed to approximate
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f(x) as a GP. The set T = {xi,Yi}Nt
i=1 is referred to henceforth as the training

set for the GP, where Yi is the observed energy at point xi and Nt is the number

of training points.

When approximating f(x), it is assumed that the distribution describing f(x)

is a Gaussian process for which the finite dimensional distribution is multivariate

Gaussian distributed. This is denoted

f(x) ∼ GP(µ,K), (2.1)

where K is a matrix containing the covariances between the values of f(x) at all

observed x and µ is the mean vector,

µ = (µ1, ..., µNt), (2.2)

of length Nt. This is filled using a mean function µ(xi) = µi. It is common

to specify that µ(xi) = 0 ∀ i, leaving the GP predictions to tend to zero away

from the observations. This is reasonable for potential energy surfaces, where the

long-range energies tend asymptotically towards zero at large separations, and is

therefore the case here.

Meanwhile, the Nt x Nt positive-definite covariance matrix is

K =



k(x1,x1) k(x1,x2) · · · k(x1,xNt)

k(x2,x1) k(x2,x2) · · · k(x2,xNt)
... ... . . . ...

k(xNt ,x1) k(xNt ,x2) · · · k(xNt ,xNt)


. (2.3)

This shows the covariance between all training points in its off-diagonal and the

variances of each along its diagonal. K is filled using a covariance (or kernel)

function k(xi,xj). Different types of kernel function are considered in section

2.1.3.

Fitting a GP can be interpreted in terms of Bayesian inference, which exploits

Bayes’ theorem,

p(M |D) = p(D|M)p(M)
p(D) . (2.4)

Equation 2.4 is derived straightforwardly from the law of conditional probability,

p(M |D) = p(M ∩D)
p(D) . (2.5)
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In these equations, M represents a model that is fitted to some data D. p(M |D) is

the posterior distribution, p(D|M) is the likelihood L, p(M) is the prior and p(D)

is the marginalisation constant. p(M ∩D) in equation 2.5 is the joint distribution

of M and D.

The quality of the fit to the data in the posterior distribution is determined

by the hyperparameters1 θ of the kernel function. As P (M |D) ∝ L, optimisation

of the hyperparameters is undertaken by maximising

L =
Nt∏
i

pi(Yi|θ). (2.6)

It is assumed that the data are independent and identically distributed. Assuming

also a multivariate Gaussian finite dimensional distribution,

pi(Yi|θ) = 1√
2π|K|

exp
(

− 1
2(Yi − µi)TK−1(Yi − µi)

)
. (2.7)

Given a zero mean function, θ contains the hyperparameters of the kernel function

only and substituting equation (2.7) into equation (2.6) yields

L = (2π)− Nt
2 |K|−

1
2 exp

(
− 1

2YTK−1Y
)
. (2.8)

Here, |K| is the determinant of the covariance matrix and Y is a vector of observed

energies.

Rather than equation (2.8), it is simpler to maximise the log-likelihood,

log(L) = −Nt

2 log(2π) − 1
2 log |K| − 1

2YTK−1Y, (2.9)

where “log” denotes the natural logarithm. This equation demonstrates that

optimisation of the kernel function requires inversion of the Nt x Nt covariance

matrix. Though the symmetry of the matrix can be exploited to increase the

speed of this inversion using, for example, the Cholesky decomposition [90–92]

(Appendix A), it still scales as order O(N3
t ) [47,93]. Consequently, it is of interest

to produce the smallest possible GP training sets to maximise the speed with

which K−1 can be calculated. This is the first of several reasons to minimise Nt

that are introduced in this section.
1The use of this term rather than “parameters” is explained in subsection 2.1.3.

21



2.1.2 Gaussian process regression

After an arbitrary number of training observations Nt, a prediction at a new

point x∗ of the value Y∗ can be made via GP regression. Assuming the training

data in T are subject to noise σ2
n, the joint distribution between the unobserved

point and these data isY

Y∗

 ∼ N
(
0,

K + Iσ2
n KT

∗

K∗ k(x∗, x∗)

 ). (2.10)

Here, I is the identity matrix and

K∗ = (k(x∗,x1), ..., k(x∗,xNt)) (2.11)

is a vector that contains the covariance between x∗ and all training points.

The posterior (i.e. predictive) distribution is obtained by conditioning the

joint distribution on the training data (see Appendix B), yielding

Y∗|x∗, T ∼ N (KT
∗ (K + Iσ2

n)−1Y, k(x∗,x∗) − KT
∗ (K + Iσ2

n)−1K∗). (2.12)

Therefore the predicted value of Y∗ is

Y∗ = KT
∗ (K + Iσ2

n)−1Y (2.13)

and the uncertainty in that prediction var(Y∗) is

var(Y∗) = k(x∗,x∗) − KT
∗ (K + Iσ2

n)−1K∗. (2.14)

It is a natural advantage of GPs that any prediction has a concomitant estimate

of the uncertainty.

Equation (2.13) implies that predictions from GPs also incur a significant

computational cost, as they entail inversion of (K+Iσ2
n). However, (K+Iσ2

n)−1Y,

known as the Woodbury vector, has to be determined once only for a fixed T . This

means that the computational cost of prediction scales as O(Nt) if no information

on the variance is desired. Though this is vastly better than the scaling of the cost

of re-optimisation, it can still become obstructively expensive for large training

sets and means that GP potentials are more computationally intensive than force-

fields. This shows once again that minimising the size of the training set when

using GPs is paramount.
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Neural network (NN) potentials also have a lower associated cost of predic-

tion than GP potentials [31,49,50], though, as mentioned, GP potentials exhibit

greater predictive accuracy in a variety of contexts. For a single-layer NN com-

prising Nnodes nodes, the cost of prediction at x∗ (of length Nd) is dominated

by the matrix-vector multiplication Wx∗. Here W is an Nnodes x Nd matrix of

weights from training [49]. This involves no matrix inversion, meaning its com-

putational cost of prediction is smaller than that required of a GP. However, as

GP potentials achieve comparable accuracy to NN potentials with fewer train-

ing points this disadvantage can be mitigated by an intelligent training strategy.

This property also means that when “it is important to minimise the number of

ab initio points, GP regression is a better choice” [49], hence the earlier asser-

tion that GP potentials are ideal among machine-learned potentials for transfer

learning.

2.1.3 Kernel functions

The covariance matrix that is inverted during GP regression is filled by a ker-

nel function, meaning this function is central in predictions from GP potentials.

Kernel functions are so named as they map the problem being modelled from

the input space to an Nt-dimensional feature space. When modelling potential

energy surfaces, the input space comprises the coordinates that describe specific

points on the surface, while the feature space is the covariance between those

points.

As shown, maximisation of the log-likelihood is used to optimise the hyperpa-

rameters of the kernel function based on the training data. The hyperparameters

of the kernel function are so named because they do not parameterise directly

an approximation of the function being modelled. They instead control the co-

variance between different points on the function, which is in turn used to make

predictions of the function value. Put simply, the similarity in feature space be-

tween the training points and an unobserved point defines the prediction at the

latter, and the hyperparameters of the kernel function define that similarity.

These functions can be either stationary or non-stationary. Stationary kernels

depend on the distance between the two configurations being compared, meaning

23



they are functions of xi − xj. When invoking a stationary covariance function,

it is important that the data are also approximately stationary. That is, it must

hold that the rate of change in the output with the inputs is constant (or at

least approximately so) across the input space. The inputs or outputs are often

transformed prior to training for this reason. For example, an r → r−1 transform

on the interatomic distances is effective when modelling potential energy surfaces

[27–29,94].

A common example of a stationary kernel is the squared exponential function,

kSE(xi,xj) = σ2
n + σ2

f

Nd∏
d=1

exp
(

−
(x(d)

i − x
(d)
j )2

2l2d

)
. (2.15)

Here, Nd is the length of xi and xj, while d runs over their elements. The

hyperparameters of kSE(xi,xj) are the signal variance σ2
f and lengthscales ld, as

well as the aforementioned Gaussian noise variance σ2
n. The lengthscales are

denoted ld rather than l as each xi xj pair will have its own lengthscale. σ2
f tunes

the amplitude of the GP predictions, which means that a small σ2
f gives rise to a

model for which the largest and smallest output values are similar. Meanwhile, ld
tunes the degree of covariance between points in input space: a large ld means that

points that are far away vary strongly with each other, while a small ld implies that

only proximal points exhibit significant covariance. The third hyperparameter,

σ2
n, accounts for the noise in the training data and stabilises the inversion of K

by adding σ2
n along its diagonal.

These effects are illustrated when x is a scalar in figure 2.1, which was made at

http://www.infinitecuriosity.org/vizgp/. The plots show that when the length-

scale is increased, the GP varies far less rapidly with changes in the value of the

input. Moreover, increasing the signal variance leads to more variability in the y-

values that fall within one or two standard deviations of the mean. Furthermore,

as σ2
n ̸= 0 in this figure, the random sample from the GP does not pass exactly

through the observed data.

Inclusive of noise, the log-likelihood becomes

log(L) = −Nt

2 log(2π) − 1
2 log |K + Iσ2

n| − 1
2YT(K + Iσ2

n)−1Y. (2.16)

While −Nt
2 log(2π) is a normalisation constant, the other two terms in equation

(2.16) are interpretable in terms of the model hyperparameters. −1
2YT(K +
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(a) (b)

(c) (d)

Figure 2.1: Plots showing the mean (dotted line) and a random sample (solid

line) from a GP trained on three data points with σ2
f = l = 1 (a), σ2

f = 1 and

l = 4.5 (b), σ2
f = 2.5 and l = 1 (c), and σ2

f = 2.5 and l = 4.5 (d). The lighter

blue shaded region shows two standard deviations and the darker region a single

standard deviation from the mean. All models assume σ2
n = 0.07 and use a

squared exponential kernel function.

Iσ2
n)−1Y is a data fit term and −1

2 log |K + Iσ2
n| penalises model complexity. As l

increases, the complexity term becomes more positive because a larger lengthscale

produces a less complex model. Meanwhile, increasing l makes the data-fit term

more negative as the flexibility of the model is reduced. Balancing these terms

means the model with the largest lengthscale that gives a good fit to the data

is selected. Concurrently, models with minimal σ2
n are preferred as they reduce

the magnitudes of −1
2YT(K + Iσ2

n)−1Y and −1
2 log |K + Iσ2

n|. Thus GP models

that are optimised using log(L) avoid overfitting: favouring large lengthscales

avoids the development of models that pass through all training points at the

expense of accuracy on unseen data, while penalising large Gaussian noise means

that models that pass as close as possible to the observations are still preferred.

This is a key advantage that GPs have over comparable methods such as neural

networks (NNs).
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Alternative kernel functions

Many alternatives to kSE(xi,xj) exist. Some are discussed here with Nd = 1 for

clarity. A popular example of an alternative covariance function is the Matern

kernel

kM(xi, xj) = σ2
f

2ν−1

Γ(ν)

(√
2ν |xi − xj|

p

)ν

Kν

(√
2ν |xi − xj|

p

)
+ σ2

n. (2.17)

Here σ2
f and σ2

n are as before, ν is a positive integer, p is a hyperparameter akin

to the lengthscale in kSE(xi,xj), Γ(ν) is the gamma function

Γ(ν) = (ν − 1)!, (2.18)

and Kν is the modified Bessel function [95].

Unlike a GP that employs a squared exponential kernel function, which is

infinitely differentiable, one that employs a Matern kernel is differentiable ν − 1

times. However, as ν → ∞ the Matern kernel approaches the squared exponential

kernel. Special cases of the Matern kernel appear when ν = n/2, where n is a

positive integer [95]. For example, when ν = 5/2,

kM5/2(xi, xj) = σ2
f

(
1 +

√
5|xi − xj|

p
+ 25(xi − xj)2

3p2

)
exp

(
−

√
5|xi − xj|

p

)
+ σ2

n.

(2.19)

In addition to stationary kernels, non-stationary kernels exist. These do not

depend on the distance between the two configurations being examined, meaning

they do not rely on the data being stationary. The multi-layer perceptron kernel,

or neural network kernel, is an example of such a covariance function. It has the

form

kNN(xi, xj) = σ2
f

2
π

arcsin
(

σ2
wxixj + σ2

b√
σ2

wx
2
i + σ2

b + 1
√
σ2

wx
2
j + σ2

b + 1

)
+ σ2

n, (2.20)

where σ2
b and σ2

w are additional hyperparameters.

All kernel functions must be positive semi-definite. It follows that combining

two or more kernel functions together through addition and multiplication will

result in another acceptable kernel function. Consequently, the functions intro-

duced above can be thought of as building blocks to create new kernels tailored to

the problem being modelled. This makes GPs flexible modelling tools, though a
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convoluted kernel function will possess many hyperparameters, which will result

in lengthy re-optimisations.

Such an approach has been applied to the development of GP potentials previ-

ously, with the resultant composite kernels [35] optimised based on their Bayesian

information criterion (BIC) [96] rather than the log-likelihood,

BIC = log(L) − M

2 log(Nt). (2.21)

Because M is the number of hyperparameters in the kernel function, the BIC

penalises convoluted kernels.

2.1.4 Gaussian process potentials for intermolecular in-

teractions

Gaussian process potentials have been developed for various systems, from in-

tramolecular potentials of water [55] and various amino acids [56, 57] to inter-

molecular potentials for many solid systems [40–42,60–63]. These potentials have

been successfully employed in a range of applications, such as the simulation of

amorphous SiH [97] and the estimation of non-negligible three-body effects on

the intramolecular potential of water [58].

This work is concerned with developing intermolecular potentials for appli-

cation to systems in the gas or liquid phases. It therefore expands the work of

Uteva et al. [27, 29], an overview of which is given in this section. The meth-

ods discussed have been used to produce successfully GP potentials for various

systems by training on a Latin hypercube [27] or using sequential design [29].

Regardless of training set design, a symmetric version of the squared expo-

nential covariance function [27,29]

kSym(xi,xj) =
∑
p∈P

kSE(xi, pxj), (2.22)

was invoked. Here, P is the set of all permutations of the interatomic distances

under which the energy is invariant and p is a single permutation within this set.

kSym(xi,xj) therefore exploits the symmetric nature of potential energy surfaces

by ensuring equivalent distances can be swapped with no variation in the energy

prediction. For example, the CO2-Ne interaction is described fully by the three
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Figure 2.2: Diagram showing three possible Latin square samples of four points

from a two-dimensional input space. This is a copy of a figure from the thesis of

Elena Uteva [98].

distances RO1−Ne, RC−Ne and RO2−Ne. As the first and last of these distances

are equivalent, there is no change in energy when they are interchanged. That

kSym(xi,xj) accounts for this permits training of a GP potential that can predict

any point on a PES from training data that cover only the symmetry-distinct

subspace of that PES. For CO2-Ne this subspace comprises the region where

RO1−Ne < RO2−Ne.

Equation (2.22) conveys that kSym(xi,xj) is a stationary kernel. Thus, the

aforementioned r → r−1 transform was applied to all distances used in training.

That is, xi and xj were vectors of inverse interatomic distances. It was found

that such a transform approximated stationarity in the training data to an extent

sufficient to improve vastly the efficiency of training when used in conjunction

with kSym(xi,xj) [27]. When r is low r−1 varies quickly, meaning both r−1 and the

energy E vary rapidly in the repulsive wall; for large r, meanwhile, r−1 has a far

smaller rate of change that matches the gradual change in E at large separations.

Thus the rates of change of the input (r−1) and output (E) are similar across

the PES under this transform. This is in contrast to non-inverse distances, for

which the rate of change in E with r varies dramatically between small and large

separations.

Latin hypercube training

A Latin hypercube (LHC) [64–66] is a space-filling design that samples input

space more evenly than random sampling. In two dimensions a LHC becomes

Latin square, which places points such that there is a sample in each row and

column, as illustrated in figure 2.2.
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The training set T = {xi,Yi}Nt
i=1 was built using a LHC that covered the

symmetry-distinct region of input space. This was done by setting the parameters

that define the LHC to specify the symmetry-distinct region. For example, when

training on the CO2-Ne potential, the maximum value for the angle between the

axis of the CO2 and the Ne was π
2 radians. This ensures that the Ne is always

closer to one of the O atoms.

Minimum and maximum interatomic distances, Rmin and Rmax respectively,

were also imposed upon the training LHCs. As the LHCs were specified in inverse

distances, no sample point could be placed if all inverse distance therein were less

than R−1
max or any exceeded R−1

min. In all cases Rmin = 1.5 Å, while Rmax = 8.5 Å.

In addition, a high-energy cut-off Ecut of 5 x 10−3 Hartrees (Eh) was applied to

LHCs for all potentials apart from that of (HF)2, which had Ecut = 0.02 Eh. Ecut

was applied after the LHC was built in all cases and was chosen relative to the

well-depth of the interaction for which the LHC was built (e.g. (HF)2 had a larger

well-depth than the other systems so its Ecut was larger).

Even in the relatively straightforward case given in figure 2.2, however, there

are many possible ways to sample the input space in a LHC design. To circumvent

this issue, thousands of LHCs were produced for each system, referred to as

candidate LHCs. Of these candidate LHCs, the one with the largest minimum

separation was chosen as T . This ‘maximin’ LHC was considered to sample the

input space more evenly than the other candidates, with the rightmost example

in figure 2.2 depicting the ‘maximin’ Latin square. Energy calculations were only

undertaken on the ‘maximin’ LHC, with the distance between the configurations

xi and xj defined as

|r|2ij = (xi − xj)T(xi − xj). (2.23)

It was shown that training a GP potential on LHC data developed accurate

potentials for the CO2-Ne, CO2-H2, CO2-CO, (HF)2 and CH4-N2 systems. More-

over, the work demonstrated that the use of the symmetric kernel and r → r−1

transform on the inputs improved the quality of the potentials at a given Nt. In

addition, it was found that the GP potential for the CO2-CO potential energy

surface could be employed to estimate the CO2-CO second virial coefficient with

good agreement with experimental observations. This last result was achieved
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by upgrading the LHC data for the CO2-CO systems from second order Møller-

Plesset perturbation theory (MP2) [99] to coupled cluster singles, doubles and

perturbative triples (CCSD(T)) [100–103]. Both of these methods are discussed

further in Section 2.2, but this information regardless demonstrates a successful

use of GP potentials with transfer learning [51,52].

The accuracy of the aforementioned virial calculation was improved markedly

by introducing a long-range function for prediction at any configurations with

separations exceeding Rmax. Thus this distance represented a fixed cross-over

distance Rcross between the GP and this function. In other words, Rcross = Rmax in

the work of Uteva et al.. The long-range function was introduced because the GP

tends to a non-zero constant at large separations [27], despite the mean function

to which it should tend being zero everywhere. This is likely a consequence of

the r → r−1 transform. A long-range point that is far from the training data

in r will still be close in r−1, meaning the GP will not make a prediction with

the mean function but as an approximate average of the training energies. The

average is taken because all training points will be at similar separations from the

long-range point, meaning their covariance with this point will be similar. This

average is often positive due to the larger magnitude of the positive energies in

the repulsive wall.

Sequential design

In a later work, Uteva et al. [29] presented active learning [104,105] and sequen-

tial design [67, 68] approaches to training, in which the training set was built

iteratively. In this approach, training and validation of the GP models involved

three data sets: a training set T , a reference set R and a test set S. The train-

ing set was used in GP regression and re-optimisation; the reference set was a

LHC that provided a pool of configurations from which new training points were

selected; and the test set was a grid or LHC used to determine the accuracy of

the potential against independent data. R was built to the same specifications

outlined in the overview of LHC training, as was S. All LHCs were specified in

the same way as those in the previous section, meaning it was once again fixed

that Rmax = Rcross = 8.5 Å.
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Sequential design and active learning methods select training points iteratively

(or sequentially) from R to fill T before re-optimising the GP hyperparameters.

That process, referred to here as a stage of training, was repeated until the

model achieved the desired predictive accuracy on S. There are various criteria

for selecting the training points, but regardless training by sequential design or

active learning prevents the placement of training data in regions where the GP

already has high predictive accuracy. This is beneficial as such points do little to

improve accuracy but still increase the size of T . It was found that for a given

Nt, the error on S achieved by a potential from one of these methods was lower

than that attained by LHC training [29].

The difference between active learning and sequential design is that the former

does not require outputs to be calculated until reference points are added to

T . Thus, active learning can be envisioned as a subset of sequential design.

When large amounts of computationally intensive reference data are required,

active learning is an attractive prospect. Examples of active learning methods

for training GPs include those of MacKay [104] and Cohn [105]. The first of these

added the configuration where the variance of the GP was highest in R to T (i.e.

a highest variance search). Thus, it exploited that GPs have a closed form for the

variance, as shown earlier in equation (2.14). This property was also utilised by

Cohn, who proposed choosing the configuration that would reduce the average

variance over the test set as the training point at each stage. Moreover, Uteva

et al. proposed the ‘two set search’ method [29]. This entailed training two GPs

from a different initial T and adding the point in R where the two had the largest

discrepancy in their predictions to the T of each. More widely, active learning

strategies have been used to develop GP [29, 40, 106], moment tensor [25] and

neural network [23] potentials successfully.

However, calculating energies at thousands of configurations for the small

intermolecular systems explored by Uteva et al at the MP2 level of theory is

inexpensive computationally compared to training the GP potential. Thus the

advantage of active learning over sequential design in this context is negligible. In

addition, GP potentials were trained most efficiently via either the two set search

active learning strategy or a highest error search sequential design method [29].
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The latter entailed adding to T the configuration in R where the squared error

in the GP prediction was highest. As the two set search relies on re-optimising

two GPs at each stage of training, the time taken to use this method would

exceed that of the highest error search even accounting for the time for the MP2

calculations on the reference set. Moreover, the highest error search was found to

match the two set method in terms of predictive accuracy for a given Nt for the

CO2-Ne and CO2-H2 systems, and outperform it for training on the Ar3 PES.

As mentioned, the utility of GP potentials in applications is dependent upon

their training sets being as small as possible to increase the speed of prediction.

Furthermore, smaller training sets are more easily upgraded to more accurate

levels of theory. This means that in the development of the most accurate GP

potentials, which are among the most accurate machine-learned potentials, it is

always beneficial to reduce the size of the training set.

2.2 Potential energy surfaces

Having discussed GP potentials, it is instructive to next introduce the context in

which they will be applied here. Potential energy surfaces (PESs) are a funda-

mental concept in chemistry and describe how the energy of a system of electrons

and fixed nuclei varies with configuration. That PESs are crucial is reflected in

the breadth of their applications, with recent examples including simulating N2-N

and N2-N2 interactions [107], and computing rate coefficients for the oxidation of

diethyl ether [108].

The importance of PESs is further reflected in the variety of methods that

have been developed to approximate them. The most accurate predictions of the

energy at a given point on a PES come from electronic structure calculations

such as Møller-Plesset perturbation theory [99] or coupled cluster theory [100–

103], which are both based on Hartree-Fock theory [109]. As these methods

require no experimental data they are often referred to as ab initio techniques,

although Hartree-Fock theory does require an empirical correction for dispersion

interactions. An alternative method is density functional theory [110], which

though largely predicated on first principles requires an empirical approximation
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of dispersion interactions. This means it is not truly ab initio, though it is still

referred to as such here.

This section outlines where the concept of PESs comes from, how ab initio

methods are used to approximate energies on a PES, the theory underpinning

such methods, and why the scaling of the computational cost of prediction with

these techniques is so poor. In addition to the references already given in this

chapter, the subsequent discussion is based on Chapters 3-6 of ‘Introduction

to Computational Chemistry’ [111] and Chapter 2 of the PhD thesis of Elena

Uteva [98].

2.2.1 Origins of potential energy surfaces

The energy of any system of electrons and nuclei is governed by the interactions

between these particles. Thus, when estimating the energy of such a system, it

is paramount that their behaviour is well-described. This behaviour is encap-

sulated by a wavefunction, Ψ, which is a function of the electronic and nuclear

coordinates, r and R respectively.

The Born-Oppenheimer approximation [112] postulates that the electrons are

vastly lighter and faster than the nuclei. Thus, the former can respond instanta-

neously to any variation in nuclear position. This allows Ψ to be partitioned into

electronic and nuclear parts,

Ψ(r,R) = Ψel(r; R)Ψnu(R), (2.24)

with the nuclear coordinates R parameters in Ψel.

Under the Born-Oppenheimer approximation the energy of the system can be

found for a given set of nuclear coordinates via the time-independent electronic

Schrödinger equation,

ĤelΨel(r; R) = EΨel(r; R). (2.25)

Here, Ĥel is the electronic Hamiltonian operator, which accounts for the electron

kinetic energies, the electron-electron potential energy, the electron-nuclei poten-

tial energy and the internuclear potential energy. As the nuclear positions are

fixed, the nuclear kinetic energies are omitted.

33



2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
RC−Ne / Å

0.0002

0.0001

0.0000

0.0001

0.0002

En
er

gy
 / 
E

h

PES slice
r=re

E=−ε

Figure 2.3: Plot showing a slice through the PES of the CO-Ne interaction, with

the C-O distance fixed and the particles arranged such that RC−Ne = RO−Ne. Also

shown are some key features of a PES, including a line showing the well-depth ϵ

(green) and the equilibrium separation in this conformation re (black). The PES

slice itself comes from predictions by a GP trained on MP2 data.

Consequently, under the Born-Oppenheimer approximation, a PES that shows

the variation of the energy with nuclear geometry can be constructed, with a slice

through such a surface shown in figure 2.3. Though this approximation introduces

errors, these are negligible for most systems [111]. Systems for which the Born-

Oppenheimer approximation is inadequate are those in which two electronic states

are separated by an energy that is less than the nuclear kinetic energy.

2.2.2 Estimating the form of the wavefunction

Exact solutions to the Schrödinger equation cannot be found for systems of more

than one electron. Estimates of the solution for more complex systems are ob-

tained by first approximating the wavefunction. Any approximate wavefunction

must obey the Pauli principle, which states that two electrons cannot be defined

by an identical set of quantum numbers. Consequently the sign of the wavefunc-

tion must alter under the interchange of any two electrons.

For a two-electron system, the wavefunction that obeys the Pauli principle

can be written as

Ψel(r1, r2; R) = 1√
2

[ψ1(r1)ψ2(r2) − ψ1(r2)ψ2(r1)], (2.26)
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where ψi(rj) denotes the spin orbital of the electron at position rj. It can be

verified that this wavefunction obeys the Pauli principle by switching electrons

one and two,

Ψel(r2, r1; R) = 1√
2

[ψ1(r2)ψ2(r1) − ψ1(r1)ψ2(r2)]

= −Ψel(r1, r2; R).
(2.27)

For a system of Ne electrons, the spin orbitals are held in a Slater determinant,

Ψel = 1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψNe(r1)

ψ1(r2) ψ2(r2) · · · ψNe(r2)
... ... . . . ...

ψ1(rNe) ψ2(rNe) · · · ψNe(rNe)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.28)

When considering a molecule, each column in the determinant represents a molec-

ular orbital ϕi. The rows, meanwhile, show the electronic positions.

The molecular orbitals are defined conventionally as a linear combination of

atomic orbitals (LCAO),

ϕi =
Nbasis∑

α

cαiψα, (2.29)

where cαi is a molecular orbital coefficient and ψα is an atomic orbital. Basis

functions are used to estimate the form of ψα, with Nbasis the number of basis

functions employed. A basis function must simultaneously reflect the physics

of the system being investigated and be computationally tractable. The former

suggests the use of functions that are exact solutions to the Schrödinger equation

for an electron around a nucleus, however these are intensive computationally.

Instead, Gaussian-type orbitals (GTOs) are used widely as basis functions in

electronic structure calculations,

χGTO(r, θ, ϕ) = NYl,m(θ, ϕ)rle−ζr2
. (2.30)

In equation (2.30), N is a normalising constant, Yl,m(θ, ϕ) is a spherical harmonic

function that defines the type of orbital the electron occupies, l is the angular

quantum number, r is electron-nuclear separation and ζ can be varied to optimise

the orbital.

GTOs are not solutions to the Schrödinger equation for an electron around

a nucleus, hence a single GTO is too smooth and flat at the nucleus and decays
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too quickly with electron-nuclear separation to capture accurately the behaviour

of an electron in this environment. However, a linear combination of GTOs

can approximate this behaviour sufficiently. Though a larger number of basis

functions leads to more expensive calculations, GTOs are so computationally

efficient that a collection of GTOs will facilitate faster calculations than a single

basis function obtained from a solution to the Schrödinger equation.

The collection of basis functions used in an ab initio calculation is referred

to as the basis set. The computational cost of any such calculation scales as

O(N4
basis). Though this can be reduced to the order of N3

basis or for large sys-

tems N2
basis, it is paramount that the smallest possible basis set is chosen. At a

minimum, Nbasis must equal the number of electrons in the system. To increase

accuracy, however, the number of basis functions used for each valence electron

can be doubled, tripled, etc.. The first case is known as a double zeta basis set

in which the valence electrons are described using two basis functions, each with

different directionality. Each of these basis functions will comprise multiple (e.g.

3-6) GTOs.

A commonly used collection of basis sets are the correlation-consistent basis

sets of Dunning et al. [113]. These are generally denoted as cc-pVNZ, where

‘cc-p’ stands for correlation-consistent polarised, ‘V’ shows a split-valence set

in which further basis functions are added to valence electrons, and ‘N’ is the

number of basis functions on those electrons. Such basis sets are referred to as

‘correlation-consistent’ as they account for the effects of one valence electron on

the movement of another (i.e. their correlation). These basis sets may also be

prefixed with the term ‘aug’, which indicates the presence of extra diffuse basis

functions. These functions better represent the areas of the molecular orbitals

that are further away from the nucleus. Meanwhile, a cc-pCVNZ basis set includes

all correlation between core electrons and core electrons with valence electrons,

and a cc-pwCVNZ basis set includes all valence-core correlation and a small

amount of core-core correlation [114]. As intermolecular PESs, which are the

focus of this work, are low in energy, they often require large basis sets such as

aug-ccpVTZ.

Regardless of which is employed in a calculation, the basis set is the estimate
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of the form of the wavefunction. Due to the aforementioned poor scaling with

Nbasis, estimating the energy of a system with many electrons and highly occupied

valence orbitals will incur a large computational cost.

