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Abstract

As sensors become ubiquitous in condition-based maintenance (CBM) for the aerospace

sector, there is a significant increase in data available to diagnose and prognose

aerospace components’ health and longevity. Machine Learning (ML), and more

specifically, Deep Learning (DL), are popular tools deployed to analyse big data for

CBM. For safety-critical systems such as aerospace, the ML models’ predictive power

to accurately diagnose fault and prediction of Remaining Useful Life (RUL) is crucial.

Furthermore, the ability to explain and justify ML models’ output is essential in deci-

sion making for CBM. In this thesis, DL models’ predictive capability is improved by

developing novel approaches that embed knowledge implicitly and explicitly into the

loss function for condition-based maintenance. A proposed regression-based weighted

loss functions that implicitly embeds knowledge allows the DL model to learn and

focus on hard-to-learn instances, while minimising worst-case predictions and provid-

ing improved predictive performance. The proposed regression-based weighted loss

function, along with an existing classification-based weighted loss function, namely,

Focal Loss, are compared to traditional loss functions using aerospace gas turbine

engines’ RUL prediction and fault detection of the air pressure system, respectively.

2



Furthermore, an asymmetric loss function that biases the DL models to favour early

predictions in RUL is proposed. The asymmetric loss functions is tested on the

same aerospace gas turbine engines dataset. The weighted loss functions and asym-

metric loss function is able to increase the predictions accuracy over traditional loss

functions. In addition to embedding knowledge, this thesis also introduces a new

framework to extract knowledge from a learned model to explain the ML model’s

outputs by identifying important features driving the predictions. We proposed a

new ensemble feature importance framework that fuses multiple ML models and their

feature importance calculation approaches using both crisp and fuzzy decision fusion

to create a more accurate and interpretable post-hoc explanation for the ML models.

Subsequently, a fuzzy ensemble feature importance (FEFI) framework is proposed to

overcome the shortcomings of crisp value-based ensemble feature importance. Both

the new crisp and fuzzy frameworks are investigated using synthetic data under dif-

ferent conditions and also using a real-world case study of factors that affect creep

rate in additive manufactured materials. Experiment results reveal that for our case

studies FEFI framework is qualitatively more accurate in determining the feature im-

portance compared to the crip valued-based ensemble feature importance framework

and also traditional approaches.
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Chapter 1

Introduction

Many industries, such as airlines, rely heavily on the availability and reliability of

their assets. The likelihood of aeroplane parts becoming faulty or reaching their end-

of-life increases as they are used, or they fail early in their life due to manufacturing

errors. Their deterioration poses a risk to the airlines, passengers and the wider

society. Additionally, the cost of maintaining the health of this equipment is high.

According to the UK’s Department for Business Innovation & Skills, maintaining

aircraft accounts for 13% of the total airlines operating costs, which is only 25%

lower than the figures paid for fuel [1]. Failure to provide adequate and timely

maintenance can lead to fatalities, monetary loss, and intangible losses, such as

impact on reputation and on the environment. A common way to manage safety

risks is to perform scheduled maintenance. While scheduled maintenance is capable

of ensuring assets operate optimally, it is cost- and labour-intensive [2].

In addition, time-based maintenance relies on expert knowledge of aircraft main-
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tainers to make immediate corrections if fault occurs. Furthermore, it does not

collect or utilise aircraft conditions’ data to aid in predicting the health status and

longevity of a particular aircraft. As an alternative to address some of these lim-

itations, condition-based maintenance (CBM) has become one of the maintenance

strategies to minimise the cost and labour necessary to ensure assets’ availability and

reliability. CBM, and more specifically predictive maintenance collects data by using

sensors to create predictive models. Compared to scheduled maintenance and correc-

tive maintenance, predictive maintenance is more cost-effective due to reduction in

labour and downtime of assets [3]. Predictive maintenance models aim at forecasting

the future state of the assets and recommend the appropriate maintenance approach,

guided by inferences performed based on the data collected. For example, according

to General Electric (GE), each of its engine produces approximately 1 Terabyte of

data from hundreds of sensors for each flight [4] – all of which can be used to enhance

maintenance plans and improve the operations of aircraft. Predictive maintenance

often uses Machine Learning (ML), and more specifically Deep Learning (DL) meth-

ods to execute prediction tasks, and it has been successful in many areas, such as in

manufacturing and aerospace [5, 6, 7].

While ML in predictive maintenance has been successful, there are scenarios

where the ML models can fail in unexpected ways that result in undesirable conse-

quences. Some instances of such failures are found in several safety-critical areas,

such as healthcare and transportation. For example, in 2016, IBM’s “Watson for

Oncology” ML product was found to be making erroneous cancer treatment advice,

causing the product to halt for further usage [8]. In 2019, a Tesla vehicle with ML
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autopilot system activated failed to detect an oncoming truck, resulting in driver

fatality [9]. With the shortcomings of ML in mind, the European Union Aviation

Safety Agency and the European commission’s high-level expert group in artificial

intelligence issued reports defining the essential requirements for safe and trustwor-

thy Neural Networks. Two shared requirements between the reports are Accuracy

— correctness of ML system output; and explainability — justification of ML

systems ’ output.

To the best of our knowledge, the lack of domain knowledge incorporation and

extraction with DL models in predictive maintenance for related areas to aerospace

and transport is a source of problem that leads to decreased predictive performance

and difficulty explaining models’ output. For example, a common task in predictive

maintenance in aerospace is to determine the Remaining Useful Life (RUL) of gas

turbine engine. Without domain knowledge, early or late prediction by the same

unit of time are viewed as equally wrong; for example, if predictive model A and

B predicts the RUL of machine to be 4 and 6 months, respectively, and the actual

RUL is 5 months, the two predictive models have an error of 1 month. However, it

is safer to predict RUL earlier so that intervention can occur before failure. This is

an example of a domain knowledge to be embedded in DL models to produce more

accurate, thus, higher correctness of ML output while being more reliable and safe

in RUL predictions.

In addition to improving prediction accuracy in predictive maintenance tasks, the

ability to accurately explain the output of predictive models is crucial to understand

model behaviour and outputs. A common explainability process is to identify the
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most important features that contribute to the model output. In ML, a feature is

an individual measurable property or characteristic of a phenomenon (an indepen-

dent variable), for example, the speed of turbine is a feature of gas turbine engine.

The measurement of the impact of features on predictive model’s outcomes is known

as Feature Importance (FI). However, there is a lack of consensus of the current

approaches in determining the importance of feature attribution for ML decision

making and it poses a problem for safety-critical systems, as the explanation offered

for the outcomes obtained is likely to be unreliable. There is the need for more re-

liable and accurate ways of establishing FI. Therefore, there is an increased interest

in improving the ML model explainability to improve both predictive capability and

interpretation of the outputs, especially for safety-critical applications. Therefore,

this thesis focuses on improving predictive capability of ML methods in

predictive maintenance by including domain knowledge within the ML

pipeline to improve prediction accuracy and enhancing the model’s pre-

diction explainability.

1.1 Condition-based Maintenance

One of the earliest recorded implementations of Condition-based Maintenance (CBM)

is by a british scientist named Conrad Hal (C.H.) Waddington [10]. While working

for the Royal Air Force during the World War II, C.H. Waddington observed that the

number of unscheduled maintenance for aircraft goes up after it underwent their reg-

ular scheduled maintenance. He found out that short-cycle scheduled maintenance
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disturbed the satisfactory state of aircraft, contributing to an increase in break-

down. To solve the issue, Waddington’s team proposed that aircraft should only be

maintained if they achieved certain conditions indicating deterioration. Figure 1.1

illustrates the difference between scheduled, corrective, and predictive maintenance.

Figure 1.1: A comparison between scheduled, corrective, and predictive maintenance.
The grey dotted vertical lines represents the scheduled maintenance overtime. The
yellow lines indicates the point the target machines is at the point of failure. Pre-
dictive maintenance aims to intervene at the point of failure of earlier (∆−), while
corrective maintenance intervenes at the point of failure or later (∆+).

A common way of conducting predictive maintenance are model-based and data-

driven based predictive systems [11, 12, 7, 6]. Model-based and data-driven based
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approaches to predictive maintenance are often used in parallel and in synergy for dif-

ferent system complexities. Model-based approaches model the functional relations

between individual components within the asset’s system and it is heavily reliant on

domain knowledge. The relationship between the individual components can be seen

as the cause-effect relationship to support the prediction of deterioration. Therefore,

model-based approaches are best used when the systems being modelled are less

complex for predictive maintenance to be implemented [13] or using simple/abstract

models to represent complex systems. Examples of model-based predictive mainte-

nance include but not limited to, batteries’ state of health prediction [14], modelling

the aircraft control system to detect actuator failures [15], detecting sensors failures

in aircraft control system kinematic models [16], locating faults in power distribution

systems using load models [17], and cryogenic propellant loading system diagnosis in

spacecraft using physics model that describes the complex dynamics of liquid hydro-

gen filling [18]. The model-based predictive maintenance approaches mentioned here

employ similar strategy. First, a digital model of the system is created in software.

Second, gather the data of the system and input it into simulation model to predict

the state of the system. In the batteries’ state of health prediction example, the

authors combined physics-based modelling of Li-ion battery and sequential design of

simulation experiments to create an accurate state of health estimator. The model

was created in the COMSOL multiphysics software to predict the state of health of

the batteries given its condition. Despite its disadvantage, model-based approaches

have been successfully implemented for a long time and will continue to be deployed,

as they are very useful and reliable for small subsystems CBM implementations.
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Additionally, those approaches can be implemented alongside signal-based and data-

driven methods for both simple and complex systems. Signal-based approaches refer

to monitoring systems based on time-frequency analysis on data collected to detect

faults [19]. All three approaches, signal, model, and data-driven are typically imple-

mented together (or, sometimes, using a hybrid version [20]) to perform diagnosis and

prognosis of different complexity levels within an aerospace, as shown in Figure 1.2:
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Figure 1.2: Assets typically utilise all three different predictive maintenance ap-
proaches, namely, signal, model, and data-driven based. Signal-based approach is
commonly used for simple parameter out-of-range detection, while the model-based
approach is reserved for a smaller subsystem, and a data-driven approach for larger
or even the whole asset’s system is difficult to model.

Generally, data-driven predictive maintenance requires far less domain knowledge

to function. Domain knowledge is the specialised knowledge related to the area that

predictive maintenance is being applied. For example, early prediction is better than
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late prediction in RUL task is a domain knowledge within the field of reliabiltiy en-

gineering. It relies on the predictive model to identify patterns regarding the health

of assets in the dataset. The complexity of predictive models ranges from statisti-

cal models with a couple of parameters to deep learning models [21], with millions

of parameters. Weibull distribution, Cox Proportional Hazard (CPH) model, and

Accelerated Failure Time (AFT) models are statistical tools in predicting RUL [22,

23, 24]. The Weibull distribution uses time-to-failure data to learn the distribution

parameters for prediction. CPH is a semi-parametric regression that uses a hazard

function to predict RUL. The hazard function describes the risk of an event happen-

ing over time. The primary assumption of CPH is the hazard rates remain constant

over time, which is not often the case with the deterioration of machines. Therefore,

the assumption of CPH may lead to potential misinterpretation of results [25]. A

useful alternative to CPH for modelling RUL is AFT. AFT models event with non-

proportional hazard as it uses Weibull or log-normal distribution in its underlying

regression model for RUL predictions. While statistical modelling is useful when

there are only a few, low-dimensional data points, it faces difficulty when the data

are large and high-dimensional as it becomes computationally intractable, leading to

the adoption of ML methods.

1.2 Machine Learning in Predictive Maintenance

The use of ML is another common approach in creating models for predictive main-

tenance. ML methods have found to be more accurate in predicting time-to-event
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data compared to statistical models, especially when large data is present [26].

A common learning paradigm for ML methods is supervised learning where the

models learn mainly from labelled data. The predictive model is obtained by itera-

tively adjusting its parameters based on the training error, which is obtained by a

loss function that calculates the difference between predicted output and the actual

output. Loss function is an important component of supervised learning, as different

loss functions may result in different model learning. As loss function acts as a feed-

back loop to the model on how to adjusts its parameter to produce more accurate

predictions, changing the loss functions can potentially affect the way model learns.

To the best of our knowledge, current implementation of loss function in ML for pre-

dictive maintenance are not domain specific, but rather a general version is applied

to different ML and DL models.

A common supervised ML algorithm is Support Vector Machine (SVM). SVM

maps the data from a low to high dimensional input space and subsequently creates

a maximum-margin hyperplane to classify the data [27]. Support Vector Regression

(SVR) is an extension to SVM that performs regression [28]. SVM and SVR have

been applied extensively to many applications of CBM such as, aerospace engine RUL

prediction [29], estimating decay rate in the naval propulsion plant [30], diagnosing

electrical failures in induction motors [31], and predicting the RUL of a high pressure

liquefied natural gas pump [32].

Another class of supervised learning algorithms are tree-based models, such as

Decision Tree (DT), Random Forest (RF) and Gradient Boosted Trees (GBT). DT

is a tree-like learning model that chains one to several decision rule based on knowl-
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edge learned in training data. RF is an ensemble of DTs, and each DT produces

an output [33]. The final output of the RF is based on the majority vote of all

DTs. RF trains a new DT in each iteration through bagging. Bagging is a learning

approach where a random subset of the training data is selected to train each DT.

GBT works similarly to RF as it is also an ensemble of DT. GBT differs from RF

in the way the DTs are ensembled. GBT grows and improves upon the existing

DTs sequentially [34]. GBT grows iteratively by continuously adding more DTs to

the final model and checking error at each iteration until the desired accuracy has

been met.RF and GBT have been applied widely to different domains, such as air-

craft engine fault diagnosis [35] and prognosis [36], fault diagnosis in gearbox [37],

maintenance of railway switches [38], and fault classification in high-voltage current

transformers [39]. The literature on the maintenance of railway switches and fault

classification in high-voltage current transformer by Bukhsh et al. and Khalyasmaa et

al., respectively, utilises FI estimates as a post-inference model interpretation tool.

The FI extracted in the case of Bukhsh et al. is drop-FI calculation whereby their

tree-based models are trained n-times where n is the number of features. A feature

is excluded for each round of training and the accuracy is recorded. The FI is re-

flected by the changes of magnitude in accuracy relative to the model trained with

all features. For Khalyasmaa et al., the FI obtained from their tree-based models —

RF and GBT is based on gini impurity [40]. Gini impurity calculates the FI as the

sum of number of splits across all trees that include the feature. The importance

increases with the number of splits that include a particular feature. While the FI

methods adopted by Bukhsh et al. and Khalyasmaa et al. are widely accepted and

33



commonly used, they have downsides such as the possibility of FI methods being

unreliable due to the calculations being based on a single ML model and single FI

method, and therefore the idiosyncrasies of a particular model when learning possi-

ble data patterns. Furthermore, there are issues such as uncertainties of the FI and

non-intuitive representation of FI, both of which is important during decision-making

especially in safety-critical applications. The wide availability of ML algorithms and

diversity of FI techniques complicates the selection of models, the FI approaches to

be used, reliable interpretation of models from a given ML method and FI approach,

and data representativeness. Different ML models may generate different FI values

due to variations in their learning algorithms. Similarly, different FI techniques may

produce different importances with the same ML algorithms or training data. For

example, models that adequately map the independent to dependent variable map-

pings using linear functions will generate unambiguous FIs while for significantly

nonlinear models, FI is usually a local, context-dependent property of the response

surface. To add to the complication, some FI methods are model-agnostic, while

others are model-specific.

In addition to traditional ML methods, DL models are an extension of Artificial

Neural Network (ANN)s to larger architecture. Deep Neural Network (DNN) is

structurally similar to the neural network, where there are three types of layers,

i.e., input, hidden, and output layers. A DNN can have any arbitrary number of

hidden layers greater than one, with each layer consisting of one or more nodes.

The hidden layers are where most of the network’s parameters — weights and biases

are located. The parameters of the network are most commonly optimised using
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the Backpropagation algorithm [41] during training. DL models are well-suited for

discovering useful knowledge in high-dimensional data [42]. Therefore, there has

been a sharp increased in utilising DL for predictive maintenance research in recent

years, as Figure 1.3 illustrates.

Figure 1.3: The number of Deep Learning papers in predictive maintenance research
since 2016 according to Google Scholar.

Our search in the literature has revealed that most advances in the area of us-

ing ML and DL in predictive maintenance involve changing and/or improving the

architecture employed. While different ML and DL architectures have been widely

adopted in predictive maintenance [7], the other components of the ML prediction

35



pipeline are rarely discussed. Those include the utilisation of non-domain specific

loss function to improve prediction accuracy and the lack of explainable outputs. In

the next section, the identified shortcomings and research gaps from related research

are further discussed.

1.3 Research Gaps of Machine Learning in Pre-

dictive Maintenance

As previously mentioned, the two main requirements for learning-based models in

predictive maintenance are the accuracy and explainability of their predictions. Most

advances in CBM and predictive maintenance that utilise DL focus on changing the

architecture of the DL models, and therefore there is a gap with regards to improving

the proficiency of DL through other aspects of DL learning and training pipelines.

The accuracy of DL outputs is determined by several primary factors, namely, data

quality [43], model architecture, loss functions, regulariser [44], optimiser [45], and

knowledge embedding [46] as shown Figure 1.4.

Regarding accuracy, the focus of this thesis is to modify the loss functions cal-

culations to improve DL predictions in the context of predictive maintenance. Our

hypothesis is that the inclusion of domain-specific knowledge in the loss function will

lead to improved predictions for predictive maintenance.

Another important research gap in predictive maintenance research is that there is

increasing but limited usage of explainability methods for complex ML models [47,

48]. However, research shows that explainability methods’ outputs should not be
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Figure 1.4: Safe and trustworthy Machine Learning requires the predictive model to
be accurate and able to explain its output. The prediction accuracy and explainabil-
ity of Machine Learning models can be improved by working on the different aspects
shown in this diagram. The items highlighted with green boxes are the focuses of
this thesis.
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taken as the objective truth as it might potentially be biased and inaccurate [49] —

which is a research opportunity to improve current explainability methods. These

paragraphs below outline the current research gaps and shortcomings this thesis aims

to address to improve accuracy and explainability of ML methods.

Gaps related to ML prediction accuracy for predictive maintenance:

• Traditionally, the loss functions in DL methods are not domain-specific. For ex-

ample, a common loss function for regression is the mean-squared error, which

gives equal weights to positive and negative errors. For predictive maintenance

and, more specifically RUL predictions, the loss function can be augmented to

include domain knowledge so that DL methods favour early predictions, thus

prioritising safety and supporting the logistics of the supply chain in predictive

maintenance.

• Loss functions generally calculate the average errors of prediction across a batch

of data or the entire dataset, and subsequently update the parameters of DL

accordingly, but they do not focus on instances that are difficult for the models

to learn. The DL models can be improved by incorporating the knowledge of

difficult data instances in the loss function so the models pay less attention to

easy to learn examples and more attention to those instances where the model

fails.

Gaps related to explainability of ML for predictive maintenance:

• Although FI calculation approaches assist in interpretation, there is a lack of

consensus regarding how features’ importance is quantified, which makes the
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explanations offered for the outcomes mostly unreliable. A possible solution

to address the lack of agreement is to combine the results from multiple FI

quantifiers to reduce the variance of estimates and to improve the quality of

explanations.

• Estimating the importance of features in ML predictive analytics is often un-

certain caused by the usage of different ML models, FI techniques, and subsets

of data generate different importance coefficient values, often with different

magnitude, for the same features [49]. These uncertainties in identifying the

contribution of features needs to be captured for stakeholders to make sound

decisions.

• Representation of FI as real number can be misleading and incomprehensible

for decision making. For example, a FI value of 0.9 may seem arbitrary and not

meaningful. In addition, different FI approaches are likely to assign different

importance to features. To have a method of capturing the uncertainties of FI

calculations and simultaneously being able to represent it in simple linguistic

terms benefits decision making.

1.4 Aims and Objectives of Thesis

This thesis aims to develop methods for safer usage of ML in sensor data-driven

CBM through increased accuracy in prediction and model explanation. The specific

objectives to achieve those aims are discussed below.

Objectives related to improved accuracy:
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• To develop and test supervised DL models with new types of explicit knowledge

embedded loss functions to improve predictive capabilities for sensor-based data

by favouring early prediction in RUL.

• To assess the advantage of implicit knowledge embedded loss functions on RUL

of regression and classification-based DL models using gas turbine engine and

fault detection in Air Pressure System (APS) respectively.

Objectives related to explainability:

• To develop and test an ensemble FI framework that takes into consideration of

multiple FI methods and ML models for decision fusion that is more accurate

in FI estimates compared than the existing FI method.

• To develop an understanding of how ensemble FI behaves under varied data

conditions. Furthermore, an analysis of model explainability are used to iden-

tified important features influencing the RUL and fault in machines.

• Develop a fuzzy-based method to account for the uncertainty within ensemble

FI framework to accurately report explain ML models. Additionally, explain

the FI in linguistic term for straightforward explanation.

• Compare different approaches of decision fusion in the development of ensemble

FI framework.

• Assess the advantages and disadvantages of fuzzy and crisp-based ensemble FI

on synthetic dataset and real-world creep prediction dataset.
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1.5 Contributions

This thesis’s main contributions are the development of a regression-based dynami-

cally weighted loss function that improves neural networks’ proficiency in predicting

RUL. Furthermore, an existing classification-based dynamically weighted loss func-

tion — Focal Loss (FL) is investigated for a fault detection in APS task. Additionally,

domain knowledge, such as the asymmetries in RUL time predictions are embeded in

the FL with the objective to improve its predictive capabilities further. The develop-

ment dynamically weighted loss function and asymmetric loss function are designed

to address the research gap of not utilising non-domain specific loss function for

improved DL prediction in predictive maintenance.

For improving explainability in ML models, a new crisp-based ensemble FI frame-

work is created to ensure that the FI quantification is robust and more reliable for

safety-critical applications. By combining multiple ML models and FI methods, the

framework is designed to address the problem of potentially inaccurate FI quantifi-

cation resulting from using only on one ML model or FI method. The behaviour of

the crisp-based ensemble FI framework is analysed for different data conditions and

a case study on a real world data. While the crisp-based ensemble FI framework im-

proved FI quantification accuracy over traditional FI approaches it does not capture

the uncertainties produced by the usage of different ML models and FI methods. To

overcome the shortcomings of the crisp-based ensemble FI framework, a new frame-

work is built upon the crisp-based ensemble FI framework named Fuzzy Ensemble

Feature Importance (FEFI) is developed to capture the uncertainties while explain-

ing the outputs in linguistic term for ensemble FI methods is developed using the
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Fuzzy Systems. The core contribution of FEFI is to address the lack of uncertainty

estimations in FI quantification and also represents the FI quantification in simple

linguistic term. The framework can be applied to both regression and classification-

based problems.

1.6 Thesis Structure

The thesis is organised as follows:

• In Chapter 2, the concept of loss functions in DL are introduced, followed

by the literature review of loss functions in the state-of-the-art DL models.

Subsequently, the proposed dynamically weighted loss functions for regression

is introduced. The novel loss function focuses on adjusting the loss based on

individual instances and it is tested on a gas turbine engine RUL dataset.

Additionally, an existing dynamically weighted loss function for classification

is also investigated on a air pressure system fault detection dataset. Finally,

an asymmetric loss — a special case of the proposed loss function designed to

enable early predictions in gas turbine engine RUL is also assessed.

• In Chapter 3, several state-of-the-art FI techniques are reviewed, along with

a discussion of their strengths and weaknesses when applied to different data.

Subsequently, a novel ensemble FI framework is introduced. The new frame-

work uses multiple FI methods along with multiple predictive models The new

ensemble FI method is assessed on synthetic data under varied conditions and

real-world case study of identifying features that affects the creep rate of 3D
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printed alloys.

• In Chapter 4, a new fuzzy systems-based framework that captures the uncer-

tainties of ensemble FI is introduced. The same framework also enables the

output of ensemble FI to be explained in linguistic terms. This new framework

is compared to the original ensemble FI method introduced in Chapter 3 on

synthetic datasets and a real-world dataset.

• Chapter 5 concludes this thesis. The research work, contributions and findings

are summarised. Finally, future work on safer ML for CBM is discussed.
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Chapter 2

Embedding Knowledge in Loss

Functions for Condition-Based

Maintenance

2.1 Introduction

The increasing number of successful examples of applications of deep learning in

manufacturing, automotive, marine, and aerospace industry has shown that it is

a viable tool to support data-driven predictive maintenance [50, 51, 52, 53, 54].

Current DL research for these application areas, however, mostly focuses on changing

the model architectures to improve RUL or fault prediction accuracy. The literature

regarding the improvement of other components of the DL model or training pipeline

is scarce. Aspects such as data quality, data augmentation, loss function, and model
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regularisation (Figure 2.1) are rarely investigated in CBM research.
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Figure 2.1: Deep learning model pipeline, from data preparation to model training
and deployment.

The fundamental building blocks of DL are the neural units, or commonly referred

as units. The individual unit has multiple inputs and produces an output using the

mathematical combination of those inputs. A neural network consists of three main

layers: (1) input (2) hidden and (3) output layer. Each layer consists of one or more

neural units. The input layers are the input into the neural network, the hidden

layers perform calculations depending on the task, while the output layer produces

the final predictions. The different layers are connected using weights and biases

parameters. The parameters are iteratively updated through the learning process

to produce the desired output with the objective to minimise the prediction error.

The learning process uses the error of the predicted output within a feedback loop

to refine the parameters until the error is minimised. The calculation of the error
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used as a feedback for the network is the loss function. The loss function can be cal-

culated for a single instance, a batch of instances, or even the entire training dataset

depending on the design of learning process. A loss function’s purpose is to quantify

the prediction errors that the model seeks to minimise during training. Commonly

used loss functions for regression tasks include Mean Squared Error (MSE), Mean

Absolute Error (MAE) and Huber loss [55]; standard loss functions for classification

include the Cross-Entropy (CE) [21] and Kullback-Leibler (KL) divergence loss [56].

The loss functions mentioned before are not domain-specific, and they do not

implicitly focus on difficult to learn instances. Our hypothesis is that by assigning

additional weighting factor to the loss function, it can learn to focus on instances

that are difficult to learn, therefore leading to more accurate prediction for RUL and

fault detection tasks. An additional hypothesis is that the incorporation of domain

knowledge into the loss functions will lead to more accurate RUL predictions. In

this thesis, both RUL prediction (Regression) and fault detection (Classification) are

considered for weighted loss functions. In addition, the RUL prediction case study is

also considered to investigate the effectiveness of embedding domain knowledge into

a loss function. The objective of this chapter is to establish the means to improve

the standard loss function calculation such as MSE, MAE, and CE to achieve better

prediction accuracy by discovering which instances are difficult to learn and focus

more on them (implicit) on both RUL and fault prediction tasks. An additional

objective is to embed external knowledge such as favouring early prediction in RUL

task (explicit) to improve prediction accuracy.

