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Abstract

Although general relativity passes all precision tests to date, there are sev-

eral reasons to go beyond the current model of gravitation and search for

new fundamental physics. This means looking for new, so far undetected,

fields. Scalars are the easiest fields to consider and they are ubiquitous in

both extensions of the Standard Model and in alternative theories of gravity.

That is why a lot of attention has been drawn towards the investigation of

scalar-tensor theories, where gravity is described by both the metric tensor

and a scalar field.

A particularly interesting phenomenon that has recently gained increas-

ing interest is spontaneous scalarization. In gravity theories that exhibit

this mechanism, astrophysical objects are identical to their general rela-

tivistic counterpart until they reach a specific threshold, usually either in

compactness, curvature or, as recently shown, in spin. Beyond this thresh-

old, they acquire a nontrivial scalar configuration, which also affects their

structure.

In this thesis, we focus on the study of this mechanism in generalized

scalar-tensor theories. We identify a minimal action that contains all of

the terms that can potentially trigger spontaneous scalarization. We first

focus on the onset of scalarization in this specific theory and determine the

relevant thresholds in terms of the contributing coupling constants and the

properties of the compact object. Finally, we study the effect of this model

on the properties of both scalarized black holes and neutron stars, such

as affecting their domain of existence or the amount of scalar charge they

carry.
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Conventions

Throughout this thesis, the metric signature is chosen to be (−,+,+,+)

and spacetime indices are denoted with Greek letters. What follows is a list

detailing the conventions used throughout the text.

gµν spacetime metric

g determinant of the metric

Γαµν Christoffel symbol of the spacetime metric gµν

∇µ covariant derivative corresponding to the Christoffel symbol

Γαµν

Rα
µκν Riemann tensor

Rµν Rα
µαν , Ricci tensor

R gµνRµν , Ricci scalar

G R2 − 4RµνR
µν +RµνρσR

µνρσ, Gauss-Bonnet invariant

Gµν Einstein tensor

G Newtonian gravitational constant

c speed of light, we used units such as c = 1

M� mass of the Sun

κ 8πG/c4

X −∂µφ∂µφ/2

SM matter action

ψM matter fields
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Tµν matter stress-energy tensor

ε energy density of a perfect fluid

p pressure of a perfect fluid

uµ 4-velocity of the perfect fluid

TPF
µν (ε+ p)uµuν + pgµν , matter stress-energy tensor for a perfect

fluid

M ADM mass of the compact object

Q scalar charge of the compact object

EOS equation of state
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Chapter I

Introduction

1 Gravitational waves: a laboratory for new

physics

In 1915, Einstein formulated his theory of general relativity. The revolution-

ary concept behind it is that the geometry of spacetime is a new physical

entity, with degrees of freedom and its own dynamics [1]. In other words,

the spacetime is curved and its intrinsic properties are described by a met-

ric. Thus, instead of introducing a gravitational field as a new field, we can

think of it as a deviation of the spacetime geometry from the flat geometry

of special relativity [2]. The equivalence principle of the Newtonian the-

ory of gravitation is then generalized into the Einstein equivalence principle

that states that the motion of freely falling test particles follow geodesics

of the metric1. In general relativity, the motion of matter in the universe is

influenced by the geometry of the spacetime. At the same time, the curva-

ture of spacetime is related to the stress-energy momentum tensor of matter

via the Einstein field equations. Thus, the structure of spacetime is itself

influenced by the presence of matter in the universe [2].

General relativity has been widely accepted as a fundamental theory of

gravity and it successfully predicted various phenomena such as the gravita-

tional redshift, the bending of light by the sun, the precession of the perihe-

lion of Mercury, the existence of neutron stars and black holes. One of the

most remarkable validations arrived exactly a century after the formulation

1Note that this is the formulation for the so-called weak equivalence principle, which
only refers to test-body whose self-gravity is negligible. If we generalize the statement
to self-gravitating bodies, we obtain the strong equivalence principle. This distinction is
non-trivial in the context of scalar-tensor theories of gravity, as we will see in Chapter II.

1



CHAPTER I. INTRODUCTION 2

of Einstein’s theory: in 2015 the Advanced LIGO detectors in Livingston

and Hanford observed for the first time the emission of gravitational waves

from a black-hole binary merger [3, 4]. Gravitational waves are predicted

by general relativity and they consist of ripples of the gravitational field

caused by accelerated masses that propagate across the spacetime. They

are commonly produced by cataclysmic events such as colliding black holes

and neutron stars. Since the first detection, in the span of three observing

runs, of which the last one ended on March 2020, more than ninety events

were detected with an increasing precision thanks also to the addition to the

collaboration of the Advanced Virgo detector in Italy in August 2017 [5–7].

Most excitingly, the joint collaboration was able to detect not only black-

hole binary coalescences, but also more rare events such as gravitational

waves from the collision of two neutron stars [8, 9], and from neutron star-

black hole mergers [10]. Yet, the number of events detected is drastically

destined to increase. On one side, the collaboration is currently preparing

for a fourth observing run, possibly starting in the second half of 2022,

where the LIGO and Virgo detectors will be joined by the KAGRA inter-

ferometers based in Japan, forming a network of ground based detectors

that will certainly enhance the precision of the observations. On the other,

in the next decades we will witness the advent of third generation ground

detectors, like the Einstein Telescope and the Cosmic Explorer, and new

detectors in space, like the LISA mission. Hence, in the future years we will

inevitably find ourselves with an incredible amount of data from coalescing

compact objects.

Such a thriving scenario allows us to have multiple direct channels to

areas of our universe characterised by so far unexplored energy scales and

spacetime curvature. For the first time, we are equipped with the tools to

probe the strong gravity regime, where the gravitational interaction is pre-

dominant over the other fundamental forces. Such experimental conditions

are impossible to recreate in any laboratory on Earth. Even at the scale

of our Solar System, we are only able to perform tests on the gravitational

fields in the weak gravity regime. On the other hand, compact objects inspi-

rals, where the curvature of spacetime is high, constitute the perfect natural

laboratory where the conditions for strong gravity are satisfied.

We can better understand this by giving a more formal classification of

the weak and the strong field regime. Let us assign to a gravitational system

a characteristic length L, a characteristic total mass M and a characteristic
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velocity V . We can then define the compactness of the system, a quantity

which expresses the strength of the gravitational field, as

C =
GM

L
, (I.1)

where G is the Newtonian gravitational constant, and where we set c = 1.

We can refer to weak-field gravity when the following conditions are both

satisfied

C � 1, V � 1. (I.2)

This ensures that the gravitational field is weak relative to the mass-energy

of the system, the characteristic velocities of gravitating bodies are small

relative to the speed of light, and the gravitational field is stationary or

quasi-stationary relative to the characteristic size of the system [11]. Con-

versely, the strong-field regime is the region of the spacetime where both

conditions on Eq. (I.2) are not satisfied. It is then clear why, when conduct-

ing experiments in the Solar System, we are still bound in the weak field

regime: considering the gravitational field at the surface of the Sun, we find

C ≈ 2 × 10−6, whereas for the Earth-Sun system, this further reduces to

C ≈ 9.8 × 10−9, with a characteristic velocity of V ≈ 9.9 × 10−5. Even

in the case of binary pulsars, conditions (I.2) are still not violated: for the

double binary pulsar J07373039, C ≈ 6× 10−6 and V ≈ 2× 10−3. Despite

neutron stars being sources of strong gravity, indeed their compactness is

typically C ≈ O(10−1), binary pulsars are most sensitive to the quasi-static

part of the post-Newtonian effective potential or to the leading-order of the

radiation-reaction force [11]. If we take into consideration compact binary

coalescence, however, the situation drastically changes: both the gravita-

tional compactness and the characteristic velocity can reach values of O(1).

Hence, the gravitational information produced during these events provides

the strongest gravity field tested to date.

Gravitational waves, therefore, represent the perfect way not only to

perform null tests of general relativity, but also, more intriguingly, to chal-

lenge the actual state of physics, from the current theory of gravitation to

the Standard Model. There is a general shared hope between physicists

involved in diverse fields such as cosmology, astrophysics, modified gravity,

quantum gravity and particle physics, that testing the strong-field highly

dynamical regime will lead to the discovery of new unexpected phenomena,

giving some answers to the big open questions in physics.
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Nevertheless, this research field is still at its beginning. While compact

objects are generally well understood in general relativity, this is not always

the case in other theories of gravity. However, if one intends to obtain infor-

mation from gravitational-wave observations, understanding black holes and

compact stars in these alternative models is crucial. Indeed, these detections

consist in extremely noisy data. In order to extract the gravitational wave

signal from the observations, one has to a priori model the source, given a

specific theory. Thus, while observations probe the object, its structure is

determined by the theoretical model. It is then understandable why, in the

recent years, so much attention has been drawn to the study of compact

objects in different scenarios that contain new physics. Just as Einstein’s

theory attracted a lot of interest because it was rich in applications [1], the

study of modified theories of gravity, as well as particle physics, is gaining

more and more attention thanks to the rapid development and growth of

gravitational-wave observations.

2 Beyond General Relativity and the Stan-

dard Model

We discussed how the rapid expansion of the gravitational waves research

field is encouraging the development of new alternative theories that chal-

lenge general relativity and the Standard Model and, more in general, it

represents a promising tool for the discovery of new fundamental physics. It

is, however, natural to ponder the question: why do we expect new physics?

Why do we suppose that general relativity and the Standard Model might

fail in the strong gravity regime? The answer to these questions is not easy

and is not unique. There are several reasons, each of which stems from

different considerations. In this Section, we give a concise review of the

main motivations for questioning the current state of gravity and particle

physics.

First of all, general relativity is a classical theory, thus all quantum

physics contributions are neglected. Furthermore, in the attempt of treating

the gravitational field from a standard quantum field theory perspective, one

is inevitably faced with the fact that general relativity is non renormalizable.

This is a signal that the theory must fail to describe gravity at some energy

scale usually associated with the Planck scale. However, it is not possible

to assign a precise value to this cutoff energy scale, since there is no way
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for current experiments to probe quantum effects in gravitational physics,

or vice versa. It has been shown that allowing the action to contain higher

order curvature terms, one finds a theory which is indeed renormalizable,

but affected by the presence of ghosts, i.e. massive quantum states with

negative norm, therefore violating unitarity [12]. To overcome this problem,

several candidate theories of quantum gravity have been proposed. For

instance, a well-received theory is loop quantum gravity, which is an effort

toward the quantization of general relativity through the postulate that

spacetime itself is discrete. Remarkably, some of the proposed quantum-

gravity theories also try to tackle the problem of unification, addressing the

question of whether there exists a unified description of all known forces,

possibly including gravity. As a result, the Standard Model would be seen as

a low-energy limit2 of a more fundamental theory. For example, among the

most well-studied proposals, we certainly find string theory, which replaces

the point-like particles of particle physics by one-dimensional objects, the

so-called strings, and studies how their dynamics evolve in the spacetime.

Interestingly, one could look at classical modified theories of gravity as limit

of quantum gravity models at low energy scales, or in other words, they can

be seen as effective field theories with a cutoff energy scale that characterizes

the underlying fundamental quantum gravity theory.

Another theoretical conundrum regarding general relativity is that it

predicts the appearance of spacetime singularities. These can either be

cosmological singularities or points of the spacetime that are located in

the centre of black holes, as a result of the gravitational collapse of mas-

sive stars. The cosmic censorship conjecture claims that the appearance

of naked singularities is forbidden, and each singularity is clothed in an

event horizon [13]. Nonetheless, this conjecture is not precise and it is not

proven. Moreover, one of the most urgent open problems in theoretical

physics is the so-called information-loss paradox [14], which is related to

loss of unitarity at the end of the black holes evaporation due to Hawking’s

radiation [15]. Once again, these singularity problems can be avoided by

high-energy corrections or resolved by a consistent quantum gravity theory.

The objections to general relativity and the Standard Model are not

merely theoretical. For instance, there is rich and overwhelming astronom-

ical evidence for the existence of a large amount of unseen dark matter.

The first hints of dark matter was given in 1933 by F. Zwicky [16], who

2Note that low energy physics is not synonymous of weak-field gravity.
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estimated that the Coma cluster of galaxies had a mass-to-light ratio of

two orders of magnitude larger that in the solar neighborhood. The argu-

ments for dark matter accumulated over the decades (see [17,18] for detailed

reviews). However, the identity and properties of dark matter remain un-

known. Scalar fields have been seen as potential candidate for a long time.

The most well motivated examples are the axion particles from quantum

chromodynamics or axion-like-particles from string theory, we return on

the subject in Section 3. Furthermore, evidence from type Ia supernovae

suggests that the universe has evolved from a past decelerated phase to a

present accelerated period. To account for this accelerated phase, the uni-

verse must be composed by ordinary baryonic matter for the 4%, by dark

matter for the 20% and by dark energy for the 76% [19–21]. The latter is

an unknown form of energy which not only has not been detected directly,

but also does not satisfy the Strong Energy Condition. The presence of

dark energy can be explained by adding a cosmological constant Λ in the

Einstein’s equations, interpreting it as the energy density associated with

the quantum vacuum. However, this approach leads to a discrepancy of

several order of magnitude between the theoretical and observational value

of the cosmological constant itself, signaling another conflict between grav-

ity and quantum physics. A way to resolve this issue is to either include

a novel matter field with new fundamental properties or to interpret dark

energy as some gravitational effect, thus believing that its origin must come

from beyond general relativity (see [22] for a review on the cosmological

constant problem). It is noteworthy that both the issue of dark matter and

the cosmological constant problem suggest that the standard effective field

theory argument, stating that quantum gravity corrections are unimportant

in the infrared regime might be wrong, motivating the speculation that such

corrections might persist at low energies. We reflect on the consequences of

these low energy imprints in Section 4.

Both dark matter and dark energy cannot be explained in the context

of the Standard Model. Moreover, further theoretical and experimental

arguments are accumulating, pointing to the existence of particle physics

beyond the Standard Model. On the experimental side, for instance, there

is robust evidence for oscillations of atmospheric neutrinos, which can be

explained by assuming that neutrinos have mass, in contrast to the current

hypothesis of zero mass in the Standard Model [23]. On the theoretical side,

the hierarchy problem is of particular note [24]. This problem is linked to the
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huge discrepancy between the electroweak and the Planck scale, and arises in

the size of the mass of the Higgs boson. The Higgs field has an observed mass

of about 125 GeV, however the radiative corrections to the Higgs mass lead

us to expect that the Higgs mass would be much higher, comparable to the

Planck scale. Reconciling these inconsistencies would require a much higher

accurate fine-tuning of parameters or assuming that there is some other

fundamental reason not explained by the Standard Model. For example,

postulating the existence of new particles with similar masses but with spin

different by one half would solve the hierarchy problem [17]. These types

of particles emerge naturally in the framework of supersymmetric theory.

However, this is still a rather open topic of discussion.

We tried to give a condensed summary of the various currently open

questions in physics. Even though we did not provide a complete and de-

tailed review, this still suffices to convey the idea of why there is such an

active and pressing research for new physics beyond both general relativity

and the Standard Model.

3 Scalar fields as new degrees of freedom

So far, we highlighted the main motivations for challenging our current

knowledge of gravitational and particle theories. It is then natural to ask

how we can potentially describe this promising new physics. To overcome

general relativity and the Standard Model one necessarily needs to relax one

or more of the assumptions on which such theories rely. Let us explicitly ex-

amine the case of general relativity. The Lovelock’s theorem [25,26] assures

that general relativity is the only theory that satisfies all of the following

assumptions:

• its action is invariant under diffeomorphism;

• it has second order field equations for the metric;

• the theory is restricted to 4 dimensions;

• only the metric field is involved in the gravitational action.

To go beyond general relativity one needs to evade the Lovelock’s theorem,

hence any alternative model of gravitation must break at least one of the

assumptions above. This inevitably introduces more degrees of freedom

within the theory (see [27]).
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A possible way to include new degrees of freedom is to allow alternative

models to contain new, so far undetected, fundamental fields either in the

matter or in the gravitational sector of the theory. Scalar fields are the

easiest field to consider, and they can act as basic probes for novel models

of gravity. The work of this thesis is entirely focused on the study of generic

scalar-tensor theories, where a scalar field comes into play through a non-

minimal coupling with gravity. The first prototype of such theories was first

conceived by Jordan [28]. He embedded a four-dimensional curved manifold

into a five-dimensional flat space and showed that a four-dimensional scalar

field can be a constraint in formulating projective geometry while enabling a

gravitational constant dependent on the spacetime. We dedicate Chapter II

to a thorough review of scalar-tensor theories. These models have drawn

vast interest since they “appear to provide a small window through which

one can look into phenomenological aspects of more fundamental theories

to which one is still denied any direct access otherwise” [29]. We have

already mentioned how scalar fields have been proposed as major candidate

to resolve the issues with dark matter. However, they are not only employed

in this context, they are ubiquitous in several proposed alternative theories

of gravitation and particle physics, as we now discuss.

A first scalar field candidate emerged in the Kaluza-Klein theory in the

1920s. The theory proposed a five-dimensional spacetime to which general

relativity was applied, and one of the spatial dimension was compactified

to a small circle. The size of the compactified space dimension can be

recast as a four-dimensional scalar field. This theory gained new interest

in the 1970s [30], when it was realized that string theory requires higher

dimensional spacetime. Additionally, scalar fields are also provided in string

theory in the form of dilatons. Indeed, the zero mode of a closed string

describes a symmetric tensor, the graviton, that in the low energy limit

reduces to the spacetime metric, as well as a scalar field that emerges from

the trace of a symmetric second rank tensor and an antisymmetric one.

The field equations for the graviton and the scalar field can be shown to

be derived from a scalar-tensor theory-like lagrangian. This prototype of

scalar-tensor theory emerges due to the requirement of the finiteness of the

theory coming from the invariance under conformal transformation in the

two-dimensional spacetime where the strings propagate. This conformal

invariance generalizes in D-dimensions as dilatation invariance and it is

implemented via the scalar field, hence the origin of the name dilaton.
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Scalar fields arise in the framework of yet another quantum gravity focus,

non-commutative geometry. The basic idea is to quantize the spacetime

coordinate replacing them by generators of a noncommutative algebra [31].

This approach provides scalar fields as gauge fields introduced in addition

to ordinary continuous spacetime [29]. For example, in the electroweak

unified theory, these scalar fields can be associated with the Higgs field. It

was shown that a natural extension to the theory of gravity yields a scalar-

tensor theory [32, 33]. Interestingly, unlike the case of Kaluza-Klein theory

or string theory, in noncommutative geometry the scalar field is a non-ghost

field, i.e. they have a correct negative sign in front of the kinetic term in

the action, ensuring unitarity3.

As we have already mentioned in Section 2, quantum chromodynamics

predicts the appearance of pseudoscalar fields called axions, i.e. scalar fields

which are odd under parity transformations. In particular, they emerge as

a consequence of the Peccei and Quinn’s solution to the problem of the ab-

sence of CP violation in quantum chromodynamics [34, 35]. Such particle

can be interpreted as a pseudo Goldstone-boson of a new spontaneously

broken global U(1) symmetry. It can couple to other fields, however, this

interactions are suppressed by a scale fa which can be arbitrarily large.

Hence, the axion can be engineered to be weakly coupled to the Standard

Model. This weakly interacting aspect is the reason why the axion is an

extremely viable candidate for dark matter. Besides the case of quantum

chromodynamics, axion-like-particles are often predicted by embeddings of

the Standard Model in string theory [36]. They also arise from the breaking

of accidental global U(1) symmetries that appear as low energy remnants of

exact discrete symmetries. Axion and axion-like particles are very well mo-

tivated both theoretically and on cosmological and astrophysical grounds,

rendering them attractive candidates to test.

Lastly, let us discuss the case of the cosmological inflaton. In 1977, it

was discovered that the entropy of the universe is extremely large, with an

estimate of S ≈ 1088 [37], even though one would expect this value to be

of order of unity, since it is a dimensionless constant. In order to explain

this large amount of entropy, the universe must have been close to spatial

flatness at early times. Even if such balance is in principle possible, it still

3Note that in the case of Kaluza-Klein theory, even if the scalar field is a ghost, this
does not lead to physical inconsistencies since the energy of the whole system remains
positive. In the case of string theory, for D > 2 the diagonalized scalar field is also a
non-ghost.
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seems an unlikely case of fine-tuning. This dilemma is known as the flatness

problem. A possible way to solve this issue was first proposed by Guth in

1981 [38]. He postulated that the universe went through a non-adiabatic

cosmic expansion for a finite time interval in its early history, creating a

process of entropy production called inflation. A necessary condition for

this to happen is to assume that the universe underwent an accelerated

expansion. But what drives this expansion? A simple answer is to assume

the presence of a scalar field with a self-interaction potential, which takes

the name of inflaton. In the modern concept of inflation, what drives it

is a single scalar field slow-rolling from a regime of high potential energy.

However, the precise identity of this field is not known and several different

inflationary scenarios have been developed. Possible candidates are the

Higgs boson, the dilaton field of string theory, which we mentioned earlier,

the extras degrees of freedom associated with higher metric derivatives in

modified gravity and the time-varying gravitational coupling of scalar-tensor

theories (for a review on inflation see [39–42]). There are several other scalar

fields proposed in cosmology, other than the inflaton. We briefly discuss two

other examples, the galileon and the chameleon scalar, in the next Section.

This review of the diverse employments of scalar fields in gravitational

theories and particle physics is certainly not exhaustive. Besides, we do not

expect that introducing a scalar field to a theory can possibly solve all of

the several problematics to which we referred in Section 2. However, our

aim was to give a solid motivation for the study of scalar fields coupled

to gravity and their phenomenology. Understanding if these fields leave an

imprint on compact objects is more relevant than ever, since we finally have

the tools to explore and test this possibility thanks to gravitational-wave

observations.

4 Scalars’ imprints at low energy scales

We gave several motivations for the presence of scalar field in regimes of

strong gravity, however we still have to debate if it is possible to find their

imprints at scales where energy is low, and consequently detectable by cur-

rent experiments. At first, corrections deriving from quantum gravity, or

more generally from unified theories, were expected to be detectable only at

high energy scales, typically at the Planck scale. It was thus believed that

there was no need to have scalar fields imprints at low energy. However,
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this speculation lost its appeal when the issues of dark matter and the cos-

mological constant problem emerged. Indeed, they both pose experimental

contradictions that appear in the infrared regime. Solving these open ques-

tions would necessarily require a more complete theory able to introduce

corrections also at low energy scales.

Nonetheless, this is a delicate matter. On one side, general relativity

passed all weak gravity tests performed so far. On the other, we have sev-

eral reason to expect to find deviations to the current model of gravitation

in the strong gravity regime. Hence, introducing new scalar fields poses

an important dilemma: we need to introduce a theory able to provide de-

tectable modifications to the current gravitational theory in regimes where

gravity is strong, and at the same time explain why there are no signs of

scalar forces in laboratory or solar system observations. An effective way

to achieve this is to resort to a screening mechanism, which is able to yield

scalar imprints in specific regions, while concealing them in the rest of the

spacetime.

An example of the employment of such process can be found in the

framework of Galileon cosmology, originally proposed as a possible candi-

date of inflation theory [43]. The Galileon model is a scalar effective field

theory that contains higher derivative terms in the Lagrangian, which is

invariant under the Galileon-shift symmetry ∂µφ→ ∂µφ+ bµ, while its field

equations are still second order in derivatives, hence it is free of ghost-like

instabilities. The scalar field is required to produce interesting cosmolog-

ical effects in sparse cosmic environment, while it decouples locally. This

is achieved thanks to the so-called Vainshtein screening effect. In regions

where the density is small, the galileon field perturbation acts like a grav-

itational potential, thus the scalar mediates a sizeable fifth force. On the

other hand, in areas of high density, near massive bodies, the scalar field

decouples and the theory reduces to Newtonian gravity [44–46].

Another example of screening mechanism can be found in chameleon

cosmology [47], which proposes an alternative explanation to the expansion

of the universe. In this theory the scalar field can couple directly to baryons

with gravitational strength while acquiring a mass which is dependent on the

local matter density. This effectively enables a screening process: in regions

of high density, the mass of the field is large, exponentially suppressing

the scalar field itself; in areas where the density is much lower, such as

the solar system, the wavelength of the field can be larger than the size
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of the solar system; however, on cosmological scales, where the density

is considerably smaller, the mass can be of order of the present Hubble

parameter and the chameleon field can potentially cause the acceleration

of the universe [48]. Both these mechanisms are qualitative similar, with

the difference that the Vainshtein effect for galileons relies on derivative

iterations while the chameleon mechanism depends on the scalar potential.

In this work, we focus on yet another screening process, originally formu-

lated in the 1990s, that has recently gained renewed and growing attention.

The outcome of this phenomenon is a scalar field that can potentially be

non-vanishing close to compact objects, where gravity is strong. Never-

theless, far away from the source the scalar field is suppressed and general

relativity is retrieved in accord with solar system experiments. This mech-

anism can potentially leave an imprint, such as a scalar charge, a quantity

that measures how much scalar field is present in the object, which could be

detectable in gravitational-wave observations. In its first formulation pro-

posed by Damour and Esposito-Farèse [49], this phenomenon applied only

to neutron stars in the context of scalar-tensor theories. It consisted of a

phase transition which occurs to the scalar field when the compactness of

the star exceeds a certain threshold, it has thus been dubbed spontaneous

scalarization, to recall the phase transition mechanism of spontaneous mag-

netization. Compared to other theories where all compact objects have a

scalar configuration, the peculiarity of this phenomenon is that general rel-

ativity solutions are still admissible, but in specific regions of the spacetime,

in particular inside or close to compact objects, they become unstable, while

scalarized solutions are preferred. In recent years, the study of this screen-

ing mechanism has gained new interest, since it was understood that it

can be generalized to other theories while also affecting black holes [50–52].

Even though spontaneous scalarization is fundamentally a non-perturbative

effect, one can understand its generic properties employing perturbative

techniques. At the linear level, this mechanism manifests as a tachyonic

instability. Such negative effective mass instability triggers an exponential

growth of the scalar field, which can then be quenched by non-linearities of

the theory, creating a stable configuration of the scalar around black holes

or neutron stars.

As we mentioned, even though this mechanism was originally proposed

for scalar-tensor theories, it is not unique to this model alone and it can

be applied to other theories as well as to different field contents, (e.g. [53–
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55]). The work of this thesis strictly focuses on the study of spontaneous

scalarization oi generalized scalar-tensor theories. In Chapter II, we review

scalar-tensor theories. We first discuss the easiest example of a scalar field

included in a gravity theory, that is a scalar field minimally coupled to the

Einstein-Hilbert action. We then concentrate on scalar-tensor theory, where

we explicitly examine the case of Brans-Dicke theory, and its generalization

to Horndeski gravity. We conclude with a discussion on scalar Gauss-Bonnet

gravity.