2.2.3 Electronic structure theories

A basis set must be parameterised once it has been chosen to approximate the

wavefunction. This parameterisation is undertaken via an electronic structure,

or ab initio, theory. The simplest of these methods is Hartree-Fock theory, which

relies on the variational principle. This states that the energy of an approximate

wavefunction will always exceed that of the real function. Thus, by minimising the

energy of the system one concomitantly optimises the parameters of the basis set.

The energy of a system with a given Hamiltonian and approximate wavefunction

is given by

E = ⟨Ψel|Ĥ|Ψel⟩
⟨Ψel|Ψel⟩

, (2.31)

using standard Dirac notation. Given that the approximate wavefunctions dis-

cussed earlier are normalised, E = ⟨Ψel|Ĥ|Ψel⟩. Henceforth, the electronic wave-

function will be denoted ΨEST for brevity, where EST denotes an electronic struc-

ture theory. The notation depicting the dependence on electronic and nuclear

positions of Ψel is also dropped for this reason.

The theories introduced here are discussed in order of increasing accuracy. In

all cases, however, their computational expense prohibits their use in simulations.

The cheapest scale with N4
basis, which can be somewhat circumvented by calcu-

lating the energies of small clusters of particles rather than a whole simulation

box. However, the expense is still massive and the most accurate methods scale

as O(N8
basis), which leaves no workable method for offsetting the cost.

Hartree-Fock theory

Hartree-Fock theory (HF) is the simplest electronic structure theory and forms

the basis for many of the others that will be discussed subsequently. This method

assumes that the electrons move independently of one another, experiencing only

a mean field of all other electrons. Therefore in the HF Hamiltonian, ĤHF, the

electron-electron potential operator is a mean field of all electrons. That is,
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HF theory does not account for electron correlation. Electron correlation is a

stabilising effect as it reduces the probability of two electrons being proximal to

each other, which induces repulsion. As such, ignoring electron correlation leads

to the calculated energy being an overestimate.

The use of the variational principle allows HF calculations to be solved self-

consistently, which has led to this method being described as a self-consistent

field (SCF) method. SCF methods begin with an initial guess of the parameters

of ΨHF that is updated iteratively until the energy converges, giving the final HF

wavefunction. The accuracy of the converged energy is dependent on the size of

the basis set. This size also dominates the cost of calculation, which scales as

O(N4
basis).

Møller-Plesset perturbation theory

Møller-Plesset perturbation theory (MP) postulates that accounting for the elec-

tron correlation requires only a marginal amendment to the method of determin-

ing the energy of the system without this effect. Thus, the electron correlation

energy can be estimated as a small change (or perturbation) to the energy from

a HF calculation.

Under this assumption, the perturbed Schrödinger equation is written

ĤMPΨMP = EMPΨMP, (2.32)

where

ĤMP = ĤHF + λĤ ′
HF, (2.33)

is the MP Hamiltonian. The perturbation Ĥ ′
HF,

Ĥ ′
HF = Vee − 2⟨Vee⟩, (2.34)

is the fluctuation potential. This takes the difference between the true electron-

electron repulsion Vee and twice the average repulsion predicted in HF ⟨Vee⟩. That

is, the MP Hamiltonian is equivalent to the HF Hamiltonian with a correction to

account for electron correlation. Meanwhile,

EMP = EHF +
n∑

i=1
λnE

(n)
HF (2.35)
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is the perturbed energy and

ΨMP = ΨHF +
n∑

i=1
λnΨ(n)

HF (2.36)

is the perturbed wavefunction. In these equations λ is a parameter controlling the

size of the perturbation, and n is the total number of terms in the power series in

λ used for the corrections to the wavefunction and Hamiltonian. For this reason

MP is generally denoted as MPn, meaning a calculation featuring a second-order

correction is referred to as an MP2 calculation. The additional calculation of the

perturbations means that MP2 calculations scale as O(N5
basis).

Coupled cluster theory

Coupled cluster theory (CC) accounts for electron correlation through inclusion

of the effects of exciting electrons from their ground state orbitals. This uses the

operator T̂ , which when truncated to double excitations is

T̂ = T̂1 + T̂2. (2.37)

Here T̂1 covers all single excitations (i.e. excitations of one electron) and T̂2 all

double excitations. The resultant coupled cluster wavefunction is

ΨCC = exp(T̂ )ΨHF. (2.38)

In equation (2.38), exp(T̂ ) denotes the series expansion of T̂ ,

exp(T̂ ) = 1 + T̂ + 1
2 T̂

2 + .... (2.39)

This implies that, for a coupled cluster calculation that includes only single and

double excitations (i.e. a coupled cluster singles-doubles, or CCSD, calculation),

the operators T̂1 and T̂2 are included up to infinite powers. However, in practice

excitations of order four or higher do not alter the energy. Therefore terms such as

T̂ 4
1 , which indicates excitations of four non-interacting electrons, are not included.

Despite this, the cost of a CCSD calculation scales as O(N6
basis), though it gives

a more accurate approximation of the energy than the aforementioned ab initio

methods. Adding triple excitations leads to a scaling of order O(N8
basis), which is

prohibitively expensive for all but the smallest systems. Triple excitations can be
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assumed to be a perturbation to the CCSD energy, just as MP assumes electron

correlation is a perturbation to EHF, and calculated using CCSD(T). The brackets

denote that the effect of the triple excitations is treated as a perturbation.

Regardless, the high cost of CCSD(T) calculations, which scale as O(N7
basis),

means that it is desirable to undertake as few as possible. This melds well with

the capacity of GPs to model PESs with few training points relative to other

methods. A minimal training set can be developed via sequential design with

reference MP2 calculations, which are then ‘upgraded’ to CCSD(T) energies to

give a more accurate potential. This is the basis of the transfer learning approach

discussed in Section 2.1.4.

2.2.4 Density functional theory

The aforementioned electronic structure theories were all reliant on estimating

the wavefunction that describes the electronic behaviour of a system. Density

functional theory (DFT), meanwhile, approximates the energy of a system as a

functional of the electron density. Whereas a function returns a single value from

a set of variables, a functional returns a single value from a function. Hence the

DFT energy is denoted EDFT[ρ(r)], where ρ(r) is the electron density.

Dropping the r-dependence of ρ for brevity, the DFT energy is calculated as

EDFT[ρ] = TS[ρ] + Een[ρ] + Enn[ρ] + J [ρ] + Exc[ρ]. (2.40)

The first four terms in equation (2.40) are the electron kinetic energy, the electron-

nuclear potential, the electron-electron potential and the internuclear potential.

Forms for all of these terms are known in Kohn-Sham DFT [115], which accounts

for the electron kinetic energies via the introduction of non-interacting orbitals,

known as Kohn-Sham orbitals. The subscript “S” in the kinetic energy term

denotes that this quantity is calculated from a Slater determinant.

The final term, referred to as the exchange-correlation energy, is unknown

and accounts for the effect of the correlation between electrons. TS[ρ] and J [ρ]

correspond to the kinetic energy and electron-electron interaction energy without

correlation. Thus one can write

Exc[ρ] = (T [ρ] − TS[ρ]) + (Eee[ρ] − J [ρ]), (2.41)
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where T [ρ] and Eee[ρ] are the true (but unknown) electron kinetic energy and

electron-electron repulsion energy.

Any DFT calculation requires an estimate of Exc[ρ]. Though this is often

smaller than the other contributions, it is still significant in many systems, such

as in intermolecular potentials. However, said estimate may be made from ex-

perimental observations or different ab initio data. This dependence means DFT

is not a purely ab initio method, though it serves the same purpose as the afore-

mentioned techniques and will still be referred to with this term here.

The advantage of DFT over MP and CC theories is its computational scaling,

which is similar to that of HF theory. This has meant that DFT has become

the technique of choice in ab initio molecular simulations. However, though

it scales better than other ab initio methods, DFT-based simulations are still

limited to a few hundred atoms. Furthermore, DFT accounts for correlation

with an empirical term Exc[ρ], which renders it a poor choice for finding the

energy of intermolecular interactions where dispersion interactions are significant.

Gaussian process potentials trained via transfer learning on data from coupled

cluster theory therefore offer a more fast and accurate route to employing first

principles predictions in simulations.

2.3 Intermolecular interactions

With the concept of potential energy surfaces introduced, an overview of the

interactions that contribute to the energy at a given point thereupon is given in

this section. These interactions between atoms can be divided into two general

groups: covalent and non-covalent interactions. The former refers to the strong,

attractive interactions between atoms that lead to bond formation, while the

latter encompasses weaker, non-bonding interactions. Thus this chapter discusses

the non-covalent interactions only as these inform the intermolecular potential

energy surface between two or more molecules.

The section begins with a discussion of various types of intermolecular inter-

actions, beginning with the strongest. These are presented in terms of additive

interactions for simplicity. This is followed with overviews of the supermolecule
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approach, and additive and non-additive interactions. The section concludes with

an overview of the multipole expansion, which is used to develop the long-range

functions that take over prediction at large separations.

The goal is to explain intermolecular interactions such that their role in the

potentials modelled with Gaussian processes in later chapters is clear. The dis-

cussion is based on Chapters 3 and 7 of Stone’s ‘The Theory of Intermolecu-

lar Forces’ [116] and Chapters 3-8 of Israelachvili’s ‘Intermolecular and Surface

Forces’ [117].

2.3.1 Coulombic interactions

Coulombic interactions occur between two ions and are the strongest non-covalent

interactions. Coulomb’s law states that the force on one charged particle from

the electric field of another at separation r is

FC = Q1Q2

4πϵ0r2 , (2.42)

where Qi is the charge on particle i and ϵ0 is the dielectric constant of the medium.

The work in later chapters is concerned with intermolecular energies, not

forces. As the force is the negative of the derivative of the energy with respect

to position, the relevant equation comes from integrating equation (2.42). This

yields

EC = −
∫ r

∞

Q1Q2

4πϵ0r2 = Q1Q2

4πϵ0r
, (2.43)

where the lower limit is ∞ because the energy is zero at infinite separation.

Equation (2.43) demonstrates that EC ∝ r−1. As such, the energies of

Coulombic interactions decay slowly with the separation between the particles

relative to the interactions discussed subsequently. It also illustrates that the en-

ergy of interaction between two oppositely charged ions will be attractive, while

two ions of like charge will repel each other.

2.3.2 Charge- and dipole-dipole interactions

Charge-dipole and dipole-dipole intteractions all contain at least one polar molecule.

While a polar molecule may possess no net charge and undergo no charge-charge
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interactions, a disparity in the distribution of electrons across its atoms may lead

to the development of an electric dipole. A simple example of such a molecule is

HF, on which the propensity of the fluorine to draw electron density onto itself

leaves it with a partial negative charge and the hydrogen with a positive charge

of equal magnitude.

The dipole moment µ of a polar molecule is given by µ = ql, where l is the

separation between the two charges +q and −q. The strongest interaction a

dipole moment will undergo is the charge-dipole interaction, for which the energy

is

ECD = − µQ

4πϵ0r2 cos θ. (2.44)

As the dipole is aligned along the polar molecule, an angular term cosθ is intro-

duced to account for the orientation of the dipole relative to the ion.

Two dipoles, µ1 and µ2, can also interact with each other. The energy of a

dipole-dipole interaction at separation r aligned relative to an axis is

EDD = − µ1µ2

4πϵ0r3 (2 cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ), (2.45)

where θi is the in-plane angle between µi and the axis, and ϕ = ϕ1 − ϕ2 is the

difference between the out-of-plane angles of both dipoles. If θ1 = θ2 = 0 the

dipoles are in line and have the most favourable interaction; if θ1 = θ2 = π
2 then

the dipoles are parallel.

At standard temperatures, that EDD ∝ r−3 results in dipole-dipole inter-

actions failing to influence markedly the alignment of two polar molecules for

r > 3.5 Å [117]. Hydrogen bonds are, however, a special case of the dipole-dipole

interaction for which this is not the case. They occur between polar molecules

containing a hydrogen that is bonded to a strongly electronegative atom, such as

fluorine or oxygen. The effects of hydrogen bonding are prevalent in water for

this reason, as each oxygen is bonded to two hydrogen atoms. Their strength

is a product of the small size of the hydrogen atom, which permits electronega-

tive atoms on other molecules close access to the positively charged region of the

dipole. Despite their significance in the behaviour of such an important molecule,

the energy of hydrogen bonds is poorly understood and no simple equation has

been found that predicts accurately their strengths. However, it is thought that

EHB ∝ r−2, similarly to charge-dipole interactions.
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In any molecule that possesses a permanent dipole, higher-order permanent

multipoles will also be present. The next largest is the quadrupole, then the

octopole and so on. The long-range functions used in Chapter 3 do not consider

any multipoles higher than a quadrupole so they are not discussed here.

The energy of interaction of a quadrupole Θ with a dipole is

EDQ = − µ1Θ2

4πϵ0r4 [1.5(cos θ1(3 cos2 θ2 − 1) − sin θ1 sin θ2 cosϕ)], (2.46)

where the angles θi and ϕ are as before. Quadrupole-quadrupole interactions can

also make significant contributions to the intermolecular potential. The energy

of these interactions is

EQQ = − Θ1Θ2

4πϵ0r5 [0.75(1 − 5 cos2 θ1 − 5 cos2 θ2 − 15 cos2 θ1 cos2 θ2+

2(4 cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ)2)]
(2.47)

2.3.3 Inductive interactions

The final, and weakest, polar interactions are inductive interactions. These occur

when a non-polar molecule interacts with an ionic or polar species, resulting in

an induced dipole on the former. The size of the induced dipole depends on both

the magnitude of the inducing charge and the polarisability α0 of the non-polar

molecule.

Polarisation of the non-polar molecule occurs when the approaching charge

draws electrons towards it (if positive) or repels them (if negative). This forces

electron density to certain regions of the molecule and away from others, inducing

a dipole. The induced dipole then interacts with the ionic/polar molecule. The

energy of a charge-induced dipole interaction is

ECI = − Q2α0

(4πϵ0)2r4 , (2.48)

while for a dipole-induced dipole interaction it is

EDI = −µ2α0(1 + 3 cos2 θ)
2(4πϵ0)2r6 . (2.49)

These energies are lower than those of permanent charge-dipole and dipole-

dipole interactions. The reasons for this are twofold: the further away the in-

ducing molecule, the smaller the induced dipole and the weaker the interaction;
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and some energy is lost to the rearrangement of electron density on the molecule

being polarised. The former point is illustrated by the respective r−4 and r−6

dependencies of ECI and EDI.

2.3.4 Dispersion interactions

Aside from subsection 2.3.1, all intermolecular interactions considered thus far

are contingent on the presence of polar molecules. As such, they are present

only in certain interactions. Dispersion interactions, however, are present in all

intermolecular interactions.

Dispersion interactions arise between molecules due to the development of

instantaneous dipoles. Though a molecule may have no net dipole, the constant

flux in electron density leads to the development of instantaneous dipoles. These

then induce a dipole on any proximal molecule. Dispersion interactions are, in

effect, temporary dipole-induced dipole interactions.

For two identical molecules, the dispersion interaction energy is approximately

EDisp ≈ − 3α2
0I

4(4πϵ0)2r6 = −C6

r6 . (2.50)

Here I is the ionisation energy of the molecule and the C6 term is the dispersion

coefficient for the molecule, which is always positive. Equation (2.50), therefore,

shows that dispersion interactions are always stabilising. It also illustrates that

EDisp ∝ r−6, just as for EDI in the previous section.

Approximately, the energy of the dispersion interactions between non-identical

molecules is

EDisp ≈ − 3α(1)
0 α

(2)
0

2(4πϵ0)2r6
I1I2

I1 + I2
, (2.51)

where α(i)
0 and Ii are the polarisability and ionisation energy of molecule i re-

spectively. Once again, equation (2.51) illustrates the energy of the stabilising

dispersion interactions possesses an r−6 dependence.

2.3.5 The supermolecule approach

The total potential energy U of a system of Nm molecules is [118]

U =
Nm∑

i

E1B(pi) +
Nm∑
i<j

E2B(pi,pj) +
Nm∑

i<j<k

E3B(pi,pj,pk) + ...+ ENmB, (2.52)
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where EZB is the Z-body energy of interaction between Z molecules and pi is the

position of molecule i. The one-body energies are the energies of the individual

molecules, the two-body energies those of the pairwise intermolecular interactions

and so on. As Z increases, the contribution of the Z-body energy to U typically

decreases.

The one-body terms account for the individual energies of all the molecules,

while the higher order terms cover the intermolecular interaction energy Uint.

The value of Uint depends on the type and number of the previously-discussed

interactions present. Uint can be calculated via the supermolecule approach, which

for a system of two atoms gives [119]

Uint = U − E1B(p1) − E1B(p2). (2.53)

This approach requires accurate ab initio calculations to be used because Uint

is far smaller than the total one-body energy. These calculations make use of the

Born-Oppenheimer approximation, meaning only the electronic wavefunctions Ψel

must be approximated. Furthermore, the supermolecule approach introduces a

basis set superposition error. This error derives from the finite number of basis

functions used: as one molecule approaches another, the basis functions from one

stabilise the other and vice versa. This leads to an overestimate of Uint, which is

more pronounced with smaller basis sets.

The basis set superposition error can be rectified by the counterpoise cor-

rection [120]. For Nm = 2, the non-corrected supermolecular interaction energy

is

Uint = U (AB)(p1,p2) − E
(A)
1B (p1) − E

(B)
1B (p2), (2.54)

where the superscripts denote the basis sets. Under the counterpoise correction,

the basis sets of molecule 2 are included when the energy of molecule 1 is de-

termined. These are centred on the nuclear coordinates of molecule 2, but do

not include its electrons or nuclear charge. That is, the calculation of E1 is done

in the presence of a ‘dummy’ molecule 2. The same procedure is followed for

evaluating the energy of molecule 2, giving the counterpoise-corrected energy as

Uint = U (AB)(p1,p2) − E
(AB)
1B (p1) − E

(AB)
1B (p2). (2.55)
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Figure 2.4: Plot showing the divergence of the multipole expansion (red line)

from calculated data on the (CO2)2 potential energy surface. The data are from

MP2 calculations with the molecules in a T-shaped configuration.

2.3.6 Additive and non-additive interactions

The two-body contributions to Uint are described as the additive contributions.

This is because their total amounts to adding all of the pairwise interactions

between the molecules. All higher order terms are the non-additive terms. It has

been shown that the two- and three-body terms account for over 95 % of the the

total intermolecular interaction energy of water [121–124], so the highest order

non-additive contribution explored here is the three-body energy.

The three-body energy is explained by considering three interacting molecules,

labelled 1, 2 and 3. The intermolecular interaction energy is given by

Uint = E2B(p1,p2) + E2B(p1,p3) + E2B(p2,p3) + E3B(p1,p2,p3), (2.56)

where the first three terms are the two-body energies and the final term the

three-body energy. The latter is referred to as non-additive as it accounts for the

difference between Uint and the sum of the two-body, additive energies. It arises

because the 1-2 interaction will be affected by polarisation of 1 and 2 by 3, with

the same true of 1 and 3 by 2, and 2 and 3 by 1.
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2.3.7 The multipole expansion

For a system of two small molecules at centre-centre separation r, the interaction

energy can be approximated using the multipole expansion. This expansion es-

timates the interaction energy as a Taylor series in 1/r about the point 1/r = 0.

Equations (2.43)-(2.51) derive from this expansion and all multipolar long-range

functions in Chapter 3 are obtained by summing the relevant contributions from

these equations. Though the full expansion comprises theoretically an infinite

number of terms, all of these long-range functions include terms up to r−6 only.

There are two sources of error in a multipole expansion: penetration and trun-

cation. The latter is a consequence of approximating the expansion to a finite

number of terms, which can cause convergence to an erroneous energy at long

range. However, it is often possible to determine the appropriate power of r at

which to truncate the series for a given interaction. The penetration error, mean-

while, is a consequence of short-range repulsion between the electron clouds of

the interacting molecules. Below a certain separation this effect dominates the

long-range interactions discussed previously, leading to divergence of the multi-

pole expansion from the true energy. The short-range divergence of the multipole

expansion is illustrated in figure 2.4 and is the reason that the functions that

result from the multipole expansion are referred to as long-range functions here.

Below the separation at which divergence begins, it is paramount to cross-

over to another method of prediction such as a Gaussian process. Hence this

distance is analogous to the cross-over distance Rcross mentioned in section 2.1.4.

At r > Rcross, a long-range function that converges appropriately is an excellent

method of prediction for three reasons: it is cheap to evaluate; it will make

accurate, physically motivated predictions of the long-range interaction energy;

and its form as a power law makes it easy to integrate when evaluating long-

range corrections. Thus, choosing Rcross appropriately not only reduces training

set size, it permits predictions to be made by long-range functions. This reduces

overall computational expense without affecting accuracy. In Chapter 3, long-

range functions are assumed to converge if they exhibit good agreement with

the long-range reference data, where “good agreement” is defined as sufficiently

accurate that the GP is not preferred for prediction easily.

48



2.4 Statistical mechanics and molecular simula-

tions

Knowledge of the potential energy of a group of molecules as a function of their

positions imbues understanding of the microscopic behaviour of those molecules.

However, translating this to bulk properties is not necessarily straightforward.

Molecular simulations are powerful tools for estimating the thermophysical prop-

erties of bulk materials from the interactions between the constituent molecules.

These estimates are made using statistical mechanics, which links microscopic

interactions to macroscopic observable properties. For any property, the sim-

ulation method in effect generates different samples for which the property is

evaluated using statistical mechanics. Two popular molecular simulation meth-

ods are Monte Carlo and molecular dynamics simulations. The former proceeds

by moving particles at random while accepting or rejecting moves based on the

change in energy. In molecular dynamics, meanwhile, the movement of any par-

ticle is informed by the forces acting upon it.

As alluded to in Chapter 1, a prospective implementation of the methods out-

lined in Chapters 3-5 is the determination of phase transitions in carbon capture

and storage pipelines. This can be achieved by a Monte Carlo simulation that

uses an appropriate ensemble, so the focus of this discussion is Monte Carlo sim-

ulation. This method has seen recent applications ranging from evaluating the

thermodynamic properties of ferroelectric materials [125] to assessing the use of

metallic nanoparticles in reducing side-effects during radiotherapy [126].

The section begins with an overview of statistical mechanics and sampling

with ensembles. This precedes discussions of Monte Carlo simulations and de-

termination of phase transitions within these simulations. The section concludes

by outlining some common practices in molecular simulations. This discussion

follows ‘Computer Simulations of Liquids’ by Allen and Tildesley (Chapters 1,

2 and 4) [127] and ‘Molecular Simulations of Fluids’ by Sadus (Chapters 2, 5, 8

and 9) [128] closely. Its goal is to introduce the concepts in molecular simulation

that motivate the work in Chapter 5.
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2.4.1 Statistical mechanics and ensembles

In statistical mechanics, the observed value, Aobs, of some macroscopic property

A of a system is determined by its average value over a sufficient period of time

t. That is, for a system at equilibrium,

Aobs = ⟨A(Γ)⟩t. (2.57)

At any time, the value of A is a function of the positions and momenta of the

particles of the system. These can be envisioned as coordinates in a multidi-

mensional space called phase space, which has 6N dimensions for a system of N

particles, with three dimensions each for the position and momentum coordinates

of each particle.

However, evaluation of the time average is complex for large numbers of

molecules, even when discretised into time-steps. Instead, time averages are re-

placed by ensemble averages, where an ensemble is a collection of microstates

from phase space. Each microstate shares a set of macroscopic properties that

are fixed during the simulation. Examples of properties that are fixed in an en-

semble include the energy E, pressure P , volume V , number of particles N and

temperature T .

The use of ensemble averages is predicated on the assumption that the time

average and ensemble average are equivalent, which is known as the ergodic hy-

pothesis. This states that

⟨A⟩t=∞ = ⟨A⟩ens, (2.58)

which is to say that the ensemble average equates to the observed value of A over

infinite time. This holds for ergodic systems, in which all configurations with a

non-zero probability function can be explored during the simulation.

The ensemble average of A is taken by averaging its value over microstates

that are samples from phase space,

⟨A⟩ens =
∑

i

Aipi. (2.59)

Here Ai is the value of A in the ith microstate and pi is the probability distribution

associated with the ensemble. For an ensemble in which the number of particles,

volume and temperature are constant (i.e. a constant-NVT ensemble) pi is based
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on the Boltzmann equation,

pi =
exp(− Ei

kBT
)

ZNVT
, (2.60)

where kB is the Boltzmann factor and ZNVT is the partition function for the

ensemble,

ZNVT =
∑

i

exp
(

− Ei

kBT

)
. (2.61)

When employing ensembles, a microstate evolves over simulation steps. Ex-

actly how the system evolves at each step is dependent on the simulation tech-

nique employed. For molecular dynamics, all particles move under the forces

exerted on them over a certain duration, rendering each step a time-step. In

Monte Carlo simulations, which have no time-dependence, each step comprises

one of many possible moves, with the simplest being the displacement of a single

particle over a random distance and direction.

2.4.2 Monte Carlo simulations

Monte Carlo (MC) simulations are probabilistic strategies that sample equilib-

rium distributions of systems to obtain thermophysical properties as equilibrium

averages. MC simulations do not depend on the momenta of the particles, mean-

ing their microstates are taken from a 3N -dimensional phase space. This dis-

crepancy with molecular dynamics is not an issue, however, as thermodynamic

properties of mixtures do not depend on the momenta of the particles [128].

Finding the average of a property over the microstates is equivalent to evalu-

ating

⟨A⟩ =
∫
A(p)p(p)dp. (2.62)

Here p is a N x 3 matrix of the particle coordinates and p(p) is a continuous

equivalent to the ensemble probability distributions discussed in the last section,

p(p) =
exp(−E(p)

kBT
)∫

exp(−E(p)
kBT

)dp
. (2.63)

However, solving these integrals either analytically or numerically is not feasi-

ble. The Monte Carlo solution is to generate Ntrial sample microstates by moving
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molecules randomly, replacing the integral in equation (2.62) with the sum

⟨A⟩ =
∑Ntrial

i Ai exp(− Ei

kBT
)∑Ntrial

i exp(− Ei

kBT
)
. (2.64)

This is consistent with applying the constant-NVT probability function to equa-

tion (2.59), though could be altered to include the constant-NPT probability

easily.

Though more tractable than the integral, for random sampling the requisite

value of Ntrial is prohibitively large regardless of ensemble. This is because truly

random sampling will include many more low-probability microstates than those

that make a significant contribution to ⟨A⟩. This issue is exacerbated as the

number of particles increases. Consequently, importance sampling is used to

ensure microstates from high-probability regions of phase space are favoured.

Importance sampling proceeds by envisioning the evolution of a microstate

from step τ to ω as a Markov chain. That is, the microstate at step ω defined

by the positions p(ω) depends only on the previous microstate p(τ). For every

τ there are K possible τ → ω transitions, each with an associated transition

probability πτ→ω. It is specified that
K∑
πτ→ω = 1, (2.65)

where K is the number of microstates to which transitions are possible from p(τ).

This ensures that every adjacent microstate can be reached. The value of πτ→ω

for any transition is

πτ→ω =


Cτ→ω,

pω

pτ
≥ 1

Cτ→ω
pω

pτ
, pω

pτ
< 1,

(2.66)

where Cτ→ω is the probability of picking a given p(ω) from all possible mi-

crostates. As it is possible to visit each of the K adjacent microstates Cτ→ωK = 1,

meaning Cτ→ω = 1/K.

Equation (2.66) shows that whether to transition from p(τ) to p(ω) is deter-

mined by evaluating pω/pτ , where both probabilities come from equation (2.63).

As the ratio of the two probabilities is being determined, the integral from equa-

tion (2.63) need not be solved and for a constant-NVT ensemble

pω

pτ

=
exp(− Eω

kBT
)

exp(− Eτ

kBT
)

= exp
(

− ∆E
kBT

)
. (2.67)

52



In equation (2.67), exp
(

− ∆E
kBT

)
> 1 if state p(ω) has a lower energy. In

such a case, the p(τ) → p(ω) transition is accepted immediately as it leads to a

more probable region of phase space. If the energy at p(ω) exceeds that of the

previous state however, the move can be accepted if exp
(

− ∆E
kBT

)
≥ S where S

is uniformly distributed on [0,1]. This is known as the Metropolis method and is

characterised by defining the probability of acceptance as

p = min
[
1, exp

(
− ∆E
kBT

)]
(2.68)

for a constant-NVT ensemble. Though this may lead to moves away from regions

of high probability, a sequence of poor moves is unlikely and the acceptance of

moves that increase energy reduces the chance of being trapped in local minima.

However, by influencing the regions of phase space explored during the sim-

ulation, importance sampling introduces bias. This bias is accounted for by im-

parting a weight, wi, on the ith microstate. Equation (2.64) then becomes

⟨A⟩ =
∑Ntrial

i Ai exp(− Ei

kBT
)/wi∑Ntrial

i exp(− Ei

kBT
)/wi

. (2.69)

Choosing wi = exp(− Ei

kBT
) this simplifies to

⟨A⟩ = 1
Ntrial

Ntrial∑
i=1

Ai (2.70)

for a constant-NVT ensemble. Thus by choosing the Boltzmann factor as the

weight for a constant-NVT sample, ⟨A⟩ is simply the average of A from all mi-

crostates. Equivalent results are achieved for other ensembles by modifying the

numerator in the exponent of the Boltzmann factor (i.e. the Ei term).

As the energy must be re-evaluated after any move, MC simulations are pred-

icated on multiple energy evaluations. Consequently, the evaluation of the energy

determines the computational cost of any MC simulation. Thus the use of a po-

tential that is more intensive computationally than another for a single energy

evaluation will increase appreciably the duration of the simulation, which will

necessitate thousands of these calculations at every step. Put simply, the total

CPU time of any simulation will be proportional to the CPU time of evaluating

the potential. As a result, minimising the cost of using GP potentials in such

simulations is crucial.
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2.4.3 Phase coexistence in Monte Carlo simulations

Phase coexistence in molecular simulation requires equivalence of temperature,

pressure and chemical potential η between the two phases. Respectively, equiva-

lence of these quantities corresponds to thermal equilibrium, mechanical equilib-

rium and chemical equilibrium. This leads intuitively to the use of a constant-

ηPT ensemble. However, it transpires that such an ensemble is a rather incon-

venient way to simulate phase coexistence practically. Instead, the Gibbs ensem-

ble [129,130] is employed commonly for modelling such behaviour. In the context

of the work in later chapters, the Gibbs ensemble would be used to simulate the

vapour-liquid coexistence point as a function of temperature and pressure.

