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Abstract

Drought stress is a major limiting factor for yield on a global scale (Solh and van Ginkel,
2014), with drought effects being predicted to become more severe with increasing global
temperatures (IPCC, 2014). Climate change is also expected to increase the frequency and
severity of floods leading to root oxygen stress (Trenberth, 2011). At the same time, current
agricultural practises are increasingly relying on heavy machinery leading to soil compaction
and changes in soil structure (Chamen et al., 2003), reducing the rate of cell division in the
root meristem, and decreasing cell expansion (Bengough and Mullins, 1990). As such, in
order to reduce yield losses it is essential to understand the complex interaction between
oxygen stress, water stress and mechanical stress (Mohammadi et al., 2010). The least
limiting water range (LLWR) is one such model which relates the above-mentioned soil
stressors in order to estimate the soil moisture range in a particular soil for which plants
should be less limited in terms of growth. However, the extent to which the LLWR considers
the influence of root traits in changing its boundaries is currently limited. In order to be able
to assess the effects of root trait variability on the LLWR boundaries while manipulating the
LLWR soil stressors a minirhizotron based system (RS) was developed. This cheap (~£10 per
unit), acrylic based, A3 sized system enabled in situ imaging of roots and root hairs.
Destructive sampling methods were also used to determine root border cell numbers and root
tip geometry. To further optimise the process of data collection, Rcpp based image
processing algorithms were developed to obtain automated estimates of the root traits of root
length, root hair, root border cells and root tip eccentricity to further increase the efficiency of

the RS phenotyping platform.

To test how contrasting root traits influence the LLWR a plant phenotyping experiment was
performed comparing four spring barley (Hordeum vulgare L.) varieties, Optic, KWS Sassy,
Derkado and Golden Promise. Root growth rates both in the vertical and horizontal directions
all increased with increasing water availability and decreasing substrate density. Root hair
area did not vary significantly among treatments and between variaties. Root border cell
count and root tip eccentricity increased with increasing substrate density but did not vary
significantly across varieties. A root micro-trait based linear interaction model was developed
to describe average root growth rates and it was demonstrated that root growth rates on
average follow a linear patern for values >= 8 mm day*. Root micro-traits mostly failed to
correlate well with root growth rates except for a negative assosiation with root tip geometry
(cor =-0.4192, p = 2e-05**).
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1. Literature review

1.1 Introduction

Today, there is an unprecedented need for increasing crop productivity as it is projected that
global food demand will dramatically increase by 2050 (Godfray et al., 2010; Tilman et al.,
2011). Global food security is listed as the second of the 17 Sustainable Development Goals
adopted by the United Nations as part of its 2030 Agenda for Sustainable Development
(United Nations, 2015). Despite arguments/perceptions that future global food demand can be
sufficiently covered with current rates and “timely distributions” (World Hunger
Organisation, 2016), the current projections show that the global population will reach 9.7
billion in 2050 (United Nations Department of Economic and Social Affairs, 2015).
Furthermore, climate change is expected to cause yield reductions in a range of important
cereal crops due to increasing temperatures (Asseng et al., 2015). Thus, in order to reduce the
risk of world hunger there must be a dramatic increase in food production in the next decades
with a projected overall increase in food production of about 70 % between 2005/02 and 2050
(FAO, 2009).

Maximising yield requires the root systems to be of optimum size and shape to extract the
required amount of water and nutrients from the growth medium. However, soils are not
always an ideal environment for plant root growth. Soil physical conditions often reduce root
elongation rates and restrict the soil volume occupied by the root system thus, hindering
nutrient and water uptake rates with negative consequences for plant yield (Valentine et al.,
2012; Whiteley and Dexter, 1982). Furthermore, current agricultural practises have a range of
effects on soil structure, with heavy machinery changing the pore size distribution and
connectivity of the soil pore network creating water infiltration problems and yield reductions
(Keller et al., 2015). In addition, most crop plants have high-water requirements and are not
drought tolerant, which is reflected by the fact that agricultural irrigation is estimated to
account for 70 % of the total use of available freshwater (FAO and ITPS, 2015). Furthermore,
many of the resources used for food production, including irrigation water and mineral
fertilisers, are becoming relatively more expensive (White et al., 2013), further exacerbating
existing issues such as the financial inability of many farmers to purchase mineral fertilizers
(Vitousek et al., 2009). This is all in addition to increasing rainfall, snow and higher

temperatures due to climate change causing plant stress and reducing crop yield (Srivastava
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and Misra, 2018). As a result, an appreciation of how plant growth could be limited by soil

physical stressors would be beneficial in future discussions (Section 1.2).

Ultimately, to mitigate the above-mentioned issues, it is vital that crops are adapted to perform
better in less than optimum environments that are limited or have an excess of water and
nutrients or salts. Roots are responsible for the acquisition of both water and mineral nutrients
from the soil and as such, research is increasingly aiming for the manipulation of root traits
which enhance root growth (Meister et al., 2014). Root properties can be viewed as the
product of two basic components: root system architecture (RSA) and root morphology (RM)
(Nguyen and Stangoulis, 2019). RSA refers to the spatial distribution of the root system or the
geometrical character of roots. An example of its significance to root growth is demonstrated
by the observation that maize genotypes with shallow root systems have a higher growth rate
and P accumulation relative to deep-rooted genotypes (Zhu et al., 2005). RM can be defined
as the study of the features of a single root axis as an organ. This term encompasses important
root traits such as root hairs which influence root growth and root-soil interactions. For
example, an increase in root hair length and density in low P soil concentrations is a
mechanism used by wheat to increase its absorption of P (Wang et al., 2016). As such,
developing an understanding of how root traits can influence the ability of the root system to

cope with various soil stressors is of critical importance (Section 1.3).

Unlike above ground plant components the investment in time required to study root systems
is a highly limiting factor for plant breeders (Tuberosa et al., 2002). In fact, apart from
specific root crops such as carrot (Stein and Nothnagel, 1995) or cassava (Nassar and Ortiz,
2007), below-ground traits are rarely of primary significance to plant breeders because of the
difficulty to observe them in situ (Ryan et al., 2016). Even so, the increasing popularity of
“Plant Phenomics”, a collection of methods whose aim is to link plant genotypes to plant
phenotypes (Furbank, 2009) and its importance towards the advancement of plant
biotechnology and crop output (Tester and Langridge, 2010) indicates an increasing
recognition of the importance of the detailed study of root systems. As a result, there is a
growing body of research for image-based phenotyping of plant roots which involve the
optical analysis of RSA and RM to understand how roots interact with soil. These methods
may be simple and straightforward such as the traditional destructive sampling of roots
grown in field soil (Smit et al., 2000). Other possibilities may involve an artificial system

such as minirhizotrons (Upchurch, 1987). More powerful setups such as X-ray CT
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(Heeraman et al., 1997), have also been used successfully in the past to study the 3D RSA in
constrained (plant pots) soil systems. All such methods have their own advantages (and
limitations) but an appreciation of the properties of different imaging systems is nevertheless
advantageous (Section 1.4).

Ultimately, it is desirable to summarise our understanding of the interaction of the soil and
root systems in the form of a model which predicts root response to different soil conditions.
A range of mathematical models exist in the literature today describing the system of
individual roots and gradually scaling up to the more complex system case of the entire root
system (Dunbabin et al., 2013). Some architectural models consider the interaction between
environmental and root variables such as water and nutrient transfer to the roots from soil.
However, this complexity comes at a high computational cost due to their difficulty in
parameterization (Dupuy et al., 2010). On the other hand, continuous root distribution models
are easier to manage in terms of computational complexity but it comes at the cost of not
allowing for the integration of complex plant development processes (Dupuy et al., 2010).
However, there are also more practical models which completely lack any consideration of
root processes and simply consider the influence of the soil environmental conditions on the
root system such as the least limiting water range (LLWR) model proposed by da Silva et al.,
(1994). This concept describes the soil system in the form of three soil stressor variables:
penetrometer resistance (PR), soil matric potential (¥) and aeration porosity (AP). It also uses
a set of assumptions concerning the limiting values at which plant growth effectively stops
for each of the previously mentioned variables, namely the soil matric suction at -0.01 MPa
and -1.5 MPa, soil penetration resistance at 2 MPa and soil oxygen concentration at a
porosity of 10 %. The output of LLWR is a prediction of the soil moisture range for which
plants should be less limited in terms of growth, in a particular soil. Unlike computationally
demanding models such as architectural ones (Dupuy et al., 2010), the practical definition of
the LLWR makes the model computationally feasible as it only requires knowledge of the
water release and soil strength curves of the soil. The LLWR decreases with increasing soil
bulk density, increasing clay content, and decreasing organic matter content (da Silva and
Kay, 1997) As a result, LLWR is used as an index-like variable that can help assess how
different soil management practices can affect the potential productivity of the soil (Tormena
et al., 1999). However, the same succinctness that is responsible for its wide use also restricts
its prediction accuracy because it doesn’t consider the plant response beyond the simplistic

assumptions concerning the limits of plant growth. The LLWR is also not an explicit RA
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growth model. The concept of LLWR is the main theme of this project and as such, a more
detailed assessment of the model is a pre-requisite for understanding the motivation behind

the work presented in later chapters (Section 1.5).

1.2 Soil physical stressors
1.2.1 Drought

Drought stress is believed to be the most lethal abiotic stress affecting crops, negatively
impacting plant growth, physiology, and reproduction (Barnabas et al., 2008). Between 1980
to 2015 it was estimated that on a global scale drought caused a yield reduction of up to 40 %
and 21 % for maize (Zea mays L.) and wheat (Triticum aestivum L.) respectively (Daryanto
et al., 2016). Considering that average temperature is projected to increase by at least 0.2°C
per decade (IPCC, 2014) and with simulations suggesting that important cereal crops such as
wheat will have a yield reduction of 6 % per 1 °C rise in temperature (Asseng et al., 2015)

drought stress will certainly be a challenge for future food security.

Plants begin to experience drought stress when either the water supply to the roots is
sufficiently reduced or plant transpiration becomes sufficiently high that the roots cannot
supply the water that is being lost (Anjum et al., 2011). Water limitation restricts cell growth
due to the loss of cell turgor which decreases cell volume and makes cellular contents more
viscous (Taiz and Zeiger, 2006). Therefore, there is an increased frequency in protein-protein
interactions causing their aggregation and denaturation with catastrophic consequences for
cells (Hoekstra, 2001). In the initial stages of plant growth drought stress reduces seed
germination rates and limits seedling growth (Kaya et al., 2006; Teixeira et al., 2020). In
more mature plants the plant response of leaf stomatal closure to limit water loss also reduces
the CO- availability leading to an increased risk of photo-damage and reduced photosynthesis
(Lawlor and Cornic, 2002). As a result, there is an enhanced production of reactive oxygen
species such as H202 which cause lipid peroxidation leading to chlorophyll degradation
(Foyer et al., 1994). Reduced transpiration rates also increase heat stress further disrupting
photosynthesis through disruption of photosynthetic pigments (Camejo et al., 2006),
inhibition of photosystem Il (Camejo et al., 2005) and reduced RuBP regeneration capacity
(Wise et al., 2004). Leaf expansion is also limited under drought conditions because of the
reduction in turgor pressure and photosynthetic rates (Rucker et al., 1995). In addition to the
above, nutrient uptake can be dramatically reduced during drought because many nutrients

are dissolved in the soil water solution and as such, their rate of diffusion is decreased
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(Barber, 1995). The reduction in transpiration flow also reduces nutrient transport to the
shoots (Garg, 2003). For example, reductions in N and K uptake under drought stress was
demonstrated in cotton (McWilliams, 2003) and reduced P tissue concentrations in beech
(Peuke et al., 2002). Grossman and Takahashi, (2001), remarked how nutrient limitations
under drought conditions are also related to reduction in energy availability because of the
energy dependant processes required to convert nutrients in plant available forms. Drought
stress also indirectly influences plant nutrition by reducing soil microbial diversity and
activity which can disturb plant-microbial nutrient associated relations (Schimel et al., 2007).

1.2.2 Soil Oxygen

Approximately 10 % of cultivated land surface suffers from poor drainage and waterlogging
(Koevoets et al., 2016). This issue will likely worsen in the future as climate change is
projected to increase the frequency and severity of floods (Trenberth, 2011). At 25 °C the
diffusion coefficient of 02 is 0.176 cm? s (Cussler, 1997) and as such, the surface layers of
soil are usually well oxygenated, even if wet, although, the effective diffusion coefficient is
less than that of air due to the tortuous nature of the soil pore network (Whitmore and
Whalley, 2009). However, in water the diffusion coefficient of 0 is dramatically reduced to
only 2.10 x 10° cm? s (Cussler, 1997). This is highly problematic for roots as limitations in
oxygen supply effectively halt root growth (Gibbs et al., 1998). Non-photosynthetic plant
tissues such as roots normally use aerobic respiration however, under hypoxic or anoxic
conditions roots switch to the (inefficient) anaerobic pathway of glycolysis to generate ATP
leading to a severe reduction in energy available for maintenance, growth and ion uptake
(Koevoets et al., 2016). Furthermore, anaerobic respiration produces a range of by-products
which are dangerous for cells because when protons accumulate in the cytoplasm and the
vacuole there is sharp decrease in cell pH (Gerendas and Ratcliffe, 2002). In addition to the
above, anoxic conditions induce the plant to increase the rate of the stress signalling hormone
ethylene by more than 5-fold as compared to normal conditions (Mancuso and Marras, 2006)
which will have negative consequences for the above ground components of the plant by
inhibiting the elongation of cells in the elongation zone (Voesenek, 2013). Roots also secrete
phytotoxic compounds like ethanol under low 0> conditions to help prevent cell damage
caused by flooding (Badri and Vivanco, 2009). In combination with the anaerobic products
released by soil microbes there is an accumulation of phytotoxic compounds in waterlogged
soils (Armstrong and Gaynard, 1976).
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1.2.3 Soil mechanical impedance

From a mechanics point of view, roots are a complex material, being neither completely
plastic nor completely elastic or viscous but having features of all three kinds of materials
(Niklas, 1992) and as such, their response to mechanical stress is also a complex one.
Mechanical impedance, a measure of motion resistance to an external force, decreases the
rate of root elongation because it reduces the rate of cell division in the root meristem, and
decreases cell expansion (Bengough and Mullins, 1990). As a result, mechanical impedance
is almost always associated with lower shoot growth and ultimately, reduced crop yield
(Whalley et al., 2008). A widely used measure of the mechanical impedance that roots
experience in soil is penetrometer resistance (PR) (Whalley et al., 2007), with values of e.g., -
2 MPa causing a 50 % reduction in maize (Bengough et al., 2011). Considering that soil PR
values of 0.5-1.0 MPa and greater are commonly reported, mechanical impedance is
responsible for significant reduction in root elongation rates (Bengough and Mullins, 1990;
Valentine et al., 2012). Furthermore, given the projected increase in average temperate
(IPCC, 2014), roots will experience a higher frequency in mechanical impedance because as

the water content of the soil is reduced its strength increases (Whalley et al., 2005).

An increase in mechanical impedance reduces root numbers (lijima and Kono, 1991), root
axial growth and root length which results in an overall reduction in the size of the root
system (Colombi et al., 2017). Furthermore, it makes the root cortex thicker because it
increases cell numbers (Colombi et al., 2017) and causes an increase on the radial dimension
of cells (Atwell, 1988). Additionally, cell numbers in the stele are also increased as its
diameter increases (Bengough and Mullins, 1990). Chimungu et al., (2015), analysed root
anatomical phenes in maize and concluded that cortical thickness is a better predictor of root
bending compared to root diameter with a similar conclusion made for stele diameter as a
predictor for root tensile strength. In addition to the above, it was demonstrated that in barley
roots there are significant reductions in the content of cellulose and hemicellulose and an
increase in lignin concentration in root tissue in response to increase mechanical impedance
(Bingham et al., 2010). In contrast, reduced lignin concentrations were reported for maize
roots in similar circumstances (Degenhardt and Gimmler, 2000). The influence of mechanical
impedance extends beyond roots and affect the entirety of the plant (Tardieu, 1994) as plant
shoots experience reduced growth rates and length (Kobaissi et al., 2013), and dry weight
(Donald et al., 1987). Leaves also experience reduced growth rates (lijima and Kono, 1991)

and they may even induce stomata closure as a result of mechanical stress (Roberts et al.,
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2002). Furthermore, several indirect effects can occur in the form of water and nutrient stress
because changes in root morphology and architecture influence the plants ability to acquire
water and nutrients (Yamauchi, 1993). For example, Chimungu et al., (2014), demonstrated
that a larger root cortical cell size could improve drought tolerance in maize (Zea mays). A
reduction in net photosynthetic rate, transpiration rate and stomatal conductance was

demonstrated in triticale and maize plants (Grzesiak, 2009).

It should also be noted that there is an inverse relationship between soil water concentration
and mechanical impedance. This is because a drying soil experiences an increase in the total
force of the capillary component which leads to reductions in soil matric potential and
ultimately, an increase in soil strength (Whalley et al., 2005). This nonlinear, inverse
relationship results in roots experiencing greater mechanical impedance which will limit the
growth of the entire root system and as such stresses can interact to produce a greater
negative effect on crops (Bengough et al., 2011).

1.3 Root traits
1.3.1 Roots

Roots are a plant organ of high significance because they are mainly responsible for the
growth and survival of plants (Lynch, 1995). Although root systems demonstrate a high
plasticity the roots of higher plants can be classified into roots derived from the embryo
(embryonic roots) and those formed after germination from existing roots or non-root tissues
(post-embryonic roots) (Atkinson et al., 2014). In general terms, root systems consist of four

different types of roots (Wasaya et al., 2018):

1. Coarse/tap roots (first root or roots to emerge from the seed)

2. Lateral/fine roots (any root branching from another root)

3. Shoot-borne roots (roots which arise from shoot tissues)

4. Basal roots (roots which develop from the hypocotyl).
Coarse roots provide the structural basis for anchorage of the plant, the establishment of the
basic root system architecture and control the rooting depth (Henry et al., 2011). Fine roots
are potentially less important as a structuring block, but their high permeability nature makes
them highly significant for absorbing water and nutrients (Comas et al., 2012), especially in
herbaceous plants (Fitter, 2002). This is mainly because fine roots increase the root surface

area per unit mass (Landi, 2010). In the case of cereals, the root system consists of the
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following root types: the embryonic primary or seminal roots, and the post embryonic shoot
borne crown roots (Hochholdinger et al., 2004). The crown roots are separated from the
embryonic roots by the mesocotyl, which elongates to place the shoot base close to the soil
surface (Singh et al., 2010).

Root structure in cereals can become highly complicated with different structural zones along
the root profile formed by a series of cell elongations and differentiations with the overall
root ability to survive and grow in harsh environments being dependents on physiological
responses. Figure 1.1, contains root cross sections for monocot (A) and dicot (B) plants,
demonstrating the differences between them such as a well-developed pith for monocot

plants.

Figure 1.1: Schematic diagram showing the root cross sections of a monocot (A) and a dicot
(B) (taken from: https://www.researchgate.net/figure/Anatomy-of-typical-a-monocot-and-b-
dicot-root_fig2_278689094).

Details of the cellular dynamics involved in root growth will not be discussed here, instead
the reader is directed to the numerous excellent reviews in the literature (e.g., Smith and de
Smet, 2012). Instead, root traits will be introduced here as they are critical for the absorption
of water and nutrients (Narayanan et al., 2014) and are a central theme of this study. Root
traits can be defined as “any morphological, physiological or phenological feature of the root
system measurable at the individual level, without reference to the environment or any other
level of organization” (Violle et al., 2007). However, in practise root traits are influenced by
both the surrounding environment and the underlying plant genetics.
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1.3.2 Root system architecture (RSA)

RSA expression is complex and is affected by various environmental factors such as soil
strength, temperature, moisture, nutrients, soil pH (Robbins and Dinneny, 2015) and plant
genotype. Despite its complexity, RSA adjustments are of immense importance for the
survival and growth of the plant (Smith and De Smet, 2012). For example, Hammer et al.,
(2009), demonstrated that RSA was strongly correlated with biomass production and could
help explain the increase in yield of maize (Zea mays L.) observed historically in the U.S..
Selective plant breeding for increased yield has resulted in dramatically transformed the
phenotype of wheat with modern varieties having an enhanced ability to absorb soil nitrogen
reflected by an enhanced nitrogen nutrition index (Sadras and Richards, 2014). The same
process was used in the UK to increase radiation-use efficiency, biomass, and nitrogen uptake
of wheat in recent decades (Shearman et al., 2005). In a similar manner, selective plant
breeding and agronomic adaptations in the water and nitrogen restricted soils in Australia
have increased wheat yield per unit transpiration at a steady rate of 0.12 kg ha* mm™ yr?

during the last century (Sadras and Lawson, 2013).

Since roots are primarily responsible for water absorption it is not surprising that significant
efforts have being made to determine how RSA affects drought resistance. Drought reduces
the soil matric potential and as a result, roots experience osmotic stress as they have to use
more energy to remove the water from the soil. If the soil water potential is sufficiently
reduced, then hyper-osmotic stress might occur causing water loses from root to the soil
(Koevoets et al., 2016). This leads to loss of turgor in plant cells and plasmolysis, i.e., the
violent detachment of the living protoplast from the cell wall (Lang et al., 2014). In order to
avoid this catastrophic outcome, plants can induce several changes in RSA. For example,
drought conditions promote the production of many lateral roots and root hairs that increase
the total surface area of the root system and enhance its water absorption capacity (Agbicodo
et al., 2009). The diameter of roots also influences their ability to extract water (Richards et
al., 2001) and affects their capacity to penetrate through deeper soil layers (Bao et al., 2014).
A RSA with smaller root diameter and length of fine roots is believed to be better equipped to
tolerate drought conditions as a higher root length density in deep soil layers (30-45 cm) was
beneficial (Henry et al., 2011). Roots also possess the ability to actively seek out water
reserves, a phenomenon known as hydrotropism (Dietrich, 2018).
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One RSA strategy to mitigate drought stress involves deep rooting as a deeper root system
enables the uptake of water from deeper soil layers (Boyer, 1996). A high root density and
root depth are desirable traits in low water environments (Zhao et al., 2004). Researches are
also actively trying to identify the genes associated with the expression of higher rooting
depth. High drought tolerance was associated with the deeper rooting mutant extremely
drought tolerantl of the model plant Arabidopsis thaliana (Yu et al., 2008). This was because
the mutant had an overexpression of the HD-ZIP transcription factor HDG11 which promoted
the production of proteins that stimulate root elongation thus, leading to a higher rooting
depth (Xu et al., 2014). In rice, the gene DEEPER ROOTING1 was demonstrated to increase
rooting through alterations in the auxin distribution (Uga et al., 2013). Likewise, expression
of the DEHYDRATION RESPONSE ELEMENT B1A in groundnut (Arachis hypogaea L.),
increases rooting depth (Lobet et al., 2014). However, authors have cautioned that the extent
to which any root trait contributes to plant drought resistance is strongly dependent on the
drought scenario considered (Tardieu, 2012). More recently, Lobert et al., (2014), pointed out
how experiments with chickpea (Cicer arietinum L.) (Zaman-Allah et al., 2011) and wheat
(Schoppach et al., 2013) suggest that drought tolerance was more related to a conservative

use of water throughout the season rather than deep rooting per se.

RSA is also identified to be of high importance in nitrogen uptake efficiency (Comas et al.,
2012). An RSA composed of traits such as steeper root growth angles, reduced production of
crown roots and reduced lateral root branching density are believed to enhance N uptake
(Lynch, 2019). In a similar manner, RSA can enhance phosphorus absorption an essential
component for numerous metabolic processes (Raghothama and Karthikeyan, 2005). An RSA
response that is believed to facilitate phosphate absorption is the development of a shallower
root system to explore the upper soil layers where phosphate tends to accumulate (Lynch and
Brown, 2001). This will require a higher investment in lateral root production which is
preferable in terms of cost because they have lower phosphate requirements in comparison to
primary roots (Zhu and Lynch, 2004). A shift to a shallower rooting system was observed in

experiments involving Arabidopsis (Péret et al., 2011; Karley et al., 2011).

Other RSA responses could include the ability of roots to detect and direct root growth along
soil biopores which offers an advantage to the penetration of structured subsoils (McKenzie
et al., 2009). In a similar manner, the angle of the root when it penetrates the soil can be
important for determining whether root penetration will occur, with near vertical angles

giving an advantage (Dexter and Hewitt, 1978).
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1.3.3 Root Hairs

Root hairs are a common anatomical characteristic of most vascular plants which can
dramatically increase the surface area of roots (Jones and Dolan, 2012). In more precise
terms, they are extensions of trichoblasts, specific root epidermal cells which develop in the
maturation zone of the root tip (Taiz and Zeiger, 2006). In general, root hairs are
characterized by a rapid growth rate of 1 pm min* (Grierson and Schiefelbein, 2002) and a
short life cycle, with cytoplasmic disintegration reported to occur after 2-3 days (Johnson et
al., 2001). Nevertheless, root hairs play a central role in the survival and growth of plants
because of their numerous functions. They influence the uptake of both nutrients and water
(Gilroy and Jones, 2000) with the root hair zone being the most active zone for fluid transfer
in the root system due to its high permeability (Segal et al., 2008). Experiments comparing
the water uptake between wild-type barley and the barley mutant brb lacking root hairs
demonstrated that wild-type barley had a much higher water uptake (Carminati et al., 2017).
This was attributed to the ability of root hairs to substantially reduce the rate of matric
potential reduction at the root-soil interface in rapidly transpiring plants by increasing the
degree of physical contact between roots and soil which influences water uptake (Carminati
etal., 2009).

Another function of root hairs is to enhance the ability of the roots to efficiently extract
phosphorus from the soil (Keyes et al., 2013). Phosphate uptake is a topic that has received
considerable attention as it is a crucial component of nucleic acids and membrane
phospholipids in plants. Bayuelo-Jiménez et al., (2011), performed a large screening
experiments with 242 accessions of maize on high and low phosphate concentration
treatments and found a positive correlation between root hair density and biomass for low
phosphate treatments. Experiments with Arabidopsis mutants lacking root hairs demonstrated
a lower phosphorus uptake compared to wild type plants when grown in low-phosphorus
conditions (Bates and Lynch, 2000). In a similar manner, Gahoonia et al., (2001),
demonstrated that barley mutants lacking root hairs could only absorb half the amount of
phosphate compared to a wild type. Results reported by Gahoonia and Nielsen, (2004),
suggest that root hair length is also a significant factor for phosphate uptake in low phosphate
conditions. Furthermore, they are often the point of infection for the symbiotic association
between legumes and rhizobia bacteria (Peterson and Farquhar 1996). In general, the density
and length of root hairs are also shown to have considerable variability in response to P

availability (Bates and Lynch, 1996), soil water regime and soil compression (Haling et al.,
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2014) which is significant, because root hair density and length are thought to have

significant potential in plant breeding (Brown et al., 2013).

Root hairs also influence soil structure. The role of root hairs on pore structure development
at the root-soil interface during the early stage of crop establishment was clearly
demonstrated by Koebernick et al., (2017), in an experiment with synchrotron radiation
computed tomography. Moreno-Espindola et al., (2007), also demonstrated how in sandy
soils, root hairs helped enhance soil adhesion to roots. Furthermore, they are believed to
improve soil penetration and root soil contact (Haling et al., 2013), especially in compact
soils (Lynch et al., 2014). There is also evidence that they can offer enhanced mechanical
anchorage to the plant (Bengough et al., 2016; Haling et al., 2014). Czarnes et al., (1999),
reported that maize root hairs contributed significantly to root-soil adhesion. Rebecca et al.,
(2013), also demonstrated that barley genotypes absent of root hairs had a reduced ability to
penetrate compacted soil. However, perhaps this effect is more localized as it did not scale up
to the whole root system level in an experiment comparing the pullout resistance of hairless

Arabidopsis mutants with wild types (Bailey et al., 2002).

1.3.4 Root cap

The root cap covers the root tip and as such, it represents the first point of contact between
root and soil. It protects the meristem of the root tip from abrasion and the stresses exerted on
it by the soil and determines the direction of root growth (Bengough and McKenzie, 1997).
Root caps are demonstrated to have significant role over the root’s ability to sense and
respond to external stimuli, i.e., tropisms. This ability is crucial for reducing root abiotic
stress. Experiments involving the removal of the root cap inhibit the ability of the root to
sense gravitropism in plants such as Arabidopsis, maize and rice (Fujii et al., 2018). In a
similar manner, roots can sense and grow towards water, this is termed as “hydrotropism”.
Arabidopsis roots can distinguish a wet from a dry surface and induce a preferential growth
response towards the wet surface (Bao et al., 2014). Interestingly, there is also evidence that
hydrotropism is not regulated by root tips for species such as Arabidopsis (Nakajima et al.,
2017), rice (Dietrich et al., 2017) and cucumber (Fujii et al., 2018) but, the mechanisms
responsible are not yet known. Plants were also demonstrated to be able to redirect root
growth away from higher salt concentrations, i.e., halotropism (Galvan-Ampudia et al.,

2013). Svistoonoff et al., (2007), demonstrated that root tips of Arabidopsis thaliana were
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able to detect the low phosphate concentration of the medium when it came into physical

contact with it and subsequently, induced a halt in the growth of the primary root.

The root cap is also of great importance in influencing the root’s ability to penetrate soil. For
example, it was demonstrated recently that the geometry of the root tip itself influences the
probability of a root to penetrate the soil (Colombi et al., 2017). This is because the shape of
the root tip influences cavity expansion pressure (Bengough et al., 2011), a more pointed root
tip enables cylindrical deformation of soil which is more efficient compared to spherical
deformation of soil which is common for blunter shapes (Bengough et al., 1991). Kirby and
Bengough, (2002), used a finite-element method to predict the stresses around a simulated
root and demonstrated that peak stress occurs in the soil adjacent to the apex of the root cap.
Removal of the root cap in maize roots grown in a compacted sandy loam soil was
demonstrated to halve their elongation rate as a result of the increased root PR resistance,
from 0.31 MPa to 0.52 MPa (lijima et al., 2003). Vollsnes et al., (2010), compared the
growth of the primary roots of a mutant maize after the root cap had been removed with that
of primary roots of a normal wild-type maize. Elongation rates for the roots of the mutants
without a root cap was slower than that of the roots of the wild type (although the unimpeded
roots elongated at the same rate), and the nature of the soil deformation around the root tip

was quantifiably changed.

1.3.5 Root Border Cells

Root border cells can be defined as “the cells that disperse into suspension within seconds
when root tips are placed into water” (Hawes, et al., 2000). These cells are originally derived
from root cap meristematic cells and after a series of cell differentiations they physically
separate from the root cap (Feldman, 1984). They are believed to be an important mechanism
that prevents microbial and soil fauna attacks to the roots (Hawes et al., 2000; Humphris et
al., 2005). Furthermore, their production and excretion from plant root caps can have a very
strong influence on the penetration of plant roots in soil as they can potentially decrease the
friction between roots and soil and thus, help them overcome soil mechanical restriction
(Mckenzie et al., 2013). Mckenzie et al., (2013), demonstrated that the mucilage-border cell
matrix around the root tips reduced the coefficient of root-soil friction to about 0.12-0.26
which was slightly larger than the 0.05-0.15 range of boundary lubricants. This is further
supported by the reduced elongation rate of mutant maize with a removed root cap relative to

wild-type maize in strong soil conditions which suggested a lubricating effect around the root
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tip (Vollsnes et al., 2010). An increase in mechanical impedance increases the rate of border
cell and mucilage production to further decrease root-soil friction (lijima et al., 2000). More
recently it has being demonstrated that the mucilage in seeds subjected to water stress, helps
reduce their water potential during germination and reduces seed mortality (Teixeira et al.,
2020).

The border cell-mucilage matrix also influences soil structure in the rhizosphere. The soil of
the rhizosphere normally forms a structure referred to as “rhizosheath”, a layer of strongly
bound and more aggregated soil that adheres firmly to the root surface (Koebernick et al.,
2017). The dimensional extent and chemical composition of the rhizosheath can be rather
variable between species (Brown et al., 2017) and between genotypes of the same species
(George et al., 2014). Root exudates and microbially released compounds are known to
contribute to its formation by binding soil particles together and increasing the overall
stability of the rhizosphere (Hallett et al., 2009). This complex interaction between root
exudates, microbial activity and variations in soil water potential can induce significant

changes in soil structure (Hinsinger et al., 2009).