While the standard loss functions are typically adequate for solving prediction
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tasks, they can be modified to address problems, such as scarcity of instances in the

data space. For example, FL [57] is a modified CE loss that focuses more on im-

balanced datasets, whereby misclassification of minority classes are penalised more

heavily. Additionally, loss functions can be adapted to solve domain-specific prob-

lems, e.g. for improving robot navigation using loss function based on knowledge of

spatial image reconstruction [58]. In another study, a multiphase flow simulation is

achieved using DL techniques with a custom loss function that imposes local mass

conservation constraints to ensure higher physical realism in the simulation [59]. The

example of using local mass conservation constraints in the loss function is an ex-

ample of physical loss function. By adding knowledge of physical law into the loss

functions, the model can learn to obey physical laws so as to not make a prediction

that is physically impossible. McGowan et al. [60] employs similar approach to their

porosity prediction in laser metal deposition problems using physics-based custom

loss function. Five physics-based loss functions using a combination of temperature,

length-to-width ratio of ideal melt pool, and the temperature is used to predict the

porosity of laser metal deposition. Results showed that by using the custom loss

functions they were able to improve the precision of porosity prediction compared to

DL model using the standard categorical CE loss function.

Besides custom physical loss functions, another type of custom loss functions

that focus on economic outcome from model prediction is known as enonomic loss

function. A notable example of economic loss function is Taguchi loss function [61].

Taguchi loss function evaluates the the quality of a product or its deviation from

an ideal product quality. Another perspective of the Taguchi loss function is the
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measurement of the deviation of the parameters controlling a process. The pro-

cess includes but not limited to manufacturing, design of a policy, etc. In a paper

by Pandey et al. [62], they developed a combined model for joint optimisation for

preventative maintenance time interval and quality control parameters using the

Taguchi loss function. The Taguchi loss function is used to optimised for (1) sample

size for quality check, (2) frequency of quality check, (3) time interval between pre-

ventative maintenance check, and (4) control limit. Control limit is the threshold for

the condition of an equipment that deviates over the limit safe operability. Overall,

they found that by adopting the Taguchi loss for its process leads to better process

performance and lower economic loss.

Similarly, custom loss functions can be applied to DL-based predictive mainte-

nance to improve prediction accuracy. Specifically, knowledge embedded loss func-

tions, such as a dynamically weighted loss functions — where the loss function is

designed to account for difficult to learn instances by adding a weight to the errors

as shown in Figure 2.2. Additionally, asymmetric loss functions — where the loss

function guides the DL model based on domain knowledge. Devising new and using

existing Dynamically weighted loss function and the asymmetric loss function for

predictive maintenance are part of the core contribution of this thesis. The novelty

of weighted loss functions is that they automatically learn to focus on difficult-to-

learn instances, whereas for asymmetric loss function the novelty is that domain

specific knowledge is added to directly improve RUL prediction. Both proposed loss

functions are tested on the Commercial Modular Aero-Propulsion System Simulation

(CMAPSS) gas turbine engine RUL dataset. An additional case study of fault detec-
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tion in APS is also tested on the FL. This chapter is organised as follows: First, the

background on the formal learning model and how loss functions work are introduced

in Section 2.2. Subsequently, a dynamically weighted loss function is introduced for

the regression task in Section 2.3 and validated on CMAPSS RUL dataset in Sec-

tion 2.6.1. Additionally, the efficacy of FL is tested on APS fault detection dataset

in Section 2.6.2. APS is a commonly used system in aerospace application. Finally,

an asymmetric loss designed to perform early predictions is introduced in Section 2.4

and validated against the same gas turbine engines RUL dataset in Section 2.6.3.

The discussions on the results and conclusions are presented at the end of each case

studies.

Figure 2.2: An overview of how dynamically weighted loss function works for both
regression and classification tasks.
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2.2 Background

2.2.1 Introduction to Formal Learning Model and Loss Func-

tion

This section introduces the role of the loss function in a data-centric learning model.

Loss functions were initially introduced within the statistical learning theory. Under

the statistical learning theory, learning models include the following elements:

1. Feature data, X: This is a finite sequence of features, X = X1, ...Xn that the

model tries to label. An individual element of X is known as an instance. The

features in the context of CBM are for example, the temperature at the fan

inlet in gas turbine engine, the vibration of the turbine blade, etc.

2. Label data, y: This is the set of ground-truth values that maps to the feature

data instances. Note that this only applies to supervised learning. The labels

in the context of CBM are for example, the health indicator, the RUL, fault

conditions, etc.

3. Training/Validation/Test data, S = (X1, y1, ..., (Xn, yn)): Training data is the

pair of feature and label data the model uses to update its parameters. Val-

idation data is used to estimate how well the model has been trained and it

is often used to tune the hyperparameters of the model. Furthermore, valida-

tion data comes from the same distribution as train data. Test data is unseen

data that comes when the trained and tuned model is deployed in produc-

tion environment and the distribution of the test data is unknown. Generally,
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train/validation/test split of the data is done randomly on a data on a 60/20/20

ratio. However, the exact split of data is dependent on each use case.

4. Model’s output: A model produces a prediction given new data instances using

a function, h : X → y. This function is called a hypothesis or a predictor. For

example, the hypothesis can be a function that inputs the temperature and

pressure of an engine and predicts its RUL.

5. Evaluation metrics: The evaluation metrics are functions that calculate the

hypothesis’s errors. The training error of h is defined as follows:

LD,f (h) = Px∼D[h(x) 6= f(x)] = D(x : h(x) 6= f(x)) (2.1)

Where LD,f (h) is the loss function and the subscript (D, f) indicates that the error

is calculated over the probability distribution of x denoted by D and the function

that generates the predicted value, f . Px D represents the distribution of the error.

Using the training data, S, and the loss function, L(h), can be reformulated to

the training error, as follows:

LS(h) =
|i 3 [n] : h(xi 6= yi)|

n
(2.2)

where [n] = 1,...,n are the data instances. The training error (Equation 2.2) is also

known as empirical risk. The learning process’s goal is to find a hypothesis, h that

minimises Ls(h) and it is a core concept in the formal learning model, known as

Empirical Risk Minimisation (ERM). However, due to ERM formulation, it always
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finds a hypothesis that minimises the training error. The hypothesis with the lowest

possible training error is not always ideal. Low training error could result from over-

fitting — the hypothesis fits too closely to the training data and is not representative

of the true data distribution.

One solution to the overfitting problem is to restrict the search space of ERM

learning rule. To achieve this, the learning model chooses a set of finite hypothesis

class. Some example of restricting the search space are limiting the precision bits

of a system, i.e. the number of decimal points, set a finite number of parameters

for a model, and set a finite number of inputs and outputs for a model. Given a

sufficiently large training sample (assuming training sample classes are balance) and

a finite class of H then ERMH does not overfit [63]. Furthermore, using ERMHs

the model establishes a hypothesis h ∈ H with the lowest possible error. Under

the finite hypothesis class, the model is correct up to a level of confidence and error

— this is also known as Probably Approximately Correct (PAC) learning. The

PAC learning states that ERMH returns a hypothesis, h, such that L(D,f)(h) ≤ ε

with minimum confidence of 1 − δ. δ is the confidence parameter that indicates

the probability of h, achieving the minimum required error. In summary, if there

are sufficient representative data, the ML model is likely to achieve predictions with

minimal error within a certain confidence interval.

The loss function introduced deals solely with the prediction task, LD(h : X → y).

To generalise the loss function beyond prediction, a random variable z represents the

output of any arbitrary task. The newly generalised loss function is defined as follows:
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LD(h) = Ez∼D[`(h, z)] (2.3)

Where E is the expected value of loss as defined by function, `. The generalised loss

function can be adapted for any task at hand. For example, if the task is to predict a

continuous number value using squared error, the loss function becomes an expected

squared error as follows:

LD(h) = E(x,y)∼D(h(x)− y)2 (2.4)

The formal learning model provides a theoretical framework to ensure that learn-

ing is possible under the right conditions. Furthermore, the formal learning model

shows that the loss function is a foundational component in constructing ML mod-

els and it is necessary to understand it before augmenting the loss functions for

ML-based CBM. The subsequent section explores how loss function is used in DL

models.

The Role of Loss Function in Neural Network Learning

To illustrate how the learning process of a neural network typically occurs, a simple

architecture known as perceptron is employed. A perceptron consists of an input

layer with its neural units organised, as shown in Figure 2.3.

Each neural unit is a function that receives a vector of values and outputs a scalar

value. The vector input to a neural unit are the features (input data) or inputs x with

the network parameters, the weights w and biases b, as expressed in Equation (2.5):
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Figure 2.3: Basic components in a perceptron neural network: the input layer takes
an arbitrary number of inputs, s, the weights, wi map the inputs to the subsequent
layer, a bias, b, activation function A to introduce non-linearity into the function
and the output, ŷ.
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Zθ(xi) = xi ∗ wi + b (2.5)

where θ is the weight, w and bias, b. The output is the dot product of the inputs

and their corresponding weights, and it is followed by adding a constant value bias,

b. The activation function computes the output. The choice of activation function

is highly dependent on the task. The inputs in the context of CBM are the sensors

data collected and the output produces a prediction according to the task, such as

predicting different failure modes of an aircraft fuel system using input and output

fuel pressure of boost pump, fuel flow velocity, and the vanes rotating speed [64].

The perceptron neural network training process starts by a random initialisation

of the the weights wi and bias b variables. A linear activation function is applied,

as calculated in Equation (2.6):

Aθ(xi) = xi (2.6)

Furthermore, the output from activation function is equivalent to the predicted out-

put, ŷi (Equation 2.7):

ŷi = Aθ(xi) (2.7)

Once the predicted output, ŷi is obtained, the error, E of prediction can be evaluated

using the perceptron’s output against the actual value, yi:

E =
n∑
i=1

[ŷi − yi] (2.8)

The E calculated in Equation (2.8) is used as an input to calculate the overall
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loss. Equation (2.9) is a mean square loss function for this application:

L(θi) =
1

2n

n∑
i=1

E2 (2.9)

Subsequently, gradient descent is used to update the weights and biases based on the

magnitude of the loss. Gradient descent is an iterative optimisation algorithm used

to minimise the loss by updating the weights as shown in Equation (2.10)

wi = wi − α
∂

∂wi
L(wi) (2.10)

The partial derivative in Equation (2.10) takes the derivative of the loss function

with respect to weight, which is the equivalent to calculating the gradient of the loss.

The learning rate α is a parameter that controls the magnitude of change in each

iteration. Through the iteration, gradient descent converges on the global minima of

the loss curve and provides the best value for each weight parameter as illustrated

in Figure 2.4.
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Figure 2.4: An initial weight value iteratively minimised based on the partial deriva-
tive of a loss function to achieve global minima in loss.

Figure 2.4 illustrates the importance of the loss function, as it guides the search

to achieve the model with the best predictive power. The design of loss functions

can have significant outcome on the learning process and ultimately influence the

predictive accuracy of the learned model.

Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) is a popular optimiser for DL models. SGD

is a stochastic approximation of gradient descent discussed in the previous section.

It approximates gradient on a single instance rather than an entire dataset. In

equations 2.9 and 2.10 from Section 2.2.1, the parameters of a DL model are adjusted

iteratively, using a function of sum of all errors. The main idea of SGD is to leverage
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the knowledge that every instance provides useful information that optimises the

parameters, therefore, a single random instance every iteration can also minimise

the loss given enough iterations. The formula for SGD is defined as follows:

wi = wi − αL(xi, yi) (2.11)

where i is a random index from an input instance i ∈ [n]. Intuitively, the SGD follows

the descent direction of gradient descent in expectation, and it can converge in fewer

iterations as not all instances are used to compute the loss. Figure 2.5 illustrates

the descent path of (a) gradient descent and (b) SGD on an MSE loss function. The

figure illustrates a top down view of the 3D loss function curve where weight1 and

weight2 is the parameters of a model. The axis going into the figure is the loss. The

trajectory towards the minimisation of loss (center of each plot) is more haphazard

for SGD when compared to gradient descent due to inconsistencies in loss provided

by a single instance.

While SGD is likely to converge to a global minima for loss in fewer iterations,

there is a theoretical optimality gap between gradient descent and SGD [65]. Opti-

mality gap is the fundamental difference between gradient descent and SGD in its

ability to achieve minimum loss. There are several ways to reduce this gap, such as:

• Learning rate decay: This is the gradual reduction of the learning rate, α

(Section 2.2.1, page 53) after certain iterations. The reduction of the learning

rate prevents the gradient to overshoot as the parameters are near the optimal

point.
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(a) Gradient Descent (b) Stochastic Gradient Descent

Figure 2.5: Trajectory of descent for (a) gradient descent and (b) stochastic gradient
descent on a MSE loss function.

• Minibatching: Minibatching is a technique to calculate the average of m

number of stochastic gradients. This reduces the stochastic gradients’ variance,

leading to more optimal descent direction with some sacrifice in speed.

• Momentum: The idea of momentum in SGD is to use the previous gradient

direction to guide the current gradient step. If the previous step’s parameters

update incurs a significantly lower loss, it is a good idea to continue in the

same direction.

The discussions around the formal learning model and loss functions generally

focus on convex function, i.e., the squared loss. However, many ML use cases, such as

embedding knowledge, might change the loss function from convex into a non-convex

function. Non-convex loss function can pose a problem if they contain saddle point

and multiple local minima as the gradient can be trapped in these spots. In the next

section, how gradient descent can converge on non-convex loss function is discussed.
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2.2.2 Implicit Convexity

Gradient descent can converge on non-convex loss functions under two conditions [66]:

(1) The loss function must satisfy Lipschitz continuity in its first derivative. It means

that the non-convex function’s gradient can not change too quickly, and it must be

differentiable everywhere. (2) All saddle points in the function must be strict saddle.

A point is considered a strict saddle if the first derivative is zero (∇f(x) = 0), the

minimum eigenvalue of the second derivative is less than zero (λmin(∇2f(x)) < 0),

and the maximum eigenvalue is greater than zero (λmax(∇2f(x)) > 0). If the two

conditions are satisfied, gradient descent is guaranteed to converge to a minimum

point.

Similarly, for SGD, there are several conditions necessary to converge under non-

convex functions [67]. SGD is non-deterministic as the gradient is now subjected to

random sampling from data. To prevent the gradient from moving too rapidly due

to randomness, the learning rate, α must be carefully adjusted. Additionally, the

condition of the strict saddle is relaxed, only requiring the norm of the first-order

derivative of the loss function to be less than or equal to a small value, ε, (||∇f ≤ ε||)

and the minimum eigenvalue of the second-order derivative to be greater than or equal

to the negative square-root of the Lipschitz constant, ρ and, ε (∇2f(x) ≥ −√ρε).

The Lipschitz constant of a function represents the rate of change. If a function

has no Lipschitz constant, it is said to be discontinuous. If these conditions are

fulfilled, SGD converges. Given the convergence conditions many loss functions that

are non-convex can converge and lead to optimal learning models.
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2.2.3 Commonly Used Loss Functions

Different loss functions are grouped by their tasks, such as regression or classification.

Some commonly used loss function and their formulas for regression and classification

are shown in Table 2.1.

Loss functions Formula

R
e
g
re

ss
io

n

Squared loss (ŷ − y)2

Absolute loss |ŷ − y)|

Huber loss 1
2
(ŷ − y)2, if |ŷ − y| ≤ δ
δ|ŷ − y| − 1

2
δ2, otherwise

Log-cosh loss log(cosh(ŷ − y))

C
la

ss
ifi

ca
ti

o
n

Cross-entropy loss −
∑C

c yclog(ŷc)
where C is the number of class

Hinge loss max(0, 1− y ∗ ŷ)

Exponential loss e−y∗ŷ

Kullback-Leibler divergence
∑C

c yc(log(yc)− log(ŷc))

Table 2.1: Non-exhaustive list of commonly used loss functions for regression and
classification in Machine Learning.

Each loss function exhibits different characteristics, which makes them suitable

for different problems. For example, the squared loss has the advantage of fast

convergence, and the gradient naturally reduces as loss to zero. However, the squared

loss is biased towards outliers as the large errors cause the parameters to change more

in response to the large loss. A standard solution to mitigate large loss from biasing
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the model is to use an absolute loss or a Huber loss, as they are more robust towards

outliers.

While squared loss being biased towards outliers might seem like a disadvantage,

it is not so in a domain where classes in data are highly imbalanced such as predictive

maintenance where the anomalies are often ‘fail’ classes. However, none of the loss

functions in Table 2.1 are able to implicitly learn which instances difficult-to-learn

and they are also not specifically designed for predictive maintenance tasks. In the

next section, the dynamically weighted loss function is introduced to improve the

standard loss function calculation by focusing on challenging, difficult to learn data

instances.

2.3 Dynamically Weighted Loss Functions

Dynamically weighted loss functions adjust to difficult to learn instances by adding a

higher weight to their losses during training. The error calculated from a dynamically

weighted loss function is a mechanism to force the learning process to focus on those

instances with the highest error from the deep learning model. The objective is to

improve the overall accuracy of the deep learning systems investigated, especially

in cases where there is data imbalance. Our hypothesis is that the deep learning

models using a dynamically weighted loss function will learn more effectively than a

standard loss function in situations commonly found in predictive maintenance, such

as data imbalance.

MSE loss function (Equation 2.12) as an example of how to convert a traditional
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loss function in a weighted loss function.

L(f(x; θ), y) = (f(x; θ)− y)2 (2.12)

where f(x; θ) is the model output, θ is the model parameter, and x is input while y

is the ground truth label or expected output. Next, the MSE is simply multiplied

by a weight variable D to be converted to a weighted MSE.

L(f(x; θ), y) = D ∗ (f(x; θ)− y)2 (2.13)

A large error is an indication of poor learning on a particular instance in the dataset.

To place more importance on instances with larger error, the weight variable from

Equation (2.13) is updated to a function of f(x) and y as follows:

L(f(x; θ), y) = D(f(x; θ), y) ∗ (f(x; θ)− y)2 (2.14)

The specific weight used here scales according to the following condition,

D(f(x; θ), y) =


|f(x;θ)−y|

2
if |f(x; θ)− y| is < C

|f(x; θ)− y| otherwise

(2.15)

The weighting is halved when the absolute difference between predicted value and

ground truth is less than a particular constant, C. In addition, the weight function
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can be generalised to take in different inputs on different loss functions.

L(θ, f(x; θ), y)′ = D(θ) ∗ L(f(x; θ), y) (2.16)

The flow diagram of the data from input to the new loss function is shown in Fig-

ure 2.6.
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Figure 2.6: The output f(x) from a deep learning model and the ground truth Y
are used to calculate the mean square error (MSE) for one instance. The MSE is
then passed through a non-linear function to produce the weight that will be used
to dynamically adjust the loss function.

It is important to note that one downside of the dynamically weighted loss func-

tion is that when used in conjunction with mini-batch stochastic gradient descent or

full batch gradient descent. For example, in a batch size of 10, only 1 instance is

predicted poorly by the model while the remaining 9 was predicted accurately the

increase in loss due to dynamic weighting affects the 9 accurately predicted sam-
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ple as well. This could lead to instability in performance and smaller batch size is

encouraged during training.

The next section explores the explicit embedding of domain knowledge to further

improve the dynamically weighted loss function.

2.4 Asymmetric Loss Functions

In the previous section, by using dynamically weighted loss functions the knowledge

of instances that requires more attention by the DL models is calculated implicitly. In

this section, a way to explicitly embed domain knowledge into the loss function that

enable smarter and deterministic bias in DL models that benefits RUL prediction

by leveraging the knowledge that early predictions are more favourable compared to

late predictions is introduced. The weighted loss function described in Section 2.3

is extended to asymmetric loss, to investigate how predictions of engine RUL in

aerospace are affected. Within prognostics and health management, the main metric

used to evaluate DL RUL predictions as mentioned in the Section 2.6.1 is the scoring

function. The hypothesis is that by using asymmetric loss functions the DL models

will be biased towards early prediction and therefore optimises for lower score. In or-

der to investigate the hypothesis, 4 different asymmetric loss functions for regression,

i.e, Mean Square Logarithmic Error-Mean Square Error, Linear-Mean Square Error,

Linear-Linear, and Quadratic-Quadratic are tested and evaluated on how much they

affect different DL architectures performance.
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2.4.1 Asymmetric Loss Functions Calculations

For regression tasks the typical loss functions are the Absolute Error (AE) loss and

the squared error loss. Given x as an array of attributes (or independent variables)

within the training set, y as the dependent variable and ŷ the deep neural network

predictions for y, the absolute error function fAE is calculated as the difference be-

tween actual and predicted values, as follows:

fAE(ŷi, yi) = |ŷ − y| (2.17)

The square error loss function fSE is determined by the following equation:

fSE(ŷi, yi) = (ŷ − y)2 (2.18)

Using fAE as an example, it can transform the loss function from (2.17) to a weighted

loss function, by multiplying it with a weight a, as follows:

fweightedAE(a, ŷi, yi) = a|ŷ − y| (2.19)

The weight, a enable the control of loss’s magnitude by changing gradient of loss

function. Additionally, the weighted fAE is redefined as follows:

fweightedAE(a, ŷi, yi) =


−a(ŷ − y) if d is ≤ 0

a(ŷ − y) otherwise

(2.20)

Where d = ŷi−yi. To modify the weighted loss function from (2.20) to an asymmetric
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loss function, another weight parameter, b is assigned when ŷi − yi > 0 as follows:

fAsymmetricLoss(a, b, ŷi, yi) =


−a(ŷ − y) if d is ≤ 0

b(ŷ − y) otherwise

(2.21)

In cases when a 6= b the function represented in (2.21) becomes a LIN-LIN asym-

metric loss function.

The DL models are then implemented using the asymmetric loss function instead

of the traditional symmetric loss functions, such as MSE and MAE. In addition to the

LIN-LIN loss functions, 3 other asymmetric loss functions are also employed in case

studies discussed in the later part of this chapter, namely, LIN-MSE, MLSE-MSE,

and QUAD-QUAD, defined as follows:

LIN -MSE =


−a(ŷ − y) if d is ≤ 0

∑N
i=1(ŷi−yi)2

N
otherwise

(2.22)

MSLE-MSE =


∑N

i=1(log ŷi−log yi)2
N

if d is ≤ 0

∑N
i=1(ŷi−yi)2

N
otherwise

(2.23)

QUAD-QUAD =



2a(ŷi − yi)2

if d is ≤ 0

2(a+ (1− (2a)))(ŷi − yi)2

otherwise

(2.24)
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The behaviour of the different loss functions investigated is illustrated in Fig 2.7.

From Fig 2.7, it can be seen that when the error < 0 (error = ŷ−y), the loss values

are lower compared to error ≥ 0 using asymmetric loss functions. The asymmetric

loss functions therefore allow more severe penalisation for late RUL prediction.

Figure 2.7: Symmetric loss functions such as MSE and MAE compared to different
asymmetric loss functions, namely MLSE-MSE, LIN-MSE, and LIN-LIN. The nu-
merical value -0.5, -2.0, and 6.0 represents the weights, a and b of the linear part of
LIN-MSE and LIN-LIN loss.

MLSE-MSE is a loss function that limits its penalisation if the error is in negative.

In the context of predictive maintenance, the MLSE-MSE only adjust the weights of

the model in the same manner as MSE when it is predicting late RUL. When it is

predicting early RUL however it only adjust weights of the model if the prediction

is extremely early. MLSE-MSE asymmetric loss function is suitable if the tasks is
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to always predict early RUL rather than actual RUL. LIN-MSE and the LIN-LIN

loss function of the different a and b values focuses on reducing the loss when the

model predicts an early RUL compared to late RUL predictions. If the prediction

of RUL is too early the loss is still large enough to adjust model to predict RUL

more accurately. In the next section, the application of the dynamically weighted

loss function, FL, and asymmetric loss functions are investigated in their respective

case studies.

2.5 Methodology

In this section, the methodology to assess the effectiveness of both dynamically

weighted and asymmetric loss functions are introduced. Two case studies is pre-

sented for dynamically weighted loss functions. The first is using the proposed dy-

namically weighted loss function on a gas turbine engine RUL and the second case

study is using FL function on an APS dataset. The first step is to explore the data

investigated and then perform data preprocessing so the data is in a suitable for-

mat for training. Subsequently, each DL architectures as shown in Section 2.5.1 are

trained using optimised hyperparameters. The performance of the trained models

is evaluated against its respective metrics. Finally, the results are presented and

discussed.
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2.5.1 Deep Learning Architectures Investigated

Deep Feedforward Neural Network

Early form of feedforward neural network are Multi-Layer Perceptron (MLP). A MLP

consists of three layer types, namely the input, hidden, and the output layer. Each

layer is composed of several neural units. The neurals in each layer are fully connected

to the neurals in the subsequent layer and the connection holds a weight value that

will contribute the output value. The connections’ weights are randomly initialised

and then updated using the gradient descent method during training. As shown in

Figure 2.8, the MLP neural network can be extended to a deep neural network by

increasing the number of hidden layers, which allows for learning more complicated

relationships between inputs.
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Figure 2.8: A deep feedforward neural network (DNN) similar to the perceptron has
the input layer along with the output layer. However, the DNN has a large number
of hidden layers and neural units.

Convolutional Neural Networks

Convolutional neural networks (CNN) [68] are neural networks that contain different

layers such as the convolution, max pooling, and fully connected layer. The purpose

of max pooling layer is to downsample the input and reduce the dimension while

the convolution layer extracts high-level features from the input. This allows CNN

to perform better on data that has high spatial correlation with its neighbourhood

data-points. Figure 2.9 shows how the spatial relationship within data are preserved

through convolution and max pooling using a filter. Furthermore, CNN1D uses a

filter that is the same height as the input and the convolution operation occur in a

single direction as illustrated in the bottom part of Figure 2.9.
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Figure 2.9: A schematic of a 1D and 2D Convolutional Neural Network

The top part of the figure illustrates a normal two dimensional convolutional

neural network (CNN) with its convolutional layer and max pooling layer.

The max pooling layer is subsequently flattened to feed the data into a fully

connected layer. The bottom figure is a one-dimensional convolutional neural

network (CNN1D) network where the filter is moving in only one direction to

perform the convolution and max-pooling operations.

Long Short-Term Memory

The Long Short-Term Memory (LSTM) network [69] is a variant of the Recurrent

Neural Network (RNN) [70] designed with chain units consisting of input, forget,

and output gates as shown in Figure 2.10. Gates are responsible for regulating what

information is passed through to the next unit. The input gate controls the influence
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of the current input. The forget gate within each unit controls how much information

needs to be retained. The output gate controls whether the flow is passed on to the

next LSTM unit. This architecture allows for the learning of data with long-term

dependencies. Furthermore, a bidirectional LSTM as shown in Figure 2.11 connects

two hidden layers of LSTM in the opposite direction to increase the information

available to the network by using the past and future states.

Figure 2.10: The long short-term memory (LSTM) unit contain a forget gate, output
gate and input gate. The yellow circle represents the sigmoid activation function
while the pink circle represents a tanh activation function. Additionally, the ”x” and
“+” symbols are the element-wise multiplication and addition operator.
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Figure 2.11: The Bi-LSTM and Bi-GRU are structurally the same except for the
LSTM and GRU unit. The red arrows indicate the input value flow, blue arrows are
the output values, and the grey arrows represent the information flow between the
LSTM/GRU units.

Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [71] is proposed as alternative to LSTM. While

GRU and LSTM are similar, they differ in the number of parameters and type of

gates. GRU uses only two gates, as shown in Figure 2.12. The two gates are (1) the

reset gate to control the memory retention from previous unit and addition of new

memory into the unit and (2) the update gate to control input and to remove new

information. Therefore, GRU has fewer parameters in its design than LSTM, thus

reducing the model complexity while improving on computational efficiency. Similar

to LSTM, GRU can also be extended to a Bi-directional GRU architecture.
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Figure 2.12: The gated recurrent unit (GRU) unit contain a reset gate and update
gate. The yellow circle represents the sigmoid activation function while the pink
circle represents a tanh activation function. Additionally, the ”x”, “+”, and ”1−”
symbols are the element-wise multiplication, addition, and inversion operator.

2.5.2 Summary of Data Preprocessing

In Table 2.2 a summary of the data preprocessing employed is listed.

Task Description

Data split ratio 80/10/10 (train/validation/test)
Data split method Randomly split between train/validation/test
Scaling method All features scaled between 0-1
Feature Selection None
Filling missing values Mean
Anomaly data Not removed (anomalies are usually data of interest.)
Data encoding One-hot

Table 2.2: A table of data preprocessing methods for CMAPSS and APS case studies
for dynamically weighted and asymmetric loss functions
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2.6 Case Studies

2.6.1 Case Study on Dynamically Weighted Loss Function:

Remaining Useful Life Prediction of Gas Turbine En-

gine

The first case study focuses on using regression-based dynamically weighted loss func-

tion to predict the RUL of gas turbine engine degradation. The goal is to compare the

predictive accuracy of DL models with and without dynamically weighted loss. The

base loss function employed in this case study is MSE. Furthermore, the weighted

and non-weighted loss functions are used in four different DL architectures described

in Section 2.5.1. Finally the RUL prediction performance of the DL models using a

MSE loss function and dynamically weighted MSE is compared. The hypothesis is

that by incorporating the dynamic weighting into the MSE the DL models are able

to adjust its parameters accordingly for difficult-to-learn instances leading to higher

predictive accuracy compared not loss functions that are not dynamically weighted.

Data Generation

The gas turbine engine degradation data used in this case study is CMAPSS by

Saxena and Goebel [72]. The data is obtained from a high fidelity simulation of a

complex thermo-dynamical system that closely models a real aerospace engine. The

failure of the simulated engine is initiated through random point of deterioration.

The deterioration continues with increasingly worsening effect. This is modelled after

the Arrhenius Model, Coffin-Mason Mechanical Crack Growth Model, and Eyring
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Model [72, 73]. The commonality between the three deterioration models listed

are the exponential behaviour of fault evolution. The system measures the loss of

efficiency and flow until a failure criterion is reached. The degradation and damage

propagation trends are modelled as follows:

h(t) = 1− exp(a(t)tb(t)) (2.25)

Equation (2.25) is a generalised Equation for the health index of gas turbine engine,

h(t) with respect to time. Subsequently, the system includes a non-zero initial degra-

dation, d. The initial non-zero degradation is common in real-world systems due to

manufacturing inefficiencies or error:

h(t) = 1− d− exp(a(t)tb(t)) (2.26)

The decay of efficiency, e(t) and the loss of flow, f(t) are described using (2.26), as

follows:

e(t) = 1− de − exp(ae(t)tbe(t)) (2.27)

f(t) = 1− df − exp(af (t)tbf (t)) (2.28)

Efficiency and flow are modelled separately as different faults exhibit different tra-

jectories of degradation for each of the terms. The terms from (2.27) and (2.28) are

combined to form the final model of damage propagation in gas turbine engine:
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H(t) = g(e(t), f(t)) (2.29)

Using the damage propagation model in Equation (2.29) the data is generated as

follows:

1. Define initial deterioration parameters, e0 and f0 for (2.27) and (2.28).

2. Impose an exponential rate of change for flow and efficiency loss for each data

set, denoting an otherwise unspecified fault location with increasingly worsen-

ing effect by setting the parameter a and b in (2.26).

3. Stop when failure criterion (loss of flow and efficiency) is reached. The failure

criterion in this case is when H(t) = 0.

4. Add mixture noise model into final output data reflect real world scenario.

Additionally, the feature data are collected from the sensors measurements

listed in Table 2.3. By combining the output and feature data, the complete

dataset can be obtained for training and testing DL models to perform RUL

prediction.

Data Description

The CMAPSS dataset contains training and test sets with 6 different operating

conditions. The training set comprises of the complete engine life cycle data (run

until failure), while the test set has a RUL range of 10 to 150 cycles. The training

data consist of 100 engines with a total of 20631 cycle, while the test data consist of
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Table 2.3: Description of the CMAPSS dataset sensor features.

Symbol Description Unit

T2 Total temperature at fan inlet ◦R
T24 Total temperature at Low Pressure Compressor outlet ◦R
T30 Total temperature at High Pressure Compressor (HPC) outlet ◦R
T50 Total temperature at Low Pressure Turbine outlet ◦R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P2) —
Ps30 Static pressure at HPC psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio —
farB Burner fuel-air ratio —
htBleed Bleed Enthalpy —
Nf dmd Demanded fan speed rpm
PCNfR dmd Demanded corrected fan speed rpm
W31 High Pressure Turbine coolant bleed lbm/s
W32 Low Pressure Turbine coolant bleed lbm/s

100 engines with a total of 13096 engine cycles. The datasets contain the engine unit

number, the operating cycle number of each unit, the operating settings and the raw

sensor measurements.

Data Preprocessing

CMAPSS consists of 3 operation settings and 21 sensors features (Table 2.3). How-

ever, a total of 7 features are discarded as they remained constant throughout the gas
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turbine engine degradation process and provided no useful information. Therefore

only the sensors with the following indices are select: 2, 3, 4, 7, 8, 9, 11, 12, 13, 14,

15, 17, 20, and 21. Additionally, the data is normalised between [0, 1] to ensure that

each feature is represented equally in the learning process. Subsequently, the labels

are preprocessed. The labels are the remaining RUL cycle for each instance of the

data and each complete cycle is degraded linearly. Since the fault does not occur at

the early stages of engine cycle, the value of the maximum cycle is capped at 100

and remains constant until degradation occurs, as shown in Figure 2.13. This allows

for the models to differentiate between the healthy state, a RUL of 100 and under

degradation, and a RUL cycle smaller than 100.

81



Figure 2.13: Maximum RUL of gas turbine engine are capped to 100 cycles to distin-
guish the between the healthy state (RUL of ¿=100 cycles) and degradation (RUL
of ¡100 cycles) state during preprocessing.

Deep Learning Architectures Investigated

The following DL model architectures are employed to test the dynamically weighted

MSE loss function from Equation (2.16) (page 64), (1) bidirectional LSTM, (2) DNN,

(3) CNN1D, and (4) bidirectional GRU as explained in Section 2.5.1 (page 71). The

hyperparameters of each DL model employed are listed in Table 2.4. The hyperpa-

rameters are optimised using random search.

A L2 regulariser is added to the layers of all models shown in Table 2.4 to reduce

overfitting. In the context of neural network, an L2 regulariser is mathematically
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Table 2.4: Hyperparameters of all models used to test the new loss function presented
in Section 2.3.

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 2
Layer 1 units: 100
Layer 2 units: 50
Activation function: Leaky ReLU

DNN Number of layers: 6
Layer 1 units: 100
Layer 2 units: 500
Layer 3 units: 100
Layer 4 units: 250
Layer 5 units: 12
Layer 6 units: 6
Activation function: ReLU

CNN1D Number of layers: 2
Layer 1 units: 64
Layer 2 units: 64
Activation function: ReLU
Filter size: 3 x Features

Bi-GRU Number of layers: 2
Layer 1 units: 100
Layer 2 units: 50
Activation function: Leaky ReLU

equivalent to weight decays. The L2 regulariser prevents overfitting by limiting the

complexity of the network through the penalisation of larger weights, which keeps the

weights smaller. Additionally, a dropout [44] rate of 0.5 is also added to all models

tested to mitigate overfitting. Dropout is a technique for regularising the network

by randomly setting the output to zero (equivalent to setting the weight of the unit

to 0).
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Evaluation Metrics

Performance evaluation is the key step to identify and compare the performance

between different methods. NASA published a preferred method of performance

evaluation for CMAPSS using the idea of asymmetric scoring [72]. In the context of

predictive maintenance, it is desirable to predict the time of failure early. Therefore,

the scoring is asymmetric around the true time of failure, such that late predictions

are more heavily penalised than early predictions. Early prediction can be thought of

as a false positive, while late prediction is a false negative. The asymmetric scoring

function is defined as follows:

Scoring Function =


∑n

i=1 e
−d
10 − 1 if d < 0∑n

i=1 e
d
13 − 1 if d ≥ 0

(2.30)

where d is f(x) − y. Figure 2.14 shows the asymmetricity of the scoring function

from Equation (2.30), in which higher penalty scores are assigned to late predictions.
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Figure 2.14: Score value as the error increases. The score is calculated using the scor-
ing function (Equation (2.30)), where the early predictions (negative errors) receive
lower penalisation.

In addition, Root Mean Squared Error (RMSE) is employed as the second eval-

uation metrics:

RMSE =

√√√√ 1

N

N∑
i=1

(f(xi)− yi)2 (2.31)

The scoring function (SF) along with RMSE provide a suitable measure of the differ-

ent DL models’ accuracy. The evaluation metrics alone do not indicate if a result im-

provement is statistically significant or not. Therefore, the Mann–Whitney–Wilcoxon

non-parametric test is used at a 0.05 significance level to test if result improvements
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are significant. The Mann–Whitney–Wilcoxon non-parametric test is chosen as the

two results distributions are independent. The experiment is replicated 20 times to

ensure that the results are more reliable and accurately represent the true distribu-

tion of the results.

Results and Discussion

Table 2.5 shows the comparison between the RUL prediction results of DL models

with and without dynamically weighted loss function. Dynamically weighted loss

function improved the scoring function’s values for all models tested. Using RMSE,

Bi-LSTM and CNN1D showed improved performance, while DNN and Bi-GRU’s

result were inferior. The DNN and Bi-GRU models with dynamically weighted loss

function predicted earlier RUL, which caused the predicted output to differ from the

ground truth; however, an improvement is still observed in scoring function. This is

due to the scoring function’s asymmetric property that resulted in the score favouring

an early RUL prediction. The results shown in Table 2.5 are the median values, and

they do not include outliers.
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Table 2.5: Scoring function and root mean squared error (RMSE) before and af-
ter using DW for loss function while maintaining the architecture of DL models.
Blue coloured text indicates improved performance while red coloured text indicates
worsened performance. The values in this table are the median values across 20
experimental runs.

Deep Learning

Architecture
Scoring Function RMSE

Bidirectional LSTM 178.568 20.1

Bidirectional LSTM + DW 129.089 13.9

−27.7% −30.6%

DNN 93,473.3 23.1

DNN + DW 13,741.3 23.9

−85.2% +3.4%

CNN1D 112.858 22.3

CNN1D + DW 63.002 21.1

−44.1% −5.7%

Bidirectional GRU 169.550 11.6

Bidirectional GRU + DW 81.899 12.9

−51.6% +11.8%
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Figure 2.15 shows that the improvement made by using the new loss function

is statistically significant. The number of “*” in Figure 2.15 represents the p-value

where “***” < 0.001, “**” < 0.01, “*” < 0.05. Figure 2.15 shows that the four

models, DNN, Bi-GRU, CNN1D and Bi-LSTM results improvement are statistically

significant. Bi-GRU has a p-value of < 0.001, DNN and CNN1D has a p-value of

< 0.01, while Bi-LSTM has a p-value of < 0.05. In addition, anomalies are observed

in the results shown in the boxplots. This is caused by the random initialisation of

the initial weights, which resulted in the variability of the final output. Therefore it is

important to run the experiment multiple times to ensure that the actual distribution

of the final output is captured.

2.6.2 Case Study on Dynamically Weighted Loss Function:

Fault Detection in Air Pressure System

The second case study investigates the performance of dynamically weighted loss

functions in the context of classification. The classification task in this case study is

the fault detection of APS. The same DL model architectures from the previous case

study are employed here, but the choice of loss function is different. Cross-entropy,

FL, and the dynamically weighted version of cross-entropy are investigated.

Data Description

The function of an APS is to produce pressurised air for braking and gear changes.

Therefore, it is important that the APS’ fault are accurately detected, as a miss

in fault could lead to undesirable outcomes. The APS failure data has a total of

88



(a) (b)

(c) (d)

Figure 2.15: Boxplots of all scoring functions result from the four deep learning
models, (a) DNN, (b) Bi-GRU, (c) CNN1D, and (d) Bi-LSTM using a dynamically
weighted loss function, and without the weight. The asterisk on the top of each
boxplot denotes the p-value where “***” < 0.001, “**” < 0.01, “*” < 0.05.
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171 features from sensors and the name for the features have been anonymised for

proprietary reasons. The training data consists of 60,000 instances of which 59,000

belong to the negative class (no fault) and 1000 to the positive class (faulty). As for

the testing data, it consists of 16,000 instances of which 15,625 belong to the no fault

class and 375 to the fault class. The number of instances between the positive class

and negative class is highly imbalanced as shown in Table 2.6.

Table 2.6: Number of instances and percentage of minority class in training and
testing data of air pressure system (APS) failure dataset.

Data Number of Positive Instances Number of Negative Instances Percentage of the Minority Class

Training 1000 59,000 1.67%
Testing 375 16,000 2.34%

Data Preprocessing

The APS dataset contains 170 features and a binary class (True or False) as labels.

The missing data are imputed using the K-Nearest Neighbour (KNN) [74] algorithm.

Furthermore, the Synthetic Minority Over-Sampling Technique (SMOTE) is used to

re-balance the training set as it is highly imbalanced as shown in Table 2.6. SMOTE

is a way of increasing the minority class without directly duplicating instances of the

minority class. Instead, new instances are synthesised within the clusters of minority

classes. The reason this dataset is balanced for this experiment is because the goal

is to investigate the effect of a dynamically weighted loss function on instances that

are difficult-to-learn. Therefore, the balanced data is tested on DL models using

normal and dynamically weighted loss functions. Further study is required to study

the effect of dynamically weighted loss function on a highly imbalanced dataset.
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The new instances are not just copies of existing minority cases; instead, the

algorithm takes samples of the feature space for each target class and its nearest

neighbours, and generates new examples that combine features of the target case

with features of its neighbours. This approach increases the features available to

each class and makes the samples more general.

Deep Learning Architectures Investigated

For consistency, the same DL architectures listed in Section 2.5.1 are used to test

the FL shown in Equation (2.36). Their respective hyperparameters are listed in

Table 2.7. Furthermore, the strategy adopted for mitigation of overfitting is the same

as the technique described in Section 2.6.1 using a combination of L2 regulariser and

drop rate of 0.5. In addition, the γ and α set for FL are 5 and 0.75 respectively.

The γ and α value were experimented using a combination of γ = [1, 2, 3, 4, 5] and

α = [0.25, 0.5, 0.75, 1.0]. The results are shown in Figure 2.17 using a boxplot with

different values of alpha and gamma. Additionally, it is ran six times to obtain

the distribution. By using analysis of variance, it is found that the cost calculated

using Equation (2.37) using different combinations of γ and α were not statistically

significant different as it has the F-value of F (19, 100) = 0.588 and a p-value greater

than 0.05 at p = 0.907.

Focal Loss Function

For many fault detection tasks, the goal is to predict the faulty and non-faulty con-

dition given the sensors value. In essence, this is a binary classification problem.
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A deep learning model typically produces a probability value for each class using

the softmax activation function, and the loss is calculated using the CE loss func-

tion. Softmax activation function normalises the vector from a neural network prior

to action layer (Z in Figure 2.3) into a vector of probabilities proportional to the

exponential of the given vector. For example, if the vector is [1.3, 5.1, 2.2, 0.7, 1.1] it

is converted to a vector of probabilities, [0.02, 0.90, 0.05, 0.01, 0.02]. Mathematically

it is defined, as follows:

A(Z) =
eZi∑K
j=1 e

Zj

(2.32)

Where Z is the output vector before the activation function and K is the number of

elements in the vector. CE loss is a measure of the difference between two probability

distributions. The first probability distribution is the actual class where the known

class label has a probability of 1.0 and there is a probability of 0.0 for all other class

labels. Subsequently, the second probability distribution is the predicted probability

for each class. The CE loss function for binary classification can be represented

mathematically as follows:

CE(y, p) = −(y ∗ log(p) + (1− y) ∗ log(1− p)) (2.33)

where p is the DL model probabilistic output that ranges from [0, 1] and y is the
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ground truth class either 0 or 1. Equation (2.33) can be simplified to the form:

CE(y, p) =


−log(p) if y = 1

−log(1− p) otherwise.

(2.34)

To further simplify the CE loss function, po can be defined as:

po =


p if y = 1

1− p otherwise.

(2.35)

Therefore, CE(po) = −log(po). Subsequently, a weighting factor term is added

to convert the CE loss function to FL,

FL(po) = −αo(1− p0)γlog(po) (2.36)

where α is a value between [0, 1] and γ ≥ 0. Both α and γ are tunable hyperpa-

rameters to optimise the performance of deep learning models. The α is a weighting

parameter used to control the class imbalance problem. Additionally, the γ is a fo-

cusing parameter that controls the loss. Larger values of γ correspond to larger losses

for badly learned instances. The data flow for the FL is the same as the proposed

loss function in Section 2.3 and is it summarised in Figure 2.16.
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Figure 2.16: The output f(x; θ) from the deep learning model and the ground truth
Y are used to calculate the cross entropy (CE) loss for one instance. The CE is
then combined with the weighted function to produce the weight that will be used
to dynamically adjust the loss function.

Evaluation Metrics

The authors of the APS dataset from Scania published a cost-metric of misclassifica-

tion as an evaluation metric. Binary classification has two faults: (1) False positive
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and (2) false negative. Each misclassification has a cost associated with it. In the

context of the CBM, a false negative outcome has a more severe consequence com-

pared to false positive outcome, and leads to an asymmetry in cost. A cost value of

10 and 500 are assigned to the false positive and false negative outcomes respectively

to signify the asymmetry in cost. The cost value for the false positive and negative

are specified by the data owner. The origin for the specific value of 10 and 500 are

not explained. The total cost can be summarised as follows in Equation (2.37) and

Figure 2.18:

Total Cost = (Cost1 ∗ False positives) + (Cost2 ∗ False negatives) (2.37)

Figure 2.17: Boxplot of final cost using a combination of gamma values, [1, 2, 3, 4,
5] and alpha value, [0.25, 0.5, 0.75, 1.0]. The x-axis are denoted by the combination
of alpha and gamma. For instance, ‘g1a100’ represents gamma value of 1 and alpha
of 1.0.
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Table 2.7: Hyperparameters of all models used to test the focal loss function pre-
sented in Section 2.6.2.

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 2
Layer 1 units: 32
Layer 2 units: 16
Activation function: ReLU

DNN Number of layers: 2
Layer 1 units: 64
Layer 2 units: 64
Activation function: Sigmoid

CNN1D Number of layers: 1
Layer 1 units: 30
Activation function: ReLU
Filter size: 10 × 1

Bi-GRU Number of layers: 2
Layer 1 units: 32
Layer 2 units: 16
Activation function: ReLU

The goal this fault classification task is to minimise the cost. A large percentage

of the cost factor comes from the false negative classification. Additionally, metrics

such as False Negative Rate (FNR), False Omission Rate (FOR), and recall are also

used. The formulas for FNR, FOR and Recall are as follows:

False Negative Rate =
False Negative

True Positive + False Negative
(2.38)

False Omission Rate =
False Negative

True Negative + False Negative
(2.39)

Recall =
True Positive

True Positive + False Negative
(2.40)
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Finally, a Precision-Recall (PR) curve is added to study the relationship between

precision and recall. Precision is the measurement for the false positive rate while

recall is the rate of true positive against false negative. Another option is the Receiver

Operating Characteristic (ROC) curve. ROC curve is created by plotting the true

positive rate against the false positive rate. A PR curve is employed here as opposed

to a ROC curve as the latter can be easily misinterpreted in highly imbalanced

datasets [75].

True
positive

p′

p

False
negative
Cost:
500

n total

P′

False
positive
Cost:
10

n′

total P

True
negative N′

N

actual
value

prediction outcome

Figure 2.18: A confusion matrix with the associated cost of each fault. A confusion
matrix tabulates the performance of a classification model. A true positive and
true negative are correct classification therefore, there are no cost associated to it.
Whereas false positive and false negative receive a cost of 10 and 500 respectively.
The p and n represents positive and negative class while P and N represents the
total positive and negative class. The actual class is denoted by an apostrophe, ′.

Results and Discussion

Table 2.8 shows the cost, FNR, FOR, and recall for the DL architectures Bi-LSTM,

DNN, CNN1D, and Bi-GRU using CE and FL. Bi-LSTM, DNN, CNN1D, and Bi-
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GRU with FL showed significant improvement across the cost, FNR, FOR, and recall

metrics. CNN1D with FL achieved the lowest cost of 12,580 while Bi-GRU with

CE loss achieved the highest cost of 35,480. Furthermore, when FL is used as the

choice of loss function the cost metric improved by an average of 31.5% across the

tested models.

The results of cost metric were plotted to show the distribution of output across

20 experimental runs as shown in Figure 2.19d. The number of “*” in Figure 2.19d

represents the p-value where “***” < 0.001, “**” < 0.01, “*” < 0.05. The boxplots

show that using DL models with FL as the loss function resulted in improvements

that were statistically significant. DNN, CNN1D, and Bi-LSTM had p-values of

<0.001 while Bi-GRU had a p-value of <0.01. In addition, the anomalies within the

experimental runs for each DL models are shown in the boxplots as black dot.
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(a)
(b)

(c)
(d)

Figure 2.19: Boxplots of Costs result from using (a) DNN, (b) BiGRU, (c) CNN1D,
and (d) BiLSTM with CE and FL respectively. The asterisk on the top of each
boxplot denotes the p-value where “***” < 0.001, “**” < 0.01, “*” < 0.05.

Figure 2.20 displays the PR Curve for both FL and CE used with DNN, Bi-

GRU, CNN1D, and Bi-LSTM. From the plot it can be observed that DNN’s PR

curve and Area Under the Curve (AUC) for FL and CE are similar. Bi-GRU with

FL has a higher AUC compared to Bi-GRU with CE and overall achieved higher

precision for a given recall. CNN1D and Bi-LSTM produced lower AUCs when FL
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is used. CNN1D and Bi-LSTM both had a lower precision to achieve the same

recall, with CNN1D having lower precision compared to Bi-LSTM. This is caused by

the overwhelming false positive prediction to achieve the low false negative count.

However, as mentioned in Section 2.6.2 the cost of a false positive is significantly

lower than a false negative, at a ratio of 10:500. Therefore, when the actual cost is

accounted for, as shown in Table 2.8 DL models with FL still outperformed CE in

all cases.

Table 2.8: Results of cost, false negative rate, false omission rate, and recall using
Bi-LSTM, DNN, CNN1D, and Bi-GRU with CE and FL. Blue colored text indicates
improved performance. The values in this table are the median values across 20
experimental runs.

Deep Learning Architectures Cost False Negative Rate False Omission Rate Recall

Bidirectional LSTM 22,565 0.101 0.00248 0.898
Bidirectional LSTM + FL 15,160 0.045 0.00113 0.954

−32.8% −55.4% −54.4% +6.2%

DNN 31,505 0.156 0.00378 0.844
DNN + FL 24,200 0.112 0.00273 0.888

−28.2% −39.3% −27.8% +5.0%

CNN1D 16,855 0.067 0.00164 0.933
CNN1D + FL 12,580 0.012 0.00030 0.988

−25.4% −82.1% −81.7% +5.9%

Bidirectional GRU 35,480 0.177 0.00429 0.822
Bidirectional GRU + FL 21,350 0.074 0.00187 0.925

−39.8% −58.1% −56.4% +12.5%
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(a) (b)

(c) (d)

Figure 2.20: PR Curve for (a) DNN, (b) Bi-GRU, (c) CNN1D, and (d) Bi-LSTM
using focal loss (Green line) vs. cross entropy loss (Red line). The AUC of PR curves
are included at the top of each plot for each loss function.

The two case studies on weighted loss functions demonstrates that the CBM of

a gas turbine engine and APS system are improved by using DL models with a dy-

namically weighted loss function that focused on instances that are poorly learned

during the training process that can be thought of as a way to implicitly embed

knowledge. The proposed loss function and FL are aimed at increasing prognostics
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and diagnostics accuracy by improving on the existing loss function while keeping

the DL architecture unchanged. Improvements are observed for the RUL prediction

accuracy on the CMAPSS dataset and fault detection on the APS failure dataset

classification performance using four different DL architectures, e.g., DNN, CNN1D,

Bi-GRU, and Bi-LSTM, when the dynamically weighted loss function is used. Sub-

sequently, the results are validated by performing a Mann–Whitney–Wilcoxon non-

parametric statistical significance test, which showed the main evaluation metric,

being function for case study 1 and cost for case study 2. All deep learning archi-

tectures tested achieved statistically significant improvement (p < 0.05) when the

dynamically weighted loss function is employed.

2.6.3 Case Study on Asymmetric Loss Function: Remaining

Useful Life Prediction of Gas Turbine Engine

This case study investigates the efficacy asymmetric loss functions on the problem

of determining RUL for the CMAPSS dataset. The objective of this case study is to

compare the asymmetric loss functions to traditional symmetric loss functions. The

DL models used in Section 2.6.1 are re-optimised for the loss functions investigated.

Deep Learning Architectures

The following DL model architectures are employed to test the different loss functions

in Section 2.4.1, (1) Bi-LSTM, (2) DNN, and (3) CNN1D. Their hyperparameters
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are listed in Table 2.9. 1. The asymmetric loss functions tested are MLSE-MSE,

LIN-MSE, LIN-LIN, and QUAD-QUAD.

Table 2.9: Hyperparameters of all models used to test the asymmetric loss functions

Deep Learning Architecture Hyperparameters

Bi-LSTM Number of layers: 3

LSTM Layer 1 units: 50

LSTM Layer 2 units: 25

Dense Layer 1 units: 50

Activation function: ReLU

DNN Number of layers: 6

Dense Layer 1 units: 100

Dense Layer 2 units: 250

Dense Layer 3 units: 100

Dense Layer 4 units: 250

Dense Layer 5 units: 12

Dense Layer 6 units: 6

Activation function: ReLU

CNN1D Number of layers: 5

Conv1D Layer 1: [Filter: 60, Kernel Size: 2]

Conv1D Layer 2: [Filter: 60, Kernel Size: 2]

MaxPooling 1D Layer

Dense Layer 1 units: 100

In addition, L2 regulariser is added to the dense layers of all models shown in

Table 2.9 to assist in the reduction of overfitting. The L2 regulariser reduces the

1The CMAPSS data and code for asymmetric loss function can be accessed on
https://github.com/divishrengasamy/Asymmetric-Loss-Functions-for-Deep-Learning-Early-
Predictions-of-Remaining-Useful-Life-in-Aerospace-/
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chances of overfitting by limiting the complexity of the network through the penali-

sation of larger weights, thus, keeping the weights of the network smaller. Similarly,

a dropout [44] rate of 0.2 is also added to all dense layers to mitigate overfitting.