The Gibbs ensemble separates the system being modelled into two distinct

regions. In this discussion, one region is a liquid and the other gaseous. The en-

semble attains thermal equilibrium through random movement of particles (dis-

placement) and mechanical equilibrium via fluctuations in the volume of each

region (volume changes). Chemical equilibrium is achieved by allowing particles

to exchange between both regions (particle exchange). Displacement, volume

change and particle exchanges are accepted with a probability of

p = min
[
1, exp

(
− ∆Y
kBT

)]
. (2.71)

This is a generalisation of equation (2.68) where ∆Y differs depending on which

of the three moves is made (see Appendix C).

Displacements, which occur in almost all Monte Carlo simulations, are the

most common of the three moves and entail movement and rotation of a random

particle. For displacements the change in energy arises from the interactions of

the moved particle, which means only these must be re-calculated. Typically,

an acceptance rate of 50 % achieves thermal equilibrium efficiently. This rate is

altered by adjusting the maximum possible displacement in the simulation.

Exchange moves are similar, with the change in energy of the region into

which the particle was transferred altered only by the interactions of that parti-

cle. However, exchanges have the additional requirement that the energy in the

region from which the particle was taken be re-calculated to no longer include it.

Exchange moves also require a far lower acceptance rate of only a few percent
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to achieve chemical equilibrium. Attainment of chemical equilibrium is verifiable

through calculation of the chemical potential in both regions.

Volume changes, which are also employed in constant-NPT simulations, re-

quire complete re-calculation of the energy as the intermolecular separations are

scaled by the same factor as the side length. As such, they are the most com-

putationally intensive of the moves required to simulate phase co-existence and

must be handled efficiently. Like displacements, volume changes require an ac-

ceptance rate of ∼ 50 % to achieve material equilibrium. The rate is adjusted by

altering the maximum allowed fluctuation in side length. Both volume changes

and exchanges are attempted with less regularity than displacements.

A Gibbs ensemble can run as either constant-NVT or constant-NPT, with the

difference in the treatment of the volume changes. Under the former it is specified

that the total change in volume over the two regions is zero to ensure that there

is no net change in volume. Meanwhile, a constant-NPT Gibbs ensemble treats

the volume fluctuations as completely independent.

2.4.4 Common practices in molecular simulations

Periodic boundary conditions

Consider a simulation of liquid argon for which the number of atoms, Na, is 1000

in a cubic simulation box with side length L = 10. Each atom could be placed

in either the bulk of the liquid or on its surface. Whereas in this simulation

box the proportion of atoms at the surface will be quite large, the same is not

true of a real liquid for which surface effects are not so prominent. Because the

interactions undergone by surface atoms will differ greatly from those in the bulk,

any physically reasonable simulation has to address surface effects.

The issue of surface effects is circumvented by the introduction of periodic

boundary conditions (PBCs). Under PBCs, the aforementioned simulation box

is replicated throughout space to form an infinite lattice. Thus one can consider

a simulation that employs PBCs to comprise an infinite number of simulation

boxes. Each simulation box contains Na atoms indexed as ab, where a is the

atom index and b denotes its simulation box.

When atom a1 moves, all ab̸=1 move identically within their own simulation
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boxes. The borders of the simulation boxes do not represent physical barriers

because PBCs are implemented to mitigate surface effects, meaning it is feasible

that any atom could leave its original simulation box through one of its faces. In

such a case, the equivalent atom from an adjacent simulation box will replace it

by entering through the opposite face. The consequences of this are twofold:
• Na remains constant for each simulation box throughout the simulation,

excluding particle exchange moves.

• Only the positions of the atoms in the original simulation box need to be

stored.
This leaves the question of whether the properties of a relatively small, in-

finitely repeating simulation box can reflect accurately those of a true bulk liquid.

The answer is dependent on two things: the range of the intermolecular potential

employed in the simulation and the property being investigated.

For most properties, PBCs do not present a problem [127], hence their widespread

use in simulations. However, capturing properties close to the critical point is

problematic. This is because the correlation length of any change to the bulk

near to the critical point will exceed L. That is, in a real liquid at the criti-

cal point, two atoms that are more than a side length apart will be correlated.

This is potentially problematic as in a simulation atoms at separations beyond

L are correlated incorrectly because they are images of each other. Though one

could increase L massively to account for this, such a change could render the

simulation prohibitively expensive.

The range of the potential, meanwhile, plays a key role because a true liquid

is not a series of interconnected, repeating boxes. Thus a potential that allows

a particle to interact explicitly with its image in an adjacent box will reduce

simulation accuracy by capturing the unphysical nature of the PBCs. Therefore,

for any simulation that employs PBCs to capture the properties of a bulk liquid

it must be ensured that atom a1 does not interact explicitly with any equivalent

atom ab̸=1.

Minimum image convention and cut-off distances

The issue of preventing a given atom from interacting with images of itself is

circumvented by application of a minimum image convention (MIC). An MIC
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entails placing the atom for which the potential is being calculated at the centre

of a box with the same dimensions as the original simulation box. Only the

interactions of this atom with all others for which the centres lie within the

minimum image box are considered. As any images of the central atom will lie

outside of this box, its interaction with them is not considered explicitly.

An MIC also accounts for another issue introduced by the PBCs: that there

are an infinite number of simulation boxes repeated throughout space. Both

Monte Carlo and molecular dynamics simulations are reliant upon calculations of

the total potential energy of the system being studied and, in the latter case, the

forces acting on all atoms. Consider the additive contribution to the potential

energy of the interactions involving atom a1, U (ab)
Add . For a single simulation box

this would be

U
(a1)
Add =

∑
i<a

U
(a1i1)
Add +

∑
j>a

U
(a1j1)
Add , (2.72)

a tractable summation containing Na − 1 terms.

However, under PBCs the interactions of a1 with all atoms in all other simula-

tion boxes must also be evaluated. Such a summation is impossible as it contains

an infinite number of terms. Under an MIC, the potential of each atom is given

by a sum over the Na − 1 closest periodic images of the other atoms in the simu-

lation. Thus, calculation of the total additive energy involves (N2
a −Na)/2 terms

under a MIC.

For systems where Na is big, (N2
a −Na)/2 could be prohibitively large. Thus,

another simplification is made whereby a sphere with a cut-off radius of rc is

constructed around the atom being considered. Only the interactions of this

atom and all others within this sphere are considered explicitly. For consistency

with the MIC, rc should not exceed L
2 . When using machine-learned potentials

(MLPs) for prediction a sensible choice is rc = Rcross, the crossing point between

the MLP and the long-range function. This holds only if Rcross ≤ L
2 , though

selecting a smaller rc in this case would still ensure the MLP is used in a region

where its predictions are accurate.
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Long-range corrections

For a potential comprising short-range interactions, the explicit additive energy of

any interaction between atoms at separation r > rc is considered to be zero. This

is because the total additive potential is dominated by the contributions between

atoms at low separations. For long-range interactions, a long-range correction

is applied. Examining the additive potential, such a correction views the total

additive energy U tot
Add as

U tot
Add = U c

Add + ULRC
Add , (2.73)

where U c
Add is the explicitly-calculated additive energy within the cut-off radius

and ULRC
Add is the long-range correction. This correction assumes that particles

separated by more than rc from an atom a are uniformly distributed around this

atom. Thus a interacts with a mean field of these atoms. Under this mean field

assumption, the atomic ULRC
Add is given by [127,128]

ULRC
Add = 2πNaρ

∫ ∞

rc
r2E(2)dr, (2.74)

where ρ is the density of the liquid and E(2) is a function that approximates the

long-range additive interaction energies.

When considering a simulation of argon atoms, a sensible choice of E(2) is

energy of the dispersion interactions,

E(2) = −C6r
−6, (2.75)

where C6 is the dispersion coefficient for argon. Thus the additive long-range

correction is

ULRC
Add = −2

3πNaρC6r
−3
c . (2.76)

For constant Na, ρ and rc this quantity needs to be calculated once only. The ap-

plication of the additive long-range correction to a simulation is therefore straight-

forward, although it must be re-calculated if Na or ρ vary. These correspond re-

spectively to exchange and volume change moves but involve altering these trivial

terms only.

Meanwhile, though more complicated, three-body long-range corrections for

atomic systems already exist. One example is that proposed by Leonhard and
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Deiters [131], which gives the long-range correction as

ULRC
LD = 8π2Naρ

2

3!

∫ ∞

rc

∫ ∞

rc

∫ r12+r13

max(rc,|r12−r23|)
E(3)dr12dr13dr23, (2.77)

where r12, r13 and r23 are the three interatomic distances that comprise the triplet.

Leonhard and Deiters used the Axilrod-Teller potential [132],

E(3) = CAT

(
1 + 3

8
(r2

12 + r2
13 − r2

23)(r2
13 + r2

23 − r2
12)(r2

12 + r2
23 − r2

13)
r2

12r
2
13r

2
23

)
1

r2
12r

2
13r

2
23
.

(2.78)

Here CAT ≈ Iα3, where I is the ionisation constant of the atom and α its polar-

isability.

The drawbacks of this approach include that it does not account for the con-

figurations in which one or two distances exceed rc. Moreover, it is not applicable

to systems of non-noble gases, as the Axilrod-Teller potential applies only to these

species. However, the integral could be generalised by using alternative potentials

in equation (2.77). Regardless of the form used, both the three- and two-body

long-range corrections must be re-evaluated after a particle exchange or volume

change move. These re-evaluations pertain respectively to the trivial Na and ρ

terms only, making this a simple procedure.

2.5 Summary of background

In summary, Gaussian process (GP) potentials are a promising choice for use in

molecular simulations not only because they can deliver first principles predictions

but because they employ a physically motivated function that can be integrated

straightforwardly for the additive long-range correction. This is in addition to GP

potentials outperforming other methods of prediction for a fixed training set size

and evaluating energies faster than even the most efficient ab initio methods, at

little cost to accuracy. Ideally, the region predicted by the GP would be as small

as possible at fixed accuracy to minimise GP evaluations and increase speed.

Simultaneously, a minimal training set is important to further increase speed and

reduce the computational cost of upgrading to a higher level of theory.

The work in the following chapters outlines a method to reduce the training set

size and, in many cases, cross-over distance for GP potentials. It also presents a
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method for exploiting the GP framework to implement GP potentials as efficiently

as possible in simulations. Both are important considerations because, as stated,

GP potentials are more computationally intensive than other potentials for fixed

training set size, as well as being more intensive to evaluate than a long-range

function. However, effective strategies to circumvent these issues permit the use

of GP potentials in simulations, offering an excellent route to applying high-level

ab initio information to the estimation of macroscopic properties of molecular

mixtures.
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Chapter 3

Gaussian process potentials with

boundary optimisation

As discussed, it is paramount to reduce training set size for Gaussian process

(GP) potentials to both increase speed of prediction and facilitate transfer learn-

ing. The methods discussed in Chapter 2.1 showed how the training sets for GP

potentials were contracted by moving from Latin hypercube training to sequen-

tial design. However, in both cases the cross-over distance Rcross between the GP

and long-range function was chosen a priori.

In this chapter, the highest error search method of Uteva et al. [29] is extended

so that Rcross is no longer fixed in advance but learned from the reference data.

This facilitates further reductions in training set size of up to 40 % at no cost

to accuracy. In addition, the resultant Rcross is often smaller than the 8.5 Å

chosen in the past. This means that a larger proportion of energy predictions

in any simulation can be left to the long-range function, which is cheaper to

evaluate than the GP, without reducing accuracy. This is achieved by boundary

optimisation, which optimises Rcross each time the GP is updated using a direct

search. This direct search is fast with respect to hyperparameter re-optimisation,

meaning the time taken to train the GP is barely affected.
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3.1 Motivation for boundary optimisation

As stated, the goal of boundary optimisation is to further decrease the number of

training points Nt required to develop a GP potential of a given accuracy relative

to the highest error search method of Uteva et al. [29], which was discussed in

section 2.1.4. Under that method, Rcross was fixed form the outset at 8.5 Å. Recall

also that the highest error search proceeded by adding the configuration in the

reference set R for which the squared error in the GP prediction was highest to

the training set T . Meanwhile, T was instantiated with the highest energy point

in R. All configurations added to T were removed from R.

It was discussed in subsection 2.3.7 that long-range functions from the multi-

pole expansion are capable of accurate prediction even at separations just above

the equilibrium bond length, as illustrated in figure 2.4. Such functions are used

at long-range in the GP potentials of Uteva et al. [27]. Thus, at low Nt the

predictions of the long-range function at the outer edge of the potential well are

likely to surpass those of the GP in terms of accuracy. Consequently, the accu-

racy of the potential will be increased relative to a highest error search with fixed

Rcross. This is because, by permitting optimisation of this quantity, the region

predicted by the long-range function is maximised. Intuitively, it is anticipated

that the associated increase in model accuracy will be greater at lower Nt.

Boundary optimisation may also enhance training efficiency by allowing the

GP to gradually expand the region in which it makes predictions. Under a fixed

Rcross, the GP is used for prediction at low separations in the repulsive wall and

larger separations at the outer edge of the potential well simultaneously. As the

rate of change in the energy with separation is different in both regions, so is

the ideal lengthscale. This is circumvented under boundary optimisation, which

allows the GP to learn the short-range region where the rate of change in the

energy is highest first before expanding to larger separations. As no attempt has

been made previously to learn Rcross from the reference data, any improvement

facilitated by boundary optimisation is likely to transfer to previous methods

of training machine-learned potentials, provided a suitable long-range function

is available. Due to the speed of the direct search algorithm, this increase will

accompany an at most negligible increase in training time.
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3.2 Model specifications and data set design

All GPs discussed in this chapter make use of the symmetric squared exponential

kernel [27]

kSE(xi,xj) = σ2
f

D∏
d=1

exp
(

−
(x(d)

i − x
(d)
j )2

2l2d

)
+ σ2

n,

kSym(xi,xj) =
∑
p∈P

kSE(xi, pxj).
(3.1)

This was introduced in section 2.1.4, equation (2.22). The GPs were trained using

the GPy package [133] in Python 2.7, with the hyperparameters re-optimised over

20 independent restarts whenever a configuration was added to T . Moreover, a

gamma distribution with an expectation of one and a variance of two was used as

a prior on all hyperparameters for all systems. This was to weakly penalise large

hyperparameter values, given that the expected values are typically of order 0.1

or below.

The systems for which GP potentials were developed with boundary optimi-

sation are shown in table 3.1. Also shown in this table are the specifications of R

and the test set S for each system. All data sets were produced under the LHC

design discussed in section 2.1.4, only now Rcross ̸= Rmax = 100 Å. They were

also subject to a high energy cut-off Ecut. This was 0.005 Eh
1 for all systems

apart from HF-Na+ (Ecut = 0.05Eh) and (HF)2 (Ecut = 0.002Eh) as these sys-

tems have greater well-depths. All energies were calculated in Molpro [134] using

MP2 with an aug-cc-pVTZ basis set and the counterpoise correction with the

only exception being HF-Na+, which used an aug-cc-pwCVTZ basis set instead

(see Section 2.2.2).

In table 3.1 r is the distance between the bond centres (not centres of mass), θ

is the angle between r and the bond axis of the molecule, θ1 and θ2 are the angles

between r and the bond axis of the first and second CO2 molecules respectively,

and ϕ is the torsional angle between the two CO2 molecules. The molecules were

kept rigid, with rCO = 1.1283 Å for CO, rCO = 1.1632 Å for CO2 and rHF =

0.9170 Å. A larger geometric constraint of 100 Å (instead of 8.5 Å [27]) was

employed to probe the long range behaviour of the system. The maximum value

of Nt was 100 for all systems apart from (CO2)2, which used 300 training points
11 Eh ≈ 27.211 eV ≈ 2625.5 kJ mol−1.
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Table 3.1: The co-ordinates for the reference and test LHCs for each system. Nref

and Ntest are the number of points in the reference and test sets respectively after

application of the high-energy cut-off, while the maximum number of training

points for models of each potential are given in the text. Also shown is the mini-

mum energy across the reference and test sets, Emin, in Hartrees (Eh), though no

attempt was made to approximate the global minimum energy for any potential.

System Coordinate Range Nref Ntest Emin

CO-Ne r−1 0.01 to 0.67 Å−1 1914 5718 -1.502 x 10−4

cos(θ) -1 to 1

HF-Ne r−1 0.01 to 0.67 Å−1 2148 6468 -2.633 x 10−4

cos(θ) -1 to 1

HF-Na+ r−1 0.01 to 0.67 Å−1 2760 8416 -2.518 x 10−2

cos(θ) -1 to 1

CO2-Ne r−1 0.01 to 0.67 Å−1 5057 5072 -2.895 x 10−3

cos(θ) 0 to 1

r−1 0.01 to 0.67 Å−1 5810 5837 -1.975 x 10−3

(CO2)2 cos(θ1) 0 to 1

cos(θ2) 0 to 1

ϕ 0 to 180o

r−1 0.01 to 0.67 Å−1 7816 7839 -6.575 x 10−3

(HF)2 cos(θ1) -1 to 1

cos(θ2) -1 to 1

ϕ 0 to 180o

r−1 0.01 to 0.67 Å−1 5759 1919 -3.125 x 10−3

(HCl)2 cos(θ1) -1 to 1

cos(θ2) -1 to 1

ϕ 0 to 180o
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Figure 3.1: The calculated energies in the reference set (red) and the test set

(black) of the CO2-Ne potential for separations between 2.85 Å and 4 Å. Both

sets contain ∼ 5000 configurations (see table 3.1).

at most, and the (HX)2 dimers, which had Nt = 350.

For systems with Ntest ≫ Nref the independence of the test set is self-evident.

However, for systems where Ntest ≈ Nref it is also true that the test set is in-

dependent. This follows because, although the reference and test sets for each

system were designed using the same ‘maximin’ strategy, the stochastic nature of

the LHC algorithm means that separate LHCs contain completely independent

sets of configurations. Furthermore, the ‘maximin’ criterion is based on just one

separation in the whole data set, meaning that two LHCs with similar maximin

will still be dissimilar. This is demonstrated in figure 3.1, which shows the en-

ergies against the inverse C-Ne separation for the reference and test sets used in

training models of the CO2-Ne potential.

For the long-range energy model, multipole series were employed for all sys-

tems apart from HF-Na+. The contributions included in the multipolar long-

range functions are shown in table 3.2 for each system apart from CO2-Ne,

for which the function is already described in previous work [27], and (CO2)2.

The latter was developed prior to the other multipolar long-range functions and

uses atomistic charge, dipole, quadrupole and polarizability contributions from

Hartree-Fock [109] theory, which were scaled to give the known total molecular

properties. For HF-Na+ a fitted long-range function was used, which was derived
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Table 3.2: The properties included in the multipolar long-range functions of

each system, as well as the ab initio methods used in their calculation. All

calculations were carried out using an aug-cc-pVQZ basis set apart from those

for the dispersion coefficients, which used an aug-cc-pVTZ basis set.

System Dipole Quadrupole Polarizability Dispersion

CO-Ne ✓ X ✓ ✓

HF-Ne ✓ X ✓ ✓

HF-Na+ ✓ ✓ ✓ ✓

(HX)2 ✓ ✓ ✓ ✓

Level of Theory MRCI [135,136] MRCI MP2 CCSD

by fitting an empirical sum of two power laws between two points where the en-

ergy was predicted by GP regression. More information on the motivation for

and derivation of this function is found in appendix D.

3.3 Classification of input space with a bound-

ary

When modelling potential energy surfaces (PESs) using GPs it is necessary to

classify configurations as suitable for prediction via either the GP or a long-range

function. In the work of Uteva et al. [27,29] the classifier formed a boundary from

the superposition of atom-centred spheres defined by a single constant, Rcross.

Specifically, if any interatomic distance was less than Rcross the GP was used. As

Rcross was fixed, this classifier is referred to here as Cfixed. Denoting the region in

which GP regression was used for prediction as AGP and the region that employed

the long-range function as ALR, under Cfixed these regions were

AGP = {r : min(r) ≤ Rcross} (3.2)

and

ALR = {r : min(r) > Rcross}, (3.3)
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where r is a set of intermolecular atom-atom distances, and min(r) is the smallest

separation in r.

In boundary optimisation, Rcross varies according to the GP accuracy. Thus

Rcross is not constant but a model parameter, which is learned from the reference

data. The classifier parameterised by a single, variable Rcross is referred to here

as Csingle. Under Csingle, both regions are defined as above but are no longer fixed.

That is, Csingle is parameterised similarly to Cfixed, only the variability of Rcross

allows the sizes of AGP and ALR to vary under the former.

More elaborate classifiers are possible by using more detailed parametric forms

to define the boundary region. A simple way of defining a more complex clas-

sifier is for the value of Rcross to depend on the atom types that comprise the

interatomic distance. The resulting classifier is referred to here as Cmulti. For a

system of molecules with D interatomic pairs of chemically different atoms, us-

ing Cmulti requires the vector of cross-over distances Rcross = (R1, ..., Rd, ..., RD).

This defines a multiple-parameter boundary region,

Cmulti(r) =


AGP, if mind(r) ≤ Rd for any d

ALR, if mind(r) > Rd for all d,
(3.4)

where mind(r) is the minimum separation in r that involves an atomic pair of

type d.

Optimal values of the classifier parameters are determined by minimising the

error between the potential and the reference set (i.e. by minimising the training

error), meaning the sizes of AGP and ALR vary with the GP. The sum of squared

errors, SSEtot, over the two regions is

SSEtot = SSEGP + SSELR, (3.5)

where

SSEmethod =
Nmethod∑

i=1
(Ŷi − Yi)2. (3.6)

Here,“method” denotes either GP or LR, Nmethod the number of points in Amethod,

Ŷi the prediction of the energy for the ith configuration from the desired method

and Yi the calculated energy of the same configuration.
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The RMSE against the test set, RMSEtest, is given by

RMSEtest =
(SSEtest

Ntest

) 1
2
, (3.7)

where SSEtest is SSEtot over the test set and Ntest is the number of configurations

in the test set. RMSEtest is therefore a function of Rcross with discrete steps, as

the RMSE changes only when a variation in Rcross causes re-classification of a

test configuration.

Both Csingle and Cmulti are simple, parametric classifiers that pre-impose a

mathematical form on the classification. Hence, neither is expected to be optimal

with respect to the RMSE against the reference or test sets. That is, a more

complicated boundary than that described by these classifiers will likely produce

a lower RMSE against a given data set. However, it is shown later that an

artificial ’ideal’ classifier produces only very marginal improvements over Cmulti,

suggesting this classifier balances simplicity and accuracy excellently.

A training strategy for a GP potential combines a classifier and a point place-

ment strategy to build the potential. Using the data and classification methods

above, a general training strategy to produce a GP potential sequentially pro-

ceeds as follows: train the GP to the current training set; select the classifier

parameters by minimising the RMSE against the reference set; move a new point

from the reference to the training set based on the largest error. Each step is

elaborated upon below, along with how the choice of classifier and placement

strategy affects the training strategy.

3.4 Direct search algorithm

When using Csingle, Rcross is optimised via a direct search that exploits how the

RMSE varies as a piecewise constant function of Rcross. Because of this feature,

all possible values of the RMSE can readily be computed and a direct search of

these values is guaranteed to find the global minimum. Full details of the direct

search are given in algorithm 1.

Each instance of the direct search requires only a single set of predictions from

each of the long range function and GP regression. As the long range function

is fixed throughout the sequential design process, these predictions need only be
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Algorithm 1 Direct Search Algorithm
1: Compute the errors for the GP and long-range function and min(r) at each

configuration in the reference set.

2: Order the configurations from smallest to largest in terms of min(r).

3: Approximate SSEtot initially from the squared errors of the long-range func-

tion alone.

4: Iterate through the min(r) from the lowest to the highest:
• set Rcross = min(r), which moves a single configuration from ALR to

AGP;
• update SSEtot by deducting the squared long range error of the moved

point from SSELR and adding its squared GP error to SSEGP;
• store the new SSEtot.

5: Find the smallest value of SSEtot and the value of Rcross to which it corre-

sponds.

calculated once at the start. The GP predictions need to be re-calculated when-

ever the GP is updated, which occurs once per stage of training. However, these

predictions are already required to choose the new training point at each training

stage. Furthermore, calculation of all possible squared error values (step 4) is

cheap because calculating each value in order requires only a simple update of

SSELR and SSEGP. Consequently, a direct search is fast compared to the other

steps of the sequential design algorithm and can therefore be undertaken at each

design step with negligible additional computational effort.

3.5 Orthogonal direct search

An adaptation of the direct search algorithm is necessary for Cmulti, as this re-

quires a multidimensional optimisation of multiple classifier parameters. This is

called the orthogonal direct search as it optimises one element of Rcross while keep-

ing the others fixed. The single element that varies is optimised using the direct

search algorithm, as this is guaranteed to return the best minimum along that

1D slice of Rcross. Although orthogonal optimisations can be time-consuming,

the speed of the one-dimensional direct search means that repeating it multiple
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Algorithm 2 Orthogonal Direct Search Algorithm
1: Choose limits NImax and NRmax on the number of iterations and restarts

respectively (see the text for details).

2: Assemble the array of minimum distances M, as follows:
• For every configuration, collect all interatomic distances which comprise

the same atoms types into group d and find mind(r) for each d.
• Arrange the lists of mind(r) values in an N x D array, M, where N is

the number of configurations in the data set and D is the number of

unique atomic pairs in r.
• For each column in M, order the values from smallest to largest to

produce an ordered list in each column.
3: For each restart, select a row from M at random to be the initial guess at

Rcross.

4: For each d in turn, fix all cross-over distances apart from Rd and find the

optimal value of Rd using a direct search.

5: Repeat step 4 until NI = NImax or the elements of Rcross remain unchanged;

save this Rcross and its corresponding SSEtot.

6: Repeat steps 3-5 until NR = NRmax.

7: Select the Rcross that corresponds to the lowest value of SSEtot.

times for all cross-over distances is feasible.

The orthogonal direct search proceeds via algorithm 2. As in the one-dimensional

direct search, the square errors of the long-range and GP predictions at each con-

figuration are pre-computed for this algorithm. The orthogonal search algorithm

is not guaranteed to find the global minimum, as local minima may exist in the

RMSE landscape. Hence, NRmax restarts are performed with randomly selected

starting points. Each restart involves NImax optimisations of each Rd. Here

NImax = 15 and NRmax = 5 for all systems. If the values in Rcross converge

such that further one-dimensional searches in any orthogonal direction do not

change its elements prior to NI = NImax, Rcross is saved and the next restart

undertaken. In fact, it was rare that NI reached NImax for any of the systems

explored here. Moreover, despite the low NRmax employed, the same minimum

was usually found across multiple restarts.
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Algorithm 3 Constrained Placement Algorithm
1: Select the configuration in the reference set with the highest energy; add this

configuration to the training set and remove it from the reference set.

2: Retrain the GP to the updated training set.

3: Determine the boundary that minimises the RMSE against the reference set

via algorithm 1 or 2 as appropriate.

4: Find the configuration in AGP for which the GP error is highest, where AGP

is defined by the boundary from the previous step.

5: Add this configuration to the training set and remove it from the reference

set.

6: Repeat steps 2-5 until the desired RMSEtest or number of training points is

reached.

The direct search offers a method that is at once fast, designed specifically

for the discrete-stepped surface and perfect in a single dimension. This latter

property means it skips over any local minima in a given orthogonal direction. As

such, optimal cross-over distances for Cmulti are obtained quickly and reproducibly

under the orthogonal direct search. Typically, about 80 % of random restarts

return the same set of cross-over distances for a given system and training set.

3.6 Training point placement methods

In addition to a classifier, any sequential design training strategy requires a

method of choosing training points. Once the classifier parameters are optimized,

the potential is specified and the next training point is determined from the high-

est error method. The point with the greatest error can be selected either from

AGP alone or from the union of AGP and ALR. Using AGP alone is referred to as

the constrained placement method, which proceeds via algorithm 3. Steps 2-5 of

this algorithm comprise a stage of training, with the RMSEtest also calculated at

each such stage.

Choosing new points from the union of AGP and ALR is named the open place-

ment method. This proceeded identically to the constrained placement method

(algorithm 3) except the highest error point was from either AGP or ALR. In
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ALR the highest error was found from the predictions of the long-range-function,

whilst in AGP the GP predictions were used.

Models were trained under both point placement methods because each held

potential advantages over the other. The constrained placement method ensures

all training points are added in the GP region and so are of immediate use in

prediction. Meanwhile, the open placement method is capable of immediately

placing points in regions of the PES where the long-range function performed

poorly, potentially transferring these regions to AGP more rapidly than under the

constrained placement approach.

3.7 Closest model training strategy

A further training strategy, which is intended for comparison only, is the closest

model training strategy. This employs the open placement method to select

training points and classifies a configuration using Coptimal, where

Coptimal(r) =


AGP, if SEGP ≤ SELR

ALR, otherwise
. (3.8)

Here, SEmethod is the squared error in the prediction from“method” at r. Coptimal

is so named because it classifies a configuration based on whether GP regression

or the long-range function best approximate its energy.

Equation (3.8) shows that Coptimal employs no boundary and so requires prior

knowledge of the energy of a configuration in order to classify it. Consequently,

models obtained from the closest model strategy are unsuitable for prediction.

However, this method represents an ‘ideal’ classifier that is guaranteed to find the

optimal RMSEtest for a given GP model. Hence Coptimal is useful for estimating

how inaccuracies in the parametric classifiers affect training efficiency. If models

from Coptimal significantly outperform the other classifiers, the other classifiers are

too simple to properly approximate the true boundary.

There are circumstances where Coptimal may not result in optimal GP train-

ing when assessed via the RMSE against the test set. Short-range hypersurfaces

where the interaction energy is predicted near-exactly by the long-range function

72



Table 3.3: The classifier and training point placement method for all training

strategies examined in this chapter.

Training Strategy Classifier Point Placement Method

Single-Constrained Csingle Constrained Placement

Multi-Constrained Cmulti Constrained Placement

Single-Open Csingle Open Placement

Multi-Open Cmulti Open Placement

Closest Model Coptimal Open Placement

Fixed Boundary Cfixed Constrained Placement

due to chance may exist. Points in the reference set that are near these hypersur-

faces will be classified by Coptimal as part of ALR instead of AGP. If the configura-

tion density of the reference set around such a hypersurface is insufficiently high,

no training points will be added in its vicinity. Consequently, points in the test

set near to the hypersurface will be inadequately approximated by either method

of prediction; the GP will perform poorly due to a lack of nearby training points

and the long-range function will be inaccurate for short-range points that are not

extremely close to the hypersurface. This problem was avoided by using dense

reference sets and by not using the constrained placement strategy with Coptimal.