We return on the concept of spontaneous scalarization in Chapter III. We

first provide a detailed description of the process as a tachyonic instability

at the linear level, and then analyze the contribution of non-linearities. We

then review the original formulation developed by Damour and Esposito-

Farèse, and we present the more recent case of spontaneous scalarization in

scalar Gauss-Bonnet gravity.

In Chapter IV, we present the generalization of this mechanism to the

case of Horndeski gravity. We identify all of the terms in the action that can

contribute to the tachyonic instability, and hence, can trigger scalarization.

Having determined the minimal action that contains all of these terms,

in Chapter V we then investigate the threshold of this phenomenon in terms

of the contributing coupling constants and the properties of the compact

object.

Chapter VI and VII are dedicated to the study of the properties and the

domain of existence of scalarized black holes and neutron stars, respectively,

for a theory that has a coupling to both the Ricci and the Gauss-Bonnet

scalar.

Finally, we draw the conclusion of this thesis in Chapter VII.



Chapter II

Scalar-tensor theories of

gravity

In Chapter I, we have discussed the importance that scalar fields have in the

framework of gravitational physics, while we also reviewed some of the most

well-known applications of this type of field in several proposed theories.

In this Chapter, we present more accurately scalar-tensor theories and

their generalization to Horndeski theory. This type of theory not only in-

cludes two kinds of fields, a tensor and a scalar, but the latter specifically

enters the theory through a nontrivial term, a nonminimal coupling term,

as we will illustrate.

1 Minimally coupled scalar field

Let us first concisely discuss the easiest example of a scalar field included

into a gravitational theory: a scalar field ϕminimally coupled to the Einstein-

Hilbert action. The theory takes the form

S =
1

2κ

∫
d4x
√
−g
[
R− 1

2
gµν∇µϕ∇νϕ

]
. (II.1)

Note that, for simplicity, we are neglecting any contribution from the matter

sector. The negative sign of the kinetic term for ϕ is important, since it

guarantees that the field has a positive energy and hence it is not a ghost,

that is a field whose negative norm cause lack of unitarity.

Let us now clarify why the scalar field in action (II.1) is said to be

minimally coupled to gravity. The Einstein equivalence principle, which

we mentioned in Chapter I, has as its ultimate formulation that the space

14
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tangent to any point of the curved spacetime should be Minkowskian. Fol-

lowing the approach of [29], we call this the covariant equivalence principle,

to identify it as a theoretical development of the weak equivalence principle,

which states that test particles in a gravitational field, when no other forces

are present, fall locally with a common acceleration. The ultimate equiva-

lence principle provides a useful tool to derive a physical law in the presence

of gravity from the one that holds in its absence. Starting from a theory

defined in flat Minkowski spacetime, one applies the following substitution

rule

ηµν → gµν , ∂µ → ∇µ. (II.2)

Thus, the kinetic term in action (II.1) is obtained from −1
2
ηµν∂µϕ∂νϕ, and

the scalar field ϕ couples to gravity only through
√
−g gµν . A gravitational

coupling obtained by applying this “minimum” rule is called a minimal

coupling. Conversely, a term is said to be “nonminimally” coupled when it

cannot be retrieved by applying this rule, so that in Minkowski spacetime

such term simply vanishes, as we will see in the next Section.

Lastly, the field equations for the theory described by action (II.1) are

Gµν = ∇µϕ∇νϕ−
1

2
gµν∇λϕ∇λϕ, (II.3a)

�ϕ = 0. (II.3b)

Focusing on Eq. (II.3a), if we identify the contribution from the scalar field

in a single tensor, that is we define Tϕµν ≡ ∇µϕ∇νϕ − 1
2
gµν∇λϕ∇λϕ, then

Eq. (II.3a) simply becomes the Einstein field equation where Tϕµν plays the

role of the scalar field stress-energy tensor. Thus, we can effectively interpret

the contribution of a minimally coupled scalar field as coming from the

matter sector, and rewrite action (II.1) as the Einstein-Hilbert action plus

the massless Klein-Gordon action for the field ϕ as the matter action.

2 Scalar-tensor theories

2.1 Scalar-tensor theories as effective field theories

In Section 1, we presented a theory with a minimal coupling between the

metric tensor and the scalar field; in the context of scalar-tensor theories,

however, the scalar field is introduced through a nonminimal coupling term.

An easy way to obtain such theory is to start from action (II.1) and pro-
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mote the coefficients of each terms to generic functions of the scalar field ϕ.

This approach can be motivated from an effective field theory perspective.

Typically, in such theories one performs a dimensional analysis and treats

the action as an expansion in momenta. Action (II.1), with the addition

of a scalar potential V (ϕ), can then be interpreted as the lowest order of

a generic effective field theory, in which terms with higher derivatives are

suppressed by some mass scale. One can then generalize the action by turn-

ing the coefficients to each terms into functions of the scalar field itself, the

result is

S =
1

2κ

∫
d4x
√
−g
[
F (ϕ)R− 1

2
G(ϕ)gµν∂µϕ∂νϕ+ V (ϕ)

]
+ SM(gµν , ψM). (II.4)

Note that we also simplified our notation by substituting the covariant

derivative of a scalar field with a partial one. Action (II.4) represents the

most generic way to write a scalar-tensor theory and it allows us to em-

phasize the unique feature of these models encapsulated in the particular

type of coupling between the scalar field and gravity. Indeed, following

the prescription we gave in Section 1, the first term on the right-hand side

of (II.4) cannot be obtained by the “minimum” rule, and in flat Minkowski

spacetime it just vanishes. Hence, the scalar field is nonminimal coupled to

gravity.

Historically, the nonminimal coupling term between the scalar field and

the Ricci scalar was first introduced in the 1950s by Jordan [28], de facto

marking the birth of scalar-tensor theories. This precursory model can be

retrieved from action (II.4) by fixing F (ϕ) = ϕγ, G(ϕ) = 2ωJ/ϕ
2−γ and

V (ϕ) = 0, where γ and ωJ are some constants.

In the next Section, we focus on a particular class of such theories, that

is Brans-Dicke theory. In Section 2.3, we return to the broader framework

of scalar-tensor theories and we provide some further considerations on ac-

tion (II.4).

2.2 Brans-Dicke theory

A specific class of theories that stems from action (II.4) is the so-called

Brans-Dicke model. It is generally viewed as a prototype, since it is based

on certain assumptions made for the sake of simplicity and, being over-
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simplified, it is generally not welcomed as entirely realistic. Inspired by

the work done by Jordan [28], Brans and Dicke developed their theory in

1961 [56], simplifying the choice for the coupling function F (ϕ) by simply

identifying it with the scalar field itself. The action proposed in their work

is

SBD =
1

2κ

∫
d4x
√
−g
[
ϕR− ω0

ϕ
gµν∂µϕ∂νϕ

]
+ SM(gµν , ψM), (II.5)

where ω0 is the Brans-Dicke parameter. Note that the Brans-Dicke action

can be retrieved from (II.4) by choosing F (ϕ) = ϕ, G(ϕ) = 2ω0/ϕ and a

vanishing potential, that is it corresponds to the Jordan model with γ = 1.

By comparing the first right-hand side term of action (II.5) with the

Einstein-Hilbert term, one can notice how, instead of being characterized

by a gravitational “constant”, the Brans-Dicke model has an effective grav-

itational constant defined by Geff = ϕ/2κ as long as the dynamical field ϕ

varies slowly. In particular, in a cosmological framework, the scalar field

is a function of the cosmic time to a first approximation, allowing us to

consider ϕ to be spatially uniform. Nevertheless, if there is in fact a time

dependence of Geff, it should be of order of 10−10 or less in a year [29], thus

the time variability can be significant only at cosmological time scales.

Focusing on the second term on the right-hand side of the Brans-Dicke

action, we emphasize that this kinetic term has an unusual form. Indeed,

on one side the presence of a pole at ϕ = 0 suggest the appearance of

a singularity, on the other there is a multiplying parameter ω0. These

peculiarities, however, can both be reabsorbed by a redefinition of the scalar

field and the kinetic term can be cast into the standard canonical form.

Indeed, performing the transformation

ϕ→ ϕ =
1

2
ξΦ2, (II.6)

with ξ−1 = 4ω0, then the kinetic term of action (II.5) can be rewritten as

− 1

2
gµν∂µΦ ∂νΦ, (II.7)

at the price of now having a quadratic coupling between the scalar field and

the Ricci scalar [29].

We now highlight an important feature of the Brans-Dicke action. Let

us start by considering the weak equivalence principle. This law is based on
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the empirical fact mI = mG, where mI and mG are respectively the inertial

and the gravitational mass1, nowadays tested with a precision of 1 part in

1013 [57]. It is then natural to demand that this equivalence must hold for

the Brans-Dicke model as well. This is indeed guaranteed by the fact that

the scalar field is not contained in the matter action, as it is manifest from

Eq. (II.5). This can be explained in a non-rigorous way by considering a

point particle whose field equation, in general relativity, can be derived from

the action

SM = −m
∫
dτ, (II.8)

where τ is the proper time and m is the inertial mass of the point particle

itself. The latter only appears as an overall factor, thus it does not affect

the trajectory in spacetime of the point particle. As a consequence, the

universal free-fall stated in weak equivalence principle is satisfied. If the

scalar field appeared in the matter action, however, the inertial mass would

have a dependence on ϕ, i.e. m(ϕ), and it would be impossible to factor

it out of the integral, thus violating the weak equivalence principle. Note,

however, that, due the presence of a dynamical scalar field, the Brans-

Dicke theory, and more in general scalar-tensor theories, violates the strong

equivalence principle, a generalization of the weak equivalence principle to

self-gravitating bodies as well as test bodies. The reason for this lies in

the dependency of the effective gravitational constant on the scalar field.

In fact, when a self-gravitating object moves in a region of the spacetime

where ϕ is not constant, its internal gravitational energy, and consequently

its total mass-energy, varies [58].

After these considerations, we derive the field equations from action (II.5).

The result is

Gµν =
κ

ϕ
Tµν +

ω0

ϕ2

(
∂µϕ∂νϕ−

1

2
gµν∂λϕ∂

λϕ

)
− 1

ϕ
(gµν�ϕ−∇µ∂νϕ), (II.9a)

�ϕ =
1

2ϕ
∂λϕ∂

λϕ− ϕ

2ω0

R, (II.9b)

∇µT
µν = 0. (II.9c)

Taking the trace of Eq. (II.9a), we can write the Ricci scalar in terms of

ϕ and the stress energy tensor, which allows us to rewrite the scalar field

1The proper relation between the inertial and the gravitational masses is mI/mG =
const, however by choosing adequate units of measurement this ratio can be set equal to
unity.
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equation as

�ϕ = ζκT, (II.10)

where we have defined ζ−1 = 3 + 2ω0. Eq. (II.10) is particularly insightful.

First of all, it shows that the scalar field is sourced from the stress-energy

tensor. This might seem contradictory, given the assumption that the scalar

field is not present in the matter action. However, the underlying reason

for this “mixing mechanism” lies in the nonminimal coupling term, since

it provides an interaction between the scalar field and the metric tensor.

Therefore, the decoupling in the matter action imposes a restriction on how

ϕ couples to matter, rather than forcing ϕ to not be related to the matter

fields.

Secondly, Eq. (II.10) indicates that the scalar field mediates a long-

range force between massive objects, similarly to the Newtonian force in

the weak field limit of general relativity. However, imposing that the theory

is in accordance with experimental result leads to a heavy constraint on the

Brans-Dicke parameter. Indeed, from the Cassini experiment, today we have

ω0 > 4× 104 [59]. This was an initial problem for the validity of the theory.

However, considering a scalar field potential, e.g. introducing a mass term,

one can bypass the issue of the value of the Brans-Dicke parameter. Indeed,

if the field acquires a nonzero mass, so that the corresponding force-range

of the scalar force turns out to be smaller than the size of the solar system,

it no longer affects physical phenomena well explained by general relativity,

such as the perihelion advance of Mercury. In this case, the constraint

mentioned before can be evaded.

Lastly, note that the coupling in Eq. (II.10) vanishes if ω → ∞. Thus,

in this limit, the theory reduces to general relativity with a constant scalar

field playing the role of a cosmological constant.

2.3 Conformal transformations and field redefinitions

We conclude this Section with a further discussion on action (II.4). In

defining the action for scalar-tensor theories, we intentionally wrote it in

the most generic way possible. However, in the literature, the coupling

term between the Ricci scalar and the scalar field is typically identified as

being simply ϕR. This can always be achieved starting from action (II.4)

by performing a redefinition of the scalar field, without losing generality.
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Indeed, let us consider the following redefinition

F (ϕ) = φ. (II.11)

Note that we are here improperly using the connotation “field redefinition”,

since the mapping in Eq. (II.11) is not a diffeomorphism. Indeed, we are

effectively narrowing the space of solutions for the scalar field to that of only

positive values of φ. Thus, a mapping like the one in Eq. (II.11) becomes an

actual field redefinition, provided that ones suitably restrict the domain and

codomain of the map. Throughout the work of this thesis, to streamline

the presentation, we do not explicitly specify the relevant domains and

codomains of each field redefinitions, which is the standard practice in the

literature.2

Using Eq. (II.11), we can rewrite action (II.4) as

S =
1

2κ

∫
d4x
√
−g
[
φR− ω(φ)

φ
gµν∂µφ ∂νφ+ V (φ)

]
+SM(gµν , ψM), (II.12)

where V (φ) is the potential rewritten in terms of the new scalar field φ and

we have also defined

ω(φ) =
φG(ϕ)

2F ′(ϕ)2
, (II.13)

so that action (II.12) can be seen as a generalization of the Brans-Dicke

action, namely Eq. (II.5), where ω0 → ω(φ). Eq (II.12) is the conventional

way to write the action of scalar-tensor theory in the so-called Jordan frame

and gµν is identified as the “Jordan frame metric”. Such frame is defined as

that where the coupling between the scalar field and gravity enters through

the φR term and where the scalar field does not appear in the matter action,

which we remind is a necessary assumption to preserve the weak equivalence

principle.

The field equations for action (II.12) are

Gµν =
κ

φ
Tµν +

ω(φ)

φ2

(
∂µφ∂νφ−

1

2
gµν∂λφ∂

λφ

)
(II.14a)

− 1

φ
(gµν�φ−∇µ∂νφ) +

1

2φ
gµνV (φ),

2Note that the generalized theory studied in this thesis, defined in Eq. (V.1), is in-
variant under sign redefinition of the scalar field. Thus, even though performing a field
redefinition on the theory one “selects” only half the space of solutions, we are not
neglecting any possible scenario.
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�φ =
1

2φ
∂λφ∂

λφ− φV ′(φ)

2ω(φ)
− φR

2ω(φ)
− ω′(φ)

2ω(φ)
∂λφ∂

λφ. (II.14b)

It is often convenient to rewrite action (II.12) in a different frame. In

order to do so one has to perform what is called a conformal transformation.

Let us first introduce the concept of conformal transformation. Given a

smooth D-dimensional manifold M , we consider two Lorentzian metrics gµν

and g̃µν , which define two spacetimes (M, gµν) and (M, g̃µν). A conformal

transformation from the metric gµν to g̃µν is defined as

g̃µν(x) = Ω2(x)gµν , (II.15)

where Ω is called the conformal factor and it is a smooth, non vanishing

spacetime function. Performing a conformal transformation on the metric

tensor is de facto a rescaling of the metric itself. It allows to switch from a

reference frame to another by shrinking or stretching the distances between

two points described by the same coordinate system on the manifold, but

preserving the angles between vectors, thus preserving the global causal

structure of the manifold. Indeed, the definition in Eq. (II.15) is equivalent

to apply the transformation directly to the line element, that is

ds̃2 = Ω2ds2. (II.16)

Note that a conformal transformation changes distances by a rate that dif-

fers from point to point on the space-time manifold and this is done isotrop-

ically in a four-dimensional space, i.e. it changes spatial distances and time

interval at the same rate. Moreover, Eq. (II.16) shows that a conformal

transformation is different from a coordinate transformation, since the lat-

ter leaves the line element invariant. Naturally, a conformal transformation

affects also the geometric quantities related to the metric and the matter

terms, such as the stress-energy tensor. The corresponding transformation

rules are given in Appendix A.

The two metrics gµν and g̃µν are called conformally equivalent. Never-

theless, it has to be stressed that the field equations that describe the same

physical phenomena in the two conformal frames are not formally equiv-

alent. A simple proof of this statement is that the conservation law does

not generally hold under a conformal transformation. Indeed, let us assume

that in the frame described by the metric gµν the conservation law stands,
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that is

∇µT
µν = 0. (II.17)

Making use of the relations provided in Appendix A, Eq. (II.17) can be

rewritten in the conformal frame as

∇̃µT̃
µν = −∂

νΩ

Ω
T̃ . (II.18)

As previously anticipated, from Eq. (II.18) it is clear that, if the stress-

energy tensor is conserved in the frame described by the metric gµν , it is

still conserved in the frame with the metric g̃µν only if its trace is null, a

condition that is not valid for all kind of matter.

Let us now perform the following conformal transformation on the Jor-

dan metric of action (II.12)

gµν → g̃µν = φgµν , (II.19)

where we have defined the conformal factor as Ω =
√
φ. The Jordan frame

action can thus be rewritten as

S =
1

2κ

∫
d4x
√
−g̃
[
R̃− 3

2

∂λφ∂
λφ

φ2
− ω(φ)

2

∂λφ∂
λφ

φ2
+
V (φ)

φ2

]
+ SM(φ−1gµν , ψM)

(II.20)

If we further perform a field redefinition φ→ φ̃ defined as [60](
d logφ

dφ̃

)2

=
2κ

3 + 2ω(φ)
, (II.21)

up to integration constants, action (II.20) can be rewritten as

S =

∫
d4x
√
−g̃

[
R̃

2κ
− 1

2
∂λφ̃∂

λφ̃+ U(φ̃)

]
+ SM

(
g̃µν

φ(φ̃)
, ψM

)
, (II.22)

where we have defined the new potential as

U(φ̃) =
V (φ)

φ2
. (II.23)

Action (II.22) represents scalar-tensor theory in the so-called Einstein frame.

It is often useful to perform calculation in such frame since the gravity action

is formally equivalent to that of a scalar field minimally coupled to gravity,
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i.e. Eq. (II.1), with the addition of a scalar field potential. However, the

“price” to pay is the introduction of a nonminimal coupling between the

scalar field and the matter fields. Indeed, as a consequence of the conformal

transformation, now the scalar field appears in the matter action through

the conformal factor. Thus, in the Einstein frame the conservation law of

the stress-energy tensor does not hold, which means that the weak equiva-

lence principle does not hold in this frame. Matter, then, does not follow the

geodesics of the Einstein metric g̃µν , but instead those of the Jordan met-

ric or a conformally equivalent metric that does not introduce a coupling

between matter and the scalar field.

The field equations in the Einstein frame read as

G̃µν = κT̃µν + κ

(
∂µφ̃∂νφ̃−

1

2
∂λφ̃∂

λφ̃

)
+ κ g̃µνU(φ̃), (II.24a)

�̃φ̃ =
1

2

d logφ

dφ̃
T̃ − U ′(φ̃). (II.24b)

We conclude this Section with one last final remark. Actions (II.12)

and (II.22) are simply different representations of the same theory. There

is nothing exceptional about the Jordan or the Einstein frame, and one can

actually find infinitely many conformal frames [61,62].

3 Horndeski gravity

In Section 2, we derived the action for scalar-tensor theories by considering

only the lowest order terms of an expansion in the scalar field derivatives

of a generic effective field theory, i.e. suppressing higher order derivatives

of the scalar field. However, we can relax this assumption, and still be able

to construct an effective action while controlling the number of degrees of

freedom of the theory by requiring that the theory yields second order field

equations.

This approach has been used in [63], where they obtained the most

general scalar field theory with an action that depends on second order

derivatives or less, but still has second order field equations for both the

metric and the scalar field. They thus provided the most general extension

to Galileons theories, mentioned in Chapter I. It was shown in [64] that the

action for generalized Galileon can be mapped to that of Horndeski action,

proving that the two theories are equivalent. Horndeski theory was first
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formulated in 1974 [65], under the requirements of a four-dimension theory

constructed from the metric gµν and a scalar field φ, and their derivatives

∂gµν , ∂
2gµν , ∂

3gµν , ..., ∂φ, ∂2φ, ∂3φ, ... but still having second-order field

equations. Note that the assumptions made by Horndeski are weaker than

those of [63]. Indeed, he allows for the action to contain higher order deriva-

tives, this, however, still leads to the same result as [63].

3.1 Action and field equations

Let us now present Horndeski theory. As we have already mentioned, the

action of the theory is obtained by considering all of the possible operators

constructed with derivatives of the metric tensor and the scalar field which

still leads to second order field equations. Each of these operators is coupled

to generic functions Gi of the scalar field φ, with i = 2, ...5, and a dynamical

term defined as

X = −1

2
∂µφ∂

µφ. (II.25)

Following the notation of [64], the action for the theory can then be written

as

S =
1

2κ

5∑
i=2

∫
d4x
√
−gLi + SM, (II.26)

where we have defined

L2 =G2(φ,X), (II.27a)

L3 = −G3(φ,X)�φ, (II.27b)

L4 =G4(φ,X)R +G4X [(�φ)2 − (∇µ∇νφ)2], (II.27c)

L5 =G5(φ,X)Gµν∇µ∇νφ

−G5X

6

[
(�φ)3 − 3�φ(∇µ∇νφ)2 + 2(∇µ∇νφ)3

]
, (II.27d)

and GiX = ∂Gi/∂X. Note that we have used the shorthanded forms

(∇µ∇νφ)2 = ∇µ∇νφ∇µ∇νφ, (∇µ∇νφ)3 = ∇µ∇νφ∇ν∇λφ∇λ∇µφ, in the

expressions for Li. In principle, the second derivative terms in the action

would lead to third order derivative in the equations. However, the action is

constructed in such a way that these terms would cancel identically, leaving

ghost-free second order equations. Furthermore, the nonminimal coupling

to gravity in L4 and L5 are essential to eliminate higher order derivatives

that would otherwise appear in the field equations.

We stress that we are presenting the theory in the so-called Jordan frame,
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since in action (II.26) matter is assumed to couple minimally to the metric

only.

Scalar-tensor theory studied in Section 2 can clearly be retrieved as a

particular case of Horndeski theory by choosing

G2 = 2
ω(φ)

φ
X + V (φ), G4 = φ, G3 = G5 = 0. (II.28)

Lastly, varying the action with respect to the metric gµν and the scalar

field φ yields respectively

5∑
i=2

Giµν = κTµν , (II.29)

5∑
i=2

(
P i
φ −∇µJ iµ

)
= 0. (II.30)

See Appendix B for the definition of Giµν , P i
φ and J iν and for the explicit

form of Eq. (II.30).

3.2 Disformal transformations

It is natural to ask whether one can generalize the concept of conformal

transformation to the case of Horndeski theory and if this can offer more in-

sights into this type of models. In fact, it has been shown that action (II.26)

is formally invariant under the following transformation [66]

gµν → C(φ) [gµν +D(φ)∇µφ∇νφ] . (II.31)

This type of transformation is known as special disformal transformation.

The functions C(φ) andD(φ) are free functions of the scalar field. Note that,

when D = 0, Eq. (II.31) reduces to a conformal transformation, whereas

for C = 1 one has a so-called purely disformal transformation.

Disformal transformations were first introduced by Bekenstein in a more

general form in which C and D are also allowed to depend on X [67], such

that

g̃µν = C(X,φ) [gµν +D(X,φ)∇µφ∇νφ] . (II.32)

While a conformal transformation can be seen as a change of local units of

length, the disformal transformation can be interpreted as a change of local

units of length for which the units for intervals along the gradient of φ are
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different than those for intervals orthogonal to it [67]. Indeed, disformal

transformations can distort the causal structure of the spacetime. The line

elements are related by ds̃2 = Cds2+D(∇µφ dx
µ)2, so that, assuming C > 0,

a 4-vector which is null with respect to gµν will be space-like or time-like with

respect to g̃µν depending on whether D is positive or negative locally [68].

In the already mentioned work of [66], it was shown that performing

a general disformal transformation of the type of (II.32) on the Horn-

deski action introduces terms that cannot be expressed in the form (II.27).

The action is formally invariant only under the special transformation, i.e.

Eq. (II.31). Nevertheless, the transformation of Eq. (II.32) still provides

a powerful tool to construct new gravitational theories based on pairs of

disformally related geometries. Indeed, a particular class of theories, the

so-called degenerate higher-order scalar-tensor theories, or DHOST theo-

ries, is invariant under the general disformal transformation [69]. They

were originally identified in [70], as a broad class of theories that due to the

degeneracy of their Lagrangian are able to avoid the Ostrogradski’s theorem,

for which nondegenerate Lagrangians with higher order derivatives lead to

ghost-like instabilities, also known as Ostrogradski instabilities [71–73]. A

degenerate theory is identified by a Lagrangian that, after introducing aux-

iliary variables to replace the second order time derivatives by first order

time derivatives, has a degenerate kinetic matrix, which is composed by

the coefficients of the kinetic terms. They have later been systematically

classified up to cubic order in [74].

Finally, we stress that DHOST theories are an extension of the Horndeski

theory, as well as Beyond Horndeski theory, a generalization of Horndeski

theories that leads to higher order field equations. Horndeski theory can

thus be seen as a particular subclass of DHOST.

4 Scalar Gauss-Bonnet gravity

We conclude this Chapter by considering a specific class of scalar-tensor the-

ories: scalar Gauss-Bonnet gravity. This model is characterized by a non-

minimal coupling between the scalar field and gravity through the Gauss-

Bonnet term

G = R2 − 4RµνR
µν +RµνρσR

µνρσ (II.33)

The action then contains quadratic contractions of the Riemann and Ricci

tensors. Note that in four-dimension G is a topological invariant, thus
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including this term in the Einstein-Hilbert action can introduce modification

to general relativity only when the Gauss-Bonnet invariant is coupled to a

nonzero scalar field. This quadratic gravity model can be seen as a low

energy effective string theory [75–79].

