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Abstract

The last century saw the development of two revolutionary theories: Einstein’s general relativ-
ity, which taught us that spacetime is a physical system, i.e. the gravitational field; and quantum
mechanics, which revealed properties of microscopic systems foreign to the way we perceive reality
in our everyday life, such as non-locality. We are now trying to reach a new turning point: the
formulation of a theory of quantum gravity, capable of reconciling these revolutionary discoveries
from microscopic to macroscopic scales, i.e. describing physical scenarios in which both gravity
and quantum mechanics do enter, and matching validated theories for those where only one (or
none) of the two does.

Various background-independent approaches to the problem of quantum gravity postulate that,
at the Plack scale, spacetime dissolves into a microstructure of discrete, pre-geometric quantum
entities, leading to the picture of continuum spacetime and geometry emerging from their col-
lective behaviour. Entanglement, and more generally all quantum correlations generated by the
interactions of the fundamental entities, are thus expected to play a key role in this phenomenon;
moreover, in such a background-independent hence purely relational setting, continuum spacetime
and geometry have to be reconstructed from them. In recent years, several results supported
this view by uncovering a close relationship between entanglement and spacetime geometry and
topology. Furthermore, entanglement turned out to be deeply tied to a likely constitutive aspect
of gravity: holography, which has been a guiding theme of research in quantum gravity since the
formulation of the Bekenstein-Hawking area law for the black hole entropy. Understanding the
origin of the threefold connection among gravity, holography and entanglement would therefore be
a major step towards the formulation of a theory of quantum gravity.

The work we are going to present tackles this issue from an information-theoretic perspec-
tive, inspired by the cited view of spacetime properties emerging from the quantum information
generated and transferred by the interactions among the fundamental entities. We specifically
investigate the entanglement origin of the holographic behaviour of finite regions of quantum space
modelled by spin networks. These are graphs coloured by quantum data encoding the geometric
properties of elementary portions of space dual to their vertices, primarily known for providing a
basis of the kinematic Hilbert space of loop quantum gravity. Our work starts with a characteri-
zation of spin networks as the entanglement skeleton of many-body states describing collections of
“space quanta” in group field theory, a quantum gravity approach conceived to be a field theory
of spacetime and interpreted as a second-quantization of loop quantum gravity. On the basis of
the characterization of spin networks as graphs built up from the entanglement of space quanta,
we establish a solid correspondence between this quantum gravity formalism and tensor networks,
a quantum information language that realizes an efficient encoding of the entanglement structure
of many-body states in the geometry of a network.

We rely on the correspondence we established between spin networks regarded as “entangle-
ment graphs” and tensor networks to investigate the entanglement origin of holography in finite
regions of space. On the basis of a bipartition of the quantum degrees of freedom associated to
spin networks into bulk and boundary ones, we point out that every spin network state can be
regarded as a map between these two sets, in the spirit of the Choi-Jamiołkowski isomorphisms
of quantum information theory. This enables the translation of the “static” properties of a spin
network state into the “dynamic” properties of the corresponding flow of information from the
bulk to the boundary. In particular, we show that requiring such a flow to be an isometry - which
is a necessary condition for holography - translates into the reduced bulk state maximising the
entanglement entropy. The latter is computed by leveraging the tensor network reading of spin
networks: assuming a random distribution of weights associated to the individual vertices, we ex-
ploit random tensor network techniques to map the computation of the entropy to the evaluation
of the free energy of a classical Ising model defined on the spin network graph. The analysis of
such a statistical model allows us to highlight the relation between the combinatorial structure
and colouring of a spin network and the holographic character of the bulk-to-boundary flow of
information it defines.
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We deepen the investigation of holography on spin networks composed of random vertices by
studying the impact of the bulk entanglement on the boundary entropy, with the latter computed
through the random tensor network technique mentioned above. We highlight a regime (in terms
of colouring and combinatorics of the spin network) in which the boundary entropy is determined
by the area of a bulk surface (corresponding to the domain wall of the dual Ising model), with
corrections given by the entropy of the bulk region enclosed by that surface. We also show that
increasing the entanglement content of the bulk triggers a phase transition from such a “holographic
regime” to a regime in which the boundary entropy satisfies a “area+volume” law, up to the
emergence of a black hole like region in the bulk (in the dual statistical picture, a region the Ising
domain wall cannot access).

The work described so far focuses on spacetime properties emergent from the quantum corre-
lations of the space atoms at the level of quantum discrete geometry. The continuum, classical
limit of the emergent spacetime scenario, a major issue in any quantum gravity approach, is not
considered. The last part of this thesis is however dedicated to a comparable issue addressed in
quantum information theory: the quantum-to-classical transition problem, i.e. how classical reality
(i.e. what we perceive in our everyday life) emerges from the quantum microstructure of our world.
We specifically study features of the emergence of objectivity of observables within the framework
of quantum Darwinism, where multiple observers acquire information on a quantum system by
probing fragments of its environment.
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1 Introduction

Entanglement, the presence of quantum correlations between physical systems that causes them to
lose their individuality as the composite system acquires physical properties that are inaccessible
at the level of the individual subsystems, deeply challenged our classical view of reality: it brings
to light that the classical notion of local and isolated system is an idealisation, and that the
physical properties of a system are actually defined by the interactions with its environment. The
change in perspective on reality brought about by quantum mechanics becomes even more radical
when combined with the discovery, with Einstein’s general relativity, that spacetime is a physical,
dynamical entity: the gravitational field. In fact, as any other physical system, spacetime is
expected to possess quantum properties, e.g. to be discrete and subject to entanglement. This
scenario led to a major challenge for theoretical physics in the last century: the merging of quantum
mechanics and Einstein’s general relativity in a theory of Quantum Gravity (QG), capable to
describe physical scenarios in which strong gravity and quantum mechanics effects overlap, as we
expect to occur, for example, inside black holes. Over the last century, the problem of QG has
been approached from different angles and with different techniques [6], leading to the emergence of
several candidate theories: string theory, Loop Quantum Gravity (LQG) [7–9], Group Field Theory
(GFT) [10–12], spinfoam models [13–15], causal dynamical triangulations [16, 17] and asymptotic
safety [18], to name a few. However, so far none turned out to be a complete and fully consistent
theory of QG.

Most background-independent approaches to QG share the view of spacetime being composed,
at the Plack scale, of discrete and pre-geometric quantum entities. We then expect the entangle-
ment generated by the interactions among the latter to trigger the emergence of classical, continu-
ous aspects of gravity; moreover, since the description of quantum spacetime has to be (due to the
requirement of background independence) purely relational, continuum spacetime and geometric
notions (such as distance) have to be reconstructed from the quantum correlations of these fun-
damental entities. The idea of entanglement as the “fabric of spacetime” is supported by several
results in QG and beyond, most obtained within the duality between the gravitational theory of
asymptotically Anti de Sitter (AdS) spacetime and a Conformal Field Theory (CFT) living on the
boundary of the latter, known as the AdS/CFT correspondence[19–22]. The Ryu-Takayanagi (RT)
formula [23, 24], for example, relates the entanglement entropy of the boundary CFT to the area of
a codimension-2 surface in the dual bulk spacetime. The entanglement-geometry relation pointed
out by the RT formula is further strengthened by the observation [25, 26] that entanglement of
the boundary-theory degrees of freedom is a necessary condition for the connectivity of the dual
bulk spacetime. Also worth mentioning in the AdS/CFT context is the derivation, from the entan-
glement “first law” in CFT, of Einstein’s equations linearised about the AdS background, which
promotes the entanglement-geometry relation to a dynamic level [27, 28]. The connection between
geometry and entanglement also appears in contexts not directly related to QG, for example in the
proof that a geometric space can emerge from the entanglement of quantum degrees of freedom
associated to an abstract Hilbert space [29]. Crucially, the mentioned results are all pointing in
the same direction: the idea of spacetime as a geometric representation of entanglement.

1
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In recent years, the concept of entanglement has become increasingly intertwined with a driving
theme of research in QG: holography. Broadly understood as the physical scenario in which all
properties of a system confined in a certain region of space are encoded in the boundary of that
region, holography has played a pivotal role in classical and quantum gravity since the derivation
of the Bekenstein-Hawking area law for black hole entropy[30, 31], the discovery of the Hawking
radiation[32] and the formulation of the information loss paradox[33]. Indeed, black holes being
peculiar configurations of the gravitational field, holography was recognised to be a key element
in understanding spacetime and gravitational physics at a more fundamental level [34–36], and
over the last 25 years it has been extensively studied at both the classical and quantum level. An
instance of holography in QG is the cited AdS/CFT correspondence, with all its offspring; other
relevant examples include work on the microscopic interpretation of the black hole entropy[37–40],
on the recovering of gravitational dynamics from the thermodynamics of boundaries[41, 42] and
on the modelling of quantum black holes [43] and the holographic hypothesis [44, 45] in LQG. The
holographic behaviour of both gravitational and non-gravitational physical systems has been traced
back, in several contexts, to the structure of quantum correlations (specifically entanglement) of
the fundamental degrees of freedom living on the bulk and on the boundary. It is the case for
the results obtained within the AdS/CFT correspondence, since the bulk kinematic (e.g. area
of surfaces) and dynamic (Einstein’s equations) can be related to the entanglement properties of
degrees of freedom in the boundary CFT, as mentioned above. But it happens also in Quantum
Information Theory (QIT) and condensed mater physics, as the entanglement entropy of quantum
many-body systems in their ground states has been proven to follow an area law [46].

As pointed out, the view of spacetime as a geometric representation of entanglement comes
from various corners while holography, which is expected to be a defining feature of gravity, is
intimately tied to the entanglement structure of the involved degrees of freedom. In this thesis
we explore the threefold connection among gravity, holography and entanglement by importing
in a truly QG context a quantum information language which has been found to be particularly
suitable for modelling holographic entanglement: Tensor Networks (TN) [47–50]. It decomposes
the entanglement structure of many-body states into interconnected one-body tensors, which are
represented as nodes of a network. This language has been largely exploited in the AdS/CFT
correspondence starting from [51], which showed that the entanglement renormalization of CFT
boundary states carries out a TN decomposition of the latter, with the possibility to interpret the
emerging network as a spatial slice of the AdS spacetime, upon definition of a metric from com-
binatorial ingredients. Exactly-solvable models of the AdS/CFT correspondence have then been
constructed through perfect [52] and random [53] tensors. These works (and many others of simi-
lar nature) leverage the above analogy - spacetime as a geometric representation of entanglement
on one hand, and many-body wave-functions with a geometric description of their entanglement
structure on the other - at an “operational” level to construct explicit examples of AdS/CFT states
in terms of TN. However, it is possible to implement that analogy beyond the AdS/CFT context,
and at a deeper level; this is one of the main purposes of the work presented in this thesis. What
if the “bodies” of the tensor network (i.e. the many-body wavefunction) were themselves quanta of
space, with entanglement expressing adjacency relations between them? The connection between
entanglement and geometry would be structural, and gravity would be a quantum phenomenon in
its own right. Let us stress that the last feature is prompted by the success of the standard model,
which describes the other fundamental interactions via Quantum Field Theory (QFT). However,
due to the background independence of gravity (and the inconsistency of a description of gravity
in terms of local degrees of freedom, signalled by black hole thermodynamics), a QFT describing
it certainly cannot be defined on spacetime. The QG approach of GFT [10–12], introduced be-
low, captures all these insights, being a field theory of “quanta of space” glued to each other by
entanglement, defined on a group manifold which provides the mathematical support to describe
the geometrical features of the field quanta.

In the GFT approach to QG [10–12] the fundamental excitations of the field are to be under-
stood as quanta of space, entangled to each other to form spatial geometries, and whose interaction
processes give rise to spacetime geometries. Therefore, as stressed before, the manifold on which
the field lives is not a spacetime manifold (as in standard QFT), but an abstract one encoding
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the geometric properties of the space quanta. Specifically, the field lives on four copies of a Lie
group, usually SU(2), and the field quanta are 3-simplices (i.e. tetrahedra) having a group variable
associated to each face; a gauge-invariance constraint on these variables ensures that they truly
encode the quantum geometry of a 3-simplex. In a dual representation, the 3-simplex is a vertex
with four edges, one for each face, decorated with the corresponding group variable. Equivalently
(by representation theory of compact Lie groups), each edge is decorated by a spin, and the vertex
by an intertwiner arising from the gauge-invariant recoupling of the edge spins, in what is called a
spin network vertex (mainly known for being the basic kinematic structure of LQG). The gluing of
vertices builds up spin networks (graphs decorated by the aforementioned quantum geometric data)
dual to simplicial complexes and is realized, as anticipated above, by entangling vertex degrees of
freedom. The Hilbert space of the theory is thus a Fock space for the spin network vertices, and
the entanglement structure of many-body states pertaining to it represents a spin network graph
dual to a discrete geometry. In other words, spin networks (as defined e.g. in LQG) arise in GFT
as entanglement patterns of many-body states associated to spin network vertices. The principle is
thus the same as that of TN, which are collections of tensors connected to each other via index
contraction representing entanglement between the corresponding degrees of freedom.

Both formalisms of GFT and TN therefore rely on graphical structures built up from en-
tanglement. The first achievement of the work we are going to present is to make this shared
feature explicit and more precise, building on previous work which had already pointed out the
analogy between spin networks and particular TN decompositions in LQG [54, 55] and in the
first-quantization formulation of the GFT framework [56]. In particular, we are going to promote
that analogy to the proper second-quantization setting of GFT, where a crucial difference with
the quantum information language arises: while the GFT quanta are indistinguishable, the nodes
of a tensor network, as normally defined, are not. But in a QG model the indistinguishability of
the building blocks of space is a necessary condition for background independence; in fact, it can
be understood as a discrete counterpart of invariance under diffeomorphisms, as vertex labels play
the role of “coordinates” over an abstract combinatorial pattern. We are going to show that spin
networks, regarded as GFT entanglement graphs, are generalised TN that, in addition to having a
direct simplicial-geometry interpretation, naturally satisfy (a discrete version of) invariance under
diffeomorphisms. This reading thus takes us beyond the practical advantages of applying TN to the
AdS/CFT context: a purely quantum information language, which performs a geometric encoding
of entanglement, gets identified with a QG (purely background independent) language that makes
the connection between entanglement and geometry its structural principle. That is, QG and QIT
dialogue on an interpretive level, not just on an operational one.

Once this dictionary is in place, we investigate holography as a quasi-local property entering the
description of finite spatial boundaries, i.e. spacetime corners. We outline a setting for studying
holography on spin networks through a suitable splitting of their degrees of freedom into bulk and
boundary, and the characterization of them as quantum channels transferring information from
one to the other. We then adapt to our setting a tensor network technique for the computation
of the entanglement entropy of random states, which is based on translating the average entropy
to the partition function of a classical, statistical dual model. The class of spin network states to
which this technique applies is the one obtained by gluing (i.e. entangling) individual vertices in a
random state. We then study holography on finite regions of space described by that random spin
network states from two different perspectives:

(1) we analyse under which conditions on the combinatorics and colouring of the spin networks the
corresponding bulk-to-boundary flow of information is an isometry (a property required for the
expectation values of observables to be preserved from bulk to boundary);

(2) we investigate to which extent the entanglement entropy of the boundary reflects/is affected by
the bulk.

The analysis of point (2) aims to identify a holographic regime for the boundary entropy, namely
the configurations of random spin networks which give rise to an analogue of the RT formula, i.e.
a dependence of the boundary entropy on the area of a bulk surface. By varying the parameters
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governing these configurations (combinatorics and link colouring of the spin networks) we then
trigger a phase transition from the holographic regime to one in which the boundary entropy
follows an “area+volume” law. We also show that further variation of parameters in this direction
(more precisely, an increase in the entanglement content of the bulk) causes the emergence of a
horizon-like surface, thereby providing a concrete realisation of the proposal made by Krasnov and
Rovelli in Ref. [43] of defining a quantum black hole as the part of a spin network that does not
influence observables at infinity.

We began by discussing the role of entanglement (and quantum mechanics more generally)
in challenging the way we think about reality, space and time based on our everyday “classical”
experience. The quantum picture applied to gravity leads to the hypothesis of spacetime dissolving,
at the Planck scale, into pre-geometric quantum entities, and the consequent view of continuum and
classical gravitational physics emerging from them in a suitable regime of the underlying theory.
However, the problem of how classical reality emerges from the quantum realm presents itself even if
we disregard the quantum nature of spacetime, e.g. consider a Newtonian spacetime. In QIT, this is
commonly referred to as the quantum-to-classical transition problem, and turns out to be intimatly
tied with the theory of decoherence [57–60]. The latter indeed reveals the crucial role played in
this transition by the environment, which acts on physical systems as a source of decoherence.
A possible solution to the problem is however provided by the theory of quantum Darwinism,
which promotes the environment from source of decoherence to carrier of information about the
system. More specifically, quantum Darwinism aims to explain how our objective classical reality
arises from the quantum world by analysing the distribution of information about a quantum
system that is accessible to multiple observers, who probe the system by intercepting fragments
of its environment. In the last chapter of this thesis, we focus on the objectivity of observables
arising in the quantum-to-classical transition within the premises of quantum Darwinism. Going
beyond recent studies for finite- and infinite-dimensional systems [61, 62], we present a unified
approach to derive bounds on the emergence of such objectivity in quantum systems of arbitrary
dimension. We also prove, building on the finite-dimensional setting of [61], that an infinite-
dimensional system cannot share quantum correlations with asymptotically many observers, as
the maximum correlation each observer can establish with the system is, on average, of purely
classical nature.

Outline of the thesis

In chapter 2 we review the formalism of spin networks for describing quantum spatial geometries,
from its first appearance in the discrete and relational modelling of space due to Penrose to the
modern one present in lattice gauge theories and the QG approaches of LQG and GFT. We also
give an overview of results on the study of entanglement on spin network states and its role in
reconstructing geometry.
In chapter 3 we illustrate the characterization of spin networks as graphs of entanglement in the
GFT framework, and the formulation in terms of second-quantized TN.
In chapter 4 we present the tensor network technique we employ to trace the computation of the
average entropy of random spin network states back to the evaluation of the partition function
of a classical statistical model. We then present the investigation on holography on random spin
networks, by analysing (1) the flow of information from the bulk to the boundary, relying on the
Choi-Jamiołkowski duality of QIT; and (2) the information content of the boundary and its rela-
tionship with the bulk.
In chapter 5 we present the work on the emergence of objectivity of observables for quantum sys-
tems of arbitrary dimension, in the non-gravitational setting of the quantum-to-classical transition
problem of QIT.



2
Spin networks for quantum

geometry

Spin networks defined as graphs decorated by quantum data appear in several contexts: quantum
gauge theories, QG, topological quantum field theories and CFT. Here we are interested in their
role in QG, where they provide an orthonormal basis of states for the quantum geometry of space;
in this role they in fact enter the QG approaches of LQG [7–9], spin foam models [13–15] and
GFT [10–12]. The wok presented in chapters 3 and 4 indeed focuses on a characterization of
spin networks modelling quantum spatial geometries from a information-theoretic perspective, and
leverage the latter for the investigation of quasi-local holography. In this chapter we nevertheless
introduce spin networks from a broader angle: we start by illustrating, in section 2.1, the first
appearance of the concept, which is due to Penrose. We then present, in section 2.2, the definition
of spin networks in lattice gauge theories. This can be considered a base example for the use of
these objects in QG, as it highlights that spin networks enter the theory by virtue of the role played
in it by the holonomy of a connection. Spin networks indeed appear in LQG as a (background
independent) SU(2) gauge theory; this is illustrated in section 2.3. In the latter we also explain
in detail the structure of the kinematic sector of LQG, as it provides an important ground of
comparison with our results in GFT. In section 2.4 we present the GFT framework and the way
spin networks enter it. Finally, in section 2.5 we review several results on the possibility to probe
and reconstruct quantum geometry from the entanglement structure of spin network states.

2.1 Penrose’s spin networks
As mentioned above, the first appearance of the notion of spin networks as a discrete and relational
(thereby background independent) model of quantum geometry is due to Penrose, who formulates
it along the view that discreteness lies at the core of spacetime and quantum mechanics, and in
the effort of building them up simultaneously from combinatorial principles. In fact, Penrose’s
idea is getting rid of the continuum not via an approximation of it, but via a reformulation of
the theory where discrete concepts are used as primary concepts, as basic building blocks of the
theory. Continuous concepts are then expected to emerge in a limit, as the complexity of the model
increases.

Moved by this idea, Penrose reconstructs a combinatorial notion of space by taking the total
angular momentum as primary discrete concept (the discreteness being in its spectrum). Note
that, in order to reconstruct a background independent notion of space, only the total angular
momentum, not its projection along a certain direction, can be taken as primary concept. In fact,
there is no pre-existing notion of space directions.

The model is composed of a set of “units”, each one representing a system with a well-defined
total angular momentum j = nℏ

2 , where n ∈ N is the spin-number ; a unit with spin-number n is
called an n-unit. The units are depicted as line segments that meet at nodes, forming diagrams
like the one in figure 2.1, where three units come together at each node. These diagrams are
called spin networks. Importantly, the units are not given the interpretation of particles, nor does
the network express their relative motion; they are just systems that transfer angular momentum
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Figure 2.1. An example of Penrose’s spin network: every edge carries an integer corresponding to
twice the angular momentum in units of ℏ.

around, interacting at nodes where the conservation of total angular momentum is satisfied. In
fact, the only relevant information is the combinatorics and the colouring (the assignment of spins
j) of the network.

Every spin network is assigned an integer, called norm, which is calculated in a purely com-
binatorial way. For the norm to be non-zero, the colouring of the network must be such that, at
each node, the quantum mechanical rules for the combination of total angular momenta are satis-
fied. In particular, given a node grouping an a-unit, a b-unit and a c-unit, we have the following
requirements:

(i) a+ b+ c ≤ 2max{a, b, c} (triangle inequality)

(ii) a+ b+ c even (conservation of the fermion number mod 2)

The norm is defined in terms of the notion of value of a closed spin network (i.e. a spin network
without free ends), that we are going to introduce. Given a closed spin network α, every n-unit is
replaced by n parallel strands and, at each node, pairs of strand ends pertaining to different units
are connected together. The conservation of angular momentum ensures that all strands coming
into a node can be connected up. There are several ways in which the strands can be paired (i.e.
several possible “routings” of them), and each one results in a certain number N of closed loops
in the stranded diagram. The value V [α] of the closed spin network α is then given by

V [α] =

 ∏
edges

1
n!

 ∑
routings

ϵ(−2)N (2.1.1)

where ϵ is a sign which depends on the intersection points between different strands at the nodes.
The norm of a generic open spin network β is then given by the modulus of V [β#β], where β#β
is the closed spin network obtained by connecting β with a copy β of itself through the coupling
of the corresponding free-end units.

Penrose showed that the whole theory, i.e. any quantum probability regarding the system, can
be deduced from the above definition of norm. In particular, in the limit of large spin-numbers
one can recover a notion of “directions in space” thanks to the possibility of writing probabilities
for spin-numbers associated to free-end units as a function of the angle between them.

We close this section by mentioning some straightforward generalisations of Penrose’s spin
nerworks which play a role in several approaches to QG:

▷ Vertices of any valence The valence d of the spin network nodes can be arbitrary. For d ≥ 4
the spin network is coloured by additional quantum numbers (intertwiner labels, see ) attached
to the nodes arising from the proper recoupling of spins.

▷ Not just the rotation group The edges of the spin network can be coloured by representations
of any Lie group.
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▷ Beyond Lie groups This is not an exclusive property of Lie algebras: Hopf algebras, for example,
also possess it, and a generalised class of spin networks indeed corresponds to them [63].

2.2 Spin networks in lattice gauge theories
We show that in the gauge theory for a compact Lie group G spin networks are gauge invariant
observables with support on a graph, where the latter is decorated by an element of the gauge group
on each edge or, in the dual (via the Peter-Weyl theorem) basis by an irreducible representation of
G on each edge and an intertwiner on each vertex. We also show, following Ref. [64], that a lattice
gauge theory for G = SU(2) can be written as a “sum over histories” of spin networks, namely as
a spin foam model.

We start by introducing the key elements of non-abelian gauge theories, and then present their
formulation on a lattice. A gauge theory for the connection (gauge field) Aαµ , where µ is a spacetime
index and α an index in the Lie algebra of the gauge group G, has an action of the following form:

S(A) =
∫

d4xF (A) ∧ ⋆F (A) (2.2.1)

where ⋆ is the Hodge operator and F (A) is a 2-form, the curvature of the connection A: F (A) =
dA−iλA∧A, with λ the gauge coupling. The action is invariant under group-valued transformations
g(x) ∈ G in every spacetime point x, under which

Aµ(x) → g−1(x)Aµ(x)g(x) + 1
λ
g−1(x)∂µg(x), (2.2.2)

while Fµν transforms as follows:

Fµν(x) → g−1(x)Fµν(x)g(x) (2.2.3)

The “natural variable” of a gauge theory is the parallel transport of the connection along a path
e,

he[A] = P exp
{
iλ

∫
e

A
}

∈ G, (2.2.4)

with P denoting path-ordering; in fact, the holonomy he transforms smoothly under the action of
the gauge group:

he → g−1(se)heg(te) (2.2.5)

where se and te are, respectively, source and target points of path e. It follows that for a closed
path, namely a loop l, the holonomy hl transforms as

hl → g−1hlg (2.2.6)

A gauge-invariant quantity of the connection can be constructed out of hl by talking the trace of
the matrix associated to it in a given representation ρ:

W ρ
l = Trρ (hl[A]) (2.2.7)

as follows from the cyclic property of trace. This quantity is called Wilson loop, and depends
exclusively on the loop l and the representation ρ.

We now proceed to present the discretization of the theory on a lattice. We consider a hypercube
lattice in RD with lattice spacing equal to 1, and denote by Nµ the lattice size in the µ-th direction,
with 1 ≤ µ ≤ D. The lattice points are defined as follows:

Λ0 = {⃗i = (i1, . . . , iD) : iµ ∈ {1, . . . , Nµ}, 1 ≤ µ ≤ D} (2.2.8)

Unit vectors along the axes of the lattice are denoted by µ̂ ..= (0, . . . , 1(µ), . . . 0) for 1 ≤ µ ≤ D, so
that the neighbour of the point i⃗ in the µ-direction is i⃗+ µ̂. In the following, we refer to a lattice
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point i⃗ with the simplified notation i (i.e. we omit the vector symbol). The k-cells of the lattice,
i.e. elementary k-dimensional subregions, are defined as follows:

Λk = {(i, µ̂1, . . . , µ̂k), i ∈ Λ0, 1 ≤ µ1 ≤ · · · ≤ µk ≤ D} (2.2.9)

Among them we have links (or edges) (i, µ̂) ∈ Λ1 and plaquettes (or faces) (i, µ̂, ν̂) ∈ Λ2. To
indicate that a k-cell contains a k′-cell (where k > k′) we write k-cell ⊃ k′-cell.

The configuration variables of the theory can be regarded as maps which associate to any
link (i, µ̂) ∈ Λ1 a group element g(i,µ̂) corresponding to the parallel transport of the continuum
connection A along that link:

g : Λ1 → G

(i, µ̂) → g(i,µ̂) = P exp
{
iλ

∫
(i,µ̂)

A
} (2.2.10)

From Eq. (2.2.1) we see that the action of the gauge theory depends on the connection only
via its curvature. The discrete counterpart of the latter is the map associating to any plaquette
(i, µ̂, ν̂) ∈ Λ2 the holonomy of the connection around its boundary:

h : Λ2 → G

(i, µ̂, ν̂) → h(i,µ̂,ν̂)
(2.2.11)

with
h(i,µ̂,ν̂) = g(i,µ̂)g(i+µ̂,ν̂)g

−1
(i+ν̂,µ̂)g

−1
(i,ν̂) (2.2.12)

The last ingredient we need for the lattice formulation of the gauge theory is the generating function
of a gauge transformation. This is a map φ that associates to each vertex i ∈ Λ0 an element of the
gauge group φi ∈ G. Under a gauge transformation the configuration variables then transform as
follows:

g(i,µ̂) → g′
(i,µ̂) = φig(i,µ̂)φ

−1
i+µ̂ (2.2.13)

and for the holonomy we thus have that h(i,µ̂,ν̂) → φih(i,µ̂,ν̂)φ
−1
i . Any class function of the

holonomy h(i,µ̂,ν̂) is therefore gauge invariant.
Since the action of the lattice gauge theory depends on the configuration variables only via the

discrete curvature, it can be discretized over faces:

S(h) =
∑
f∈Λ2

s(hf ) (2.2.14)

where f refers to the generic face, f ..= (i, µ̂, ν̂), and s(hf ) is the corresponding action. The path
integral of the theory is then given by

Z =
∫

Dg
∏
f∈Λ2

e−s(hf ) (2.2.15)

where ∫
Dg ..=

∏
(i,µ̂)∈Λ1

∫
G

dg(i,µ̂) (2.2.16)

is the integral over G for each lattice link with the Haar measure dg.
Generic gauge invariant observables of the theory can be constructed as follows. Let τ(i,µ̂) ∈ R

be an irreducible representation of G associated to the link (i, µ̂), and V (i,µ̂) the corresponding
representation space. At each lattice point i ∈ Λ0 we can identify D incoming links, (i − µ̂, µ̂)
with µ = 1, . . . , D, and D outgoing links, (i, µ̂) with µ = 1, . . . , D. Let Iιi be an intertwiner (see
the definition in appendix A.3) from (the tensor product of) the incoming representations to (the
tensor product of) the outgoing representations at i ∈ Λ0:

Iιi :
D⊗
µ

V τ(i−µ̂,µ̂) →
D⊗
µ

V τ(i,µ̂) , (2.2.17)
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(to simplify the notation, the dependence of the map Iιi from the incoming and outgoing rep-
resentations is left implicit). The spin network associated to the representations {τ(i,µ̂)∈Λ1} and
intertwiners {ιi∈Λ0} is the gauge invariant quantity defined by

Wτℓ,ιi(gℓ) ..=
(∏
ℓ∈Λ1

∑
mℓnℓ

)(∏
ℓ∈Λ1

tτℓ
mℓnℓ

(gℓ)
)(∏

i∈Λ0

Iιim(i,1̂)...m(i,D̂),n(i−1̂,1̂)...m(i−D̂,D̂)

)
(2.2.18)

where ℓ refers to the generic link (i, µ̂) and, on the left hand side, τℓ, ιi and gℓ account for the set
of analogous variables on the whole lattice, e.g. gℓ stands for {gℓ∈Λ1}. The expectation value of a
spin network Wτℓ,ιi is then computed by

⟨Wτℓ,ιi⟩ = 1
Z

∫
Dg Wτℓ,ιi(gℓ)

∏
f∈Λ2

e−s(hf ) (2.2.19)

We now proceed to derive the dual (according to the Peter-Weyl theorem) of Eq. (2.2.15). The
first step is to decompose the action into irreducible representations of the gauge group. Note that,
since s(hf ) is a class function, it decomposes into characters; by defining w(hf ) ..= e−s(hf ) we thus
have that

Z =
∫

Dg
∏
f∈Λ2

∑
ρf ∈R

wρfχρf (hf )

 =
∫

Dg
∏
f∈Λ2

∑
ρf ∈R

wρf

∑
mf

t
ρf
mfmf (hf )

 (2.2.20)

Note a first hint of the spin foam model: the path integral now contains an irreducibile representa-
tion ρf ∈ R for each face f of the lattice. Given Eq. (2.2.4), the representation function tρmm (hf )
can be written as product of representations functions of the group variables on the links bounding
the face f :

tρmm
(
h(i,µ̂,ν̂)

)
= tρmm

(
g(i,µ̂)g(i+µ̂,ν̂)g

−1
(i+ν̂,µ̂)g

−1
(i,ν̂)

)
=
∑
npq

tρmn
(
g(i,µ̂)

)
tρnp
(
g(i+µ̂,ν̂)

)
tρ
∗

pq

(
g(i+ν̂,µ̂)

)
tρ
∗

qm

(
g(i,ν̂)

) (2.2.21)

For every link ℓ ∈ Λ1 then there are 2(D − 1) representation functions of gℓ in the path integral,
one for each face f cobounding it (i.e. such that f ⊃ ℓ). The integration over gℓ thus yelds (see
Eq. (A.3.4) in appendix A.3) the following contribution:∫

dgℓ
∏
f⊃ℓ

t
ρf
mf ,nf (gℓ) =

∑
ιℓ

I
{ρf⊃ℓ};ιℓ
{mf⊃ℓ} I

{ρf⊃ℓ};ιℓ
{nf⊃ℓ} (2.2.22)

where I{ρf⊃ℓ};ιℓ is the ιℓ-th projector from the tensor product of representations {ρf}f⊃ℓ onto
the trivial representation (i.e. an intertwiner operator). The path integral thus also contains an
intertwiner label ιℓ for each link ℓ. In Eq. (2.2.22) the vector indices {mf⊃ℓ} refer to the source
point of ℓ (for link (i, µ̂), the point i), while {nf⊃ℓ} refer to the target one (the point i+ µ̂). As a
consequence, the set of projectors emerging from the integral over the group variables associated
to all links can be grouped by lattice points. Given i ∈ Λ0, the contraction of all projectors
corresponding to i defines the gauge constraint factor

Ci ({ρf⊃i}, {kℓ⊃i}) ..=
∑

{mf}f⊃ℓ

∏
ℓ⊃i

I
{ρf⊃ℓ};ιℓ
{mf⊃ℓ} (2.2.23)

which depends on the representations associated to all faces incident on i, i.e. {ρf⊃i}, and on the
intertwiner labels {kℓ⊃i} of the projectors (one for each link containing i). The final expression of
the path integral is then the following:

Z =

 ∏
f∈Λ2

∑
ρf ∈R

(∏
ℓ∈Λ1

∑
ιℓ

) ∏
f∈Λ2

wρf

 ∏
i∈Λ0

Ci (2.2.24)



10 2. Spin networks for quantum geometry

The path integral thus contains, in addition to the Boltzmann weight wρf foe each face f ∈ Λ2, a
gauge constraint factor Ci for each lattice point i ∈ Λ0. The dual model therefore corresponds to a
spin foam model, i.e. a 2-complex with faces coloured by irreducible representations of the gauge
group G and links coloured by intertwiners, where each configuration has a probability amplitude
that factorizes into amplitudes associated to the faces and amplitudes associated to the vertices.

2.3 Loop quantum gravity and spin networks
LQG is a canonical quantization of general relativity based on a 3 + 1 decomposition of spacetime,
which relies on a formulation of it in SU(2) variables (as opposed to standard metric ones), in
terms of which the theory acquires the form of a background independent SU(2) gauge theory.
The states of the canonical hypersurface, i.e. the kinematical states which evolve in time via
a Hamiltonian constraint, are spin networks to be interpreted as polymer-like excitations of the
gravitational field. The main result of LQG is the definition of geometrical operators, specifically
area and volume operators, and the prediction of the discreteness of their spectrum.

2.3.1 Canonical formulation of general relativity in the Ashtekar-Barbero
variables

The Einstein-Hilbert action in metric variables reads

S[gµν ] = 1
2κ

∫
d4x

√
−gR (2.3.1)

where κ = 8πG/c3 = 8πℓ2
p/ℏ. Given a spacetime foliation in terms of a three-dimensional space-like

surface Σ, the spacetime metric gµν can be expressed in terms of the induced Riemannian metric
of Σ, qab, a shift vector Na and a lapse function N . The action of general relativity then reads

S[qab, πab, Na, N ] = 1
2κ

∫
dt

∫
Σ
d3x

[
πabq̇ab −NaVa(qab, πab) −NS(qab, πab)

]
(2.3.2)

where πab = q− 1
2
(
Kab −Kqab

)
, with Kab extrinsic curvature of Σ, are the momenta canon-

ically conjugate to the space metric qab; Va(qab, πab) is the vector constraint which generates
three-dimensional diffeomorphisms on Σ, and S(qab, πab) is the scalar constraint which generates
coordinate time evolution.

The space metric qab is then described in terms of a triad field eia (with internal index i = 1, 2, 3
and space index a = 1, 2, 3) defining an orthogonal frame at each point of Σ: qab = eiae

j
bδij . From

it one defines the (inverse) densitized triad

Eai
..= 1

2ε
abcεijke

j
be
k
c (2.3.3)

and its conjugate variable:
Ki
a

..= 1√
det(E)

KabE
b
jδ
ij (2.3.4)

Note that the new variables contain some redundancy, as nine Eai are used to express the six
independent components of the induced metric qab. This redundancy derives from the symmetry
under SO(3) rotations on the local frames eia, and is removed by the imposition of the constraint

Gi(Eaj ,Kj
a) ..= εijkE

ajKk
a = 0 (2.3.5)

where Gi(Eaj ,Kj
a), called Gauss constraint, is the generator of the local gauge transformations.