3.8 Overview of training strategies

As stated, the sequential design method, or training strategy, requires a choice

of classifier and placement strategy. The combinations of these examined in this

chapter are given in table 3.3. Methods that do not involve Coptimal can make

predictions and so are suitable for applications. The method involving Coptimal

can only classify points if the true energy is already known, and so is only useful to

estimate the loss in performance due to inaccuracies in the parametric classifiers.

The fixed boundary method corresponds to the method of Uteva et al. [29] and is

included to allow comparison with this prior method, on which the new methods

build. The method of Uteva et al. [29] was previously shown to significantly

reduce the number of training points compared to LHC design. It is demonstrated
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Figure 3.2: The predictions of the GP (blue) and the long-range function (red)

for a slice through the PES of the (CO2)2 potential in which the two molecules are

in a T-shaped configuration. The cross-over distance for this model is shown by

the black line at 4.505 Å. Data points (black circles) are from MP2 calculations

that are independent of the GP training data.

below that these new boundary optimisation methods improve further the already

efficient methods of Uteva et al. [29].

3.9 Results for non-(HX)2 potentials

Comparisons of the performances of the different training strategies are made

using the HF-Ne, HF-Na+, CO-Ne, CO2-Ne, (CO2)2, (HF)2 and (HCl)2 poten-

tials. These were selected as they provide a range of interaction types and well

depths to test the robustness of the new training strategies. However, poor per-

formance of fixed boundary training on the latter two potentials means that these

are discussed separately in section 3.10.

The number of training points is Nt, which in each system was less than 10 %

of the number of configurations in the corresponding reference set (see table 3.1

and the related text). Consequently, the training sets for the models discussed

are candidates for transfer learning because their small size makes, for example,

CCSD(T) calculations possible for the whole training set.

Boundary optimisation is anticipated to improve training efficiency as, for
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Figure 3.3: Plot of RMSEtest / Eh against Nt on a log10 scale for models of

the HF-Ne PES trained via the multi-constrained (circles) and fixed boundary

(triangles) training strategies. The blue circles and pink triangles are points which

were included in the fitting of the lines shown.

small Nt, the long-range function will outperform the GP at the outer edge of

the potential well. This is illustrated in figure 3.2 for the (CO2)2 system, using

a GP model trained under the single-constrained strategy up to Nt = 21. This

figure shows that the predictive accuracy of the long-range function exceeds that

of GP regression for configurations with C-C separations above the cross-over

distance. Despite this, in the fixed boundary method these configurations would

be predicted with the GP. This not only reduces overall accuracy, but also means

new training points must be placed at long range to address this, when allowing

the long-range function to predict these energies would give adequate accuracy.

The impact of the above on training efficiency compared to fixed boundary

training is shown for HF-Ne in figure 3.3. For Cmulti the RMSE falls faster with

Nt compared to Cfixed, indicating improved training efficiency. This improvement

is most pronounced when Nt is low and so RMSEtest is high. This is expected

because increasing the size of the training set increases the size of the GP region,

meaning Rcross in the boundary-optimised strategies will approach the fixed value

of 8.5 Å. Consequently, the difference between the fixed boundary and boundary-

optimised models will close as Nt increases. Equivalent plots to figure 3.3 for all
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training strategies for all systems are found in Appendix E.

Figure 3.3 also shows that the RMSE data are somewhat noisy. Possible

causes of this noise are minor variations in the hyperparameters upon retraining,

the discrete nature and stochastic design of the reference set, and the low values

of Nt meaning that addition of a single point has a non-smooth effect on the

RMSE. The new methods herein have considerably lower noise than the prior

fixed boundary method.

To compare the efficiency gain over fixed boundary training across all new

strategies from subsections 3.7 and 3.8, a metric, E, is used. This compares

the Nt required by two different strategies to achieve a given RMSEtest. When

comparing a new training strategy with fixed boundary training,

E(RMSEtest) = Nt(RMSEtest)
Nt,fixed(RMSEtest)

x100%, (3.9)

where Nt and Nt,fixed are the numbers of training points required by the new

strategy and fixed boundary training, respectively. These quantities and E are

shown as functions of RMSEtest as they vary with its value.

For a given RMSEtest, the values of Nt and Nt,fixed are determined from least

squares fits of log10(RMSEtest) versus log10(Nt), with examples of such fits shown

in figure 3.3 for the HF-Ne potential. Fits are made in the region where the

RMSE decays as a power law of Nt. For all systems this corresponds to 1 x

10−6 Eh ≤ RMSEtest ≤ 1 x 10−4 Eh, apart from HF-Na+ where the region is 1 x

10−5 Eh ≤ RMSEtest ≤ 1 x 10−3 Eh due to the larger high energy cut-off for this

potential. The fits provide continuous lines to interpolate to any RMSEtest within

the stated ranges. This enables a comparison of Nt between training strategies at

fixed RMSEtest that accounts for the somewhat noisy data. Moreover, this is the

range of errors in which the models are useful for applications and the decrease

in log(RMSEtest) with log(Nt) is linear.

The fitted equations for each training strategy for the CO-Ne system are given

in table 3.4 as power laws in Nt. Equivalent tables for all other systems are found

in Appendix E. As the data are noisy, these tables also show the R2 value of

each fit. In the case of CO-Ne, these evidence the high quality of the fits. In

fact, no fit from any training strategy for any system achieves an R2 value lower

than 0.8907 (from the fixed boundary training strategy on the HF-Na+ system).
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Table 3.4: The equation of the lines of best fit for RMSEtest of models from all

training strategies for CO-Ne as power laws in the number of training points,

NTP. Also shown are the R2 values of each fit on the data. All fits were over

points in the range 1 x 10−6 Eh ≤ RMSEtest ≤ 1 x 10−4 Eh.

Training Strategy Line of best fit to RMSEtest R2

Single-Constrained Placement 4.694N−3.842
TP 0.929

Multi-Constrained Placement 1.551N−3.647
TP 0.944

Single-Open Placement 2.901N−3.718
TP 0.921

Multi-Open Placement 3.113N−3.830
TP 0.958

Closest Model 0.865N−3.490
TP 0.944

Fixed Boundary 546.0N−5.069
TP 0.914

Furthermore, figure 3.3 and the corresponding plots in Appendix E show that the

RMSE data follow a straight line (in a log-log plot). This implies that the R2

arises from scatter in the data rather than unsuitability of the fitting function.

Re-arranging the equations in table 3.4 provides expressions for Nt in terms of

RMSEtest for the CO-Ne potential. These give E as a function of RMSEtest, via

equation (3.9), for all new training strategies herein. This was done for all other

potentials as well, with plots of E against RMSEtest for all training strategies for

each system given in figure 3.4.

As observed earlier, the training efficiency gains in figure 3.4 are more pro-

nounced at high RMSEtest for all training strategies across all systems. This sug-

gests that boundary optimisation is most effective when the training set is small,

making this technique ideal for applications where a computationally cheap but

less accurate potential is required. Nevertheless, significant reductions in the

number of training points are also obtained in the RMSE range where PESs

become useful for first principles predictions.

For example, a GP potential with an RMSE of 3 x 10−4 eV per atom (1.1 x

10−5 Eh per atom) was employed in a recent simulation of the thermal properties

of β-Ga2O3 [42]. Furthermore, Uteva et al. successfully determined the CO2-CO

second virial coefficient using a GP PES with an RMSE of 2.4 x 10−5 Eh [27].

In this RMSE range the boundary optimisation methods typically reduce the
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required number of training points by 15-33% (see figure 3.4).

Generally, the closest model strategy generates the largest efficiency gain,

while the smallest improvement comes from strategies involving Csingle. Efficiency

gains only slightly below those from the closest model strategy are achieved by the

strategies that use Cmulti. This hierarchy of improvement implies that the choice

of classifier, rather than point placement strategy, is most important because

strategies with the same classifier perform more similarly than those with the

same point placement method. The closest model strategy is included only to

illustrate the total training efficiency gain possible from an ‘ideal’ classifier, and

it is encouraging that the best boundary optimisation methods are close to this

ideal case. Indeed, the difference in E between this ideal method and the closest-

performing Cmulti strategy never exceeds ∼ 3 % for any system. This implies that

Cmulti captures the true shape of the boundary region for the systems explored

sufficiently. Thus introducing a more detailed classifier would not be worth the

increased cost of developing and evaluating the potential.

Cmulti always outperforms Csingle. However, for the CO2-Ne potential (figure

3.4d), Cmulti also outperforms the closest model strategy. This is because the

long-range function is nearly exact for a group of short-range configurations in

the reference set. This is shown in figure 3.5 by the thin ‘peninsula’ of points

that are best estimated by the long range function (in red) which encroaches

deep into the GP region (in blue). This ‘peninsula’ exists because the long-

range function is of higher energy than the MP2 data in some regions of the

PES and of lower energy in others, meaning there must be some hypersurface in

between where the two are equal. Prediction for test configurations close to the

‘peninsula’ is problematic under Coptimal unless the reference set is very dense in

this region. This is because the near-exact predictions of the long-range function

on the ‘peninsula’ mean no training points are added there, leading the closest

model strategy to perform relatively poorly for the CO2-Ne potential.

The total gain in training efficiency achieved by boundary optimisation varies

somewhat between systems. While the best-performing training strategy for HF-

Ne improved training efficiency by between 25-39 % (i.e. E = 61-75 %), for

(CO2)2 the gain was only 12-18 % (E = 82-88 %). The more limited gains for
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Figure 3.4: Plots of E against RMSEtest for all potentials are shown in parts (a)

to (e). The potential referred to in each frame is shown in the upper right corner.
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Figure 3.5: Plot of the x and y coordinates of the Ne in the CO2-Ne system for

configurations in the reference set. The CO2 molecule is aligned along the x-axis

with the C at the origin. Points are classified as GP points (blue) or asymptotic

points (red) by Coptimal using a potential from the closest model strategy trained

up to Nt = 100.

(CO2)2 may be because the a priori choice of Rcross = 8.5 Å, required for the fixed

boundary method, is reasonable for this system. Nevertheless, even for the (CO2)2

potential, use of multi-constrained training confers an efficiency gain of ∼ 18 %

over fixed boundary training. This means that for all of the potentials explored,

use of a training strategy that employs Cmulti confers a useful improvement over

fixed boundary training.

Boundary optimisation improves the training efficiency due to more effective

placement of training points. This is illustrated in figure 3.6, which shows, for

HF-Ne, the differences in training point placement for three training methods:

fixed boundary, single-constrained and closest model. While all place most points

at separations below 3 Å, indicating that the repulsive wall is the hardest region

to model, the placement of points at larger separations diverges between methods.

For the first 20 training points few configurations are placed beyond 3 Å for the

single-constrained and closest model strategies. Thereafter, the distance at which

training points are added slowly increases, even for the closest model strategy,

which does not employ a boundary directly. In fact, single-constrained training
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Figure 3.6: Plots showing training point placement for the first 100 training

points for models of the HF-Ne PES trained using the fixed boundary (a), single-

constrained placement (b) and closest model (c) strategies. These points are

coloured based on the shortest interatomic distance in the configuration, with

only this shortest distance shown for each. Boundary values are represented by

black lines where applicable.

adds training points beyond 8 Å only after ∼ 90 training points have been placed

and the closest model strategy does not add any training points above 7 Å at all.

In contrast, the fixed boundary training method adds its fifth training point

at a minimum separation above 5 Å and its eighth at 8.5 Å. This demonstrates

that a fixed boundary strategy switches between placing training points in the

repulsive wall and at the boundary from the onset of training. This difference is

because fixed boundary training requires the GP to predict energies at separations

up to 8.5 Å from the start of training. Consequently, training points must be

added at separations near the 8.5 Å boundary from the onset, even though the

energies at these separations are very small and generally well-approximated by

the long-range function.
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Figure 3.7: Plots showing training point placement for the first 100 training points

for models of the CO-Ne PES trained using the single-constrained placement (a)

and single-open placement (b) strategies. These points are coloured based on the

shortest interatomic distance in the configuration, with only this shortest distance

shown for each. Boundary values are represented by black lines.

This contrasts with the boundary-optimised and closest model strategies,

which allow the long-range function to approximate configurations at separa-

tions around 8.5 Å when the number of training points is low. This facilitates

more efficient model development under boundary-optimised and closest model

training because point placement can be focused on the short-range region of the

PES, where energy varies more rapidly with configuration.

Training point plots for the CO-Ne potential, given in figure 3.7, show that the

single-open strategy extends AGP much further than single-constrained training.

This suggests that the capacity to place points in ALR facilitates faster expan-

sion of the boundary for this system. However, these plots also indicate that

this discrepancy is most noticeable when the number of training points is large;

specifically, rapid expansion of the boundary under single-open training was in-

stigated by placement of a single training point at long range, which facilitated

the increase in Rcross to 63.0 Å. Prior to this, the cross-over value from single-

open training was quite similar to that from single-constrained training (both

were ∼ 17 Å). Hence the two training strategies differ significantly only when the

predictions from GP regression are already highly accurate, as at this stage the

predictions of the long-range function are poor enough by comparison to merit

placement of a training point at long-range.
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Figure 3.8: Plot showing the values of Rcross achieved for the first 100 training

points by single-open and single-constrained training for models of the CO2-Ne

potential.

The other systems also show close similarity between the cross-over distances

for the single-constrained and single-open strategies, as illustrated in figure 3.8.

Equivalent plots for other systems are found in Appendix E. Figure 3.8 shows that

for the CO2-Ne potential the values of Rcross from the two strategies are similar

throughout training. Such a trend suggests that the choice of point placement

strategy does not significantly change the value of Rcross, implying once more that

the choice of classifier is of greater import.

Similarities in the evolution of the boundary are seen when the cross-over dis-

tances achieved under Cmulti and Csingle are compared for a given point placement

method. Figure 3.9 shows the results of such a comparison for the HF-Na+ and

CO2-Ne systems. The cross-over distances generally grow at a similar rate, but

the value of Rcross is consistently larger than all values in Rcross. This suggests

that there are differences between Csingle and Cmulti, which manifest in both the

training efficiency and boundary placement.

The larger GP region under Csingle compared with Cmulti is explained by noting

that both are approximations of an ‘ideal’ classifier. When Nt is low (i.e. one or

two), such a classifier will attempt to make AGP as small as possible because the

training set comprises configurations from the repulsive wall only. Consequently,
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Figure 3.9: Plots showing the value of Rcross and entries in Rcross for the first

100 training points for models of the HF-Na+ potential from single/multi-open

training (a) and the CO2-Ne potential from single/multi-constrained training (b).

given the same training set, Csingle and Cmulti also try to minimise the size of

AGP. As Cmulti is more flexible its approximation of the ‘ideal’ classifier will be

closer than that of Csingle, meaning AGP under Csingle will be larger. Other than

the repulsive wall, the largest errors tend to occur at separations around the

boundary. Thus, due to its larger AGP, a Csingle strategy will place its first long-

range training point at a larger separation than a Cmulti strategy. This facilitates

faster expansion of the boundary under Csingle than Cmulti regardless of which

point placement method is used.

Figure 3.9a shows that RH-Na+ < RF-Na+ throughout most of training for

the HF-Na+ potential, meaning that the interaction involving the larger atom

(F) obeys a larger cross-over distance. Such ordering of the cross-over distances

also applies to the HF-Ne system for most of training. Moreover, figure 3.9b

shows that the ordering of the cross-over distances for the CO2-Ne potential is

consistent, with RO-Ne < RC-Ne throughout training. In fact, for the (CO2)2 and

CO-Ne potentials it holds generally throughout training that RO-O < RO-C <

RC-C and RO-Ne < RC-Ne respectively for both point placement methods. This

implies that the ordering of the cross-over distances under Cmulti is consistent

between systems as well as between atomic sizes.

Additionally, figures 3.6-3.9 show that the cross-over distance increases with

the size of the training set. This is expected because a larger training set means

the GP has more information with which to infer the function describing the PES.
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Figure 3.10: Plots showing the first 100 training points and values of Rcross from

two runs of single-open training (a) and fixed boundary training (b) for models

of the CO2-Ne potential.

The resultant, more accurate GP enables larger cross-over distance(s). This is

the case for all training strategies across all systems.

Boundary optimisation methods decrease the cost of using PES, by reducing

the number of training points and the size of the GP region. Fewer training

points means GP evaluations are cheaper, as the GP cost is proportional to Nt.

Additionally, the lower Rcross or Rcross of the boundary-optimised model means

that in any application the GP would be used less often, in favour of the much

cheaper asymptotic function. Hence boundary optimisation produces models that

are more efficient to implement in applications than fixed boundary training, with

no reduction in overall accuracy.

Though Rcross or Rcross in excess of 8.5 Å are seen in some plots in Appendix

E, these coincide with potentials trained on large Nt. They are therefore in

the plateau, seen after Nt ≈ 70 in figure 3.3, where increasing the size of the

training set has little associated benefit to model accuracy. Thus, the GP is

only marginally more accurate than the long-range function at the configurations

added to AGP at this stage and a similarly accurate model with a smaller bound-

ary and training set could be chosen instead with little impact on predictive

accuracy.

Boundary optimisation also increases the reproducibility of training. That is,

for two separate models from the same training strategy and reference set, the

results will be more similar for a boundary-optimised strategy compared to using
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Figure 3.11: The first 300 training points and values of Rcross from single-open

and single-constrained training for the (CO2)2 potential.

a fixed boundary. For example, when modelling the CO2-Ne potential with single-

open training the results from two separate training runs were identical, as shown

in figure 3.10. This is noteworthy because the values of the hyperparameters

selected when maximising log(L) (equation (2.9)) can vary slightly, even for the

same training set. Such variations can alter the predictions of the GP, leading to

different values for Rcross or Rcross and the selection of different training points.

Thus, that two separate runs of the same training strategy are totally identical

is encouraging.

Furthermore, figure 3.10 shows that for fixed boundary training separate runs

were identical only up to Nt = 27. While the exact reproducibility in figure

3.10a is not present for the other potentials, there is generally significantly less

difference between independent runs of the boundary-optimised training methods

than for fixed boundary training. For example, models of the HF-Ne potential

from single-constrained and single-open training are reproducible up to Nt = 30

and Nt = 41 respectively, compared with Nt = 16 for fixed boundary training.

Equivalent plots to figure 3.10 for this system under these strategies are given in

the supplementary material.

This reproducibility increase compared to fixed boundary training does not

transfer to the use of the Cmulti strategies, likely because a direct search is not as
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reproducible in multiple dimensions as in a single dimension. However, from the

R2 values in table 3.4 it can be seen that use of either Cmulti or Csingle reduces the

scatter in the RMSEtest data relative to use of Cfixed, as evidenced by the larger

R2 values achieved when training with the former two. This trend is repeated

across all other potentials examined here, which suggests that use of boundary

optimisation leads to more stability in selection of the hyperparameters and hence

more consistent predictions.

For the (CO2)2 system, reproducibility is seen not just for repeat runs of

identical training strategies but between the training strategies that use Csingle.

This is illustrated in figure 3.11, which shows that the single-constrained and

single-open training strategies choose identical training points until Nt = 210.

Such an observation explains why the two methods have identical E in figure 3.4e.

This is because when Nt = 210 the RMSEtest values for single-open and single-

constrained placement were 2.817 x 10−7 Eh and 2.784 x 10−7 Eh respectively.

Consequently the error was too low at this Nt to be included in the fit, meaning

the two strategies were identical over the RMSEtest values used in fitting. That

boundary optimisation mitigates instability in hyperparameter selection to the

extent that the highest-dimensional potential examined exhibited reproducibility

up to Nt = 210 represents a significant improvement over fixed boundary training.

Table 3.5: The equation of the lines of best fit of models from the multi-

constrained and fixed boundary training strategies for the (HX)2 systems as power

laws in the number of training points, Nt. Also shown are the R2 values of each

fit on the data.

Training Strategy Equation of Line R2

(HF)2 Multi-Constrained Placement 0.3903N−1.6858
t 0.9681

(HCl)2 Multi-Constrained Placement 0.0105N−1.0056
t 0.9001

(HF)2 Fixed Boundary 1.7733N−1.8401
t 0.7914

(HCl)2 Fixed Boundary 0.0301N−1.0188
t 0.5516
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Figure 3.12: Plots showing the RMSEtest values for the first 350 training points

for models trained under the fixed boundary and multi-constrained strategies, as

well as their associated fits for (HF)2 (a) and (HCl)2 (b). Points shown in blue

(for multi-constrained) and purple (for fixed boundary) were used to develop the

fits, the equations of which are in table 3.5.

3.10 Results for (HX)2 potentials

The variability in hyperparameter selection that was alleviated by boundary opti-

misation was particularly problematic for the (HF)2 and (HCl)2 systems. In fact,

the issue was such that comparison of boundary-optimised strategies with fixed

boundary training via the efficiency metric E (equation (3.9)) was not feasible.

This is illustrated in figure 3.12 and by the poor R2 values associated with fixed

boundary training in table 3.5.

Figure 3.12 shows that, for both dimers, fixed boundary training results in

models for which the errors fluctuate markedly. This is most pronounced for

(HCl)2, where at any stage of training the predictive error of the fixed-boundary

model appears to be in one of two regions. This implies heavily that the issue

stems from the selection of hyperparameters, as each distinct set of errors in figure

3.12b will correspond to a set of hyperparameters.

Specifically, these results suggest that there are several sets of hyperparame-

ters that correspond to local minima in log(L) and that all of these are similar

in value. This is because the presence of a clear global minimum would lead to

consistent hyperparameter selection between stages of training, promoting the

consistent fall in RMSEtest with Nt observed when using boundary optimisation.

Examination of the hyperparameters selected at each stage of training sup-
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Figure 3.13: Plots showing the values of the signal variance (a), noise variance (b)

and F-F lengthscale (c) for the first 350 training points for models of the (HF)2

PES trained under the fixed boundary and multi-constrained strategies.

ports this theory. Figure 3.13 shows the signal variance, noise variance and

F-F lengthscale (parts a, b and c respectively) selected by models from multi-

constrained and fixed boundary training to the (HF)2 PES. Equivalent plots for

the (HCl)2 potential are shown in figure 3.14.

The figures demonstrate that for all hyperparameters the values selected by

fixed boundary training appear to be taken with a similar frequency from two

regions. Meanwhile, the hyperparameters in the multi-constrained model seem to

be taken from only one of these regions. Hence fixed boundary training produces

models under which the hyperparameters, and therefore predictions, are incon-

sistent between stages of training. This contrasts with the boundary-optimised

strategies, which produce models with more consistent hyperparameter values.

Two sets of hyperparameters are seen as equally plausible under fixed bound-

ary training because the PES can generally be viewed as comprising two sections:

the potential well and repulsive wall, and the long-range asymptotic region. In

each section, the energy changes differently with configurational geometry, even
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Figure 3.14: Plots showing the values of the signal variance (a), noise variance

(b) and Cl-Cl lengthscale (c) for the first 350 training points for models of the

(HCl)2 PES trained under the fixed boundary and multi-constrained strategies.

under the r → r−1 transform.

Fixing Rcross = 8.5 Å means that, from the start of training, part of the long-

range section of the PES will be included in the GP region. Thus, sections of the

PES where different hyperparameters are required are modelled in concert by the

GP throughout. This gives rise to the observed inconsistency in model accuracy

under fixed boundary training.

This may be more noticeable for the (HX)2 systems due to the dipole-dipole

interactions, which were not present in the systems explored in section 3.9. These

could exacerbate the issue of fluctuating variability of energy with separation as

the X—X and H—H interactions are strongly repulsive, while the H—X inter-

actions are strongly attractive. Thus the PES for each of these systems will be

more variable than those in the last section.

However, the variability in hyperparameter selection is more pronounced for

the (HCl)2 dimer than the (HF)2 dimer despite the dipole in the former being

weaker. It is therefore likely that the disparity in atom sizes in these systems exac-
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Figure 3.15: Plots showing the training point placement for the HF dimer (a) and

HCl dimer (b) for the first 350 training points from the fixed boundary strategy.

erbates the non-stationarity issue. At low separations, the requisite lengthscales

for the Cl-Cl and H-H interactions will be vastly different due to the relatively

small size of the atoms in the latter. However, at larger separations this will

cease to be the case. Consequently, the issue of requiring different lengthscales

at different separations is exacerbated for the (HX)2 dimers, specifically (HCl)2.

The effect is not seen under boundary optimisation as this technique ensures

that the GP models only a small portion of the repulsive wall when training

begins. As this region gradually expands, the hyperparameters selected by the

GP gradually change with it. Furthermore, consider the situation where expand-

ing the GP region further would entail simultaneously modelling two portions of

the PES for which the optimal hyperparameters significantly differ: any boundary

optimisation technique would reject such an expansion as greater predictive accu-

racy would be achieved by leaving the current long-range region to the long-range

function.

The poor performance of the fixed boundary method for these systems renders

any comparison of training point placement or predictive accuracy redundant.

This is because the strength of the boundary-optimised model is not proven by

comparison with a method that performs badly. However, the training point

placement of the fixed boundary models may exhibit different behaviour for the

(HX)2 systems compared with those in the previous section. Thus, the training

points for both of these systems under fixed boundary training are given in figure

3.15.

91



2 4 6 8 10 12 14
Separation / Å

0

50

100

150

200

250

300

Nu
m

be
r o

f T
ra

in
in

g 
Po

in
ts

C-C Distances
C-O Distances
O-O Distances

Figure 3.16: Plot showing the training point placement for the CO2 dimer for the

first 300 training points from the fixed boundary strategy.

These plots elucidate no clear difference between the point placement for both

systems when compared with that of (CO2)2 under the same training strategy.

This is shown in figure 3.16. However, because the hyperparameters specify-

ing the models fluctuate considerably between stages of training for the (HX)2

systems, the training points are not selected to gradually improve a single set

of hyperparameters. This will lead to lower training efficiency. Moreover, that

boundary optimisation enhances the stability of hyperparameter selection so com-

pletely that any negative effects on training performance are eliminated is itself

a promising result.

3.11 Conclusions

It has been shown that boundary optimisation produces GP potentials of the same

accuracy using fewer training points than fixing Rcross a priori. This improvement

in efficiency is hierarchical, with a boundary defined by a single, variable cross-

over distance offering a modest improvement and a boundary defined by multiple

such distances facilitating a further gain. Boundary optimisation was also found

to enhance stability in the selection of the hyperparameters. In the systems

explored in section 3.9, boundary-optimised potentials exhibited higher repro-

ducibility and reduced noise compared with those trained under a fixed Rcross.
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Meanwhile, for the (HX)2 dimers, boundary optimisation solved a fundamental

issue with fixed boundary training, namely large inconsistencies in hyperparame-

ter selection that led to the predictive accuracy of the potential becoming erratic.

Under boundary optimisation, the errors of the potentials for these systems fell

consistently throughout training.

Generally, the results presented imply that the classifier is more important

to the training strategy than the point placement method. In the RMSE range

that is suitable for first principles calculations (∼2 x 10−5 Eh) the boundary

optimisation methods typically reduce the required number of training points

by 15-33% relative to a training strategy that is already established as efficient

[29]. Because of their reduced training set size, the resulting boundary-optimised

PESs are strong candidates for transfer learning, in which the existing ab initio

calculations are upgraded to a higher level of theory. Moreover, as the size of the

GP region increases with the size of the training set only as needed, the resulting

potentials are less computationally intensive in applications than fixed boundary

methods because they employ the GP over a smaller region of phase space.

The classifier Cmulti, which uses different cross-over distances for difference

atomic pairs, performed almost as well as an ’ideal’ classifier. Across all systems,

the largest difference in performance between the closest model strategy, which

uses an ‘ideal’ classifier, and nearest boundary-optimised strategy was ∼ 3 %. In

all cases the best-performing boundary-optimised strategy employed Cmulti, im-

plying that a classifier comprising a spherical boundary with a unique radius on

each unique atomic pair captures the true boundary effectively. Further refine-

ment of the classifier would not result in a sufficient reduction in training points

to justify the extra classifier expense. Furthermore, a complex classifier is less

suited to a transfer learning approach: a long-range function that makes accurate

predictions in an area of the PES at one level of theory may not do so at another

and this issue is exacerbated if the boundary is complicated.

The cross-over distance(s) are learned from the reference data under boundary

optimisation using a direct search. This is sufficiently fast to be used at every

stage of training whether one or many cross-over distances are employed and in

the multi-dimensional case returns cross-over distances in a physically reasonable
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order. Moreover, both direct search algorithms can be used easily in conjunction

with another machine learning technique or on another chemical interaction.

In fact, a direct search can be applied to any problem whereby a boundary

is sought between a good method of approximation in one region of input space

(the long-range function here) and a machine learning technique in another. This

means that the methodology which underpins boundary optimisation is both fast

and flexible, in addition to being effective in solving the problem of reducing the

computational expense associated with training a GP model of an intermolecular

PES.

Physical systems in which the behaviour crosses over from a simple asymp-

totic function to more complicated behaviour are common in many fields. A

prominent example is the transition from ideal to non-ideal gas behaviour. As

the boundary optimisation techniques herein exploit this cross-over in behaviour,

there are many potential applications of this technique to physical problems be-

yond intermolecular potentials.

3.12 Future work

The results of training without boundary optimisation on the (HX)2 systems mo-

tivates an investigation into the effect of non-stationarity. Such an investigation

has been undertaken and is presented in the next chapter.

Furthermore, the application of boundary optimisation to non-additive inter-

actions is likely to show great promise. These potentials are high-dimensional,

meaning the possible gains in efficiency are larger than for the systems looked

at so far. Additionally, the capability to place different cross-over distances on

different interactions may be useful in this context even when the ‘mixture’ con-

tains a single species. This is because different cross-over distances could be

imposed on the shortest, longest and middle distances in an atomic triplet. To

do so would require a suitable long-range function, which could be derived by a

method similar to that outlined in Appendix D.
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Chapter 4

Alternative kernels and

transforms for Gaussian process

potentials

The results presented in Chapter 3 showed that training without boundary op-

timisation led to a significant reduction in hyperparameter stability, which in

turn reduced training efficiency. While negligible for most systems, for the (HX)2

dimers this effect was pronounced. The instability was rooted in the Gaussian

process (GP) having to learn the potential energy surface (PES) out to 8.5 Å

from the outset of training, which meant it was trained simultaneously on two

regions of the PES where the rate of change in energy with inverse separation

differed. That is, the problem occurred due to non-stationarity in the training

data.