1.4 Root phenotyping

1.4.1 Overview

Root traits are essential for plant survival and growth. Unfortunately, unlike other easily
accessible plant organs such as the stem and leaves or small embryo seeds, the imaging of
undisturbed root systems is a more complicated process due to the opacity of soil.
Nevertheless, as was pointed out by Walter et al., (2015), the ability to link plant genotypes
and root system architecture (RSA) is dependent on the detailed measurement of root
phenotypes. This has motivated the development of numerous techniques able to provide
information about the root system. Such methods may be indirect such as the estimation of
root biomass with the use of empirical models (Hendricks et al., 2006) or nutrient budgets
(Kurz et al.,, 1996). More commonly however, methods tend to involve the direct
measurement of the root system. These methods can be grouped in terms of the experimental
conditions under which the roots were grown (Paez-Garcia et al., 2015) and include field,
greenhouse/glasshouse and laboratory settings. Each of those methods has advantages and
limitations (Table 1.1) with the choice of the method to be used being ultimately dependant
on the root traits of interest, cost and time constraints. In general, there is a reduction in

reproducibility, and increase in labour and time required when transitioning from a lab-based
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setting to the greenhouse and the field with difficulties in the reliability of results increasing
depending on the distance of the experiment from field conditions, as ultimately, the majority

of modern agriculture still grows plants under field-based soil conditions.

Table 1.1: A list of the advantages and disadvantages of field, greenhouse and laboratory
methods (Paez-Garcia et al., 2015).

Advantages Disadvantages
Field Accurate representation of Labour intensive
field conditions Time consuming

Mature stages of plant Difficult to replicate
growth Destructive sampling

Highly limited imaging

Green/Glass house Closer to field conditions Imaging is more limited
when soil/sand is used relative to laboratory
Faster relative to field methods
Good replication Limited reflection of field
Imaging of roots possible conditions

Destructive sampling

Laboratory Low cost Inaccurate reflection of field
Time savings conditions due to the absence
Non-destructive of  soil, environmental
Easy to replicate conditions and soil biota.

Allows easy and detailed Restricted to early growth

imaging of roots stages

1.4.2 Field based methods

One of the most traditionally used technique to assess root structure in the field is the trench
profile technique, involving the careful removal of soil with fine brushes from the sides of the
plant and subsequently drawing of the root system along the soil profile (Nielsen et al.,
1997). The obvious disadvantage of this classical method is the rather significant investment
in both time and labour which prevents it being high throughput. This limitation motivated
the development of methods that required less time and effort such as the soil coring method

which use a tractor mounted hydraulic soil corer to push soil tubes into the soil that are then
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extracted to assess root density and depth (Wasson et al., 2014). More recently, this method
was improved by introducing technological components such as UV illumination and
fluorescence spectroscopy to automatically acquire soil core images with a superior root
contrast and thus, make the process more efficient (Wasson et al., 2016). Although, this
method offers greater speed compared to traditional root excavation methods it is
unfortunately still rather time-consuming and destructive for high-throughput root
assessment. Other options such as ingrowth cores or pinboard excavation of root systems (do
Rosério et al., 2000) have similar limitations. Trachsel et al., (2011), suggested the use of
“shovelomics” as a potentially high-throughput method for root phenotyping of field grown
plants. The process involves soil excavation around the plant so that it remains in the centre
of the surface. The roots are subsequent washed gently, placed on a phenotyping board and
scored through visual assessment. An experienced team was reported to require two minutes
to visually score a rootstock. However, like other field based methods the protocol involves
destructive sampling of roots which destroys the root architecture and is also labour intensive
to implement (Downie et al., 2015). Furthermore, the subjective assessment of roots through
visual assessment rather than an objective approach could also introduce systematic errors.
Although, in recognition of that limitation the method was later updated by replacing the
visual scoring with manual measurements at the cost of a higher time requirement although

no updated estimates were reported (Trachsel et al., 2013).

As mentioned above, field-based root sampling methods have the intrinsic limitation of
destroying the root system architecture. The desire to observe undisturbed root growth in
field soil over time appears to date back to at least the early 1900s (McDougall, 1916). One
development that was proposed as a solution to the above problem was the introduction of
rhizotrons. Rhizotrons are underground enclosures with transparent windows that enabled the
repeated, non-destructive, in situ measurement of field grown roots that lie on the soil-
transparent-window interface. Rhizotron observation facilities were described in detail by
authors such as Soileau et al., (1974). More recently developed facilities such as
rhizolysimeters (Eberbach et al., 2013) are very similar in principle although, significantly
more elaborate compared to early rhizotron prototypes since they enable monitoring of soil
water concentration, soil solute sampling and allows for placement of minirhizotron tubes to
monitor root growth. However, the development of such a facility inevitably requires
significant effort and financial investment. This motivated the development of minirhizotrons

which are effectively scaled down versions of rhizotrons in the form of transparent tubes

34



installed in the soil. According to Upchurch, (1987), minirhizotrons were originally proposed
by Bates in 1937. Modern minirhizotrons systems consist of Plexiglas that contain small
cameras that obtain 2D images around the transparent surface tubes and are a practically
feasible option for repeated, non-destructive, in situ measurement of field grown roots
(Johnson et al., 2001). Studies as early as the 1980s which compared traditional field soil
core sampling and minirhizotrons had concluded that the minirhizotron scheme was both
time-efficient and non-destructive in nature for obtaining estimates of root length densities
(Vincent et al., 2017). However, several studies (Samson and Sinclair, 1994; Joslin and
Wolfe, 1999; Taylor et al.,, 2014) demonstrated that the installation process for
minirhizotrons disturbs the soil. The installation process of minirhizotrons may also cause
soil compaction, introduce light and affect soil processes (Vamerali et al., 1999) and also
influence root growth (Joslin and Wolfe, 1999). The alteration of root paths before and after
the installation of a minirhizotron was also clearly demonstrated by Itoh, (1985).
Furthermore, the time required in constructing and setting up multiple minirhizotron can be a
major factor in deterring their widespread use (Eshel and Beeckman, 2012). The most
intrinsic limitation of rhizotrons and minirhizotrons is that a fraction of the root system will
always not be in contact with the transparent surface and as such, not all the root system can

be imaged.

1.4.3 Greenhouse based methods

One of the most widely used techniques for root phenotyping in greenhouse experiments is
the growth of seedlings in pots filled with soil packed at a range of bulk densities (Taylor and
Ratliff, 1969; Courtois et al., 2000). The obvious advantage of using soil as a substrate is that
it more closely resembles field soil conditions compared to horticultural sand but at the cost
of reduced reproducibility, more labour and time required for root washing during destructive
sampling. Alternatively, gravel mixtures are commonly used as a substrate in pot experiments
(Goss, 1977). They have the advantage that they have physical properties closer to soil in
comparison to laboratory-based methods while being easier to replicate compared to soil.
Root washing is also significantly faster compared to soil grown roots. More recently, an
improvement to the pot system was proposed in the form of clear pots which are transparent
pots that allow root imaging of the root fraction in contact with the transparent surface,
similar to minirhizotrons (Richard et al., 2015). The disadvantage of this method is that it is
restricted to the early, embryonic root system and is labour intensive to mount the pouches on

the imaging station and open opaque foil covering the roots (Le Marié et al., 2014)
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Another approach is growing roots inside nutrient solutions, i.e., hydroponics. Hydroponics is
perhaps more relevant for root phenotyping than agar systems in the sense that the method is
widely used in greenhouse cultures. They were used in the past to study the effect of oxygen
deficits on roots through reduced oxygen flow (Pitman, 1969). The manipulation of the
concentration of an osmotic solute e.g. polyethylene glycol, can also be used to induce water
stress (Whalley et al., 1998). The advantages of hydroponics are that root growth occurs in
3D, enable easy imaging of the roots, replication, root harvesting and allow for the
measurement of root exudates (Mathieu et al., 2015). High-throughput hydroponics-based
systems were developed such as the one presented by Pin eros et al., (2015), who used a
support system inside the hydroponics to retain the 3D root architecture in rice and help
determine the genes associated with root architecture. However, the environment available to
roots is still absent of any physical structure and the distribution of nutrients and oxygen is by
default homogenous making this method unrealistic for extrapolating to field soil. Hybrids of
minirhizotron and hydroponics (rhizoponics) were also developed, being submerged
minirhizotrons consisting of a nylon fabric and supported by an aluminium frame (Mathieu et
al., 2015). It is also possible to grow roots without any substrate, i.e., aeroponics, by spraying
them regularly with nutrient solution (Zobel et al., 1976) but this method has similar
advantages and disadvantages to hydroponics although, roots can be more similar to field soil

in terms of anatomical structure (Redjala et al., 2011).

It should also be noted that both minirhizotron systems (Nagel et al., 2012) and X-ray CT
(Paya et al., 2015) can be used in greenhouse settings in addition to its usual laboratory

setting (in section below).

1.4.4 Laboratory based methods

The most widely used method for studying seedling roots is using agar or plates that contain
clean gels (Clark et al., 1999; French et al., 2009) as a medium for 3D root growth. High-
throughput completely automated systems using petri dishes have being used in the past
(Subramanian, Spalding and Ferrier, 2013). Its popularity stems from its easily replicated
nature, low cost, high transparency and keeping roots in place so that they don’t overlap.
However, its artificial nature is not a realistic depiction of root growth in soil because roots
grow in a well-lighted environment absent of heterogenous physical structure and often high
in both sucrose and humidity. Furthermore, space is usually limited and the process of

keeping the agar free of pathogens is laborious. However, authors have proposed
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improvements for the agar system, for example, the D-Root system developed by Silva-
Navas et al., (2015), removes non-intrinsic limitations such as light exposure by shielding
roots from light. Extensions to 3D have also been made by using digital cameras and rotating
an agar-filled Petri dish to obtain 3D images of seedling roots (Nagel et al., 2009). Similar
systems involve the placing of the seedling in a glass cylinder that contains “gellan gum”
(Phytagel powder dissolved in water). This enables an automated imaging process by simply
rotating the cylinder and taking images at different time intervals to reconstruct the 3D root
architecture (lyer-Pascizzi et al., 2010). Nevertheless, it was demonstrated that when
comparing these artificial substrate based systems with more realistic plant growth media like
sand there are significant differences in root morphological traits (Clark et al., 2011). This
example serves to illustrate the importance of studies that are as close as possible to the
desirable system, i.e., field soil. More recently, Pineros et al., (2016), reported that as a result
of the time required to prepare the agar, the lack of growth for some species and the risk of
fungal infection the system was redesigned. This time the 3D system was hydroponics based
and the seedling grows between a rotatable structure composed of Acrylonitrile butadiene
styrene plastic mesh disks. Although, the root architecture did appear to be similar to “gellan
gum” there were again observable differences when compared with “Turface” which is a

material that has a physical structure aspect to it.

Another popular high-throughput method involving artificial media is the use of simple
germination paper to grow seedlings in a pseudo-3D system that is sprayed with nutrient
solution (Bonser et al., 1996). Germination paper is cheap, easy to use, highly reproducible
and enables very easy 2D imaging of the exposed root system, especially when coloured
germination paper is used to increase root contrast (Hund et al., 2009). Hybrids of
minirhizotron that use coloured germination paper (rhizoslides) are also in use today (Le
Marie et al., 2014) However, its artificial nature raises similar concerns with the agar/gel

systems.

Other 3D imaging methods like laser scanning (Fang et al., 2009) are also in use today but
they require simple transparent media, are expensive to use and currently demand long
imaging times. It should also be mentioned that attempts to create more realistic substrates
have been made and which allow 3D imaging. One such example involves the so called
“transparent soils” which are particles of ‘“Nafion”, a sulfonated tetrafluoroethylene-based
fluoropolymer—copolymer, processed to mimic different physical properties similar to soil

(Downie et al., 2012). The material has a low refractive index matching that of water and as
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such, it enables the optical imaging of the root system after saturating the growth chamber.
However, the material is expensive and must always be chemically processed before it can be
used for plant growth which is time-consuming. Furthermore, the aqueous solution used for
imaging was reported to be a sorbitol solution with concentration between 0-13 % (w/v). This
is an issue for time lapse imaging because sorbitol induces osmotic stress (Zhao and Schaller,
2004). However, solution used was later changed to one composed of sugar (trehalose) and
two different colloidal suspensions (Ludox® TMA (pH 6) or Percoll®) which had a smaller
effect on osmotic potential (O’Callaghan et al., 2018). More recently, an alternative
transparent soil based on a much cheaper “hydrogel” was developed by mixing a solution of

alginate and gellan gum, with a solution of MgCl, (Ma et al., 2019).

There are also a number of non invasive 3D imaging techniques that can be used to measure
root traits of plants growing in soil and this list of techniques includes X-ray computed
tomography (Xray-CT) (Heeraman et al., 1997), nitrogen balancing (Smit et al., 2000), 3C
labelling (Smit et al., 2000), radioisotope tracing (Wen et al., 2015), synchrotron radiation
computed tomography (SRCT) (Koebernick et al., 2017), nuclear magnetic resonance
microscopy (NMR) (van der Weerd et al., 2001), magnetic resonance imaging (MRI) (van
Dusschoten, 2016) and Positron emission tomography (PET) (Garbout et al., 2012). These
methods enable the study of root-soil interactions and certain methods such as X-ray CT are
used at an increasing frequency to develop models describing 3D root-soil interactions (Roose
and Schnepf, 2008). According to Atkinson et al., (2019), in situ, 3D imaging of soil grown
roots currently uses three techniques: X-ray CT, MRI and PET. PET scanning uses short half-
life radioactive tracers such as carbon isotopes to visualize roots grown in soil (Garbout et al.,
2012) although, according to Jahnke et al., (2009), the resolution is currently relatively
restricted to a resolution of approximately 1.4 mm. MRIs use radio-frequency waves and
strong magnetic field to excite atoms such as the hydrogen component of the water molecule
and they have been used successfully in the past to image roots and soil water (Leitner et al.,
2014; van Dusschoten et al., 2016). However, the MRI signal is influenced by ferromagnetic
particles as well as soil moisture which respectively poses restrictions on the soil mineral
composition and the soil moisture range (Rogers and Bottomley, 1987; van Dusschoten et al.,
2016). It should also be noted that 2D neutron radiography, also used to image roots and soil
water in situ (Leitner et al., 2014) may be used in tomography (neutron tomography) to extend

the method to 3D. More recently, the scanning time of an entire tomogram was reported to
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require only 10 seconds for a soil filled column of 27 mm diameter and 100 mm height
(Totzke et al., 2017).

X-ray CT allows the imaging of 3D soil grown roots in situ by measuring the attenuation of
ionizing radiation as it passes the root and subsequently, reconstructs the 3D image by
combining the obtained projections. It is perhaps the most popular 3D imaging technique and
it’s widely used to build and test root-soil interactions models (Dunbabin et al., 2013).
However, like the above mentioned methods there is a trade off between sample dimensions
and image resolution with pot sizes being roughly 8 cm in diameter (Metzner et al., 2015)
although, resolutions as high as 24 um for samples of 7 cm in height and 3 cm in diameter are
possible today with X-ray microtomography (Tracy et al., 2010). Additionally, despite being
a powerful method able to penetrate the opaque nature of soil. not all roots may be detected.
Lazorenic et al., (2016), reported that uCT identified only 75 % of the roots observed during
destructive harvesting. Tracy et al., (2012), reported the correlation between uCT observed
roots and those harvested destructively to be low (r> = 0.53). Similarly, the review by
Metzner et al., (2015), reported that about 60 to 70 % of the root system can be reliably
identified. Furthermore, similar to MRI, Xray-CT is significantly affected by soil moisture
and the heterogeneity of soil which again places certain restrictions on the soil type and
moisture content used with sieved, repacked soil providing a more homogenous background

with small pores (Zappala et al., 2013).

In general, these methods are not considered to be high throughput because the required
equipment is expensive to obtain and maintain, is bulky and requires significant space, is
difficult to operate (trained staff), has long scanning and processing steps, and depending on
resolution there are limitations on the dimensions (Wen et al., 2015). In addition to the above,
even with automated systems the process of physically moving the sample during the
scanning process can affect plants (Braam and Davis, 1990). There is also concern that
repeated radiation exposure could influence roots and soil biota although results from
Zappala et al., (2013), suggest that in the case of Xray-CT low dosages (< 30 Gy) do not

cause adverse effects for up to 24 weeks.

Minirhizotrons were also designed for monitoring root growth in closed containers. The
minirhizotrons may be filled with a substrate, such as gel (Bengough et al., 2004), filter paper
(Gioia et al., 2017), glass beads (Courtois et al., 2013), grids of toothpicks (Nguyen and
Stangoulis, 2019), peat (Dresbgll et al., 2013) and soil (Le Marie et al., 2016). Furthermore,

facilities using automated conveyors for high-throughput phenotyping have already being
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constructed (Jeudy et al., 2016; Nagel et al., 2012). Certain systems also offer excellent
imaging through by using more complex optical setups (Lu et al., 2019), including techniques
which use luminescence-based reporters to image transgenic roots for certain species such as
Arabidopsis (Rellan et al., 2015).

1.5 Least Limiting Water Range

1.5.1 Introduction

The soil physical conditions that can limit crop production include oxygen stress, water stress
and mechanical stress (Mohammadi, et al., 2010). However, all three factors have strong
associations between them. For example, it is known from soil basic principles that for a
given soil porosity value the soil water content will be inversely related to soil oxygen
concentration. In a similar manner, soil water content is strongly associated with soil strength.
During the process of soil drying there is often a rapid increase in strength due to capillary
forces making the matric potential more negative with mechanical impedance potentially
reducing root growth in soil as wet as —100 kPa (Whalley et al., 2005). This is important
because drought is identified to be a major factor limiting both the growth of crops and the
distribution of natural plant communities on a global scale (Ryan et al., 2016). At the same
time the increasing use of heavy agricultural machinery is causing soil compaction which
further exacerbates the above issues. Soil compaction modifies the soil pore size distribution
and connectivity which increases the mechanical resistance of the soil and reduces its oxygen
availability with negative consequences for crops (Lipiec et al., 2012). Thus, understanding
the relationship between those three physical factors can be a key to provide enhanced growth

of crops and help with important issues such as food security.

The least limiting water range (LLWR) is an example of a mathematical model which
attempts to describe the basic interaction between plants and the soil physical stressors
described above within the context of plant productivity. In order to help facilitate the
detailed description of the LLWR the following definitions are introduced:

Soil water content (0): A measure of the amount of water (volume or mass) contained in a

unit volume or mass of soil.

Soil matric potential (¥): The negative gauge pressure (kPa), relative to the external gas

pressure on soil water, to which a solution identical in composition with the soil solution
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must be subjected in order to be in equilibrium through a porous membrane wall with the

water in the soil.

Water retention curve (WRC): The relationship between 0 and V. This is usually represented
in a graphical form with a plot of 6 against ‘¥.

Penetrometer resistance (PR): A measure of sol mechanical strength representing the force
needed to push a metal cone through the soil expressed as a pressure (kPa) by dividing the

force by the area of the base of the cone.

Dry bulk density (Db): The mass of oven dried soil divided by its volume.

1.5.2 Model Description

The concept of the “least limiting water range” (LLWR) was developed by da Silva et al.,
(1994), and it represents the first noticeable advancement of the previously established
concept of the “non limiting water range” (NLWR) by Letey, (1985). A widely used
definition of NLWR is “the range of water content in the soil where limitations to plant
growth (such as water potential, air-filled porosity or soil strength) are minimal” (Letey,
1985). This definition theorises that the NLWR limits are determined by the water content of
the soil under certain limiting conditions. However, an immediate implication of the above
definition is that plant growth occurs as a step function at each limiting value rather than in a
continuous way which more accurately characterises the dynamic and complex interaction
between plants and soils. Furthermore, although NLWR relates soil properties and their effect
on crop productivity its qualitative definition did not present a practical way of estimating the

desirable range of the soil parameters for plant growth.

Based on the above limitations da Silva et al., (1994), proposed the LLWR which effectively
aimed at integrating the growth factors mentioned in NLWR in a single index-like variable.
This mathematically quantitative model has the advantages of being computationally feasible

and clearly integrating important soil variables such as dry bulk density, porosity, matric
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suction and soil strength (usually measured as penetrometer resistance) to estimate a range of
soil volumetric water concentration for optimum plant growth, an example of which is shown
in Figure 1.2. In more precise terms, the first step in estimating the LLWR is the fitting of
two functions to the two empirical datasets of the soil water retention and the soil penetration
resistance respectively. The empirical regression model used to describe the soil water release

curve is normally a simple power function used by Ross et al., (1991):
(1) 6 = aWw?.

However, an alternative model was proposed by da Silva et al., (1994), which was derived
through a stepwise multiple linear regression procedure and introduced an extra layer of

complexity from equation 1 by adding Dy, to the water retention curve equation:
(2) 6 = exp(a+ bDy ) * Y°.

The function used for the soil penetration resistance is normally the one proposed by

Busscher and Sojka, (1987):

_ f
(3) SR = d6°D].

The second step is an assumption which requires the selection of four limiting values for soil
stressors, with each value corresponding to a soil condition at which plant growth is severely
limited. The values chosen by the authors and which appear to be used routinely to this day

are as follows:

1) Matric Suction at field capacity (¥f.): -0.01 MPa
2) Matric Suction at wilting point (*¥,,,): -1.5 MPa

3) Soil resistance at impeded root elongation conditions (SR;iyit): 2 MPa

4) Air filled porosity at hypoxic conditions (AF Py ): 0.1 (or 10 %).
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The estimated regression parameters a, b, ¢, d, e and f characterising the LLWR from the first

step are then used after simple algebra manipulations to express 0 in the following equations:
(4) 0. = exp(a + bDy) * ¥f..
(5) Byp = exp(a+bDy) * Wy,,.

(6) 6y = [SRymae/ @Dy,

7 eafp =[1— (Dp/Dy)] — AFPypm;;-

The LLWR is then defined to be the difference between the upper limit (UL) and the lower

limit (LL) as follows:

(8) LLWR = UL — LL = min(8y, 0,5,) — max(Osy, Oyp).
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Figure 1.2: Example LLWR output of soil volumetric water content (0) vs. bulk density (D).

The regression lines correspond to the soil volumetric content at the plant limiting conditions
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of 10 % soil air filled porosity (6ap), -0.01 MPa soil matric suction (0rc), 2 MPa soil
penetrometer resistance (0pr), and -1.5 MPa soil matric (8pwp). The dry bulk density value
represented by Dy.crit marks the transition point between the shaded LLWR zone and the non
LLWR zone where plants should be least limited relative to each factor.

1.5.3 Limitations

As discussed previously the basis of the LLWR is critically dependant on two assumptions:

1) Assumption 1: Equations 2 and 3 are accurate and precise regression models for
empirically observable datasets.

2) Assumption 2: The LLWR limiting values are complete descriptors of the upper or lower
limits for plant growth for all cases.

A potential issue with assumption 1 is that the two empirical models might not provide a

good fit for the data and as such the researcher should always assess if they are appropriate

descriptors of the datasets. Assumption 2 is in the authors’ opinion the most problematic of

the two assumptions since it effectively underscores the complexity of plant-soil interactions.

For example, an immediate implication of this assumption is that all plants have identical

physiological responses, something which is impossible, since several soil physical stresses

are known to be influenced by a range of root traits (Bengough et al., 2011).

If a crop plant was more susceptible to oxygen limitations e.g. potatoes, then the choice of the
10 % air filled porosity is completely unjustifiable from a plant physiology point of view
when compared to less susceptible species such as rice. Other examples are of course not
difficult to construct. For instance, Zarebanadkouki et al., (2016), examined hydraulic
conductivity in lupin (Lupinus albus) roots with neutron radiography and it was clearly
demonstrated just how variable the process is between different types of roots and the roots
themselves. Furthermore, da Silva et al., (1994), originally indicated in their analysis that soil

texture can influence the limiting value of air-filled porosity with the effect being stronger for
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more heavy textures. This will effectively imply that other soil properties not included in
LLWR can implicitly influence it. It can also be argued, that for soils which are rarely
saturated it is highly unlikely that compaction will be a limiting growth factor for plant
growth compared to soil aeration (Aust et al., 1998). Siegel-Issem et al., (2005), also pointed
out how depending on soil properties some plants will have a higher growth rate outside the
LLWR range as opposed to inside it. Other authors had also demonstrated in the past that the
critical air-filled porosity will be dependent on factors such as soil temperature and the
considered depth (Bartholomeus et al., 2008). Similar concerns about the limiting values can
be found in the literature (Mohammadi et al., 2010; Bengough et al., 2006), with other
authors (De Jong van Lier and Gubiani, 2015) raising more severe criticisms demonstrating a

range of issues arising from the simplicity of the model.

In a similar manner, it is misleading to adopt the 2 MPa threshold value for soil strength. In
general, root mechanical stress decreases root elongation rates in an approximately linear way
until they reach a high penetrometer pressure (Whalley et al., 2006). This value originates
from the work of Taylor and Ratliff, (1968), who used a blunt (30 °semi-angle) penetrometer
to study how PR influences root elongation rates. However, a blunt penetrometer is related to
spherical and not to cylindrical cavity expansion and may also involve the formation of soil
bodies as opposed to a sharp (5 °semi-angle) penetrometer (Bengough and Mullins, 1991). It
will be more accurate to say that the threshold value of 2 MPa corresponds to the soil strength
where root elongation rates are reduced by half (Dexter, 1987). If that definition is adopted,
then the PR threshold value could be 0.8 MPa for cotton roots and 2 MPa for maize and
peanut roots in the absence of water stress according to the review of Bengough et al.,
(2011). Gregory et al., (2007), also reported that for most of the spring and summer the PR
values of three contrasting soil types in the UK were higher than 2 MPa below 30 cm from

the surface. Even in surface soil the LLWR can become very small under zero tillage
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practices (Betz et al., 1998). In contrast to a penetrometer whose movement follows a straight
line, roots can exploit cracks and pores within the soil thus experiencing a much-reduced
mechanical impedance (McKenzie et al., 2009; Brown et al., 2004; Valentine et al., 2012).
As a result, mean penetrometer resistance in zero tillage treatments can poorly reflect
mechanical impedance because roots exploit networks of continuous channels even in a

relatively strong soil matrix (Bengough et al., 2006).

In regards to the drought threshold value of -1.5 MPa, root elongation may occur for a soil
water potential significantly less than the -1.5 MPa threshold (Portas and Taylor, 1976) but
this value is probably accurate for transpiring plants in a fully equilibrated soil (Bengough et
al., 2011). However, if similar to soil strength, we adopt a threshold value at which root
elongation rate is halved then the threshold value will vary between species. For example, a
matric potential of -0.5 MPa could be used for maize roots grown in the absence of
mechanical impedance (Bengough et al., 2011). For seminal roots grown in vermiculate this
value could be between -0.4 MPa and -0.5 MPa for maize (Akmal and Hirasawa, 2004) and
between -0.2 MPa and -0.3 MPa for wheat (Sharp et al., 1988). Furthermore, hysteresis
effects could change the soil water release curve during soil drying which will be definition

change the LLWR.

It should also be noted that there is a certain degree of restriction as to the dimensional extent
of the soil system considered in the LLWR. For example, consideration of the soil system
beyond the top 20 cm and for an agricultural soil the LLWR will be affected by the nature of
the agricultural practises used (Bengough et al., 2006). The LLWR could then be considered
for soil depths beyond the 20 cm limit. In a similar way one may assess LLWR at different
time points as properties such as the soil water release curve will be influenced by soil

structure which will change depending on season, agricultural practises and soil biota,
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In summary, although the LLWR is a computationally feasible model that can be used as an
index of soil quality it is unfortunately an example of a limited trait quantitative, mechanistic
model and it does not help to increase the current knowledge of root trait-soil interactions and
by implication future crop production unlike other mathematical models (Roose and Schnepf,
2008). Although, the task of modelling root architectural traits and their interaction with soil
can be very challenging (Li et al., 2015), the process can be invaluable in determining
beneficial root traits for different plant functions such as root depth for drought resistance
(Dunbabin et al., 2013). Nevertheless, modification of the LLWR limits using knowledge of
plant species differences (Mohammadi et al., 2010) could potentially provide significantly

more accurate predictions and enhance crop productivity.

1.6 Aims of this project

Root micro-traits can have an enormous influence on the ability of plants to survive and grow
when exposed to various soil stressors. Only, by developing methodologies which enable the
accurate quantifications of those traits and evaluate those in the context of precisely defined
soil stressing conditions can we develop accurate process based models that can help increase
understanding of plant soil interactions. The LLWR is an easily understood, computationally
feasible index of soil quality but is currently limited by assuming a singular plant response
across the spectrum of plants. As such, the first aim of this thesis will be the development of a
standard operating procedure (SOP) which will enable for the manipulation of the LLWR
associated stressors while having the ability to quantify a list of root traits of interest. The
second objective will be to assess to what extend the variability in root traits is responsible
for differential root growth rates under various soil conditions. This will provide the data
which can then be used as a basis for future modelling work. Finally, the third aim is the
integration of root traits into the existing LLWR model by using any existing patterns or
relationships among the dataset obtained in the previous step. If successful, the new model
will serve as an indicator of how root traits potentially shift the boundaries of the LLWR

range.

The aims of this thesis may be summarised as:
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. To develop a plant phenotyping system which enables the manipulation of the LLWR
soil stressors while allowing for the imaging of seedling roots.

. To develop methods which enable the quantification of root micro traits, e.g., root tip
geometry.

. To assess if root trait variability is responsible for differential growth rates when
subjected to various soil LLWR associated conditions.

. To modify the LLWR model through the integration of root traits and try to predict
which root traits might be significant.
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2. Rhizotron Development

2.1 Introduction
Modern agriculture is becoming increasingly mechanized with important crop plants such as

soybean and corn being completely dependent upon machinery (Olibone et al., 2010). One of
the side effects of the increasing usage of heavy machinery is an increase in the compaction of
the soil. Routine soil cultivation by ploughing encourages the formation of pan layers in the
horizontal direction and wheel tracks form heterogeneously compacted structures in the
vertical direction (Chamen et al., 2003). Soil compaction has a number of negative
consequences on soil functions such as an increase in its mechanical resistance, reduction in
water infiltration, and increased soil saturation, all of which have negative implications for
crop yield (Keller et al., 2015). As such, it is essential to increase our understanding of how
plant roots interact with the soil physical conditions associated with mechanical stress, water
stress, and oxygen stress, to avoid losses in crop yield (Whitmore and Whalley, 2009).

The least limiting water range (LLWR) is one such concept relating the important soil
stressors of penetrometer resistance (a measure of mechanical impedance), porosity and water
potential to the physiological limits of plant growth (da Silva et al., 1994). The output of the
model is a soil moisture range indicating the limits within which plants will experience
minimum restrictions in growth. The limits are effectively four threshold values indicating the
points at which root growth stops for three soil physical stressors and include penetrometer
resistance (2 MPa), air filled porosity at hypoxic conditions (10%), matric suction at field
capacity (a measure of soil water-holding capacity) (0.01 MPa) and matric suction at the
permanent wilting point (1.5 MPa). Thus, by definition, the LLWR is directly influenced by
two basic components: (i) soil stressors and (ii) the root traits of the plant in question. The
interaction between (i) and (ii) is what determines the limits of the LLWR. The LLWR is
however limited in its scope since it does not consider the complex variability in root traits
that can influence it. For example, root hairs are highly permeable structures which influence
the ability of roots to extract nutrients and water (Segal et al., 2008). However, in the context
of LLWR the limits will be identical when comparing a plant with root hairs and a mutant
variety without root hairs. Many other examples can of course be constructed but the main
message is that the LLWR is determined only by soil physical properties and that the plant
response is only integrated through the limiting values assumptions mentioned above defining

the conditions at which root growth is halted.
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In order to reformulate the LLWR a system was required which enabled the manipulation of
the LLWR soil stressors and at the same time enabled the quantification of root traits. The
requirement to image roots in situ excluded the more traditional approach which involves
destructive field sampling. It also prohibited the use of soil-less systems such as clear gels
(French et al., 2009) or filter papers (Hetz et al., 1996) as the LLWR stressor variables could
not be manipulated in a manner which reflected the physical processes occurring in soil. The
desirability of the system to be high throughput and to grow seedlings at least for three weeks
excluded more recently developed methods such as transparent soils (Downie et al., 2015).
Other powerful methods which enable visualisation of roots in situ such as X-ray CT
(Heeraman et al., 1997) were also rejected due to difficulties in assessing the root micro-traits
of interest. As a trade-off the proposed system that was selected was based on the design of

minirhizotrons.

