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Abstract 

In these times of rapid environmental change and species extinction, understanding the drivers 

and mechanisms governing species’ abundance is more important than ever. The goal of this 

thesis was to further our understanding of what drives variation in species’ abundance and 

microhabitat use through space, particularly in the context of rapid land cover and climate 

change, using the little explored anole fauna of the Honduran island of Utila. The work 

uncovered that when considering structural habitat, prey availability and the thermal 

environment, for the endemic Anolis bicaorum, thermal habitat quality and prey biomass both 

had positive direct effects on anole abundance. However, thermal habitat quality also 

influenced prey biomass, leading to a strong indirect effect on abundance. Consequently, the 

later part of this thesis focuses on the thermal environment and the use of unoccupied aerial 

vehicles (UAVs) and satellite remote sensing platforms for mapping thermal habitat quality 

and availability at scales relevant to the species. Thermal habitat quality for A. bicaorum was 

primarily a function of canopy density, measured as leaf area index (LAI), therefore this work 

combined indices of canopy cover and heterogeneity derived from UAV and WorldView-2 

satellite imagery to map sub canopy operative temperature (Te). Results indicate that such 

methods as using remote sensing imagery, when coupled with air temperature measures, are a 

reasonable way of mapping Te continuously across space, allowing us to quantify the 

availability and spatial structure of the thermal environment, at spatial scales experienced by 

the organism. Lastly, I used WorldView-2 imagery and the proposed methods for mapping Te 

to quantify available thermal habitat for A. bicaorum on Utila across land cover and climate 

scenarios. This work indicates the need to determine controls and niche interactions on animal 

abundance and the importance quantifying these niche factors at relevant spatial scales to 

estimate species responses to land cover and climatic change.  
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Chapter 1 : Introduction  

1.1 Overview of Thesis   

Understanding what determines spatial variation in species’ abundance holds the key 

to understanding the geography of life, from local ecological communities to global 

biodiversity. Given accelerated environmental change and species’ extinctions, understanding 

the drivers and mechanisms governing species’ abundance and distributions is now more 

important than ever (Ehrlén and Morris, 2015). As we continue to convert natural habitats for 

human use, identifying what habitat characteristics are most important for animal abundance, 

at a scale relevant to the organism, is crucial to conserving species in a human-dominated 

world. There is also a need to understand and model species responses to environmental change 

at a spatial scale relevant to the organism (Clusella-Trullas et al., 2021; Potter et al., 2013; 

Sears et al., 2011; Sears and Angilletta, 2015). However, current mechanistic models for 

predicting species distributions and responses to change do not consider the spatial 

heterogeneity of the landscape and consider the landscape to be homogenous (Potter et al., 

2013; Sears et al., 2011), and therefore do not consider species’ individual or population level 

responses to fine scale changes in their environment. This is due to the lack of high quality 

microclimate (Zellweger et al., 2019) data or input data for microclimate models  at a spatially 

relevant scale.  

This need for measuring species responses to environmental change at a scale relevant 

to them is important when considering anthropogenic land cover and climate change (Sears 

and Angilletta, 2015; Suggitt et al., 2018). Climate change is a key concern for future global 

biodiversity, however how we predict species’ responses to climate change is currently based 

on  broad homogenous landscapes, that do not accurately represent that experienced by the 

organisms (Sears and Angilletta, 2015; Suggitt et al., 2018). We know that the heterogeneity 
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of the landscape is important to consider when we look at species responses to climate change, 

by accounting for these microhabitats that may buffer impacts (Suggitt et al., 2018). Climate 

change and its influence on the thermal environment is particularly acute for forest dwelling 

ectotherms, the focus of this thesis, as it influences their ecological fitness. However, current 

methods for measuring climatic variables and responses to climate change are at a coarse 

spatial resolution, using compiled data from weather stations and mechanistic models (Kearney 

and Porter, 2017; Potter et al., 2013; Sears et al., 2011), which do not take into account these 

fine scale habitat characteristics relevant to the species themselves. Due to a current lack of 

relevant microclimate data. However, remote sensing data and methods have now been 

identified as a major emerging tool in monitoring this habitat heterogeneity and can provide 

relevant inputs for  microclimate modelling at scales more relevant to species (Duffy et al., 

2021; Zellweger et al., 2019).  

Unoccupied aerial vehicles (UAVs) are one of said remote sensing platforms that can 

capture high spatial quality variables for microclimate modelling (Duffy et al., 2021; Kašpar 

et al., 2021; Milling et al., 2018; Zellweger et al., 2019), with the ability to capture highly 

detailed information on canopy structure from plot to landscape scales (Wallace et al.,2016; 

Ahmed et al., 2017). High spatial and spectral resolution satellites such as WorldView-2 

(WV2) are also an exciting potential data source for microclimate and habitat heterogeneity 

modelling at fine spatial scales (30cm), with the addition of large spatial and temporal 

coverage. However, field tests of the capacity of remote sensing platforms to capture habitat 

characteristics relevant to animals living below the forest canopy are limited. This is 

particularly important as forest dwelling ectotherms have been highlighted as one of the most 

at risk from climate warming (Deutsch et al., 2008; Huey and Tewksbury, 2009; Kearney et 

al., 2009; Sinervo et al., 2010).  



3 
 

 When considering the thermal environment, these microclimate data are important; 

however how we apply them to species has a major influence on our predictions of habitat use, 

abundances and response to future anthropogenic mediated habitat change. Microclimate 

influences the thermal environment of the landscape via multiple biophysical pathways (Gates, 

1980; Kašpar et al., 2021).  However, when we look to categorise the thermal suitability of an 

environment for an ectothermic species we use variables that relate to species’ body 

temperature, such as a species critical thermal maximum (CTmax) based of thermal performance 

curves (TPCs). Measuring how the environment relates to these TPC ranges is usually done at 

fine spatial scales via morphologically accurate temperature models that represent operative 

temperature, the temperature of the animal at equilibrium with its environment (Bakken, 1992; 

Logan et al., 2013). Therefore, for microclimate data to be ecologically relevant for ectotherm 

species, we then need to predict the animals’ body temperature from the microclimate data 

before then deciding on a reasonable measure of thermal habitat quality, introducing additional 

uncertainties to our predictions.  

Another consideration of categorising the thermal suitability of an environment for a 

species, and the potential change of such conditions under anthropogenic mediated change, is 

what thermal indices are most important to consider.  How we categorise the thermal landscape 

is important to consider for animal abundance, current methods look at the suitability of the 

environment compared to that of thermal ranges (for example CTMax) and thermal safety 

margins (Clusella-Trullas et al., 2021; Logan et al., 2013a) of a species. Although a reasonable 

indicator, the use of these indices as a sole indicator of ectotherm response to climate change 

has been called into question, as the impact of such indices on a population can vary depending 

on intrinsic and extrinsic factors (Clusella-Trullas et al., 2021; Sinclair et al., 2016). The spatial 

structure of the thermally suitable habitat at scales relevant to the organism, has also been 

highlighted as an important factor to consider when considering overall landscape suitability 
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(Sears and Angilletta, 2015), which currently cannot be considered with coarse measures of 

climate or operative temperature measures in the field.    

 In this thesis, I determine how multidimensional environments and niches, including 

measures of thermal habitat quality, interact to determine population abundance of an endemic 

anole lizard species along a habitat gradient in tropical forests and urban environments on the 

island of Utila, Honduras. I also test the ability of remote sensing techniques to predict variation 

in habitat characteristics, relevant to the anoles of Utila, at both a plot and at temporal landscape 

(island) level. Using thermal ecology and principles related to forest canopy, microclimate and 

lizard body temperature (Algar et al., 2018; Kašpar et al., 2021) I link canopy structure and 

species’ abundance by integrating UAV and WorldView-2 Satellite data with field data on 

below-canopy lizard temperature and thermal habitat structure. This work will not only help 

reveal the secrets of this little understood fauna, and identify general principles underlying 

limits on animal abundance, but also proposes a step-towards new methods for mapping sub-

canopy habitat characteristics, linked to the abundance of these species, across  relevant spatial 

scales.  

1.2 Background   

1.2.1 Anoles (Anolis spp.) 

The focus species of this thesis is a small endemic anole lizard (Anolis bicaorum) found 

on the island of Utila, Honduras. Anoles are a group of small arboreal Iguanid lizards belonging 

to the family Dactyloidae, native to the Caribbean, Central and South America (Losos, 2009); 

most scientists classify all species into a single genus, Anolis. With over 400 described species, 

anoles are one of the most species diverse lizard groups, occupying a range of ecological 

niches. Their high species diversity and diversity in form, physiology, behaviour, and ecology 

has led to them being a model system for evolutionary ecology. This has resulted in numerous 

studies of anole behaviour, physiology, neurobiology, community structure, and evolution 
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occurring, which has resulted in a considerable knowledge base of the relationships between 

anole species and their environments. However, no such work has been undertaken at 

considering how habitat characteristics mediate interactions between niche axes at spatial 

scales relevant to the animals, and how these interactions feed into the overall population size. 

The most characteristic structural features of anoles are their dewlaps and sub-digital toepads. 

The dewlap, a flap of skin beneath the chin, which can be extended by cartilaginous rods and 

combined with head and body movements (Nicholson et al., 2007) is primarily used for various 

signs and displays, mostly territorial and courtship displays. The expanded sub-digital toepads 

covered in lamellar scales with microscopic setae, aid in perching on substrates and climbing.  

Anoles have been divided into ecomorphs based on the structural microhabitat in which they 

are normally found (Losos, 2009). Each ecomorph is adapted in its ecology, behaviour and 

functional morphology to its specific microhabitat, for example longer legs confer an advantage 

for increased running speed on broad substrates, whereas shorter limbs provide greater 

manoeuvrability on narrow surfaces (Kolbe and Losos, 2005). There are six anole ecomorph 

designations, these are trunk, trunk-ground, trunk-crown, crown giant, grass-bush and twig 

anoles. These ecomorphs were first described by Williams (1983) and vary significantly in 

their morphology and behaviour with the two extremes of the scale being the crown-giants and 

the twig anoles.  

Crown-giants as their name suggests are the largest of the ecomorphs and spend the 

majority of the time within the upper regions of the canopy, morphologically their limbs are 

moderately sized, their toepads large and their heads massive and casqued (Losos, 2009). In 

contrast, the twig anoles are the smallest of the ecomorph designations with slender bodies, 

long pointed snouts and short limbs and tails (Losos, 2009). The grass-bush anoles are always 

small; they are slender lizards with long hind limbs, short forelimbs, long narrow heads, poorly 

developed toepads and an extremely long tails. The different trunk ecomorphs again as their 
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name suggests spend their time living at different levels within the trunk of the tree, hunting 

and displaying in different areas. These ecomorph adaptations allow different species to adapt 

and co-occur within the same geographical space as an effective strategy for resource 

partitioning.  

Quantifying anole habitat, preference therefore varies depending on the species and 

their ecomorphs. Although we have an idea of the factors that influence habitat suitability, what 

determines their relative abundance is largely unknown. Here, I focus on several different 

factors which are known to govern anole distribution, habitat preference, and therefore 

theoretically abundance. These are structural microhabitat, perch availability (Johnson et al., 

2006), prey availability (Battles et al., 2013) and the thermal environment (Huey and 

Tewksbury, 2009; Sears et al., 2011; Sinervo et al., 2010). As ectotherms, anoles are dependent 

on the thermal conditions of their environment, as their body temperature (Tb) and therefore 

metabolic function is dependent on environmental conditions.  Understanding these drivers is 

particularly important when considering endemic species and species of conservation concern, 

such as the focus species here Anolis bicaorum (Figure 1.1). Such endemic species, which are 

undergoing intense habitat alteration (personal observations) and potential invasive species 

threats (Brown et al., 2017b; Brown & Diotallevi, 2019), are under pressure from several fronts. 

We therefore need to understand the mechanisms underpinning their abundance and isolate 

important niche factors for monitoring and conservation planning implementation.  



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: A male Anolis bicaorum, endemic to the island of Utila, Honduras 

extending its dewlap. Photo Credit – Tom Brown. 
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1.2.2 Study System 

The research site for the work is Utila (16.0950° N, 86.9274° W), one of the Bay Islands 

of Honduras, which host a number of marine and terrestrial protected areas under SINAPH 

(Honduras National System of Protected Areas) that are of local and international significance. 

The island is small, with a total area of 41 km2 (Figure 1.2).  

 

 

 

 

There is a single main elevation gradient located towards the north-east, Pumpkin Hill, 

with a maximum elevation of 74 metres above sea level. There is also a slight variation in 

elevation towards the northern regions of Utila town, which reaches up to 32 metres. The 

majority of the island varies from sea level to 8m in elevation (Figure 1.3).  

 

 

Figure 1.2: Location of Utila, Isla de Bahia, Honduras 
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Utila features a mosaic of habitats, including red, white and black mangrove, 

neotropical dry forest, neotropical savannah, coastal palm and almond, urban areas, urban 

gardens  and volcanic rock exposures (Schulte and Köhler, 2010; Fawcett et al., 2016),  all of 

which contribute to the island’s high biodiversity. The centre of the island is predominantly 

Neotropical savannah, Tique palm forest and areas of mangrove (personal observation), the 

central part of the island also hosts Turtle Harbour Marine Reserve and Wildlife Refuge, this 

refuge is managed by the Bay Islands Conservation Association (BICA). The remainder of the 

island is a mixture of different types of mangrove forest, coastal almond and scrub, neotropical 

dry forest and urban areas.  To date, a total of 42 amphibian and reptile species have been 

recorded on the island (McCranie and Orellana, 2014), including the five species of anole: 

Anolis sericeus, Anolis utilensis, Anolis. bicaorum, Anolis sagrei and Anolis allisoni. 

Figure 1.3:  Elevation map of Utila, Honduras using Shuttle Radar Topography 

Mission (SRTM) 1- arc second digital elevation model. Elevation in metres 

above sea level. 
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1.2.2.1 The Anoles of Utila  

The Anolis lizards on the Honduran island of Utila provide an ecological laboratory to 

understand the links between habitat structure, ecological niches, and abundance in changing 

environments. Anoles are a classic evolutionary radiation that show repeated adaptation to 

specific microhabitats (Losos, 2009), a model system for thermal ecology (Kearney et al., 

2009), and have diversified extensively on islands and the mainland (Algar and Losos, 2011). 

However, we still know little about what limits the abundance of these lizards (Losos, 2009), 

and are only beginning to understand how they respond to human disturbance (Winchell et al., 

2016).  

Within local ecological communities, anoles are thought to partition ecological space 

along three primary axes: structural microhabitat, thermal environment, and prey size 

(Schoener, 1974). Utila provides an opportunity to test the relative role of these different 

ecological axes in determining spatial variation in abundance across natural and anthropogenic 

habitats. It also allows us to look into the role of spatial availability of the thermal environment 

on the abundance of an endemic ectotherm species, across a series of habitat types and 

structure,  Utila hosts a patchwork of land covers, (e.g. hardwood forest, palm savannah, 

mangrove) and expanding agricultural and urban land uses (Brown et al., 2017b). Five anole 

species inhabit the island, including two endemics (Anolis bicaorum, Anolis utilensis) and a 

recent invader, Anolis sagrei ( Brown & Diotallevi, 2019; McCranie and Orellana, 2014). 

Previous observations suggest these anoles vary in habitat use but there has been no systematic 

study of their abundance-habitat relationships (Brown et al, 2017a). Given ongoing human land 

use expansion, the threat of climate change and A. sagrei’s recent establishment, mapping and 

understanding Utila’s endemic anole fauna is more urgent than ever. This needs conducting at 

a range of relevant scales – from the individual to the island landscape.  
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Of the five anole species found on Utila two are endemic (Anolis bicaorum and Anolis 

utilensis) and two are native to Central America (Anolis sericeus, Anolis allisoni). There is also 

the presence of an invasive anole,  Anolis sagrei, which is a prolific invasive alien species, 

introduced to the island in 2014 (McCranie and Orellana, 2014). Although studies have been 

conducted on the anoles of Utila (Gutsche et al., 2004; McCranie and Orellana, 2014; Brown 

et al., 2017a, b), no systematic review of distribution and abundance has been undertaken to 

date.  

For example, previously, Anolis utilensis was thought to be a mangrove specialist 

(Gutsche et al., 2004) and solely found in the mangrove areas of Utila at a maximum elevation 

of 8m. However, (Brown et al., 2017a) note that this species also occurs in the neotropical dry 

forest some 1.5km away from the nearest mangrove  with a maximum elevation of 74 metres 

above sea level, the highest elevation of the island, Pumpkin Hill. As A. utilensis has only been 

encountered circa 40 times, no concrete morphological studies have been undertaken, but due 

to its preference to being higher up in the canopy and not being of crown-giant size, it can be 

suggested that A. utilensis likely conforms to the ‘trunk-crown’ ecomorph. However, more data 

on its distribution, morphology and microhabitat use is needed to determine its ecomorph 

status.   

Anolis bicaorum, the focus species of this work, was first described by Köhler (1996). 

Males have an average snout-vent length (SVL) of approximately 64 mm SVL (McCranie & 

Köhler, 2015) and a bright orange-red dewlap. Despite initial reports (McCranie & Köhler, 

2015), females are smaller than males (average SVL= 62 mm) with a smaller dewlap that varies 

from cream/grey to red (White et al., 2019). Anolis bicaorum is thought to be a predominantly 

sit-and-wait predator that feeds primarily on arthropods (Brown et al. 2017b), and descends to 

the ground at times in pursuit of prey (personal observation). A. bicaorum is found 

predominantly in neotropical dry forest (Brown et al., 2017b) and its thermal ecology reflects 
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these relatively cool, thermally homogeneous environments (Logan et al., 2013). A. bicaorum 

is one of two anoles endemic to Utila. The other, Anolis utilensis, is the only potential 

congeneric competitor of A. bicaorum in forests. However, despite being found in similar 

habitats, A. utilensis is found at much lower abundances and perches substantially higher in the 

canopy than A. bicaorum (Brown et al., 2017b).  

According to Brown et al. (2017b) Anolis bicaorum has been observed using various 

habitat types, ranging from preferred old growth broad-leaf/palm forest to secondary forest, 

coastal vegetation, White Mangrove (Laguncularia racemosa), and in more disturbed areas 

such as gardens, roadsides, and vegetated agricultural fringes. Their highest population density 

appears to be in old neotropical dry hardwood/broad-leaf palm forest ( Brown, et al. 2017b), at 

a max elevation of 74m an increase in the previous 20m recorded by (McCranie and Orellana, 

2014). Although most anoles can be grouped into a specific ecomorph, A. bicaorum does not 

tend to conform to its ‘Trunk’ ecomorph designation, which may be due to the lack of natural 

anole competitors constraining its movement and behaviour, as A. utilensis and A. sericeus may 

be too small morphologically to act as competitors (Brown et al., 2017a). The lack of 

competition and habitat restrictions results in, A. bicaorum found to inhabit almost every 

detectable layer from the ground up to a higher canopy layer, with individuals observed perched 

and sleeping on palm fronds and branches at a height above 5 m. However, due to lack of 

studies carried out on Utila’s anoles, further evidence is required to draw conclusions that are 

more concrete. Other anoles on the island include native A. sericeus, which is found in open, 

grassy areas (McCranie & Orellana, 2014), the invasive species A. sagrei which is presently 

restricted to Utila Town (Brown & Diotallevi, 2019), and records of A. allisoni, also from Utila 

Town which likely reflects human introduction (Brown & Diotallevi, 2019).  
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Anolis sagrei, the Cuban brown anole, is a prolific invader (Edwards and Lailvaux, 

2012) which has managed to invade several countries away from its native range including 

Honduras, Guatemala, Costa Rica, the USA and Taiwan. In regards to Utila, it is a recent 

invader, first recorded in 2014 (McCranie and Orellana, 2014). It is believed to have been 

introduced via ships and/or vegetation import into the island. A. sagrei is very adaptable in 

urban environments (Kolbe et al., 2016), and is believed to only be present within the urban 

areas towards the south-eastern regions of the island. However, anecdotally, the abundance and 

distribution of this species has increased drastically since its introduction, with individuals 

being recorded towards the eastern coastal areas in 2018. Losos (2009) notes A. sagrei as a 

trunk-ground ecomorph; however its ability to adapt in urban environments and the supposed 

lack of competition from the native anoles in these areas may lead to A. sagrei populations 

utilising the more available space within the suitable land cover types. It is therefore important 

to consider the current distribution and habitat use of this species on Utila, to be able to predict 

its possible effect on the native island species.  

1.2.2.2 Conservation Threats to the Island of Utila   

Like so many other natural areas worldwide, one of the main conservation threats to 

the island of Utila is that of human habitat conversion. The whole of the island is privately 

owned by individuals, and its increasing popularity as a destination for both tourists and 

expatriates has led to the development of many plots of land. This expanding tourism industry 

along with housing developments has led to ongoing habitat fragmentation and forest habitat 

degradation on the island (personal observation). Forest cover loss on the island can be seen 

using the Hansen et al. (2013) global forest change dataset, where Forest Loss is defined as ‘a 

stand-replacement disturbance, or a change from a forest to non-forest state’ (Figure 1.4)  
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Initially, much of the development was concentrated along the south-east portions of 

the island. However, development of Pumpkin Hill Road, starting at the main airport road and 

leading to the north-east shore of the island, to accommodate larger vehicles, has increased the 

scale of the development in that locality. This is a significant conservation issue as much of the 

remaining hardwood forest is present around the area surrounding Pumpkin Hill (north-east 

corner of Utila) and the development of the road has already led to increased clearance of the 

forest (personal observation). This is also, where the highest density of both the endemic anoles 

(A.bicaourm and A. utilensis) are thought to be found (Brown et al., 2017a, b). It should be 

noted here that at present, much of this natural land cover (forest, mangrove etc.) clearance on 

Utila is for residential development. However, the current practice is to first clear the land 

(wholly or partially), and then to advertise the land for sale. In many cases, the land or house 

Figure 1.4: Forest cover change on Utila between 2000 and 2021, based on Hansen 

et al. (2013) 
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is not sold and then goes into a state of disrepair. This has resulted in a lot of degraded forest 

and cleared/ disturbed areas on the island.  

Along with the direct land conversion to presumably less favourable habitat for forest 

species, the increase in urbanised areas may lead to further spread of the invasive Anolis sagrei, 

which is comfortable in urban environments. At present, it is believed that the endemic anoles 

and the invasive A. sagrei are not within the same geographic range and therefore are not 

currently direct competitors. However as the island becomes more urban in its land cover, this 

may change resulting in direct competition between the invasive and endemic anoles. This is 

of particular concern as invasives tend to out-compete local species (Kolbe et al., 2016a; 

Winchell et al., 2016). In regards to agriculture, a growing island population has led to an 

increase in agricultural land, primarily in the form of cow pasture.  

Another problem, similar to the remainder of the world is the presence of non-native 

and domestic predators such as feral dogs and cats and a recently noted racoon (Procyon lotor) 

population which has been introduced to the northern shores of the island. Utila has no native 

large mammalian predators; the presence of such introduced predators therefore is a significant 

threat to the local and endemic wildlife populations.  

One of the major problems in regards to the anoles is that little is known about their 

distribution and what determines their abundance. Hence, conservation action planning and 

mitigating the effects of human habitat conversion for the anoles is difficult. Furthermore, as 

none of the endemic anole species of the island have been assessed by the IUCN, their 

conservation status remains unknown. However, Johnson et al. (2015) calculated the EVS 

(Environmental Vulnerability Score) of A. bicaorum as 17, placing it in the middle portion of 

the high vulnerability category. These combined conservation issues on the island of Utila is 

putting significant pressure on the island’s wildlife as a whole.  More research into the island 
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system is therefore urgently required in order to better understand the distribution of species 

and the favourable characteristics of habitats in order to better inform conservation action.  

1.2.3 Thermal Ecology and Climate Change  

Rising and more variable temperatures are a significant threat to biodiversity worldwide 

(Pereira et al., 2010; Thomas et al., 2004). In a warmer world, species’ futures will depend on 

their ability to maintain favourable body temperatures, and thus maintain ecological function 

and evolutionary fitness (Kearney et al., 2009; Vasseur et al., 2014). The threat of warming is 

particularly acute for ectotherms, whose body temperature (Tb) depends on external 

environmental conditions. Many ectotherms are already operating close to their thermal limits, 

leaving little safety margin to behaviourally buffer higher temperatures (Bakken et al., 2014; 

Deutsch et al., 2008; Sunday et al., 2014). As organisms’ thermal optima are surpassed, they 

will lose the ability to effectively obtain resources, avoid predation, withstand pathogens, and 

reproduce effectively, leading to population declines and, ultimately, extinction  (Sinervo et 

al., 2010). Evidence is now mounting that tropical ectotherms will be the hardest hit from 

warming, and studies have warned that tropical forest lizards, in particular, are in danger of 

extinction (Huey and Tewksbury, 2009; Logan et al., 2013). Moreover, increased temperatures 

may lead to increased competition with species moving between different land cover types to 

areas, which are more favourable. For example, (Kearney et al., 2009) suggested that open-

habitat lizards may invade the cooler forest habitats. One result of this ‘invasion hypothesis’ 

could be competitive exclusion of forest lizards, who are themselves already experiencing 

reduced performance due to warming alone (Logan et al., 2013). As ectotherms, anoles are 

dependent on the thermal conditions of their environment, as their body temperature and 

therefore metabolic function is dependent on environmental conditions. As a primarily tropical 

forest lizard, the endemic anoles of Utila are thought to have evolved in an environment that is 
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thermally homogeneous in both space and time and are therefore assumed to be ‘thermal 

specialists’ (De Frenne et al., 2019; Logan et al., 2013).    