4.1 Coupling with the Gauss-Bonnet invariant

Let us present the action for scalar Gauss-Bonnet gravity

S =
1

2κ

∫
d4x
√
−g
[
R− 1

2
gµν∂µφ ∂νφ+ f(φ)G

]
+ SM(gµν , ψM), (II.34)

where f(φ) is a generic coupling function. In literature, typical choices for

the coupling functions are

• f = αeφ, with α as a coupling constant, corresponding to Einstein-

dilaton-Gauss-Bonnet gravity [80,81],

• f = σφ, with σ as a coupling constant, referred to as shift-symmetric

scalar Gauss-Bonnet gravity [82],

• f = λφ2/2, with λ as a coupling constant, labeled as quadratic scalar

Gauss-Bonnet gravity [50–52].

Maintaining an implicit expression for the coupling function, the field

equations for action (II.34) are

Gµν = κTµν + T φµν (II.35)

�φ = −f ′(φ) G , (II.36)

where we have identified a stress-energy tensor for the scalar field defined

as [81]

T φµν =
1

2
∂µφ ∂νφ−

1

4
gµν∂λφ ∂λφ−

1

g
gµ(ρgλ)νε

κλαβεργστRσταβ∇γ∂κf, (II.37)

where εκλαβ is the Levi-Civita tensor.

4.2 The Gauss-Bonnet term in Horndeski gravity

From Eqs. (II.35)-(II.36), one can clearly see that scalar Gauss-Bonnet grav-

ity leads to second order field equations. It must then belong to the Horn-

deski class. In fact, even if action (II.34) is not manifestly in the Horndeski
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form presented in Section 3, it has been shown that the nonminimal cou-

pling between the Gauss-Bonnet invariant and f(φ) can be reproduce in the

formalism of action (II.27) by taking [64]

GGB

2 =8f (4)X2(3− lnX),

GGB

3 =4f (3)X(7− 3lnX),

GGB

4 =4f (2)X(2− lnX),

GGB

5 =− 4f (1)lnX,

(II.38)

where, for simplicity, we defined f (n) ≡ ∂nf/∂φn. Note that the GGB
i func-

tions of the Horndeski representation are nonanalytic in X; nevertheless,

there is an analytic representation of the action, namely Eq. (II.27), and

the field equations are analytic at X = 0. This observation is crucial for

the analysis that we perform in Chapter IV.



Chapter III

Spontaneous scalarization of

compact objects

In Chapter I, we outlined the issue of scalar imprints at low energy. If

they are in fact present as an additional degree of freedom, they must in

some way be screened in regimes of weak gravity, where one expects to

retrieve general relativity as the correct gravitational theory in accordance

with observations. We then showed how screening mechanisms have been

used in the literature in different context.

Here, and throughout the thesis, we focus on a specific phenomenon, the

so-called spontaneous scalarization. This mechanism provides an elegant

way to dress a compact object with a scalar hair, while still admitting

general relativity solutions far away from the object itself.

We first provide a detailed analysis of the phenomenon in Section 1. We

then proceed to present two well-known examples of this mechanism, the

first one for scalar-tensor theories, and the second one for scalar Gauss-

Bonnet gravity.

1 The spontaneous scalarization mechanism

In Chapter I, we briefly presented the phenomenon of spontaneous scalar-

ization as a phase transition mechanism, where, when a specific threshold is

crossed, general relativity solutions are no longer stable and scalarized so-

lution are instead favoured. In this Section we aim to give a more thorough

description of the phenomenon itself.

29
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1.1 Tachyonic instability

Let us first discuss the onset of the mechanism. We have mentioned that,

at a linear level, spontaneous scalarization is triggered by a tachyonic in-

stability. A tachyon is a wave degree of freedom whose frequency becomes

imaginary due to a negative mass square. Indeed, given the Klein-Gordon

field equation

�φ−m2 φ = 0, (III.1)

and assuming φ ∝ e−iωt+ik·x, one can retrieve the dispersion relation for the

scalar field, that is

ω2 = k2 +m2. (III.2)

For sufficiently low wave numbers k and negative mass square, the frequency

ω becomes imaginary. This leads to an exponential growth of the field and

consequently to an instability.

For a generic theory to present this kind of instability, and hence being

affected by spontaneous scalarization, the scalar field equation must then

have the following behavior

�φ+ I(gµν)φ+ h.p.t. = 0, (III.3)

where I(gµν) is a generic spacetime invariant and in the last term we include

all higher power terms that do not contribute at the linear level. Note that

a crucial aspect of spontaneous scalarization is that it consists of a phase

transition from general relativity branches of solutions to scalarized ones.

Thus, the theory should first of all admits the former, that is Eq. (III.3)

should be satisfied for a constant φ = φ0. This requirement puts some

model-dependent conditions on the theory itself.

If one performs a linear analysis of Eq. (III.3) around a constant scalar

field background, i.e. a general relativity background, the result is

�δφ−m2
eff δφ = 0, (III.4)

which is exactly Eq. (III.1) for the scalar perturbation δφ and where we

identified the spacetime invariant as an effective mass square, that is m2
eff =

−I(gµν). It is then clear that if in Eq. (III.4) the sign of the mass like term

has the same sign of the principal term, that is m2
eff < 0, then the scalar

field is indeed affected by a tachyonic instability. Note that we did not

make any assumption on the nature of I(gµν) that constitutes the effective
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mass square, apart from requiring that it has the right sign to trigger the

instability.

As long as the theory presents the behavior of Eq. (III.4), it can develop

spontaneous scalarization. In Section 2 and 3 we will present two specific

cases. For the case of scalar Gauss-Bonnet it is easy to see that the invari-

ant is in fact the Gauss-Bonnet term. For the Damour and Esposito-Farèse

model it is less straightforward, since the theory is studied in the Einstein

frame. Once one conformally transforms it back to the Jordan frame, lin-

earizing the scalar field equation, it is clear that the Ricci scalar is the term

that plays the role of the effective mass square.

We point out that the instability is a purely linear effect and, further-

more, it is constrained to a specific region of the spacetime. Indeed, the

invariant coupled to the scalar field appears as a constant only when one

zooms in a small patch, realistically it is a scalar function of the spacetime

itself. Thus, there might be some region of the spacetime where the effective

mass square is non-negative and the instability is not developed. This is

what makes spontaneous scalarization a screening mechanism. It allows the

compact object to acquire a non-trivial scalar configuration only in certain

parts of the spacetime, typically inside or close to the compact object, while

the solutions will reduce to those of general relativity where experimental

observations require it, e.g. far away from a black hole or a neutron star.

Thanks to the existence of a scalarization threshold, the theory thus has

two branches of solutions.

As a last remark, we want to stress that in curved spacetime, the ef-

fective mass square being negative is a necessary condition for spontaneous

scalarization, but not sufficient. The effect of the curvature can in fact stabi-

lize the spacetime, and the instability is triggered only if a certain threshold

is exceeded. This is not the case of Minkowski spacetime, where a negative

mass square is already sufficient to trigger the instability.

1.2 The contribution of non-linearities

The spontaneous scalarization process is completed once one takes into con-

sideration the nonlinearities of the system, which are all included in the

third term of Eq. (III.3). Indeed, if the nonlinearities are strong enough,

they will eventually suppress the instability, leaving a stable configuration

of the scalar field around the compact object.

This behavior is illustrated in Fig. III.1, where we present the effective
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m2
effφ

2

−m2
effφ

2

−m2
effφ

2 + λφ4

φ

Veff(φ)

Figure III.1: Effective potential for the scalar field in a local patch in the
case of a positive mass square (solid black line) or a negative one (dashed
black line). The black dot in the middle is a stable position for the m2φ2 po-
tential, whereas it is an unstable maximum for the −m2φ2 potential. Once
nonlinearities switch on (blue solid line), the tachyonic potential becomes
bounded from below. The φ = 0 is still an unstable maximum, but two new
minima appear, favouring the scalar field phase transition.

potential felt by the scalar field in a local patch. The solid black line repre-

sents the case of a positive effective mass square, where it is clear that the

potential has a stable minimum. However, when the effective mass square

is negative, shown in a dashed black line, this stable minimum becomes an

unstable maximum and the potential is not bounded from below. The field

is then subject to an instability. In Fig. III.1 we also show the effect of

nonlinearities. The solid blue line represent the potential with the addition

of a quartic contribution. While a local unstable maximum in the origin is

still present, the potential is now bounded from below, acquiring two new

stable minima.

This oversimplified example aims to simulate the phase transition of

spontaneous scalarization. When the potential is quadratic and well-behaved

general relativity solutions, i.e. solutions for which φ = 0, are stable. In the

case of the quartic potential, general relativity solutions exist, but are unsta-

ble. The theory, however, still admits stable solutions which are scalarized,

corresponding to the two stable minima in Fig. III.1.
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Note that in the oversimplified example of Fig. III.1 we neglected the

contribution of the curvature of the spacetime. As we mentioned in Sec-

tion 1.1, the curvature itself can stabilize the scalar field instability at the

nonlinear level. However, these gravitational effects are not always enough

to suppress other types of instabilities, such radial ones, and nonlinearities

needs to be present in the scalar field potential in order to get fully stable

solutions [83–85].

2 The Damour-Esposito-Farèse model

The phenomenon of spontaneous scalarization was originally investigated by

Damour and Esposito-Farèse in [49]. They discovered that, in the context

of scalar-tensor theory, neutron star underwent a phase transition. They

studied the theory in the Einstein frame in the case of a vanishing potential,

that is Eq. (II.22) with U = 0. For convenience, we report here the scalar

field equation for the theory, i.e. Eq (II.24b),

�̃φ̃ = α(φ̃)T̃ , (III.5)

where we have redefined

α(φ̃) ≡ 1

2

d logφ

dφ̃
=

1

2

√
2κ

3 + 2ω(φ)
. (III.6)

We remind that a tilde identifies a quantity in the Einstein frame and that

φ and φ̃ are related through the field redefinition defined in Eq. (II.21). The

specific choice taken in [49] for ω(φ) is

ωDEF(φ) = −3

2
− 1

4 β Logφ
, (III.7)

which corresponds to the following field redefinition

φ = e−
βκ
2
φ̃2 , (III.8)

where β is dimensionless parameter. Note that we rescaled the quantities

of [49] to our formalism. As a consequence of Eq. (III.8), we can rewrite

α(φ̃) = −βκ φ̃/2.

The theory is covered by a no-hair theorem [86–88], thus all scalar con-

figurations for black holes are trivial. Indeed, observing Eq. (III.5), it is
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clear that in vacuum, where T = 0, the scalar field is not excited and all

solutions are general relativity solutions with φ̃ = φ̃0 = const.

In the presence of matter, however, the Einstein frame scalar field φ̃ is

coupled to the matter stress-energy tensor, while α(φ̃) plays the role of the

effective coupling constant between the two. Hence, one can possibly re-

trieve other solutions different to those of general relativity. The stability of

the latter depends on the behavior of the scalar perturbations δφ̃, governed

by the equations

�̃δφ̃+
1

2
βκ T̃ δφ̃ = 0, (III.9)

The term −κβT̃/2 plays the role of an effective mass m2
eff for the scalar

perturbation. If we assume matter to be described by a perfect fluid, then

we have TPF
µν = (ε + p)uµuν + p gµν , where ε, p and uµ are respectively

the energy density, the pressure and the 4-velocity of the fluid. We then

have TPF = 3p − ε. For a highly compact neutron star, if ε > 3p, the

trace of the stress-energy tensor becomes negative. Thus, if a negative β

yields a sufficiently negative effective mass square, it triggers a tachyonic

instability for the scalar field. Therefore, a threshold exists below which

scalarized solution are favoured with respect to those of general relativity,

which are indeed unstable. Notably, a curved spacetime is destabilized only

if such threshold is exceeded, while for a Minkowski spacetime any negative

effective mass squared will cause an instability.

As we have already emphasized in Section 1, this instability, however,

is a linear phenomenon. Solving the full system of equations, one can find

a new stable solution with a non-trivial configuration of the scalar field

surrounding the neutron star. This is possible thanks to the nonlinearities

of the system, which can quench the instability, yielding a new branch of

solutions. In Ref. [49], they found that scalarized solutions exist when

β ≤ −4.5. This result was later improved by Ref. [89], where it was found

β ≤ −4.35. Note that the exact value of β associated with the threshold

for the tachyonic instability depends on the choice of equation of state one

uses for describing the neutron star model and on the initial value of the

central energy density of the star.
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3 Scalarization with scalar Gauss-Bonnet grav-

ity

The limit of the mechanism originally proposed by Damour and Esposito-

Farèse is its application only to neutron stars. As we mentioned in Section 2,

scalar-tensor theory is covered by a no-hair theorem [86–88], thus all solu-

tions in vacuum are those of general relativity.

It was recently shown, however, that scalar Gauss-Bonnet gravity, i.e.

action (II.34), can exhibit spontaneous scalarization for both black holes

and neutron stars [50–52]. We report here the scalar field equation, that is

Eq.(II.36), for the reader’s convenience,

�φ = −f ′(φ) G . (III.10)

The theory does not admit φ = const solutions unless

f ′(φ0) = 0, (III.11)

for some constant φ0. Eq. (III.11) can be interpret as a condition for gen-

eral relativity solutions to exist, we thus focus on theories that satisfy it.

Note that such requirement discards two of the subclasses we presented in

Chapter II, namely Einstein-dilaton-Gauss-Bonnet gravity with f ∼ eφ and

shift-symmetric scalar Gauss-Bonnet with f ∼ φ.

As for the previous model, studying the behavior of the scalar pertur-

bation provides insights on the stability of general relativity solutions. Lin-

earizing Eq.(III.10) around a fixed background solution to general relativity,

namely φ = φ0, gives

�δφ+ f,φφ(φ0)G δφ = 0. (III.12)

Once again, we can interpret −f,φφG as an effective mass square for the

scalar perturbation. When such effective mass square is negative, i.e. when

f,φφG > 0, the theory can be affected by a tachyonic instability and the

scalar field can grow exponentially. Remarkably, it was shown in Refs. [50,

52] that, in the case where the effective mass is positive, the general relativ-

ity configurations for this theory are unique, that is under such condition

the theory is covered by a no-hair theorem. Hence, the condition on the

effective mass arises naturally in the context of a no-hair theorem. Note
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that, in contrast with the Damour and Esposito-Farèse model, where spon-

taneous scalarization is induced by the presence of matter, in this case the

scalarization is caused by the curvature of the spacetime itself.

In Ref. [50], they focused on quadratic scalar Gauss-Bonnet gravity

choosing the specific coupling function f = ηφ2/8. They first solved (III.12)

on a fixed background, thus neglecting the backreaction from the metric.

As a result, they found that the equation admits a non-trivial solution for a

discrete spectrum of values of the coupling parameter η. By solving the full

set of equations, they showed that scalarized solutions can be found for both

black holes and neutron stars. Interestingly, for black holes they exist when

the coupling parameter belongs to a set of “scalarization bands”, whereas

for neutron stars they can exist for both positive and negative values of η.

In Ref. [51] they considered a different coupling function f = λ2(1 −
e−3φ2/2)/12, rescaled to our formalism, and they showed that the theory

exhibits spontaneous scalarization for black holes. We point out that for

what concerns the onset of the instability, the model studied in Ref. [51]

reduces to the one considered in Ref. [50], upon suitable rescaling. Indeed,

Taylor-expanding the exponential coupling functions, the only contribu-

tion that renders the effective mass square non-vanishing comes from the

quadratic term. Nevertheless, higher power terms will come into play when

fully studying the set of equations, and will affect the final properties of the

scalarized compact objects.

We conclude this Chapter with a final remark. Throughout the work of

this thesis, we only work in the framework of spontaneous scalarization as

first identified by the work of Damour-Esposito-Farèse: a phase transition

triggered at linear level by a tachyonic instability and stabilized thanks to

the contribution of nonlinearities. It is, however, conceivable that other

mechanisms can trigger a similar phase transition or that the concept of

spontaneous scalarization can be extended to other field contents. We fur-

ther address this topic in the Conclusion of the thesis.



Chapter IV

Spontaneous scalarization in

Horndeski

The recent discovery of new models of scalarization in scalar Gauss-Bonnet

gravity have clearly demonstrated that the Damour and Esposito-Farèse

model is not unique in this respect. This suggests that there might be

more, yet to be discovered, theories that exhibit spontaneous scalarization.

In this Chapter, we present the work done in Ref. [90], where we address

this question for a scalar field that belongs to the Horndeski class.

We restrict our attention to the onset of scalarization. In particular, we

focus on the conditions that a theory must satisfy for scalarization to be

triggered by a tachyonic instability. As discussed already in Chapter III,

even though nonlinearities are essential for determining the fate of the insta-

bility and pinning down the end state [83,84], the onset of the instability can

be captured in the linear regime already. This implies that one can obtain

necessary conditions for spontaneous scalarization simply by inspecting the

linearized field equations and the contributions to the effective mass term

for the perturbation of the scalar. As a final result, we identify the minimal

action that contains all the terms that can potentially trigger spontaneous

scalarization.

1 Tachyonic instability in Horndeski gravity

1.1 General relativity as a solution

Our aim is to identify a subclass of Horndeski gravity affected by a tachyonic

instability around solutions of general relativity. Hence we need to impose

37
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that the theory actually admits as a solution any spacetime of general rel-

ativity with φ = φ0 = const. This requires imposing certain conditions on

the Gi functions of the Horndeski action in Eq. (II.27). These conditions

have been fully worked out for shift-symmetric classes [91] but not for the-

ories that do not respect shift symmetry (and hence, can have a bare or

effective mass).

The obvious thing one can do to do away with theories that do not admit

solutions φ = φ0 = const, or X = 0, is to require that the Gi functions be

analytic around X = 0. In this case one can expand them in a power series

in terms of X,

Gi = gi0(φ) + gi1(φ)X + . . . . (IV.1)

However, imposing analyticity for the Gi function is too restrictive1. As

discussed in Chapter III, scalar Gauss-Bonnet gravity is already known to

exhibit spontaneous scalarization, and it can be represented in the Horn-

deski framework through nonanalytic Gi functions at X = 0, as shown in

Chapter II. Hence, we should certainly relax our analyticity assumption on

the Gi functions in order to accommodate it. To this end, we rewrite the

Gi functions as a sum of an explicitly analytic part, which we label as G̃i,

and a nonanalytic part, coming from Eqs. (II.38). Explicitly we have

Gi(φ,X) = G̃i(φ,X) +GGB

i (φ,X), (IV.2)

G̃i(φ,X) = gi0(φ) + gi1(φ)X + . . . (IV.3)

where in Eq. (IV.3) we expanded G̃i as in Eq. (IV.1).

The results and classification of Ref. [91] for shift-symmetric theories

suggest that Gi functions that contain
√
|X| might be another form of mild

nonanalyticity that is compatible with general relativity solutions. However,

we do not explore this possibility further. Moreover, in principle, there could

be another type of non shift-symmetric theories described by nonanalytic Gi

functions that admit all of the solutions of general relativity. This deserves

further investigation, but we do not pursue it in this thesis.

Once one has imposed the above conditions on the Gi functions, the

terms −g30(φ)�φ and g21(φ)X appear in the action and they coincide up

to total derivative. Thus, without loss of generality we can set g30(φ) = 0,

which is equivalent to the redefinition g21(φ) → g21(φ) + 2g30φ(φ), where

1Another possibility is to extrapolate theories within Horndeski which admit general
relativity as a solution only at leading order [92]. However this goes beyond the scope of
this thesis.
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henceforth we use as convention that a subscript φ denotes a derivative with

respect to φ. Moreover, at the level of the linearized equations, which is our

interest here, the terms g41(φ) and −g50φ(φ) give the same contribution.

Hence, we similarly redefine g41(φ)→ g41(φ) + g50φ(φ).

Let us now look explicitly at the equations of motion. The metric sat-

isfies Einstein equations (II.29), which for any constant scalar field φ = φ0

read

Rµν −
1

2
gµνR + Λgµν = κ̃Tµν , (IV.4)

where

Λ = −g0
20/2g

0
40, κ̃ = κ/g0

40, (IV.5)

provided that g0
40 6= 0. The superscript 0 in g0

20, g0
40, etc., means that the

function is evaluated at φ = φ0. The equations above imply clearly that

the metric is a solution of general relativity Einstein equations and that all

solutions of Einstein’s equation are admissible.

Let us now take the scalar field equation (II.30), with the choice of

functions of Eq. (IV.2). One can show that only terms that contain up to

one derivative operator (which, in this case, can be only a second order

operator) acting on φ will contribute to the linearization of the equation

around the constant value φ0 made in the next paragraph. Hence, we keep

only these terms. We stress that first order derivatives do not contribute

to the linearized equations. Indeed, these terms appear at least in the form

∇φ∇φ, which, upon linearization, vanishes when the background field is

constant. With this prescription, the scalar field equation takes the form

g̃µν∇µ∇νφ+
g20φ + g40φR + f (1)G

A(φ)
= 0, (IV.6)

where

A(φ) = g21 + g41R, (IV.7)

and the effective metric reads2

g̃µν = gµν − 2g41R
µν

A(φ)
. (IV.8)

We now impose that φ = φ0 is a solution of Eq. (IV.6). There are two

2Note that the effective metric (IV.8) must have a Lorentzian signature in order for
the linearized equation to be hyperbolic and hence describe the time evolution of the
system. This imposes some further conditions on g21 and g41. In this work, we implicitly
assume that such conditions are satisfied.
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distinct cases for which this happens,

case I: g0
20φ + g0

40φR + f
(1)
0 G = 0,

A0 finite; (IV.9)

case II: g0
20φ + g0

40φR + f
(1)
0 G 6= 0,

A0 →∞, (IV.10)

where

A0 ≡ A(φ0) = g0
21 + g0

41R. (IV.11)

Case II is rather interesting, as it provides a way to have a general relativity

solution even when the term g20φ + g40φR+ f (1)G does not depend on φ at

all (or equivalently when g0
20φφ = g0

40φφ = f
(2)
0 = 0) and would otherwise act

as a source term for the scalar field. For example, as we see in more detail in

the next Section, standard scalar-tensor theories belong to case II, as they

correspond to g40 = φ, g41 = 0. They admit general relativity solutions

only when g21(φ) = 2ω(φ)/φ → ∞ for φ → φ0. Another interesting term

in this context is that with f = φ. As already mentioned, this choice leads

to the φG term, which is shift symmetric, and the Gauss-Bonnet invariant

would appear in the scalar field equation as a pure source for the scalar field.

Thus, only theories that satisfy condition (IV.10) can afford to include this

term and still admit general relativity solution. This possibility is absent in

shift-symmetric theories [91].

Note that an analysis similar to the one presented here has been con-

ducted in Ref. [93] for multiscalar-tensor theories, but with more restrictive

assumptions that appear to exclude case II.

1.2 Linearized scalar field equations

We now proceed to perform a linear analysis of Horndeski gravity in order

to determine all of the terms that can contribute to the linear tachyonic

instability that will eventually trigger the process of spontaneous scalariza-

tion.

Linearizing Eq. (II.30) divided by A(φ) [or equivalently Eq. (IV.6)] for

small δφ = φ− φ0 yields

g̃µν∇µ∇νδφ−m2
I δφ−m2

IIδφ = 0, (IV.12)
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where

m2
I = −

g0
20φφ + g0

40φφR + f
(2)
0 G

A0

, (IV.13)

m2
II =

g0
20φ + g0

40φR + f
(1)
0 G

A2
0

∂A

∂φ

∣∣∣∣
φ0

(IV.14)

are the effective masses obtained in the two separate cases. We notice that

the two cases give mutually exclusive contributions to the mass. Indeed, if

relation (IV.9) holds, then mII = 0; and when the condition (IV.10) holds,

mI vanishes. Note that in the latter case, A0 → ∞ and having a nonzero

effective mass mII requires that ∂A
∂φ

∣∣
φ0
→∞ is such that

1

A2
0

∂A

∂φ

∣∣∣∣
φ0

6= 0 and finite. (IV.15)

Hence, around φ = φ0 it must be A(φ) ∼ (φ− φ0)−1.

We can now single out the theories which can exhibit a tachyonic in-

stability around a general relativity background. They either satisfy con-

dition (IV.9) and have m2
I < 0 or they satisfy condition (IV.10) and have

m2
II < 0. We stress that our perturbative analysis is done around a general

relativity background and we perturb only the scalar without taking into

account its backreaction to the metric. This approximation (decoupling)

offers drastic simplification. In Chapter VI and Chapter VII, we provide a

complete study of the full set of field equations.

2 The minimal actions

We now analyze what the theories are that belong in one of the categories

we identified above. At first, we write down for each case the minimal action

that consists of all the terms that contribute to the linearized equation and

admits general relativity solutions when φ = φ0. Let us redefine the scalar

field such that φ0 = 0. The minimal action for case I is

SI =

∫
d4x

√
−g

2κ

[
R− 2Λ + (a21 + a41R)X + a41Rµν∇µφ∇νφ

−
(
m2
φ +

β

2
R− αG

)
φ2

2

]
+ SM, (IV.16)
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whereas for case II we have

SII =

∫
d4x

√
−g

2κ

[
R− 2Λ +

b21 + b41R

φ
X +

b41

φ
Rµν∇µφ∇νφ

+ (τ + η R + λG )φ

]
+ SM. (IV.17)

We normalized the actions (IV.16) and (IV.17) by the constant multiplying

R, which is equivalent to setting g0
40 = 1. Moreover, we can identify the

constants written in the actions (IV.16) and (IV.17) in terms of the function

gij evaluated at φ = 0,

Λ = −g
0
20

2
, τ = g0

20φ, m2
φ = −g0

20φφ,

a21 = (φ g21)0
φ, b21 =

(
φ2 g21

)0

φ
,

η = g0
40φ, β = −2 g0

40φφ,

a41 = (φ g41)0
φ, b41 =

(
φ2 g41

)0

φ
,

λ = f
(1)
0 , α = f

(2)
0 .

(IV.18)

The actions above could be supplemented with any term that does not

contribute to the linearized equations without affecting the onset of the

tachyonic instability. However, such nonlinear terms are crucial for de-

termining the end state of the instability and the properties of scalarized

solutions [83,84]. Hence, one can start from the minimal models above and

bootstrap their way to theories that exhibit scalarization but differ quanti-

tatively thanks to terms that introduce different nonlinear corrections.

So far we have treated case I and case II separately because they lead

to distinct contributions to the effective mass and, naively, they appear to

be qualitatively different. Actually, they are equivalent as different repre-

sentations of the same physics. Indeed, one can start from action (IV.17),

perform the scalar field redefinition

φ→ φ2 , (IV.19)

and obtain action (IV.16) with the correspondence of parameters

a21 = 4 b21, a41 = 4 b41,

m2
φ = −2 τ, β = −4 η, α = 2λ.

