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Abstract

Visualization literacy is essential with the widespread advent of visualization tech-
niques to convey complex data. Two noteworthy facets of literacy are user under-
standing and the discovery of visual patterns with the help of graphical representa-
tions. This thesis focuses on studying and advancing visualization literacy and aims
to assist understanding and interpretation of visual designs by developing interactive
visualization techniques. Our primary objective is to study treemap and parallel co-
ordinates graphic designs which are commonly used to display data. However, they
are not easily understood visual representations.

The research literature provides valuable guidance and opportunities for further
studies. We begin by completing a comprehensive survey of literature in interactive
visualization literacy, where we identify the previous related research and address
past and future trends.

One goal is to identify and address barriers to treemap literacy, a popular visual de-
sign to display hierarchical data, with the intend of improving novices users’ treemap
visualization literacy skills. We examine the results of two years of an information
visualization assignment in order to investigate the barriers to understanding and
creating treemaps. Also, we create a treemap visualization literacy test and propose
a pedagogical tool that facilitates both teaching and learning of treemaps to advance
treemap visualization literacy.

We also identify and explore barriers to comprehending parallel coordinates plots
(PCPs), one of the advanced graphical representations for displaying multivariate
and high-dimensional data. We analyze the obstacles to PCP literacy, design a PCP
test, and introduce interactive educational software that assists the teaching and
learning of PCPs by offering a more active learning experience.

Finally, the parallel coordinates literacy study inspired us to enhance dense par-
allel coordinates plots. We introduce techniques that facilitate understanding and
interpretation of this complex visual design and present data in dense areas, since
increasing data size and complexity may make it challenging to decipher and uncover
trends and outliers in a confined space. This project is inspired by the collaborative
project RAMP VIS [1].

For reproducibility, both treemap and parallel coordinates literacy tests are provided
in Appendix A and B. In addition, the link to software demonstration videos is
available in a table presented in the Introduction. More information on the data from
the collaborative project presented in Chapter 3 is available in Appendix C. Finally,
we offer a supplementary literature review focusing on inclusivity and diversity in
data visualization education in Appendix D.
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Chapter 1

Introduction

“The greatest value of a picture is when it forces us

to notice what we never expected to see.”

—John Tukey, Mathematician (1915-2000)
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1.1 Data Visualization

Data visualization is defined as “the use of computer-supported, interactive, visual

representations of data to amplify cognition” by Card [27]. Converting data into

visual components makes data visualization a powerful tool for exploring and mak-

ing sense of the data. The graphical representation of data assists in identifying the

patterns, trends, outliers in behavior and reveal new perspectives. Data visualiza-

1
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Figure 1.1: The timeline of data visualization history. Image courtesy of Few and Edge
[2]

tions also can save time by displaying data in an overview image, enabling users to

see the entire data set in a single image and quickly understand the patterns [28].

The use of visual designs has a long history and still evolves rapidly (see Figure

1.1). The first table that was recorded was made in Egypt in the 2nd century to

organize astronomical data as a navigational tool [2]. During the Portuguese ex-

pansion, the kingdom’s wealth and boundaries were shown on the Cantino map in

the sixteenth-century [29]. William Playfair invented several forms of diagrams to

display statistical information later in the eighteenth century using those represen-

tational approaches [30]. The first infographics emerged in journals and magazines

in the 1970s to condense information [29]. Edward Tufte’s book The Visual Display

of Quantitative Information, released in 1983, demonstrated that there are many

effective techniques of visualizing data [2]. Moreover, the survey of information vi-

sualization books [31] presents an overview to identify the most relevant books in

this field.

Card et al. [3] defined the visualization pipeline (see Figure 1.2), which outlines

how visualization is created from raw data. In the visual mapping process, focus

data characteristics are connected to visual structures after being derived in the

data transformation step. This stage fills in the blanks between abstract data and

human-perceivable forms. As a result, visual mapping is an important phase to

assure the expressiveness of the final representation.
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Figure 1.2: Information Visualization pipeline model introduced by Card et al. [3]. Image
courtesy of McNabb et al. [4]

1.2 Information Visualization

Information visualization and scientific visualization are two main sub-fields of data

visualization. Scientific and information visualization focuses on translating data

into a visual form used to gain insight and knowledge. Gershon and Eick [32] pro-

pose a definition of information visualization as, “a process of transforming data

and information that are not inherently spatial into a visual form, allowing the user

to observe and understand the information. This contrasts with scientific visual-

ization, which frequently focuses on spatial data generated by scientific processes.”

The standard methods used in information visualization are line charts, bar charts,

pie charts, scatter plots, treemaps or parallel coordinates. To effectively display in-

formation using visualization techniques, a set of rules are followed based on visual

perception, and cognition [2]. By increasing the number of information visualization

applications and software to analyze data, Bikakis [33] identifies aspects that modern

visualization should be capable of handling effectively, such as real-time interaction

and visual scalability.

1.3 Data Literacy

The phrase data literacy refers to a collection of abilities that revolve around the

use of data in everyday thinking and reasoning to solve real-world challanges [34].

For example, Vahey [35] defines data literacy as “the ability to formulate and answer

questions using data as part of evidence-based thinking; use appropriate data, tools,

and representations to support this thinking; interpret information from data, and

use data to solve real problems and communicate their solutions.” As a result, data
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literacy is a crucial ability to extract meaning from data and make rational decisions

that are also closely linked and required to interpret visual designs.

1.4 Visualization Literacy

The focus of this thesis is visualization literacy. The simple definition of visualization

literacy is the ability to read, interpret, and understand the information presented

in graphical designs [36]. Visualization literacy has also been defined as “The ability

to make meaning from and interpret patterns, trends, and correlations in visual

representations of data” [5]; “the ability to confidently use a given data visualization

to translate questions specified in the data domain into visual queries in the visual

domain, as well as interpreting visual patterns in the visual domain as properties in

the data domain” [37]; “the ability and skill to read and interpret visually represented

data in and to extract information from data visualizations” [22]. Moreover, Börner

et al. [20] define the ability of reading and construction of information visualizations

as essential as the ability to read and write text. The neighboring concepts of static

graph literacy, sensemaking, and visualization to support general education are not

our main focus and are explained further in the Subsection 2.1.1.