However, the way in which we categorise the thermal landscape and suitability for 

different species is important when considering the potential impacts of climate and land use 

change (Clusella-Trullas et al., 2021; Sears and Angilletta, 2015; Sinclair et al., 2016). Current 

methods look at the suitability of the environment compared to that of thermal ranges derived 

from thermal performance curves (for example CTmax) and thermal safety margins of a species  

(Clusella-Trullas et al., 2021; Logan et al., 2013; Sinclair et al., 2016). Although a reasonable 

indicator, the use of these indices as a sole indicator of ectotherm response to climate change 

has been called into question, as the impact of such indices on a population can vary depending 

on intrinsic and extrinsic factors (Clusella-Trullas et al., 2021; Sinclair et al., 2016). The spatial 

structure of the thermally suitable habitat at scales relevant to the organism, has also been 

highlighted as an important factor to consider when considering overall landscape suitability 

(Sears and Angilletta, 2015),  due to its influence on behavioural thermoregulation. Therefore, 

in order to understand how the species of anoles found on Utila will fair in different climate 

scenarios we must first understand what thermal conditions are the most suitable to them and 

facilitate a healthier and more abundant population. Concerning available thermal performance 

and operative temperature data available for Utila’s anoles, a single study was conducted in the 

Bay Islands of Honduras by Logan et al., in 2013 which included Anolis bicaorum. This thesis 

looks to determine what thermal indices have the greatest influence on anole abundance at fine 

spatial scales and how the thermal environment, prey availability and habitat structure interact 

and determine abundance over a habitat gradient across 20 x 20m plots. This will then feed 

into predictions on thermal habitat quality on the island of Utila under land use and climate 

change scenarios.   
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Understanding and predicting the effects of climate warming on organisms requires not 

only an understanding of the relevant thermal and habitat requirements of the species, but also 

accurate models of microhabitat and microclimate conditions on scales experienced by 

individual organisms (Duffy et al., 2021; Suggitt et al., 2018). Global climate datasets and 

projections of future climate change from mechanistic models capture broad-scale climatic 

conditions, rather than at the scales experienced by individual organisms. Microclimate 

conditions can differ greatly from climate averages and the weather stations in which they are 

based (Maclean and Klinges, 2021).Fine-scale variation in environmental conditions may 

provide micro-refugia to allow organisms to buffer the effects of rising global temperatures 

(Kearney et al. 2013; Lenoir et al. 2016). When considering current biophysical model 

limitations, direct interaction between organisms and their environment usually occurs at very 

small scales (Bakken and Angilletta, 2014), therefore current climatic data such as WorldClim 

(1 km2 resolution) used within such models do not cover the scale experienced by individual 

organisms. Thus, models to predict microclimate heterogeneity through space and time are key 

to understanding how organisms currently function and the challenges they will face in a 

warmer and more thermally variable world. Remote sensing methods have been highlighted as 

a new tool for deriving inputs for such microclimate models that are at a spatial resolution 

relevant to what organisms experience (Duffy et al., 2021; Zellweger et al., 2019), which will 

lead to more accurate measures of microclimate. Which will in turn allow for better and more 

relevant predictions of the impact of climate and land use change on species distributions and 

persistence.  

1.2.4 Remote Sensing  

Emerging remote sensing technologies have the potential to transform our 

understanding of the link between species’ abundances, habitat use, and environmental change 

(Boyd and Foody, 2011; Cavender-Bares et al., 2022; He et al., 2015). A variety of remote 
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sensing platforms have been highlighted as a potential source for microclimate model data 

(Duffy et al., 2021; Zellweger et al., 2019), which will allow microclimate to be modelled at 

scales more relevant to individual organisms and populations. Rapidly developing sensors and 

machine learning methods are allowing detailed environmental variables to be captured at 

unprecedented scales (Cavender-Bares et al., 2022).  

Multispectral satellite sensors however have been a long running and essential resource 

within the field of remote sensing and land cover/habitat classification for over 50 years, ever 

since the launch of the LANDSAT missions in the 1970s. Technological advances within the 

last few years has seen the launch of higher resolution multispectral satellite imagery such as 

Sentinel-2 (13 band, 10m spatial resolution) launched in 2015 and  WorldView-2 (8 band, 

30cm spatial resolution) launched in 2009. These satellites have the capability of collecting 

multispectral data at a much finer spatial resolution, than that seen in the most recent 

LANDSAT missions (30m multispectral resolution). These satellite sensors provide valuable 

information of land cover spectral reflectance at high spatial and spectral resolutions, providing 

us with a valuable data resource. 

This work utilises satellite sensors on two fronts, the first being to determine the land 

cover area of each habitat type of Utila, as no comprehensive land cover map had been 

undertaken for the island previously. One of the major advantages of satellite based remote 

sensing methods in Land Cover classification is that once a model with sufficient training data 

has been created, large areas can be classified and monitored with a limited amount of effort 

and resources (Rocchini et al., 2016). This means that large geographical areas at a time can be 

mapped with limited financial and time costs in comparison to physical surveys in the field. 

This is increasingly important in conservation due to the rapid change in land use as a result of 

anthropogenic and climatic change, especially in areas such as the tropics where field surveys 

are difficult and such practices as illegal logging are difficult to monitor.   
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Although satellite imagery does allow large areas to be monitored at a relatively fine 

scale, they do not tend to capture data at a fine enough resolution to represent what is 

experienced by individual organisms, especially species such as anoles who occupy a very 

small geographical home range and are extremely territorial. The coarser spatial resolution of 

such satellites as LANDSAT also encounters problems when the geographic area you are 

surveying is relatively small, for example the island of Utila, which has a total area of only 

41km2. This is where the recent development of unoccupied aerial vehicles (UAVs) with their 

high-resolution (sub 5cm pixel) and higher resolution commercial satellite data (WorldView-

2) data has become imperative to the use of remote sensing methods to represent spatial scales 

that are more relevant to that experienced at individual organism levels.  

Although a relevantly recent development, unoccupied aerial vehicles (UAVs) have 

quickly become established as a useful tool in remote sensing methods for a variety of 

ecological research purposes. This includes conservation (Koh and Wich, 2012), wildlife 

monitoring (Christiansen et al., 2016; Schiffman, 2014), vegetation mapping (Natesan et al., 

2017; Nevalainen et al., n.d.; Waite et al., 2019), species level classification (Baena et al., 

2017), wildlife classification and tracking (Chrétien et al., 2015; Stark et al., 2018) and 

agricultural expansion (Duffy et al., 2018). As UAV systems that produce high-resolution data 

can be relatively low cost, they can be used in long-term ecological monitoring. In addition, 

with techniques such as Structure from Motion (SfM) photogrammetry they can even be used 

as a reasonable alternative to Light Detection and Ranging (LiDAR) systems. This SfM 

approach, with a consumer-grade on board system camera, is becoming popular because it is 

cheaper and faster than traditional photogrammetric methods and UAV-light detecting and 

ranging systems UAV-LiDAR (Birdal et al., 2017; Kašpar et al., 2021).   

The use of multispectral cameras deployed on unoccupied aerial vehicles (UAVs) in 

land cover and vegetation mapping applications continues to improve and receive increasing 
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recognition and adoption by resource management and forest survey practitioners (Ahmed et 

al., 2017) as well as in ecological and conservation monitoring. UAV-based flight and sensor 

data acquisition as well as in post-processing large numbers of individual aerial images into 

seamless orthomosaics have helped to introduce UAV systems as potentially convenient and 

effective aerial platforms for land cover and forest stand mapping, and vegetation species 

determination (Ahmed et al., 2017; Baena et al., 2017). UAVs offer an affordable alternative 

to satellites in obtaining both colour and near infrared imagery to meet the specific 

requirements of spatial and temporal resolution of a monitoring system. Combining this with 

their capacity to produce three-dimensional models of the environment provides an invaluable 

tool for species level monitoring (Baena et al., 2017)..  

Currently available data for monitoring habitat conversion and climatic change is 

predominantly at large scales that fails to capture environmental variation at scales relevant to 

individual organisms. New technologies in remote sensing allow us to overcome such obstacles 

by measuring habitat variation at a fine scale. This thesis tests the mechanisms linking canopy 

structure and species’ abundance by using high-resolution UAV aerial imagery (sub 1 cm 

spatial resolution) to map canopy structure and variation across a series of plots and link this 

with air temperature to predict sub-canopy lizard operative temperatures. Coupling this with 

information on what drives endemic lizard abundance will help determine these species’ 

vulnerability to the rapidly changing landscape of their small island, which therefore 

contributes to the conservation of these endemic species. Along with this, the techniques 

developed and used during the project will provide new methods of incorporating remote 

sensing into species distribution modelling at a more appropriate scale relevant to such species 

as anoles.    
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1.3 Research Questions and Aims   

There are two major aims to this work, the first is to further our understanding of what 

drives variation in species’ abundance at fine spatial scales, particularly in the context of rapid 

land cover change and human habitat conversion. The second is to use high spatial resolution 

remote sensing platforms to predict sub canopy ectotherm operative temperatures, to map the 

thermally available environment at both ecologically and spatially relevant scales. I aim to 

improve our ability to predict species’ ecological responses to habitat conversion and identify 

key ecological interactions between habitat structure, the thermal environment, prey 

availability and species’ abundance. Lastly, I aim to improve public understanding and 

appreciation of Utila’s little known Anolis fauna, promote its conservation and demonstrate 

how emerging technologies can help us understand and preserve the natural world. 

Objectives:  

1. Test how canopy structure, prey availability and thermal environment interact to 

determine lizard abundance and microhabitat use and how this is affected by land 

cover change and habitat conversion.  

2. Test the availability of UAVs and WorldView-2 satellite data to determine sub-

canopy lizard operative temperature. 

3. Map operative temperature, a representative of thermal habitat for Anolis bicaorum at 

a plot (UAV) and landscape (WorldView-2) level spatial scales.  

4. Determine the impact of habitat conversion and climate change on available thermal 

habitat for A. bicaorum across Utila using WorldView-2 data. 
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1.4 Thesis Chapter Structure  

Table 1.1 below outlines the chapters of this thesis.  

Table 1.1: Chapter numbers along with short chapter descriptions of the thesis 

Chapter No.  Description   

Chapter 1:  

 

Introduction and background to the thesis. 

 

Chapter 2: Methods chapter detailing all primary data collection 

methods (field and desk based). Further data treatment 

and analyses are outlined in the methods section of each 

respective research chapter. 

 

Chapter 3:  Research Chapter Titled: Disentangling controls on 

animal abundance. 

 (Published - Higgins, E. A., Boyd, D. S., Brown, T. W., 

Owen, S. C., & Algar, A. C. (2021). Disentangling 

controls on animal abundance: Prey availability, thermal 

habitat, and microhabitat structure. Ecology and 

Evolution, 11, 11414– 11424).  

 

Chapter 4:  Research Chapter Titled: Unoccupied Aerial Vehicles 

(UAVs) as a Tool to Map Operative Temperature in 

Tropical Environments 

 

Chapter 5: 

 

Research Chapter Titled: Quantifying available thermal 

habitat for Anolis bicaorum under anthropogenic land use 

and climate change using WorldView-2 imagery  

 

Chapter 6: Discussion and conclusions of the thesis 
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Chapter 2 : Materials and Methods  

2.1 Chapter Overview 

This chapter outlines all field data collection and imagery processing, along with 

preliminary results that aided in methods planning and data collection. Any relevant further 

processing and statistical analyses of the data outlined here, relevant to the specific research 

question, are outlined in the subsequent research chapters.  

2.1.1 Research Permits and Ethics Statement  

All work within this thesis was conducted in collaboration with Kanahau Utila Research 

and Conservation Facility (KURF), under appropriate research permits granted by Instituto 

Nacional De Conservacion y Desarrollo Forestal Areas Protegidas y Vida Silvestre (ICF), 

permit number DE-MP-054-2017 and DE-MP-006-2020. All methods and procedures 

underwent rigorous ethical review and were approved by the University of Nottingham's 

Animal Welfare & Ethical Review Body (AWERB; approval reference no. 014).  

2.2 Research Study Area and Species  

Research was conducted on the island of Utila, Honduras (16.0950° N, 86.9274° W). 

The primary study species was the endemic Bica anole (Anolis bicaorum). For more detail on 

the study system and species, please see Chapter 1. Field data collection was conducted from 

April to June 2019.  

2.2.1 Natural History  

Whilst living and undergoing work on Utila between the years 2017 to 2019 (4 months in 

2017, and 10 weeks each in 2018 and 2019), several personal observations of the Utila’s natural 

history and the anole species present were noted, which are outlined in this section. As little is 

known on the species of interest (Anolis bicaorum), these personal observations, along with 
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literature on the species and general anole works, were used to help design data collection 

methods.  

First, in regards to distribution on the island, personal observations noted that A. bicaorum 

is found predominantly in Neotropical dry forest, as first stated in Brown, et al. (2017b). 

Populations of A. bicaorum were found in all Neotropical dry forest areas visited, at different 

population densities, hence proposing the question of what determines abundance. A. bicaorum 

was found in forests across the island, which included the eastern portion of the island, and 

along the south, west and northern coasts. A. bicaorum were found across all elevation 

gradients, from sea level to the top of Pumpkin Hill (74 metres above sea level). No populations 

of A. bicaorum have been found to date in the central portion of the island, which is 

predominantly Neotropical savannah. Within Utila town, A. bicaorum was only in isolated 

fragments of forest, and was not found to be utilising gardens or more urbanised land cover 

types. Different land cover and habitat types on the island have been continuously surveyed as 

part of larger research and monitoring work by Kanahau (KURF). Table 2.1 below outlines 

information on the anole species of Utila and the habitats in which they have been found, based 

on these surveys by KURF and personal observations. Species presence (present/ not present) 

is stated here based solely on personal observations, therefore should be interpreted with the 

caveat that further comprehensive survey of the island would need to be undertaken to support 

these observations.  
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Table 2.1: Detail on land cover use of Utila’s anoles from personal observations and KURF surveys. 

Land Cover Land Cover Description Type of Observation 
Anolis 

 bicaorum 

Anolis 

sagrei 

Anolis  

sericeus 

Anolis  

utilensis 

Anolis  

allisoni 

Agriculture Cow pasture. Not surveyed Unknown Unknown Unknown Unknown Unknown 

Coastal 
Sandy beaches with volcanic rock 

exposures. 

Observation only during 

beach cleans and turtle 

nesting patrols. 

Not present Present Unknown Unknown Unknown 

Coastal Scrub 

Coastal plants such as Sea Grape 

(Coccoloba uvifera) found 

frequently in large patches along 

the coast. 

Observed en-route to 

mangrove surveys. 

Surveyed during plot 

surveys.  

Not present  Unknown  Present  Not present  Unknown  

Coastal  Forest 

Coastal forest, with little to no 

understory, predominantly 

consisting of almond trees 

(Terminalia catappa). 

Observed daily, surveyed 

during plot surveys. 
Present  Present  Unknown  Unknown Unknown  

Rhizophora Mangrove 
Areas of mangrove dominated by  

Rhizophora spp. 

Surveyed extensively for 

Ctenosaura bakeri 

surveys.  

Not present  Not present  Unknown  Not present  Unknown 

Black Mangrove 
Areas of mangrove dominated by 

Avicennia germinans. 

Surveyed extensively for 

C. bakeri surveys. 
Not present Present  Unknown Not present Not present 

White Mangrove 

White mangrove (Laguncularia 

racemose) trees that grow 

sparsely around the coast. 

Not Surveyed.  Unknown Unknown Unknown Unknown Unknown 

Neotropical Forest 
Old growth hardwood and palm 

forest. 

Observed daily and 

surveyed for plots.  
Present  Not present  Present  Present  Unknown  

Neotropical Savannah Neotropical savannah.  
Observed on several 

occasions, not surveyed.  
Unknown Unknown Unknown Unknown Unknown 

Tique Palm Forest Palm forest, bordering savannah.  Not surveyed Unknown Unknown Unknown Unknown Unknown 

Urban Buildings, tarmac.  Observed and surveyed. Not present  Present  Unknown Unknown Unknown 

Urban gardens  Ornamental gardens in town.  Observed and surveyed. Not present  Present  Present  Unknown Present  
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 In regards to microhabitat use of A. bicaorum, personal observations aligned with what 

is stated in Brown et al. (2017b). A. bicaorum individuals were found to perch primarily on 

tree trunks, but also utilised fallen logs, wooden fence posts and in one case a concrete 

outhouse. A. bicaorum were often observed sleeping on palm fronds or thin vines, sticking to 

the very tips of them to sleep, likely as a way to escape predators by sensing vibrations and 

jumping from the end (personal observation). Individuals were almost exclusively faithful to 

one particular perch and did not move horizontally in space often, choosing to stay on their 

perch and only moving vertically or around the trunk of the tree. From personal observations, 

no anole was seen to move out of the plot boundaries, sticking within a 20 x 20 m horizontal 

area, and mostly sticking to their own perch. 

A. bicaorum are territorial and males especially would only tolerate females perching on 

the same perch as them. Territory size is unknown at present, however individuals would fight 

others who came within a metre of their perch, with the exception of males allowing females 

nearby. Males were also seen using their dewlaps as aggression displays to other males, as 

warnings to ourselves (as predators), and to females during courtship.  

A.bicaorum were observed eating exclusively arthropods, although no diet analysis 

(stomach pumping, genetic faecal analysis) has been done. They would often eat whatever 

walked passed them on their perch or they would jump down to the forest floor to catch 

something in the leaf litter.  

In regards to the invasive brown anole (Anolis sagrei), on Utila, a high abundance of the 

species was noted in urban areas, particularly in Utila town. They were primarily observed 

running along the ground in great numbers and occasionally using walls, trees and PVC piping 

as perches. They did not seem to conform to their trunk-ground ecomorph designation however, 

and were utilising all vertical levels of canopy and perches, preferring the ground overall. One 
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important note is that one anole seen in the forest, near Pumpkin Hill was identified as a 

potential A. sagrei. This was not confirmed as the individual escaped capture, and could not be 

concretely identified. This is important to note, as currently the species is restricted to the 

regions surrounding Utila town. However, urban expansion and the development of Pumpkin 

Hill Road means that more vehicles are moving back and forth the town which could lead to 

A. sagrei stowaways reaching Pumpkin Hill far  more quickly than would happen via natural 

colonisation of the species.  

2.3 Survey Plots 

Field data collection was carried out across a series of sixteen 20 x 20m plots, which 

were set up across a habitat gradient, which covered several of the land cover classes of Utila. 

Plot level data collection was most suitable in order to measure habitat characteristics and 

animal abundance at a fine spatial scale. Transects were not considered a reasonable form of 

collection, as transects would likely cover a degree of habitat variation/ land cover change 

along their duration, as well as having a greater proportion of edge than plot level measures. 

As of late 2017 the land cover of Utila, had not been conclusively mapped. Therefore, a land 

cover map of Utila was produced prior to field data collection to determine the extent of the 

different land cover classes on Utila, which would aid in both plot selection and monitoring of 

land cover change on the island. Due to the inaccessibility of parts of the island, satellite remote 

sensing methods were used to create the map, which are outlined below. 
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2.3.1 Land Cover Map  

Sentinel-2 Satellite data was used due to its suitably fine spatial resolution (bands at 

10m pixel resolution) and its high spectral resolution (13 spectral bands). A cloud free Sentinel-

2 Satellite image from July 2016 was used and all 13 image bands were combined into an image 

stack in ERDAS Imagine 2018 using the layer stack tool, and the stack was resampled to 10m 

using the resample tool in European Space Agency Sentinel Application Platform (SNAP). The 

resampled image was then subset to the island of Utila using ERDAS Imagine, an example of 

a RGB composite image from the processed Senitnel-2 satellite imagery can be seen in Figure 

2.1.  

 

 

This pre-processed Sentinel-2 imagery was classified using a polynomial Support 

Vector Machine (SVM) as this classification method tends to result in higher classification 

accuracies than of the standard Maximum Likelihood Classification methods (Ustuner et al., 

Figure 2.1: Sentinel-2 RGB composite Image of Utila, Honduras - July 2016 
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2015). A total of 443 ground GPS points, which noted the land cover, based on personal 

observation were collected using a Garmin e-trex handheld GPS unit in the field 2017, during 

a pre-PhD field season on the Utila. These were randomly subsampled using the Subset 

Features tool in ESRI ArcMap 10.4 software, where 50% (222 points) were used to train the 

SVM model, and the remainder used for independent test set model validation. The ArcMap 

generated training points were converted to regions of interest (ROIs) in ENVI. To ensure there 

was minimum of 100 training pixels per land cover class, additional training data ROIs were 

created manually in ENVI based on ground validated points, using pre-existing knowledge of 

the island (from the pre PhD 2017 field season) and Google Earth imagery, all 13 bands were 

included in the classification process. GPS training points were limited in spatial distribution 

due to access constraints during the 2017 field season, future work and mapping of the island 

would include more spatially distributed training classes to avoid bias in the classification 

model. A map of the GPS training points can be seen in Appendix 1. Eleven land cover classes 

were included in the classification, that were based on field observations of Kanahau Utila 

Research and Conservation Facility and previous ground validated GPS data. These classes, 

along with their descriptions can be seen in Table 2.2.  These classes were chosen to highlight 

different land cover types of Utila, including areas of development and the potential extent of 

different natural habitats, as a land cover map of the island did not exist. This would aid the 

plot selection for this study but would also to feed into conservation objectives of Kanahau 

Utila (KURCF). Certain land cover classes were kept separate, for example, costal vegetation 
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was separated from mangrove to inform potential habitat distribution of the Utila spiny-tailed 

iguana (Ctenosaura bakeri), another endemic and critically endangered species (Maryon et al., 

2021), which is found almost exclusively in mangrove (Gutsche, 2005).  

Table 2.2: Land Cover Class Descriptions 

Land Cover Class Description 

Agriculture 
Agricultural areas, which includes cropland, pasture and 

plantations with sparse tree cover. 

Coastal Coastal areas, predominantly sandy beaches. 

Coastal Vegetation 
Coastal plants such as Sea Grape (Coccoloba uvifera) found 

frequently in large patches along the coast. 

Dead-mangrove Areas of dead and dried out mangrove. 

Hard-surfaces Tarmacked areas. 

Hardwood Forest Neotropical dry forest. 

Coastal Volcanic Rock Dark coastal volcanic rock, found along areas of the coast. 

Neotropical Savannah Neotropical savannah. 

Tique Palm Areas of mixed palm forest. 

Urban Urban areas, which includes tarmacked areas. 

Water Water. 

 

A map of the final SVM classified land covers for Utila can be seen in Figure 2.2.  
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Figure 2.2: SVM Land Cover Classification Map of Utila, from Sentinel-2 Satellite Imagery 

(Date: July 2016) 

 

To test the accuracy of the land cover classification the remainder of the ground GPS 

points (222 points) were used to carry out a confusion matrix assessment. GPS shapefiles were 

again converted to ROIs and then used in the confusion matrix accuracy assessment carried out 

in ENVI software. All land cover types were included in the accuracy assessment. Overall 

accuracy was calculated at 87.86%, which was determined to be sufficient for selecting general 

regions for plot locations, as it was only to highlight regions where certain land cover classes 

could be present. This land cover map was then used to inform plot selection on the ground in 

Utila.   

Using the land cover classification map produced from Sentinel-2 Data, sixteen 20 x 20 

metre survey plots were set up across a series of land cover types, which included forest, 

mangrove and urban plots. Due to travel and accessibility constraints, reaching the western 
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portion of the island was not feasible for this study; all plots were therefore located towards the 

eastern portion of the island. However, the majority of the forest habitats where A. bicaorum 

is typically found is located towards the eastern portion of the island (Figure 2.2, Kanahau 

personal observations). Plots were set up within areas where accessibility and land access 

permissions were available, and were a minimum of 15 metres into the surveyed land cover 

type to minimise the impact of edge effects. Plots varied in their level of human disturbance 

(personal observation), including relatively intact forest, to heavily disturbed, sparsely treed 

areas, in Utila Town. A full description of plots can be seen in Appendix 2, a map showing the 

locations of each plot can be seen in Figure 2.3.  

 



34 
 

Figure 2.3: Plot locations, number refers to Plot ID number 
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Figure 2.4: An adult female A. bicaorum, marked on four separate sampling occasions 

 2.4 Anole Abundance Surveys  

Abundance surveys for A. bicaorum were carried out using standard mark-recapture 

methods, based on Heckel & Roughgarden (1979). In each plot, the same observers actively 

searched for anoles for 60 minutes on four occasions (09:00, 13:00, 17:00 and 09:00), over a 

twenty-five hour period. Each anole was marked with a visit-specific paint mark using an 

Indico Duz-all spray paint gun and non-toxic water-based paint (Figure 2.4), following 

(Frishkoff, et al., 2019, Heckel & Roughgarden, 1979). Plots were surveyed over a period of 

10 weeks between April and June 2019. We avoided days with rain or high winds, which may 

influence detectability and recorded air temperature at 1.5m height using a shaded DS1921G-

F5 iButton at each plot. 

 

 

 

 

 

  

 

 

 

2.5 Thermal Environment Surveys  

To measure operative temperature in different microhabitats at each plot, and therefore 

map out the thermal environment available for A. bicaorum. Morphologically accurate 3D-

printed replicas of an Anolis lizard with temperature DS1921G-F5 iButton data loggers inserted 
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were set up indifferent microhabitats within each plot. These replicas were created using the 

methods below.  

An EinScan-S (Shining 3D) 3D Desktop Scanner was used to scan a male Anolis sagrei 

specimen provided by the Natural History Museum, London. Note that specimens of the 

primary focus species (A. bicaorum) were not present in the collection. The EinScan-S is a 

white light 3D scanner that uses white light interferometry to create high-resolution point 

clouds of a 3D surface. The Anolis specimen used for the scan (series no. 1938.10.4.8-79) was 

complete and in good condition, the collection location of the specimen was noted as Swan 

Island, Honduras (coordinates N17o 24' W83o 54') with a collection date of 14th November 

1937. The specimen was placed on the turntable where the EinScan-S used white light scanning 

to generate a 3D point cloud of the specimen, turntable rotation steps was set at 30 to increase 

the level of detail captured. The morphometric measurements of the specimen used can be seen 

in Table 2.3; all measurements refer to the right side of the anole.  

Table 2.3: Morphometric Measurements of Anolis sagrei Museum Specimen 

Feature Measurement (mm) 

Snout to Right Femur Insertion 58.35 

Feature Measurement (mm) 

Humerus Length 12.29 

Ulna Length 11.28 

Finger IV Length 9.81 

Femur Length  16.41 

Tibia Length  18.6 

Metatarsus length 10.72 

Toe IV Length 12.43 

 

The snout to right femur insertion (Table 2.2) was used as a proxy for snout to vent 

length (SVL), as the vent was not visibly clear due to the nature of the specimen (preserved 

from 1938). It is noted that the male A. sagrei individual used for the model had a smaller SVL 

than the average male A. bicaorum (average 64mm). This may have influenced model 
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heating/cooling due to model size and surface area differences. However, the SVL of anole 

populations and individuals can vary and the difference in SVL is less than 10mm. In regards 

to their anatomy, A .bicaorum and A. sagrei are similar and they both conform to the same 

trunk-ground ecomorph designation (Brown et al. 2017; Losos, 2009), therefore 3D models 

printed at this resolution (Figure 2.5) would be similar for both species. The above coupled 

with the fact that models were calibrated against a live A. bicaorum, indicate that the 

temperature error from the models from using an A. sagrei specimen would be no more than 

that seen when comparing differences in individuals from across a population of A. bicaorum.   