Rhizotrons are effectively large underground tunnels surrounded by transparent glass and
enable observations of the portion of the root system that is growing against the glass.
Unfortunately, its construction is rather complicated and costly which prohibits their
widespread use (Klepper and Kaspar, 1994). The scaled down version of rhizotrons are
referred to as minirhizotrons. Minirhizotron systems were originally described by Bates in
1937 and are similar in principle to the much larger rhizotron system but are much smaller
and designed to be carried by the user. They consist of a transparent tube which is installed in
the ground with a cylindrical imaging device moving into the tube to collect images.
Although root growth is not identical to field soil, minirhizotron observations of root systems
tend to correlate well with results from soil sampling methods (Upchurch and Ritchie, 1983;
Liao et al., 2010). An alternative to field rhizotron observation tubes are flat rhizotron growth
chambers. These are often custom made and have been proposed by various authors over the
years (Rewald and Ephrath, 2013). They normally consist of a small soil/gravel filled
container made from transparent material and as such, enables the imaging of roots at the
root/rhizotron interface. Minirhizotron system data has being used in the past to develop
mathematical models which aim to predict root growth under different soil conditions (Dupuy

et al., 2010) and as such, they could provide a framework for redefining the LLWR.
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2.2 Design criteria

Minirhizotron systems offer a relatively cheap and potentially highly detailed imaging
platform that can be used to monitor seedling roots. In order to be able to measure the various
root traits that can help redefine the LLWR it was essential to either adopt an existing design
or create one. In order to determine if an existing minirhizotron design could be used, a list of
properties that the minirhizotron system should ideally possess was compiled and then used
to guide the selection process. From here on after, the term “RS” will be used to refer to an

ideal/desirable minirhizotron system. The first two properties are introduced here:

Property 1 (P1): The RS structure and growth substrate must enable the manipulation
of the LLWR soil stressor variables.
Property 2 (P2): The RS structure must have an imaging surface which allows the
imaging and quantification of both coarse features of the roots (root detection) as well
as finer root features (root hairs).
P1 is simply stating that the RS should use a growth substrate with physical structure in it.
This could be soil or sand/gravel mixtures but substrates such as filter paper or agar were to
be excluded. Although valuable, such growth substrates have several drawbacks, such as
absence of microbial interactions, soil structure and in most cases, even absence of
mechanical impedance. This was required to be able to manipulate the LLWR soil stressor

variables in the RS to help redefine the model.

P2 is a requirement for high quality images obtained from the RS. If the LLWR would be
redefined by considering root trait variation, then the ability to measure in situ not just coarse
root traits but finer root traits such as root hairs known to influence root hydraulic properties,

will be necessary.

Based on the above requirements the following systems were considered with the aim to

encompass a range of minirhizotron designs:

Bengough et al., (2004), developed a 2D gel chamber system for the rapid and sequential
measurement of root growth that was used to study cereal seedlings. The chambers were
constructed from two plates (one black polyvinylchloride and one transparent perspex), with
dimensions of 215 x 300 x 3 mm?. The root system was imaged with a flatbed scanner Epson
Expression 1600XL-PRO (300 dpi/82 pm — 1500 dpi/15 um) and then manually traced to
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obtain coarse root features such as root length. Sample images suggest that root hairs were

visible, but they were not reported to have being measured.

Gioia et al., (2017), developed a system referred to as “GrowScreen-PaGe” which consists of
two-dimensional polymethyl methacrylate plates (350 x 250 mm?) covered on both sides with
wetted germination paper providing water and nutrients for the developing root system. A
custom-made mobile imaging box (outer dimensions: 140 x 140 x 46 cm®) was then used to
image the root system at a resolution of 74 mm per pixel. Coarse root traits were measured

but root hairs were not reported to have being measured.

Le Marie et al., (2016), introduced a “rhizoslides” system which consists of two PVC bars
(600 x 60 x 10 mm?®) and a plexiglass sheet (650 x 530 x 4 mm?) fixed with two screws
between the bars. A custom-made mobile imaging station (~ 168 x 164 x 110 cm®) was then
used to image both the root and the shoot system after the rhizoslides were manually placed
onto the imaging mount. The images themselves were taken with a 22.3 megapixel full-frame
digital single-lens reflex camera (EOS 5D Mark Il11, Canon, Tokyo, Japan) equipped with a
50 mm lens (compact macro 50 mm /2.5, Canon, Tokyo, Japan) giving an image resolution
of ~ 0.13 mm pixel™. Coarse root features were then traced by using the software SmartRoot

but root hairs were not quantified although sample images indicate that they were visible.

Jeudy et al., (2016), introduced an automated conveyor system referred to as “RhizotTubes”
which are cylindrical minirhizotrons 18 cm in diameter and 50 cm high. Root growth
between an inner permeable membrane (mesh size of 18 um) and the external outer
transparent polymethylmethacrylate tube, which separates the plant root from the soil. The
membrane is permeable to nutrients and water but it does not allow roots to pass through
which makes it a pseudo-3D system. The roots are photographed with the “Rhizocab”
(automated conveyor) camera through the outer transparent tube. The final definition of the
RGB image is 12,000 x 12,000 pixels with a file size of 411 MB. All root traits were
manually measured from the images although it was stated that an automated image
processing method was in development. These authors did not mention root hairs so it is not
clear whether they might be visible for this system.

Courtois et al., (2013), developed a hybrid minirhizotron design based on hydroponics
referred to as “rhizoboxes”. Roots are held together by a sandwich of two transparent
plexiglas plates (50 cm x 20 cm x 2 cm®) and an installed nail board that provides a degree of

mechanical resistance and maintain the spatial distribution of roots during substrate removal.
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The rhizoboxes are filled with glass beads of 1.5 mm diameter to provide some degree of
mechanical resistance for roots compared to normal hydroponics. At the end of the
experiment the rhizoboxes are removed from the hydroponics and the glass beads are
removed to enable simple camera imaging of the root system that is held together by the grid
of nails. Fine root traits such as root hairs were not reported to have been measured although

the submerged nature of the system will almost certainly destroy fine root traits.

Nagel et al., (2012), developed an automated minirhizotron system known as
“GROWSCREENRhizo” which is capable of automatically imaging roots and shoots of
plants grown in soil-filled rhizotrons (up to a volume of ~18 L) with an impressive
throughput of 60 rhizotrons per hour. The image processing is reported to be semi-automatic
with manual tracing of the portion of the root system not captured by the algorithm although
no estimate of the accuracy of the algorithm was reported. There was also no mention of any
root hair associated measurement, so it is not clear if they are visible or not in the images.
Unfortunately, the development of this high-throughput phenotyping platform will require

significant investments to develop and as such, was excluded from further consideration.

Rellan et al., (2015), designed a complex minirhizotron system known as GLO-Root for
Arabidopsis which uses luminescence-based reporters to image transgenic roots in time lapse
studies. The rhizotrons are imaged on both sides and the images are merged to obtain the
final image of the root system. Use of such systems however will require the genetic
modification of species and specific imaging setups to detect the required wavelength of the
expressed fluorescent protein. Furthermore, as was pointed out by Faget et al., (2013), in
many countries it is forbidden to use transformed plants in the field which will prohibit field-
based validation.

In general, all the above systems were in violation of Pl or P2 or were not feasible to use in
this study due to costs. This led to the decision of developing an RS prototype that satisfy the
criteria. Since, root hair measurement appeared to be difficult to observe or measure in the
existing systems it was decided to reject the use of soil for this system as soil is a highly
variable material and not of consistent quality to achieve the required image quality. This
decision was also supported by the consideration that in order to test future LLWR
hypotheses constant material properties for the growth substrate will be needed to remove the
intrinsic variability component of soil. As a result, the following two properties were added to
the list of properties:
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Property 3 (P3): The RS substrate must have consistent physical properties in order to
reduce the variability of results that are inherent from the variance in soil properties.
Property 4 (P4): The RS substrate must produce root growth rates that are similar to

soil throughout the duration of the experiments.

P3 is simple restating the constant material properties requirement mentioned above.

P4 is an additionally requirement that was added to ensure that the RS growth substrate to be

used had to be a good proxy to soil determined by similar root growth rates.

2.3 Aims

Based on the discussion of the previous section a list of desirable properties for the RS was
established:

Property 1 (P1): The RS structure and growth substrate must enable the manipulation
of the LLWR soil stressor variables.
Property 2 (P2): The RS structure must have an imaging surface which allows the
imaging and quantification of both coarse features of the roots (root detection) as well
as finer root features (root hairs).
Property 3 (P3): The RS substrate must have consistent physical properties in order to
reduce the variability of results that are inherent from the variance in soil properties.
Property 4 (P4): The RS substrate must produce root growth rates that are similar to
soil throughout the duration of the experiments.
This chapter focuses on four key experiments which were designed to develop the RS within
the context of the above defined properties. The experiments described were designed to
address those properties with a basic description being provided by Table 2.1. To convert
those properties into testable experimental hypothesis the following two terms are introduced

here with the understanding that their precise definitions will be provided in later sections:
ARGR: Average Root Growth Rate — a measure of root growth rate (Section 2.4.8).

ISI: Image Sharpness Index — a measure of image sharpness (Section 2.4.10).
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Table 2.1: Basic description of the experiments described in Chapter 2.

Experiment - Property Description

Section

1-251 P1,P3and P4 Comparison of ARGR for four different RS
substrates.

2-25.2 P3 and P4 Comparison of ARGR in RS substrate sieved to four
different particle size ranges.

3-253 P2 Comparison of ISI for three different rhizotron
scanning surfaces.

4-254 P2 and P4 Comparison of ISI and ARGR for four different RS
substrates.

2.4 Methods

2.4.1 Assessment of initial RS criteria

In order to achieve the properties described above, it was necessary to first develop and test
an RS design and to determine a growth substrate which will be used in future experiments.
In order to satisfy P1, P3 and P4, the RS must use a substrate with a physical structure that
included particles, air and water, to ensure that the basic physical mechanics of root growth in
soil are mimicked to a reasonable extent. The requirement of constant physical properties
(P3) would imply a material of artificial origin since naturally occurring soil can have
extremely variable properties. The above conclusion was also reinforced by the requirement
for high image quality (P2). As such, it was decided that artificially coloured sands would be
compared with soil as they could potentially satisfy P1, P2, P3 and P4 and because
horticulture sand is often used in studies as a proxy to soil (Materechera et al., 1991,
Bengough et al., 2011).

In a similar manner, P2 will also impose certain restrictions in the design of the RS to be able
to image both coarse (roots) and fine (root hairs) root traits. Conventional image sensors used
in minirhizotron images have a grid size of 640 x 480 pixels and a resolution of about 60 pum
(Faget et al., 2010) which eliminated most options. On the other hand, excellent image
quality can be achieved with certain systems such as the one developed by Lu et al., (2019),

but were not appropriate here as it was reported to be as small as 1.1 x 1.1 x 1.2 cm?®. Instead,
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the dimensions were restricted to A3 paper size (420 x 297 mm?) because this is the largest
dimension for which commercially available flatbed scanners can be obtained with high
optical resolution (up to 2,400 dpi) for minirhizotron scanning. The RS was built out of
acrylic plastic as opposed to glass because of its higher hardness, transparency and reduced
effects on root growth (Cai, 2006), is commercially available and of low cost (£10 per unit).
Reduced costs can be very important for building a high-throughput system, which is a
requirement for plant root phenotyping platforms linking genotype to phenotype (Walker,
2009). In fact, classical mapping of quantitative trait loci or association mapping studies
require a minimum of 100-500 individuals (Rafalski, 2010).

It should also be noted that because the RS is restricted to A3 sized dimensions root growth
will be restricted to a mature seedling stage depending on the species and treatment. Seedling
root phenotype can sometimes be a good predictor of later root morphology such as maize
grown in hydroponics (Tuberosa et al., 2002) but that is not always the case (McPhee et al.,
2005). However, in general, most techniques developed for high-throughput root phenotyping
are restricted to young seedlings (Jeudy et al., 2016). Furthermore, the imaging setups used in
high-throughput systems are normally restricted to scanners or cameras which have fast
image acquisition speeds and enable hundreds of plants to be phenotyped daily (Downie et
al., 2015). The proposed RS does seem to have potential as a high-throughput plant
phenotyping platform.

2.4.2 Minirhizotron Construction
2.4.2.1 Minirhizotron design A

The minirhizotrons were developed in two stages. Initially they were composed of two pieces
of rectangular (420 x 297 mm) acrylic (PlasticSheets.com) with smaller spacers being placed
at the edges of them to seal them and to allow a 5 mm gap between the acrylic surfaces
(Figure 2.1).

56



A 5 mm acrylic

5mm ¢ 5mm
plastic —p> <— plastic
spacer A spacer
|
5 mm acrylic
B A
420 mm
v
297 mm

Figure 2.1: Schematic diagram of the starting minirhizotron design A) Top view and B)

Front view.

Each minirhizotron was filled with growth substrate (Section 2.4.3) at an approximate dry
bulk density (DBD) of 1.5 g cm™ and subsequently watered. This relatively high density was
the minimum DBD at which all substrates could be packed inside the minirhizotrons without
slumping however, it is not unusual to observe it in agricultural fields where the use of heavy
machinery can easily increase the surface soil density (Keller et al., 2015). The apparatus was
then placed at a 30° angle from the vertical to achieve root growth against the imaging
surface and subsequent good quality images from scanning. All minirhizotrons were covered
with a light, waterproof, black fabric (Do4U), so exclude light from the root growth surface.
After field capacity was reached 2 pre-germinated spring barley (var. Optic) seedlings

(Section 2.3.5) with a root length between 1-2 cm were randomly chosen and subsequently
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sown at the top of minirhizotrons. The second barley seedling was removed after 48 hours so

that only one actively growing seedling remained after the initial establishment phase.
2.4.2.2 Minirhizotron design B

Minirhizotron design B included a 2 mm acrylic imaging surface to allow high imaging
quality. This required drilling and adding screws to maintain rhizotron integriy due the the
weight of the filling substrate. An irrigation system was also added to allow consistency of
irrigation over the entire experimental period, and across replicates. The internal
compartment of the RS was enlarged to fit the irrigation pipes and the surplus volume was
filled with a 4 mm thick acrylic. Figure 2.2, is a schematic diagram that demonstrates the
minirhizotron design B that allowed automated irrigation while controlling the minirhizotron
volume. Irrigation cables were fitted to the minirhizotron leaky pipes to slowly saturate the
minirhizotron over a series of irrigation events rather than forcing a large amount of water in
turn connected to an irrigation pump (Boyu FP-1500 Adjustable Pump) in a black light-
absorbing water container. The irrigation pump could then be controlled through a custom-
made fitted timer to operate when required. This makes the system more automated and
eliminates the need for manual watering. After filling with dry growth matrix these
minirhizotrons were watered for 2 days, 3 times a day each for 3 minutes at slow pressure
through the leaky pipes allowing the water to equilibrate throughout the substrate. Seedlings
were sown after this period as described for the minirhizotron design B above.
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Figure 2.2: Schematic diagram of new minirhizotron design B A) Top view and B) Front

view (circles indicate screws).

2.4.3 Growth Substrate — sample preparation

Five different substrates were tested as potential growth substrate materials for the rhizotrons.
Two soils were collected from two fields “Mid Pilmore” (sandy texture) and “Bullion” (clay
texture) at the James Hutton Institute, Invergowrie, Dundee DD2 5DA. The soil was oven
dried at 105°C for 48 hours and then sieved to a range of aggregate sizes (8, 4 and 2 mm)
mm. The “Blue Sand” (Stoney River) was gently washed with potassium chloride to make it
more hydrophilic. Afterwards, it was washed again thoroughly with tap water to remove the
residue acids and finally oven dried at 105°C for 24 hours. The “Black Sand” (Natural Color)
came in two different size fractions both gravel (8 - 2 mm) and sand (2 - 0 mm). The gravel
was first sieved to 4 mm and then mixed 50/50 % (gravimetric) with the sand. Afterwards,

the sand was washed as recommended by the manufacturer and subsequently oven dried at
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105 °C. The “Flourite Black Sand” came in two different size fractions both gravel (8 — 4
mm) and sand (4 — 0 mm). The gravel and the sand were first mixed together 50/50 %
(gravimetric) and the entire mixture was subsequently sieved at 4.0, 2.8, 2.0 and 1.4 mm to
create mixtures of 4.0 - 2.8, 2.8 - 2,0, 2.0 - 1.4 and 1.4 - 0 mm respectively. Each mixture was
then washed with tap water for three times and subsequently oven dried at 105 °C. Oven
dried materials were always used as they are not cohesive and thus, much easier to pour
inside the rhizotrons. This also provided a more accurate estimate of rhizotron dry bulk
density.

2.4.4 Growth Substrate — physical property analysis

Pilmore and Bullion soils were first collected, air dried for a period of 5 days, and then
subsequently sieved at 8, 4 and 2 mm to create the particle ranges of 8-0, 4-0 and 2-0 mm
respectively. The 2 soil types x 3 aggregate size treatments were then used to create a series
of cylindrically shaped (4.5 mm diameter x 5.0 mm height) repacked soil cores of different
aggregate sizes at different dry bulk densities (0.9, 1.0, 1.1, 1.25, 1.3, 1.45 and 1.6 g cm~) in
a 2 by 3 by 7 factorial design (n = 4). The gravimetric moisture content of each soil core was
first adjusted to 20 % to give it consistency. Cores were saturated with degassed water, then
subjected to a sequence of different matric suctions (5, 10, 20 and 50 kPa) via the use of sand
and tension tables. A needle penetrometer (1 mm diameter, 30 8 cone angle, 4 mm min™
penetration rate, readings; averaged at 1-mm intervals from 5-15 mm depth range) fitted to a
mechanical test frame (Instron model 5544; Instron, MA, USA), with a 50-N load cell
accurate to 2 mN at maximum load, was used to measure penetration force at each matric
suction and calculate penetrometer resistance (force divided by cone cross-sectional area)
(Bengough and Mullins, 1990; Valentine et al., 2012). The measurements of mass and
penetrometer resistance enabled the estimation of the soil water release and strength curves
respectively. This enabled an assessment of the differences between samples with contrasting

physical properties and how that may affect their strength and water holding capacity.

The exact procedure was also used for the Flourite sand treatments used in this experiment
but only for a dry bulk density of 1.6 g cm™ in a 2 by 3 by 1 factorial design due to time
limitations. The soil strength curve was obtained with loess regression by using the
“geom_smooth” function from the “ggplot2” package in R. The water release curve was
obtained by fitting a Van Genuchten model (Van Genuchten, 1980) by using the
“fitsoilwater” function from the “soilphysics” package in R. The obtained Van Genuchten
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model was then used to estimate the effective pore diameter for each substrate by using the
relation: d = (300/v), where v is the matric potential (Marshall and Holmes, 1988).

In addition to the above, laser diffraction (Mastersizer 2000 - Malvern Instruments) was used
to determine the particle size distribution of the Pilmore and Bullion soils (Table 2.2)
analysed at the James Hutton institute located in Craigiebuckler, Aberdeen AB15 8QH,
Scotland.

Table 2.2: Physical properties of the two soils used in the experiments.

Pilmore Soil Bullion Soil

200-20 pm 64.05 55.86
Percentage between (%) 20-2 pum 28.49 37.34

2-0.02 um 7.46 6.80
Specific Surface Area (m? g?) 0.84 0.856
Uniformity (n/a) 2.09 3.64
Particle density (g cm™) 2.53 2.54
Texture Sandy Clay

2.4.5 Seed germination

All the seeds used in the experiments described in this chapter were spring barley (Hordeum

vulgare var. Optic).
The steps involved in the process of seed germination used in all experiments are as follows:

1. Seeds were placed in a beaker containing deionized water and mixed slightly to
disperse air.

2. The seeds were left in the beaker overnight.

3. The seeds were sterilized by immersing them in a solution of 2% Sodium
Hypochlorite for about 15 minutes.

4. The seeds were rinsed three times with sterile distilled water to remove the Sodium
Hypochlorite.

5. Two layers of filter paper were placed in a Petri-dish and subsequently moistened

with sterile distilled water.
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6. The seeds were placed on top of the wet filter papers with the embryos facing
downwards.

7. Filter paper was placed on top of seeds and moistened with sterile distilled water.

8. The plates were covered with aluminium foil and incubated at 15°C for a period of 2-
3 days.

2.4.6 Glasshouse growth conditions

All the experiments described below took place in a temperature-controlled glasshouse
located at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland. The
temperature was set to 18°C during the day and 14°C during the night. The threshold value at
which the artificial lighting was activated was 150 W m. The lamp fittings installed were
GAVITA GAN 400AL Ecomax fitted with 400W SON-T sodium bulbs.

2.4.7 Minirhizotron imaging

At intervals of 7 days the minirhizotrons were removed from the black coverings and
scanned. Minirhizotrons were scanned with a flatbed scanner (EPSON Expression 10000XL)
at 1,200-1,600 dpi, with images saved as (uncompressed) TIFF files to assess the relative
growth of the seedlings. The experiments described in this chapter had a randomized

(blocked) one-way ANOVA design arranged on two parallel linear rows.

2.4.8 Root growth parameters

Root growth parameters were measured by using the rhizotron images obtained at 7, 14 and
21 days. The visible root system was traced manually using the “Segmented Line” tool of
Fiji. The following definitions are used for the variables used to characterise root growth in
images of the RS:

e Vertical Root Length (VRL): The Euclidean distance between the minimum and
maximum vertical coordinates of the visible root system grown in the RS. The
measured value is expressed in units of mm.

e Horizontal Root Length (HRL): The Euclidean distance between the minimum and
maximum horizontal coordinates of the visible root system grown in the RS. The
measured value is expressed in units of mm.

e Vertical Growth Rate (VGR): The difference between the VRL values at 2 different
time points (t) divided by the time interval (8t), i.e., VGRy = [(VRLy —

VRL.;—1)) / 8t]. The calculated value is expressed in units of mm day™.
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e Horizontal Growth Rate (HGR): The difference between the HRL values at 2
different time points (t) divided by the time interval (6t), i.e., HGR;; = [(HRLy —
HRL;_1y) / 8t]. The calculated value is expressed in units of mm day™.

e Root Growth Rate (RGR): The weighted sum of the VGR and HGR values. The
weights are defined by the corresponding RS dimensions of height (400 mm) and
length (261 mm), i.e., RGR;; = (VGR;; * 0.605144) + (HGRy; * 0.394856). The
calculated value is expressed in units of mm day™.

e Average Root Growth Rate (ARGR): The average value of the RGR values from
each time point (t), i.e., ARGR = (XUZRGR,)/n. The calculated value is
expressed in units of mm day™.

e Average Vertical Growth Rate (AVGR): The average value of the VGR values from
each time point (t), i.e., AVGR = (ZY=1VGR,)/n. The calculated value is
expressed in units of mm day™.

e Average Horizontal Growth Rate (AHGR): The average value of the HGR values
from each time point (t), i.e., AHGR = (ZYZ"HGR,;)/n. The calculated value is

expressed in units of mm day™.
2.4.9 Substrate image RGB spectra

To assess the optical characteristics of each substrate, an RGB profile was obtained by
scanning each the minirhizotrons (n = 4) filled with the candidate RS substrates from
experiment 1 (Section 2.5.1) at 1,600 dpi after reaching field capacity and prior to the
seedlings being sown into them. The samples used in that experiment were of minirhizotron
design A which had a 5 mm thick acrylic as the scanning surface. The average value of the
percentage RGB histogram distributions was then computed by using the “Analyse/Color
Histogram” command of Fiji (http://www.fiji.sc) after manually cropping the images to the

rectangular section that included only the RS substrate. An additional black coloured sand
(Flourite Black) was also tested later (experiment 2 - Section 2.5.2) for its optical properties
by using the same method. This sand was chosen because it was clay-based and thus,

hypothesized to give a more favourable root growth than the substrates already tested.

Finally, in order to extract the root foreground optical properties from the image and
subsequently obtain their RGB profile for comparison with the rhizotron substrates, seedlings
were grown for 2 weeks in the RS (n = 4) and then subsequently scanned at 1,600 dpi prior to

terminating the experiment. The visible root boundaries were then manually traced by using
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the “Polygon selections” tool of Fiji to extract the root foreground from the image and

subsequently obtain their RGB profile for comparison with the candidate RS substrates.

2.4.10 Image quality - Image Sharpness Index

To assess the quality of the images obtained through different imaging surfaces an image
sharpness index was used. The Image Sharpness Index (ISI) is a dimensionless measure of
image sharpness which is computed by estimating the average value of the local greyscale
variance at the scale of interest (Erasmus and Smith, 1982). The scale chosen here is a block
radius of 1 pixel because root hairs are only 1 or 2 pixels thick at the image scale. Despite its
simplicity, the method tends to be more robust to noise relative to most other candidates
(Moreno and Calderero, 2013). A higher index value indicates a sharper image as the image

intensity variation tends to be smaller when blurriness is stronger (Batten, 2000).
Image processing involved the following steps (Microsoft Visual C++ implementation):

1) The skeleton of the visible root system (centre line) was traced manually by using the
“Segmented Line” tool of Fiji (http://www.fiji.sc).

2) Each of the (n) identified skeleton pixels were assigned a uniform probability (1 / n)
and then 4 pixels were randomly selected for each image to obtain unbiased estimates.

3) A rectangular section of 640 x 640 pixels was formed around each of the 4 randomly
selected pixels. The size of this area was empirically determined to sufficiently cover
the root hair zone adjacent to the root. If any of the 4 image regions overlapped, then
the process was repeated until there was no region overlap.

4) The ISI measure described above was then computed for each of the 4 image
sections.

5) Finally, the (4 x 3) values associated with each treatment were pooled together and
analysed with Dunnett's T3 test for comparison of their mean values. This step was
performed by using the R script provided by Wilcox, R. (2017), available for

download at the url: https://dornsifelive.usc.edu/labs/rwilcox/software/.
2.4.11 Statistical Analysis

The statistical analysis of the data was performed using the software R (version 3.5.0). The
statistical significance test used for comparing the arithmetic averages of the experimental
treatments was Dunnett’s T3 test and was implemented with the “lincon” function of the

freely available R script provided by Wilcox, (2017), which can be downloaded from the
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following url: https://dornsifelive.usc.edu/labs/rwilcox/software/. The degree of statistical

significance is represented by *, ** and *** corresponding to a p value in the interval of
(0.05, 0.01], (0.01, 0.001] and (0.001, O] respectively. The 95% confidence interval of the
difference between 2 treatments is represented by “95% CI”. The graphical outputs were also
produced in R with the “ggplot2” and the “grid” packages. The convention adopted here is to
annotate a graph only if a statistically significant difference was detected.

2.4.12 Rhizotron Substrate Selection

To identify an RS substrate which could be used in future experiments, an assessment of root

growth for each candidate substrate was required. The main aims could be summarised as:

e Aim 1: Test the construction of minirhizotron design A.

e Aim 2: Identification of an artificial sand which could be used in future experiments.

e Aim 3: Assess whether artificial substrate could produce similar root growth rates to

soil.

e Aim 4: Identify potential minirhizotron improvements.
To test the initial minirhizotron design A, the minirhizotrons were filled with four growth
substrates: “Bullion Soil”, “Pilmore Soil”, “Black Sand” and “Blue Sand” with four
minirhizotrons per treatment. The physical properties of the soils used are described in
Section 2.4.4 and all treatments were first sieved to 2 mm. The minirhizotrons were packed at
a DBD of 1.5 g cm™, adjusted and kept at 15% gravimetric moisture content by weighting
each of them every 2-3 days and adding the required amount of tap water to return them to
15%. 5 ml of the standard Hoagland's solution for nutrients were added every 3 days to all the

samples. The experiment itself started in mid-May of 2017 and had a duration of 3 weeks.

2.4.13 Rhizotron Substrate Particle Size Distribution Comparison

The initial assessment of potential growth substrate materials (Section 2.4.12) provided
evidence that root growth in RS using the sand substrates tested was statistically significantly
less than the soil treatments used, which was in violation of P1. A potential method to remedy
this issue was to manipulate the Particle Size Range (PSR) of the substrate in order to change
the distribution of pores in the RS to one that was more favourable for root growth. This was
hypothesized because of the great importance that the pore network has in influencing the
functions of the substrate (Pagliai and Vignozzi, 2002; Anderson and Croft, 2009) and how

manipulating that volume can have an impact in root growth (Lipiec et al., 2016; Poorter et
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al., 2012; Valentine et al., 2012). By identifying a substrate which had a higher degree of
similarity with the physical properties of the soil types tested in Experiment 1, it was
hypothesized that this will translate to potential improvements in root growth which will in
turn help the RS achieve P1.

In consideration of the results of the previous experiment a newly obtained aquarium sand
was used to test the above-mentioned hypothesis. This substrate, i.e., “Flourite Black Sand”
(Seachem), was reported to be clay-based and as such, it was thought that it might provide a

better rooting environment for plants within the RS.
The experimental aims for this experiment are as follows:

e Aim 1: To determine if manipulation of the sand PSR could induce an improvement
on root growth rates.
e Aim 2: To identify the PSR with the highest ARGR value.
e Aim 3: To characterise the physical properties of the sand in relation to the soil
properties.
Minirhizotron design A was used to compare the ARGR of barley in different particle size
distributions of “Flourite Black Sand” growth material. Table 2.3 lists the distribution mixes
of the 4 treatments used in this experiment expressed as a percentage of the total mass. The
mixtures were created by combining the sieved fractions of two different sized versions of the

same material: “Flourite Black” (4-2 mm) and “Flourite Black Sand” (2-0 mm).

Table 2.3: Particle size distribution treatments definition table (% of total mass).

Treatment 4 — 28 28 - 2 20-14 14 -1 1 - 05 05 -0

mm mm mm mm mm mm
(Gravel)  (Gravel) (Sand) (Sand) (Sand) (Sand)
4-0 16.67 16.67 16.67 16.67 16.67 16.67
Fraction 2.8-0 20.0 20.0 20.0 20.0 20.0
(mm)  2.0-0 25.0 25.0 25.0 25.0
1.4-0 33.33 33.33 33.33

The minirhizotrons were packed at a DBD of 1.5 g cm?, adjusted and kept at 15%
gravimetric moisture content by weighting each of them every 2-3 days and adding the

required amount of tap water to return them to 15%. 5 ml of the standard Hoagland's solution
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for nutrients were added every 3 days to all the samples. The experiment itself took place on

early November of 2017 and had a duration of 3 weeks.

2.4.14 Rhizotron Scanning Surface Selection

To redefine the LLWR in terms of root traits it is essential to be able to measure those traits
as accurately as possible. This includes both coarse features (roots) and features of finer
scale, e.g., root hairs. Thus, it was critical to increase the quality of the images obtained in RS
to increase the detection probability of the root system features. This experiment was
designed to investigate the effect that different scanning surfaces have on image quality, more
specifically the degree of image sharpness (IS1). The scanning surface with the highest ISI
values could then be integrated in the existing RS design.

The experimental aims of this experiment could be summarised as:

e Aim 1: ISl assessment for different rhizotron scanning surfaces.

e Aim 2: Identification of the rhizotron scanning surface with the highest ISI value.
Three different scanning image surfaces were assessed for their I1SI values. These were 4 mm
thick low iron glass (Jaytec Glass Limited), 5 mm thick acrylic (PlasticSheets.com) and 2 mm
thick acrylic (PlasticSheets.com). The minirhizotron design A was used with the test growth
medium, “Flourite Black Sand”. This time lapse study took place in early February of 2018
and lasted for a period of 2 weeks with scanning taking place once a week. The entire
rhizotron area was scanned at 1,600 dpi with a flatbed scanner (EPSON Expression
10000XL) and saved as a TIFF file. Three minirhizotron replicates were allocated per

treatment.