The action then acquires the following form:

S[Eaj ,Kj
a, Na, N,N

j ] = 1
κ

∫
dt

∫
Σ
d3x

[
Eai K̇

i
a −N iGi(Eaj ,Kj

a) −NaVa(Eaj ,Kj
a) −NS(Eaj ,Kj

a)
]

(2.3.6)
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Let us then introduce the Ashtekar-Barbero connection, which will play the role of configuration
variable. Let Γia be the so(3) connection (called spin connection) defining a covariant derivative
compatible with the triad; the Ashtekar-Barbero connection is the so(3) connection defined as
follows:

Aia = Γia + γKi
a (2.3.7)

where γ is the Immirzi parameter. Remarkably, the connection Aia is conjugate to Eai , with Poisson
brackets

{Eaj (x), Aib(y)} = κγδab δ
i
jδ(x, y), {Eaj (x), Ebi (y)} = {Aja(x), Aib(y)} = 0 (2.3.8)

In terms of the Ashtekar-Barbero variables Eaj and Aja the action finally reads

S[Eaj , Aja, Na, N,N j ] = 1
κ

∫
dt

∫
Σ
d3x

[
Eai Ȧ

i
a −N iGi(Eaj , Aja) −N bVb(Eaj , Aja) −NS(Eaj , Aja)

]
(2.3.9)

and the constraints are given by

Gi(Eaj , Aja) = DaE
a
i (2.3.10)

Vb(Eaj , Aja) = Eaj F
j
ab − (1 + γ2)Ki

bGi (2.3.11)

S(Eaj , Aja) =
Eai E

b
j√

det(E)

(
ϵijk F

k
ab − 2(1 + γ2)Ki

[aK
j
b]

)
(2.3.12)

where Fab is the curvature of the connection Aa and DaE
a
i is the covariant divergence of Eai .

The phase space variables

The Ashtekar-Barbero variables Eaj and Aja take values in the Lie algebra of the local gauge group
SO(3). It is however preferable to work with the universal covering group of SO(3), i.e. SU(2),
as the latter allows to introduce fermions into the theory (note that this is possible because both
groups possess the same Lie algebra). In the following we therefore consider Aa = Aiaτi ∈ su(2)
and Ea = Eai τ

i ∈ su(2), with τi ..= iσi

2 (where σi are the Pauli matrices) generators of the su(2)
algebra. Let us dwell on the properties of these variables.

The Gauss constraint of Eq. (2.3.10) generates local SU(2) transformations. The finite version
of such transformations is the following:

▶ Under a local (and finite) SU(2) transformation generated by the Gauss constraint of Eq. (2.3.10)
the connection Aa becomes

A′
a = gAag

−1 + g∂ag
−1 (2.3.13)

A new variable, which transforms in a simpler way under the action of the local gauge group,
can be constructed out of the connection: the holonomy he(A) ∈ SU(2), which defines the
parallel transport of SU(2) spinors along a path e ⊂ Σ:

he[A] = P exp −
∫
e

A (2.3.14)

where P is the path-ordering operator. In fact, under a gauge transformation the holonomy
he[A] becomes

h′
e[A] = g(se)he[A]g−1(te) (2.3.15)

▶ The densitized triad Eai transforms, under the action of the local gauge group, as follows:

Ea′ = gEag−1 (2.3.16)

Since Eai encodes the spatial geometry of Σ, any geometrical quantity on Σ can thus be written
in terms of it. Important examples are the area of a two-dimensional surface S ⊂ Σ,

AS [E] ..=
∫
S

dσ1dσ2
√
Eai E

b
jδ
ijnanb, (2.3.17)
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and the volume of a three-dimensional region R ⊂ Σ:

VR[E] =
∫
R

d3x

√∣∣∣∣ 1
3!εabcE

a
i E

b
jE

c
kε
ijk

∣∣∣∣ (2.3.18)

2.3.2 Dirac quantization and structure of the kinematic sector of the
theory

The quantization of the theory is performed via the Dirac program. The first step thus consists
in the representation of the phase space variables as operators in an auxiliary (kinematic) Hilbert
space Hkin. The constraints are then promoted to self-adjoint operators in Hkin, and the space of
solutions to them is going to define, with a suitable inner product, the physical Hilbert space Hphys.
We can identify in this procedure two intermediate steps, corresponding to the construction of the
space of solutions to the Gauss constraint (i.e. gauge invariant functionals of the connection), H0,
and that of solutions to both the Gauss and the vector constraint, H0

diff . Schematically:

Hkin
Gauss−−−−→ H0 Diff−−→ H0

diff
Scalar−−−−→ Hphys (2.3.19)

Since, in light of the results presented in chapters 3 and 4, we are mainly interested in the kinetic
sector of the theory, i.e. in the solutions to the Gauss and the vector constraints, in the following
we focus on the construction of Hkin, H0 and H0

diff .

Kinematic Hilbert space Hkin

LQG adopts the A-polarization, i.e. assigns to the connection A the role of configuration variable.
The construction of Hkin thus requires the definition of the vector space of functionals of the
connection and of a suitable inner product on it. A basic functional of the connection is the
holonomy defined in Eq. (2.3.14); in fact, it possesses several nice properties: it transforms in a
simple way under the action of the local gauge group, see Eq. (2.3.15), as well as under the action
of a diffeomorphism ϕ ∈ diff(Σ):

he[ϕ∗A] = hϕ−1(e)[A] (2.3.20)

That is, acting with a diffeomorphism on the connection (ϕ∗A) corresponds to translating the path
e with ϕ−1. The holonomy is then promoted to fundamental observable via the introduction of
the notion of generalised connection, which consists in the assignment of an element he ∈ SU(2) to
any path e ⊂ Σ. Kinematic states are then functions of generalised connections called cylindrical
functions. More specifically, given a graph Γ ⊂ Σ and a smooth function f : GN → C, a cylindrical
function corresponds to the functional of the connection

ψΓ,f [A] = f(he1 [A], . . . , heN
[A]) (2.3.21)

where e1, . . . , eN are the edges of graph Γ. An example of cylindrical function which is also gauge
invariant is given by the Wilson loop:

Wl[A] = Tr[hl[A]] (2.3.22)

The set of cylindrical functions for a given graph Γ is denoted by CylΓ. The algebra of kinematical
observables is then defined as follows:

Cyl = ∪ΓCylΓ (2.3.23)

To complete the construction of the kinematical Hilbert space Hkin one needs to provide the
space of cylindrical functions Cyl with a scalar product. This is done via the Ashtekar-Lewandowski
measure µAL, whose action on an element ψΓ,f ∈ Cyl is

µAL(ψΓ,f ) =
∫ ∏

e∈Γ
dhef(he1 , . . . , heL

) (2.3.24)
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with dh Haar measure of SU(2). The kinematical scalar product between two cylindrical functions
ψΓ,f and ψΓ,g is then given by

µAL(ψΓ,fψΓ,g) =
∫ ∏

e∈Γ
dhef(he1 , . . . , heL

)g(he1 , . . . , heL
) (2.3.25)

This definition is extended to cylindrical functions associated to different graphs (having differ-
ent ordering/orientation or different combinatorics) by using the fact that every function ψΓ,f is
equivalent to a function ψΓ′,f ′ on a “larger” graph Γ′ with f ′ independent from the holonomies on
the edges which pertain to Γ′ but not to Γ1. In fact one defines

⟨ψΓ,f |ψΓ′′,g⟩ ..= µAL(ψΓ′,f ′ψΓ′,g′) =
∫ ∏

e∈Γ′
dhef ′(he1 , . . . , heL

)g′(he1 , . . . , heL
) (2.3.26)

where Γ′ is any graph such that Γ ⊂ Γ′ and Γ′′ ⊂ Γ′. Notably, this scalar product is invariant under
diffeomorphisms and gauge transformations. The kinematical Hilbert space Hkin is the Cauchy
completion of Cyl in the norm defined by the scalar product of Eq. (2.3.26).

A discrete orthonormal basis of Hkin is provided by the Peter-Weyl theorem, that applied to a
cylindrical function ψΓ,f [A] yields

ψΓ,f [A] = f(he1 [A], . . . , heL
[A])

=
∑
j1...jL

f j1...jL
m1...mL,n1...nL

∏
e

√
2je + 1Dje

mene
(he[A]) (2.3.27)

Note in fact that f j1...jL
m1...mL,n1...nL

is given by the scalar product (defined according to Eq. (2.3.25))

f j1...jL
m1...mL,n1...nL

= ⟨Γ, je,me, ne|ψΓ,f ⟩, (2.3.28)

where |Γ, je,me, ne⟩ ..= |je1 ,me1 , ne1 , . . . , jeL
,meL

, neL
⟩ with

⟨he|je,me, ne⟩ ..=
√

2je + 1Dje
mene

(he). (2.3.29)

Therefore, the states |Γ, jemene⟩ for any possible graph Γ ∈ Σ form a complete orthonormal basis
of Hkin.

Equivalent definitions of the Hilbert space Hkin We have defined Hkin as the completion
of Cyl in the norm given by the scalar product of Eq. (2.3.26). In the following we list other
equivalent definitions of Hkin.

⊙ Consider the space of cylindrical functions with support on graph Γ: HΓ ..= L2(GL), where L
is the number of edges of Γ. Given a graph Γ′ such that Γ ⊂ Γ′, the Hilbert space HΓ results to
be a proper subspace of HΓ′

2. One can then define Hkin as the limit of a family of such Hilbert
spaces:

Hkin = lim
Γ→∞

HΓ (2.3.30)

where the limit denotes an infinite refinement of the graph.

⊙ The Hilbert space Hkin can be defined as the direct sum of suitable Hilbert spaces with support
on a graph. The observation underlying this definition is the following: given two graphs Γ and
Γ′ such that Γ ⊂ Γ′, the state |Γ, je,me, ne⟩ pertains to both HΓ and HΓ′ so it cannot be a
basis of Hkin; in fact, all vectors in HΓ have spin zero on the edges that are in Γ′ but not in Γ.

1In the spin network basis, this corresponds to having that edges labelled with the trivial representation je = 0.
2As pointed out above, any function ψΓ,f ∈ HΓ is equivalent to a function ψΓ′,f ′ ∈ HΓ′ where f ′ is independent

from the holonomies on the edges which are in Γ′ but not in Γ and coincides with f on Γ ∩ Γ′. Moreover, the
scalar product on HΓ is the one induced from the embedding space HΓ′ and defined via the Ashtekar-Lewandowski
measure of Eq. (2.3.24).
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One hence considers the proper subspace of HΓ spanned by basis states with jl > 0, that we
denote by H̃Γ. The Hilbert space Hkin can then be defined as follows:

Hkin ∼
⊕

Γ
H̃Γ (2.3.31)

where the direct sum is over all possible graphs Γ ∈ Σ.

⊙ The Hilbert space Hkin can be defined as the space of squared integrable functions in the
Ashtekar-Lewandowski measure µAL for a suitable extension of the space of the smooth con-
nection, to which we refer by Ã: Hkin ∼ L2[Ã, dµAL]. For more details see Ref. [65].

Hilbert space of gauge invariant states: H0 ..= HG
kin

In the following we introduce the space of solutions of the Gauss constraint: H0 ..= HG
kin. We recall

that the Gauss constraint is the generator of local SU(2) gauge transformations. The space H0 is
thus composed of states of Hkin which are gauge invariant, called spin network states.

Let UG [g] be the operator generating a finite local gauge transformation g(x) ∈ SU(2), i.e.

UG [g]Dj
mn(he) = Dj

mn(gseheg
−1
te ) (2.3.32)

where gse
..= g(se) and gte

..= g(te), with se and te source and target vertices of e. The operator
PG projecting kinematical states of Hkin onto H0 is constructed via the average over all possible
SU(2) transformations:

PG =
∫
D[g]UG [g] (2.3.33)

Crucially, since the gauge transformation UG [g] acts at the end points of the graph edges e ⊂ Γ,
the action of PG on a state ψΓ,f ∈ Hkin factorizes over vertices:

PGψΓ,f =
∏
v

P vGψΓ,f (2.3.34)

with P vG acting only on vertex v ⊂ Γ. Within the Peter-Weyl decomposition of ψΓ,f given in
Eq. (2.3.27), the operator P vG acts as follows (to simplify the notation, the four edges e ⊂ v are
labelled by ):

P vG
∏
e⊂v

Dje
mene

(he) =
∫
dg
∏
e⊂v

Dje
mene

(ghe)

=
(∫

dg
∏
e⊂v

Dje
meqe

(g)
)∏
e⊂v

Dje
qene

(he)

=
(∑

ι

Iιm1...m4
Iιq1...q4

)∏
e⊂v

Dje
qene

(he)

(2.3.35)

where Iιm1...m4
∈ InvSU(2)

[⊗
e⊂v V

je
]

is an intertwiner operator recoupling the spins incident on
the single vertex (see appendix A.4). A gauge invariant state associated to a closed graph Γ thus
takes the following form:

ψΓ,f [A] ..=
∑
j1...jL

f j⃗e ,⃗ιvsΓ,⃗je ,⃗ιv
[A] (2.3.36)

where
sΓ,⃗je ,⃗ιv

[A] =
⊗
v⊂Γ

ιv
⊗
e⊂Γ

√
2je + 1Dje(he[A]) =.. ⟨he[A]|Γ, j⃗e, ι⃗v⟩ (2.3.37)

are gauge invariant functionals of the connection called spin network states. The spin network
states |Γ, j⃗e, ι⃗v⟩ for all possible graphs Γ ∈ Σ form a complete orthonormal basis of H0.
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Hilbert space of diffeomorphism invariant states: Hdiff

Here we present the space of solutions of the vector constraint (the generator of three-dimensional
diffeomorphisms on Σ): Hdiff . This is not a subspace of Hkin: since the orbits of diffeomorphisms
are not compact, diffeomorphism invariant states are not contained in Hkin but in the dual of the
space of cylindrical functions Cyl; in fact, Cyl ⊂ Hdiff ⊂ Cyl∗, a relation known as Gelfand triple.

Let us start by introducing the operator U [ϕ] implementing a diffeomorphism ϕ ∈ diff(Σ) on
elements of Cyl ⊂ Hdiff ; it acts on ψΓ,f ∈ Cyl as follows:

U [ϕ]ψΓ,f [A] = ψϕ−1(Γ),f [A] (2.3.38)

i.e. by “moving” the graph Γ with ϕ−1. Diffeomorphism invariant states are thus defined as
elements ⟨[ψΓ,f ]| ∈ Cyl∗ given by

⟨[ψΓ,f ]| =
∑

ϕ∈diff(Σ)

⟨ψΓ,f |U [ϕ] (2.3.39)

where [ψΓ,f ] denotes the equivalence class of ψΓ,f under diffeomorphisms. The previous expression
is a well defined element of Cyl∗ because only a finite number of terms in the sum contribute (see
below). The set of diffeomorphism invariant states is finally promoted to a Hilbert space Hdiff via
the definition of the following scalar product:

⟨[ψΓ,f ]|[ψΓ′,g]⟩diff ..= ⟨[ψΓ,f ]|ψΓ′,g⟩ =
∑

ϕ∈diff(Σ)

⟨ψΓ,f |U [ϕ]|ψΓ′,g⟩ (2.3.40)

Hilbert space of gauge and diffeomorphism invariant states: H0
diff

The space of solutions of both the Gauss and the vector constraint, denoted by H0
diff , can be

constructed by restricting the above procedure to the space of gauge-invariant cylindrical functions
Cyl0 and its dual. In fact, gauge and diffeomorphism invariant states are elements ⟨Pdiffψ| ∈ Cyl0∗,
where ψ is a gauge invariant state (to simplify the notation we omit the explicit reference to the
underlying graph) and Pdiff : Cyl0 → Cyl0∗ is such that

⟨Pdiffψ|ψ′⟩ =
∑

ϕ∈diff(Σ)

⟨ψ|U [ϕ]|ψ′⟩ (2.3.41)

with U [ϕ] defined in Eq. (2.3.38). The scalar product is then given by

⟨[ψ]|[ψ′]⟩diff = ⟨ψ|Pdiff |ψ′⟩ =
∑

ϕ∈diff(Σ)

⟨ψ|U [ϕ]|ψ′⟩ (2.3.42)

To see why the above sum is always finite consider that

- if the diffeomorphism ϕ changes the graph Γ underlying ψ, it takes ψ into a state orthogonal
to itself;

- if the diffeomorphism ϕ does not change Γ, there are two possibilities:

(a) the state is invariant, hence no multiplicity factor enters the sum of Eq. (2.3.42),

(b) ϕ changes the ordering and/or orientation of the graph; these are discrete operations, so a
discrete multiplicity enter the sum of Eq. (2.3.42).

A basis of H0
diff is given by spin network states associated to the equivalence class of graphs under

diffeomorphisms, called s-knot states.
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Figure 2.2. Subfigure (a) illustrates a graph edge e (black line) which punctures the surface S
and is split by the intersection point into segments e1 and e2; the action of the operator Êi[S] on
the holonomy he[A] is given by Eq. (2.3.47). Subfigure (b) illustrates a sphere S containing just
one spin network vertex v, and an elementary portion of it punctured only by the n-th edge of v,
denoted as Sn. Since the spin network vertex is gauge invariant, the action of Êi[S] on it vanishes,
see Eq. (2.3.49).

2.3.3 Quantum operators and physical interpretation of spin networks
We have seen that the Ashtekar-Barbero variables describing the geometry of the canonical hy-
persurface Σ are the SU(2)-connection Aia and its canonical momentum, the densitized triad Eai .
In the quantum theory, Aia becomes a multiplicative operator, while Eai becomes a derivative
operator:

Âiaψ[A] = Aiaψ[A] (2.3.43)

Êai ψ[A] = −iℏκγ δ

δAia
ψ[A] (2.3.44)

where ψ[A] ∈ Hkin. Both operators are not well defined in Hkin, as they send ψ[A] out of the
kinematical space. Well defined operators on Hkin can however be constructed by suitably smearing
Âia and Êai on substructures of Σ. The holonomy he[A], which is the smearing of (the path ordered
exponential of) the connection along a one-dimensional path e ⊂ Σ, becomes in fact a well defined
multiplicative operator in Hkin. The densitized triad, instead, being a vector density can naturally
be integrated over two-dimensional surfaces. Therefore, given a surface S ⊂ Σ parametrized by
coordinates σ1, σ2 one defines

Êi[S] =
∫
S

dσ1dσ2na(σ⃗)Êai = −iℏκγ
∫
S

dσ1dσ2na(σ⃗) δ

δAia
(2.3.45)

where
na(σ⃗) ..= εabc

∂xb(σ⃗)
∂σ1

∂xc(σ⃗)
∂σ2 (2.3.46)

is the normal 1-form on S. The action of Êi[S] on the holonomy he[A], in the case of e crossing
the surface S only in one point as in figure 2.2(a), is given by

Êi[S]he[A] = ±iℏκγhe1 [A]τihe2 [A] (2.3.47)

where e1 and e2 are the segments in which the intersection point splits e, τi with i = 1, 2, 3 are the
generators of the su(2) algebra, and the sign depends on the relative orientation of e and S. That
is, the operator Êi[S] acts on the holonomy by inserting ±iℏκγτi at the point of intersection. The
action vanishes in the case e ∩ S = ∅.

Given a spin network state |ψ⟩, consider the action of Êi[S] on a spin network vertex v, where
S is a sphere of radius ϵ centered at v. Then

lim
ϵ→0

∑
e

Êi[S]|ψ⟩ =
∑
n

Êi[Sn]|ψ⟩ (2.3.48)
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where Sn is the piece of the sphere punctured only by the n-th edge of the vertex v, as shown in
figure 2.2(b). From Eq. (2.3.47) it follows that the effect of this transformation coincides with the
first order of an infinitesimal gauge transformation. Therefore, the action of Êi[S] in Eq. (2.3.48) is
the action of the quantum Gauss constraint on a spin network vertex. Due to the gauge invariance
of the latter, we have that ∑

n

Êi[Sn]|ψ⟩ = 0 (2.3.49)

i.e. the total quantum flux for a spin network vertex vanishes.

Area operator The area of a two-dimensional surface S ⊂ Σ is given, classically, by Eq. (2.3.17).
Its quantum counterpart ÂS is constructed by considering a partition of S intoN 2-cells, S1, . . . , SN ,
and expressing the area operator as the limit of a Riemann sum:

ÂS = lim
N→∞

(
N∑
n=1

√
Êi[Sn]Êi[Sn]

)
(2.3.50)

Given a path e which intersects Sn only once, from Eq. (2.3.47) it follows that

Êi[Sn]Êi[Sn]he[A] = i2(ℏκγ)2he1 [A]τiτ ihe2 [A] = (ℏκγ)2 (−τiτ i)he[A] (2.3.51)

where we used the fact that −τiτ i is the Casimir operator. The action of the square of the flux
through Sn is therefore diagonal on the holonomy along a path e intersecting Sn only once. In
the representation space V j , where the Casimir operator has eigenvalue j(j + 1), the previous
expression takes the form

Êi[Sn]Êi[Sn]Dj
mn (he[A]) = (ℏκγ)2j(j + 1)Dj

mn (he[A]) (2.3.52)

It follows that the action of the area operator is diagonalized by spin network states, with

ÂS |ψ⟩ = ℏκγ
√
j(j + 1)|ψ⟩ (2.3.53)

when the surface S is punctured only once by the spin network |ψ⟩, and

ÂS |ψ⟩ = ℏκγ
∑
p

√
jp(jp + 1)|ψ⟩ (2.3.54)

in the case of multiple intersection points3. The spectrum of the area operator is therefore discrete,
and the area eigenvalues are determined by the spins attached to the edges of the spin network
graph; in particular, an edge carrying a spin j is interpreted as being dual to an elementary surface
of area ℏκγ

√
j(j + 1).

Volume operator The volume operator for a three-dimensional region R is analogously obtained
by first writing the classical version (see Eq. (2.3.18)) as the limit of a Riemann sum defined
on a decomposition of R into 3-cell, and then by quantizing the regularized expression. For
simplicity, assume that R is decomposed in a cubic lattice, and let N be the number of 3-cell in
the decomposition. The volume operator is given by

V̂R = lim
N→∞

(
N∑
k=1

√∣∣∣∣ 1
3!εabcÊi[S

a
n]Êj [Sbn]Êk[Scn]εijk

∣∣∣∣
)

(2.3.55)

where San is the surface whose normal 1-form lies in the a-th direction. The limiting process is
performed so that each vertex is contained in only one 3-cell. The volume operators turn out to
be diagonalised by spin network states as well. We do not go into detail in the calculation of
the spectrum of the volume operator, for which we refer to the literature. We just mention the

3There are other possible choices for the area spectrum in LQG, see Ref. [66, 67].
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fundamental result of the volume spectrum being discrete, with eigenvalues determined by the
intertwiner quantum numbers. The node of a spin network, which is coloured by the intertwiner
label, can thus be interpreted as a “quantum of space”.

The resulting picture is that of spin networks representing the quantum version of a twisted
geometry [68–70]. The latter is a collection of polyhedra in which adjacent faces possess the same
area but have, in general, different shape and/or orientation. That is, only “neighbouring relations”
are present in a twisted geometry: the planes of adjacent faces are not necessarily parallel. Twisted
geometries thus differ from standard Regge triangulations in which faces of neighbouring polyhedra,
having the same area, shape and orientation, perfectly adhere to each other.

Definition and properties of spin networks in LQG are summarised in box 2.1.

2.1 Spin networks in Loop Quantum Gravity

▷ A spin network is a graph Γ ⊂ Σ with edges e labelled by irreducibile representations of
SU(2), namely spins je ∈ N

2 , and vertices v labelled by SU(2) intertwiners ιv ∈ Iv,
i.e. SU(2)-invariant tensors of (the tensor product of) the representations attached to
all edges converging at a vertex.

▷ A spin network state |Γ, j⃗e, ι⃗v⟩ is the state corresponding to the following wavefunction
on the space of generalised connections:

sΓ,⃗je ,⃗ιv
(⃗he) =

⊗
v⊂Γ

ιv
⊗
e⊂Γ

√
2je + 1Dje(he) (2.3.56)

where he ∈ SU(2) is the holonomy of the Ashtekar connection Aia alond the edge e of
Γ. That is, a spin network is a wavefunction defining a probability amplitude on the
holonomies.

▷ Spin network states (defined on closed graphs) are gauge invariant states and provide a
basis of the space of solutions of the Gauss constraint, H0.

▷ Spin network states diagonalise the area and the volume operator and can be understood
as representing quantum twisted geometries: every link is dual to a surface S ⊂ Σ
intersecting it, and the spin attached to the link is related to the area of such surface
according to Eq. (2.3.53); every node is dual to an elementary portion of space, and the
intertwiner attached to it is related to its volume.

▷ Spin network states invariant under spatial diffeomorphisms are obtained by considering
equivalence classes of labelled graphs on Σ under diffeomorphism (spin-knot states).

▷ Spin network states invariant under spatial diffeomorphisms and defined on closed graphs
(thereby gauge invariant) represent kinematical states of the theory, whose evolution is
implemented via the scalar constraint.

2.4 The GFT approach to quantum gravity
A GFT is the theory of a quantum field ϕ defined on d copies of a group manifold G, as follows:

ϕ : Gd → C
g1, . . . , gd ϕ(g1, . . . , gd)

(2.4.1)

In the simplicial GFT model for QG G = SU(2) and the field is required to satisfy the closure
condition:

ϕ(hg1, . . . , hgd) = ϕ(g1, . . . , gd) ∀h ∈ G (2.4.2)
As a result, the excitations of the field can be interpreted as (d − 1)-simplices, to be understood
as “quanta of space”, whose geometric properties are encoded in the group variables g1, . . . , gd
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Figure 2.3. Excitation of the field ϕ(g1, . . . , gd) ∈ L2(Gd/G) for the case d = 4. On the left, the
simplicial representation as a tetrahedron with variables g1, . . . , g4 associated to the four faces,
which are dual to the edges of a four-valent spin network vertex. On the right, the spin network
vertex coloured by: spins j1, . . . , j4 on the edges, magnetic numbers n1, . . . , n4 at their free ends,
and an intertwiner ι on the core.

associated to their d faces. Figure 2.3 shows an example of field excitation for d = 4: a tetrahedron;
it also illustrates that the fundamental simplex can be represented as a d-valent vertex, with an
open line (or edge) corresponding to each face and identified by the label i = 1, . . . , d numbering the
faces of the simplex: the edge with label i carries the group variable gi. Through the Peter-Weyl
decomposition one obtains

ϕ(g⃗) =
∑
j⃗,n⃗,ι

ϕj⃗n⃗,ι

( 4∏
i=1

√
2ji + 1Dji

mini(gi)
)
I j⃗;ιm⃗ =

∑
ξ⃗

ϕj⃗n⃗,ιs
j⃗
n⃗,ι(g⃗) (2.4.3)

where sj⃗n⃗,ι(g⃗) is the spin network basis wavefunction defined in Eq. (2.3.37) for the single vertex.
The GFT action takes the form

Sd[ϕ, ϕ∗] =
∫
dg⃗dq⃗ϕ(g⃗)K(gi

(
qi)−1)ϕ(q⃗) + λ

d+ 1

∫ d+1∏
i ̸=j=1

dgjiV(gji (g
i
j)−1)ϕ(g⃗1) . . . ϕ(g⃗d+1) + c.c.

(2.4.4)
where g⃗ = {g1, . . . , gd}, λ is a coupling constant and K(gi

(
qi)−1) and V(gji (gij)−1) are the kinetic

and interaction kernels, respectively. The presence in the action of combinatorial non-local inter-
actions (a crucial difference with respect to standard quantum field theories) is responsible for the
gluing of GFT quanta into discrete geometric structures. In particular, the fundamental (d − 1)-
simplices combine into d-complexes of arbitrary topology, interpreted as discrete substratum of the
continuum spacetime that should emerge from them in some appropriate limit. These d-complexes
are dual to the Feynman diagrams in the perturbative expansion of the GFT partition function:

Z =
∫
DϕDϕ∗e−Sd[ϕ,ϕ∗] =

∑
Γ

λN(Γ)

sym(Γ)Z(Γ), (2.4.5)

where Γ is the Feynman graph, N(Γ) is the number of interaction vertices in Γ, sym(Γ) is a
symmetry factor and Z(Γ) is the Feynman amplitude associated to Γ. At the boundary of the
Feynman diagrams one finds spin networks as defined in LQG and the Feynman amplitudes coincide
with spinfoam amplitudes [71], a feature made evident by the Peter-Weyl decomposition of the
group functions. Notably, the entire expansion can be seen as the result of merging the strategy
of quantum Regge calculus [72] (sum over discrete geometric data attached to a lattice) with that
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of dynamical triangulations [73] (for given geometric data, sum over all possible lattices). Let us
finally mention that GFT can be regarded as a generalization of random tensor models [74, 75],
where the combinatorial structures of the latter are enriched with group-theoretic data. As we will
clarify in the following chapter, these additional data are responsible for the characterization of
the graphs associated to GFT states as patterns of entanglement among field quanta.

Despite sharing the same geometric combinatorial structure and algebraic data, the spin net-
works of LQG and GFT exhibit some differences with respect to their role and interpretation in
the respective frameworks. We illustrate this point in detail in the next chapter. Here we only
mention that, while spin networks are introduced in LQG as graphs embedded in a background
manifold with fixed topology, spin networks considered in GFT (as well as in spin foam models) are
abstract spin networks and the partition function of the theory allows transitions between different
spatial topologies. Spin networks of GFT can in fact carry, in addition to the purely algebraic
data, topological data.

The Fock space structure

The second-quantization formulation of GFT is based on field operators ϕ̂ and ϕ̂† that satisfy the
following (bosonic) commutation relations:

[ϕ̂(g⃗), ϕ̂†(q⃗)] =
∫
dh

d∏
i=1

δ(hgi(qi)−1), [ϕ̂(g⃗), ϕ̂(q⃗)] = [ϕ̂†(g⃗), ϕ̂†(q⃗)] = 0, (2.4.6)

where the r.h.s. of the first equation is the gauge invariant Dirac delta distribution on Gd. The
GFT Fock space is constructed from the repeated action of the creation operator on the vacuum
state |0⟩, defined as the state annihilated by all ϕ̂(g⃗). In the second-quantization settings the
modes of the Peter-Weyl decomposition of Eq. (2.4.3), for which we use the notation ϕξ⃗

..= ϕj⃗n⃗,ι
where ξ⃗ ..= {⃗j, n⃗, ι}, are similarly promoted to creation and annihilation operators which satisfy

[ϕ̂ξ⃗, ϕ̂
†
ξ⃗′

] = δξ⃗,ξ⃗′ , [ϕ̂ξ⃗, ϕ̂ξ⃗′ ] = [ϕ̂†
ξ⃗
, ϕ̂†
ξ⃗′

] = 0 (2.4.7)

As anticipated above, an excitation of the field corresponds to a (d − 1)-simplex dual to an open
spin network vertex:

|1ξ⃗⟩ = ϕ̂†
ξ⃗
|0⟩ = |⃗j, n⃗, ι⟩ (2.4.8)

As we will make extensive use of the GFT formalism in the first-quantization language, let us
present the derivation of the GFT Fock space from the Hilbert space associated to a single vertex,
i.e. the one-particle sector of the theory, and the costruction of a pre-Fock space. The single-vertex
Hilbert space is given by

H = L2(Gd/G) =
⊕
j⃗

(
I j⃗ ⊗

d⊗
i=1

V j
i

)
. (2.4.9)

where the right hand side is the result of applying the Peter-Weyl to the left hand side. Starting
from the Hilbert space of the single vertex H we can then consider the Hilbert space associated to
a set of N (distinguishable) vertices:

HN
..= H ⊗ · · · ⊗ H︸ ︷︷ ︸

N

(2.4.10)

A generic “N -particle” state thus takes the form

|ψ⟩ =
∫ (∏

v

dg⃗v

)
ψ(g⃗1, . . . , g⃗N )|⃗g1, . . . , g⃗N ⟩, (2.4.11)

where g⃗v = {g⃗1
v , . . . , g⃗

d
v}, and |⃗gv⟩ provides a basis for the Hilbert space of the v-th vertex. By

taking the direct sum of the Hilbert spaces associated to all possible number of vertices N one
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obtains the GFT pre-Fock space:

pre-F(H) =
∞⊕
N=1

HN (2.4.12)

The Fock space of the theory is then obtained by symmetrizing every term of the direct sum over
the vertex labels:

F(H) =
∞⊕
N=1

sym

H ⊗ · · · ⊗ H︸ ︷︷ ︸
N

 . (2.4.13)

2.5 Entanglement and correlations on spin networks to probe
and reconstruct geometry

In this section, which is based on Ref. [4], we give an overview of a series of results on the study of
correlations and entanglement entropy on spin networks which, in the spirit of the work presented
in chapters 3 and 4, are based on the interplay between QG and quantum information and/or
condensed matter physics. Let us stress that, while our results in chapters 3 and 4 have been
obtained within the GFT approach to QG, the ones we are going to present here mostly pertain
to the LQG framework. Nevertheless, they provide a prominent example of how to probe and
reconstruct geometry from the quantum correlation structure of spin networks, and provide a key
term of comparison to our work. The results are grouped by theme and presented in mainly
chronological order.

2.5.1 On the horizon surface: correlations and bulk entropy
We start with early results on spin networks describing finite regions of 3D space bounded by a
causal horizon. On one hand, these results deal with the computation of the horizon entropy and
the recognition of correlations between horizon subregions as responsible for corrections to the
entropy area law [76]; on the other, they concern the introduction of the concept of bulk entropy
and its relationship with the boundary area [77].

Black point model for the computation of the horizon entropy In Ref. [76] Livine and
Terno modelled the horizon of a static black hole (at the kinematic level) as a two-sphere made
by 2n elementary patches, each one punctured by an edge carrying the spin 1

2 (the argument is as
follows: since any representation space V j can be decomposed into the symmetrised product of 2j
spin- 1

2 representations, the spin- 1
2 patch can be considered as the “elementary patch”). We denote

by R the black hole region, so that its boundary ∂R corresponds to the horizon two-sphere. The
Hilbert space H∂R describing the set of boundary edges can be decomposed as

H∂R =
2n⊗

V
1
2 ∼=

n⊕
j=0

V j ⊗Dj
n (2.5.1)

where Dj
n is the degeneracy space of states with spin j. The gauge-invariant subspace associated

to the horizon is then given by the intertwiner space

H(0)
∂R = InvSU(2)

[ 2n⊗
V

1
2

]
∼= D0

n (2.5.2)

where the superscript (0) is used to denote the presence of gauge-invariance. In this description
the bulk is thus coarse-grained to a single point (hence the name “black point model”), as depicted
in figure 2.4(a). The assumption that the surface is a causal horizon implies complete ignorance
of the bulk geometry, and the boundary state is therefore given by

ρ = 1
N

∑
r

|ιr⟩⟨ιr| (2.5.3)
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where {|ιr⟩} is a basis of the intertwiner space H0
∂R and N the dimension of the latter. Note that

the Boltzmann entropy of such state coincides with its von Neumann entropy, both being equal
to logN . The intertwiner-space dimension N is computed via random walk techniques, and the
result for the entropy in the asymptotic limit n → ∞ is an area law with a logarithmic correction.
The latter is shown to be given by the total amount of correlations between two halves of the
horizon surface. Let us show the methodology, as this will be useful for subsequent discussion and
for comparing the results presented in chapters 3 and 4 to the LQG literature.
Consider the splitting of the boundary into a set ∂A of 2k qubits and a complementary set ∂B of
2(n− k) qubits (see figure 2.4(a)). Then

H∂R = H∂A ⊗ H∂B (2.5.4)

where H∂A = (V 1
2 )⊗2k and H∂B = (V 1

2 )⊗2(n−k) (note that such a factorisation does not hold
for the gauge-invariant subspace H(0)

∂R, see the discussion on Ref. [67]). When decomposing each
subspace into a direct sum over irreducible representations j, e.g. H∂A =

⊕
j=0 V

j
∂A ⊗ Dj

∂A, the
intertwiner states of H(0)

∂R ⊂ H∂R turn out to be singlet states on V j∂A ⊗ V j∂B with extra indices
aj and bj labelling basis of the degeneracy spaces Dj

∂A and Dj
∂B , respectively. This corresponds

to unfolding the intertwiner as illustrated in figure 2.4(c). The horizon state then becomes the
following:

ρ = 1
N

k∑
j

∑
ajbj

|j, aj , bj⟩⟨j, aj , bj | (2.5.5)

It is found that, for 2k = n (symmetric splitting of the horizon surface), the mutual information
Iρ(∂A : ∂B), amounting to three times the entanglement between ∂A and ∂B (quantified e.g. by
the entanglement of formation), equals the logarithmic correction to the horizon entropy.
A possible relationship of the entanglement between ∂A and ∂B (for ∂A ≪ ∂B) with the evap-
oration process is also suggested, as the case j = 0 corresponds to the detachment of the surface
patch ∂A from the rest of the horizon.