The three dimensional stereolithography (STL) point cloud file was imported into 

TinkerCAD editing software where a well was inserted to hold the iButtons. Note that due to 

limitations with the scanner not picking up areas of the feet and tail (due to them being smaller 

than 1mm), parts of the tail and the feet had to be manually reconstructed within the software. 

Replicas were prepared for printing in FlashPrint 3D slicing software and printed hollow in 

PLA plastic using a Flashforge Creator Pro 3D printer.  
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Replicas were painted to match the solar-absorptivity of a live Anolis sagrei. To obtain 

the colour in the absence of live lizards, the mean RGB pixel value was calculated from a 

sample of 1000 random clips of 50 A. sagrei images. These RGB values were then compared 

to 27 different paint samples using an online colour-sampling tool and the most suitable paint 

chosen. Replicas were painted based on A. sagrei as neither live animals nor sample images 

for A. bicaorum were available in the UK prior to commencing fieldwork and suitable paint 

was not available on the island of Utila. However, models were thermally calibrated against A. 

bicaorum. The model colour was compared to a live A. sagrei following (Munoz et al., 2014 

& Muñoz and Losos, 2017) by measuring reflectivity of the head, body, and tail using an Ocean 

Optics USB 2000 spectrometer. Reflectivity values were recorded as percent reflectance 

relative to a white standard using an Ocean Optics R400 ultraviolet visible (UV-VIS) 

reflectance probe in natural sunlight light conditions under the forest canopy. No additional 

light source was used, only natural daylight as would be experienced by the lizard. Results can 

be seen in Figure 2.6.   

a 

b 

Figure 2.5: a) Replica preparation in TinkerCAD Software, b) 3D Replica Prior to 

Painting 
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Figure 2.6: Reflectivity values as a percent reflectance relative to a white standard for the 

3D lizard replicas and the live A. sagrei. Where; a) 3D replica, b) A. sagrei head,              

c) A. sagrei torso (dorsal measurement) and d) A. sagrei tail.  

(a) 

(b) 

(c) 

(d) 
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Reflectance measures indicated a relatively good colour match, however this varied 

depending on what part of the anole was measured. Where the replica was sometimes lighter 

or darker than the animal. The anoles themselves, both A. sagrei and A. bicaorum shift colour 

from dark to light depending on surrounding conditions, this was personally observed in the 

field and during the colour calibration measures. Live animals can also behaviorally 

thermoregulate, by such means as extending their dewlap and opening their mouths, as was 

noted in the A. sagrei during taking these measurements. The slight difference in replica colour, 

for example being slightly darker or lighter than the animal, may have an impact in replica 

warming and cooling due to reflectance of solar radiation. However, as animals shift their 

colour depending on the ambient conditions and behaviorally thermoregulate, such replicas can 

only be designed to be a best fit for all individuals in a population. Therefore, further model 

calibration took place in terms of thermal calibration against a live A. bicaorum.  

Thermal replicas were calibrated against a live Anolis bicaorum following Muñoz et al. 

(2014). A thermocouple attached to an Omega /HH806AU Multilogger data logger was 

inserted into a live lizard (A. bicaorum) and a 3D model simultaneously; both were then 

exposed to different environmental conditions.   Both the lizard and the model were first placed 

in a cool place (icebox) until their temperatures reached around 20oC (and model and animal 

were the same temperature). The lizard and model were then moved into the sun where their 

temperatures were logged for approximately 15 minutes at 15-second intervals, or until the 

animal’s temperature reached 32oC.  Model and lizard were then moved back into the original 

cool place (icebox) and their temperatures taken for a further 15 minutes. As models reached 

higher temperatures than the live animal, which could skew estimates of time spent within the 

preferred temperature range (Figure 2.7), a transfer function was generated to convert 3D 

model operative temperature (Te) to lizard (Te).  
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Change in lizard Tb (ΔTb ) per second was modelled as function of the change in 3D 

model Te (ΔTe) per second using linear regression through the origin (Figure 2.8), which had 

R2=0.74, and was statistically significant (F=271.9, df=1,94, P < 1×10-15).  I tested for 

curvilinearity using a quadratic regression, but the quadratic term was not significant (P = 0.92, 

R2=0.74).  The linear regression produced the following equation (slope ± s.e.): 

𝛥𝑇𝑏 =  0.41 ± 0.02 ×  𝛥𝑇𝑒 - Equation 1 

Equation 1 was used to model how lizard Tb would change in each time step, assuming 

that Tb and Te were equal at 6am each day, which is realistic given the lack of direct solar 

radiation at this time. Comparing transformed Te values (using Equation 1) to the anole Tb 

during the calibration experiment, I found that using equation 1 over-corrected Te (Figure 2.7). 

Thus, the uncalibrated Te measures and over-corrected Te values represent an envelope in 

which the true Te occurs. I thus present analyses using the average of the uncalibrated and over-

corrected Te values in the main text (calibrated Te).  
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Figure 2.8:  Change in lizard Tb (ΔTb ) per second as function of the change in 3D model Te 

(ΔTe) per second    
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Figure 2.7: Tb of an adult male Anolis bicaorum (animal), uncalibrated, calibrated and 

over-corrected Te over time during the calibration experiment. Hollow points on lines 

indicate data points.  
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2.5.1 Plot Operative Temperature  

To measure the operative temperature (Te) of lizards within different microhabitats in 

each survey plot. Twenty morphologically accurate 3D replicas, calibrated against a live 

lizard's body temperature and fitted with DS1921G-F5 iButtons, were set up in each plot for 

three days.  iButtons were programmed to record temperatures at 1 hour intervals between the 

hours of  06:00 and 18:00, when anoles were active, giving a total sample period of 36 hours 

per plot. Replica position, substrate (trunk vs. ground), height (0–250 cm in 15-cm increments) 

and compass orientation (0–360° in 45° increments) were randomly chosen using a random 

number generator. Due to constraints on the number of iButtons and therefore Anolis replicas 

available, models were not always set out at the same time as lizard abundance surveys were 

undertaken. However, this is unlikely to have influenced results, as the mean air temperature 

recorded during lizard surveys was highly correlated with the mean air temperature of the dates 

models were in situ (r =0.85,  P <0.001, Figure 2.9).   
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Figure 2.9: Comparison of mean air temperature recorded over all lizard surveys with the 

mean air temperature of the dates models were in-situ for the same times as lizard surveys 

(09:00, 13:00 and 17:00) across the 13 survey plots 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: 3D Replicas set up on different substrates and at different orientations within 

Hardwood Forest (left) and Mangrove (right).  

 

Not all lizard 3D replicas were set up with the same aspect (vertical/ horizontal), as 

seen between in the images of Figure 2.10. This can influence the heating of the replica, for 
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example how much of the replica surface area is exposed to solar radiation throughout the day. 

However, this was to mimic some A. bicaorum individuals that were seen to perch horizontally 

(personal observation). The number of replicas set up horizontally was kept consistent across 

all plots, whilst positioning in the plot still being random. Four replicas in each plot were set 

up with a horizontal aspect; the remaining 16 in each plot were set up vertically to mimic the 

majority of the population who orientated themselves as such.  The location of all tree trunks, 

palm stems and fence posts within each of the survey plots were recorded using a Spectra Pro 

Mark 120 differential GPS (DGPS) unit. Locations were imported into ArcMap 10.4.1 as a 

point shapefile and points of the locations with 3D anole replicas present were extracted to a 

new file using the Extract ArcMap function. Mean horizontal recording error of the DGPS 

measurements was calculated ± 0.86cm.  

2.5.2 Thermal Preference  

In order to determine the thermal preference (Tpref) range of A. bicaorum, thermal 

preference experiments were conducted on eight males and eight females of A. bicaorum, taken 

from different forest environments. Following Battles and Kolbe (2019), each individual was 

placed at the centre of a thermal gradient (150cm x 15cm x 25cm), heated by a heat lamp at 

one end and cooled by ice packs at the other, to obtain a gradient from approximately 10°C to 

45°C. A thermocouple was inserted into the cloaca and secured with removable adhesive tape 

to the base of the tail. Animals were permitted to move freely within the gradient and select 

their preferred temperature. After a 10-minute adjustment period, internal temperatures were 

logged every 10 seconds by a data-logger attached to the thermocouple for a total of 60 minutes 

without disturbance by observers. Thermal preference range (Tpref) was calculated by finding 

the central 50% of body temperatures of each animal and averaging the 25th and 75th 

temperature quantiles across individuals. One individual, an adult male, was excluded from 

subsequent calculations because it behaved unusually by not moving from the cold end of the 
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gradient for the entire trial, despite a substantial drop in body temperature well below ambient. 

This individual was likely stressed, causing this unusual behaviour and was quickly removed 

from the experiment. It was placed in a cotton bag in a quiet area where its body temperature 

could warm back up. When the individual was warm and active it was quickly put back in the 

exact location it was found. The duration of the thermal gradient experiments was shorter than 

is common in the literature (e.g. Battles and Kolbe 2018) as a consistent temperature gradient 

could not be maintained for longer in field lab conditions and thus must be interpreted as 

indicative, but not definitive, measures of Tpref. I examined whether Tpref estimates were 

affected by sampling interval by re-computing the Tpref range using 1 minute and 5-minute 

sampling intervals. Measures of the mean Tpref range were consistent across different sampling 

intervals (Table 2.4).  

Table 2.4: Tpref range of A. bicaorum measured at different sampling intervals of 10 seconds, 

1 minute and 5 minutes. 

Measurement Interval 
Lower Tpref Range 

(± S.E) 

 

Upper Tpref Range 

(± S.E) 

10 Seconds 25.4 ± 1.56°C   28.0 ± 1.44°C 

1 Minute 25.4 ± 1.53°C   28.0 ± 1.35°C 

        5 Minutes      25.5 ± 1.29°C  28.0 ± 1.27°C 

 

2.5.3 Thermal Habitat Quality  

Thermal habitat quality of each plot was calculated using two indices. The first was the 

percent of model hours that operative temperatures were within the Tpref range over the 36-hour 

study period for each plot. The second was the total number of degrees (°C) that the models 

deviated from the Tpref range across all models throughout the survey period for each plot. 

Unlike the former, the latter includes information on the extent to which temperatures deviated 

both above and below the Tpref range. In A. bicaorum’s sister species, A. lemurinus, 
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temperatures above preferred temperature range were found to have a greater impact on lizard 

performance than temperatures below the range (Logan et al., 2015). Therefore, along with the 

total deviation, the deviation above Tpref and the deviation below Tpref were calculated 

separately.  

2.6 Structural Habitat Suitability  

Perch availability, a measure of structural microhabitat quality, was calculated by 

counting the number of tree trunks and palm stems within each plot. Tree trunks and palm 

stems were focused on as A. bicaorum was observed almost exclusively on trunks and palm 

stems during microhabitat surveys, rather than on higher branches or on the ground. Where 

plots included fence posts, these were included in the measure of perch number. One plot had 

a small outbuilding, which was not included in the measure of perch availability. As an 

alternative measurement of structural habitat availability plot basal area, a measure of stand 

density was also calculated, by measuring each stem's diameter (including fence posts) at breast 

height (DBH) and using Equation 2, across all tree trunks, palm stems and fence posts in the 

plot.   

Basal Area = ∑ π (DBH/2)2  
    -  Equation 2 

2.7 Prey Availability 

Prey availability was measured using arthropod biomass (g) from a combination of leaf 

litter sieving and sweep net samples taken in each plot. Sweep netting for arthropods was 

undertaken along two diagonal transects across each plot, sampling for five minutes along each 

transect. Leaf litter was sieved at five locations throughout each plot: the central point of the 

two diagonal transects and then halfway along each transect line from the centre of the plot out 

to the corners. All captured arthropods were placed whole in RNAlater solution for another 

study, then dried and weighed to determine plot arthropod biomass. No RNA extraction took 
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place before biomass calculation. As an alternative to biomass, all individuals were identified 

to family and both Simpson's and Shannon's diversity was then calculated for each plot. Sweep 

net and leaf litter samples were combined for plot level analyses.  

2.8 Canopy Cover  

I measured mean leaf area index (LAI) in each plot using an Accupar LP80 ceptometer. 

LAI is the one-sided area of leaves per unit ground area and is a measure of canopy density; it 

is expected to influence thermal environment via the interception of solar radiation (Campbell 

& Normal 1998; Algar et al 2018). Ten measurements for below canopy photosynthetically 

active radiation (PAR) were taken every two metres along two diagonal transects, running from 

each corner to the opposite diagonal corner, forming an ‘X’ across the plot. To measure LAI 

directly above each of the 3D thermal replicas measurements 10 measurements were also taken 

directly above each of the replicas. To obtain mean above canopy PAR, ten measurements were 

taken in full sunlight before and a further ten measurements were taken in full sunlight after 

sampling transects. LAI was calculated using a simplified version of the Norman-Jarvis model 

(1975), a full breakdown of this can be found in Appendix 3. All transect LAI values were then 

averaged to give a mean LAI for each plot.  

2.9 Air Temperature  

Air temperature of each plot was recorded at 1.5m height using a shaded DS1921G-F5 

iButton. iButtons were set up as close to the centre of each plot as possible, depending on the 

nearest perch location where the iButton could be adhered to, and were set to record every hour 

over the survey period of ten weeks.  

2.10 Unoccupied Aerial Vehicle (UAV) Imagery 

Ultra high spatial resolution aerial imagery of each plot was acquired using a DJI 

Phantom 4 Advanced RTK quadcopter UAV equipped with an integrated RGB (red, blue, 
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green), 1-inch, 20-megapixel CMOS sensor mounted on a three-axis, gyro-stabilized gimbal. 

The UAV has an integrated GPS and GLONASS positioning system. The UAV was calibrated 

using the DJI Go application and flown using an automated flight system within the Maps 

Made Easy application; both apps were installed and operated using an iPad five. The flights 

were conducted during calm conditions  to  prevent  wind  effects  on  leaves, as per Whaite et 

al. (2019).  The UAV was set to fly at a height of  x 1.5 the height of the canopy, as to gather 

as higher spatial resolution pixels in the imagery as possible, whilst avoiding any potential 

obstructions to the UAV that may not have been seen through the canopy during flight 

planning. This resulted in a flight altitude of between 40 and 50 metres, a full list of flight 

altitudes per plot can be seen in Appendix 4. All flights were captured using the standard 

integrated RGB camera capturing images at a 90 by 90 % forward and side image overlap, in 

order to have adequate image overlap for creating orthomosaics of the canopy. UAV images 

were processed in Agisoft Metashape Professional V1.6.6, to create a 3-band RGB orthomosaic 

image for each plot, projected to WGS1984 UTM zone 16N. Results of each flight resulted in 

a mean pixel spatial resolution of 0.9 cm per pixel. Orthomosaics were validated for spatial 

accuracy by visually comparing known points (buildings, roads etc.) to base maps and also 

DGPS points taken in the field at each plot.  

2.11 WorldView-2 Satellite Imagery  

In order to gather very high spatial and spectral resolution imagery across the whole of 

Utila, WorldView-2 (WV-2) satellite imagery was acquired for the whole of the island for two 

years, 2018 and 2020, from Maxar (formerly Digital Globe). The WV-2 imagery acquired was 

a pre-processed orthorectified image with full radiometric and sensor calibration. The imagery 

had eight multispectral bands (red, blue, green, near-IR, red edge, coastal, yellow, near-IR2) at 

a spatial resolution of 2m and a panchromatic spatial resolution of 50cm. Further parameters 
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of the satellite data acquired, including the percentage of cloud cover, can be seen below in 

Table 2.5. 

Table 2.5: WorldView-2 Imagery Details 

  

As high spatial resolution imagery was required, with the need to consider the 

multispectral bands. The imagery, for the years 2018 and 2020, was pan sharpened using the 

bilinear interpolation method in ERDAS Imagine using the HCS resolution merge function. 

Resulting in a 50cm pixel resolution multispectral image for each of the years (2018, 2020). 

The pan-sharpened images were used in subsequent analyses. Atmospheric correction was not 

carried out on the images due to insufficient calibration data in the field, leading to uncertainty 

on atmospheric correction efficiency. Steps taken to account for this and implications of no 

atmospheric correction are described in Chapter 5.  

2.12 Imagery Canopy Metrics   

In order to extract canopy metrics from both the UAV imagery (Section 2.9) and 

WorldView-2 imagery (Section 2.10), the following processing methods were conducted on 

both types of images separately. As a proxy for canopy presence and density, the proportion of 

green (greenness) of each pixel within the orthomosaic was calculated by using the Raster 

Calculator tool in ArcMap10.4.1. First, the Red, Green and Blue bands of the images were 

Digital Globe Catalogue ID 

 

Date Acquired 

(dd/mm/yyyy) 

Cloud cover 

(%) 
Area off Nadir 

 

1030010083B5D300 

 

01/08/2018 0.0 21.6 

 

10300100A62C0900 

 

09/05/2020 0.0 29.5 
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extracted as individual raster layers, and then Equation 3 (Morris et al., 2013) was carried out 

in the raster calculator tool.  

 

                                                                   -    Equation 3 

 

This resulted in a in a ‘Greenness’ raster layer with values between 0 (low greenness) and 1 

(high greenness), for each image, at mean spatial resolution of 0.9cm per pixel. This greenness 

measure was deemed more appropriate than excess greenness as it gave a ratio of green within 

a pixel, and does not give a higher importance to green over the other bands (as is seen in 

excess greenness), as red/blue bands may be important in urban areas. However, other 

vegetation indices may be beneficial to pursue in future to compare their performances.  An 

example of a processed UAV image can be seen in Figure 2.11.  

Greenness=
𝐺𝑟𝑒𝑒𝑛 

(𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛 + 𝐵𝑙𝑢𝑒)
 

 

Figure 2.11 UAV RGB Orthomosaic (left), UAV Greenness raster following Equation 3 

(right) where 1 = high greenness and 0 = low greenness values.  
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 In order to capture measures of canopy heterogeneity and structure I carried out texture 

analysis on the Greenness raster layer.  Grey level co-occurrence matrix texture analysis was 

undertaken using the glcm tool in the glcm package in R version 4.1.0. Whereby a 3 x 3 moving 

window was used, this size window was chosen as the smallest window possible for the 

function to retain as much information on canopy structure as possible at the smallest spatial 

scale. The output results in eight raster layers with per pixel an estimation of for the following 

texture metrics: Homogeneity, Contrast, Correlation, Dissimilarity, Entropy, Mean, Second-

Moment and Variance. An example of each texture metric raster layer for the area surrounding 

Plot 1 can be found in Appendix 5. Please note that the Correlation texture layer was not 

considered in subsequent analysis as many pixels had no data and would therefore influence 

subsequent analyses.  
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Chapter 3 : Disentangling controls on animal abundance  

3.1 Chapter Overview  

The question of what controls animal abundance has always been fundamental to 

ecology, but given rapid environmental change, understanding the drivers and mechanisms 

governing abundance is more important than ever. Here, I determine how multidimensional 

environments and niches interact to determine population abundance along a tropical habitat 

gradient. Focusing on the endemic lizard Anolis bicaorum on the island of Utila (Honduras), I 

evaluate direct and indirect effects of three interacting niche axes on abundance: thermal habitat 

quality, structural habitat quality, and prey availability. I measured A. bicaorum abundance 

across a series of thirteen plots and used N-mixture models and path analysis to disentangle 

direct and indirect effects of these factors. Results showed that thermal habitat quality and prey 

biomass both had positive direct effects on anole abundance. However, thermal habitat quality 

also influenced prey biomass, leading to a strong indirect effect on abundance. Thermal habitat 

quality was primarily a function of canopy density, measured as leaf area index (LAI). Despite 

having little direct effect on abundance, LAI had a strong overall effect mediated by thermal 

quality and prey biomass. Results demonstrate the role of multidimensional environments and 

niche interactions in determining animal abundance and highlight the need to consider 

interactions between thermal niches and trophic interactions to understand variation in 

abundance, rather than focusing solely on changes in the physical environment.  

3.2 Introduction  

The question of what determines population size is fundamental to ecology, 

biogeography and conservation biology (Lack, 1954, Andrewartha and Birch, 1986, Brown, 

1995). Complex intrinsic and extrinsic factors regulate population abundance (Pringle et al., 

2019, Stapley et al., 2015), and classic and modern niche theory state that organisms are 
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affected by multiple abiotic and biotic factors along multiple niche axes. These limit their 

abundance and distribution either by limiting resource availability directly, or limiting species' 

ability to capture the resources that are available (Chase & Leibold, 2003). Identifying the 

factors responsible for population change along habitat gradients will improve our 

understanding of how multidimensional environments and niches interact to determine 

population abundance. Furthermore, conservation efforts and risk modelling can greatly benefit 

from isolating such mechanisms (Frishkoff et al., 2015).  

While ecological niche theory is well developed, empirical evidence for which factors 

are most important, and how they interact, is still rare for many taxa. For example, Anolis 

lizards (anoles), my focus here, are a classic model system for evolutionary ecology and their 

behaviour, morphology, physiology, microhabitat use, and evolutionary history have been 

extensively studied (reviewed in Losos 2009). However, the question of what controls anole 

population size remains unanswered (Losos 2009). Research by Buckley and Roughgarden 

(2005) and more recently by Frishkoff et al. (2019) have begun to address this gap, focusing 

on anole abundance and community structure along elevational gradients. Their work has 

indicated a role for canopy loss, thermal environment, changes in food resources, and 

competitive interactions in influencing animal abundance, which varies depending on 

elevation. However, the relative importance of these factors, and how they interact to influence 

abundance, remains unknown.  

Niche theory tells us that abundance can be limited by abiotic and biotic factors, acting 

either from the bottom-up or top-down (Elton, 1927, Leroux & Loreau, 2015). Potential 

limiting factors include microclimate, structural microhabitat, food resource (prey) availability, 

competitors, mutualists, predators, parasites and disease. For ectotherms, microclimate is 

expected to be especially important. Ectotherm body temperature (Tb), which affects metabolic 

and ecological function and evolutionary fitness, is determined by the interaction between 
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behaviour, biophysics, and microclimate (Gates 1980, Campbell & Norman 1998, Huey & 

Slatkin, 1976). Unfavourable microclimatic conditions, i.e. low thermal habitat quality, are 

predicted to restrict activity times, which in turn limits foraging, territory defence, and 

reproduction, leading to population declines (Sinervo et al., 2010). However, recent work has 

also suggested that anoles are often active in thermally sub optimal conditions, raising the 

possibility that thermal habitat quality may not exert as rigid controls on animal ecology, and 

thus population size, as traditionally thought (Gunderson & Leal, 2016, Méndez-Galeano et 

al., 2020) .  

Changes in the suitability, extent, and complexity of structural microhabitat can 

potentially influence abundance. This may be especially true for semi-arboreal and arboreal 

species, including most anoles, which have specific adaptations to increase performance in 

particular arboreal microhabitats (reviewed in Losos, 2009). For example, longer legs confer 

an advantage for increased running speed on broad substrates, whereas shorter limbs provide 

greater manoeuvrability on narrow surfaces (Kolbe and Losos, 2005). Given these well-

established microhabitat-ecology associations, perch availability is often used as an indicator 

of suitable habitat for anoles (e.g. Johnson et al., 2006). Changes in structural microhabitat, 

e.g. perch structure and availability, can alter anole abundance in species-specific ways 

(Frishkoff et al., 2019), and can select for phenotypic changes in urban anoles (Winchell et al., 

2016). However, losses of suitable structural habitat do not occur in isolation and may be 

accompanied by altered prey communities and thermal conditions (Frishkoff et al., 2019), 

which in turn is mediated by changes in canopy cover (Algar et al., 2018).  

Generally, predator biomass scales with prey biomass (Hatton et al., 2015). Loss of 

food resources, e.g. climate-induced declines in arthropod diversity and biomass, has been 

proposed to negatively affect the abundance of predators, including anoles (Lister & Garcia, 

2018, but see Willig et al., 2019, Lister & Garcia 2019). As with climate, changes in prey 
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abundance may mediate impacts of other factors on abundance. For example, habitat alteration, 

such as urbanisation, can have a negative effect on terrestrial arthropod diversity and 

abundance (Fenoglio et al., 2020), and therefore has the potential to negatively impact 

insectivore populations. Similarly, competition for prey may reduce the amount of resources 

captured by a species, an effect that could be exacerbated by introduced or invasive species 

that can reach high abundances, especially in modified habitats. For example, Anolis sagrei, a 

successful invader of urban and human-modified environments (Kolbe et al., 2016) competes 

with native species, altering behaviour, microhabitat use, and inducing evolutionary change 

(Kamath et al., 2013, Stuart et al., 2014, Stroud et al., 2017), 

Here, it is determined what factors influence the abundance of the endemic lizard, 

Anolis bicaorum, by considering multiple niche axes across gradients within tropical forest, on 

the island of Utila, Honduras. I focus on three niche axes potentially important for lizards: 

thermal habitat quality (Logan et al., 2013, Sears et al., 2016), structural habitat quality 

(Johnson et al. 2006) and prey availability (Battles et al., 2013) and use structural equation 

modelling disentangle direct and indirect effects of these factors on A. bicaorum abundance.  

3.3 Material and Methods  

3.3.1 Field Data Used  

Field data used in this study included capture mark recapture (CMR) data for the anoles 

(Anolis bicaorum) across each plot to calculate abundance estimates and plot habitat 

characteristic measures that correspond to each of the niche factors considered (thermal, perch 

availability and prey availability). It also includes the measures for thermal preference (Tpref) 

in A. bicaorum from Tpref experiments.   Table 3.1 below refers to the field data used in this 

study and the section within Chapter 2 (Materials and Methods chapter) that the full description 

of that data collection can be found. Subsequent method sections within this chapter outline 

chapter specific analyses.  
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Table 3.1: Outline of Field data used in this Chapter 

Data Description Chapter & Section 

Anole CMR data for 

abundance calculation 

Anole count data from capture mark 

recapture surveys. 

Chapter 2: 2.4 

Plot operative 

temperature 

Operative temperature data from 3D 

replicas fitted with iButtons in different 

microhabitats within a plot.  

Chapter 2: 2.5.1 

Thermal preference 

(Tpref) 

Thermal preference surveys of A. 

bicaorum. 

Chapter 2: 2.5.2 

Perch Number Number of perches within each survey 

plot.  