2.4.15 Assessment of plant responses to alternative growth
substrate (“Flourite Black Sand”)

The initial assessment of growth substrate in the minirhizotron design A, provided evidence
that the initial selections of sands produced much reduced root growth rates compared with
the two soil treatments (Section 2.4.12). To remedy that issue an alternative sand (Flourite
Black) was introduced and its particle size distribution was modified to make its properties
more comparable to soil (Section 2.4.13) but this required validation through comparison
with soil. In addition, changing the scanning surface to improve image sharpness (Section
2.4.14) required modifications to the minirhizotron design A to be able to support the much

thinner scanning surface. A further design change was added in the form of leaky pipes to
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improve the control and allow automation of watering. In order to validate the final RS
design the new system containing “Black Fluorite” growth substrate will have to be

compared with the same design containing soil as the growth substrate.
The main aims may be summarised as follows:

e Aim 1: Test the new minirhizotron design B.

e Aim 2: Compare ISI values of the RS substrate to soil substrates.

e Aim 3: Compare root growth of RS substrate to soil substrates.
Minirhizotron design B was used to compare the I1SI and ARGR values of four different RS
substrates. The treatments compared were “Flourite Black”, “Pilmore Soil”, “Bullion Soil”,
and “Flourite Black & Soil”. The “Flourite Black™ substrate was the 4-0 mm treatment
identified in the particle size distribution experiment (Section 2.4.13). The soil used in
“Pilmore Soil” and the “Bullion Soil” was once again collected from their respective fields
and sieved to 4 mm. An additional substrate “Flourite Black & Soil” was created by mixing
the Flourite Black, Pilmore Soil and Bullion Soil on a mass basis of 50, 25 and 25 %
respectively. This was done to assess if the soil component could increase root growth rates
to be more similar to those of the pure soil treatment and to assess if soil addition leads to
inferior imaging quality. The minirhizotron area section which contained visible root
segments was manually selected, scanned at 1,600 dpi with a flatbed scanner (EPSON
Expression 10000XL), and saved as a TIFF file. The experiment took place in mid-May of
2018 with scanning being performed on the 7, 14™ and 21% day of the experiment. Four

minirhizotron replicates were allocated per treatment.

2.5 Results

Figure 2.3 shows example representative images of each treatment used in the experiment

designed for selecting a minirhizotron-based substrate described in Section 2.4.12.
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Figure 2.3: Spring barley root systems, growing in the four different substrates A) Bullion
soil, B) Pilmore Soil, C) Black sand and D) Blue sand in minirhizotron design A. Images
obtained using Epson scanner at 1600 dpi, on day 14 since transfer of seedling rhizotron.

Figure 2.4 (A), is a summary graph for the ARGR of each substrate and it demonstrates that
the ARGR within the “Black Sand” treatment was statistically significantly less at 6.424 *
1.433 mm day?, than both the “Bullion Soil” at 15.544 + 0.298 mm day* and the “Pilmore
Soil” treatment at 15.428 + 1.311 mm day* with a 95% CI of (-12.427, -5.812) and (-12.304,
-5.704) respectively. Likewise, the “Blue Sand” treatment at 3.007 + 2.929 mm day* was
statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments
with a 95% CI of (-19.454, -5.619) and (-18.738, -6.104) respectively. Therefore, both sand

treatments significantly inhibited ARGR in comparison with the soil treatments.

Figure 2.4 (B), is a summary graph for the AVGR of each substrate and it demonstrates that
the AVGR within the “Black Sand” treatment was statistically significantly less at 6.737 %
1.901 mm day* than both the “Bullion Soil” at 18.432 + 0.499 mm day and the “Pilmore
Soil” treatment at 17.68 + 1.991 mm day* with a 95% CI of (-16.016, -7.373) and (-15.612, -
6.274) respectively. Likewise, the “Blue Sand” treatment at 3.086 + 3.581 mm day’ was
statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments
with a 95% CI of (-23.749, -6.943) and (-22.219, -6.969) respectively. Therefore, both sand

treatments significantly inhibited AVGR in comparison with the soil treatments.

Figure 2.4 (C), is a summary graph for the AHGR of each substrate and it demonstrates that
the AHGR within the “Black Sand” treatment was statistically significantly less at 5.945 *
1.641 mm day than both the “Bullion Soil” at 11.118 *+ 1.464 mm day and the “Pilmore
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Soil” treatment at 11.977 + 0.504 mm day* with a 95% CI of (-8.918, -1.428) and (-9.714, -
2.351) respectively. Likewise, the “Blue Sand” treatment at 2.886 + 1.935 mm day* was
statistically significantly less than both the “Pilmore Soil” and the “Bullion Soil” treatments
with a 95% CI of (-12.447, -4.016) and (-13.492, -4.69) respectively. Therefore, both sand

treatments significantly inhibited AHGR in comparison with the soil treatments.

Figure 2.4 (D), is a summary graph for the VRL of each substrate and it clearly demonstrates
that the vertical root length was less for both sands when compared to the soils. It also
demonstrates that most samples for the soil treatments had almost reached the 400 mm limit
of the RS by the end of week 2. This will imply that the difference in AVGR between the soil
and the sand treatments will be even higher if they were not restricted by the size of the RS. It
can also be observed, that the VRL of the “Black Sand” was higher in comparison to the
“Blue Sand”.

Figure 2.4 (E), is a summary graph for the HRL of each substrate and it clearly demonstrates
that the horizontal root length was less for both sands when compared to the soils. It also
demonstrates that most samples for the soil treatments had almost reached the 261 mm limit
of the RS by the end of week 3. The figure also suggests that the HRL of the “Black Sand”

was higher in comparison to the “Blue Sand”.

70



401 4001
30 1
*%k%k
° ; e : d 300 4
S 201 —
101 S
=‘= ° £ 200 °
(0]
0l — 2 °
‘:\ T T T T ?
|
> B 100+ Ei]
© °
401
E —_ é ° D
é 30 1 *kk E 01 W m
‘9 _ r LE3 —
T 8 2 £
[&] -+—
X 52 — o E
c o <
s 9 O
2 - 261
o 10 ° ° 5
(O) —— o
4 225 4
0 0 e
m T
o)
> C —
<C ©
40 c 1501
2 ¥
N °
— - (o]
5 30 i .
C
Q 20+ : e \ 754 ? °
g r s o] m
T 104
e Py
01 ° ¢ 0
Black Blue  Bullion  Pilmore 7 14 21
RS Substrate Day

Figure 2.4: Summary graphs of spring barley root growth in growth substrates (Black sand,
Blue sand, Bullion soil and Pilmore Soil) in rhizotrons for a period of 21 days, A) ARGR vs.
substrate, B) AVGR vs. substrate, C) AHGR vs. substrate, D) VRL vs. time and E) HRL vs.
time.

Both coloured sands tested had a statistically significantly lower ARGR, AVGR and AHGR
when compared to the soil treatments which implied that the sands were unsuitable for future
experiments. Comparisons of root lengths in both the vertical and the horizontal directions
also supported this conclusion. This was a clear indication that the sands tested had properties
which differed from soil. However, this could potentially be explained, at least partially, by
the observation that a noticeable amount of substrate slumping occurred across the samples as
the scanning surface was not robust enough to support the weight of the growth matrix across

the entire RS surface. The reduction in substrate occupied volume led to changes in the dry
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bulk density which depends on volume. This added an additional uncertainty component as to
whether the differences in root growth were the result of differences in substrate properties or
compaction caused by slumping. Ultimately, this error was affecting all of the samples which
made it a random error, and in consideration of the rather strong root growth differences
between both soil treatments to the sand treatments, it was decided that future experiments

would explore the use of alternative natural sands to ensure P4 was satisfied.

In addition, this experiment revealed a number of issues with minirhizotron design A that

could be potentially improved in future work:

1) The packing of the rhizotrons clearly demonstrated the issue of estimating the
rhizotron volume accurately as the scanning surface was not thick enough to support
the weight of the growth matrix across the A3 size, which allowed bowing and
slumping of the substrates giving misleading volume estimates and imprecise
calculated dry bulk densities.

2) The addition of nutrient solution was a laborious/time consuming task because it
required making large volumes of Hoagland's solution prior to the experiment in
addition to weighting and manually adding the appropriate amount for each rhizotron
every time.

Figure 2.5 shows summary root growth graphs of each treatment used in the experiment
designed for selecting an optimum particle size range for the “Flourite Black” substrate
described in Section 2.4.13.

Figure 2.5 (A), is a summary graph for the ARGR of each PSR and it demonstrates that the
ARGR within the “4-0” treatment was statistically significantly higher than the “1.4-0”, “2-
0” and the “2.8-0 treatments with a 95% CI of (-0.067, 5.513), (0.031, 5.636) and (-0.099,
6.993) respectively. The mean values of the treatments were 10.9 + 1.199, 8.177 + 0.607,
8.066 + 0.857 and 7.452 + 1.483 mm day respectively.

Figure 2.5 (B), is a summary graph for the AVGR of each PSR and it demonstrates that the
ARGR within the “4-0 mm” treatment was statistically significantly higher than the “1.4-0”,
“2-0” and the “2.8-0” treatments with a 95% CI of (0.133, 6.514), (1.047, 7.567) and (2.384,
8.732) respectively. A statistically significant difference was also observed for the
comparison of “2.8-0” and “1.4-0” with a 95% CI of (-4.718, 0.249). The mean values of the
treatments were 12.815 + 1.365, 9.491 + 0.979, 8.508 + 1.098 and 7.257 + 0.938 mm day!

respectively.
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Figure 2.5 (C), is a summary graph for the AHGR of each PSR and it demonstrates that the
AHGR within the “4-0” treatment was statistically significantly higher than the “1.4-0”
treatment with a 95% CI of (-0.642, 4.248). The mean values of the treatments were 7.964 +
1.005, 6.162 * 0.33, 7.39 + 1.419 and 7.752 + 2.696 mm day’ in the order given in the
previous paragraph.

Figure 2.5 (D), is a summary graph for the VRL of each PSR and it suggests that the vertical

root length was highest for the “4-0 treatment across each time point.

Figure 2.5 (E), is a summary graph for the HRL of each PSR and it appears to indicate that

the horizontal root length was similar among treatments across each time point.
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Figure 2.5: Summary graphs of spring barley root growth in growth substrates (1.4-0, 2.0-0,
2.8-0 and 4.0-0) in rhizotrons for a period of 21 days, A) ARGR vs. substrate, B) AVGR vs.
substrate, C) AHGR vs. substrate, D) VRL vs. time and E) HRL vs. time.

Root growth appears to be improved for the “Flourite Black Sand” when it has an increased
proportion of larger sized particles (4-0 mm) rather than a smaller particle size range. This is
probably because this combination of particles generated physical properties that had a higher
degree of similarity to the soil treatments in terms of both the water release and penetrometer
resistance curves. However, the growth rates observed in this experiment, were comparable
to the previously tested “Black Sand” and “Blue Sand” from experiment 1 (Section 2.4.12).
This similarity in growth rates could be explained by the rather different environmental
conditions when comparing the Scottish climate on mid-May and early November. Even
though both experiments did take place in a glasshouse, differences in temperature and light
do exist across seasons and at that time it was hypothesized that this was probably the reason
for the comparable growth rates. As a consequence, this led to the decision to adopt the 4-0

mm mixture as the standard RS substrate in future experiments.

Figure 2.6 shows examples of images obtained through the different imaging surfaces tested
as described in Section 2.4.14. Root hairs can be seen much clearer in the image taken
through the 2 mm acrylic surface (Figure 2.6 (C)). However, to produce an objective test for
the image quality, ISI was (see Section 2.4.10) used to assess the images. Figure 2.7
summarises the comparison between the different scanning surfaces, and it demonstrates that
the 2 mm thick acrylic had a higher ISI relative to both the 4 mm glass and the 5 mm acrylic
with a 95% CI of (25.033, 55.830) and (34.773, 65.668) respectively. The mean ISI values
for each treatment were 67.922 + 15.409, 27.491 £ 5.17 and 17.702 + 5.641 respectively.
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Figure 2.6: Rhizotron scanning surface experiment comparing imaging quality for A) 4 mm

thick, low iron, reinforced glass, B) acrylic - 5 mm thick and C) acrylic - 2 mm thick,
scanned at 1,600 dpi.
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Figure 2.7: 1SI boxplot comparison for three different RS scanning surfaces. Higher Image

Sharpness (ISI) score indicates a higher quality image.

The 2 mm acrylic substrate had the highest ISI index value and as such, it was selected to be
scanning surface to be integrated in future RS designs. However, issues with the strength
resulting in bowing of the imaging surface meant that the minirhizotron design A would need
be modified to ensure that the 2 mm acrylic can resist the combination of forces coming from

the sand substrate, the water solution added to the rhizotron, and the growing root system.

Figure 2.8 and Figure 2.9 are summary graphs of the comparison between the different

minirhizotron substrates described in Section 2.4.15.

Figure 2.8 summarises the image quality comparison between the different rhizotron
substrates, and it demonstrates that the 1SI value of “Flourite Black™ at 58.662 + 27.825 was
statistically significantly higher relative to both “Pilmore Soil” at 29.24 + 20.837 and
“Bullion Soil” at 34.898 + 8.03 with a respective 95% CI of (7.411, 51.432) and (4.743,
42.784). The same was true when comparing it with “Flourite Black & Soil” at 34.707 +
14.547 with a 95% CI of (3.789, 44.121), indicating that this uniform substrate gives a

sharper image.
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Figure 2.8: ISI boxplot comparison for four different RS substrates. Higher Image Sharpness

(IST1) score indicates a higher quality image.

Figure 2.9 (A), is a summary of the ARGR values obtained from this experiment and it
demonstrates that no statistically significant effects could be detected across the different
substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil”
and “Pilmore Soil” was (-15.361, 6.951), (-14.19, 8.527) and (-17.905, 7.193) respectively.
The mean values of the treatments were 11.109 + 5.44, 18.924 + 5.677, 16.732 £ 6.823 and
19.228 + 2.207 mm day* respectively.

Figure 2.9 (B), is a summary graph for the AVGR values obtained from this experiment and
it demonstrates that no statistically significant effects could be detected across the different
substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil”
and “Pilmore Soil” was (-18.303, 9.309), (-18.29, 9.348) and (-21.792, 9.262) respectively.
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The mean values of the treatments were 12.865 + 6.368, 22.991 + 8.076, 21.564 + 8.047 and
23.194 + 3.818 mm day* respectively.

Figure 2.9 (C), is a summary graph for the AHGR values obtained from this experiment and
it demonstrates that no statistically significant effects could be detected across the different
substrates. The 95% CI of “Flourite Black” relative to “Flourite Black & Soil”, “Bullion Soil”
and “Pilmore Soil” was (-11.55, 4.035), (-9.569, 8.933) and (-12.03, 4.105) respectively. The
mean values of the treatments were 8.416 + 4.306, 12.691 + 2.449, 9.327 £ 5.644 and 13.149
+ 2.37 mm day* respectively.

Figure 2.9 (D), is a summary graph for the VRL of each substrate and it suggests that the
vertical root length was less for “Flourite Black” when compared to the rest of the treatments
although, it does generally appears to overlap to varying degrees with the other treatments. It
also demonstrates that some samples for the soil treatments had almost reached the 400 mm
limit of the RS by the end of week 2, which was similar to experiment 1 (Section 2.5.1). This
will imply that the difference in AVGR between the “Flourite Black” and the other
treatments will be higher if they were not restricted by the size of the RS. The samples for the
rest of the treatments had almost completely reached the 400 mm limit of the RS by the end

of week 3.

Figure 2.9 (E), is a summary graph for the HRL of each substrate and it generally indicates a
similar trend with that observed for VRL. It also demonstrates that most samples for the soil
treatments had almost reached the 261 mm limit of the RS by the end of week 3. The figure
also suggests that the HRL of the “Flourite Black” was higher in comparison to the “Blue
Sand”.
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Figure 2.9: Summary graphs of spring barley root growth in growth substrates (Flourite
Black, Flourite and soil, Bullion soil and Pilmore soil) in rhizotrons for a period of 21 days,
A) ARGR vs. substrate, B) AVGR vs. substrate, C) AHGR vs. substrate, D) VRL vs. time
and E) HRL vs. time.

Image sharpness was clearly superior for “Flourite Black”. This was also the case when
comparing it to the mixed substrate as the soil component of this treatment reduced the image
quality.

Root growth for “Flourite Black” was generally less than the treatments “Flourite and soil”,
Pilmore soil and Bullion soil. However, the failure to detect a statistically significant effect
seems to suggest that they were still comparable. This was a positive outcome because P4

was reasonably achieved with the introduced changes to the system. It should also be noted
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that the root growth rates observed here are superior to those observed in experiment 2 which
had comparable growth rates to experiment 1. The difference being that this experiment was
performed around mid-May the same period as experiment 1 as opposed to early November
for experiment 2, suggesting that seasonality does have an effect. Although, this could also be
explained in part by the rather large reduction in substrate slumping achieved with

minirhizotron design B.

In conclusion, based on the results of this validation experiment minirhizotron design B
including the “Flourite Black” growth substrate will become the standard RS unit in future
LLWR experiments.

In addition to the above, by using the methodology outlined in Section 2.4.4, the water
release curve, and the penetrometer resistance curve were obtained for each of the various RS

substrate candidates which enabled an assessment of the physical properties of each substrate.

Figure 2.10 (A) demonstrates the fitted loess models which estimate the conditional mean of
penetrometer resistance to the matric suction of the soil. Although there was high variability
for the fitted models on average the 4-0 mm substrate was somewhat closer to the soil
treatments than the 2-0 mm substrate however, both sand treatments were noticeably different
from the soil treatments. It should also be noted that at matric suction of just 20 kPa the PR
values were >= 2 MPa, the LLWR threshold.

Figure 2.10 (B) demonstrates the fitted van Genuchten models describing the relationship
between the volumetric water content and the matric suction of the soil. Although, there was
high variability at low water potentials the model demonstrates that the water release curves
of both of the “Flourite Black™ followed a similar trend to that observed from the PR curve. It
also appears that the water release curve of the 4-0 mm “Flourite Black” treatment is quite
similar to a mixture of clay loam soil (< 2 mm) and pebble (3 — 5 mm) mixed on a percentage
mass basis of 35 and 65 % respectively (see Figure 1 in Wang et al., 2013) which in hindsight

IS not surprising as the material is listed as a commercial aquarium sand.

Figure 2.10 (C) demonstrates the estimated effective pore diameter (d) for each substrate
which was obtained from the water release curve fitted van Genuchten model (Section 2.4.4).

Given its relation to the water release curve the same conclusion follows as discussed above.
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model), B) Penetrometer Resistance (loess regression) with mean and standard deviations

shown and C) effective pore diameter profile.

Finally, by using the methodology outlined in Section 2.4.9, the RGB spectra were obtained
for each of the various RS substrate candidates which enabled an assessment of the optical
properties of each substrate. This is because differences in the distribution of the individual
RGB spectra could potentially be exploited to obtain a better root segmentation from the
background. Figure 2.11 demonstrates the RGB spectra obtained from each material in
addition to that from manually segmented root systems grown in RS. Two points of interest
need to be pointed out concerning the spectra for roots (A) and “Flourite Black” (F):
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1. The distributions of both the RGB and greyscale spectra are approximately identical
suggesting, that a greyscale-based approach will provide almost identical results than
methods exploiting differences in RGB spectra. This is significant because it implies
that retaining only the greyscale spectrum does not lead to loss of image information.
In practical terms, this translated to reduced scanning times during image acquisition,
reductions in image file size and faster access speed during image processing.

2. The peaks of the RGB spectra of roots relative to those of “Flourite Black™ are
noticeably distinct which suggests that segmentation of roots might be possible with

an automated image processing strategy.
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2.6 Discussion

The process of developing the RS required consideration of a list of desirable properties that
the system should have and as such, all the reported experiments were directly linked to the
process of achieving those properties. As discussed in Section 2.2 existing systems did not
completely satisfy all the requirements in imaging, size, growth substrate and costs which

motivated the development of the RS system.

The first step was the development of a prototype, i.e., minirhizotron design A, which then
had to be screened for its ability to satisfy the desired properties. The first experiment
involved an assessment of different growth substrates to determine basic root growth
parameters within this system. However, minirhizotron design A had a statistically significant
lower root growth rate for artificial sands compared to soil. As a result, an alternative natural
clay-based sand was sourced, i.e., “Flourite Black”, for future testing. The results of RGB
histogram analysis also indicated that a black-coloured sand was more desirable to make the
image processing step of separating roots from background easier as its RGB spectra were
more distinct from roots than both soils and the other coloured sands. As such, “Flourite

Black” was used in further minirhizotron optimisation experiments.

The second step was to try to remedy the issue of reduced root growth rates by testing the
hypothesis that the physical properties of the sand could be made closer to the properties of
the tested soils thus, achieving similar root growth rates. The results obtained supported the
hypothesis as the 4-0 mm treatment of “Flourite Black” sand had a water release curve that
was more similar to the soil treatments compared to the 2-0 mm treatment. This helped
explain the statistically significantly higher root growth for the larger sized range of particles
i.e., 4-0 mm. As a result, the 4-0 mm treatment of “Flourite Black” sand became the substrate

which would be used in future experiments.

The third step involved testing of different rhizotron imaging surfaces to identify the one with
superior image quality and as such, will increase the probability of detecting finer root traits
such as root hairs. Among the different thicknesses of acrylic and glass tested the results
indicated that image sharpness was statistically significantly higher for the 2 mm acrylic.
However, integrating that into minirhizotron design A required modifications to the existing
design. This in conjunction with the need to reduce the laborious and time-consuming task of

manual watering of RS had motivated the development of minirhizotron design B. The
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addition of screws and leaky pipes enabled the replacement of the imaging surface and

removed the need for manual watering.

The final step in RS development was the validation of the latest design through comparison
with soil. The results demonstrated that although a generally higher root growth rate was
observed for the soil treatments, no statistically significant difference could be detected
between Flourite sand and the soils with the same being true when comparing it to “Flourite
Black” sand mixed with soil. However, the introduction of soil into the mixture led to a
degradation in image sharpness with “Flourite Black” sand having a statistically significantly
higher value than all other substrates. As such, the final design to be carried forward was

based on minirhizotron design B with the 4-0 mm Flourite sand used as the growth substrate.

However, like all systems there are several limitations to the RS. In order to balance the
requirements for root growth and image quality an artificial substrate was used. Although
“Flourite Black” is an improvement compared to the other artificial sands it still lacks the
complexity of soil. For example, it lacks organic matter which influences water retention
properties (Kay et al., 1997), and it doesn’t have the biological complexity of organisms that
characterize soil. Furthermore, even if soil was used as a substrate the RS substrate will still
have a repacked structure which is not an accurate reflection of the spatial variability
encountered in field soil. For example, penetrometer resistance is greater for field soils than
packed cores (Perfect et al., 1990) and even when comparing root growth in structured field
soil containing clods to a homogenously compacted soil, root morphological differences can
be detected (Konbpka et al., 2009). Another intrinsic disadvantage of minirhizotron systems
is that root growth is effectively restricted to a thin layer which can potentially distort the
naturally complex 3D root architecture and as such, the RS is technically classified as
pseudo-3D. Furthermore, continuous root to glass contact could induce thigmotropic
responses from the roots (Downie et al., 2015) which can give misleading representations of
the norm. In summary, whether the results obtained from the system are directly applicable to
field soil is something to be established through field trials, but such a task will require a
significant investment in time and resources and as such, it is outside the scope of this study.
It should also be noted that although significant efforts were made to provide as much
information as possible in terms of measured physical properties of the sand it will be
interesting to also study its chemical properties. For example, cation-exchange capacity is of
great importance for root nutrient availability (Hillel, 2003). However, such investigations are

also outside the scope of this study.
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2.7 Conclusions

This chapter was dedicated to describing both the motivation and the development of an
experimental unit, i.e., RS, which will provide the basis for conducting future experiments.
The proposed RS system was developed with the specific criteria of superior image quality
and the root growth rate in the RS substrate being comparable to those from a soil substrate.
This process involved the selection of (1) the imaging surface of the RS and (2) the root
growth substrate used in the RS. In the case of (1) the imaging surface chosen was an acrylic
surface of 2 mm thickness having outperformed the acrylic of 5 mm thickness and the low
iron glass of 5 mm thickness in terms of the ISI index, a measure of image sharpness. For the
case of the RS substrate a comparison of artificial sands and soil types led to the selection of
a black coloured sand (Flourite Black) as it was judged to have a superior contrast. However,
to ensure (2) the selected sand was sieved to a range of sized fractions and each was
compared to the soil substrates. The 4-0 mm sized fraction of sand was determined to be the
most similar relative to the soil treatments based on the comparison of root growth rates. The
resulting RS unit was developed to be a sand-based, particle size adjusted substrate which
enables the manipulation of the LLWR stressors while giving comparable root growth rates
to soil and sufficiently detailed images for imaging fine root traits such as root hairs. As a
consequence, the minirhizotron-based system was judged to sufficiently satisfy its design
requirements and allow for the modification of the LLWR model through the integration of
root traits.
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3. Root trait imaging and image analysis

3.1 Introduction

Roots are responsible for numerous functions that determine the survival and growth of plants.
Roots provide anchorage to the soil, acquire mineral nutrients and water, transport and store
resources and synthesize a plethora of metabolites (Gregory, 2008; Schmidt, 2014).
Furthermore, they have a central role in ecosystem functioning (Bardgett, et al., 2014). For
example, plant roots influence nutrient and carbon cycling in terrestrial ecosystems (de Kroon
and Visser, 2003) and root turnover is estimated to account for approximately one third of the
global primary productivity (Gill and Jackson, 2000). Root biomass itself accounts for a
significant amount of the total plant biomass which can range from 16 % in tropical forests to
77 % in grasslands (Poorter et al., 2012). Roots also have a myriad of dynamic interactions
with soil microbial organisms which can have both positive and negative outcomes for plant
health (Hinsinger et al., 2009; Raaijmakers et al., 2009). As such, strategies for enhancing the
resource acquisition of crops are more frequently identified as of increasing importance for
achieving sustainable food production (Tian and Doerner, 2013). A number of those strategies
aim for more efficient utilization of soil resources through selection of root traits in order to
facilitate the transition from high-input monoculture based agriculture to productive,
sustainable agroecosystems with low inputs (Schmidt, 2014). In particular, root morphology is
increasingly recognized to be of vital importance to a range of fields including plant nutrition,
physiology, breeding, and ecology (Rogers and Benfey, 2015) with some characterising it as
the most important of all (Lu, Wang and Wang, 2019). As such, the ability to image roots in
real time in an accurate and precise way can be a catalyst for increasing crop yield and quality
in agriculture (Chen et al., 2018).

More traditional approaches to study roots are based on destructive root sampling such as soil
auguring and ingrowth cores (do Rosério et al., 2000) or excavation trenches (Van Noordwijk
et al., 2000). However, those methods are labour intensive, time-consuming and make the
repeated measurement of roots impossible without the introduction of undesirable effects
(Taylor et al., 1991). Other proposed methods which are less direct such as “the core break
technique” also have several limitations, e.g., soil core crumbling during its removal from the
sampling tube (Bennie et al., 1987). However, since the 1990s non-destructive imaging

methods have become increasingly popular in plant sciences (Li et al., 2014). In general,
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imaging of plant root systems has evolved in two directions: (1) high-throughput phenotyping
using high resolution 3D methods for small scale processes, and (2) high-throughput
phenotyping using optical methods. The 1% category involves powerful set-ups such as Xray
Computed Tomography which is widely used to build and test root-soil interactions models
(Dunbabin et al., 2013). Unfortunately, these methods are not generally considered to be high
throughput due to costs and other factors (Li, Zhang and Huang, 2014). The latter category
includes “minirhizotrons”, which are usually transparent tubes in field applications (Vamerali
etal., 2012). A portion of the root system will then grow along the interface of the soil and the
transparent container and the images can be captured by installing a coloured camera (and a
light source) or some other custom-made imaging system, e.g., scanners (Rewald and Ephrath
2013). The advantages of this method are its high imaging speed and its non-destructive
nature which avoids the introduction of undesirable effects from modifying the soil during
measurements across different time points thus, enabling time-lapse studies (Johnson et al.,
2001). Unfortunately, one of the biggest limitations of minirhizotrons is the time consuming
step of image processing as standard image processing methods can involve manually tracing
the root system (Yu et al., 2019). This limitation is further exacerbated due to the high
replication which should ideally be chosen in experiments to account for the heterogeneous
horizontal distribution of roots (Rewald and Ephrath, 2013). Alternatively, minirhizotron
systems may be used as a flat/box closed system for monitoring of root growth along its
transparent surface. A number of examples exist which utilize a wide range of substrates for
root support and include gel (Bengough et al., 2004), filter paper (Gioia et al., 2017), glass
beads (Courtois et al., 2013), grids of toothpicks (Nguyen and Stangoulis, 2019), peat
(Dresbgll et al., 2013) and soil (Le Marie et al., 2016).

In Chapter 2 the development of a flat/box type minirhizotron system (RS) was described
satisfying a series of criteria one of which was the ability to image roots growing in the RS.
As sufficiently high-quality imaging was achieved the next step in this process was the
development of methods which enable the detection and quantification of the root traits of
interest before and after destructive sampling of the root system. The standardization of the
image environment and quality was hypothesized to offer the opportunity for automated
analysis instead of manual analysis of the images. This chapter describes a set of 3 different
algorithms which were custom developed, in order to help reduce the amount of time required

for image processing and help optimise the procedure of quantifying root traits.
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3.2 Minirhizotron System

3.2.1 Minirhizotron-based root imaging methods

Minirhizotrons enable inspection of their root/glass interfaces by using a miniature video
camera to obtain continuous, non-destructive recordings of roots that can then be analysed
(Upchurch and Ritchie, 1983). This process was further optimised by the development of
methods designed to facilitate the analysis of minirhizotron recordings by manually tracing
the roots (Cheng et al., 1991). Further developments led to the introduction of software which
enables the user to interactively identify and trace roots with a PC mouse (Hendrick and
Pregitzer, 1993). This development also enables a higher precision in estimates of root count
at different time points but generally requires more time than manual counting methods
(Vamerali et al., 1999).

Today, there are several imaging platforms which have completely automated algorithms for
root detection, e.g., systems involving the growth of seedlings on filter paper (Dupuy et al.,
2017). However, the process of segmenting roots which are growing in soil is a complex one
with most of the available software requiring the user to manually perform this segmentation
(Moller et al., 2019). Thus, the majority of tools currently available to researchers are
designed to offer an efficient and user-friendly interaction by using a mouse point and click
system (Moller et al., 2019) for both commercial (e.g. WIinRHIZO Tron (Regent

Instruments)) and non-commercial (e.g. RootNav (Pound et al., 2013)) software.

At the same time, there are also software designed to automatically segment roots from soil in
2D images. In general, most of the algorithms in use involve a contrast enhancement step
prior to subsequent thresholding and binarization. Usually, geometric features of the root
system (e.g. the ratio of root length to diameter) are used at the end of the algorithm to assign
a pixel to either the background or foreground (Zeng et al., 2008). However, automated root
detection in rhizotron systems is a rather complicated process due to the low contrast of the
image. The issue of the root background being complex will invariably mean that the images
obtained will vary with soil conditions, lighting and root colour and as such, unsupervised
machine learning methods will have mixed performance results (Yu et al., 2019). As a result,
the process of separating foreground from background is a complex one and proposed
algorithms are invariably composed of multiple steps (Stockman et al., 1990).
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Root segmentation algorithms are usually “bottom-up” approaches which apply successively
several filters until the only pixels remaining correspond to the root foreground (Pound et al.,
2013). Nater et al., (1992), introduced the concept of artificial neural systems to increase the
accuracy of automated root detection in rhizotron images. This method requires an initial
training set calibration and as such, the accuracy of the results produced will be dependent on
the degree of similarity between the sample and training images. Other authors recognising
this complexity have used miSVM based methods to enhance the speed of re-training their
model and achieve more optimum results when the background varies (Yu et al., 2019).
Vamerali et al., (1999), identified the blue band of the spectrum as the starting point of their
algorithm to better detect roots when their luminescence is similar to the background. In
contrast, Zeng et al., (2006), used the green band of the spectrum to extract the roots. Their
method involved local entropy thresholding and machine learning (AdaBoost) as well as pre-
processing steps such as linear stretching and matched filters. The algorithm was
demonstrated to give good results for young bright roots however, the pre-processing step of
matched filtering imposes restrictions on the shape of roots and as a result of that can miss
small or jagged roots (Yu et al., 2019). More recently, the same authors proposed another
AdaBoost approach which effectively uses a Gibbs point process with a modified Candy
model to detect roots (Zeng et al., 2010). Although, the algorithm produced excellent results
for their dataset the resolution of the images was rather low (640 x 480 dpi) making the
computational cost of such an approach unfeasible for our images. Shojaedini and Heidari,
(2013), defined level sets to achieve root segmentation from the background. This method
was later modified by the addition of more pre-processing steps such as curvelet
transformation to enhance weak root edges (Rahmanzadeh and Shojaedini, 2016). Lu et al.,
(2019), used a hybrid of pre-processing methods and mathematical morphology to segment
the roots from the soil background. Another option is the “RootFly” software which provides
both manual annotation and automatic root detection functionality (Zeng et al., 2008). The
algorithm uses several pre-processing steps with subsequent matched filtering convolutions
and classifiers to better detect roots. However, it does require an RGB image which has
roughly a 3-fold memory size compared to a greyscale image. An additional overview of

minirhizotron software can be found in the literature, e.g., Moller et al., (2019).