Bulk-topology contribution to the boundary entropy In Ref. [77] Livine and Terno gen-
eralised the computation of the horizon entropy performed in Ref. [76] by taking into account the
non-trivial structure of the bulk graph. In particular, they promoted the boundary state counting
of Ref. [76] to a bulk state counting performed by gauge-fixing the holonomies on internal loops to
avoid over-estimating the number of states seen by an external observer (it is showed that, because
of gauge invariance, the bulk degrees of freedom are truly carried by internal loops). The horizon
entropy (evaluated as the logarithm of the number of states supported by a bulk flower-graph with
fixed boundary conditions) then turned out to depend on the topology of the graph through its
number of loops.

2.5.2 Distance from entanglement
Correlations between disjoint regions of a spin network In Ref. [67] Livine and Terno
explored the correlations induced between two disjoint regions A and B of a spin network from
the “outside geometry” R (i.e. the region of the spin network complementary to A ∪B, see figure
2.4(b)). Since ∂A ∪ ∂B = ∂R, the gauge invariant state induced on the boundary of the two
regions can be regarded as the result of coarse-graining R to a single intertwiner, as in the model
of the previous paragraph. The presence of correlations between A and B can then be traced back
to the fact that, because of the requirement of gauge invariance of ∂R, the Hilbert space H(0)

∂R is
not isomorphic to H(0)

∂A ⊗ H(0)
∂B . The intertwiner on ∂R can in fact be unfolded into two vertices

connected by a “fictitious link” as in figure 2.4(c), and H(0)
∂A ⊗ H(0)

∂B is recovered as the subspace
with internal link labelled by the trivial representation j = 0 (which effectively corresponds to the
absence of connection). The internal link thus encodes the entanglement between regions A and
B, induced from the complementary region R. This entanglement is then related to a notion of
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Figure 2.4. Studying correlations between parts of the boundary (a) and between disjoint bulk
regions (b). Both settings are equivalent to an intertwiner of the spins ∂A ∪ ∂B, which can be
unfolded as depicted in (c): two vertices corresponding to the subsystems ∂A and ∂B are connected
by a “fictitious link” representing the correlations between them. For j = 0 the two subsystems
are uncorrelated.

distance between parts of the spin network, building on the idea that, in absence of a background
geometry, such a notion can only be defined in term of correlations between the quantum degrees
of freedom, and is expected to be induced from the algebraic and combinatorial structure of the
“outside geometry”.
In the same spirit, Ref. [78] by Feller and Livine shows how a notion of distance can be reconstructed
from spin network states whose correlations map onto the standard Ising model.
Let us finally mention that, as opposed to Ref. [67], the more recent Ref. [79] by Livine identifies the
link entanglement of the unfolded intertwiner as unphysical, as deriving from looking at non-gauge
invariant states.

2.5.3 Entanglement entropy and holographic spin networks
Gauge-invariant degrees of freedom are non-local: the Hilbert space of a spin network graph Hγ ,
indeed, does not factorise into the tensor product of Hilbert spaces describing the subgraphs into
which γ can be split. We mentioned that in Ref. [76] and Ref. [67] this issue is overcome by
embedding the intertwiner space into the tensor product of Hilbert spaces which are not gauge-
invariant (each one being the tensor product of representations attached to a subset of boundary
edges and to a “fictitious” internal-link). Likewise, in Ref. [80] and Ref. [81] Donnelly showed
how the entanglement entropy between an arbitrary region R of a spin network graph and its
complement R can be computed by embedding Hγ into an extended Hilbert space that factorises
overR andR, with the gauge symmetry broken at the interface of the two regions. More specifically,
Ref. [80] takes the complete graph in a spin network basis state: the reduced density matrix ρR is
therefore completely mixed, and the entropy given by

S(ρR) =
∑
e∈∂R

(2je + 1) (2.5.6)

An explanation of the agreement with the result obtained from the isolated horizon framework in
the limit of a large number of punctures is then provided: the spin network states representing the
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purification of ρR in the two frameworks have a Schmidt decomposition of the same rank (note
that the result holds only asymptotically: the isolated-horizon entropy is less than Eq. (4.2.21),
as it includes the gauge-invariance constraint on the boundary ∂R). Reference [81], instead, takes
the whole graph in a completely generic state. The entropy of region R then turns out to be
given by the sum of three positive terms: the Shannon entropy of the distribution of boundary
representations, the weighted average of log(2j + 1) over all boundary representations j, and a
term representing non-local correlations.

An alternative definition of entanglement entropy of regions of a spin network, similarly derived
from the embedding of the Hilbert space of gauge-invariant states into an extended Hilbert space,
is provided in Ref. [82], and relies on an extension procedure that is based on the excitation content
of the theory instead of the underlying graph.

The computation of the entanglement entropy of spin network states and the study of a holo-
graphic regime via models and techniques from condensed matter physics is the methodology
underlying the results on random spin networks to which this review is dedicated. It has been
adopted in earlier work: in Ref. [83] Feller and Livine introduced a class of states inspired by the
Kitaev’s toric code model which satisfy an area law for entanglement entropy and whose correlation
functions between distant spins are non-trivial.

We close this subsection with a general result on boundaries in QG: in Ref. [84] Bianchi et
al. showed that boundary states associated to finite portions of spacetime, representing local
gravitational processes with certain initial and final data, are mixed, pointing out that such a
feature can be regarded as the consequence of tracing over the correlations between the region and
its exterior.

2.5.4 Gluing adjacent faces with entanglement
We finally recall recent results by Bianchi and collaborators on entanglement as a tool for gluing (in
the sense specified below) elementary portions of space (spin network vertices). Crucially, this will
allow us to differentiate between the various notions of gluing of spin network vertices, and to clarify
which degrees of freedom are involved in the corresponding entangling procedures. The variety we
refer to stems from the distinction between vector geometries, which are defined below, and twisted
geometries, of which tensor networks provide a quantum version. In fact, as explained in section
2.3.3, a spin network describes a quantum twisted geometry in which “neighbouring relations”
of quantum polyhedra are codified by links: two intertwiners connected by a link ℓ represent
neighbouring polyhedra, whose adjacent faces have equal area (determined by the spin jℓ) but
different shape and/or orientation, in general. Note that the absence of correlation between the
polyhedra of a twisted geometry is translated, at the quantum level of the spin network, to the un-
entangled nature of the intertwiner degrees of freedom (i.e. the quantum geometry of neighbouring
polyhedra has uncorrelated fluctuations). In a vector geometry the normals to the adjacent faces
of neighbouring polyhedra are instead anti-parallel, i.e. the two faces adhere to each other, despite
the possibly different shape.

In Ref. [85] it was shown that a quantum version of vector geometries can be obtained from a
spin network graph by entangling the intertwiner degrees of freedom. They introduced a class
of states, called Bell-network states, constructed by creating between intertwiners at nearest-
neighbour nodes the analogous of the spin-spin correlations of a Bell singlet states. These cor-
relations ensure that the normals to the adjacent faces of the corresponding quantum polyhedra
are always back-to-back, i.e. that the face planes are parallel. Then, exactly as a Bell singlet state
can be understood as a uniform superposition of back-to-back spins over all space directions, a
Bell-network state at fixed spins represents a uniform superposition over all vector geometries. In
Ref. [86] it was further shown that the entanglement entropy of Bell-network states obeys an area
law.
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Spin networks as entanglement

graphs: an information-theoretic
characterization

In this chapter, which is based on Ref. [1], we show that spin networks arise in GFT as entanglement
patterns among space quanta, and establish a precise correspondence between them and tensor
networks suitably generalised to a second-quantization framework.

In section 3.1 we present the encoding of combinatorial patterns into matrices and the related
notions of labelled- and unlabelled-graphs, i.e. graphs made of distinguishable and indistinguish-
able vertices, respectively. We then outline how to construct GFT states associated to graphs with
arbitrary connectivity: we first provide, in section 3.2, a basis-independent prescription to define
states associated to labelled-graph, working in the pre-Fock space of the theory; in section 3.3 we
then implement vertex-relabelling invariance, obtaining states of unlabelled-graphs in the GFT
Fock space. In section 3.4 we define a scalar product which compares graph states independently
of the vertex-labelling, with the criterion of maximising the overlap between their combinatorial
structures. We conclude the analysis on graph states with section 3.5, where we show how an
effective and relational notion of distinguishability of vertices can be recovered by adding new
degrees of freedom (with the interpretation of discrete matter fields) to the GFT model. We then
introduce, in section 3.6, the TN formalism and dedicate section 3.7 to highlight the relationship
between entanglement and geometry and topology in the GFT and TN frameworks. We finally
present, in section 3.8, the dictionary between GFT and TN, explaining how GFT (labelled- and
unlabelled-)graph states can be read as precise classes of tensor network states.

3.1 Graphs and their adjacency matrix description
In this section we introduce the graph theory notions that we will use to differentiate between
combinatorial patterns implemented on distinguishable and undistinguishable quanta (and thus to
proper define the GFT entanglement graphs in first- and second-quantization, respectively). For
these and other notions of graph theory, see e.g. Ref. [87].

Definition 3.1.1 (Labelled graph). A labelled graph γ is an ordered set of vertices V = {v |v =
1, . . . , N} connected according to a certain pattern.

A labelled graph composed of N vertices can be described by a N×N matrix A, called adjacency
matrix, whose entries encode the adjacency relations among vertices: Avw takes value 1 if vertex v
is connected to vertex w, and 0 otherwise. Since A encodes all information about γ (which simply
consists of “who is glued to whom”) we refer to a graph by using both notations, i.e. γ ≡ A.
Two graphs which differ only for the labelling of their vertices are said to be isomorphic. Formally,
two labelled graphs γ = A and γ′ = A′ with same number of vertices N are isomorphic if there
exist a permutation π on N elements such that A′ = PπAP

−1
π , where Pπ is the matrix obtained

by permuting the columns of the identity matrix according to π.
Given an adjacency matrix A, we denote by [A] the equivalence class of matrices obtained by

permuting rows and columns of A:

[A] = {A′|A′ = PπAP
−1
π , π ∈ SN}, (3.1.1)

25
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Figure 3.1. The gluing of the i-th edge of vertex v, denoted as eiv and depicted in red, to the
i-th edge of vertex w, denoted as eiw and depicted in blue, gives rise to a link between v and w
indicated as ℓivw.

where SN is the set of possible permutations on N elements. Note that two isomorphic graphs
belongs to the same equivalence class of adjacency matrices.

Definition 3.1.2 (Unlabelled graph). An unlabelled graph [γ] is the combinatorial pattern rep-
resented by [A], where γ ≡ A.

Two unlabelled graphs [γ] and [γ′] are said to be isomorphic if and only if they have a com-
mon adjacency matrix. Moreover, two isomorphic graphs have exactly the same set of adjacency
matrices.

The adjacency-matrix encoding of a graph can be easily generalised to the case in which edges
departing from vertices are distinguished by a label i = 1, . . . , d, as is the case for spin network
vertices. We denote by eiv the edge of label i departing from vertex v and by ℓivw the link formed
by edges eiv and eiw, as shown in figure 3.1. Assuming the absence of 1-vertex loops, the generalised
adjacency matrix takes the form

A =


0d×d A12 . . . A1N

0d×d
. . .

0d×d

 (3.1.2)

where Avw is now a d × d matrix (and 0d×d stands for the null d × d matrix), with element
(Avw)ij ..= A(v−1)·d+i,(w−1)·d+j equal to 1 if vertices v and w are connected along edges labelled by
i and j, respectively (i.e. eiv and ejw are glued together), and 0 otherwise. To simplify the notation,
and since the edge labelling does not play any particular role, we assume that vertices can be
connected only along edges carrying the same label. The matrix Avw then takes a diagonal form:

Avw =


a1
vw 0 . . . 0

0
. . .

...
. . .

0 advw

 (3.1.3)

with aivw equal to 1 (0) if vertices v and w are connected (not connected) along their edges of colour
i. We also define the following substructures of a labelled-graph γ described by such generalised
adjacency matrix:

∗ L = {ℓivw |v, w ∈ V : (Avw)ii = 1} set of internal links of γ

∗ ∂γ = {eiv |v ∈ V : (Avw)ii = 0 ∀ w ∈ V } set of boundary edges of γ

∗ E = L ∪ ∂γ set of all edges of γ
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The generalised adjacency matrix defined by Eqs. (4.3.17) and (3.1.3) thus encodes the connectivity
pattern γ of a set of N spin network vertices. Equivalence classes of these matrices under vertex
relabelling can still be defined, and the notion of unlabelled spin network graphs naturally follows.

3.2 Labelled entanglement graphs

In this section:

(a) we illustrate the embedding of Hγ into HN ;

(b) we show that the gluing in HN is defined by an entanglement relation, and spin network graphs
are therefore entanglement graphs;

(c) we outline a prescription to construct (labelled) entanglement graphs in the pre-Fock space of
the theory, where the vertices are distinguishable.

3.2.1 Embedding Hγ into HN via group averaging

Consider a generic state for a set of N open vertices: ψ ∈ HN . Starting from it, one can construct
a special class of states in which the N vertices are connected according to a certain pattern γ.
We restrict the analysis to the case in which the connection can be realized only between edges of
the same label i1. By assigning an orientation to the edges, with the group element gi associated
to the outgoing direction, the gluing of two vertices shows up as follows: the vertices v and w are
connected along a link of colour i if the multi-particle wavefunction ψ(g⃗1, . . . , g⃗N ) depends on the
elements giv and giw only through the product giv(giw)−1. The two vertices are then said to form
an internal link ℓivw (where i is the colour of the link, v and w are the source and target vertices,
respectively) which carries the group element gℓ = giv(giw)−1. It was showed in Ref. [88] that such
gluing is realized by averaging through the right action of the group on the two open edges carrying
giv and giw: ∫

dhψ(. . . , givh, . . . , giwh, . . . ) = ψℓ(. . . , giv(giw)−1, . . . ). (3.2.1)

In fact, the convolution on the group element h forces ψ(g⃗1, . . . , g⃗N ) to depend on giv and giw
through the product giv(giw)−1 representing the group variable associated to the internal link ℓivw.
The resulting wavefunction ψℓ is therefore associated to a set of N spin network vertices with a
link between v and w (for which we used the short notation ℓ). As a consequence, every state
associated to a spin network graph γ and living in Hγ = L2(GL/GN ) (where L and N are the
number of links and nodes of γ, respectively) can be seen as the result of gluing the arguments of
a N -particle state ψ ∈ HN according to the combinatorial pattern of γ:

∫ ∏
ℓ∈γ

dhℓ

 ψ(. . . , givhℓ, . . . , giwhℓ, . . . ) = ψγ(gℓ = giv(giw)−1) (3.2.2)

where the argument of ψγ on the left hand side symbolises its dependence over all link variables.
Equation (3.2.2) thus represents the embedding of ψγ ∈ Hγ into HN , and shows that the

Hilbert space HN contains, among its elements, states associated to the graph γ. Furthermore,
the Hilbert space Hγ is a Hilbert subspace of HN : the scalar product on the first is in fact the
one induced by the latter. This result was proved in Ref. [88] as part of a broader analysis on the
possibility to regard group field theory as a second quantization of loop quantum gravity: Hγ is in
fact the Hilbert space associated to a given graph γ in LQG.
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Figure 3.2. Gluing of two spin network vertices performed by acting on two open edges with the
same group element and integrating over the latter. Group variables are depicted as large white
disks (except for the element h through which the group acts, highlighted in red) and magnetic
indices as small yellow disks; intertwiner tensors are instead represented by green squares. The
group averaging is depicted in panel (a) and returns a pair of bivalent intertwiners contracting the
magnetic indices of the two edges, as shown in panel (b).

3.2.2 Entanglement graphs
In the spin network basis, gluing edges corresponds to entangling the degrees of freedom attached
to their free ends. We clarify this point with the following example. Consider the gluing of two four-
valent spin network vertices described by the wavefunction ψ, and decompose the latter according
to the Peter-Weyl theorem:∫

dhψ(g1, . . . , g4h, q1, . . . , q4h) =
∑
j⃗j⃗′

∑
n⃗n⃗′ιι′

ψj⃗j⃗
′

n⃗n⃗′,ιι′

∫
dhsj⃗n⃗,ι(g

1, . . . , g4h)sj⃗
′

n⃗′,ι′(q
1, . . . , q4h)

(3.2.3)
where sj⃗n⃗,ι is the spin network basis state for the open vertex introduced in the previous chapter:

sj⃗n⃗,ι(g⃗) ..=
( 4∏
i=1

√
2ji + 1Dji

mini(gi)
)
I j⃗;ιm⃗ (3.2.4)

The integral of the spin network basis wavefunction on the r.h.s. of Eq. (3.2.3) is the factor
implementing the gluing of the open edges with label 4. The integral is graphically represented in
figure 3.2 and performed in the following. To simplify the notation, the label 4 is removed from all
quantum numbers (e.g. j4 is denoted just as j); we also adopt the notation n123 = {n1, n2, n3}.
By substituting to Eq. (3.2.3) the expression of Eq. (3.2.4) one obtains∫

dhψ(g1, . . . , g4h, q1, . . . , q4h) =
∑
j⃗j⃗′

∑
n⃗n⃗′ιι′

∑
kk′

ψj⃗j⃗
′

n⃗n⃗′,ιι′s
j⃗
n123k,ι(g⃗)s

j⃗′

n′123k′,ι′(q⃗)
∫
dhDj

kn(h)Dj′

k′n′(h)

(3.2.5)
The integral of the Wigner matrices on the r.h.s. yields (see Eq. (A.4.7) in appendix A)∫

dhDj
kn(h)Dj′

k′n′(h) = δjj′Ikk′Inn′ (3.2.6)

where Ikk′ is a bivalent intertwiner in the space V j⊗V j attached to the free ends of the to-be-glued
edges:

Ikk′ ..= (−1)j+k√
2j + 1

δk,−k′ (3.2.7)

1This restriction leads to d-colored graphs, as extensively studied in the random tensor models literature [74, 75].
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By inserting Eq. (3.2.6) into Eq. (3.2.5) the latter becomes∫
dhψ(g1, . . . , g4h, q1, . . . , q4h) =

∑
j⃗j⃗′

∑
n⃗n⃗′ιι′

∑
kk′

(
ψj⃗j⃗

′

n⃗n⃗′,ιι′δjj′Inn′
)
s
jj

n123k,ι(g⃗)s
j′j

n′123k′,ι′(q⃗)Ikk′

(3.2.8)
In this expression, represented in figure 3.2(b), both the state coefficient and the spin network basis
elements are contracted with a bivalent intertwiner. Crucially, this is equivalent to projecting |ψ⟩
on the following state of V j ⊗ V j :

|ℓ⟩ ..=
∑
kk′

Ikk′ |j, k⟩|j, k′⟩ =
∑
k

(−1)j+k√
2j + 1

|j, k⟩|j,−k⟩ (3.2.9)

which is a singlet state. The entanglement between the two edges composing the link can be
quantified via the von Neumann entropy. Denoting by ρs and ρt the reduced density matrices of
the edges attached to the source and target vertex of the link ℓ, respectively, one can easily check
that

S(ρs) = S(ρt) = log dj (3.2.10)

i.e. the entanglement entropy of the two subsystems reaches its maximum possible value: the state
|ℓ⟩ is maximally entangled.

Therefore, starting from a set of open spin network vertices, the gluing of pairs of their edges
is performed by entangling, in a singlet states, the spins on the corresponding free ends. The
connectivity pattern of a set of vertices can thus be understood as an entanglement pattern among
the degrees of freedom attached to the free ends of their open edges.

3.2.3 Constructing entanglement graphs of arbitrary connectivity
Here we provide a prescription to construct in HN spin network states with arbitrary combinatorial
pattern, exploiting the adjacency-matrix description of graphs. We start by defining a class of
operators on HN , called link maps, which glue different vertices by projecting open-edge states
into a “link subspace”, i.e. the subspace invariant under the right action of the group on the open
edges to be glued.

Definition 3.2.1 (Link map). The gluing of two vertices v and w along their open edges of label
i is performed by a map

Pℓ : L2(G2) → L2(G2/RG), (3.2.11)

where the two copies of the group G are attached to the edges eiv and eiw to be glued, ℓ is short
notation for ℓivw and /R is the factorization over the right action of the group. The link map Pℓ is
defined as follows:

Pℓ
..=
∫
dhdgivdg

i
w |giv⟩⟨givh| ⊗ |giw⟩⟨giwh| (3.2.12)

When acting on a multi-particle state ψ ∈ HN , the link map Pℓ realizes the convolution of
Eq. (3.2.1):

Pℓ|ψ⟩ =
∫ ∏

v

dg⃗v

∫
dh ψ(. . . , givh, . . . , giwh, . . . )|⃗g1, . . . , g⃗N ⟩ (3.2.13)

We can then construct a spin network state with arbitrary combinatorial structure γ by applying
to a multi-particle state in HN (with N greater or equal to the number of vertices of γ) the link
maps according to the adjacency matrix A of γ:

|ψγ⟩ =

 ⊗
ai

vw=1

Pℓi
vw

 |ψ⟩

=
∫ ∏

v

dg⃗v

∫  ∏
ai

vw=1

dhvci(v)

ψ(. . . , givhvci(v), . . . )|⃗g1, . . . , g⃗N ⟩

(3.2.14)
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where c⃗(v) is a vector encoding the connectivity of vertex v:

ci(v) =
{
w if aivw = 1
0 if aivw = 0

; (3.2.15)

the gluing elements hvci(v) are such that hvw = hwv; and hv0 = e, where e is the identity element.
The resulting state is thus a spin network state with support on γ, i.e. it pertains to the Hilbert
subspace Hγ ⊂ HN .

Note that, since the gluing operation is a projection from HN to Hγ , given ψγ ∈ Hγ a multi-
particle state in HN from which ψγ can be obtained via the link maps is not uniquely defined.
Let us also stress that the provided prescription is basis-independent, as it is defined through the
action of projection operators on the Hilbert spaces associated to the open vertices.

3.2.4 Comparing graph states with the same number of vertices
As mentioned before, in Ref. [88] it was showed that the scalar product on Hγ is the one induced
by HN . Following our generalised construction of graph states in HN , we show that the scalar
product on HN allows also to compare graph states with the same number N of vertices but
possibly different combinatorial structure2. We start by decomposing the wavefunction ψγ(gℓ) in
the spin network basis:

ψγ(gℓ) =
∫ (∏

A

dh

)
ψ(. . . , givhvci(v), . . . )

=
∫ (∏

A

dh

)∏
v

∑
j⃗vn⃗vιv

ψj⃗1...⃗jN

n⃗1...n⃗N ,ι1...ιN

∏
v

I j⃗v ;ιv
m⃗v

4∏
i=1

dji
v
D
ji

v

mi
vn

i
v

(
givhvci(v)

) (3.2.16)

where we introduced the short notation∏
A

dh ..=
∏

ai
vw=1

dhvci(v) (3.2.17)

for the Haar measure on the gluing elements corresponding to the adjacency matrix A. By per-
forming the integral over the gluing elements one obtains

ψγ(gℓ) =
∑

jγn∂ιV

(ψγ)jγ

n∂ ,ιV
(θγ)jγ

n∂ ,ιV
(gℓ) (3.2.18)

where jγ is the set of spins associated to the graph γ, n∂ the magnetic numbers associated to its
boundary, ιV the set of intertwiners associated to its vertices;

(ψγ)jγ

n∂ ,ιV
..= ψj⃗1...⃗jN

n⃗1...n⃗N ,ι1...ιN

∏
ai

vw=1

δji
v,j

i
w
Ini

v,n
i
w

(3.2.19)

and
(θγ)jγ

n∂ ,ιV
(gℓ) ..= ⟨gℓ|jγ , n∂ , ιV ⟩ (3.2.20)

with |jγ , n∂ , ιV ⟩ element of the spin network basis of Hγ . To show that the natural scalar product
in HN allows to compare states associated to graphs with same number of vertices N but possibly
different connectivity, we can restrict the attention to the basis states. We obtain

⟨j′
γ′ , n

′
∂γ′ , ι

′
V |jγ , n∂γ , ιV ⟩ =

(∏
v

δj′
vc′i(v)

,jvci(v)

) ∏
v:ci(v)=0∧c′i(v) ̸=0

δni

c′i(v)
,ni

v


·

 ∏
v:ci(v) ̸=0∧c′i(v)=0

δn′iv ,n
′i
ci(v)

 ∏
v:ci(v)=c′i(v)=0

δn′iv ,n
i
v

∏
v

διvι′v (3.2.21)

2Note that states associated to graphs with different number of vertices are necessarily orthogonal, due to the
structure of the GFT (pre-)Fock space.
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The above expression shows that graph states with different combinatorial structures are not
necessarily orthogonal. Such feature derives from the fact that, in our framework, graphs do not
underpin the definition of the kinematical Hilbert space, but arise as entanglement patterns among
quanta, defined in a larger (with respect to the degrees of freedom associated to each graph) (pre-
)Fock space. Let us also remark that, though given a graph state ψγ ∈ Hγ the multi-particle one
ψ ∈ HN of the pre-gluing phase is not uniquely defined, such an ambiguity does not affect the
result of the scalar product.

3.2.5 Spin network states with individually weighted vertices
Here we consider a special class of states constructed out of a set of individually weighted vertices,
namely of multi-particle states which factorize per vertex. The interest in these states is multiple:
in addition to being the simplest generalization of condensate states used in cosmology [89, 90]
where also space-connectivity information is encoded, and having been used in Ref. [91, 92] to
model black hole geometries, they can be put in direct relation to tensor networks (see section
3.8).

Consider a multi-particle state that factorizes over the single-vertex Hilbert spaces:

|ψf ⟩ =
⊗
v

|fv⟩ (3.2.22)

where fv ∈ H is the state of vertex v and f on the right hand side is a short notation for the whole
set of single-vertex states: f ..= {f1, . . . , fN}. By applying to |ψf⃗ ⟩ the link maps according to the
combinatorial pattern γ ≡ A one obtains the spin network state

|ψfγ ⟩ ..=

 ⊗
ai

vw=1

Pℓi
vw

⊗
v

|fv⟩

=
∫ ∏

v

dg⃗v

∫  ∏
ai

vw=1

dhvci(v)

∏
v

fv
(
givhvci(v)

)⊗
v

|⃗gv⟩

(3.2.23)

with support on γ and individually weighted vertices. Note that, given a state ψγ ∈ Hγ , it is always
possible to identify functions f1, . . . , fN that return it once glued according to the adjacency matrix
of γ, i.e. ψγ = ψfγ .

3.3 Unlabelled entanglement graphs
As we have shown, in GFT the discrete geometries resulting from the gluing of the fundamental
simplices (the “quanta of space”) are encoded in the entanglement structure of multi-particle states
and represented by graphs whose vertices are dual to the fundamental simplices (spin network
graphs). So far we considered the GFT vertices as distinguishable, i.e. we labelled them and
worked in the pre-Fock space of the theory. However, the vertex labelling is just an auxiliary
structure, which does not possess any physical meaning. In the following we show how to remove
it from the labelled-graph states by symmetrizing over the vertex labels, thereby obtaining states
associated to unlabelled graphs. This symmetrization projects the state into the proper (kinematic)
Hilbert space of the underlying GFT, i.e. the Fock space, in which only wavefunctions symmetric
under permutations of the vertex set appear.

3.3.1 Unlabelled-graph states in the first-quantization language
Given a state ψγ associated to a graph γ = A, we turn it into a state invariant under vertex-
relabelling by symmetrizing over the vertex labels:

ψ[γ]

(
gℓ = givg

i
ci(v)

−1) = sym
v

{
ψγ

(
gℓ = givg

i
ci(v)

−1)} =
∑
π

∫ (∏
A

dh

)
ψ(. . . , giπ(v)hvci(v), . . . )

(3.3.1)
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with π referring to a permutation over N elements. In ψ[γ], the vertex degrees of freedom are
still entangled according to the pattern of the original labelled-graph state, but the vertices are
indistinguishable; the state is thus associated to the unlabelled graph [γ] = [A].

Denoting by Pπ the operator performing the relabelling v → π(v), i.e.

⟨g⃗1, . . . , g⃗N |Pπ|ψγ⟩ = ψγ
(
g⃗π(1), . . . , g⃗π(N)

)
, (3.3.2)

we can write ψ[γ] as follows:

|ψ[γ]⟩ =
∑
π∈SN

Pπ|ψγ⟩ = Pinv|ψγ⟩ (3.3.3)

where Pinv =
∑
π∈SN

Pπ is the operator projecting the labelled-graph state into the subspace
invariant under vertex relabelling.

3.3.2 Unlabelled-graph states in the second-quantization language
The unlabelled graph state |ψ[γ]⟩ belongs, by definition, to the Fock space F(H), and can be
written in the second-quantization formalism as follows:

|ψ[γ]⟩ =
∫ (∏

v

dg⃗v

)
ψγ

(
gℓ = givg

i
ci(v)

−1)∏
v

ϕ̂†(g⃗v)|0⟩ (3.3.4)

In fact, the symmetry of the wavefunction is ensured by the commutativity of the field operators,
which “projects” ψγ to the Fock space.

So far we constructed unlabelled-graph states starting from labelled-graph ones and implement-
ing invariance under vertex-relabelling. This is the most natural procedure as vertex labels, despite
lacking a physical interpretation, are needed to define a graph. However, we could be interested in
implementing an entanglement pattern directly in the Fock space. Let us then define the operator
performing this task; given an unlabelled graph [γ] with N vertices we introduce the following
N +N -body operator:

O[γ] =
∫ ∏

v

dg⃗v

∫ (∏
A

dh

)∏
v

ϕ̂† (givhvci(v)
)∏
v

ϕ̂(g⃗v), (3.3.5)

where ϕ̂† (givhvci(v)
)

is a short notation for ϕ̂† (g1
vhvc1(v), . . . , g

4
vhvc4(v)

)
and c⃗(1), . . . , c⃗(N) are the

vectors defined in Eq. (3.2.15) which encode the connectivity of the graph. When acting on a
N -particle state the operator O[γ] entangles the vertex degrees of freedom according to the pattern
[γ]:

O[γ]
∏
v

ϕ̂(g⃗v)†|0⟩ =
∫ (∏

A

dh

)∏
v

ϕ̂† (givhvci(v)
)

|0⟩ (3.3.6)

Note that, though the operator O[γ] generates an entanglement pattern directly in the Fock space,
it is still dependent from the possibility to distinguish vertices; in fact, defining the vectors
c⃗(1), . . . , c⃗(N) requires assigning a vertex labelling to [γ]. Note also that O[γ] can be thought
of as a second-quantized version of the link maps introduced in subsection 3.2.3. However, it is not
a projection operator, as further applications of O[γ] on the state of Eq. (3.3.6) leaves the latter
unchanged only if the pattern [γ] is completely symmetric (completely connected or disconnected).
In fact we have that

O2
[γ]

∏
v

ϕ̂(g⃗v)†|0⟩ =
∫ (∏

A

dhdh′

)∑
π

∏
v

ϕ̂†
(
giπ(v)hπ(v)ci(π(v))h

′
vci(v)

)
|0⟩

=
∫ (∏

A

dhdh′

)∑
π

∏
v

ϕ̂†
(
givhvci(v)h

′
π−1(v)ci(π−1(v))

)
|0⟩,

(3.3.7)

and, in order for the r.h.s of Eq. (3.3.7) to be proportional to the r.h.s of Eq. (3.3.6), all links in
[γ] must be glued (case ci(v) ̸= 0 ∀v, i) or open (case ci(v) = 0 ∀v, i).
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3.3.2.1 Unlabelled-graph states from individually weighted vertices

Here we introduce the unlabelled version of the graph states constructed out of individually
weighted vertices, defined in subsection 3.2.5. Consider the labelled-graph state |ψfγ ⟩ defined in
Eq. (3.2.23); its unlabelled counterpart is given by

|ψf[γ]⟩ =
∫ (∏

v

dg⃗v

)
ψf[γ]

(
gℓ = givg

i
ci(v)

−1)⊗
v

|⃗gv⟩ (3.3.8)

where

ψf[γ]

(
gℓ = givg

i
ci(v)

−1) = sym
v

{
ψfγ

(
gℓ = givg

i
ci(v)

−1)} =
∑
π

∫  ∏
ai

vw=1

dhvci(v)

∏
v

fv

(
giπ(v)hvci(v)

)
(3.3.9)

and f in ψf[γ] refers to the set of vertex wavefunctions ordered according to the adjacency matrix
A = γ. Note that

ψfγ (g⃗π(1), . . . , g⃗π(N)) =
∫ (∏

A

dh

)∏
v

fv

(
giπ(v)hvci(v)

)
=
∫ (∏

A

dh

)∏
v

fπ−1(v)
(
givhπ−1(v)ci(π−1(v))

)
=
∫ (∏

A′

dh′

)∏
v

fπ−1(v)

(
givh

′
vc′i(v)

)
= ψf

′

γ′ (g⃗1, . . . , g⃗N ),

(3.3.10)

where f ′
v

..= fπ−1(v) and h′
vc′i(v)

..= hπ−1(v)ci(π−1(v)). That is, Pπ|ψfγ ⟩ = |ψf
′

γ′ ⟩ with γ′ ≡ A′ =
Pπ−1AP−1

π−1 and f ′ = Pπ−1f = {fπ−1(1), . . . , fπ−1(N)}.

3.4 Combinatorial product
An unlabelled-graph state is defined by a combinatorial pattern [γ] and a wavefunction of the
variables attached to the graph elements (vertices and links) symmetric with respect to the vertex
labels. As showed in the previous section, such a state can be thought of as built up from a
set of labelled-graph states related to each other by vertex-relabelling. We have emphasized that
quantum states associated to different graphs are not orthogonal, as to be expected since they
simply correspond to different entanglement patterns of the same number of quanta. At the same
time, we are interested in the possibility of comparing such states and defining a precise measure
of their overlap that depends directly on the underlying combinatorial pattern.

Consider the scalar product between two unlabelled-graph states, written (in the pre-Fock
space) as the result of summing over labelled-graph ones:

⟨φ[γ′]|ψ[γ]⟩ =⟨φγ′ |PinvPinv|ψγ⟩ = ⟨φγ′ |Pinv|ψγ⟩ =
∑
π∈SN

⟨φγ′ |Pπ|ψγ⟩ (3.4.1)

On the basis of this expression, we define a “combinatorial product” which compares labelled-
graph states giving relevance to the combinatorial aspect, independently on the specific vertex-
labelling: it amounts to select, among the possible versions of two graph states corresponding to
different labellings of the vertices, the ones which maximise the superposition of their combinatorial
structures, and then compute the standard scalar product between them. As such, it is not a
scalar product per se, e.g. it cannot be defined on a basis of the Hilbert space the states live in,
as it inherently depends on the pair of states considered. This product can rather be seen as a
prescription to align graphs in order to maximise their overlap, and then compute the (standard)
scalar product between the corresponding states.
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Definition 3.4.1 (Combinatorial product). Given two graph states |ψγ⟩ and |φγ′⟩ we define their
combinatorial product as follows:

⟨φγ′ |ψγ⟩comb ..=⟨φγ′ |Pπ̄|ψγ⟩ (3.4.2)

where the permutation π̄ is such that

|⟨φγ′ |Pπ̄|ψγ⟩| = max
π∈Smin

|⟨φγ′ |Pπ|ψγ⟩| (3.4.3)

with
Smin ..= {π ∈ SN : d

(
Pπ−1AP−1

π−1 , B
)

= min
C∈[A]

d (C,B)} (3.4.4)

where A ≡ γ and B ≡ γ′, and d(·, ·) is a notion of distance between matrices.

Note that ⟨φγ′ |ψγ⟩comb = 1 if the states |ψγ⟩ and |φγ′⟩ differ only for the labelling of their vertices,
as expected in a setting where such a labelling is deprived of any physical meaning.

At this point, a question naturally arises: can we provide a similar prescription in the Fock
space, i.e. define a scalar product which emphasizes the combinatorial structure of the states?
Note that, when considering symmetric states, all permutations of the vertex labels produce the
same value on the right hand side of Eq. (3.4.2). Therefore, selecting a particular alignment of
vertices does not affect the result. Moreover, to define such a scalar product in the Fock space
is simply not possible: aligning graphs as we have done requires vertex labels, and thus to break
the symmetry which underpins the very definition of the Fock space. To clarify this point, in the
following we translate the combinatorial product in the second-quantized formalism. We work with
unlabelled-graph states written as in Eq. (3.3.4) in order to recover, when breaking the Fock space
symmetry, the labelled-graph wavefunctions from which they were defined3. We start by rewriting
Eq. (3.4.1) in a second-quantized formalism:

⟨φ[γ′]|ψ[γ]⟩ =
∫ (∏

v

dg⃗vdq⃗v

)
φ∗
γ′(q⃗1, . . . , q⃗N )ψγ(g⃗1, . . . , g⃗N )⟨0|

∏
v

ϕ̂(q⃗v)
∏
v

ϕ̂†(g⃗v)|0⟩

=
∫ (∏

v

dg⃗vdq⃗v

)
φ∗
γ′(q⃗1, . . . , q⃗N )ψγ(g⃗1, . . . , g⃗N )

∑
π∈SN

Cπ(q⃗1, g⃗1, . . . , q⃗N , g⃗N ),
(3.4.5)

with

Cπ(q⃗1, g⃗1, . . . , q⃗N , g⃗N ) ..= ⟨0|
∏
v

[ϕ̂(q⃗v), ϕ̂†(g⃗π(v))]|0⟩, (3.4.6)

This formula makes explicit how the commutation properties of the field operators ensure that all
the contributions coming from the various possible vertex-labellings are taken into account in the
computation of the scalar product. At a combinatorial level, this means that every vertex v of
one (labelled) graph overlaps with any vertex π(v) of the other. In other words, each term Cπ
corresponds to a possible overlap configuration between two labelled versions of [γ] and [γ′].