Chapter 2: 2.6 

Basal Area Basal area (m2) of each plot.  Chapter 2: 2.6 

Prey Biomass Arthropod biomass  Chapter 2: 2.7 

Prey Diversity Arthropod diversity – Simpson and 

Shannon Indices.  

Chapter 2: 2.7 

Leaf Area Index (LAI) Plot level LAI from ceptometer 

measurements.  

Chapter 2: 2.8 

 

Note that the operative temperature I use in the analyses is using the average of the 

uncalibrated and over-corrected Te values in the main text (calibrated Te – discussed in Chapter 

2 section 2.5). Results of using the uncalibrated and over-corrected Te for the work of this 

Chapter can be seen in Appendix 5. I found that the results were similar and led to the same 

conclusions regardless of whether calibrated, uncalibrated, or over-corrected Te was used. Thus 

not that the results are not an artefact of imperfections in Te models. 
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3.3.2 Habitat Variables 

 I used perch number and basal area for structural habitat suitability, arthropod (prey) 

biomass and diversity for prey availability, leaf area index as a measure of canopy cover and 

two indices of thermal habitat quality as habitat variables that were relevant to each of the three 

niche axis.   

 The first thermal habitat quality index was the percentage of 3D replica hours that 

operative temperatures were within the Tpref range over the 36-hour study period for each plot. 

The second index was the total number of degrees (°C) that the replicas deviated from the Tpref 

range across all replicas throughout the survey period for each plot. Unlike the former, the latter 

includes information on the extent to which temperatures deviated both above and below the 

Tpref range. In A. bicaorum’s sister species, A. lemurinus, temperatures above preferred 

temperature range were found to have a greater impact on lizard performance than temperatures 

below the range (Logan et al., 2015). Therefore, along with the total deviation, the deviation 

above Tpref and the deviation below Tpref were calculated separately.  

3.3.3 Statistical Analyses  

Anole abundance was estimated using multinomial N-mixture models. These flexible 

hierarchical models estimate abundance when captured individuals cannot be uniquely 

identified, can incorporate detection variability as well as covariates of abundance (Fiske & 

Chandler, 2011). This was relevant to this study, as the anoles could not be identified from afar 

(for example higher up on a tree trunk) with a unique identifier; hence, the anoles were only 

marked with a visit specific paint colour. Models were fit using the unmarked package (Fiske 

& Chandler, 2011) in R version 3.5.3 (R Development Core Team 2019). Specifically, using 

the multinomPois function, which fitted a multinomial-Poisson mixture model (Royle, 2004). 

Before estimating abundance and whether it covaried with individual habitat metrics, I  

evaluated the potential influence of differences in anole detection across plots by comparing 
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the AICc of models that held abundance and detection probability constant across plots, and 

that allowed one or both to vary. AICc values were determined using the modSel function 

within the unmarked package in R. As the model with varying abundance and constant 

detection rate had the lowest AICc (Table 3.2), detection rate was constrained to be equal across 

plots for subsequent models. 

Table 3.2: AICc values for N-mixture models of abundance that allow abundance and or 

detectability of A. bicaorum to vary by site, or hold them constant 

Model  Description  AICc 

M0 Null model 399.87 

Mboth Model where abundance and detectability  

can vary by plot 

 

252.64 

Mdet Model where only detectability can vary by 

plot 

 

184.03 

MSite Model where only abundance can vary by  

plot 

147.57 

 

Univariate relationships between A. bicaorum abundance and each of the habitat 

variables (percent of time within Tpref, deviation from Tpref, perch number, basal area, arthropod 

biomass, arthropod diversity and LAI) were examined by including each predictor as a 

covariate in a multinomial-Poisson mixture model of abundance. These models were used to 

select a subset of variables (one representing habitat structure, one prey availability, and one 

thermal quality) for subsequent path analysis; LAI was included as the sole measure for canopy 

cover. Before fitting, all predictors were standardised to have a mean of zero and standard 

deviation of one to allow for comparison among variables with different units. Pseudo-R2 
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values were calculated for each of the models using the modSel function within the unmarked 

package (Fiske & Chandler, 2011).  

Path analysis was used to evaluate the relative strength of direct and indirect effects on 

abundance. As indirect paths within a single multinomial-Poisson mixture model could not be 

estimated, anole abundance for the path analysis was estimated from a multinomial Poisson 

mixture model that included no environmental covariates, held detection rate constant, and 

permitted abundance to vary by plot. The resulting abundance estimates, log-transformed to 

help meet linearity assumptions, were included as the response variable in the path analysis, 

which included all possible links between exogenous and endogenous variables. Path analysis 

was carried out using the lavaan (Rosseel, 2012) and semPlot (Epskamp, 2015) packages.  

 

 

 

 

 

 

 

 

 

 



61 
 

3.4 Results  

3.4.1 Variation between plots  

Abundance estimates for A. bicaorum varied from 1 to 20 individuals across plots, with 

a mean abundance of 7.07 ± 2.4. Tpref for A. bicaorum was (mean ± s.e) 25.4 ± 1.56°C to 28.0 

± 1.44°C. Summaries for all niche measures are given in Table 3.3. Data for individual plots 

can be seen in Appendix 6.  

Table 3.3: Summary of structural and thermal habitat, and prey availability across 13 forest 

plots on Utila, Honduras 

Variable Minimum  Maximum 

 

Mean 

 

SE 

Time in Tpref (%) 6.34 47.91 30.29 4.15 

Sum of Deviation from Tpref (
oC) 24.4 102.15 50.35 6.69 

Deviation Above Tpref (
oC) 8.95 102.15 40.73 7.21 

Deviation below Tpref (
oC)  0 40.00 9.62 4.03 

Number of Perches  17 232 74.38 16.18 

Basal Area (m2) 0.40 6.35 1.90 0.43 

Arthropod Diversity (Shannon) 0.91 1.91 1.68 0.08 

Arthropod Biomass (g) 0.2 2.09 1.07  0.14 

LAI 0.57 3.97 2.62 0.30 

 

Abundance was not correlated with mean daily air temperature (measured in the shade 

1.5m height; r =-0.22, P =0.46, Figure 3.1), nor was it related to survey date (r =-0.07, P = 

0.82, Figure 3.2), suggesting the results are not confounded by weather differences between 

days or as the field season progressed.  
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Figure 3.1: Comparison of anole abundance (Anoles/ Plot) with mean air temperature during 

lizard (abundance) surveys (°C) 

Figure 3.2: Comparison of anole abundance (Anoles/ Plot) with the order in which the plots 

were surveyed throughout the field season. Rank based on date order surveyed 
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3.4.2 Univariate Relationships   

Abundance varied significantly with all measures of thermal habitat quality. The 

percentage of time each plot was within the Tpref range (Fig.3.3a, pseudo-r2= 0.89, P= 1.88×10-

6) and the total sum of deviation of each plot (°C) from the Tpref range (pseudo-r2= 0.79, P= 

5.17×10-5) were slightly more strongly related to abundance than the total sum of deviation 

above the Tpref range (pseudo-r2= 0.68, P= 4.34×10-4). The sum of deviation below the Tpref 

range was not significant (pseudo-r2= 0.02, P= 0.58). For structural microhabitat quality, the 

number of perches was significantly related to abundance (Fig.3.3b, pseudo-r2= 0.83, P= 

1.92×10-7), but plot basal area was not (pseudo-r2= 0.03, P=0.52). LAI was significantly related 

to abundance (Fig.3.3d, pseudo-r2= 0.40, P= 0.012). Arthropod diversity (Shannon index) was 

not significantly related to abundance (pseudo-r2= 0.06, P= 0.38); using Simpson's index 

instead did not alter this result (pseudo-r2= 0.01, P= 0.69). The relationship between abundance 

and arthropod biomass was significant (Fig.3.3c, pseudo-r2 = 0.82, P=1.61×10-6).  
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Figure 3.3: Relationships between Anolis bicaorum abundance and individual niche metrics 

in forest plots across Utila, Honduras. Relationships were estimated using multinomial Poisson 

mixture models with a constant detection rate across plots. All variables are scaled to a mean 

of zero and unit variance; (a) reflects thermal habitat quality, (b) reflects structural habitat 

quality, (c) reflects prey availability and (d) reflects canopy cover. 
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3.4.3 Path Analysis 

Prey biomass and time within Tpref had the largest direct effects on A. bicaorum 

abundance (standardize coefficients: 0.40 and 0.47 respectively; Fig3.4a). The path coefficient 

between prey biomass and abundance was significant (P=0.049; Table 3.4), while the 

coefficient of the time within Tpref and abundance had a P of 0.055 (Table 3.4). LAI and 

number of perches had direct effects of smaller magnitude on abundance and neither were 

significant (Fig.3.4b, Table 3.4). Time-within Tpref also had a large effect on prey biomass 

(P= 0.074), leading to an additional, substantial indirect effect on A. bicaorum abundance (Fig 

3.4b). While LAI had little direct effect on A. bicaorum abundance, or on prey biomass, it had 

strong indirect effects through its influence on time within Tpref. Number of perches had a 

substantial overall effect on A. bicaorum abundance, reflected by the large number of paths 

with relatively small effects, none of which were significant (Table 3.4, Figure 3.4a).  
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Figure 3.4: Direct and indirect effects of niche axes on A. bicaorum abundance. (a) Values are 

standardized path coefficients; line width is proportional to the strength of the effect, solid lines 

indicate statistically significant pathways. ε, unexplained variation. (b) The total effects of 

covariates on abundance. NP: number of perches; PB: prey biomass; LAI: mean leaf area index; 

TP: time within Tpref range. 
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Table 3.4: Results of the path analysis looking at indirect and direct effects, and relationships 

between, multiple niche axes on A. bicaorum abundance, in 13 forest plots on Utila, Honduras. 

Std.all, Standardised Coefficients. 

Pathway Estimate (± S.E) Z P-Value 

 

Std.all 

 

     

A. bicaorum Abundance ~      

Number of Perches 0.25 ± 0.20 1.25 0.211 0.23 

Prey Biomass 0.43 ± 0.22 1.97 0.049 0.40 

Time within Tpref 0.51 ± 0.27 1.92 0.055 0.47 

Mean LAI -0.11 ± 0.22 -0.52 0.609 -0.11 

     

Time within Tpref ~     

Mean LAI 0. 53 ± 0.21 2.58 0.010 0.53 

Number of Perches 0.34 ± 0.21 1.66 0.097 0.34 

     

Mean LAI ~     

Number of Perches 0.21 ± 0.27 0.76 0.449 0.21 

     

Prey Biomass ~     

Time within Tpref 0.55 ± 0.30 1.79 0.074 0.55 

Number of Perches -0.19 ± 0.25 -0.74 0.457 -0.19 

Mean LAI 0.17 ± 0.28 0.61 0.545 0.17 
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3.5 Discussion 

Classic and modern niche theory states that organisms are affected by multiple abiotic 

and biotic factors along multiple niche axes (Chase & Leibold, 2003). Disentangling these 

effects is challenging because 1) environmental changes induce change in multiple factors at 

once, and 2) factors are interconnected and can mediate each other's effects. Thus, we still do 

not have a full understanding of which niche axis exerts most pressure on abundance and the 

extent to which these niche axes exert direct and indirect effects. Here I found that prey biomass 

and thermal habitat quality exerted the strongest direct control on the abundance of the endemic 

anole, A. bicaorum, on the island of Utila. However, thermal quality also had a strong indirect 

effect on anole abundance, mediated by prey biomass. Thermal habitat quality, in turn, was 

determined primarily by canopy density (LAI), which blocks incoming solar radiation, 

lowering operative temperatures (Algar et al. 2018) and creating heterogeneity for behavioural 

thermoregulation (Sears et al. 2016). Together, these results reveal the complex feedbacks 

among physical and biotic selection and highlight the importance of considering direct and 

indirect controls on abundance of species across habitat gradients. 

The direct relationship between prey biomass and abundance is consistent with theory 

predicting that more food, i.e. higher biomass, supports higher numbers of individuals (Hatton 

et al., 2015, De Omena et al., 2019). Higher food availability may also affect population 

dynamics and intraspecific competition. For example, more food may lead to improved body 

condition and energy storage within individuals, allowing for greater investment in 

reproduction and increased fecundity (Orrell et al., 2004). The results also suggest that prey 

abundance, rather than prey diversity, is more important for maintaining population size. Many 

anoles are opportunistic predators (Losos, 2009) and natural history observations suggest that 

A. bicaorum, like many other anole species, is also an opportunistic predator and arthropod 

generalist (Köhler, 1996, Brown et al., 2017), although there is a lack of quantitative diet data 
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for this species. Given its likely generalist diet, the diversity of prey taxa available should have 

little effect on the available resource base, which is consistent with the results. Although 

deforested tropical habitats often harbour reduced diversity, those species that do persist can 

often achieve high abundance (Foster et al., 2011), which could limit abundance declines of 

anoles and other generalist predators. However, no evidence for such compensatory dynamics 

was found here. Instead, more disturbed, built-up areas had lower prey biomass and reduced A. 

bicaorum abundance – likely because of the reduced tree cover degrading the thermal quality 

of these environments. This is consistent with findings from larger urban areas, where 

consistent declines in abundance of multiple insect taxa have been documented (Piano et al., 

2020). Thus, at least on Utila, even if some arthropod taxa benefit from disturbance leading to 

a loss of canopy cover, these increases are insufficient to counter overall declines in arthropod 

biomass, which in turn limit abundance at higher trophic levels, effects which could be further 

intensified by climate change (Lister & Garcia, 2018, but see Willig et al. 2019 and Lister & 

Garcia 2019).  

Thermal habitat quality has pervasive effects on ectotherms, including physiology and 

behaviour, which can scale to influence population dynamics (Diaz, 1997, Sinervo et al., 2010). 

As predicted, I found a positive association between the duration that operative temperature 

was within A. bicaorum's Tpref and its abundance – although the P-value of this relationship in 

the path analysis was just above 0.05. Individuals within their preferred temperature range for 

longer benefit from an increase in activity time (Gunderson & Leal, 2016), which allows 

increased utilisation of available resources (Gvoždík 2002), and can increase anole persistence 

in natural and human-modified environments (Battles & Kolbe, 2019). Restriction of activity 

time, via thermal stress, can limit ectotherms' ability to effectively obtain resources, avoid 

predation, withstand pathogens, and reproduce effectively, leading to population declines and, 

ultimately, extinction (Huey et al., 2009, Sinervo et al., 2010). These results suggest that in 
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habitats of high thermal quality, A. bicaorum individuals are able to exploit longer activity 

times in thermally suitable plots and incur lower costs of thermoregulation. Explicitly testing 

this mechanism will require data on thermoregulatory efficiency of individuals across habitat 

types. A caveat to the results remains, however, as the estimates of Tpref in A. bicaorum were 

measured for a relatively short duration in field-lab conditions and improved measures of Tpref 

are needed, including increased understanding of plastic and adaptive variation among 

populations.  

These results show that thermal and prey availability are not alternative controls on 

abundance. Rather, they are interconnected. In addition to its direct effect, thermal habitat 

quality had an indirect effect on A. bicaorum abundance, mediated by prey biomass. As 

arthropods are also ectotherms, they too will be affected by temperature, and their abundance 

is also vulnerable to warming (Lister & Garcia, 2018, but see Willig et al. 2019, Lister & Garcia 

2019). While the measure of thermal quality was focused on A. bicaorum, it also captured 

variation in prey biomass, indicating alignment in thermal niches amongst predators and their 

prey. Thus, in areas of higher thermal quality, not only do anoles have more time for foraging, 

but there is also more food available, providing additional benefits of thermal habitat quality 

that extend beyond a species thermal performance. The corollary of this is that declines in 

thermal habitat quality will have greater negative effects than expected solely based on a 

species' thermal niche. Models to predict vulnerability of ectotherms to future warming tend to 

focus on direct effects on activity time, thermal safety margins, and thermoregulation (e.g. 

Sinervo et al., 2010, Sunday et al., 2014). Results suggest that such models may actually 

underestimate risks, and that warming impacts may actually be magnified due to thermally 

induced changes in food availability, highlighting the need for greater focus on direct and 

indirect effects of temperature change (Kearney et al. 2013,Duclos et al., 2019).   
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Thermal habitat quality was primarily controlled by canopy density. Canopy cover 

influences microclimate in multiple ways including reducing incoming solar radiation 

(Campbell & Norman 1998), which in turn lowers operative and body temperatures ectotherms 

(Kearney et al., 2009, Algar et al., 2018). This  advantages cool-adapted species like A. 

bicaorum (Logan et al., 2013) and, as the results reveal, their food resources as well. When 

overall effects are considered, LAI had a strong effect on A. bicaorum abundance, despite 

having a small direct effect. Instead, it had strong indirect effects mediated by thermal quality 

and, subsequently prey biomass. While this study focused on mean LAI, canopy cover may 

have even stronger effects than measured here as canopy heterogeneity can generate patchy 

thermal environments that reduce the cost of behavioural thermoregulation (Sears et al. 2016). 

LAI, in turn, was mildly influenced by the number of perches (stems) in a plot. Perch number, 

essentially stem density, had relatively weaker overall effects on abundance than LAI and no 

individual paths were significant.  

On Utila, personal observations suggest that human disturbance in proximity to Utila 

Town is the key driver of canopy variation, with clearing for housing projects ongoing, 

although other factors, such as variation in elevation and proximity to the coast may also play 

a role.  The results of this study highlight the pervasiveness of canopy cover for mediating 

ecological dynamics at higher trophic levels, primarily through influencing the thermal 

landscape (sensu Nowakowski et al. 2018) but also indirectly through mediating trophic 

interactions. Lastly, these findings demonstrate the importance of maintaining canopy cover 

and structure to maximize thermal habitat quality for cool-adapted (Battles & Kolbe, 2019) and 

their prey (Lister & Garcia, 2018).  

This study has identified a key role for resource availability in directly controlling anole 

abundance, alongside thermal environment, other biotic interactions, not examined here, may 

also play a role. Island anole populations are generally thought to be strongly influenced by 
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predators, with several experiments showing substantial predator effects on anole niche 

dynamics and density (Schoener et al., 2002, Pringle et al. 2019). As I was not able to measure 

predation pressure on A. bicaorum, the possibility that predators are exerting top-down effects 

on abundance cannot be discounted, in addition to the bottom-up effects of prey biomass. Nor 

can I determine the potential agonistic interactions of parasites on anole populations (Bonneaud 

et al., 2017). Competitive interactions could also limit abundance, although the only putative 

congeneric competitor, Anolis utilensis, is much rarer and perches much higher than A. 

bicaorum (Brown et al., 2017). The recently introduced brown anole, A. sagrei, could also have 

an effect on A. bicaorum's abundance in the future, but currently it is restricted to Utila town, 

where A. bicaorum is not found (personal observations). 

3.6 Chapter Conclusions 

This work has demonstrated the interconnectedness of abiotic and biotic components 

that determine habitat quality and animal abundance. Rather than identify a single strong 

control on abundance, it was found that key abiotic factors (canopy cover and thermal 

environment) affect abundance through multiple pathways and have effects that are mediated 

by biotic interactions and the niche of the focal species. In particular, results suggest alignment 

of thermal niches across multiple trophic levels results in strong indirect effects of thermal 

environment on anole abundance. Losses of thermal habitat quality, particularly due to canopy 

loss, may thus have greater effects than appreciated when only direct effects are considered. 

Therefore, in subsequent chapters of this thesis, I focus on quantifying the thermal environment 

and mapping canopy heterogeneity on Utila, to consider its impact on A. bicaorum abundance. 
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Chapter 4 : Unoccupied Aerial Vehicles as a Tool to Map Lizard 

Operative Temperature in Tropical Forest Environments 

 

4.1 Chapter Overview   

As temperatures warm, many tropical ectotherms will need to increasingly seek out 

cooler microhabitats to avoid overheating; to fully understand how such ectotherms will be 

affected, we need information on thermal habitat quality at spatial scales relevant to the 

organism. However, how we measure thermal habitat suitability is either limited by spatial 

extent, such as with ground-based 3D operative temperature (Te) replicas, or is based on 

microclimate derived from physical models that use land cover variables and downscale coarse 

climate data. These mechanistic microclimate models, although useful, do not provide direct 

ecologically relevant data on thermal habitat suitability of ectotherms such as Anolis bicaorum, 

which instead requires information on Te measures and thermal performance estimates. 

Currently available microclimate models that can be applied across landscapes are also 

dependent on relatively coarse (from a small ectotherm’s perspective) climate, and topography 

datasets, and rarely reflect the conditions experienced by individuals.  However, although 

standard thermal ecological methods of measuring Te using 3D replicas of the focal species 

provide ecologically relevant (Te) data at relevant spatial scales, they are resource heavy and 

provide low spatial extent. In order to gather ecologically relevant Te data for A. bicaorum 

across high spatial resolution and extent, I test the ability of unoccupied aerial vehicle (UAV) 

data to predict fine-scale heterogeneity in Te in tropical environments. Results from random 

forest models indicate that a model incorporating solely air temperature and ground-based LAI 

from ceptometer measurements predicted Te, well. However, a model with air temperature and 

UAV-derived canopy metrics performed slightly better with the added advantage of enabling 

the mapping of Te with continuous spatial extent at high spatial resolutions. The work provides 



74 
 

a feasible workflow to map sub-canopy lizard Te in tropical environments at spatial scales 

relevant to the organism, and across continuous areas, which will be imperative in risk 

modelling of such species to anthropogenic land cover and climate change.   

4.2 Introduction  

Thermal habitat quality has pervasive effects on ectotherms, including on physiology 

and behaviour, which can scale to influence population dynamics (Diaz, 1997, Sinervo et al., 

2010). The thermal environment influences both performance and distribution of ectotherms 

by influencing metabolic and ecological function and evolutionary fitness, through the 

interaction between physiology, behaviour, biophysics, and microclimate (Gates 1980, 

Campbell & Norman 1998, Huey & Slatkin, 1976). Chapter 3 of this thesis demonstrated the 

role of the thermal environment, specifically a measure of thermal habitat quality based on 

operative temperature (Te) and thermal preference, on the abundance of Anolis bicaorum, 

influencing it both directly and indirectly via prey availability.   

Even though we know that thermal fluctuations influence all levels of biological 

organisation, from biochemical reactions to ecological interactions (Niehaus et al., 2012), the 

spatial scale at which we measure the thermal environment is often at scales that are not 

relevant to the organism (Logan et al., 2013; Sears et al., 2011; Sears and Angilletta, 2015). 

Mechanistic models such as NicheMapR, Microclima and Microclimic (Kearney and Porter, 

2017; Maclean et al., 2018; Maclean and Klinges, 2021) have been developed to solve this 

spatial issue, using coarse resolution climate data to infer microclimate. These models for 

microclimate are a useful tool for ecologists and make important contributions to how we 

consider species responses to habitat and climate change. However, they are not without their 

limitations. Models such as NichemapR and Microclima downscale coarse resolution climate 

data from weather stations (Kearney and Porter, 2017; Maclean et al., 2018) using local 

topography to predict microclimate, meaning they are still dependent on coarse scale climate 
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data, and are limited by the spatial resolution of all input variables.  They are therefore limited 

in terms of how accurately they represent the thermal heterogeneity in the landscape at 

organism relevant scales, i.e. the conditions experienced by many organisms (Sears et al., 2011; 

Sears and Angilletta, 2015; Suggitt et al., 2018). 

Microclimate and thermal suitability for ectotherms do not refer to the same measures 

of the thermal environment. Microclimate influences the thermal environment of a landscape 

(Suggitt et al., 2018), however thermal suitability indices for ectotherms are based on 

ecologically relevant measures of species thermal performance using thermal performance 

curves (TCPs) and body temperature (Logan et al., 2013b; Sinclair et al., 2016). Thus, there is 

disconnect between measuring microclimate and then applying the measures in an ecologically 

relevant way for measuring thermal habitat suitability for ectotherm species. For example, to 

determine the thermal suitability of a study area, we need to first measure what the body 

temperatures of the species would be across the study area and then translate this into suitability 

using TCPs (or other measures). A key step to this translation is quantifying operative 

temperature (Te), a measure of an animals body temperature at equilibrium with its 

environment (Logan et al., 2013), across the study area. 

Measuring the thermal environment and thermal habitat quality at fine spatial scales 

relevant to the organism is a standard practice when it comes to thermal ecologists that use 

ground-based methods. Current ground-based methods for measuring the suitability of the 

thermal environment for a species is done by measuring  Te by deploying morphologically 

accurate 3D replicas of the focal species, fitted with  temperature data loggers, in different 

microhabitats (Logan et al., 2013; Muñoz and Losos, 2018) . Such methods allow the Te of the 

focal species to be measured in different microhabitats at very fine spatial scales, however as 

each replica measures a point estimate, they sample a very small amount of the thermal habitat. 

This means that they do not scale up to landscape level analyses well, as the spatial extent of 
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the methods is limited. This is partially due to cost and the resources required for such methods, 

including the materials used to create the replicas themselves, the costs of data loggers, and the 

deployment effort. These all factor in to the cost and effort of this method. The spatial data 

extent that can be obtained by this traditional method is limited by the availability of replicas, 

data loggers and often time constraints.  

Another limitation of current methods of measuring thermal habitat quality is that due 

to spatial extent limitations of the ground-based methods and the spatial resolution limitations 

of the biophysical models, they cannot account for the spatial heterogeneity of the suitable 

thermal environment. The spatial structure and heterogeneity, i.e. patchiness of thermal 

environments, along with the mean temperature, influences thermoregulation, movement and 

energetics of ectotherms (Sears and Angilleta, 2015). For example, a spatially heterogeneous 

thermal environment of cool and warm patches confer advantages for behavioural 

thermoregulation, increasing thermoregulatory performance and lowering energy expenditure 

(Sears and Angilletta, 2015).   However, current methods of measuring thermal habitat quality 

from both mechanistic models and on the ground Te methods mostly consider the thermal 

environment to be homogenous over the study area and do not consider this spatial 

heterogeneity. There is, therefore, a need to measure ecologically relevant thermal measures of 

the environment at spatial scales relevant to the organism, across a spatial extent that will allow 

capture spatial heterogeneity of these thermal environment and the potential implications of 

future land cover and climate change across landscapes. 

  The use of remote sensing methods within the field of ecology is allowing such data to 

be captured. Remote sensing derived data products have been highlighted as a way to improve 

the spatial resolution of mechanistic microclimate model outputs by capturing fine scale 

measures of important data inputs such as topography and canopy metrics (Duffy et al., 2021; 

Milling et al., 2018; Zellweger et al., 2019). Canopy cover influences the thermal environment 
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in multiple ways including reducing incoming solar radiation (Campbell & Norman 1998). In 

tropical forests, the canopy acts as a thermal insulators, cooling the understory when ambient 

temperatures are hot, and warming the understory when they are cold (De Frenne et al., 2019). 