(IV.20)
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Hence, any theory in the minimal action of case II can be mapped onto

an equivalent case I theory, at least in what regards their linear behavior

and the onset of the tachyonic instability. This observation simplifies our

analysis and reduces significantly the different scenarios of scalarization.

Having shown that the two cases are equivalent, we now focus on the

action outlined in Eq. (IV.16) and consider each term that contributes to

the mass separately. This helps us identify its relation with known models

of scalarization. The term that contains X in the action (IV.16) contributes

to the effective mass only as a multiplicative constant on a general relativity

background. The parameter a21 can be set to 1 through a constant rescaling

of the scalar and we do so implicitly in what follows. The a41 is rather

distinct from the rest so, for the time being, let us set a41 = 0 and reduce the

X-dependent term to the canonical kinetic term. We relax this assumption

in the next Section.

The first term that contributes to the effective mass is the bare mass

of the scalar field m2
φ. If the mass square is negative, it could lead to a

tachyonic instability that would persist in flat space. So, we disregard this

possibility. If it is positive, it needs to be sufficiently small not to pro-

hibit the other terms from inducing a tachyonic instability. A small bare

mass can actually be beneficial, as it can help suppress the non-general rel-

ativity effects away from the compact object. One can generalize the bare

mass term to a full-fledged potential and this would introduce nonlinearities

that could affect the end point of scalarization [83]. However, it is rather

clear that a bare mass term or a potential cannot lead to scalarization by

itself. Nevertheless, Refs. [94–96] dynamically studied spontaneous scalar-

ization during the core collapse process for massive scalar-tensor theories

and showed that, if the scalar field is endowed with a mass, a wider range of

the parameter space is compatible with current gravitational observations.

Moreover, the scalar mass causes the gravitational wave signal to disperse

as it propagates. The signal thus carries a highly characteristic imprint of

the massive scalar-tensor theory, implying potential detection through ob-

servations or, in the case of nondetection, more stringent constraints on the

parameter space.

Next we consider the coupling term between φ and the Gauss-Bonnet

invariant. For the choice mφ = β = 0 (and a21 = 1, a41 = 0) one has the
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action

S =

∫
d4x

√
−g

2κ

[
R− 1

2
∇µφ∇µφ+

1

2
αφ2G

]
+ SM, (IV.21)

This is the quadratic coupling scalarization model considered in Ref. [50].

Allowing for a more general coupling function one gets the action considered

in Refs. [50,51],

S =

∫
d4x

√
−g

2κ

[
R− 1

2
∇µφ∇µφ+ f(φ)G

]
+ SM, (IV.22)

where, from the requirement that general relativity is a solution of the field

equations, that is the theory admits a constant scalar field solution, one can

infer that fφ(0) = 0. This condition guarantees that the leading term in

f(φ) is indeed φ2.

Finally, if we set mφ = α = 0, we have

S =

∫
d4x

√
−g

2κ

[(
1− βφ2

4

)
R− 1

2
∇µφ∇µφ

]
+ SM. (IV.23)

We can generalize this theory in a similar fashion as above and write

S =

∫
d4x

√
−g

2κ

[
F (φ)R− 1

2
∇µφ∇µφ

]
+ SM, (IV.24)

where we assume F (0) 6= 0. The condition (IV.9) implies Fφ(0) = 0, and

Fφφ(0) < 0 is the requirement for a tachyonic instability of the theory.

One may be tempted to think that this is a new model. However, we

recall that we can always perform a redefinition of the scalar field, as we

did to relate the minimal actions of case I and case II. Indeed, consider the

redefinition

Φ = F (φ) . (IV.25)

Action (IV.24) can be rewritten as

S =

∫
d4x

√
−g

2κ

[
ΦR− ω(Φ)

Φ
∇µΦ∇µΦ

]
+ SM , (IV.26)

if we just introduce the definition

ω(Φ) ≡ Φ

2F ′2(φ)
. (IV.27)
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Action (IV.26) is that of scalar-tensor theories for a scalar field Φ written

in the so-called Jordan frame, i.e Eq. (II.12). The condition Fφ(0) = 0

translates into ω(Φ0)→∞, where Φ0 = F (0). This picks a specific subclass

of scalar-tensor theories, which is precisely that originally considered by

Damour and Esposito-Farèse.

Indeed, the minimal model in action (IV.23) corresponds to F (φ) =

1− βφ2/4 and hence Φ = 1− βφ2/4,

ω(Φ) =
Φ

2β(1− Φ)
= − 1

2β
+

1

2β(1− Φ)
, (IV.28)

and Φ0 = 1. In Chapter III, we showed how the most commonly stud-

ied Damour and Esposito-Farèse model corresponds in the Jordan frame

to a choice for the ω function as in Eq. (III.7), which we report here for

convenience,

ωDEF(Φ) = −3

2
− 1

4 βDEFLogΦ
, (IV.29)

where we have used the subscript DEF to distinguish the commonly used

β parameter from our notation above. As Φ→ Φ0 = 1 one has

ωDEF(Φ)→ − 1

4βDEF(Φ− 1)
, (IV.30)

which is precisely the same behavior as our minimal model up to a redef-

inition of constants. The two models are indistinguishable at the linear

level.

We stress that the scalar field redefinition that related the F (φ)R model

with the Damour and Esposito-Farèse class was basically mapping a case I

theory onto a case II theory. Indeed, one can straightforwardly identify the

Damour and Esposito-Farèse class as a subcase of the action (IV.17), with

the constant coefficients generalized to functions of φ. Furthermore, these

results clearly show that some models that might appear as new are simply

combinations of known models rewritten after a scalar field redefinition. For

instance, the action

S =

∫
d4x

√
−g

2κ

[
φR + 2

ω(φ)

φ
X + ηφG

]
+ SM, (IV.31)

with the condition ω(φ0) → ∞ for some φ0 would yield a seemingly in-

triguing case II model upon linearization, but it can straightforwardly be

mapped onto a combination of actions (IV.22) and (IV.24).
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Our analysis allowed us to determine a minimal action that contains all

of the terms that contribute to the effective mass at linearized level, i.e.

action (IV.16). This can be thought of as containing four distinct terms

that contribute to scalarization. Through suitable field redefinitions, one

of them can be directly linked to the known Damour and Esposito-Farèse

model and another to the scalar Gauss-Bonnet scalarization models. The

third term comes from a potential for a scalar and, although it cannot trigger

spontaneous scalarization on its own, it affects the onset of the tachyonic

instability in all other models. In this Section we neglected the contribution

from the fourth term, parametrized by a41 in action (IV.16), consisting in

a coupling between the kinetic term and the Ricci scalar. We explore the

role of this term in the next Section.

3 Disformal transformations and matter cou-

pling

Hitherto, we have assumed that the matter couples minimally to the metric

only. Moreover, in the previous Section we set the coefficients a41 of the

action (IV.16) to the specific value a41 = 0. At linear level (which is our

main interest throughout this Chapter), it turns out that one can always do

so without loss of generality by relaxing the matter coupling assumption.

To show this, let us start with action (IV.16) and elevate all of the con-

stants to generic functions of φ (retaining the minimal coupling to matter,

described by some generic fields ψM),

S =

∫
d4x

√
−g

2κ

[
(g40(φ) + g41(φ)X)R + g21(φ)X

+ g41(φ)Rµν∇µφ∇νφ+ g20(φ) + f(φ)G
]

+ SM [gµν , ψM] . (IV.32)

We stress that the unknown functions of φ are assumed to be such that lin-

earizing this action around φ = 0 must yield (IV.16), with the identification

of the constants (IV.18). Consider now a special disformal transformation

as defined in Eq. (II.31), i.e. gµν → C(φ) [gµν +D(φ)∇µφ∇νφ]. As seen in

Chapter II, this transformation leaves the Horndeski action (II.26) formally

invariant [66,68]. Applying this transformation to (IV.32) and keeping only
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the terms which contribute to the linear level in the equations yields

S =

∫
d4x

√
−g

2κ

[
(ḡ40(φ) + ḡ41(φ)X)R

+ ḡ41(φ)Rµν∇µφ∇νφ+ ḡ21(φ)X + ḡ20(φ) + f(φ) G
]

+ SM [C(φ) (gµν +D(φ)∇µφ∇νφ) , ψM] , (IV.33)

where we made explicit the disformal coupling in the matter sector, and the

new functions are defined as follows, 3

ḡ20 =C2g20 (IV.34)

ḡ21 =Cg21 − C2Dg20 − 3g40

C2
φ

C
− 6g40φCφ (IV.35)

ḡ40 =Cg40, (IV.36)

ḡ41 = g41 − CDg40 − 4
Cφ
C
f (1), (IV.37)

whereas f(φ) remains invariant. Here we are using again the same conven-

tion that a subscript φ denotes a derivative with respect to φ. Hence, the

action (IV.33) yields field equations whose linear perturbation is formally

invariant under the transformation (II.31).

One notices that two out of the five functions g40, g41, g21, C and D are

redundant. That is, one can always perform a disformal transformation and

choose C and D in order to redefine two of g40, g41, g21. For example, from

Eq. (IV.37) one can set ḡ41 = 0, by choosing

D =
g41

Cg40

− 4
Cφ
C2g40

f (1). (IV.38)

This choice fixes uniquely the disformal function D. This implies that the

condition g41 = 0 imposed throughout the previous Section is equivalent

to a specific type of disformal coupling. In other words, though having a

nonzero a41 does lead to a new theory, this theory is simply one of the known

scalarization models, or a combination thereof, disformally coupled to mat-

ter (see [97] for a discussion of Damour and Esposito-Farèse spontaneous

scalarization plus a disformal coupling).

For example, let us indeed impose Eq. (IV.38) in order to set ḡ41 = 0

3We derived independently the effect of the disformal transformation (II.31) on the
Horndeski Lagrangian (II.26). However, there is a mismatch with the results of [66]. See
Appendix C.
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and we further choose

C(φ) =
1

g40(φ)
, (IV.39)

and redefine the scalar field as

ϕ = ϕ(φ), ϕ′(φ) =

√
ḡ21(φ)

2
, (IV.40)

where ḡ21(φ) is defined in Eq. (IV.35). With these choices, action (IV.33)

takes the form

SE =
1

2κ

∫
d4x
√
−g [R + V (ϕ)− 2∂µϕ∂

µϕ+ F (ϕ)G ]

+ SM [G(ϕ) (gµν +H(ϕ)∇µϕ∇νϕ) , ψM] , (IV.41)

where we defined the new functions

V (ϕ) = ḡ20(φ(ϕ)), F (ϕ) = f(φ(ϕ)),

G(ϕ) = C(φ(ϕ)), H(ϕ) =
4D(φ(ϕ))

ḡ21(φ(ϕ))
.

(IV.42)

For f(φ) = 0, this action reduces to the spontaneous scalarization model

with disformal coupling studied for the first time in [97].

In this Section, we investigated the role of the term parametrized by a41

in action (IV.16), i.e. a coupling between the Ricci scalar and the kinetic

term X. We showed that this term can be thought of as a disformal coupling

to matter. Indeed, while including this term leads to a new theory, such

model can be seen as one of the scalarization models presented in Section 2

disformally coupled to matter.



Chapter V

The threshold of scalarization

Having identified a subclass of Horndeski theory that contains all the terms

that can trigger spontaneous scalarization, we now determine quantitatively

the bounds on the couplings that allow scalarization to take place. We com-

bine the effect of all relevant couplings simultaneously and also examine how

the structure of the compact object affects the threshold of the instability.

In Chapter IV, we showed how the two minimal actions of case I and case

II obtained after a linearization of Horndeski gravity are in fact equivalent

upon a field redefinition. We thus simply focus on the former, namely

Eq. (IV.16), where we set a21 = 1 to obtain a canonical kinetic term and

we relabel a41 = γ for convenience. The action then reads

S =
1

2κ

∫
d4x
√
−g
{
R +X + γ Gµν∇µφ∇νφ

−
(
m2
φ +

β

2
R− αG

)
φ2

2

}
+ SM. (V.1)

Note that we used a slightly different notation for identifying the coupling

between gravity and the kinetic term parametrized by γ. However, the

two actions in Eq. (IV.16) and Eq. (V.1) are in fact equivalent. From a

dimensional analysis of Eq. (V.1), one can clearly see that β is dimensionless,

while α and γ have the dimension of a length squared. Throughout this

Chapter we assume that matter couples minimally to the metric only: we

are working in the Jordan frame.

Our goal is to investigate whether general relativity solutions with φ = 0

are stable or not, by studying the perturbations of the scalar field on a

fixed general relativity background. Thus, we solely focus on the scalar

49
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field equation associated with action (V.1), which reads

g̃µν∇µ∇νφ−m2φ = 0, (V.2)

where the effective metric and the mass term are respectively

g̃µν = gµν − γGµν , (V.3)

m2 = m2
φ +

β

2
R− αG . (V.4)

It is clear from these equations that β and α generate an effective mass

for φ in a curved background. On the other hand, γ only determines the

effective metric that defines the d’Alembertian which acts on the scalar

field perturbations. We stress that Eq. (V.2) is linear by construction,

since we kept in the action only the terms that contribute linearly. This

approach is valid when focusing on the onset of the scalarization, when

linear terms dominate. In order to determine the final state of the process,

one needs to include non-linear terms as well. Additionally, we work in the

decoupling limit where we only perturb the scalar field. These perturbations

will eventually back-react onto the metric, and a consistent analysis (beyond

the onset of the instability) should thus include metric perturbations. We

perform a full calculation for both cases of black holes and neutron stars in

Chapters VI and VII respectively.

The results presented in this Chapter have been published in Ref. [98].

1 The case of black holes

As we have shown in Chapter III, in linearized theory, scalarization man-

ifests itself as a tachyonic instability around a general relativity solution.

Hence, we first consider the case of a Schwarzschild background with the

line element defined as

ds2 = −h(r)dt2 + f(r)−1dr2 + r2dΩ2. (V.5)

Thanks to spherical symmetry, the scalar field is decomposed into spherical

harmonics as

φ =
∑
`,m

φ̂`m(t, r)Y`m(θ, φ), (V.6)



CHAPTER V. THE THRESHOLD OF SCALARIZATION 51

and we focus on the breathing mode, ` = m = 0, which is the first one

to exhibit instability when it is present. We can then rescale this mode

according to φ̂00(t, r) = σ(t, r)/r and we can recast the scalar equation (V.2)

into the following form:

− 1

c2

∂2σ

∂t2
+
∂2σ

∂r2
∗

= Veff σ, (V.7)

where we have defined a new radial coordinate r∗ such that dr = dr∗
√
hf ,

and

Veff =
h f ′ + f h′

2 r
+ h

(
m2
φ − αG

)
, (V.8)

From Eq. (V.8), it is clear that the β and γ terms do not influence the

effective potential, since a Schwarzschild background is Ricci flat. It is also

straightforward to see that the effect of a positive scalar field bare mass is

simply that of shifting the threshold scalarization. If we further neglect this

term, then the effective potential (and hence the onset of scalarization) is

controlled only by the rescaled mass M̂ = M/
√
α, where M is the ADM

mass of the black hole. General relativity solutions correspond to α = 0,

thus, they will become unstable for small values of M̂ , which correspond to

larger curvatures or larger α couplings.

We further focus on exponentially growing perturbations: σ(t, r∗) =

σ̂(r∗)eωt, with ω > 0.1 Equation (V.7) then boils down to a Schrödinger

equation:
d2σ̂

dr2
∗

=

[
Veff(r∗) +

(ω
c

)2
]
σ̂, (V.9)

where Veff is clearly an effective potential, and −(ω/c)2 plays the role of the

energy of the perturbation. The existence of a bound state for Veff with

‘energy’ E0 < 0 implies the existence of an instability, with characteristic

growth rate ω = c
√
−E0. Our strategy throughout this Chapter, will thus

be the following: we start from values of the parameters for which the

theory reduces to general relativity with a minimally coupled scalar field and

hence there cannot be any instability. We gradually increase the parameters

governing the effective potential, thus progressively deforming it. Whenever

a bound state appears for Veff , we identify it with a new unstable mode for

φ. By continuity, when deforming the potential, a new bound state will

1One could also look for the quasi-normal modes associated with Veff, allowing complex
values of ω. However, this requires a much wider set-up, which is not needed to establish
the presence of an instability.



CHAPTER V. THE THRESHOLD OF SCALARIZATION 52
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Figure V.1: Numerical solution of the decoupled scalar equation on a general
relativity background. The points where the line touches the horizontal axis
correspond to the scalarization thresholds M̂

(n)
th : for M̂ < M̂

(n)
th , general

relativity black holes are unstable under scalar perturbations with n nodes.
Note that the horizontal axis is inverted.

appear with a vanishing energy, E0 = 0. Note that we identify as a bound

state those with dσ̂/dr∗ → 0 for r∗ → +∞.

We then search for such bound states while varying M̂ and identify the

threshold rescaled masses, M̂
(n)
th , (n = 0, 1, 2, etc). This is shown in Fig. V.1.

The mode associated with a threshold mass M̂
(n)
th has n nodes. Hence,

whenever M̂ < M̂
(n)
th , general relativity black holes become unstable to a

perturbation with n nodes. Numerically, these thresholds are (n, M̂
(n)
th ) ≈

(0, 1.18), (1, 0.45), (2, 0.28), etc. They are in agreement with the results of

Ref. [50] under an appropriate rescaling.

We investigated the threshold of scalarization for the minimal action (V.1),

in the context of black holes. We showed that the scalar field equation can

be recast as a Schrödinger equation with an effective potential. The bound

states of the latter identify unstable modes for the scalar field. Crucially,

only the Gauss-Bonnet coupling parameter α and the scalar field bare mass

m2
φ can influence the effective potential. Our results agree with previous

results obtained for black hole scalarization.

2 The case of neutron stars

It is clear that considering black hole solutions does not allow us to fully

explore the parameters of the theory (V.1), since we are not able to deter-

mine the contribution from γ or β. Considering that we are interested in

the combined effect of all the parameters of the theory, henceforth we will

focus on neutron stars solutions, where matter is present under the form

of a perfect fluid with TPF
µν = (ε + p)uµuν + p gµν , where ε, p and uµ are

respectively the energy density, the pressure and the 4-velocity of the fluid.

The pressure is directly related to the energy density through the equation



CHAPTER V. THE THRESHOLD OF SCALARIZATION 53

of state. We further consider a static and spherically symmetric background

spacetime defined as in Eq. (V.5). The metric functions h and f are de-

termined as solutions of an equivalent to the Tolman-Oppenheimer-Volkoff

system of equations [99,100], together with the pressure p and energy den-

sity ε of the perfect fluid that composes the star. These equations can be

found in Appendix D. In this framework, one has to specify some equation

of state p(ε). We use two equations of state, SLy and MPA1 [101], both

favored by LIGO-Virgo tidal measurements [102], which seem to prefer soft

equations of state. We work here in units where c = 1, G = 1 and M� = 1.

As for the case of black holes, we can decompose the scalar perturbation

in the basis of spherical harmonics as in Eq. (V.6), and, once again, we

focus solely on the breather mode, ` = m = 0. In order to make the

scalar field equation more transparent, we rescale this mode according to

φ̂00(t, r) = K(r)σ(t, r) with

K(r) =

{{
r2 − 2γ

[
−1 +

f

h
(rh)′

]}
{r2 − 2γ[(rf)′ − 1]}

}−1/4

, (V.10)

and we trade off the radial coordinate r for a new one, r∗, defined through

dr?
dr

=

√
h√

fK2 [2γrfh′ − (2γ + r2 − 2γf)h]
. (V.11)

Equation (V.2) then can be recast into Eq. (V.7) where the full expression of

Veff can be found in Appendix E. Finally, focusing on exponentially growing

perturbations, that is σ(t, r∗) = σ̂(r∗)eωt, with ω > 0, the scalar equation

can be written as a Schrödinger equation as in Eq. (V.9). We proceed on the

study of the existence of bound states as illustrated in Section 1. Therefore,

we solve Eq. (V.9) for ω = 0, while scanning the parameters β, α and γ.

This is less intuitive than choosing a set of parameters and scanning ω, but

the final result is equivalent, and the procedure is easier to implement.

Equation (V.9) will admit a solution for any set of values of the param-

eters. Among these solutions, as in the case of black holes, we identify as a

bound state those with dσ̂/dr∗ → 0 for r∗ → +∞.2 Note that, physically,

this is necessary for the scalar perturbation to be localized in space. In

terms of quantum mechanics, this corresponds to the fact that K(r∗)σ̂(r∗)

has to be square integrable. Note that, contrary to the naive expectation

2On a more technical level, we perform a numerical integration of eq. (V.2) expressed
in terms of r, rather than in terms of r∗ as in eq. (V.9); we extract dσ/dr at a radius
rmax equal to 200 times the Schwarzschild radius of the star.
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from eq. (V.9), it is K(r∗)σ̂(r∗) that should be interpreted as the wave func-

tion, rather than σ̂(r∗) itself; this is very similar to the 1/r rescaling of the

wave functions that allows to solve for the bound states of 3D spherically

symmetric quantum wells (see e.g. secs. 14-16 of [103]).

2.1 Changing the effective mass

The main terms that can contribute to the effective mass m2 are the bare

mass term of the scalar field, the coupling between φ and the Ricci scalar,

and the coupling between φ and the Gauss-Bonnet invariant, parametrized

respectively by mφ, β and α. Although the terms proportional to γ can

affect the instability threshold, they contribute solely as a multiplicative

constant. Therefore, we will set γ = 0 for the time being, and explore the

role of this parameter in full detail in Section 2.3. Several works already

investigated the influence of each of the parameters mφ, β and α separately

(e.g., [49–52,83–85,89,104,105]). We study how varying several parameters

simultaneously affects the threshold; in this way, we explore much wider

regions of the parameter space. Most of our results are presented as 2D

plots, where we freeze all parameters but two, and show the stable/unstable

regions.

We first consider a vanishing bare mass, mφ = 0. The model is then

parametrized by β and α only. The background we consider is a neutron star

described by the SLy equation of state. We choose its central energy density

to be ε0 = 8.1×1017 kg/m3, so that its gravitational mass is M = 1.12 M�,

which corresponds to the bottom of the mass range for observed neutron

stars [106,107]. The radius of the star is then Rs = 11.7 km. The results are

summarized in Fig. V.2. The white area corresponds to the region of the

parameter space where the background solution is stable. A new unstable

mode appears when crossing each line while moving away from the origin.

The lines are labeled with the number of nodes n of the associated mode,

ranging from 0 to infinity. The n = 0 line is the boundary of the stable

region. Any choice of parameters beyond this line will make the general

relativity solution unstable. The left and bottom panels show cuts in the

(β, α) plane, along the α and β axes respectively; these panels actually

reproduce known results, e.g. of [89] and [50]. Notably, the scalarization

threshold when only β is presents takes the well-known order of magnitude,

β = −5.42.

To understand better the shape of the plot, especially along the β and α
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Figure V.2: Stable and unstable regions in the (β, α) space for a light star
(M = 1.12 M�, SLy equation of state). In the 2D plot, each line is labeled
according to the number of nodes n of the corresponding unstable mode.
Inside the white region, where the point (β, α) = (0, 0) lies, the general
relativity solution is stable. Every line crossed while moving away from the
origin corresponds to the appearance of a new unstable mode; any point in
parameter space that lies within a grey region corresponds to an unstable
solution. The lower panel shows |dσ/dr| at rmax when varying β in the same
range as the 2D plot, with α = 0; it can be understood as a cut in the (β, α)
plane along the β axis (each cusp corresponding to a line-crossing in the 2D
plot). Similarly, the left panel shows a cut along the α axis.
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(a) (b)

Figure V.3: Ricci scalar and Gauss-Bonnet invariant for a light star (M =
1.12 M�, SLy equation of state). The radial coordinate is rescaled by the
radius of the star Rs = 11.7 km. The left panel shows that the Ricci
scalar is non-negative everywhere; correspondingly, only β < 0 can lead to
an instability. On the other hand, the Gauss-Bonnet invariant, shown in
the right panel, is negative in the core of the star and positive towards its
surface, leading to instabilities both for α < 0 and α > 0.

axes, we plot in Fig. V.3 the Ricci scalar and the Gauss-Bonnet invariant.

The Ricci scalar is always positive on this background. This is due to the

fact that we consider a relatively light neutron star, and due to the following

relation:

R = κ(ε− 3p). (V.12)

When the medium is not too dense, ε � p and R > 0. We will see how

this changes for a very dense star in Section 2.2. As a consequence, only

negative β can generate a negative effective mass. On the other hand, as

shown in Fig. V.3, the Gauss-Bonnet invariant is positive in some regions

and negative in others. This is enough to trigger an instability when α

becomes very negative or very positive, which is indeed what is observed in

Fig. V.2.

We notice, as expected, that the point (0, 0) is always inside the stable

region. The tachyonic instability does not appear right away when β < 0

or α 6= 0, due to the curvature of spacetime.

We now consider how the presence of a bare mass affects the results of the

previous Section. Fig. V.4 shows the region of stability in the (β, α) plane

when mφ = 1 in the system of units that we used, i.e., scalar particles have a

mass of 1.33×10−10 eV. The range of parameters in Fig. V.4 is the same as in

Fig. V.2 in order to allow comparison. When one zooms out, Fig. V.4 looks

very similar to Fig. V.2 (i.e. the same instability pattern remains valid,

but it appears for higher values of the parameters). As can be seen from
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Figure V.4: Stable and unstable regions in the (β, α) space for a bare mass
of 1.33× 10−10 eV. As expected, the stable region is enlarged with respect
to Fig. V.2. Note that the range of the plot for β and α is the same as in
Fig. V.2 to facilitate comparison.

comparing Figs. V.2 and V.4, the stable region is widened in all directions.

As expected, the presence of a bare mass stabilizes the solution (similarly,

if the bare mass is tachyonic, the stability region shrinks). Therefore, even

a sufficiently large bare mass for the scalar field is able to shield neutron

stars from scalarization. This was already noted, e.g. in [108], where the

effect of a bare mass in a cosmological setup is also discussed.

2.2 Changing the properties of the star

Let us now examine how changing the background affects the stability. We

first consider a more massive star, and then a different equation of state.

We first increase the mass of the neutron star (and thus its compactness

at the same time). We choose a central density of ε0 = 3.4 × 1018 kg/m3,

which corresponds to a mass of M = 2.04 M�. This is the heaviest spheri-

cally symmetric star we can produce with the SLy equation of state; beyond

this mass, the solutions become unstable already within general relativity.