Graphics technology demonstrates complex and diverse concepts and has become

an integral part of many fields. However, big datasets and complex relationships

between data dimensions can make analysis and interpretation difficult. Being able

to evaluate, interpret, and analyze the meanings of data and the links between data

dimensions presented in visual designs, visualization literacy is a fundamental ability

for everyone from young to old. Although interactive visualization methods play a

crucial role in simplifying and conveying a meaningful understanding of complex

systems, the frequent use of visual images for exploratory analysis of data requires

improving visualization literacy skills for novice users.

Several studies focus on visualization literacy. Boy et al. [37] developed a method for

visualization literacy evaluation using the Item Response Theory (IRT) [38] by creat-

ing prospective test items that measure a user’s visualization literacy level. The aim

was to create an efficient and reliable test using line graphs, bar charts, and scatter-

plots for identifying users with lower visualization literacy. Similarly, an evaluation

tool, created by Maltese et al. [39], aimed at investigating the ability of groups with
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varying levels of experience in STEM fields to read and interpret graphical represen-

tations. Ruchikachorn and Mueller [15] present a learning-by-analogy method that

illustrates an unfamiliar visual design by displaying a step-by-step transformation

from another design. The transformation concept promotes comprehension of the

uncommon visual representation by interacting with the transitions. They focus on

understandings of parallel coordinates, the hyperbox, spiral chart, and treemap.

Alper et al. [8] investigate visualization literacy teaching methods for elementary

school children and present an online platform C’est La Vis, that enables students

to create and interact with data visualizations and is used by instructors in the

classroom for teaching the visualization by creating exercises for children. Moreover,

Chevalier et al.[40] present an evidence-based discussion of visualization literacy,

suggestions for improving it in early education, and future research directions for

visualization literacy. Most recently, studying the impact of cognitive characteristics

to advance users’ visualization literacy has become essential. Thus, Lee et al. [17]

concentrated on testing the correlation between visualization and cognitive features,

such as cognitive ability, cognitive motivation, and cognitive style. Börner et al. [20]

propose a data visualization literacy framework (DVL-FW) to guide the visualization

literacy teaching and assessment. The study provides a set of guidelines and an

evaluation that can be utilized to measure and advance visualization literacy.

Further work for enhancing the teaching and learning experience are presented by

Kwon and Lee [16]. The work focuses on parallel coordinates, an efficient method to

display multidimensional data, to study the impacts of multimedia learning environ-

ments for teaching data visualization to non-expert users. The inspiration behind

this research is to examine the active learning theory.

1.5 Contributions

The contributions of this thesis are as follows:

Literature Survey: The research literature on visualization literacy provides valu-

able guidance and essential opportunities for further studies in this field. We present

a state-of-the-art (STAR) in Chapter 2, and the STAR examines and classifies prior

research on visualization literacy that analyzes how well users understand novel

data representations [41]. We categorize existing relevant research into unique sub-
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ject groups that facilitate and inform comparisons of related literature and provide

an overview. Additionally, the STAR/classification also provides an overview of the

various evaluation techniques used in this field of research due to their challenging

nature. Our novel classification enables researchers to find both mature and un-

explored directions that may lead to future work. The review serves as a valuable

resource for both beginners and experienced researchers interested in the topic of

visualization literacy.

Advancing Treemap Literacy: This research aims to identify and address barri-

ers to treemap literacy to improve a non-expert user’s treemap visualization literacy

skills. We provide the study in Chapter 3, based on a conference publication [42].

First, we present the results of two years of an information visualization assignment,

which are used to identify the barriers to and challenges of understanding and creat-

ing treemaps. From this, we develop a treemap visualization literacy test. Then, we

propose a pedagogical tool that facilitates both teaching and learning of treemaps

and advances treemap visualization literacy. To investigate the efficiency of this ed-

ucational software, we then conduct a classroom-based study with 25 participants.

Finally, we identify the properties of treemaps that can hinder literacy and cognition

based on the treemap visualization literacy test results.

Advancing Parallel Coordinates Plots (PCPs) Literacy:

We identify and investigate barriers to comprehending PCPs and present a user

study in Chapter 4. We analyze the barriers to reading, understanding, and cre-

ating PCPs. We develop a parallel coordinates literacy test with diverse images

generated using popular PCP software tools. The test uncovers evidence of barriers

to PCP literacy and evaluates the user’s literacy skills. We introduce an interactive

educational tool that assists the teaching and learning of parallel coordinates by of-

fering a more active learning experience. We aim to advance a novice user’s parallel

coordinates literacy skills using this pedagogical tool. Based on the hypothesis that

an interactive tool that links traditional Cartesian Coordinates with PCPs interac-

tively will enhance PCP literacy further than static slides, we compare the learning

experience using traditional slides with our novel software tool and investigate the

efficiency of the educational software with an online, crowdsourced user-study. We

analyze the features of PCPs that can obstruct literacy and reasoning.
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Understanding Data in Dense PCPs: We introduce novel visual designs in-

spired by the RAMP VIS project [1] and the results of our PCP literacy study

introduced in Chapter 4. A dense PCP image resulting from overlapping edges may

cause patterns to be covered. We develop techniques to explore the relationship

between data dimensions to uncover trends in the data in Chapter 5. We present

correlation glyphs in the PCP view to reveal the strength of the correlation between

adjacent axis pairs and an interactive glyph lens to uncover links between data vari-

ables by investigating the edge intersections. We also present a subtraction operator

to identify differences between two similar multivariate data sets and relationship-

guided dimensionality reduction based on collapsing of axis pairs. We finally discuss

a case study of our techniques on ensemble data and provide feedback from domain

experts in epidemiology.