Consequently, the issue might be alleviated by a more effective transform on

the inputs, introduction of a transform on the output (i.e. the energy) or by

the use of a kernel that is better suited to non-stationary data. These solutions

are explored in this chapter. In addition a non-zero mean function could be

introduced, with a Lennard-Jones potential a sensible choice. Furthermore, the

use of stricter priors could alleviate the issue by forcing the model to prefer one

of the two sets of hyperparameters between which the model was seen to vacillate

previously. The latter two fixes were not explored here, however.

New input and output transforms, as well as additional kernels, were found
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to make little difference to training efficiency. However, certain transforms were

found to drastically increase the stationarity of the input data. This suggests

that re-specifying the training LHCs to the new transforms may enhance train-

ing efficiency. Despite this, such work was not undertaken as boundary optimi-

sation already facilitated training that was robust to this issue for these systems.

Though fixing this problem within the framework of the GP itself would have

been desirable, the option of boundary-optimised training renders it non-urgent.

Put simply, the results in this chapter show that certain alterations improved

stationarity of the input data but this did not translate to improved training

efficiency, as this would require re-specifying the LHCs.

4.1 Methodology

4.1.1 Data sets and systems

The results presented here were all obtained from Latin hypercube (LHC) train-

ing, as outlined in section 2.1.4. This training was undertaken on LHCs of sizes

1, 3, 5, 10, 15, 25, 35, 50, 75, 100, 250, 500, 750 and 1000 before application

of the high-energy cut-off, Ecut = 0.005 Eh. All calculations were undertaken in

Molpro [134]. In previous work, ‘moderate’ accuracy ab initio calculations were

used to find and test the best training set design. All calculations in this chap-

ter employ ‘moderate’ accuracy ab initio data, specifically second-order Møller-

Plesset perturbation theory (MP2) with an aug-cc-pVTZ basis set and the coun-

terpoise correction. The specifications of the LHCs used for the systems that

were investigated are shown in table 4.1. As boundary optimisation is not used,

Rcross = Rmax = 8.5 Å and no predictions were made using a long-range function.

That is, all reported RMSE values come from GP predictions only. All GPs were

trained using GPy [133] with priors for all hyperparameters being a Gamma dis-

tribution with an expected value of one and a variance of two. 20 random restarts

were undertaken to optimise the hyperparameters. Results are presented for the

(HCl)2 and (CO)2 potentials.

Though it was not examined in the previous chapter, the CO dimer represents

an sensible touchstone for the improvements made to training of (HCl)2 poten-
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Table 4.1: The co-ordinates for the training and test LHCs for each system. Ntest

is the number of points in the test set after application of Ecut. Also shown is

the minimum energy in the test set, Emin, in Eh, though no attempt was made

to approximate the global minimum energy for any potential.

System Coordinate Range Ntest ϵ

r−1 0.12 to 0.67 Å−1 1519 6.02 x 10−4

(CO)2 cos(θ1) -1 to 1

cos(θ2) -1 to 1

ϕ 0 to 180o

r−1 0.12 to 0.67 Å−1 1622 2.80 x 10−3

(HCl)2 cos(θ1) -1 to 1

cos(θ2) -1 to 1

ϕ 0 to 180o

tial. This is because the (CO)2 PES has the same number of degrees of freedom

and symmetries as the (HCl)2 PES and a smaller permanent dipole in its con-

stituent molecules (µCO ≈ 0.12 Debye [137] versus µHCl ≈ 1.09 Debye [138]).

Furthermore, the sizes of its constituent atoms are more similar than those of the

(HCl)2 system. Resultantly, any difference between training a (HCl)2 potential

and a (CO)2 potential arises from non-stationarity in the training data due to

the larger dipole and larger discrepancy in atom sizes in the former. Thus, the-

oretically, if the issue of non-stationarity were dealt with, the training efficiency

of both systems would be near-identical.

That this is not the case under LHC training using a symmetric squared

exponential kernel and the r → r−1 transform on the inputs is evidenced in figure

4.1, which shows how RMSEtest varies with LHC size. Additionally, the figure

illustrates that the no-model RMSEtest values are similar for both systems, with

values of 1.18 x 10−3 Eh and 1.26 x 10−3 Eh for (CO)2 and (HCl)2 respectively.

The no-model RMSEs were calculated by assuming all energy predictions are zero

and indicate that the higher errors seen for (HCl)2 are not a consequence of the

interaction energies being of a vastly larger magnitude.

Of the (HF)2 and (HCl)2 dimers, the latter was the only one investigated
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Figure 4.1: Plot of RMSEtest against LHC size for the (CO)2 and (HCl)2 potentials

using ksym as the kernel function and an r → r−1 transform on the inputs. The

horizontal lines show the no-model RMSEs, which were 1.18 x 10−3 Eh and 1.26

x 10−3 Eh respectively.

here. This is because the results in Chapter 3 illustrate that it was affected

more significantly by the effects of non-stationarity than (HF)2. Consequently,

any method that reduces the disparity in training efficiency between (CO)2 and

(HCl)2 potentials is likely to impact (HF)2 potentials similarly. Furthermore, the

larger high-energy cut-off used for the (HF)2 potential makes direct comparison

of errors between models of this system and (CO)2 more difficult.

4.1.2 Input transform

As an alternative to the use of inverse interatomic distances, a r → (r−armin)−1,

a ∈ [0, 1), transform was employed. This transform was chosen as it makes the

inverse distances further apart at low r and should make the change in energy in

the repulsive wall more gradual as a result. As this effect will be less pronounced

effect at the outer edge of the well, the disparity between the requisite hyper-

parameters for these regions should be reduced. This is because as r increases,

armin becomes smaller relatively, as does the difference between the r → r−1 and

r → (r − armin)−1 transforms.

In this transform, rmin ̸= Rmin, the minimum distance permitted in the train-
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Table 4.2: The values of rmin used for the r → (r − armin)−1 transform on each

interatomic distance.

rC−C rC−O rO−O rH−H rH−Cl rCl−Cl

rmin (Å) 2.62 2.56 2.43 1.61 1.95 2.94

ing LHC. Instead it is the shortest distance present in the test set for a given

atomic pair after application of Ecut. Thus rmin is determined for each atomic

pair in the system. The values of rmin used for each atomic pair in each system

are given in table 4.2. These were chosen by taking the smallest value for each

interatomic distance present in the test set.

That rmin differs between interatomic interactions means it should alleviate

the issue caused by discreapncies in atom sizes, discussed in Section 3.10. This

is because armin will be larger for interactions between larger atoms, making the

values of (r−armin)−1 for the H-H and Cl-Cl interactions more similar than those

of r−1.

The r → (r − armin)−1 transform was trialled by varying a and assessing the

concomitant change in training efficiency for the (CO)2 and (HCl)2 potentials.

Values of a from 0.5-0.99 were used, as well as a = 0.1. Though possible, setting

a = 0 was not done here as the new transform tends to the r → r−1 transform

as a → 0. All training was done on LHCs that were built in inverse interatomic

distances, not the new transformed coordinates.

An alternative approach is to invoke Morse variables, which have been used

with more success in other systems [35, 139]. This entails undertaking a r →

exp(−r/b) transform, b ∈ [2, 3] bohr (1 bohr = 5.29 x 10−11 m). However, Morse

variables were not found to outperform inverse distances consistently and the

results were for intramolecular PESs where the effects of intermolecular dipole-

dipole interactions were not relevant. In addition, it is not obvious how these

variables would alleviate the issues that stem from differently-sized atoms. As

such, they are not explored here.
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Figure 4.2: A plot showing the Lennard-Jones potential, subject to the energy

transform with two different values of c. The original Lennard-Jones potential

was specified to have σ = 1 Å and ϵ = 2.8 x 10−3 Eh.

4.1.3 Energy transform

Previously, the impact of transforming the energy before training has not been

examined. However, changing the output can, in theory, impart stationarity on

the data as effectively as a variation of the inputs. One approach would be to

‘squash’ the energy values in the repulsive wall to cover a shorter range. This

would make the apparent change in energy in this region smaller, increasing the

similarity between the rate of change in energy with input in the repulsive wall

and the outer edge of the well.

This is the basis of the E → c ln(1 + E/c), c ∈ [1.1ϵ, 1], transform, where ϵ

is the well-depth. The values of ϵ used for each system are given in table 4.1.

Here, the well-depth is taken from the lowest energy in the test set. The range of

possible values of c arises from the fact the transform is only permitted if E > −c.

For positive values of E (i.e. those in the repulsive wall), E/c is positive

and the transform requires taking the natural log of a value slightly above one.

As E grows more positive, the value of ln(1 + E/c) increases more slowly. The

range of the positive, repulsive region of the PES is thereby reduced. Likewise,

for negative E, E/c will be negative. Consequently, 1 + E/c < 1 meaning that

the value of the transformed energy will become more negative rapidly with an
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increase in the magnitude of E. This transform therefore not only truncates the

repulsive wall, it elongates the rest of the PES. This should mean that the rate

of change in the transformed energy with separation should be closer to uniform

than when the energy is not transformed.

The effect of the transform is illustrated in figure 4.2, which shows the Lennard-

Jones potential under two different values of c. This illustrates that as c → 1.1ϵ,

the transform changes the energy to a greater extent. This manifests as a deep-

ening of the potential well and a reduction in the range of the repulsive wall.

Thus the transform has the aforementioned expected effect and might, therefore,

increase the efficiency of training on the (HCl)2 PES.

All RMSEtest values reported for this transform were obtained by first making

the GP predictions in the transformed energy, converting these predictions back

to original energies and then comparing with the test set energies. That is, the

predictions had to undergo a reverse transform. Denoting the transformed energy

as E∗, the reverse transform made prior to evaluating RMSEtest is

E = c
(

exp
(
E∗

c

)
− 1

)
. (4.1)

4.1.4 New kernels

Beyond altering the inputs and outputs of the model, non-stationarity in the

training data can be addressed with a different kernel. The new kernel employed

in this work is the neural network kernel

kNN(xi,xj) = σ2
f

D∏
d=1

2
π

arcsin
( σ2

wx
(d)
i x

(d)
j + σ2

b√
σ2

w(x(d)
i )2 + σ2

b + 1
√
σ2

w(x(d)
j )2 + σ2

b + 1

)
+ σ2

n.

(4.2)

This was chosen due to its non-stationary nature, which will hypothetically ac-

count for non-stationarity in the training data.

To preserve the symmetric nature of ksym, which allows any interatomic dis-

tances in x to be swapped without affecting the energy, all kernels built from kNN

were symmetric. The simplest example is the symmetric version of kNN,

kNN−S(xi,xj) =
∑
p∈P

kNN(xi, pxj). (4.3)

Recall that P is the set of permutations under which the energy is invariant and

p is a single permutation within that set.
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Figure 4.3: Plots showing the change in RMSEtest with LHC size for the (CO)2

and (HCl)2 potentials that compare the old transform (a = 0) with new when

a = 0.1 (a) a = 0.5 (b) and a = 0.99 (c).

It has also been found that composite kernels are more efficiently trained for

some systems [35]. As such, composite kernels were built by combining kNN and

kSE by addition or multiplication. In the later discussion, the most successful of

these symmetric composite kernels is discussed. This has the form

kComp(xi,xj) =
∑
p∈P

[kNN(xi, pxj) + kSE(xi, pxj)]. (4.4)

The hyperparameters were optimised by log-likelihood maximisation, not the

Bayesian information criterion (see equation (2.21)). As such, the GP model

was not penalised for having a large number of hyperparameters. The effect on

training efficiency this has would have been investigated had any kernels proved

promising in reducing the discrepancy in training (CO)2 and (HCl)2 potentials.
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4.2 Results and discussion

Any increase in a for the r → (r − armin)−1 transform was found to reduce the

training efficiency of both potentials. This effect was exacerbated at large a,

where the new transform diverged substantially from the old, r → r−1 transform.

Such a pattern is evidenced in figure 4.3.

The trend in figure 4.3 suggests that the new input transform inhibits the

capacity of the GP to learn either potential as a → 1. While for a = 0.1 the

results from the old and new transform are similar, with the latter slightly worse,

when a = 0.99 both potentials barely improve upon the no-model estimates

(figure 4.1). Though this corresponds to a reduction in the difference between

training GP potentials of the two systems this is only because neither is captured

at all well.

However, figure 4.4 shows that the r → (r− armin)−1 transform does enhance

the stationarity of the training data. The figure demonstrates that as a increases,

the spread of the data at small separations is larger. Thus, rather than a rapid

change in energy at low separation, the change in energy at short-range is far

more gradual.

There is no concomitant increase in training efficiency with the increase in

the stationarity of the training data, however. Again, figure 4.4 may explain this

by illustrating that as a increases the data at smaller separations become more

sparse. Thus a LHC designed using the r → (r− armin)−1 transform would place

more points at short range to fill space evenly. As the LHCs were built under the

old transform, however, increasing a leads to a training set in which space is no

longer filled uniformly. Consequently, training errors increase despite an increase

in the stationarity of the training data.

This does, however, suggest that this transform could alleviate the non-

stationarity issue when training GP potentials for the (HX)2 systems. To test

whether this will lead to an increase in the similarity between training of the

(HX)2 and (CO)2 potentials would require re-designing the training LHCs under

the new transform. However, provided the training points are dense enough in

input space this should not be an issue: the main purpose of designing the LHC

in inverse distances is to ensure the density of points in the repulsive wall is large.
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Figure 4.4: Plots showing the distribution of points in the test set for the (HCl)2

potential under the old transform (a = 0) and the new when a = 0.1 (a) a = 0.5

(b) and a = 0.99 (c). The third plot is truncated so that points under the original

transform are still visible.

Even when transformed again, the number of points in this region is still the same

so successful training should still be possible.

The investigation of the E → E∗ transform, meanwhile, began by ascertaining

the optimal value of c to use for the (HCl)2 PES. This was done by comparing

300 c values for c ∈ [1.1ϵ, 0.4] Eh on the 500-point LHC, for which RMSEtest was

lowest. The results of this comparison are shown in figure 4.5, which reveals that

the training error was minimised when c ≈ 0.2302 Eh.

Though small, it can be seen that this transform leads to a reduction in

RMSEtest for models of the (HCl)2 system. Consequently, GP potentials for the

(CO)2 and (HCl)2 systems were trained using c = 0.02302 Eh. The results of

this training are shown in figure 4.6, which shows that for both systems the

reduction in RMSEtest is minimal for all LHC sizes. This is consistent with the

small reduction in RMSEtest presented in figure 4.5 and is likely a result of the

transform being relatively weak. For example, a typical value of the energy would
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Figure 4.5: A plot showing how RMSEtest varies with the strength of the energy

transform for GP potentials trained on the 500-point training LHC. The strength

of the energy transform is determined by the parameter c. The red line shows

the error when the energy is not transformed. All RMSEtest values were found

by comparing GP predictions that had undergone the reverse transform shown

in equation (4.1) with the un-transformed test set energies, which were evenly

spaced in r−1.

be E = −1.26 × 10−3 Eh, which is the negative of the no-model RMSE. With this

energy and c = 0.02302 Eh, E∗ = −1.30 × 10−3 Eh, corresponding to a difference

of only 4 × 10−5 Eh between the transformed and original energies.

However, at c < 0.2302 Eh, RMSEtest rises rapidly as the transform becomes

more powerful. As a more powerful transform would lead to increased stationarity

in the training data, which was alluded to in figure 4.2, one would expect RMSEtest

to fall with c. Just as for the input transform though, the increase in stationarity

leads to a larger discrepancy between the LHC specified in E and the data set

that results from using E∗. Thus training error increases as the input space is

filled less evenly as E∗ diverges from E.

This is illustrated in figure 4.7, which shows that for the most powerful pos-

sible transform (with c = 1.1ϵ Eh) the placement of points differs more greatly

from the original LHC than when c = 0.02302 Eh. Thus, once again, the more

powerful version of the transform enhances stationarity in the training data while

simultaneously leading to a large divergence from the spread of points in the orig-
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Figure 4.6: A plot showing the change in RMSEtest with LHC size for the (CO)2

and (HCl)2 potentials that compares error with no energy transform with that

achieved with the new transform when c = 0.02302.

inal LHC. As the points no longer fill the input space as evenly as they would

under a LHC design, the training error increases. Further testing of the transform

with training LHCs designed under the transformed energies is therefore required

to determine its efficacy, similarly to the r → (r − armin)−1 transform.

Figure 4.7 also shows that when c = 1.1ϵ, the difference between the most posi-

tive and most negative energies in the test set increases versus the un-transformed

data. This will contribute to the reduced accuracy of the GP potentials, as a

larger range of energies is modelled with the same number of points that are no

longer optimally distributed to fill the input space. Denoting the range of ener-

gies as ∆T where T is the transform, ∆None = 7.8 × 10−3 Eh, ∆c=1.1ϵ = 1.0 ×

10−2 Eh and ∆c=0.02302 = 7.5 × 10−3 Eh. This shows that ∆None > ∆c=0.02302,

which explains the slight reduction in error at this value of c. The reason that

the range of energies expands and then contracts as c decreases is that E∗ is only

marginally smaller than E initially, with the reduction in the value of positive

energies slightly greater than that of the negative energies. However, as c → 1.1ϵ

the negative energies continue to decrease rapidly while those that are positive

decrease more slowly.

Thus the impact of the above transforms on training efficiency cannot be easily
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Figure 4.7: Plots showing the distribution of points in the test set for the (HCl)2

potential with no energy transform and the transformed energy when c = 0.02302

(a) c = 1.1ϵ (b).

determined without re-specifying the LHCs used in training. This, however, is

not the case when employing a new kernel, which does not change the training

data at all. Consequently, any improvement from modifications to the kernel will

be reflected in any plot of RMSEtest against LHC size.

Figure 4.8 therefore contains plots of RMSEtest against LHC size, demonstrat-

ing the reduction in RMSEtest as the training set grows larger. While this figure

evidences that the discrepancy between GP potentials of the (CO)2 and (HCl)2

systems is reduced somewhat by using a symmetric kNN, said improvement is

mainly due to errors for the former generally being larger with this kernel than a

symmetric kSE. There is, however, a slight improvement over the last two LHCs

for the (HCl)2 potential with the new kernel, which may suggest the increased

capability with non-stationary training data that it affords is at least partially

impactful.

It was hoped that the marginal improvement for the (HCl)2 potential could

be preserved and the general decline in accuracy for the (CO)2 potential reversed

by using kComp (equation (4.4)). This kernel combines the capacity to train on

non-stationary data of kNN with the proven capability of kSE in building GP

potentials of intermolecular interactions.

The training outcomes for this composite kernel are displayed in figure 4.9.

The data therein convey that this kernel successfully retains the slight improve-

ment for the (HCl)2 potential while rendering the (CO)2 training near-identical

to that seen with a symmetric kSE. However, these data also show that even this
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Figure 4.8: A plot of the change in RMSEtest with LHC size for the (CO)2 and

(HCl)2 potentials with symmetric versions of kNN and kSE.

kernel offers no significant reduction in the (HCl)2 training errors. Once again,

only the RMSEtest values of the final two LHCs are markedly reduced and even

then not by a factor sufficient to make training of the two potentials equiva-

lent. Thus, the use of a non-stationary kernel is not sufficient to eliminate the

discrepancy between training of (CO)2 and (HCl)2 potentials.

That the introduction of a non-stationary kernel barely results in any im-

provement to the training errors observed for the (HCl)2 potential also implies

that further reducing non-stationarity in the training data will not lead to more

efficient training. This is because significant non-stationarity in the data would

have meant the improvement accompanying the use of a non-stationary kernel

would have been sizeable. Instead, the small improvement observed shows that

the (HCl)2 data are only marginally more non-stationary than the (CO)2 data

and that the r → r−1 transform is successful in making the data as nearly as

stationary as possible. Consequently, further exploration of the aforementioned

transforms may not be worthwhile despite the significant changes they impart on

the training data. This is because a PES is inherently non-stationary and will

remain so under any transform; although these transforms may increase slightly

the stationarity of the data in any LHC, the vast majority of the increase is

made with the simple r → r−1 transform. Thus any additional gain from a more
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Figure 4.9: A plot of the change in RMSEtest with LHC size for the (CO)2 and

(HCl)2 potentials with kComp and a symmetric kSE.

convoluted transform will be likely be minor.

4.3 Conclusion

The results in Section 4.2 show that the proposed energy and input transforms

alter substantially the distribution of the points in the LHC data sets. This

effect is specifically pronounced for the latter transform at large a. However, such

changes did not translate in either case to a significant reduction in RMSEtest for

the (HCl)2 system. While the energy transform imparted a marginal reduction in

this quantity when c ≈ 0.0203 Eh, the input transform increased the error for all

values of a. In both cases, the most powerful transforms resulted in the largest

increase in RMSEtest.

The increase in error was the result of the aforementioned alteration to the

distribution of points in the training sets under the more powerful transforms.

Said change resulted in a less even distribution of points in the new input space

than would be the case if the training LHCs had been re-designed under the

new transforms. This in turn reduced the efficiency of training, meaning to

fully explore the effects of these transforms would require such a re-design to be

undertaken.
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Despite this, a large enough density of training points should mean that

switching between transforms without re-specifying the training LHC should in-

duce no increase in error. Training LHCs are developed in inverse distances to

ensure the density of points in the repulsive wall is large, which remains the case

even under a new transform. As such, the training LHCs were not re-designed

here.

A further reason that the training LHCs were not re-designed here was the

observation of the effect of training with a non-stationary kernel. These results

implied that, though the data were slightly non-stationary, the residual non-

stationarity after the r → r−1 transform had a negligible impact on training.

Therefore any further reduction in non-stationarity in the training data would

likely result in only minor increases in training efficiency, such as those observed

when using a non-stationary kernel.

The results of training with this kernel also showed that training with a com-

posite kernel that stems from adding kSE and kNN preserved the small gain in

training efficiency for the (HCl)2 system from the use of kNN while preserving the

training efficiency of building the (CO)2 potential. Thus this kernel may be a

promising candidate for training GP potentials of more complex PESs. However,

the composite kernel has many more hyperparmeters than symmetric versions of

kSE or kNN, which renders training more lengthy.

Overall, the results suggest that the non-stationarity that remains in the

(HCl)2 training data cannot easily be reduced further, with the original r → r−1

transform seeming to account for the majority of non-stationarity. This is be-

cause of the small effect of the non-stationary kernel and the poor results of

the new transforms. Instead, the non-stationarity is inherent in the PES, espe-

cially the PES of a system such as (HCl)2, which undergoes strong dipole-dipole

interactions and features atoms of considerably different sizes.

The results in the last chapter also suggest that this issue is circumvented

by the use of boundary optimisation. Therefore, deriving another solution to

the problem is not a pressing concern: if one encounters a system comprising

differently-sized atoms, any issues with training will likely be alleviated with

boundary optimisation anyway.
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4.4 Future work

The results in this chapter suggest that alterations to the input and output trans-

forms can drastically alter the distribution of the input data. Consequently, it

may be of interest to re-design the LHCs used in training here to follow these new

transforms. This would incite more efficient space-filling under the new trans-

forms, which may lead to higher training efficiency of the (HX)2 dimer systems.

However, as discussed, this is not necessarily anticipated to improve the results

drastically.

Training by sequential design under the new transforms may also be of inter-

est, to ascertain whether selecting a subset of points from a dense reference set

would enhance training outcomes. Likewise, training via sequential design using

kComp may be worthwhile for this reason. However, given that the problem is

known to be solved by boundary optimisation and has no obvious solution, train-

ing with boundary optimisation in future may be the simplest way to avoid it. If

a situation were encountered where boundary optimisation offered no significant

improvement, then continuing to investigate the effects of new transforms may

be worthwhile. However, those already explored here are unlikely to be of use.
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Chapter 5

Efficient implementation of

Gaussian process potentials

5.1 Chapter overview

A Gaussian process (GP) potential, like any other machine-learned potential

(MLP), can be a far more accurate approximation of the true potential energy

surface (PES) than that rendered by a traditional force-field. However, though

considerably less computationally intensive than using ab initio methods directly,

MLPs increase the computational cost of simulations relative to force-fields. This

problem can be particularly prevalent in determining non-additive contributions,

such as the three-body potential. Such potentials require more training points

to capture and any simulation box will contain, for example, more triplets than

pairs. As such, evaluating efficiently the three-body non-additive potential is the

focus of this chapter.

The relatively high cost of GP potentials renders their efficient implementation

paramount. Here this is achieved through parallel programming, which entails

distributing the individual evaluations that form the total calculation across pro-

cesses such that they are undertaken simultaneously. Throughout this chapter,

a higher efficiency refers to a reduction in the real time required to evaluate a

potential.

Efficient implementation represents another route, alongside minimising train-

ing set size, to mitigating the increased cost of GP potentials. Some of the
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techniques discussed here to achieve such an implementation are specific to the

architecture of GP potentials. That is, they exploit the framework used by these

potentials to make predictions in order to apply them efficiently. Thus, these

aspects of the method are not readily generalisable to other MLPs. However,

the distribution of the triplet calculations given here is general and effective in

ensuring these are disseminated equitably across processes. As a proof of con-

cept, this chapter presents an algorithm to calculate in parallel the three-body

contribution to the potential in a simulation box of argon atoms using a GP.

The three-body potential is the most computationally intensive calculation that

contributes significantly to the total potential. All calculations discussed in this

chapter require no approximations, meaning the GP potential is given exactly.

Typically, Gibbs ensemble calculations entail anywhere between 100,000-10,000,000

cycles. Each cycle comprises displacement of all atoms in both boxes, a volume

change move and a particle exchange move from each box. Throughout this chap-

ter, a simulation box contains 500 atoms. For such a simulation, if each volume

change took one second and each exchange or displacement took 0.1 second, the

total time for a cycle would be ∼ 102 s. This would leave the total time for

the simulation at 10,200,000 s for 100,000 cycles, the equivalent of around 118

days. Thus a ten-fold speed-up could reduce the total time to under two weeks.

Consequently, facilitating efficient calculation in simulations to produce results

in reasonable time frames is paramount.

The chapter begins with descriptions of the importance of three-body interac-

tions and how to evaluate Ar3 triplets in Sections 5.2 and 5.3 respectively. This

is followed by discussions of how to calculate in parallel all exponentials (Section

5.4 and non-additive energies (Section 5.5). These sections contain descriptions

of different calculations required in Monte Carlo simulations and, for ease of dis-

cussion, the efficiency of different aspects of the method. A final overview of the

speed-up is then given in section 5.8, after descriptions of how to accept and re-

ject moves in Section 5.6, and the current algorithm in Section 5.7. The requisite

changes to use GP potentials in simulations of more varied systems are given in

section 5.10. This section also contains a brief discussion of the changes needed

to apply GP potentials to molecular dynamics simulations, which are important
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for non-equilibrium properties such as viscosity, and how to evaluate the long-

range correction for non-additive interactions. Previously, it was common to set

the non-additive energy to zero beyond a certain distance (e.g. 5 Å for the H-O

distance in water [140]).

All calculations in this chapter were undertaken on the University of Notting-

ham high-performance computer. Code was written in Fortran, using the Fortran

message passing interface (MPI) for parallelisation and shared memory. For all

calculations, the O3 optimiser flag was enabled to minimise computational time

prior to parallelisation.

5.2 Significance of the three-body non-additive

contribution

Herein there is a particular focus on the three-body contribution (see Chapter

2.3) to the total potential energy. This is because determining the additive contri-

bution requires a simplification of the method used for the three-body calculation

and is faster. Thus, any algorithm that can calculate the three-body non-additive

energy of a system of particles can be extended straightforwardly to undertake

additive energy calculations.

Moreover, the three-body energy is by far the most significant non-additive

contribution to the total potential. For water, the two- and three-body contri-

butions account for the vast majority of the potential [141–143]. In fact, these

contributions account for on average 95-99 % of the total potential [121–124].

Furthermore, for spherical particles with no permanent dipole such as argon, in-

clusion of three-body effects is sufficient for accurate Monte Carlo simulations

in the liquid phase [131]. It is therefore common for three-body terms to be

the highest-order energy contributions in simulations of phase behaviour in no-

ble gases [144, 145]. Thus, a method that is capable of evaluating the addi-

tive and three-body energies for many systems, including pure argon, will ignore

only contributions generally considered to be negligible. Higher-order many body

contributions are neglected here as a result, so the terms “three-body” and “non-

additive” are used interchangeably for the duration of this chapter.
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In simulations of water the inclusion of these three-body effects improved

significantly the results of simulations, drawing the estimates of the number of

H-bonds present per molecule [146], the diffusion constant [140], and, among

others, the virial coefficients [147] closer to values expected from experiment.

Consequently, modern force-fields such as AMOEBA [3–5] employ three-body

polarisable terms [6, 7]. This means that to exploit fully the improved accuracy

offered by MLPs over traditional force-fields, the former must be able to estimate

efficiently the non-additive potential.

If higher-order contributions were desired, the methodology presented here

should prove generalisable. The simplest higher-order term is the four-body con-

tribution, which it should be possible to evaluate with relatively minor modifi-

cations. For example, the strategy outlined for storing the exponentials would

be the same, requiring only a larger array. Likewise, the summation over ex-

ponentials would require a similar method, only with an extra exponential in

the product and a permutation array that accounts for groups of four atoms

rather than triplets. Thus, though it would require a more complex variation of

the methodology presented here for the three-body potential, evaluation of the

four-body potential should be possible using the same general method.

5.3 Ar3 triplets

A GP potential for the Ar3 triplet will require a training set of size Nt, in which

each training point comprises a number of dimensions Nd. All GP potentials

in this chapter were trained on a 337-point Latin hypercube, with all energies

calculated at the CCSD(T) level of theory and an aug-ccPVQZ basis set. That

is, Nt = 337 while the number of dimensions per training point, Nd, is three.

These potentials also made use of the symmetric squared exponential kernel,

which means that the set of permutations under which the energy is invariant

was required. This set is introduced later (Section 5.5.1), but as all interatomic

distances are equivalent, all can be swapped. Thus the total number of permu-

tations Nperm is six for all triplets.

Throughout this chapter, Na = 500 and the side length L is 18 Å. A cut-
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off of rc = L/2 = 9 Å is used, resulting in roughly 12 % of energy calculations

being undertaken explicitly. For all cases, half of moves were accepted. Only

the additive long-range correction, as shown in 2.4.4, is undertaken here, when

evaluating a full simulation box.