We note that Cπ corresponds to a particular ordering of the ladder operators, and exploit this
observation to write the combinatorial product of definition 3.4.1 in a second-quantization form.
We start by defining the following ordering prescription:

:
∏
v

ϕ̂(q⃗v)
∏
v

ϕ̂†(g⃗v) :π ..=
∏
v

ϕ̂(q⃗v)ϕ̂†(g⃗π(v)) (3.4.7)

3In doing this, we make a slight abuse of notation: in Eq. (3.3.4) the unlabelled-graph state |ψ[γ]⟩ is written in
terms of the labelled-graph wavefunction ψγ , but the only readable information about the latter is its symmetrized
version, namely ψ[γ]; in fact, the commutativity of the creation operators ϕ̂† hides any information content about
ψγ which is not symmetric under vertex relabelling. Note also that, given ψ[γ], the choice of ψγ is not unique;
however, this feature is not relevant for the present purpose.
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We then point out that the unlabelled-graph state of Eq. (3.3.4) can be seen as the result of acting
on the vacuum state with the operator

Oψ[γ] =
∫ (∏

v

dg⃗v

)
ψγ(g⃗1, . . . , g⃗N )

∏
v

ϕ̂†(g⃗v) (3.4.8)

In other terms, the information about the unlabelled-graph state can be equivalently encoded in
an operator. By this line of reasoning, the Fock space scalar product can be seen as the vacuum
expectation value of an observable constructed out of the states to be compared:

⟨φ[γ′]|ψ[γ]⟩ = ⟨0|O†
φ[γ′]

Oψ[γ] |0⟩ . (3.4.9)

We might thus be tempted to define the combinatorial product between two unlabelled-graph states
as the vacuum expectation value of an ordered version of that observable, using the prescription
introduced in Eq. (3.4.7):

⟨φ[γ′]|ψ[γ]⟩comb
?..=⟨0| : O†

φ[γ′]
Oψ[γ] :π̄ |0⟩ (3.4.10)

where the permutation π̄ is such that

|⟨0| : O†
φ[γ′]

Oψ[γ] :π̄ |0⟩| = max
π∈Smin

|⟨0| : O†
φ[γ′]

Oψ[γ] :π |0⟩| (3.4.11)

with Smin defined in Eq. (3.4.4). A first drawback of Eq. (3.4.10) is that it crucially depends on the
form in which the unlabelled graph states (and so the corresponding observables) are expressed.
But, more importantly, it selects a “preferred” vertex-labelling and thus leads out of the Fock space;
therefore, it cannot be the scalar product induced by the Fock space on a given subset of states.
These considerations makes it clear that an alignment prescription between graphs in the Fock space
is prevented by the very definition of this space, i.e. by the vertex-label symmetry underlying it.
Let us stress that we do not see this as a shortcoming, but as a feature of the formalism, which
correctly indicates that the only physical information is to be label-independent, and that there is
no special physical reason, in this context, to partition the Hilbert space into sectors associated to
different combinatorial patterns. The situation changes if new physical ingredients are introduced,
leading to a meaningful, i.e. physically characterized, labelling of the vertex set. We outline a
situation in which this is the case in the following section.

3.5 Effective distinguishability of vertices
In a fundamental quantum gravity theory that possesses the same symmetries of classical General
Relativity (even when not arising from its straightforward quantization), the only allowed refer-
ence frames are “physical rods and clocks”; in other words, the presence of a background structure
respect to which define a notion of space/time locality is a priori excluded. This has led to the
formulation of the relational strategy for the construction of diffeomorphism invariant observables
in quantum gravity [93–99]4. In the same spirit, here we show how to attain an effective dis-
tinguishability of vertices by introducing in the theory additional degrees of freedom, interpreted
as discretized (scalar) matter and to be used as a “physical reference frame”, without breaking
the fundamental symmetries of the formalism, in particular the symmetry under permutations of
vertex labels that we suggested to be a discrete analogue of diffeomorphism invariance. Opera-
tionally, we use these additional degrees of freedom to break the symmetry over the vertex-labels
at an effective level only, achieving distinguishability only for a special class of quantum states and
in a physically motivated approximation.

4The issue of defining and formulating physics in terms of quantum reference frames defined by suitable matter
systems is also an important topic in the foundations of quantum mechanics, beside quantum gravity applica-
tions [100–102].
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For simplicity we consider, as additional degrees of freedom, a minimally coupled free massless
scalar field χ discretized along the geometric data on the graphs (and simplicial complexes) asso-
ciated to GFT quantum states, in analogy with the approach of [90, 103] for defining a relational
dynamics in the GFT condensate cosmology, and based on the analysis of scalar matter coupled to
quantum gravity in GFT [104] and canonical LQG and spin foam models [105, 106]. The GFT field
thus turns into ϕ(g⃗, χ) ∈ L2(Gd/G × R), and the canonical commutation relations of Eq. (2.4.6)
are modified as follows:

[ϕ̂(g⃗;χ), ϕ̂†(q⃗;χ′)] =
∫
dh

d∏
i=1

δ(hgi(qi)−1)δ(χ− χ′) (3.5.1)

We focus on the simpler case of graph states with individually weighted vertices (the generalization
to a non-separable graph wavefunction is straightforward). With the new dynamical variables given
by the values of the scalar field χ, the unlabelled-graph state takes the following form:

|ψf[γ]⟩ =
∑
π

∫ ∏
v

dχvdg⃗v

∫ (∏
A

dh

)∏
v

fv
(
givhπ(v)ci(π(v));χv

)∏
v

ϕ̂†(g⃗v;χv)|0⟩ (3.5.2)

The scalar product between two graph states of this type is thus given by

⟨ψf
′

[γ′]|ψ
f
[γ]⟩ =

∑
π

∫ ∏
v

dχvdg⃗v

∫ (∏
A′

dh′

)(∏
A

dh

)∏
v

f ′
v

(
givh

′
vc′i(v);χv

)
fπ(v)

(
givhπ(v)ci(π(v));χv

)
,

(3.5.3)
where we used the commutation relations of Eq. (3.5.1). We then make the following assumption:
in a partial semiclassical limit of the theory, the vertex wavefunctions are peaked on non-equal
values of the scalar field χ taken from the set {χ0

1, . . . , χ
0
N}. Then the scalar field labels can be

interpreted as defining an effective embedding of the abstract graphs to which the quantum states
are associated (more precisely, of their vertices) into an auxiliary manifold; but more generally,
they provide a physical (i.e. in terms of measurable quantities) way to distinguish the vertices in
the associated graphs. As an example, consider the case in which fv and f ′

v are picked on χ0
v; the

main contribution to the scalar product then comes from the trivial permutation π(v) = v:

⟨ψf
′

[γ′]|ψ
f
[γ]⟩ ≈

∫ ∏
v

dg⃗v

∫ (∏
A′

dh′

)(∏
A

dh

)∏
v

f ′
v

(
givh

′
vc′i(v);χ

0
v

)
fv
(
givhvci(v);χ0

v

)
(3.5.4)

More generally, if f ′
v is peaked on χ0

ω′(v) and fv is peaked on χ0
ω(v), where ω, ω′ ∈ SN , the per-

mutation π providing the main contribution to the scalar product is the one which satisfies the
condition ω′(v) = ω(π(v)). We therefore see that, if the vertex wavefunctions are peaked on values
of the field taken from a discrete set {χ0

1, . . . , χ
0
N}, the scalar product is effectively performed on

two labelled versions of the original unlabelled graph states, and the set {χ0
1, . . . , χ

0
N} represents

the effective vertex-labelling. As we noted already, peaking the wavefunctions on {χ0
1, . . . , χ

0
N}

can be interpreted as embedding the graph into an auxiliary manifold via physically measurable
quantities, thus justifying the resulting distinguishability.

It is important to stress that the recovered distinguishability is effective, obtained through a
suitable choice of states and hence only in a suitable approximation of the fundamental theory,
and relational, since it allows to align graph structures with respect to each other, as desired. In
fact, we remark again that we cannot restore distinguishability of vertices at a structural level, as
this is prevented from the very symmetric structure of the Fock space, and this impossibility is
well grounded in the requirement of background independence of the fundamental theory.

3.6 The quantum information tool of Tensor Networks
A tensor Tn1...nN

is an array of complex numbers: the indices ni take values in a discrete set,
whose dimension Di is usually called bond dimension; the number N of indices is called rank of
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the tensor. Each index ni can be thought of as labelling a basis in a Hilbert space HDi , and the
tensor can then be regarded as a map between the Hilbert spaces associated to complementary set
of indices. As an example, consider the rank-two tensor Tab with input index a and output index
b; denoting by Hin and Hout the corresponding input and output Hilbert spaces, we can interpret
the tensor as the following map [107]:

T : Hin → Hout

|a⟩ →
∑
b

Tab|b⟩ (3.6.1)

When regarding all the indices of a tensor Tn1...nN
as output indices, that tensor accounts for the

state of a quantum system described by the Hilbert space HD1 ⊗ · · · ⊗ HDN
:

|T ⟩ =
∑

n1...nN

Tn1...nN
|n1 . . . nN ⟩ (3.6.2)

A tensor network is a set of tensors connected according to a certain pattern, where the connection
is realized by the contraction of their indices. By representing a tensor as a node with open lines,
one for each index, the tensor network acquires the structure of a graph. In the following subsections
we present two of the most common tensor network structures.

3.6.1 Matrix Product States
Matrix Product States (MPS) for a system of spins s can be constructed by applying the Wilson
renormalization group method [108, 109], as we are going to explain (see Ref. [110] for a detailed
presentation of the topic). Let H1 be the single spin Hilbert space, having dimension d1 = 2s+ 1.
Given two spins s1 and s2, consider a subspace H2 ⊂ H1 ⊗ H1 with d2 ≤ d2

1. Proceed iteratively
by adding spins and taking the subspace Hi ⊂ Hi−1 ⊗ H1 such that di ≤ di−1d1. A state of N
spins in the subspace HN can then be written as follows:

|ψ⟩ =
∑

s1,...,sN

As1
1 A

s2
2 . . . AsN

N |s1, s2, . . . , sN ⟩ (3.6.3)

where Asi ∈ Mdi−1×di
for i = 2, . . . , N −1, As1 is a row vector of rank d1 and AsN is a column vector

of rank dN . Explicitly:

|ψ⟩ =
∑

s1,...,sN

(As1
1 )α(As2

2 )αβ . . . (AsN−1
N−1 )µν(AsN

N )ν |s1, s2, . . . , sN ⟩, (3.6.4)

where α, β, . . . , ν are the matrix indices. To each site i we thus associated a tensor (Asi )αβ that,
in addition to the physical index si, has left and right virtual indices α and β connecting it with
sites i− 1 and i+ 1, respectively. The virtual indices can be thought of as describing the states of
auxiliary systems added to each site.

3.6.2 Projected Entangles-Pair States
The MPS of Eq. (3.6.3) can be expressed as another type of tensor network decomposition: Pro-
jected Entangled-Pair States (PEPS). Let |ϵi⟩ ∈ Hi ⊗ Hi be a maximally entangled state between
the right ancilla of site i and the left ancilla of site i+1. Consider the operator Pi : Hi−1⊗Hi → H1
projecting the ancilla states to the s-spin state:

Pi =
∑
s

∑
αβ

(Asi )αβ |s⟩⟨αβ| (3.6.5)

The matrix product state of Eq. (3.6.3) can then be written as follows:

|ψ⟩ =
∑

s1,...,sN

As1
1 A

s2
2 . . . AsN

N |s1, s2, . . . , sN ⟩ = (P1 ⊗ · · · ⊗ PN ) |ϵ1⟩ ⊗ · · · ⊗ |ϵN−1⟩ (3.6.6)
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Such a tensor network decomposition is thus built up from maximally entangled ancilla pairs
(making up the links of the network) which are projected to physical spins (the network sites). Here
we considered a one-dimensional system, a spin chain, but the PEPS decomposition can be easily
generalised to higher dimensional systems. Before illustrating this point, we show that in a simple
one-dimensional PEPS, specifically the state of a transitionally invariant system, entanglement
entropy is bounded by an area law. To start note that, since the reduced density matrix ρ1,2,...,M
for the first M spins has rank bounded by dM , the entanglement entropy S(ρ1,2,...,M ) satisfies

S(ρ1,2,...,M ) ≤ log dM . (3.6.7)

We assume that all the auxiliary systems have dimension D, and site N is connected to site 1, i.e.
Asi ∈ MD×D ∀i. The state of the translationally invariant spin chain thus takes the following form:

|ψ⟩ =
∑

s1,...,sN

Tr (As1
1 A

s2
2 . . . AsN

N ) |s1, s2, . . . , sN ⟩. (3.6.8)

Given an interval A of the spin chain the entanglement entropy SA then satisfies

SA ≤ 2 logD (3.6.9)

which is an area law for the upper bound to SA. In fact, denoting by cA the curve bounding A,
we have that

SA ≤ min
cA

{cA ∩ network} logD, (3.6.10)

where {cA ∩ network} is the number of intersections between the curve cA and the spin chain.
We can introduce PEPS in dimension higher than one by considering network sites that, in

addition to the physical spin s, have a number d > 2 of auxiliary spins which are maximally
entangled with their neighbours. For simplicity we assume that each auxiliary spin has dimension
D. The PEPS is then constructed by projecting the entangled auxiliary-spin pairs onto the physical
spins with the following operators:

Pi =
∑
s

D∑
α1...αd=1

(Asi )α1...αd |s⟩⟨α1 . . . αd|, (3.6.11)

where α1 . . . αd are the virtual indices referring to the auxiliary spins. That is, the PEPS is given
by

|ψ⟩ = (P1 ⊗ · · · ⊗ PN )
⊗
ℓ∈N

|ϵℓ⟩ (3.6.12)

where we denoted by ℓ the generic link of the network N , and by |ϵℓ⟩ the corresponding maximally
entangled states of auxiliary spins.

Let A be a region of the network and cA its boundary. Since every maximally entangled state
between an auxiliary spin and its neighbour has dimension D, we have that

SA ≤ min
cA

{cA ∩ network} logD, (3.6.13)

where {cA ∩ network} corresponds to the number of entangled pairs across the boundary cA of
region A. Therefore, also in this case the entanglement entropy turns out to be bounded by an
area law. Note that an area law for the upper bound to the entanglement entropy arises in tensor
networks directly from their definition, as the contraction of indices generally induces entanglement
between the corresponding degrees of freedom. However, only some tensor networks saturate this
bound, thus exhibiting an holographic behaviour; among them, we can find tensor networks built
up from perfect tensors (a special class of isometric tensors) [107] or random tensor networks in
the limit of large bond dimensions [111].

It is possible to construct PEPS with completely arbitrary network geometries by varying
the number of auxiliary spins of each site, and defining their entanglement relations by choosing
appropriate ancilla-pair states. See Ref. [112] for an example of such construction: the vertices
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possess the highest possible valence for a completely connected graph (namely N −1 for a graph of
N vertices), and separable ancilla states are introduced to account for the absence of links between
vertices.

Let us finally mention that PEPS are used in the study of lattice gauge theories (LGT) via
tensor networks techniques [113, 114]. In particular, in the LGT context they are provided with a
gauge-invariance symmetry at each node, thus resembling also in this aspect the structure of GFT
graphs. The second-quantized tensor networks that we are going to define in the GFT context can
indeed be seen as a generalization of such construction.

3.7 A simple realization of entanglement/topology and en-
tanglement/geometry correspondences in GFT and TN

Before presenting the map between group field theory states and tensor networks, we highlight
some features which are highly relevant from a quantum gravity perspective.

Entanglement/connectivity correspondence A first one is the relation between entanglement and
connectivity of the network/graph. As previously explained, both frameworks employ entan-
glement as the glue of these structures.
In the GFT context, due to the simplicial interpretation of the graph, this feature implies a
relation between entanglement and connectivity of space. In fact, links made of entangled
vertex-lines correspond to adjacency relations of the cells dual to the involved vertices. This
means that entanglement determines the topology of the simplicial complex dual to the graph.
We have, therefore, an explicit example of an entanglement/topology correspondence.
In the tensor network context, a simplicial-geometry interpretation of the network is possible
when the latter is proved to reproduce a discretized manifold, as it happens for tensor networks
modelling AdS/CFT states [111, 112]. There is however a crucial difference with respect to
the GFT case: in the mentioned tensor network constructions, the geometric interpretation is
induced “at a later stage”, by defining a metric through the graph distance. We showed that for
GFT graphs, instead, the geometric characterization arises naturally thanks to the presence,
on top of the combinatorial structure, of additional quantum geometric degrees of freedom.
Beyond these frameworks, a link between entanglement and space(time) connectivity has been
clearly pointed out, for example, in the work by [115] in the AdS/CFT context. There it was
shown, via a thought experiment, that disentangling two sets of degrees of freedom in the CFT
corresponds to increasing the proper distance between the dual spacetime regions, while the
area separating them decreases.

This is the combinatorial and topological side of the story. In fact, there is an additional geo-
metric side of the same story, which is particularly interesting from the point of view of quantum
gravity (including the GFT formalism and beyond it, in AdS/CFT applications, LQG etc.): the
entanglement so established carries a straighforward geometric interpretation, and corresponding
entanglement measures can be seen to be measuring geometric observables.

Primitive entanglement/area correspondence In the geometric interpretation of spin network
graphs in the context of GFT (and LQG), a link of the graph is dual to a portion of surface
on the shared boundary of the two simplices dual to the vertices sharing the link, and the
spin attached to it labels the eigenvectors of the area operator associated to that surface. The
spectrum of the area operator for such dual surface is (using symmetric ordering)

√
j(j + 1)

in Planck units, and thus it scales like j for largish eigenvalues. This is also the scaling of the
dimension of the Hilbert space of states associated to each link labeled by a given spin, i.e. a
maximally entangled state, which is dj = 2j+1. In turn, this dimension gives a simple measure
of the entanglement that we have seen being associated to the same link, thus establishing a
sort of “primitive entanglement/area correspondence” in our quantum gravity states.
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Primitive entanglement/volume correspondence An entanglement process can be identified as
lying also at the origin of the intertwiner degrees of freedom attached to the vertices of the
graph/network, when embedding the spin network states in a Hilbert space of open lines. In
particular, the intertwiner arises from the “gluing” of open lines into a vertex, by means of
the requirement of local gauge invariance. The spin network basis wavefunction can in fact be
written, in the Hilbert space of d open lines

Hd =
⊕
j⃗

(
d⊗
i=1

V j
i ∗

⊗
d⊗
i=1

V j
i

)
, (3.7.1)

as follows:

sj⃗n⃗,ι(g⃗) ..=
∑
m⃗

I j⃗;ιm⃗

d∏
i=1

djiDji

mini(gi)

=⟨g⃗|
∑
m⃗

(⊗
i

√
dji |jini⟩⟨jimi|

)∑
p⃗

I j⃗;ιp⃗ |j1p1⟩ ⊗ · · · ⊗ |jdpd⟩

 (3.7.2)

The second line of Eq. (3.7.2) shows that sj⃗n⃗,ι can be seen as the result of contracting line states
(round brackets on the left) with an entangled state of (equal-side) open ends of that lines (round
brackets on the right). This is one more instance of a straightforward entanglement/geometry
correspondence at the discrete (simplicial) geometry level. In fact, the entanglement structure
is controlled by the degree of freedom ι, the intertwiner quantum number, which can be shown
(in both simplicial quantum geometry of GFT and LQG) to label eigenvalues of the operator
measuring the volume of the polyhedron dual to the spin network vertex. Thus, also volume
information is a measure of the entanglement of quantum gravity degrees of freedom.

Entanglement/area laws A well known consequence of the entanglement origin of tensor networks
is the fact that, as showed for the translationally invariant MPS, the entanglement entropy is
bounded by an area law: given a region A of the network bounded by the curve cA, and denoted
by D the dimension of the Hilbert space associated to the links, we have that

SA ≤ min
cA

{cA ∩ network} logD (3.7.3)

When interpreting logD as the area of an elementary surface dual to the network link, Eq. (3.7.3)
turns into an area law for the upper bound to the entanglement entropy. In fact, {cA∩ network}
counts the number of intersections between the boundary cA and the network, i.e. the number
of surface units in cA, and {cA ∩ network} logD thus provides the area of the boundary surface
cA.
For tensor networks modelling holographic states in the AdS/CFT correspondence (as in Ref. [116],
where the tensor network arises by entanglement renormalization, and in Ref. [117], where is
constructed by entanglement distillation) Eq. (3.7.3) acquires precisely the connotation of an
area law for the upper bound to the entanglement entropy.
In the spin network states of GFT the spins carried by a link are eigenvalues of an area operator
associated to the surface dual to it. Therefore, the bound to the entanglement entropy of a
link, and hence of an extended region of the spin network graph, naturally possesses an area-
law interpretation5. Spin network states in GFT thus share with general tensor networks the
feature of having an entanglement entropy bounded according to Eq. (3.7.3). Just as there
are classes of tensor networks that saturate the bound (and therefore exhibit an holographic
nature), certain classes of GFT states have proved to satisfy an entanglement area law [56].
Let us finally point out that the area bounding a region of the GFT complex depends on

5We are considering the simplest case of a graph with fixed spins, and ignoring for simplicity the contribution to
the entropy deriving from the intertwiner degrees of freedom.
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the entanglement entropy of the links crossing it, whose total number is determined by the
combinatorial structure of the graph. That general area law is thus the result of the graph
connectivity and of the local contributions to the entanglement entropy, in turn carrying a
primitive entanglement/area correspondence.

3.8 A dictionary between GFT states and (generalised) TN
We are going to show that GFT labelled-graph states can be understood as generalised PEPS and
that, consequently, unlabelled ones realize an analogous correspondence in a second-quantization
setting, leading to the definition of second-quantized tensor networks.

As explained in subsection 3.6.2, PEPS are constructed by projecting maximally-entangled
ancilla-pairs states onto “physical” states (attached to the nodes of the network). In the GFT
context, the role of ancilla-pair states is played by link states, i.e. maximally entangled states of
edge spins, and that of node degrees of freedom by intertwiners. We clarify this with an example,
and then present the more general case.

Consider a set of N vertices, with vertex v in the generic state

|Tv⟩ =
∑
j⃗,n⃗,ι

(Tv)j⃗,ιn⃗ |⃗j, n⃗, ι⟩ (3.8.1)

As shown in subsection 3.2.2, edges of the vertices can be connected by projecting their state into
the singlet state defined in Eq. (3.2.9) and reported below:

|ℓ⟩ ..=
∑
k

(−1)j+k√
2j + 1

|j, k⟩|j,−k⟩ (3.8.2)

Given a combinatorial pattern γ of the N vertices which is completely connected (no open edges),
consider a state of the form of Eq. (3.8.2) for each link of the graph, and perform the contraction
with the vertex states:⊗

ℓ∈γ

⟨ℓ|

⊗
v

|Tv⟩ =
∑
ι1...ιN

trγ
[
(T1)j⃗1,ι1 . . . (TN )j⃗N ,ιN

]
|ι1, . . . , ιN ⟩ (3.8.3)

where jiv = j for all v and all i due to the projection onto the link states, A is the adjacency matrix
which encodes the combinatorial pattern of γ and trA is the tensorial trace contracting the vertex
tensors according to A with bivalent intertwiners:

trγ
[
(T1)j⃗1,ι1 . . . (TN )j⃗N ,ιN

]
=

∏
v

∑
j⃗vn⃗v

 (T1)j⃗1,ι1
n⃗1

. . . (TN )j⃗N ,ιN
n⃗N

∏
ai

vw=1

δji
v,j
δji

w,j
Ini

v,n
i
w

(3.8.4)

The state defined by Eq. (3.8.6), associated by construction to the graph γ, is a tensor network of
the form of Eq. (3.6.12), where the intertwiners ιv play the role of “physical” indices and niv that
of “virtual” indices with bond dimension dj ; in fact, in this simple example all links carry the same
spin j.

A more general setting can be considered by taking, as GFT counterparts of the TN ancilla-pair
states, link states in the direct sum of the Hilbert spaces associated to all group representations:

|ℓ⟩ =
⊕
j

∑
k

(−1)j+k√
2j + 1

|j, k⟩|j,−k⟩ (3.8.5)

The contraction of the link states with the vertex states then yields⊗
ℓ∈γ

⟨ℓ|

⊗
v

|Tv⟩ =
⊕
j⃗1...⃗jN

∑
ι1...ιN

trγ
[
(T1)j⃗1,ι1 . . . (TN )j⃗N ,ιN

]
|⃗j1, ι1, . . . , j⃗N , ιN ⟩ (3.8.6)
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where

trγ
[
(T1)j⃗1,ι1 . . . (TN )j⃗N ,ιN

]
=

∑
n⃗1...n⃗N

(T1)j⃗1,ι1
n⃗1

. . . (TN )j⃗N ,ιN
n⃗N

∏
ai

vw=1

δji
v,j

i
w
Ini

v,n
i
w

(3.8.7)

Let us now move to the second-quantization framework. In particular, consider a GFT unlabelled-
graph state constructed out of individually-weighted vertices, with the latter given by Eq. (3.8.1):

|ψT[γ]⟩ =
⊕
j⃗1...⃗jN

∏
v

∑
n⃗vιv

 ∑
A′∈[A]

(∏
v

(Tv)
j⃗π(v),ιπ(v)
n⃗π(v)

) ∏
a′ivw=1

δji
v,j

i
w
Ini

v,n
i
w
Imi

v,m
i
w

N∏
v=1

(
ϕ̂j⃗vιv
m⃗v

)†
|0⟩

(3.8.8)
We recognize within the round brackets a tensor network which is the symmetrized version of that
in Eq. (3.8.7), and can be understood as a second-quantized tensor network. The argument can be
extended to arbitrary GFT unlabelled-graph states, which take the form

|ψ[γ]⟩ =
⊕
j⃗1...⃗jN

∏
v

∑
n⃗vιv

 ∑
A′∈[A]

ψ
j⃗π(1)...⃗jπ(N),ιπ(1)...ιπ(N)
n⃗π(1)...n⃗π(N)

∏
a′ivw=1

δji
v,j

i
w
Ini

v,n
i
w
Imi

v,m
i
w

N∏
v=1

(
ϕ̂j⃗vιv
m⃗v

)†
|0⟩

(3.8.9)
Note that this expression reduces to Eq. (3.8.8) for

ψ
j⃗π(1)...⃗jπ(N),ιπ(1)...ιπ(N)
n⃗π(1)...n⃗π(N)

=
∏
v

(Tv)
j⃗π(v),ιπ(v)
n⃗π(v)

(3.8.10)

Let us finally remark the features of GFT graph states which characterize them as generalised
tensor networks. Some of them are already present at the first-quantized level. The bond di-
mensions of tensor indices, i.e. the spins associated to the links, are not fixed parameters, but
truly dynamical variables; in fact, strictly speaking each Hilbert space associated to a link (before
additional conditions are taken into account) is infinite dimensional, being isomorphic to L2(G).
Moreover, the “physical” indices are not, in general, independent from the “virtual” ones. Note
also that, as first pointed out by Chirco et al. in Ref. [56], even first-quantized GFT graph states
can be regarded as tensor networks; this remains true at the second-quantization level. A feature
which instead pertains more naturally to the second-quantization framework is the dynamical na-
ture of the combinatorial structure: since the network arises from the dynamics of a field, vertices
can be created or destroyed, and graph connectivity (deriving from the entanglement properties
of the field excitations) can vary. We also point out that, as we noted in quantum gravity ap-
plications with a simplicial-geometry interpretation, the GFT quanta are endowed with a local
gauge symmetry (invariance under the diagonal action of a Lie group), which makes their quan-
tum states corresponding to symmetric tensor networks, of the type employed in applications to
gauge theories.

3.9 Discussion
The GFT formalism describes entanglement graphs representing simplicial complexes which are
understood as spatial portions of a quantum spacetime (or, more generally, codimension-one sub-
manifolds). These structures naturally satisfy a discrete version of diffeomorphism invariance, as
they are symmetric respect to permutations of the vertex-labelling used to define them6. In fact,
a given vertex-labelling for an entanglement graph can be understood as a choice of coordinate
system on the (discretized) spatial manifold it describes. Invariance under vertex-relabelling can
thus be regarded as the discrete analogue of diffeomorphism invariance.

Entanglement graphs have been first defined in the pre-Fock space, where distinguishability of
vertices enables to define a combinatorial pattern among them, then constrained with the afore-
mentioned symmetry. The pre-Fock and Fock spaces of the theory allow (in fact, make mandatory)

6Note that the links of the graph, as adjacency relations among vertices, are defined by the vertex labels them-
selves.
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to consider also superpositions of labelled and unlabelled entanglement graphs, respectively. The
two are conceptually quite different.

In the pre-Fock space of distinguishable vertices, graphs in quantum superposition can be
aligned according to the given vertex labelling. In a discrete-gravity perspective, we could say that
superposing labelled entanglement graphs amounts to superposing discrete metrics (to the extent
in which they are encoded in the combinatorial pattern only). A notion of graph superposition
has recently been provided in Ref. [118] through the definition of an Hilbert space for coloured
graphs, where colours are generic field data. When the latter have a geometric interpretation, that
coloured graphs coincide, at a formal/descriptive level, with our labelled entanglement graphs.
At a structural level, the difference is in taking graphs as basic structures, decorated with some
data “at a later stage” (case of [118]), or having them emergent from the quantum behaviour
of a many-body system (GFT case). The first setting naturally implies an orthogonality relation
among different graphs, which, instead, is not necessarily satisfied in the second: the scalar product
between labelled-graph states in the GFT pre-Fock space can be non-vanishing even for non equal
graphs, precisely because the latter are just features of the many-body states and, specifically,
manifestations of their entanglement content. Note that, though the Hilbert spaces describing
graphs in the two contexts have a different structure, a robust notion of graph superposition
naturally derives from both of them.

Once it has been established that vertex labelling does not possess any physical meaning,
comparing graphs independently on it becomes particularly relevant. In Ref. [118] Arrighi et al.
stressed that, if vertex labels were a priori not observable, the scalar product between coloured
graphs differing only for that labels would be 1; as it is not the case (the result is actually zero)
invariance under vertex relabelling must be enforced. In the GFT pre-Fock space the scalar product
between isomorphic entanglement graphs, though a priori not zero, is not necessarily equal to 1.
We defined an alternative scalar product which gets such an outcome, as compares entanglement
graphs with the goal of maximising their overlap, regardless of the vertex labelling.

In addition to the pre-Fock space of labelled-graph states and their superpositions, our frame-
work includes the space of properly physical, i.e. “diffeomorphism invariant”, states: the Fock
space. Within it, we have naturally superpositions of unlabelled entanglement graphs, which
can be understood, at a discrete-gravity level, as superpositions of geometries (i.e. equivalence
classes of metrics). Note that a simple alignment prescription is not possible among unlabelled
graphs, exactly as a notion of locality is not available when working with geometries. It could
be possible, in principle, to define topological observables that capture the purely combinatorial,
label-independent pattern encoded in a graph, i.e. associated to its entire equivalence class under
graph isomorphisms. However, we leave this possibility for further work. Beside this possibility,
we highlighted that a straightforward alignment prescription can be recovered when new degrees of
freedom, interpreted as discretized matter, are added to the fundamental model, in the same spirit
of the construction of relational (and diffeomorphism-invariant) observables in quantum gravity.
In particular, we have shown that certain states allow to restore an effective (and relational) dis-
tinguishability of vertices thanks to their semi-classical behaviour with respect to the additional
degrees of freedom.





4
Holographic properties of random

spin networks as entanglement
graphs

The main question we are going to tackle in this chapter, which is based on Refs. [2, 3], is the
following: given bounded regions of quantum space described by spin network states, under which
conditions on the latter information on the bulk can be read from the boundary? We rely on the
following (basis-dependent) splitting of the degrees of freedom associated to (open) spin networks:

∗ boundary: spins and corresponding magnetic numbers on open edges;

∗ bulk: intertwiners on vertices (depending on spins of both internal and boundary edges).

We show that a generic spin network state can be understood as defining a map between these
two sets: boundary states can be seen as the result of applying a graph-dependent map to certain
bulk states, and vice versa. Entanglement enters this picture at two levels:

(i) connectivity of the graph, i.e. the entanglement pattern among spin network vertices;

(ii) quantum correlations among intertwiners.

While (i) underlies the definition of the map, (ii) determines both the input of the bulk-to-boundary
map and (part of) the properties of the output boundary state. We then tackle the question stated
above by two methods:

(1) We analyse under which conditions the bulk-to-boundary map is an isometry (necessary con-
dition for the expectation values of observables to be preserved from bulk to boundary).

(2) We investigate to which extent the entanglement entropy of the boundary reflects/is affected
by the bulk, by analysing the boundary states produced by the map upon varying the bulk
input state.

We focus on a specific class of quantum states: the ones constructed out of individually weighted
vertices, whose wavefunctions are randomly distributed. The quantum properties of such states,
including the isometry of the associated bulk-to-boundary map, are thus fully determined by the
combinatorial structure of their entanglement graph, the dimension of the degrees of freedom
attached to it and the probability distribution of the vertex wavefunctions. To study these class of
states we exploit the random tensor networks techniques employed in [53], adapting them to our
context and generalizing them to account for the more general type of tensor networks our states
correspond to.

In section 4.1 we explain in detail the bipartition of degrees of freedom of open spin networks
into bulk and boundary. In section 4.2 we present the class of states we focus on, i.e. spin networks
of random vertices, and the procedure to compute their Rényi-2 entropy via a dual Ising model.
In section 4.3 we introduce the bulk-to-boundary map perspective on spin networks and perform
point (1). In section 4.4 we perform point (2) and derive an analogue of the Ryu–Takayanagi
formula for the boundary entropy; we also propose a toy model for the emergence of black hole
horizons.

45
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4.1 Partitioning the degrees of freedom of spin networks:
bulk and boundary subspaces

Starting from ψ ∈ HN , we glue vertices according to γ ≡ A and obtain

|ψγ⟩ ..=

 ⊗
ai

vw=1

Pℓi
vw

 |ψ⟩ =
⊕
jγ

∑
n∂ιV

(ψγ)jγ

n∂ ,ιV
|jγ , n∂ , ιV ⟩ (4.1.1)

where
(ψγ)jγ

n∂ ,ιV
..= ψj⃗1...⃗jN

n⃗1...n⃗N ,ι1...ιN

∏
ai

vw=1

δji
v,j

i
w
Ini

v,n
i
w

(4.1.2)

The state ψγ pertains to the Hilbert subspace Hγ ⊂ HN that via the Peter-Weyl decomposition
reads:

Hγ =
⊕
jγ

⊗
v

I j⃗v ⊗
⊗
e∈∂γ

V je

 (4.1.3)

where we denoted by jγ the set of spins associated to all edges of the graph: jγ = {je |e ∈ E}.

The degrees of freedom described by ψγ are the following:

(a) spins jiv and corresponding magnetic numbers niv associated to the boundary edges eiv ∈ ∂γ;

(b) spins jivw associated to the internal links ℓivw ∈ L;

(c) intertwiner quantum numbers ιv associated to the vertices v ∈ V , collectively indicated as γ̇.

The set (a) corresponds to the boundary degrees of freedom, while sets (b) and (c) constitute the bulk
degrees of freedom; in particular, the set (b) contains information on the combinatorial structure of
the bulk and the dimension of the internal links, while (c) can be interpreted as a set of “internal”
degrees of freedom anchored to the vertices. From the simplicial-geometry perspective, in fact, the
intertwiners determine the volume of the simplices dual to the graph vertices, while the spin labels
carry information about areas of surfaces, dual to the graph edges, which can be in the bulk or
in the boundary. Since (c) is not independent from (a) and (b), the graph Hilbert space does not
factorize into bulk and boundary Hilbert spaces. However, as can be seen from Eq. (4.1.3) such a
factorization takes place in every fixed-spins subspace. We then define, for every spin-jγ sector, a
bulk Hilbert space:

Hjγ

γ̇
..=
⊗
v

I j⃗v , (4.1.4)

given by the tensor product of the intertwiner-spaces attached to the vertices of γ (collectively
denoted by γ̇); and a boundary Hilbert space:

Hj∂

∂
..=
⊗
e∈∂γ

V je , (4.1.5)

where j∂ ⊂ jγ is the subset of spins attached to the boundary edges. The spin-jγ sector of the
Hilbert space Hγ , given by the tensor product of the bulk and boundary Hilbert spaces defined
above, is denoted as Hjγ

γ :
Hjγ
γ

..= Hjγ

γ̇ ⊗ Hj∂

∂ (4.1.6)

To emphasize this factorization, in the following we write basis states of Hjγ
γ as

|jγ , n∂ , ιV ⟩ ≡
⊗
v

|⃗jvιv⟩
⊗
e∈∂γ

|jene⟩ (4.1.7)

i.e. as tensor product of the basis states of the bulk Hilbert space,
⊗

v |⃗jvιv⟩, and of the boundary
Hilbert space,

⊗
e∈∂γ |jene⟩.
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For a certain assignment of spins to the graph γ the corresponding Hilbert space thus factorizes
into a bulk and a boundary Hilbert space. In the next section we show that spin network states
in Hjγ

γ (for arbitrary γ) naturally define maps between the bulk and boundary degrees of freedom,
and that such a feature extends to completely generic (i.e. involving superposition of spin-sectors)
states, upon embedding the graph Hilbert space Hγ into the tensor product of generalized bulk
and boundary Hilbert spaces.