Such canopy metrics have been found to influence operative and body temperatures of 

ectotherms, specifically lizards (Kearney et al., 2009, Algar et al., 2018). Results of Chapter 3 

corroborate this and have demonstrated that such measures such as leaf area index (LAI) 

influence the thermal environment (thermal habitat quality) which is linked to A. bicaorum  

abundance. Chapter 3 focused on plot level (20 x 20m) LAI (canopy cover), averaging LAI 

across the whole of the plot. However, the spatial configuration of canopy cover can generate 

patchy thermal environments that reduce the cost of behavioural thermoregulation (Sears et al. 

2016). Emerging remote sensing technologies, such as unoccupied aerial vehicles (UAVs), can 

aid in capturing this canopy variation via optical sensors (most commonly RGB)  and 

photogrammetry methods such as structure from motion (SfM) (Duffy et al., 2021; Milling et 

al., 2018; Zellweger et al., 2019). Their relative ease of use and now mainstream availability 

allow high spatial resolution data to be acquired without the need of excessive resources, time 

and costs.  Although capturing specific canopy measures such as LAI from UAVs are still in 

their infancy (Duffy et al., 2021), we can capture other measures of vegetation structure such 

as greenness indices (Morris et al., 2013) and texture metrics as measures of heterogeneity, 

which can be used as proxies for canopy cover and heterogeneity.   

This chapter uses high-resolution (< 0.9cm) optical UAV RGB imagery captured across 

a series of survey plots on the island of Utila to test the ability of canopy pixel greenness and 

texture metrics to predict Te Anolis lizards below the canopy.  UAV-derived canopy metrics 

are coupled with ground-based measures of plot air temperature and the ability of UAV 

measures to predict Te is compared to that of ground-based LAI measures taken using a 

ceptometer. The Te outputs are related to A. bicaorum abundance for the survey plots. The work 
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highlights the ability of RGB UAV platforms to collect high spatial quality canopy data and 

the ability to consider the Te of an animal below the canopy rather than solely considering 

microclimate. It provides a step forward in methods for estimating the thermal habitat 

suitability of a landscape at relevant spatial scales.  

4.3 Material and Methods  

4.3.1 Field Data Overview 

Field data used in this chapter includes Te measurements from 3D printed anole replicas 

(fitted with iButton data loggers), air temperature (recorded at 1.5m height with a shielded 

iButton data logger) at hourly intervals for the same three days as 3D replicas were in situ, and 

leaf area index (LAI) measurements above each 3D replica, taken using an Accupar-LP80 

ceptometer. Imagery used in this chapter included post-processed UAV canopy metric layers, 

which included seven texture raster layers and one greenness layer for each of the 16 survey 

plots, and anole abundance estimates for each survey plot, derived from Chapter 3 analyses. 

Table 4.1 below outlines the field data used in this chapter and the section within this thesis 

where the full description of that data collection can be found. Subsequent method sections 

within this chapter outline chapter specific analyses.  

 

 

 

 

 

 



79 
 

Table 4.1: Outline of data used in this Chapter 

Data Description Chapter  and 

Section 

Operative Temperature 

(Te) 

Te data from 3D replicas fitted with 

iButtons in different microhabitats within 

a plot.  

Chapter 2: 2.5.1 

Locations of 3D replicas DGPS spatial point locations of each 3D 

replica within each plot  

Chapter 2: 2.5 

Leaf Area Index (LAI) LAI from ceptometer measurements.  Chapter 2: 2.8 

Air Temperature  Air temperature at 1.5m height within 

each plot 

Chapter 2: 2.9 

UAV Greenness Layer UAV Greenness raster layers for each 

plot, resulting from processing of  RGB 

imagery 

Chapter 2: 2.12 

UAV Texture Layers UAV derived raster layers for seven 

texture metrics (Homogeneity, Contrast, 

Dissimilarity, Entropy, Mean, Second-

Moment and Variance) for each survey 

plot.  

Chapter 2: 2.12 

Anole abundance 

estimates for each survey 

plot  

Anolis bicaorum abundance estimates for 

each survey plot, derived from Chapter 3  

Chapter 3: 

Results 

 

4.3.2 Operative and Air Temperatures  

I used 3D replicas to measure sub-canopy Te in different areas within each plot (Chapter 

2: section 2.5). The iButtons within the replicas recorded Te every 15 minutes. As I wanted to 

determine the influence of the canopy structure directly above the Te replica, I extracted Te at 

solar noon, where the majority (not including reflectance) of solar radiation would be coming 

from directly above the replica, therefore limiting the influence of variation in the angle of the 

sun. To account for the possibility of passing cloud or wind having an influence on the Te at 

the one measurement closest to solar noon, two measurements either side of solar noon were 

taken (four measurements of Te total) and the mean was taken to use in subsequent analysis. 

The Te at solar noon for each individual replica over a period of three days, resulting in three 

measurements per replica, was used for subsequent statistical models.  
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 The air temperature of each plot at solar noon was extracted for each day the models 

were in situ. Air temperature was measured at hourly intervals. Solar noon varied from day to 

day (i.e. sometimes being closer to 13:00 than 12:00). To account for the variation, the two 

hourly measurements, one on either side of solar noon were extracted and the mean taken for 

subsequent analyses. LAI measurements from a ceptometer taken directly above each of the 

3D replicas were also included in the analyses.  

4.3.3 Extracting UAV Canopy Metrics   

Due to the spatial resolution of the UAV pixels (0.9cm), I placed a buffer around each 

of the 3D replica locations and extracted the UAV data for the pixels within the buffers, for 

each of the image layers, herein referred to as canopy metrics.  This was to ensure encapsulation 

of canopy variation across a sufficient spatial area, rather than based on a single 0.9cm pixel. 

Considering the accuracy of the DGPS measurements (0.86cm), a 1m (0.5m radius) buffer was 

used to extract data around every DGPS point that held a 3D replica. The spatial point’s data 

for the replica locations was first loaded into R version 4.1.0, and then the raster package 

(Hijmans, 2021) was used to extract the mean pixel values for each layer within the buffer area 

around the 3D replicas. This extraction process was carried out on the greenness raster layer 

and all seven texture raster layers (see Chapter 2: Section 2.12) for each survey plot.  

4.3.4 Statistical Analyses  

Random forest (RF) regression trees were used. Random forest algorithms are 

particularly useful in working with highly dimensional linear and non-linear relationships 

within the same model as well as provide estimates of variable importance plots (Breiman, 

2001). They produce both classification and regression models based on building a specified 

number of random decision trees from bootstrapped samples of the data and using a random 

subset of the predictor variables at each split, then taking the mean of the outcome. Because of 

this, bootstrapping random forests are also slightly more attuned not to over fit a model, which 
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is useful when you have a low number of data points, as seen in this dataset. Due to the 

continuous nature of the response variables, the regression random forest model was used in 

the analyses. Random forest analysis was conducted using the ModelMap (Freeman et al., 

2009) package in R version 4.1.0. An outline of the variables included in each of the RF models 

can be seen in Figure 4.1.  

 

Figure 4.1: Simple workflow of data included in Random Forest Regression models 

  The complete dataset was first randomly subset into a training set (75% of data) and a 

test set (25 % of data) for independent model validation. I fit four random forest models to the 

Te data, the first included plot air temperature and ground-based LAI measures from a 

ceptometer as predictors. The second model solely included UAV-based canopy measures 

(greenness and textures) as predictors of Te. The third included the UAV-based canopy 

measures and plot air temperature as predictors of Te. The final model incorporated all variables 

as predictors of Te (ground-based LAI, plot air temperature, UAV canopy measures). Details 

and model parameters of all random forest models can be seen in Table 4.2.  
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Table 4.2: Details of all RF models conducted; Mtry = the number of variables randomly 

chosen at each split, Ntrees = number of trees grown within RF model 

Model Name Response Variable Description/ Predictors 

Te.Ground  Te Ground-based measurements only. 

 Predictors = Plot Air Temperature and  

Ground-based LAI 

 

Mtry = 1  

Ntrees = 500 

Te.UAV Te UAV measurements only.  

Predictors =  UAV Greenness and UAV 

texture metrics  

Mtry = 3  

Ntrees = 500 

Te.Air.UAV Te Air Temperature and UAV measures  

Predictors =  Plot Air Temperature, UAV 

Greenness  and UAV texture metrics  

Mtry = 3  

Ntrees = 500 

Te.All Te Ground based and UAV measurements.  

Predictors = Plot Air Temperature, Ground 

based LAI, UAV Greenness  and UAV texture  

Mtry = 3 

Ntrees = 500 
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To validate all RF models seen in Table 4.2, the test data was input into the 

model.diagnostics function in ModelMap comparing observed and predicted Te values for the 

test dataset. The model.diagnostics function also provides variable importance plots based on 

mean decrease accuracy (%IncMSE), which expresses how much accuracy the model loses by 

excluding each variable; the higher the value, the more important the variable is to the model. 

Lastly, random forest algorithms by nature are insensitive to multicollinearity of variables 

(Tang et al., 2020), but it is a factor when trying to disentangle the influence of two correlated 

variables. As only the texture variables in the models were correlated (Figure 4.2) and the aim 

was not to disentangle specific variables of import between the texture variables, 

multicollinearity was not an issue for the models used.  

Figure 4.2: Correlation plot for all variables used in models 
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 To evaluate predictive performance across different plots, a Jackknife approach was 

used where one plot was omitted from the training data and the data from the remainder of the 

plots were used to predict the omitted plot. This was then repeated omitting each plot separately 

and conducting the Te.Air.UAV model, as this was the model of most interest.   

To evaluate whether RF modelling with UAV data improved the ability to predict Te, I 

compared these models to a regression of Te against air temperature. As simple biophysical 

models of Te predict a linear relationship between air temperature and Te (Algar et al., 2018), I 

first fitted a linear regression. However, as the Te-Ta relationship exhibited curvilinearity, I 

also fitted a third-order polynomial relationship.  

4.3.5 Mapping Thermal Habitat  

In order to use the RF model to map Te across the whole of a plot, the predict function 

in ModelMap was used to predict across the UAV orthomosaics for each plot. This function 

could only predict across the plot if data was present for every image pixel, therefore ground 

based LAI could not be included as it was only sampled in localised areas within the plot. As I 

assumed that air temperature was homogeneous across the plot, a uniform raster layer with the 

same spatial resolution and spatially matching pixel grid as the other input variables can be 

used to represent air temperature. Therefore, an air temperature raster layer for each plot was 

created using the conditional function in Raster Calculator in ArcMap 10.4.1. Mean air 

temperature from the two hours around solar noon for all Te surveys across plots was 30.4o C, 

so I used this value for predicting Te across plots  

4.3.6 Thermal Habitat Structure  

In order to quantify the spatial configuration of thermally suitable habitat for each plot, 

I calculated standard landscape metrics focused on the spatial distribution of areas below 

33.2°C, the CTmax measure for Anolis bicaorum (Logan et al., 2013). CTmax was used as a 
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threshold as the Te measures predicted in the random forest model across plots were for solar 

noon and at an air temperature of 30.4°C, therefore above the Tpref range calculated for A. 

bicaorum (25.4 – 28.0 °C). Therefore, I assume that areas with a solar noon Te measure above 

33.2°C are unsuitable thermal habitat at that time. UAV Te raster layers for each plot were 

reclassified into two categories relating to CTMax of A. bicaorum, as seen in Table 4.3.  

Table 4.3: Temperature Categories relating to A. bicaorum habitat quality 

Category 

 

Temperature  (°C) 

 

 

Thermally Tolerable 

 

< 33.2 

 

Thermally Intolerable 
≥ 33.2 

 

Areas within the thermally tolerable category were extracted for each of the plot raster 

layers and. the number of patches, total area (m2), mean patch size (m2), Euclidean distance 

(m2) and standard deviation of nearest neighbour Euclidean distance (m2) were calculated using 

the landscapemetrics R package (Hesselbarth et al., 2019). In order to consider the impact of 

pixel speckle on calculating landscape thermal patches, the analysis was re-run after resampling 

the resolution of Te pixels to 15cm as it approximates the size of one adult A. bicaorum.  

4.3.7 Relating UAV derived Te to Anole Abundance  

A. bicaorum abundance for each plot (calculated in Chapter 3) was plotted against 

several measures derived from the UAV imagery and significance of the relationships was 

evaluated simple linear regressions. These UAV measures were the mean, maximum and 

standard deviation of plot Te from the standard RF outputs (0.9 cm resolution) and landscape 

metrics for reclassified thermally tolerable category patches at both a 0.9cm resolution and 

15cm resolution.   
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4.4 Results  

4.4.1 Prediction of Te  

Te increased with air temperature. The linear regression was significant (F=1162, 

df=793, P<0.001; adjusted r2=0.59). However, the relationship showed considerable 

heteroscedasiticity (Figure 4.3), with greater variance at warmer temperatures. This is due to 

3D replica placement within and between survey plots having an influence on Te.  For example, 

some replicas being placed where there is no shade, getting a considerably higher amount of 

solar radiation, therefore leading to much higher logged temperatures than that seen in replicas 

placed in the thermally buffered forest. Fitting a 3rd order polynomial did not substantially 

improve model fit (Figure 4.3; F = 392.9, df=791 P<0.001, adjusted r2 = 0.60).  

 

Figure 4.3: Air temperature vs Te fitted with a third order polynomial curve. Each point is the 

Te (°C) at solar noon of a 3D replica within a plot, plotted against the air temperature (°C) 

within the plot at solar noon.  Shading around the curve = 95 % confidence intervals 

  

Results of the random forest regression incorporating ground-based data alone (Model 

name = Te.ground), indicated that using only plot level air temperature and LAI within the 
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model accounts for 73.2% of the variation within Te. Model validation revealed a strong 

relationship between observed and predicted values in the test data (Figure 4.4; r2 = 0.89, 

P<0.001). The RMSE of this relationship was 1.07.  

 

 

 

Variable importance estimates indicated that air temperature was more important than 

LAI (Figure 4.5).  

 

 

 

Figure 4.4: Scatterplot of observed Te vs predicted Te values for the test data for the Te.Ground  

random forest model,  RMSE = Root Mean Square Error, r2 and associated P value derived 

from correlation of observed vs predicted Te. Black line indicates linear regression line and the 

blue line indicates one-to-one line.    
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The random forest (Model name = Te.UAV) model using only UAV-derived data 

accounted for 30.26% of the variation in Te.  Model validation revealed a negligible 

relationship between observed and predicted values in the test data (Figure 4.6; r2 = 0.08 

P<0.001). The RMSE of this relationship was 3.02.  

 

 

 

 

 

 

 

 

 

Figure 4.5: Variable importance plot derived from model validation function for model 

Te.Ground. Air.Temp = Air Temperature, LAI = leaf area index, %IncMSE = percent 

increase of mean squared error 
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Variable importance indicates that many of the texture metrics were on par with one 

and other, and the greenness index was of lower importance (Figure 4.7).   

 

Figure 4.6: Scatterplot of observed Te vs predicted Te values for test data for the Te.UAV  ramdom 

forest model,  RMSE = Root Mean Square Error, r2 and associated P value derived from 

correlation of observed vs predicted Te. Black line indicates linear model line and blue line 

indicates one to one line    
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Including the influence of air temperature in the random forest along with the UAV 

metrics (Model name = Te.Air.UAV) accounted for 82.82% of the variation in Te.  Model 

validation revealed a strong relationship between observed and predicted values in the test data 

(Figure 4.8; r2 = 0.91, P<0.001). The RMSE of this relationship was 1.03.  

 

 

 

 

 

Figure 4.7: Variable importance plot for model Te.UAV. contrast_mean = Contrast texture 

layer, b1entropy_mean = Entropy texture layer, diss_mean = Dissimilarity texture layer, 

secondm_mean = Second Moment texture layer, b1homogeneity_mean = Homogeneity 

texture layer, PG_mean = Greenness layer, variance_mean = Variance texture layer, 

mean_mean = Mean texture layer, %IncMSE = percent increase of mean squared error 
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Variable importance estimates (Figure 4.9) show that plot air temperature is the most 

important variable in the model, followed by most of the texture metrics and then the greenness 

index, followed by the mean, dissimilarity and homogeneity texture variables.     

 

 

Figure 4.8: Scatterplot of observed Te vs predicted Te values for the test data for the 

Te.Air.UAV  random forest model,  RMSE = Root Mean Square Error, r2 and associated P 

value derived from correlation of observed vs predicted Te. Black line indicates the linear 

regression line and blue line indicates the one-to-one line.    
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The RF model, which included ground and UAV-based variables (Model name = 

Te.All), explained the most (85.99%) variation within Te.  Model validation revealed a strong 

relationship between observed and predicted values in the test data (Figure 4.10; r2 = 0.91, 

P<0.001). The RMSE of this relationship was 1.03.  

 

 

 

 

Figure 4.9: Variable importance plot for model Te.Air.UAV. Air.Temp = Air 

Temperature, contrast_mean = Contrast texture layer, b1entropy_mean = Entropy texture 

layer, diss_mean = Dissimilarity texture layer, secondm_mean = Second Moment texture 

layer, b1homogeneity_mean = Homogeneity texture layer, PG_mean = Greenness layer, 

variance_mean = Variance texture layer, mean_mean = Mean %IncMSE = percent 

increase of mean squared error 
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Variable importance estimates for the Te.Air.UAV RF model (Figure 4.11) show that 

the ground-based data (plot air temperature and LAI) are the most important, with air 

temperature being the most important variable in the model, then LAI, and then the texture 

metrics and then the greenness index.    

 

  

 

 

Figure 4.10: Scatterplot of observed Te vs predicted Te values for Te.All  random forest 

model,  RMSE = Root Mean Square Error, r2 and associated P value derived from correlation 

of observed vs predicted Te.  Black line indicates linear regression line and blue line indicates 

one-to-one line.    
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The Jackknifing approach to model evaluation showed that predictions vary 

substantially between plots and land cover classes (Table 4.4; Figure 4.12),.  Forested plots 

generally had higher r2 values between the observed and predicted values for Te (Table 4.4) 

than those found for urban forest and urban plots with little vegetation.   

 

 

Figure 4.11: Variable importance plot derived from model validation function for model 

Te.Air.UAV. Air.Temp = Air Temperature, LAI = leaf area index, contrast_mean = 

Contrast texture layer, b1entropy_mean = Entropy texture layer, diss_mean = 

Dissimilarity texture layer, secondm_mean = Second Moment texture layer, 

b1homogeneity_mean = Homogeneity texture layer, PG_mean = Greenness layer, 

variance_mean = Variance texture layer, mean_mean = Mean texture layer,  %IncMSE = 

percent increase of mean squared error. 
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Table 4.4: Random forest validation outcome for each plot using the Te.Air.UAV random 

forest model with a Jackknifing approach, where the plot indicated in the Plot No. column was 

omitted from training data and then used as a validation set, r2 and the associated P-value 

derived from correlation of observed vs predicted Te.   

 

 

 

 

 

 

 

 

 

 

 

Plot No. 
Land Cover 

Class 
r2 P-Value 

1  Forest   0.72 < 0.001 

2 Forest 0.83 < 0.001 

3 Forest 0.92 < 0.001 

4 Urban Forest 0.04 0.12 

5 Urban Forest 0.01 < 0.001 

6 Urban Forest 0.10 0.01 

7 Urban  0.16 0.04 

8 Urban  0.90 < 0.001 

9 Forest 0.85 < 0.001 

10 Forest  0.82 < 0.001 

11 Forest  0.06 0.08 

12 Urban Forest 0.00 < 0.001 

13 Urban  0.02 < 0.001 

14 Forest  0.85 < 0.001 

15 Forest  0.94 < 0.001 

16 Urban Forest 0.09 0.06 
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Figure 4.12 indicates a bimodal type structure in the majority of forest plots. This is 

likely due to  the cluster of cooler temperatures being where 3D replicas are in areas where 

there is a more closed and shaded canopy, resulting in more stable and lower temperatures, and 

the higher temperatures indicating where replicas were exposed to more solar radiation, likely 

by being placed where there is less or no canopy. Figure 4.12 (k) is an exception to this bimodal 

structure, this plot is coastal forest located right on the beach at the south-eastern point of the 

island, with exposed winds. The canopy consists solely of Caribbean almond (Terminalia 

catappa) trees which form an a unique forest structure with no understory present. Canopy 

make up, coastal winds and proximity to volcanic rock exposures all may have influenced the 

thermal regime of this plot, and the ability for the RF model to predict temperatures within this 

plot , as the model is based solely on canopy structure. However, please note, Figure 4.12 (b 

and c) are also coastal almond forest, and still show this bimodal structure.  
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Figure 4.12: Observed vs Predicted Te for each plot using the Te.Air.UAV random forest model with a Jacknifing approach. Labels a to p 

correspond to Plot number sequentially from 1 to 16. Point colours refer to land cover where purple = forested plots, orange = urban forest plots 

and black = urban plots. Blue lines indicate a one to one relationship. 
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4.4.2 Mapping Te  

The model Te.Air.UAV, which included air temperature and the UAV metrics 

(greenness and textures), was used to map Te across the whole of each plot. Figures 4.13 to 

4.22 show example raster layers for areas surrounding survey plots including the original RGB 

imagery and the Te prediction raster based on the Te.Air.UAV Random Forest model. Figures 

4.13 to 4.22 show RGB and Te raster maps for a subset of forest and more urbanised areas; 

similar figures for the remainder of the plots can be seen in Appendix 7. Maps highlight the 

whole of the orthomosaic as well as regions of interest to consider mapping performance. 

Examining Figures 4.13 to 4.22, the model has identified cooler areas where there are denser, 

or more homogenous, canopies and has also picked out warmer areas of canopy gaps well. It 

has also identified differences between tree species, whereby some species have more open 

canopies that allow more solar radiation to reach sub-canopy dwelling ectotherms. Examining 

plots within urban areas, the model has picked up that the areas are warmer, but there are some 

discrepancies when looking such areas, particularly relating to water and areas of agriculture. 

This corroborates results of the Jackknife approach for the model (Table 4.4; Figure 4.12), 

which showed that the model performed better in forested areas.  
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Figure 4.13: RGB raster layer of area surrounding Plot 1 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.14: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

1 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.15: RGB raster layer of area surrounding Plot 4 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.16: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 4 

with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.17: RGB raster layer of area surrounding Plot 6 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.18: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

6 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.19: RGB raster layer of area surrounding Plot 7 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.20: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding 

Plot 7 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure 4.21: RGB raster layer of area surrounding Plot 16 with zoomed in and highlighted areas of interest (magenta and 

black insets) 
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Figure 4.22: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area 

surrounding Plot 16 with zoomed in and highlighted areas of interest (magenta and black insets) 
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4.4.3 Anole Abundance and UAV Predicted Te  

Relating Anolis bicaourm abundance to the Te metrics derived from the Te.Air.UAV 

random forest model found that none of the metrics derived across of the whole of the plot 

significantly related to anole abunndance (Figure 4.23). Neither SD of Te (Figure 4.23; F = 

1.34, df =11, P = 0.27, r2 = 0.10), mean Te of the plot (Figure 4.23; F =0.01, df =11, P = 0.93, 

r2 = 0.00), or maximum Te of the plot (Figure 4.23; F = 0.07, df =11, P = 0.80, r2 = 0.00) were 

significantly related to anole abundance.   
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(a) 

 

(a) 

(c) 

 

(c) 

(b) 

 

(b) 

Figure 4.23: Te.Air.UAV Random Forest orthomosaic measures vs Anolis bicaorum (Anole) abundance across the whole of each survey plot. 

 a) Mean plot Te, b) Maximum Te and c) Standard deviation of Te 
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 Landscape metrics based on Thermally Tolerable areas (below CTmax) using 0.9cm 

resolution date were not significantly related to abundance (Figure 4.24). However results for 

total area (Figure 4.24.a, r2 = 0.25, P = 0.08) and number of patches (Figure 4.24.c, r2 = 0.25, 

P = 0.08), while not significant, warrant future investigation, with an increased sample size. 

When looking at the same landscape metrics for the resampled imagery (15cm 

resolution), there is still no significant relationship with A. bicaorum abundance for the survey 

plots (Figure 4.25). However, all the metrics, the total area and number of patches have the 

higher r2 values, but this could simply be due to chance.  
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Figure 4.24: Anolis bicaorum (Anole) abundance vs Landscape measures for spatial structure of 

thermal Category 1 for plot raster layers at a spatial resolution of 0.9cm. a) Total Category Area, 

b) Mean Patch Area, c) Number of Patches, d) Mean Euclidean Nearest Neighbour Distance and e) 

Standard Deviation of Euclidean Nearest Neighbour distance 
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Figure 4.25: Anolis bicaorum (Anole) abundance vs Landscape measures for spatial structure of 

thermal Category 1 for plot raster layers at a spatial resolution of 15cm. a) Total Category Area, b) 

Mean Patch Area, c) Number of Patches, d) Mean Euclidean Nearest Neighbour Distance and e) 

Standard Deviation of Euclidean Nearest Neighbour distance 
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4.5 Discussion  

Measurements of canopy structure from UAV imagery have the potential to provide 

fine-scale predictions of spatial heterogeneity of thermal habitat quality for animals at finer 

resolution than can currently be obtained from existing mechanistic models, or from ground-

based methods traditionally used in thermal ecology. This chapter has proposed a workflow for 

mapping sub-canopy tropical lizard Te at fine spatial scales using high-resolution optical UAV 

imagery coupled with air temperature data. This proposed workflow allows for high spatial 

resolution and spatial extent measures of Te below the canopy, helping fulfil the need for data 

on Te for forest lizard species at ecologically relevant spatial resolution and extent.  

Results of the random forest regression models indicate that the model that included air 

temperature and the combined UAV data (greenness and texture) had higher predictive 

performance of Te than models using just air temperature or coupling air temperature with 

ground based ceptometer LAI measurements. Plot air temperature accounted for the most 

variation in Te, as a single variable, and in the models where it was included; it always was the 

most important variable within the model, highlighting the importance of having air 

temperature measures at relevant spatial resolutions, unlike those seen in broad climatic 

datasets. It was also to be expected that incorporating LAI into a model, which also included 

air temperature, would increase the model performance in predicting Te, by incorporating a 

measure of canopy structure (Algar et al., 2018; Maclean and Klinges, 2021). However, my 

results indicate that including UAV-derived canopy measurements in the model with air 

temperature accounted for a higher percentage of variation within Te than using air temperature 

and ground-based LAI. This suggests that greenness and texture captured biophysically 

relevant aspects of the canopy that influence incident solar radiation beyond that captured by 

LAI measurements from the ground. Nonetheless, the ground-based LAI, as only one variable, 

does well in the model when coupled with plot air temperature, and was more important, based 
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on variable importance plots, than the UAV derived data. However, when considering the 

applications of the models, the UAV-derived data allows Te to be mapped across a larger spatial 

extent at higher spatial resolutions, with relatively simple data acquisition methods. It, 

therefore, confers an advantage to models including UAV data, rather than ground-based LAI 

measures.  