Dropout is a technique for regularising the network by randomly setting the output

of units to zero.

Results and Discussions

Table 2.10: Final score using Bi-LSTM, DNN, and CNN1D with symmetrical loss
functions: MSE, and MAE and asymmetrical loss functions: MLSE-MSE, LIN-MSE,
LIN-LIN, and QUAD-QUAD. The gray numbers in the square brackets represent the
95% confidence interval and the bolded numbers highlight the best score for each DL
model.

Loss Functions Score [95% Confidence Interval]

Bi-LSTM DNN CNN1D

MSE 1554.4 [1039.5, 2069.2] 4289.9 [3810.8, 4768.9] 1044.7 [690.59, 1398.9]

MAE 1162.4 [721.84, 1603.0] 2001.1 [1263.9, 2738.4] 1365.6 [975.42, 1755.9]

MLSE-MSE 3037.1 [1688.4, 4385.8] 5049.9 [4694.3, 5405.5] 3761.8 [2741.4, 4782.3]

0.1LIN-MSE 2847.4 [1963.1, 3731.7] 4509.0 [4026.9, 4991.1] 3653.1 [2853.2, 4453.0]

0.5LIN-MSE 2965.0 [0, 6776.0] 3227.3 [2820.1, 3634.5] 3821.2 [430.62, 7211.9]

1.0LIN-MSE 2301.5 [1902.3, 2700.6] 3255.6 [2941.7, 3569.6] 2132.3 [600.31, 3664.2]

1.0LIN-2.0LIN 1027.1 [498.20, 1556.1] 1725.0 [1401.7, 2048.4] 1357.3 [814.79, 1899.8]

2.0LIN-4.0LIN 1670.5 [1596.6, 1744.3] 2034.9 [1942.3, 2127.5] 1392.1 [81.903, 2702.4]

2.0LIN-6.0LIN 2125.0 [1908.2, 2341.7] 1769.0 [1447.5, 2090.5] 1665.5 [1550.8, 1780.1]

QUAD-QUAD 1647.3 [993.25, 2301.5] 2203.8 [0, 5597.5] 803.90 [670.78, 937.03]
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Table 2.10 shows the comparison of RUL score between Bi-LSTM, DNN, and CNN1D

using MSE, MAE, MLSE-MSE, LIN-MSE, LIN-LIN, and QUAD-QUAD loss func-

tions. The results reveal that the best overall score of 1027.1 and 1725.0 for Bi-LSTM

and DNN is obtained when using asymmetrical loss function LIN-LIN with parame-

ters (a = 1.0, b = 2.0). CNN1D has the best score of 803.9 using the QUAD-QUAD

loss function. This shows that DL models are able to take advantage of the bias

created by asymmetric loss functions to achieve early prediction and produce the

lowest score for this case study. The asymmetric loss function shifted the learned

representation of the data and also the loss landscape to adapt to the embedded

knowledge. It can also be observed that symmetrical loss achieves a better score

than asymmetrical loss in many results from the table. For example, Bi-LSTM and

DNN with MAE achieve a better score than all asymmetrical loss functions, except

for LIN-LIN with parameters (a = 1.0, b = 2.0). Similarly for CNN1D, MSE achieves

the best score after QUAD-QUAD loss function.

In addition, a = [0.6, 0.7, 0.8, 0.9] is used for the QUAD-QUAD loss functions

and it is found that it does not converge for Bi-LSTM unless the architecture is

modified. A possible reason for the non-convergence of Bi-LSTM could be because

of the sensitivity to the larger loss due to weights of the asymmetric loss. The large

weights multiple prevents the loss from decreasing. Another possibility is due to

mis-parameterisation of the architecture and can be fixed by expanding the search

space of hyperparameters. Therefore, the results are excluded to keep the archi-

tecture unchanged throughout the experimentation process. Furthermore, recurrent

dropout [76] is experimented for Bi-LSTM but found no improvement in the model’s
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performance. The scores within the grey square bracket in Table 2.10 represent the

lower and upper bound of the 95% confidence interval. The limit of the lower bound

is set to zero as a negative is not possible, as shown in Fig 2.14. For example, the

confidence lower bound of Bi-LSTM with 0.5LIN-MSE and DNN with QUAD-QUAD

loss are set to zero due to negative lower bound scores.

In all asymmetric loss functions configuration tested 1.0LIN-2.0LIN and QUAD-

QUAD consistently has better scores compared to others. The reason that 1.0LIN-

2.0LIN and QUAD-QUAD does well is because it is similar to MAE and MSE in

terms of loss landscape with an additional a small bias in favour for early predic-

tions. The small bias does not change the learned representation and loss landscape

drastically and ensure that the loss reaches a minima. This shows that using asym-

metrical loss require additional parameters search and optimisation to obtain an

optimal score. The results are also highly sensitive to the changes in the parameters

of asymmetric loss functions. The reason for the high score from using some asym-

metrical loss functions is that it is caused by the strong bias. The loss multiplier

can increase or decrease the loss too much causing instability during training. By

changing the loss landscape drastically while keeping all other model parameters the

same the training has a reduced chance of the loss reaching the minima. A possible

solution and future work is to extend the asymmetric loss function to be a learned

loss function where the parameters of the asymmetric loss functions are learned and

optimised. This ensures that the magnitude of its parameter does not cause in-

stability during training. Furthermore, other parameters of the model such as the

learning rate could be reduced the dampened the effect of strong bias resulted from
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asymmetric loss function.

2.7 Summary

This chapter proposes a regression-based dynamically weighted loss function and also

introduced FL, a classification-based dynamically weighted loss function to predictive

maintenance. The objectives are to develop and test supervised DL models with a

new type of knowledge embedded loss functions to improve predictive capabilities

for sensor-based data by favouring early prediction in RUL and subsequently asses

the advantage of knowledge embedded loss functions on RUL of gas turbine engine

and fault detection in air pressure systems. Dynamically weighted loss functions are

loss functions that implicitly embed knowledge to focus on difficult-to-learn instances

during the model learning process. The two dynamically weighted loss functions were

tested on RUL for gas turbine engine and fault classification of APS. The dynamically

weighted loss functions are shown to improve prediction accuracy of DL-based models

when compared to traditional loss functions for the two aforementioned case studies.

Additionally, an asymmetric loss function that is specially embedded with knowledge

of early prediction is more favourable than late prediction in RUL task is proposed.

In the best case scenario, the asymmetric loss function outperforms standard loss

functions when tested on the gas turbine engine RUL dataset. However, in most cases

traditional loss functions still outperforms the asymmetric loss. While asymmetric

loss function is able to outperform traditional loss functions, its parameter tuning is

sensitive and require careful adjustment to achieve optimal results. Furthermore, a
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more specific loss function specific to gas turbine engine can potentially yield more

accurate RUL prediction results.

So far, implicitly and explicitly embedding knowledge into loss functions have

been investigated and they both showed improvement in the prediction accuracy

for prognostics and diagnostics task over generic loss functions. However predictive

capability alone does not mean a ML model is suited to be deployed in production. In

addition to embedding domain knowledge to aid the learning process, the knowledge

learned by the models must also be extracted to ensure that models are explainable.

In the following chapter, a novel way to accurately extract knowledge learned by the

ML model is proposed and investigated.
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Chapter 3

Extracting Knowledge from

Machine Learning Models in

Condition-based Maintenance to

Improve Accuracy

3.1 Introduction

When machine learning supports decision-making in safety-critical systems, such as

predictive maintenance, it is essential to verify and to understand why a particular

output is produced. One way to achieve this is by extracting the knowledge learnt

by the models about the task it is trained to achieve. Historically, however, many

complex ML models, especially those involving neural networks, are viewed as ‘black
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boxes’, where little is known about how the decision-making process occurs. The lack

of adequate interpretability and verification of ML models [77, 78] has therefore pre-

vented an even wider adoption and integration of those approaches in high-integrity

systems. For domains where mistakes are unacceptable due to safety, security and

economic issues they may cause, the need to accurately interpret the predictions and

inference of ML models becomes imperative.

The recent rise in complexity of ML architectures has made it even more chal-

lenging to explain their outputs. Although there is a general agreement about the

safety and ethical needs for interpreting ML outputs [78, 79], there is no consensus

on how this challenge can be addressed. On the one hand, there are advocates for

the development of models that are themselves interpretable, rather than putting the

effort later in making black-box models explainable [80]. The argument is that for

critical decision making, explanations of the black-box models are often unreliable,

can be misleading and therefore unsafe. Conversely, other researchers have focused

their efforts on explaining complex ML models; and significant advances have been

achieved [81, 82, 83].

As explainable methods emerge, the area of predictive maintenance has also

adopted them to understand the outputs of ML and DL models. Carletti et al. [84],

for instance, analysed the important features that contribute to anomalies in pres-

sure in manufacturing of refrigerators. Kumar and Hati [85] employ Deep CNN to

identify the types of fault that occur in squirrel cage induction motors images. They

use SHapley Additive exPlanations (SHAP) to highlight the area of the image that

caused the CNN model to predict a fault. For RUL, Hong et al. [86] use SHAP
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to identify which sensors contributes to the model prediction on gas turbine engine

RUL. Szelazek et al. [87] employ SHAP to predict time to fault in a hot rolling of

steel industrial process. While SHAP and Permutation Importance (PI) are useful

methods in quantifying FI, they only provides overall effect of features on the model

output. Some situations require fine-grained explanation on how each data instances

are influencing the model output. Local interpretable model-agnostic explanations

(LIME) [88] is an model agnostic explainer that explains how an input affects the

model output. Serradilla et al. [89] employs a combination of both SHAP and LIME

to quantify the importance of 97 sensor features in RUL prediction using GBT.

An essential approach to ML output elucidation is adopting post-training ex-

planation given by FI estimates [90, 91]. Feature importance estimation quantifies

how the features affects and contributes to the output. There are multiple methods

for calculating FI, and they do not necessarily agree on how a feature relevance is

quantified. It is not easy, therefore, to validate estimated FI unless the ground truth

is known. Furthermore, there is no consensus regarding which is the best method or

metric for FI calculation.

The lack of consensus of current approaches in determining the importance of

data attributes for ML decision making is a problem for safety-critical systems such

as predictive maintenance, as the explanation offered for the outcomes obtained is

likely to be unreliable. There is therefore the need for more reliable and accurate

ways of establishing FI. One possible strategy is to combine the results of multiple

FI quantifiers, as a way to reduce the variance of estimates, leading to more a more

robust and trustworthy interpretation of the contribution of each feature to the final
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ML model prediction. In this chapter, a general, adaptable and extensible decision

fusion framework is proposed named Multi-Method Ensemble (MME) for crisp FI

fusion with the aim of reducing variance in current FI estimates. The objective is

to develop and test the MME framework for decision fusion that is more accurate

in FI estimates compared than the existing FI method. An additional objective is

to develop an understanding of how MME behaves under varied synthetic and real-

word data conditions. MME merges results from multiple machine learning models

with different FI calculation approaches using data bootstrapping and decision fusion

techniques. The main process of the MME are: (i) optimised ML algorithms, (ii) a

set of FI coefficients from optimised ML algorithms and FI calculation techniques,

(iii) a set of aggregated importance coefficients produced by multiple decision fusion

techniques. The proposed MME framework is tested on a multitude of synthetic

data that resembles real-world data. The primary evaluation on the framework is

conducted on synthetic data because it provides quantifiable ground truth on the

features as opposed to real-world data where the FI of its features are typically

qualitative, making it difficult to empirically verify FI accuracy. Nonetheless, the

MME framework is also conducted on a real-world creep prediction task.

3.2 Background on Ensemble Feature Importance

Early approaches to FI quantification utilise interpretable models, such as linear

regression [92] and logistic regression [93]; or ensembles, such as generalised linear

models [94], and DT [40] to determine how each feature contributes to the model’s
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output [95]. As data and data problems become more challenging and convoluted,

simpler and interpretable models need to be replaced by complex ML solutions.

For those, the ability to interpret predictions without the use of additional tools

becomes far more difficult. Model-agnostic interpretation methods are commonly

used strategies to help determining the FI from complex ML models. They are a

class of techniques that determine FI, while treating models as black-box functions.

In this section a review of the current literature on ensemble FI, including identifying

gaps in the literature, the basic concepts, and rationale for choosing model-agnostic

approaches in the proposed framework experiments.

3.2.1 Related Work

One of the earliest ensemble techniques to calculate FI is RF, proposed by Breiman [40].

RF is a ML model that forms an ensemble of decision trees via random subspace

methods [96]. Besides prediction, RF computes the overall FI by averaging those

determined by each decision tree in the ensemble. RF FI is quantified depending

on how many times a feature branches out in the decision tree, based on the Gini

impurity metric. Alternatively, decision trees also calculate FI as Mean Decrease Ac-

curacy or more commonly known as PI by permutating the subset of features in each

decision tree and calculating how much accuracy decreases as a consequence. Using

the knowledge of ensembling FI from weak learners, De Bock et al. [97] proposed

an ensemble learning based on Generalised Additive Models (GAM) to estimate FI

and confidence interval of prediction output. Similarly to Bagging, the average of

each weaker additive model generates the ensemble predictions. The FI scores are
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generated using the following steps: (i) Generate output and calculate performance

for individual predictions based on a specific performance metric; (ii) permute each

feature and recalculate error for Out-Of-Bag (OOB) predictions; (iii) calculate the

partial importance score based on OOB predictions; (iv) repeat step (i) to (iii) for

each additive model and different forms of evaluation. The authors argue that the

importance of each feature should be optimised according to the performance cri-

teria most relevant to the feature in order to obtain the most accurate FI score.

The GAM ensemble-based FI is subsequently applied to a case study that aims at

identifying essential features in churn prediction to determine customers likely to

stop paying for particular goods and services. To determine the ten most relevant

features, the authors use receiver operating characteristic and top-decile lift. The

authors observed that the sets of important features overlapped, but their rank or-

der is different when using ROC and lift. The different rank orders show that FI is

affected by the evaluation criteria. Both Breiman and De Bock et al. use only a

single ML model with one type of FI method to calculate the ensemble FI, which

restricts the potential to improve accuracy and to reduce variance. To overcome

this limitation, Zhai and Chen [98] employ a stacked ensemble model to forecast the

daily average of air particle concentrations in China. The stacked ensemble consists

of four different ML models, namely, Least Absolute Shrinkage and Selection Oper-

ator (LASSO) [99], Adaptive Boosting (AdaBoost) [100], XGBoost, and MLP with

SVR as the meta-regressor. The authors use a combination of feature selection and

model generated method to determine FI, which is determined from stability feature

selections, XGBoost model and AdaBoost model. Their outputs are subsequently
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averaged for the final ranking of features. AdaBoost and GBT use the Mean De-

crease Impurity (MDI) based on the Gini importance; Sample frequency spectrum

is based on maximum feature scores using bayesian information criterion [101]. The

top ten features are selected for evaluation.

While Zhai and Chen used multiple ML models and one FI approach, according

to the latest literature, there has not been further investigations to improve FI quan-

tification using multiple models coupled with multiple FI methods. Furthermore,

we have found no literature applying any form of ensemble FI to interpret the mod-

els’ output and identifying key features that contribute to the outcome for decision

making. Finally, to the best of our knowledge, there is little in-depth systematic

investigation of how ensemble FI decision fusion works in the literature. Therefore,

it is important that interpretability methods and ensemble FI fusion under different

data conditions are investigated.

3.2.2 Feature Importance Calculation Approaches

Permutation Importance

PI measures FI by calculating the changes in model’s error when a feature is replaced

by a shuffled version of itself. The algorithm of how PI quantifies FI can be defined

as follows:

The shuffle function randomly changes the row position of the instances of

the data. The magnitude of difference between baseline performance and error in

Algorithm 1 signifies the importance of a feature. A feature has high importance if
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Algorithm 1: Algorithms of permutation importance

Result: Permutation feature importance
Input: features, labels, Trained Model
predicted output = Trained Model(features));
baseline performance = Loss(Predicted output, labels);
for i = 0; i < length(features); i++ do

original feature = features[i];
shuffled feature = shuffle(features[i]);
features[i] = shuffled feature;
predicted output = Trained Model(features));
error = Loss(Predicted output, labels);
feature importance[i] = error - baseline performance;
features[i] = original feature;

end
return feature importance;

the performance of ML deviates significantly from the baseline after a shuffling; it

therefore has low importance if the performance does not change significantly. PI

can be run on train or test data but test data is usually chosen to avoid retraining

of ML models to save computational overhead. If the computational cost is not an

important factor to be considered, a drop-FI approach can be adopted to achieve

greater accuracy. This is because in PI a shuffled feature might not differ much from

the original order of the instances. For example, if a dataset has 5 instances and

the original sequence of values for a feature is [1, 1, 3, 4, 2], and after shuffling, the

new order is [1, 1, 4, 3, 2], there is not much difference between the pre-shuffled and

shuffled instances, making it difficult to determine importance. In contrast, drop-

FI excludes a feature, as opposite to performing its permutation leading to more

accurate quantification of importance. However, as it requires the ML model to be

retrained every time a different features are dropped, it is computationally expensive
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for high dimensional data.

PI is a preferred alternative over MDI using Gini Importance. MDI tends to

disproportionately increase the importance of continuous or high-cardinality cate-

gorical variables [102], leading to bias and unreliable FI measurements. PI is a

model-agnostic approach to FI. When multiple ML models produce similar predic-

tive accuracy, the features that affect the outcomes of each model vary across models.

A disadvantage of PI is that it is not able to consider the synergy of multiple ML

models, therefore making it unreliable as important features might be unaccounted

for.

Shapley Additive Explanations

SHAP is a ML interpretability method that uses Shapley values, a concept originally

introduced by Lloyd Shapley [103] in game theory to solve the problem of establishing

each player’s contribution in cooperative games. Essentially, given a certain game

scenario, the Shapley value is the average expected Marginal Contribution (MC) of

a player after all possible combinations have been considered. For ML, SHAP deter-

mines the contribution of the available features of the model by assessing their every

possible combination and quantifying their importance. The total possible combi-

nations can be represented through a power set. For example, in the case of three fea-

tures, PowerSet{x, y, z} the power set is {∅}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

Furthermore, Figure 3.1 illustrates the relationships between the elements in the

power set.
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Figure 3.1: A graph representation of power set for features {x, y, z}. The ∅ symbol
represents the null set which is the average of all outputs. Each vertex represents
a possible combination of features, and the edge shows the addition of new features
previously not included in previous group of features.

SHAP trains a ML model for each of the vertices shown in Figure 3.1. Therefore,

there are 2number of features = 23 = 8 models trained to estimate the contribution of

each feature. The number of models needed to estimate FI using SHAP increases

exponentially with the number of features. However, there are tools, such as the

Python library SHAP [104] to accelerate the process through approximations and

sampling. The MC of a feature can be calculated by traversing the graph in Figure 3.1

and summing up the changes in output where the feature is previously absent from

the combinations. For example, to calculate the contribution of feature {x}, the

weighted average of the change in the output from {∅} to {x}, {y} to {x, y}, {z} to

{x, z}, and {y, z} to {x, y, z}. The MC of a feature x going from {∅} to {x} is as
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follows:

MCx,(∅,x)(i0) = Outputx(i0)−Output∅(i0) (3.1)

where Output is the output of a ML model and following Equation 3.1 the SHAP

value of feature x of an instance, i0 is calculated as follows:

SHAPx(i0) = w1 ∗MCx,(∅,x)(i0)+

w2 ∗MCx,(x,y)(i0)+

w3 ∗MCx,(x,z)(i0)+

w4 ∗MCx,(x,y,z)(i0)+

(3.2)

The process is repeated for each feature to obtain the FI. The weights (w1, w2, w3, w4)

in Equation 3.2 sum to 1. The weights are calculated by taking the reciprocals of the

number of possible combinations of MC for each row in Figure 3.1. For example, the

weight of w1 is
(
3
1

)−1
. To calculate the global importance of a feature, the absolute

SHAP values are averaged across all instances.

Integrated Gradients

There are several FI methods specifically designed for Deep Learning models, such as

GradCAM [105], Guided GradCAM [105], Guided Backpropagation [106], DeepLift [107],

and Integrated Gradients (IG) [108]. GradCAM and Guided GradCAM are only

applicable to Convolutional Neural Networks (CNNs) and image analysis. Guided
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Backpropagation fails to deliver reliable FI calculation, as their outputs remain in-

variant when the network is reparamaterised or when the test labels are randomly

permutated [109]. Furthermore, a desirable property of gradient-based FI is Com-

pleteness which DeepLIFT and IG are designed to satisfy. Completeness property

states that the sum of FI should be the difference between the model’s output at a

particular instance and the baseline. The baseline input is a vector of zero in the

case of regression to ensure that the baseline prediction is neutral and it functions as

a counterfactual. While DeepLIFT is originally designed to satisfy the Completeness

property, it has since been shown that it fails to achieve that [110].

IG is a gradient-based method for FI. It determines the FI A in deep learning

models by calculating the change in output, f(x) relative to the change in input x.

Additionally, the change in input features is approximated using an information-less

baseline, b. The FI is denoted by the difference between the characteristics of the

deep learning model’s output when features and baseline are used. The formula for

FI using a baseline is as follows:

Afi (x, b) = f(xi)− f(x[xi = bi]) (3.3)

The individual feature is denoted by the subscript i. Equation 3.3 can be also written

in the form of gradient-based importance as:

Gf
i (x, b) = (xi − bi)

∂f(x)

∂xi
(3.4)

IG obtains FI values by accumulating gradients of the features interpolated between
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the baseline value and the input. To interpolate the two values, a constant, α, with

the value ranging from zero to one is used, as follows:

IGf
i (x, b) = (xi − bi)

∫ 1

α=0

∂f(b+ α(x− b))
∂xi

dα (3.5)

Equation 3.5 is the final form of IG used to calculate FI in a deep learning model.

While the methods discussed in sections 3.2.2, 3.2.2 and 3.2.2 are currently

used in predictive maintenance as discussed in Section 3.2.1, they have some dis-

advantages. For example, different FI techniques can produce different importance

coefficients, often with diverse magnitudes for the same features and datasets, lead-

ing to uncertainty and inaccuracies in the FI output. Furthermore, when multiple

learned models with predictive accuracy that are not statistically significantly dif-

ferent, each model can be employed to produce FI values and as a result leading

to further increases in uncertainty as different learned models produces different FI

values even when using the same FI techniques. The lack of consensus of current

approaches in determining the importance of data attributes for ML decision making

is a problem for safety-critical systems, as the explanations offered for the outcomes

obtained are likely to be unreliable. In the context of predictive maintenance, the

lack of clear interpretation of models output may affect ones ability to take appro-

priate maintenance action and to validate or ’challenge’ the results. Our hypothesis

is to combine the quantification of multiple FI quantifiers to reduce the variance in

estimates, leading to a more robust and accurate interpretation of the contribution

of each feature to the final ML model prediction. In the next section, we propose

Multi-Method Ensemble (MME) for FI fusion with the objective of reducing the
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variance in current FI estimates.

3.3 Multi-Method Feature Importance Ensemble

Framework

This section introduces the proposed Multi-Method Feature Importance Ensemble

(MME) framework where multiple ML models and global FI methods are ensem-

bled to produce a final global FI quantification. As mentioned in Section 1.3, the

hypothesis posits that an ensemble of multiple ML and DL models coupled with FI

interpretation methods leads to more robust and reliable post-hoc FI measurement

compared to using single models or single FI methods.

3.3.1 Ensemble Feature Importance

Figure 3.2 shows the MME framework in 4 different stages. On Stage 1, data

undergoes pre-processing, such as transformation, noise reduction, feature extraction

and feature selection. This stage is required, as it needs to ensure that the data has no

inconsistencies and that the features used to train the ML models are orthogonal by

removing noise and features that are collinear, which could negatively impact model’s

predictive performance. The preference for features with low correlation guarantees

that the FI calculation does not attribute random values of importance because a

set of features containing similar information can split the importance quantification.

On Stage 2 ML models are applied to the pre-processed data. Generally, only one

model is applied to the dataset or multiple models are tested before selecting a final
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best performining model. In the MME framework however, the goal is utilise multiple

models with different methods to diversify the learned representations. Subsequently,

model-agnostics FI methods are applied to the ML models (Stage 3). Each trained

model has its FI extracted through the FI methods in the framework. The FI results

are fused into a final FI decision in Stage 4, which is further introduced in the next

section. The MME framework is adaptable and extensible.

Figure 3.2: The four stages of the proposed FI fusion MME framework. The first
stage pre-processes the data and in the second step trains the data on multiple ML
models. The third step calculate FI from the each trained ML models using multiple
FI methods. Finally, the fourth step fuses all FI generated from the third step using
an ensemble strategy to generate the final FI values.
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In Stage 3 and Stage 4 when multiple FI methods and ML models are em-

ployed in ensemble FI, we obtain several vectors, Q of FI values, A as follows:

Q = [A1, A2, ..., Ai] where i is the number of features and there are one Q for each

ML model and FI technique combination. The FI vectors can be denoted as follows:

V = [Q1, Q2, ..., QN ] where N is the sum of each model multiplied by the number

of FI methods used. To reduce the noise and variance, we can take the average of

all FI vectors, V which produces the variance, σ2/N . As N increases, the variance

decreases. If an FI vector, Q from a model or FI methods is substantially different

from the other Qs, it is considered as an outlier. The variance and accuracy of final

FI vector can be further improved if the outlier Q are removed prior to taking the

average.

3.3.2 Decision Fusion Strategies

Within the MME framework, the importance calculated is stored in a matrix, V ,

and the decision fusion strategies are used to determine the final FI values from V .

The most common decision fusion strategy, as discussed in Section 3.2.1 is to use the

average values. However, this is not the most suitable decision fusion strategy in cases

where one or more of the FI approaches produce outliers compared to the majority of

responses. In addition to the decision fusion using the average, median, mode, box-

whiskers, majority vote, Modified Thompson Tau test, and RAnk correlation with

majority voTE (RATE) are also investigated. For majority vote, each vector in the

FI matrix have their features ranked based on their importance. Subsequently, the

final FI is the average of the most common rank order for each feature. For example,
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feature Xi has a final rank vector of [1, 1, 1, 2], where each rank rk is established

by a different FI method k. The final FI value for feature Xi is the average value

from the three FI methods that ranked it as one. Modified Thompson Tau test is a

statistical anomaly detection method using t-test to eliminate values that are above

two standard deviations.

RATE is novel fusion approach proposed here that combines the statistical test,

feature rank and majority vote. RATE combines the advantage of using a statistical

approach to rank FI and anomaly removal with majority vote. Our hypothesis is

that the usage of rank correlation which measures the strength and direction of

association between FI vectors will improve the identification outliers within the

matrix V . The steps used in RATE are illustrated in Figure 3.3. The input to

RATE is the FI matrix, V . V is the matrix that has the individual FI from different

models and it has the shape of N ∗M where N are the FI vectors from different

importance calculation methods and M is the number of features. Subsequently, the

pairwise rank correlation between each FI vectors in the matrix V to obtain the rank

and the general correlation coefficient values [111] is calculated. Using the rank and

correlation value it can be determine whether the correlation between the vectors is

statistically significant (p-value less than 0.05). The p-values are stored in a separate

matrix that is converted to a truth table. If pairwise p-value is less than 0.05 it is

given a value ‘TRUE’, otherwise,‘FALSE’. Using the truth table along with majority

vote, the FI vector that does not correlate with the majority of vectors is discarded.