4.2 Random spin networks and dual statistical models
The computation of the entanglement entropy of spin network states can be highly simplified by
the use of random tensor network techniques. This clearly requires to restrict the attention to
spin network states given by (superpositions of) random tensor networks. We introduce such a
class of states in the following subsection, and dedicate subsection 4.2.2 to illustrate how random
tensor network techniques can be used to translate their Rényi entropies into partition functions
of a classical Ising model.

4.2.1 Random spin networks
We consider spin network states constructed out of the gluing of individually weighted vertices,
introduced in the subsection 3.2.5, thereby corresponding to tensor networks. We also assume
that the states are peaked on specific values jγ of the edge spins of the underlying graph γ. This
assumption allows us to work in a fixed spin-sector of HN ⊃ Hγ and thus largely simplifies the
calculation. The attention is therefore restricted to states of the form

|ψ⟩ =

⊗
ℓ∈γ

⟨ℓ|

⊗
v

|fv⟩ (4.2.1)

where |ℓ⟩ is the link state of Eq. (3.2.9) and fv is a single-vertex wavefunction peaked on j⃗v (we
implicitly assumed compatibility among the spins j⃗1, . . . , j⃗N on which f1, . . . , fN are peaked, the
combinatorial pattern γ and the choice of spins of the corresponding link states).

The randomness we consider is local, i.e. inherent to the vertices separately: every state fv,
which is a tensor in a spin-sector of the single-vertex Hilbert space, i.e.

(fv)j⃗v

n⃗vιv
∈ Hj⃗v ..= I j⃗v ⊗

d⊗
i=1

V ji , (4.2.2)

is picked randomly from its Hilbert space according to the uniform probability distribution. More
specifically, the tensor (fv)j⃗v

n⃗vιv
is regarded as a vector of dimension

Dv
..= Dj⃗ × dj1 × · · · × djd , (4.2.3)

and the computation of typical values of functions of it is performed by setting |fv⟩ = U |f0
v ⟩, where

|f0
v ⟩ is a reference state and U ∈ SU(Dv), and integrating over U with the Haar measure.

4.2.2 Rényi entropy from Ising partition function
In this section we show how to compute, for a random spin network state with fixed spins, the
second-order Rényi entropy of an arbitrary region of the graph, which may include part of the bulk
(intertwiners attached to the vertices) and/or of the boundary (spin states on open edges of the
graph). The analysis is performed by adapting the technique of [53] to the GFT framework.

Let us start by illustrating the replica trick for the computation of the second-order Rényi
entropy. Given a system whose Hilbert space admits the factorization HR ⊗ HR, let ρ be the
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Figure 4.1. Illustration of the replica trick in Eq. (4.2.5). In (a) the density matrix ρ on HR⊗ HR
describing the state of the system: the black disks refer to the subsystems described by HR (top)
and by HR (bottom), the white disks to the dual components. In (b) the l.h.s. of Eq. (4.2.5):
the trace over R (dashed green line) yields ρR; the latter is then multiplied by itself (connection
of internal disks) and traced over (dashed red line). In (c) the r.h.s. of Eq. (4.2.5): two copies
of ρR are considered; the swap operator, whose action is denoted by a square, causes the trace to
be performed across the two spaces. In (d) the factorization of the swap operator S for the single
vertex on the intertwiner (large square in the center) and on each individual edge (small squares)

density matrix on HR ⊗ HR describing the state of the system and consider its reduction to
subsystem R: ρR = TrR(ρ). The Rényi-2 entropy of ρR is given by

S2(ρR) ..= − log Tr(ρ2
R) (4.2.4)

The replica trick for the computation of this is quantity is based on the possibility to express the
trace of a reduced density matrix ρR as a trace over two copies of the density matrix ρ associated
to the entire system (here we assume ρ to be normalised, i.e. Tr(ρ) = 1):

Tr(ρ2
R) = Tr [(ρ⊗ ρ)SR] (4.2.5)

where the trace on the r.h.s. is performed over all degrees of freedom of ρ and the operator SR,
called swap operator, acts on the two copies of the Hilbert space HR associated to R as follows:

SR|r⟩ ⊗ |r′⟩ = |r′⟩ ⊗ |r⟩ (4.2.6)

with |r⟩ and |r′⟩ elements of an orthonormal basis of HR (while it acts as the identity on the
two copies of the Hilbert space HR). An illustration of the replica trick of Eq. (4.2.5) is given in
figure 4.1.

Our goal is to compute the Rényi-2 of the random spin network state of Eq. (4.2.1) for an
arbitrary portion R of the underlying graph γ. By applying the replica trick to the Rényi-2
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entropy of ρR = TrR(ρ), where ρ = |ψ⟩⟨ψ|, we can write

S2(ρR) = − log
(
Z1

Z0

)
,

Z1 ..= Trγ̇∪∂ [(ρ⊗ ρ)SR] ,
Z0 ..= Trγ̇∪∂ [ρ⊗ ρ] ,

(4.2.7)

where Trγ̇∪∂ denotes a trace over all bulk and boundary degrees of freedom, the presence of the
denominator Z0 in the logarithm takes into account the possible non-normalisation of ρ, and where
the swap operator SR acts on two copies of the Hilbert space

HR =
(⊗
v∈R

I j⃗v

)
⊗

(⊗
e∈R

V je

)
, (4.2.8)

associated to the spin network region R.
Crucially, by exploiting the tensor network form of Eq. (4.2.1) the density matrix ρ = |ψ⟩⟨ψ|

can be written as follows:

ρ = TrL

⊗
ℓ∈γ

|ℓ⟩⟨ℓ|
⊗
v

|fv⟩⟨fv|

 , (4.2.9)

where TrL denotes the trace over the degrees of freedom associated to edges forming internal links,
i.e. magnetic momenta associated to the free ends of to-be-glued edges. We are thus exploiting
the embedding of the spin network state in HN to write it as a set of open vertices (the |fv⟩⟨fv|
terms) glued to each other by the trace with the set of link states |ℓ⟩⟨ℓ|. By inserting Eq. (4.2.9)
into the expression of Z1 (Z0 can be derived from the latter by simply replacing the swap operator
with the identity) we then obtain

Z1 ..= Trγ̇∪∂ [(ρ⊗ ρ)SR]

=Tr
[(⊗

ℓ

ρ⊗2
ℓ

)(⊗
v

ρ⊗2
v

)
SR

]
(4.2.10)

where ρℓ ..= |ℓ⟩⟨ℓ| and ρv ..= |fv⟩⟨fv|. Notably, the trace in the second line is performed over
all degrees of freedom in the embedding space HN , i.e. that of a set of N open vertices. In the
following, we omit the explicit reference to the bulk (γ̇), boundary (∂) and internal link (L) subsets
and denote this total trace simply by Tr.

Given the random character of the state, our objective is to compute the average value of
the Rényi-2 entropy S2(ρR) with respect to the uniform probability distribution of the single-
vertex states ρv. As we are going to show, the key point of the average entropy calculation is
that the randomization over the vertex states can be implemented before performing the trace
in Eq. (4.2.10), due to the linearity of such operations. As a first step, note that Z1 and Z0 are
quadratic functions of the random vertex states ρv, and their average is therefore easier to compute
than the average of the entropy. This observation motivated the proposal[53] of expanding the latter
in powers of the fluctuations δZ1 = Z1 − Z1 and δZ0 = Z0 − Z0 (the overline is used to denote
average value under randomisation of the vertex states):

S2(ρR) = − log
(
Z1

Z0

)
+

∞∑
n=1

(−1)n−1

n

(
δZn0
Z0

n − δZn1
Z1

n

)
(4.2.11)

In Ref. [53] Hayden et al. showed that for large enough bond dimensions, which in the present
framework correspond to the edge spins, the fluctuations are suppressed, i.e.

S2(ρR) ≃ − log
(
Z1

Z0

)
, (4.2.12)

where ≃ refers to asymptotic equality as the edge spins go to infinity. In particular they proved
that, for a tensor network with homogeneous bond dimensions equal to D, given an arbitrary small
parameter δ > 0 it holds

|S2(ρR) − S2(ρR)| < δ (4.2.13)
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with probability P (δ) = 1 − Dc

D , where Dc is a critical bond dimension depending on δ and on the
number N of vertices as Dc ∝ δ−2ecN , with c a constant factor.

Thanks to Eq. (4.2.12) the computation of the average entropy can thus be traced back to the
computation of the average quantities Z1 and Z0. Let us focus on Z1, as Z0 is simply given by the
latter upon reducing the swap operator to the identity operator:

Z1 = Tr
[(⊗

ℓ

ρ⊗2
ℓ

)(⊗
v

ρ⊗2
v

)
SR

]
, (4.2.14)

For each vertex v, the average over the two copies of the state ρv can be computed via the Schur’s
lemma, as we illustrate in appendix A.3. The result is the following:

ρ⊗2
v = I + Sv

Dv(Dv + 1) , (4.2.15)

where Dv is the dimension of the single-vertex Hilbert space Hj⃗v given in Eq. (4.2.3) and Sv is the
swap operator on the two copies of it. Once Eq. (4.2.15) is inserted into Eq. (4.2.14), the latter
can be written as

Z1 = c
∑
σ⃗

Tr
[(⊗

ℓ

ρ⊗2
ℓ

)(⊗
v

S
1−σv

2
v

)
SR

]
, (4.2.16)

where σv = ±1 is a two-level variable associated to vertex v, σ⃗ = {σ1, ..., σN} and

c ..=
∏
v

1
Dv(Dv + 1) (4.2.17)

is a constant factor. That is, Z1 has been written as a sum of 2N terms, each one involving the
identity (I) or the swap operator (Sv) for each of the N vertices, depending on the value of the
corresponding variable σv: I for σv = +1 and Sv for σv = −1. The quantity Z1 thus acquires the
form of a partition function:

Z1 =
∑
σ⃗

e−A1(σ⃗)
(4.2.18)

where

A1(σ⃗) ..= − log c− log Tr
[(⊗

ℓ

ρ⊗2
ℓ

)( ⊗
σv=−1

Sv

)
SR

]
(4.2.19)

Given the form of the single-vertex Hilbert space Hj⃗v , the swap operator Sv factorises as follows:

Sv =
d⊗
i=0

Siv, (4.2.20)

i.e. into a swap operator S0
v for (the double copy of) the intertwiner Hilbert space I j⃗v and a swap

operator Siv for (the double copy of) the representation space V ji
v on each edge eiv, as shown in

figure 4.1(d). Crucially, the same applies to the swap operator SR; by writing R = A ∪ Ω, where
A ⊂ ∂γ is a region of the boundary and Ω ⊂ γ̇ a region of the bulk, we have that

SR =

⊗
ei

v⊂A

Siv

(⊗
v⊂Ω

S0
v

)
(4.2.21)

To every boundary edge eiv ⊂ A we then attach a two-level variable µiv = ±1 encoding whether
(µiv = −1) or not (µiv = +1) it belongs to the boundary region A ⊂ R. We do the same for
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every vertex v ⊂ γ̇: we introduce a two-level variable νv = ±1 encoding whether (νv = −1) or not
(νv = +1) the vertex v is contained in Ω ⊂ R. These additional variables, called pinning fields [53]
to model the effect of presence, on the bulk and boundary of γ, of the swap operators deriving
from the decomposition of Eq. (4.2.21). The trace in Eq. (4.2.19) can then be written as follows:

Tr
[(⊗

ℓ

ρ⊗2
ℓ

)( ⊗
σv=−1

Sv

)
SR

]

= TrL

(⊗
ℓ

ρ⊗2
ℓ

) ⊗
ei

v∈L:σv=−1

Siv

Trγ̇

[ ⊗
σvνv=−1

S0
v

]
Tr∂

 ⊗
ei

v∈∂γ:σvµi
v=−1

Siv

 (4.2.22)

Consider in fact a generic vertex v: if σv = −1 and νv = −1, there are two swap operators acting
on its intertwiner, which cancel each other out (as S2 = I); if, instead, σv = −1 and νv = +1, or
σv = +1 and νv = −1 (a situation codified by the condition νvσv = −1) there is just one swap
operator acting on its intertwiner. A similar argument holds for the boundary edges.

By performing the traces in Eq. (4.2.22) one finally obtains the action of a classical Ising model
defined on the graph γ, with additional pinning fields on the bulk and boundary degrees of freedom
(see appendix B.2 for details on the derivation of the various terms):

A1 (σ⃗) =
∑
ℓi

vw∈γ

1 − σvσw
2 log dji

vw
+
∑
ei

v∈∂γ

1 − σvµ
i
v

2 log dji
v

+
∑
v

1 − σvνv
2 logDj⃗v

+const , (4.2.23)

We can indeed observe that Eq. (4.2.23) involves interactions between nearest neighbours Ising
spins, where the adjacency relationship is determined by γ (two Ising spins interact only if the
corresponding vertices are connected by a link); every Ising spin also interacts with the pinning
fields located at its vertex (e.g. the Ising spin σv of a vertex v on the boundary interacts with the
pinning field νv on the intertwiner of v and with the pinning field µiv on the open edge eiv of v).

As far as Z0 is concerned, we pointed out that it corresponds to Z1 with R = ∅ (in fact S∅ = I).
Therefore it holds that Z0 =

∑
σ⃗ e

−A0(σ⃗), where A0 is given by Eq. (4.2.23) with all pinning fields
equal to +1:

A0 (σ⃗) =
∑
ℓi

vw∈γ

1 − σvσw
2 log dji

vw
+
∑
ei

v∈∂γ

1 − σv
2 log dji

v
+
∑
v

1 − σv
2 logDj⃗v

+ const . (4.2.24)

Note also that, since Z0 and Z1 enter S2(ρR) only via their ratio, in the computation of the entropy
the constant factors in Eq. (4.2.23) and Eq. (4.2.24) are irrelevant; we therefore omit them in the
following.

By defining the free energies F1 ..= − logZ1 and F0 ..= − logZ0, the average entropy given by
Eq. (4.2.12) can be expressed as

S2(ρR) ≃ F1 − F0, (4.2.25)
namely as the energy cost of flipping down the pinning fields in the region R.

To study the properties of the partition function Z1 it is useful to rewrite the Ising action A1(σ⃗)
in the form A1(σ⃗) = βH1(σ⃗), where β ..= dj with j the average spin on γ, and

H1 (σ⃗) =
∑
ℓi

vw∈γ

1 − σvσw
2

log dji
vw

β
+
∑
ei

v∈∂γ

1 − σvµ
i
v

2
log dji

v

β
+
∑
v

1 − σvνv
2

logDj⃗v

β
. (4.2.26)

The parameter β then plays the role of inverse temperature of the Ising model. The large-spins
regime therefore corresponds to the Ising temperature going to zero, and the system dropping to
the lowest energy configuration, which provides the main contribution to the partition function
Z1:

Z1 ≃ e−βminσ⃗ H1(σ⃗), (4.2.27)
which leads to the free energy

F1 ≃ βmin
σ⃗
H1 (σ⃗) . (4.2.28)
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The same applies to Z0. Note that H0 is given by Eq. (4.4.24) with all pinning fields pointing up:
µiv = νv = +1 ∀v, i; its minimum is therefore reached when all Ising spins are aligned to them
(so that the bulk and boundary terms in Eq. (4.4.24) vanish) and aligned to each other (so that
the internal-links term also vanishes). The only Ising configuration satisfying these requirements
is that with all spins pointing up:

min
σ⃗
H0 (σ⃗) = H0(σ↑) = 0 (4.2.29)

where σ↑ ..= {σv = +1 ∀v}. As a consequence,

F0 ≃ βmin
σ⃗
H0 (σ⃗) = 0 (4.2.30)

Therefore, the average entropy can be finally computed via the following formula:

S2(ρR) ≃ βmin
σ⃗
H1 (σ⃗) , (4.2.31)

with β the average dimension of the edge spins and H1(σ⃗) the Ising-like Hamiltonian defined in
Eq. (4.4.24). We thus shown that random tensor network techniques, specifically (a generalization
of) that presented in [53], enable us to map the computation of the average Rényi entropy of a
spin network to the evaluation of the energy of a classical Ising model living on that network. The
principal features of such a mapping are summarised in box 4.1.

4.1 Random spin networks and the dual Ising model

Via the replica trick, the average Rényi-2 entropy of spin network states given by the gluing
of (uniformly distributed) random spin network vertices - Eq. (4.2.1) - is given by two
interacting copies of the spin networks themselves - Eq. (4.2.7) - with interaction scheme
given by a classical Ising model on the underlying graph - Eq. (4.2.23). The key aspects of
the calculation leading to the Ising model are the following:

Randomization and Ising spins The randomization over uniformly distributed vertex ten-
sors yields an Ising spin σv for every vertex v, which can be +1 or −1. Effectively, each
edge eiv of the vertex, as well as the intertwiner degree of freedom, carries a copy of the
spin σv. Note that all such copies have the same value; in fact, σv expresses an “Ising
state” of the vertex, which is “transmitted” to all its edges and to the intertwiner.

Probed region and pinning fields A set of virtual spins called “pinning fields” keeps track
of the boundary region A ⊂ γ respect to which the entropy is computed. In particular,
a spin µei

v
is attached to every boundary edge eiv ∈ ∂γ, and takes value −1 if eiv ∈ A,

and +1 otherwise.

Interaction of Ising spins and pinning fields The Ising spin σv on a boundary edge eiv in-
teracts to the pinning field µei

v
living on the same edge (with strength of the interaction

proportional to log dji
v
). Moreover, the Ising spin σv on a semi-link eiv interacts to the

Ising spin σw on the complementary semi-link eiw, and the strength of interaction is
proportional to log dji

vw
. Equivalently, we could say that the Ising spins (when regarded

as pertaining to the vertex in its entirety, not split in copies attached to the vertex
substructures) interact to their nearest neighbours: σv interacts with σw if v and w are
connected by a link.
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4.3 Holographic bulk-to-boundary maps from random spin
networks

4.3.1 Spin network states as bulk-to-boundary maps
In this section we show that spin network states naturally define maps between the bulk and the
boundary of the graph underlying them, according to the bulk/boundary bipartition of degrees of
freedom illustrated in the previous section.

4.3.1.1 Fixed-spin case

Consider a generic state in Hjγ
γ :

|φ⟩ =
∑
n∂ιV

φn∂ιV

⊗
v

|⃗jvιv⟩
⊗
e∈∂γ

|jene⟩ (4.3.1)

where we adopted the notation of Eq. (4.1.7) emphasizing the factorization of the Hilbert space
into bulk and boundary. Our claim is the following: by regarding the bulk subspace as input and
the boundary subspace as output the state of Eq. (4.3.1) naturally defines a map from the first to
the second,

Mφ : Hjγ

γ̇ → Hj∂

∂ , (4.3.2)

which acts on a generic bulk (input) state ζ ∈ Hjγ

γ̇ as follows:

Mφ|ζ⟩ ..=⟨ζ|φ⟩

=
∑
n∂

(∑
ιV

ζ∗
ιV φn∂ιV

)⊗
e∈∂γ

|jene⟩ =.. |φ(ζ)⟩
(4.3.3)

That is, by evaluating the spin network state φ on ζ (or, in tensor network language, by feeding
the bulk input indices with ζ) and returning a boundary (output) state. In fact, the components
of Mφ in the bulk and boundary basis simply coincide with that of φ:

⟨α|Mφ|β⟩ = φαβ (4.3.4)

where we collected in α and β the quantum numbers of the bulk and boundary basis elements,
respectively; i.e.

|α⟩ ..=
⊗
e∈∂γ

|jene⟩ |β⟩ ..=
⊗
v

|⃗jvιv⟩ (4.3.5)

This observation holds for any spin network state in Hjγ
γ , for any underlying graph γ and

assignment of spins jγ . The map associated to a spin network state acts by establishing correlations
between the intertwiner degrees of freedom, which end up in the input configuration (in the example
given above, ζ). As we shall see, the purpose of changing the perspective on spin networks from
states to maps is that of studying the relationship between their bulk and boundary. In this
respect, note that between the same bulk and boundary Hilbert spaces there is a family of maps
defined by all possible states associated to all possible graphs having the same bulk and boundary
of γ (i.e. same number of vertices and same boundary edges).

4.3.1.2 General (spin-superposition) case

We introduce the generalised bulk and boundary spaces:

Hγ̇
..=
⊕
jγ

Hjγ

γ̇ , H∂γ
..=
⊕
j∂

Hj∂

∂ (4.3.6)
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which are such that Hγ ⊂ Hγ̇ ⊗ H∂γ . Given a generic state in Hγ ,

|Ψ⟩ =
⊕
jγ

∑
n∂ιV

Ψjγ
n∂ιV

⊗
v

|⃗jvιv⟩
⊗
e∈∂γ

|jene⟩, (4.3.7)

the contraction with an element of the generalised bulk space, Z ∈ Hγ̇ , yields

|Ψ(Z)⟩ = ⟨Z|Ψ⟩

=
⊕
j∂

∑
n∂

(∑
ιV

(
Zjγ
ιV

)∗ Ψjγ
n∂ιV

)⊗
e∈∂γ

|jene⟩
(4.3.8)

which is a state in the generalised boundary space. Crucially, we can regard Eq. (4.3.8) as the
output of a map

MΨ : Hγ̇ → H∂γ (4.3.9)

that evaluates the state Ψ associated to γ on a certain state Z of the bulk degrees of freedom, i.e.
the intertwiners, returning a boundary state Ψ(Z). Note that the latter pertains to the subspace
of H∂γ characterised by gauge invariance with respect to the left action of the group on boundary
edges pertaining to the same vertex (the state being instead covariant under right action of the
group on the boundary edges).

By considering the most general bulk and boundary Hilbert spaces we are thus able to regard
every spin network state (involving arbitrary superposition of spins) as a map between them. The
correlation between bulk and boundary degrees of freedom in the state translates into a correlation
between the input and output subspaces connected by the map, as

⟨α|MΨ|β⟩ = Ψαβ (4.3.10)

with |α⟩ and |β⟩ being, respectively, the boundary and bulk basis elements defined in Eq. (4.3.4),
and with j∂ in |α⟩ coinciding to the boundary-spins subset of jγ in |β⟩, for all possible spin sectors.

Let us remark that, despite the possibility of reading a generic graph state as a bulk-to-boundary
map in the sense specified above, the graph Hilbert space itself cannot be factorized into boundary
and bulk spaces due to the sharing of degrees of freedom between these two substructures (the in-
tertwiner degree of freedom depend on the incident spins, which possibly pertain to the boundary).
Note however that, in order to make the bulk degrees of freedom independent from the boundary
ones, it is sufficient to fix the spins j⃗∂γ of the boundary. The generalised bulk Hilbert space Hγ̇ is
then redundant, as the effective bulk Hilbert space is a direct sum of jγ-sectors with the boundary
portion of jγ given by j⃗∂γ .

4.3.2 Isometry condition for bulk-to-boundary maps
We proceed to determine the conditions under which the bulk-to-boundary map associated to a
spin network state is an isometry. We restrict the attention to the fixed-spins case, but the analysis
can be straightforwardly generalised to states involving spin superposition.

As explained in Section 4.3.1, a state φ ∈ Hjγ
γ can be thought of as a map Mφ acting on an a

bulk state ζ as follows: Mφ|φ⟩ = ⟨ζ|φ⟩, thereby returning a state in the boundary Hilbert space.
To simplify the notation, in the following we omit for the bulk-to-boundary map Mφ the explicit
reference to the state φ from which it is defined. The map M is an isometry if and only if it
satisfies

M†M = I, (4.3.11)

where I is the identity operator. We are going to show that this condition is equivalent to the bulk
reduction of the spin network state being completely mixed.

To start, not that the spin network state φ can be written in terms of the corresponding
bulk-to-boundary map M as follows:

|φ⟩ =
∑
β

(M ⊗ I) |β⟩ ⊗ |β⟩ (4.3.12)
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Λ

Figure 4.2. Relationship between a spin network state ργ and the corresponding bulk-to-boundary
superoperator Λ. The state |ω⟩ is a maximally entangled state of two copies of the bulk.

where |β⟩ is the bulk basis element, see Eq. (4.3.4). That is, the state |φ⟩ can be obtained by
applying the map M to a branch of two maximally entangled copies of the bulk, as depicted in
figure 4.2. The reduced (and normalised) bulk state then takes the form

ργ̇ ..= 1
Dγ̇

Tr∂ [ργ ]

= 1
Dγ̇

∑
ββ′

(
M†M

)
β′β

|β⟩⟨β′|
(4.3.13)

where ργ = |φ⟩⟨φ| and Dγ̇ is the dimension of the bulk Hilbert space. From this expression it is
immediate to realize that the isometry condition M†M = I translates into the requirement that
ργ̇ is maximally mixed, i.e.

ργ̇ = I
Dγ̇

, (4.3.14)

Crucially, this condition can be checked by verifying that ργ̇ has maximum entropy.
Note finally that, when M is an isometry, the corresponding superoperator on the space of

bulk operators, Λ(·) ..= M · M†, is a CPTP map with Choi-Jamiołkowski state

J(Λ) = Λ ⊗ I
(

|ω⟩⟨ω|
Dγ̇

)
= ργ
Dγ̇

(4.3.15)

where

|ω⟩ =
∑
β

|β⟩ ⊗ |β⟩ (4.3.16)

is a maximally entangled state of two copies of the bulk (see figure 5.2.1).

4.3.3 Holographic character of bulk-to-boundary maps from random
spin networks

The goal of this section is to determine under which conditions the flow of information from the
bulk to the boundary of regions of quantum space described by the random spin network states
introduced in section 4.2.1 exhibits a holographic behaviour, which corresponds to the bulk-to-
boundary map associated to that class of states being an isometry. We showed that this isometry
condition can be verified by computing the entanglement entropy content of the reduced bulk state
ργ̇ . As illustrated in section 4.2, given the random character of the vertex weights the Rényi-2
entropy can be computed via the partition function of a classical Ising model having the following
action:

A(σ⃗) ..= − 1
2

 ∑
ℓi

vw∈L

(σvσw − 1) log dji
vw

+
∑
ei

v∈∂γ

(σvµiv − 1) log dji
v

+
∑
v

(σvνv − 1) logDj⃗v


(4.3.17)
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μv = + 1
νv = + 1

v

Figure 4.3. In the Ising action A0, both the
boundary spins µ (shown in red) and the bulk
ones ν (shown in green) point up: µv = +1,
νv = +1 ∀v.

  

μv = + 1
νv = - 1

v

Figure 4.4. In the Ising action A1, the bound-
ary spins (in red) point up, but the bulk spins
(in green) are flipped down: µv = −νv = +1
∀v.

  

log d
j

Figure 4.5. For logDj ≫ log dj the minimal
energy configuration for A1 is that with all
Ising spins σv (shown in black) pointing down.
Each pair of misaligned Ising- and boundary-
spin carries a contribution to the free energy
F1 equal to log dj , so F1 = |∂γ| log dj .

  

log D
j

Figure 4.6. For log dj ≫ logDj the minimal
energy configuration is that with all Ising spins
σv (shown in black) pointing up. Each pair of
misaligned Ising- and bulk-spin carries a con-
tribution to the free energy F1 equal to logDj ,
so F1 = N logDj

where σv are the Ising spins associated to the vertices of the graph, µiv and νv pinning fields
associated to boundary spins and intertwiners, respectively. In particular, the average entropy
corresponds to the energy cost of flipping down the pinning fields of the bulk γ̇ (see Figure 4.3 and
Figure 4.4):

S2(ργ̇) ≃ F1 − F0, (4.3.18)

In the following we consider different possible configurations of the edge spins associated to the
spin network graph, in order to gain insights on the behaviour of the entropy.

4.3.3.1 Homogeneous case

In the homogeneous case, i.e. with all edge spins equal to the same value j, the Ising action takes
the form

A(σ⃗) = − 1
2 log dj

 ∑
ℓi

vw∈L

(σvσw − 1) +
∑
ei

v∈∂γ

(σvµv − 1)

− 1
2 logDj

∑
v

(σvνv − 1) (4.3.19)

where we indicated as Dj the dimension of the intertwiner recoupling d j-spins. As discussed in
subsection 4.2.2, in the large spins regime the free energy can be estimated by the minimum of
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Figure 4.7. Ising configuration with Ising spins (shown in black) pointing down in a region X,
bulk spins (in green) νv = −1 ∀v and boundary spins (in red) µv = +1 ∀v. The contributions to
A1 derive from: misaligned Ising- and boundary-spins (∂Xext), misaligned Ising- and bulk-spins
(region outside X) and misaligned nearest-neighbor Ising spins (∂Xint).

the Ising action and F0 turns out to be zero: in A0 all pinning fields point up, and it is easy to
see that its minimum is reached when also the Ising spins point up, so that all interaction terms
vanish. We can then restrict the attention to the free energy F1.

The value of F1, approximated by the minimum of A1 (Ising action in which the bulk fields
are flipped down), depends on the relative strength of the interactions, specifically by the ratio of
log dj (interaction strength between Ising spins σv and boundary spins µv) to logDj (interaction
strength between Ising spins σv and bulk spins νv). Let us focus on the following two regimes,
which are the counterpart of the asymptotic regimes considered in [53]:

- logDj ≫ log dj : the interaction with bulk spins is predominant, and the minimal energy con-
figuration is thus the one with all Ising spins pointing down (see Figure 4.5). The contributions
to the energy come from the misalignment of Ising spins with boundary spins, and amounts
to log dj for each boundary edge. The result is F1 = |∂γ| log dj , where |∂γ| is the number of
boundary edges.

- log dj ≫ logDj : the interaction with boundary spins is predominant, and the minimal energy
configuration is thus the one with all Ising spins pointing up (see Figure 4.6). The contributions
to the energy come from the misalignment of Ising spins with bulk spins, and amounts to logDj

for each vertex. The result is F1 = N logDj , which is the maximum possible value for the
entropy of the reduced bulk state, as (Dj)N is the bulk-space dimension.

We therefore found that, when the configuration that minimises A1 is the one with all Ising
spins pointing up, the entropy reaches its maximum value, since S2(ργ̇) ≈ F1 −F0 = N logDj ; this
corresponds to ργ̇ being completely mixed, namely to the bulk-to-boundary map being isometric.
The isometry condition for the map can thus be translated to the requirement of stability of the
all-up configuration: for every σ⃗ it must hold that A1(σ⃗) > N logDj . Given an Ising configuration
σ⃗, let X(σ⃗) be the region in which the Ising spins point down; by using Eq. (4.3.19) the stability
condition can then be written as

|∂X(σ⃗)| log dj > |X(σ⃗)| logDj ∀σ⃗ (4.3.20)

where |∂X(σ⃗)| = #e ∈ ∂X(σ⃗), and |X(σ⃗)| = #v ∈ X(σ⃗).
The significant cases are the ones with vertex valence d ≥ 4 (for d ≤ 3 the intertwiner degree

of freedom is suppressed). The dimension of the intertwiner space is given by

Dj = 2
π

∫ π

0
dθ sin2

(
θ

2

)( sin
(
(j + 1

2 )θ
)

sin
(
θ
2
) )d

(4.3.21)
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and the condition in Eq. (4.3.20) thus becomes the following:

e
|∂X(σ⃗)|
|X(σ⃗)| dj >

2
π

∫ π

0
dθ sin2

(
θ

2

)( sin
(
dj

θ
2
)

sin
(
θ
2
) )d . (4.3.22)

The interesting case for 4D quantum gravity models is d = 4. In this case the dimension of the
intertwiner space is simply given by Dj = 2j + 1 = dj [119], i.e. it corresponds to the dimension
of the edge spins, and the stability condition becomes

|∂X(σ⃗)| > |X(σ⃗)| ∀σ⃗ (4.3.23)

For the class of graphs we are considering (that is, at most one boundary link for each vertex)
Eq. (4.3.23) cannot be satisfied by the configuration with all Ising spins pointing down; the bulk-
to-boundary map thus cannot be isometric.

4.3.3.2 Inhomogeneous case

We then consider the situation in which the spin assignment to the graph is not homogeneous. We
recall that,since F0 ≃ 0, the entropy can be estimated via F1, and thus by the minimum of A1.
The key observation is, once again, the fact that when the all-up configuration is stable, namely
minimises the action, S2(ργ̇) is maximised. In fact,

A1(σ↑) =
∑
v

logDj⃗v
= logDγ̇ , (4.3.24)

which is the maximum possible value for the entropy of the reduced bulk state. We thus need
to require that, for any Ising configuration σ⃗, it holds that A1(σ⃗) > logDγ̇ . By identifying a
configuration σ⃗ through its spin-down region X(σ⃗) (also indicated just as X, when the explicit
reference to the corresponding vector σ⃗ is unnecessary) we can write A1(σ⃗) as follows:

A1(σ⃗) =
∑

ℓi
vw∈∂Xint

log dji
vw

+
∑

ei
v∈∂Xext

log dji
v

+
∑
v∈X

logDj⃗v (4.3.25)

where ∂Xint = L ∩ ∂X is the internal boundary of X, ∂Xext = ∂γ ∩ ∂X the external one (see
Figure 4.7) and X the complement of X; the inequality A1(σ⃗) > logDγ̇ then reads∑

ℓi
vw∈∂Xint

log dji
vw

+
∑

ei
v∈∂Xext

log dji
v
>
∑
v∈X

logDj⃗v
, (4.3.26)

namely, in a more compact form, ∑
ei

v∈∂X

log dji
v
>
∑
v∈X

logDj⃗v
, (4.3.27)

which implies ∏
ei

v∈∂X

dji
v
>
∏
v∈X

Dj⃗v
. (4.3.28)

Therefore, for every spin-down region X the dimension of the boundary must be greater then the
dimension of the bulk.

Let us focus on the case of valence d = 4. The dimension of the intertwiner space is given by
the following expression [119]:

Dj⃗ = min{j1 + j2, j3 + j4} − max{|j1 − j2|, |j3 − j4|} + 1 (4.3.29)

Note that when the spin assignment reduces to the homogeneous one, the dimension of the inter-
twiner space is Dj⃗ = 2j+ 1 = dj and we recover from Eq. (4.3.28) the inequality |∂X| > |X| found
in the homogeneous case, which is clearly false.
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Before moving to the general case, we consider the simplified scenario of graphs made of vertices
with spins pairwise equal: jiv ∈ {jmin

v , jmax
v } ∀eiv ∈ γ. For each vertex it thus holds that

Dj⃗v
= djmin

v
. (4.3.30)

Combining Eq. (5.3.4) with Eq. (4.3.30) we then obtain∑
∂X

log dji
v
>
∑
v∈X

log djmin
v
, (4.3.31)

which is violated when, for example, the spin-down region X is such that all its vertices have a
link eiv ∈ ∂X carrying the minimum spin jmin

v . Therefore, also in the case of vertices with spins
pairwise equal the map is not an isometry.

We now consider the generic case. For vertex spins jmin = ja ≤ jb ≤ jc ≤ jd = jmax the
dimension of the intertwiner space is

Djajbjcjd = min{ja + jd, jb + jc} − ∆ + 1 (4.3.32)

where ∆ = jmax − jmin. Combining Eq. (4.3.32) with Eq. (5.3.4) we obtain the inequality∑
ei

v∈∂X

log dji
v
>
∑
v∈X

log
(
min{jav + jdv , j

b
v + jcv} − ∆v + 1

)
(4.3.33)

Let us stress that the key factors for the condition of Eq. (4.3.33) to be satisfied are the following:

- Combinatorial structure of the graph (number of links on the boundary ∂X and number of
vertices inside ∂X).

- Dimensions (equivalently, spins) of the links; note that ∆ “measures” the difference with the
homogeneous case, which corresponds to ∆ = 0, and for which the isometry condition cannot
be satisfied.