The Te.Air.UAV model performed best within forested areas and less well in other land 

covers, including highly urban plots. This is seen in the example maps of areas surrounding the 

plots. For example, areas of open agriculture being classified as cooler and roofs of some urban 

buildings being classified as cooler areas. This highlights the need to train the model further 

across different land covers, and in the case of urban areas, consider that the modelling 

approach may not be suitable due to a general lack of canopy. In such cases, the UAV imagery 

is capturing variation in the ground, rather than the influence of shade. In forests, however, 

where the model performed best, the findings are consistent with that found in Algar et al., 

(2018). They found that measures of canopy density (LAI) improved microclimate-only 

models of lizard body temperature in closed canopy environments, but had little influence in 

environments that were more open.  

 UAVs have been highlighted as a method for capturing high resolution spatial data for 

microclimate modelling (Duffy et al., 2021; Kašpar et al., 2021; Milling et al., 2018; Zellweger 

et al., 2019) and canopy structure, which can be captured with UAVs, can produce significant 

differences in microclimate (Kašpar et al., 2021; Maclean and Klinges, 2021). My work 

extends this to map an ecologically relevant measure for ectotherms (Te). This can then be used 

to determine thermal niche based suitability measures of the landscape at spatial resolutions 

relevant to the organism and across spatial extents relevant for use in species distribution 

modelling and to predict responses to environmental change (Sears et al., 2011; Sears and 

Angilletta, 2015). We can now set out air temperature loggers and Te 3D replicas for model 
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training, and can then fly a standard easily accessible RGB UAV platform, to map Te across 

the whole of the study area at a high spatial resolution, which will only be dependent on UAV 

flight area and image configuration.  

The benefits to this proposed workflow is that it captures relevant landscape level and 

ecologically relevant data for ectotherms at a spatial resolution that is relevant to the organism. 

This information can inform species distributions, risk and persistence models that are not 

based solely on microclimate or coarse resolution environmental data, but go beyond this to 

ecologically relevant measures for ectotherms (Te). The ability to map Te is especially 

important when considering thermal habitat suitability of A. bicaorum. In Chapter 3 it was 

demonstrated that even at a plot (20 x 20m) scale, variation in thermal habitat quality, which 

we measured as the percent of time the 3D Te replicas were within the Tpref range (25.4 - 28°C) 

had an influence on anole abundance, as well as an influence on its prey abundance. The 

workflow proposed also now allows us to categorise the spatial structure of thermally 

preferable patches across the whole of the plot, which is important to consider for lizard 

behavioural thermoregulation and energetics, which influences population fitness (Sears and 

Angilletta, 2015). However, when comparing the Te measures derived from the Te.Air.UAV 

models for the plots with  A. bicaorum abundance, no significant relationships were found with 

coarse measures (Mean Te, Maximum Te and SD of Te) or for the spatial arrangement of areas 

below 33.2°C (CTMax for A. bicaorum ). This could be due to the model focusing on solar noon, 

and not considering the time budget of thermally favourable conditions which influence 

distribution and fitness (Caetano et al., 2020; Logan et al., 2015, 2013c). This is corroborated 

by findings of Chapter 3, where the percentage of time within Tpref, was found to be 

significantly related to A. bicaorum abundance. My approach could be extended to consider 

changes in Te throughout the day. However, the ability to model Te, even at a single point in 
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time but across a complete landscape, including fine-scale heterogeneity, is step forward in 

measuring thermal habitat quality for ectotherms.  

Building on this foundation, future work toward improving model predictions could 

incorporate additional UAV data, such as canopy volumetric data from structure from motion 

(SfM) photogrammetry (Duffy et al., 2021; Zellweger et al., 2019). In addition UAV-derived 

tree and canopy height, which was found to be significantly related to  microclimate by (Kašpar 

et al., 2021), could also improve my models. Such additional measures are relatively simple to 

obtain methodologically from UAV derived data, only requiring the UAV images to have a 

sufficient amount of overlap for photogrammetry derived SfM methods. However, 

implementation and extraction of relevant measures, such as LAI, from SfM are in their infancy 

and would require additional work, which was not feasible within the timeframe of this work. 

Additional measures such as these, would feed into further training the model to potentially 

consider Te at other points in the day to incorporate the time budget element of thermal 

suitability modelling for tropical lizards.  

4.6 Chapter Conclusions  

My work has provided a step forward in mapping ectotherm Te at fine spatial resolution 

using optical UAV data coupled with air temperature. This workflow and model will allow us 

to map ecologically relevant measures of the thermal environment across larger areas at scales 

relevant to the individual animals and populations, something that until now was not feasible 

with standard ground-based methods or with mechanistic niche modelling. This now allows 

for us to consider the impact of anthropogenic and climate change on such species that are 

dependent on suitable thermal environments, such as A. bicaorum, and how the thermal 

microhabitat may alter with such phenomena. In the next Chapter, I will apply the methods 

covered here across high spatial resolution satellite imagery data (WorldView -2) across Utila. 

In addition, I will determine the potential change in thermal environment under anthropogenic 
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habitat conversion and climate warming across the island to determine the potential impact on 

A. bicaorum, and the conservation implications for this endemic species.   
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Chapter 5 : Quantifying available thermal habitat for Anolis 

bicaorum under anthropogenic land use and climate change using 

WorldView-2 imagery 

 

5.1 Chapter Overview  

Forest dwelling ectotherms, such as Anolis bicaorum, experience narrower fundamental 

thermal niches and are therefore may be more sensitive to a change in their thermal 

environment than species in more open habitats. Anthropogenic land use and climate change 

can both alter thermal habitats, where loss of forest canopy insulation and increased air 

temperatures are thought to degrade thermal conditions for forest thermal specialists. The 

island of Utila has undergone significant anthropogenic habitat conversion in recent years, 

leading to forest loss, and therefore a potential decrease in available thermal habitat for A. 

bicaorum. Here I use very high-resolution (VHR - 50cm spatial resolution) multispectral 

WorldView-2 (WV2) imagery to identify forest loss on Utila and map operative temperature 

(Te) across the island of Utila for 2018 and 2020. Coupling these results with known critical 

thermal maximum (CTmax) estimates for A. bicaorum, I calculate the available area of forest on 

the island of Utila that is within the thermal range for A. bicaorum under different land use, air 

temperature, and climate change scenarios. Results indicate a 14.08% loss of forest area 

between 2018 and 2020, but only a slight loss of suitable thermal habitat, due to the 

concentration of forest loss in areas where Te was already high. However, a scenario of 1.5oC 

warming in air temperature demonstrated a restructuring of the available thermal habitat, with 

a loss in the thermally suitable habitat and an increase in the warmer unsuitable classes.  Results 

of this work demonstrate the potential use of this approach in considering thermal refuges for 

the survival of ectotherms under climate change and land use change, whilst also highlighting 

the caveats of this approach and suggests alterations for future work.  
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5.2 Introduction  

Rising and more variable temperatures resulting from climate change are a significant 

threat to biodiversity worldwide (Thomas et al., 2004; Pereira et al., 2010). In a warmer world, 

species’ futures will depend on their ability to maintain favourable body temperatures, and thus 

maintain ecological function and evolutionary fitness (Kearney et al., 2009; Vasseur et al., 

2014). Many ectotherms are already operating close to their thermal limits, leaving little safety 

margin to behaviourally buffer higher temperatures (Deutsch et al., 2008; Munoz et al., 2014; 

Sunday et al., 2014). Evidence is now mounting that tropical ectotherms will be the hardest hit 

from warming, and studies have warned that tropical forest lizards, in particular, are in danger 

of extinction  (Huey et al., 2009; Logan et al., 2013b). 

 From previous chapters of this thesis, we know that thermal controls are important for 

Anolis bicaorum abundance. Results of Chapter 3 indicated that both leaf area index (LAI) and 

thermal habitat quality, specifically the time that each plot was within the Tpref range of A. 

bicaorum, are linked to A. bicaorum abundance by influencing their abundance both directly 

and indirectly, through multiple niche interaction pathways. Chapter 4 of this thesis highlighted 

the potential positive relationship between the amount of available habitat below the critical 

thermal maxima (CTmax) for A. bicaorum (determined from landscape metrics of total patch 

area and number of patches), and A. bicaorum abundance. While  these relationships were not 

significant (P = 0.08), this could be due to sampling design (low plot sample size) or that simply 

considering areas below CTmax does not directly relate to abundance. As it does not relate to 

activity time budgets, as was found to be a significant variable when considering abundance in 

Chapter 3 (percent of time within Tpref). Chapter 4 also highlighted the role of canopy structure 

in regulating sub-canopy operative temperatures of the anoles. Canopy cover and its role in 

maintaining stable sub-canopy microclimate conditions is also predicted to play a key role in 

allowing specialist forest species time to adapt to future climate by providing stable conditions 
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and influencing lizard body temperature (Algar et al., 2018a; De Frenne et al., 2019; Lenoir, 

2020) .  

In Chapter 4 of this thesis, I demonstrated a workflow to map sub-canopy operative 

temperature (Te) of lizards using unoccupied aerial vehicle (UAV) imagery. Standard RGB 

UAV imagery with a spatial resolution of 0.9cm was used to effectively map Te continuously 

across the extent of the UAV imagery, when coupled with air temperature layers. The model 

within the workflow was found to work well and best in forest environments where canopy 

heterogeneity plays a role in sub-canopy microclimates and thermal environments (Algar et al., 

2018a; Kašpar et al., 2021; Maclean and Klinges, 2021). Such workflows using UAV data are 

extremely useful for looking at Te at resolutions relative to the organism. However, UAVs have 

a limited flight time and spatial extent per flight, relying on battery power and UAV platform 

specifications. Therefore, to cover large spatial extents, several flights would be required, and 

in many cases, constraints imposed by flight location, weather and field season duration, make 

large numbers of flights infeasible. UAV imagery can also be limited by temporal extent, as 

repeated survey flights would have to be undertaken to achieve measurements over time, which 

may be limited by the need for repeated access to field sites and costs of multiple field seasons.  

Thus, the UAV-based workflow is especially useful when high-resolution data over a small 

area at a single point in time is required, but is less feasible when it is necessary to scale it up 

to cover broader spatial extents and longer time periods. This is where satellite imagery 

products can be of use.  

Satellites, such as WorldView-2 (WV2), which has eight multispectral bands, and up 

to 30cm spatial resolution, have the capability of collecting multispectral data at high spatial 

resolutions across a broader spatial extent than that achieved from UAVs. Satellites such as 

WordlView-2 also have a high temporal resolution as they continuously collect data of the 

earth surface. WV2 has a revisit time of no longer than two days, meaning they can collect high 
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temporal and spatial resolution data, providing data that cannot be easily, or feasibly, obtained 

through other approaches, such as UAVs. In this chapter, I apply the workflow developed in 

Chapter 4, developed for UAV data, toWV2 imagery to determine if this approach can also 

perform well using satellite imagery. 

 There were three main aims for this chapter; the first was to test the ability of WV2 

imagery, with a spatial resolution of 50cm, to predict sub-canopy ectotherm operative 

temperatures, using the workflow developed for UAV data (Chapter 4).  Aim 2 was to use 

WV2 satellite imagery to map land use change on Utila between the years 2018 and 2020 to 

determine forest loss on the island. Finally, the third aim was to map the sub-canopy operative 

temperature of Utila’s forest in 2018 and 2020 to determine how tolerable thermal habitat 

structure and availability for A. bicaorum has been affected by land cover change, and how it 

will be altered by warming air temperature.  The Te RF models were predicted across the 2018 

and 2020 WV2 images at a consistent air temperature to determine the difference in Te of the 

forests solely due to changes in the canopy, which includes anthropogenic alteration and 

complete clearing of the forest. The RF models then were run on the 2018 and 2020 images 

with a rise in air temperature of 1.5°C to simulate a climate-warming scenario. Using these 

model outputs for Te I quantified the available area and landscape configuration of tolerable 

thermal habitat for A. bicaorum under different scenarios.  

5.3 Material and Methods  

5.3.1 Data  

Land cover change was calculated using the WV2 8-band pansharpened imagery for 

years 2018 and 2020. For the operative temperature (Te) mapping, the ground-based data used 

in this chapter included operative temperature measurements for around solar noon for each 

3D replica over three days, the leaf area index (LAI measure) above each 3D replica, the 

locations of each replica, and the air temperature around solar noon for each plot over the three 
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days. Imagery data for the Te mapping was the WV2 texture metric raster layers and the WV2 

greenness layer, for both 2018 and 2020. Table 5.1 below refers to the field data used in this 

study and the section within previous chapter(s) that the full description of that data can be 

found. Subsequent method sections within this chapter outline Chapter 5-specific analyses.  

 

Table 5.1: Outline of data used in this Chapter (Chapter 5) 

Data Description Chapter & 

Section 

Operative 

Temperature (Te) 

data at Solar 

Noon 

Mean operative temperature of two measurements 

either side of solar noon (four measurements of Te 

total), for each 3D replica 

 

Chapter 4: 4.3.2 

 

Air Temperature  Mean air temperature for two measures, one each 

side of solar noon for each plot  

 

Chapter 4:4.3.2 

 

Locations of 3D 

replicas 

DGPS spatial point locations of each 3D replica 

within each plot  

Chapter 2: 2.5.1 

WV2 imagery  Eight layer orthorectified and radiometrically 

calibrated WV2 images  for  the years 2018  and 

2020 

Chapter 2: 2.11 

WV2 Greenness 

Layer 

WV2 Greenness raster layers for 2018 and 2020, 

resulting from processing of  RGB layers 

Chapter 2: 2.12 

WV2 Texture 

Layers 

UAV derived raster layers for seven texture metrics 

(Homogeneity, Contrast, Dissimilarity, Entropy, 

Mean, Second-Moment and Variance) for 2018 and 

2020. 

Chapter 2: 2.12 

 

5.3.2 Land Cover Change   

To quantify land cover change on the island, particularly forest loss, I carried out a land 

cover classification on each WV2 image and then calculated change as the difference between 

the resultant land cover maps. A random forest (RF) classifier was used as for the land cover 

classification as RF algorithms are particularly useful in working with linear and non-linear 

relationships within the same model as well as providing estimates of variable importance 

(Breiman, 2001). They are also are insensitive to multicollinearity of variables (Tang et al., 
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2020), and have been demonstrated to perform well with land cover classification (Adugna et 

al., 2022). The RF land cover classification was carried out using the ModelMap package 

(Freeman et al., 2009) in R version 4.1.2. Land cover training polygons were created in ArcMap 

10.4 based on direct observation of land cover and GPS data gathered in 2017, 2018 and 2019 

on the island, as well as personal observations and Google Earth imagery. Note that ground-

based land cover training data was not present for 2020. Therefore, to account for the fact that 

some areas of the GPS training data may have altered between years, and to avoid training the 

model with inaccurate training data, the training polygons were checked against the WV2 

imagery and only training data for land cover areas consistent between the years were used for 

training. Land cover training points were also biased towards the eastern portion of the island 

due to logistical difficulties in accessing the western regions of the island.  Eight land cover 

classes were considered: Agriculture, Forest, Mangrove, Dead Mangrove, Neotropical 

Savannah, Urban, Coast and Water (for details of each land cover see Chapter 2: Section 2.3). 

As a step to obtain a minimum of 100 training pixels per class, a random stratified subsample 

of 900 training pixels was used for model training. Classification accuracy assessment took the 

form of confusion matrices generated from both the random forest out-of-bag (OOB) estimate 

and an independent test set of 300 pixels. Overall accuracy, user’s accuracy and producer’s 

accuracy were then calculated as a measure of classification accuracy. As forest loss was the 

focus here and forest cannot establish itself in the span of two years, I constrained the 2020 

forest class output first by the forest in 2018. This also accounted for the fact that the 2018 

WV2 image had a section of island masked by cloud in 2018, (and therefore areas of what was 

potentially forest masked) that was not masked in and would count as forest in 2020. Meaning 

that potential forest loss would not be underestimated due to cloud cover influences. 
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5.3.3 Mapping Operative Temperature under land cover change  

Operative temperature (Te) was mapped across the whole of the island for 2018 using 

random forest regression models, following the same steps as in Chapter 4 (Sections 4.3.2 – 

4.3.5) and applying them to the WV2 image layers. Pixel values for the WV2 texture and 

greenness raster layers were extracted and incorporated into RF regression models along with 

the Te at solar noon for each of the 3D lizard replicas and air temperature within the plot at 

solar noon. Unfortunately, suitable WV2 imagery for 2019 (when the ground Te data was 

collected) were not available, due to either cloud cover or incomplete images. Modelling 2019 

Te data using 2018 imagery assumes that substantial canopy changes have not occurred. I thus 

manually examined the 2018 imagery at all 3D replica locations to determine if there were any 

observable canopy changes relative to on the ground observations made in 2019. While unable 

to detect slight canopy changes, this approach identified recent deforestation in the region 

surrounding plot 14 that occurred after the WV2 images from 2018 but prior to collection of 

2019 Te data. Thus, this plot was removed from the data used to train and validate the RF model 

(Te.WV2018 in Table 5.2). This model was then used to map Te across the forested areas of 

Utila assuming an air temperature of 30.4 °C, the mean air temperature measured across all 

plots (WV2018 scenario in Table 5.3).  

To determine how recent land cover change has affected thermally tolerable habitat on 

Utila, I mapped Te in 2020 by projecting the Te.WV2018 into 2020 using the WV2 imagery 

from that year, assuming a constant air temperature of 30.4 °C (WV20.RF18 in Table 5.3). 

However, there was a lack of atmospheric correction between the satellite imagery for the two 

years (see Chapter 2, Section 2.11). Thus, changes in pixel data may be driven by atmospheric 

variation between image scenes, rather than actual canopy change. However, my RF model 

relied on percent greenness, and it will therefore, be less sensitive to atmospheric differences 

than if they used absolute values. Nonetheless, to account for potential confounding effects of 
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atmospheric differences, I trained a second RF model using the Te data from 2019 and WV2 

imagery from 2020 (model Te.WV2020 in Table 5.2). Before training the model, I checked 

that there had been no deforestation in any of the plots since Te data were collected in 2019; no 

such changes were identified so no additional plots were removed from this analysis. I then 

used this model to create a second map of Te across Utila in 2020, again assuming an air 

temperature of 30.4 °C (WV20 in Table 5.3). The Te.WV2018 assumes that all changes in Te 

between 2018 and 2020 are due to canopy changes, with no component resulting from 

atmospheric differences. In contrast, the Te.WV2020 model assumes that any changes in the 

canopy of the plots is due to atmospheric differences, rather than actual change. They therefore 

represent two ends of a continuum with the real values falling somewhere in between.  
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Table 5.2: Details of WV2 Te Random Forest Regression Models 

Model 

Name 

Response 

Variable 

WV2 Image Pixel 

Values Extracted From 
Description/ Predictors 

Te.WV2018 Operative 

Temperature 

(Te) 

All greenness and 

texture measures derived 

and extracted from 2018 

WV2 Image  

Air Temperature of Plot and WV2 

greenness and texture measures 

based on the 2018 WV2 image 

pixel values.  

Predictors =  Plot Air 

Temperature, WV2Greenness  and 

WV2 texture metrics  

Mtry = 3  

Ntrees = 500 

 

Te.WV2020 Operative 

Temperature 

(Te) 

All greenness and 

texture measures derived 

and extracted from 2020 

WV2 Image 

Air Temperature of Plot and WV2 

greenness and texture measures 

based on the 2020 WV2 image 

pixel values.  

Predictors =  Plot Air 

Temperature, WV2Greenness  and 

WV2 texture metrics  

Mtry = 3  

Ntrees = 500 

 

5.3.4 Mapping Te under a climate warming scenario 

To consider the possible impact of climate change, in this case air temperature warming, 

on the available area and distribution of suitable thermal habitat for A. bicaorum, I created new 

maps of Te across Utila that assumed an air temperature of 31.9 °C, i.e. warming of 1.5 °C 

compared to the original analysis. Using this elevated air temperature, I remapped Te in 2018 

using the Te.WV2018 model (WV18.WARM in Table 5.3), and in 2020 by projecting 

Te.WV2018 model (WV20.WARM.RF18 in Table 5.3) and the Te.WV2020 model 

(WV20.WARM in Table 5.3). A warming of 1.5°C was chosen to highlight the impact of subtle 
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changes in air temperature on the thermal environment. Logan et al. (2013), whose work was 

based on Utila, in similar locations/ land cover types covered in this work, categorised changes 

to Anolis bicaorum fitness and activity time via a 3°C warming, based on IPCC (2007), 

therefore I decided to halve that prediction to be more conservative with respect to the 

magnitude of future change. However, this is an arbitrary number and the model could be run 

under several air temperature scenarios.  
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Table 5.3: Name of each scenario, the year of the image used, the random forest (RF) model used for prediction of Te, the air temperature scenario 

and a short description for each of the six scenarios 

Scenario Year RF Model 
Air Temp 

(°C) 
Description 

WV18 2018 Te.WV2018 30.4 Te at solar noon for all land cover classes in 2018 based on an air temperature of 30.4°C. Random 

forest prediction model is based on training the data on WV2 2018 image pixel values. Air 

temperature of 30.4°C is based on mean air temperature of plots during 2019 survey season. 

WV18.WARM 2018 Te.WV2018 31.9 Te at solar noon for all land cover classes in 2018 based on an air temperature of 31.9°C – 

representing a warming in air temperature of 1.5°C to that seen in WV18 model. 

Random forest prediction model is based on training the data on WV2 2018 image pixel values. 

WV20 2020 Te.WV2020 30.4 Te at solar noon for all land cover classes in 2020 based on an air temperature of 30.4°C. Air 

temperature of 30.4°C is based on  mean air temperature of plots during 2019 survey season. 

Random forest prediction model is based on training the data on WV2 2020 image pixel values. 

WV20.WARM 2020 Te.WV2020 31.9 Te at solar noon for all land cover classes in 2020 based on an air temperature of 31.9°C – 

representing a warming in air temperature of 1.5°C to that seen in WV18 model. 

Random forest prediction model is based on training the data on WV2 2020 image pixel values. 

WV20.RF18 2020 Te.WV2018 30.4 Te in 2020 based on an air temperature of 30.4°C. Air temperature of 30.4°C is based on  mean air 

temperature of plots during 2019 survey season. Random forest prediction model is based on 

training the data on WV2 2018 image pixel values. 

WV20.WARM.RF18 2020 Te.WV2018 31.9 Te at solar noon for all land cover classes in 2020 based on  an air temperature of 31.9°C – 

representing a warming in air temperature of 1.5°C to that seen in WV18 model. 

Random forest prediction model is based on training the data on WV2 2018 image pixel values. 
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5.3.5 Quantifying change in Thermally Tolerable habitat  

Because air temperatures at solar noon were outside of the Tpref range for A. bicaorum, 

I considered a more liberal measure of thermally suitable habitat based on the critical thermal 

maximum (CTmax). Work by Logan et al. (2013), found that A. bicaorum had a CTmax of 33.2°C. 

The use of such measures to predict responses to climate change have been called into question 

(Clusella-Trullas et al., 2021). But currently, there are no reasonable alternative measures to 

replace these metrics to determine responses for many ectotherms (Clusella-Trullas et al., 

2021). Work from Chapter 3 of this thesis indicated the importance of time budgets of A. 

bicaorum, specifically the percent of time each plot had 3D replicas within A. bicaorum Tpref 

range, and abundance. Due to the nature of the models used in this chapter and in Chapter 4, I 

cannot estimate time budget as the models only consider the Te at solar noon. In the absence of 

being to calculate thermal suitability metrics such as time in Tpref using these models I 

calculated the area of forest that sits below and above CTmax for A. bicaorum at solar noon as 

a measure of thermally suitable forest habitat.    

 As A. bicaorum is a forest dwelling species (Brown et al., 2018; Chapter 3 Results), I 

first extracted the forested areas of Utila for both 2018 and 2020 from the land cover mapping 

(Chapter 5: section 5.3.2). I then clipped the Te image for each of the predictions (Table 5.3) 

by the extent of the forest for the corresponding year (2018/2020). The resulting clipped Te 

image was then reclassified into two categories (Table 5.4), based on CTmax for A. bicaorum. 

The thermally tolerable category included all areas with temperatures below 33.2°C within the 

clipped image, and the thermally intolerable category included any temperature 33.2°C and 

above.  The thermally intolerable category depicts areas that would not be thermally suitable 

for A. bicaorum, as their Te would rise above their CTmax if they remained in that area. In order 

to determine the available thermal habitat for A. bicaorum, the available area of forest that had 
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a Te below their CTmax range (thermally tolerable category) was calculated for each of the 

scenarios outlined in Table 5.3.    

Table 5.4: Temperature Categories relating to A. bicaorum thermal habitat quality 

 

To determine the effect of land cover conversion and climate change on the spatial 

distribution of thermally favourable forest habitat for A. bicaorum, I quantified standard 

landscape metrics focusing on the spatial distribution of the thermally tolerable category (< 

33.2°C). Forested areas within this category were extracted for each of the image scenarios 

outlined in Table 5.3 and loaded into the landscapemetrics (Hesselbarth et al., 2019) R package, 

whereby the number of patches, total area (m2) and mean patch size (m2) were calculated. Due 

to insufficient computing capacity the mean nearest neighbour Euclidean distance (m2), and 

standard deviation of nearest neighbour Euclidean distance (m2) could not be calculated.  

 

 

 

 

 

 

 

 

 

 

 

Category  Temperature  (°C) 

Thermally Tolerable  < 33.2  

Thermally Intolerable  ≥ 33.2  
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5.4 Results  

5.4.1 Land Cover Change  

Random Forest land cover classifications had varying levels of overall accuracy, based 

on the OOB validation and independent test set (Table 5.5).  