Ultimately, if one was to consider the numerous possible combinations of experimental set-
ups and treatments, the wide range of plants and varieties, and the extremely variable nature

of the soil, it becomes clear that no single image processing method will be suitable to all
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experimental conditions. The process of automated root detection will only be successful
when the experimental conditions are standardized, and the image quality becomes
reasonably consistent. As the RS unit was made to provide a consistent environment for
imaging, it was hypothesized that the development of an automated algorithm may be
feasible for this application. If successful, the algorithm would offer great speed in the image
processing component of data collection. The process of root detection will inevitably require
consideration of the root features, e.g., the length/width ratio of root segments (Stockman et
al., 1990). As such, the problem of root detection could be classified as a feature recognition
problem, requiring knowledge of the geometrical architecture of root systems. However, even
with clearly defined features detection issues arise, e.g., images of mature root systems have
complex branched structures, composed of thousands of overlapping and crossing segments
(Lobet et al., 2017). Furthermore, the biological nature of root systems implies a dynamic
environment which constantly changes, e.g., new roots have a light colour which becomes
darker with age (Wells and Eis-senstat, 2001). In addition to the above, other aspects such as
the resolution of the image can affect both the accuracy and precision of even basic
parameters such as root length or diameter (Arnaud et al., 2019).

3.2.2 Root hair imaging-based methods

Conventional methods used to measure root hairs include root excavation from soil or
hydroponics and subsequent imaging with light or electron microscopy (Gahoonia and
Nielsen, 1997; Xie et al., 2020). However, those methods have several disadvantages

(Hammac et al., 2011) including:

1. Root hairs have an estimated radius of only 3-8 um (Leitner et al., 2010) and as such,
the process of washing roots grown in soil makes it very difficult to estimate the
degree of root hair loss prior to the washing process (Koebernick et al., 2017).

2. Light and fluorescent microscopes are tedious to use because root hairs are 3D objects
and as such cannot be constrained to a single focal plane.

3. The addition of stains, e.g., glutaraldehyde, in the fixation step of electron-microscopy
damages the root hairs.

Imaging of root hairs in 3D soil volumes is also possible with synchrotron-based X-ray
tomography although, the sample size at this resolution is at present extremely limited (Keyes
et al., 2013). Another option is to use high-resolution imaging to visualize the interaction of
root hairs and particles in artificial media, e.g., transparent soil (Downie et al., 2012). It
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should also be noted, that root hairs may also be imaged using simpler setups such as high-
resolution flatbed scanners but the measurements are normally done by manual tracing
(Hammac et al., 2011).

However, root hairs are much more difficult to measure relative to bulk roots and there are a
few studies that have attempted to quantify them. Although camera-microscope tracing
techniques can be used in simple transparent media such as petri dishes to quantify root hair
area (Yazdanbakhsh and Fisahn, 2009) such methods again require simple substrates and
become more difficult to use with increasing complexity in root architecture. Vincent et al.,
(2017), commented on how root hair area estimation in minirhizotron studies was based on
manual tracing and that to the best of their knowledge they could not find any minirhizotron
based studies that quantified root hair area. The authors later presented a semi-automatic
method based on multivariate logistic regression that uses both ImageJ and R to obtain
estimates of root hair area for minirhizotron images. Although, this application is certainly
time efficient it has being recently criticized by failing to provide measurements of root hair
length and not having a clearly defined reference point where the measurement takes place
along the root (Guichard et al., 2019). Semi-automated methods for detecting root hairs have
also been proposed (Inoue et al., 1995; Narukawa et al., 2009) although the user is required
to manually select a number of binarization threshold and only 3.2 mm of root area was used
for the analysis (Guichard et al., 2019). Perhaps, the most common approach is manual
tracing of roots hairs but, it has as disadvantage that it is prone to errors due to user bias. For
example, in order to reduce errors from subjective user interpretation only clearly visible root
hairs were segmented in the study of Koebernick et al., (2017). In a similar manner, Chai et
al., (2019), assigned the task of manually counting root hairs to a researcher who was blind to

the experimental condition due to concerns about researcher bias.

3.2.3 Algorithm 1 - Root length and root hair analysis

The main steps of the proposed algorithm may be summarised as follows:

1. Pre-processing (Figure 3.1 (B)): This step effectively isolates a sub-set of the image
by negating the pixel values not satisfying a certain set of criteria. The main steps
involve:

a. Circle removal filter
b. Variance and greyscale thresholding

c. Particle removal (pixel count < 1,500 and circularity > 0.6)
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d. Region growth
2. Vessel enhancement (Figure 3.1 (C)): This step enhances vascular structures to
achieve a better segmentation from the background. This is achieved by applying the
filter proposed by Frangi et al., (1998) at a scale/sigma of 10 pixels.
3. Root segmentation (Figure 3.1 (D)): This step isolates the root areas from the
background. The main steps involve:
a. (ImageJ) IsoData threshold (Ridler and Calvard, 1978)
b. Particle removal (pixel count < 5000 or circularity > 0.6)
c. Region expansion
The main outputs of the algorithm are root length, x and y dimensions of root length, total
projected root area and mean root hair width to root width per unit segments. The root hair
area is obtained by applying the (ImageJ) IsoData threshold (Ridler and Calvard, 1978) on
the area adjacent to the detected roots after the end of step 3 (Figure 3.2). The mean value of
the width of the root hair zone is then estimated, along with the mean width of the root in a

unit segment of 10 pixels.
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Figure 3.1: A) Minirhizotron image of a 14 day old spring barley seedling, B) Pre-processing

for image subset selection, C) Vessel enhancement step for enhancing roots and D) Root

segmentation step for extracting roots.




Figure 3.2: Magnified image of spring barley grown in the RS and scanned at 1,600 dpi. A)
Raw image and B) Root hair boundary (blue) and detected root hair area (red) after
thresholding the area adjacent to the root.

3.2.4 Root length and root hair area algorithms validation

The validation procedure for the root detection algorithm can be summarised as:
1. 10 minirhizotron images were randomly selected among a pooled dataset taken at 14
and 21 days of growth from previously performed experiments.
2. The skeleton of the visible root system (centre line) was traced manually by using the
“Segmented Line” tool of Fiji (http://www.fiji.sc).

3. The algorithm predicted estimates of X and Y dimensional root lengths were

compared to the manual ones.

The validation procedure for the root hair detection algorithm can be summarised as:

1. 5 minirhizotron images were randomly selected among a pooled dataset taken at 14
and 21 days of growth from previously performed experiments.

2. 4 image sections (300 x 300 pixels) containing root hairs were subjectively chosen by
a user so that the sections spanned the length of the root system.

3. The root hair boundary was traced manually by using the “Polygon Selections” tool of
Fiji.

4. The percentage of the root hair boundary area which was larger or equal to the
(ImageJ) IsoData threshold value was estimated.
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The execution speed of the algorithm was measured for a set of 8 images of 3-week-old
seedlings grown in RS. This was achieved by using the R base function “system.time” and
extracting the elapsed time from the outputs. The algorithm was estimated to have an average
(x £ s) execution time of 151.02 + 34.20 sec. The system properties of the PC were:

Processor: Intel® Core™ i5-6200U @ (Base) 2.30GHz (Max Turbo) 2.40GHz.
Installed memory (RAM): 16.0 GB (15.9 GB usable).
System type: 64-bit operating system, x64 based processor.

Windows Version: Windows 10.

3.3 Root cap and border cell measurements

3.3.1 Root cap and border cell imaging methods

The plant root cap is an important structure which offers protection to the root tip meristem
from physical stresses exerted on it by the soil and determines the direction of root growth
(Bengough and McKenzie, 1997). Specifically, 2 root cap associated traits are of interest
here, (1) the geometry of the root tip and (2) the count of the root border cells (RBCs)
produced by it. In terms of quantifying root tip geometry, there is currently only one
published method for estimating root tip geometry in an automated way, the software known
as ROSTA (Colombi et al., 2017). This MatLab implementation enables the automated
quantification of the root tip geometry for single root tips in images captured at a high
resolution (2,400 dpi) flatbed scanner. The method essentially involves global thresholding to
extract the root tip and subsequent ellipse fitting of the root tip perimeter to estimate

eccentricity.

In contrast, there are a significant amount of reported methods for extracting, imaging and
quantifying RBCs. Hawes et al., (2000), immersed root tips in water for 30 seconds to extract
RBCs and determined cell viability by using a vital stain, i.e., fluorescein diacetate (FDA). In
a similar manner, Wuyts et al., (2006), used a light microscope to count RBCs and assessed
cell viability by also using FDA. Pan et al., (2001), assessed average RBC count per root tip
by counting them in five 20-pl aliquots (100 pl) under a light microscope. The authors also
used a compound staining dye, i.e., fluorescein diacetate—propidium iodide (FDA-PI) to stain
root tips and assess RBC viability under a fluorescent microscope. Furthermore, the authors
also attempted to quantify RBCs in hydroponics but concluded that the estimates obtained
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were not reliable due to RBCs dropping to the bottom of the water tanker. Vicré et al.,
(2005), used bright field microscopy to assess RBC viability by immersing root tips in a drop
of Calcein-AM about 10 to 15 min before acquisition of the images. Wang et al., (2013),
determined RBC viability in 8 pl aliquots by staining them with 8 pL of 0.4% “Trypan blue”
for 3-5 min and subsequently counting white and blue cells (live / dead) under a Phenix100
optical microscope. Tran et al., (2016), visualized RBCs under an Olympus BX60F5
fluorescence compound microscope by collecting them from root tips dipped into sterile
water for 5 min, incubating them with 1x10 8 CFU/ml. R. solanacearum-GFP for 30 min and
then staining them with SYTOX Green or DAPI. It should also be stated that confocal laser
scanning microscopy (CSLM) for 3D imaging is a relevant recent development in this
context. For example, Kamiya et al., (2016), used a Nikon C2 confocal microscope to image
dead and live RBCs by soaking roots in staining solutions of 10 uM of propidium iodide and
2 ug/ml FDA respectively. In a similar manner, Bennett et al., (2014), reported the use of a
green fluorescent protein (GFP) or an alternative yellow fluorescent protein (YFP) for
counting viable RBCs. Unfortunately, the above-mentioned methods all rely on manual
counting of RBCs and do not offer automated image processing tools.

As a consequence, if the approach used here to quantify both root traits relied on existing

methodologies, there will be 2 main limitations:

1. The time requirement for manually counting RBCs will be large, especially when
multiple root tips are sampled from a single seedling.
2. After RBC counting, the same root tips will have to be cleared from the staining dyes
and subsequently transferred and re-imaged in a high-resolution flatbed scanner.
If the RS was to become a high throughput system, then a more efficient methodology is
required for quantifying the root micro traits after destructive sampling. As such, it was
decided to use the method reported by Pan et al., (2001), as a basis for quantifying RBC
numbers. The method involves the use of a compound staining dye (FDA-PI) to directly
assess RBC viability of root tips under a fluorescence microscope thus, avoiding the need for
aliquots. The only major difference is the replacement of manual counting with an automated
image processing algorithm after imaging of the root tips. This will reduce the amount of
time required for image processing. A further optimisation was further made to the proposed
methodology by developing a second automated image processing algorithm for determining
root tip geometry from the images obtained from the microscope as the image quality was

judged to be sufficient for quantifying root tip geometry.
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3.3.2 Root tip staining and imaging procedure

After root destructive sampling, a cut was made with a scalpel ~10 mm above a selected root
tip and gently placed on a microscope slide with tweezers. Any attached sand particles were
then carefully picked off with the tweezers and the slide was immediately stained with a few
drops of the FDA-PI compound (Pan et al., 2001) and immediately covered with aluminium
foil. After 5 minutes the slide was covered with a 1.7 mm thick cover slip and imaged by
locating the appropriate focal plane and subsequently imaging using a Leica binocular
microscope MFZ Il under the GFP filter (FDA) and the Texas-Red filter (Pl) with UV
excitation.

3.3.3 Algorithm 2 — Root tip geometry and border cell analysis

3.3.3.1 Root tip geometry

In order to quantify root tip geometry, the algorithm uses the following sequence of steps:
1. Greyscale (8-bit) conversion of PI stained root, imaged with Texas Red filter.

2. Morphological opening (Disk SE - radius = 20)

3. Otsu thresholding (Otsu, 1979)

4. Binary shape hole filling (if required)

5. Root contour extraction

6. Contour rotation

7. Skeletonization (Xia, 1986)

8. Savitzky-Golay polynomial filter (Savitzky and Golay, 1964) / convolution coefficients
(Gory, 1990).

9. Conic model fitting / Braikenridge—Maclaurin theorem (Coxeter and Greitzer, 1967).

Figure 3.3 (A), illustrates the original RBG image of the PI stained root tip obtained from the
optical microscope. Figure 3.3 (B), illustrates the greyscale display of the image by using
only the values of the red channel which corresponds to the PI emission signal. Figure 3.3
(C), shows the result of applying a morphological opening operator to enhance larger

structures. Figure 3.3 (D), is the result of binary transformation to isolate the root. Figure 3.3
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(E), is the output of root contour extraction to isolate the boundary of the root. Figure 3.3
(F), is the rotated version of the root outline to ensure that the root tip has a vertical
orientation for technical reasons relating to the efficiency of the polynomial filter applied in
the next step. Figure 3.3 (H), is the result of fitting a conic section equation to the root tip
extremum. This is achieved by first approximating the root contour with a 3™ order
polynomial filter (Savitzky and Golay, 1964) and subsequently fitting a conic equation by
using the Braikenridge-Maclaurin theorem (Coxeter and Greitzer, 1967). The conic with the
minimum distance between the root contour and itself is selected by randomly sampling 5

points around the root tip extremum.
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Figure 3.3: Root tip geometry algorithm, A) Raw image, B) Greyscale conversion, C) Morphological opening, D) Binarization, E) Root

Contour extraction, F) Root contour rotation and H) Conic fitting.




3.3.3.2 Dead border cell segmentations
In order to quantify the count of non-viable RBCs, the algorithm uses the following sequence

of steps:

1. Greyscale (8-bit) conversion of Pl stained root, imaged with Texas Red filter.
2. (White) Top-hat filter (Disk SE, r = 15)

3. Blob enhancement filter (Li, Sone and Doi, 2003)

4. Cell nuclei binarization

5. Cell nuclei count

Figure 3.4 (A), illustrates the original RBG image of the PI stained root tip obtained from the
optical microscope. Figure 3.4 (B), illustrates the greyscale display of the image by using
only the values of the red channel which corresponds to the PI emission signal. Figure 3.4
(C), shows the result of applying a morphological (white) top hat operator to remove larger
structures. Figure 3.4 (D), is the output of applying a blob enhancement filter (Li, Sone and

Doi, 2003). Figure 3.4 (E), is the result of binary transformation to segment the cell nuclei.
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Figure 3.4: Non-viable RBCs algorithm, A) Raw image, B) Greyscale conversion, C) Top hat filter, D) Blob enhancement and E) Binarization.




3.3.3.3 Live border cell segmentations
In order to quantify the count of viable RBCs, the algorithm uses the following sequence of

steps:

1. Greyscale (8-bit) conversion of FDA stained root
2. (White) Top-hat filter (Disk SE, r = 15)

3. Vessel enhancement filter (Frangi et al., 1998)

4. Cell binarization

5. Cell count

Figure 3.5 (A), illustrates the original RBG image of the FDA stained root tip obtained from
the optical microscope. Figure 3.5 (B), illustrates the greyscale display of the image by using
only the values of the green channel which corresponds to the FDA emission signal. Figure
3.5 (C), shows the result of applying a morphological (white) top hat operator to remove
larger structures. Figure 3.5 (D), is the output of applying a vessel enhancement filter (Frangi

et al., 1998). Figure 3.5 (E), is the result of binary transformation to segment the cells.
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Figure 3.5: Viable RBCs algorithm, A) Raw image, B) Greyscale conversion, C) Top hat filter, D) Vessel enhancement and E) Binarization.




3.3.4 Root border cell algorithm validation

In order to assess the accuracy of algorithms described in Section 2.3.2 the following

procedure was performed:

1. 5images were randomly selected from a pooled set of images and their corresponding
FDA and PI stained images were extracted.

2. The area of RBCs nuclei and cells in the Pl and FDA stained images respectively,
were manually segmented by using the “Polygon selections” tool in Fiji.

3. The binary masks obtained were then overlaid to their respective algorithm output

images to assess their prediction accuracy in the form of an error matrix.

3.3.5 Root border cell quantification

In order to obtain RBC estimates from the output of the segmentation algorithms described

above the following method was used:

1. The RBC segmented areas mentioned in the segmentation validation analysis above
were examined and 20 clearly defined cell outlines were selected from each of the 5
images.

2. A total of 100 cell outlines were then pooled together and imported in the statistical
software R.

3. The R package “fitdistrplus” was then used to assess the goodness of fit of various
probability distributions to the training dataset.

4. The selected distribution parameters were then integrated into their respective
algorithms to generate estimates of cell numbers by using the particle binary areas

from the output images produced by the algorithms.

3.4 Washed root system assessment

3.4.1 Root morphology methods based on destructive sampling

One of the most common methods for obtaining root morphological information involves the
destructive sampling, washing and subsequent measurement of the plant root system. The
process of measuring “Washed Root Systems” (WRS) is both invariably time consuming and
labour demanding but, it is usually the only available option for obtaining information about

the root system as opposed to the much more accessible stem of the plant (Box, 1996). In
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general, WRS quantification methods could be classified as being either manual or automatic.
Manual methods are very common and are usually based on the line-intersect method
(Newman, 1966) which estimates the “Total Root Length” (TRL) by visually counting the
grid line-root intercepts and obtaining the product of the number of intersects with a
conversion factor pertaining to the size of the grid system (Tennant, 1975). The main
advantage of this method is its simplicity, but it is time-consuming and inaccurate, with the
error being proportionally increased with the number of fine roots in the sample (Costa et al.,
2002).

Automated methods on the other hand, involve the imaging and digitization of the WRS
which is subsequently analysed with either a semi-automated or fully automated image
processing algorithm to obtain estimates of root traits, including the TRL. These methods are
becoming more popular today due to the development and accessibility of both computer
hardware and software and, the software’s ability to process simple RGB or greyscale images
in a range of settings. For example, 1J-Rhizo (Pound et al., 2013) is a plugin which was
designed to perform semi-automated analysis of roots in the popular and freely available
software “Image]”. Another example of a semi-automated and freely available software is
RootNav (Pierret et al., 2013) and does not require any previously installed software to use
(i.e., stand-alone software). However, perhaps the most widely used software in root research
today is WinRHIZO™ (Arsenault et al., 1995), another stand-alone software but not freely
available. Unfortunately, despite its popularity, this software requires a high contrast between
the root and the background, which restricts it’s use to very clear images, e.g., washed root
systems on uniform background (Svane et al., 2019). In other words, the presence of image
noise such as scratches, non-uniform illumination or background break-ups, could give

erroneous estimates of TRL.

In the images obtained in this research it was found that the lack of resistance to noise was
responsible for noticeable errors. In practise, that required the addition of a pre-processing
step for noise removal to mitigate this issue prior to image analysis. Fortunately, most
available software’s have utilities to filter out noise, e.g., dust filter which can mitigate the
errors. However, even after testing with various software, errors persistent in most cases and
adaptation of the algorithm parameters for each software was a time-consuming step.
Furthermore, software such as WinRHIZO™ require a commercially available licence and
can only be installed on a single PC per licence. As such, to increase the efficiency of the

overall process of analysing WRS an algorithm (A3) was developed for the retrieval of basic
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root architecture in a more robust and automated way. As previously, A3 was written in the
Rcpp language to make it more accessible and user friendly. A description of the algorithm
follows (Section 2.4.2) with a subsequent validation of the proposed algorithm (Section 2.4.3)

and discussion (Section 2.4.4).

However, it should be noted from the onset that A3 was designed to obtain a robust and fast
way to extract the basic root parameters of WRS. In theory, numerous root traits could be
defined and quantified when studying WRS, specific root length (SRL) and root length
density (RLD) are perhaps most commonly studied (Weemstra et al., 2016). SRL (root length
per unit root biomass) is a morphological trait that provides information about the amount of
resources needed to increase the surface area between roots and soil (Kramer-Walter et al.,
2016). RLD (root length per unit volume of soil) is an architectural trait describing the
capacity of a root network to explore a given volume of soil and acquire limited resources
(Ravenek et al., 2016). However, the estimation of both SRL and RLD, requires estimation of
the total root length (TRL) of the WRS (Delory et al., 2017). This was one of the primary
reasons why the validation analysis in Section 2.4.3 used TRL as the parameter of the

analysis.

3.4.2 Algorithm 3 — WRS total root length analysis

In order to quantify TRL, the algorithm uses the following sequence of steps:

Greyscale (8-bit) conversion (if input image is in RGB format)
Median filter (r = 2)

Maximum entropy thresholding (Li and Lee, 1993)

Particle removal based on pixel size threshold (threshold = 10, 000)
Morphological closing (Disk SE, radius = 5)

Morphological opening (Line (135 and 45 degrees) SEs, radius = 2)
Particle removal based on pixel size threshold (threshold = 3, 000)
Morphological dilation (Disk SE, radius = 2)

Region growth with binary mask

© 0o N o g B~ w b PE

[EY
o

. Particle removal based on pixel size threshold (threshold = 30, 000)
. Skeletonization (Xia, 1986)
. Skeleton pruning (Solis Montero and Lang, 2012)
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. Root system analysis
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Figure 3.6 (A), illustrates the original greyscale image of washed root system. Figure 3.6
(B), is the result of thresholding (maximum entropy) to obtain a binary image containing both
root and noise. Figure 3.6 (C), shows the output of the particle removal process to remove
some of the noise. Figure 3.6 (D), is the output of a series of morphological operators and
area reconstruction to further reduce noise and reconstruct the original root binary area.
Figures 3.6 (D) and (E) are the results of skeletonization and subsequent skeleton pruning

respectively, to arrive at the final root skeleton image.

After the segmentation of the WRS from the background the following root parameters were
estimated:

1. Total Root Length (TRL) was estimated by skeletonization of the foreground material
and subsequent multiplication of the number of pixels by an image size conversion
factor.

2. Total Root Area (TRA) (or Projected Area) was estimated by counting the foreground
pixels and again multiplying it by a size conversion factor.

3. Root Average Diameter (RAD) was estimated by averaging the Euclidean distance

map values of the root skeleton.
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Figure 3.6: TRL quantification image processing main steps A) Median filtering (Step 2), B) Maximum entropy thresholding (Step 3), C)
Particle removal (Step 4), D) Binarization (Step 10), E) Skeletonization (Step 11) and F) Skeleton pruning (Step 12).




3.4.3 WRS parameter extraction algorithm validation

In order to validate A3, seedlings (n = 14) were grown in the RS for a period of three weeks.
At the end of the growth period, the seedlings were extracted from the rhizotrons, their stems
were cut, and their root systems were gently washed with tap water to remove attached RS
sand particles. The seedlings were then placed on a moistened rectangularly shaped (420 x
297 x 2 mm) scanning acrylic and scanned at 800 dpi. The obtained images were then
downsized to a 400 dpi resolution by using Fiji (to reduce their file size to a size which

allowed for image analysis across all of the following image processing software:

ARIA, (Pace et al., 2014)

EZ-Rhizo, (Armengaud et al., 2009)

GiaRoots, (Galkovskyi et al., 2012)

RootReader2D, (Clark et al., 2013)

WinRHIZO™ (Regent Instruments, Québec, Canada)

o ~ w0 e

The reduced resolution images were then analysed in Fiji by manually tracing the skeleton of
the visible root systems (centre line) with the “Segmented Line” tool. The traced skeletons
were used to obtain observed TRL estimates which were then compared to the predicted TRL
estimates of the automated image processing software tested. For each software used, a
regression relationship was fitted between the observed and predicted estimates of TRL by
using the R base function “Im”. The function “linearHypothesis” from the R package “car”
was then used to test the hypothesis that the slope of each of the fitted linear regression
models was equal to 1.

It should be stated that every effort was made to provide identical parameters for each of the
above-mentioned software and ensure identical settings however, due to intrinsic differences
such as different noise removal strategies/options, the parameters used may deviate in some
cases. The mean (X + s) user execution time of the above described algorithm was ~ 18.27
8.50 sec (see Section 3.2.4 for PC specifications). The reason user time is reported instead of
elapsed time is because the algorithm uses parallel processing which means that the user time

> elapsed time.
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3.5 Results

Figure 3.7 demonstrates the relationship between the manually measured estimates of X and
Y dimensional root lengths and the algorithm predicted estimates (Section 3.2.4). The slope
of the fitted linear regression models for X and Y root lengths were 0.94 and 1.01
respectively with a residual sum of squares value of 0.39 and 0.04 which indicates a good

agreement between the algorithm and the measured data.

Figure 3.8 is a summary of the root hair area overlap between the algorithm predicted root
hair area and the manually traced total root hair area. The mean root hair overlap value for the
analysed sections was 78.083 £ 15.945 % which shows that most of the root hair area is

correctly captured.

Root Length Extend (X, Y)

20

Dimension
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—hm Y
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-
o
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Predicted (cm)

Software Intercept Slope RSS F o]
X 0.5248 0.9425 0.3875 0.2254 0.6477
Y 0.4802 1.0140 0.0459 0.2168 0.6539

Figure 3.7: Validation graph for Al demonstrating the observed vs. predicted X and Y

dimensional root lengths.
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Figure 3.8: Root hair area overlap of the predicted root hair area relative to the manually

traced total root hair area for 20 different (300 x 300 pixels) image sections. The dashed lines

represent the 0 (min), 1%, 2" (Median), 3" and 4™ (max) quartiles.

Table 3.1 is an error matrix which summarises the binary prediction accuracy between the
algorithm predicted area covered by border cells and the manually measured area for the
FDA (viable cells) and the PI (non-viable cells) images (Section 3.3.4). The combined mean
percentage of true positives and true negatives are 99 % for both the FDA and the Pl images
which indicates an excellent agreement between the predicted and observed border cell areas.
The elapse execution time of the above described algorithm was ~ 3 sec (see Section 3.2.4 for

PC specifications).
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Table 3.1: Error matrix showing the % pixel prediction errors of 5 images for the algorithms
described in Section 3.3.2.

Img 1 Img 2 Img 3 Img 4 Img 5 Xts
FDA
True 0.21 1.4 1.71 1.47 0.52 1.062 t
Positives 0.656
(TP)
True 98.85 97.28 97.32 97.56 98.56 97.914 ¢
Negatives 0.737
(TN)
False 0.15 0.11 0.31 0.24 0.06 0.174 +
Positives 0.101
(FP)
False 0.78 1.21 0.66 0.73 0.86 0.848 t
Negatives 0.215
(FN)
Pl
True 0.51 0.07 0.34 0.37 0.05 0.268 t
Positives 0.201
(TP)
True 99.07 99.26 99.08 99.03 99.72 99.232 ¢
Negatives 0.362
(TN)
False 0.27 0.66 0.41 0.49 0.21 0.408 t
Positives 0.304
(FP)
False 0.15 0.01 0.17 0.11 0.02 0.092 +
Negatives 0.456
(FN)

Figure 3.9 and Table 3.2 summarise the goodness of fit of four probability distribution
models relating the cell (FDA) and nuclei (P1) binary areas obtained from the algorithm to the

number of border cells counted in the training dataset (Section 3.3.5). The log-normal
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distribution was then selected for integration into the algorithm because of its good

performance and ease of programming into the programming language RCPP.
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Figure 3.9: Probability distribution fitting diagnostic plots for A) live (FDA) and B) dead (Pl) RBC populations.



Table 3.2: Summary goodness of fit statistics for live (FDA) and dead (P1) RBC populations.

FDA

Normal Lognormal Loglogistic Gamma
Kolmogorov 0.0692 0.0758 0.0688 0.0618
Smirnov statistic
Cramer von 0.0959 0.1249 0.1268 0.085
Muises statistic
Anderson 0.7728 0.8073 0.9113 0.5923
Darling statistic
Akaike's 1141.116 1134.894 1141.574 1133.992
Information
Criterion
Bayesian 1146.327 1140.104 1146.785 1139.203
Information
Criterion
Pl

Normal Lognormal Loglogistic Gamma
Kolmogorov 0.16 0.1293 0.1217 0.1416
Smirnov statistic
Cramer von 0.4016 0.1918 0.1998 0.242
Mises statistic
Anderson 2.4261 1.061 1.2013 1.3824
Darling statistic
Akaike's 738.422 720.2671 726.5632 723.9357
Information
Criterion
Bayesian 743.6323 725.4774 731.7736 729.1461
Information
Criterion
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Figure 3.10 demonstrates the relationship between the observed and the algorithm predicted
total root length for the proposed method and a range of other software (Section 3.4.3). Table
3.3 is a summary of the goodness of fit statistics obtained for testing the hypothesis that the
slope of the regression line for each software was equal to 1.
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Figure 3.10: Observed vs. Predicted values of TRL for tested automated 2D software and the

proposed algorithm. The solid black line represents the 1:1 identity line.

Table 3.3: Summary statistics for the linear regression model of the form y = x.

Software RSS Sum of Sq F Pr(>F)
Proposed 221.58 2048.4 55.467 8.65E-07***
RootReader2D  1,581.1 10,302 39.092 5.55E-06***
GiaRoots 2,869 30,821 64.45 3.82E-Q7***
ARIA 5,882 47,947 48.908 1.70E-06***
EZ Rhizo 12,567 547.91 0.2616 0.7741
WinRHIZO™ 27,260 53,070 11.681 0.001527**

3.6 Discussion

The algorithms described above enable the detection and quantification of roots and root
hairs of spring barley seedlings grown in the RS (Al), root border cells and root tip geometry
from microscope images (A2) and a more accurate estimate of TRL after washing of the root
system (A3). The validation analysis in Section 3.2.4 enabled an estimation of the error
associated with the proposed algorithm (A1) for detecting and quantifing roots grown in the
RS. The percentage error (x £ s) for the X (HGR) and Y (VGR) root system dimensions
were respectively 9.89 + 10.58 % and 5.37 £ 2.7 % so the approximate percentage error in
RGR was estimated as 15.26 + 13.28 %. As discussed with numerous examples in Section
3.2.1 the majority of softwares used are for manual tracing of the root systems in
minirhizotron studies. As such, if the tolerance for error is judged to be acceptable then the
user can benefit from a significant reduction in the time required for analysing images. The
estimated amount of time required for executing the algorithm was 151.02 + 34.20 sec for
seedlings at 3 weeks of growth. The amount of time it takes for manual tracing of the root
system even with commercial software such as WinRHIZO Tron will clearly be significantly
longer even for an experienced user. Furthermore, the reported timing of the software is
expected to have an inverse relationship with the seedling age as the visible part of the root

system will only cover a fraction of the RS area depending of course on the cultivar and the
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experimental treatment. The operator could simply scan only the section of the visible system
and achieve reductions in both scanning times and image processing times. Finally, it should
be noted that other automated algorithms exist such as the one proposed by Zeng et al.,
(2010). Although, obtaining excellent results for the test images, the resolution was only 640
x 480 dpi. The effective RS root containing area is approximately 11,200 x 18,200 dpi at the
1,600 dpi scanning resolution used. In other words, the previous resolution contains only 0.15
% of the pixels in comparison to our application which was projected to lead to unaceptable
image processing times, assuming that the software does support such an image size. An
alternative option would be to then crop the images and analyse small sections but the
process will be laborious and require significant amounts of time. Similarly, reducing the
image resolution to lower than 1,600 dpi was found to make root hair structures
indistinguishable in the obtained images.