The remaining FI vectors are averaged as the final global FI.
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Figure 3.3: The working of RATE FI ensemble strategy. The FI vectors undergo a
rank correlation pairwise comparison to determine if their similarity is statistically
significant (p-value<0.05). A value of ‘TRUE’ is assigned if the two vectors are
similar, otherwise, a ‘FALSE’ is assigned in a truth table. For each row of the truth
table, majority voting (> 50% is TRUE) determines if the FI vector is accounted
when calculating the final FI.

3.4 Experimental Design

To test the performance of the MME framework, two case studies are conducted on

(1) synthetic data; and (2) a real-world dataset on creep rates in laser powder bed

fusion. The synthetic data consists of data characteristics that mimics the real world

such as different level of noise in data, number of features, and number of informative

features. The hypothesis of the case studies is that the MME framework is able

to produce more accurate FI quantification compared to single-method ensemble

(SME) where only single FI method is used for multiple ML models. Mean is used
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as the decision fusion strategy for SME. For the synthetic data its FI ground truth is

generated to calculate the accuracy. For the real-world dataset the FI quantifications

are validated by experts. The main objective of the second case study is to illustrate

and validate the applicability of the MME framework in the real world. Both case

studies starts with how the training and testing data is generated, preprocessed, and

prepared. Subsequently, the appropriate ML methods and evaluation metrics are

selected for the regression tasks. After the models are trained MME framework is

employed to generate FI quantification. Finally, the results are presented and the

findings are discussed.

3.4.1 Summary of Data Preprocessing

In Table 3.1 a summary of the data preprocessing employed is listed.

Task Description

Data split ratio 80/10/10 (train/validation/test)
Data split method Randomly split between train/validation/test or Leave-one-out
Scaling method All features scaled between 0-1
Feature Selection None
Feature Extraction (Image) Scikit-Image library

Table 3.1: A table of data preprocessing methods for synthetic and creep rate pre-
diction data.

127



3.5 Case Study 1: Synthetic Datasets

3.5.1 Data Generation

The data investigated are generated using Python’s Scikit-learn library [112] with

different characteristics to mimic a variety of real-world regression scenarios. The

reason for using synthetic data is such that the ground truth of FI for the datasets is

controlled and easily obtained which is not the case for many real-world data. The

features generated are random but it is well conditioned, centered, and Gaussian

with unit variance by default. The correlation between features are also random.

The parameters used to modulate the creation of the datasets are the standard de-

viation of the Gaussian distributed noise applied to the data, the number of features

included and the percentage of informative features. Their values are shown in Ta-

ble 3.2. Gaussian distributed noise with different standard deviations are added to

the output as it has a more significant effect on prediction accuracy than that in

the features [113]. Larger noise values push feature values further from the average,

decreasing Signal/Noise ratios. Although noise increases ML models’ estimated er-

ror [113, 114] studies investigating the relationship between data noise and FI error

are scarce. Similarly, the impact of the number of features and how many features

within the set are relevant to importance error is unknown. A combination of values

from each parameter in the table forms a dataset, and permutations of those pa-

rameters form a total of 45 datasets. For each dataset, we conduct ten experimental

runs to ensure that the results are stable and reliable.

The data preprocessing in this case study consists of scaling the input data to
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Table 3.2: Parameters to generate the datasets used to test the MME framework.

Parameters Description Parameters’
value

Noise Standard deviation of Gaus-
sian noise applied to the
output.

0, 2, 4

Informative level (%) Percentage of informative
features. Non-informative
features do not contribute
to the output.

20, 40, 60,
80, 100

Number of features Total number of features
used to generate output val-
ues.

20, 60, 100

the range between zero and one. Scaling the data accelerates the learning process

and reduces model error for neural networks [115]. Additionally, it allows for equal

weighting of all features and therefore reduces bias during learning. Other common

preprocessing steps such as anomaly removal and normalisation are not included as

the data creation process is controlled.

3.5.2 Machine Learning Models

The ML approaches employed in the experiments are RF, GBT, SVM, and DNN as

different ML methods are likely to have different levels of importance for each feature

while producing good predictive accuracy to the output. The four models are applied

to both SME and MME. The hyperparameters adopted are shown in Table 3.3. The

models are optimised using random hyperparameters search [116]. The models are

not optimised for individual datasets. The model’s hyperparameters constant are
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kept as they are a factor that affects FI accuracy. We therefore limit our objectives

to investigating how data characteristics affect interpretability methods and how the

appropriate decision fusion of different FI methods produces less biased estimates.

We minimise overfitting in the deep learning model by adopting dropout [44] and L2

kernel regularisation [117]. The number of epochs for the training of deep learning

model is not fixed as early stopping is used. If the loss remains constant for 10

epochs, the training is automatically stopped.

The FI methods employed by each ML models are listed in Table 3.4. For SHAP,

we employ weighted k-means to summarise the data before estimating the values

of SHAP. Each cluster is weighted by the number of points they represent. Using

k-means to summarise the data has the advantage of lower computational cost but

slightly decreasing the accuracy of SHAP values. However, we compare the SHAP

values from data with and without k-means for several datasets and found the SHAP

values to be almost identical.

3.5.3 Evaluation Metrics

To evaluate the performance of the ensemble FI and also the different ensemble

strategies three different evaluation metrics are employed namely, MAE, RMSE, and

R2.
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Table 3.3: Hyperparameters values for Random Forest, Gradient Boosted Trees,
Support Vector Regressor, and Deep Neural Network for case study 1.

Models Hyperparameters Values

Random Forest Number of trees 700
Maximum depth of trees 7 levels
Minimum samples before split 2
Maximum features

√
p

Bootstrap True
Gradient Boosted Trees Number of trees 700

Learning rate 0.1
Maximum depth of trees 7 levels
Loss function Least square
Maximum features

√
p

Splitting criterion Friedman MSE
Support Vector Regressor Kernel Linear

Regularisation parameter 2048
Gamma 1e-7
Epsilon 0.5

Deep Neural Network Number of layers 8
Number of nodes for each layer 64, 64, 32, 16, 8, 6, 4,

1
Activation function for each layer ReLU, except for out-

put is linear
Loss function MSE
Optimiser Rectified Adam with

LookAhead
Learning rate 0.001
Kernel regulariser L2 (0.001)
Dropout 0.2
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Table 3.4: Interpretability methods employed for each ML model for FI decision
fusion.

Models Interpretability methods

Random Forest Permutation Importance, SHAP
Gradient Boosted Trees Permutation Importance, SHAP
Support Vector Regressor Permutation Importance, SHAP
Deep Neural Network Permutation Importance, SHAP, and Integrated Gradient

3.5.4 Results and Discussion

Overall Single-Method Ensemble vs Multi-Method Ensemble Framework

Figure 3.4 shows the average MAE results of all SME and the multiple decision

fusion implementations of MME framework for the combined synthetic datasets in-

vestigated, including train-test split of the data. A comparison of the average results

between SME and MME frameworks using the RMSE and R2 metrics are shown in

Appendix A.1.1 and Appendix A.1.2. The method with the smaller FI errors is our

framework using majority vote for decision fusion, followed by the MME framework

coupled with the mean and then RATE. SME such as using all ML models with

SHAP, PI and IG produce the worst results. The circles and bars in the figure rep-

resent the FI errors on the training and test datasets, respectively. The FI errors on

the training dataset are slightly lower than errors on the test dataset.
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Figure 3.4: Average FI error between SME and MME framework with train and
test dataset of the combined synthetic datasets with different varying level of noise,
number of features, and informative features.

Effect of Noise Level, Informative Level, and Number of Features

The results in the previous section shows the overall errors when the different data

configurations such as different noise levels, number of features, and number of in-

formative features are combined. In this subsection, the results shows the respective

data configurations FI quantification accuracies. Figure 3.5 shows the FI results of

SME and the MME framework with different fusion strategies averaged across three

different noise levels in the data. Results on the effect of noise in data on ensemble FI

using the RMSE and R2 metrics are shown in Appendix A.1.3 and Appendix A.1.4 of

the supplementary material. The best performing ensemble method averaged across

all noise levels is MME framework using majority vote. MME framework that uses

majority vote outperforms the best SME method, SHAP, by 14.2%. Table 3.5 and
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Figure 3.6 show how the FI errors change for all SME and MME framework’s decision

fusion methods as the noise level of data increases. In Table 3.5 we observe that the

MAE decreases marginally, from a noise level of 0 standard deviation to 2 standard

deviations, and then it increases again 4 times the standard deviation. The addition

of 2 standard deviation noise to the dataset improves the generalisation performance

of ML models leading to lower errors [118]. However, the FI errors increase when the

noise in the dataset reaches 4 times the standard deviation, indicating that the noise

level has negatively impacted ML models performance. Overall, however, the noise

levels have little effect on the FI errors. Results also reveal that MME framework

with majority vote achieves the best FI estimates for the data.

Figure 3.5: Effect of all noise levels for SME and MME framework with decision
fusion methods
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Table 3.5: FI MAE using SME and MME framework for different noise levels in the
dataset tested.

Noise level (Standard deviation)
Models 0 (10−2) 2 (10−2) 4 (10−2)

S
M

E

PI 10.1±2.0 9.8±1.9 10.7±2.6
SHAP 9.8±2.2 9.7±2.2 10.0±2.3
IG 15.8±9.5 16.7±9.5 16.5±9.5

M
M

E

RATE (Kendall) 8.8±3.2 8.8±3.2 9.4±3.6
RATE (Spearman) 8.8±3.2 8.8±3.2 9.4±3.6
Median 9.5±3.7 9.0±3.4 10.1±4.0
Mean 8.8±3.2 8.7±3.2 9.4±3.6
Mode 12.2±3.4 10.7±3.0 11.1±3.0
Box-whiskers 9.1±3.3 9.1±3.3 9.5±3.6
Tau test 8.9±3.3 8.8±3.2 9.5±3.6
Majority vote 8.1±2.7 8.6±2.8 8.6±3.0

Figure 3.6: Effect of noise levels on SME and MME framework with decision fusion
methods.
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Figure 3.7 presents the FI MAE error for SME and MME frameworks adopting

different fusion strategies averaged across 5 different feature informative levels in

the data. Results on the effect of feature informative levels on ensemble FI using

RMSE and R2 are shown in Appendix A.1.5 and Appendix A.1.6. The best perform-

ing method is MME with majority vote followed by MME with mean and RATE.

All decision fusion methods embedded into the MME framework except for mode

outperform SME by more accurately quantifying the FI. The error bar (standard

deviation) for the effect of features informative levels in Figure 3.7 has a smaller

range than the effect of noise and the effect of number of features. The low standard

deviation indicates that the feature informative levels explain most of the variances

in the data. From Table 3.6 we observe that when 20% of the features are informa-

tive, the best FI methods are MME framework with Modified Thompson tau test

and median for the dataset investigated, and they outperform the best SME method,

SHAP, by 9.1%. For 40% features informative level, MME framework with RATE

(Kendall and Spearman) and mean have the lowest error, with 6.9% improvement

over SME with SHAP. For 60% features informative level, MME framework using

RATE (Kendall and Spearman) have the best results, with a 4.1% improvement

over SME with SHAP. Furthermore, MME framework with majority vote obtains

the lowest error for both 80% and 100% features informative level. The best per-

forming SME is using PI. MME with majority votes outperforms SME’s best results

by 25.4% and 23.0% for 80% and 100% features informative level, respectively.
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Figure 3.7: Effect of feature informative level on SME and MME framework with
decision fusion methods.
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Table 3.6: Summary of feature importance MAE between different SME and MME
framework for different percentage of informative level.

Features informative level (%)

Models 20 (10−2) 40 (10−2) 60 (10−2) 80 (10−2) 100 (10−2)

S
M

E

PI 2.7±0.4 6.7±0.8 11.2±2.0 13.8±1.0 16.5±1.3

SHAP 2.2±0.4 5.8±0.8 9.7±1.0 14.2±1.5 17.3±1.9

IG 6.3±7.2 10.7±7.2 15.8±7.2 22.2±7.2 26.7±7.2

M
M

E

RATE (Kendall) 2.1±0.4 5.4±1.1 9.3±1.5 12.3±1.6 15.9±3.0

RATE (Spearman) 2.1±0.5 5.4±1.1 9.3±1.5 12.3±1.6 15.9±3.0

Median 2.0±0.6 5.9±1.4 10.2±1.8 13.0±2.4 16.7±3.5

Mean 2.1±0.5 5.4±1.1 9.4±1.5 12.3±1.6 15.7±3.0

Mode 7.0±2.0 9.0±3.1 12.4±3.1 13.3±1.9 15.0±3.0

Box-whiskers 2.1±0.6 5.6±1.1 9.5±1.4 12.9±1.7 16.1±2.9

Tau test 2.0±0.6 5.6±1.2 9.5±1.5 12.4±1.7 15.7±3.0

Majority vote 3.1±0.9 6.5±1.5 9.4±1.6 10.3±2.1 12.7±3.4

Figure 3.8 shows the relationship between the MAE of FI errors and the per-

centage of features informative level. As the percentage of feature informative level

increases the FI errors increases. The higher number of contributing (non-zero) fea-

tures to the output increases the difficulty of quantifying FI leading to higher errors.
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Figure 3.8: Effect of feature informative levels on SME and MME framework with
decision fusion methods.

Figure 3.9 depicts the average of all SME and MME framework with fusion meth-

ods across 20, 60, and 100 features. Results on the effect of number of features on

ensemble FI using RMSE and R2 are shown in Appendix A.1.7 and Appendix A.1.8

of the supplementary material. Similar to the effect of noise level and the percentage

of informative features on FI errors, MME framework with majority vote has the

lowest error across all number of features. The error bar for the effect of feature

number in Figure 3.9 has a smaller range compared to the FI errors of the effect of

noise but larger than the effect of number of features. From Table 3.7 we observe

that when there are 20 and 40 features the method with the lowest FI errors is MME

framework with majority vote, and it outperforms the best SME method, SHAP,
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by 8.2% and 26.2% respectively. For 100 features, MME framework using mode is

the most accurate method, and it outperforms the best SME method, PI by 20.5%.

For SME, PI has lower FI errors compared to SHAP as the number of informative

features and features increases.

Figure 3.9: Effect of all number of features on SME and MME framework with
decision fusion methods.
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Table 3.7: Summary of feature importance MAE between different SME and MME
framework for different number of features.

Number of features

Models 20 (10−2) 60 (10−2) 100 (10−2)

S
M

E

PI 7.5±1.8 10.8±2.0 12.2±2.4

SHAP 6.1±1.5 10.3±2.2 13.1±2.4

IG 15.8±9.5 16.1±9.5 17.1±9.5

M
M

E

RATE (Kendall) 6.3±2.3 9.4±3.1 11.3±3.8

RATE (Spearman) 6.37±2.3 9.4±3.1 11.3±3.8

Median 6.0±2.3 10.6±3.8 12.0±3.9

Mean 6.2±2.2 9.3±3.1 11.3±3.8

Mode 14.8±3.6 9.6±2.3 9.7±2.4

Box-whiskers 6.5±2.5 9.8±3.2 11.4±3.7

Tau test 6.1±2.4 9.7±3.2 11.4±3.7

Majority vote 5.6±1.9 7.6±1.5 12.1±3.3

Figure 3.10 shows the relationship between the MAE of FI and the number of

non-orthogonal features as they increase. Higher numbers of features increase the

difficulty of quantifying FI accurately.
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Figure 3.10: Effect of number of features on ensemble feature importance.

Case Study 1 Results Discussion

Overall, results show that the MME framework outperforms SME for the case studies.

In particular, the MME framework with majority vote as an ensemble strategy for

the three different combinations of factors: (i) noise level, (ii) feature informative

level and (iii) number of features has achieved the best results. The robustness of

the framework compared to SMEs becomes even more evident as the number of

features and the number of informative features increases. Results also reveal that

the noise in data does not affect the final FI estimates, as there are no significant

changes as the noise increases.

For the experiments, the hyperparameters of each ML models are kept constant

as their case-based optimisation is likely to affect FI estimates for different data
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characteristics. In the future, it is necessary to further investigate the interplay

between parameter optimisation and FI. In addition, other factors such as covariate

drift on the test dataset and imbalanced datasets should be included in the framework

tests.

One advantage of using the model-agnostic MME framework is that it avoids

the worst-case scenario for FI estimates due to the inherent advantage of ensembles

being more robust against spread and dispersion of the predictions. Additionally,

using only one set of explainability can potentially bias the FI estimates. Similarly,

the FI estimates might be bias if only a single method is employed as it might not take

into consideration the synergy between orthogonal features. By fusing FI estimates

of multiple ML models and methods we can achieve a final FI estimates that is more

robust. For safety-critical systems, it is important for the FI estimates to be robust

to noise, biases, and anomalies for end users to accurately explain the results of ML

models.

Conversely, this can also be a disadvantage as the best performing FI estimate

might be moderated by worse methods. However, for real-world, save critical systems

where the ground truth is unknown, it is important not to rely solely on a single

method and the potential bias it might produce. In scenarios where all FI determined

by different methods disagree or there is no consensus on FI, RATE or majority vote

will be reduced to taking the average of all FI vectors. Under such circumstances,

it is the best option for safety is to further investigate the reasons for disagreement

between ML model or FI techniques. Furthermore, while majority vote achieves the

best results for many different data characteristics, it is not always the case. Further
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studies is necessary to decide which ensemble method is definitely better for specific

data characteristics.

Despite MME’s success over SME or non-ensemble approach, it still has several

shortcomings. For example, an ensemble approach loses information as FI of indi-

vidual instances or FI methods are compressed down to a single vector. The original

FI from different methods before ensemble could potentially contain important in-

formation that can provide useful insights such as to which method could be an

anomaly or how the output differs between FI methods. Furthermore, the output

from the current FI approaches such as SME, MME or individual methods are not

easily interpretable by experts. The numerical values of FI assigned to each features

might be un-intuitive or even meaningless to experts of different domains.

More generally, for nonlinear response surfaces (the multidimensional surfaces

encoded by trained ML models), the FI depends on the part of the response surface

is calculated. The variation in feature gradients from one position to another results

from the nonlinear behaviour of real-world systems. This variation means that the

FI is not fixed for nonlinear models but is context-dependent. Sensible choices for

the response surfaces to evaluate FI are typically local or global minima or maxima

in the response variable, depending on what type of optimum is relevant.

Additionally, the characteristics of the learning process of ML models causes fluc-

tuations in FI quantification. For example, RF combines the outputs of decision trees

at the end of the process while gradient boosting machines [34] start combining at

the start of the process. ML models employ several hyperparameters that need to

be configured before training the model, and each configuration produces different
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prediction and FI values. For example, random forests have the following hyperpa-

rameters: the number of trees, the maximum number of features to consider when

splitting a node, and the minimum number of leaves to split an internal node.

Similarly, variation among different FI techniques also produces different results.

For instance, PI is based on the decrease in model performance caused by the per-

mutation of a feature, while SHAP is based on the contribution of features assessed

by every possible combination. Those particularities in the calculation of importance

by different techniques produce different values and interpretations of importance.

A solution to combine different FI results while capturing the uncertainties and

nuances caused by the varied ML models and FI technique is necessary to provide a

complete result.

3.6 Case Study 2: Main factors Affecting Creep

Rates in Laser Powder Bed Fusion

In applications such as aerospace jet engines, components such as first stage turbine

discs/blades operate under extreme temperatures and stresses. These components

are critical and therefore cannot fail in service or enter service when faulty [119].

Turbine discs, for example, must be manufactured from materials with adequate

mechanical properties, such as high fatigue and creep resistance, strength and me-

chanical integrity at elevated temperatures [120]. In particular, creep is one of the

most significant causes of failure of such components as temperatures increase [121].

There is an increasing need to improve Additive Manufacturing (AM) for critical
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application engineering components as it enables innovative designs, such as inter-

nal cooling channels, to easily be integrated and manufactured at no extra cost or

time [122]. Laser Powder Bed Fusion (LPBF) is one of the main AM processes

used for metal manufacturing and nickel-based superalloys, particularly alloy 718 as

it have some of the best current LPBF printability [123]. However, the materials

manufactured using AM perform well below their traditionally manufactured coun-

terparts, particularly for creep and fatigue. Research has shown that this difference

in performance is due to the complex relationships between AM process parameters

affecting the material microstructures and their mechanical performance. Therefore,

it is necessary to understand the impact of different AM build parameters on the

mechanical performance of parts. For that, the MME framework is applied to under-

stand the feature importance of different factors affecting the LPBF print. The data

collected from this case study consists of 265 porosity images from printed alloy 718

with different AM build parameters. Using ML methods the creep rate is predicted

using the porosity images. Subsequently, the material descriptors and build param-

eters affecting the creep rate are extracted using the MME framework. Detailed

explanation of the data acquisition process of the original data and material descrip-

tors generation from the porosity images, motivations, and objectives are described

in Sanchez et al. [124].

3.6.1 Data Preparation for Machine Learning Models

Data preparation is conducted to ensure that the data is suitable to be trained by the

ML models. First, the 265 samples (porosity images) are cropped approximately in

146



half to produce 512 samples as part of the data augmentation. Data augmentation is

used to increase the amount of data by modifying existing data. Data augmentation

is also emploted as a regulariser for ML models to prevent overfitting [125]. From

the images, material descriptors are extracted using the Python scikit-image [126]

library. The scikit-image library measures various properties for each connected

region labelled in the binary images, more specifically the regionprops function under

the measure modules. The new material descriptors generated contain information

regarding the geometrical shape and mathematical properties in continuous values.

The categorical features are transformed into numerical data using the label encoding

method [127], as shown in Figure 3.11.

Scan Strategy Number of Lasers Build Orientation

Meander Single Vertical

Stripe Multiple Horizontal

Meander Single 45 degree

Scan Strategy Number of Lasers Build Orientation

0 0 0

1 1 1

0 0 2

Figure 3.11: Transforming categorical data to numerical values using label encoding
method.

Subsequently, the continuous material descriptors are scaled to [0, 1] range. The

material descriptors are scaled to ensure equal weighting is given to all material

descriptors to prevent material descriptor bias in training. Next, the dataset is

split into training and testing data instances (each data instance consists of material

descriptors from one porosity image).

The purpose of this data is to investigate the predictability of creep rate when all

test cases are included in both training and test data. Leave-One-Case-Out (LOCO)

is set up to investigate the ML models creep rate prediction accuracy when it is
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trained in the absence of one unseen sample. LOCO is the direct application of

Leave-One-Out cross validation where a subset of data is left out to be tested while

the remaining is used to train the model. LOCO is designed to investigate if ML can

accurately predict the creep rate of unseen test cases. For example, the ML models

are first trained on data with the samples of Vertical Single laser Meander (VSM),

Vertical Single laser Stripe (VS), Vertical Multi Laser (VM), 45 degree Single Laser

(45S), 45 degree Multi Laser (45M), and Horizontal Single Laser (HS) and then

tested on Horizontal Multi Laser (HM) data. The cycle continues for all test cases,

as shown in Figure 3.12. The ML models are first trained on the first nine subsets of

data and tested on the last subset of data. In the subsequent iteration, ML models

are trained on the first eight and the last subset of data and tested on the ninth

subset data. The results obtained from each iteration are collected, and the final

result is then averaged across all test case iterations.

Figure 3.12: Evaluation strategy of ML models when one test case is excluded from
the training data. The excluded test case is used as the testing data. Testing is
repeated for each test case.
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3.6.2 Machine Learning Methods

The ML methods selected for the experiment are RF, GBT, DNN, SVR, Ridge

Regressor, and LASSO Regressor. Regularised linear models such as Ridge and

LASSO Regressors are chosen as a baseline to verify whether a more complex method

is required to learn the pattern in data. RF and GBT are selected as both models have

shown great results for structured and tabular data [128]. Furthermore, DNN [129,

130, 131] and SVR [132, 133] are also investigated as several AM papers have shown

great result using these methods. All ML models are implemented using scikit-

learn [134] except for DNN, which are implemented using Tensorflow [135].

3.6.3 Evaluation Metrics

The metrics used to evaluate the accuracy of predicted creep rate were Median

Absolute Deviation (MAD), Coefficient of Determination (R2), MAE, RMSE, and

Mean Absolute Percentage Error (% Error). Multiple evaluation metrics allow for

better understanding of the error produced by ML models [136]. MAE and RMSE

both measure the average magnitude of the error. A larger error is penalised more

by RMSE, while MAE provides a linear penalty to the magnitude of the error. MAD

is a robust measure to outlier in error. R2 measures the goodness of fit of predicted

output to the actual result. Finally, % Error describes the deviation of error from

the actual result in percentage form for more natural understanding.
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3.6.4 Results

Figure 3.13 and Table 3.8 shows the results for our experiments using LOCO. The

best results for each left out conditions are in bold text in the Table. RF performs the

best in predicting the creep rate for VS test cases when they are left out of the training

data. GBT achieves the best creep rate prediction for 45M and VM test cases while

SVR predicted 45S, HM, HS, and VSM creep rate with the lowest error. Overall,

the creep rate prediction for 45M, 45S, HS, and VS have the lowest error at less than

20%, as indicated by the % Error evaluation metric. The predicted creep rate for HS

achieves the lowest % Error at 1.40%. Predicted VM and HM creep rate % Error

are higher compared to 45M, 45S, HS, and VS at 48.14% and 35.80% respectively.

The highest predicted error observed is for the VSM test case. The prediction for

VSM creep rate is considered non-predictive by RF, GBT and DNN, as the % Error

error were greater than 400% for each model but SVR were able to narrow the error

down to 60.68%. Furthermore, the result of LASSO Regressor had low error for VS

creep rate prediction. However, further investigation showed that the LASSO model

had is predicting the average value of all creep rate which coincidentally is very close

to the VS creep rate resulting in low error but the model itself did not learn the

data pattern. Between all the models tested, DNN had the highest uncertainty in its

prediction while RF GBT, SVR, Ridge Regressor, and LASSO Regressor prediction

had low uncertainty throughout ten repeated experiments. For those reasons, only

RF, GBT, and SVR were included in the framework to determine the most important

material descriptors that affected the predicted creep rate as these three methods

had the best prediction performance.
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Figure 3.13: Percentage error of creep rate predictions for Leave-One-Condition-Out
experiment using Random Forest, Gradient Boosted Trees, Deep Neural Network,
Support Vector Regressor, Ridge Regressor, and LASSO Regressor. The Y-axis
shown here is limited to the range of 0-150% to provide a better view as the percent-
age error for VSM predicted by Random Forest, Gradient Boosted Trees, and Deep
Neural Network are greater than 400%.
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Table 3.8: Creep rate prediction results for Leave-One-Condition-Out experiment.