5.3.1 Evaluation of the energy of an Ar3 triplet

Consider a single triplet comprising three Ar atoms, labelled 1, 2 and 3, which

is described by the vector of inputs x = (x12, x13, x23). Replacing the positions

with these inputs, from the discussion in Chapter 2.3 the total potential energy

of this triplet Utri(x) is given by

Utri(x) = UAdd(x) + UNA(x), (5.1)

where

UAdd(x) = U12(x12) + U13(x13) + U23(x23) (5.2)

is the total additive energy of the triplet.

For the rest of this chapter the availability of a trained GP potential is as-

sumed, with the Woodbury vector1 Λ given by

Λ = (K + Iσ2
n)−1Y. (5.3)

(See section 2.1.2.) Using a symmetric squared exponential kernel function (equa-

tion (2.22)), UNA(x) is approximated by this GP potential as

UNA(x) = σ2
f

Nt∑
i=1

Λi

Nperm∑
k=1

Nd∏
j=1

exp
(

−
(xj − (x′

ij)k)2

2l2j

)
. (5.4)

Here, i sums over training points, k sums over permutations, j runs over dimen-

sions of x, and (x′
ij)k is the jth coordinate in the ith training point, after the latter

has been subjected to the kth permutation. A permutation is an interchange of

two distances under which the energy is invariant. Evaluation of this potential

requires NtNpermNd exponentials. As an argon-only simulation will require the

same lengthscale for each dimension, henceforth lj = l.
1This vector is typically denoted as α, but Λ is used here to avoid confusion with α later

denoting an atom in a triplet.

116



Each of the contributions to UAdd(x) are calculated via the same structure as

equation (5.4). This calculation will, however, require a different GP potential.

Consequently, the values of σf , Λi and l will differ, as will those of Nperm and Nd.

For argon atoms each contribution to UAdd(x) depends only on one distance, so

Nperm = Nd = 1. Substituting this into equation (5.4) and simplifying yields

UAdd(x) = σ2
f

2∑
u=1

3∑
t=u+1

Nt∑
i=1

Λi exp
(

−(xut − x′
i)2

2l2

)
(5.5)

for the argon additive energy, where the two leftmost sums run over the atoms in

the triplet.

5.3.2 Evaluation of an Na-atom simulation box

In any simulation, the total non-additive energy of an entire simulation box UNA

is needed. For clarity this discussion begins by considering only a single such

box containing Na Ar atoms, which has been placed in a vacuum. Application of

periodic boundary conditions and a minimum image convention will be introduced

later.

For any value of Na, the simulation box contains 1
6(N3

a − 3N2
a + 2Na) ≈ N3

a/6

separate triplets. Direct evaluation of equation (5.4) over these triplets would re-

quire NtNpermNdN
3
a/6 exponentials, an expensive potential with an unfavourable

scaling with Na.

Similarly, UAdd must be evaluated. This involves finding the energies of

(N2
a − Na)/2 ≈ N2

a/2 pairs. Consequently, a direct calculation of UAdd would

require NtNpermNdN
2
a/2 exponentials. Recall that Nperm = Nd = 1 for a system

of argon atoms, meaning roughly NtN
2
a/2 exponentials must be determined when

finding UAdd. Despite the N2
a/2 dependence being favourable compared with the

N3
a/6 dependence of UNA, the scaling of this calculation with Na is still poten-

tially prohibitive. The more punitive scaling in UNA illustrates that its efficient

calculation is paramount.
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Figure 5.1: A sketch showing how interatomic distances are shared between many

triplets.

5.4 Efficient handling of the exponentials

5.4.1 Storage and pre-evaluation

Figure 5.1 highlights that many triplets in the simulation box will share one or

more inverse distances. As such, all exponentials can be pre-evaluated and then

assembled to calculate UNA for any triplet. That is, although all exponentials will

appear in many triplets they need to be calculated once only. This pre-calculation

must be undertaken when the box is initialised at the start of a simulation and

whenever a volume change move occurs. Similarly, re-evaluation of UNA after a

single atom moves or is exchanged only necessitates re-calculation of the expo-

nentials involving that atom. When evaluating UAdd for pure argon the second of

these observations also applies.

All inverse distances are stored in the matrix x, where xαβ = 1
|pα−pβ | and

pα and pβ are atomic positions. Only elements above the main diagonal of this

matrix (i.e. where α < β) are of concern as other parts are either self-self distances

or known by symmetry. Thus there are (N2
a − Na)/2 ≈ N2

a/2 unique terms in

this matrix and it is assumed hereafter that α < β. As exp
(

− (xαβ−x′
ij)2

2l2

)
must

be computed for all atom pairs α, β, the array Ẽ is introduced. When a triplet

comprises three identical atoms as here, Ẽ is a Nt x Nd x (N2
a − Na)/2 ≈ N2

a/2

array that contains approximately NtNdN
2
a/2 exponentials. For any α, β pair,

Ẽij
αβ = exp

(
− (xαβ−x′

ij)2

2l2

)
. However, this array will be larger for a triplet with more

permutations (such as (CO2)3) and smaller for a triplet with fewer permutations
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Algorithm 4 Distribution of distances on a single node with shared memory
1: Place all α, β pairs in a Ndists x 2 matrix, Z

2: Find the maximum value, Nmax, that is less thanNdists and divisible byNR−1.

3: if R < Rtop then

4: Nexp = Nmax/(NR − 1).

5: For process R, define S = (R − 1)Nexp + 1 and F = RNexp.

6: Assign the rows Z [S : F, :] to process R.

7: else

8: Nexp = Ndists - (NR − 1)Nmax.

9: Assign the final Nexp rows of Z to process R = Rtop.

10: end if

(such as Ar-Ne-He).

It was hoped that parallelisation (Appendix F) of the exponential calculation

across many processors would increase its speed. However, filling Ẽ in parallel

did not reduce the time taken for the calculation. This is because having each

process calculate part of the array and then share it with all others is more time-

consuming than having each determine every entry separately. This is due to this

approach requiring two steps: the sending of the exponentials from each process

to the root process to be stored; and the sharing of the full exponential array

from the root process thereafter. Both steps necessitate the distribution of large

amounts of data, rendering sharing of the exponentials lengthy.

This cumbersome step can be circumvented by use of shared memory (Ap-

pendix F). Shared memory allows processors on the same node to fill part of a

shared array that all processors have full access to. Under this method, all atomic

pairs are distributed as evenly as possible across the processors on the same node

via algorithm 4. This leaves Nexp pairs on each process for which the exponentials

must be determined. All parallelisations in this chapter are over a total of Np

processors, each with its own rank R, R ∈ [1, Np]. The process with R = 1 is

known as the root process. In algorithm 4, meanwhile, Ndists is the number of

inverse distances for which exponentials must be calculated, Nexp is the number

of pairs assigned to a process, Rtop is the highest-ranked processors on the node,

and NR is the number of processors on the node.
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Algorithm 5 Pre-calculation of exponentials with shared memory
1: Distribute the distances via algorithm 4.

2: for R = 1, Rtop do

3: for m = 1, Nexp do

4: Take the mth α, β pair assigned to process R.

5: for i = 1, Nt do

6: for j = 1, Nd do

7: for k = 1, Nperm do

8: Evaluate exp
(

[xαβ−x′
ij]2

2l2

)
.

9: Save this exponential to Ẽij
αβ.

10: end for

11: end for

12: end for

13: end for

14: end for

Once the exponentials for a given pair have been found, the Nt x Nd segment

Ẽαβ that corresponds to that pair is filled. Though this segment is filled by a

single process, the data therein is visible to all processors on the same node.

Letting xαβ be the α, β inverse distance, the method for filling Ẽ with shared

memory on a given node is shown in algorithm 5.

However, processors on different nodes cannot share memory. Therefore, to

ensure all processors on a given node have access to a full Ẽ, algorithms 4 and

5 must be followed separately by the processors on each node. For example,

consider having four processors labelled R = 1 to R = 4. If all of these are on a

single node, the algorithms are undertaken once by all processors simultaneously.

However, if the processors are split into two groups with R = 1, 2 on node one

and R = 3, 4 on node two, each group has to follow the algorithms separately.

Consequently, a speed-up of a factor of up to Np is possible if all processors are on

a single node, but if the processors are split over many nodes then the speed-up

is limited to a factor of Rtop on the least populous node.

An equivalent array can be built in the same way for the additive energy cal-

culation. Once again, it will contain (N2
a − Na)/2 sets of exponentials: one for

120



each pair of atoms. However, as this time Nd = 1, Ẽ for the additive interac-

tions can be denoted as E, a Nt x (N2
a − Na)/2 ≈ N2

a/2 matrix that contains

approximately NtN
2
a/2 exponentials.
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5.4.2 Updating the exponentials after an atom move

As discussed in Chapter 2.4, to determine phase co-existence using a Gibbs en-

semble requires volume changes, particle displacements and particle exchanges.

The previous section describes the methodology required to undertake a volume

change, which requires calculation of all exponentials. Currently, no code has

been written for exchange moves, so these are discussed in section 5.10. However,

such moves are special cases of atom displacements, meaning some insight into

exchange moves can be gained from the results for movement of an atom. The fol-

lowing discussion centres on the methods required to re-calculate the exponentials

following movement of an atom, which is key to all Monte Carlo simulations.

Following displacement of some atom δ, the exponentials for all pairs involving

δ are changed. As a result, the non-additive energies of all triplets containing δ

are altered, as are the additive energies of all pairs containing it. The affected

exponentials are all

α, δ; δ > α (5.6)

and

δ, β; δ < β. (5.7)

This leaves a total of Na − 1 pairs for which the inverse interatomic distances

have changed. In an exchange move, meanwhile, the box into which the atom is

moved will gain the same number of new pairs.

Hence, the first step in evaluating the change in the total non-additive energy

∆UNA is re-calculation of the exponentials corresponding to the Na − 1 affected

distances. This is once again done using shared memory, meaning that the Na −1

affected exponentials must be split between all processors on each node. The

number of distances for which a process must re-evaluate the exponentials is

denoted Nδ and these distances are assigned to all processors on a single node

via algorithm 6.
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Algorithm 6 Distribute affected distances with shared memory
1: Place all pairs containing δ in a Na − 1 x 2 matrix, W

2: Find the maximum value, Nmax, that is less than Na − 1 and divisible by

NR − 1.

3: if R < Rtop then

4: Nδ = Nmax/(NR − 1).

5: For process R, define S = (R − 1)Nδ + 1 and F = RNδ.

6: Assign the rows W [S : F, :] to process R.

7: else

8: Nδ = Na − 1 − (NR − 1)Nmax.

9: Assign the final Nδ rows of W to process R = Rtop.

10: end if

As any move that results in an increase in the total energy Utotal may be

rejected, all old exponentials involving δ must be stored. This is done using an

array that is not shared between processors, as each process need only save the

old exponentials that it is updating. The Nt x Nd x Nδ array Õ is used to store

the old exponentials and Ẽ remains the only shared array. The necessary steps

to update the exponentials under shared memory are shown in algorithm 7.

The exponentials required for finding the change in the additive energy, ∆UAdd,

are once again found similarly. The old exponentials are stored in a Nt x Nδ ma-

trix O on each process but otherwise the steps are identical, apart from the use

of the additive exponential matrix E.
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Algorithm 7 Update changed exponentials with shared memory
1: Distribute the changed distances via algorithm 6.

2: for R = 1, Rtop do

3: for m = 1, Nδ do

4: Take the mth pair assigned to process R.

5: Save the current exponentials for this pair in Ẽij to Õ [:, :,m].

6: for i = 1, Nt do

7: for j = 1, Nd do

8: for k = 1, Nperm do

9: Evaluate exp
(

[xαβ−x′
ij]2

2l2

)
.

10: Save the new exponential to Ẽij
αβ

11: end for

12: end for

13: end for

14: end for

15: end for

5.4.3 Effect of periodic boundary conditions and a mini-

mum image convention

The non-additive energy calculation under the periodic boundary conditions (PBCs)

and minimum image convention (MIC) is changed slightly. This is because the

interatomic distances are now the distances between the nearest periodic images,

which are henceforth referred to as the minimum image (MI) distances, rather

than between atoms in the same simulation box. Furthermore, a cut-off distance

rc ≤ L/2 is introduced alongside these conditions. All triplets in which one or

more distances exceed rc have their non-additive energy set to zero, with their

contribution instead being approximated with a long-range correction, which is

discussed in the future work.

The new definition of the distances changes the exponential calculation. For

all atomic pairs assigned to a process in algorithms 4 and 6, the MI distance

between the two must be found. This is straightforward, requiring only that

β is shifted by the sidelength L through any axis along which the separation
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between α and β exceeds L/2. Consequently, algorithms 5 and 7 still operate as

shown with only two differences: the distances in x are now all MI distances and

any α, β pair at a separation exceeding rc has all exponentials set to zero. It is

checked if rαβ > rc at stage 4 of algorithms 5 and 7, meaning the total number

of exponential evaluations needed is reduced.

Only the exponentials for the MI distances are needed: for a given triplet, if

one image of atom 1 is closest to atom 2 and another image closest to atom 3

then either r12 or r13 will exceed rc and the energy need not be found explicitly.

As the MI r12 or r13 distances may still appear in other triplets their exponentials

are still calculated, but the triplet energy is not. The check of whether a triplet

comprises all MI distances is detailed in Section 5.5.6.

5.4.4 Efficiency of calculation using shared memory

The factor by which the speed of a calculation increases when spread over a

number of processors Np is called the speed-up. This is defined as t1/tNp , where

ti is the time taken on i processors. As the algorithm for implementing the GP

potentials must be capable of evaluating the energy of a full box (for volume

change moves) and the change therein after an atom moves (for displacements),

speed-ups are presented here for both. Here the term “full box” refers to a full

minimum image box, which contains the same number of triplets as a simulation

box but all distances are MI distances between the nearest periodic neighbours.

For all atom move calculations, the total number of moves, Nmoves, is 150. All

calculations were undertaken for a 500-atom simulation box of side length L = 18

Å. This corresponds to a density of 5689 g dm−3, which means the calculations

were in the liquid phase. Shared memory calculations were undertaken using

OpenMP.

Figure 5.2 illustrates that, even with shared memory, the exponential calcu-

lation does not parallelise particularly well. For both calculations, which include

periodic PBCs and an MIC, the speed-up plateaus at roughly a factor of 13-15

after Np > 19. The red lines in the plots are fitted to the first 10 points, where

the speed-up is linear (but not perfectly parallel). They highlight the drastic

nature in the reduction in speed-up when the plateau begins.
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Figure 5.2: A plot showing, over 40 processors on a single node, the speed-up on

the root process in the evaluation of the exponentials for the full box calculation

(a) and 150 atom move calculations (b).

Two possible causes of the plateau are storage of the old exponentials and

accessibility of the shared window to the processors. Currently, exponentials are

only stored in the atom move code, which indicates that the former is not the

reason. Rather, impeded access to the shared array is likely the root of the issue.

This is reinforced by the near-instantaneous transition from linear speed-up to

the plateau in both parts of figure 5.2.

However, the poor speed-up in the exponential calculation is not too prob-

lematic in practice. This is because, for both types of calculation, the total time

taken to fill Ẽ, texp, is tiny compared to that required to evaluate the triplet ener-

gies, ttriplet. For the atom move calculation, it is also barely larger than the time

needed to sum the non-additive energies, tsum. This is demonstrated for both the

full box and atom move calculations in table 5.1.

The times in these tables illustrate that the exponential calculations comprise

11.5 % of ttotal for the full box calculation and 7.71 % for the atom move calcula-

tion. Thus, while improved efficiency in this part of the calculation is desirable, it

is not as decisive for performance as improving the efficiency of the triplet energy

evaluations. These account for 85.7 % and 86.2 % of the atom move and full box

evaluation times respectively.
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Table 5.1: Table showing the time taken for different parts of the atom move and

full box calculations on a single process, as well as the total time ttotal. The times

for the former are given as an average over 150 moves.

Calculation ttotal (s) texp (s) ttriplet (s) tsum (s)

Atom move 0.14 9.80 x 10−3 0.12 9.27 x 10−3

Full box 21.8 2.49 18.8 4.30 x 10−2

5.5 Efficient evaluation of non-additive energies

Having considered the methods for and efficiency of undertaking the exponential

calculation, this section describes how the exponentials are combined to evaluate

the total non-additive energy U tot
NA. This is a vital part of the algorithm for finding

U tot
NA because it represents the majority of the total time for the simulation, as

evidenced in figure 5.1.

5.5.1 Evaluation of the total non-additive energy using

the exponential array

Letting γ also denote an atom number, the full range of triplets is described

generally as α, β, γ, where 1 ≤ α < β < γ ≤ Na. Hence the sum over all triplets

can be written
U tot

NA
σ2

f
=

Na−2∑
α=1

Na−1∑
β=α+1

Na∑
γ=β+1

Nt∑
i=1

Λi

Nperm∑
k=1

Nd∏
j=1

exp
(

−
[(xαβγ)j − (x′

ij)k]2

2l2

)
, (5.8)

where (xαβγ)j is the jth interatomic distance of the triplet α, β, γ and Λ is as

shown in equation (5.3). The distances in this triplet comprise the vector xαβγ =

(xαβ, xαγ, xβγ).

Next, define an operator D̂α,β,γ,j that computes the relevant interatomic dis-

tance for the jth dimension of the triplet α, β, γ. That is

D̂α,β,γ,j =


αβ for j = 1

αγ for j = 2

βγ for j = 3

(5.9)

meaning that D̂α,β,γ,j returns the jth distance in the α, β, γ triplet when j is speci-

fied. This allows the relation of (xαβγ)j to the array of pre-computed exponentials
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Ẽ through

(xαβγ)j = xD̂α,β,γ,j
. (5.10)

While from a mathematical perspective this does little to ease the calculation, it

makes coding the energy calculation simpler.

Finally, let P be the matrix of all allowed permutations. For Ar3 this is

P =



1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1


. (5.11)

Hence (x′
ij)k = x′

iPkj
, which is to say x′

iPkj
is found by taking the jth element of

the kth row in P as the index of the relevant distance in the ith training point.

It follows that

exp
(

−
[(xαβγ)j − (x′

ij)k]2

2l2

)
= exp

−
[xD̂α,β,γ,j

− x′
iPkj

]2

2l2

 = EiPkj

D̂α,β,γ,j
, (5.12)

and ED̂α,β,γ,j
is a Nd x Nt matrix from within Ẽ containing all exponentials

pertinent to the jth distance in the α,β,γ triplet. Once more, this relation does

not simplify things mathematically but does facilitate simpler implementation.

Thus the sum over all triplets becomes

U tot
NA
σ2

f
=

Na−2∑
α=1

Na−1∑
β=α+1

Na∑
γ=β+1

Nt∑
i=1

Λi

Nperm∑
k=1

Nd∏
j=1

ED̂α,β,γ,j
,

=
Na−2∑
α=1

Na−1∑
β=α+1

Na∑
γ=β+1

Nt∑
i=1

Λi

Nperm∑
k=1

EiPk1
αβ EiPk2

αγ EiPk3
βγ .

(5.13)

For example, for a given training point when k = 4, the EiPk1
αβ EiPk2

αγ EiPk3
βγ term

in equation (5.13) involves taking the product of the exponential between the

α − β inverse distance and the second inverse distance in the training point, the

exponential between the α−γ inverse distance and the third such distance in the

training point, and the exponential between the β − γ inverse distance and the

first inverse distance in the training point. The rightmost sum in this equation

therefore entails finding these products for all rows of the permutation matrix

and adding them.
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5.5.2 Evaluation of the total additive energy from the ad-

ditive exponential matrix

Equivalently to equation (5.8), the total additive energy is given by

UAdd

σf
=

Na−1∑
α=1

Na∑
β=α+1

Nt∑
i=1

Λi exp
(

−(xαβ − x′
i)2

2l2

)
. (5.14)

Equation (5.14) is obtained by generalising equation (5.5) to Na atoms.

As additive energies in this example rely on a single distance only, there is no

need for an additive equivalent to D̂α,β,γ,j. Similarly, Nperm = 1 here, so there is

no need for a permutation matrix in this case. It follows that

exp
(

−(xαβ − x′
i)2

2l2

)
= Ei

αβ, (5.15)

and Eαβ is a vector of exponentials between xαβ and all training points. Thus

one can re-write equation (5.13) as

UAdd

σf
=

Na−1∑
α=1

Na∑
β=α+1

Nt∑
i=1

ΛiEi
αβ. (5.16)

This highlights once more that evaluating the additive energy requires a simpli-

fication of the method used to determine the non-additive energy.
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5.5.3 Parallel evaluation of triplet energies

UNA is a sum over the non-additive energies of all triplets, such as in the third

term of equation (2.52). Consequently, parallel programming is used to spread

the calculation of UNA over Np processors. This reduces the number of triplet

evaluations undertaken on each process by up to a factor of Np. As each process

need only send back the total energy of all triplets it was assigned (i.e. a single

number), the issue of cumbersome information sharing that beset the exponen-

tial calculations is not an issue. All of this is also true of the additive energy

calculation.

Before determining which triplets are calculated by which processors, all atom

pairs in the simulation box are divided between the processors. The pairs assigned

to each process are consistent throughout the calculation. Conveniently, assigning

the pairs in this way is also conducive to the additive energy calculation: each

process must simply determine the additive energy across all pairs it is assigned.

It must be ensured that no process possesses all pairs containing a given

atom, otherwise moving that atom will leave one process to undertake the entire

calculation. To avoid this scenario, the pairs are divided via algorithm 8. In

practice, Na will usually be far larger than Np. Consequently, it is assumed that

all processors will need access to all exponentials to evaluate their part of the

total non-additive energy.

This approach for distributing the pairs across the processors is general to

all methods of predicting the energy. Thus it represents an effective route to

parallelising the energy calculation whether or not GP potentials are used for

prediction. Furthermore, it is well-suited to the evaluation of the non-additive

energy as each process need only calculate the energies of all pairs it is assigned,

sum these energies and return this value to the root process.

5.5.4 Calculation of the total energy

Following assignment of the atom pairs, each process must determine the non-

additive energies of all triplets α, β, γ, where α < β < γ by definition, for which

it owns the α, β pairs. The individual non-additive triplet energies are stored in

a vector U, which has length equal to the number of triplets, Ntri, assigned to
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Algorithm 8 Distribution of atomic pairs across processors
1: Assign Np pairs to the processors in ascending order; e.g. for the first Np

pairs use the loop:

2: for R = 1, Np do

3: Assign pair 1, R + 1 to process R.

4: end for

5: Assign the next Np pairs to the processors in descending order; e.g. for the

second Np pairs use the loop:

6: for i = 1, Np do

7: Assign pair 1, Np + 1 + i to process R = Np + 1 − i.

8: end for

9: Once the first Na − 1 pairs are assigned (i.e. all pairs involving atom 1),

continue assigning pairs in the current order (e.g. continue in ascending order

if already assigning in ascending order) until all processors are given a new

pair.

10: Begin assigning pairs in the opposite order to step 6.

11: Repeat steps 1, 5, 6 and 7 until all pairs are assigned.

the process. The steps undertaken for the parallel calculation of UNA are given

in algorithm 9, ignoring for now the PBCs and MIC.

In other words, each process undertakes a portion of the sum in equation

(5.13), with the three outer sums (over α, β and γ) distributed among them. Due

to the manner in which the pairs are distributed, some processors may possess

more triplets than others, though not to a significant extent. For example, when

sharing the triplets for a 500-atom simulation box over 15 processors, the number

of triplets on the most sparse process is 98.18 % of the number on the most

populous process. (1369208 is the minimum number and 139463 the maximum

number of calculations performed.) Furthermore, because the pairs assigned to a

process are the same throughout the simulation, so are the triplets it will evaluate.

Finding UAdd requires a simplified version of algorithm 9. The inner loop (over

γ) is no longer necessary and neither is the ‘if’ statement. Instead, each process

simply determines the additive energy of all pairs it is assigned using equation

(5.14). These energies are subsequently added and returned to the root, which
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adds together all of these partial sums.

Algorithm 9 Parallel calculation of U tot
NA by process R

1: Assign a number of α, β atom pairs Npairs to a process by following the steps

from 5.5.3.

2: for i = 1, Npairs do

3: Take the ith α, β pair assigned to the process.

4: for γ = β + 1, Na do

5: Calculate non-additive energy for the α, β, γ triplet via the two innermost

sums in the second line of equation (5.13).

6: Store the energy from the last step in U.

7: end for

8: end for

9: Sum over the elements of U to find the contribution to U tot
NA from the triplets

on this process.

10: Send this contribution to the root process.

11: if R = 1 then

12: Add all the non-additive contributions from all processors to get U tot
NA.

13: end if
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5.5.5 Calculation of the energy following an atom move

Once the exponentials have been updated (see subsection 5.4.2) they are used to

determine the change in energy on each process after an atom δ has moved. For

any process, the non-additive component of that energy is denoted ∆U (R)
NA , where

R is the process rank. The value of ∆U (R)
NA after move m is

∆U (R)
NA = U

(R)
NA

(
x(m)

αβ

)
− U

(R)
NA

(
x(m−1)

αβ

)
, (5.17)

where x(m)
αβ is the set of inverse interatomic distances after move m. The effects

of the PBCs and MIC on this calculation will once again be introduced later, so

the distances in x(m)
αβ are not necessarily minimum image distances. The total

change in the non-additive energy is given by

∆UNA =
Np∑

R=1
∆U (R)

NA . (5.18)

Equation (5.17), however, implies that UNA
(
x(m)

αβ

)
must be re-calculated in

full following a move. This is not the case. Instead, the difference between the

new and old non-additive energies for each triplet containing δ is calculated on

each process. These differences are summed subsequently to give ∆U (R)
NA .

To that end, the new non-additive energies of each affected triplet on a given

process are stored in the vector Cnew. Equivalently, the vector Cold contains the

old energies of the same triplets. Both vectors have length equal to the number

of affected triplets on the process, Nchanged. This gives

∆U (R)
NA =

Nchanged∑
i=1

(
Cnew

i − Cold
i

)
. (5.19)

The steps taken on each process to identify affected triplets and re-calculate their

energies are shown in algorithm 10.
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Algorithm 10 Parallel calculation of ∆UNA by process R after movement of

atom δ
1: for i = 1, Npairs do

2: if α < β < δ then

3: Store the old non-additive energy of α, β, δ in Cold.

4: Calculate the new non-additive energy for α, β, δ and store in Cnew.

5: else if (α = δ) < β then

6: for γ = β + 1, Na do

7: Store the old non-additive energy of δ, β, γ in Cold.

8: Calculate the new non-additive energy for δ, β, γ and store in Cnew.

9: end for

10: else if α < (β = δ) then

11: for γ = β + 1, Na do

12: Store the old non-additive energy of α, δ, γ in Cold.

13: Calculate the new non-additive energy for α, δ, γ and store in Cnew.

14: end for

15: else if α < γ < β or γ < α < β then

16: Do nothing.

17: end if

18: end for

19: Determine ∆U (R)
NA using equation (5.19) and send to the root.

20: if R = 1 then

21: Evaluate ∆UNA using equation (5.18)

22: end if

The total change in energy on each process, ∆U (R), is required, where

∆U (R) = ∆U (R)
NA + ∆U (R)

Add. (5.20)

Thus the additive energy change on each process ∆U (R)
Add must also be found. This

calculation is detailed in algorithm 11.
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Algorithm 11 Parallel calculation of ∆UAdd by process R after movement of

atom δ
1: for i = 1, Npairs do

2: if (α = δ) < β then

3: Store the old additive energy of δ, β.

4: Calculate the new additive energy for δ, β and store.

5: else if α < (β = δ) then

6: Store the old additive energy of α, δ.

7: Calculate the new additive energy for α, δ and store.

8: end if

9: end for

10: Determine ∆U (R)
Add from the differences between the new and old energies and

send to the root.

11: if R = 1 then

12: Evaluate ∆UAdd using equation (5.18) with the additive rather than non-

additive energies.

13: end if

5.5.6 Impact of periodic boundary conditions and a min-

imum image convention

Evaluating the non-additive energy under the PBCs and MIC is somewhat less

straightforward than the exponentials. Not only must it be checked that all

distances in the triplet are less than rc, it must be ensured that the minimum

image (MI) distances have all atoms in the same positions. For example, if the

MI distance between atoms α and β has β placed at (x,y,z) while the MI distance

between β and γ has β at (x’,y’,z’) the triplet will have an atom occupying

two different positions at once. In this example, having β at (x,y,z) means that

rβγ > rc and the explicit triplet energy must be zero.

The two aforementioned checks are detailed in algorithm 12, where rmin and

rmax are the the minimum and maximum distances in the α, β, γ triplet. The

checks in this algorithm are carried out prior to any energy calculation. This

means the PBCs and MIC reduce the total number of energy evaluations, thereby
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Algorithm 12 Check triplet distances under PBCs and MIC.
1: if rmax > rc then

2: UNA = 0.

3: else

4: Keep the atom with the lowest index in rmin in its current position (e.g. if

rmin = rα,β then leave α unmoved).

5: Move the other two atoms to their minimum image positions relative to

the unmoved atom.

6: Calculate the distance r′ between the two moved atoms in their current

positions.

7: if r′ > rc then

8: UNA = 0.

9: else

10: Calculate the non-additive energy via the two innermost sums on the

second line of equation (5.13).

11: end if

12: end if

reducing the total time taken for any simulation.

5.5.7 Efficiency of the parallel non-additive energy calcu-

lation

It was established in subsection 5.4.3 that the majority of the calculation time

stems from the summation of the exponentials to yield the non-additive energies of

the triplets. Consequently, it must be verified that the time taken for this portion

of the implementation, ttriplet, parallelises well. Once again, all references to a “full

box” calculation concern a full minimum image box. Just as for the exponential

calculations, all calculations were undertaken for a 500-atom simulation box of

side length L = 18 Å. Therefore the density is again 5689 g dm−3 and all

calculations were in the liquid phase.

Figure 5.3 illustrates that for evaluation of both the total non-additive en-

ergy and the change therein following an atom displacement, ttriplet parallelises
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Figure 5.3: Plots showing the speed-up on the root process for the evaluation of

the change in the non-additive energy after an atom is moved (a) and the total

non-additive energy (b). Both plots are over 40 processors on one node, while

the data in (a) are averaged over 150 moves.

near-perfectly. The red lines in both plots are fitted to the first 10 data points

where the speed-up is linear and only marginally worse than perfectly parallel.