From Eq. (4.3.33) we see that, for a given combinatorial structure, increasing ∆, namely reducing
the dimension of the bulk space, favours the attainment of the isometry condition. Since jd ≤
ja + jb + jc [119], it follows that ∆ ≤ jb + jc. For the maximum possible value ∆max ..= jb + jc

the dimension of the intertwiner space is equal to 1 (since ∆ = jd − ja = jb + jc implies ja + jd =
jb + jc + 2ja, therefore min{ja + jd, jb + jc} = jb + jc), which means that the bulk degrees of
freedom are suppressed; Eq. (4.3.33) in fact becomes trivial:∑

ei
v∈∂X

log dji
v
> 0. (4.3.34)

The largest possible value of ∆ which does not trivialize the bulk degrees of freedom, ∆ = ∆max−1,
corresponds to an intertwiner space of dimension 2; when ∆ = ∆max −1 for all vertices the stability
condition for the all-up configuration becomes∑

ei
v∈∂X(σ⃗)

log dji
v
> |X(σ⃗)| log 2 ∀σ⃗, (4.3.35)

which, for a given combinatorial pattern1, is satisfied for sufficiently high values of the edge spins.
Let us compare the above analysis with that of Hayden et al. [53] for random tensor networks.

In [53] the dimensions of links (“bond dimensions” in the tensor network language) are equal;
this corresponds to our homogeneous case. Moreover, in [53] the dimension of the bulk degrees
of freedom is independent from the bond dimensions (in contrast to the intertwiner space, which
depends on the spins attached to the vertex links) and can be chosen small enough to make the
isometry condition satisfied. In our framework the link dimensions can differ, and the homogeneous

1We are considering graphs whose vertices can have at most one open edge, and in which two vertices cannot
share more than one link.
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configuration turns out to be the furthest from being isometric. This is a result of the correlation
between bond dimensions and bulk degrees of freedom. In [53], where such a correlation is absent,
the homogeneous configuration can meet the isometry condition with a suitable choice of the bulk
dimension.

Let us finally stress the following points:

∗ When spins are assigned to the links randomly, ∆ measures the spread of the corresponding
probability distribution. A growing spread ∆ corresponds to an increasingly uniform proba-
bility distribution. This could be seen also as a condition on generic states in which spins are
superposed, a class of which we are going to consider in the following.

∗ Increasing ∆ increases the “disorder” of the vertex structure, but decreases the dimension of
the intertwiner space and thus the value of the maximum possible entropy of the bulk state.

∗ From the perspective of the effective Ising model, increasing ∆ corresponds to reducing the
minimum possible free energy.

4.3.4 Discussion
We found that spin network graphs made of four-valent vertices (dual to 3D spatial geometries)
with an homogeneous assignment of edge spins do not realise an isometric mapping of data from the
bulk to boundary. Coherently, increasing the inhomogeneity of the spins assigned to a spin network
with four-valent vertices increases the “isometry degree” of the corresponding bulk-to-boundary
map.

Let us comment on the comparison of this work with Ref. [120], where the idea of interpreting
spin network states as maps from the bulk to the boundary first appeared. In Ref. [120], Chen and
Livine pointed out that spin network wavefunctions with support on an open graph can be regarded
as linear forms on the boundary Hilbert space (the space of spin states living on the open edges
of the spin network), and that coarse-graining the bulk, i.e. integrating over the bulk holonomies,
then induces a probability distribution for the boundary degrees of freedom. Based on that, they
proved the following: any boundary density matrix can be obtained, via the bulk-to-boundary
coarse-graining procedure, from a pure bulk state with support on a graph composed of a single
vertex connecting all boundary edges to a single bulk loop. A crucial difference between the map
of Ref. [120] and M is that the latter does not perform a coarse graining of the bulk (intended
as tracing out the bulk holonomies); instead, it evaluates the (pure) spin network state on a
given bulk configuration (specifically, a given state for the intertwiner degrees of freedom), thereby
yielding a boundary state. Consequently, the latter is a pure state if the bulk input state is pure.
By contrast, the boundary density matrix resulting from the bulk-to-boundary coarse-graining of
Ref. [120] applied to a pure spin network state is typically mixed.

4.4 Holographic random spin network states and modelling
of black hole horizons

Here we study how the entanglement entropy of the boundary of a random spin network is af-
fected by the bulk, specifically by its combinatorial structure and quantum correlations among
intertwiners. To this end, we exploit the bulk-to-boundary map perspective on spin network
states introduced in section 4.3.1: given a random state (in the sense specified in subsection 4.2.1)
ψ ∈ Hjγ

γ , we look at the boundary state produced by the corresponding bulk-to-boundary map
Mψ applied to a certain bulk input state ζ ∈ Hjγ

γ̇ , upon varying the latter. That is, we look at
the “process”

|ζ⟩ → Mψ|ζ⟩ ..= ⟨ζ|ψ⟩ = |ψ(ζ)⟩ (4.4.1)



4.4 Holographic random spin network states and modelling of black hole horizons 61

f1
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𝐴

Figure 4.8. Spin network state given by the gluing (symbolised by the dotted lines) of random
vertex tensors fv ∈ Hj⃗v (the green disks). ζ is the input state for the bulk degrees of freedom
(intertwiners), depicted as input lines; ψ(ζ) is the output state for the boundary edges, depicted
as output lines. The boundary entanglement entropy is computed for a set A of the latter, shown
in red.

and analyse the entropy of the boundary output ψ(ζ) in relation to the bulk input ζ. In particular,
we focus on the Rényi-2 entropy of a portion A of the boundary:

S2(ρA) = − log Tr
(
ρ2
A

)
(4.4.2)

where ρA ..= TrA (ρ) with ρ = |ψ(ζ)⟩⟨ψ(ζ)| and A is the set of boundary edges complementary
to A. The setting is outlined in figure 4.8. We compute the average value of S2(ρA) via the
random tensor network techniques presented in section 4.2, which map it into the free energy of
a classical Ising model defined on γ. The difference with respect to the analysis of section 4.2 is
that the parent state ρ is not the “total” (bulk+boundary) spin network state given by the gluing
of individually weighted vertices of Eq. (4.2.9), but a boundary state obtained by contracting the
latter with a bulk state ζ, i.e.

ρ = TrL

|ζ⟩⟨ζ|
⊗
ℓ∈γ

|ℓ⟩⟨ℓ|
⊗
v

|fv⟩⟨fv|

 , (4.4.3)

The average value of the entropy is then given by

S2(ρA) ≃ − log Z1

Z0
, (4.4.4)

with

Z1 = Tr
[
ρ⊗2
ζ

(⊗
ℓ

ρ⊗2
ℓ

)(⊗
v

ρ⊗2
v

)
SA

]

Z0 = Tr
[
ρ⊗2
ζ

(⊗
ℓ

ρ⊗2
ℓ

)(⊗
v

ρ⊗2
v

)] (4.4.5)

where ρζ = |ζ⟩⟨ζ|, ρℓ = |ℓ⟩⟨ℓ| and ρv = |fv⟩⟨fv|. The calculation is then analogous to that presented
in section 4.2, with the exception of the following aspects:

▶ Since ρ is a boundary state, the pinning fields νv introduced in section 4.2 for the intertwiner
degrees of freedom do not enter the calculation of the entropy. The Ising spins interact (besides
with each other) with the boundary pinning fields µiv, which point up in the Ising action
associated to Z0, and are flipped down in that associated to Z1.
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▶ The presence of the bulk state ζ leads to an additional contribution to the entropy: S2(ρζ↓),
where ρζ↓ is the reduced bulk state of the region with Ising spins pointing down.

By performing the traces in Eq. (4.4.5) we in fact obtain for Z the expression of a partition function
with the following Ising-like action:

A(σ⃗) = −1
2
∑
ℓi

vw∈L

(σvσw − 1) log dji
vw

− 1
2
∑
ei

v∈∂γ

(σvµei
v

− 1) log dji
v

+ S2(ρζ↓) (4.4.6)

where S2(ρζ↓) is the Rényi-2 entropy of the bulk state reduced to the region with Ising spins
σv = −1. We first analyse the simpler case of spin network states with homogeneous assignment
of the edge spins, and tackle the general case (inhomogeneous spins) in subsection 4.4.2.

4.4.1 Homogeneous case
In the homogeneous case, where all spins take the same value j, we can define β ..= log dj and write

Z =
∑
σ⃗

e−βH(σ⃗)
(4.4.7)

where

H(σ⃗) = −1
2

 ∑
ℓi

vw∈L

(σvσw − 1) +
∑
ei

v∈∂γ

(σvµei
v

− 1)

+ β−1S2(ρζ↓) (4.4.8)

We recognise in H(σ⃗) the Hamiltonian function of a standard Ising model defined on γ (squared
brackets), which involve internal-link and boundary-edge degrees of freedom, and a term deriving
from the entanglement entropy of the bulk degrees of freedom, i.e. intertwiners. As observed in
section 4.2 the quantity β = log dj plays the role of an inverse temperature. The large-spins regime
thus corresponds to the low temperature regime, in which the partition function is dominated by
the lowest energy configuration. Since logZ0 ≃ 0 (see the discussion of section 4.2) we have that

S2(ρA) ≃ − log Z1

Z0
≃ βmin

σ⃗
H1 (σ⃗) (4.4.9)

where H1 (σ⃗) is given by Eq. (4.4.8) with µiv = −1 for eiv ∈ A and µiv = +1 for eiv ∈ A (boundary
pinning fields pointing down only in region A). In the following we consider the two regimes
corresponding to having the Ising-Hamiltonian term dominant with respect to the bulk Rényi
entropy and vice versa.

4.4.1.1 Non-dominant bulk entropy: Ryu–Takayanagi formula for homogeneous spin
networks

In the case S2(ρζ↓) = 0 the Hamiltonian is given by

H1(σ⃗) = −1
2

 ∑
ℓi

vw∈L

(σvσw − 1) +
∑
ei

v∈∂γ

(σvµei
v

− 1)

 (4.4.10)

Every pair of linked vertices with anti-parallel spins (σvσw = −1) carries a contribution to the
energy equal to 1, and the same happens for pairs composed of a Ising-spin and a pinning field
(σvµiv = −1). The value of H1(σ⃗) thus coincides with the size of the domain wall Σ(σ⃗) between the
spin-up and the spin-down regions2, quantified by the number of links crossing it: |Σ(σ⃗)| = H1(σ⃗).
We thereby obtain

S2(ρA) ≃ log dj min
σ⃗

|Σ(σ⃗)| (4.4.11)

2Here the pinning fields µ⃗ are treated at the same level of the Ising spins.
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where the left hand side, in which log dj multiplies the number of links across the minimal Σ(σ⃗),
provides the area of the latter (log dj is in fact proportional to the area of the surface dual to
a link). Equation (4.4.11) can thus be regarded as a version of the Ryu–Takayanagi formula for
homogeneous spin networks. Let us also provide a “dynamic” picture of Eq. (4.4.11): in the Z0
configuration all Ising spins point up; when switching to the Z1 one, the Ising spins in the immediate
proximity of A are induced to flip down; from there the spin-down region spreads, stopping when
H1(σ⃗), namely the size of the domain wall, is minimized.

If S2(ρζ↓) is not null, but still negligible respect to the contribution to H1 deriving from the
interactions of Ising spins to each other and to pinning fields, the average Rényi-2 entropy continues
to satisfy the Ryu–Takayanagi formula, with S2(ρζ↓) a small correction to the area-law term:

S2(ρA) ≃ log dj
(

min
σ⃗

|Σ(σ⃗)|
)

+ S2(ρζ↓) (4.4.12)

where the minimization over σ⃗ is performed independently from the bulk term, and the spin-down
region entering the latter is the one selected by this minimization procedure.

4.4.1.2 Large bulk entropy and emergence of horizon-like regions in homogeneous
spin networks

We now consider the case in which the bulk entanglement contribution to H1(σ⃗) is comparable to
that of internal and boundary edges. This happens, for example, when the bulk is in a random
pure state, namely has Rényi-2 entropy given by

S2(ρζ↓) = log
DN
j + 1

D
|σ↓|
j +D

|σ↑|
j

(4.4.13)

where σ↓ (σ↑) is the region with Ising spins pointing up (down), and |σ↓| (|σ↑|) the corresponding
size. For vertices of valence 4 the intertwiner dimension is Dj = dj = eβ , and for β ≫ 1 it holds
that3 S2(ρζ↓) ≃ βmin{|σ↑|, |σ↓|}. The Hamiltonian thus takes the following form:

H1(σ⃗) = −1
2

 ∑
ℓi

vw∈L

(σvσw − 1) +
∑
ei

v∈∂γ

(σvµei
v

− 1)

+ min{|σ↑|, |σ↓|} (4.4.15)

In this case, the minimization of H1(σ⃗), namely the behaviour of the minimum-size domain wall,
strongly depends on the bulk entanglement contribution. We illustrate such an effect with an
example; in particular, we show that the bulk entanglement can remove the degeneration between
equal-energy configurations (i.e. equal-size domain walls) and, when sufficiently high in a given
region, forces the domain wall to stay outside of it.

Consider the homogeneous graph depicted in figure 4.9. Since it is made of four-valent vertices,
the dimension of the intertwiner degrees of freedom is equivalent to that of the edges: Dj = dj =
2j + 1. The boundary region A we look at, together with its pointing-down pinning fields, is
illustrated in figure 4.9. We first assume that the bulk state is a separable state of all intertwines,
therefore its entanglement entropy contribution is zero and H(σ⃗) = |Σ(σ⃗)|. The minimal energy
H1 = 4 is then reached by two configurations (denoted as σ⃗a and σ⃗b) whose corresponding surfaces
Σa ..= Σ(σ⃗a) and Σb ..= Σ(σ⃗b) are depicted in figure 4.9.

We now switch on the intertwiner correlations in a bulk disk Ω, which is illustrated in figure
4.10; in particular, we assume Ω to be in a random pure state |ζΩ⟩, with the complementary part
of the bulk being in a direct product state:

|ζ⟩ = |ζΩ⟩ ⊗
⊗

v: rv>1
|ξv⟩ (4.4.16)

3In fact
eβN + 1

eβ|σ↑| + eβ|σ↓| ≃
eβN

eβ|σ↑|(1 + eβ(|σ↓|−|σ↑|))
≃ eβ(N−max{|σ↑|,|σ↓|}) = eβ min{|σ↑|,|σ↓|}. (4.4.14)
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Σa

Σb

A

Figure 4.9. The minimum of H1 is degener-
ate; the corresponding surfaces Σa and Σb, with
area |Σa| = |Σb| = 5, are shown by dashed red
lines.

Σa

Σb

A

Ω

Figure 4.10. If intertwiner entanglement is
present in a region Ω of the bulk (highlighted
in yellow in the figure, as well as the vertices
within it), the degeneracy of the minimal en-
ergy is removed. In fact, |Σa| = 6 and |Σb| = 7.

The Hamiltonian thus takes the form (see Eq. (4.4.15))

H1(σ⃗) = −1
2

 ∑
ℓi

vw∈L

(σvσw − 1) +
∑
ei

v∈∂γ

(σvµei
v

− 1)

+ min{|Ω↑|, |Ω↓|} (4.4.17)

where Ω↓ ..= Ω ∩ σ↓ and Ω↑ ..= Ω ∩ σ↑. For the two configurations σ⃗a and σ⃗b we then have that

H1(σ⃗a) = 4 + β−1 log e9β + 1
e2β + e7β ≈ 4 + β−1 log e2β = 6 (4.4.18)

H1(σ⃗b) = 4 + β−1 log e9β + 1
e3β + e6β ≈ 4 + β−1 log e3β = 7 . (4.4.19)

When the bulk correlations are switched on, the degeneracy of the minimum of H1 is thus removed.
Note that the lowest-energy configuration, σ⃗a, has a domain wall that enters the bulk disk Ω.
However, upon increasing the dimension of the latter, the domain wall ends up being pushed out
of it. To show this, we just have to refine vertices of the bulk disk Ω as shown in figure 4.11. The
Ising energy of σ⃗a then increases to H1(σ⃗a) = 14, and the domain wall settles down outside Ω,
with H1min = 8.

4.4.2 Inhomogeneous case
We consider here the more general case in which each link ℓ of the graph carries an arbitrary
spin jℓ. From the Ising model point of view, this means that we are considering Ising spins with
inhomogeneous couplings. Nevertheless, in order to define a Boltzmann weight for the partition
function, we introduce a uniform β to be understood as an average inverse temperature, i.e. β =
log dj where dj is the average edge dimension; then Z =

∑
σ⃗ e

−βH(σ⃗) with

H(σ⃗) = −1
2
∑
ℓi

vw∈L

(σvσw − 1)J ivw − 1
2
∑
ei

v∈∂γ

(σvµei
v

− 1)J iv + β−1S2(ρζ↓) (4.4.20)

where J ivw ..=
log d

ji
vw

β and J iv
..=

log d
ji

v

β are the (normalised) strengths of the interaction. In the
low-temperature (large-spins) regime the leading contribution to the partition function is that of
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A

Ω

Σc

Figure 4.11. By increasing the dimension of the bulk disk Ω via refinement of vertices, the
minimal-energy surface Σc is prevented from entering it.

the minimum energy configuration and logZ0 ≃ 0; in fact, when µiv = +1 ∀eiv ∈ ∂γ, the lowest
energy configuration is that with all Ising spins pointing up, for which all terms in Eq. (4.4.20) are
zero. When, instead, µiv = −1 for eiv ∈ A and µiv = +1 for eiv /∈ A (boundary condition for H1(σ⃗)),
a spin-up region (with external boundary A) and a spin-down region (with external boundary A)
arise, and the domain wall settles down in order to minimize H1(σ⃗):

S2(ρA) ≃ − log Z1

Z0
≃ βmin

σ⃗
H1 (σ⃗) (4.4.21)

We proceed to consider the alternative regimes characterized by the Ising-Hamiltonian/bulk-
entropy term being dominant.

4.4.2.1 Non-dominant bulk entropy: Ryu–Takayanagi formula for inhomogeneous
spin networks

For null bulk entanglement entropy we have the Ising Hamiltonian

H1(σ⃗) = −1
2
∑
ℓi

vw∈L

(σvσw − 1)J ivw − 1
2
∑
ei

v∈∂γ

(σvµei
v

− 1)J iv (4.4.22)

that provides the area of the domain wall, determined by both combinatorial and dimensional
properties of the entanglement graph. In fact, it not just the number of open-edges/links that
matters: every open-edge eiv (link eivw) is weighted by a factor J iv (J ivw) proportional to (the
logarithm of) its dimension (which, in turns, gives the area of the surface topologically dual to
the link). An analogue of the Ryu-Takayanagi formula therefore holds and, due to the (quantum)
discrete geometric nature of the degrees of freedom carried by the entanglement graphs, it involves
a properly geometric notion of area (i.e. the spin degrees of freedom concur to the definition of the
discrete geometry, and the discrete metric is not simply given by the graph distance). Similarly to
the homogeneous counterpart, the presence of small bulk entanglement entropy represents a (not
negligible, but small) correction to the area term:

S2(ρA) ≃ log dj
(

min
σ⃗

|Σ(σ⃗)|
)

+ S2(ρζ↓) (4.4.23)

with |Σ(σ⃗)| given by Eq. (4.4.22).
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Figure 4.12. Each shell r crosses radial links carrying spin jr; vertices between shells r and r + 1
recouple three spins jr (one on the radial inward direction, two on the edges tangent to shell r)
and one spin jr+1 (outward radial direction).

4.4.2.2 Larger bulk entropy and emergence of horizon-like regions in inhomogeneous
spin networks

When the contribution of the bulk entanglement entropy is not small with respect to the Ising
part, we need to minimize the whole Hamiltonian:

H1(σ⃗) = −1
2
∑
ℓi

vw∈L

(σvσw − 1)J ivw − 1
2
∑
ei

v∈∂γ

(σvµei
v

− 1)J iv + β−1S2(ρζ↓) . (4.4.24)

Note that an internal link ℓivw carries a contribution (J ivw) to the energy only if the Ising spins σv
and σw are misaligned; a boundary edge in A carries a contribution (J iv) only if the Ising spin σv
points up, while a boundary edge in A carries a contribution (J iv) only if the Ising spin σv points
down. As a result, the first two terms of H1 are minimized by the configuration whose spin-down
region σ↓ has external boundary A and internal boundary |Σ(σ⃗)| of smallest possible size. Then,
the region σ↓ contributes to H1 with the (β-rescaled) Rényi-2 entropy of its reduced bulk state ρζ↓.
In the end, the minimization of H1 is achieved when the spin-down region σ↓ has the minimum
possible area and volume correlations.

We illustrate the properties of this mechanism with an example. Consider the (spherically
symmetric) graph of figure 4.12, with a radial gradient of edge spins: jr+1 > jr. We assume that
the bulk is in a random pure state inside a disk Ω of radius R and in a product state outside.
Therefore,

S2(ρζ↓) = log
∏
v∈Ω Dj⃗v

+ 1∏
v∈Ω↓ Dj⃗v

+
∏
v∈Ω↑ Dj⃗v

(4.4.25)

We express the intertwiner dimensions Dj⃗v
in Eq. (C.3.2) as local intertwiner inverse temperatures

β′
v = logDj⃗v

; we then consider the large spins regime and assume that the variance of intertwiner
dimensions within Ω is small, i.e. β′

v ≈ β′ for all v ∈ Ω. Then Eq. (C.3.2) simplifies to4 S2(ρζ↓) =

4In the large spins regime

log

( ∏
v∈Ω Dj⃗v

+ 1∏
v∈Ω↓

Dj⃗v
+
∏

v∈Ω↑
Dj⃗v

)
≈ log

( ∏
v∈Ω e

β′v∏
v∈Ω↓

eβ′v +
∏

v∈Ω↑
eβ′v

)
=
∑
v∈Ω

β′
v − log

∏
v∈Ω↓

eβ′v +
∏

v∈Ω↑

eβ′v


(4.4.26)

If we assume that β′
v ≈ β′ for all v then∏

v∈Ω↓

eβ′v +
∏

v∈Ω↑

eβ′v ≈ eβ′max{|Ω↑|,|Ω↓|}
[

1 + e−β′(max{|Ω↑|,|Ω↓|}−min{|Ω↑|,|Ω↓|})
]

≈ eβ′max{|Ω↑|,|Ω↓|} (4.4.27)
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Figure 4.13. In absence of bulk entanglement,
the Ising domain wall (the dashed red line)
moves towards the center of the spherical ge-
ometry.
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Figure 4.14. When a bulk disk of radius R is
in a random pure state, the Ising domain wall
is prevented from entering it.

β′ min{|Ω↑|, |Ω↓|} and

H(σ⃗) ≈ −1
2
∑
ℓi

vw∈L

(σvσw − 1)J ivw − 1
2
∑
ei

v∈∂γ

(σvµei
v

− 1)J iv + β′

β
min{|Ω↑|, |Ω↓|} (4.4.29)

Note that, with respect to the homogeneous case of Eq. (4.4.17), the smallest number of aligned
spins in the bulk region Ω is now weighted by the ratio of the intertwiner inverse temperature β′

to the link inverse temperature β.
We are going to show how the presence of intertwiner entanglement in a disk Ω of the spherically

symmetric graph in figure 4.13 affects the entanglement entropy of a portion A of the boundary.
Note that, as we want Djrjrjrjr+1 = 3jr − jr+1 + 1 > 1 inside Ω, we must have jr < jr+1 < 3jr for
r ≤ R. Let A(r) be the Ising action of a configuration whose domain wall Σr lies between shell r
and shell r − 1 (see figure 4.13). When the bulk entanglement is not present, we have that

A(r) = (|A| + 2) log djr + 2
rmax∑
k=r+1

log djk
(4.4.30)

The minimal-energy surface drops from shell r+ 1 to shell r if A(r+ 1) > A(r). By using (4.4.30),
the latter becomes

|A| log djr+1 > (|A| + 2) log djr , (4.4.31)
which is satisfied by

djr+1 > d
|A|+2
|A|

jr
, (4.4.32)

that, for |A| ≫ 1, is always true. We therefore have that, in absence of bulk entanglement, the
minimal-energy surface moves toward the innermost shells.

When switching on the bulk entanglement within Ω (specifically, when assuming that Ω is in
a random pure state), the value of the Ising action for the domain wall at r = R is no more given
by Eq. (4.4.30). Instead we have

A(R) = (|A| + 2) log djR
+ 2

rmax∑
k=R+1

log djk
+ |A| log

(
djR

+ djR+1

2

)
(4.4.33)

and we get∑
v∈Ω

β′
v − log

∏
v∈Ω↓

eβ′v +
∏

v∈Ω↑

eβ′v

 ≈ β′
(

Ω − max{|Ω↑|, |Ω↓|}
)

= β′ min{|Ω↑|, |Ω↓|} (4.4.28)
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where we used the fact that Djrjrjrjr+1 = 3jr−jr+1 +1 = djr +djr+1
2 . The condition for the domain

wall to enter Ω, i.e. A(R+ 1) − A(R) > 0, thus leads to

|A| log djR+1 > (|A| + 2) log djR
+ |A| log

(
djR

+ djR+1

2

)
(4.4.34)

which can be written as follows:

djR+1

(
2 − d

|A|+2
A

jR

)
> d

1+ |A|+2
A

jR
. (4.4.35)

Since dj ≥ 2 for j > 0, the left hand side of (4.4.35) is negative, and (4.4.35) is therefore never
satisfied: the minimal-energy surface is prevented from entering the disk Ω, as shown in figure 4.14.
We thus found that the presence of (large) intertwiner entanglement within the disk Ω makes its
boundary (the shell of radius R) a horizon-like region.



5
Emergence of objectivity of

observables

Quantum theory has proven to be extremely successful in describing the physical laws of micro-
scopic objects. However, assuming the general validity of quantum theory, the apparent absence
of quantum features (such as non-locality and superposition effects) in our everyday classical re-
ality raises the issue of the quantum-to-classical transition: how do physical systems lose their
“quantumness” with increasing scales and become effectively classical?

The theory of decoherence [57–60], which developed significantly over the past decades, has
pointed out the key role played in this transition by the interaction of the system with its en-
vironment: due to this interaction the two become entangled, and the quantum correlations so
established between the two parties cannot be observed at the level of the system alone. The en-
tanglement with the environment thus defines the physical properties we can observe at the level
of the system. In particular, only those states that are robust in spite of the interaction with the
environment are observable in practice. The environmental monitoring therefore leads to the selec-
tion of preferred states (known as pointer states [121–123]) which represent the natural candidates
for the classical states that are compatible with our everyday experience. However, decoherence
alone does not explain how the striking contrast between classical and quantum states is overcome
in the emergence of classicality. In fact, while classical states can be detected and agreed upon by
initially ignorant observers without being perturbed, and thus exist objectively, quantum states
are generally affected by the measurement process. It is therefore necessary to clarify how the
information about pointer states becomes objective.

The theory of Quantum Darwinism [124–129] provides a possible solution by promoting the
environment from source of decoherence to carrier of information about the system. In fact, Quan-
tum Darwinism points out that a fundamental consequence of the system-environment interaction
is the presence of information about the system encoded in the environment. By intercepting
fragments of the environment, it is possible to acquire such information indirectly. In particu-
lar, Quantum Darwinism explains how information about the pointer states proliferates in the
environment, allowing multiple observers to detect these states without perturbing their existence.

The Quantum Darwinism approach to the emergence of classicality has been explored theo-
retically in various specific models [130–142] and has also been the subject of recent experimental
tests [143–145]. However, the range of applicability of such framework still represents an open
issue in the quantum-to-classical transition problem. A recent result by Brandão et al. [61] made a
significant contribution to it, showing how some classical features emerge in a model-independent
way from the quantum formalism alone. Such result relies on the splitting of the objectivity notion
into the following statements:

▶ Objectivity of observables: multiple observers probing the same system can at most acquire
classical information about one and the same measurement;

▶ Objectivity of outcomes: the observers will agree on the result obtained from the preferred
measurement.

Brandão et al. modelled the information flow from a (finite-dimensional) quantum system to

69
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the fragments of its environment via quantum channels, i.e., completely positive trace-preserving
(cptp) maps. They showed that, when the number of fragments N becomes large enough, most
of these channels are well approximated by specific cptp maps, called “measure-and-prepare”. The
form of such channels ensures the objectivity requirements. This is formalised by a bound on the
distance (induced by the so-called diamond norm) between the system-environment channels and
the measure-and-prepare ones. It is found that such distance goes to zero as N → ∞, leading
to convergence to objectivity of observables (in the following, we will refer to such a bound as
objectivity bound). In [62], Knott et al. overcame the finite-dimension restriction by showing that
also infinite-dimensional systems, under appropriate energy constraints, exhibit objectivity of ob-
servables. Another interesting result in this context was recently obtained by Qi and Ranard [146]:
they showed that, for finite-dimensional systems, the set of channels which do not converge to
objectivity is of fixed size O(1), instead of scaling with the number of environmental fragments N ,
as in [61, 62].

In this chapter, which is based on Ref. [5], we extend the infinite-dimensional analysis of [62]
and provide a unified approach to the emergence of the objectivity of observables in the interaction
between a quantum system of arbitrary dimension and a large number of fragments of its envi-
ronment. Specifically, we first prove that the objectivity of observables holds true for a wide class
of (energy-constrained) infinite-dimensional systems. For such class we obtain tighter bounds on
the emergence of this classical feature, compared to those available in the literature. Moreover,
our framework can act as a bridge between the finite- and infinite-dimensional scenarios. Our
results rely on an infinite-dimensional version of the Choi–Jamiołkowski isomorphism, adapted to
our set of energy-constrained states. This generalises what was done in [62] for a specific choice
of the energy constraint. Moreover, our analysis exploits novel bounds relating the diamond-norm
distance of two channels with the distance between their respective Choi–Jamiołkowski states – see
Aubrun et al. [147]. Such results are presented in Section 5.1.

We also tackle a relevant issue for the emergence of objectivity of observable, not considered
in Refs [61, 62], which is the optimality of the rates at which the convergence to objectivity
takes place. In fact, objectivity of observables is regarded as emergent whenever the upper bound
on the distance between channels representing the system-environment information flow and the
measure-and-prepare ones goes to zero asymptotically. But this does not give information on how
well the objectivity bound approximates the considered diamond norm distance. To perform such
optimality check, a possible strategy is to derive a lower bound for that diamond norm, which
turns out to be an upper bound on the speed at which the emergence of objectivity of observables
takes place. In Section 5.2 we perform this analysis for the specific model of a system-environment
dynamics given by a pure loss channel, and show that for such model the rate of convergence to
objectivity of observables scales at least as the inverse of the number of environmental fragments.

The final point we address regards the extension to an infinite-dimensional scenario of the
operational interpretation of quantum discord [148, 149] derived for finite-dimensional systems by
Brandão et al. [61]. In particular, it was proven that when information is distributed to many
parties on one side of a bipartite system, the minimal average loss in correlations corresponds to
the quantum discord. In Section 5.3 we generalise this result to the infinite-dimensional case by
exploiting the objectivity bounds proved in Section 5.1.

5.1 Improved bounds on the emergence of objectivity of
observables

The scenario we consider consists of a system A, generally infinite-dimensional, and its environment
B, which is described as a collection of N (possibly infinite-dimensional) subsystems B1, ..., BN ,
namely the environment fragments. We assume that the system of interest A is initially decor-
related from B1, ..., BN , and that the corresponding state has bounded mean energy (defined via
an appropriate Hamiltonian – see below). The information flow from the system to the whole
environment is modelled as a quantum channel, i.e., a cptp map Λ : D(A) → D(B1 ⊗ . . . ⊗ BN ),
where D(Z) denotes the set of density matrices associated with a physical system Z. The transfer
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of quantum information from A to the single environmental fragment Bj is therefore described
by the “subchannel" Λj = TrB\Bj

◦Λ. Objectivity of observables then arises whenever the maps
Λj become arbitrarily close to measure-and-prepare channels, which allow observers to acquire
only classical information about one and the same measurement. These channels are defined as
Ej(X) ..=

∑
l Tr(MlX)τj,l, where {Ml}l is a positive operator-valued measure (POVM) – crucially

independent of the index j – and {τj,l}l is a set of states for subsystem Bj .
We shall quantify distinguishability in the space of channels via a distance called energy-

constrained diamond norm [150, 151]. This is a modification of the standard diamond norm [152–
154], designed to implement a restriction on the average (initial) energy of the quantum system
under examination. This is measured by a Hamiltonian, which we take to be an arbitrary self-
adjoint operator H with spectrum bounded from below. Without loss of generality, we assume its
ground state energy to be positive, i.e.

inf
λ∈sp(H)

λ = E0 > 0 , (5.1.1)

where sp(H) is the spectrum of H.

Definition 5.1.1. Let A′ be a quantum system equipped with a Hamiltonian HA′ that satis-
fies Eq. (5.1.1), and pick E > E0. Then the energy-constrained diamond norm of an arbitrary
Hermiticity-preserving linear map Λ : D(A′) → D(B) is defined by

∥Λ∥♢H,E ..= sup
Tr[ρHA′ ]≤E

∥(idA ⊗ΛA′)[ρAA′ ]∥1 , (5.1.2)

where A is an arbitrary ancillary system, and ∥ · ∥1 is the one-norm. A recent result by Weis and
Shirokov [155] ensures that the input state ρAA′ in Eq. (5.1.2) can be taken to be pure.

In our analysis, we assume that the Hamiltonian admits a countable set of eigenvectors form-
ing an orthonormal basis {|j⟩, j = 0, 1, . . . } of the Hilbert space. The index j is allowed to go
to infinity, and the case of a finite-dimensional system will be treated by a suitable choice of the
Hamiltonian eigenvalues (see below).
We want to stress that the assumption that a Hamiltonian H has discrete spectrum and is bounded
from below is physically well motivated; in fact, it is contained in the so-called Gibbs hypothe-
sis [156]:

Gibbs hypothesis. A (possibly unbounded) self-adjoint operator H is said to satisfy the Gibbs
hypothesis if for every β > 0 the partition function Z(β) ..= Tr e−βH is finite. As a consequence,
the state 1

Z(β)e
−βH has finite entropy. Moreover, for every eigenvalue E of the Hamiltonian H,

the (unique) maximiser ρ of the entropy subjected to the constraint Tr ρH ≤ E is the Gibbs state

γ(E) = 1
Z(β(E))e

−β(E)H , (5.1.3)

where β = β(E) is the solution to the equation Tr e−βH(H − E) = 0.
By setting

H =
∑
j

fj |j⟩⟨j| , (5.1.4)

we also require that the (increasing) sequence of eigenvalues fj diverges sufficiently rapidly, in
formula ∣∣∣∣∣∣

∑
j

1
fj

log 1
fj

∣∣∣∣∣∣ < ∞. (5.1.5)

In the following, we will refer to the entire spectrum {fj}j by using the short notation f = {fj}j .
Eq. (5.1.5) clearly implies that

∑
j

1
fj
< ∞. Notably, this excludes the physically relevant case

fj = j, corresponding to the canonical Hamiltonian on the Hilbert space of a harmonic oscillator.
In spite of this drawback, our technical assumption allows us to explore a rich family of constraints
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that effectively extend and interpolate between previously known bounds. Moreover, a slight
modification of our proof technique allows us to deal with the excluded case fj = j as well; for
details, see the end of this section.
Before proceeding with the presentation of our results, we want to clarify that the positive operator
H and the scalar threshold E do not actually have any dynamical characterization. In fact, their
role in our framework is simply to confine the bulk of a state’s probability mass to a finite-
dimensional subspace in a smooth and well-defined way.

We now introduce some technical elements and definitions that will enter our main results on
the emergence of objectivity of observables, stated in Theorem 5.1.1. We start by considering a
special class of entangled states featuring an f -dependent tail in the Hamiltonian eigenbasis:

|ϕ⟩ ..= cf

∞∑
j=0

ϕj |j, j⟩AA′ , (5.1.6)

with ϕ2
j

..= 1/fj and cf ..=
(∑ 1

fj

)− 1
2 . In our derivation, an important role will be played by the

local von Neumann entropy of |ϕ⟩, given by

σ ..= S
(

TrA′ |ϕ⟩⟨ϕ|AA′
)

= −
∑
j

c2
f

fj
log
(
c2
f

fj

)
< ∞, (5.1.7)

where the last inequality follows from Eq. (5.1.5).
A useful technical tool in our work is the d−dimensional truncation of our entangled state |ϕ⟩,

which can be obtained as (Πd ⊗ id)|ϕ⟩ = (id ⊗Πd)|ϕ⟩ = cf
∑d−1
j=0 ϕj |j, j⟩, where Πd =

∑d−1
j=0 |j⟩⟨j|.

The ‘approximation error’ associated with this truncation can be quantified as follows:

Definition 5.1.2. The tail of our entangled state |ϕ⟩, dependent on the truncation dimension d,
is defined as

ϵd ..=
∥∥ ((id −Πd) ⊗ id) |ϕ⟩

∥∥ = cf

√√√√ ∞∑
j=d

1
fj

(5.1.8)

The f -dependent entangled state |ϕ⟩ allows us to consider a modified version of the Choi–Jamiołkowski
states [62, 157] (f -Choi states for brevity – see below), that will be crucial to prove Theorem 5.1.1:

Definition 5.1.3. The modified Choi–Jamiołkowski state of a cptp map Λ : D(A′) → D(B), for a
given sequence of Hamiltonian eigenvalues f = {fj}j , is defined as

Jf (Λ) ..= idA ⊗ΛA′ [|ϕ⟩⟨ϕ|], (5.1.9)

where |ϕ⟩ is given in Eq. (5.1.6).