1.6 Challenges

Evaluation of a user’s visualization literacy skills is a major challenge. We consider

three main challenges with respect to user-studies and visual design choices.

Advanced Visual Designs: Treemap and PCP designs, as they are advanced

visual representations, require an understanding of more design components than

simple visual designs that make it difficult for users to interpret. These charac-

teristics can be identified as hierarchical data, size, and number of rectangles for

treemaps in Chapter 3; high dimensionality and overplotting of large data sets, un-

derstanding the links between data dimensions for the PCP design in Chapters 4

and 5.

Literacy Tests: One of the challenges we encountered was the developing visualiza-

tion literacy tests. In order to create a literacy test, finding or creating appropriate

images was a difficult process. In addition to that, isolating the different factors

and barriers to treemap and PCP literacy is very difficult. Contrary to our initial

hypothesis that literacy test questions might focus on understanding only one aspect

of a given visual design, literacy test questions often require a user to comprehend

at least three features of the design simultaneously. We address these challenges in

Chapters 3 and 4.

User-study Participants: In order to evaluate the effectiveness of the educational
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tools we developed, we recruited participants. Finding appropriate participants dur-

ing summer time and lockdown for a user study designed for a classroom environment

was a great challenge. Due to the fact that the classroom-based user-study intro-

duced in Chapter 3 was conducted in the summer period, it was not easy to reach

an appropriate and larger number of participants. For the user-study presented in

Chapter 4, the Covid-19 lockdown pushed us in different directions, such as changing

the study design and recruiting participants for engagement with a crowd-sourcing

platform.

1.7 Thesis Overview

The rest of this thesis is structured as follows. Chapter 2 presents a survey of inter-

active visualization literacy literature. The chapter provides a novel classification

that assists the reader in discovering topics of interest and offers a summary of pre-

vious related literature. Chapter 3 identifies barriers to treemap literacy, presents a

treemap literacy test, an educational treemap tool, and the results from a classroom-

based user study. Chapter 4 investigates barriers to understanding PCPs, provides a

PCP literacy test, and introduces an educational PCP tool to advance PCP literacy.

The results of a crowdsourcing experiment are also presented in this chapter. The

techniques aimed at investigating relationships between data dimensions to reveal

trends in PCPs are presented in Chapter 5. This chapter features novel interac-

tion methods featuring an overview of the connection between data dimensions and

introducing a subtraction operator and dimensionality reduction. Conclusions are

drawn in Chapter 6, and future work is presented.

Moreover, the full treemap and parallel coordinates plot literacy tests introduced in

Chapters 3 and 4 are provided Appendices A and B respectively. More information

on the Covid-19 data presented in Chapter 3 is available in Appendix C. Finally, we

offer a supplementary literature review focusing on inclusivity and diversity in data

visualization education [43] in Appendix D.

1.8 Video Demonstrations

Each chapter contains a supplementary video that highlights our contributions and

demonstrates the software tools we created. We recommend watching these videos
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for a general sense of the contributions presented in chapters. The video demos and

video links are included in Table 1.1. In addition, video links of presentations in

conferences and a panel are provided in Table 1.2.

Chapter Title Video URL

Chapter 3
Treemap Literacy:

A Classroom-based Investigation
https://vimeo.com/660529352

Chapter 4
A Study of Parallel

Coordinate Plot Literacy
https://vimeo.com/456884883

Chapter 5
Techniques for Dense

Parallel Coordinate Plots
https://vimeo.com/652208042

Table 1.1: The table displays video demonstrations of our studies presented in following
chapters. Chapter 3 and 4 have additional supplementary videos in each related chapter.

Chapter Title Video URL

CGVC
Towards a Survey of Interactive

Visualization for Education
https://bit.ly/3EAmHSM

Eurographics
Treemap Literacy:

A Classroom-based Investigation
https://bit.ly/32DPjh1

IEEE Vis Panel
Visualization Literacy for General

Audiences: Can We Make a Difference?
https://bit.ly/3ezfTdA

Table 1.2: The table shows conference and panel presentation videos of from the events that
were completed during the PhD.

1.9 PhD Timeline: 2018–2021

We provide a timeline of this PhD project since the PhD was completed under

unusual and historical circumstances. I started my PhD study in January 2018 at

Swansea University, displayed in Figure 1.3, and have presented my work at various

events. I presented a poster at the first College of Science (CoS) Postgraduates

(PGR) Conference in 2018. I presented a survey paper on visualization education [44]

at the Computer Graphics and Visual Computing (CGVC) Conference in September

2018. In addition, a treemap tool was developed for the treemap literacy study and

I presented the tool in two meetings with Professor Ben Shneiderman (University of

Maryland) and Dr. Max Wilson (University of Nottingham). I also introduced the

treemap tool at the second CoS PGR Conference in 2019. A paper on Inclusivity

for Visualization Education [43] was published in Journal Dialogue with Creative

Economy in 2019 (see Appendix D). In March 2020, I transferred to the University

of Nottingham with my supervisor. The treemap literacy study [42] was presented

https://vimeo.com/660529352
https://vimeo.com/456884883
https://vimeo.com/652208042
https://bit.ly/3EAmHSM
https://bit.ly/32DPjh1
https://bit.ly/3ezfTdA
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Figure 1.3: Timeline of the most key events, presentations, publications and contribution
of the collaborative work with different academics and research groups throughout the PhD
(2018-2021).

at Eurographics Conference in May 2020. I was invited to two talks hosted by

the University of Nottingham Software Network and Digital Research groups, and I

delivered presentations on treemap and data visualization literacy. Moreover, I have

started to collaborate with Alark Joshi (University of San Francisco) and contribute

to papers in the visualization literacy field in 2020. Moreover, two studies were

published as a result of collaborations with Diehl et al. [45] and Liu et al. [46] in

2021. Also, I was on the Visualization Literacy Panel [47] at IEEE Vis Conference

in October 2021. Finally, I joined the RAMP VIS project and started to attend

regular meetings in 2021, and wrote a collaborative paper based on this project [48].
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We started our research by reviewing the literature on visualization literacy. As

a result, we discovered several articles published in this area. However, we see

that no up to date study has been published that summarizes and analyzes the

literature on visualization literacy. Therefore, this chapter presents a state-of-the-

art literature review on visualization literacy that provides valuable meta-data and

guides researchers interested in the field. This chapter is the result of the STAR

[41].