 

Table 5.5: Overall Accuracy for 2018 and 2020 land cover classifications as calculated from 

Out of Bag (OOB) and independent test data accuracy assessment 

Year OOB Overall Accuracy (%) Test Data Overall Accuracy (%) 

2018 83.03 76.36 

2020 84.12 83.59 

 

Forest class classification accuracy from 2018 and 2020 WV2 images varied depending 

on the year and validation type (OOB and Independent test set). The Users and Producers 

accuracies for these are shown in in Table 5.6. With regard to the lower accuracies for the forest 

class, the confusion matrices identified that the forest was often misclassified as mangrove and 

agricultural areas.  Confusion matrices for the land cover maps derived for both 2018 and 2020, 

using the OOB validations and test validation sets can be seen in Appendix 8.  

 

Table 5.6: Users and Producers Accuracy of the Random Forest classifications for the years 

2018 and 2020 using the OOB Validation and Independent Test Dataset for the Forest Land 

Cover Class 

Year 
OOB Users 

Accuracy (%) 

OOB Producers 

Accuracy (%) 

Test Data Users 

Accuracy (%) 

Test Data 

Producers 

Accuracy (%) 

2018 79.83 75.40 64.10 62.50 

2020 84.50 80.15 75.92 83.67 
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Due to forest being misclassified as mangrove and agriculture, and considering my aim 

of quantifying forest loss on the island (which is happening when looking at direct observation 

of the WV2 imagery between the years), I constrained the classified forest pixels in 2020 by 

what was classified as forest in 2018. This is to account for pixels classified as mangrove in 

2018 being classified as forest in 2020 and underestimating forest loss. I also grouped any 

pixels classified as mangrove in 2020 that were within the original area of forest classified in 

2018, to be considered as forest in 2020.  Forest would not change to mangrove or vice versa 

in two years, therefore this change is likely due to differences in the classification and splitting 

between these classes, rather than physical changes on the ground. Note that these measures 

described above are used to account for land cover classification inaccuracies, and the selection 

of this area of forest is only used to constrain the Te map for the whole of the island to ecological 

relevant land cover types for A. bicaorum, and comparing Te within this defined area over the 

different scenarios.  

Results of the RF land cover classification identified 10.86 km2 of forest in 2018 and 

9.33 km2 in 2020, a loss of forest area of 1.53 km2, a 14.08% loss in forest cover.  Land cover 

maps for both 2018 and 2020 can be seen in Figure 5.1.  
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a) 

b) 

Figure 5.1:  Land Cover on the island of Utila, Honduras derived from random forest classification 

of WorldView-2 (50cm spatial resolution) multispectral imagery, in the years a) 2018 and b) 2020 
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5.4.2 Mapping Te  

Results of the RF regression models to predict Te at solar noon indicated that WV2 

imagery metrics (greenness and texture) coupled with air temperature reasonably predicted Te 

at solar noon (Figure 5.2). Both the RF models (Te.WV2018 and Te.WV2020) performed well 

when validating with an independent test dataset (Figure 5.2).  

 

 

The variable importance plots differed between the two RF models (2018 and 2020; 

Figure 5.3). In the RF model based on 2018 pixel data (Te.WV2018 - Figure 5.3a), the percent 

green value was of higher importance that the texture variables. However, for the Te.WV2020 

(Figure 5.3b) some of the texture variables had greater importance than percent green values. 

This could reflect real differences in the canopy components most influencing Te, but also could 

be due to the OOB validation shuffling of variables. Air temperature is the most important 

variable in both models, which concurs with the results of Chapter 4.  

Figure 5.2: Observed vs predicted Te for test data for random forest models a) Te.WV2018 and b) 

Te.WV2020. Blue line indicates one to one line, black line indicates simple linear model between 

values 
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Figure 5.3: Variable importance plots for the Te RF models a) Te.WV2018 and b) 

Te.WV2020.   WV_Contrast = Contrast texture layer, WV_Entropy = Entropy texture layer, 

WV_Dissimilarity = Dissimilarity texture layer, WV_Secondmoment = Second Moment 

texture layer, WV_Homogeneity = Homogeneity texture layer, WV_PG = Greenness layer, 

WV_Variance = Variance texture layer, WV_Mean = Mean texture layer, %IncMSE = 

percent increase of mean squared error 

 

5.4.3 Mapping Change in Thermally Tolerable Habitat over Different Scenarios  

Considering first the comparison between 2018 and 2020 using the RF model trained 

in 2018 at an air temperature of 30.4 °C (WV20.RF18 vs WV18), I found that the area of 

thermally tolerable habitat hardly declined, changing from 9.22 km2 to 9.20 km. However, 

considering the model trained in 2020 (to account for atmospheric differences, WV20), the 

amount of thermally tolerable habitat declined to 8.87 km2 (a decline of 3.8%). These losses in 

thermally tolerable areas likely reflect physical loss of forest area between 2018 and 2020. 

However, much of the forest that was already in the Thermally Intolerable category in 2018 

(Figure 5.4, Table 5.7).  
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Based on 2018 conditions, a warming of air temperature by 1.5 °C (WV18.WARM) 

would result in a decline of thermally tolerable habitat from 9.22 km2 (WV18) to 8.18 km2, a 

decline of 11.3% (Table 5.7; Figure 5.4). In 2020, using the model trained in 2018, a warming 

of 1.5 °C (WV20.WARM.RF18) would reduce thermally tolerable habitat from 9.20 km2 

(WV20.RF18) to 7.90 km2, a reduction of 14% (Table 5.7; Figure 5.4). Using the 

WV20.WARM model resulted in a much greater predicted loss of thermally tolerable habitat 

under warming, from 8.87 km2 (WV20) to 5.42 km2 (38.9%; Table 5.7, Figure 5.4).  

 

Table 5.7: Area of forest within each thermal category for different scenarios on Utila. 

Scenarios as outlined in Table 5.3 

Scenario Year 

 

RF Model 

Used 

Air 

Temperature 

(°C) 

 

Thermally 

Tolerable 

Area 

(km2) 

 

Thermally 

Intolerable 

Area 

(km2) 

WV18 2018 
 

Te.WV2018 
30.4 

 

9.22 

 

1.64 

WV18.WARM 2018 Te.WV2018 31.9 

 

8.18 

 

2.68 

WV20 2020 Te.WV2020 30.4 

 

8.87 

 

0.47 

WV20.WARM 2020 Te.WV2020 31.9 

 

5.42 

 

3.91 

WV20. RF18 2020 Te.WV2018 
30.4 

 
9.20 0.13 

WV20.WARM.RF18 2020 Te.WV2018 
31.9 

 
7.90 1.40 
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Figures 5.5 to 5.7 depict the map of the spatial configuration of the thermal categories 

(Thermally Tolerable and Intolerable) across the entire island of Utila under all six model 

scenarios.  

 

 

 

 

 

 

Figure 5.4: Area of Forest (km2) within each thermal category on Utila, under different model 

scenarios, descriptions as seen in Table 5.3 
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Figure 5.5: Map of operative temperature (Te) within forest on Utila in 2018 (from predictions 

of the Te.WV2018 RF model), that are within the Thermally Tolerable (<33.2°C) and 

Thermally Intolerable (≥33.2°C) categories, a) Scenario WV.18 and b) Scenario 

WV18.WARM. 

a) 

b) 
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Figure 5.6: Map of operative temperature (Te) within forest on Utila in 2020 (from predictions 

of the Te.WV2020 RF model) that are within the Thermally Tolerable (<33.2°C) and 

Thermally Intolerable (≥33.2°C) categories, a) Scenario WV.20 and b) 

ScenarioWV20.WARM. 

a) 

b) 
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Figure 5.7: Map of operative temperature (Te) within forest on Utila in 2020 (from predictions 

of the Te.WV2018 RF model) that are within the Thermally Tolerable (<33.2°C) and 

Thermally Intolerable (≥33.2°C) categories, a) Scenario WV20.RF18 and b) scenario 

WV20.WARM.RF18 

a) 

b) 
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Land cover change from 2018 to 2020 (air temperature = 30.4 °C) fragmented thermally 

tolerable habitat, resulting in more patches of smaller size, regardless of which model was used 

for 2020 (Table 5.8). As expected, based on total area calculations, projecting the 2018 model 

(WV18) into 2020 (WV20.RF18) resulted in small changes to patch number and area 

(approximately 1%), while comparing the WV20 model to WV18 identified greater changes 

of +3.2% and -6.8% for patch number and mean area, respectively (Table 5.8). Warming 

scenarios of 1.5 °C had greater effects on patch number and mean patch area. Warming under 

the WV20.RF18 model (WV20.WARM.RF18 – WV20.RF18) found large potential changes 

in patch number and mean patch area of +26.4% and -32.0%, respectively. Comparing 

WV20.WARM and WV20 revealed a smaller change in the decrease in patches, where the 

number of patches decreased by 2.6%, however patch area decreased by 57%.  

 

Table 5.8: Landscape metrics derived from each of the image scenarios for Thermally 

Tolerable habitat 

 

Scenario 

 

Year 
Air Temperature 

(°C) 

Number of 

Patches 

Mean Patch 

Size 

(m2) 

WV18 

 
2018 30.4 640535 14.38 

WV18.WARM 

 
2018 31.9 880442 9.30 

WV20 

 
2020 30.4 

644440 

 

21.04 

 

WV20.WARM 

 
2020 31.9 661499 13.40 

WV20. RF18 

 
2020 30.4 647266 14.23 

WV20. WARM.RF18 
2020 

 
31.9 818268 9.68 
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5.5 Discussion  

The results of this work demonstrate that WV2 satellite data at 50cm spatial resolution 

can be effectively used within the same workflow that was developed with UAV data in 

Chapter 4. This now allows Te to be mapped at broad spatial extents with high temporal 

repeatability (e.g. up to every two days). These are far greater than could be feasibly achieved 

with a UAV, yet still maintain a relatively high spatial resolution. Theoretically, with 

appropriate training data, these methods could be used not just to map Te across entire 

landscapes (as here), but also across whole continents or even globally. Secondly, the work has 

outlined the value of using such methods to quantify thermal habitat change and loss of 

thermally tolerable habitat for species on tropical islands under land cover and climate change 

scenarios, but has also highlighted the significant challenges that still remain in using satellite 

time series to achieve this goal. 

 Although the RF prediction models performed well in terms of predicting the test data, 

applying the workflow and RF models correctly across different images comes with limitations. 

For example, there is a need to gather ground data at the same time as the satellite image to 

train the model sufficiently. Due to considerations such as cloud cover, timing of the satellite 

passing over and image completeness, it is impossible to predict whether imagery during Te 

replica deployment will be available. Such problems are common across many applications of 

satellite imagery (Dubovik et al., 2021; Xie et al., 2008). Another key consideration is that is 

crucial to collect sufficient ground spectral calibration data to allow for the images to be 

effectively atmospherically corrected, so that the correctly trained models can be predicted 

across images without the influence of potential differences in pixel values based solely on 

atmospheric variation between image scenes. This need for ground spectral data is highlighted 

by the fact that there are many atmospheric correction models, however very little comparative 

studies have been done to evaluate their performance on WV2 images (Marcello et al., 2016).  
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Differences between the outcomes from the two RF prediction models (Te.WV2018 and 

Tw.WV2020) had substantial consequences on the calculated area of thermally tolerable 

habitat between scenarios. Therefore, future work must consider these implications and look 

to develop best practice guidelines for those using this workflow.  

 Another limitation that must be considered when evaluating how deforestation has 

influenced Te across Utila is the potential for errors in land cover classification. In my land 

cover classification, the initial land cover accuracy for the forest class was not as high as could 

be achieved using remote sensing methods which can be well over 90% overall accuracy (Xie 

et al., 2019). This is due to misclassification between mangrove, forest and agriculture, which 

are common misclassifications (Richards and Friess, 2016). Another likely limitation is the 

size and spatial distribution of on the ground training data. The majority of the training data 

acquired was for the eastern portion of the island due to logistical considerations, and ideally 

for random forest classification we would have more spatially independent training data and a 

higher volume of training points (Millard and Richardson, 2015). To account for pixel 

speckling influences on the classification, object-based image classification may also be a way 

forward for categorising forest area on the island. These limitations to the work, both in terms 

of training the Te model and the relatively low land cover classification accuracy for forests, 

highlight that satellite remote sensing imagery, although a valuable resource, carry with them 

considerable challenges in implementing them to answer ecological questions. As remote 

sensing data and methods have become increasingly popular with ecologists, over the past 

several decades, and more recently with thermal ecologists (Kašpar et al., 2021; Milling et al., 

2018; Still et al., 2019; Webster et al., 2018). And have been highlighted as key inputs for many 

avenues of biodiversity research (Cavender-Bares et al., 2022), highlighting such caveats when 

it comes to data application and workflows is important to limit incorrect use and over 

expectation of such data for their work.   
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Although my findings come with caveats, the results indicate the usefulness of 

considering thermal habitat change due to anthropogenic land-use and climate change on a 

scale relevant to individual organisms across the entire range of a species. Species such as 

Anolis bicaorum are limited in their dispersal potential by their isolation on a single island an 

are therefore unable to undergo large scale geographic range shifting as a mechanism to 

respond to climate change, as many (but not all) mainland species can (Algar et al., 2009; Chen 

et al., 2011; Kharouba et al., 2009; Parmesan et al., 1999).  In addition, coarse scale climate 

data are not as useful for such dispersal limited species as they do not capture trends at the 

microhabitat scale (Lembrechts et al., 2019). Here, I have shown that VHR satellite imagery 

(WorldView-2), represents a viable alternative to broad-scale macroclimate data and coarser 

remote sensing datasets than have bene used previously (e.g. Algar et al. 2018) has been used 

to quantify the impacts and potential future risks of land cover and climate warming on species 

thermal environments .  

Results of the random forest model for both the years 2018 and 2020 indicated similar 

results to that seen in Chapter 4 in that when coupled with air temperature, measures of 

greenness and texture derived from the WV2 imagery were a reasonable way to predict sub-

canopy operative temperatures of anoles at a scale relevant to them. This work corroborates 

suggestions made by (Zellweger et al., 2019) in that remote sensing platforms can be used as 

inputs for species relevant measures of microclimate across spatial coverages. My work, 

however, goes beyond microclimate to predict the temperatures actually experienced by 

organisms, i.e. the operative temperature (Te; Bakken et al. 1985). My machine learning 

approach was also explained far higher amounts of variance in operative temperature than 

previous applications that considered coarser remote sensing data and biophysical models 

(Algar et al., 2018), and at resolutions that make quantifying thermal habitat variability for 

highly range-restricted species like A. bicaorum feasible.  
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On Utila, between 2018 and 2020, I identified a loss of forest of around 14%. Such 

losses are important, considering that A. bicaorum is a primarily a forest dwelling species 

(Brown et al., 2017) and is endemic to the island of Utila. Although not all forested areas on 

Utila are of equal quality for A. bicaorum (Chapter 3), any forest loss is a conservation concern 

given its restricted distribution and is also likely to negatively effect  other species that use 

these habitats, especially if their niches are thermally aligned with A. bicaorum’s, as is the case 

for forest arthropods (Chapter 3).    

My analysis of changes in the amount of thermally tolerable habitat from 2018 to 2020 

demonstrated that although forest loss had occurred on the island, there was limited change in 

thermally tolerable habitat. Thus, the forest loss was primarily from areas where the forest sat 

in the Thermally Intolerable temperature range. Practices such as thinning of the forest are 

commonly seen in Utila, to raise the aesthetic appearance of the area and consequently sell 

forest plots for development, this results in an alteration in canopy structure. These results of 

primarily loss of forest from Thermally Intolerable category may indicate a phased approach 

to forest loss on the island, where alteration in canopy structure from this thinning for aesthetic 

purposes would result in a hotter environment, before the plot is cleared altogether for 

development.  

These results for the land cover change scenario highlight several key considerations 

for conservation, the first being the need to monitor the quality of forest for the species and 

whether all forest is thermally suitable (which I have also highlighted in the results of Chapter 

3). The second is the need to monitor alterations to the environment at small scales, such as 

forest degradation at a plot level (and how this influences niche factors such as the thermal 

environment at small scales).  Thirdly the need to monitor change within a habitat at relevant 

spatial scales to pick out these fine scale areas of degradation. The work of this chapter and 
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Chapter 4 has also proposed a workflow and model in which to do this at relevant spatial scales 

across large geographic spatial extents via remote sensing methods.   

 I found that climate warming of 1.5 °C would have far greater effects on the amount 

of thermally tolerable habitat than the observed land cover change. This is in apparent contrast 

to recent work which has suggested thermal changes due to land cover alteration will greatly 

outstrip those from climate change (De Frenne et al., 2021). However, my analysis considered 

land cover change over a limited time (2 years) and compounding changes over the time taken 

for temperatures to warm 1.5 °C would likely produce different results.  I found that 

WV20.WWARM scenario has far less areas of favourable habitat than that seen in 

WV18.WARM scenario. However, a less dramatic restructuring is seen when comparing the 

WV18.WARM and WV20.WARM.RF18 scenarios. This increase in the effect of warming in 

2020 compared to 2018 suggests that while land cover changes alone, may not have tipped 

thermal habitat over the tolerable/intolerable threshold, it did result in warmer habitats which 

render A. bicaorum  more vulnerable to warming. This highlights the importance of considering 

how land cover change and climate warming are going to influence species on two fronts, and 

the importance of considering the spatial scale of these measures.  This is also a key 

consideration when modelling the persistence of such species as tropical forest ectotherms who 

are adapted to a thermally homogenous environment and are already operating close to their 

thermal limits (Huey et al., 2009; Logan et al., 2013; Sunday et al., 2014). This potential shift 

in availability of thermal habitat is of import to A. bicaorum as, outlined in Chapter 3, the 

thermal environment is important for abundance both directly and indirectly, with prey biomass 

also being influenced by the thermal environment. This potential coupling of thermal niches 

between prey and A. bicaorum, and consequently loss of thermal habitat will lower fitness 

levels and abundances by influencing two important niche axes for of a species already at threat 

from direct habitat conversion on an island with a growing human population. 
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 The spatial configuration of the thermal environment is also a key consideration for 

ectotherms, the efficiency of behavioural thermoregulation (Bakken et al., 2014; Sears et al., 

2011; Sears and Angilletta, 2015) and individuals’ ability to gather sufficient resources (Sears 

et al., 2011; Sears and Angilletta, 2015). My work has demonstrated that land cover change 

and potential climate change will alter the number of thermally tolerable patches of forest as 

well as mean patch size by further fragmenting available thermally suitable habitat and 

reducing the size of thermal refuges. The ability to quantify these metrics across whole 

landscapes is a methodological step forward. Fragmentation of thermal environments will not 

only influence thermoregulation opportunities, but may also result in edge effects and edge 

warming which could influence species persistence. For example fragmentation of forest and 

thermal habitats would lead to an increase in edge area; edges experience , hotter and more 

variable conditions  than forest interiors (Ewers and Banks-Leite, 2013; Magano et al., 2015). 

These warmer edges and areas of thermally intolerable habitat interlacing between the 

thermally tolerable areas may also lead to other potential ecological implications, such as 

invasion pathways for warmer adapted species. On Utila, one such warm-adapted species is 

Anolis sagrei (Battles and Kolbe, 2019), which is invasive on Utila (Brown & Diotallevi, 2019) 

and a potential invasive competitor for A. bicaorum should it be able to expand its range out of 

the warmer urban environments of Utila town. The approach I have introduced here advances 

our ability to quantify fine scale change in the spatial configuration of thermal habitats across 

large spatial extents. 

5.6 Chapter Conclusions 

This chapter has outlined and demonstrated how VHR satellite imagery can be used to 

monitor and predict changes in not just suitable land cover classes, but also in thermal 

suitability of these classes, which is important for our predictions for species persistence under 

climate and land use change, which can inform conservation and management practices. 
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However, my work has also highlighted the need for proper planning when it comes to remote 

sensing imagery training and considerations that must be made when applying such data. The 

work also has larger implications for how we can use such data in large-scale assessments of 

the thermal habitat across a landscape and as potential inputs for mechanistic models to model 

how species persists in an ever-changing world.  
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Chapter 6 : Thesis Summary and Conclusions  

 
The motivation behind this thesis is that current measures of thermal environments and 

landscapes do not sufficiently capture what is experienced by individuals on the ground, and 

therefore our understanding of individual responses to the thermal environment, which scales 

to population level dynamics, is limited. Within this broader motivation, there were two aims. 

The first was to further our understanding of what drives variation in species’ abundance, 

specifically the endemic Anolis bicaorum on the island of Utila, at fine spatial scales, 

particularly in the context of rapid land cover change and human habitat conversion,. The 

second was to evaluate different remote sensing systems for predicting sub canopy ectotherm 

operative temperature (Te) in order to map the thermally available environments for A. 

bicaorum, at both ecologically and spatially relevant scales.  

To meet the first aim (Chapter 3), I tested which niche axes influenced the abundance 

of the focal species (A. bicaorum). The work focused on how thermal habitat suitability, prey 

availability and structural habitat suitability, all of which are relevant to anoles (Battles et al., 

2013a; M.A. Johnson et al., 2006; Logan et al., 2013b; Sears et al., 2016), interacted and 

influenced anole abundance. The research revealed that prey availability had the greatest direct 

effect on A. bicaorum abundance, but it also highlighted the interconnectedness of abiotic and 

biotic components that determine habitat quality and animal abundance. Rather than identify a 

single strong control on abundance, it was established that key abiotic factors (canopy cover 

and thermal environment) affect abundance through multiple pathways and have effects that 

are mediated by biotic interactions and the thermal niche of the focal species. Specifically, the 

results obtained indicated that the main thermal control on A. bicaorum abundance was the 

percentage of time each plot was within the thermal preference (Tpref) range. These findings 

further our understanding of the importance of activity time, not just for individuals, but also 

for populations. Individuals that can spend more time within their preferred temperature range 
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benefit from an increase in activity time (Gunderson & Leal, 2016), which allows increased 

utilisation of available resources (Battles and Kolbe, 2019; Gvoždík 2002; Huey et al., 2009; 

Logan et al., 2013; Sinervo et al., 2010). My work demonstrates that these effects scale to 

determine population abundance, and how it varies at fine spatial scales across a habitat 

gradient. It also informs current discussions as to how we should quantify the thermal quality 

of an environment, and therefore how best to model species responses to environmental change 

(Clusella-Trullas et al., 2021; Gunderson and Leal, 2016). Such understanding is especially 

important for forest dwelling ectotherms such as A. bicaorum, which have narrow fundamental 

thermal niches and are therefore are more sensitive to a change in their thermal environment 

(Huey et al., 2009; Logan et al., 2013b). 

My results also highlight the pervasiveness of canopy cover for mediating ecological 

dynamics at higher trophic levels, primarily through influencing the thermal landscape (sensu 

Nowakowski et al. 2018) but also indirectly through mediating trophic interactions. These 

findings demonstrate the importance of maintaining canopy cover and structure to maximize 

thermal habitat quality for cool-adapted species (Battles & Kolbe, 2018) and their prey (Lister 

& Garcia, 2018). Therefore, losses of thermal habitat quality, particularly due to canopy loss, 

may thus have greater effects than appreciated when only direct effects are considered. This is 

important to consider as models to predict vulnerability of ectotherms to future warming tend 

to focus on direct effects on activity time, thermal safety margins, and thermoregulation (e.g. 

Sinervo et al., 2010, Sunday et al., 2014). Results presented in this thesis therefore suggest that 

such models may actually underestimate risks, and that warming impacts may actually be 

magnified due to thermally induced changes in food availability, highlighting the need for 

greater focus on direct and indirect effects of temperature change (Kearney et al. 2013,Duclos 

et al., 2019) on species abundances. It also highlights the need to incorporate canopy measures 

at an organism-relevant spatial scale to meaningfully characterise the heterogeneity within 
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broader scale mechanistic models. I therefore focused on mapping lizard operative temperature 

on Utila using remote sensing methods (the second aim of this thesis), implementing current 

understanding of the link between canopy structure and lizards’ body temperatures (Algar et 

al., 2018b), to infer potential impacts of environmental change on A. bicaorum abundance.   

The use of remote sensing afforded the mapping of operative temperatures of species 

below the canopy. This is important as measuring species distributions and responses to 

environmental change currently rely on coarse scale landscape and climatic data at around 

1km2; however, species experience their environment at a much finer spatial scales (Sears et 

al., 2011). The need to measure species responses to their environment, specifically with such 

phenomena as climate change has been highlighted by many (Kearney and Porter, 2017; 

Maclean and Klinges, 2021; Sears et al., 2011; Sears and Angilletta, 2015; Suggitt et al., 2018).  

Mechanistic microclimate models have been developed, e.g. NichemapR (Kearney and Porter, 

2017) and Microclimc (Maclean and Klinges, 2021), to allow ecologists to consider 

microclimatic scales in their analyses. However, these mechanistic models downgrade the 

spatial resolution of coarse spatial data from weather stations, which often do not accurately 

represent the heterogeneity in the landscape and therefore conditions experienced by many 

organisms (Potter et al., 2013; Sears et al., 2011; Sears and Angilletta, 2015; Suggitt et al., 

2018). Remote sensing methods and data have been highlighted as a way in which we can 

gather sufficient spatial scale data to input into such mechanistic models (Duffy et al., 2021; 

Zellweger et al., 2019). The final two research chapters of this thesis (Chapters 4 and 5) were 

therefore geared towards how we can utilise such data and apply it to mapping ecologically 

relevant operative temperature data for ectotherms, at spatial scales relevant to the organism.  

Vegetation and canopy structure are often used in microclimate modelling (Duffy et al., 

2021; Maclean and Klinges, 2021; Milling et al., 2018), have been linked to lizard body 

temperature (Algar et al., 2018), and were found to be an important regulator of the thermal 
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environment within Chapter 3 of this thesis. The use of UAVs to gather sufficient microclimate 

input data has been highlighted previously (Duffy et al., 2021; Milling et al., 2018; Zellweger 

et al., 2019), however, studies actually using UAVs to acquire such data are limited, and there 

has been no attempt to extend beyond microclimate to directly predict animal operative 

temperatures. Results indicated that UAV-derived texture and greenness measures accurately 

modelled operative temperature when coupled with air temperature, and that the UAV 

measures performed slightly better than measures of canopy taken from the ground (i.e., with 

a ceptometer). However, there is a significant additional benefit to using a UAV rather than 

ground-based ceptometer measurements – the higher spatial resolution and coverage that are 

obtained compared to ground-based measures, and therefore the ability to map the operative 

temperature, across spatial extents that are only limited by your UAV flight area. This work 

will not only allow us to continuously map operative temperatures across continuous flight 

areas at high spatial resolutions, but will also allow us to consider the spatial heterogeneity of 

the thermal environment across entire landscapes, and how this influences behavioural 

thermoregulation and individuals ability to gather sufficient resources (Bakken et al., 2014; 

Sears et al., 2011; Sears and Angilletta, 2015). 