Models Evaluation

Metrics

45M 45S HM HS VM VSM VS

Random

Forest

MAD 4.31 ± 0.01 4.24 ± 0.02 26.09 ± 0.00 1.55 ± 0.41 13.42 ± 0.08 100.10 ± 0.00 7.50 ± 0.76

MAE 4.32 ± 0.01 4.19 ± 0.03 26.07 ± 0.02 3.33 ± 0.27 13.46 ± 0.07 100.10 ± 0.00 7.59 ± 0.49

% Error 14.17 ± 0.04 12.05 ± 0.11 46.06 ± 0.04 6.78 ± 0.55 49.32 ± 0.28 418.82 ± 0.00 18.80 ± 1.21

RMSE 4.32 ± 0.01 4.19 ± 0.03 26.07 ± 0.02 4.12 ± 0.27 13.46 ± 0.07 100.10 ± 0.00 8.75 ± 0.31

Gradient

Boosted

Trees

MAD 4.31 ± 0.00 4.28 ± 0.00 26.08 ± 0.00 7.41 ± 0.00 13.17 ± 0.00 100.09 ± 0.00 13.17 ± 0.07

MAE 4.31 ± 0.00 4.35 ± 0.01 26.05 ± 0.01 10.47 ± 0.02 13.14 ± 0.00 100.09 ± 0.00 12.39 ± 0.13

% Error 14.19 ± 0.02 12.50 ± 0.02 46.02 ± 0.01 21.29 ± 0.04 48.14 ± 0.01 418.82 ± 0.00 30.67 ± 0.32

RMSE 4.32 ± 0.01 4.35 ± 0.01 26.05 ± 0.01 10.99 ± 0.02 13.14 ± 0.00 100.09 ± 0.00 12.52 ± 0.11

Deep

Neural

Network

MAD 20.96 ± 18.92 4.69 ± 3.16 25.39 ± 2.46 6.73 ± 5.10 20.07 ± 10.68 99.86 ± 0.18 14.62 ± 5.73

MAE 21.02 ± 18.92 5.10 ± 3.16 24.88 ± 2.46 7.10 ± 5.10 20.76 ± 10.68 98.55 ± 0.18 21.30 ± 5.73

% Error 68.94 ± 61.69 14.65 ± 8.40 43.96 ± 4.80 14.43 ± 9.16 76.06 ± 35.55 412.38 ± 2.66 52.73 ± 8.30

RMSE 21.40 ± 18.5 5.69 ± 2.70 35.10 ± 2.79 7.97 ± 4.31 21.97 ± 10.37 98.62 ± 0.59 27.70 ± 4.91

SVR

MAD 19.33 ± 0.00 0.75 ± 0.00 20.12 ± 0.00 0.51 ± 0.00 23.68 ± 0.00 14.64 ± 0.00 10.26 ± 0.00

MAE 19.11 ± 0.00 0.81 ± 0.00 20.26 ± 0.00 0.69 ± 0.00 23.68 ± 0.00 14.50 ± 0.00 10.37 ± 0.00

% Error 62.64 ± 0.00 2.34 ± 0.00 35.80 ± 0.00 1.40 ± 0.00 86.74 ± 0.00 60.68 ± 0.00 25.69 ± 0.00

RMSE 19.12 ± 0.00 0.93 ± 0.00 20.26 ± 0.00 0.91 ± 0.00 23.68 ± 0.00 14.51 ± 0.00 10.41 ± 0.00

Ridge

Regressor

MAD 22.29 ± 0.00 19.23 ± 0.00 28.20 ± 0.00 12.06 ± 0.00 28.44 ± 0.00 22.67 ± 0.00 4.22 ± 0.00

MAE 22.25 ± 0.00 18.87 ± 0.00 28.39 ± 0.00 11.75 ± 0.00 28.49 ± 0.00 24.11 ± 0.00 8.15 ± 0.00

% Error 72.96 ± 0.00 54.22 ± 0.00 50.17 ± 0.00 23.89 ± 0.00 104.36 ± 0.00 100.89 ± 0.00 20.17 ± 0.00

RMSE 22.26 ± 0.00 18.95 ± 0.00 28.40 ± 0.00 11.89 ± 0.00 28.49 ± 0.00 24.90 ± 0.00 11.51 ± 0.00

LASSO

Regressor

MAD 19.27± 0.00 12.71 ± 0.00 24.80 ± 0.00 10.57 ± 0.00 17.88 ± 0.00 16.92 ± 0.00 2.99 ± 0.00

MAE 19.27 ± 0.00 12.71 ± 0.00 24.80 ± 0.00 10.57 ± 0.00 17.88 ± 0.00 16.92 ± 0.00 2.99 ± 0.00

% Error 63.20 ± 0.00 36.52 ± 0.00 43.82 ± 0.00 21.48 ± 0.00 65.51 ± 0.00 70.82 ± 0.00 7.41 ± 0.00

RMSE 19.27 ± 0.00 12.71 ± 0.00 24.80 ± 0.00 10.57 ± 0.00 17.88 ± 0.00 16.92 ± 0.00 2.99 ± 0.00

Note: All numbers are in 1e−4 except % Error.
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Subsequently, Figure 3.14 shows the ensemble material descriptor importance

using the MME framework and majority vote as the decision fusion method for the

top three most performant ML models i.e. RF, GBT, and SVM for the LOCO

experiment. The four most important material descriptors used by the three ML

models to predict creep rates were the density, number of pores, build orientation, and

scan strategy in decreasing order. The importance of material descriptors for density,

number of pores, build orientation, and scan strategy were 23.0%, 21.9%, 17.7%,

and 13.8% respectively. The four most important material descriptors accounted for

76.4% of importance. The remaining fifteen material descriptors were considered

less important and had low contributing factor as they only accounted for 23.6% of

material descriptor importance.

Figure 3.14: Ensemble material descriptor importance for Leave-One-Case-Out ex-
periment.
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3.6.5 Discussions

In the LOCO experiment, DNN experienced difficulty in generalising the model for

all test cases. Similarly, Ridge and LASSO Regressors failed to map the relationship

between material descriptors and creep rate. RF, GBT, and SVR were able learn

the data pattern for 45M, 45S, HS, and VS when they were left out of the training

set. When test cases share similar print conditions but have different creep rate e.g.

HS and HM, the ML models attempts to generalise both test cases together which

leads to high errors. Additionally, some combinations of test cases in the training

data might provide more vital information to assist ML models to generalise better.

The ensemble material descriptor importance obtained from the ML models using

MME was able to accurately identify the most important material descriptors affect-

ing creep rate. Using ML models and interpretable methods allowed information

such as important material descriptors that would otherwise have been difficult to

obtain using traditional methods or more extensive experimentation. Although FEA

may result in slightly more accurate creep rate prediction, it is unable to give an

explanation of which factors causes these fluctuations in the manufacturing process.

Additionally, the adaptation of FEA models for AM specific characteristics, such as

build parameters and porous microstructure, has yet to be addressed.

Therefore, ML is not discounted as a powerful tool for AM. Multiple build pa-

rameters can be included in ML models, unlike FEA. These inputs can be used for

density prediction, mechanical property prediction and more. One downside of ML

is that most models require a lot of data. The more data available to train the

model, the more accurate that model will be. Indeed, predicting the creep rate using
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LOCO was obtained from a population size of 512 images whereas most ML models

have a population size in the hundreds of thousands, resulting in extremely accurate

predictions. By inputting more experimental data, the models’ accuracy should im-

prove [137]. Thus, the findings here are limited to the small available data as it is

difficult to generate large creep dataset, and should be further validated in the future,

as more data is made available. Additionally, it is difficult to empirically select which

ML method or set of ML methods in the case of ensemble will perform well in its

prediction task before starting the experiment. Therefore a lot of trial-and-error or

reliance on experience is necessary to select the right set of ML methods. In addition

to the difficulty in ML method selection, the process of understanding the output

of MME can be challenging for non-experts. While the MME are able to output

reasonably accurate material descriptor importance it is not obvious to the domain

experts how did MME come to such conclusion about the importance, what does the

value of importance mean, and how each ML methods contribute the final outcome.

The lack of transparency into the result of MME interpretation method add another

layer of unintended obfuscation to the domain experts who requires more clarity into

the material descriptor importance. Finally, another shortcoming of MME frame-

work is that while it extracts knowledge more accurately and robust than single

interpretation technique, it is not able to incorporate prior domain knowledge that

could improves it interpretation accuracy.
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3.7 Summary

In summary, this chapter introduced the MME framework — a crisp FI fusion of

multiple ML models and FI methods with the aim of reducing variance in FI es-

timates. The main objective is to develop and test an ensemble FI framework for

decision fusion that is more accurate in FI estimates compared than the existing

FI method. A survey on related work in ensemble FI approach is also discussed

along with a background on PI, SHAP, and IG. Subsequently, the MME framework

is introduced and explained. The MME is then tested on two case studies with the

first case study being synthetic dataset with multiple different conditions to compare

the performance of traditional FI approaches and MME framework. The case study

shows that MME is able to produce more accurate FI quantification compared to

traditional FI approaches. For the second case study we employ MME framework

to determine the main material descriptors and build parameters affecting the creep

rate of printed alloy 718. The results show that the MME framework is able ac-

curately explain the prediction produced by ML models. While MME is able to

produce more accurate FI values compared to traditional approaches, it lacks the

ability to capture uncertainties, incorporate prior domain knowledge, and interpret

FI output in linguistic terms. In the next chapter, a Fuzzy extension to the MME

framework is proposed to solve the shortcomings of the current approaches described

above.
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Chapter 4

The Fuzzy Multi-Method Feature

Importance Ensemble Framework

An initial attempt to address the uncertainty in FI determination is the introduction

of our MME framework in the previous chapter, where multiple FI approaches are

applied on multiple ML models, and the crisp important values are combined to

produce the final importance for each feature. A crisp value is the exact expression

of a measurement. The overall results of MME are more robust and accurate (15%

less feature importance error) for synthetic data sets when compared to using single

ML and FI. However, MME does not provide a comprehensive exploration of feature

causality as MME itself produces some uncertainties that is not captured within

the framework. The crisp-based approach also loses information as the uncertainties

are not taken into account during the decision fusion step. These uncertainties in

identifying the contribution of features to ML outputs are due to:
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1. For nonlinear response surfaces (the multidimensional surfaces encoded by

trained ML models), the FI depends on which part of the response surface is

interrogated. The variation in feature gradients from one position to another is

a result of the nonlinear behaviour of real-world systems. This variation means

that for nonlinear models, the FI is not fixed, but is context dependent. Sen-

sible choices for the part of the response surfaces at which to evaluate FI are

typical local or global minima or maxima in the response variable, depending

on what type of optimum is relevant.

2. The variance due to the characteristics of the learning process of ML models.

For example, RF combine the outputs of decision trees at the end of the train-

ing process while GBT combine them at the start of the process. Although

random forest and gradient boosting machines are tree-based methods that

use impurity-based methods to calculate feature importance, the final feature

importances for two ML methods will differ due to their variations in training

algorithms.

3. Differences in how FI is calculated and interpreted by FI techniques. For in-

stance, certain approaches, such as PI investigate how each feature affects the

model response individually. Here, PI shuffles the instance values for a partic-

ular feature, while maintaining the original values for the remaining features.

The feature with shuffled instances is considered important if the model’s per-

formance decreases. Other approaches, however, investigate the importance

of the feature both individually and in synergy with other subsets of features.

For example, SHAP calculates the contribution of features for every possible
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combination of the feature set investigated.

4. FI coefficients in general being calculated as the average (or weighted average)

of the importance of a feature within a data sample. Information about the

context (or data subspace) in which a feature has higher or lower importance

during training is lost.

Furthermore, the use of crisp fusion in MME can also result in significant loss

of information as data subspaces and gradients are not adequately explored because

of the way training/test sampling is conducted. Crisp ensembles like majority vot-

ing discard extreme values of FI which, for safety critical systems, should not be

disregarded. Additionally, SME and MME have limited interpretability; the meth-

ods and outputs are difficult for domain experts to understand. For example, what

does a final FI coefficient of 0.76 mean (is it a good high value, or a low value)?

The value obtained also depends on the FI method adopted and those that are not

model agnostic also depend on the specific ML model(s) employed. Finally, to the

best of our knowledge there is limited literature that explores data sampling for

FI. In this chapter, it is shown how the limitations can be alleviated using a fuzzy

logic approach for representation of importance. This accounts for multiple levels of

uncertainty, whilst simultaneously simplifying interpretation of results. Fuzzy logic

defines data/context-dependent intervals of importance that make it easier to iden-

tify data regions where specified features have high or low importance for decision

making. This level of interpretation granularity will accelerate data-driven intelligent

research and decisions by identifying critical data instances that enhance prognosis

and health management, manufacturing, medicine and design of new materials.
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To utilise fuzzy logic approach for representation of importance it is combined

with MME to create Fuzzy Ensemble Feature Importance (FEFI), a method that

captures and models the variance amongst different ML methods employed for FI

calculation and the data space representation is proposed in this chapter. The ob-

jective of FEFI is to capture the uncertainty within ensemble feature importance to

accurately explain ML models’ output while presenting the feature importance in

linguistic term for straightforward explanation and capturing the uncertainties that

arises from the feature importance explanation. FEFI combines crisp importance val-

ues, and rules expressed in simple terms that explains a feature’s importance. First, a

data-driven approach to generate Membership Functions (MF) [138] is employed for

the FI coefficients produced by re-sampling the dataset (e.g., by cross-validation),

employing an ensemble of ML and FI methods. This allows the variance among

the ML models, FI techniques, and data to be modelled as MFs [139] with three

fuzzy sets; ‘low’, ‘moderate’ and ‘high’ representing the categories of FI. The Wang-

Mendel [140] is employed to learn the rules that map the feature importance values

generated by the different ML methods to the final importance. The Mamdani in-

ference [141] is used to combine the FI terms generated by the MFs, using rules to

produce a final description of a feature’s importance in terms of simple terms for

easy interpretation and decision-making.

For the remainder of this chapter, a background on Fuzzy Logic and FEFI is

first explained in Section 4.1 and Section 4.2. Subsequently, the generation and

pre-processing of the synthetic data along with a real-world case study of feature

importance quantification of main factors affecting the secondary creep rate predic-
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tion of Laser Powder Bed Fusion Material to test the performance of FEFI relative

to MME in Section 4.4 and Section 4.5. Finally, the results and future work are

discussed.

4.1 Background

4.1.1 Fuzzy Sets

In 1965 Lotfi A. Zadeh published the seminal paper on Fuzzy Sets [139] that extends

the classical set theory. In classical set theory, an element is either in a set, or it

is not, adhering to the principle of bivalence in formal logic where the elements are

discriminated between members and nonmembers using the degree of [0, 1]. This is

also known as the crisp set in Fuzzy system. Fuzzy sets extend upon crisp sets by

enabling elements to fall within a specific interval range, also indicating their mem-

bership values. Membership value is analogous to probabilities. The membership

degree of an element is defined by a function called MF. The difference between a

crisp set and fuzzy set is best illustrated on a graph. In Figure 4.1, the graphs (a)

and (b) indicates the health of a machine ranging from faulty (0%) to fully functional

(100%) on the x-axis. In Figure 4.1(a) fuzzy sets are also representing four linguis-

tic concepts: faulty, almost faulty, almost fully functional, and fully functional. In

the real world, these concepts are generally provided by experts on this machine or

obtained from extensive data collection. Each concept is defined by the MFs and it

ranges from zero to one. Within the fuzzy sets, the state of health of the machine

is considered a fuzzy variable. A fuzzy variable is able to capture the uncertainties
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compared to a crisp variable. For example, in Figure 4.1a, at around 85% state of

health the machine is given the degree of 0.3 almost fully functional and 0.7 fully

functional. Whereas for the crisp variable, 85% state of health is considered fully

functional. The uncertainties caused by unavoidable measurements errors can be

captured by using fuzzy variables.

(a)

(b)

Figure 4.1: State of health of a machine represented with (a) a fuzzy sets and (b) a
crisp sets

162



4.1.2 Fuzzy Rule Generation

Each collection of fuzzy sets can be thought of as a rule, for example, in the case of

the state of health of a machine, a specific range of health is mapped to one or two

of the four linguistic concepts. Mathematically it can be represented as follows:

Rule Ri : IF x1 is Aj1 ∧ ... ∧ IF xm is Ajm THEN Cj with wj (4.1)

where j represents the number of rule, Aj is the fuzzy set, Cj is the linguistic con-

cepts/class and wj is the rule associated weight. In the state of machine health

example, the rule is defined by an expert. However, in the absence of experts, rules

have to be automatically generated. One way is to generate the rules from data us-

ing the Wang-Mendel method [142] using input-output data pairs, similar to labelled

data in the context of supervised learning. The Wang-Mendel method is comprised

of four steps:

1. Splitting the Input and Output Spaces into Fuzzy Regions

Assuming the input data has two features x1, x2 and one output y. Their domain

intervals are denoted by [x−1 , x
+
1 ], [x−2 , x

+
2 ], and [y−, y+]. The intervals for each input

variable is the upper and lower limit on the x − axis and it is divided into 2N + 1

regions spaces between upper and lower limit. Each divided region now corresponds

to a triangular shape MF, as shown in Figure 4.2, as opposed to trapezoidal shape

MF previously shown in Figure 4.1. The overlapping area between the shapes, also

known as fuzzy regions, captures the uncertainty of a variable. Since the number of
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regions are divided into odd numbers, there is always a center region denoted by CE.

The regions to the left side of CE are denoted by S1, ...SN . Similarly, the regions

to the right of CE are denoted by B1, ..., BN where S and B means small and big,

respectively. Membership values range from [0, 1]. In the original paper, the authors

proposed triangular MFs. However, other shapes of MFs are acceptable.

Figure 4.2: Division of fuzzy regions and corresponding membership function for a
variable.

2. Generating Fuzzy Rules From Data

First convert each data into its membership degree given the MF in step 1. For

example, the first instance of data input-output pair, x
(1)
1 has a degree of 0.4 in S1,

x
(1)
2 has a degree of 1.0 in CE, and y(1) has a degree of 0.8 in B2. Then the rule can

be represented as follows:

Rule 1 : IF x
(1)
1 is (0.4in S1) ∧ IF x

(1)
2 is (1.0in CE) THEN y(1) is (0.8in B2) (4.2)

Rule 1 can be summarised as IF x1 is S1 and x2 is CE THEN y is B2. Each data
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pair generates a rule. If there are a thousand data pair instances then a thousand

rules are generated.

3. Eliminating Conflicting Rules

As the number of rules generated increases the probability of conflicting rules also

increases. For example, Rule 1 is IF x1 is S1 and x2 is CE THEN y is B2 and Rule 2 is

IF x1 is S1 and x2 is CE THEN y is CE, then Rule 1 and 2 are conflicting because

the same IFs statement produces different THEN output. To resolve conflicting

rules, each rule is assigned a membership degree. Only the rule with the highest

degree within the conflicting group is accepted. The membership degree for rules is

calculated using the membership degree of each variable. For example, Rule 1 from

Equation 4.2 has a degree of 0.4 ∗ 1.0 ∗ 0.8 = 0.32. Thus, Rule 2 is rejected if it has

a lower degree compared to Rule 1.

4. Mapping The Fuzzy Rules

To obtain a new output y using new instances the input x1, x2 are passed through the

rules to produced a membership degree. However, the membership degree of m(y)

is not mapped to the real world values, therefore, a defuzzification step is required.

One way to defuzzified fuzzy variable is to use the centroid defuzzification formula

as follows:

y =

∑K
i=1m

i
Oi , ȳi∑K

i=1m
i
Oi

(4.3)

where mi
Oi is the product of all the input membership degree (in this case m(x1)
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and m(x2)). The Oi denotes the output region, e.g., CE, B1, S1, etc of Rule i. ȳi

represents the center value of region Oi and K is the number of fuzzy rules.

By following Step 1-4, one can produce a fuzzy inference systems that maps the

input space to an output space while capturing uncertainties along the way. Similar

to neural networks, Wang-Mendel method is also a universal approximator and can

be extended to support a general n-input and n-output system. In the case of this

chapter, Wang-Mendel method is employed to generate the rules to combine the MFs

generated by the importance coefficients to produce final feature importance with

uncertainties from ML models, FI values, and data captured and reflected.

4.2 Fuzzy Ensemble Feature Importance

This section describes the FEFI methodology using multiple ML models and FI

techniques. First, the data goes through pre-processing stage. Second, multiple

ML models are applied to the pre-processed data to capture the variance in the

entire dataset. Cross validation is used to tune hyperparameters and to understand

the characteristics of the ML models and feature gradients. Third, multiple model-

agnostic FI methods are used to analyse the trained ML models to quantify FI.

Finally, these importance values are then used to train a Fuzzy Inference System

(FIS) as shown in Figure 4.3. The stages of the methodology are further described

below.
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Figure 4.3: The four stages of the fuzzy ensemble feature importance method. The
first stage pre-processes the data and the second stage partitions the data into k
subsets for training and evaluation. The third step employs multiple FI techniques
to calculate feature importance from the each trained ML model. Finally, the fourth
stage generates fuzzy MFs from the feature coefficients calculated in stage 3, and
fuses future feature coefficients generated from multiple ML models using fuzzy rules.
The output of the system is the final feature importance category and degree of
membership.

Data Pre-processing

In Stage 1, it is the same as MME framework, data undergoes pre-processing to

manage missing values and outliers, identify and calculate relevant features, and

normalise features to reduce data bias and to ensure that the features are on similar

scales to improve ML performance. Feature reduction or selection can also be per-

formed at this stage to remove redundant, low variance, and less relevant features,

thereby reducing noise in the data. The pre-processed data is then transformed to a
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suitable format for training the ML models.

Cross Validation

The pre-processed data from is randomly shuffled and partitioned into k equally

sized subsets for training (k-fold cross validation) [143]. For each training step, 1

subset is left out and the remaining k-1 subsets are used to train the model. The

training process is repeated k times, each time leaving out a different subset and

using the remaining subsets as the training data. This produces k trained models.

As mentioned previously, each subset of train/test data split produces different FI

results and thus, provides different insights. Therefore, the cross-validation stage

is crucial for capturing the variance in feature gradients and feature contributions

across every combination of instances in the data used for training and testing.

Ensemble of Machine Learning and Feature Importance Methods

Figure 4.4: FEFI stage 3 process.

An ensemble of ML models (n models) is generated, where each model is trained
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k times on the partitioned subsets of data. This produces k * n trained models.

Each trained model employs j number of FI techniques to obtain the coefficients of

importance for all the features. If each model is trained on i features, the combined

ML and FI methods generate a i*j*k*n vector of importance coefficients. This vector

encapsulates the variance in the learning characteristics and performance of the ML

models and the variance in calculating importance by the FI techniques. This vector

is reshaped to a suitable format for the FIS i.e., n vectors of length i*j*k to present

the n MFs for the ML models. Figure 4.4 illustrates the combined process of stage

3 and 3.

Generating Membership Functions

To model any disagreements or uncertainties in the importance coefficients produced

by the different data subsets, ML models, and FI approaches, MFs are established

from the coefficients that represent the context-dependent importance of features,

and generate soft boundaries between the MFs to capture the intermediate possi-

bilities in feature importance classification. To generate the input and output MFs,

boxplot distributions of the importance coefficients generated by each ML model and

the actual coefficients respectively [138] are employed. Each MF is represented by

the fuzzy sets (linguistic terms); ‘low’, ‘moderate’ or ‘high’ importance to facilitate

understanding and interpretation of feature importance for domain experts and de-

cision makers. The five-number summary (i.e. minimum (min), first quartile (Q1),

median (Q2), third quartile (Q3) and maximum (max)) of the boxplot distribution

are utilised to construct the MFs. Z and S-MFs are used for ‘low’ and ‘high’ fuzzy
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sets as they are most suitable for representing the far-end boundaries with maximum

degrees of membership. For instance, feature coefficient of 0 is expected to be in the

‘low’ MF with a degree of 1 and a coefficient of 1 to be in the ‘high’ MF with a degree

of 1. The Z-MF is represented using the minimum and median values of the distri-

bution and the S-MF with the median and maximum values. The ‘moderate’ MF

is represented with a triangular-MF using first quartile, median and third quartile

values. Figure 4.5 shows an example of MFs generated from a boxplot distribution.

Figure 4.5: Membership functions generated from boxplot distribution: a) boxplot
distribution of important values, and b) extracted MFs using our boxplot data-driven
approach.

The boxplot in Figure 4.5a represents the distribution of importance coefficients

for all features when GBT is trained on all data subsets and multiple FI techniques

employed on the trained GBT models. By using the five-summary values of the

boxplot (i.e. min=0, Q1=0, Q2=0.18, Q3=0.7 and max=1), MFs such as the ones

in Figure 4.5b is generated as follows, ‘low’ MF = Z(0, 0.18), ‘moderate’ MF =

triangular (0, 0.18, 0.7) and ‘high’ MF = S(0.18, 1). It can be observed that 50%
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of the coefficients are lower than 0.18 as shown by the narrow ‘low’ importance MF,

implying that the model has a smaller uncertainty in identifying ‘low’ importance

features and greater uncertainty in identifying ‘moderate’ and ‘high’ importance

features.

Fuzzy rule generation and inference

Wang-Mendel method is employed to generate the rules to combine the MFs gener-

ated by the importance coefficients. The Wang-Mendel method is one of the most

commonly used rule generation technique and is most applicable for problems with

ground truth data such as, the synthetic datasets used in this study. This technique

uses a supervised learning approach with input-output pairs, as follows:

(FI1,1ML1
, F I1,1ML2

...F I1,1MLn
; y1),

(FI2,1ML1
, F I2,1ML2

...F I2,1MLn
; y2),

...
...

(FI i,jML1
, F I i,jML2

...F I i,jMLn
; yi),

(4.4)

where i is the number of features, j is the number of FI techniques and n is the number

of ML models. Each abbreviation (FI i,jMLn
) denotes the corresponding importance

coefficient of feature i obtained from the nth ML and jth FI methods and y denotes

the actual coefficient of importance (ground truth). Table 4.1 shows an example of

the IF/THEN rules generated from sample dataset called X where it has 10 features

and low interactivity between features trained with GBT, RF and Extra Trees (ET),
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and coefficients calculated using PI, SHAP and Gini importance techniques.