11
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Figure 2.1: Number of papers by publication year and evaluation method used. There are
34 papers in total. We stopped searching for literature in the middle 2021.

2.1 Introduction and Motivation

Visualization literacy is an essential skill required for comprehension and interpreta-

tion of complex imagery conveyed by interactive visual designs. Developing visual-

ization literacy is essential to support cognition and evolve towards a more informed

society [40]. Gaining a deeper understanding of the visualization literacy of a cohort

of participants or domain experts has become a prominent theme in the information

visualization community. Visualization literacy was described as an essential skill

in the IEEE VIS 2019 keynote talk by Börner [49]. Few studies were published in

the previous 20 years; however, there was an increase in the last 7 years in this field

as shown by the graph in Figure 2.1. If we look at different categories, there is no

obvious trend yet it due to immaturity in the field. In recent years, more studies

feature classroom-based evaluation and literature reviews.

The Merriam-Webster dictionary defines the term literacy as “the ability to read and

write” [50]. Literacy is described as the ability to comprehend and use something

with an emphasis on the consumption aspect when the term is combined with other

subjects like information literacy, health literacy, etc. More specifically, visualization

literacy is defined by Boy et al. as “a concept generally understood as the ability

to confidently create and interpret visual representations of data [37]”. Börner et

al. explain, “the ability to make meaning from and interpret patterns, trends, and

correlations in visual representations of data” [5], while Lee et al. refer to it as “the
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ability and skill to read and interpret visually represented data in and to extract

information from data visualizations” [22]. There are also related concepts such as

visual literacy which is defined by Bristor and Drake as the, “ability to understand,

interpret, and evaluate visual messages” [51]. Ametller and Pintó state that visual

literacy “encompasses the ability to read (understand or make sense of) as well as

write (draw) visual representations” [52] while Bradent and Hortinf identify it as

“the ability to think, learn, and express oneself in terms of images” [53].

In this chapter, we present a literature review of visualization literacy to inform both

mature and unsolved problems and to convey trends emerging from visualization lit-

eracy to readers who are interested in this topic as a research direction. The study

also provides an overview of the evaluation methods used in visualization literacy

studies. To investigate the state-of-the-art systems implemented for advancing lit-

eracy skills, we survey and classify a variety of literacy research. The contributions

of this state-of-the-art report (STAR) are as follows:

• The first survey of its kind on the topic of visualization literacy with a special

focus on evaluation with a total of 34 main papers with an additional 45 related

publications.

• A novel literature classification of research papers in this area

• Beneficial meta-analysis to facilitate comparison of the literature

• Indicators in the field of both mature themes and unsolved problems

We collect literature referenced in this survey in an online resource using an interac-

tive literature browser called SurVis [54]. This can be found at the following URL:

http://www.cs.nott.ac.uk/∼psxef1/index.html

The rest of the survey is organized as follows. We first present an overview of

the related work that contains previous relevant papers that examine visualization

literacy. The subsequent section provides a review of visualization subjects and

technologies used to enhance users’ ability to understand and interpreting visual

representations in different research fields. We later present a discussion of future

work and open directions for research in this field.

http://www.cs.nott.ac.uk/~psxef1/index.html
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2.1.1 STAR Scope

In this state-of-the-art report, we provide an overview of visualization papers that

examine/test/study users’ visualization literacy skills and improve the literacy skills

of understanding and creating advanced visual designs. Studies that concentrate on

data visualization literacy using interactive visualization techniques are within the

scope of this survey. The STAR includes papers to investigate the ability of reading,

understanding, interpreting, and constructing visual designs. The main criterion

is to examine how the work advances user’s basic comprehension and interpreting

visual representations of data.

The research topics and papers presented here introduce methods or software that

include advanced and interactive graphical representations developed and used for

improving visualization literacy skills. A major challenge is to evaluate the effec-

tiveness of the target methodologies and technologies for increasing a user’s un-

derstanding with the support of interactive visualization systems. Evaluating the

effectiveness of an interactive visualization technique to advance visualization liter-

acy is a non-trivial endeavor. As such this survey pays particular attention to the

type of evaluation used when examining the literature.

2.1.2 Out of Scope

Our criterion for including research in the STAR is that visualization literacy is

the focus. Papers concentrated on the neighboring concepts of static graph literacy,

sensemaking, visualization to support general education, or general user-studies in

visualizations are out of scope. Including these related topics would make the survey

unmanageable in size and would detract from its primary focus.

1. Static Graph Literacy There is considerable research in the field of vision

psychology that studies static graph literacy. For example, Simkin and Hastie [55]

collect evidence that observers make assumptions about what types of information

is contained in graphs. Another study by Pinker [56] offers a theory that is used to

estimate what makes a person better or worse at reading graphs and what makes a

graph better for transferring given information to a reader. Shah and Hoeffner [57]

present principles for displaying graphs to students and determine the implications

of graph understanding research on the pedagogy of graphical literacy skills. Sim-
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ilarly, the purpose of the research by Moore-Russo et al. [58] is to determine how

a group of mathematics teachers reasoned about spatial tasks by looking at dif-

ferent components of spatial literacy. Since the focus of this survey is interactive

visualization, we do not include static graph literacy studies from vision psychology.