Having introduced all the required ingredients, we can now state the following theorem.

Theorem 5.1.1. Let A be a quantum system equipped with a Hamiltonian HA which satisfies the
Gibbs hypothesis and which, when written as in Eq. (5.1.4), also satisfies Eq. (5.1.5). Consider an
arbitrary cptp map Λ : D(A) → D(B1 ⊗ . . .⊗BN ), and define the effective dynamics from D(A) to
D(Bj) as Λj ..= TrB\Bj

◦Λ. For an arbitrary number 0 < δ < 1, there exists a POVM {Ml}l and
a set S ⊆ {1, ..., N}, with |S| ≥ (1 − δ)N , such that, for all j ∈ S and for any integer truncation
dimension d ≥ 0, we have that

∥Λj − Ej∥⋄H,E ≤ ζ

δ
, (5.1.10)

where the measure-and-prepare channel Ej is given by

Ej(X) ..=
∑
l

Tr(MlX)τj,l (5.1.11)



5.1 Improved bounds on the emergence of objectivity of observables 73

for some family of states τj,l ∈ D(Bj), and

ζ = κd

(
E2σ

Nc4
f

)1/3

+ 4E
c2
f

ϵd, (5.1.12)

where cf is the normalization factor introduced in Eq. (5.1.6); ϵd is given in Definition 5.1.2; σ is
defined by Eq. (5.1.7) and κ ..= 3 (16 ln(2))1/3 is a universal constant.

The complete proof is detailed in C.1. In what follows we provide the key ideas behind it.

Outline of the proof of Theorem 5.1.1. We start by proving that the 1-norm of an operator L,
given by the difference between two f -Choi states, can be bounded as follows:

∥L∥1 ≤ 4d 3
2 max

M
∥ id ⊗M[L]∥1 + 4ϵd . (5.1.13)

Here, M is an arbitrary measurement, thought of as a quantum-to-classical channel, d is the
truncation dimension and ϵd is given in Definition 5.1.2. We then show that the distance between
two channels is bounded by that between their f -Choi states:

∥Λ0 − Λ1∥♢H,E ≤ E

c2
f

∥Jf (Λ0) − Jf (Λ1)∥1. (5.1.14)

The key ingredient of the proof is a result (Lemma C.1.3 in C.1) which introduces a set of quantum-
to-classical channels {Mj |j ∈ J} acting on a subset J of the environment fragments B1; , . . . , BN .
Let z be the outcome of such set of measurements, then the state EzρzA ⊗ ρzBj

can be proved
to be the modified Choi–Jamiołkowski state of a measure-and-prepare channel Ej with POVM
independent of j /∈ J . The Lemma bounds the quantity

Ej /∈J max
Mj

∥∥∥id ⊗Mj

[
ρABj − EzρzA ⊗ ρzBj

]∥∥∥
1

(5.1.15)

through a function of the entropy for system A; in (5.1.15), the expectation value is with respect
to the uniform distribution over {1, . . . , N} \ J , and the maximum is taken over all quantum-to-
classical channels.
Since ρABj = Jf (Λj) and EzρzA ⊗ ρzBj

= Jf (Ej), by combining Lemma C.1.3 with the previous
inequalities we find a bound for the quantity Ej /∈J∥Λj − Ej∥⋄H,E . We then easly obtain Ej∥Λj −
Ej∥⋄H,E ≤ ζ, where the index j has uniform probability distribution over {1, ..., N}, and ζ is given
by Eq. (5.1.12).
We conclude the proof by applying Markov’s inequality. In fact, the statement of the theorem is
equivalent to the following one:

P
(

∥Λj − Ej∥⋄H,E ≥ ζ

δ

)
≤ δ. (5.1.16)

The result of Theorem 5.1.1 can be interpreted as follows. Fixing 0 < δ < 1 and E, and
letting the number of environmental fragments N tend to infinity, we have that the dynamical
maps connecting the system to each of the fragments become indistinguishable from measure-and-
prepare channels. This statement is true for at least a fraction 1 − δ of the sub-environments.
Moreover, the measure-and-prepare channels involved are all defined by the same POVM {Ml}l.
For δ ≪ 1 this means that almost all observers probing the system by intercepting fragments of
the environment can at most acquire classical information about one and the same measurement
{Ml}l – i.e., objectivity of observables holds for such observers.

To illustrate the application of the results derived in this section to concrete physical models,
we now consider some relevant examples.
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Figure 5.1. Case fj = j2. We plot the upper bound on ∥Λj − Ej∥♢H,E for E = 1 and δ = 0.01,
obtained through numerical optimisation of Eq. (5.1.17) over the truncation dimension d.

Case fj = j2, with j ≥ 1 (particle in a box). A quantum particle of mass m confined in a
box of length L has Hamiltonian eigenvalues fj = γj2, where γ is a constant given by γ = ℏ2π2

2mL2 .
Choosing units such that γ = 1 we have that fj = j2, and Theorem 5.1.1 turns out to hold for

ζ = α

(
σd3E2

N

)1/3

+ βE
√
ψ(d)(1), (5.1.17)

where ψ(n)(z) is the nth derivative of the digamma function ψ(z), σ ≈ 2.4 and α, β are universal
constants: α ..= (12π4) 1

3 , β ..=
√

8π2

3 . In Figure 5.1 we plot the objectivity bound ζ
δ provided by a

numerical optimisation of Eq. (5.1.17) over d, with E = 1 and δ = 0.01.

Case of a D-dimensional system. In this example, we show that our methods can bridge
finite and infinite dimensions. Specifically, let us consider the sequence of Hamiltonian eigenvalues

fj =
{ 1 j ≤ D − 1 ,

eωj

1−e−ω j ≥ D ,
(5.1.18)

where D is a parameter that will turn out to be the actual Hilbert space dimension when ω → ∞.
We assume d ≥ D for convenience. We obtain that

ζ =
(

432E2(D + e−ωD)2d3s

N

)1
3

+ 4E
√
D + e−ωD

eωd
(5.1.19)

where

s ..= ln(2)σ

= ln
(
D+e−ωD)+ ω (1−D+Deω)

(eω−1)(DeωD+1) − ln(1−e−ω)
(1+DeωD)

(see Example C.1 in C.1 for details). Taking the limit ω → ∞ we have that

lim
ω→∞

ζ =
(

432E2D2d3 lnD
N

)1/3

. (5.1.20)

In this scenario, Tr[ρH] ≤ E translates into the condition Tr[ρ] ≤ 1, plus the additional constraint
that the support of ρ is contained in the D-dimensional subspace spanned by {|0⟩, |1⟩, ..., |D − 1⟩}.
Physically, the considered limit corresponds to raising all the Hamiltonian eigenvalues with j ≥ D
to unattainably high energies, so that only levels with j < D can be populated.

In the finite-dimensional scenario, the tightest objectivity bound to date has been recently
obtained by Qi and Ranard [146]. The Qi–Ranard result can be compared to ours by making the
substitution |R| = 1, |Q| = Nδ in Eq. (12) of Ref. [146]. For the present comparison, we have to
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Figure 5.2. Case fj = j. We compare the upper bound on ∥Λj − Ej∥♢H,E for E = 1 and δ = 0.01,
obtained by numerical optimisation of Eq. (5.1.23) over d (red dots, lowermost curve), with the
bound obtained by Knott et al. in [62] (blue dots, uppermost curve).

consider two possible expressions for the parameter Ω (which appears in Eq. (13) of Ref. [146]):
Ω = D2 and Ω = 4D3/2, where D is the dimension of system A; the corresponding expressions for
the Qi–Ranard bound are the following:

Ω = D2 : b1 =
(

2D6 lnD
Nδ

)1/2

(5.1.21)

Ω = 4D3/2 : b2 = 4
(

2D5 lnD
Nδ

)1/2

(5.1.22)

Expressions b1 and b2 can be directly compared with our bound b ..= ζ
δ , with ζ given by Eq. (5.1.20),

by taking d = D (which clearly gives us the tightest bound for the range d ≥ D) and by choosing
E = 1. The comparison is meaningful only in the regime in which the bounds are non-trivial,
namely smaller than 2. By applying this requirement to our bound b we obtain a threshold value
for N which depends on D: N > 54D5 lnD

δ3 . We find that our bound b is never stronger than b2 in its
non-triviality regime. Note that b2 was derived by the authors of [146] on the basis of our suggestion
to exploit the Aubrun et at. result [147] in this context. Hence b2, which is the tightest known
objectivity bound in finite dimensions, is a synthesis of independent insights from the analysis of
Qi and Ranard and our work. The less tight bound b1 was instead obtained by Qi and Ranard
independently of the present work. There exists a regime in which our bound b is non-trivial and
stronger than b1; however, this regime may be of little relevance in experimental contexts, as it
requires a very large threshold for N , e.g. rising above Avogadro’s number for δ < 0.1.

We now return to the case fj = j, in which the condition
∑ 1

fj
< ∞ is not satisfied. In this

case the f -Choi states cannot be defined, and we replace them with truncated (standard) ones.
To derive the objectivity bound we go through the same conceptual steps followed by Knott et
al. in [62]. However, we bound the distance between truncated Choi–Jamiołkowski states more
restrictively, by exploiting a result by Aubrun et at. [147, Corollary 9]. We are then able to derive
an objectivity bound that, for d > 16, is tighther than the one obtained in [62]. In particular, we
find that Theorem 5.1.1 holds for fj = j with

ζ = λ

(
d5 log(d)

N

)1/3

+ 4
√
E

d
, (5.1.23)

where λ ..= 3(16 ln(2)) 1
3 . In Figure 5.2 we compare the mean energy bound provided in [62] (blue

dots, uppermost curve) with the refined one we obtain from Eq. (5.1.23) (red dots, lowermost
curve). Both bounds are numerically optimised over d by setting E = 1 and δ = 0.01.
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5.2 Testing optimality of the objectivity bound with an N-
splitter

The emergence of objectivity of observables, as explored in the previous section as well as in [61,
62], is expressed by an upper bound on the distance between the effective dynamics Λj and the
measure-and-prepare channels Ej , which goes to zero as the number N of environment fragments
gets large. We now probe the optimality of such statement by looking at a lower bound for
the distance between Λj and Ej in a specific example. This gives information on the speed at
which the emergence of objectivity of observables takes place. We carry out this analysis for a
system-environment interaction modelled by a pure loss channel. In detail, both our system A and
each of its sub-environments B1, ..., BN will be single bosonic modes with associated annihilation
operators a0 and a1, ..., aN , respectively. The canonical commutation relations read [aj , a†

k] = δjk.
We consider the quantum channel

ΛA→B1,...,BN
(·) ..= U

(·)A ⊗
N⊗
j=2

|0⟩⟨0|Bj

U†, (5.2.1)

where U is the symplectic unitary which implements a N−splitter from D(A⊗B2 ⊗ . . .⊗BN ) to
D(B1 ⊗ . . . ⊗ BN ). In terms of bosonic operators (in the Heisenberg picture) this transformation
takes the explicit form U†alU =

∑
m Vlmam, with Vlm = 1√

N
exp 2πilm

N . Since the initial environ-
ment state is the vacuum, the map in Eq. (5.2.1) corresponds to a pure loss channel of parameter
1
N [158]. Varying the environment state one obtains instead a general attenuator [159–164]. The
reduced map Λj : D(A) → D(Bj) is given by Λj = TrB\Bj

◦Λ and has the same form for all j, as
shown in C.2.1. As in the previous section, we assume that system A has bounded mean energy.
As is typically the case in optical systems, the relevant Hamiltonian is obtained by setting fj = j
(where j may be interpreted as the number of photons). We show that, for a maximum energy
threshold E on system A satisfying E ≥ 2

N , the channels Λj approach the measure-and-prepare
ones no faster than ∼ N−1. In particular, we can prove the following proposition.

Proposition 5.2.1. Consider the cptp map Λ : D(A) → D(B1 ⊗ . . .⊗ BN ) given by Eq. (5.2.1),
and define Λj ..= TrB\Bj

◦Λ as the effective dynamics from D(A) to D(Bj). Let E be the energy
bound for system A, which is assumed to satisfy E ≥ 2

N . Then, for all POVMs {Ml}l and states
{τj,l}l ∈ D(Bj), it holds that

min
j=1,...,N

∥Λj − Ej∥⋄H,E ≥ 1
2N , (5.2.2)

where the measure-and-prepare channel Ej is given by Eq. (5.1.11).

Remark. The assumption E ≥ 2
N in Proposition 5.2.1 is not strictly necessary yet it significantly

simplifies the calculation.

Outline of the proof of Proposition 5.2.1. We look at the quantity

µ(Λ) ..= inf
M,τj

∥Λj − EM,τj
∥⋄H,E , (5.2.3)

where the infimum is over the set of possible POVMs M = {Ml}l and states τj = {τj,l}l entering
the definition of the measure-and-prepare channel Ej . We start by restricting the evaluation of the
diamond norm to two-mode squeezed vacuum states: |ψr⟩ = 1

cosh(r)
∑
n tanh(r)n|nn⟩. Since the

channels Ej are entanglement-breaking, the infimum on M and τj translates into an infimum on
the set of separable states (with respect to the bipartition C : Bj , where C is the ancillary system
entering the definition of the diamond norm): (id ⊗Ej)[ψr] = ω ∈ SEP, with ψr ..= |ψr⟩⟨ψr|. We
thus obtain that

µ(Λ) ≥ inf
ω∈SEP

sup
r: sinh(r)2≤E

∥ id ⊗Λj [ψr] − ω∥1 . (5.2.4)
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A lower bound for the 1-norm in Eq. (5.2.4) is estimated through the inequality ∥X∥1 ≥ 2∥X∥∞,
which holds true for any operator X with TrX = 0. The operator norm on the r.h.s. is bounded
from below by looking at the matrix entries with respect to a second set of two-mode squeezed
vacuum states. Upon straightforward calculations, one obtains Eq. (5.2.2). Details are provided
in C.2.2.

It is interesting to compare the lower bound in Eq. (5.2.2) with the upper bounds on the
convergence rate we have found so far, with the goal of estimating the rate at which emergence
of objectivity actually takes place. To estimate an upper bound for the distance ∥Λj − Ej∥⋄H,E
we optimise Eq. (5.1.23) over d by using the inequality ln(d) ≤ d, and exploit the fact that, for
the model we are considering, all the reduced maps Λj have the same form. We thus obtain the
following range:

1
2N ≤ ∥Λj − Ej∥⋄H,E ≤ µ

(
E6

N

) 1
15

, (5.2.5)

where µ < 10 is a constant.

5.3 Quantum discord from local distribution of quantum
correlations in infinite dimension

Quantum discord [148, 149] is regarded as a measure of the purely quantum part of correlations
between systems [165, 166]. Consider two systems A and B, collectively described by a state ρ;
the total amount of correlations between them is quantified by the mutual information I(A :B) =
S(A) + S(B) − S(AB), where S denotes the von Neumann entropy: S(A) = − Tr [ρA log ρA]. The
quantum discord between A and B (from the perspective of subsystem B) is then defined by

D(A|B)ρ ..= I(A :B)ρ − max
Γ∈QC

I(A :B)(id⊗Γ)(ρ), (5.3.1)

where QC refers to quantum-to-classical channels having the form Γ(X) ..=
∑
k Tr[NkX]|k⟩⟨k|, with

POVM {Nk}k. The quantum discord D(A|B)ρ thus represents the amount of correlations that is
inevitably lost when B is subject to a minimally disturbing local measurement, or, in other words,
when B encodes its part of information into a classical system; in this respect, D(A|B)ρ can be
thought of as the purely quantum part of correlations between A and B in the state ρ. In [61]
Brandão et al. derived an interesting operational interpretation of quantum discord in terms of
redistribution of quantum information to many parties. In particular they showed that

lim
N→∞

max
ΛN

EjI(A :Bj)(id⊗ΛN)(ρ) = max
Γ∈QC

I(A :B)(id⊗Γ)(ρ) (5.3.2)

where the maximisation is over all maps ΛN : D(B) → D(B1 ⊗ . . . ⊗ BN ), and EjI(A : Bj) is
the average mutual information between A and Bj for the uniform probability distribution over
j. Equation (5.3.2) shows that, when the share of correlations of B is redistributed to infinitely
many parties {Bj}, the maximum average mutual information accessible through each one of the
parties Bj corresponds to the purely classical part of correlations. This result is at the heart of
the operational characterisation of quantum discord provided by Brandão et al. [61]. In fact, from
Eq. (5.3.2) it follows that

D(A|B)ρ = lim
N→∞

min
ΛN

Ej
(
I(A :B)ρ−I(A :Bj)(id⊗ΛN)(ρ)

)
, (5.3.3)

i.e., D(A|B)ρ is characterised as the minimal average loss in mutual information when B locally
redistributes its share of correlations. Brandão et al. derived Eq. (5.3.2) as a corollary of the
theorem through which they proved emergence of objectivity of observables in finite dimensions
[61, Corollary 4]. In that context, B can be interpreted as the environment of system A, which
splits into fragments {Bj}.

We generalise the above result to an infinite-dimensional scenario, for systems subjected to
generic energy constraints. In particular, as infinite-dimensional counterpart of [61, Corollary 4],
we prove the following corollary of our Theorem 5.1.1:



78 5. Emergence of objectivity of observables

Corollary 5.3.1. Let A be a quantum system equipped with a Hamiltonian HA, and B a quantum
system equipped with Hamiltonian HB, both satisfying the Gibbs hypothesis. We also assume that
HB, when written as in Eq. (5.1.4), satisfies Eq. (5.1.5). Let ΛN : D(B) → D(B1 ⊗ . . .⊗BN ) be a
cptp map, and define Λj ..= TrB\Bj

◦ΛN as the effective dynamics from D(B) to D(Bj). Then for
every δ > 0 there exists a set S ⊆ {1, ..., N} with |S| ≥ (1 − δ)N such that for all j ∈ S and all
states ρ ∈ D(A⊗B) with Tr[ρHA] ≤ EA,Tr[ρBHB ] ≤ EB,

I(A : Bj)(id ⊗Λj)(ρ) ≤ max
Γ∈QC

I(A : B)(id ⊗Γ)(ρ)

+ (2ϵ′ + 4∆)S(γ(EA/∆))

+ (1 + ϵ′)h
(

ϵ′

1 + ϵ′

)
+ 2h(∆) ,

(5.3.4)

where ϵ′ = ζ
δ , ∆ = 1

2
ϵ′

1+ϵ′ , γ(E) is the Gibbs state for system A defined in Eq. (5.1.3), and the
maximum on the r.h.s. is over quantum-to-classical channels Γ(X) ..=

∑
l Tr(NlX)|l⟩⟨l|, with {Nl}l

a POVM and {|l⟩}l a set of orthonormal states. As a consequence,

lim
N→∞

max
ΛN

EjI(A :Bj)(id⊗ΛN)(ρ) = max
Γ∈QC

I(A :B)(id⊗Γ)(ρ) (5.3.5)

Outline of the proof of Corollary 5.3.1. We follow the conceptual steps of the proof of [61, Corol-
lary 4], adapting them to our infinite-dimensional framework. In particular, our argument relies on
a continuity bound for the conditional entropy of infinite-dimensional systems subjected to energy
constraints [156, Lemma 17]. We apply it to the states τ = (id ⊗Λj)(ρ) and σ = (id ⊗Ej)(ρ), which
are close in 1-norm by virtue of Theorem 5.1.1. Since the reduced entropies on the A subsystems
are the same for τ and σ, the continuity bound for the conditional entropy holds true for the mutual
information as well. We then obtain Eq. (5.3.4). To prove Eq. (5.3.5), we exploit Eq. (5.3.4) to
show that the l.h.s. is no larger that the r.h.s.; this concludes the proof, as the reverse (r.h.s. no
larger than l.h.s.) is trivial. The complete proof is given in C.3.

Remark. The result of Corollary 5.3.1 also applies to a Hamiltonian HB that takes the form (5.1.4)
with fj = j, and therefore does not satisfy Eq. (5.1.5). In fact, the proof remains valid when the
objectivity bound of Theorem 5.1.1 is replaced with the one given by (5.1.23).

As mentioned before, Eq. (5.3.5) implies that quantum discord can be interpreted as the minimal
average loss in mutual information when one of the two parties asymptotically redistributes its
share of correlations. In the framework of Quantum Darwinism this means that, when the number
of environment fragments grows significantly, the correlations established between the (infinite-
dimensional) system of interest A and each of the observers (who in turn has access only to a
fragment Bj of the environment) can be at most classical.
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In recent years, an intriguing connection between gravity, holography and entanglement has come
to light. On one hand, various results point to entanglement as the “glue” of spacetime, and several
background-independent approaches to QG indeed regard the latter as a many-body system, where
entanglement is responsible for the connectivity of the different parts [167]. On the other, the
entanglement structure of many-body systems, efficiently modelled by TN, is at the origin of their
holographic behaviour [46]. The circle closes with the recognition that gravity manifests, in several
contexts, a holographic nature. Understanding the origin of the gravity/holography/entanglement
threefold connection would be a crucial step towards the formulation of a theory of QG [168].
This challenge requires bridging the fields of QIT and condensed matter physics with QG, for a
fruitful exchange of tools and insights among them. The research presented in this thesis takes its
cue from this: it imports languages and techniques from the above fields into QG models, explores
through them the entanglement origin of emergent features of quantum spacetime and aims to
extract continuum classical physics from the quantum microstructure of our world.

More specifically, we established a solid correspondence between the QG formalism of spin
networks for the modelling of discrete quantum geometries and the information-theoretic language
of TN, building up a dictionary to enhance the exchange of insights and techniques between
the respective research areas. We then leverage that correspondence to study the emergence of
holographic features of finite regions of spacetime from the entanglement structure of the underlying
spin network states, mapped by our dictionary to random TN. Setting aside the quantum aspects
of gravity, we also investigated the emergence of classical phenomena, specifically objectivity of
observables, from the quantum world. Let us summarise in the following these three branches of
our work, and provide outlook for their further development.

A dictionary between spin networks and tensor networks

The work on the information-theoretic characterization of spin networks started from the precise
construction, within the GFT formalism, of QG states associated to spin network graphs, with
the concrete characterization of such graphs as patterns of entanglement, whose combinatorial
structure is encoded into (suitable generalised) adjacency matrices. This was a key open issue not
only in GFT, but also in the QG approaches related to its formalism, including random tensor
models, lattice quantum gravity, spin foam models and canonical LQG. We clarified it and turn it
into the starting point of much further development.

In fact, the next step was establishing a solid correspondence between such QG states and
random TN, generalized to arbitrary and dynamical dimension for each tensor leg, and to a second
quantized setting, with a probability amplitude possibly dictated by an underlying QG model. Such
a contribution represents an immediate conceptual and technical improvement over the standard
tensor network modelling of QG states, exemplified by the work of B. Swingle [51] in which TN
are identified with spatial slices of AdS spacetime upon definition of a metric from the network
combinatorics. By contrast, within the correspondence we established, TN acquire an intrinsic
geometric characterisation, as they possess additional degrees of freedom with a clear and rigorous
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interpretation in terms of quantum simplicial geometry. In turn, this leads to a richer and more
precise entanglement/geometry (and topology) correspondence, instantiated in several geometric
quantities; indeed, in our context several conjectures put forward also in the AdS/CFT context
about the correspondence between entanglement measures and geometric quantities find a precise
realization. Moreover, providing TN with a Fock space setting enabled the attainment of (a
discrete version of) diffeomorphism invariance for the structures involved, a necessary condition
for background independence required by QG theories. This represents a further improvement
on tensor network models like [51]: in fact, without a suitable invariance under relabelling of
the nodes of the random TN, the interpretation of the latter as geometries appears incomplete.
Since a possible way out is to give the labels associated to tensor network nodes some physical
characterization, we also tackled such issue and illustrated a concrete realization for it: we showed
how distinguishability of vertices can be recovered at a relational and effective level by coupling
the GFT field to an additional degree of freedom playing the role of a physical reference frame, in
the spirit of the relational strategy typically employed in the QG context to define physical (thus,
diffeomorphism invariant) observables in absence of preferred notions of space, time and locality.

Bulk-to-boundary quantum channels and holographic entanglement entropy

As pointed out, when regarding spin networks as states of the GFT Fock space, the spin net-
work graph is recognised to be the entanglement skeleton of the many-body system given by the
collection of individual vertices. We exploited this feature to study the relationship between the
quantum-correlation structure of open spin networks and their holographic character. Based on
a bipartition of the quantum-geometric degrees of freedom into bulk (intertwiners) and bound-
ary ones (spins on open edges), we showed that every spin network state can be regarded as a
map between these two sets, in the spirit of the Choi-Jamiołkowski isomorphisms of QIT. In this
way, the “static” properties of a spin network state are translated into “dynamic” properties of
the corresponding map, representing the flow of information from the bulk to the boundary, and
vice versa. In particular, requiring such a map to be an isometry - as it must be in presence of
holography - translates into the reduced bulk state being maximally mixed, i.e. having maximum
entropy. By assuming a random distribution of weights associated to the individual vertices, we
performed the entropy calculation via (suitably generalised) random tensor network techniques;
more specifically, we adapted to our framework the ones used by Hayden et al. in [53], combining
the technical generalisations to the crucial (with respect to the QG interpretation) change in per-
spective pointed out before. The average entropy then turned out to be given by the free energy
cost of shifting the domain wall of an Ising model defined on the spin network itself; the analysis of
such statistical model enabled us to identify the role played by the edge spins of a spin network in
the isometric character of the corresponding bulk-to-boundary information flow, highlighting the
positive correlation between the latter and spin inhomogeneity.

We investigated further the properties of the bulk-to-boundary flow of information in spin
network states in terms of entanglement entropy of boundary degrees of freedom. By focusing
on spin networks made of random vertices and studying the free energy function of the Ising
model dual to it, we determined the conditions for the validity of the Ryu–Takayanagi formula,
and provided corrections to the latter induced by the bulk entanglement (in the double form of
internal-links entanglement, defining the bulk combinatorial structure, and entanglement among
the intertwiner degrees of freedom). We then showed how increasing the entanglement-entropy
content of a bulk region can alter the area-scaling of the boundary entropy, up to the emergence of
a horizon-like surface in the bulk (the boundary of the said region), so offering a concrete example
of the definition of quantum black holes given in Ref. [43].

Emergence of objectivity of observables in a non-gravitational setting

In the last chapter we focused on phenomena emerging from the quantum realm in a different,
non-gravitational setting: we investigated generic features of the emergence of objectivity of ob-
servables via the theory of quantum Darwinism, according to which information about a quantum
system becomes objective as multiple observers indirectly probe it by measuring fragments of
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the environment. Previous work [61, 62] had showed that, when the number of environmental
fragments grows, the quantum channels modelling the information flow from system to observers
become arbitrarily close - in terms of diamond norm distance - to “measure-and-prepare” chan-
nels, ensuring objectivity of observables; the convergence was formalised by an upper bound on
the diamond norm distance, which decreases with increasing number of fragments. In chapter 5 we
derived tighter diamond norm bounds on the emergence of objectivity of observables for quantum
systems of infinite dimension, providing an approach which can bridge between the finite- and
the infinite-dimensional cases. Furthermore, we probe the tightness of our bounds by considering
a specific model of a system-environment dynamics given by a pure loss channel: for the latter
we derived lower and upper bounds on the rate at which objectivity of observables emerges as a
function of the number of environmental fragments. Finally, we generalised to infinite dimensions
a result obtained by Brandão et al. [61], which provides an operational characterisation of quantum
discord in terms of one-sided redistribution of correlations to many parties.

Outlook

We plan to develop further the information-theoretic approach to QG illustrated in this thesis,
and tackle with it open issues on black hole physics and on the holographic nature of gravity. In
the following, we provide a list of possible short-term extensions of this work, as well as long-term
goals inspired by it.

In [2, 3] holography has been investigated for spin network states on a fixed (generic) graph.
To promote the presented results to the dynamic level, a generalization to states involving a
superposition of different graphs is required. We plan to implement it by enriching the spin network
structure with data encoding the amount of link-entanglement between vertices, and using such
data to manipulate the combinatorial structure of the graph, analogously to what has been done
for random TN in Ref. [169].

With the aim of achieving an information-theoretic characterisation of black hole horizons, we
plan to derive a “threshold condition” for the emergence of horizon-like surfaces in finite regions
of quantum space by generalising, via the tensor network approach, the result of Ref. [170], where
that condition is obtained via the typicality approach to the study of the local behaviour of spin
networks with fixed homogeneous spins.

We are also interested in identifying microscopic states of black holes in the tensor/spin network
language. A starting point can be found in the set of condensed states used in Refs. [171, 172] to
model spherically symmetric geometries. In fact, being composed of individual vertex wavefunc-
tions, that states resemble the TN considered in the aforementioned works [2, 3]. A generalization
of them and a study of their holographic properties, which are necessary for a solid description of
quantum black holes, can then be performed by taking advantage of quantum information tech-
niques.

On a broader scale, an objective of our future research is the study and modelling of gravitational
holography in a full dynamical context; taking as reference works such as [173] and [174] that,
starting from fundamental aspects of gravity derive general guidelines on the holographic encoding
of information in gravitational physics, we are keen to pursue this objective by implementing the
approach of the aforementioned works in the context of spin network dynamics. We also aim at a
local formulation of holography in QG, potentially making use of recent results on corner symmetry
charges [175] and edge modes [176].

Finally, we would like to stress that QIT can contribute to the QG research far beyond the
possibilities listed so far. In fact, quantum mechanics is an essential ally in overcoming the lack
of guidelines in QG free from the bias of our classical view of the world. A purpose of the work
collected in this thesis is to highlight the existing (but not yet exploited) parallelism between
open issues and related possible strategies in the quantum-to-classical transition problem and the
spacetime-emergence scenario. In this respect, a direction we intend to explore concerns the study
of the emergence of classical spacetime from pre-geometric quantum entities via the theory of
decoherence and quantum Darwinism.





A
Notions of representation and

recoupling theory

A.1 Algebra of representation functions
Let G be a finite group or a compact Lie group. A representation ρ of G on a finite-dimensional
complex vector space V ρ is a group homomorphism

ρ : G → Aut [V ρ] (A.1.1)

where Aut [V ρ] is the automorphism group of V ρ. An invariant subspace for the representation
ρ is a vector subspace U such that, for all u ∈ U , ρ(g)u ∈ U for all g ∈ G. A representation
is irreducible if its only closed invariant subspaces are ∅ and V ρ. A representation is unitary if,
for every g ∈ G, ρ(g) is unitary. Two representations ρ and ρ′ are equivalent if there exist an
isomorphism E : V ρ → V ρ

′ such that Eρ(g) = ρ′(g)E for all g ∈ G. We denote by ρ = 0 the trivial
representation which maps every element of G to 1 (hence V 0 ∼= C).

Every finite-dimensional representation is equivalent to a unitary representation; we can hence
restrict the attention to a set R̃ of unitary representations, one for each equivalence class of
finite-dimensional representations of G. A corollary of this result is that every finite-dimensional
representation ρ of G can be decomposed into a direct sum of irreducible representations ρ1, . . . , ρk:

V ρ = V ρ1 ⊕ · · · ⊕ V ρk (A.1.2)

We denote by R ⊂ R̃ the subset of irreducible representations. The latter thus play the role of
elementary “building blocks” of generic representations.

Let V ρ∗ be the vector space dual to V ρ. Given ρ ∈ R̃, the dual representation

ρ∗ : G → Aut [V ρ∗] (A.1.3)

is such that, for η ∈ V ρ∗,
(ρ∗(g)η) (v) = η

(
ρ(g−1)v

)
∀v ∈ V ρ (A.1.4)

The representation spaces V ρ, where ρ ∈ R̃, are equipped with a standard scalar product ⟨·|·⟩, and
the duality between two orthonormal basis {bi} of V ρ and {βi} of V ρ∗ is defined by the following
equations:

⟨bi|bj⟩ = βi(bj) = δij , ⟨βi|βj⟩ = βj(bi) = δji (A.1.5)
For ρ ∈ R̃, v ∈ V ∗ and η ∈ V ρ∗, the functions

tρη,v : G → C
g → tρη,v(g) ..= ⟨η|ρ(g)v⟩

(A.1.6)

are called representation functions of G and form a commutative and associative unital algebra
over C, denoted by Calg(G), with the operations(

tρη,v + tρ
′

η′,v′

)
(g) ..= tρ⊕ρ′

η+η′,v+v′(g), (A.1.7)(
tρη,v · tρ

′

η′,v′

)
(g) ..= tρ⊗ρ′

η⊗η′,v⊗v′(g), (A.1.8)
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null element given by t(0)
0,0 (such that t(0)

0,0(g) = 0 ∀g ∈ G) and unit element given by t(0)
η,v (such that

t
(0)
η,v(g) = 1 ∀g ∈ G). The representation functions obtained from vectors of the orthonormal basis

are simply the coefficients of the representation matrices ρ(g) in that basis:

tρmn(g) ..= tρβm,bn
(g) = ⟨βm|ρ(g)bn⟩ (A.1.9)

A.2 The Peter-Weyl decomposition
The Peter-Weyl theorem sets out a Fourier analysis for compact groups. In fact, according to the
Peter-Weyl theorem the matrix coefficients tρmn(g) of all irreducible unitary representations ρ ∈ R
of G form an orthogonal basis of L2(G), with

⟨tρmn|tρ
′

m′n′⟩ =
∫
G

dg tρmn(g)tρ
′

m′n′(g) = 1
dimV ρ δρρ

′δmm′δnn′ (A.2.1)

where dg is the Haar measure on G. Any function f ∈ L2(G) can therefore be written as

f(g) =
∑
ρ∈R

∑
mn

fρmnt
ρ
mn(g) (A.2.2)

where
fρmn = dimV ρ

∫
G

dgf(g)tρmn(g) (A.2.3)

Equivalently,
L2(G) ∼=

⊕
ρ∈R

(V ρ∗ ⊗ V ρ) (A.2.4)

where the closure of the right hand side to L2(G) is left implicit.

Class functions A function w ∈ L2(G) such that w(hgh−1) = w(g) for all h ∈ G is called class
function and has the Peter-Weyl decomposition

w(g) =
∑
ρ∈R

wρχρ(g) (A.2.5)

where χρ(g) = Tr(tρ(g)) and
wρ = dimV ρ

∫
G

dgχ(ρ)(g)w(g) (A.2.6)

A.3 Intertwiner map and Schur’s lemma

Given a representation σ ∈ R̃ with the orthogonal decomposition

V σ ∼=
q⊕
i=1

V τk τk ∈ R, q ∈ N (A.3.1)

where the first p components τ1, . . . , τp, with 0 ≤ p ≤ q, are equivalent to the trivial representation,
it holds that ∫

G

dgtσmn(g) =
p∑
k=1

Pσ;k
m Pσ;k

n (A.3.2)

where Pσ;k is the projector Pσ;k : V σ → V τk and Pσ;k
m

..= Pσ;k|bm⟩; the right hand side is thus the
orthogonal decomposition of the identity in the subspace of V σ of invariant vectors. The above
formula can be generalised to the tensor product of representations. In fact,

V ρ1 ⊗ · · · ⊗ V ρN ∼=
q⊕
i=1

V τk τk ∈ R, q ∈ N (A.3.3)
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and, if τ1, . . . , τp (with 0 ≤ p ≤ q) are equivalent to the trivial representation, then∫
G

dg tρ1
m1n1

(g) . . . tρN
mNnN

(g) =
p∑
k=1

P ρ1...ρN ;k
m1...mN P ρ1...ρN ;k

n1...nN
(A.3.4)

where P ρ1...ρN ;k is the projector from V ρ1 ⊗· · ·⊗V ρN onto InvG [V ρ1 ⊗ · · · ⊗ V ρN ], i.e. the subspace
of G-invariant tensors, also called intertwiner space (see below). The right hand side of Eq. (A.3.4)
is thus the identity on such interwtiner space:∫

G

dg tρ1
m1n1

(g) . . . tρN
mNnN

(g) = I ∈ InvG [V ρ1 ⊗ · · · ⊗ V ρN ] (A.3.5)

Note that the properties of Eq. (A.3.3) and Eq. (A.3.4) underly the definition of spin networks.

Intertwiner map Given two representations ρ and σ, a linear map I : V ρ → V σ such that

Iρ(g) = σ(g)I (A.3.6)

is called intertwiner. We also says that I intertwines the two representations. Note that, if the map
I is bijective, then Eq. (A.3.6) provides the definition of equivalence of the representations ρ and σ.
Note also that, since V ρ∗ ∼= V ρ, the intertwiner can be regarded as a map I : V ρ ⊗ V σ → V 0 ∼= C,
i.e. as an invariant tensor on V ρ ⊗ V σ; the projector P ρ1...ρN ;k defined in Eq. (A.3.4) is indeed an
intertwiner.

Schur’s lemma The Schur’s lemma states the following:

(i) Given two irreducible representations ρ and σ, let I be an intertwiner between them. Then I
either vanishes or is an isomorphism (in which case the representations are equivalent).

(ii) Given an irreducible representation ρ, let M : V ρ → V ρ be a linear map which satisfies

Mρ(g) = ρ(g)M ∀g ∈ G (A.3.7)

Then there exist λ ∈ C such that M = λI, where I is the identity operator on V ρ.