The results are displayed in Fig. V.5. Since the curvature of the background

increased with respect to Fig. V.2, it is not surprising that the stable region

shrunk. A more unexpected feature is that very positive values of β now

also lead to an instability. This is due to the fact that the Ricci scalar now

becomes negative towards the center of the star, as can be seen in Fig. V.6.

In terms of Eq. (V.12), the energy density is no longer dominant with re-

spect to the pressure in the extremely pressurized core of the neutron star,

allowing R < 0. This effect was already noted in [109], and further studied
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Figure V.5: Stable and unstable regions in the (β, α) space for a heavy
neutron star (M = 2.04 M�, SLy equation of state). The vertical range for
α is reduced with respect to Fig. V.2 for readability. The wedge of stability
in Fig. V.2 has narrowed down to an island around (β, α) = (0, 0).

(a) (b)

Figure V.6: Ricci scalar and Gauss-Bonnet invariant for a heavy star (M =
2.04 M�, SLy equation of state). Now, the left panel shows that R becomes
negative inside the core of the star, allowing instabilities for both signs of
β. The Gauss-Bonnet invariant (right panel) still behaves as in the case of
a light star, Fig. V.3.
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Figure V.7: Stable and unstable regions in the (β, α) space for the MPA1
equation of state (M = 1.12 M�). The range for β and α is the same as
in Fig. V.2. We note that the choice of equation of state does not affect
significantly the results.

in [110,111].

We now consider a different stellar model, the MPA1 equation of state [101].

In order to compare with previous results, we keep the same mass as in

Section 2.1, M = 1.12 M�. This corresponds to a central density of

ε0 = 6.3 × 1017 kg/m3. The stability region is shown in Fig. VII.2. By

comparing Figs. V.2 and V.7, it is clear that the different choice of equation

of state does not affect significantly the position of the stable and unstable

regions.

Although the equation of state influences only mildly stars of similar

mass, it can have indirect effects. Indeed, a softer equation of state will lead

to a smaller pressure for a given energy density; thus, for a soft equation

of state, the Ricci scalar (V.12) could remain positive in all configurations,

discarding configurations like Fig. V.5. Similarly, the equation of state can

affect the range allowed for the parameter γ, as we will see in more detail

in the next Section.

2.3 Changing the effective metric

We now return to the parameter γ and examine its role. As mentioned

above, the terms controlled by γ cannot generate a tachyonic instability in

the absence of the other couplings controlled by β, α or mφ. Nonetheless,

choosing γ beyond a certain range leads to loss of hyperbolicity in the scalar

field equation. Also the potential Veff does depend on γ, as can be seen from

Eq. (E.1). We analyze these aspects below, before studying numerically the
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combined effect of γ and the other parameters.

The parameter γ brings an additional contribution to the effective metric

experienced by scalar perturbations, Eq. (V.3). If this contribution exceeds

a certain threshold and becomes dominant, the effective metric becomes

elliptic, rendering the background unstable. We emphasize that this insta-

bility is distinct from the usual tachyonic instability associated with scalar-

ization. Depending on the circumstances, it is either a gradient or a ghost

instability. It is possible that this instability can be quenched nonlinearly,

as in the case for conventional scalarization. Indeed, scalarization through

a ghost instability has already been proposed in [112]. Since here we are not

including terms that are nonlinear in the scalar in our analysis, we cannot

follow the development and potential quenching.

One can therefore view the analysis that follows in two different ways.

Taking the conservative viewpoint, one may restrict to the well-controlled

tachyonic scalarization. In this framework, our results allow to set bounds

on the parameter γ. In a more open-minded perspective, which certainly

deserves further investigation in the future, we are setting bounds beyond

which ghost or gradient scalarization can be triggered.

Given that we are working on a general relativity background, we can

make use of Einstein equations. The inverse of g̃µν for a perfect fluid is then

g̃−1
µν =

1

1− κγp

(
gµν − κγ

ε+ p

1 + κγε
uµuν

)
, (V.13)

where uµ is the 4-velocity of the fluid. Over the spherically symmetric

background that we study, the determinant of the effective metric reads

g̃ = g
1

(1− κγp)3(1 + κγε)
. (V.14)

On a given background, the pressure and energy density are maximal at the

center of the star, where we label their value as p0 and ε0. The determinant

of the physical metric g is always negative. Thus, the effective metric loses

hyperbolicity either when κγ becomes larger than 1/p0 or when κγ becomes

more negative than −1/ε0. To summarize, hyperbolicity of the effective

metric requires that

− 1

κε0
< γ <

1

κp0

. (V.15)

Reference [97] already noted the existence of the upper bound in a similar

context. In the numerical analysis below, we take the conservative approach
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Figure V.8: Hyperbolicity of the effective metric in the (M,γ) plane (SLy
equation of state). The effective metric is hyperbolic only within the white
region. The mass ranges from the putative lowest neutron star mass [106,
107] to the maximal mass achieved with the SLy equation of state. The
range of hyperbolicity narrows down when increasing the mass of the star.

and restrict to this range. For a given equation of state, the bounds in

Eq. (V.15) can be reformulated in terms of the mass of the star, M . This is

shown in Fig. V.8. The range in which the scalar field equation is hyperbolic

closes up around γ = 0 when increasing the mass. The limits presented in

Fig. V.8 depend on the equation of state, but only mildly. In the framework

of tachyonic scalarization, we can use these limits to put an absolute bound

on γ. For the SLy equation of state,

− 18.7 km2 < γ < 34.9 km2. (V.16)

These bounds should only be taken as order of magnitude estimates; they

have been established in the decoupling limit and rely on a specific equation

of state. However, a more detailed study would allow to put very precise

constraints on γ. We are not aware of previously established bounds on this

parameter (except [97]). Note that the analysis presented in this Section is

entirely independent on the other parameters, which do not play a role in

the effective metric.

Before moving to the numerical results, we point out an important dif-

ference between black holes and stars. In both cases (black hole and neu-

tron star) the scalar field equation can be brought to the form (V.9), and we

impose that dσ̂/dr∗ vanishes at large r∗ so that
∫
φ2 is finite and the pertur-

bation initially contains a finite amount of energy. The difference between
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neutron stars and black holes appears on the other side of the r∗ range. In

the case of neutron star, r∗ goes down to 0, where φ = Kσ̂ ∼ φ0/r∗ for some

constant φ0, unless σ̂(0) = 0. We do not want φ to diverge at the center

of the star, so we impose σ̂(0) = 0. In the black hole case on the other

hand, r∗ goes down to −∞ and nothing particular happens at r∗ = 0. The

condition for the perturbation to be physical is then that dσ̂/dr∗ vanishes

for r∗ → −∞, similarly to what happens at large r∗.

It is then possible to establish an exact sufficient condition for the

presence of an instability in the black hole case. Indeed, the function σ̂

then respects the hypotheses of the theorem established in Ref. [113]: if∫ +∞
−∞ Veff(r∗)dr∗ < 0, then Veff admits at least one bound state.

However, in the case of a star, due to the different boundary conditions,∫ +∞
0

Veff(r∗)dr∗ can become negative — even infinitely negative — while Veff

does not possess any bound state. This is equivalent to the 3D-spherically

symmetric quantum well; consider such a well with depth −V0 and width

a. It admits a bound state only for V0a
2 > N (N is some constant that

depends on the mass of the quantum particles), while the integral of the

potential is −V0a < 0. Choosing the scaling V0 = N/2/a2, the integral of

the potential is then becoming infinitely negative for a→ 0, while no bound

state exists.

Hereinafter,
∫
Veff(r∗)dr∗ indeed becomes infinitely negative in the limit

where γ approaches one of the bounds of Eq. (V.15). However, this does not

necessarily mean that infinitely many bound states develop close to these

boundaries. This seems to be true close to the upper bound, but not close

to the lower one, as we will see in Fig. V.9.

We now vary γ systematically in the range allowed by Eq. (V.15), and

β and α in similar ranges as in the previous figures. The results are dis-

played in Figs. V.9 and V.10 respectively. When γ vanishes (cut along

the horizontal axis in Figs. V.9 and V.10), we retrieve the same stabil-

ity ranges as in the left and bottom panels of Fig. V.2 (β > −5.42 and

722 km2 > α > −169 km2). It is also natural that the lines β = 0 and

α = 0 (vertical axes in Figs. V.9 and V.10) correspond to stable config-

urations, because γ cannot create a tachyonic effective mass on its own.

The boundary of the stable region is rather insensitive to the parameter

γ; it does evolve slightly with the value of γ, but this can be seen only

when zooming around smaller values of β and α with respect to Figs. V.9

and V.10. Close to both bounds of the γ range,
∫
Veff(r∗)dr∗ diverges, but
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Figure V.9: Stable and unstable regions in the (β, γ) space (M = 1.12 M�,
SLy equation of state) for α = 0. The region of stability is rather unaffected
by a change in γ. The bound states pile up close to the upper bound for γ.

Figure V.10: Stable and unstable regions in the (α, γ) space (M = 1.12 M�,
SLy equation of state) for β = 0. The behavior is very similar to what we
obtained for β in Fig. V.9.
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Figure V.11: Summary of the stability (n = 0) contours in the (β, α) space
for comparison. The white region corresponds to the region of stability
for a heavy star, M = 2.04 M�, using the SLy equation of state. The
light grey region (together with the white region) is the stability region for
M = 1.12 M�, still with the SLy equation of state. The intermediate grey
region (together with the previous paler regions) corresponds to a mass
M = 1.12 M� and the MPA1 equation of state. The dark grey region
(again, with paler regions) corresponds to a mass M = 1.12 M� and the
SLy equation of state, together with a bare scalar mass of 1.33× 10−10 eV.
Finally, the black region is unstable for all the previous models.

as explained before, this does not necessarily mean that infinitely many

bound states should appear (or even that one bound state exists). Indeed,

nothing particular happens when approaching the lower bound, while un-

stable modes pile up when approaching the upper bound; both scenarios

are allowed.

To summarize, we have investigated exhaustively the effect of all the

terms that play a role in the onset of spontaneous scalarization in ac-

tion (V.1), in the context of neutron stars. Our analysis has identified the

role of each term but has also revealed their combined effects. When tak-

ing each terms separately, our results agree with previous results regarding

scalarization thresholds. More generally and when all terms are present, we

have found that a very small bare mass suffices to stabilize general relativity

solutions, and that the scalarization thresholds are only mildly sensitive to

the choice of equation of state.

Our analysis allowed us to explore, for the first time, the multi-dimensional

parameter space and provide scalarization thresholds that depend on more

than one coupling. In Fig. V.11 we presented in a single plot a summary of

most of the stability contours presented in this Section. One of the striking
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features revealed by our analysis is the role of the effective metric in which

scalar perturbations propagate. It is controlled by a single coupling con-

stant, γ. There exists a threshold beyond which the effective metric loses

hyperbolicity. In the framework of tachyonic scalarization, we interpret this

threshold as an absolute bound on the parameter γ. It is restricted to a

rather narrow range (roughly, it should remain small with respect to the

characteristic length of curvature). Therefore, it has a very limited effect

on the threshold of tachyonic scalarization. On the other hand, the loss

of hyperbolicity can be seen as an alternative instability that could lead

to scalarization, in line with what was proposed in Ref. [112] in a more

restricted setup.



Chapter VI

Black hole scalarization with

Gauss-Bonnet and Ricci scalar

couplings

In the previous Chapter, we investigated the onset of the tachyonic insta-

bility that triggers spontaneous scalarization. We have shown that only

three terms can in fact contribute to create an effective mass for the scalar

field: a bare mass of the scalar field, a coupling between the Gauss-Bonnet

invariant and the scalar field, and a coupling between the Ricci scalar and

the scalar field. Additionally, there is a fourth term, a coupling between the

gravity and the kinetic term, that can affect the threshold of the instability,

even though it is not able to trigger it by itself.

In the case of black holes the onset of the scalarization is determined

entirely by the coupling with the Gauss-Bonnet invariant (and potentially a

bare mass of the scalar field). Indeed, general relativity vacuum solution are

Ricci flat, therefore the Ricci tensor or scalar cannot contribute to source

the instability. However, the properties of the scalarized object depend

crucially on nonlinear interactions, as these are the ones that quench the

linear instability and determine its endpoint. Non-linearities can originate

from scalar self-interactions [83], from the coupling function to G [51], and

from the backreaction of the scalar onto the metric. The potential coupling

between the scalar field and the Ricci scalar, R, has mostly been disregarded

in the case of black holes.

As mentioned earlier, this is entirely justified when studying the onset

of scalarization, as general relativity black holes have a vanishing R. How-

ever, it is bound to have an effect on the properties of scalarized objects,

66
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as it will contribute to the nonlinear quenching of the tachyonic instability

that leads to scalarization. Indeed, as soon as the scalar becomes nontriv-

ial, R will cease to be zero and it will contribute directly to the effective

mass of the scalar. From an effective field theory perspective there seems

to be no justification to exclude such a coupling. Moreover, it has been

shown in Ref. [114] that this coupling makes general relativity a cosmologi-

cal attractor and hence reconciles Gauss-Bonnet scalarization with late-time

cosmological observations.

Motivated by the above, in this Chapter we examine the role a coupling

with the Ricci scalar can have on scalarized black holes. We consider the

minimal action we employed in Chapter V to study the threshold of scalar-

ization, i.e. Eq. (V.1), with a standard kinetic term, imposing γ = 0, and in

the absence of a bare scalar mass. This choice is justified since if a bare mass

is included it needs to be tuned to rather small values else it can prevent

scalarization altogether, while γ has a very limited effect on the threshold

of tachyonic scalarization, as we have shown in Chapter V. The modified

Einstein equation for such theory is

Gµν = κTPF
µν + T φµν , (VI.1)

where TPF
µν is the stress-energy tensor for a perfect fluid and

T φµν =− 1

4
gµν∇λφ∇λφ+

1

2
∇µφ∇νφ+

βφ2

4
Gµν

+
β

4

(
gµν∇2 −∇µ∇ν

)
φ2

− α

2g
gµ(ρgσ)νε

κραβεσγλτRλταβ∇γ∇κφ
2

(VI.2)

is the energy momentum tensor contribution that comes from the variation

of the φ-dependent part of the action with respect to the metric. In the

case of black holes, there is no matter contribution, and Eq. (VI.1) reduces

to

Gµν = T φµν . (VI.3)

For the reader’s convenience, we report here the scalar field equation,

�φ = m2
effφ, (VI.4)
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where the effective scalar mass is now given by

m2
eff =

β

2
R− αG . (VI.5)

We study static, spherically symmetric black holes. We explore the re-

gion of existence of scalarized solutions when varying both couplings and

the black hole mass. We examine the influence of the Ricci coupling on

the scalar charge of the black holes, which is the quantity that controls the

deviations from general relativity in the observation of binaries. We also

discuss the role this coupling can play in stability considerations and in ren-

dering black hole scalarization compatible with cosmological observations

and strong gravity constraints from neutron stars.

The results presented in this Chapter have been published in Ref. [115].

1 Static, spherically symmetric black holes

We are interested in a static and spherically symmetric background. Using

the line element as defined in Eq. (V.5), choosing h(r) = eΓ(r) and f(r) =

e−Λ(r) for convenience, the field equations can then be cast as three coupled

ordinary differential equations for Γ, Λ and φ, see Appendix F. The (rr)

component of the metric equations can be solved algebraically with respect

to eΛ:

eΛ =
−B + δ

√
B2 − 4AC

2A
, δ = ±1, (VI.6)

where

A = 4− βφ2, (VI.7)

B = βφ2 + Γ′(βr2φφ′ − 8αφφ′ + βrφ2 − 4r)

+ r2φ′2 + 4βrφφ′ − 4,
(VI.8)

C = 24αΓ′φφ′. (VI.9)

and a prime denotes differentiation with respect to the radial coordinate.

By substituting (VI.6) in the remaining field equations, we end up with a

system of two coupled second order differential equations:

Γ′′ = Γ̃(r,Γ′, φ, φ′, α, β), (VI.10)

φ′′ = φ̃(r,Γ′, φ, φ′, α, β). (VI.11)
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In order to search for black hole solutions, we assume the existence of a

horizon, where eΓ → 0, eΛ →∞. In line with previous results for different

models fashioning a coupling with G (e.g. [81, 116]), only δ = +1 leads to

black hole solutions.

1.1 Near-horizon expansion

Near the horizon, one can perform the following expansion:

eΓ(r ≈ rh) = γ1(r − rh) + γ2(r − rh)2 + ... (VI.12)

e−Λ(r ≈ rh) =λ1(r − rh) + λ2(r − rh)2 + ... (VI.13)

φ(r ≈ rh) =φh + φ1(r − rh) + φ2(r − rh)2 + ... (VI.14)

One can substitute these expressions in Eqs. (VI.6), (VI.10) and (VI.11),

and obtain a near-horizon solution. In particular, φ′′h remains finite only

provided that

φ′(rh) = φ1 =
(
a+
√

∆
)
/b, (VI.15)

where the expressions for a, b and ∆ are as follows:

a = 24αβrhφ
2
h + r3

h

(
−3β2φ2

h + βφ2
h − 4

)
, (VI.16)

∆ = 9216α3βφ4
h + r6

h

(
3β2φ2

h − βφ2
h + 4

)2

− 192α2r2
hφ

2
h

(
9β2φ2

h − 2βφ2
h + 8

)
,

(VI.17)

b = 2φh
(
8α− βr2

h

) [
24αβφ2

h

+ r2
h

(
−3β2φ2

h + βφ2
h − 4

) ]
/(βφ2

h − 4).
(VI.18)

Requiring that ∆ ≥ 0 defines a region on the (rh, φh) space where regular

black hole solutions with scalar hair can be found.

1.2 Asymptotic expansion

In order to analyze the asymptotic behaviour of the solutions, one can

perform a suitable expansion, and solve the equations near spatial infinity
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imposing that φ vanishes there. Assuming analyticity, this yields

gtt(r � rh) = 1− 2M
/
r + β Q2

/
4 r2 +

(
MQ2 − 3βMQ2

)/
12 r3

+
(
8M2Q2 − 28βM2Q2 − 3β3Q4 + 5β2Q4

− βQ4
)/

48 r4 +
(
288M3Q2 − 1040βM3Q2

+ 3072αMQ2 − 60β3MQ4 + 115β2MQ4

+ 10βMQ4 − 9MQ4
)/

960r5 +O
(
1/r6

)
,

(VI.19)

grr(r � rh) = 1 + 2M
/
r +

(
16M2 + 2β Q2 −Q2

)/
4 r2 +

(
32M3

− 5MQ2 + 11βMQ2
)/

4 r3 +
(
488βM2Q2

− 208M2Q2 + 768M4 − 12β3Q4 + 17β2Q4

− 13βQ4 + 3Q4
)/

48 r4 +
(
6064βM3Q2

− 2464M3Q2 + 6144M5 − 1536αMQ2

− 348β3MQ4 + 589β2MQ4 − 442βMQ4

+ 97MQ4
)/

192 r5 +O
(
1/r6

)
,

(VI.20)

φ(r � rh) = Q
/
r +MQ

/
r2 +

(
32M2Q− 3β2Q3 + 2βQ3

−Q3
)/

24 r3 +
(
48M3Q− 9β2MQ3 + 9βMQ3

− 4MQ3)
/

24 r4 +
(
2240βM2Q3 − 1680β2M2Q3

− 928M2Q3 − 4608αM2Q+ 6144M4Q+ 117β4Q5

− 144β3Q5 + 86β2Q5 − 40βQ5 + 9Q5
)/

1920 r5

+O
(
1/r6

)
,

(VI.21)

where M is the ADM mass and Q is the scalar charge. Note that, although

Q is not associated to a conservation law, it does determine the decay of the

scalar field at large distance. As one can see from Eqs. (VI.19)-(VI.21), the

contribution from the Ricci coupling dominates the asymptotic behaviour of

the solutions over the Gauss-Bonnet coupling. Indeed, terms proportional

to β enter the expansion already at order r−2, whereas α-dependent terms

arise only at order r−5.

1.3 Numerical implementation

The system of ordinary differential equations (VI.10) and (VI.11) can, in

principle, be solved by starting from the horizon and integrating towards

larger radii. α and β are theoretical parameters that are considered fixed.

The values of Γ′, Γ, φ′, and φ at r = rh appear to be “initial data”. However,
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they are not all free to choose. Γ(rh) is fixed by the condition eΓ(rh) = 0,

i.e. the fact that r = rh is a horizon. Γ′ has to diverge at r = rh, else eΓ will

have a vanishing derivative on the horizon. Finally, φ′(rh), and φ(rh) are

related by the regularity condition (VI.15). One also needs to fix rh. The

field equations are invariant under the global scaling symmetry r → µr,

α→ µ2α, where µ is a free parameter. We can make use of this symmetry

to reduce the space of parameters that we have to explore. Practically, we

can decide that the horizon is located at rh = 1; solutions with rh 6= 1 can

later be obtained by a global scaling.

Hence, one can treat φ(rh) = φh as the only free parameter. Integrating

outwards, one will generically find a solution for arbitrary φh. However, for

given α and β, only one value of φh has the desired asymptotics, namely

φ(r → ∞) = φ∞ = 0. Imposing this condition (by a shooting method

and to a desired precision) yields a unique solution. The global rescaling

mentioned above turns this solution into a one-parameter family, that we

can interpret as a family of black holes parametrized by their ADM mass

M , for fixed couplings α and β. The scalar charge Q is then determined as

a function of M , α and β.

A practical complication is that the regularity condition of Eq. (VI.15)

cannot be imposed numerically with any reasonable accuracy. To circum-

vent this problem we start the numerical integration at r ≈ rh[1 +O(10−4)]

and use the perturbative expansion in Eqs. (VI.12)–(VI.14) to impose the

regularity and propagate the data from the horizon to the starting point of

the numerical integration. We typically integrate up to distances r/rh ≈ 104

and impose that φ vanishes there to a part in 104.

Given a solution, we extract the value of the ADM mass M and the

scalar charge Q, as defined in the asymptotic expansion (VI.19)-(VI.21).

We then have

M = −
(

1

2
r2Λ′ e−Λ

) ∣∣∣∣
rmax

,

Q = −
(
r2φ′

) ∣∣
rmax

.

(VI.22)

In the next Section, we use scale-invariant masses and charges, defined

as

M̂ = M/
√
α , Q̂ = Q/

√
α. (VI.23)

To schematically summarize, the algorithm we implement consists of the

following steps:
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1. We set rh = 1 and we fix β.

2. We choose a value for α.

3. Given the parameters β and α, we find a value for φh that satisfies

the initial conditions, i.e. ∆ ≥ 0, and gives the right asymptotics,

implementing a shooting method. If there is no value of φh that

satisfies these requirements, we treat the parameter set as having no

solution.

4. Given α, β and φh, we solve the field equations, we extract the value

of M and Q, and appropriately rescale them as in Eq. (VI.23).

5. We repeat steps 2-4 for a new value of α.

Note that Eq. (VI.23) assumes that α > 0. Indeed, we will restrict our

analysis to positive values of α. Evading the no-hair theorem of Ref. [50]

requires α > 0 when β = 0 and G is positive, which is the case for a

Schwarzschild black hole. Moreover, the Ricci coupling, controlled by β,

does not contribute to linear perturbation theory around general relativity

black holes. It is hence unlikely that scalarized spherically symmetric black

hole solutions will exist for α < 0. It should be stressed, however, that

the α < 0 case is particularly interesting when studying rotating black

holes [117].

2 Properties of the solutions

2.1 Solution with no nodes for the scalar profile

The first scenario we examine is the one where β > 0. This scenario is

motivated by the results of Ref. [114], where it was shown that positive

values of β make general relativity a cosmological attractor. We start by

exploring the solutions characterized by n = 0. The results are summarized

in Fig. VI.1 and Fig. VI.2. The top plot of Fig. VI.1 shows the dependence

of the scalar charge on the black hole ADM mass for different choices of β.

Each line corresponds to a constant value of β. Each point along a constant

β line correspond to a specific set of α and φh, given rh = 1. When β is

smaller than some critical value βcrit ≈ 1.22, the charge-mass curve tilts to

the right and all scalarized black holes have larger ADM masses than the

general relativity mass instability threshold. Such scalarized black holes
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Figure VI.1: (Top) Normalized scalar charge versus the normalized ADM
mass for n = 0 nodes solutions. The black lines correspond to values of β
for which all scalarized black holes have masses below the general relativity
instability mass threshold, while the red lines mark values of β that lead
to scalarized black hole masses that are larger than the general relativity
mass threshold. The blue dots mark the existence of a turning point, past
which solutions are expected to be unstable. (Bottom left) Scalar field
profile versus the normalized distance from the horizon for a sample mass
M̂ < M̂

(0)
th , and zero nodes for the scalar field radial profile. (Bottom right)

Scalar field profile versus the normalized distance from the horizon for a
sample mass M̂ > M̂

(0)
th .

are unlikely to be produced dynamically. The ADM mass is a measure of

energy for the system. The fact that all scalarized black holes for β < βcrit

have larger mass than all general relativity black holes that are unstable

implies that, if any scalarized black hole is considered the end point of the

tachyonic instability for a general relativity black hole, then this end state

would have more energy than the initial state.

Based on the argument above, we conjecture that scalarized black holes

are unstable for β < βcrit. Conversely, for β > βcrit the ADM mass for

scalarized black holes can be smaller than the general relativity counterparts
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and hence it is reasonable to expect that scalarized black hole are endpoints

of the tachyonic instability. These arguments are consistent with earlier

results. In particular, it is already known that for β = 0 scalarized black

holes are radially unstable [104]. Moreover, the general picture shown in

the centre plot of Fig. VI.1 is very similar to the one presented in Ref. [83].

In that work, β was vanishing and the φ2R term was absent, but a φ4 self-

interaction had a similar effect. Analysis of radial stability did show in that

case that stability was associated with whether the curves on the Q̂ − M̂
plane tilt to the right or the left.

These considerations suggest strongly that the coupling between φ and

the Ricci scalar, can have a very interesting stabilizing effect for scalarized

black holes, without having to resort to scalar self-interactions.

Note that in some cases, when β > βcrit and hence the Q̂ − M̂ curve

initially leans to the left, this same curve later turns towards the right. The

points at which the curves turn right are marked by blue dots in Fig. VI.1.

The right-leaning part of these curves is hardly noticeable in Fig. VI.1 be-

cause it is very short. One expects configurations past the turning point to

be unstable, as configurations of the same ADM mass and smaller scalar

charge exist.