2. Sensemaking Research on sensemaking is considered out of the scope of this

survey. Pirolli and Card [59] define sensemaking as an ongoing process that trans-

lates raw data into the reasoning of information progressively. Another definition of

sensemaking is “the process of collecting, representing and organizing complex infor-

mation sets based on a particular problem in such a way that can help us understand

the problem better and make sense of it more effectively” [60]. Lee et al. define the

term sensemaking as, “conscious efforts to achieve understanding of how to interpret

visual objects and underlying content in an information visualization” [61]. Sense-

making focuses on comprehension of the underlying data rather than understanding

a given visual design. In our survey the focus is on basic understanding of a given

visual design rather than the underlying data. If the focus of a research paper is

data-centric, then it is out of scope.

3. Visualization to Support General Education Our work is focused on visu-

alization literacy for general visualization. We recognize that visual designs play a

key role in simplifying and conveying meaningful understanding of complex systems.

Visualization tools can assist the educational process and enhance cognition for all

types of users. Schwab et al. [62] provide a web-based environment called booc.io

that enables users to study specific concepts and facilitates creating hierarchical

structures. The tool enables linear and non-linear presentation of content such as

lecture slides, book chapters, and videos.

Another study by Silva et al. [63] provides experiences using VisTrails as an envi-

ronment to teach scientific visualization. VisTrails is an open-source tool designed

to assist research on computational tasks such as data analysis and visualization.

The work presented by Contero et al. [64] aims to improve engineering students’

visualization skills using a web-based graphics application and a sketch-based mod-

eling system. Websites are used in the course which enable students to implement

3D graphical content offering richer features to improve students’ visualization skills.

The focus here is on improving education, not visualization literacy. Visualization
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Figure 2.2: Sampling process of the literature

used to support education is out of scope because it assumes the user understands

the visual designs. Firat and Laramee [44] review research that concentrates on

teaching or learning materials in classrooms or distance learning systems using ad-

vanced special visualization techniques.

4. User-Studies in Visualization General user-studies in visualization are gen-

erally not included in this survey because they focus on a specific visual design

optimization. McNabb and Laramee [65] present an overview that includes research

on user studies. Fuchs et al. [66] survey a number of papers on glyph design to in-

form understanding of trade-offs in the glyph design space. In general, user studies

on visualization assume that users already have a basic understanding of a visual

design. Visualization literacy does not necessarily make that assumption. Studies

of literacy do not presume an a priori level of comprehension for a given visual

representation. They test basic visualization literacy.

2.1.3 Literature Search Methodology

Our methodology uses a systematic search of the existent literature in the field of vi-

sualization literature with an emphasis on papers published at the annual IEEE VIS

Conference [67]. We specifically focused on the keywords “Visualization”, “Liter-

acy”, “Teaching”, “Learning”, “Understanding”, “Interpretation”, and “Construc-

tion” in our search for literature. We also included the following resources for our

literature search:

• IEEE Xplore [68]

• Google Scholar [69]

• Vispubdata [70]

• Eurographics education papers [71]
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• Eurographics Digital Library [72]

• ACM Digital Library [73]

• IEEE Pacific Visualization Conference [74]

To further expand our collection of resources, we examine all the papers that were

cited by the papers in our collection. The related work section of each paper was

also examined for additional sources of visualization literacy research. A Survey of

Surveys (SoS) [65] indicated that there was an absence of surveys on visualization

literacy. A survey of interactive visualization for education [44] does not include any

study on visualization literacy either. This is also relatively little material provided

on this topic in information visualization books [31]. We checked all the literature

cited in the related work section of our previous study on treemap literacy [42]. As

a result of our search for the keyword “Visualization Literacy” on Google Scholars,

we found approximately 90,000 matches. But after reviewing the 70 articles in the

first 7 pages, the studies began to lose relevance. We checked the references of each

and used Google Scholar’s “cited by” feature to discover more research. In the next

step, after a quick review of the article and checking the eligibility of the articles,

the number of studies in our collection was finally reduced to 34. The figure 2.2

shows the general sampling procedure.

2.1.4 Literature Overview

To categorize the papers and projects we examined, we developed a novel classifi-

cation. Table 2.3 summarizes how each research paper is classified. We carefully

examine the evaluation methods in each paper and further categorize the evaluation

method used in the paper as well as providing the number of participants involved

in the evaluation. For evaluation methods, we identify five categories: in the wild,

controlled user study, classroom-based evaluation, crowd-sourced evalu-

ation, and a meta-review of related literature. The categories are presented in

ascending order according to the approximate number of participants involved in

the evaluation process. The category called “review of literature” includes papers

based-on literature surveys rather than providing an explicit evaluation. Using this

approach above, we define a matrix for the literature classification (the columns in

Table 2.3).
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• In the Wild: This evaluation method includes observing and recording a

group of participants in a public setting and how this changes over the time in

an uncontrolled environment [75]. The goal is defined by Roger and Marshall

[76] as “understanding how technology is and can be used in the everyday/real

world, in order to gain new insights about: how to engage people/communities

in various activities, how people’s lives are impacted by a specific technology,

and what people do when encountering a new technology in a given setting.” It

is one of the preferred assessment methods that involves a use-case of how the

given software is used in a public environment. Research presented by Börner

et al. [5] incorporates this evaluation technique.

• Controlled User Study: A controlled user study is an experiment con-

ducted in a controlled laboratory environment. Individual participants are

asked to use new interactive and visual designs and perform specific tasks.

Task performance time and correctness are measured and evaluated. Gram-

mel et al. [77] and Kodagoda et al. [78] prefer this method.

• Classroom: Researchers prepare pre- and post-experiment tests and examine

a visual designs’ effectiveness in a classroom environment based on a group of

students. Task performance is evaluated on a cohort level. Pre- and post-

experiment tests in a classroom evaluation environment are the most popular

across all categories. Bishop et al. [11] and Firat et al. [42] incorporate a

classroom evaluation.

• Crowdsourced evaluation: This method includes studies that are con-

ducted and evaluated online. Researchers collect feedback from a wide geographically-

distributed pool of participants in order to collect the largest amount of par-

ticipant data possible. Crowdsourcing using Amazon’s Mechanical Turk offers

a large number of experimental participants in a very short time at reasonable

costs for obtaining participant data. Boy et al. [37] use Amazon’s Mechanical

Turk to assess visual designs developed for education.