The root hair area is quantified by creating a buffer zone of 0.5 cm around the root and
applying a binary threshold. It should be emphathized here that the estimate of root hair area
is simply an indication of the projected area covered by root hairs. The analysis is restricted
to the focal plane of the image which means that there will always be root hairs that are not
visible, either because they are out focus or are covered by other root material or sand
particles. This is however, an intrinsic limitation of the RS, the analysis is only restricted to
the thin interface of the scanning surface the substrate/root mixture. Furthermore, although a
number of authors tend to consider only clearly visible root hairs (Koebernick et al., 2017;
Chai et al., 2019) in their analysis this was avoided here because it was found to give a
misleading underestimation of the total root hair area, especially at areas of high root hair
density. In theory, a second order derivative based approch for edge detection could work for
segmentating reasonably defined root hair segments but that was later rejected due to the

above reasons.

The proposed RBC and root tip assesment using a microscope based method has the
advantages of allowing both the determination of RBC viability and the assesment of root tip
geometry from the same set of images. The algorithm itself requires approximately 3 seconds

due to the small file size of the images. This enables rapid assessment of two of the root
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microtraits of interest and helps in making the RS data analysis step more efficient. It must be
noted that the procedure of generating random observations of cell area from the underlying
lognormal distribution untill the cell agregate area is covered, is similar in principle to the
approach used by Bengough et al., (2001). The authors estimated cell numbers in root cross
sections by effectively modelling the number of cells with the observed dimensions and
fitting them into a circle of varying radius. This sequence of 2D sections form the basis for
extrapolating to the 3D case of the root cap but the 3D case was not considered here. The
proposed method effectively provides an overview of cell projected area which is then
translated into an unbiased estimate of the number of border cells. However, cells are 3-D
structures and as such a number of them are either overlapping with other cells or are out of
focus although, the latter issue can be reduced by taking more than 1 image to capture the out
of focus cells and subsequently summing them. In terms of the root tip shape, this
geometrical parameter is usually reported to be modelled as an (approximate) ellyptical half-
spheroid (Mckenzie et al., 2013; Colombi et al., 2017). As such the choise of modelling the
root tip cross section as a conic section should be a similar but more flexible approach as an
ellipse is just one case of the conic with the parabola and hyperbola cases allowed for in cases

when the root tip eccentricity exceeds that of the elipse.

Although a range of methods were compared in Section 3.4.3, perhaps the most commonly
reported method for quantifying WRS is the system known as WinRHIZO™ (Regent
Instruments, Québec, Canada). WinRHIZO™ is a commercially available image analysis
system composed of both image acquisition components such as flatbed scanners (although
not required) and a computer program for image processing. It estimates a range of root
morphology and architectural traits (e.g. projected root area), providing significantly more
information for the root system than simply its TRL. Other properties that contributed to
WinRHIZO™ pecoming a standard image processing tool are its ability to detect and correct
for root overlap and produce root diameter distributions for the total root system (Arsenault et
al., 1995). As such, WinRHIZO™ is often used as a reference to evaluate the accuracy of
new image analyses tools (Himmelbauer et al., 2004; Pierret et al.,, 2013). However,
examination of Figure 3.10 and Table 3.3 clearly suggest that it had the poorest performance
with the largest model RSS by some margin. In contrast, the proposed algorithm had the
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smallest model RSS when testing the hypothesis that its regression line was the 1:1 line
(Table 3.3). The reason for the poor accuracy of WinRHIZO™ was probably root
overlapping which results in a significant underestimation of TRL (Bauhus and Messier,
1999). Although, the software uses a root correction factor to correct for this it can be
insufficient when root clusters occur such as the presence of root stumps in the root system
(Wang and Zhang, 2009). More recently Delory et al., (2017), suggested that procedures such
as increasing the contrast between fine roots and background by staining the roots and to
avoid overlapping roots by not exceeding a RLD of 1 cm cm™ can increase the accuracy of
WinRHIZO™, However, the aim is always efficiency and the addition of extra steps will
only make the process of obtaining TRL more complex and time demanding. Of course,
results will always vary between software packages, image acquisition systems and resolution
(Rose and Lobet, 2019) but the validation analysis did try to keep all parameters as similar as
possible. In summary, the proposed method could be potentially useful as an alternative tool

although, there other candidates such as RootReader2D that also performed well.

3.7 Conclusions

This chapter is dedicated to the introduction of three image processing algorithms which
could be integrated into the RS overall measurement methodology and extract estimates of
both macro and micro traits either in situ or ex situ. The first algorithm (A1) allows for
automated root detection and quantification of the root system grown in the RS. This tool also
allows for an estimation of the projected root hair area after the root detection part of the
algorithm is complete, with root hair to root width estimation. The benefits of the algorithm
are that it obtains in situ estimates of root traits in an automated way, offering significant
reductions in image processing times relative to manual tracing methods provided that the
user is willing to accept an error tolerance of around 15 % in their RGR estimate. The second
algorithm (A2) was designed to retrieve estimates of the number of viable and non-viable
root border cells after staining extracted root tips in a compound FDA/PI mixture and
imaging under a fluorescence microscope. This method also quantifies the geometry of the
extracted root tips from the same set of pair images. The very quick image processing times
(3 seconds) offer a very convenient and efficient way to extract information about two of the
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root micro-traits considered in this study. The third algorithm (A3) involves the detection and
quantification of WRS, more specifically its TRL and diameter profile. The motivation
behind the design of this application was to further complement the collection of methods
with a fast (18.27 sec), user friendly, free of cost and of a higher accuracy method relative to
most alternatives. In summary, these custom developed methods will be an essential
component in developing the overall experimental procedure of manipulating the LLWR soil
stressors in the RS and subsequently assessing the root trait response to those treatments for

different cultivars in Chapters 4 and 5.
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4. Constraints to the application of the LLWR

4.1 Introduction

Global food security is a major challenge for current and future generations (FAO, 2009).
Major issues such as drought stress are negatively influencing plant growth, survival and
reproduction (Barnabas et al., 2008) and are responsible for large crop yield reductions (Khan
et al.,, 2015; Ryan et al., 2016). Drought severity is also projected to increase due to
increasing global temperatures (Asseng et al., 2015). Similar concerns also exist for flooding
frequency and severity (Trenberth, 2011), especially considering that approximately 10 % of
cultivated land surface that suffers from poor drainage and waterlogging (Koevoets et al.,
2016). The above climatic effects are exacerbated when one considers the negative
consequences of soil compaction brought upon by heavy agricultural machinery which
increase the mechanical resistance of the soil and, reduces the oxygen availability to roots by
modifying soil pore structure (Lipiec et al., 2012). As such, it is important to understand how
the soil physical conditions of water stress, oxygen stress and mechanical stress interact to

impact root growth (Mohammadi et al., 2010).

The least limiting water range (LLWR) is model which connects the important soil stressors
of penetrometer resistance (a measure of mechanical resistance), lack of oxygen and water
potential to the physiological limits of plant growth (da Silva et al., 1994). The physiological
limits of plant growth are practically interpreted to be limiting values for penetrometer
resistance (PR - 2 MPa), air filled porosity at hypoxic conditions (AFP - 10%), matric suction
at field capacity (FC - a measure of soil water-holding capacity) (0.01 MPa) and matric
suction at the permanent wilting point (PWP - 1.5 MPa). PR, AFP, PWP values represent the
point at which root growth effectively stops and by integrating them in the LLWR model it is
possible to estimate in a computationally feasible way the range of soil volumetric water
concentration for optimum plant growth. FC represents the maximum likely water level under
field conditions, unless geographic condition mean water is held in the soil location.
However, this model makes the (erroneous) implicit assumption that all plants have identical
physiological responses, something which contradicts the fact that plant responses to soil

physical stresses are known to be influenced by a range of root traits (Bengough et al., 2011).
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The variable spectrum of plant root responses to the soil stressors must be considered in order
to reformulate the LLWR.

Root micro-traits are known to have a wide range of functions that are critical for plant root
growth and survival. For example, root hairs are a common anatomical characteristic of most
vascular plants and are known to dramatically increase the total surface area of the root
system (Jones and Dolan, 2012) and, have a major role in the uptake of both nutrients and
water (Gilroy and Jones, 2000). The presence and abundance of root hairs are known to
significantly increase root water uptake (Carminati et al., 2017) by enhancing root-soil
contact (Carminati et al., 2009). Furthermore, they can increase soil adhesion to roots
(Moreno-Espindola et al., 2007; Czarnes et al., 1999), and offer greater mechanical
anchorage to the plant (Bengough et al., 2016; Haling et al., 2014). Root hairs also increase
the ability of roots to penetrate through soil (Haling et al., 2013), which is of great
importance in compact soils (Lynch et al., 2014) and, influence soil structure development
(Koebernick et al., 2017). In a similar manner, the plant root cap offers advantages in root
soil penetration. Experiments involving the removal of the root cap in roots clearly
demonstrated that removal of the root cap reduces the ability of the root to penetrate
compacted soil (lijima et al., 2003; Vollsnes et al., 2010). There is also evidence that the
geometry of the root tip can influence the ability of the root to successfully penetrate the soil
(Colombi et al., 2017). Another root cap associated trait are root border cells defined as “the
cells that disperse into suspension within seconds when root tips are placed into water”
(Hawes, et al., 2000). The root tip excreted mucilage-border cell matrix acts as a lubricant
which reduces the coefficient of root-soil friction (Mckenzie et al., 2013). Roots grown in
compacted soil conditions often respond by increasing the rate of production of the mucilage-
border cell matrix (lijima et al., 2000). As a consequence, root micro-trait assessment is
necessary as they determine the root growth response in a range of LLWR soil associated

conditions.

The purpose of this chapter is to describe the design and implementation of an experimental
protocol whose purpose was to effectively combine the experimental unit described in

Chapter 2 with the methodologies developed in Chapter 3. This will enable the creation of an
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experimental setup which allows for the monitoring of root growth while manipulating the
LLWR soil stressors and ultimately, enable the quantification of a range of root micro-traits
via destructive sampling. The examination of the responses can then be used to explain how

root traits influence root elongation rates for the various LLWR stressors.

4.2 Aims

The main aims could be summarised as:
e Design and implement a multifactorial experiment with factors being the LLWR
stressor variables.
e Assess whether root micro-traits can be measured with the methods described in
Chapter 3.
e Determine the effect that the LLWR stressor variables have on root growth.

e Determine the effect that the LLWR stressor variables have on root micro-traits.

This experiment relied on the manipulation of the LLWR limits of substrate strength and
water availability. As such, to facilitate the description of the experiment the following two

definitions are introduced here for clarity:

Dry Bulk Density (DBD) — a measure of RS substrate density.

Irrigation Event (IRE) — a 3-minute slow dripping irrigation event.

4.3 Methods

4.3.1 Experimental Procedure

The seeds used in this experiment were the same as in Chapter 2, i.e., spring barley (Hordeum
vulgare var. Optic). The germination procedure for the seeds was as described in Section
2.4.5. The experiment took place at the James Hutton Institute, Invergowrie, Dundee DD2
5DA, Scotland, between the start of March and end of April in 2019. The glasshouse growth
conditions were as described in Section 2.4.6. RS scanning was performed every 7 days for a
period of 3 weeks by using the procedure specified in Section 2.4.7.
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The experiment had a 3 by 3 factorial design with the factors being DBD and IRE. In order to
impose the LLWR soil constraints the experiment had a randomized (blocked) structure with
the RS units arranged in two parallel linear rows with 4 treatment replicates. The treatments
for DBD were 1.4, 1.5 and 1.6 g cm™ and the treatments of IRE were 2, 4 and 6 irrigation
events per day (Table 4.1) with an event having a duration of 3 minutes. The original
Hoagland’s nutrient delivery system was replaced with an alternative controlled release
fertiliser, i.e., “Scotts Osmocote”, manufactured by “Everris”. This change was made to
better mimic the slow release of nutrients in soil systems rather than delivering all the
nutrients in single non-continuous water-carried events. This was achieved by individually
grinding to dust 0.3 g of fertilizer with a mortar and pestle for each RS unit and subsequently
mixing the fine powder with the required mass of RS substrate and mixing them thoroughly
prior to RS packing.

At the end of the 3-week period the RS units were opened one at a time and a total of 6
actively growing root tips were selected from the actively growing region, to be stained and
imaged as described in Section 3.3.2. After, the root systems were cut from the RS units and
stored in 50% ethanol:dH20 in tubes. At a later date the roots were washed and imaged using
an A2 flatbed scanner (Epson Expression 1600XL-PRO (300 dpi/82 um — 1500 dpi/15 pm)).

Table 4.1: 3-minute irrigation event timings used in each of the three levels for the
experimental factor IRE.

2 IRE 4 IRE 6 IRE
07:00 v v
09:00 v v
11:00 v v
13:00 v
15:00 v v v
17:00 v v
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4.3.2 Root growth parameters

Root growth parameters and root hair area estimation were measured from the RS images
obtained at 7, 14 and 21 days via analysis using algorithm 1 (see Section 3.2.3). Root border
cells and root tip eccentricity were measured from the optical microscope images obtained
during destructive sampling and analysed by using algorithm 2. In addition to the root growth
parameters defined in Section 2.4.7 additional definitions are introduced here:

Root Hair to Root Ratio (RHtRR): The ratio of the root hair zone width to the root zone

width for unit segments of a length of 10 pixels (mm mm™).

Root Border Cell Count (RBCC): The sum of viable and non-viable root border cells. For
clarity, a root border cell is defined to be a cell that is detached from the root tip when in

solution (n).

Root Tip Eccentricity (RTE): The geometrical eccentricity of the root tip modelled as a conic

section (dimensionless). A higher value indicates a blunter root tip shape.
4.3.3 Statistical Analysis

The statistical analysis of the data was performed using the software R (version 3.5.0). The
statistical significance test used for comparing the arithmetic averages of the experimental
treatments was implemented with the “t2way” function from the R package “WRS2” Wilcox,
(2017). This test is similar to ANOVA but performs better with small sample sizes by using
an adjusted critical value and thus, does not report degrees of freedom. Post-hoc analysis was
performed with the “mcp2atm” function from the same package. The degree of statistical
significance is represented by *, ** and *** corresponding to a p value in the interval of
(0.05, 0.01], (0.01, 0.001] and (0.001, 0] respectively. Principal components analysis (PCA)
was performed with the R basic function “prcomp” and the data was centered and scaled for
the analysis. Visualization of the biplots and 3D PCA plots was achieved with the packages
“ggfortify” and “pca3d” respectively. The graphical outputs were also produced in R with the
“ggplot2” and the “grid” packages.
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4.3.4 LLWR for RS Substrate

In order to put the results of this chapter into context of the LLWR concept the LLWR range
had to be determined for the RS substrate. As such, the RS substrate used was packed into to
a series of cylindrically shaped rings (4.5 mm diameter x 5.0 mm height) to create repacked
soil cores of different dry bulk densities (1.4, 1.5 and 1.6 g cm™) with 4 replicates per
treatment. The gravimetric moisture content of each soil core was first adjusted to 20 % to
give it consistency and make packing of the core easier. Cores were saturated with degassed
water, then subjected to a sequence of different matric suctions (5, 10, 20 and 50 kPa) via the
use of sand and tension tables and their penetrometer resistance and mass were measured at
each stage to estimate the soil strength and the water release curve respectively (Bengough
and Mullins, 1990). The resulting data were then used to estimate the LLWR range by using
the function “llwr” from the R package “soilphysics”. It should also be noted that the reason
for the small upper limit of -50 kPa was because that by -50 kPa ~95% of the pores were air
filled (see Figure 2.10 (C)).

4.4 Results

A statistically significant difference was detected for ARGR (psi = 42.6274, p = 0.0215%)

between the comparison of 1.4 vs. 1.6 g cm™ DBD treatments. This was also the case for
AHGR (psi = 28.1657, p = 0.0438*) and AVGR (psi = 52.0637, p = 0.0357*). This suggests
that the above three variables had significant reductions at a higher substrate density. In
addition to the above, a statistically significant difference was also detected for ARGR (psi =
30.5872, p = 0.0444*) between the comparison of 4 vs. 6 IRE treatments with the higher
water concentration having reduced growth rates. However, for the cases of AHGR and
AVGR there were no statistically significant differences. A statistically significant
interaction effect was detected for ARGR (psi = 33.4462, p = 0.0467*) between the
comparison of 2 vs. 4 IRE treatments in both the 1.4 and 1.6 g cm™ DBD treatments. A
higher ARGR was observed for the lowest water concentration treatments when compared to
medium water concentration treatments at lower densities with the opposite effect being true

for higher densities. A similar interaction effect was also detected for AVGR (psi = 56.5362,
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p = 0.0227*). Furthermore, a second interaction effect was detected for ARGR (psi =
44.7760, p = 0.0097**) between the comparison of 2 vs. 6 IRE treatments in both the 1.4 and
1.6 g cm™ DBD treatments. A higher ARGR was observed for the lowest water concentration
treatments when compared to the largest water concentrations treatments at lower densities
with the opposite effect being true for higher densities. A similar interaction effect was also
detected for AVGR (psi = 66.3187, p = 0.0102*). In general, given the overlap of statistically
significant differences for ARGR and AVGR the results suggest that the growth response
was primarily dominated by vertical instead of horizontal growth.

Table 4.2, is a summary of the rank scores of ARGR, AHGR and AVGR, for each of the
experimental treatments. The largest ARGR value corresponded to the 1.4 g cm™ DBD and
2 IRE treatment while the smallest corresponded to the 1.6 g cm™ DBD and 2 IRE treatment.
In other words, for the driest treatments of two IRE the DBD value determined the ARGR
with a higher density slowing down growth rates. A similar pattern appears to exist for the
cases of AHGR and AVGR with the exception that the 2 IRE and 1.4 g cm™ DBD treatment
was ranked 2" instead of 1% for the case of AHGR. In summary, it will appear that both
horizontal and vertical root growth rates responded similarly in each treatment as did the
overall measure of root growth. Figure 4.1, summarises the root values for ARGR, AHGR
and AVGR obtain by application of Al and demonstrate the relationships between the
various DBD and IRE experimental treatments. Figure 4.2, displays the actual root lengths as

a function of time for the above described experimental treatments.
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and grouped by DBD for root (A) Vertical length (B) and Horizontal length (C).
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Figure 4.2: Horizontal and vertical root lengths of spring barley grown for a period of 21
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Table 4.2: Root growth rankings for ARGR, AHGR and AVGR averages across DBD and

IRE treatments.

DBD IRE ARGR AHGR AVGR
(g cm®) (mm day™?) (mm day™?) (mm day™?)
2 8.98 (1) 5(2) 11.58 (1)
14 4 7.34 (2) 6.1 (1) 8.16 (2)
6 474 (7) 3.86 (5) 5.31 (8)
2 5.44 (4) 3.75 (6) 6.55 (4)
15 4 5.31 (6) 4.04 (3) 6.14 (6)
6 454 (8) 3.29 (8) 5.35 (7)
2 3.23 (9) 3.2 (9) 3.25 (9)
16 4 6.37 (3) 4.01 (4) 79(3)
6 5.38 (5) 373 (7) 6.45 (5)

Similar to the root growth rates figures above, Figure 4.3 summarises the average values for
RHtRR and demonstrate its relationships between the various DBD and IRE experimental
treatments. Figure 4.4, shows the observed RHtRR values as a function of time for all the

treatments.

Global statistical comparisons for RHtRR across different treatments of DBD (F = 3.1590, p
= 0.257) and IRE (F = 0.3193, p = 0.861) failed to detect any simple main effects.
Furthermore, global testing failed to detect any statistically significant interaction effects (F =
1.4971, p = 0.861).

Table 4.3, is a summary of the rank scores of RHtRR, for each of the experimental
treatments. The largest RHtRR value corresponded to the 1.6 g cm® DBD and 6 IRE
treatment while the smallest corresponded to the 1.5 g cm™ DBD and 6 IRE treatment. This
suggests that for the wettest treatments of 6 IRE the DBD value determined the RHtRR with
a lower density reducing the values. However no statistically significant effects were

observed and the average difference among the treatments was 0.63.
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Table 4.3: Rankings for RHtRR averages across DBD and IRE treatments.

DBD IRE RHtRR

(g cm™) (mm mm™)

2.35 (5)

1.4 2.17 (8)

2.35 (6)

243 (4)

1.5 2.32 (7)

2.16 (9)

2.6 (2)

16 2.56 (3)

o Bl N O A N O MDD

2.79 (1)

Figure 4.5, demonstrates the RBCC values across DBD (A) and IRE (B) treatments.

Global testing for RBCC indicated statistically significant differences across the DBD (F =
8.0872, p = 0.047*) treatments but not for the IRE treatments (F = 0.8362, p = 0.68) and their
interaction effects (F = 3.9328, p = 0.528). Post hoc testing indicated statistically significant
differences for RBCC between the highest DBD treatment (1.6 g cm™) and the lower DBD
treatments of 1.4 g cm™ (psi = -62, p = 0.0246*) and 1.5 g cm™ (psi =-56.75, p = 0.0325%)
with higher RBCC values being observed at higher substrate density treatments.

Table 4.4, is a summary of the rank scores of RBCC, for each of the experimental
treatments. The largest RBCC value corresponded to the 1.6 g cm™ DBD and 6 IRE
treatment while the smallest corresponded to the 1.4 g cm™ DBD and 6 IRE treatment. This
suggests that for the wettest treatments of 6 IRE the DBD value determined the RBCC with a

lower density reducing the number of RBCs.

The reason RBCC was defined as the sum of viable and non-viable cells was because for

most cases the non-viable cells were almost entirely the entire population of cells present.
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Figure 4.5: RBCC of spring barley at the end of a 21-day growth period as a function of IRE
and grouped by DBD.
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Table 4.4: Rankings for RBCC averages across DBD and IRE treatments.

DBD (g cm”) IRE RBCC

42 (4)

1.4 35 (7/8)

27 (9)

37 (6)

15 35 (7/8)

38 (5)

50 (2)

1.6 46 (3)

| B N O A N O &M DN

70 (1)

Figure 4.6, demonstrates the RTE values across DBD (A) and IRE (B) treatments. Global
testing indicated statistically significant differences across the DBD treatments (F = 11.9108,
p = 0.013*) but not for the IRE treatments (F = 0.0644, p = 0.971) and their interaction
effects (F = 4.0423, p = 0.518). Post hoc testing indicated statistically significant differences
for RTE between the highest DBD treatment (1.6 g cm) and the lower treatments of 1.4 (psi
= -3.8039, p = 0.0048**) and 1.5 (psi = -3.2055, p = 0.0124*) with the higher substrate
densities having more eccentric root tip geometries suggesting a less curved root tip shape.

Table 4.5, is a summary of the RTE associated results from the statistical comparisons across
different treatments of DBD and IRE. The largest RTE value corresponded to the 1.6 g cm™
DBD and 2 IRE treatment while the smallest corresponded to the 1.4 g cm™ DBD and 2 IRE
treatment. This suggests that for the driest treatments of 2 IRE the DBD value determined the
RTE with a lower density reducing the RTE.

137



w
1

Root Tip Eccentricity

(2T =

Irrigation

DBD (gcm™®) B3 14 [+ 15 16

Figure 4.6: RTE of spring barley at the end of a 21-day growth period as a function of IRE
and grouped by DBD.
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Table 4.5: Rankings for RTE averages across DBD and IRE treatments.

DBD (g cm”) IRE RTE

1.42 (9)

1.4 161 (5)

1.58 (6)

151 (7)

1.5 1.45 (8)

2.24 (4)

3.05 (1)

1.6 2.97 (2)

| B N O A N O &M DN

2.39 (3)

In summary, plant root ARGR, AHGR and AVGR were higher for the lowest bulk density
treatments in comparison to the highest bulk density treatments. A medium amount of water
gave higher ARGR when compared to the wettest treatments. Furthermore, at the highest
bulk density treatments increasing amounts of water had a positive effect on ARGR and
AVGR. In contrast, at the lowest bulk density treatments the driest treatments had a higher
ARGR and AVGR. Root hair area did not appear to be responsive to either experimental
factor of bulk density and water. RBCC increased at the highest bulk density treatments but
did not vary significantly with water quantity. RTE also had similar effects with RBCC with
the highest bulk density treatments having a higher RTE resulting in less curved root tips but,

the amount of water did not have a significant influence on root tip shape.

To assess the level of correlation between the different root traits principal components
analysis was applied, using the ARGR, AVGR, AHGR, RHtRR, RBCC and RTE
variables. Figure 4.7, is a series of PCA biplots for all possible combinations of the first three
principal components. Table 4.6, is a summary of the variance explained by each principal
component and also of the correlations between the variables and the components. Inspection
of the above-mentioned figure and table suggest the following conclusions based on the

relationship of PC1 and PC2 capturing a total of 64.34 % of variation:
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1. Root hair to root ratio was positively correlated with root border cell count.
2. Root hair to root ratio and root border cell count were not correlated with root tip
geometry and average root growth rate.
Root tip geometry and average root growth rate were negatively correlated.
4. Average root growth rate was slightly more correlated with average vertical growth
rate in comparison to average horizontal growth rate.
5. No evidence of clustering for each treatment category.
Figure 4.8, demonstrates a snapshot of a 3D PCA plot rotated at 90 °. This plot captures a
larger amount of variation by integrating the 3 PCA component accounting for 79.99 % of

the total variation. Examination of this figure suggests:

1. Root hair to root ratio, root border cell count and root tip geometry were not
correlated between them and with average root growth rate.

2. Average root growth rate was slightly more correlated with average vertical growth
rate in comparison to average horizontal growth rate.

3. Some evidence of a separation of the 1.6 g cm™ DBD from the other DBD treatments.
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Table 4.6: Principal Components Analysis (PCA) of component importance, correlations and

statistical significance.

Importance of components

PC1 PC2 PC3 PC4 PC5 PC6
Standard 1.638 1.0858 0.9688 0.8887 0.6411 1.58E-10
deviation
Proportion  0.447 0.1965 0.1564 0.1316 0.0685 0.00E+00
of variance
Cumulative 0.447 0.6434 0.7999 0.9315 1 1.00E+00
Proportion

Data/Components Correlations

PC1 PC2 PC3 PC4 PC5 PC6

ARGR -0.5962 0.0854 -0.0624 0.1572 -0.1904 -0.7565

AHGR -0.5047 -0.1471 0.0731 0.1417 0.8112 0.2004

AVGR -0.5621 0.1511 -0.0994 0.1454 -0.4926 0.6225

RHtRR -0.0981 0.4947 0.8064 -0.3085 0.0099 1.67E-11

RBCC -0.0194 0.6819 -0.573 -0.3908 0.2315 -4.31E-
11

RTE 0.2525 0.4884 0.0468 0.8284 0.0968 -3.40E-
11

3-way statistical significance tests (F, p)

PC1 PC2 PC3 PC4 PC5 PC6
DBD 8.9205, 21.1522, 0.0706, 0.8475, 2.0326, 0.821,
0.036* 0.001* 0.967 0.674 0.409 0.681
IRE 4.384,0.16 1.2625, 0.0098, 1.2832, 0.9038, 4.9008,
0.562 0.996 0.554 0.663 0.125
DBD:IRE  11.4852, 2.3567, 1.5237, 5.1051, 10.1474, 1.5257,
0.094 0.734 0.856 0.398 0.136 0.854
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Figure 4.9 (A), illustrates the predicted LLWR range for the RS substrate. The figure
demonstrates that the LLWR area can’t be defined as the regression lines corresponding to
the limiting values of aeration, field capacity and permanent wilting point are identical and
correspond to 0. Further investigation revealed that the reason for this was mainly the poor fit
in Busscher’s PR model (Figure 4.9 (B)) with an r? value of almost 0 which was estimated
with the function “fitbusscher” from the same “soilphysics” package. The fit for de Silva’s
model (Figure 4.9 (C)), was much better with an r? value of almost 1. Nevertheless, as the
LLWR model uses both sub-models then the LLWR is clearly erroneous for our data and no

predictions can be made.

The soil strength (Figure 4.10 (A)) and water release (Figure 4.10 (B)) curves of cores filled
with RS sand, packed at 1.4, 1.5 and 1.6 g cm™® DBD are shown below. Table 4.7
summarises the established relationship (see Figure 2.10) between volumetric water content,
degree of saturation and air-filled porosity at a matric potential range of -1 - -100 kPa for the
4 mm treatment of “Flourite Black” packed at 1.5 g cm™. The degree of saturation was
estimated to be 36, 27 and 16 % for the 6, 4 and 2 IRE treatments respectively, with the
values being almost identical across DBD treatments. This was achieved by weighting a
subsample (n = 2) of the RS units at random times between 07:00 — 17:00 throughout the 3-
week growth period and subsequently averaging the values obtained for each sample. Based
on the established water release curve of the RS substrate (Table 4.7) the above-mentioned
values will respectively correspond to a matric potential (V) of -5, -7 and -10 kPa and an air-
filled porosity of 26.47, 28.81 and 32.34 %. The PR mean values corresponding to -5, -7 and
-10 kPa matric potential were respectively 0.9377, 1.4743 and 2.2792 MPa.

Finally, Table 4.8 is a summary of whether a statistically significant effect was detected for
each of the measured variables and the PC components for the experimental factors used and

their interaction.
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Figure 4.9: Least Limiting Water Range for RS substrate (A), with sub models fitted for

Buescher’s PR model (B) and Silva’s volumetric water content model (C).
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Table 4.7: RS sand volumetric water content (0), degree of saturation (s) and air-filled

porosity (fa) corresponding to different matric potential (¥) for cores packed at a density of

1.5gcm=,

¥ (kPa) 6 (%) s (%) fa (%)

-1 32.91 +3.33 81.22 + 8.66 7.39 + 3.67
-5 13.02 £ 3.23 36.42 +12.51 26.47 +4.03
-10 5.68 £1.32 15.92 £ 4.49 32.34 +3.31
-20 4.62 £ 1.08 1248 £ 3 34.66 + 2.07
-50 2.45+0.98 6.41 + 2.57 37.29 +2.38
-100 1.56 +0.16 4,14+ 0.6 38+1.41

Table 4.8: Statistically significant effects summary for variables and PC components.

DBD IRE Interactions
ARGR v v v
AVGR v X v
AHGR v X X
RHtRR X X X
RBCC v X X
RTE v X X
PC1 v X X
PC2 v X X
PC3 X X X
PC4 X X X
PC5 X X X
PC6 X X X
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4.5 Discussion

Bengough et al., (2011), suggested maize root elongation rate is halved at a matric potential
of -500 kPa and a PR value of 2 MPa. In terms of matric potential only a fraction of that
magnitude was achieved in this study compared to the reported value in maize. The reason
for this narrow range in ¥ and large range in 0 was clearly due to the dominance of the large
pores in the RS substrate (see Section 2.5.5). Nevertheless, the gradual decrease in 0 offered a
spectrum of decreasing water availability and enabled for the manipulation of water stress
although it was restricted on the macro-pore scale, with a 23% reduction in ARGR between
the 2 and 6 IRE treatments. As for the estimated PR range a spectrum was also ranging from
0.9377 to 2.2792 MPa. This time the reduction in ARGR was 29 % between the 1.4 and 1.6 ¢
cm DBD treatments. Again, this reduction in root growth indicates that an increase in the
DBD translates to an increase in mechanical impedance by reducing root elongation rates.
The findings obtained were thus, in agreement with the general trend of an inverse
relationship between DBD and root elongation rates (Jin et al., 2013). As for the 50 %
reduction in growth LLWR associated threshold, i.e., ARGR = 4.49 mm day™, this was
achieved for the treatments of 1.5 g cm™ DBD at 6 IRE (4.54 mm day?, rank = 8) and for 1.6
g cm™> DBD at 2 IRE (3.23 mm day}, rank = 9). It is interesting that at medium density the
slowest growth rate was observed for the most wet treatments but for high density the slowest

growth rate corresponded to the driest treatments, implying an interaction effect (Table 4.8).