As it is clear from Fig. VI.1, for β > βcrit, the normalized scalar charge

Q̂ increases as the normalized ADM mass M̂ decreases, at least in the part

of the curves up to the turning point (blue dot), whereas for β < βcrit,

the normalized scalar charge Q̂ increases as the normalized ADM mass M̂

increases. Interestingly, the dependence of the curvature near the horizon

on the ADM mass turns out to be different in the two cases. For β > βcrit

scalarized black holes tend to have larger curvatures at the horizon when

the ADM mass decreases, as is the case in general relativity, whereas for

β < βcrit the curvature on the horizon tends to increase as the mass (and

scalar charge) increases. Hence, in both cases, the scalar charge seems to

be controlled by the curvature.

In Fig. VI.2, we show the domain of existence of scalarized black holes

on the α−M and α−Q planes. As discussed in Chapter V, linear analysis

showed distinct scalarization thresholds, the first (zero nodes) of which we

denote with M̂
(0)
th ≈ 1.175. This threshold is represented by the dashed,

red line in Fig. VI.2. Note that M̂ = constant (respectively Q̂ = constant)

translates to a parabola in the α−M (α−Q) plane. The rest of the curves

correspond to the existence boundaries for various values of β. They are
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Figure VI.2: (Top) Domain of existence of n = 0 scalarized black holes on
the α−M plane. For a given β, solutions exist between the corresponding
black line, and the dashed, red line. The latter coincides with the line
where general relativity solutions of equal mass would become unstable.
(Bottom) Same but on the α−Q plane. Both panels can be obtained from
an “unfolding” of Fig. VI.1.

related to the horizon condition presented in Eq. (VI.15). Solutions for a

given β, then, exist everywhere between the red, dashed general relativity

instability line and the corresponding plain, black existence line. Every

M̂ = constant (Q̂ = constant) parabola included in this existence region

corresponds to a point along the respective constant β line of Fig. VI.1,

so that both panels of Fig. VI.2 can be obtained from an “unfolding” of

Fig. VI.1. Note that solutions lying on a horizontal cut in the region of

existence, that is points of constant α (and β), corresponds to solutions

with different φh and rh, which is no longer restricted to be rh = 1.

Examining the plots reveals something rather interesting: the value of

the Ricci coupling β can affect the relative position of the existence line

with respect to the instability parabola. This should not come as a surprise,

based on the results presented in Fig. VI.1, where β has a similar effect on
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the relative position of the curve with respect to the threshold mass M̂
(0)
th .

As mentioned earlier, we do not plan to consider the β < 0 case in any

detail as positive values appear to be better motivated. However, we can

report the following based on a preliminary exploration. There is still a

critical value of β, and for β smaller than this value, scalarized black holes

have smaller ADM masses than the general relativity instability threshold,

together with scalar charges that tend to increase with decreasing mass.

For β larger than the critical value, the behaviour is reversed. Hence, the

equivalent to Fig. VI.1 would be qualitatively similar for β < 0.

2.2 Solutions with higher nodes

We conclude this Chapter turning to solutions characterized by n = 1 and

n = 2. For β > 0, the plot of the normalized charge versus the normalized

mass is given in Fig. VI.3. A noticeable pattern is that, for n = 0, the scalar
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Figure VI.3: Normalized scalar charge versus normalized ADM mass for the
solutions with n = 1 (top panel) and 2 (bottom panel) nodes.
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charge is positive, while it is negative for n = 1, positive for n = 2, and so

on. This is simply due to the fact that the scalar field has to approach 0

at spatial infinity from a different side, depending on the number of nodes.

There is no deep significance in the sign of the charge, since the action (V.1)

possesses parity symmetry φ→ −φ, and the signs would have been flipped,

had we chosen negative values of φh as initial conditions. Compared to the

n = 0 case, we see that the order of magnitude of the charge for all different

values of β is significantly smaller, and the range of masses for which we find

scalarized solutions is strongly reduced. Once again there is a critical value

of β that separates right-leaning curves (likely unstable) from left leaning

ones (likely stable).

We have considered the contribution that a coupling between the scalar

field and the Ricci scalar, R, can have in black hole spontaneous scalariza-

tion. We focused on static, spherically symmetric black holes. The βφ2R

coupling is known not to affect the threshold of scalarization. However, our

results show that it can alter the domain of existence of scalarized black

holes, significantly modify their properties, and control their scalar charge.

Our results also strongly suggest that the strength of this coupling can have

an impact on the stability of scalarized black holes. In particular, having β

be larger than some critical value, βcrit, is expected to resolve the stability

problems for models that do not include the βφ2R coupling.

We have mostly focused on positive values for β. We did so for two

reasons. First, it has recently been shown that including the βφ2R term

in black hole scalarization models and selecting a positive β makes general

relativity a cosmological attractor and allows one to have a consistent cos-

mological history, at least from the end of the inflationary era [114]. The

numerical values that we considered here for the couplings are similar to

those used in Ref. [114]. Second, for positive values of the Ricci coupling

(and reasonably small values of the Gauss-Bonnet coupling), neutron stars

do not scalarize, as shown in Chapter V. This allows one to evade the very

tight binary pulsar constraints (e.g. [118–120]), related to energy losses due

to dipolar emission of gravitational waves, without the need to add a bare

mass to the scalar (and tune it appropriately).

It is clear that inclusion of the βφ2R coupling has multiple benefits in

scalarization models. It is worth re-iterating that this coupling has lower

mass dimensions than the αφ2G coupling, which triggers scalarization at

linear level. Moreover, unlike a bare mass term or scalar self-interactions, it
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allows the scalar to remain massless and free in flat space. Hence, the βφ2R

coupling can be part of an interesting effective field theory that respects

φ→ −φ symmetry and in which shift symmetry can be broken only via the

coupling to gravity (the complete effective field theory would potentially

include more terms, such as Rφ4 and Gµν∂µφ∂νφ).

It should be stressed that we only considered the case α > 0 throughout

our analysis, as this is a requirement for having scalarized black holes under

the assumptions of staticity and spherical symmetry. However, it has been

shown in Ref. [117] that, for α < 0 (and β = 0), scalarization can be

triggered by rapid rotation. Indeed, some scalarized black hole have been

found in this scenario in Refs. [121,122].



Chapter VII

Neutron star scalarization with

Gauss-Bonnet and Ricci scalar

couplings

The combined results retrieved in Chapter V and Chapter VI, showed that

including the Ricci coupling to a general scalarization theory seems to pro-

vide us with several advantages. As we have already discussed, this term

has not received much attention in recent literature on spontaneous scalar-

ization. This is mostly due to the fact that, in the black-hole scenario, the

onset of scalarization is only controlled by the Gauss-Bonnet invariant, since

the Ricci scalar evaluates to zero for general relativity black holes.

However, we determined in Chapter V that the Ricci term can help in

suppressing the scalarization of neutron stars, which would otherwise tend

to place significant constraints. Furthermore, in Chapter VI, we showed

that this term has very interesting effects on the properties of scalarized

black holes. Even though the Ricci coupling does not affect the onset of

black hole scalarization, it affects the properties of the scalarized solutions

and, consequently, observables. For certain values of the Ricci coupling the

presence of this operator is expected to render black holes radially stable,

without the need to introduce self-interaction terms. Interestingly, these

values of the Ricci coupling happen to be consistent with the ones retrieved

in Ref. [114], where it was shown that the Ricci term is crucial if one wants to

retrieve a late-time attractor to general relativity in a cosmological scenario.

For the reasons presented above, it is of great interest to examine how

the combination of Ricci and Gauss-Bonnet couplings affects neutron star

properties. Hence, in this Chapter we focus on solving the complete set of

79
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equations for the theory studied in the previous Chapter, i.e. action (V.1),

with γ = 0 and mφ = 0, for the case of neutron stars.

We determine over which region of the parameter space scalarized solu-

tions exist, for the three different stellar scenarios already considered in the

study of the scalarization threshold in Chapter V. We examine the proper-

ties of the scalarized solutions, in particular their scalar charges and masses.

We also investigates in more detail the solutions that always exist near the

scalarization thresholds, and we explain how, already at the level of the

general relativity solution, a given scalar profile may be favored.

The results presented in this Chapter have been published in Ref. [123].

1 Static, spherically symmetric neutron stars

For the purpose of this work, we restrict our analysis to static and spherically

symmetric spacetimes and we use the line element as defined in Eq. (V.5),

with h(r) = eΓ(r) and f(r) = e−Λ(r). As we did in Chapter IV, we assume

matter to be described by a perfect fluid with TPF
µν as a matter stress-energy

tensor, where the pressure is directly related to the energy density through

the equation of state. The field equations then take the form of coupled

ordinary differential equations (VI.1) for Γ, Λ, ε and φ, see Appendix F. We

can solve algebraically the (rr) component of the modified Einstein equation

for eΛ. The result is

eΛ =
−B + δ

√
B2 − 4AC

4A
, δ = ±1 (VII.1)

where

A = 1 + κ r2p− 1

4
βφ2,

B = −2 +
1

2
β φ2 − 2 rΓ′ +

1

2
rβ φ2Γ′ + 2 rβ φφ′

− 4αφΓ′φ′ +
1

2
r2βφΓ′φ′ +

1

2
r2φ′2,

C = 24αφΓ′φ′.

(VII.2)

For the δ = −1 branch of solutions we do not retrieve general relativity in

the limit α→ 0 and β → 0, henceforth we will assume δ = 1. By substitut-

ing Eq. (VII.1) in the remaining differential equations, we can reduce our

problem to an integration in three variables: Γ, φ and ε.



CHAPTER VII. NEUTRON STAR SCALARIZATION 81

1.1 Expansion for r → 0

Close to the center of the star, we can perform an analytic expansion of the

form

f(r) =
∞∑
n=0

fnr
n (VII.3)

for the functions Γ, Λ, ε, p and φ. Plugging these expansions in the field

equations, we can solve order by order to determine the boundary conditions

at the origin. At this point, there are essentially three quantities that one

can freely fix: the central density ε0, the value of the scalar field at the

center φ0, and the value of the time component of the metric at the center,

determined by Γ0. On the other hand, Λ0 has to vanish in order to avoid

a conical singularity at the center, while p0 is directly related to ε0 by the

equation of state. All higher order quantities {Γi, ..., φi}, i ≥ 1 can be

determined in terms of the three quantities {ε0,Γ0, φ0}. We will require

that spacetime is asymptotically flat, with a trivial scalar field at spatial

infinity, which fixes uniquely Γ0 and φ0, or rather restricts φ0 to a discrete

set of values, each corresponding to a different mode; technically, these

values are found through a numerical shooting method. Therefore, for given

parameters α and β, a solution is eventually fully determined by the central

density ε0. Different choices of ε0 will translate into different masses.

We must underline the difference with the black hole case, studied in

Chapter VI. For black holes, the equations are scale invariant up to a redef-

inition of the couplings. Practically, this means that it is enough to explore

the full space of parameters α and β for a fixed mass. One can then deduce

all solutions, of arbitrary mass, by an appropriate rescaling. For neutron

stars this scaling symmetry is broken by the equation of state that relates

p and ε. Therefore, one a priori has to explore a 3-dimensional space of

parameters (ε0, α and β) in the case of neutron stars. In order to keep

this exploration tractable, as it was done in Chapter V, we focus our study

on a selection of central densities and equations of state. We pick these in

order to cover very diverse solutions, typically corresponding to the light-

est/heaviest observed stars in general relativity. We then explore a wide

range of the (α, β) parameter space for these fixed densities and equations

of state.

To complete this Section, let us note that solving order by order the field

equations for the higher order coefficients in the expansion (VII.3) does not

always yield solutions. All first order coefficients in this expansion have to
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vanish; one can express Γ2, ε2, p2 and φ2 in terms of Λ2; however, Λ2 itself

is determined by the following equation:

Λ4
2(256α3 φ2

0 − 64α3βφ4
0) + Λ3

2(256 p0α
3κφ2

0 − 32α2βφ2
0

+ 8α2β2φ4
0) + Λ2

2(3αβ3φ4
0 − 12αβ2φ2

0 − 96 p0α
2βκφ2

0)

+ Λ2

(
2 β − 16

3
αε0κ− β2 φ2

0 +
3

2
β3 φ2

0 + 12 p0αβ
2κφ2

0

+
4

3
αβε0κφ

2
0 +

8

3
αβ2ε0κφ

2
0 +

1

8
β3φ4

0 −
3

8
β4φ4

0

)
− 2

3
βε0κ

+
16

9
αε20κ

2 − 1

2
p0β

3κφ2
0 +

1

6
β2ε0κφ

2
0 −

1

3
β3ε0κφ

2
0 = 0.

(VII.4)

Equation (VII.4) is a fourth order equation in Λ2. Such an equation does not

necessarily possess real solutions. Therefore, for any choice of parameters

(α, β) and initial values (ε0, φ0), we need to check that a real solution to

Eq. (VII.4) exists. In particular, we need to check this when implementing

the shooting method that will allow us to find the values of φ0 such that the

scalar field is trivial at spatial infinity. Such values might actually not exist

in the domain where Eq. (VII.4) possesses real solutions. In practice, we

make sure that each choice of parameters that we consider guarantees not

only that Eq. (VII.4) has a positive1 real solution, but that such a solution

is connected to the general relativity one. We discard all other parameter

combinations that do not respect such criteria.

1.2 Expansion at spatial infinity

We now analyze the asymptotic behaviour of the solutions at spatial infinity.

This time, we expand the metric and scalar functions in inverse powers of

r, and solve order by order. We impose that the asymptotic value of the

scalar field vanishes, that is φ(r →∞) ≡ φ∞ = 0, and that Γ(r →∞) = 0.

The asymptotic behavior of the solutions is the same as that of black hole

ones, namely Eqs. (VI.19)-(VI.21). However, in the case of neutron stars,

these expansions are in fact entangled with the boundary conditions at the

center of the star, as we already mentioned. For fixed parameters α and β,

the freedom in M directly relates to the freedom in the central density ε0.

On the other hand, the fact that only discrete values of φ0 yield a vanishing

scalar field at infinity means that the scalar profile is actually fixed once a

1An acceptable solution to Eq. (VII.4) must be positive, otherwise grr diverges at a
finite radius, and consequently the pressure and the energy density diverge as well.
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central density (or a mass) is chosen. Therefore, Q is fixed as a function of

M , and does not constitute a free charge; this is sometimes referred to as

secondary hair.

The scalar charge constitutes probably the most direct channel to test

the theory through observations. Indeed, binaries of compact objects en-

dowed with an asymmetric charge will emit dipolar radiation. This enhances

the gravitational wave emission of such systems: in a Post-Newtonian (PN)

expansion, dipolar radiation contributes to the energy flux at order -1PN

with respect to the usual quadrupolar general relativity flux. Generically,

this dipolar emission is controlled by the sensitivities of the compact objects,

defined as2

αI = 2
∂lnMI

∂φ0

, (VII.5)

MI being the mass of the component I, and φ0 the value of the scalar

field at infinity. The observation of various binary pulsars, notably the

PSR J1738+0333 system, allows one to set the following constraint:

|αA − αB| . 2× 10−3, (VII.6)

where A and B label the two components of the system [120, 124]. We

can then relate the sensitivity to the scalar charge Q, using the generic

arguments of [125]. If there is no accidental coincidence in the charge of the

two components of the binary, Eq. (VII.6) translate as∣∣∣∣∣ Q̃M
∣∣∣∣∣ . 6× 10−4 (VII.7)

for the solutions we consider, where we have defined a new quantity Q̃ =

Q/
√

2κ, so that Q̃/M is a dimensionless quantity and we use units where

c = 1, G = 1 and M� = 1. Only solutions satisfying this bound on the

charge to mass ratio are relevant. It is however a non-trivial task to map this

bound onto the parameters of the action (V.1). We will do so by exploring

the parameter space in Section 2.

2The factor 2 is added to match the standard definition of the sensitivity in the
literature, where a different normalization for the scalar field is generally used.
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1.3 Numerical implementation

We solve the system of three differential equations for the three independent

functions Γ, φ and ε by starting our integration from r0 = 10−5 km. We fix

the parameters of the theory α and β, and the central density ε0, typically

to values of order 1017 kg/m3. Then, we give an initial guess for φ0, and

determine boundary conditions as explained in Section 1.1. The integration

will generically give a solution; however, we also demand that the scalar

field vanishes at infinity, that is φ∞ = 0. Only a discrete set of φ0 values

will yield φ∞ = 0. Each value corresponds to a different number of nodes

of the scalar field in the radial direction. In practice, we integrate up to

distances rmax = 300 km and we implement a shooting method to select the

solutions with φmax = 0. Generally, we use Mathematica’s built-in function

FindRoot.

However, in some cases FindRoot fails to find the right solutions, even

if one gives it a limited range (φ0,min, φ0,max) where to look for. When this

happens, we resort to bisection instead. In this latter case, we require that

φ(rmax)/φ0 ≤ 10−2.

At each stage of the shooting method, we must check that Eq. (VII.4)

gives a real positive solution for Λ2 that is connected to the general relativity

solution. In some cases, we reach the limit of the region of the parameter

space where these criteria are fulfilled before reaching φ∞ = 0. When this

is the case, there is no solution associated to the given choice of α, β and

ε0. Note also that, given a set of α, β and ε0, there is a maximum number

of nodes that the solution can have, consequently a maximum number of

suitable choices of φ0 (typically up to three modes in the regions we explore).

Solutions with more nodes are encountered only for higher values of the

parameters α and β, or at higher curvatures (that is, at higher ε0).

Given a solution, we extract the value of the ADM mass M and the

scalar charge Q, from the asymptotic expansion as in Eq. (VI.22).

Let us now summarize the algorithm we implement:

1. We choose a specific value for the central energy density ε0.

2. We fix β.

3. We choose a value for α.

4. Given ε0, β and α, we find the value for φ0 that satisfies the initial

conditions on the equation on Λ2, i.e. Eq. (VII.4), and gives the right
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asymptotics, implementing a shooting method. If there is no value

of φ0 that satisfies these requirements, we treat the parameter set as

having no solution.

5. Given α, β and φ0, we solve the field equations and we extract the

value of M and Q.

6. We repeat steps 3-5 for a new value of α.

2 Existence regions of scalarized solutions

In this Section, we study the regions where scalarized solutions exist in the

(α, β) parameter space. We analyze three different neutron star scenarios,

which correspond to the three cases studied in Chapter V.

2.1 Light star with SLy EOS

First, we consider a neutron star described by the SLy equation of state

[126], with a central energy density of ε0 = 8.1 × 1017 kg/m3, so that its

gravitational mass in general relativity is MGR = 1.12M�. The results are

summarized in Fig. VII.1, where we relate our new results to the previous

study of the scalarization thresholds of Chapter V. The white area corre-

sponds to the region of the parameter space where the general relativity

solution is stable. When cranking up the parameters α or β, a new unsta-

ble mode appears every time one crosses a black line. The first mode has

0 nodes, the second 1 node, etc. We will refer to these black lines as insta-

bility lines. Any point in the parameter space that lies within some grey

region corresponds to a configuration where the general relativity solution is

unstable. The red (respectively blue) area corresponds to the region where

scalarized solutions with n = 0 (respectively n = 1) nodes exist. We do not

include the equivalent regions for higher n, to not complicate further the

analysis. The region where a scalarized solution does exist is considerably

reduced with respect to the region where the general relativity solution is

unstable.

One of our main results is that the parameters (α, β) corresponding to

the grey areas that are not covered by the colored regions must be excluded.

Indeed, there, scalarized solutions do not exist while the general relativity

solution itself is unstable. Therefore, neutron stars in these theories, when

they reach a critical mass, will be affected by a tachyonic instability, but
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Figure VII.1: Regions of existence of scalarized solutions in the (α, β) space,
for the SLy EOS with ε0 = 8.1 × 1017 kg/m3. The red (respectively blue)
region is the region where scalarized solutions with 0 (respectively 1) node
exist. We superimposed the grey contours obtained in Chapter V, which
represent the lines beyond which general relativity solutions with the same
density are unstable to scalar perturbations with 0, 1, 2, etc nodes. We
see that the region where there exist scalarized solutions with n nodes is
included in the region where general relativity solutions are unstable to
scalar perturbations with n nodes, but much smaller. The dashed boundary
for the blue region corresponds to a breakdown of the integration inside the
star. In general relativity, a star with this choice of ε0 and EOS has a light
mass, MGR = 1.12M�.

there does not exist a fixed point (a static scalarized solution) where the

growth could halt. This would imply that neutron stars with this mass

and EOS do not exist for the corresponding parameters of the theory (V.1).

Considering that the properties of the scalarized star are sensitive to non-

linearities, adding further nonlinear interaction terms to the action, e.g.

self-interactions in a scalar potential, as was proposed in [83], or non-linear

terms in the coupling functions [51, 84], can potentially change this result.

In Fig. VII.1, the regions where scalarized solutions exist are delimited

by existence lines, represented by a curve of the respective color. The plain

lines correspond to boundaries beyond which it is no longer possible to find

a value of φ0 that allows a suitable solution to Eq. (VII.4), while providing

φ∞ = 0. Beyond dashed lines, on the other hand, nothing special occurs

at the center of the star, but the numerical integration breaks down at a

finite radius inside the star. We do not know whether, when crossing these

dashed lines, our integration is affected by numerical problems, or whether

the divergence corresponds to an actual singularity of the solutions. It could

be that this singularity emerges as an artifact of the method we employ.
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Indeed, in our analysis, we keep the central density ε0 fixed while pushing

the couplings α and β to larger and larger values. However, for each couple

of parameters (α, β), there probably exists a maximal central density beyond

which star solutions do not exist, or equivalently it becomes impossible to

sustain such a high central density. The dashed line could correspond to

this saturation, where we try to push all the parameters beyond values that

can actually be sustained by the model.

A surprising feature, which is not visible in Fig. VII.1, is that scalarized

solutions always exist in a very narrow range along the instability lines.

For example, when crossing the black instability line that delimitates the

white region where the general relativity solution is stable, from the light-

grey region where it is unstable against n = 0 scalar perturbations, there

exists a very narrow band (within the grey region) where scalarized solutions

with zero node exist. We observed similar behaviours along each instability

line, also in the scenarios discussed in the next paragraphs. We further

investigate these particular solutions in Section 3.3.

2.2 Light star with MPA1 EOS

We next consider a stellar model described by the MPA1 equation of state [101].

We choose a central energy density of ε0 = 6.3 × 1017 kg/m3, such that it

corresponds to the same general relativity mass as in the previous case, that

is MGR = 1.12M�. We report the results in Fig. VII.2. As one can see,

Figure VII.2: Regions of existence of scalarized solutions in the (α, β) space,
for the MPA1 EOS with ε0 = 6.3 × 1017 kg/m3. The conventions are the
same as in Fig. VII.1. In general relativity, a star with this choice of ε0 and
EOS is again light, with MGR = 1.12M�.
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changing the EOS has only mild effects on the region of existence of scalar-

ized solutions. The analysis of the parameter space is qualitatively the same

as for the SLy EOS. The main difference is that, for the range of parame-

ters we considered, no numerical divergences (associated with dashed lines)

appear with the MPA1 EOS.

2.3 Heavy star with SLy EOS

Last, we consider a denser neutron star described by the SLy EOS, with

ε0 = 3.4 × 1018 kg/m3. It corresponds to an increased mass in general

relativity of MGR = 2.04M�. The results are shown in Fig. VII.3. In this

Figure VII.3: Regions of existence of scalarized solutions in the (α, β) space,
for the SLy EOS with ε0 = 3.4× 1018 kg/m3. The conventions are the same
as in Fig. VII.1. In general relativity, a star with this choice of ε0 and EOS
is the heaviest possible, MGR = 2.04M�. The bottom panel is simply a
zoom of the upper one.
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case, positive values of β can also lead to scalarized solutions. In Chapter V,

we have already discussed how, in general relativity, dense neutron possess a

negative Ricci scalar towards the center, which allows for scalarization to be

triggered even when β > 0. As before, a dashed line signals the appearance

of divergences, which in this case shows up already for the n = 0 node.

In the lower panel of Fig. VII.3, we zoomed on the region of small cou-

plings, in order to understand better what happens for natural values of

the Ricci coupling β. In the absence of the Gauss-Bonnet coupling, scalar-

ization can occur either if β < −8.55, or β > 11.5. Let us concentrate on

the β > 0 scenario, which is motivated by the results of Ref. [114], where it

was shown that positive values of β make general relativity a cosmological

attractor. We remind that black hole scalarization (at least for non-rotating

black holes) occurs for α > 0. Hence, we see that there exists an interesting

region in the α > 0, β > 0 quadrant where even very compact stars do

not scalarize, while black holes do. Such models can therefore a priori pass

all binary pulsar tests, while being testable with black hole observations.

On the other hand, for β & 11.5, the red region where general relativity

solutions are replaced by scalarized solutions spreads very fast in the α di-

rection, and one has to be careful, when considering black hole scalarization,

that such models are not already excluded by neutron star observations.

To summarize, we have identified the regions of parameter space where

solutions exist, considering three different stellar scenarios which correspond

to different central densities and EOS. Although we have considered only a

limited number of different central densities, we have selected the ones that

correspond to the lowest/largest neutron star mass in general relativity, in

order to cover very different setups. The regions where scalarized solutions

exist are systematically smaller than the ones where the general relativity

branch is tachyonically unstable. The complementary regions, where the

general relativity solution is unstable while no scalarized solution exists,

should be excluded.

3 Properties of the solutions

We now discuss the properties of these solutions, in particular their scalar

charge and their mass. We separate this study into two cases: β < 0

(Section 3.1) and β > 0 (Section 3.2); indeed, these two situations have

different motivations and observational interests.
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3.1 Mass and scalar charge of the β < 0 solutions

We first focus on the scenario where β < 0. This corresponds to the origi-

nal situation studied by Damour and Esposito-Farèse. Typically, scalarized

solutions with β < 0 and α = 0 are constrained by binary pulsar obser-

vations for the massless case [118–120]. A particular motivation to study

solutions with β < 0 is therefore to determine whether the addition of a

non-zero Gauss-Bonnet coupling can improve their properties. We consider

three different choices of the Ricci coupling: β = −5.5,−10 and −100. The

two first choices are relevant astrophysically: β = −5.5 is approximately

the value where scalarization is triggered for small Gauss-Bonnet couplings,

while β = −10 corresponds to a region where neutron stars are scalarized,

but with rather small deviations with respect to general relativity. The

third choice, β = −100, is certainly disfavored observationally, but it allows

us to illustrate an interesting behaviour concerning different scalar modes.

Let us start with the comparison between the cases β = −5.5 and −10.