In figure 5.3(a) there is no deviation from this line up to Np = 40 for the atom

move calculation, indicating totally linear (if not quite perfect) parallel speed-

up. Meanwhile, figure 5.3(b) illustrates initial linearity with a slight deviation at

higher Np.

The speed-up in ttriplet in both calculations is therefore far better than that

seen in texp, which is promising given the significant contribution of the former

to total calculation time. Moreover, the calculation of the non-additive energy

from the exponentials does not require shared memory. Thus it can be spread

across processors on multiple nodes with the expectation that the speed-up will

continue to increase.

This is evidenced in figure 5.4, which shows equivalent plots over 120 proces-

sors divided across four nodes. The calculations are distributed such that the

processors are shared evenly over the nodes. For example, for Np = 120, there

are 120/4 = 30 processors per node.

The data in this figure illustrate a greater speed-up in the evaluation of ∆UNA

after a displacement than in UNA, which is in agreement with the data in figure

5.3. The rate of speed-up for both calculations with the larger number of nodes

is slightly reduced, though the overall speed-up achieved is significant in both
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Figure 5.4: Plots showing the speed-up on the root process for the evaluation

of the change in the non-additive energy after an atom is moved (a) and total

non-additive energy (b). Both plots are over 120 processors on four nodes. The

data in (a) are averaged over 150 moves, though t1 (top left) is the total time

over all moves.

cases.

Figure 5.4 shows that a 100-fold speed-up is achieved for the calculation of

∆UNA and a 60-fold speed-up for UNA. This is indicative of a significant reduction

in computational time, corresponding to roughly 0.18 s for 150 evaluations of

∆UNA and 0.3 s for a single evaluation of UNA. Thus, the algorithms outlined

earlier offer a promising route to the efficient evaluation of the non-additive energy

in a simulation with a GP potential.

5.6 Accepting and rejecting moves

In any Monte Carlo (MC) simulation, a move which results in a negative ∆U

will always be accepted, while one which results in a positive ∆U can be either

accepted or rejected. When a move is accepted, the methods outlined above re-

quire saving the new triplet non-additive energies, exponentials, pairwise additive

energies, U , the position of the moved atom, and the inverse distances. Mean-

while, rejecting a move necessitates replacing the newly calculated exponentials

with the old exponentials saved in Õ and O, though U , the position of the moved

atom, the inverse distances and Cold need not be updated. The steps followed on

each process to update the data after an accepted or rejected move are given in

algorithm 13, which pertains to the non-additive energy only.
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Algorithm 13 Move data updates
1: if The move is accepted then

2: Update UNA.

3: Update the distances in xαβ.

4: Update the triplet energies with the values in Cnew.

5: Update the position of atom δ.

6: Save the updated exponentials.

7: else

8: Reset all affected exponentials in Ẽ with the old exponentials saved in Õ.

9: end if

5.7 Full algorithm for the non-additive energy

calculation

The methods presented in the preceding discussion are summarised below in

algorithm 14, which describes how the non-additive energies are calculated for an

entire simulation over Nmoves moves. This algorithm includes all considerations

of the PBCs and MIC.

Algorithm 14 Full algorithm for calculating UNA
1: Find xαβ from the minimum image distances.

2: Pre-calculate Ẽ using algorithm 5 for all pairs for which the interatomic dis-

tance r is less than or equal to rc and set all others to zero.

3: Evaluate UNA via algorithm 9 and check whether to calculate the energy

explicitly using algorithm 12 for each triplet.

4: for i = 1, Nmoves do

5: Find the values of the changed minimum image distances.

6: Update the affected exponentials using algorithm 7 for all pairs where r ≤

rc.

7: Determine ∆UNA via algorithm 10 and check whether to calculate the en-

ergy explicitly using algorithm 12 for each triplet.

8: Update the data according to algorithm 13.

9: end for

139



0 10 20 30 40
Np

0

5

10

15

20

25

30
t 1

 / 
t N

p
With PBCs and MIC
No PBCs or MIC

(a)
0 10 20 30 40

Np

0

5

10

15

20

25

t 1
 / 

t N
p

With PBCs and MIC
No PBCs or MIC

(b)

Figure 5.5: A plot showing, over 40 processors on one node, a comparison of the

speed-up on the root process in the calculation of the energy without PBCs and

an MIC (red) and with PBCs and an MIC (green) for the full box calculation (a)

and the atom move calculation (b).

5.8 Results and discussion

Thus far, the efficiencies of the exponential and energy calculations have been

discussed in subsections 5.4.4 and 5.5.7 respectively. The former exhibited a less

promising reduction in time but also constitutes a far smaller percentage of the

total time ttotal (e.g. 7.71 % versus 85.7 % for the atom move). In this section,

results are presented for algorithm 14 in its entirety to ascertain whether the

promising speed-up in the time taken for the triplet evaluations ttriplet translates

into a beneficial speed-up for the full calculation.

The calculations discussed here are as outlined at the start of section 5.3.

That is, in all examples, Na = 500 and the side length L is 18 Å. A cut-off

of rc = L/2 = 9 Å is used, resulting in roughly 12 % of energy calculations

being undertaken explicitly. For all cases, half of moves were accepted. Only

the additive long-range correction, as shown in 2.4.4, is undertaken here, as part

of the full box calculation. The GP potential was trained on a 337-point Latin

hypercube, with all energies calculated at the CCSD(T) level of theory and an

aug-ccPVQZ basis set. This discussion refers to the full box and atom move

calculations separately, though “full box” once more refers to a full minimum

image box.

Figure 5.5 shows a comparison between the speed-up achieved for the two

calculations with and without PBCs and an MIC. These show that in both cases
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Table 5.2: Table showing ttotal, texp and tsum for the atom move and full box

calculations on a single process. The times for the former calculation are an

average over 150 moves. Times in brackets are for calculations that do not include

the PBCs and MICs.

Calculation ttotal (s) texp (s) ttriplet (s)

Atom Move 0.14 (0.88) 1.08 x 10−2 (1.91 x 10−2) 0.12 (0.77)

Full Box 21.8 (133) 2.51 (4.46) 18.8 (129)

the speed-up is reduced when the PBCs and an MIC are in use, specifically for

the full box calculation. One reason for this is that, as stated, the introduction of

the PBCs and MIC reduce the number of explicit energy calculations to around

12 % of the total. This results in a vast reduction in ttriplet, shown in table 5.2,

that limits the potential gains from parallelisation.

This table illustrates that ttotal was reduced by a factor of six for both cal-

culations. Meanwhile, texp nearly halved and ttriplet was reduced by ∼ 84 % for

both the atom move and full box calculations. Consequently, the effects of fixed

costs such as instantiating arrays and sharing information between processors are

exacerbated under the PBCs and MIC.

For example, in the full box calculation the time taken to set-up all arrays and

share all relevant data between processors tset is roughly 0.38 s, regardless of the

presence of PBCs and an MIC. At Np = 40, ttotal = 21.8/40 ≈ 1.45 s, meaning

tset is around 27 % of ttotal for the full box calculation with these conditions.

Meanwhile, without PBCs or an MIC and at the same Np, ttotal = 133/30 ≈ 4.4

s. This means tset is only 8.6 % of ttotal in this case. The atom move calculation

has fewer arrays to instantiate, hence the greater similarity between its speed-

up with and without the PBCs and MIC. This is the reason that the maximum

speed-up of the full box calculation no longer exceeds that of the atom move

calculation in the presence of conditions, an effect that is exacerbated slightly by

the marginally greater reduction in tsum observed for the full box calculations.

Though the impact on the speed-up is considerable, the reduction in the

amount of non-additive evaluations dramatically reduces the total time taken

for both calculations under the PBCs and MIC. This can be seen by comparing
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Figure 5.6: A plot showing the maximum (green), mean (blue) and minimum

(red) number of non-additive calculations undertaken across 15 processors for 10

atom moves.

the bracketed values in table 5.2. These show that the times on 40 processors

without the PBCs and MIC are 4.4 s for the full box and (0.88/27) x 150 ≈ 4.9

s for the atom move. The times that include the conditions compare favourably,

with around 1.4 s each required for both calculations.

However, the increase in the proportional contribution of fixed costs does not

fully explain the large reduction in speed-up observed. It must also be considered

that, under an MIC, any triplets for which one or more distances exceed rc are

not calculated explicitly but handled by a long-range correction. Thus, there is a

greater discrepancy in the number of calculations on each process when an MIC

is used.

This is an issue because the addition of the partial sums on the root process

cannot begin until all others finish determining the contributions of their triplets

to the energy. Therefore, any process undertaking a disproportionately large

number of explicit calculations will slow down all others. Without PBCs and an

MIC this is only a concern for the atom move calculations, where the index of

the moved atom affects how much work a given process had to do. This is the

reason for the greater noise in the plots of the speed-up for these calculations.

However, with the PBCs and MIC one process may be assigned many triplets

that are calculated as part of the long-range correction, while another is assigned
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Figure 5.7: A plot showing the number of non-additive calculations undertaken

across 15 processors for a full box calculation. ‘Process Rank’ refers to the label

of each process (i.e. the Ncalc value corresponding to 5.0 on the x-axis is the

number of calculations on process five).

many that must be evaluated explicitly. Thus, both the full box and atom move

calculations exhibit a worse speed-up with the PBCs and MIC than without.

This is evidenced in figure 5.6, which shows that for a random series of atom

moves there is always at least one process that has roughly 500 more non-additive

energy evaluations to undertake than average, at a minimum. Likewise, figure

5.7 shows that the least busy process has to find around 8000 fewer non-additive

energies than the busiest process for a full box calculation. In terms of a percent-

age, the number of calculations undertaken by the least busy process for a full

box calculation is now ∼ 95 % of the number on the busiest. This is compared

with 98.18 % with no cut-off applied (see section 5.5.4). Thus the percentage

difference between the most and least busy processors has increased by a factor

of ∼ 2.7 %, from 1.82 % to 5 %. As these calculations are by far the most time-

consuming in algorithm 14, such a disparity between the amount undertaken on

each process will inevitably impact the speed-up observed on parallelisation.

The effect of this disparity is proven by examining the speed-up on the root

process in: finding the non-additive energies, adding them to find the partial sum

and gathering the partial sums from the other processors. That is, in the total of

ttrip = ttriplet + tsum + tgather, where the latter time corresponds to the gathering
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Figure 5.8: A plot showing the speed-up on the root process for the entire atom

move calculation (a) and the sum of ttriplet, tsum and tgather (b). The data are

averaged over 150 moves, of which half were accepted, and are over 40 processors

on one node.

of the partial sums. This is because all processors will be forced to ‘wait’ at the

final step for the busiest process to send its partial sum.

Such an examination is given in figure 5.8 for the atom move data. This figure

shows the speed-up for the whole calculation, while figure 5.8(b) shows the total

speed-up for ttrip. That they are basically identical reveals that waiting for the

slow processors at the gather stage is what limits the increase in speed. This

argument is reinforced when considering that the speed-up in ttriplet was shown

to be excellent in subsection 5.5.7.

Moreover, the exponentials are only calculated for atoms at distances less

than rc. Thus some processors will have to calculate fewer exponentials than

others. That this is not too impactful for the atom move calculation is evidenced

implicitly in figure 5.8. This is because the two plots are near-identical, which

implies that the speed-up of the total calculation is basically the same as that

seen in ttrip. Thus, any change in the speed-up of the exponential calculation

is effectively irrelevant. This is true of the atom move code as there are only

Na − 1 sets of exponentials to re-calculate in total. As evaluating each set is

fast relative to combining them to find the non-additive energies, having some

processors evaluate more exponentials than others does not have much of an

impact on speed-up.

However, figure 5.8 pertains only to the atom move calculations. Figure 5.9

144



0 10 20 30 40
Np

2.5

5.0

7.5

10.0

12.5

15.0

t 1
 / 

t N
p

t1 = 21 s

(a)
0 10 20 30 40

Np

0

5

10

15

20

25

t1 tr
ip

 / 
tN

p
tr

ip

t1 = 18 s

(b)

Figure 5.9: A plot showing the speed-up on the root process for the evaluation of

the non-additive energy of the full box (a) and the sum of ttriplet, tsum and tgather

(b). These data are over 40 processors on one node.

shows that the same conclusions cannot be drawn for the full box calculation

because the speed-up in ttrip = ttriplet + tsum + tgather exceeds the overall speed-up.

Thus, other factors must cause the decrease in speed-up on introduction of the

PBCs and MIC. However, the speed-up in ttrip is lower than that seen without

any PBCs or an MIC, indicating that disparity in workload does have some small

impact on speed-up.

One such contribution is the parallelisation of the exponential calculations,

which was discussed in subsection 5.4.4. Though the speed-up is similar for the

full box and atom move calculations, the proportion of ttotal taken for the expo-

nential calculations is larger for the full box calculation. Specifically, texp/ttotal =

2.5/21 = 12% for the full box calculation on one node, versus 1.6/21 = 7.6% for

the atom move. Thus, when the number of processors used is large, the effect of

the plateau in the exponential speed-up is greater in the full box calculation.

For example, at Np = 40, ttotal = 21/15 = 1.4 s while texp = 2.5/11 = 0.23 s

for the full box calculation. This means that texp comprises roughly 16 % of ttotal

when Np = 40 for this calculation. For the move calculation, meanwhile, ttotal =

21/15 = 1.4 s once more but texp = 1.5/14 = 0.11 s. Thus texp accounts for only

7.9 % of ttotal for the move calculation, less than half the proportion it makes up

in the full box calculation. This difference is a product of the full box calculation

requiring 1
2(N2

a − Na) sets of exponentials versus Na − 1 for the atom move, a

factor of Na/2 more. Thus, 250 times more sets of exponentials are calculated in
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Figure 5.10: A plot showing the speed-up on the root process for the evaluation

of the non-additive energy in the atom move (a) and full box (b) calculations.

The data are over 120 processors across four nodes. The atom move data were

averaged over 150 moves.

the full box calculation so it is more impactful when one process is allocated more

pairs that require explicit calculation. The impact of this difference is reinforced

when noting that each set comprises Nt x Nd exponentials.

The results presented so far show that algorithm 14 represents a promising

route to implement GP potentials efficiently on a single node. However, to verify

that the algorithm is general to different computing set-ups, its parallelisation

across multiple nodes must be interrogated. To this end, figure 5.10 shows the

results for the atom move and full box calculations across 120 processors split

evenly over four nodes. Just as in subsection 5.5.7, the even distribution means

that, for example, when Np = 120, there are 120/4 = 30 processors on each node.

For the atom move calculation, shown in figure 5.10(a), the speed-up roughly

doubles across the further 80 processors when compared to the data in figure 5.8.

This evidences that this calculation parallelises well over processors distributed

across multiple nodes, which is a promising result given displacement calculations

are the most common in Monte Carlo simulations. These results correspond to a

time of two thirds of a second for the 150 evaluations of ∆UNA.

The full box calculation, displayed in figure 5.10(b), exhibits less promising

results. The total speed-up increases from 15-fold over 40 processors to 20-fold

over 120 processors only. Moreover, between Np = 20 and Np = 60 no consistent

increase in speed-up is seen.
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Part of the reason for the lower overall speed-up will be the parallelisation of

texp. It has already been shown that this is a greater proportion of ttotal for the

full box calculation and the way in which the processors are divided across the

nodes means the maximum benefit from parallelisation of texp is not gained until

Np = 80. For example, on one process texp = 2.45 s, meaning on 20 processors

over four nodes texp = 2.45/4 ≈ 0.61 s. Meanwhile ttotal = 21/7.5 = 2.8 s,

meaning texp is roughly 22 % of ttotal for the full box calculation. Compare this

with the calculation on one node, where texp = 2.45/13 ≈ 0.19 s on 20 processors.

As ttotal = 20/11 ≈ 1.8 s at this Np on a single node, texp was only around 11 %

of ttotal.

The failure of the speed-up to increase between Np = 20 and Np = 60 cannot

be explained in this way. Nor is it rationalised with the distribution of triplets,

as it begins at a value of Np that was evaluated on one node. However, a trend

akin to that in figure 5.9(a) is observed in figure 5.10(b) over the red points on

the latter. Each red point represents a calculation for which the total number of

processors was a power of two (i.e. Np = 4 for 22, Np = 8 for 23, etc.). At these

points the speed-up follows the same pattern as on a single node. For example,

a 13-fold speed-up is observed for a 32-process calculation whether on one or

four nodes. This suggests that the anomalous results, which are reproducible

with some degree of noise, are a product of the HPC architecture rather than

a coding concern. Furthermore, the plateau at a 20-fold speed-up seen in figure

5.10(b) seems in agreement with the decline in speed-up observed in figure 5.9(a).

This suggests further that distribution over multiple nodes does not affect the

performance of the algorithm.

Thus algorithm 14 represents an efficient method for parallelising calculations

with GP potentials over processors on one or many nodes, with the only results

indicative of poor parallelisation not a consequence of the algorithm itself. How-

ever, it must be verified that the speed-up reaches a plateau only when the fixed

costs dominate the calculation time.

This is confirmed by figure 5.11, which shows the decline in calculation time

as Np increases alongside the times of the fixed costs for both calculations. This

figure highlights that for Np > 60, ttotal is dominated by the fixed costs in both
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Figure 5.11: A plot of ttotal against Np on the root process for the evaluation

of the non-additive energy in the atom move (a) and full box (b) calculations.

The horizontal red and blue lines indicate the contributions of the set-up and

exponential calculations respectively, while the vertical purple lines show the

value of ttrip for each calculation.

calculations. Thus any further efficiency gains from the method would require

reductions in these fixed costs, rather than improvements to the parallelisation.

This figure also displays the aforementioned difference in the fixed costs of the

two calculations. In addition, figure 5.11 shows that texp is erratic for the full

box calculation. Once again, such a result is a consequence of the architecture of

the HPC, which is exacerbated by the discrepancy in the number of exponential

evaluations undertaken on each process. Recall that this discrepancy is greater

for the full box calculation.

This figure also implies that a more pronounced speed-up on parallelisation

would be observed for higher-dimensional systems. For systems including different

atomic and molecular species, a larger training set would be required, which

would result in a larger cost of prediction. Consequently, the cost of evaluating

the triplet energies, the largest contribution to ttotal, would be larger. As this

evaluation parallelises well, such a change would result in a plateau at higher

Np. This is attainable with the methods presented here, given that the algorithm

parallelises well across multiple nodes assuming all processors will be used on

each.

Furthermore, the parallel speed-up will be improved if the number of atoms

in the box increases. This is because the number of triplets Ntri ∝ N3
a while
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the total number of exponentials Ne ∝ N2
a . Therefore the triplet summation,

which parallelises near-perfectly, becomes a proportionally larger contribution to

ttotal. Moreover, the number of atoms within rc of some atom α, Nα
a , will be

proportional to the volume of the cut-off sphere. That is, Nα
a ∝ r3

c . Therefore, at

a fixed density, as rc increases the number of explicit triplet calculations around α,

Nα
tri, will increase as Nα

tri ∝ (Nα
a )3 ∝ r9

c . Given that Nα
e ∝ N2

a ∝ r6
c , Nα

tri/N
α
e ∝ r3

c .

This shows the portion of the calculation that parallelises excellently will increase

rapidly with the cut-off, which will grow larger when box size is increased. Thus

the efficiency of the parallelisation will be enhanced greatly by both increasing

the density or size of the simulation box. This implies that for more complex

applications, such as for larger molecules or systems closer to the critical point,

the algorithm will exhibit even better speed-up.

5.9 Conclusions

The results in section 5.8 show that the atom move and full box calculations

parallelise well for a single node when PBCs and an MIC are applied. This

parallelisation corresponds to a speed-up of a factor of around 15 in both calcula-

tions, meaning 150 evaluations of ∆UNA and one evaluation of UNA take around

1.4 s each. Moreover, it has been shown that the calculation of exponentials has

little impact on the overall speed-up, while the combination of exponentials to

determine energies parallelises well.

Both calculations exhibit markedly lower speed-up in the presence of the PBCs

and MIC. For the atom move calculation this is fully explained by the discrep-

ancy in workload brought about by energies and exponentials being set to zero

for interactions where r > rc. The full box calculation is also affected by this

discrepancy, but to a lesser extent. The reduction in speed-up for this calcula-

tion requires additional consideration of the fixed costs. These are far greater

for the full box calculation, as is the contribution of texp, even before it plateaus

at Np > 19. These costs are more significant in the presence of the MIC as the

time needed to assess the triplet energies, which parallelises excellently, is reduced

greatly.
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When calculations are spread over 120 processors on four nodes, the atom

move calculations undergo a significant speed-up. Between Np = 40 and Np =

120, the speed-up for the calculation doubles. The rate of speed-up, however, is

lower than observed on a single node. This is unsurprising as the speed-up per

process on a single node begins to slow as Np approaches 40. Thus the slower

speed-up above this Np should be lower, as fixed costs become more significant.

That distributing the calculation over multiple nodes does not affect performance

is further confirmed because the speed-up on an equivalent number of processors

is similar regardless of whether the processors are on a single node or four.

Under the same conditions, the full box calculation exhibits a smaller increase

in speed-up, from 15-fold to 20-fold over the extra 80 processors. This, however,

seems to fit with the trend seen on a single process, where the speed-up is be-

ginning to plateau as Np approaches 40. Consequently, it is not indicative of

poor speed-up in this calculation over many nodes. Instead, it is a product of the

aforementioned increase in the significance of the fixed costs for this calculation

in the presence of the MIC. This is highlighted by the fact the full box calculation

parallelises more effectively than the atom move on one node when no PBCs or

MIC are used.

The full box calculation also shows a region where the speed-up fails to in-

crease is seen between Np = 20 and Np = 60. That this is not the case for

calculations that are across a number of processors that is a power of two (i.e. for

which Np = 2x) suggests that this is an issue with the HPC architecture, whereby

nodes that are in clusters of pairs can communicate more quickly. In fact, the

calculations with Np = 2x match the speed-up observed on a single node.

Furthermore, both calculations only plateau as the fixed costs come to dom-

inate the calculation time. Any improvement in efficiency would therefore be

gained from reducing the fixed costs, rather than streamlining the algorithm fur-

ther. The only clear area of improvement outside of the fixed costs is in reducing

the discrepancy in workload across processors. A method for this is described in

the future work.

The main drawback of the data presented is that additive calculations are not

included in the benchmarking. However, the algorithms for these calculations
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are simpler. That is, they involve fewer exponentials and the number of atom

pairs in the simulation will be fewer than the number of triplets provided 1
6(N3

a −

3N2
a + 2Na) > 1

2(N2
a − Na). This is the case as long as 6N2

a < N3
a + 5Na, which

holds for Na > 5. This value will be exceeded in any molecular simulation,

especially any concerned with the phase boundaries of fluids such as those that

could be employed for carbon capture and storage pipelines. Combined with the

fact that all methods for implementing additive calculations are simplifications of

their non-additive equivalents, it is not anticipated that their addition will have

a negative effect on speed-up.

Thus algorithm 14 represents an efficient method for evaluating the non-

additive energy of a simulation with a GP potential. This implementation re-

duces calculation time for both atom move and full box calculations significantly.

Such a result is especially promising for the atom move calculation, as this is

undertaken most frequently in any Monte Carlo simulation. That the algorithm

only plateaus as the fixed costs become relatively large suggests that further im-

provement will not be easy, while its ability to run on one or many nodes makes

it robust to different computational set-ups. Finally, it is likely that the speed-up

presented here would be increased if the same algorithm were applied to a larger

box, implying its effectiveness in simulations of systems closer to the critical point,

for example, would be better still.

5.10 Future work

Though the results presented in section 5.8 are of great promise, modifications

must be made to produce an algorithm that is suitable for a proof-of-concept

simulation of the phase coexistence of liquid and gaseous argon with a GP poten-

tial. Namely these are additive energy calculations (discussed throughout sections

5.3.1 to 5.6), a short-range cut-off for the additive and non-additive energies, par-

ticle exchange moves and three-body long-range corrections. Though the latter is

often set to zero, a potential correction is presented here nonetheless. In addition,

an overview of a method to reduce the disparity in workload between different

processors under the PBCs and MIC is given. All of these changes are discussed
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in subsection 5.10.1.

Beyond the proof-of-concept simulation, the method must generalise to Monte

Carlo simulations of arbitrary species. This is required to model phase coexistence

in, for example, carbon capture and storage pipelines. The requisite modifications

for this are given in subsection 5.10.2. This overview begins with an extension to

mixtures of atomic species, before detailing how to include molecules.

Finally, to evaluate non-equilibrium properties such as viscosity in molecular

mixtures, Monte Carlo simulations are not viable. Therefore an extension of

the method to molecular dynamics is needed, which requires force calculations.

Fortunately, for a kernel that can be differentiated the forces can be obtained

straightforwardly. This is discussed in subsection 5.10.3.

5.10.1 Modifications for a Monte Carlo simulation of Ar

Short-range cut-offs

As the simplifications required to determine the additive energy were discussed

throughout this chapter, the first modification to algorithm 14 given here is the

short-range cut-off. This is a simple extension to the method already presented.

The non-additive interactions require simply that the energy is set to zero for all

triplets containing particles separated by less than a certain distance Rshort. A

sensible choice would be Rshort = Rmin, the minimum distance in the reference

LHC used to train the GP.

For additive energy calculations, energies of configurations at separations be-

low Rshort are approximated by a simple short-range function. An appropriate

function is any for which U → ∞ as r → 0, such as that suggested by Uteva et

al. [27]

U = Umax
1
N

N∑
i=1

(xi/xmax)12. (5.21)

In this equation, xmax = R−1
min, xi is an inverse interatomic distance, Umax is the

energy at xmax and N is the number of configurations in the training set. The

exact form of the function is not overly important because any moves that bring

particles within Rshort of each other will result in an increase in energy sufficient

to make rejection probable.
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Particle exchange moves

The capacity to undertake particle exchange moves is key to simulations of phase

coexistence using the Gibbs ensemble (see Chapter 2.4). Consequently, this ca-

pability must be added to algorithm 14 for any proof-of-concept argon simulation

of this property.

For insertion of a particle into the gas phase from the liquid phase this is

straightforward. A random particle from the latter must be selected and removed,

with the energy of the liquid phase re-calculated thereafter. This calculation

requires only the deduction of the interaction energy of this particle with all

others from the total potential of the atoms in the liquid. Likewise, the new

gas-phase energy must be found, which entails determining the interactions of

the newly-introduced atom with all others. This can be done similarly to finding

∆UNA or ∆UAdd. If the energy of these interactions is negative, the move is

accepted. Otherwise, it is either accepted or rejected as outlined in Chapter 2.4.

Insertion into the liquid can prove more troublesome. Although the requisite

energy calculations are identical, the probability of rejection is far higher. This

is due to the relatively dense packing of the particles in the liquid phase, which

makes it likely that the new particle will be inserted into an area where it un-

dergoes strong repulsive interactions. To circumvent this, the particle is often

introduced with its interactions ‘turned off’ [148]. They are re-introduced slowly

over a series of atom displacement moves that leave the newly-introduced particle

in a position where its potential is not dominated by repulsive interactions.

Non-additive long-range corrections

Non-additive long-range corrections are more treacherous to apply than their

additive counterparts. This is because the introduction of a third atom creates

different scenarios, each of which has a unique correction. These scenarios must,

therefore, be distinguished prior to the application of any correction.

Throughout this discussion, the atoms that comprise the triplet are labelled

1, 2 and 3 such that r12 < r13 < r23. There are three different scenarios that

result, each of which requires a unique long-range correction:

• rc < r12 < r13 < r23, denoted Type 1.
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Figure 5.12: A Type 3 triplet where rmax
23 > L/2, meaning it must exceed rc.

The dashed line is the MIC box centred on atom one and the orange atom is a

periodic image of atom three.

• r12 < rc < r13 < r23, denoted Type 2.

• r12 < r13 < rc < r23, denoted Type 3.

Because all interacting species are atomic they can always be rotated into the

same plane, though the following method could be extended to molecules regard-

less.

Type 3

Considering first the Type 3 scenario, figure 5.12 reveals that selecting which

triplet to evaluate is complicated in this scenario. In this example, taking r23 =

rmin
23 would redefine atom 2 as atom 1. Meanwhile, the previous atom 1 would

become atom 2. This too is a viable triplet, the energy of which must be accounted

for.

This problem is solved by a sensible choice of L. The figure shows that

L ≥ r12 + rmin
13 + rmin

23 . In the case where the separations are as large as possible

while still defining the Type 3 scenario, r12 = rmin
13 = rmin

23 = rc. Thus, L ≥ 3rc so

a side length greater than three times the cut-off distance will avoid the issue of

how to define the triplets.

The region of integration for the Type 3 correction is also not straightforward

to define as it covers a region outside of the cut-off sphere around atom 2 but
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within that of atom 1. This issue can be solved by adding an additional specifi-

cation to the LHC used to train the GP. Including points where rmax
23 = rmax

13 +r12

in the training LHC will allow the GP to predict explicitly the energies for this

scenario. Thus no long-range correction for the Type 3 scenario is required.

Type 2

Under the Type 2 scenario, meanwhile, the long-range correction accounts for

the effect of 3 on the 1-2 interaction when the former is at long-range. Thus

the Type 2 long-range correction ULRC
T2 can be expressed as an integral over the

position of atom 3 only. This yields

ULRC
T2 =

∫
E(3)dr3, (5.22)

where r3 are the Cartesian coordinates of atom 3 and E(3) is an expression for the

non-additive energy at long-range. The latter is discussed later in this section.

However, all expressions for the energy discussed throughout this work have

been given in interatomic distances. An integral of an equivalent format will

be over both r13 and r23. As r13 < r23, atom 3 must be within the hemisphere

around atom 1 that leaves it closer to 1 than 2. r13 must therefore be between

the cut-off and infinity, while r23 must exceed r13 and be less than r12 + r13 to

obey the triangle rule. The integral therefore becomes proportional to

ULRC
T2 ∝ r12

∫ ∞

rc

∫ r12+r13

r13
E(3)r13r23dr23dr13. (5.23)

Figure 5.13 shows that these distances can be re-written in terms of the angle

θ and distance x using the law of cosines. When doing so, the full integral can

be written as

ULRC
T2 (r12) = 4πNaρ

∫ π
2

0

∫ ∞

xmin
x2 sin θE(3)dxdθ. (5.24)

The limits on the integral over θ are a product atom 3 being closer to atom 1,

which is also the reason the constant on the front is 4π rather than 2π. Mean-

while, xmin is the value of x at which r23 = rc and ρ is the density of atoms in the

simulation box. The dependence of the Type 2 correction on r12 stems from these

two atoms being within rc of each other. Thus this integral could be evaluated

for different values of r12 and stored in a look-up table, which would have to be

155



r13 > rc

r23 > rc

r12 < rc
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Figure 5.13: A sketch of a Type 2 triplet that shows the angle θ between r12 and

the distance x.

updated following a volume change. The correction for any Type 2 triplet could

then be evaluated by interpolation.