• Literature Review: This category is created to identify papers which do

not provide any explicit evaluation technique. The studies by Lee et al. [17]

present literature reviews of visual systems. This is a kind of meta-evaluation.
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Evaluation Method
& Characteristics

Physical
Distance

Proximity of the
Observations

Control over the
Environment

Number of
Participants

In the
Wild

Medium Medium Medium 30–400

Controlled
User Study

Close Close High 10–180

Classroom-based
User Study

Close Medium Medium 10–50

Crowdsourcing
Study

Far Distant Less 30+

Literature
Review

N/A N/A N/A N/A

Table 2.1: A summary of the evaluation methods and different characteristics of the classi-
fication categories.

For each category we describe, there is a physical distance involved between the

participants and the researcher. For example, classroom-based and controlled user

studies involve very close distances meaning that experiments are conducted in the

same room. At the same time, crowdsourcing evaluation involves participation across

the globe. Another characteristic is the level-of-detail of the observations that can

be recorded based on the distance between experimental participants and observers.

The level of observational detail for each participant differs for each type of evalu-

ation. For instance, observations are made with the studies in the wild by paying

attention to an uncontrolled group of individuals. User-studies support the highest

level of detail for making observations. Usually measuring every individual task

sometimes with supplementary video. The focus of the observation is a group in a

classroom style evaluation while it is a distant larger group of people in a crowdsourc-

ing study. We also have different levels of control over the environment. We have

strict control over the environment for user-studies. There is a higher level of con-

trol over the environment with a lab-based user-study than a classroom-based study.

The number of participants also changes depending on your evaluation method. It is

usually around 10–50 people in a classroom-based study, while it’s more the crowd-

sourcing study e.g., 30–200. These characteristics are summarized in the Table 2.1.

Table 2.3 presents that classroom-based evaluation is the most popular followed by

crowdsourced evaluation. Also, some papers did not provide the number of partici-

pants involved in their evaluation. This is indicated with a ’N/A’ in the table.
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2.2 Background

In this section we describe related surveys that systematically review papers with

visualization user studies. A survey provided by Fuchs et al. [66] reviews 64 re-

search papers with quantitative controlled studies focused on data glyphs to help

researchers and practitioners gain understanding, to find the most relevant papers,

and obtain an overview of the use, design, and future research directions involving

glyphs.

Johansson and Forsell [79] provide a comprehensive literature review that examines

user-centric assessments and explores usability challenges with parallel coordinates.

They present 23 papers in four categories: analysis of axis configurations, compar-

ison of clutter reduction approaches, practical application of different parallel co-

ordinates, and comparison of parallel coordinates with other analytical techniques.

The survey identifies challenges within the field and provides guidelines for possible

future studies.

ACRL Knowledge Literacy Standard [80] requires students to assess and integrate

sources into their knowledge base. There are sufficient studies, in both the evaluation

and critique of data visualization resources, supported by considering these elements

separately. Evaluation corresponds to the basic questions asked in order to determine

the quality, accuracy and reliability of a particular visual design. Critique is an

analysis raised to the next level and seeks to answer the question of whether, for a

particular application, a particular data visualization is among the best in its field.

Firat and Laramee [43] present a historical overview of studies on gender diversity

and spatial cognition and share gender bias research findings in data visualization

classrooms for university students studying computer science. The paper offers

concise recommendations on how to make the visualization classroom more inclusive

in order to encourage diversity.

2.3 The State-of-the-Art on Interactive Visualization

Literacy

This section presents a collection of important re-occurring themes related to visual-

ization literacy and associated research papers. Each research paper is summarized
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Table Description

Table 2.1 A summary of the evaluation methods and different char-
acteristics of the classification categories.

Table 2.3 An overview of the visualization literacy literature compar-
ing classification categories, target participants, and num-
ber of participants involved in the evaluation.

Table 2.4 A summary table of literature that comparing evaluation
controlled user study experiments, the age range,and the
average age of the participants involved in the study and
duration of the study

Table 2.5 A table indicating the data themes used in the literature.

Table 2.6 A classification table of studies that use a classroom evalu-
ation approach. Literature is classified as using a united or
divided class. Education level of participants is provided.

Table 2.8 A summary table of literature that presents experiments
carried out utilizing crowdsourcing platforms.

Table 2.7 An overview of the literature and the visual designs evalu-
ated. The table displays the type of visual designs tested
by column.

Table 2.9 An overview table summarizing the contributions of the
literature for research purpose on visualization literacy.

Table 2.10 A summary table of literature that compares the number
of references are provided in literature reviews on visual-
ization literacy.

Table 2.11 A table of future research directions discussed for each pa-
per. The directions displayed represent common research
areas that reoccur in the literature.

Table 2.2: A summary of meta-analysis provided in this literature review.

in a systematic way to guide the literature review [81]. Each paper is placed in its

respective category (in the wild, controlled study, classroom study, crowdsourced

evaluation, or literature reviews) to facilitate comparison.

Summary of Meta-Analysis: A summary of meta-analysis provided in this study

is presented in Table 2.2. In Table 2.3 we compare the evaluation methods of the

different papers while presenting the literacy skills tested and the target participants.

Table 2.4 presents literature with controlled user study experiments and presents the

age range and the average age of the participants involved in the study as well as

the duration of the study. We look at data themes used in the literature and give an

overview in Table 2.5. The literature involving classroom-based user study settings

is compared in Table 2.6. The table summarizes literature as using a united or

divided classroom for the study and the education level of the participants. Table

2.8 indicates a summary of literature that presents experiments carried out utilizing

crowdsourcing platforms with the choice of online platforms. Table 2.7 provides an

overview of the literature and the visual designs evaluated. Table 2.9 summarizes

the contributions in the papers that are classified based on common themes. The

literature review papers are compared in Table 2.10 with the number of references.

Finally, Table 2.11 presents future research directions discussed in each paper.