Table 4.1: Rules generated using the Wang-Mendel method on dataset X (10feat-
low-inter)

Rule No Rule Description
1 IF GBT[‘low’] and RF[‘low’] and SVR[‘low’] and ET[‘low’] THEN output[‘low’]
2 IF GBT[‘high’] and RF[‘high’] and SVR[‘high’] and ET[‘high’] THEN output[‘high’]
3 IF GBT[‘moderate’] and RF[‘moderate’] andand SVR[‘high’] and ET[‘moderate’] THEN output[‘high’]
4 IF GBT[‘moderate’] and RF[‘moderate’] and SVR[‘moderate’] and ET[‘moderate’] THEN output[‘high’]
5 IF GBT[‘high’] and RF[‘high’] and SVR[‘moderate’] and ET[‘high’] THEN output[‘high’]
6 IF GBT[‘low’] and RF[‘low’] and SVR[‘moderate’] and ET[‘low’] THEN output[‘moderate’]
7 IF GBT[‘moderate’] and RF[‘low’] and SVR[‘low’] and ET[‘low’] THEN output[‘moderate’]
8 IF GBT[‘moderate’] and RF[‘moderate’] and SVR[‘low’] and ET[‘low’] THEN output[‘moderate’]

Next, a rule-based inference method, Mamdani inference technique [141], is used

to compute the rule strength and the output MFs. The rule strength is computed

using the fuzzy operators AND (minimum of membership degrees), OR (maximum of

membership degrees) and NOT (1-membership degree). The rule strengths determine

the degree of membership for the output MFs. The output MFs describe the final

FI in terms of understandable linguistic categories (i.e. ‘low’, ‘moderate’ or ‘high’

importance) and the degree of membership in each category. By using an example

to demonstrate the two stages of the inference process, consider Rule 1 in Table 4.1:

Rule 1: IF GBT is ‘low’ AND RF is ‘low’ AND SVR is ‘low’ AND ET is ‘low’

THEN final FI is ‘low’
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Assuming we have the following degrees of membership in the MFs:

FIofGBTlow(Ax) = 0.15

FIofRFlow(Ay) = 0.2

FIofSV Rlow(Aw) = 0.5

FIofETlow(Az) = 0.3

Where Ax, Ay, Aw, and Az represent the importance coefficients of feature A pro-

duced by GBT, RF, SVR, and ET, respectively. Rule 1 uses the AND operator to

produce the rule strength:

min[GB(low)(0.15), RF (low)(0.2),

SV R(low)(0.5), ET (low)(0.3)]

min[0.15, 0.2, 0.5, 0.3] = 0.15

The rule strength represents the degree of membership for the ‘low’ output MF (the

‘THEN’ part of Rule 1). That is, Rule 1 produces an output importance of ‘low’

with a degree of 15% for feature A. The next step is to test the efficacy of FEFI

against MME on both synthetic dataset and real world.
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4.3 Experimental Design

To test the performance of the FEFI framework, the same case studies as the one in

Chapter 3 are conducted, namely, (1) synthetic data; and (2) a real-world dataset

on creep rates in LPBF. In addition to noise levels, number of features, and number

of informative features, the different complexity levels of the data is added as an

additional factor for the synthetic data. The complexity levels is added to further

test the MME and FEFI framework under high complexity scenarios. The hypothesis

of the case studies is that the FEFI framework is able to produce more accurate FI

quantification compared to MME framework while accounting for the uncertainties

in the underlying process and data. For the real-world dataset, the main objective

is to compare FEFI to MME framework in the real world. The synthetic data case

case study starts with how the training and testing data for different complexity

level is generated, preprocessed, and prepared. Subsequently, the appropriate ML

methods and evaluation metrics are selected for the regression tasks. After the models

are trained FEFI framework is employed to generate FI quantification. Finally,

the results are presented and the findings are discussed. Furthermore, as the data

generation, preprocessing, ML models selection, and evaluation metric is explained

in Section 3.4 for the LPBF dataset, only the results and discussions of FEFI and

MME framework comparison is presented.

4.3.1 Summary of Data Preprocessing

In Table 4.2 a summary of the data preprocessing employed is listed.
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Task Description

Data split ratio 80/10/10 (train/validation/test)
Data split method Randomly split between train/validation/test or Leave-one-out
Scaling method All features scaled between 0-1
Feature Selection None
Feature Extraction (Image) Scikit-Image library

Table 4.2: A table of data preprocessing methods for synthetic and creep rate pre-
diction data.

4.4 Case Study: Synthetic Data

4.4.1 Data Generation

Similar to Chapter 3, FEFI is tested on synthetic data, as it allows us to verify its

efficacy against the ground truth. Three additional datasets for regression with 2000

instances and varying complexity levels. Table 4.3 shows all the datasets in this

case study. The complexity of the data is determined by the strength of interaction

between features. The interaction strength can be varied by changing the effective

rank of the matrix, i.e. the maximum number of linearly independent feature ma-

trix. The feature matrix rank are generated using the make regression function in

Python scikit-learn library [112]. Figure 4.6 shows the correlation matrix of the three

datasets from the dataset with fully independent features to the dataset of highly

correlated features. The correlation between features is calculated using Pearson

correlation.
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Table 4.3: Datasets with different feature interaction, number of features, features
informative level, and noise’s standard deviation (std) tested on the proposed Fuzzy
Ensemble Feature Importance methods.

Dataset Number of Feature Feature Feature

Number features interaction informative level noise std

1 10 Low 90% 0.5

2 30 Low 90% 0.5

3 50 Low 90% 0.5

4 10 Moderate 90% 0.5

5 10 High 90% 0.5

6 10 Low 20% 0.5

7 10 Low 50% 0.5

8 10 Low 90% 2.0

9 10 Low 90% 5.0

Figure 4.6: Pearson correlation matrix for datasets with different interaction strength
between ten synthetic features investigated, labelled from A to J.

Additionally, different feature interaction levels are added to each dataset, as
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Figure 4.7: Interaction strength between pairs of features for each of the three
datasets. The x-axis denotes the feature pairs with the top 10 highest interaction
from each of the datasets.
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illustrated in Figure 4.7. Feature interaction occurs when a feature affects one or

more features, making it difficult to discern its actual feature importance value.

The interaction effect between pairs of features is calculated using Friedman’s H

statistics [144]. Additional synthetic datasets of different properties investigated in

the previous chapter are tested for consistency in experimental design and reporting

of results. These include datasets of varied number of features, noise levels, and

feature informative level. Feature informative levels controls how much each feature

affect the output. Table 4.4 shows a summary of different datasets tested in this

chapter.

Partial Dependence Plot (PDP) is employed to analyse and illustrate the rela-

tionship between the features and their outputs in Figure 4.8. The PDP is a method

to show the marginal influence of one or two combined features on the output using

the Monte Carlo method across the dataset [34]. The PDP in Figure 4.8 illustrates

the non-linear relationship between two features and the output in high interactive

setting of the synthetic dataset. The FI changes over the data space surface and

the PDP plot shows the possible amount of uncertainty in the FI and synergistic

importance between the features that have non-zero interactions.
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Figure 4.8: The partial dependence plot of two features on the output. The feature
H (left) and the feature C (centre) plot shows the respective partial dependence of
the respective feature to output. The right plot shows the combined response on the
output for the feature C and H.
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Table 4.4: Datasets with different feature interactions, number of features, features
informative levels, and noise’s standard deviation tested on the proposed Fuzzy En-
semble Feature Importance Framework.

Dataset properties Values of properties

Feature interaction Low, Medium, High

Number of features 10, 30, 50

Features informative level 20%, 50%, 90%

Noise’s standard deviation 0.5, 2.0, 5.0

4.4.2 Machine Learning Methods

Five ML models: RF, GBT, ET, SVR, MLP; and three FI methods namely, PI,

SHAP and Gini Importance are implemented. We select diverse ML and FI tech-

niques to show the benefit of FEFI in modelling the uncertainties of feature im-

portance caused by their different learning and computation characteristics. It is

important to note that our methodology can be extended to include any ML model

and model-agnostic feature importance technique. The hyperparameters of each of

the model are shown in Table 4.5.
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Table 4.5: Hyperparameters for each of the machine learning models tested in this
case study.

Models Hyperparameters Values

Gradient Boosting Regressor

Loss Least squares

Learning rate 0.1

Number of boosting stages 50

Splitting criterion Friedman MSE

Minimum samples to split 2

Maximum depth 3

Random Forest Regressor

Number of Trees 50

Max depth None

Splitting Criterion MSE

Minimum samples to split 2

Bootstrap True

Extra Trees Regressor

Number of Trees 50

Max depth None

Splitting Criterion MSE

Minimum samples to split 2

Bootstrap False

Support Vector Regressor

Kernel Linear

Tolerance 0.001

Regularisation 1.0

Epsilon 0.1
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MultiLayer Perceptron

Hidden Layer Size 50

Activation function ReLU

Optimiser Adam

L2 Regulariser 0.0001

Learning Rate 0.001

4.4.3 Evaluation Metrics

The proposed FEFI is evaluated and compared to mean and majority vote MME

on 4 different data properties, namely, (1) features interaction, (2) number of fea-

tures, (3) features informative level, and (4) the noise level of features. Among the

4 data properties, all except feature interaction are tested in the previous chapter.

Feature interaction data properties are also tested as interaction between features

are common in real-world datasets. Each data property is split further into 3 dif-

ferent subsets i.e. whole data, train, and test sets to perform feature importance

quantification. Whole dataset represents the entire data including all k subsets from

cross validation. Train dataset is the k-1 fold data and test dataset is the 1 fold left

out data. MAE and RMSE are chosen as the evaluation metrics to calculate the

difference predicted FI and actual FI.

4.4.4 Results

The results of FEFI compared to the MME framework with mean and majority vote

decision fusion strategy using datasets from Table 4.3.
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Table 4.6 shows the errors due to calculating the final FI using the different

fusion strategies as the number of features in the data increases (datasets 1, 2 and 3

in Table 4.3). Increasing the number of data features with a 90% feature informative

level made it more difficult for crisp strategies (MME with mean or majority vote)

to quantify feature importance. This is illustrated by the increase in FI errors from

10 to 30 features and from 10 to 50 features. This is due to the inefficiency of crisp

methods in capturing the increased variation of FI coefficients produced by additional

features. In contrast, FEFI exhibited minor differences in FI errors for different

number of features with lower FI errors with 30 and 50 data features compared to

the crisp mean and majority vote FIs. This indicates that FEFI efficiently captures

the increased FI uncertainty caused by extra number of features compared to the

crisp strategies.
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Table 4.6: MAE and RMSE comparison between three different feature importance
decision fusion approaches: (1) Mean, (2) Majority Vote, (3) Fuzzy Logic on three
different number of features and three different subsets of data.

Number of

features

Mean Majority Vote Fuzzy

Data subset MAE RMSE MAE RMSE MAE RMSE

Dataset 1: 10

Whole 0.146 0.168 0.124 0.143 0.148 0.181

Train 0.146 0.168 0.124 0.143 0.126 0.156

Test 0.154 0.181 0.128 0.153 0.135 0.169

Dataset 2: 30

Whole 0.379 0.435 0.397 0.454 0.107 0.133

Train 0.379 0.434 0.397 0.454 0.109 0.135

Test 0.377 0.433 0.398 0.455 0.117 0.148

Dataset 3: 50

Whole 0.297 0.365 0.293 0.360 0.128 0.155

Train 0.298 0.365 0.294 0.361 0.131 0.155

Test 0.286 0.354 0.284 0.351 0.128 0.155

Table 4.7 shows errors in calculating the final FIs as the interactions between fea-

tures in the data increase (datasets 1, 4 and 5 in Table 4.3). As with the number of

features, there is an increase in errors for mean and majority vote crisp fusion strate-

gies when the interactions between data features increase from low to moderate and

from low to high interaction. However, there is only minor differences in errors from

medium to high feature interaction for the 3 datasets. For FEFI, there is only minor

differences in FI errors for different levels of feature interaction and lower FI errors

for medium and high feature interaction levels compared to MME with mean and

majority vote. Again, this indicates that the fuzzy approach efficiently captures the
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increased variation of FI coefficients caused by higher feature interactions compared

to the crisp strategies.

Table 4.7: MAE and RMSE comparison between three different feature importance
decision fusion approaches: (1) Mean, (2) Majority Vote, (3) Fuzzy Logic on three
different features interaction level and three different subsets of data.

Interaction

level

Mean Majority Vote Fuzzy

Data subset MAE RMSE MAE RMSE MAE RMSE

Dataset 1: Low

Whole 0.146 0.168 0.124 0.143 0.148 0.181

Train 0.146 0.168 0.124 0.143 0.126 0.156

Test 0.154 0.181 0.128 0.153 0.135 0.169

Dataset 4: Medium

Whole 0.203 0.248 0.220 0.275 0.141 0.189

Train 0.203 0.249 0.221 0.276 0.135 0.179

Test 0.202 0.251 0.216 0.273 0.148 0.188

Dataset 5: High

Whole 0.222 0.288 0.249 0.314 0.125 0.164

Train 0.222 0.288 0.250 0.315 0.139 0.177

Test 0.223 0.291 0.226 0.288 0.144 0.180

Table 4.8 shows the FI errors obtained from the different fusion strategies as the

informative level of features increases i.e. datasets 1, 6 and 7 in Table 4.3. It is

observed that a rise in FI errors for MME mean and majority vote decision fusions

as feature informative levels increase from 20% to 50%, 20% to 90% and 50% to 90%.

This means the variation between the calculated crisp FI coefficients increases as the

informative level of features increases. The results for FEFI show minor increase in

FI RMSE while having larger increases in MAE as feature informative levels increase
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from 20% to 50%, 20% to 90%, and 50% to 90%. This implies that as the number of

informative features becomes available there is no outlier FI quantification by FEFI

as the RMSE did not fluctuate. However, the results shows that for low number of

informative features, MME with majority vote achieves lower FI quantification error

compared to FEFI.

Table 4.8: MAE and RMSE comparison between three different feature importance
decision fusion approach: (1) Mean, (2) Majority Vote and (3) Fuzzy Logic on three
different features informative levels and three different subsets of data.

Informative

level

Mean Majority Vote Fuzzy

Data subset MAE RMSE MAE RMSE MAE RMSE

Dataset 6: 20%

Whole 0.008 0.011 0.007 0.009 0.078 0.177

Train 0.008 0.011 0.007 0.009 0.084 0.178

Test 0.010 0.012 0.008 0.010 0.078 0.178

Dataset 7: 50%

Whole 0.078 0.101 0.061 0.086 0.111 0.164

Train 0.079 0.102 0.062 0.088 0.099 0.144

Test 0.093 0.134 0.078 0.121 0.111 0.164

Dataset 1: 90%

Whole 0.146 0.168 0.124 0.143 0.148 0.181

Train 0.146 0.168 0.124 0.143 0.126 0.156

Test 0.154 0.181 0.128 0.153 0.135 0.169

Table 4.9 illustrates the errors obtained from calculating the final FI as the level

of noise in data increases from 0.5 noise standard deviation to 2.0 and 5.0 (datasets

1, 8 and 9 in Table 4.3). It can be observed that no significant increase in FI errors

for mean, majority vote and FEFI fusion strategies as the noise standard deviation
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increases from 0.5 to 2.0, 0.5 to 5.0, and 2.0 to 0.5. This means the variation or

uncertainty of FI coefficients is only slightly affected by the changes of the level of

noise in the data. However, FEFI produces a significantly lower FI error compared

to the crisp mean and majority vote when the noise standard deviation is 5.0. This

is because of its capability to effectively capture noise in data using its MFs.

Table 4.9: MAE and RMSE comparison between three different feature importance
decision fusion method: (1) Mean, (2) Majority Vote, (3) Fuzzy Logic on three
different features noise levels and three different subsets of data.

Noise’s Standard

Deviation

Mean Majority Vote Fuzzy

Data subset MAE RMSE MAE RMSE MAE RMSE

Dataset 1: 0.5

Whole 0.146 0.168 0.124 0.143 0.148 0.181

Train 0.146 0.168 0.124 0.143 0.126 0.156

Test 0.154 0.181 0.128 0.153 0.135 0.169

Dataset 8: 2.0

Whole 0.150 0.170 0.150 0.169 0.125 0.152

Train 0.150 0.171 0.152 0.169 0.133 0.180

Test 0.165 0.195 0.163 0.200 0.131 0.161

Dataset 9: 5.0

Whole 0.151 0.173 0.155 0.180 0.117 0.137

Train 0.150 0.172 0.151 0.171 0.131 0.168

Test 0.164 0.195 0.165 0.197 0.117 0.137

In summary, these results show that our fuzzy FI fusion approach outperforms

mean and majority vote crisp feature importance fusion methods in capturing in-

creased variation of FI coefficients caused by increased data dimensionality, com-

plexity, and noise . This is because FEFI explores the data space more thoroughly
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as it uses multiple samples of data to make decisions about the importance of fea-

tures. It also uses distributions of the data to provide better definitions of FI and

soft boundaries to capture the intermediate uncertainties of FI classification.

4.4.5 Discussion

FEFI has the following advantages and limitations in interpreting the importance of

features. It provides a clear and accurate interpretation of feature contribution to

different ML model outcomes using the ML MFs. For example, Figure. 4.9 shows

different interpretations for the same FI coefficient (0.2) by the MFs generated from

dataset 1 (refer dataset description in Table 4.3) for GBT, RF, SVR, and MLP.

Figure. 4.9 illustrates that a FI coefficient of 0.2 has a 70% likelihood of low im-

portance for SVR and a 75% likelihood of low importance for MLP, as might be

expected for a coefficient close to 0. However, for GBT and RF, a coefficient of 0.2

has a high likelihood of moderate importance and no likelihood of low importance

i.e. 90% likelihood of moderate importance for GBT and 85% for RF. Therefore,

without the generation of these MFs, the interpretation of the coefficients produced

by the different ML approaches will be misleading. In addition, Figure 4.9 supports

our use of an ensemble of diverse ML approaches to complement outputs. Different

MF representations is observed for the different ML approaches but similar MFs for

approaches with similar learning characteristics. For example, the low importance

FS for GBT is very narrow compared SVR and MLP but very similar to that of RF

due to a similar tree-based learning process.

FEFI also provides more reliable interpretations of the final FI for domain ex-
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Figure 4.9: Membership functions of ML approaches generated from Dataset 1 show-
ing different interpretations of importance for the same FI coefficient

perts. Using the output MFs as crisp FI coefficients produced by fusion strategies

may be misleading without context. For example, Figure 4.10 shows the final im-

portance coefficient (0.9) after fusing the importance obtained from the different ML

approaches. Without context (the output MF), it might be assumed that 0.9 has a

high likelihood of high importance as 0.9 is very close to 1 (maximum likelihood),

whereas it can be observed that 0.9 has a 40% likelihood of high importance when

the entire feature space is considered (indicated by the height of the shaded region

in Figure 4.10). This context provided by FEFI is important in safety-critical sys-

tems such as predictive maintenance by quantifying the extent or critical level of a
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Figure 4.10: An example of the final importance of a feature after fusing the impor-
tance coefficients obtained from the different ML approaches.

feature’s contribution to the decision.

Furthermore, FEFI shows great potential as a diagnostic tool in identifying data

subsets with extreme cases of feature importance (this might be the case of activity

cliffs in quantitative structure activity relationship modelling) or with significant vari-

ation of feature importance (e.g., for significantly nonlinear response surfaces [145]).

This is achieved by producing feature MFs at different data samples or time steps

to investigate the importance of a feature in the samples. For example, Figure 4.11

shows the importance of a feature generated by different data samples of dataset

1 when PI is used to calculate the feature’s importance for best performing GBT

model. It can be observed that the feature’s importance coefficient is different in

the samples; 0.8 in sample 20 with a 90% likelihood of high importance and 0.5 in

sample 60 with a 30% likelihood of high importance. Real-world systems can pro-
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Figure 4.11: The same feature having different FI coefficients in different samples
of Dataset 1. (a) Sample 20 produces a FI coefficient of 0.8, and (b) Sample 60
produces a FI coefficient of 0.5

vide more extreme cases as they produce dynamic and multifaceted data where the

importance of a feature may vary in different samples due to interactions with other

features or supplementary data from other data sources. For example, in predictive

maintenance, when multiple sources of heterogeneous data (sensors, images, etc) are

merged, features may have different importance depending on data stratification.

4.5 Case Study: Main Factors Affecting Creep

Rates In Laser Powder Bed Fusion Using Fuzzy

Ensemble Feature Importance

This case study utilises the same data and methodology as that described in Sec-

tion 3.6 with the addition of employing FEFI framework to identify the importance of
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different material descriptors. The aim of this case study is to compare the difference

between MME and FEFI framework on a real-world dataset.

4.5.1 Results

Figure 4.12 shows the ensemble material descriptor importance using MME (Non-

fuzzy) and FEFI (Fuzzy) from top three most performant ML models i.e. RF, GBT,

and SVR for the LOCO experiment. The four most important material descriptors

identified by both MME and FEFI are the same, i.e, number of pores, solidity (den-

sity), build orientation, and scan strategy. However the rank and material descriptor

importance are different between MME and FEFI. For FEFI, the top four rank from

most important to least important are number of holes, density, scan strategy, and

build orientation. For MME, the rank of importance is density, number of holes, build

orientation, and scan strategy. Overall, both MME and FEFI’s material descriptor

importance ranking are similar and correlated. The importance given to each mate-

rial descriptors however are different. For MME, only two material descriptors are

given a importance greater than 0.8 (out of a maximum of 1.0) whereas FEFI have

five material descriptors with importance greater than 0.8. Furthermore, there is a

large drop in importance between the second and third most importance for MME,

from 0.95 to 0.73 whereas the large drop off for FEFI happens between the fifth

and the sixth most importance material descriptor, from 0.85 to 0.46. The position

where the drop off happens in importance in MME compared to FEFI shows that

MME is biased towards to a few material descriptors while FEFI assigned material

descriptors importance more uniformly with less biases. A possible reason that FEFI
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produces material descriptors importance that are more uniform is that it accounts

for the overlaps in MFs (uncertainties) and therefore, importance values skew less

towards the extreme value such as 0 or 1.

Additionally, one of the main features of FEFI is to produce a fuzzy prediction for

each of the material descriptors importance categorised into ‘Low’, ’Moderate’, and

’High’. In Figure 4.13a, the plot shows that the importance of density has a large

membership allocated to ‘High’, less so for ‘Moderate’, and the lowest for ‘Low’ indi-

cating that the material density is most likely of high importance. In Figure 4.13b,

the plot shows the eccentricity having a high membership of being ‘Moderate’ and

‘Low’ importance and low membership of being ‘High’ importance. The membership

function also shows that as the importance increases, the membership of eccentricity

being an important material descriptor also increases. The membership functions

for the remaining material descriptors are introduced in Appendix A.2.
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(a)

(b)

Figure 4.13: Fuzzy membership of Solidity (density) and Eccentricity importance
split into ‘Low’, ‘Moderate’, and ‘High’.
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4.5.2 Discussions

The results from Figure 4.12 shows that that the top factors influencing the creep

rate were the density, number of pores, build orientation and scan strategy for both

MME and FEFI. The effect of density and number of holes on creep rate are well

documented [146, 147, 148] which shows that both MME and FEFI were correctly

identifying the main causes for the creep behaviour. However, MME and FEFI dis-

agrees on the two subsequent important material descriptors, scan strategy and build

orientation whereby FEFI assigned higher importance to both factors especially scan

strategy while MME gave a lower importance score. FEFI’s importance assignment

for scan strategy is in accordance to the findings in literature where scan strategy

contributes considerably to creep behaviour. For example, a study found residual

porosity to be mostly present in scan strategies such as the Stripe strategy, due to

excessive energy density in laser overlap regions [149]. Similarly, build orientation

that was given a higher importance by FEFI compared MME, is known to be an

important factor that contributes to creep rate. Build orientation has an effect on

the creep rate due to the resulting microstructure it produces [150]. FEFI’s ability in

correctly identifying the importance for scan strategy shows that it is more accurate

and robust compared to MME in real-world dataset. The likely reason that FEFI

outperforms MME in this particular case is that it is able to incorporate experts’

knowledge on the material descriptors that might contribute to the creep behaviour

whereas MME rely only on the information generated from data, ML models, and

feature importance technique without domain knowledge. Overall, FEFI is more ac-

curate than MME at identifying the correct factors that affects the creep rate while
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providing linguistic description to aid stakeholders in understanding the importance

of different material descriptors. Additionally, FEFI fundamentally incorporates un-

certainty estimation in the form of membership functions that also assist in stake

holder’s decision making.

4.6 Summary

In summary, this chapter discusses the shortcomings of MME framework approach

and as a result, proposed an improvement by incorporating fuzzy system to create a

new FEFI framework. FEFI has the ability to capture the uncertainties that arises

from the feature importance explanation while resenting the feature importance in

linguistic term. Furthermore, by incorporating the uncertainties in its FI quantifica-

tion FEFI is able to retain useful information that would otherwise not be accounted

for during decision fusion of MME framework. To compare the performance of MME

and FEFI framework, they both tested using the same case study from previous chap-

ter. The results shows that FEFI is able to quantify the FI more accurately while

providing the FI values in linguistic terms.
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Chapter 5

Conclusions

5.1 Conclusions

In recent years CBM technology has become increasingly popular and are rapidly

adopted by various industries such as aerospace and manufacturing. The data from

the utilisation of CBM has enabled expensive and essential assets to be continuously

monitored. Using the collected data, one can create tools to predict and manage

the availability and reliability of their assets. The prediction and reliability of these

machines fall under the studies of predictive maintenance. Traditionally, predictive

maintenance is accomplished using statistical techniques, such as Weibull or logistic

regression to model RUL or predict fault. However, the data collected for predictive

maintenance are generally large and complex due to the high dimensionality of multi-

sensors, thus making ML and, more specifically, DL, an ideal candidate to handle the

data. However, current research trends towards experimenting with different model
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architectures to improve predictive performance without utilising domain-specific

knowledge. Furthermore, as predictive maintenance is often practised in safety-

critical systems, such as automotive and aerospace that emphasise the interpretation

of models for regulation, ethical concerns, and general safety, more research must

focus on it. This thesis presented the inclusion of domain knowledge in the ML

systems through the introduction of dynamic weighted and asymmetric loss functions

to improve the ML models’ predictive performance and created two frameworks that

accurately and safely extracts knowledge from the trained ML models to support

post-training interpretability.

The main findings of dynamic weighted and asymmetric loss functions was it

improves the DL models predictive performance improving both RUL and fault de-

tection accuracy. It was shown through the CMAPSS and APS case studies that by

incorporating implicit knowledge or external domain knowledge the learning models

were able to be more biased towards predictions that more favourable for predictive

maintenance such as early prediction for RUL or false positive prediction rather than

false negative prediction in fault detection. However, there are additional work incur

by using dynamically weighted and asymmetric loss functions due to extra parame-

ters that require tuning. In the case of extracting knowledge from learned ML and

DL models, the two proposed framework, namely, MME and FEFI framework were

able to more accurately quantify the global FI. The MME framework was initially

proposed to overcome the inadequacies of single method ensemble — whereby only

a single FI method is used. To extend the framework further to include uncertainty

quantification and linguistic explanation fuzzy system was used to create the FEFI
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framework. By incorporating fuzzy system into the framework, it was able to quantify

global FI more accurately compared to MME framework and single method ensem-

ble on both synthetic and real-world creep rate prediction dataset. Additionally, the

FEFI framework was able to take in account of the uncertainty produced at each

step of the process and incorporate the information in the final decision fusion steps.

Moreover, it was able to provide simple linguistic explanation to the FI quantification

that could help stakeholder in making more informed decisions. Overall, by using

dynamic weighted and asymmetric loss functions and also the FEFI framework to

include and extract domain knowledge into learning models, it improves the overall

learning along with decision making process that ultimately lead to more responsible

and safer usage of Artificial Intelligence in predictive maintenance.

5.1.1 Summary

In Chapter 2, a dynamically weighted loss function method for regression is intro-

duced to automatically extract the knowledge of which particular instances the model

should pay more attention during its learning process. The main objectives of this

chapter are to develop and test supervised DL models with a new type of knowledge

embedded loss functions to improve predictive capabilities for sensor-based data by

favouring early prediction in RUL and subsequently asses the advantage of knowl-

edge embedded loss functions on RUL of gas turbine engine and fault detection in air

pressure systems. The proposed weighted loss function is tested on a aerospace RUL

dataset and showed improved performance in RUL prediction compared to standard

loss functions. Additionally, FL, a variant of dynamically weighted loss functions for
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classification task is also tested on a air pressure system fault detection problem. Sim-

ilar to the proposed dynamically weighted loss function, FL showed improved fault

detection accuracy. Interestingly, the standard symmetrical metrics such as MSE

and RMSE generally show minor improvement for both dynamically weighted loss

functions but larger improvement when calculated through predictive maintenance

related metrics. Larger improvement over predictive maintenance related metrics

indicates that the ML models are learning to be biased towards outcome that are

often desirable in predictive maintenance such as favouring early rather than late

prediction for RUL. However, one disadvantage of the proposed loss function is diffi-

culty in tuning the the weights that is given instances that requires extra attention.