Bengough et al., (2016), concluded root hairs enhanced root penetration ability in low density
(1.0 — 1.2 g cm™®) soils but not in higher bulk density (1.5 g cm™). In a similar manner, no
significant differences could be detected for the RHtRR root trait across the 1.4 — 1.6 g cm™
bulk density range tested (p = 0.257). A potential explanation of this effect stems from the
fact that the PR values for the treatments were not sufficiently distinct at -5 kPa although they
were somewhat more distinct at -10 kPa. Nevertheless, no clear conclusion could be made as
to the true magnitude of the difference among the treatments due to the inherent variability, at
least for a matric potential range of 0 — 50 kPa. Although, the difference was large enough to
induce a statistically significant difference in terms of ARGR this effect was perhaps not
enough to induce a change in root hair area. Root hairs are also critical for solute absorption
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(Carminati et al., 2017) and as such, intuitively at least, one might expect a reduced RHtRR
for the higher IRE treatments. However, there was no evidence of a statistically significant
difference between the IRE treatments (p = 0.861). Results from Haling et al., (2014), also
suggest a differential response in root hair length among different strength and water
treatments. Although, root hair length is not reported here a differential response between
treatments will have affected the estimates of root hair area which will in turn affect RHtRR
but, no such variation was detected here. However, it must be considered that the minimum
and maximum PR values of the treatments used by Haling et al., (2014), were 0.03 and 4.45
MPa respectively so the range used was wider than the range used here, i.e., 0.9377 to 2.2792
MPa. In a similar manner, the high and low water concentration treatments had a matric
potential of around -7.5 and -40 kPa respectively with a significantly lower matric potential
limit in comparison to the one used in this study, i.e., -10 kPa. This could help explain why

the corresponding RHtRR responses were not detected in the results reported here.

lijima et al., (2003), reported that the effect of compaction on the rate of cell division in the
cap meristem was a positive one for compacted roots. The authors estimated the sum of
viable and non-viable cells to be 4960 and 3540 in compacted (PR = 3.8 MPa) and loose (PR
= 0.2 MPa) sand respectively. Although the lower and upper values of PR used in this study
were larger and smaller respectively, the range of PR values used was sufficient to induce a
similar response. Results from Somasundaram et al., (2009), further support the conclusion
that a more compact soil increases RBC production. This effect was also detected here with
the 1.6 g cm™ DBD treatment having a statistically significant higher RBCC relative to the
1.4 (p = 0.02464*) and 1.5 (p = 0.03254*) treatments. The same authors also examined the
interaction between soil density and water and found a higher RBC production for wet soil
relative to dry soil. However, our results are not in agreement with this conclusion (F =
0.8362, p = 0.68). They also detected an interaction effect between soil mechanical
impedance and soil water status which suggested that the number of RBCs increased with soil
moisture content in compact soil treatment. However, there was no evidence of such an
interaction effect in this study (F = 3.9328, p = 0.528). It should also be noted, that the
RBCC values reported are in truth an underestimation of the true values. This is because a
portion of the cells will have adhered to the adjacent sand particles and the acrylic surface.
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Furthermore, some detached RBCs will also inevitably leach towards the lower parts of the
RS unit. This could potentially be assessed at some point in the future by collecting the

solutes at the bottom and the adjacent sand particles for analysis.

In terms of RTE, a statistically significant difference was detected among DBD treatments (F
=11.9108, p = 0.013*). More precisely, the 1.6 g cm™ DBD treatment differed with both the
1.4 (p = 0.00482**) and the 1.5 (p = 0.013*) treatments. The findings reported here are in
agreement with those reported by lijima et al., (2003), who found maize root caps were
reduced in size under a higher mechanical impedance. Colombi et al., (2017), reported that a
smaller tip radius-to-length ratio accounted for an increased root elongation rate under high
(145 — 1.6 g cm™®) and moderate (1.2 g cm™®) soil DBD across 14 Swiss winter wheat
(Triticum aestivum) cultivars. lijima et al., (2003), also found that the removal of the root cap
in maize resulted in blunter shape for the decapped root tip which had a higher penetration
resistance (0.52 MPa) relative to the intact root cap (0.31 MPa). This is because a blunter root
tip is known to have a more spherical deformation pattern as opposed to a cylindrical one

thus, enhancing the penetration force (Greacen et al., 1968).

This study had limitations, some of which could be overcome but others could not. For
example, an intrinsic limitation was the inability to measure the RS substrate matric potential
and instead relying on the water release curve and weighting of the RS units. It must be
considered that although this method was valid at the start of the experiment it will probably
underestimate matric potential at later stages of root growth when the mass and the water
requirements of the root system increase and these factors cannot be separated from the
overall RS unit. Unfortunately, preliminary tests indicated that assessing the matric potential
of the sand was not possible due to the poor connectivity between the sand and the mini-
tensiometer’s probe as the RS substrate layer thickness was only 4 mm and raised
uncertainties as to whether the estimates provided were true. An alternative option would
have been to simply flood the rhizotron to varying degrees. However, this option was avoided
due to difficulties in achieving and maintaining viable root growth rates in the thin sand layer.
Furthermore, similar setups examining the effect of waterlogging on plants indicated that the

effect of waterlogging on root growth was to simply halt its development beyond the
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waterlogged layer (Dresball et al., 2013). This effect in conjunction with the study having a

duration of 3 weeks was the reason behind the use of irrigation events.

One limitation that could be overcome in future studies is the issue of the sample size.
Practical limitations allowed for a maximum sample size of 4 minirhizotrons per treatment.
This will inevitably limit the accuracy of statistical estimation as factorial experiments
normally require a minimum sample size of 10 (Everitt, 1975). Other authors also further
suggest that in addition to the previous recommendation, that the subjects-to-variables ratio
should be no lower than 5 (Bryant and Yarnold, 1995). However, this limitation, could be

addressed in other experiments where time and resource availability is not as limited.

Finally, there was a fundamental problem in designing this study as no reports of this type
existed at the start of this work. To the author’s knowledge only partial comparisons could be
made, mostly in relation to root elongation rate with PR and matric suction but not
accounting for the variation in root-micro traits when both factors are being manipulated
except, for the case of RBC examined by Somasundaram et al., (2009) but for maize plants
not barley. At the same time, it is this lack of empirical data which motivated the design and

implementation of this novel experiment always considering the limitations discussed above.

4.6 Conclusions

Minirhizotron units have being used widely in the past to assess root growth (Johnson et al.,
2001) and in some cases even succeeded in measuring fine root traits such as root hairs in situ
(Koebernick et al., 2017). However, to the author’s knowledge, this is the first-time that
automated imaging-based methods were integrated into an experimental protocol which
enabled both the manipulation of the LLWR soil stressors and the measurement of fine root
traits. The minirhizotron unit was successfully used to induce a spectrum of root growth
responses across the DBD and IRE treatments required to assess the LLWR responses.
Furthermore, in situ estimates of root hair area and ex situ estimates of root border cells and

root tip geometry were successfully captured.

ARGR values were statistically significantly higher for the lower DBD treatment of 1.4 g
cm™3 when compared to the highest DBD treatment of 1.6 g cm™. In a similar manner, ARGR
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was higher for the medium IRE treatment of 4 when compared to the wettest IRE treatment
of 6. The RHtRR values were unresponsive to both the experimental treatments of DBD and
IRE. A higher DBD treatment (1.6 g cm™) also increased the values of both RBCC and RTE
in comparison to the lower DBD treatments (1.4 and 1.5 g cm™®). The same effect was not
observed in relation to IRE treatments. There was also no strong evidence of a correlation
between the root micro-traits and root growth rates and between the root micro-traits

themselves across the experimental treatments.

In conclusion, this chapter demonstrated by using the barley cultivar “Optic” that the
suggested experimental protocol can be successfully used to measure root micro-traits in
barley under various LLWR soil stressor treatments. This in turn will enable the design of a
larger scale experiment which will attempt to assess if any differences in root micro-traits
exist across different genotypes of barley. The measured responses will in turn, allow for an
assessment of how the root micro-traits influence the LLWR boundaries.
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5. Variation in root traits associated with LLWR

5.1 Introduction

The majority of modern crop plants have high-water requirements and lack drought tolerance
(FAO and ITPS, 2015). However, the costs associated with the supply of irrigation water are
increasing (White et al., 2013). In addition, the issue of water availability will be exacerbated
by climate change which will have a wide spectrum of effects on crop plants (Srivastava and
Misra, 2018). Combating the above-mentioned issues while trying to increase food
production for an ever-increasing global population is a major challenge (FAO, 2009).
Furthermore, other issues such as soil compaction due to heavy machinery use in modern
agricultural practices increase the mechanical resistance of the soil and reduce its porosity
with corresponding reductions in the amount of oxygen available to plant roots (Lipiec et al.,
2012). As such, several models have attempted to model the complex and dynamic
relationship between the three soil stressors of soil mechanical impedance, water availability
and oxygen consumption in relation to root growth (Keller et al., 2015; Bartholomeus et al.,
2008).

One example of a model that attempts to describe the above mentioned relationship is the
least limiting water range (LLWR) model (da Silva et al., 1994). This aims at integrating the
three soil stressors mentioned above in a single index-like variable within the context of plant
growth. It is a mathematically quantitative model, computationally feasible and clearly
integrates important soil variables such as dry bulk density, porosity, matric suction and soil
strength (usually measured as penetrometer resistance). The plant component of the model is
considered in the form of a set of 4 limiting values representing the point where root growth
effectively stops. Those values are penetration resistance (PR - 2 MPa), air filled porosity at
hypoxic conditions (AFP - 10%), matric potential at field capacity (FC - a measure of soil
water-holding capacity) (0.01 MPa) and matric suction at the permanent wilting point (PWP -
1.5 MPa). The resulting output is a range of soil volumetric water concentration within which
plant growth is believed to be optimum. Unfortunately, the model is limited by not

considering that the plant responses to soil physical stressors are strongly influenced by the
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range of root traits that the plant has (Bengough et al., 2011). For the model to become more

accurate, it must take account of the effect of the root traits.

Chapter 4 introduced an experimental protocol which effectively integrated the minirhiztron
system (RS) developed in Chapter 2 and the imaging techniques of Chapter 3. It was
demonstrated that the experimental procedure allowed the manipulation of LLWR soil
stressors and succesfully induced a spectrum of responces on the barley varient Optic, in
terms of root growth as an increase in substrate bulk density and water availability caused a
corresponding increase in root growth rates similar to what was reported in the literature, e.g.,
Jin et al., (2013). The root micro-traits were then successfully imaged and quantified by using
a mixture of in situ and ex situ techniques and the differences between the treatments were

assessed.

As a consequence of the above, the aim of this chapter was to finally demonstrate that the
procedure could be used to capture the genotypic variability in root traits of spring barley.
This was achieved by applying the previously mentioned protocol to a total of 4 spring barley
genotypes grown in the RS system. The spring barley (Hordeum vulgare) varieties chosen for
this experiment were Optic (1), KWS Sassy (2), Derkado (3) and Golden Promise (4). These
varieties were chosen based on results from Newton et al., (2020), from two field-grown
plant trials involving all four of the above mentioned varieties. In the 2013-2015 trial Optic
had a 15.17 % reduction in yield when switching from inversion to non-inversion tillage
practises while Golden Promise experienced only a much smaller 4.17 % reduction in yield,
suggesting that it’s much more adapted to compacted soil conditions. Derkado also had a
smaller reduction in yield (10.76 %) suggesting it’s also better adapted to non-inversion
tillage relative to Optic but, Optic had a higher yield (10 %) under inversion tillage
suggesting that Optic performed better under less compacted conditions. In the 2016 trial
Optic experienced a 20.14 % reduction in yield but KWS Sassy performed marginally better
(17.16 %). However, KWS Sassy also had a higher yield (10 %) relative to Optic under
inversion tillage suggesting it also performs better under less compacted conditions.

The responses obtained in terms of root growth rates and root micro-traits were then
measured with the established methodologies and the extent to which root growth could be
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explained as a function of the root micro-traits was investigated. This was done in order to try
to answer the primary research question of this thesis, i.e., if root trait variation due to
genotypic differences could explain the relative performance of plants in different soil

conditions.

5.2 Aims

The main aims could be summarised as:

e Demonstrate the validity of the experimental protocol as a plant phenotyping platform
by applying the protocol to 4 different barley cultivars.

e Determine the effect that the LLWR stressor variables have on root growth for each
cultivar.

e Determine if root trait variation can explain potential differences between cultivars in
terms of root elongation rates

e Assess if a root micro-trait based function model is an appropriate descriptor of the
root growth responses.

5.3 Methods

The germination procedure for the seeds was as described in Section 2.4.5. The experiment
took place at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, starting
in August 2019 and completing in mid-March 2020. The glasshouse growth conditions were
as described in Section 2.4.6. RS scanning was performed every 7 days for a period of 3
weeks by using the procedure specified in Section 2.4.7. The experiment was a three-way, 4 X
2 x 3, ANOVA with the factors being Variety, DBD and IRE. Table 5.1, is a summary of the
year of introduction, pedigree and breeder of the varieties used. The experiment itself had
once again a randomized (blocked) structure with the RS units arranged in two parallel linear
rows with 4 treatment replicates. The treatments for DBD were 1.4, and 1.6 g cm™ and the
treatments of IRE were 2, 4 and 6 irrigation events per day with an event having a duration of
3 minutes. As described previously in Section 4.3.1 this experiment also made use of a

controlled release fertiliser (Scots Osmocote) for nutrient delivery by grinding it and
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subsequently mixing it with the RS substrate prior to RS packing. RS scanning and

destructive sampling methods used in this experiment were as described in Section 4.3.1.

Table 5.1: Year of introduction, pedigree and breeder information for the varieties used in

this experiment.

Variety Year Pedigree (Newton et Breeder
al., 2020)
Optic 1992 (Corniche*Force)*Chad New Farm Crops
Ltd. (Syngenta)
KWS Sassy NA Publican*Concerto KWS
Derkado 1988 Lada*Salome VEB Berlin
Golden Promise 1968 Maythorpe Gamma- Zenica
Ray Mutant

In summary, the experiment described here had an identical methodology to the one
described in the previous chapter except for two points:

1) The 1.5 g cm™ DBD treatment was removed to make the number of treatments
manageable.
2) The experiment was split in 4 batches with each batch consisting of a single replicate
from all the treatments, i.e., 4 X 2 x 3 = 24 RS units. Each successive batch was setup
2 weeks apart from each other so that everything could become manageable due to its
scale.
The statistical analysis performed was identical to the one described in Section 4.3.3. In
addition, the three-way ANOVA test function “t3way” was used from the same R package.
The correlation coefficient reported here is “percentage bend variance” implemented with the
function “pbcorp” using defult parameters, from the same R package. Principal components
analysis (PCA) was performed with the R basic function “prcomp” and the data was centered

and scaled for the analysis.
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5.4 Results

In order to determine the treatment effects on the varieties chosen the RS units were scanned
every 7 days for 21 days. Figure 5.1, displays the observed vertical root lengths as a function
of time across a 3 week period. The graphs are grouped by the IRE factor, column arranged
by the DBD factor and row arranged by the Variety factor. Figure 5.2, shows the observed
horizontal root length in a format similar to Figure 5.1. Figure 5.3, is a series of graphs
which summarise the AHGR (A), AVGR (B) and ARGR (C) values against the IRE
treatments and grouped by the DBD factor with the 1%, 2" 3" and 4™ row graphs

corresponding to the Optic, KWS Sassy, Derkado and Golden Promise varieties respectively.

No statistically significant 3-way interaction effects were detected among the factors of
Variety, DBD and IRE (F = 9.4748, p = 0.2990). Furthermore, no statistically significant 2-
way interactions were detected between DBD and IRE (F = 5.8456, p = 0.077), Variety and
IRE (F = 2.6050, p = 0.895) and Variety and DBD (F = 1.859, p = 0.638). In terms of main
effects, no statistically significant effect was detected for the factor of Variety (F = 0.3680, p
= 0.96). However, statistically significant main effects were detected for the factors of DBD
(F = 165.2779, p = 0.0001**) and IRE (F = 78.6173, p = 0.001*). Subsequent pair-wise
comparisons for the IRE treatments found that all pairwise comparisons differed in a
statistically significant way with an increase in IRE corresponding to an increase in root
growth rates. A similar relationship was also found for both AVGR and AHGR. The only
statistically significant effects were the main effects of DBD for AVGR (F = 93.5490, p =
0.0001**) and AHGR (F = 38.9383, p = 0.001*) and also, of IRE for AVGR (F = 20.8185, p
=0.0001**) and AHGR (F =15.1172, p = 0.003*). A lower DBD had a positive effect on the
root growth rates of all three variables. As such, the best performing treatment was for the

lowest DBD treatment and the highest IRE treatment.

Table 5.2, is a summary of the average values of ARGR, AVGR and AHGR for each
experimental treatment and also their rank among the varieties (rows). However, no
discernible patterns to the growth rates are identified as the ranks are randomly distributed

and more importantly, the differences among the values are very small with a mean ARGR
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treatment difference of 0.831 mm day™ suggesting no practical difference when comparing

the varieties.
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Figure 5.1: Vertical root length summary graphs for 21 days grouped by IRE treatment for
1.4 (X1) and 1.6 (X2) DBD (g cm?) treatments. The varieties used were Optic (A), KWS
Sassy (B), Derkado (C) and Golden Promise (D).
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1.4 (X1) and 1.6 (X2) DBD (g cm™) treatments. The varieties used were Optic (A), KWS
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160



Average Vertical Growth Rate (mm day™")

A1 (Optic)

_—l

A2 (KWS Sassy)

+

A3 (Derkado)

A4 (Golden Promise)
= — —t —_—
2 4
Irrigation

DBD (gcm™®) B3 14

1.6

161



Average Horizontal Growth Rate (mm day‘1)

B1 (Optic)

——

B2 (KWS Sassy)

=

B3 (Derkado)

B4 (Golden Promise)
— == ==
2 4
Irrigation

DBD (gcm™®) B3 14

1.6

162



C1 (Optic)

10 —— —_— -
5.
0- T
_ C2 (KWS Sassy)
T> 20
3 151
E 0] e S —
o 5
0 :
<
s C3 (Derkado)
(’5 20
S 151
o
X 1o —_—— —— —
> s
o
g o .
< -
C4 (Golden Promise)
201
151
5.
O- T T T
2 4 6
Irrigation

DBD (gcm™) B3 14 16

Figure 5.3: Average horizontal (A), vertical (B) and root (C) growth rates vs. IRE treatment
grouped by DBD treatments. The varieties used were Optic (X1), KWS Sassy (X2), Derkado
(X3) and Golden Promise (X4).
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Table 5.2: Root growth rankings for ARGR, AHGR and AVGR averages across DBD and
IRE treatments for the varieties Optic, KWS Sassy, Derkado and Golden Promise. Values in

parenthesis are the rank order in any row.

DBD IRE Optic KWS Sassy  Derkado Golden
(g cm?) Promise
ARGR (mm day™?)
2 9.3 (1) 9.28 (2) 9.12 (3) 8.88 (4)
1.4 4 9.39 (4) 9.69 (3) 9.86 (2) 10 (1)
6 10.97 (1) 10.75 (2) 10.31 (3) 10.15 (4)
2 5.02 (4) 5.63 (3) 6.57 (2) 6.79 (1)
1.6 4 8.08 (1) 7.83(2) 7.47 (3) 7.12 (4)
6 8.22 (4) 8.46 (3) 8.61 (2) 8.63 (1)

AVGR (mm day™)

2 11.33 (3) 11.19 (4) 11.83 (1) 11.67 (2)
1.4 4 12.25 (3) 11.42 (4) 12.62 (2) 12.67 (1)

6 13.24 (2) 13.78 (1) 12.46 (3) 12.31 (4)

2 6.06 (4) 7.11 (3) 7.9 (1) 7.7 (2)
1.6 4 10.07 (1) 9.64 (2) 9.09 (3) 8.83 (4)

6 10.19 (3) 10.79 (2) 11.09 (1) 10.06 (4)

AHGR (mm day™)

2 6.18 (2) 6.35 (1) 4.96 (3) 4.6 (4)
1.4 4 5.01 (4) 7.03 (1) 5.63 (3) 5.91 (2)

6 7.5 (1) 6.11 (4) 7.02 (2) 6.82 (3)

2 3.41 (3) 3.35 (4) 4.54 (2) 5.4 (1)
1.6 4 5.01 (2) 5.05 (1) 4.98 (3) 4.5 (4)

6 5.21 (2) 4.9 (3) 4.81 (4) 6.43 (1)
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Figure 5.4, displays the RHtRR values across 21 days. The graphs are grouped by the IRE
factor, column arranged by the DBD factor and row arranged by the Variety factor. Figure
5.5, is a series of graphs which summarise the average RHtRR values against the IRE
treatments and grouped by the DBD factor with the 1%, 2" 3" and 4™ row graphs

corresponding to the Optic, KWS Sassy, Derkado and Golden Promise variety respectively.

No statistically significant 3-way interaction effects were detected among the factors of
Variety, DBD and IRE (F = 10.9797, p = 0.168). Furthermore, no statistically significant 2-
way interaction effect was detected between Variety and IRE (F = 6.5353, p = 0.458), Variety
and DBD (F = 1.7942, p = 0.635) and DBD and IRE (F = 3.0362, p = 0.237). In addition to
the above, no statistically significant main effects were detected for the factors of Variety (F
= 3.8307, p = 0.320), DBD (F = 0.0178, p = 0.900) and IRE (F = 0.7037, p = 0.710). In

general, the RHtRR parameter was unresponsive to all experimental factors.

Table 5.3, is a summary of the average RHtRR values for each experimental treatment and
also their rank among the varieties (rows). No pattern is apparent in the rankings and the
mean differences are small for each treatment, suggesting that the across Variety comparison

effects were not significant.
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Figure 5.4: RHtRR summary graphs for 21 days grouped by IRE treatment for 1.4 (X1) and
1.6 (X2) DBD (g cm?) treatments. The varieties used were Optic (A), KWS Sassy (B),
Derkado (C) and Golden Promise (D).
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Figure 5.5: Average RHtRR of spring barley grown for 21-days as a function of IRE and
grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado (C)
and Golden Promise (D).
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Table 5.3: Rankings for RHtRR (mm mm™) averages across DBD and IRE treatments for
the varieties Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the

rank order in any row.

DBD IRE Optic KWS Sassy  Derkado Golden
(g cm?) Promise
2 2.33(3) 2.57 (1) 2.08 (4) 2.47 (2)
1.4 4 2.31 (3) 2.34 (112) 2.11 (4) 2.34 (112)
6 2.4 (3) 2.52 (1) 2.49 (2) 2.33 (4)
2 2.07 (4) 2.42 (3) 2.72 (1) 2.5(2)
1.6 4 2.35 (3) 2.47 (112) 2.25 (4) 2.47 (112)
6 2.41 (1) 2.33(2) 2.13 (4) 2.29 (3)

Figure 5.6, is a series of graphs that summarise the RBCC values against the IRE treatments
and grouped by the DBD factor with the 1%, 2", 39 and 4" row graphs corresponding to the
Optic, KWS Sassy, Derkado and Golden Promise variety respectively.

No statistically significant 3-way interaction effects were detected among the factors of
Variety, DBD and IRE (F = 2.2045, p = 0.919). There was also a no statistically significant 2-
way interaction effect between Variety and IRE (F = 9.1212, p = 0.273). However, a
statistically significant 2-way interaction effect was detected between DBD and IRE (F =
7.9347, p = 0.03*). Further examination revealed a statistically significant difference in
RBCC values for the 4 vs. 6 IRE comparison in the 1.4 and 1.6 DBD treatments (psi = -30, p
= 0.007*). For the highest bulk density treatments the 4 IRE treatment had a higher RBCC
compared to the 6 IRE treatment with the opposite effect being true for the lowest bulk
density treatment. In addition to the above, a statistically significant 2-way interaction effect
was detected between Variety and DBD (F = 9.1384, p = 0.05*). Further examination
revealed a statistically significant difference in RBCC values for the 1.4 vs. 1.6 DBD
comparison in the Derkado and Optic varieties (psi = 30.7500, p = 0.0157%*). Furthermore, a
statistically significant difference was detected for the 1.4 vs. 1.6 DBD comparison in the

Derkado and KWS Sassy varieties (psi = 31, p = 0.0255%*). Derkado had a higher RBCC for
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the 1.4 DBD treatments whereas KWS Sassy and Optic had a higher RBCC for the 1.6 DBD
treatments. No statistically significant main effects were detected for the factors of Variety (F
=0.9186, p = 0.84) and IRE (F = 3.1775, p = 0.225). However, a statistically significant main
effect was detected for the factor of DBD (F = 6.7426, p = 0.013*) with the higher DBD

treatments having higher RBCC compared to the lower DBD treatments.

Table 5.4, is a summary of the average RBCC values for each experimental treatment and
also their rank among the varieties (rows). It is of note, that for the 1.4 DBD treatments the

Optic variety had the lowest RBCC averages across the water treatments.
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Figure 5.6: RBCC spring barley at the end of a 21-day growth period as a function of IRE
and grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado
(C) and Golden Promise (D).

Table 5.4: Rankings for RBCC averages across DBD and IRE treatments for the varieties
Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the rank order in

any row.
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DBD IRE Optic KWS Sassy  Derkado Golden

(g cm?) Promise
2 34 (4) 36.75 (3) 49 (1) 39 (2)
14 4 185 (4) 24 (2) 22 (3) 25.25 (1)
6 21.75 (4) 235 (3) 51 (1) 46 (2)
2 46.75 (3) 64.75 (1) 28.25 (4) 62 (2)
1.6 4 63 (1) 62.75 (2) 36.5 (4) 40.25 (3)
6 335 (3) 26.5 (4) 34 (2) 41 (1)

Figure 5.7, is a series of graphs which summarise the RTE values against the IRE treatments
and grouped by the DBD factor with the 1%, 2", 39 and 4" row graphs corresponding to the
Optic, KWS Sassy, Derkado and Golden Promise variety respectively. A higher RTE

signifies a deviation from circular geometry and a less curved root tip.

No statistically significant 3-way interaction effects were detected among the factors of
Variety, DBD and IRE (F = 8.5947, p = 0.33). Furthermore, no statistically significant 2-way
interactions were detected between DBD and IRE (F = 3.6449, p = 0.192), Variety and IRE
(F = 12.1444, p = 0.158) and Variety and DBD (F = 8.0003, p = 0.083). In addition to the
above, a statistically significant main effect was detected for the factor of DBD (F = 49.0434,
p = 0.0001**) with a higher bulk density increasing the RTE. Also, a statistically significant
main effect was detected for the factor of Variety (F = 10.5093, p = 0.037*). Subsequent pair-
wise comparisons for the Variety treatments found that the differences were between the
Optic vs. Golden Promise (psi = 1.4547, p = 0.0164*) and the Optic vs. KWS Sassy (psi = -
1.0424, p = 0.0235*) comparisons. Golden Promise and KWS Sassy had generally higher
values for RTE and therefore more elliptical root tips when compared to Optic across
treatments. In addition, a statistically significant main effect was detected for the factor of
IRE (F = 7.2187, p = 0.0460%*). Subsequent pair-wise comparisons for the IRE treatments
found that the difference was between the 4 vs. 6 (psi = 1.1870, p = 0.0214*) comparison
with the 4 IRE treatments generally having larger RTE values.
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Table 5.5, is a summary of the average RTE values for each experimental treatment and also

their rank among the varieties (rows). It should be noted that the variety KWS Sassy had the

highest ranks for the 1.4 g cm™ DBD treatments while Golden Promise had the largest values

for the 1.6 g cm™ DBD with the exception of the small diference for the 6 IRE treatment.
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Figure 5.7: RTE spring barley at the end of a 21-day growth period as a function of IRE and
grouped by DBD treatment. The varieties used were Optic (A), KWS Sassy (B), Derkado (C)

and Golden Promise (D).
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Table 5.5: Rankings for RTE averages across DBD and IRE treatments for the varieties

Optic, KWS Sassy, Derkado and Golden Promise. Values in parenthesis are the rank order in

any row.
DBD IRE Optic KWS Sassy  Derkado Golden

(g cm?) Promise
2 1.12 (3) 1.43 (1) 1.26 (2) 1.01 (4)

1.4 4 1.31 (4) 1.51 (1) 1.48 (2) 1.39 (3)

6 1.04 (2/3) 1.8 (1) 1.04 (2/3) 1.12 (2)

2 2.17 (3) 1.58 (4) 2.89 (2) 3.07 (1)

1.6 4 1.61 (4) 3.18 (3) 3.46 (2) 4.27 (1)

6 1.73 (3) 2.6 (1) 1.65(4) 2.47 (2)

Figure 5.8, is a series of PCA biplots for all possible combinations of the first three principal

components. Table 5.6, is a summary of the variance explained by each principal component.

the correlations between the variables and the components and their statistical significance.

Figure 5.9, demonstrates a snapshot of a 3D PCA plot and it captures a larger amount of

variation by integrating the 3" PCA component.

Based on the relationship of PC1 and PC2 capturing a total of 59.67 % of variation the

following conclusions can be made:

1.
2.

3.
4.

ARGR and RHtRR were not correlated.

ARGR was strongly negatively correlated with RTE and moderately negatively
correlated with RBCC.

RBCC and RTE were correlated.

No evidence of clustering for each treatment category.

In addition, based on the relationship of PC1, PC2 and PC3 accounting for 74.88% of the

total variation we can further conclude:

1. RBCC and RTE were moderately correlated.
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2. RHtRR and RTE were slightly negatively correlated.
3. RHtRR and RBCC were negative correlated.
4. ARGR was slightly more correlated with AVGR in comparison to AHGR.
5. No evidence of clustering across different treatments.
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Figure 5.8: Principal Component Analysis biplots for A) PC2 vs. PC1, B) PC3 vs. PC1 and
C) PC3 vs. PC2.
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Figure 5.9: Principal Component Analysis 3D plot snapshot with loadings and coloured by

spring barley cultivar.
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Table 5.6: Principal Components Analysis (PCA) of component importance, correlations and

statistical significance.

Importance of components

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.5396 1.1 0.9553 0.8901 0.8455 2.32E-10
Proportion of 0.3951 0.2016 0.1521 0.132 0.1192 0.00E+00
variance
Cumulative 0.3951 0.5967 0.7488 0.8808 1 1.00E+00
Proportion
Data/Components Correlations

PC1 PC2 PC3 PC4 PC5 PC6
ARGR 0.628189 0.166386 -0.07876 0.120571 0.139415 7.33E-01
AHGR 0.571595 0.097005 0.029188 0.486893 0.189072 -6.25E-01
AVGR 0.385004 0.228352 -0.28259 -0.8025 -0.05912 -2.69E-01
RHtRR 0.014148 0.588197 0.756565 -0.07191 -0.27616 -1.44E-11
RBCC -0.17902  0.566189 -0.57702 0.312701 -0.46546 -1.32E-11
RTE -0.31334  0.494182 -0.08804 -0.03802 0.805237 1.23E-12
3-way statistical significance tests (F, p)

PC1 PC2 PC3 PC4 PC5 PC6
Variety 0.8906, 2.7748, 05607, 0.4086, 3.8793, 6.7546,

0.84 0.47 0.92 0.95 0.32 0.13
DBD 325.7024, 1.0169, 0.6926, 0.0001, 2.3716, 0.1233,

0.0001*** 0.32 0.42 0.99 0.13 0.73
IRE 105.0729, 0.5439, 2.7954, 0.6089, 10.3642, 1.9027,

0.001** 0.77 0.278 0.745 0.011* 0.413
Variety:DBD 2.2847, 2.5564, 0.7674, 29599, 17.2253, 3.3362,

0.548 0.497 0.87 0.435 0.004**  0.397
Variety: IRE 3.0754, 1.3953, 0.9471, 4.478, 24.8699, 23.5292,

0.843 0.973 0.991 0.685 0.007**  0.013*
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DBD:IRE 3.9309, 6.4162, 10.0345, 0.2213, 1.5908, 4.0402,

0.164 0.06 0.017* 0.898 0.466 0.165
Variety:DBD:IRE 17.1978, 1.8778, 0.5426, 5.2521, 6.4271, 7.071,
0.05 0.944 0.998 0.601 0.478 0.44

Based on the analysis of the correlation between ARGR and the micro-traits of RHtRR (cor
=0.0803, p = 0.4368), RBCC (cor = -0.1501, p = 0.14425) and RTE (cor = -0.4192, p = 2e-
05**) the traits of RBCC and RTE were selected for modelling. This was because they both
had the same-sign, negative correlation with ARGR, even though the only statistically
significant correlation was with RTE. A 2-variate linear interaction model was then
constructed with the function “Im” in R and then the subsequently predicted vs. observed
ARGR values were plotted (Figure 10). The plot clearly demonstrates the lack of fitness
between the predicted and observed values which suggests a poor prediction ability for the
interaction model. To further understand the pattern of the data a running interval smoother
(Wilcox, 2017) estimating the conditional mean value was added to Figure 5.10 (non-linear
curve). The pattern suggests that the root-trait based model could be used to predict not the
individual points but the average for ARGR values >= 8 mm day’. Furthermore, the model
itself becomes approximately linear beyond the 8 mm day™? threshold value and this is
demonstrated by estimating the Theil-Sen (Wilcox, 2017) regression line (linear segment)
shown on Figure 5.10. In other words, the average ARGR can be predicted with a linear

model for values >= 8 mm day* with a fair amount of accuracy but with low precision.