Literature & Categories
In the
Wild

Controlled
User Study

Classroom-based
User Study

Crowdsourcing
Study

Literature
Review

Target
Participants

Number of
Participants

Baker et al. [82] R+W A 52

Delmas et al. [83] R A 1464

Schönborn et al. [18] R A+C N/A

Grammel et al. [77] R+W A 4, 9

Kodagoda et al. [78] R A 24

Boy et al. [37] R A 34, 37, 34, 39

Huron et al. [84] R+W A 12

Ruchikarhorn and Mueller [15] R A 22, 11 ,11

Maltese et al. [39] R A 202

Kwon and Lee [16] R+W A 120

Börner et al. [5] R A+C 273

Alper et al. [8] R+W C 6, 15

Lee et al. [22] R A 65, 191

Wojton et al. [85] R A 388

Chevalier et al. [40] R+W C N/A

Zoss et al. [19] R+W A+C N/A

Mansoor and Harrison [86] R A+C N/A

Börner et al. [20] R+W A+C N/A

Stoiber et al. [21] R A+C N/A

Lee et al. [17] R A 178

Fuchs et al. [9] R A 28

Gäbler et al. [10] R C 23

Bishop et al. [11] R C 24

Lallé et al. [6] R A 119

Krekhov et al. [12] R+W A 11

Firat et al. [42] R A 25

Wang et al. [13] R+W A 11

Rodrigues et al. [14] R A 22

Huynh et al. [7] R C 33

D’Ignazio and Bhargava [87] R+W A+C N/A

Donohoe and Costello [88] R A 32

Barral et al. [89] R A 56, 119

Barral et al. [90] R A 56, 119

Peppler et al. [91] R+W A+C ∼33

Total: 34 4 7 10 7 6

Table 2.3: An overview of the visualization literacy literature with classification categories, target participants, and number of participants involved in the evaluation.
The evaluation technique that each research paper uses is categorized into: in the wild, controlled user study, classroom setting, crowdsourcing, and literature
review. ‘R’ indicates that reading and understanding are tested whereas ‘W ’ indicates where the ability to construct (write) a visual design is evaluated. The

target participants in the studies are identified as ‘A’ adult and ‘C ’ children.
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2.3.1 Visualization Literacy In the Wild

This subsection introduces papers in which a study is conducted in the wild in order

to demonstrate the idea presented in the research. Study participants in this cate-

gory are members of the public. The exact number of participants is not controlled,

neither is the selection process of participants. Each study provides a use-case sce-

nario for the given software and testing it in an uncontrolled public environment.

This evaluation method is one of the methods used to evaluate visualization systems.

Börner et al. [5] study the familiarity of young and adult museum visitors with a

selection of visual designs. A study is conducted in three US science museums,

considered informal learning environments. Börner et al. [5] chose 20 visualizations

from textbooks and widely used online visualization libraries such as the D3.js li-

brary [92]. These visual designs consist of two charts, five maps, eight graphs,and

five network layouts (see Figure 2.3). Five of the 20 visual designs were displayed to

visitrs of the science museums. Museum visitors are asked to state their familiarity

with the visual designs and to identify the name of the design.

Some 127 youths aged between 8-12 years old and 143 adults participate in a pre-

test experiment. Visitors with a known perceived gender comprise 110 youth and

117 adults. Before exploring the set of five visualizations, participants were asked

to report their interest in science, math, and art on a scale of 1-10. During the test,

visitors are asked questions about data and data presentations. During a post-test,

a total of 53 subjects sorted the five visual designs in order from easiest to most

difficult to read. The results indicate strong experimental evidence that a very high

proportion of the studied population, both adult and youth cannot name or interpret

visual representations beyond very basic charts. They show low performance on the

main aspects of data visualization literacy. The results indicate charts are easiest

to read, followed by maps, and then graphs. Network layouts were identified as the

most difficult to read.

A study by Wojton et al. [85] proposes a Simplicity-Familiarity Matrix, a study-

driven model for integrating advanced data visualizations into an exhibition design

to ensure all museum visitors can understand the visualizations and participate. This

model derives from a data literacy study. The method of creating a data visualization

was used to examine those aspects of data visualization are simpler or difficult for
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Figure 2.3: Four sets of five visualizations each row represents one set. All four rows make
up the complete set of all 20 visualizations used in the study. Image courtesy of Börner et
al. [5]

visitors to comprehend quickly and correctly. The study was performed in four

museums and one aquarium to collected data that was driven by the question, “How

do people engage with/ understand reference systems?”. A total of 250 adults and 138

youth participate. Four visualization booklets consist of a base and layers required to

create a visualization. During the design construction, the participants were shown

the base and asked to identify what it was communicating. The finding addresses key

concerns and problems related to data visualization across two spectrums: simplicity

and familiarity. The results also indicate that that visual designs with more than

average complexity are difficult to comprehend. The use of the Simplicity-Familiarity

Matrix can be used to increase visitors understanding.

D’Ignazio and Bhargava [87] propose teaching methods focused on feminist theory,

procedure, and design to address inequalities. Via three case studies, they explore

what feminism can offer visualization literacy, with the intention of improving self-

efficacy for women and less-represented groups. They demonstrate creative ways to

to work with data and develop learning spaces.

The first case study concentrates on the process of collaborating with community

groups, Groundwork Somerville, and local youth design to paint a data-driven story

as a community mural. This example of a ‘data mural’ documents an action-oriented,

community-based project that builds data literacy. In the second case, an exercise
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Literature
Age Range &
Average Age

Duration

Grammel et al. [77] 20-24, 21 45 min

Kodagoda et al. [78] 35-50, 39 –

Huron et al. [84] 22-43, 28 70 min

Lallé et al. [6] 18-69, 26 90 min

Huynh et al. [7] 11-13, – 60 min

Barral et al. [89] 19-69, 26 115 min

Barral et al. [90] 19-69, 26 115 min

Table 2.4: The summary table of literature that introduces evaluation controlled user study
experiments, the age range, and the average age of the participants involved in the study
and duration of the study.

called ‘Asking Questions’ from the DataBasic.io suite of resources and activities

is described. DataBasic.io includes web-based tools for beginners that incorporate

principles for working with data varying from quantitative text analysis to network

analysis. For the purposes of this case they focus on the WTFcsv tool and its

accompanying learning activity ‘Asking questions’. The third case study is an ac-

tivity designed to allow people to exercise the ability to argue with data in order to

persuade people to take action, called ‘ConvinceMe’.