Type 1

The Type 1 scenario, meanwhile, is similar to Type 2 as illustrated in figure

5.13, with the single difference being that rc < r12 in the former. An equivalent to

equation (5.24) can therefore be written down for the Type 1 correction. However,

because r12 is now greater than the cut-off, this distance must also be integrated

over. Thus the integral for the Type 1 long-range correction is

ULRC
T1 = 8π2Naρ

2

3!

∫ ∞

rc

∫ π
2

0

∫ ∞

xmin
r2

12x
2 sin θE(3)dxdθdr12. (5.25)

This integral is similar to the two-body correction discussed in Section 2.4.4.

That is, because all distances are in excess of rc it is a purely mean field cor-

rection. Consequently, this integral need only be evaluated at the outset of the

simulation and whenever the volume changes. The integrals in equations (5.24)

and (5.25) represent a more general approach to solving the long-range correction

for three-body interactions than that proposed by Leonhard and Deiters [131] as

they can employ any desired function for E(3) and do not disregard any scenario

that requires a correction.

Form for E(3)
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The three-body energy E(3) in the above integrals can be estimated as

E(3) = A(θ)
r3

12r
3
13r

3
23
, (5.26)

where A(θ) is a constant for a given value of θ. A(θ) is obtained by estimating

the energy with a GP when all distances are scaled such that the largest is no

greater than rc.

For a Type 2 triplet such as that in figure 5.13, this scaling is achieved by

moving atom 3 along x until r13 < r23 ≤ rc. The new values of the distances that

satisfy this inequality are referred to as r′
13 and r′

23. As no distances now exceed

rc, the energy of the scaled triplet can be estimated with a GP,

E
(3)
GP = A(θ)

r3
12(r′

13)3(r′
23)3 ↔ A(θ) = E

(3)
GPr

3
12(r′

13)3(r′
23)3. (5.27)

It follows that

E(3) = E
(3)
GP

(
r′

13
r13

)3 (
r′

23
r23

)3

. (5.28)

For a Type 1 triplet, a similar approach can be adopted. However, rather

than simply sliding atom three along x, the first step is to scale all distances

down such that r12 < rc. Then the atom is moved along x until r13 < rc before

a final scaling of all distances to ensure that r23 < rc. Denoting the scaled r12 as

r′
12, this leads to

A(θ) = E
(3)
GP(r′

12)3(r′
13)3(r′

23)3 (5.29)

and

E(3) = E
(3)
GP

(
r′

12
r12

)3 (
r′

13
r13

)3 (
r′

23
r23

)3

. (5.30)

Equations (5.28) and (5.30) can be substituted respectively into equations

(5.24) and (5.25). Before doing this, however, r13 and r23 must be expressed in

terms of the integration variables x, r12 and θ. These expressions can be derived

straightforwardly from the triangle rule, with

r13 =
(1

4r
2
12 + x2 + r12x cos θ

) 1
2

(5.31)

and

r23 =
(1

4r
2
12 + x2 − r12x cos θ

) 1
2
. (5.32)
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Method to reduce disparity in triplet calculations

It was established in section 5.8 that the uneven distribution of the triplets that

need to be calculated explicitly caused a reduction in speed-up under the PBCs

and MIC. The issue could be alleviated by ensuring the discrepancy between

the number of evaluations on a process and the average across all processors is

reduced.

Such a reduction could be achieved with a few simple steps. First, all pro-

cessors must calculate the average number of calculations Nav across all proces-

sors. Then, each process evaluates how many it must undertake, Nself . This

would require only a simple extension of the pre-existing code used to determine

whether or not to find the energy explicitly. Thereafter all processors that have

Nself > Nav + cNav, where c ∈ (0, 1], send cNav jobs to another process that has

Nself + cNav < Nav.

This fix is general to both atom move and full box calculations. However, it

is only feasible if cNav is small enough that sharing the triplets does not come

to dominate the calculation time. This could be circumvented by having all

processors share a matrix of triplets. Then processors that need to reduce their

workload could share the indices of rows in that matrix with processors that have

fewer calculations to undertake.

5.10.2 Extension to atomic and molecular mixtures

Extension to atomic mixtures

When considering systems comprising multiple atomic species, the energy of all

triplets can still be evaluated using equation (5.8). However lj now varies with

j, as the atom types participating in the interactions described by each element

in x may differ. To determine the appropriate lj to use for a given interaction,

knowledge of the species undergoing the interaction must be employed.

To this end a vector of atom types A, which contains the species of each atom

in the cluster, of length Na is introduced. Thereafter an operator f̂(α, β) is used,

where for any α, β pair within a triplet

f̂(α, β) = lα,β
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That is, for a given pair of atoms within a triplet, f̂(α, β) uses A(α) and A(β)

(i.e. the atoms that comprise the pair) to return an appropriate lengthscale.

Another problem introduced by the inclusion of multiple atomic species is the

choice of permutation matrix P. For example, consider a simulation comprising

Ne and Ar atoms. Any triplet therein could have one of four compositions: 3Ar,

2Ar-Ne, 2Ne-Ar, 3Ne. Though the first and last compositions would share the

same P (that shown in subsection 5.5.1), the two compositions that contain both

atom types have permutation matrices that vary based on the ordering of the

atoms. To illustrate this, consider a single 2Ar-Ne triplet, for which (Ne, Ar, Ar).

For such a triplet

P =

 1 2 3

2 1 3

 .
(Recall that it is not the atoms being switched but the interatomic distances.)

However, it is equally reasonable to write (Ar, Ar, Ne) and hence

P =

 1 2 3

1 3 2

 .
This problem is easily fixable by associating with each atom type a weight

value, watom. These could be stored in a vector w that contains in its ith element

the, for example, atomic number of atom i. Such an approach permits triplets

with the same atomic composition to be denoted consistently. In the given ex-

ample of w, wAr > wNe and all triplets with the 2Ar-Ne composition would be

written (Ar, Ar, Ne). Therefore, these triplets would use the second P shown

above. Similarly, such a weighting system ensures all 2Ne-Ar triplets are (Ar, Ne,

Ne) and use the first P shown above. Consequently, each triplet composition will

have a well-defined permutation matrix.

The above method extends to systems of more than two atomic species, with

energy calculations still possible using equation (5.8). The consideration of the

lengthscales affects the exponential calculations only; the combination of expo-

nentials to find the non-additive/additive energies will still proceed as before once

an appropriate permutation matrix has been found. Thus, the necessary changes

to the current algorithm are minor. Recovery of the appropriate lengthscale be-

fore the exponential calculations and determination of P before the energies are
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evaluated are the only additional steps needed.

Mixtures containing molecular species

To extend the methodology to molecular species requires A to be extended to a

Na x Nmax matrix A, where Nmax is the number of atoms present in the largest

molecule and Na now refers to the number of particles. The form of A can be

illustrated by the simple example of a 2Ar-CO triplet, for which

A =


C O

Ar ND

Ar ND


and “ND” stands for “not defined”.

The operator f̂(α, β) would then have to be extended to three dimensions,

becoming f̂(α, β, j). While α and β still refer to particles in the triplet, j refers to

the jth interaction between these particles. For example, f̂(1, 2, 2) would return

the lengthscale for the second interatomic distance between the CO and the first

Ar. If f̂(2, 3, 2) were picked, the exponential calculation would be skipped as the

Ar-Ar interaction is one-dimensional.

P could once again be determined with a vector of weights w, where this time

the ith entry therein would be the sum of the atomic numbers in the ithe row

of A. For the 2Ar-CO interaction, wAr > wCO. This means that distance 1 is

rAr−Ar. As finding wCO requires the atomic numbers of C and O, one can verify

that wO > wC. Thus, distances 2 and 3 are O-Ne distances, while 4 and 5 are

C-Ne distances. This yields

P =



1 2 3 4 5

1 3 2 4 5

1 3 2 5 4

1 2 3 5 4


.

Once more, this method extends to different mixtures of molecular and atomic

species. Modifications to the existing code to run Monte Carlo simulations of

phase coexistence should therefore be relatively straightforward, requiring only

some additional steps in algorithm 14 rather than a totally new algorithm.
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5.10.3 Forces for molecular dynamics simulations

Any molecular dynamics simulation requires the forces acting on each atom. A

useful property of GP potentials in this context is that forces can be obtained by

differentiating the kernel function. That is, a separate GP does not need to be

trained on force data.

For argon atoms, forces can be found from differentiating equation (5.5). For

an atom δ, forces must be found in each of the x, y and z directions. Letting

d denote an inverse interatomic distance for clarity, the force on atom δ from

direction λ is

Fλ = −σ2
f

Na∑
j ̸=δ

Nt∑
i=1

Λi
∂

∂λδ

[
exp

(
−(dδj − di)2

2l2

)]
. (5.33)

The sum over all atoms represents the force being an accumulation of the forces

exerted by all other atoms along a given axis.

As mentioned, d is an inverse distance, so

dδj = 1
[(xδ − xj)2 + (yδ − yj)2 + (zδ − zj)2]1/2 (5.34)

and the substitution

v = 1
[(xδ − xj)2 + (yδ − yj)2 + (zδ − zj)2]1/2 − di (5.35)

can be used. This allows one to solve the derivative in equation (5.33) using the

chain rule. Writing k = exp
(
− (dδj−di)2

2l2

)
= exp

(
− v2

2l2

)
,

∂k

∂λδ

= ∂k

∂v

∂v

∂λδ

. (5.36)

Letting q = (xδ − xj)2 + (yδ − yj)2 + (zδ − zj)2, one has that v = q−1/2 − di.

Thus from
∂v

∂λδ

= ∂v

∂q

∂q

∂λδ

, (5.37)

one obtains
∂v

∂λδ

= −1
2

2(λδ − λi)
[(xδ − xj)2 + (yδ − yj)2 + (zδ − zj)2]3/2

= −(λδ − λi)d3
δj.

(5.38)

Taking

∂k

∂v
= − v

l2
exp

(
− v2

2l2

)
= −(dδj − di)

l2
exp

(
−(dδj − di)2

2l2

)
(5.39)
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and substituting equation (5.38) into equation (5.36) gives

∂k

∂λδ

=
d3

δj(dδj − di)(λδ − λi)
l2

exp
(

−(dδj − di)2

2l2

)
. (5.40)

This gives the force along direction λ as

Fλ = −σ2
f

Na∑
j ̸=δ

Nt∑
i=1

Λi

d3
δj(dδj − di)(λδ − λi)

l2
exp

(
−(dδj − di)2

2l2

)
. (5.41)

The form of (5.41) implies that the same strategy used to calculate the energy can

be applied to evaluating forces. The exponentials can still be pre-calculated and

combined in the same way, only the latter action requires the additional evaluation

of the two fractions within the sum. This should be computationally insignificant

and the method can be generalised to mixtures of atoms and molecules.
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Chapter 6

Final discussion

It has been mentioned many times throughout the antecedent chapters that Gaus-

sian process (GP) potentials offer the best path to the application of high-level ab

initio information in molecular simulations of fluids comprising small molecules.

This is because GPs are capable of accurate interpolation of multidimensional

functions and require a single, general algorithm to do so. That is, the method

used to train a GP potential is not affected by the potential itself; all that is

needed is relevant training data. Furthermore, GPs can learn a potential en-

ergy surface with fewer training points than equivalent methods, which renders

them ideal for applying, for example, coupled cluster-level potentials via transfer

learning. They are therefore excellent for use in simulations of liquids, for which

equations of state cannot be obtained from the virial expansion. However, the

capacity of GPs to facilitate first principles, quantitatively accurate simulations is

inhibited by their computational cost, which is high compared to other statistical

methods and, in particular, traditional force fields. Thus it is paramount when

attempting to obtain thermophysical properties of liquids from first principles to

train and implement GP potentials efficiently.

A more efficient training method was discussed in Chapter 3, which demon-

strated that GP potentials can be developed with significantly fewer training

points by varying the cross-over distance between the GP itself and a long-range

function. The long-range function was relatively simple, with a closed functional

form that ensures it was computationally inexpensive to evaluate. The cross-over

distance was varied using boundary optimisation, a novel method that learned the
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optimal cross-over distance from the training data and permitted the imposition

of different cross-over distances on different interatomic interactions. This method

was demonstrated to be successful for a variety of linear intermolecular systems

encompassing a multitude of interaction types, and addressed complications re-

lating to hyperparameter stability in training of (HF)2 and (HCl)2 potentials. It

was found that for non-(HX)2 systems, boundary optimisation reduced the num-

ber of training points at fixed, usable accuracy by up to 40 %, with a typical

reduction of 15-30 %. Furthermore, boundary optimisation in one or many di-

mensions incurred an increase in training time so negligible as to be unnoticeable,

and is general to other methods of prediction. For example, GP predictions could

be replaced by those of a neural network if desired. The technique also addressed

a common problem when modelling with machine learning: where to switch from

the machine-learned model to an established, physical one. Moreover, boundary

optimisation could be applied to three-body interactions or alternative systems

straightforwardly given a suitable long-range function.

Chapter 4, meanwhile, presented results of training a GP potential with al-

ternative input and output transforms, as well as new kernels. This chapter was

motivated by results from Chapter 3, namely the aforementioned instability in

the hyperparameters for the (HX)2 dimers when training without boundary op-

timisation. As this instability arose from non-stationarity in the training data,

it was hoped that enhancing stationarity through new transforms or introducing

a non-stationary kernel would mitigate it. However, none of these methods were

successful: an alternative energy transform facilitated a meagre reduction in error

on the (HCl)2 PES; a composite kernel comprising the sum of a squared expo-

nential and neural network kernel was found to slightly reduce error for larger

training sets at the expense of increased training costs; and a new transform on

the inputs only reduced predictive accuracy further as it diverged from the orig-

inal r → r−1 transform. Thus, the efficiency and stability gains from boundary

optimisation could not be improved upon further in this way, suggesting a com-

bination of this technique with the current symmetric kernel and input transform

is sufficient for most systems.

Therefore, in Chapter 5 a method for efficient implementation of GP po-
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tentials was explored. This method entailed parallelising the calculation of the

non-additive triplet energies, which required calculation of the exponentials with

shared memory and distribution of the triplet energy calculations across all pro-

cessors. Though the exponential calculation was GP-specific, the method for

distributing the triplets for evaluation was general to any potential and ensured

the triplets were shared equitably across all processors. Moreover, parallelisation

of the triplet energy evaluations is likely to be effective in enhancing the speed

of the calculations as these can be calculated independently and then summed.

Though evaluation of the exponentials did not parallelise particularly well, it

transpired that these calculations were a small fraction of the total time taken.

The dominant cost was instead the time taken to sum the exponentials to evaluate

the triplet energies, which parallelised near-perfectly. Overall, a 15-fold speed-

up was observed over 40 processors for the full non-additive energy calculation

of a full simulation box, with a similar result obtained when finding the change

in that energy when an atom moved. Over 10 processors, a roughly seven-fold

speed-up was seen in both of these calculations. When calculations were spread

over multiple nodes, similar speed-up was observed. In addition, as the size of the

box, and hence the cut-off radius, increases, the proportion of triplet calculations

will increase. This will enhance the observed speed-up further over more proces-

sors. The additive energy calculation is less computationally costly because it

will require fewer exponential sums and a GP with a smaller training set. Con-

sequently, the algorithm already addresses the largest computational barrier to

accurate simulations of liquids and gases with GP potentials.

Consequently, although attempts to vary the kernel and input/output trans-

forms employed showed no improvement to model training, the work presented

here has shown two further routes for reducing the computational cost of GP

potentials. The first, boundary optimisation, focuses on achieving this through

a reduction in training set size, while the second approaches the problem from

the perspective of exploiting the GP framework to undertake calculations effi-

ciently. This work therefore relays methods that enhance drastically our capacity

to perform first principles simulations of fluids with GP potentials.

Before such simulations can be undertaken, however, further work is required.
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For the boundary optimisation, applications to three-body systems have not been

attempted. These require only a three-body long-range function, which can be

obtained straightforwardly by generalisation of the method in Appendix D. Oth-

erwise, the methodology required will be identical to the two-body case. It may

also be worth investigating if re-designing the training Latin hypercubes (LHCs)

results in more stable training of the (HX)2 potentials, though it is doubtful that

this will have a significant effect.

However, if running such a simulation is desired, the focus should be on the

future work described in Section 5.10. This details the requisite changes for em-

ploying GP potentials in simulations, including extensions to atomic and molecu-

lar mixtures, and the determination of forces for molecular dynamics simulations.

Promisingly, all of these changes are straightforward compared with the algorithm

developed so far. Moreover, said algorithm already handles the most computa-

tionally intensive aspect of the calculation, the three-body calculation. As such,

the durations of the calculations upon introducing the aforementioned changes

will not be drastically increased. This means it is likely that a proof-of-concept

first principles simulation of liquid argon should be possible in the near future,

before extension to more interesting systems and molecular dynamics simula-

tions. Though argon is not the most abundant contaminant in CCS pipelines, it

is commonly found in CCS mixtures and its simulation with a machine-learned

potential would represent an important step towards applying these potentials in

more representative simulations. In addition, these sections introduce a general

form for evaluating all necessary three-body long-range corrections, which can be

applied using a variety of long-range functions. Holistically, therefore, this work

comprises methodologies to reduce significantly the computational cost of first

principles simulation with GP potentials.

Given the potential importance of carbon capture and storage (CCS) in reduc-

ing emissions and mitigating the effects of climate change, the work has poten-

tially pervasive applications. With minimal additions, all of which are described,

the algorithm will be applicable to phase co-existence calculations of argon in

Monte Carlo simulations using the Gibbs ensemble. With a few further modi-

fications, such a calculation can be undertaken for atomic and molecular mix-
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tures akin to those in a CCS pipeline. This would permit the evaluation of the

vapour-liquid phase transition point in these mixtures, facilitating more efficient

pipeline operation. Furthermore, once forces are employed, molecular dynamics

can be used to assess non-equilibrium properties such as viscosity, which also

affect pipeline operation. All of these properties would be calculated using first

principles predictions, ensuring simulation results are quantitatively accurate and

eliminating the need for laborious experiments to either fit potentials or evalu-

ate the accuracy of simulation results. In addition, application of GP potentials

to liquid simulations would facilitate derivation of liquid equations of state from

first principles. Methods to derive such equations of state systematically from

simulations [76, 77] could be used to this end for the complex mixtures found in

CCS pipelines.
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Appendix A

Cholesky decomposition

Consider anN xN positive definite matrix A. Under the Cholesky decomposition

A = RTR, (A.1)

where R is an upper-triangular matrix that is non-zero in all elements of its

diagonal,

R =



r11 r12 · · · r1N

0 r22 · · · r2N

... ... . . . ...

0 0 · · · rNN


. (A.2)

From equation (A.1), it follows that

A−1 = (RTR)−1. (A.3)

Thus, A−1 can be found from R−1.

This is done by first denoting R−1 = M. Then

RM = I, (A.4)

where I is the identity matrix. This can be solved using forward propagation

RMi = Ii, (A.5)

where i denotes a column of a matrix. Once equation (A.5) has been solved for

all i, A−1 is found using

A−1 = MTM. (A.6)
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Appendix B

Conditioning a joint Gaussian

distribution

Consider two vectors of observations a and b from a joint Gaussian distribution,a

b

 ∼ N
( µa

µb

 ,
C DT

D E

 ). (B.1)

Denoting as La and Lb the lengths of a and b respectively, C is an La x La

matrix, D is La x Lb and E is Lb x Lb. The conditional distribution of b on a is

then [47]

b|a ∼ N (µb + DTC−1(a − µa),E − DTC−1D). (B.2)
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Appendix C

Move probabilities in Gibbs

Monte Carlo simulations

Monte Carlo simulations with a Gibbs ensemble entail separating the system

under consideration into two distinct phases; in this case liquid and gas. For

displacement moves in such simulations, the probability of acceptance is governed

by

∆YD = ∆Eα + ∆Eβ, (C.1)

where α and β denote the different regions. Volume change moves must also

account for the difference between the new and old volumes, meaning

∆YV = ∆Eα+∆Eβ−NαkBT ln
(Vα + ∆Vα

Vα

)
−NβkBT ln

(Vβ + ∆Vβ

Vβ

)
+P (∆Vα+∆Vβ).

(C.2)

Finally, for a particle exchange from β to α,

∆YV = ∆Eα + ∆Eβ + kBT ln
(Vβ(Nα + 1)

VαNβ

)
. (C.3)

This comes from the total number of particles across both regions being constant

throughout the simulation.
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Appendix D

Derivation of an empirical

long-range function

HF-Na+ was the only intermolecular potential examined in Chapter 3 for which

a multipolar long-range function was not used. Instead a fitted, empirical long-

range function was employed. Although determining an optimal long-range func-

tion was not the goal of this work, one that was accurate enough that all config-

urations were not rapidly transferred to the GP region was needed for proof of

concept. The multipolar long-range function was unsuitable for this because of

the discrepancy between its predictions and the MP2 energies.

Evidence of this is given in figure D.1, which also highlights the superiority of

the predictions of the empirical long-range function. The RMSEs of each method

of prediction were separated by two orders of magnitude, with the empirical

function achieving an RMSE of 3.07 x 10−7 Eh versus 4.15 x 10−5 Eh for the

multipolar function against the MP2 data shown in the figure.

Figure D.1 evidences that the multipolar long-range function captured the

power law of the interaction energy for this system in this configuration, with

the source of its error being that it was offset from the calculated energies. This

offset was a product of the energies being calculated using MP2 while many of the

properties used to derive the multipolar long-range function were calculated at

higher levels of theory (see table 3.2). In the other systems, the small magnitude

of the long-range energies meant that this disagreement was negligible and the

multipolar long-range function was usable. However, in the case of HF-Na+,
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Figure D.1: Plots of the predicted energies of the long-range functions derived

by the empirical method (red) and the multipole method (green) for the

HF-Na+ potential in a linear configuration with the F proximal to the Na+ (i.e.

with cos(θ) = 1). Also shown for comparison are MP2 energies (blue) for this

configuration.

long-range energies with larger magnitudes were commonplace due to the strong

repulsive and attractive interactions between the H-F dipole and the Na+ cation.

This exacerbated the difference between the predictions of the multipolar long-

range function and the MP2 energies.

To approximate accurately the long-range data without upgrading the refer-

ence and test data to a higher level of theory, a long-range function was produced

by fitting directly to these data. This was the empirical long-range function.

Taking r to be the distance between the centre of the H-F bond (not centre of

mass) and the Na+ this function estimated the energy, E, as a sum of power laws,

E = Ar−2 + Br−3. (D.1)

In doing so, the empirical long-range function exploits that the dominant powers

of r in the HF-Na+ interaction are known to be -2 and -3 but assumes that the

coefficients of these terms are unknown.

As the energy varies differently with r when θ changes, a sum such as in

equation (D.1) must be fitted for every configuration in a given data set for

which θ is unique. For a given θ the coefficients in equation (D.1) can be found

using simultaneous equations, which are set up by following algorithm 15. In all
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cases, rmin = 8.5 Å and rmax = 10.5 Å, though the power laws which resulted

were accurate up to 100 Å. Furthermore, both GPs in the algorithm were trained

on ∼ 300 training points from a LHC design.

Algorithm 15 Coefficients for the Empirical Long-range Function
1: Train a GP, GPmin, on a range of θ values at separation r = rmin; do the same

for another GP, GPmax, at r = rmax.

2: For a given θ, predict Emin and Emax using GPmin and GPmax respectively.

3: Set up simultaneous equations of the form shown in equation (D.1): one with

E = Emin and r = rmin, and another with E = Emax and r = rmax.

4: Solve the equations from step three for the coefficients for the current θ.

By repeating steps 2-4 in algorithm 15, a sum of power laws was determined

for every θ value in the reference and test sets. Fitting to the latter was possible

as knowledge of the energies in the set over which fitting was undertaken was

unnecessary. This was because the GP predictions were based on their respective

training sets, and r and θ were found from the inverse interatomic separations at

each configuration alone.

Deriving a long-range function from the predictions of two GPs could be

problematic if a transfer learning approach were to be invoked as the data used

to train these GPs would itself need to be upgraded. For the HF-Na+ potential

this would not be an issue because increasing the quality of the training data

would increase the quality of the fit from the multipolar long-range function.

However, when an empirical function is the only option for modelling the

long-range data, upgrading the data used in training GPmin and GPmax would be

of considerable computational expense. This is because, currently, each comprise

∼ 300 configurations. Such an issue could be circumvented by using a sequential

design strategy to build minimal training sets for these GPs, which could then

be upgraded instead. Furthermore, the training sets used for GPmin and GPmax

are independent of that used to train a GP on the wider PES. Letting the num-

ber of training points in the training sets of GPmin and GPmax be Y and that in

the training set of the other GP be Z, the cost of short-range predictions in any

simulation would scale linearly with Z and the cost of any long-range predictions

would scale linearly with 2Y. Given that the training of GPmin and GPmax take
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place at a fixed separations, it is likely that 2Y < Z if all GPs were trained under

a sequential design strategy. This means that the predictions of the empirical

long-range function would not be the computational bottleneck and that such a

function is suitable for use in simulations. Finally, the method is sufficiently flex-

ible that the GP predictions can easily be replaced by those of another statistical

method.
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Appendix E

Boundary optimisation

supplementary material

E.1 Fit Plots

This section includes the plots of RMSEtest against Nt and the fits made to them

for all training strategies for all systems. On each plot, the fit from fixed boundary

training is shown for comparison.
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E.1.2 HF-Na+
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E.1.3 CO-Ne
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Single-constrained training.
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E.1.4 CO2-Ne
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E.1.5 (CO2)2
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E.2 Power Law Tables

This section comprises tables showing the equations of the fitted lines as power

laws in the number of training points, Nt, for all training strategies for the HF-Ne,

HF-Na+, (CO2)2 and CO2-Ne potentials.

HF-Ne power laws.
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Training Strategy Best fit to RMSEtest R2

Single-Constrained Placement 0.383N−2.989
t 0.977

Multi-Constrained Placement 0.239N−2.8947
t 0.920

Single-Open Placement 0.321N−2.933
t 0.971

Multi-Open Placement 0.210N−2.853
t 0.954

Closest Model 0.267N−2.971
t 0.986

Fixed Boundary 767.2N−4.791
t 0.901

HF-Na+ power laws.

Training Strategy Best fit to RMSEtest R2

Single-Constrained Placement 2.246N−2.933
t 0.941

Multi-Constrained Placement 1.343N−2.803
t 0.941

Single-Open Placement 1.711N−2.845
t 0.944

Multi-Open Placement 1.799N−2.878
t 0.931

Closest Model 1.188N−2.789
t 0.920

Fixed Boundary 33.29N−3.613
t 0.930

(CO2)2 power laws.

Training Strategy Best fit to RMSEtest R2

Single-Constrained Placement 0.069N−2.174
t 0.977

Multi-Constrained Placement 0.064N−2.162
t 0.983

Single-Open Placement 0.069N−2.174
t 0.977

Multi-Open Placement 0.073N−2.201
t 0.988

Closest Model 0.052N−2.115
t 0.984

Fixed Boundary 0.191N−2.361
t 0.933

CO2-Ne power laws.
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Training Strategy Best fit to RMSEtest R2

Single-Constrained Placement 3.237N−4.348
t 0.910

Multi-Constrained Placement 0.698N−4.014
t 0.952

Single-Open Placement 2.706N−4.248
t 0.929

Multi-Open Placement 0.080N−3.184
t 0.925

Closest Model 0.615N−3.955
t 0.964

Fixed Boundary 39.81N−5.053
t 0.914

E.3 Cross-over Plots

This section includes the plots of the Rcross values achieved by single-open and

single-constrained training for all systems.
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HF-Ne.
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E.4 HF-Ne Reproducibility Plots

This section contains plots of the training point placement and cross-over values

for two separate models from each of the single-constrained, single-open and fixed

boundary training strategies on the HF-Ne system.
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Appendix F

Parallel programming

When programming in any language, a script is produced for interpretation by

a computer. For the duration of this discussion, the ‘interpreter’ will be referred

to as a process. Often when programming, a single process is used for a single

script, as outlined in figure F.1.

However, there are instances where having multiple processes interpret a single

script will facilitate an increase in the speed with which that script is executed.

Consider a program that requires a summation over a vector V of length LV to

return a value Vsum,

Vsum =
LV∑
i=1

Vi. (F.1)

When LV is large calculating Vsum using two processes, each of which undertakes

half of the sum in equation (F.1), will reduce the time taken considerably, by up

to a factor of two.

In such a case, the two (or more) processes that evaluate part of the sum do

so independently, only sharing their total contributions to Vsum in order to obtain

its final value. That is, in this example, each process cannot ‘see’ what any other

process is doing. This technique is referred to here as parallel programming and

is shown schematically in figure F.2.

Figure F.1: A schematic showing execution of a script with one process.
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Figure F.2: A schematic showing execution of a script via parallel programming

with two processes.

It is possible, though, that large amounts of information will need to be shared

between processes when programming in parallel. As such, the gain in speed in

executing the code could be undermined by the time taken to share this informa-

tion. The solution to this is shared memory. (Though shared memory is a form

of parallel programming, the two methods will be referred to as though separate

for ease of discussion.) Like parallel programming, using shared memory entails

having multiple processes execute a script simultaneously. However, the latter

allows each process to ‘see’ the work done by all other processes as it is completed.

Thus there is no need for any explicit sharing of information between processes,

as illustrated in figure F.3.

As a result of the difference in the access each process has to the information

produced by all others when using parallel programming or shared memory, both

techniques are impacted differently when used over multiple nodes. A node is a

server that hosts several processes, and only processes on the same node can share

memory. Thus, any shared memory method must be undertaken separately on

each node. Meanwhile, under parallel programming, processes on different nodes

can still send information to each other. The time taken to do so may be longer

than on a single node, however. Effectively this means that parallel programming

strategies are affected barely at all by implementation across various nodes, unlike

those that use shared memory.
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Figure F.3: A schematic showing an array being filled by two processes that

share memory.
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