Finally, Table 5.7 is a summary of whether a statistically significant effect was detected for
each of the measured variables and the PC components for the experimental factors used and

their interaction.
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Figure 5.10: Predicted ARGR vs. Observed ARGR plot. The non-linear curve estimates the

conditional mean value and the linear segment represent the Theil-Sen regression line.
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Table 5.7: Statistically significant effects summary for variables and PC components.

DBD IRE Variety Interactions
ARGR v 4 X X
AVGR v 4 X X
AHGR v v X X
RHtRR X X X X
RBCC v X X v
RTE v v v X
PC1 v v X X
PC2 X X X X
PC3 X X X v
PC4 X X X X
PC5 X v X v
PC6 X X X v

5.5 Discussion

ARGR, AVGR and AHGR all displayed a similar pattern across varieties. Root growth rates
were influenced not by the type of variety but by the substrate bulk density and water status
with increased water content and decreased substrate bulk density giving higher growth rates.
Water concentration had a contrasting effect from that reported in Chapter 4 for the Optic
variety, but this was probably because of the higher water demand for roots due to the hot
months of August and September. Perhaps the most significant point is the fact that
differences across contrasting varieties were very small with the average maximum
difference across varieties for each treatment being only 1.21 mm day*. This clearly supports
the lack of statistically significant differences reported above and suggests that no variety
truly performed best or worst. The results obtained are not similar to those reported by other
authors (Bengough and Mullins, 1991; Colombi et al., 2017; Wang et al., 2021), who
detected statistically significant differences between genotypic root elongation rates for

various density treatments of wheat (Triticum aestivum) grown in soil columns. A potential
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explanation for the lack of statistical significance could be that the above-mentioned studies
all used different varieties of wheat instead of barley. Furthermore, the plants were grown in
soil filled plastic tubes with diameter and height ranging from 4.9-15 cm and 4-45 cm
respectively. In contrast, the RS unit was a rectangular solid with a width of just 0.8 cm and
as such root growth was significantly more restricted in the horizontal direction. The
differences in species and growth conditions could all be factors influencing whether
statistical significance is found. Nevertheless, the results are in agreement with the general
observed pattern of an inverse relationship between DBD and root elongation rates reported
in the literature (Jin et al., 2013).

RHtRR lacked any statistically significant interaction effects or any main effects with the
experimental factors considered here. Root hairs are known to vary significantly across
different cereals species and varieties at the seedling stage (Haling et al., 2010), so the
findings are not in agreement with this for the tested conditions. Furthermore, root hairs were
demonstrated to be highly responsive to abiotic stresses such as high soil strength (Haling et
al., 2011) which increases root-soil contact and as such, causes reductions in root hair length
(Haling et al., 2013). Haling et al., (2014) reported root hair length differed for a range of
different strength and water treatments which had a range of PR between 0.04 - 4.45 MPa and
matric potential between -7.5 to -40 kPa. The lack of any statistically significant effects could
be potentially explained by the range of PR and matric potential values used here was
narrower, being respectively 0.9377 - 2.2792 MPa and -5 to -10 kPa with other studies which
detected significant differences, e.g., Haling et al., (2014).

For RBCC, there were no 3-way interaction effects but there was a statistically significant 2-
way interaction effect between Variety and DBD. However, the effect of that interaction was
not clear based on the inspection of their interaction plot. Interestingly the p value obtain was
exactly 0.05 and as such it is debatable whether to technically accept it as a statistically
significant difference, especially when no clearly discernible differences exist. In addition,
there was a second significant interaction between DBD and IRE which demonstrated that the
4 vs. 6 IRE comparison was influenced by the DBD with Optic and KWS Sassy differing for
the 1.6 DBD treatments and Derkado and Golden Promise differing for the 1.4 DBD
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treatments. In other words, for the higher density treatments Optic and KWS Sassy produced
more RBCs under medium water availability (4 IRE) but for the lower bulk density
treatments Derkado and Golden Promise produced more RBCs under high water availability
(6 IRE). Somasundaram et al., (2009), examined the interaction between soil bulk density
and water content in maize and concluded that the number of RBCs increased with soil water
content in compact soil treatment. As such, the results reported here are not in agreement as
for the case of Optic and KWS Sassy the higher bulk density treatments produced the most
RBCs under medium water availability and for the case of Derkado and Golden Promise the
highest RBCC was observed for the low bulk density treatments. Finally, RBCC was
increased in a more compact soil environment which is in agreement with the literate (lijima
et al., 2003; Somasundaram et al., 2009) but once again, there were no significant differences

across varieties.

RTE, lacked any statistically significant interaction effects but, statistically significant main
effects were detected for all factors. An increase in DBD increased RTE (more elliptical root
tips) which is in agreement with what was reported by other authors when the soil density
increases (lijima et al., 2003; Colombi et al., 2017). For IRE, the statistically significant
difference was between the 4 vs. 6 comparison with a percentage difference of 35.26 % on
favour of the 4 IRE treatment. RTE was also the only trait showing differences with Variety
as the variety Optic also differed in comparison to both KWS Sassy and Golden Promise with
the latter varieties having a higher RTE with a percentage increase of 34.82 and 48.60 %
respectively relative to KWS Sassy.

Since the primary objective of this study was to determine if root trait variability could help
explain the variation in root growth rates of varieties and it is unfortunate that all the
measured variables had no statistically significant differences among varieties with the
exception for RTE. In fact, one of the key findings was the measured root growth rates and
root traits all responded to the manipulation of DBD and IRE which proved to be significant
factors, something which generally was not the case for the factor Variety. This was further
supported by the fact that the only significant correlation with ARGR was that of RTE. The
interaction model of RBCC and RTE was clearly of a poor fit yet, it must be noted that the
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model does predict with high accuracy the average response for ARGR values >= 8 mm day"
L and can be approximated very well with a linear form which is convenient. Interestingly, the
samples corresponding to an ARGR < 8 mm day all shared one feature, they were all
packed at 1.6 g cm™ DBD and collectively made up 26 % of the total population. A possible
interpretation could be that for cases where growth is “sufficient” (>= 8 mm day™) the
average response could be predicted accurately but with poor precision by having knowledge
of RBCC and RTE. A statement about the average response is simply the extent to which we

can make predictions in this context.

It should also be noted that a recent study from Newton et al., (2020), indicated that KWS
Sassy demonstrated an adaptation when switching from inversion to non-inversion tillage by
having a relative small reduction in yield in comparison to the other varieties tested which
included Optic and Golden Promise. As suggested by the authors, the higher soil density of
the non-inversion tillage treatment may indicate the presence of contrasting root traits that
offer an advantage to the other cultivars in the higher strength soil. However, all the root
traits measured here showed no statistically significant differences for variety except for the
case of RTE when comparing Optic to Derkado and Golden Promise. This raises the question
if the differential response was due to either (1) root micro-traits and or other traits (e.g., stem
or leaves) not considered here or (2) the possibility of a differential response in root micro-
traits among different varieties when exposed to the more complex substrate of soil and the
variable field conditions and (3) the likelihood that the varieties tested simply did not differ to
any significant extend but other varieties may differ. All the above must be considered in

future experiments to find an explanation to the obtained results.

5.6 Conclusions

The results demonstrated that the RS unit combined with the image analysis is a valid
approach in plant root phenotyping. A spectrum of root responses was achieved after
manipulation of the RS substrate conditions and a range of macro and micro root traits were
successfully imaged and quantified using a mixture of time-lapse scanning and optical
microscopy. ARGR, AVGR and AHGR all demonstrated similar behaviour, increasing with
higher water availability and decreasing with a higher substrate density. However, there was

182



no evidence of any significant variation between varieties used, with the average maximum
difference across varieties for each treatment being small (1.21 mm day™?). RHtRR also
lacked any variation among varieties but, this could have been due to the treatment range not
being extreme enough in terms of PR and matric potential. RBCC was higher with increased
substrate bulk density but different varieties produced more RBCs under different conditions
of bulk density and water. RTE showed a similar increase with a higher substrate bulk
density but performed best for medium water availability. Furthermore, RTE was the only
trait which showed a strong correlation with AVGR suggesting that perhaps root geometry
could be a more distinguishable micro-trait among varieties, at least for spring barley.
Finally, the root trait-based interaction model developed with the data demonstrated that not
all micro-traits are relevant when trying to predict root growth and even then, sometimes the
best outcome to be expected is a reasonably good prediction of the average response and

always subject to conditions.
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6. General discussion and conclusions

6.1 Introduction

Barley (Hordeum vulgare L.) is the fourth largest cereal crop produced worldwide (Stanca et
al., 2016). It is largely used as an animal feed (80-90 %), with approximately 10 % of it used
in beer production. It is also used as a staple crop for human consumption (Stanca et al.,
2016) as well as a high valued product in whisky. However, drought stress is a major limiting
factor in many places around the world such as West Asia and North Africa where yield is
limited due to factors such as low (< 300 mm) rainfall (Solh and van Ginkel, 2014). Drought
effects are predicted to become more severe with increasing global temperatures (IPCC,
2014) which constitutes a major challenge for achieving sustainability in agriculture (Fleming
and Vanclay, 2010). In order to address those issues it is vital to understand the complex
relationship between the various root traits and the way they influence root elongation rates
under different soil conditions. In order, to study this complex interaction however, an
appropriate experimental system had to be selected which will enable for the quantification of
the above mentioned variables while limiting the variation originating from the complex field

soil conditions.

Minirhizotrons systems have been used ever since they were originally proposed by Bates in
1937 (Upchurch, 1987). They have the advantages of allowing repeated, non-destructive, in
situ measurement of roots growing against its transparent surface (Johnson et al., 2001). The
first objective of this study was to develop a minirhizotron system (RS) which enabled the
manipulation of the LLWR soil stressors of mechanical impedance, water and oxygen
availability while also allowing for the quantification of root micro-traits in barley seedlings
of at least 3 weeks old (Chapter 2). To achieve that, a list of 4 properties was created which
clearly specified the requirements that the proposed RS unit should have. This in turn, led to a
series of experiments to determine (1) the RS substrate type and particle size range which
allowed for sufficient root elongation rates and (2) the imaging surface material type and
thickness for imaging the finer root trait of root hairs. An acrylic based design was chosen for

the RS unit because of its higher hardness, transparency and reduced effects on root growth
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(Cai, 2006) which also kept the cost of the RS unit low (£10) and allowed for the imaging of

roots and root hairs.

The second objective was to make the RS platform as efficient as possible by reducing the
time required for analysing data. This was achieved through the development of image-
processing algorithms which enable the automatic detection and quantification of both coarse
and fine root traits (Chapter 3). Algorithm 1 (A1) allowed for the detection and measurement
of (visible) roots and root hairs growing in the RS units which enabled an assessment of root
growth rates and root hair area. Algorithm 2 (A2) enabled the detection and quantification of
root tip border cells and eccentricity after destructive sampling of the root system and
imaging under a fluorescence microscope. Algorithm 3 (A3) enabled the detection and
quantification of root length parameters at the final stage of destructive sampling, the
scanning of the washed root system. Each of the presented algorithms was custom developed
and implemented in the Rcpp language, a hybrid of C++ and R which may be run from the R
console for user accessibility and ease of usage. Collectively, these algorithms allowed for an
assessment of the root traits of interest for this study in an efficient way which in turn,

allowed for an upgrade in the number of RS units used in future experiments.

The third objective was to effectively integrate the above described methods into a single
experimental protocol which will allow for the systematic manipulation of the LLWR soil
stressors and the measurement of coarse and fine root traits (Chapter 4). Chapter 4
investigated the validity of this protocol by successfully inducing a spectrum of root growth
responses for a range of experimental treatments by manipulating sand dry bulk density and
the degree of saturation and, subsequently measuring the root traits of interest either in situ or
ex situ. It was found that root growth rates in the form of ARGR, AHGR and AVGR were
largest for the driest and lowest density treatment with a higher density causing reductions in
growth something which is consistent with other studies reported in the literature, e.g., (Jin et
al., 2013). RHtRR was demonstrated to be unresponsive to the LLWR soil stressors as
neither increasing density nor water availability caused a significant response in contrast to
results from Haling et al., (2014). RBCC increased with both substrate density and water

availability which was in agreement with the literate, e.g., Somasundaram et al., (2009). RTE
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also increased in higher density treatments similar to what was reported by, e.g., Colombi et
al., (2017), however, this effect was only observed for the drier instead of wetter treatments

suggesting that the amount of water influences that relationship.

The fourth objective was to investigate how root traits potentially shift the LLWR upper and
lower limits. Chapter 5 examined this by applying the experimental protocol from Chapter 4
to the spring barley cultivars of Optic, KWS Sassy, Derkado and Golden Promise. The
application of LLWR soil stressors induced a spectrum of responses similar to those found
for the variety Optic in the previous chapter. A decrease in substrate density and an increase
in water availability had the effect of generally increasing root growth rates for all varieties.
However, the effect of water appears to contradict the results obtained in Chapter 4 for the
Optic variety. A possible explanation for this might be that the experiment in Chapter 4
started in March and finished in April of 2019 in a 2-month period. In contrast, the
experiment in Chapter 5 started in August 2019 and finished in March 2020. It is possible
that the warm months of August and September created a higher water demand for the plant
roots and as such growth was enhanced under a higher water concentration as almost 2 of the
replicates were both finished by mid October 2019. Nevertheless, there were no significant
differences across varieties for both root growth rates and root micro-traits except for some
cases in RTE. This was unfortunate, as it effectively meant that there were no genotypic
differences to develop the root trait-based model. Nevertheless, a simple linear interaction
model was tested by using the root micro traits of RBCC and RTE. This interaction model
could be used to obtain an accurate, but imprecise, linear approximation of AVGR for the
spring barley cultivars tested subject to the condition that ARGR was “sufficient”, i.e.,
ARGR >=8 mm day .
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6.2 Genotypic variation of root traits

In Chapter 5 the genotypic variation of root micro-traits was investigated by studying 4
cultivars of spring barley. Table 6.1 summarises the overall grand average responses of root
micro-traits to the experimental treatments and demonstrates that there were no statistically
significant differences between the cultivars in terms of both root growth rates and micro-
traits. One way to interpret this result is the lack of significant differences in root micro-traits
was responsible for the lack of significant differences in root growth rates between the
cultivars. If we assume root growth rates are a function of the micro-traits, then that will
mean that either (1) the root cultivars did not differ to any significant extent or (2) the range
of conditions tested were not extreme enough to induce a differential response or (3) the
variability between sample replicates exceeded the variability between root traits.

For (1), it is unfortunately difficult to assess to what extent differences exist due to the
difficulty in locating studies which compare their relative performance. However, a recent
study from Newton et al., (2020), described a field-based trial which included the cultivars
KWS Sassy, Optic and Golden Promise. The authors found evidence that KWS Sassy and
Derkado was better adapted when switching tillage practices from inversion to non-inversion
tillage. The varieties Optic and Golden Promise could also be identified as potentially tillage
treatment-adapted however, these older varieties had a lower yield. The non-inversion tillage
treatment had a higher soil bulk density and as a result it was theorised that the presence of
contrasting root traits could explain the above observation. However, based on the results
presented in Chapter 5 there were no significant genotypic differences for any of the
measured root traits. One explanation could be that that the plants used in the seasonal trials
were grown for significantly longer and as such, any significant genotypic differences did not
manifest at such an early growth stage. At more mature plant stages other root traits not
considered here such as increased branching at depth could be significant factors explaining
the difference among cultivars. However, such traits are highly dependent on soil and
seasonal climatic differences as well as plant phenological stage (Wasson et al., 2012). All of

those need to be considered when trying to extrapolate from seedling to mature stages.
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For (2), the range of PR and matric potential achieved were respectively 0.9377 - 2.2792 MPa
and -5 to -10 kPa. In the LLWR model the PR critical value corresponds to 2.0 MPa and as
such the required PR range was achieved in this study. The LLWR 50 % root growth
reduction threshold criterion was achieved for the condition of 1.6 DBD at 2 IRE. As for the
matric potential range the values corresponding to the field capacity and the permanent
wilting point were respectively -10 kPa and -1,500 kPa. As a consequence, it must be
recognized that the lower limit of the range used corresponded to the upper limit of the
LLWR model, i.e., -10 kPa. However, as was demonstrated in Chapter 2 this was the result of
the particle size manipulation which resulted in the water release curve deviating from that of
more developed soils. In particular, the reason for the very high “dry end” was because
almost all the pores (~ 95%) were restricted to only up to -50 kPa. This effectively means that
the substrate lacked a significant fraction of meso-pores and any micro-pores. As a
consequence, the sand dried fast and seedling mortality was found to be very high for sand

treatments less than 2 IRE.

Another thing to be recognized are the intrinsic limitation of the RS system used as
minirhizotron-based systems are pseudo-3D and effectively limit growth to an approximately
2D scale. This limitation will of course have an impact on root growth since the size
restriction will in turn impose physical limitations on roots and influence future root
elongation rates (Poorter et al., 2012). In addition, continuous root to glass contact could
induce thigmotropic responses from the roots (Downie et al., 2015) which can give
misleading representations of the norm. Ultimately, the validity of any method should be its
approximation to field soil conditions, but soil is a much more complex material compared to
the RS substrate. The RS sand based substrate lacks organic matter which influences water
retention properties (Kay et al., 1997), and it does not have the biological complexity of
organisms that characterize soil. The repacked structure of the sand is also very different
from that of soil and does not accurately reflect the spatial variability of structure encountered
in field conditions. PR values in field soil are known to be higher and more variable in
comparison to repacked soil systems (Perfect et al., 1990) and it is not unusual to detect root
morphological differences even when comparing field soil to a homogenously compacted soil
(Kondpka et al., 2009).
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As such, it is very much an active debate whether root phenotyping on seedlings yields valid
predictions about future root growth as root architecture at later stages can deviate from that
during its early stages (Atkinson et al., 2014). The same may be said about root properties
aside from architecture which can influence root survival and growth under soil stress. For
example, biomechanical properties such as root tensile strength and Young’s modulus are
known to increase with age, probably due to the accumulation of compounds such as
cellulose (Loades et al., 2015). This will naturally influence the root ability to grow under
conditions of higher soil strength. Nevertheless, the study of seedling root morphology could
yield useful information about the root morphology at later stages of growth (Tuberosa et al.,
2002). For barley there are studies which used root traits at the seedling stage as an indicator
of enhanced yield at later stages and detected significant correlations under different drought
conditions (Chloupek et al., 2010; Svacina et al., 2014).

Another limiting factor in this study was the large variability due to the inherent restrictions
in the sample size used. Ideally it is best to have an estimate of the sample size needed when
designing an experiment. However, this was not possible here due to the lack of comparable
studies found in the literature. At best only partial comparisons were possible as most of the
articles identified examined the relationship between root elongation rates and the soil
stressor factors of PR and matric suction. However, no measurements were performed on the
range of root micro-traits considered here except for the study of Somasundaram et al.,
(2009) but even then, the study was restricted only to RBCC and the plant species used was
maize and not barley which was used in this study. On the other hand, the experiment
reported in Chapter 4 enabled an indication of the sample size required by performing power
analysis on AVGR and the theoretical sample size required was practically unfeasible (n >
54) based on the resource availability. An alternative option would have been to use basic
guidance in factorial experiment designing with authors recommending a minimum sample
size of 10 (Everitt, 1975) and that the subjects-to-variables ratio should be no lower than 5
(Bryant and Yarnold, 1995). The latter option will require a sample size of 25 minirhizotrons
and even if one was to adopt only the previous suggestion of using just 10 minirhizotrons
then the study will still have been unfeasible. In summary, resource availability was a major
limitation in this study, but the highest practically possible sample size was used, and this
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was mitigated by the reduction in image analysis by the development of the analysis

algorithms.

Something that must be considered is the difficulty in scaling from root micro-traits to the
coarse scale of the root system. For example, root hairs aid the penetration of roots into soil
and this was demonstrated when comparing hairless to wildtype varieties for both barley
(Haling et al., 2014) and maize (Bengough et al., 2016). However, although this effect was
demonstrated for individual roots it is not clear how to translate this effect when considering
the coarser scale of the root system. For instance, Bailey et al., (2002), compared the pull-out
resistance of hairless Arabidopsis mutants with wild types and failed to detect any
statistically significant differences. Similar argument could also be constructed about the
other micro-traits considered in this study. Although there is evidence of the importance of
root border cell production and root tip geometry in aiding root penetration (Mckenzie et al.,
2013; Colombi et al., 2017), it is difficult to express in a mechanistic way the advantages in

root penetration ability originating from those traits.

Another issue to consider is the extent to which more complex long-term effects may
influence root growth but are difficult to quantify and to consider when trying to make
predictions about root growth rates. An example of that could be the formation of
“rhizosheath”, a layer of strongly bound and more aggregated soil that adheres firmly to the
root surface (Koebernick et al., 2017). This structure is rather variable both in terms of
dimensional extent and chemical composition between species (Brown et al., 2017) and
between genotypes of the same species (George et al., 2014). The influence of this
rhizosheath on changing the adjacent soil structure can be significant as it is believed to
influence the overall stability of the rhizosphere (Hallett et al., 2009). Yet, the formation and
development of this complex mixture of microbes and root exudates requires time and due to
its nature, it will be extremely difficult to assess to what extent such effects could be

integrated in a mechanistic model.
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Table 6.1: The overall responses (grand average among varieties + grand standard deviation) of root micro-traits to the experimental treatments

used in the experiment described in Chapter 5.

DBD IRE ARGR AVGR AHGR RHtRR RBCC RTE
(g cm?) (mm day™?) (mm day™?) (mm day™?) (mm mm™)
2 9.15+0.19 11.51+0.3 5.52 +0.87 2.36 £0.21 39.69 £6.54 1.21+£0.18
14 4 9.74 £ 0.26 12.24 + 0.58 59+0.84 228 +0.11 22.44 £ 2.95 1.42 +£0.09
6 10.55+0.38 12.95 £ 0.69 6.86 £ 0.58 2.44 £ 0.09 35.56 = 15.09 1.25+0.37
2 6 +£0.83 7.19+0.83 4.18 +0.98 243 +0.27 50.44 £ 16.78 2.43 +£0.69
1.6 4 7.63x0.42 9.41 £ 0.56 4.89 +0.26 2.39x0.11 50.63 £ 14.23 3.13x1.11
6 8.48 £0.19 10.53 £ 0.49 5.34+£0.75 2.29%0.12 33.75+£5.92 2.11+0.49

ARGR: Average root growth rate

AVGR: Average vertical growth rate

AHGR: Average horizontal growth rate

RHtRR: Root hair to root ratio
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RBCC: Root horder cell count

RTE: Root tip eccentricity
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6.3 LLWR modification

In order to improve upon the LLWR it is necessary to understand its current limitations. An
intrinsic limitation is the models’ interpretation of the plant root growth limiting conditions
being determined solely by volumetric water content and dry bulk density. Consideration of
the critical value of the soil field capacity from a process-based approach will require
assessment of a number of soil properties which include (Mohammadi et al., 2010): (1)
Saturated hydraulic conductivity of the soil (2) Pore size distribution index used in the
Campbell soil moisture characteristics model (3) Saturated volumetric water content and (4)
Air filled porosity at — 10 kPa matric potential. Furthermore, the state of field capacity will
also be dependent on plant associated variables: (1) Soil oxygen consumption rate and (2)
Root zone depth. For the case of the permanent wilting point, the critical value of the average
water content at the onset of plant stress will depend on the properties (De Jong et al., 2006):
(1) potential transpiration rate and (2) soil hydraulic properties, e.g., conductivity.
Furthermore, plant associated variables such as root density will also have a strong influence
on the limiting value of stress onset while evidence supports that other traits such as a
narrower angular spread of roots are also significant (Jin et al., 2015). In a similar manner,
determining the minimum air porosity of the soil will require an assessment of variables
which are known to significantly influence the process and include (Bartholomeus et al.,
2008): (1) Soil type, (2) Soil temperature and (3) Soil depth. As for the limiting value for soil
penetration resistance, i.e., 2 MPa, it is known that stress onset occurs in the form of a linear
decrease in root elongation rates until they reach a high penetrometer pressure (Whalley et
al., 2006). This limiting value was demonstrated to vary among species, e.g., 0.8 MPa for
cotton roots (Bengough et al., 2011). Root traits that are known to influence this include: (1)
an increase in the steepness of root angular spread (Jin et al., 2015) and (2) the (poorly
understood) ability of roots to exploit networks of continuous channels in soil (Bengough et
al., 2006).

At this point it should be emphasized that when the LLWR was first formulated in the work
of da Silva et al., (1994), the authors explicitly demonstrated that factors such as soil texture
can have a strong influence on the LLWR limits. In fact, the subsequent development of soil
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pedo-transfer functions (da Silva and Kay, 1997; Silva et al., 2008) clearly demonstrated the
dependency of the LLWR on soil properties such as clay content and organic carbon content.
This demonstrates that the existing model does indeed take into account existing soil
conditions and temporal changes in soil texture. However, it will be instructive to consider
how the LLWR could be generalized to better reflect temporal soil changes. For example,
Keller et al., (2015), integrated the LLWR model into a previously published soil compaction
model known as SoilFlex (Keller et al., 2007). This enabled an assessment of dry bulk
density changes around the wheel-soil interface created during the movement of heavy
agricultural machinery. The corresponding variation in LLWR caused by the variation in dry
bulk density could then allow for an understanding of the effect that agricultural machinery
has on root growth conditions in the context of water availability. Future integration of
models with good prediction abilities in the LLWR model could increase its importance as a

soil quality index.

Another issue with the LLWR is that there is a certain degree of ambiguity when it comes to
the dimensional extent of the soil system considered in the LLWR. Originally, the LLWR
model only considered the top 20 cm of the soil system. However, if one was to consider the
soil system beyond the top 20 cm limit then an agricultural soil for example would be
expected to be directly affected by the nature of the agricultural practises used (Bengough et
al., 2006) which will subsequently influence the LLWR across different time points. In a
similar manner, if one was to assess the LLWR at different time points then it should vary
with factors such as changing soil structure, climatic variability, soil diversity, etc.
Furthermore, the soil water release curve sub-model used by the LLWR will be expected to
vary across the season rather erratically at times due to hysteresis effects. In other words, the
location, time, anthropogenic and non-anthropogenic factors will not be constant effects in
the LLWR model.

Finally, the limitations in the sub-models used by the LLWR needs to be considered. In
section 4.4 it was demonstrated that the Busscher model for PR values was a poor descriptor
for the dataset associated with the RS substrate. As such, the LLWR itself could not be

defined for this application and preventing a direct comparison of the LLWR model
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predictions about optimum growth with the observed growth rates. The fit of both sub-models

used by the LLWR should always be checked and if alternative models exist which are

applicable and have a better fit then they need to be considered as alternatives. For instance, it

might be of use to consider alternative PR models such as the one proposed by Jakobsen and

Dexter, (1987) and compare the fitness of the models. It will be interesting if this model

could be integrated in the “llwr” function of the R package “soilphysics” so that users may

compare the results.

6.4 Summary of key conclusions

1.

Custom-developed minirhizotron-based root phenotyping platforms allow for high
resolution imaging, but their development must be guided by specific criteria which
define the properties that the system should have.

A variety of root micro-traits can be imaged by using only basic lab equipment.

The proposed RS based experimental protocol successfully induced a spectrum of
root growth responses when manipulating the LLWR related soil stressors of DBD
and IRE.

Significant differences in ARGR, AVGR, AHGR, RBCC and RTE were detected
among different treatments of the soil stressor factors of DBD and IRE.

Genotypic variability was not a factor causing significant differences for the four
spring barley varieties tested except RTE.

Root micro-traits could not explain the differences in root growth rates among the
different substrate treatments on the variety level however, they were successful in
predicting the average response on the individual plant level.

Future experiments should try to extend the system to A2 dimensions and assess if
any genotypic differences can be detected at later development stages. The integration
of sensors to measure water potential will also be ideal.

It is strongly recommended to select genotypes with known root trait differences e.g.,
root hair density, or varieties which are known to have contrasting growth rates in

different soil conditions based on several published field-based experiments.
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Furthermore, the sample size should increase from 4 to 8 to increase subject to

variable ratio and reduce the errors in the descriptive and inferential statistics.

6.5 Future research

Oxygen sensors (150 x 6 mm) have been used in the past to assess the oxygen status of
minirhizotrons (Dresbgll et al., 2013). Perhaps a slight extension to the RS width could still
have a good enough focusing plane of the root/scanning surface for good quality images and
allow for an in situ estimate of the oxygen concentration. In a similar manner it is possible to
use mini-tensiometers that also have a shaft with a diameter of 6 mm. However, as mentioned
in Chapter 4 there is the issue of poor connectivity between the probe and the substrate.
Increasing the width of the rhizotron by 2 mm should provide better contact between the
probe and the sand (Figure 6.1 (A)) but perhaps, the addition of finer sand particles could
still be required to achieve adequate readings. If successfully integrated into the existing RS
design, these probes will offer a much more accurate and repeated assessment of the oxygen
and water status of the RS substrate.

Based on the root growth conditions used in this study seedlings can be grown at least three
weeks for the four spring barley cultivars tested. It will be interesting to extend beyond this
time period in a more long-term study but that will require an increase in the dimensions of
the RS and its associated flatbed scanner. Although, the RS system and the flatbed scanner
were both A3 sized (297 x 420 mm) the system could be modified to work on an A2 scale
(420 x 594 mm). This will require an enlargement of the standard RS unit which should be
easy enough to do and subsequently scanning the RS unit twice, one for each half of the RS
unit (Figure 6.1 (B)). That will of course require a larger manual input, scanning times and
time required for image analysis but it is theoretically possible to achieve that. However, if
the proposed design is successfully implemented, the list of benefits will probably shadow
those disadvantages as the RS will allow for root growth for a period of up to 5 weeks
potentially and in situ estimates of oxygen concentration and matric potential. Furthermore, if
the design is strictly implemented with mechanical precision such as the accurate drilling of
the holes in the RS scanning surface there could be further benefits in the image processing
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component. For example, a fixed RS could reduce the computation times of several steps in
the algorithms used since the effective root growth area will always be in a set of specific
coordinates, excluding the outer area of the RS and the screw areas and implementing the

algorithm only for the RS substrate covered zone.
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Figure 6.1: Schematic diagram of the proposed A2 sized RS unit A) Top view and B) Front

view.

It should also be noted that although this study focused on the root traits of ARGR, AVGR,
AHGR, RHtRR, RBCC and RTE, the list of traits doesn’t have to be restricted to only
those. For example, examination of root cortical regions could yield useful information

between DBD treatments and can be integrated to the existing experimental protocol by using
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laser ablation tomography (Chimungu et al., 2015). In a similar manner it will not be difficult
or time consuming to obtain information about other parts of the plant which are easily
accessible e.g. stem diameter. If the above proposed method allows for seedlings to reach
more mature stages, then with additional time investment a significant amount of information

could be obtained in comparison to the current list of traits.
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