Biasing the model too much or too little can lead to outcomes that under performs

compared standard loss function. Furthermore, in this chapter a asymmetrical loss

function for regression problem is also introduced. The asymmetrical loss function

is embedded with the knowledge of favouring early rather than late predictions for

RUL task. The difference between the proposed dynamically weighted loss function

and the proposed asymmetrical loss function is that the asymmetrical loss func-

tion is explicitly biased through knowledge embedding in the loss functions while

the dynamically weighted loss function learns the bias through data. An advantage

of the asymmetrical loss function is that the biasing of model is not dependent of

the data quality. Furthermore, precise and specific encoding of knowledge can be

added into the loss function. The asymmetrical loss function is tested on the same

aerospace RUL dataset and shows that it is able to achieve higher RUL prediction

accuracy compared to dynamically weighted loss function. However, asymmetrical
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loss function also suffers the problem where the tuning of parameters have to be

precise to avoid under or over biasing the ML model. An additional disadvantage

of the weighted and asymmetric loss functions is the lack of theoretical foundations

with mathematical proofs of its behaviour. Furthermore, additional case should be

conducted to validate the improvement of weighted loss functions and asymmetric

loss functions.

In Chapter 3, the focus is shifted from embedding knowledge to improve the

model to answering the question such as ”How to safely and accurately interpret

the results of ML models?”. The objectives of this chapter are to develop and test

an ensemble FI framework for decision fusion that is more accurate in FI estimates

compared than the existing FI method and to develop an understanding of how

ensemble FI behaves under varied data conditions.. Traditionally, the extraction

of knowledge or interpretation of the outputs of trained models relies on a single

feature importance method. Furthermore the pros and cons of different feature

importance methods are not fully explored and if there is disagreements between

the methods it is unclear which is more accurate. Therefore, a MME framework has

been developed to ensemble the outputs of multiple feature importance methods from

multiple ML models to provide a more accurate interpretation of feature importance.

Using synthetic data as a case study, the results of MME were shown to be more

accurate and robust at identifying feature importance compared to single feature

importance method. Furthermore, the MME framework is tested on a creep rate

prediction case study on AM material with the aim of identifying important material

descriptors that led to different creep rates. While the MME are able to output
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reasonably accurate material descriptor importance it is not obvious to the domain

experts as it lacks further insights. Additionally, the output from MME consists

of arbitrary numerical values of importance that does not have intrinsic meaning

associated to the features. An appropriate solution is to attached meaning values

and linguistic term to the feature importance for easier and intuitive understanding

of the importance. Furthermore, MME is not able to incorporate prior domain

knowledge that could improves the interpretation accuracy of feature importance.

In Chapter 4, MME framework is extended to include Fuzzy system (called the

FEFI framework) to address the shortcomings of MME. The main objectives achieved

in this chapter are developing a fuzzy-based method to capture the uncertainty within

ensemble FI framework to accurately report explain ML models. Additionally, ex-

plained the FI in linguistic term for straightforward explanation. By incorporating

Fuzzy system, not only can the FEFI framework take advantage of the accuracy and

robustness improvement from ensembling multiple feature importance methods with

multiple ML models it also showed the uncertainties of each feature importance. In-

corporating the uncertainties of each feature importance makes the overall decision

making process safer and more ethical as it provides a more complete view of the

output for decision makers. Furthermore, the FEFI frameworks is able to incorporate

external knowledge as prior information into its system resulting in more accurate

feature importance accuracy. The FEFI framework is tested on synthetic data to

provide quantitative evidence that it is more accurate than the MME framework

under different data conditions. Furthermore, it is also tested on the same AM ma-

terials creep prediction dataset in Chapter 3 and FEFI showed to be more accurate
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than MME in identifying the importance for each material descriptors while provid-

ing linguistic explanation term for decision makers. A shortcomings of this chapter

is the lack of comparison of between different approach to capture uncertainties in

the different ML models and FI approaches. Methods such as bayesian statistics is

also a viable way to capture the uncertainties while incorporating prior knowledge.

However, due to time constraint this investigation was not possible. Furthermore, a

deeper theoretical analysis of the FEFI framework is required to fully understands

its behaviour and the limits of its performance under different data conditions. An

additional improvement to the empirical analysis of this chapter could come from

a better designed synthetic data. While the synthetic data used in this chapter

attempts to simulate real-world data there are some conditions such as missing or

censored data that are not accounted for in the analysis of this chapter.

5.1.2 Future Works

Some possible future works based on the research in this thesis are listed as follows:

• A theoretical analysis on the behaviour of dynamically weighted loss functions

and the asymmetrical loss functions. While this thesis has developed the newly

improved loss functions and showed that it performed well compared to tra-

ditional method in different case studies there is room to further understand

the behaviour of these loss functions from a more foundational and theoretical

point of view. A theoretical understanding of the dynamically weighted loss

functions and asymmetrical loss functions can provide a complete understand-

ing towards the different behaviour of the loss functions, which is important
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when employed on safety-critical predictive maintenance systems.

• A theoretical analysis of the MME and FEFI framework could bring further

understanding as to how the framework fundamentally behaves under varied

conditions. Similar to the theoretical analysis of the proposed loss functions, a

theoretical understanding of the MME and FEFI framework is important for

employment in safety-critical predictive maintenance systems.

• A comparison of FEFI framework to other uncertainty quantification approach

such as bayesian statistics. Currently, it is not obvious if FEFI is the best

approach for a bayesian-based ensemble feature feature importance. On a high

level, similar to Fuzzy Logic, bayesian statistics can incorporate domain knowl-

edge through statistical priors and quantify uncertainties. Further research is

required to understand which approach is more suitable for a safer way to

interpret the output of ML models.

• FEFI framework provides information as to which features are important. The

importance of features can serve as an indicator for the model to focus more

on features that are important through the loss functions. The connection be-

tween the FEFI framework and loss functions provides and end-to-end learning

paradigm that can potentially lead to more accurate predictions from model.

5.1.3 Publications

1. Chapter 1.
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• Rengasamy, Divish, Hervé P. Morvan, and Grazziela P. Figueredo. “Deep

learning approaches to aircraft maintenance, repair and overhaul: a re-

view.” 2018 21st International Conference on Intelligent Transportation

Systems (ITSC). IEEE, 2018. — This paper provides an literature review

of the approaches of DL employed in the aerospace predictive maintenance

space, where gaps and opportunities for our research have been identified.

2. Chapter 2.

• Rengasamy, D., Jafari, M., Rothwell, B., Chen, X., & Figueredo, G.

P. (2020). “Deep learning with dynamically weighted loss function for

sensor-based prognostics and health management”. Sensors, 20(3), 723.

— This paper proposes the regression-based implicit knowledge embedded

loss function and introduces FL function for classification-based predictive

maintenance application. Both implicit knowledge embedded loss func-

tions are tested on RUL of gas turbine engine and fault detection in air

pressure system respectively.

• Rengasamy, Divish, Benjamin Rothwell, and Grazziela P. Figueredo. ”Asym-

metric loss functions for deep learning early predictions of remaining useful

life in aerospace gas turbine engines.” 2020 International Joint Conference

on Neural Networks (IJCNN). IEEE, 2020. — This paper proposes the

asymmetric loss functions where the loss function is embedded with knowl-

edge of early prediction is more favourable compared to late prediction in

RUL. The proposed asymmetric loss function is tested against traditional

206



loss functions for RUL in gas turbine engine.

• Victoria Bell, Grazziela Figueredo, Divish Rengasamy, and Benjamin Roth-

well. “Anomaly Detection for Unmanned Aerial Vehicle Data Using a

Stacked Recurrent Autoencoder Method with Dynamic Thresholding”

2022 Preprint. — This papers extends the regression-based dynamically

loss functions to anomaly detection problem in predictive maintenacne

with the integration of dynamic thresholding.

3. Chapter 3.

• Rengasamy, Divish, Benjamin C. Rothwell, and Grazziela P. Figueredo.

2021. “Towards a More Reliable Interpretation of Machine Learning Out-

puts for Safety-Critical Systems Using Feature Importance Fusion” Ap-

plied Sciences 11, no. 24: 11854. - This paper introduces the crisp-based

ensemble FI framework. The proposed framework is tested on multiple

decision fusion approach and finally compared against traditional FI ap-

proaches on a synthetic dataset.

• Sanchez, S., Rengasamy, D., Hyde, C. J., Figueredo, G. P.,& Rothwell, B.

(2021). “Machine learning to determine the main factors affecting creep

rates in laser powder bed fusion”. Journal of Intelligent Manufacturing,

1-21. — This paper utilises the crisp-based ensemble FI framework to de-

termine the important features contributing to the creep rate in additively

manufactured alloy.

4. Chapter 4.
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• Rengasamy, D., Mase, J. M., Torres, M. T., Rothwell, B., Winkler, D. A.,

& Figueredo, G. P. (2021). “Mechanistic Interpretation of Machine Learn-

ing Inference: A Fuzzy Feature Importance Fusion Approach”. arXiv

preprint arXiv:2110.11713. — This paper addresses the limitations of

crisp-based ensemble FI by using fuzzy systems to capture the uncertain-

ties of FI while producing FI explantion in linguistic terms. Furthermore,

the fuzzy-based ensemble FI framework is compared against crisp-based

ensemble FI framework using synthetic data.
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[91] André Altmann et al. “Permutation importance: a corrected feature impor-

tance measure”. In: Bioinformatics 26.10 (2010), pp. 1340–1347.

[92] Dong Nguyen, Noah A Smith, and Carolyn Rose. “Author age prediction from

text using linear regression”. In: Proceedings of the 5th ACL-HLT workshop

on language technology for cultural heritage, social sciences, and humanities.

2011, pp. 115–123.

221



[93] Shirish Krishnaj Shevade and S Sathiya Keerthi. “A simple and efficient algo-

rithm for gene selection using sparse logistic regression”. In: Bioinformatics

19.17 (2003), pp. 2246–2253.

[94] Lin Song, Peter Langfelder, and Steve Horvath. “Random generalized linear

model: a highly accurate and interpretable ensemble predictor”. In: BMC

bioinformatics 14.1 (2013), p. 5.

[95] Kenji Kira and Larry A Rendell. “A practical approach to feature selection”.

In: Machine Learning Proceedings 1992. Elsevier, 1992, pp. 249–256.

[96] Tin Kam Ho. “The random subspace method for constructing decision forests”.

In: IEEE transactions on pattern analysis and machine intelligence 20.8 (1998),

pp. 832–844.

[97] Koen W De Bock and Dirk Van den Poel. “Reconciling performance and

interpretability in customer churn prediction using ensemble learning based

on generalized additive models”. In: Expert Systems with Applications 39.8

(2012), pp. 6816–6826.

[98] Binxu Zhai and Jianguo Chen. “Development of a stacked ensemble model

for forecasting and analyzing daily average PM2.5 concentrations in Beijing,

China”. In: Science of The Total Environment 635 (2018), pp. 644–658. issn:

0048-9697.

[99] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In:

Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996),

pp. 267–288.

222



[100] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting

algorithm”. In: icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[101] Gideon Schwarz et al. “Estimating the dimension of a model”. In: The annals

of statistics 6.2 (1978), pp. 461–464.

[102] Carolin Strobl et al. “Bias in random forest variable importance measures:

Illustrations, sources and a solution”. In: BMC bioinformatics 8.1 (2007),

p. 25.

[103] Lloyd S Shapley. “A value for n-person games”. In: Contributions to the The-

ory of Games 2.28 (1953), pp. 307–317.

[104] Scott M. Lundberg et al. “From local explanations to global understanding

with explainable AI for trees”. In: Nature Machine Intelligence 2.1 (2020),

pp. 2522–5839.

[105] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep

networks via gradient-based localization”. In: Proceedings of the IEEE inter-

national conference on computer vision. 2017, pp. 618–626.

[106] Weili Nie, Yang Zhang, and Ankit Patel. “A theoretical explanation for per-

plexing behaviors of backpropagation-based visualizations”. In: International

Conference on Machine Learning. PMLR. 2018, pp. 3809–3818.

[107] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning impor-

tant features through propagating activation differences”. In: International

Conference on Machine Learning. PMLR. 2017, pp. 3145–3153.

223



[108] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for

deep networks”. In: International Conference on Machine Learning. PMLR.

2017, pp. 3319–3328.

[109] Julius Adebayo et al. “Sanity checks for saliency maps”. In: Advances in

Neural Information Processing Systems. 2018, pp. 9505–9515.

[110] Marco Ancona et al. “Towards better understanding of gradient-based attribu-

tion methods for deep neural networks”. In: arXiv preprint arXiv:1711.06104

(2017).

[111] M. G. Kendall. Rank correlation methods. Oxford, England: Griffin, 1948.

[112] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

[113] Bhekisipho Twala. “Impact of noise on credit risk prediction: Does data qual-

ity really matter?” In: Intelligent Data Analysis 17.6 (2013), pp. 1115–1134.

[114] Elias Kalapanidas et al. “Machine learning algorithms: a study on noise sen-

sitivity”. In: Proc. 1st Balcan Conference in Informatics. 2003, pp. 356–365.

[115] J Sola and Joaquin Sevilla. “Importance of input data normalization for the

application of neural networks to complex industrial problems”. In: IEEE

Transactions on nuclear science 44.3 (1997), pp. 1464–1468.

[116] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter op-

timization”. In: Journal of machine learning research 13.Feb (2012), pp. 281–

305.

224
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Appendix A

Appendix

A.1 Supplementary results for Multi-Method En-

semble

A.1.1 Feature Importance Quantification on Train and Test

Dataset (RMSE)

Figure A.1: Average feature importance error between SME and MME with train
and test dataset. (RMSE)
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A.1.2 Feature Importance Quantification on Train and Test

Dataset (R2)

Figure A.2: Average feature importance error between SME and MME with train
and test dataset. (R2)
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A.1.3 Effect of Noise Level on All Feature Importance (RMSE)

Figure A.3: Effect of all noise level on all feature importance methods (RMSE)
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Noise level (Standard deviation)

Models 0 (10−2) 2 (10−2) 4 (10−2)

S
M

E
PI 13.8±2.1 13.4±2.0 14.5±2.7

SHAP 13.4±2.4 13.3±2.4 13.6±2.5

IG 23.1±10.6 25.0±10.5 24.3±10.6

M
M

E

RATE (Kendall) 12.0±3.2 11.9±3.3 12.6±3.7

RATE (Spearman) 12.0±3.3 11.9±3.3 12.5±3.7

Median 13.8±4.1 13.8±3.2 14.3±4.6

Mean 12.0±3.2 11.8±3.3 12.5±3.7

Mode 22.8±5.4 19.9±5.3 21.5±5.1

Box-whiskers 12.5±3.4 12.6±3.4 12.9±3.7

Tau test 12.3±3.4 12.2±3.3 13.0±3.8

Majority vote 13.3±3.7 13.7±3.4 13.7±3.9

Table A.1: Summary of feature importance RMSE between different SME and MME
for different noise level.
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Figure A.4: Effect of noise levels on ensemble feature importance. (RMSE)

A.1.4 Effect of Noise Level on All Feature Importance (R2)

Figure A.5: Effect of all noise level on all feature importance methods (R2)
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Noise level (Standard deviation)

Models 0 2 4

0.
S
M

E
PI 0.63±0.11 0.67±0.10 0.60±0.17

SHAP 0.65±0.12 0.67±0.11 0.65±0.13

IG 0.29±0.59 0.28±0.59 0.34±0.59

M
M

E

RATE (Kendall) 0.81±0.09 0.82±0.10 0.79±0.11

RATE (Spearman) 0.81±0.09 0.82±0.10 0.79±0.11

Median 0.75±0.15 0.78±0.12 0.72±0.15

Mean 0.81±0.09 0.82±0.10 0.79±0.11

Mode 0.39±0.26 0.52±0.25 0.46±0.22

Box-whiskers 0.80±0.10 0.80±0.10 0.79±0.11

Tau test 0.80±0.11 0.81±0.10 0.78±0.11

Majority vote 0.77±0.12 0.76±0.12 0.76±0.13

Table A.2: Summary of feature importance R2 between different SME and MME for
different noise level.
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Figure A.6: Effect of noise levels on ensemble feature importance. (R2)
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A.1.5 Effect Informative Level on All Feature Importance

(RMSE)

Figure A.7: Effect of feature informative level on all ensemble feature importance
methods. (RMSE)
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Features informative level (%)

Models 20 (10−2) 40 (10−2) 60 (10−2) 80 (10−2) 100 (10−2)

S
M

E

PI 6.0±0.9 11.1±1.2 15.6±2.3 17.4±1.2 19.5±1.4

SHAP 5.1±0.8 9.9±1.3 14.0±1.5 18.0±1.9 20.2±2.1

IG 14.9±10.6 19.7±10.6 24.0±10.6 26.7±10.6 32.1±10.6

M
M

E

RATE (Kendall) 5.0±1.1 9.2±1.7 13.2±2.1 15.3±1.9 18.1±3.1

RATE (Spearman) 5.0±1.1 9.2±1.7 13.2±2.1 15.3±1.9 18.1±3.1

Median 5.1±1.5 10.8±2.5 15.3±2.7 17.5±3.1 20.1±3.7

Mean 4.9±1.4 9.2±1.7 13.1±2.0 15.2±1.9 17.9±3.1

Mode 20.2±4.3 18.8±6.0 22.9±6.1 22.6±4.8 22.5±5.3

Box-whiskers 5.1±1.3 9.8±1.8 13.7±2.0 16.2±2.0 18.5±3.1

Tau test 5.0±1.4 9.7±1.8 13.7±2.2 15.8±2.0 18.2±3.1

Majority vote 8.0±2.4 12.2±3.1 15.3±2.8 15.1±3.2 16.9±4.4

Table A.3: Summary of feature importance RMSE between different SME and MME
for different percentage of informative level.
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Figure A.8: Effect of feature informative levels on ensemble feature importance meth-
ods. (RMSE)
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A.1.6 Effect Informative Level on All Feature Importance

(R2)

Figure A.9: Effect of feature informative level on all ensemble feature importance
methods. (R2)
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Features informative level (%)

Models 20 40 60 80 100

S
M

E

PI 0.90±0.02 0.79±0.04 0.63±0.16 0.57±0.06 0.27±0.12

SHAP 0.92±0.02 0.83±0.04 0.73±0.05 0.55±0.08 0.25±0.15

IG 0.65±0.58 0.58±0.58 0.44±0.58 0.17±0.58 -0.32±0.58

M
M

E

RATE (Kendall) 0.95±0.01 0.90±0.03 0.83±0.05 0.78±0.05 0.57±0.13

RATE (Spearman) 0.95±0.01 0.90±0.03 0.83±0.05 0.78±0.05 0.57±0.13

Median 0.95±0.02 0.86±0.05 0.77±0.07 0.70±0.09 0.46±0.19

Mean 0.95±0.01 0.90±0.03 0.83±0.05 0.78±0.05 0.58±0.13

Mode 0.37±0.22 0.57±0.28 0.49±0.24 0.52±0.19 0.34±0.29

Box-whiskers 0.95±0.02 0.89±0.03 0.82±0.05 0.75±0.06 0.56±0.13

Tau test 0.95±0.02 0.89±0.03 0.82±0.05 0.76±0.06 0.57±0.14

Majority vote 0.88±0.05 0.81±0.07 0.77±0.08 0.77±0.09 0.59±0.20

Table A.4: Summary of feature importance R2 between different SME and MME for
different percentage of informative level.
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Figure A.10: Effect of feature informative levels on ensemble feature importance
methods. (R2)

243



A.1.7 Effect of Number of Features on All Feature Impor-

tance (RMSE)

Figure A.11: Effect of number of features on all ensemble feature importance meth-
ods. (RMSE)

244



Number of features

Models 20 (10−2) 60 (10−2) 100 (10−2)

S
M

E
PI 10.3±1.9 14.9±1.9 16.5±2.4

SHAP 8.5±1.6 14.2±2.2 17.6±2.4

IG 23.6±10.6 24.0±10.6 24.7±10.6

M
M

E

RATE (Kendall) 8.6±2.5 12.7±3.0 15.1±3.6

RATE (Spearman) 8.67±2.5 12.7±3.0 15.1±3.6

Median 8.6±2.8 15.4±3.9 17.2±4.0

Mean 8.5±2.5 12.7±2.9 15.0±3.6

Mode 29.7±5.8 18.3±3.3 16.2±2.2

Box-whiskers 9.0±2.8 13.5±3.1 15.4±3.5

Tau test 8.5±2.7 13.4±3.0 15.5±3.5

Majority vote 8.3±2.3 13.0±3.1 19.4±3.3

Table A.5: Summary of feature importance RMSE between different SME and MME
for different number of features.
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Figure A.12: Effect of number of features on ensemble feature importance methods.
(RMSE)
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A.1.8 Effect of Number of Features on All Feature Impor-

tance (R2)

Figure A.13: Effect of number of features on all ensemble feature importance meth-
ods. (R2)
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Number of features

Models 20 60 100

S
M

E
PI 0.81±0.07 0.60±0.11 0.50±0.16

SHAP 0.87±0.05 0.62±0.11 0.48±0.13

IG 0.34±0.58 0.32±0.58 0.24±0.58

M
M

E

RATE (Kendall) 0.91±0.04 0.80±0.09 0.71±0.12

RATE (Spearman) 0.91±0.04 0.80±0.09 0.71±0.29

Median 0.91±0.04 0.71±0.14 0.63±0.16

Mean 0.91±0.04 0.80±0.09 0.71±0.12

Mode 0.09±0.29 0.60±0.14 0.68±0.08

Box-whiskers 0.90±0.04 0.78±0.09 0.70±0.13

Tau test 0.91±0.04 0.78±0.09 0.70±0.13

Majority vote 0.92±0.03 0.81±0.04 0.56±0.14

Table A.6: Summary of feature importance R2 between different SME and MME for
different number of features.
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Figure A.14: Effect of number of features on ensemble feature importance methods.
(R2)
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A.2 Supplementary results for Fuzzy Ensemble Fea-

ture Importance

Figure A.15: Fuzzy membership of material descriptor: Area in creep rate prediction.

250



Figure A.16: Fuzzy membership of material descriptor: Build Orientation in creep
rate prediction.
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Figure A.17: Fuzzy membership of material descriptor: convex area in creep rate
prediction.
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Figure A.18: Fuzzy membership of material descriptor: equivalent diameter in creep
rate prediction.
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Figure A.19: Fuzzy membership of material descriptor: Inertia Tensor 00 in creep
rate prediction.
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Figure A.20: Fuzzy membership of material descriptor: Inertia Tensor 01 in creep
rate prediction.
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Figure A.21: Fuzzy membership of material descriptor: Inertia Tensor 10 in creep
rate prediction.

256



Figure A.22: Fuzzy membership of material descriptor: Inertia Tensor 11 in creep
rate prediction.

257



Figure A.23: Fuzzy membership of material descriptor: Laser Number in creep rate
prediction.
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Figure A.24: Fuzzy membership of material descriptor: Major Axis Length in creep
rate prediction.
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Figure A.25: Fuzzy membership of material descriptor: Minor Axis Length in creep
rate prediction.
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Figure A.26: Fuzzy membership of material descriptor: Number of Holes in creep
rate prediction.
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Figure A.27: Fuzzy membership of material descriptor: Orientation in creep rate
prediction.
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Figure A.28: Fuzzy membership of material descriptor: Perimeter in creep rate
prediction.
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Figure A.29: Fuzzy membership of material descriptor: Scan Strategy in creep rate
prediction.
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Figure A.30: Fuzzy membership of material descriptor: Tensor Eigenvalues 0 in creep
rate prediction.
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Figure A.31: Fuzzy membership of material descriptor: Tensor Eigenvalues 1 in creep
rate prediction.

266


	Introduction
	Condition-based Maintenance
	Machine Learning in Predictive Maintenance
	Research Gaps of Machine Learning in Predictive Maintenance
	Aims and Objectives of Thesis
	Contributions
	Thesis Structure

	Embedding Knowledge in Loss Functions for Condition-Based Maintenance
	Introduction
	Background
	Introduction to Formal Learning Model and Loss Function
	Implicit Convexity
	Commonly Used Loss Functions

	Dynamically Weighted Loss Functions
	Asymmetric Loss Functions
	Asymmetric Loss Functions Calculations

	Methodology
	Deep Learning Architectures Investigated
	Summary of Data Preprocessing

	Case Studies
	Case Study on Dynamically Weighted Loss Function: Remaining Useful Life Prediction of Gas Turbine Engine
	Case Study on Dynamically Weighted Loss Function: Fault Detection in Air Pressure System
	Case Study on Asymmetric Loss Function: Remaining Useful Life Prediction of Gas Turbine Engine

	Summary

	Extracting Knowledge from Machine Learning Models in Condition-based Maintenance to Improve Accuracy
	Introduction
	Background on Ensemble Feature Importance
	Related Work
	Feature Importance Calculation Approaches

	Multi-Method Feature Importance Ensemble Framework
	Ensemble Feature Importance
	Decision Fusion Strategies

	Experimental Design
	Summary of Data Preprocessing

	Case Study 1: Synthetic Datasets
	Data Generation
	Machine Learning Models
	Evaluation Metrics
	Results and Discussion

	Case Study 2: Main factors Affecting Creep Rates in Laser Powder Bed Fusion
	Data Preparation for Machine Learning Models
	Machine Learning Methods
	Evaluation Metrics
	Results
	Discussions

	Summary

	The Fuzzy Multi-Method Feature Importance Ensemble Framework
	Background
	Fuzzy Sets
	Fuzzy Rule Generation

	Fuzzy Ensemble Feature Importance
	Experimental Design
	Summary of Data Preprocessing

	Case Study: Synthetic Data
	Data Generation
	Machine Learning Methods
	Evaluation Metrics
	Results
	Discussion

	Case Study: Main Factors Affecting Creep Rates In Laser Powder Bed Fusion Using Fuzzy Ensemble Feature Importance
	Results
	Discussions

	Summary

	Conclusions
	Conclusions
	Summary
	Future Works
	Publications


	Appendix
	Supplementary results for Multi-Method Ensemble
	Feature Importance Quantification on Train and Test Dataset (RMSE)
	Feature Importance Quantification on Train and Test Dataset (R2)
	Effect of Noise Level on All Feature Importance (RMSE)
	Effect of Noise Level on All Feature Importance (R2)
	Effect Informative Level on All Feature Importance (RMSE)
	Effect Informative Level on All Feature Importance (R2)
	Effect of Number of Features on All Feature Importance (RMSE)
	Effect of Number of Features on All Feature Importance (R2)

	Supplementary results for Fuzzy Ensemble Feature Importance