The results are summarized in Fig. VII.4. This figure shows two properties

of scalarized stars. First, the mass default (or excess) of scalarized stars

with respect to general relativity stars with the same central density and

EOS: δM = M −MGR. Second, the rescaled scalar charge of the scalarized

solutions, Q̃. We compare the results for the three different stellar models

considered in Section 2, for the two values of β. All curves extend only over

a finite range of α. Indeed, passed a certain value of α, we exit the red

region on the β < 0 side of Figs. VII.1, VII.2 and VII.3 (moving vertically,

since β is fixed to −5.5 or −10). Scalarized solutions do not exist outside

of this region.

Figure VII.4 shows that the choice of EOS does not affect much the

properties of the scalarized solutions. However, increasing the density dras-

tically modifies these properties. In particular, at higher densities, there

exist solutions with δM > 0. This can appear problematic at first. Indeed,

one expects that, in a scalarization process, energy is stored in the scalar

field distribution. Hence, the ADM mass, that constitutes a measure of the

gravitational energy, should decrease in the process. However, we stress

that we are not studying a dynamical process. Indeed, the stars for which

we are computing the mass difference δM have, by construction, the same

central energy density ε0. In the scalarization process of a general relativity

neutron star, the central energy density will not remain fixed. Hence, our

results do not necessarily mean that a star will gain mass when undergoing
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Figure VII.4: Mass difference and scalar charge of scalarized solutions for
β < 0. The two left (respectively right) panels show how these quantities
evolve when varying α at fixed β = −5.5 (respectively −10). The rescaled
scalar charge Q̃ (bottom panels) is normalized to the total mass of the
solutions, M . For all curves, the mass difference δM (upper panels) is
computed with respect to a general relativity star with the same central
density and EOS. Plain curves correspond to a general relativity mass of
1.12 M�, using the SLy EOS; dashed curves to the same general relativity
mass, but the MPA1 EOS; and dotted-dashed curves to a general relativity
mass of 2.04 M�, using the SLy EOS. In this region of the parameter space,
only solutions with 0 nodes for the scalar field exist. A generic feature of
lighter stars (plain and dashed curves), is that the charge decreases when α
increases, a priori offering a way to evade the stringent bound of Eq. (VII.7)
when increasing α. However, it is only for values of β very close to the
Damour and Esposito-Farèse threshold (β = −5.5) that we can obtain scalar
charges compatible with observations.

scalarization.

Perhaps more interestingly for observations, Fig. VII.4 also shows the

behaviour of the scalar charge. For the light neutron stars, the scalar charge

always decreases when α increases. Therefore, the constraint on the scalar

charge, Eq. (VII.7), disfavors the solutions with α < 0 with respect to

standard Damour and Esposito-Farèse (α = 0) solutions. On the contrary,
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one could hope that a positive Gauss-Bonnet coupling could help evade

these constraints even for β < −5.5, by quenching the charge. Effectively,

there will be a direction in the α > 0 and β < 0 quadrant where the effects of

the two operators, Ricci and Gauss-Bonnet, combine to yield a small scalar

charge. This interesting possibility is moderated by what happens in the

case of denser stars (dotted-dashed line in Fig. VII.4). For large negative

values of the Ricci coupling (β = −10), the scalar charge does not have a

monotonic behaviour with α. In particular, as shown in the bottom-right

panel of Fig. VII.4, Q̃ starts increasing for positive values of α. Even at the

point where Q̃ is minimal, its value (Q̃/M ' 8× 10−3) already exceeds the

bound of Eq. (VII.7). Therefore, it is only for values of β that are very close

to the Damour and Esposito-Farèse threshold β ' −5.5, that the addition

of the Gauss-Bonnet coupling can help to reduce the scalar charge, and to

pass the stringent binary pulsar tests.

To conclude the study of the β < 0 region, we consider a significantly

more negative Ricci coupling, namely β = −100. To illustrate what happens

at these large negative values of β, it is enough to consider one scenario,

for example the one of lighter neutron stars with the SLy EOS. For such

negative values of β, there exist several scalarized solutions, with different

number of nodes. We can then compare the mass difference of these solu-

tions between each other. Figure VII.5 shows that, for α > αc ' 350 km2,

scalarized solutions with 1 node become lighter than scalarized solutions

with 0 node. This is a hint that, for α > αc, the one node solution will

be preferred energetically to the zero node solution. We cannot conclude

definitively on this issue, as the ADM mass does not take into account the

energy stored in the scalar distribution (which is non-zero for the two scalar-

ized solutions). However, in the regime where this inversion happens, the

mass difference with respect to general relativity, δM , is rather small. If our

interpretation in terms of energetic preference is correct, the transition from

a preferred solution with zero node to a solution with one node is interest-

ing. Indeed, the scalarized solution with zero node is associated with the

fundamental mode of the general relativity background instability. At the

perturbative level, all the other modes of instability have higher energies.

It would then be natural to expect that, at the non-linear level of scalarized

solutions, this energy hierarchy is respected. This is the case up to α = αc,

but not anymore beyond. In Section 4, we provide a putative explanation

for this inversion: that for α > αc, the profile of the effective mass over
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Figure VII.5: Mass difference δM vs α at β = −100. The EOS considered
here is the SLy one, with ε0 = 8.1× 1017 kg/m3, which in general relativity
corresponds to MGR = 1.12 M�. The color and dashing conventions is the
same as in Fig. VII.4. We have more modes in this region of parameter
space, that we represent as dotted-dashed (for n = 1 node) and dashed (for
n = 2 nodes) curves. For α & 350 km2, solutions with 1 node start having a
smaller mass than solutions with 0 node, which can indicate that solutions
with 1 node are more energetically favored.

the general relativity background tends to favor the growth of scalar field

solutions with one node, rather than zero.

3.2 Mass and scalar charge of the β > 0 solutions

We now consider the case of positive β. Such solutions are less constrained

by observations than their β < 0 counterparts. They are also very interest-

ing from a cosmological perspective, where β > 0 allows a consistent history

throughout different epochs [114]. We have seen in Section 2 that, among

the three different possible neutron star configurations we focus on, only the

denser one leads to scalarized solutions for β > 0. In Fig. VII.6, we show

the mass difference δM and rescaled scalar charge Q̃ as functions of α when

β = 50. Note that scalarized solutions with zero node exist over two discon-

nected ranges of α (−44 km2 < α < 57 km2 and 174 km2 < α < 522 km2).

In the gap, general relativity solutions are stable and no scalarized solutions

exist. This is obvious from Fig. VII.3, taking a cut along the vertical line

β = 50.

Over the first interval, α is rather small and the scalarization process

is dominated by the negative Ricci scalar. For strictly vanishing α, the
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Figure VII.6: Mass difference and rescaled scalar charge of scalarized so-
lutions for β > 0 (β = 50 here). Among the three neutron star sce-
narios that we considered throughout the Chapter, only the heavier star
(ε0 = 5.51 × 10−3 kg/m3, MGR = 2.04 M�, SLy EOS) possesses some
scalarized solutions in this region. The dashing convention is the same as
in Fig. VII.5. Solutions that correspond to the interval of α centered on
0 are interesting observationally, as they yield very small scalar charges,
compatible with Eq. (VII.7).

scalarization phenomenon with β > 0 has already been examined in [109–

111]. Here, we find that, in the interval of small values of α, the scalar

charges of the n = 0 solutions (as well as of the n = 1 solutions) are

very small. Typically, Q̃/M ' 10−4 − 10−5, compatible with Eq. (VII.7).

Hence, all solutions with β > 0 and rather small values of α are interesting

observationally: they display either no scalarization effects for neutron stars

(for β . 11.51) or very mild scalar charges (for β & 11.51). At the same

time, they allow for a consistent cosmological history; finally, together with
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positive values of α, they will generically give rise to black hole scalarization,

as studied in detail in Chapter VI. In this region of the parameter space, we

can therefore hope to discover scalarization effects in the future gravitational

wave signals of binary black holes, that are either absent or suppressed in

the case of neutron stars.

Over the second interval (174 km2 < α < 522 km2), the contribution

of the Gauss-Bonnet invariant tends to dominate, and the scalar charges

are more significant, as one can immediately notice in Fig. VII.3. Such

setups are not compatible with Eq. (VII.7), and therefore less interesting

phenomenologically.

3.3 Scalarized solutions along the instability lines

As we mentioned at the end of Section 2, a generic feature that is not

observable in Figs. VII.1, VII.2 and VII.3, is that scalarized solutions are

present in a tiny band close to each instability line. Let us illustrate this

with the light star model (with SLy EOS), that is the one which corresponds

to Fig. VII.1. For simplicity, we also restrict our study to solutions with

β = 0 (i.e., we take a cut along the vertical axis in Fig. VII.1). The

characteristics of the solutions are shown in Fig. VII.7. Scalarized solutions

with zero nodes (the ones lying close to the n = 0 instability line of the

general relativity solution) have a characteristic mass difference and scalar

charge which is not particularly small. It is of the same order as for the

solutions we previously examined (Figs. VII.4–VII.6). They also exhibit

a surprising behaviour: when increasing α progressively from 0 towards

positive values, the mass and scalar charge suddenly deviate from general

relativity, instead of being smoothly connected; further increasing α, δM

and Q̃ then tend to decrease. This behaviour is significantly different from

what we could observe in Figs. VII.4–VII.6.

Solutions with more nodes (n = 1, 2, 3...) exhibit a clear feature: they

deviate very slightly from general relativity in terms of mass, and acquire

only a small scalar charge (typically δM < 10−2 and Q̃/M < 10−4). We

verified this behaviour for all higher nodes admitted; however, for simplicity,

in Fig. VII.7 we show only the case n = 1. This feature can be understood

as follows; close to some instability line (on the unstable side), an unstable

mode of the effective potential associated with the general relativity solution

has just appeared. A very small deformation of the potential can therefore

easily restore the equilibrium. This deformation can be caused by the back-



CHAPTER VII. NEUTRON STAR SCALARIZATION 96

Figure VII.7: Mass difference and scalar charge of the scalarized solutions
along the instability lines, for β = 0. The scenario considered here corre-
sponds to ε0 = 8.1 × 1017 kg/m3 (MGR = 1.12M�) together with the SLy
EOS. Solutions with zero node acquire a significant charge and mass dif-
ference, and are apparently disconnected from general relativity when they
appear while increasing α towards positive values. Solutions with n = 1
nodes are very close to general relativity, with a small charge and mass dif-
ference. Since they extend only over a small range of Q̃ and δM , they are
difficult to spot. They lie at the upper left (respectively lower left) of the
top (respectively bottom) panel.

reaction of the scalar onto the metric: the instability is triggered, the scalar

field starts growing, but it immediately back-reacts on the potential, making

it shallower and suppressing the instability. Clearly, such a behaviour can

only happen close to instability lines, where a specific mode is on the edge

of stability.

We conclude this Section with the outline of our results. We investigated

in detail the physical characteristics of the scalarized solutions. In general,
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large parameters (|β| � 1 or |α| � L2, where L ' 10 km is the typical

curvature scale) lead to scalar charges that would be in conflict with binary

pulsar constraints. However, it is interesting to notice that solutions with

β > 0 and reasonably small α (typically |α| . 50 km2) lead either to

stable general relativity configurations, or to scalarized stars with small

charges. Remarkably, this is the region of the (α, β) parameter space for

which general relativity is a cosmological attractor [114] and black holes

scalarization can take place [115]. Therefore, it is possible to construct

scalarization models that are consistent with current observations, while

still having interesting strong field phenomenology.

We have also discovered that scalarized solutions systematically exist

near the thresholds that delimit the stability of the general relativity solu-

tions, and provided a putative explanation for this.

4 Predicting the scalar profile of scalarized

stars from general relativity solutions

We conclude this Chapter by arguing that, already at the perturbative level

of the general relativity solution, we can identify an influence on the profile

of the scalar field in the fully scalarized solution. To this end, let us focus

on the effective mass given in Eq. (VI.5), that is m2
eff = βR/2−αG . This is

a radially dependent quantity, and the scalar field is most likely to grow at

radii where m2
eff is most negative. In particular, it is natural to expect that,

if m2
eff has a minimum at r = 0, this will favor a monotonic profile for the

scalar field, and hence an n = 0 type of solution. On the contrary, if m2
eff has

a minimum at r > 0, this favors a peaked profile for the scalar field, which

is more common in n ≥ 1 solutions. Let us illustrate this with a concrete

example. We will consider the scenario that corresponds to MGR = 1.12M�,

together with the SLy EOS, and two choices of β: β = −10 and β = −100.

In the first case, only solutions with 0 node exist; in the second case, we

can construct solutions with 0 or 1 node.

We first focus on the case β = −10. The Ricci scalar is everywhere

positive over the background we consider, with a maximum at r = 0; hence,

βR contributes negatively to the squared mass, favouring the growth of

the scalar field close to the center. The Gauss-Bonnet scalar, on the other

hand, is negative in the central region of the star, and becomes positive

towards the surface. Therefore, −αG reinforces the effect of βR if α < 0,
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while counterbalancing it if α > 0. This is illustrated in the top panel of

Fig. VII.8. The bottom panel shows the scalar profile of the fully scalarized

Figure VII.8: Upper panel: radial profile of the effective mass squared
over the general relativity background, using the SLy EOS and a central
density ε0 = 8.1 × 1017 kg/m3 (yielding MGR = 1.12M�), for β = −10 and
α = ±200 km2; Lower panel: radial profile of the scalar field, this time
in the fully scalarized solution with the same EOS, central density, and
Lagrangian parameters. The radial coordinate is normalized by Rs, the
radius of the star surface. In the lower panel, the scalar field is normalized
to its central value for α = −200 km2. When the minimum of m2

eff is shifted
to r > 0, so is the peak of φ.

solutions associated with the same parameters. In this range of parameters,

only solutions with 0 node are allowed (as one can check in Fig. VII.1);

hence, pushing the minimum of m2
eff away from the center cannot favour

n = 1 solutions, which do not exist. Still, we notice that positive α values,

which have the effect of displacing the minimum of m2
eff to r > 0, also

displace the peak of the scalar field to r > 0. The peak of the scalar field is

located approximately at the minimum of m2
eff. Again, one must be careful
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in the comparison of the two panels, as one of them corresponds to a general

relativity star while the other one corresponds to a scalarized star. However,

our analysis seems to capture what happens during the transition from the

general relativity to the scalarized branch.

To illustrate better the transition between n = 0 and n = 1 solutions, let

us now consider the case β = −100. The qualitative discussion about the

effect of βR and −αG over the effective mass is exactly the same as in the

previous case. We will therefore consider again a large negative and a large

positive value of α, as well as an intermediate one: α = −2000, 350 and

1500 km2. Note that the intermediate value corresponds to αc in Section 3.1,

the critical value at which scalarized stars with n = 0 node become more

massive (and hence probably less stable) than those with n = 1 node. We

show the results in Fig. VII.9. The top panel shows the profile of the effective

scalar mass. It behaves exactly as in the case β = −10, with a minimum at

r = 0 for negative values of α, which is progressively shifted to larger radii

when we increase α. For the parameters we chose, this time, both solutions

with zero and one node exist. In the center (respectively bottom) panel of

Fig. VII.9, we show the n = 0 (respectively n = 1) solutions. In Section 3.1,

we stated that for α < αc we expected that the zero node solution will be

energetically preferred over the one node solution, and vice-versa for α > αc.

The profiles of the effective mass squared give a complementary argument

that strengthens this expectation. Indeed, for α = −2000 km2 � αc the

shape of m2
eff favours a scalar solution with a maximum at the center of

the star, which decays monotonically with r, i.e. a n = 0 solution. For

α = 1500 km2 � αc, the tachyonic instability is still triggered inside the

star, but away from the center. Thus, we expect that a solution with one

node will be favoured. The transition between a minimum at r = 0 and

r > 0 indeed seems to occur around αc.

We have shown that the profile of the effective mass at the general

relativity level can foster the growth of certain modes with respect to others.

We focused on the two cases β = −10,−100. Even though, the former case

only admits zero node solutions, one can still relate the peak of the scalar

field profile to the minimum of the effective mass square. In the case β =

−100, the profile of m2
eff seems to favour the one node solutions for values of

α above a critical threshold αc. This result appears to confirm our analysis

in Section 3. We stress that one must be careful in comparing the profiles

of the scalar field and the effective mass square, since the latter corresponds
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to a general relativity star. Nevertheless, this simplistic analysis seems

to capture the transition between the general relativity to the scalarized

branch.
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Figure VII.9: Upper panel: radial profile of the effective mass squared
over the general relativity background, using the SLy EOS and a central
density ε0 = 8.1× 1017 kg/m3 (yielding MGR = 1.12M�), for β = −100 and
α = −200, 350 or 1500 km2; Center (respectively lower) panel: radial profile
of the scalar field solution with 0 (respectively 1) node in the fully scalarized
solution with the same EOS, central density, and Lagrangian parameters.
The normalization is similar to the one of Fig. VII.8. When increasing α,
the minimum of m2

eff is progressively shifted from r = 0 to a finite radius,
alternatively favoring the growth of n = 0 and n = 1 solutions.



Chapter VIII

Conclusions

1 Summary

The new era of gravitational-wave observations allows us to explore the

gravitational interaction at the strongest regime ever probed so far. Hence,

there is hope that new physics can be detected. Testing gravity in this new

limit could give some answers to the big open questions in gravitational

and particle physics, such as quantum gravity, the dark energy or the dark

matter problem.

Searching for new physics means looking for new fundamental fields.

Scalar fields are particularly important since they are ubiquitous in both

extensions of the Standard Model and in alternative theories of gravity.

Moreover, they are the simplest fields to work with. The work of this thesis

is solely focused on generalized scalar-tensor theories. Thus, in Chapter II,

we presented a review of scalar-tensor theories and their generalization to

the Horndeski class.

Scalar fields can act as basic probes for alternative theories of gravity.

Hence, a lot of attention has been drawn to understand if these fields leave

an imprint on compact objects. However, in all tests performed so far in the

weak-field regime, scalars have not been detected. Thus, if we indeed expect

them to leave an imprint in strong gravity phenomenology, we need to be

able to explain why these fields do not manifest at regimes we have tested

so far. The screening mechanism is a useful tool able to explain such behav-

ior. In this thesis we focused on the specific phenomenon of spontaneous

scalarization. It consists of a mechanism that triggers a phase transition

from general relativity solutions to scalarized ones. As a consequence, the

scalar field is in fact screened far away from compact objects, whereas it

102
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can leave imprints around black holes and inside or close to the surface of

neutron stars.

Such mechanism was first formulated by Damour and Esposito-Farèse,

in the context of scalar-tensor theories. This model, however, is covered by

a no hair theorem, thus only neutron stars are able to scalarize, whereas

black holes are still described by general relativity solutions. It was recently

shown that another theory, scalar Gauss-Bonnet gravity exhibits the same

mechanism for both neutron stars and black holes. In Chapter III, we first

provided a description of this mechanism as a tachyonic instability, at linear

level, which is later quenched by nonlinearities included in the system. We

then reviewed spontaneous scalarization in the literature.

The recent formulation of spontaneous scalarization in scalar Gauss-

Bonnet gravity has revealed that the Damour and Esposito-Farèse model is

not uniquely affected by this phenomenon. It is then interesting to inves-

tigate if there are other theories that present the same mechanism. In the

work of this thesis, we address this issue, focusing on the study of sponta-

neous scalarization in the context of Horndeski theory.

First, we investigated the possibility of identifying classes of theories

within the Horndeski action that exhibit spontaneous scalarization trig-

gered by a tachyonic instability. In Chapter IV, we first determined the

conditions that need to be satisfied so that solutions of general relativity

are admissible. We probed whether or not there will be a tachyonic in-

stability by calculating the effective mass of scalar perturbation on a fixed

spacetime background that is a solution of Einstein’s equations. Though

this approximation neglects backreaction, it is adequate for the purpose of

simply identifying scalarization models. We were able to determine a min-

imal action that contains all of the terms that contribute to the effective

mass at linearized level. Such action contains four distinct terms that con-

tribute to scalarization. Through suitable field redefinitions, one of them

can be directly linked to the known Damour and Esposito-Farèse model

and another to the scalar Gauss-Bonnet scalarization models. The third

term can be thought of as a disformal coupling to matter and relates to a

model studied in Ref. [97]. The fourth term comes from a potential for a

scalar and, although it cannot trigger spontaneous scalarization on its own,

it affects the onset of the tachyonic instability in all other models. One can

start from our minimal action, supplement it with terms that contribute

only nonlinearly to the scalar equation, and construct scalarization models.
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The onset of the tachyonic instability that will kickstart scalarization will

be determined by the minimal action, while the end state depends on the

choice of the extra terms that contribute nonlinearly. This is because scalar-

ization is triggered by a linear tachyonic instability and later quenched by

nonlinear effects.

We then proceed to investigate exhaustively the effect of all these terms

in Chapter V. We first identified the role of each term separately, and then

studied their combined effects. In the former case, our results agree with

previous results regarding scalarization thresholds. In the latter, more gen-

eral case, we have found that a very small bare mass suffices to stabilize

general relativity solutions, and that the scalarization thresholds are only

mildly sensitive to the choice of equation of state.

We were also able to explore, for the first time, the multi-dimensional

parameter space and provide scalarization thresholds that depend on more

than one coupling. Our analysis revealed a particular striking features:

the role of the effective metric in which scalar perturbations propagate,

which is controlled by a single coupling constant. There exists a threshold

beyond which the effective metric loses hyperbolicity. This threshold can

be interpreted as an absolute bound on the coupling parameter on which

the effective metric depends, in the framework of tachyonic scalarization.

As a consequence, the value of this coupling constant is restricted to a

rather narrow range and thus it has a very limited effect on the threshold

of tachyonic scalarization. We stress that the loss of hyperbolicity could

alternatively be seen as a source of instability leading to scalarization, in

line with what was proposed in Ref. [112] in a more restricted setup. It

would be interesting to understand if such an instability can indeed be

controlled and give rise to a sensible scalarization process.

The analysis done in Chapter IV and V were performed assuming a gen-

eral relativity background. In the following two Chapters, we then proceed

to solve the full system of field equations, thus including the backreaction

of the metric on the scalar field equation, for a theory that included both

the Ricci scalar and Gauss-Bonnet couplings.

We first focused on the case of static spherically symmetric black holes

in Chapter VI. The coupling with the Ricci scalar is known not to affect

the threshold of scalarization. Nonetheless, we showed that such term can

in fact influence the domain of existence of scalarized black holes, signifi-

cantly modify their properties, and control their scalar charge. Our analysis
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appears to indicate that the strength of this coupling potentially has an im-

pact on the stability of scalarized black holes. In particular, we expect that

having a coupling parameter larger than some critical value can resolve

the stability problems for models that do not include such coupling. We

mainly focused on positive values for the Ricci coupling, since this choice

makes general relativity a cosmological attractor, allowing to have a consis-

tent cosmological history from the end of the inflationary era as shown in

Ref. [114]. Moreover, the analysis done in Chapter V shows that, for positive

values of the Ricci coupling and reasonably small value of the Gauss-Bonnet

coupling, neutron stars do not scalarize, allowing us to evade tight binary

pulsar constraints (e.g. [118–120]).

Lastly, in Chapter VII, we focused on the case of neutron stars. We con-

sidered three different stellar scenarios which correspond to different cen-

tral energy densities and EOS. The regions in the parameter space where

scalarized solutions exist are smaller than those where the general relativity

branch is affected by a tachyonic instability. One of the main result of our

work is that the complementary regions, where general relativity solutions

are unstable while no scalarized solutions exists, must be excluded. We then

proceed to investigate the physical characteristics of the scalarized solutions.

Generally, large values for both the Ricci and Gauss-Bonnet couplings lead

to scalar charges in conflict with binary pulsar constraints. At the same

time, solutions with positive Ricci coupling and small Gauss-Bonnet cou-

pling parameter either lead to stable general relativity configurations or

scalarized stars with small scalar charges. Notably, this region coincides

with that where black hole scalarization can take place. As a consequence,

one can construct models consistent with current observations, while hav-

ing interesting strong field phenomenology. It is worth noting that future

gravitational-wave observations, such as for instance the observations of ex-

treme mass ratio inspirals by LISA [127, 128], will reach the precision to

measure small scalar charges for neutron stars and black holes. We have

also found that scalarized solutions systematically exist near the thresholds

that delimit the stability of the general relativity solutions, providing a pu-

tative explanation for this behavior. Finally, we have shown that the profile

of the effective mass at the general relativity level can foster the growth of

certain modes with respect to others.
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2 Future perspectives

The work of this thesis was aimed at developing a theoretical understanding

of spontaneous scalarization in generalized scalar-tensor theories. A natural

next step would be to further connect these results to observations.

For example, gravitational-wave observation of binaries that contain

black holes would still be able to measure or constrain the Ricci and Gauss-

Bonnet coupling parameters. A detailed post-Newtonian analysis of the

inspiral phase would be sufficient to provide some first constraints. In this

regard, some preliminary work has been done in Refs. [129, 130] for the

study of black hole sensitivities in the context of scalar Gauss-Bonnet grav-

ity. One could also extend the results retrieved in Ref. [131], where they ob-

tained gravitational-wave constraints on the coupling parameter of Einstein-

dilaton-Gauss-Bonnet gravity, to scalarization models. At the same time,

scalarization theories in which the scalar charge is non-zero only below a

mass threshold are also expected to be severely constrained by extreme mass

ratio inspirals observations by LISA: the supermassive black hole would be

described by the Kerr metric, whereas the small black hole can carry a scalar

charge. This is the ideal scenario to apply the considerations of Ref. [127].

Furthermore, when studying black holes scalarization we only considered

positive values for the Gauss-Bonnet coupling, as this is a requirement for

having scalarized black holes under the assumptions of staticity and spher-

ical symmetry. However, it has been shown in Ref. [117] that, for negative

values of this coupling, in the absence of a Ricci coupling, scalarization can

be triggered by rapid rotation. Indeed, some scalarized black holes have

been found in this scenario in Refs. [121, 122]. It would thus be very inter-

esting to consider the effect of the Ricci scalar coupling in this scenario of

black holes scalarization induced by rotation. At the same time, the effect

of rotation on neutron star scalarization was investigated in the framework

of the Damour and Esposito-Farèse model in Ref. [132]. It would be worth

exploring an extension of this analysis to coupled Ricci and Gauss-Bonnet

couplings, or pure Gauss-Bonnet ones.

It will also be interesting to combine the bounds coming from neutron

star and black hole observations with the theoretical constraints that relate

to the requirement that scalarization models have a well-posed initial value

problem [133]. So far, the combined theory with both Ricci and Gauss-

Bonnet couplings has not been studied in detail from the initial value prob-

lem perspective. Finally, another possible aspect worth investigating would
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be the stability analysis of the scalarized solutions, both the neutron stars

and the black holes.