A.4 Representation and recoupling theory of SU(2)
SU(2) is a 3-dimensional compact Lie group corresponding to the group of 2 × 2 unitary matrices
with determinant equal to +1. A generic element h ∈ SU(2) can thus be written as follows:

h =
(
a −b
b a

)
|a|2 + |b|2 = 1 a, b ∈ C (A.4.1)

The Lie algebra of SU(2), su(2), has generators τi ..= iσi

2 (where σi are the Pauli matrices) which
satisfy

[τi, τj ] = −εijkτk (A.4.2)

The representations of SU(2) are labelled by a half-integer j ∈ N
2 called spin. The representation

space V j is a Hilbert space of dimension dj ..= 2j+1. Consider the angular momentum observables
Ĵi ..= σi

2 with brackets
[Ĵi, Ĵj ] = iεijkĴk (A.4.3)

The standard basis of V j is composed of the eigenstates of both the su(2) Casimir Ĵ2 ..= ĴiĴ
i and

the generator Ĵ3, labelled by the spin j and the magnetic momentum m:

Ĵ2|jm⟩ = j(j + 1)|jm⟩ (A.4.4)
Ĵ3|jm⟩ = m|jm⟩ (A.4.5)
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with m = −j, . . . , j. The j-representation matrix of g ∈ SU(2) is denoted by Dj(g), and has
coefficients

Dj
mn(g) ..= ⟨jm|g|jn⟩ (A.4.6)

(compare to Eq. (A.1.9)). The representation matrices Dj(g) are called Wigner matrices. By
virtue of Eq. (A.3.4) we have that∫

G

dg Dj1
m1n1

(g)Dj2
m2n2

(g)Dj3
m3n3

(g)Dj4
m4n4

(g) =
∑
ι

Ij1j2j3j4;ι
m1m2m3m4

Ij1j2j3j4;ι
n1n2n3n4

(A.4.7)

where Ij1j2j3j4;ι is a SU(2) intertwiner recoupling the four representations j1, . . . , j4, i.e. an element
of the space InvSU(2)

[
V j1 ⊗ · · · ⊗ V j4

]
.



B
Average entropy from the Ising

model

B.1 Randomization over the double copy of the vertex states
A detailed proof of the result given by Eq. (4.2.15) can be found in [177]; we sketch here the same
argument, adapted to our framework. The first step is to recognize that the space HD ⊗sym HD,
where HD is a D-dimensional Hilbert space and ⊗sym is the symmetric tensor product, carries an
irreducible representation of the group of D × D unitary matrices, under the map associating to
any such matrix U the double copy U⊗2. Then, given |f⟩ ∈ HD, consider the density matrix

ρ ..= Ef (|f⟩⟨f | ⊗ |f⟩⟨f |) , (B.1.1)

where Ef (·) is the average over f according to an arbitrary probability distribution. Since ρ
commutes with all U⊗2, by Schur’s lemma (see e.g. [178] for a formulation of the latter which fits
the present argument) it must be proportional to the identity operator on HD ⊗sym HD, which is
given by ∑

π∈S2

P (π) = I + S, (B.1.2)

where S2 is the symmetric group on 2 objects and P (π) is the operator permuting vectors in
H⊗2
D according to the permutation π ∈ S2, which is I for the trivial one (identity), and S for the

swapping.

B.2 Contributions to the average entropy

B.2.1 Internal-link contribution
The trace

TrL

(⊗
ℓ

ρ⊗2
ℓ

) ⊗
ei

v∈L:σv=−1

Siv

 (B.2.1)

factorizes over single-link contributions. There are two different possibilities for the term related
to a generic link ℓivw, since it can contain

(i) no swap operators (σvσw = +1):

Tr [|ℓ⟩⟨ℓ| ⊗ |ℓ⟩⟨ℓ|] = Tr

 1
d2
j

∑
mm′nn′pp′qq′

Imm′Inn′Ipp′Iqq′ |m⟩v|m′⟩w⟨n|v⟨n′|w ⊗ |p⟩v|p′⟩w⟨q|v⟨q′|w


= 1
d2
j

(∑
m

δmm

)2

= 1;

(B.2.2)
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the contribution to the average entropy is then zero.

(ii) just one swap operator (σvσw = −1):

Tr
[
|ℓ⟩⟨ℓ| ⊗ |ℓ⟩⟨ℓ|Siv

]
= Tr

 1
d2
j

∑
mm′nn′pp′qq′

Imm′Inn′Ipp′Iqq′ |m⟩v|m′⟩w⟨n|v⟨n′|w ⊗ |p⟩v|p′⟩w⟨q|v⟨q′|wSiv


= Tr

 1
d2
j

∑
mm′nn′pp′qq′

Imm′Inn′Ipp′Iqq′ |p⟩v|m′⟩w⟨n|v⟨n′|w ⊗ |m⟩v|p′⟩w⟨q|v⟨q′|w


= = 1

d2
j

∑
m

δmm = 1
dj

;

(B.2.3)

the contribution to the average entropy is therefore log dj .

B.2.2 Boundary-edge contribution
The trace

Tr∂

 ⊗
ei

v∈∂γ:σvµi
v=−1

Siv

 (B.2.4)

factorizes over contributions coming from single boundary-edges. The trace term for an edge eiv
can contain

(i) no swap operators (σvµv = 1):

Tr
[(
Siv
)2] = Tr [I ⊗ I] = d2

j (B.2.5)

(ii) only one swap operator (σvµiv = −1):

Tr
[
Siv
]

= Tr
[∑
mn

|m⟩v⟨m|v ⊗ |n⟩v⟨n|vSiv

]
= Tr

[∑
mn

|n⟩v⟨m|v ⊗ |m⟩v⟨n|v

]
=
∑
m

δmm = dj

(B.2.6)

The contribution of the boundary edge eiv to the average entropy can thus be expressed as follows:

− log Tr∂

 ⊗
ei

v∈∂γ:σvµi
v=−1

Siv

 = −
∑
ei

v∈∂γ

1
2(3 + σvµv) log dji

v
. (B.2.7)

B.2.3 Bulk contribution
The trace

Trγ̇

[ ⊗
σvνv=−1

S0
v

]
(B.2.8)

factorizes over the intertwiners associated to the various vertices; the computation of the contri-
bution for each vertex v is analogous to the one presented in the previous section for boundary
edges, the only difference being the dimension of the Hilbert space under consideration, i.e. Dj⃗v

instead of dji
v
. The bulk contribution to the entropy thus takes the following form:

− log Trγ̇

[ ⊗
σvνv=−1

S0
v

]
= −

∑
v

1
2(3 + σvνv) logDj⃗v

. (B.2.9)



B.2 Contributions to the average entropy 89

B.2.4 Ising action
We finally obtain

A1(σ⃗) =
∑
v

log
(
D2
v +Dv

)
− 1

2

 ∑
ei

vw∈L

(σvσw − 1) log dji
vw

+
∑
ei

v∈∂γ

(3 + σvµv) log dji
v

+
∑
v

(3 + σvνv) logDj⃗v

 (B.2.10)

The first term on the r.h.s. of Eq. (B.2.10) can be decomposed into edge and intertwiner dimensions
as follows:∑
v

log
(
D2
v +Dv

)
=2
∑
v

logDv +
∑
v

log
(
1 +D−1

v

)
= 2

∑
ei

v∈γ

log dji
v

+ 2
∑
v

logDj⃗v
+
∑
v

log
(
1 +D−1

v

)
(B.2.11)

and Eq. (B.2.10) then becomes

A1(σ⃗) = − 1
2

 ∑
ei

vw∈L

(σvσw − 1) log dji
vw

+
∑
ei

v∈∂γ

(σvµv − 1) log dji
v

+
∑
v

(σvνv − 1) logDj⃗v

+ k

(B.2.12)

where k is a constant contribution given by

k = 2
∑

ei
v∈γ/∂γ

log dji
v

+
∑
v

log
(
1 +D−1

v

)
. (B.2.13)

The action A0(σ⃗) takes the same form but, as mentioned before, with all pinning fields equal to
+1.





C
Supplemental material for the

emergence of objectivity of
observables

C.1 f-dependent objectivity bounds
The proof of Theorem 5.1.1 involves a generalisation of the concept of Choi–Jamiołkowski isomor-
phism, which relies on a class of infinite-dimensional entangled states depending on the underlying
system’s Hamiltonian. For clarity, we recall here the definition of modified Choi–Jamiołkowski
state associated to such class of states.

Definition C.1.1 (Restatement). The modified Choi–Jamiołkowski state of a cptp map Λ :
D(A′) → D(B), for a given sequence of Hamiltonian eigenvalues f = {fj}j , is defined as

Jf (Λ) ..= idA ⊗ΛA′ [|ϕ⟩⟨ϕ|], (C.1.1)

where the entangled state |ϕ⟩ reads

|ϕ⟩ ..= cf

∞∑
j=0

ϕj |j, j⟩AA′ , (5.1.6)

with ϕ2
j

..= 1/fj and cf ..=
(∑ 1

fj

)− 1
2 .

We start by proving Lemma C.1.1, which bounds the distance between two f -Choi states as a
function of d (the truncation dimension), and Lemma C.1.2, which relates the distance between
two channels to that between their f -Choi states. Our preparations are completed by the rather
technical Lemma C.1.3: there we show that a crucial inequality exploited in Ref. [61], whose
original formulation explicitly relies on finite-dimensional techniques, may be suitably modified
to fit our infinite-dimensional scenario. To achieve the latter result, we exploit the assumption
that the f -Choi states have finite local entropy. Once all the above ingredients are in place, we
present the proof of Theorem 5.1.1. We conclude the section by presenting additional details on
the calculations behind Eq. (5.1.19), obtained for the sequence {fj} which bridges the finite- and
infinite-dimensional cases.

Lemma C.1.1 is a generalised and refined version of Lemma S5 in the supplemental material
of [62]. The first property comes from our definition of modified Choi–Jamiołkowski states, which
relies on generic Hamiltonian eigenvalues {fj} (whilst in [62] the latter take an exponential form).
The second one arises from applying a result by Aubrun et at. [147, Corollary 9].

Lemma C.1.1. Given L = τ − σ, where τ = Jf (Λ1) and σ = Jf (Λ2) are modified Choi–
Jamiołkowski states for the cptp maps Λ1 and Λ2, we have that

∥L∥1 ≤ 4d 3
2 max

C
∥ id ⊗C[L]∥1 + 4ϵd , (C.1.2)

where ϵd is given in Definition 5.1.2, d is the corresponding truncation dimension, and the max-
imum on the r.h.s. is over quantum-to-classical channels C(Y ) =

∑
l Tr(NlY )|l⟩⟨l|, with POVM

{Nl}l and orthonormal states {|l⟩}l.
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Proof. By writing L in the form L =
∑∞
ij=0|i⟩⟨j| ⊗ Lij we have that

∥L∥1
1
≤ ∥(Πd ⊗ id)[L]∥1 + ∥((id −Πd) ⊗ id)[L]∥1 (C.1.3)

= ∥(Πd ⊗ id)[L]∥1 +

∥∥∥∥∥∥
∑

min{i,j}≥d

|i⟩⟨j| ⊗ Lij

∥∥∥∥∥∥
1

2
≤ 4d 3

2 max
C

∥(Πd ⊗ C)[L]∥1 +

∥∥∥∥∥∥
∑

min{i,j}≥d

|i⟩⟨j| ⊗ Lij

∥∥∥∥∥∥
1

3
≤ 4d 3

2 max
C

∥(id ⊗C)[L]∥1 +

∥∥∥∥∥∥
∑

min{i,j}≥d

|i⟩⟨j| ⊗ Lij

∥∥∥∥∥∥
1

.

Note that in 1 we used the triangle inequality. In 2, instead, we applied a result by Aubrun et
al. [147, Corollary 9]: in fact, for an arbitrary bipartite operator Z, it holds that

max
C

∥(I ⊗ C)[Z]∥1 = ∥Z∥LOCC← ≥ ∥Z∥LO ,

where the maximization on the l.h.s. is as usual over local measurements, while the quantities
(a) ∥ · ∥LOCC← and (b) ∥ · ∥LO are the distinguishability norms [179, 180] associated with the sets
of (a) local operations assisted by classical communication from the second system to the first;
and (b) local operations alone. By [147, Eq. (40)], it holds that ∥Z∥LO ≥ 1

4n3/2 ∥Z∥1, where n
denotes the smaller of the local dimensions. The inequality in 2 is just an application of this, with
Z ..= (Πd ⊗ id)[L] and hence n ≤ d. Furthermore, in 3 we applied the pinching theorem [181,
Eq. (IV.52)], or, alternatively, the data processing inequality for the trace distance – note that
X 7→ ΠXΠ + (id −Π)X(id −Π) is a cptp map for every projector Π. Finally, multiple applications
of the triangle inequality yield∥∥∥∥∥∥

∑
min{i,j}≥d

|i⟩⟨j| ⊗ Lij

∥∥∥∥∥∥
1

= ∥L− (Πd ⊗ id)L(Πd ⊗ id)∥1

= ∥(τ − σ) − (Πd ⊗ id)(τ − σ)(Πd ⊗ id)∥1
= ∥τ − τd − (τ − σd)∥1
≤ ∥τ − τd∥1 + ∥σ − σd∥1

where τd ..= (Πd ⊗ id)τ(Πd ⊗ id) and σd ..= (Πd ⊗ id)σ(Πd ⊗ id). The 1−norms on the r.h.s. can
be bounded from above by exploiting the result of Proposition S2 in the supplemental material of
[62], suitably adapted to our modified Choi–Jamiołkowski states. In particular, by replacing the
coefficients ϕj = e− ωj

2 in [62, Proposition S2] with our ϕj = fj
− 1

2 we have that, for ρ = Jf (Λ),

∥ρ− ρd∥1 ≤ 2ϵd , (C.1.4)

where ρd ..= (Πd ⊗ id)ρ(Πd ⊗ id). We then obtain∥∥∥∥∥∥
∑

min{i,j}≥d

|i⟩⟨j| ⊗ Lij

∥∥∥∥∥∥
1

≤ 4ϵd .

Before proceeding with the proof, we restate for clarity the definition of energy-constrained
diamond norm (see Definition 5.1.1 in the main text) for the specific case of a Hamiltonian which
satisfies the Gibbs hypothesis and is written as in Eq. (5.1.4).
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Definition C.1.2. Let A′ be a quantum system equipped with a Hamiltonian HA′ satisfying the
Gibbs hypothesis and written as in Eq. (5.1.4), and pick E > E0 = f0. Then the energy-constrained
diamond norm of an arbitrary Hermiticity-preserving linear map Λ : D(A′) → D(B) is defined by

∥Λ∥♢H,E ..= sup∑
j
fj⟨j|ρA′ |j⟩≤E

∥(idA ⊗ΛA′)(ρAA′)∥1 , (C.1.5)

where A is an arbitrary ancillary system, and ∥ · ∥1 is the one-norm. A recent result by Weis and
Shirokov [155] ensures that the input state ρAA′ in Eq. (C.1.5) can be taken to be pure.

Lemma C.1.2 (Generalisation of Lemma S6 in the supplemental material of [62] for a Hamiltonian
given by Eq. (5.1.4) and Eq. (5.1.5)). For cptp maps Λ0 and Λ1 whose input system is equipped
with a Hamiltonian H which satisfies the Gibbs hypothesis, takes the form as in Eq. (5.1.4) and
satisfies Eq. (5.1.5), we have that

∥Λ0 − Λ1∥♢H,E ≤ E

c2
f

∥Jf (Λ0) − Jf (Λ1)∥1 , (C.1.6)

where the modified Choi–Jamiołkowski state Jf (Λ) of Λ is constructed as in Definition 5.1.3.

Proof. Lemma C.1.2 can be proved by adapting the argument in the proof of [62, Lemma S6] to
our choice of the imput system’s Hamiltonian, i.e., by replacing the definition of modified Choi–
Jamiołkowski states used there with the one given in Definition 5.1.3.

Lemma C.1.3 (Adapted from Eq. (16) in the supplementary notes of [61]). Let Λ be a cptp map,
and let the corresponding modified Choi–Jamiołkowski state given by Definition 5.1.3 be denoted
with ρAB1...BN

..= idA ⊗ΛA′(|ϕ⟩⟨ϕ|), where |ϕ⟩ is given in Eq. (5.1.6). Fix an integer m ≤ N . Then
there exists a set of indices J ..= (j1, . . . , jq−1), where q ≤ m, and quantum-to-classical channels
Cj1 , . . . , Cjq−1 such that

Ej /∈J max
Cj

∥∥∥id ⊗Cj
[
ρABj

− EzρzA ⊗ ρzBj

]∥∥∥
1

≤
√

2 ln(2)σ
m

, (C.1.7)

where: σ is given in Eq.(5.1.7); the expectation value is with respect to the uniform distribution
over {1, . . . , N} \ J ; the maximum runs over all quantum-to-classical channels; z is a random
variable that represents the outcome of the measurements Cj1 , . . . , Cjq−1 on ρAB1...BN

; and ρzA, ρzBj

are the corresponding post-measurement states.

Proof. It suffices to adapt the derivation of Eq.(16) in the supplementary notes of [61] to our
infinite-dimensional scenario: the Choi–Jamiołkowski state of Λ is replaced with the f−Choi
state of Definition 5.1.3, and the entropy log dA with S(ρA). Since Λ is trace preserving, ρA =
TrA′ [|ϕ⟩⟨ϕ|AA′ ], and S(ρA) = σ by definition of σ.

Theorem C.1.1 (Restatement). Let A be a quantum system equipped with a Hamiltonian HA

which satisfies the Gibbs hypothesis and which, when written as in Eq. (5.1.4), also satisfies
Eq. (5.1.5). Consider an arbitrary cptp map Λ : D(A) → D(B1 ⊗ . . . ⊗ BN ), and define the
effective dynamics from D(A) to D(Bj) as Λj ..= TrB\Bj

◦Λ. For an arbitrary number 0 < δ < 1,
there exists a POVM {Ml}l and a set S ⊆ {1, ..., N}, with |S| ≥ (1 − δ)N , such that, for all j ∈ S
and for any integer truncation dimension d ≥ 0, we have that

∥Λj − Ej∥⋄H,E ≤ ζ

δ
, (5.1.10)

where the measure-and-prepare channel Ej is given by

Ej(X) ..=
∑
l

Tr(MlX)τj,l (5.1.11)
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for some family of states τj,l ∈ D(Bj), and

ζ = κd

(
E2σ

Nc4
f

)1/3

+ 4E
c2
f

ϵd, (5.1.12)

where cf is the normalization factor introduced in Eq. (5.1.6); ϵd is given in Definition 5.1.2; σ is
defined by Eq. (5.1.7) and κ ..= 3 (16 ln(2))1/3 is a universal constant.

Proof. As we will see below, the states ρABj
and EzρzA ⊗ ρzBj

defined in Lemma C.1.3 are modified
Choi–Jamiołkowski states. By applying Lemma C.1.1 to them we have that∥∥∥ρABj

− EzρzA ⊗ ρzBj

∥∥∥
1

≤ 4d 3
2 max

Cj

∥∥∥idA ⊗Cj
[
ρABj

− EzρzA ⊗ ρzBj

]∥∥∥
1

+ 4ϵd. (C.1.8)

By combining Eq. (C.1.8) with Lemma C.1.3 we then obtain

Ej /∈J
∥∥∥ρABj

− EzρzA ⊗ ρzBj

∥∥∥
1

≤ 4d 3
2 Ej /∈J max

Cj

∥∥∥idA ⊗Cj
[
ρABj

− EzρzA ⊗ ρzBj

]∥∥∥
1

+ 4ϵd

≤ 4d 3
2

√
2 ln(2)σ
m

+ 4ϵd.
(C.1.9)

We now show that EzρzA⊗ρzBj
is the modified Choi–Jamiołkowski state of a quantum-to-classical

channel, explicitly given by

Ej(X) ..= c−2
f Ez Tr

[
(ρzA)⊺H 1

2XH
1
2

]
ρzBj

. (C.1.10)

In fact,

(idA ⊗Ej) (|ϕ⟩⟨ϕ|) = c2
f

∑
j,k

1
fj

1
2

1
fk

1
2

|j⟩⟨k| ⊗ Ej (|j⟩⟨k|)

= Ez
∑
j,k

⟨j|ρzA|k⟩|j⟩⟨k| ⊗ ρzBj

= EzρzA ⊗ ρzBj
.

Note that the measurement appearing in Eq. (C.1.10) is independent of j /∈ J . In fact, calling
Nz
Bj1 ...Bjq−1

the POVM element corresponding to the outcome z of the measurement Cj1⊗. . .⊗Cjq−1 ,

the POVM appearing in Eq. (C.1.10) can be expressed as
{
c−2
f p(z)H 1

2 (ρzA)⊺H 1
2

}
z
, where p(z) =

Tr
[
ρAB1...BN

Nz
Bj1 ...Bjq−1

]
. Now the claim follows because

p(z) (ρzA)⊺ = TrB1...BN

[
ρAB1...BN

Nz
Bj1 ...Bjq−1

]
(C.1.11)

is independent of j /∈ J .
Since ρABj is, by definition, the modified Choi–Jamiołkowski state of Λj , from Lemma C.1.2 it
follows that

∥Λj − Ej∥⋄H,E ≤ E

c2
f

∥∥∥ρABj − EzρzA ⊗ ρzBj

∥∥∥
1
. (C.1.12)

This, combined with Eq. (C.1.9), gives

Ej /∈J∥Λj − Ej∥⋄H,E ≤ E

c2
f

Ej /∈J∥ρABj − EzρzA ⊗ ρzBj
∥1

≤ E

c2
f

(
4d 3

2

√
2 ln(2)σ
m

+ 4ϵd

)

=
√

32 ln(2)E2d3σ

mc4
f

+ 4E
c2
f

ϵd .
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From the previous result we then find that

Ej∥Λj − E∥⋄H,E ≤ Ej /∈J∥Λj − Ej∥⋄H,E + m

N
Ej∈J∥Λj − Ej∥⋄H,E

≤
√

32 ln(2)E2d3σ

mc4
f

+ 4E
c2
f

ϵd + 2m
N
.

The right-hand-side, minimised with respect to m, gives the quantity

ζ = κd

(
E2σ

Nc2
f

)1/3

+ 4E
c2
f

ϵd, (C.1.13)

where κ = 3 (16 ln(2))1/3. To complete the proof, we apply Markov’s inequality: P (X ≥ a) ≤ E(X)
a ,

where X is a non-negative random variable, E(X) its expectation value, and a > 0. In our case,
X = ∥Λj − E∥⋄H,E , with j being uniformly distributed, and a = ζ

δ , which leads us to

P
(

∥Λj − Ej∥⋄H,E ≥ ζ

δ

)
≤ δ, (C.1.14)

completing the proof.

Example (Case study: bridging finite and infinite dimensions). We calculate the quantity given by
Eq. (5.1.12) for the sequence of Hamiltonian eigenvalues

fj =
{ 1 j ≤ D − 1 ,

eωj

1−e−ω j ≥ D .
(C.1.15)

We have that

cf =
(
D + e−ωD)− 1

2 , (C.1.16)

ϵd =
(

e−ωd

D + e−ωD

) 1
2

= e−ωd/2cf , (C.1.17)

s ..= ln(2)σ = ln(D + e−ωD) + ω(1 −D +Deω)
(eω − 1)(DeωD + 1) − ln(1 − e−ω)

(1 +DeωD) , (C.1.18)

where we assumed d ≥ D. We then obtain

ζ =
(

432E2(D + e−ωD)2d3s

N

)1
3

+ 4E
√
D + e−ωD

eωd
, (C.1.19)

which is valid for any d ≥ D.

C.2 Properties of the pure loss channel

C.2.1 Symmetry of the reduced dynamics
We show that, when the dynamics from system A to the environment fragments B1, ..., BN is given
by

ΛA→B1,...,BN
(·) ..= U

(·)A ⊗
N⊗
j=2

|0⟩⟨0|Bj

U†, (C.2.1)

with U the symplectic unitary implementing a N−splitter, the reduced dynamics Λj = TrB\Bj
◦Λ

have the same form for all j. We start by introducing the Weyl displacement operator:

D(α⃗) ..= exp

∑
j

(
αja

†
j − α∗

jaj

) , (C.2.2)
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where α⃗ denotes a complex vector in CN , with N the number of modes. A quantum state ρ can
be described in terms of the characteristic function

χρ(α⃗) ..= Tr [ρD(α⃗)] , (C.2.3)

by means of which the state ρ can be reconstructed as

ρ =
∫
d2Nα

πN
χρ(α⃗)D(−α⃗). (C.2.4)

We will describe the channel in Eq. (C.2.1) as the unitary operation on D(A ⊗ B2 ⊗ . . . ⊗ BN )
given by

ρin → ρout = UρinU
†, (C.2.5)

with

ρin = ρA ⊗
N⊗
j=2

|0⟩⟨0|Bj . (C.2.6)

The characteristic function for the input state is given by

χρin(α⃗) = Tr [ρinD(α⃗)] = χρA
(α1)χ|0⟩⟨0|(α2)...χ|0⟩⟨0|(αN ) = χρA

(α1) exp
[
−1

2
(
∥α⃗∥2 − |α2

1|
)]

(C.2.7)
and for the output state we have

χρout(α⃗) = Tr [ρoutD(α⃗)] = Tr
[
UρinU

†D(α⃗)
]

= Tr
[
ρinU

†D(α⃗)U
]
. (C.2.8)

Since U†D(α⃗)U = D(V †α⃗), we obtain that

χρout(α⃗) = Tr
[
ρinD(V †α⃗)

]
= χρA

(
α1 + α2 + ...+ αN√

N

)
exp

−1
2

∑
j

|αj |2 − 1
N

∣∣∣∣∣∣
∑
j

αj

∣∣∣∣∣∣
2

 .

(C.2.9)
The characteristic function of the output state ρoutj = TrB\Bj

[ρout] is obtained by setting αi ̸=j = 0:

χρoutj
(αj) = χρA

(
αj√
N

)
exp

[
−1

2

(
N − 1
N

)
|αj |2

]
. (C.2.10)

It has the same form for all j, and the same property is therefore true for the reduced channel
Λj = TrB\Bj

◦Λ.

C.2.2 Lower bound for the objectivity range of a pure loss channel
The statement

∃{Ml}l : ∀j ∈ S, ∃{τj,l}l : ∥Λj − EM,τj ∥⋄H,E ≤ 1
δ
ζ , (C.2.11)

is equivalent to the inequality

inf
M

sup
1≤j≤N

inf
τj

∥Λj − EM,τj
∥⋄H,E ≤ 1

δ
ζ . (C.2.12)

Note that we made explicit the dependence of the measure-and-prepare channels from POVM
M = {Ml}l and set of states τj = {τj,l}l through the notation EM,τj

(X) ..=
∑
l Tr(MlX)τj,l. To

investigate the optimality of the objectivity bound in Eq. (C.2.11) we thus need to estimate a lower
bound for the l.h.s. of Eq. (C.2.12). We will perform this analysis for the channel in Eq. (C.2.1).
Since the reduced dynamics Λj have the same form for all j we can get rid of the supremum on j
and look at a lower bound for the quantity

µ(Λ) ..= inf
M,τj

∥Λj − EM,τj
∥⋄H,E . (C.2.13)
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By substituting the definition of diamond norm we obtain

µ(Λ) = inf
M,τj

∥Λj − EM,τj
∥⋄H,E = inf

M,τj

sup
ρ:Tr[ρHA]≤E

∥ idC ⊗(Λj − EM,τj
)A[ρ]∥1 , (C.2.14)

where C is an arbitrary ancillary system (see Definition 5.1.1 in the main text). To simplify the
notation, in the following we suppress the explicit reference to the bipartition C :A. We can choose
ρ = ψr ..= |ψr⟩⟨ψr| with |ψr⟩ ..= 1

cosh(r)
∑
n tanh(r)n|nn⟩, which is a two-mode squeezed vacuum

state, and (noting that Tr [ρHA] = sinh(r)2) find the inequality

µ(Λ) ≥ inf
M,τj

sup
r:sinh(r)2≤E

∥ id ⊗(Λj − EM,τj )[ψr]∥1 . (C.2.15)

The channel EM,τj
is entanglement breaking, so id ⊗EM,τj

[ψr] is a separable state: id ⊗EM,τj
[ψr] =

ω ∈ SEP . Since ∥X∥1 ≥ 2∥X∥∞ if Tr[X] = 0, we have that

µ(Λ) ≥ 2 inf
ω∈SEP

sup
r:sinh(r)2≤E

∥ id ⊗Λj [ψr] − ω∥∞

= 2 inf
ω∈SEP

sup
r:sinh(r)2≤E

sup
ϕ

|⟨ϕ| id ⊗Λj [ψr]|ϕ⟩ − ⟨ϕ|ω|ϕ⟩| ,
(C.2.16)

where we substituted the definition of the infinity norm. We can choose, as |ϕ⟩, a two-mode
squeezed vacuum state |ϕs⟩ = 1

cosh(s)
∑
n tanh(s)n|nn⟩, and get rid of the modulus to obtain

µ(Λ) ≥ 2 inf
ω∈SEP

sup
r:sinh(r)2≤E

sup
s

(⟨ϕs| id ⊗Λj [ψr]|ϕs⟩ − ⟨ϕs|ω|ϕs⟩) . (C.2.17)

For a separable state ω, |⟨ϕ|ω|ϕ⟩| ≤ λmax, where λ is defined by the Schmidt decomposition:
|ϕ⟩ =

∑
i

√
λi|eifi⟩. Hence ⟨ϕs|ω|ϕs⟩ ≤ λmax(ϕs) = 1

cosh(s)2 , and we have that

µ(Λ) ≥ 2 sup
r:sinh(r)2≤E

sup
s

(
⟨ϕs| id ⊗Λj [ψr]|ϕs⟩ − 1

cosh(s)2

)
. (C.2.18)

A calculation of the quantity ⟨ϕs| id ⊗Λj [ψr]|ϕs⟩ can be found in [182]. By exploiting that result
we find

µ(Λ) ≥ 2 sup
s

[(
sup

r:sinh(r)2≤E

N

(
√
N cosh(r) cosh(s) − sinh(r) sinh(s))2

)
− 1

cosh(s)2

]
. (C.2.19)

For a given s, the supremum of the function

N

(
√
N cosh(r) cosh(s) − sinh(r) sinh(s))2

(C.2.20)

is reached for r = r̄ such that Ē ..= sinh(r̄)2 = tanh(s)2

N−tanh(s)2 . Since Ē ≤ 1
N−1 ≤ 2

N for N ≥ 2 (and
noting that N ≥ 2 by definition of the channel Λ), we can choose E ≥ 2

N in order to have Ē ≤ E
satisfied for all possible values of N . This is equivalent to evaluate an unconstrained supremum,
for which we can use the calculation performed in [182] to obtain

µ(Λ) ≥ 2 sup
s

[
N

N cosh(s)2 − sinh(s)2 − 1
cosh(s)2

]
= 2 sup

s

tanh(s)2

N cosh(s)2 − sinh(s)2

≥ 1
2N − 1 ≥ 1

2N .

(C.2.21)

Our analysis therefore led to the following result: when the dynamics from A to B1, ..., BN is given
by Eq. (C.2.1) and the maximum energy of system A satisfies E ≥ 2

N , for all j and for all POVM
{Ml}l and sets {τj,l} entering the definition of Ej it holds that

∥Λj − Ej∥⋄H,E ≥ 1
2N . (C.2.22)
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C.3 Proof of Corollary 5.3.1
To prove Corollary 5.3.1, it suffices to adapt to our infinite-dimensional setting the argument in
the proof of [61, Corollary 4]. The success of this programme depends crucially on a fundamental
result by Winter [156, Lemma 17], reported below as Lemma C.3.1, which expresses a continuity
bound for the conditional entropy of infinite-dimensional systems subjected to energy constraints.

Lemma C.3.1 ([156, Lemma 17]). For a Hamiltonian H on A satisfying the Gibbs hypothesis and
any two states τ and σ on the bipartite system A⊗B with Tr(τH),Tr(σH) ≤ E, 1

2 ∥τ − σ∥1 ≤ ϵ <

ϵ′ ≤ 1 and ∆ = ϵ′−ϵ
1+ϵ′ ,

|S(A|B)τ − S(A|B)σ| ≤ (2ϵ′ + 4∆)S(γ(E/∆)) + (1 + ϵ′)h
(

ϵ′

1 + ϵ′

)
+ 2h(∆) . (C.3.1)

Proof of Corollary 5.3.1. Let 0 < δ < 1 be a fixed number. Theorem 5.1.1 allows us to construct
a POVM {Ml}l, a set S ⊆ {1, . . . , N} of cardinality at least |S| ≥ (1 − δ)N , and ensembles of
states {τj,l}l such that the corresponding measure-and-prepare channels Ej defined in Eq. (5.1.11)
satisfy Eq. (5.1.10) and (5.1.12) for all j ∈ S. Now, consider the states τ = (id ⊗Λj)(ρ) and
σ = (id ⊗Ej)(ρ). By definition of f -diamond norm it follows that

1
2∥τ − σ∥1 = 1

2∥(id ⊗Λj)(ρ) − (id ⊗Ej)(ρ)∥1

≤ 1
2∥Λj − Ej∥♢HB ,EB

≤ ϵ < ϵ′ ≤ 1 ,

where the inequalities in the last line follow from Theorem 5.1.1, and we set ϵ′ ..= 2ϵ ..= ζ
δ , with ζ

given in Eq. (5.1.12).
Applying Lemma C.3.1 to states τ and σ, we deduce that

|S(A|B)id ⊗Λj(ρ) −S(A|B)id ⊗Ej(ρ)| ≤ (2ϵ′ +4∆)S(γ(EA/∆))+(1+ϵ′)h
(

ϵ′

1 + ϵ′

)
+2h(∆) (C.3.2)

where ∆ ..= 1
2

ϵ′

1+ϵ′ . Since the reduced entropies on the A subsystems are the same for τ and σ, this
translates to ∣∣I(A : B)(id ⊗Λj)(ρ) − I(A : B)(id ⊗Ej)(ρ)

∣∣
≤ (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h

(
ϵ′

1 + ϵ′

)
+ 2h(∆) ,

and therefore

I(A : B)id ⊗Λj(ρ)

≤ I(A : B)id ⊗Ej(ρ) + (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h
(

ϵ′

1 + ϵ′

)
+ 2h(∆)

≤ max
Γ∈QC

I(A : B)(id ⊗Γ)(ρ) + (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h
(

ϵ′

1 + ϵ′

)
+ 2h(∆) ,

where the last inequality follows because any measure-and-prepare channel can be obtained by
post-processing from a quantum-to-classical channel, and the mutual information obeys the data
processing inequality.

We now move on the proof of Eq. (5.3.5). The fact that the right hand side is no larger than
the left hand side is well known; to prove it, it suffices to choose as Λ the quantum-to-classical map
that attains the accessible information I(A : Ba) ..= maxΓ∈QC I(A : B)(id ⊗Γ)(ρ), makes N copies
of the classical result, and stores it in N registers B1 . . . BN .
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As it turns out, we only have to prove that the l.h.s. of Eq. (5.3.5) is no larger than the the
r.h.s. . By using Eq. (5.3.4) we can write

EjI(A : Bj) (C.3.3)

≤ 1
N

[
(1 − δ)N

(
I(A : Ba) + (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h

(
ϵ′

1+ϵ′

)
+ 2h(∆)

)
+ δN2S(A)

]
= (1 − δ)

(
I(A : Ba) + (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h

(
ϵ′

1+ϵ′

)
+ 2h(∆)

)
+ δ2S(A) ,

where we used the notation I(A : Bj) ..= I(A : B)id ⊗Λj(ρ). We can choose δ =
√
ζ, then

ϵ′ = 2ϵ = ζ

δ
−−−−→
N→∞

0 , (C.3.4)

and therefore
∆ = 1

2
ϵ′

1 + ϵ′
−−−−→
N→∞

0 . (C.3.5)

Moreover, since S(γ(EA)) = o(EA) [156], we have that ∆ S(γ(EA/∆)) −−−→
∆→0

0, as well as
ϵ′S(γ(EA/∆)) −−−−−→

ϵ′,∆→0
0 (since ϵ′ = O(∆)). As a consequence, for our choice of δ,

EjI(A : Bj)

≤ (1 − δ)
(
I(A : Ba) + (2ϵ′ + 4∆)S(γ(EA/∆)) + (1 + ϵ′)h( ϵ′

1+ϵ′ ) + 2h(∆)
)

+ δ2S(A)

−−−−→
N→∞

I(A : Ba) , (C.3.6)

independently of the choice of Λ = ΛB→B1B2...BN
. By considering the maximum of EjI(A : Bj)

over ΛB→B1B2...BN
and then the limit N → ∞ we therefore obtain that

lim
N→∞

max
ΛB→B1B2...BN

EjI(A : Bj) ≤ I(A : Ba). (C.3.7)
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