I did not find any significant relationships between the amount or configuration of 

thermally suitable habitat and A. bicaorum abundance, using operative temperatures from the 

UAV-model and CTmax (Logan et al., 2013) to determine thermal suitability. These results 

highlight that simply measuring operative temperature is not enough to quantify thermal habitat 

suitability and that we also need to know which niche limits are most important for the study 

species. There is currently  debate on which niche metrics are most suitable for determining 

the thermal suitability for a species (Clusella-Trullas et al., 2021).  In Chapter 3, I found that 

A. bicaorum abundance was most strongly related to the percent of time the operative 

temperature of a plot was within the Tpref range for the species. The lack of a relationship with 
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abundance and a CTmax based measure of suitability (Chapter 4) suggest that Tpref, and not 

critical limits are more appropriate for measuring thermal quality.   However, other factors may 

also have influenced the lack of association between abundance and UAV-derived thermal 

suitability. In particular, my model was only for solar noon and thus activity time budgets and 

thermally favourable habitat time budgets (such as the time within Tpref) could not be extracted 

from the UAV model data. Future work will look at the potential for the model to predict 

operative temperature across the time of day, and therefore incorporate these time budgets for 

species. A proposed avenue for this is to exploit the structure from motion (SfM) 

photogrammetry capabilities of UAVs to incorporate canopy point clouds into the model, as 

proposed by Duffy et al., (2021). These UAV SfM methods could also be combined with data 

on from a mobile terrestrial laser scanner (e.g. Geoslam Zeb-Revo), which would provide high-

resolution point cloud data for the whole of the plot to extract relevant measures such as canopy 

depth, canopy height (Kašpar et al., 2021), as well as understory measures.  

The UAV-based model of operative temperature appears to be better suited to forests, 

and predicts less well in other land covers, especially urban areas. This is not particularly an 

issue when looking at thermal suitability metrics for A. bicaorum, which is found in forested 

land covers. But it does highlight the need to train the model further across different land 

covers, and in the case of urban areas, consider that the model at present is not overly suited 

due to a general lack of canopy (Algar et al., 2018). Future work will look to train and apply 

the model across different land covers and geographical regions, as well as for different 

ectotherm species, to test its validity.  

The UAV-based approach can map thermal environments on a fine spatial scale, but is 

currently limited in its ability to cover large spatial extents, and requires repeated field visits to 

collect changes through time. An alternative approach is to use high-resolution satellite based 

imagery that can cover broader spatial extents and document changes through time. 
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Documenting such changes is important as anthropogenic land use and climate change are two 

drivers of thermal habitat alteration, where loss of forest canopy insulation, and increased air 

temperatures are thought to lead to a decrease in suitable thermal conditions for forest thermal 

specialists (Algar et al., 2018; De Frenne et al., 2021, 2019; Huey et al., 2009; Logan et al., 

2013c; Sinervo et al., 2010). The island of Utila has undergone significant anthropogenic 

habitat conversion in recent years, leading to forest loss, and therefore a potential decrease in 

available thermal habitat for A. bicaorum. The final research chapter (Chapter 5) of this thesis 

applied the model proposed in Chapter 4 to high-resolution (50cm spatial resolution) 

multispectral WorldView-2 satellite imagery over two periods (2018 and 2020) and across 

different air temperature scenarios.  

Results of the Worldview-2-based operative temperature model indicated similar 

performance as that seen in the UAV-based model; therefore, I propose that this workflow and 

model can be applied to high-resolution satellite imagery. This is important as now we can 

determine landscape-level influences on the thermal environment, measuring ecologically 

relevant (operative temperature) metrics at a spatial scale that is relevant to the species. These 

canopy heterogeneity outputs can also be used within mechanistic modelling as a source of 

higher resolution data as suggested by Zellweger et al. (2019). Remote sensing satellite 

platforms are becoming more sophisticated in both spatial and spectral resolutions (Cavender-

Bares et al., 2022; Heijden et al., 2022), this development of new sensors can provide exciting 

new data, at higher spatial and spectral resolutions that can potentially to be incorporated into 

future models. However, the work of this thesis also highlighted the significant challenges that 

remain in using satellite time series data, and the need for best practice when using these data.  

 Land cover change on the island on Utila led to a loss of thermally tolerable habitat 

(Chapter 5). This was proposed to likely be due to forest thinning activities taking place on the 

island and a phased approach to habitat clearance. This indicates the potential for such methods 
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to monitor habitat degradation, and its influence on the thermal environment, rather than solely 

focusing on complete forest loss. This work also corroborates what was found in Chapter 3 of 

this thesis, in that not all forest habitats are thermally optimal environments for A. bicaorum.  

This then in turn, highlights the actual need to map such habitat characteristics at these fine 

spatial scales, relevant to species niche requirements.  

Although land cover change had an impact on the thermal environment, results 

indicated that a 1.5oC warming in air temperature might lead to a complete restructuring of the 

available thermal habitat, with a loss in the thermally tolerable habitat. It was also found that 

the impact of this warming is far greater when also considering land cover change between 

2018 and 2020. This highlights the importance of considering how land cover change and 

climate warming are going to influence species on two fronts, and the importance of 

considering the spatial scale of these measures (Nowakowski et al., 2018; Tuff et al., 2016). 

My approach takes a major step toward in quantifying the spatial configuration of thermally 

suitable habitat under different land cover and climate change scenarios across entire 

landscapes at organism relevant scales. It is also highlights the potential of temporal monitoring 

of land cover and operative temperature change across large spatial scales at fine resolutions, 

using satellite imagery such as WorldView-2 satellite missions that have an average revisit 

time of less than two days.  

The workflow developed in Chapters 4 and 5 allows for temporal monitoring of 

operative temperatures to be carried out by either continuous UAV flights or high temporal and 

spatial resolution satellite imagery, in conjunction with animal replicas and air temperature 

loggers. However, it is important to consider that while the models developed with this 

workflow worked well for the data within this thesis, tests were restricted to a single island. 

Utila is a relatively flat island with only one area of slightly higher elevation (approximately 

75 m.a.s.l). Therefore, recommendations for future research would be to test the model across 
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different geographic areas. For example, the neighbouring island of Roatan has dramatically 

different topographical features; therefore the model could theoretically be tested there to 

determine its validity across different more topographically complex landscapes. Another 

avenue of research would be to test the workflows and models proposed in this thesis against 

well-established mechanistic models such as NichemapR and Microclimc, or even to combine 

the two approaches, gathering additional data from mechanistic microclimate modelling to add 

to the model proposed here. Some research has been conducted on differences in performance 

of mechanistic and empirical models, e.g. Kearney et al. (2014), where both modelling avenues 

were found to perform similarly, but with different limitations. Future research on this topic 

would greatly benefit how we use such models to map species responses to climate and land 

use change.  

Advances and developments of remote sensing technologies are changing how we 

measure the natural world, and feed into several research avenues for biodiversity and 

conservation, as discussed in Cavender-Bares et al., (2022). In regards to the motivations 

behind this thesis, measuring the thermal environment at organism relevant scales, the 

development of thermal cameras, especially those fitted on UAVs, are exciting new avenues 

for research. These high-resolution thermal images could be integrated into the workflow 

developed in this thesis, which could potentially enhance the workflow proposed, especially 

over land covers that lack a canopy, areas where the current workflow and model did not 

perform as well. These high-resolution thermal imagery are not limited to those fitted to UAVs, 

there are now plans to launch high spatial resolution (3 to 4m) thermal satellites, allowing such 

data to be incorporated into the satellite workflow outlined in chapter 5.  These thermal data 

products, as well as multi-system UAVs such as NASA’s G-LiHT, that capture thermal, 

multispectral and LiDAR data simultaneously (Cook et al., 2013), allow multidimensional 

remote sensing data to be collected and integrated into ecology based workflows, such as 
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developed in this thesis. Future research on the uses of these new data, and how they may 

increase the performance of such workflows, would be beneficial, especially when considering 

applying these workflows across different landscapes.  

Endemic species such as A. bicaorum are under significant threat from anthropogenic 

land use and climate change. As forest species, they likely have narrower fundamental thermal 

niches and therefore are more sensitive to a change in their thermal environment. They are 

endemic to a single island, the island of Utila, and are limited in their dispersal and range 

shifting capacity; they are therefore reliant on suitable habitat and thermal buffers to 

anthropogenic mediated habitat change.  Results of this thesis have contributed to the 

ecological understanding of one of Utila’s endemic anole species, which will inform its 

monitoring and conservation. Specifically, my work has highlighted the importance of thermal 

suitability and activity time on A. bicaorum’s abundance, as well as the importance of trophic 

interactions, which are themselves not independent of thermal environment. Such relevant 

information can be applied to habitat management and efforts to conserve this endemic and 

threatened species. My work also quantifies the combined risk to thermal habitat quality from 

land cover and climate change and has proposed a method to monitor this thermal quality using 

ecologically relevant data at scales relevant to the organisms that experience them. Such 

methods are becoming increasingly important for monitoring species under the ever present 

threat of climate change and land use change, and are crucial to conserving species in a human-

dominated world. 

In conclusion, this thesis has demonstrated the need to consider species niche 

requirements at organism relevant spatial scales, as well as considering the interactions 

between abiotic and biotic mechanisms for regulating animal abundance. For ectotherms such 

as A. bicaorum, it has highlighted the need to determine which of these thermal niche 

measurements are most important for regulating species abundances, which in turn will be key 
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for determining species and community responses to habitat alteration. High spatial resolution 

remote sensing platforms have been utilised to create a workflow for measuring sub-canopy 

operative temperature, which performs well in forests. This approach is a step forward in how 

we measure these thermal environments at organism relevant spatial scales, continuously over 

a landscape, and will feed into how we determine species responses to anthropogenic land use 

and climate change.  
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Appendix 1 – Map of 2017 GPS Training Data Points for SVM Classification  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1: Map of land cover training points collected with a GPS in 2017 by Emma Higgins, used to inform the plot selection land cover 

classification.  
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Appendix 2 - Plot Locations  
 

Table A2.1: Plot Location and descriptions for survey plots on Utila, Isla de bahia, Honduras.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot No. Land Cover Type Coordinates Description 

1 Forest 16.119337°N, 86.884782°W  Forest plot 

2 Forest 16.122757°N ,86.883927°W Forest plot 

3  Forest 16.122662°N ,86.885067°W   Forest plot 

4 Urban Forest  16.098153°N ,86.897892°W   Degraded forest within Utila town  

5 Urban Forest 16.098343°N ,86.899317°W   Degraded forest within Utila town 

6 Urban Forest  16.096538°N ,86.893332°W   Black mangrove forest within Utila town 

7 Urban 16.087229°N ,86.889817°W   Urban garden plot 

8 Urban 16.087989°N ,86.892382°W   Urban residential plot with house and garden  

9 Forest 16.119527°N ,86.882598°W   Forest plot  

10 Forest 16.119052°N ,86.883452°W   Forest plot 

11 Forest 16.095303°N ,86.883168°W   Forest plot 

12 Urban 16.091978°N ,86.883642°W   Urban clearing  

13 Urban  16.087894°N ,86.888962°W Urban clearing 

14 Forest 16.110312°N ,86.897892°W  Forest plot  

15 Forest 16.111072°N ,86.901026°W  Forest plot  

16 Urban Forest 16.104080°N ,86.893527°W   Urban garden plot  
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Appendix 3 - Leaf area index (LAI) calculation  

A general introduction to leaf area index (LAI) and radiation transmission through plant canopies can 

be found in Chapter 15 of Campbell and Norman (1998). We calculated LAI using a simplified version 

of the Norman-Jarvis model, as presented in Decagon Devices Inc (2013):  

LAI =  
[ 1 − 1 2𝐾  𝑓𝑏 − 1]𝑙𝑛𝜏

A(1 − 0.47fb)
  - Equation A1 

Where τ is the ratio of transmitted to incident photosynthetically active radiation (PAR), measured with 

the ceptometer. K is the extinction coefficient for the canopy, Fb is the fraction of incident PAR which 

is beam and is estimated by the ceptometer from incident radiation and the solar constant (Decagon 

Devices Inc (2013). In Equation A2, A is a function of leaf absorptivity in the PAR band (a, see below). 

K was modelled as a function of zenith angle (Θ), assuming a leaf angle distribution of 1.0, the default 

value for the AccuPAR LP-80 ceptometer. Calculations of LAI are not strongly affected by the leaf 

angle distribution (Decagon Devices Inc 2013). 

𝐾 =
1

2𝐶𝑜𝑠Θ 
  - Equation A2 

 

In Equation A2, A was calculated as: 

A= 0.283 + 0.785a – 0.159 a2 – Equation A3 

Where a is the leaf absorptivity in the PAR band. The AccuPAR LP-80 ceptometer assumes 0.9 in 

LAI sampling routines (see user manual – Decagon Devices, 2013).   
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Appendix 4 – UAV Plot Flight Heights 2019 
 

Table A4.1: Flight altitude of the UAV flight for each plot.  

 

Plot Number 

 

UAV Flight Altitude (metres above ground) 

1 48/50 

2 45 

3 45 

4 45 

5 45 

6 45 

7 40 

8 40 

9 50 

10 50 

11 45 

12 45 

13 40 

14 55 

15 55 

16 42 
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Appendix 5 – Texture Metric Example 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A5.1: Example of all texture layers for area surrounding Plot 1, a) Dissimilarity, b) Contrast, c) Variance, d) Homogeneity, e) Mean, f) 

Second Moment and g) Entropy. 

a) 

d) 

b) c) 

e) f) g) 

a) 
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Appendix 6 – Chapter 3 Additional Information  

Table A6.1: Summaries of thermal and structural habitat, prey availability across all plot surveyed for Chapter 3 

Plot No. Time wit

hin Tpref 

(%) 

Sum of  Deviation 

 from Tpref 

(oC) 

Deviation  

above Tpref 

(oC) 

Deviation  

below Tpref  

(oC) 

No.  

Perches 

Basal 

 Area  

(m2) 

Mean Leaf Area  

Index across  

Transects 

Arthropod 

 Diversity 

(Shannon) 

Arthropod 

 Biomass 

 (g) 

1 55.47 15.05 3.12 11.94 129 

 

2.27 

 

3.97 -1.91 0.84 

2 57.18 12.27 

 

2.97 9.30 23 

 

0.67 

 

3.82 -1.91 1.90 

3 53.85 13.76 

 

3.21 10.55 51 1.08 

 

3.30 -1.79 1.30 

4 

 

28.88 29.98 

 

29.98 0 49 1.05 

 

1.87 -1.63 

 

0.73 

5 19.74 42.57 42.58 0 17 1.34 

 

1.62 -1.89 1.18 

6 8.23 46.52 46.52 0 54 1.05 

 

1.53 -0.91 0.70 

9 51.28 19.54 

 

19.53 0 74 1.71 

 

2.04 -1.68 1.23 

 
10 53.97 17.50 

 

0.58 16.93 122 1.86 

 

2.97 -1.86 

 

2.09 

 
11 35.49 17.78 

 

17.78 0 86 3.10 

 

3.58 -1.86 0.65 

 
13 10.77 62.30 

 

62.30 0 54 0.40 

 

0.57 -1.57 

 

0.20 

 
14 66.40 8.96 

 

8.96 0 232 2.76 

 

2.79 -1.33 

 

1.18 

 
15 68.29 6.46 

 

6.42 0.05 43 6.35 

 

2.27 -1.70 

 

1.01 

 
16 55.64 14.35 

 

14.40 0 33 1.18 

 

3.81 -1.73 

 

0.98 
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ADDITIONAL RESULTS – CALIBRATED THERMAL MODEL DATA 

 

Figure A6.1: Relationships between Anolis bicaorum abundance and individual niche metrics in forest 

plots across Utila, Honduras, that were not included in the final analysis. Relationships were estimated 

using multinomial Poisson mixture models with a constant detection rate across plots. All variables are 

scaled to a mean of zero and unit variance, (a) deviation from Tpref range, (b) basal area and (e) prey 

diversity. 
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RESULTS USING UNCALIBRATED THERMAL MODEL DATA  

 

 

Figure A6.2: Relationships between Anolis bicaorum abundance and individual niche metrics in forest 

plots across Utila, Honduras, using the original uncalibrated thermal model data. Relationships were 

estimated using multinomial Poisson mixture models with a constant detection rate across plots. All 

variables are scaled to a mean of zero and unit variance, (a) reflects thermal habitat quality, (b) reflects 

structural habitat quality, (c) reflects prey availability and (d) canopy cover.  
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Figure A6.3: Direct and indirect effects of niche axes on A. bicaorum abundance using the original 

uncalibrated thermal model data. (a) Values are standardized path coefficients; line width is 

proportional to the strength of the effect, solid lines indicate P<0.05, dashed lines 0.05≥P<0.10, and 

dotted lines P≥0.10, and ε is unexplained variation. (b) The total effects of covariates on abundance. 

NP: number of perches; PB: prey biomass; LAI: mean leaf area index; TP: time within Tpref range.  

  

(a) 

(b) 
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Table A6.1: Results of the path analysis on the original uncalibrated thermal model data looking at 

indirect and direct effects, and relationships between, multiple niche axes on A. bicaorum abundance, 

in 13 forest plots on Utila, Honduras. Std.all, Standardised Coefficients.  

Pathway Estimate (± S.E) Z P-Value 

 

Std.all 

 

     

A. bicaorum Abundance ~      

Number of Perches 0.24 ± 0.21 1.12 0.238 0.23 

Prey Biomass 0.46 ± 0.21 2.14 0.032 0.43 

Time within Tpref 0.43 ± 0.24 1.78 0.076 0.40 

Mean LAI -0.15 ± 0.21 -0.75 0.94 -0.01 

     

Time within Tpref ~     

Mean LAI 0.37 ± 0.22 1.64 0.100 0.37 

Number of Perches 0.42 ± 0.22 1.86 0.063 0.42 

     

Mean LAI ~     

Number of Perches 0.21 ± 0.27 0.76 0.449 0.21 

     

Prey Biomass ~     

Time within Tpref 0.45 ± 0.27 1.56 0.119 0.45 

Number of Perches -0.19 ± 0.26 -0.71 0.476 -0.18 

Mean LAI 0. 29 ± 0.26 1.15 0.249 0.29 
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Figure A6.4: Relationships between Anolis bicaorum abundance and individual niche metrics 

excluded from the final analysis, using the original uncalibrated thermal model data. Relationships 

were estimated using multinomial Poisson mixture models with a constant detection rate across plots. 

All variables were scaled to a mean of zero and unit variance, (a) deviation from Tpref range, (b) basal 

area, (c) prey diversity.  
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RESULTS OF OVER-CORRECTED THERMAL MODEL DATA 

 

 

Figure A6.5: Relationships between Anolis bicaorum abundance and individual niche metrics in forest 

plots across Utila, Honduras for the over-corrected thermal model data. Relationships were estimated 

using multinomial Poisson mixture models with a constant detection rate across plots. All variables are 

scaled to a mean of zero and unit variance; (a) reflects thermal habitat quality, (b) reflects structural 

habitat quality, (c) reflects prey availability and (d) reflects canopy cover.  
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Figure A6.6: Direct and indirect effects of niche axes on A. bicaorum abundance for the over-corrected 

thermal model data. (a) Values are standardized path coefficients; line width is proportional to the 

strength of the effect, solid lines indicate P<0.05, dashed lines 0.05≥P<0.10, and dotted lines P≥0.10, 

and  ε is unexplained variation. (b) The total effects of covariates on abundance. NP: number of perches; 

PB: prey biomass; LAI: mean leaf area index; TP: time within Tpref range.  

 

 

(a) 

(b) 
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Table A6.2: Results of the path analysis on the over-corrected thermal model data looking at indirect 

and direct effects, and relationships between, multiple niche axes on A. bicaorum abundance, in 13 

forest plots on Utila, Honduras. Std.all, Standardised Coefficients.  

Pathway Estimate (± S.E) Z P-Value 

 

Std.all 

 

     

A. bicaorum Abundance ~      

Number of Perches 0.29 ± 0.19 1.51 0.132 0.27 

Prey Biomass 0.45 ± 0.21 -0.78 0.035 0.42 

Time within Tpref 0.58 ± 0.28 1.90 0.058 0.49 

Mean LAI -0.19 ± 0.24 -0.78 0.434 -0.18 

     

Time within Tpref ~     

Mean LAI 0.64 ± 0.19 3.31 0.001 0.64 

Number of Perches 0.26 ± 0.19 1.34 0.184 0.26 

     

Mean LAI ~     

Number of Perches 0.21 ± 0.27 0.76 0.449 0.21 

     

Prey Biomass ~     

Time within Tpref 0.53 ± 0.33 1.60 0.110 0.53 

Number of Perches -0.14 ± 0.25 -0.55 0.583 -0.14 

Mean LAI 0.12 ± 0.31 0.38 0.703 0.12 
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Figure A6.7: Relationships between Anolis bicaorum abundance and individual niche metrics 

excluded from the final analysis, using the over-corrected thermal model data. Relationships were 

estimated using multinomial Poisson mixture models with a constant detection rate across plots. All 

variables were scaled to a mean of zero and unit variance, (a) deviation from Tpref range, (b) basal 

area, (c) prey diversity.  
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Appendix 7 – RGB and Operative Temperature Maps  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.1: RGB raster layer of area surrounding Plot 2 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.2: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 2 

with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.3: RGB raster layer of area surrounding Plot 3 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.4: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 3 

with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.5: RGB raster layer of area surrounding Plot 5 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.5: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 5 

with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.6: RGB raster layer of area surrounding Plot 8 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.7: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 8 

with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.8: RGB raster layer of area surrounding Plots 9 and 10 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.9: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plots 9 

and 10 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.10: RGB raster layer of area surrounding Plot 11 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.11: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

11 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.12: RGB raster layer of area surrounding Plot 12 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.13: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

12 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.14: RGB raster layer of area surrounding Plot 13 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.15: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

13 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.16: RGB raster layer of area surrounding Plot 14 with zoomed in and highlighted areas of interest (magenta and black insets) 

 



211 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.17: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

14 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.18: RGB raster layer of area surrounding Plot 15 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Figure A7.19: Operative Temperature (Te) raster layer derived from predictions of Te.Air.UAV random forest model of area surrounding Plot 

15 with zoomed in and highlighted areas of interest (magenta and black insets) 
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Appendix 8 – Confusion Matrices for WorldView-2 Land Cover Classifications (Chapter 5) 
 

Table A8.1: Confusion Matrix for Random Forest Land Cover Classification on 2018 WorldView-2 Imagery (Chapter 5) based on Random 

Forest Out of Bag (OOB) estimate validation.    
 

Agricultural Forest Coastal Dead 

Mangrove 

Mangrove Neotropical 

Savannah 

Urban Water User's Accuracy 

(%) 

Agricultural 54 10 0 0 3 4 2 0 73.97 

Forest 5 95 0 0 16 1 2 0 79.83 

Coastal 0 1 0 0 0 0 30 0 0 

Dead Mangrove 0 0 0 0 1 7 0 0 0 

Mangrove 4 15 0 0 55 5 2 0 67.9 

Neotropical 

Savannah 

4 1 0 1 0 110 0 0 94.83 

Urban 6 4 2 0 2 0 102 1 87.18 

Water 0 0 0 0 1 0 0 220 99.55 

Producer’s 

Accuracy (%) 

73.97 75.4 0 0 70.51 86.61 73.91 99.55 
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Table A8.2: Confusion Matrix for Random Forest Land Cover Classification on 2020 WorldView-2 Imagery (Chapter 5) based on Random 

Forest Out of Bag (OOB) estimate validation.    
 

Agricultural Forest Coastal Dead 

Mangrove 

Mangrove Neotropical 

Savannah 

Urban Water User's Accuracy 

(%) 

Agricultural 56 10 1 0 0 6 5 0 71.80 

Forest 5 109 0 0 6 7 2 0 84.50 

Coastal 2 2 22 0 0 0 15 2 51.16 

Dead Mangrove 0 0 0 3 0 2 2 1 37.5 

Mangrove 3 7 0 0 43 6 2 0 70.49 

Neotropical 

Savannah 

7 3 0 0 3 85 1 1 85 

Urban 11 5 2 0 0 2 97 2 81.51 

Water 0 0 0 0 0 1 0 242 99.59 

Producer’s 

Accuracy (%) 

66.67 80.15 88.00 100.00 82.69 77.98 78.22 97.58  

 

 

 

 

 

 

 

 

 



216 
 

Table A8.3: Confusion Matrix for Random Forest Land Cover Classification on 2018 WorldView-2 Imagery (Chapter 5) based on independent 

test dataset validation.    
 

Agricultural Forest Coastal Dead 

Mangrove 

Mangrove Neotropical 

Savannah 

Urban Water User's Accuracy 

(%) 

Agricultural 21 7 0 0 1 1 5 0 60 

Forest 6 25 1 0 4 1 2 0 64.10 

Coastal 0 0 0 0 0 0 0 0 No Data 

Dead Mangrove 0 0 0 1 0 0 0 0 100 

Mangrove 1 5 0 0 23 2 0 0 74.19 

Neotropical 

Savannah 

1 0 0 1 1 39 0 0 92.86 

Urban 1 3 15 1 3 1 32 0 57.14 

Water 0 0 0 0 0 0 2 69 97.18 

Producer’s 

Accuracy (%) 

70 62.5 0 33.33 71.87 88.64 78.05 100  
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Table A8.4: Confusion Matrix for Random Forest Land Cover Classification on 2020 WorldView-2 Imagery (Chapter 5) based on independent 

test dataset validation 

 
Agricultural Forest Coastal Dead 

Mangrove 

Mangrove Neotropical 

Savannah 

Urban Water User's Accuracy 

(%) 

Agricultural 23 2 1 0 0 0 4 0 76.67 

Forest 4 41 1 0 2 0 5 1 75.93 

Coastal 0 1 6 0 0 0 1 0 75 

Dead Mangrove 0 0 0 1 0 0 0 0 100 

Mangrove 0 1 1 0 11 1 0 0 78.57 

Neotropical 

Savannah 

0 4 0 2 2 31 2 0 75.61 

Urban 0 0 4 1 1 0 20 0 76.92 

Water 0 0 0 1 0 0 0 81 98.78 

Producer’s 

Accuracy (%) 

85.19 83.67 46.15 20 68.75 32 32 82  

 

 

 