Lastly, there are other mechanisms, not addressed in this thesis, that

can trigger a similar phase transition to that of spontaneous scalarization.

It is the case of dynamical scalarization, for instance, where binaries can

undergo a process of scalarization during the evolution of the systems, even

when initially none of the two companions carried any scalar charge. This

mechanisms was first discovered for neutron stars binaries in the Damour

and Esposito-Farèse model [60, 134], and recently studied in the case of

binary black holes in the context of scalar Gauss-Bonnet gravity [135]. At

the same time, it is also possible to extend the concepts of scalarization to

different field contents, as it was shown in Refs. [53–55].

For all these reasons, there are still several directions worth pursuing in

the broader framework of scalarization. On one hand, future observations

will provide better insights on this phenomenon and tighter constraints on

the theories that are affected by it. On the other, there are still open

theoretical challenges that are waiting to be explored.
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Appendix A

Conformal transformation

rules

In this Appendix we provide some useful rules of conformal transformation

for the most used geometric quantities as well as for the matter stress-

energy tensor. For a more complete review on conformal transformation see

Ref. [136]. We will work in the general case of D dimensions, and the case

D = 4 can then be easily retrieved. Given the conformal transformation

g̃µν = Ω2gµν , (A.1)

it follows that the determinant of the metric and the inverse of the metric

respectively transform as √
−g̃ = ΩD

√
−g, (A.2a)

g̃µν = Ω−2gµν . (A.2b)

Using these rules to transform the Christoffel symbols yields

Γ̃ρµν = Γρµν +
1

Ω
(δρµ Ω,ν + δρν Ω,µ− gµνgρσΩ,σ) , Γ̃ρµρ = Γρµρ +D

Ω,µ

Ω
(A.3a)

Γρµν = Γ̃ρµν−
1

Ω
(δρµ Ω,ν +δρν Ω,µ− g̃µν g̃ρσΩ,σ) , Γρµρ = Γ̃ρµρ−D

Ω,µ

Ω
. (A.3b)
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Eqs. (A.3a)-(A.3b) can in turn be used to write the transformation rule for

the Riemann tensor

R̃ρ
µνσ = Rρ

µνσ +
2

Ω2
(δρνΩ,µΩ,σ − δρσΩ,µΩν + gµσΩ,ρΩ,ν − gµνΩ,ρΩ,σ)

+
1

Ω
(δρσΩ;µν − δρνΩ;µσ + gµνΩ

;ρ
;σ − gµσΩ;ρ

;ν)

+
1

Ω2
(δρσgµν − δρνgµσ)ΩκΩκ,

(A.4a)

Rρ
µνσ = R̃ρ

µνσ −
1

Ω
(δ̃ρσΩ;̃µν − δ̃ρνΩ;̃µσ + g̃µνΩ

;̃ρ
;̃σ − g̃µσΩ;̃ρ

;̃ν)

+
1

Ω2
(δ̃ρσg̃µν − δ̃ρν g̃µσ)g̃κλΩ

κΩλκ,
(A.4b)

where ;̃ refers to the covariant derivative in the frame described by the

metric g̃µν . Given the rules for the Riemann tensor, it is easy to show that

the following transformations hold

R̃µν = Rµν +
1

Ω2
[2(D − 2)Ω,µΩ,ν − (D − 3)gµνΩρΩ

ρ]

− 1

Ω
[(D − 2)Ω;µν + gµν�Ω],

(A.5a)

Rµν = R̃µν −
1

Ω2
(D − 1)g̃µνΩρΩ

ρ +
1

Ω
[(D − 2)Ω;̃µν + g̃µν�̃Ω], (A.5b)

R̃ = Ω−2

[
R− 2(D − 1)

�Ω

Ω
− (D − 1)(D − 4)gµν

Ω,µΩ,ν

Ω2

]
, (A.5c)

R = Ω2

[
R̃ + 2(D − 1)

�̃Ω

Ω
−D(D − 1)g̃µν

Ω,µΩ,ν

Ω2

]
. (A.5d)

One can further employ Eqs. (A.2b), (A.3a) and (A.3b) to recover the trans-

formation rule for the d’Alembertian operator. The result is

�̃φ = Ω−2

[
�φ+ (D − 2)gµν

Ω,µφ,ν
Ω

]
, (A.5e)

�φ = Ω2

[
�̃φ− (D − 2)g̃µν

Ω,µφ,ν
Ω

]
, (A.5f)

where, as for the covariant derivative, �̃ is the d’Alembertian in the frame

with the metric g̃µν .

Lastly, let us focus on how conformal transformations affect the matter
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stress-energy tensor. In order to do so, we first consider the matter action

S̃M =

∫
dDx

√
−g̃L̃M =

∫
dDx
√
−gLM = SM , (A.6)

where the Lagrangians in the two conformal frames are connected by the

following equation

L̃M = Ω−DLM . (A.7)

Deriving the stress-energy tensor in the usual way, for the frame described

by the metric g̃µν , we find

T̃µν =
−2√
−g̃

δ

δg̃µν
(
√
−g̃ L̃M) = Ω−D

−2√
−g

∂gρσ

∂g̃µν
δ

δgρσ
(
√
−gLM). (A.8)

We are thus able to define the relations between the stress-energy tensors

in the two frames

T̃µν = Ω−D+2Tµν , T̃ µν = Ω−D−2T µν ,

T̃ µν = Ω−DT µν , T̃ = Ω−DT.
(A.9)



Appendix B

Horndeski equations of motion

We give here the explicit expressions for the terms in the field equations

presented in Section 3. Throughout this Appendix we use the notation

φµ ≡ ∇µφ and φµν ≡ ∇µ∇νφ. The Giµν functions appearing in the modified

Einstein equations are

G2
µν = −1

2
G2Xφµφν −

1

2
G2gµν , (B.1a)

G3
µν =

1

2
G3X �φφµφν +∇(µG3φν) −

1

2
gµν∇λG3φ

λ, (B.1b)

G4
µν = G4Gµν −

1

2
G4XRφµφν −

1

2
G4XX

[
(�φ)2 − (φαβ)2

]
φµφν

−G4X �φφµν +G4Xφµλφ
λ
ν + 2∇λG4Xφ

λ
(µφν) −∇λG4Xφ

λφµν

+ gµν(G4φ�φ− 2XG4φφ) + gµν
{
− 2G4φXφαβφ

αφβ

+G4XXφαλφ
λ
βφ

αφβ +
1

2
G4X

[
(�φ)2 − (φαβ)2

] }
+ 2
[
G4XRλ(µφν)φ

λ −∇(µG4Xφν)�φ
]
− gµν

[
G4XR

αβφαφβ

−∇λG4Xφ
λ�φ

]
+G4XRµανβφ

αφβ −G4φφµν −G4φφφµφν

+ 2G4φXφ
λφλ(µφν) −G4XXφ

αφαµφ
βφβν ,

(B.1c)
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G5
µν = G5XRαβφ

αφβ(µφν) −G5XRα(µφν)φ
α�φ− 1

2
G5XRαβφ

αφβφµν

− 1

2
G5XRµανβφ

αφβ �φ+G5XRαλβ(µφν)φ
λφαβ

+G5XRαλβ(µφ
λ
ν)φ

αφβ − 1

2

{
∇(µ[G5Xφ

α]φαν)

−∇(µ[G5Xφν)]
}
�φ−∇λ[G5φφ(µ]φ λ

ν) +
1

2

[
∇λ(G5φφ

λ)

−∇α(G5Xφβ)φαβ
]
φµν +∇αG5φ

βRα(µν)β −∇(µG5Gν)λφ
λ

+
1

2
∇(µG5Xφν)

[
(�φ)2 − (φαβ)2

]
−∇λG5Rλ(µφν)

+∇α[G5Xφβ]φα(µφ
β
ν) −

1

2
G5XGαβφ

αβφµφν

−∇βG5X

[
�φφβ(µ − φ

αβφα(µ

]
φν) +

1

2
φα∇αG5X [�φφµν

−φβµφβν
]
− 1

2
G5X �φφαµφ

α
ν +

1

2
G5X(�φ)2φµν

+
1

12
G5XX

[
(�φ)3 − 3�φ(φαβ)2 + 2(φαβ)3

]
φµφν

+
1

2
∇λG5Gµνφ

λ + gµν

{
−1

6
G5X

[
(�φ)3 − 3�φ(φαβ)2

+2(φαβ)3
]

+∇αG5R
αβφβ −

1

2
∇α(G5φφ

α)�φ

+
1

2
∇α(G5φφβ)φαβ − 1

2
∇αG5X∇αX �φ+

1

2
∇αG5X∇βXφ

αβ

− 1

4
∇λG5Xφλ

[
(�φ)2 − (φαβ)2

]
+

1

2
G5XRαβφ

αφβ �φ

− 1

2
G5XRαλβρφ

αβφλφρ

}
.

(B.1d)

The function P i
φ appearing in the scalar field equations are

P 2
φ = G2φ, (B.2)

P 3
φ = ∇µG3φφ

µ, (B.3)

P 4
φ = G4φR +G4φX

[
(�φ)2 − (φαβ)2

]
, (B.4)

P 5
φ = −∇µG5φG

µνφν −
1

6
G5φX

[
(�φ)3 − 3�φ(φαβ)2 + 2(φαβ)3

]
, (B.5)
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whereas the J iµ functions are

J2
µ = − L2Xφµ, (B.6)

J3
µ = − L3Xφµ +G3X∇µX + 2G3φφµ, (B.7)

J4
µ = − L4Xφµ + 2G4XRµνφ

ν − 2G4XX(�φ∇µX −∇νXφµν)

− 2G4φX(�φφµ +∇µX), (B.8)

J5
µ = − L5Xφµ − 2G5φGµνφ

ν

−G5X

[
Gµν∇νX +Rµν �φφ

ν −Rνλφ
νφλµ −Rαµβνφ

νφαβ
]

+G5XX

{
1

2
∇µX

[
(�φ)2 − (φαβ)2

]
−∇νX(�φφ ν

µ − φαµφαν)

}
(B.9)

+G5φX

{
1

2
φµ
[
(�φ)2 − (φαβ)2

]
+�φ∇µX −∇νXφµν

}
. (B.10)
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The explicit expression for the scalar field equation is

−G2φ −G2X �φ−G2φXφ
µφµ +G2XXφ

µφνφµν + 2G3φ�φ

+G3X

[
(�φ)2 −Rµνφ

µφν − (φµν)
2
]

+G3φφφµφ
µ

+G3φXφ
µ (φµ�φ− 2φνφµν) +G3XXφ

µφν
(
φλµφλν − φµν �φ

)
−G4φR +G4XGµνφ

µν +G4φX

[
4Rµνφ

µφν −Rφµφµ − 3(�φ)2

+3(φµν)
2
]

+G4XX

{
�φ
[
3(φλσ)2 − (�φ)2

]
− 2(φµν)3

+ φµφν
(
Rφµν − 4Rµλφ

λ
ν + 2Rµν �φ− 2Rµλνσφ

λσ
)}

+ 2G4φφXφ
µ (φνφµν − φµ�φ) +G4φXXφ

µ
{

4φν
(
φµν �φ− φλνφλµ

)
− φµ

[
(�φ)2 − (φλσ)2

]}
+G4XXXφ

µφν
{

2φλµ (φλσφ
σ
ν − φλν �φ)

+ φµν
[
(�φ)2 − (φλσ)2

]}
− 2G5φGµνφ

µν +
1

2
G5X

[
R(�φ)2

+ 2RµλRνλφµφ
ν −RµνRφ

µφν + 2RλσRµλνσφ
µφν

−RµλσρRνλσρφµφ
ν −R(φµν)

2 − 4Rµνφµν �φ+ 4Rµνφλνφ
λ
µ

+ 2Rµλνσφ
µνφσλ

]
−G5φφGµνφ

µφν +G5φX

{
φµφν

[
4Rµλφ

λ
ν

− 2Rµν �φ−Rφµν + 2Rµλνσφ
λσ
]

+
2

3

[
2(φµν)3 +�φ

(
(�φ)2

− 3(φµν)
2
)]
−Gµνφ

µνφλφλ
}

+
1

6
G5XX

{
3φµνφλσ

(
φµνφ

λσ

− 2φλµφ
σ
ν

)
+�φ

[
8(φµν)3 +�φ

(
(�φ)2 − 6(φµν)

2
) ]

− 3φµφν
[
2Rλσφλµφσν − 2Gλσφ

λσφµν +Rµν(�φ)2

− φλν (Rφλµ + 4Rλµ�φ) + 4Rµλφ
λσφσν −Rµν(φσλ)

2

+ 2Rµσνρφ
σλφρλ − 2Rµσνρφ

ρσ�φ

+ 4Rνσλρφ
λ
µφ

ρσ
]}

+
1

2
G5φφXφ

µ
{

2φν
(
φλνφ

λ
µ − φµν �φ

)
+ φµ

[
(�φ)2 − (φλσ)2

] }
+

1

6
G5φXXφ

µ
{
φµ
[
2(φλν)3 +�φ

(
(�φ)2

−3(φλσ)2
) ]

+ 6φν
[
2φλµ

(
φλν �φ− φλσφσν

)
− φµν

(
(�φ)2 − (φλσ)2

) ]}
− 1

6
G5XXXφ

µφν
{
φµν
[
2(φλσ)3

+�φ
(
(�φ)2 − 3(φλσ)2

) ]
+ 3φλµ

[
2φσν

(
φλσ�φ− φρσφ ρ

λ

)
− φλν

(
(�φ)2 − (φρσ)2

) ]}
= 0.

(B.11)



Appendix C

Disformal invariance of the

Horndeski lagrangian

The Horndeski Lagrangian (II.26) is formally invariant under the trans-

formation (II.31) [66]. We derived independently these transformations

and we found a mismatch with the results in Ref. [66] which cannot be

explained with differences in notation. Formal invariance means that the

Lagrangian maintains the same structure, upon redefinition of the free func-

tions Gi(φ,X). For completeness, we report these transformations. Written

with respect to the metric ḡµν , the Lagrangian reads

S̄ =
1

2κ

5∑
i=2

∫
d4x
√
−ḡL̄i, (C.1)

where we have defined

L̄2 = Ḡ2(φ, X̄), (C.2)

L̄3 = − Ḡ3(φ, X̄)�̄φ, (C.3)

L̄4 = Ḡ4(φ, X̄)R̄ + Ḡ4X̄ [(�̄φ)2 − (∇̄µ∇̄νφ)2], (C.4)

L̄5 = Ḡ5(φ, X̄)Ḡµν∇̄µ∇̄νφ

−Ḡ5X̄

6

[(
�̄φ
)3 − 3�φ(∇̄µ∇̄νφ)2 + 2(∇̄µ∇̄νφ)3

]
, (C.5)

where the barred quantities are evaluated with the metric ḡµν . We can

now define a new metric gµν which is related to ḡµν through a disformal

transformation

ḡµν ≡ C(φ) [gµν +D(φ)∇µφ∇νφ] . (C.6)
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As anticipated, under this transformation, Lagrangian (C.1) becomes La-

grangian (II.26), defined as in Eqs. (II.27a)–(II.27d). We can map the func-

tions Gi(φ,X) in term of the barred functions Ḡi(φ, X̄),

G2(φ,X) = C2
√

1− 2DXḠ2(φ, X̄) +
2XḠ3(φ, X̄)√

1− 2DX

(
C ′

+
CD′X

1− 2DX

)
+ 2XI3φ +

3XḠ4(φ, X̄)√
1− 2DX

(
−C

′2

C
+ 2C ′′

+
2XC ′D′

1− 2DX

)
− 4X

[
Ḡ4(φ, X̄)

(
1 + 2D2X2

√
1− 2DX

C ′

−CD′X
√

1− 2DX
)]

φ

+
12X3C ′D′Ḡ4X̄(φ, X̄)

C(1− 2DX)5/2
+ 2XI4φ

+
3X2C ′Ḡ5(φ, X̄)

C2(1− 2DX)3/2

(
−2C ′2

C
+ 2C ′′ +

3XC ′D′

1− 2DX

)
+

2X3C ′2Ḡ5X̄(φ, X̄)

C3(1− 2DX)5/2

(
−C

′

C
+

3XD′

1− 2DX

)
− 2X

[
XḠ5(φ, X̄)√

1− 2DX

(
(1 +DX)C ′2

(1− 2DX)C2
+
C ′D′X

C

− 2D′2X2

1− 2DX

)]
φ

+ 2XI5φ,

(C.7a)

G3(φ,X) =
CḠ3(φ, X̄)√

1− 2DX
+ I3 −

Ḡ4(φ, X̄)√
1− 2DX

[
4CD′X(1− 2DX)

− C ′(5− 4DX + 4D2X2)
]

+
2XḠ4X̄

(1− 2DX)3/2

[
(1 + 2DX)

C ′

C
+ 2D′X

]
+

4CDXḠ4φ(φ, X̄)√
1− 2DX

+ I4 −
XḠ5√

1− 2DX

[
− C ′2

2C2

+
XC ′D′

C
− 4X2D′2(2−DX)

(1− 2DX)2
− 2XD′′

1− 2DX

]
− X2Ḡ5X̄

(1− 2DX)5/2

(
−C

′2

C2
+

2XC ′D′

C
− 4X2D′2

1− 2DX

)
− 2XḠ5φ

(1− 2DX)3/2

(
C ′

C
−XD′

)

(C.7b)

G4(φ,X) = C
√

1− 2DXḠ4(φ, X̄) +
D′X2Ḡ5(φ, X̄)

(1− 2DX)3/2
+XK5φ, (C.7c)
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G5(φ,X) =
Ḡ5(φ, X̄)√
1− 2DX

+K5, (C.7d)

where a prime or a subscript φ denotes a derivative with respect to φ, a

subscript X̄ denotes a derivative with respect to X̄, defined as

X̄ = −1

2
ḡµν∂µφ∂νφ =

X

C(1− 2DX)
, (C.8)

and

I3 = −CD
∫

dX
Ḡ3(φ, X̄)

(1− 2DX)3/2
, (C.9)

I4 = −
∫

dX

[
3Ḡ4(φ, X̄)

√
1− 2DX(CD)′

+ 2Ḡ4φ(φ, X̄)
CD√

1− 2DX

]
,

(C.10)

I5 = −
∫

dX

{
Ḡ5(φ, X̄)

(1− 2DX)3/2

[
(1−DX)C ′2

2C2

− (2− 3DX)C ′D′X

C
+ 3D′2X2 −D′′X

]
+

C ′ − CD′X
C(1− 2DX)3/2

Ḡ5X̄(φ, X̄)−K5φφ

}
,

(C.11)

K5 = −D
∫

dX
Ḡ5(φ, X̄)

(1− 2DX)3/2
. (C.12)

Our results of Eqs. (C.7a) and (C.7b) do not coincide with those of Eqs. (C7)

and (C8) of Appendix C of Ref. [66].



Appendix D

Background equations

In this Appendix, we derive the background field equations studied in Chap-

ter V. Matter is described as a perfect fluid with stress-energy tensor

TPF
µν = (ε+ p)uµuν + pgµν , (D.1)

where ε is the energy density of the fluid, p its pressure and uµ its 4-velocity.

The system of coordinates (V.5) is chosen so that the fluid is at rest. There-

fore,

uµ = (−c
√
h, 0, 0, 0). (D.2)

The local mass density is defined as ρ = ε/c2. In this setup, Einstein’s field

equations take the form

0 = (rf)′ − 1 + κεr2, (D.3)

0 =
f

h
(rh)′ − 1− κpr2. (D.4)

Additionally, the conservation equation ∇µT
µν
PF = 0 can be put in the form

0 = − 1

2rf
[(−1 + f − κpr2)(p+ ε)] + p′. (D.5)

Together with an equation of state p(ε), these equations allow to solve for the

background geometry and the matter distribution. Note that the equation

of states we used are 23 parameters fits of the actual equations of state [101].
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Appendix E

The effective potential

In terms of the background functions f and h and the parameters mφ, β, α

and γ, the effective potential presented in Chapter V reads

Veff(r) =

{
h{4γf 2h′2{[−2βr2 + r2 − 2γf ′r + 16α + 2γ

− 8(2α + γ)f ]h′ − 2rγfh′′}r3 + fh{{−16γ(4α + 5γ)f 2

+ 4{8α(r2 + 4γ) + γ[(6β + 1)r2 + 14γ] + 4rγ[(12α + 5γ)f ′

+ rγf ′′]}f + [(4β − 3)r2 − 32α− 6γ](r2 + 2γ)

+ 4rγf ′[(2β + 1)r2 + γf ′r + 2(γ − 8α)]}h′2 + 8rγf [(2βr2

+ 4γf ′r − 16α + 16αf + 5γf)h′′ + 2rγfh(3)]h′

− 4r2γ2f 2h′′2}r2 + 2h2{8γ{r[4(2α + γ)h′′ + rγh(3)]

− 5γh′}f 3 + 4f 2{γh′[8βr2 + 4γf ′′r2 + 3(8α + 5γ)f ′r + 10γ] (E.1)

+ r{−2[(4α− βγ + 2γ)r2 − 2γ2f ′r + γ(16α + 5γ)]h′′

− rγ(r2 + 2γ)h(3)}}+ 2r{(r2 + 2γ)[(1− 2β)r2 − 5γf ′r

+ 2(8α + γ)]h′′ − h′{2(2β − 1)r3 + 4(2m2
φr

2 + 4β − 1)γr

+ 2γ(r2 + 2γ)f ′′r + f ′{−2rf ′γ2 + 5[(3− 2β)r2 + 6γ]γ

+ 8α(3r2 + 8γ)}}}f + r(r2 + 2γ)f ′[(1− 2β)r2 − 2γf ′r

+ 2(8α + γ)]h′}r + 4h3{−12γ2f 3 + 4γ[2βr2 + r2

+ γ(2f ′ + rf ′′)r + 6γ]f 2 + {−4β(r2 + 4γ)r2

+ γ{f ′[(8β − 6)r2 + γf ′r − 12γ]− 2r(r2 + 2γ)f ′′}r

− 4γ(2m2
φr

4 + r2 + 3γ)}f + r(r2 + 2γ){−rγf ′2

+ 2[(1− 2β)r2 + γ]f ′ + 4r(m2
φr

2 + β)}}}[r2 + 2γ

− 2γ(f + rf ′)]2 − 5f [(r2 + 2γ − 2γf)h− 2rγfh′]2{r[r2

+ 2γ − 2γ(f + rf ′)]h′ + 2γh(f ′′r2 − 2f + 2)}2 − 2[−r2
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− 2γ + 2γ(f + rf ′)][(−r2 − 2γ + 2γf)h

+ 2rγfh′]{−4γ2[16h3 − 4r(rh′′ − 6h′)h2 − 3r2h′(rh′′

− 5h′)h+ 5r3h′3]f 3 + 2γ{4{3r2 + γ[4f ′ + r(2f ′′ − rf (3))]r

+ 16γ}h3 − 2r{r[2r2 + γ(rf ′′ − 2f ′)r + 6γ]h′′ + h′{−5r2

+ γ[r(2rf (3) − 7f ′′)− 8f ′]r − 34γ}}h2 + r2h′{h′[9r2

+ 2γ(5rf ′′ − 3f ′)r + 38γ]− 3r(r2 − 2γf ′r + 2γ)h′′}h

+ 5r3(r2 − 2γf ′r + 2γ)h′3}f 2 − 2h{2γ{[(r2 + 4γ)f ′′

− r(r2 + 2γ)f (3)]r2 + 6r2 + 16γ + f ′(2γf ′′r3 + 3r3

+ 10γr)}h2 + r{γh′{10(r2 + 2γ) + r[f ′(3r2 − 4γf ′r + 10γ)

+ 4r(r2 + γf ′r + 2γ)f ′′]} − r(r2 + 2γ)(r2 − 2γf ′r

+ 2γ)h′′}h+ 2r2(r2 − 2γf ′r + 2γ)(r2 + γf ′r + 2γ)h′2}f

+ r(r2 + 2γ)h2f ′[r(r2 − 2γf ′r + 2γ)h′ + 2γh(f ′′r2

+ 2)]}
}
/

{
16r2h2[2γ − 2γ(rf ′ + f) + r2]3[h(2γ − 2γf

+ r2)− 2γrfh′]

}
.

Numerical calculations are more accurate in terms of Eq. (V.2) formulated

in terms of r, rather than in terms of r∗ for two reasons. First, obtain-

ing Veff(r∗) requires to reconstruct the coordinate r∗ numerically for ev-

ery change in the background or in the choice of γ, as can be seen from

Eq. (V.11). Second, Veff contains up to third order derivatives of the back-

ground functions. Numerically obtaining these quantities introduces errors,

which can be avoided when working in terms of r.



Appendix F

Field equations for the

minimal theory

We report here the field equations for action (V.1), where we set γ = 0 and

mφ = 0, for a static and spherically symmetric spacetime and with matter

described as a perfect fluid:

tt : e2Λ(βφ2 + 4κr2ε− 4) + eΛ(−8αφΛ′φ′ + 16αφ′2

+ 16αφφ′′ − βφ2 + βr2φΛ′φ′ − 2βr2φ′2 − 2βr2φφ′′

+ r2φ′2 + βrφ2Λ′ − 4βrφφ′ − 4rΛ′ + 4) + 24αφΛ′φ′

− 16αφ′2 − 16αφφ′′ = 0,

(F.1a)

rr : e2Λ(βφ2 − 4κpr2 − 4) + eΛ(8αφΓ′φ′ − βr2φΓ′φ′

− βrφ2Γ′ + 4rΓ′ − βφ2 − r2φ′2 − 4βrφφ′ + 4)

− 24αφΓ′φ′ = 0,

(F.1b)

Scalar : 4βφ e2Λ + eΛ(−8αφΓ′Λ′ + 8αφΓ′2 + 16αφΓ′′ − 4βφ

+ βr2φΓ′Λ′ − βr2φΓ′2 − 2βr2φΓ′′ − 2r2Γ′φ′ + 2r2Λ′φ′

− 4r2φ′′ − 4βrφΓ′ + 4βrφΛ′ − 8rφ′) + 24αφΓ′Λ′

− 8αφ(Γ′2 + 16αφΓ′′) = 0,

(F.1c)

T µν(PF),µ : 2p′ + (ε+ p)Γ′ = 0. (F.1d)

Clearly, writing the above equations in the vacuum case, that is by setting

to zero all contributions for matter, one retrieves the set of three coupled

differential equations describing black holes.
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