Moreover, they provide six conceptual principles for feminist data visualization,

drawing from work in feminist science and technology studies, feminist human-

computer interaction, feminist digital humanities, and critical cartography & GIS.

The study by Peppler et al. [91] investigates what design features can assist data

visualization literacy in science museums. They conduct a study and collect video

data from 11 visitor groups that participated in visualization reading and writing in

a science museum exhibition. Visitors are encouraged to interact with and interpret

data, which consists of personal information records. Furthermore, tasks related

to the data visualization framework are displayed around a screen. Participants

are shown images and given tasks like finding themselves in the data, comparing

with others, or changing their data. Responses collected from participants are an-

alyzed thematically. Results indicate how the exhibit’s design features resulted in

the identification of single data records, data patterns, incorrect measurements, and

distribution rate. The findings address design practices to aid data visualization

literacy in museums.
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2.3.2 Visualization Literacy and Controlled User Study-Based Eval-

uation

A controlled user study is an investigation carried out in a controlled laboratory

environment. Participants are required to undertake given tasks interacting with

visual interfaces. The success rate and completion times for each individual task

are recorded. Generally, the experiment is performed one participant at a time.

Grammel et al. [77] and Kodagoda et al. [78] chose a controlled user study method for

the evaluation. Table 2.4 presents literature that incorporates controlled user study

experiments for evaluation and provides participants’ age range and the average age.

We can see from the table that a wide age range of participants are involved in the

user studies and the duration of the studies which averages 60-70 minutes.

Grammel et al. [77] investigate the barriers novices face in interpreting and express-

ing visual designs when developing tools that enable users to create good graphical

representations. The study examines how novices create a visual representation.

They present abstract models to identify obstacles to understanding data and tool

implications from their findings to reduce uncovered obstacles. In a series of a pilot

studies, four participants were asked to define the visualizations they want to see

while a mediator generates designs using Tableau and shows the participants the

resulting visual layouts. After a few pilot studies, nine students from the business

school participate in an experiment. Students are observed for 45 minutes while

constructing visual layouts. They are requested to analyze their visual designs ver-

bally. The study ends with an interview questionnaire to explore the resulting visual

layouts and problems encountered while students were constructing visual designs.

This study reports three visual mapping process barriers: i) selecting the parame-

ters to map to the visual variables, ii) selecting the visual marks to be used, and iii)

decoding and interpreting the visual result.

The research offers implications for tool design based on empirical evidence. Some

suggestions for developing tools include providing search facilities for retrieving data,

offering visual design suggestions, supporting iterative specification and providing

explanations, and support for learning of the design.

A study by Kodagoda et al. [78] describes the challenges low literacy (LL) users

face while searching for information online. They derive a set of design principles
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for visual interfaces suitable for LL users. This research identifies two difficulties:

understanding LL users in a way that facilitates new designs and understanding the

problem that needs addressing. Based on the differences in LL users’ reading skills

and perceived mental models, recommendations on designing a user interface for LL

users are suggested.

Invisque (INteractive VIsual Search and Query Environment) [93] was developed for

creating queries and searching for information in an interactive and visual approach.

Invisque focuses on a set of design principles advantageous for LL users. Invesque

decreases the cognitive load of word-for-word reading by providing information in

boxes on white space and showing the amount of data visible that can be modified

through the use of a slider.

The effectiveness of Invisque is evaluated by comparing LL users’ performance with

the performance of HL (High Literacy) users by using a traditional website for

search and retrieval tasks. Some 12 HL and 12 LL participants from a local Citizens

Advice Bureau (CAB) with computer and internet literacy are recruited for the

study (12 female, 12 male) with a mean age of 39. The study is conducted in a lab.

Each participant performs six tasks in total, three with Invisque and three with the

Adviceguide website which starts from a general overview and then requires a deep

search to access more specific topics. For each interface, participants perform one

easy, one medium and one difficult task. Cognitive Task Analysis (CTA) techniques

are used to understand the users’ decision process during their tasks. Techniques

such as think-aloud, user observation, semi-structured interviews, and questionnaires

focusing on the systems were used as methods for data collection. Results indicate

that Invisque enhances LL users’ performance and changed their behavior strategies.

Huron et al. [84] explore how users build their visualizations and what kinds of

visualizations they create. They introduce a visual mapping model to explain how

users utilize tokens to form a visual arrangement that conveys their data as well as

providing implications for designing tools.

The study’s goals are to understand more about the visual mapping process, deter-

mine what makes the process easy or difficult for users, and investigate the suitabil-

ity of constructive authoring of infovis as a method to construct images. Some 12

participants are assigned three tasks (create, update and annotate a visualization)
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Figure 2.4: An example of an MSNV document with multiple references, with the first two
underlined for easier identification. Image courtesy of Lallé et al. [6]

based on a given financial scenario to represent using tokens. The video of the whole

user study process and the photos of visual designs are captured. Also, participants

are interviewed on how they created designs to collect more information about con-

struction process. By examining the collected data, the visual mapping process was

analyzed as three activities: construction, computation, and storytelling. They pro-

vide details of the logical tasks and actions of visual mapping (e.g. build data, build

and combine, construct etc.).

Lallé et al. [6] investigate gaze-built adaptations as a way of promoting the pro-

duction of visualizations in narrative text, known as the Magazine-Style Narrative

Visualization (MSNV) and focus on the MSNVs with bar charts and one of the

most widely used visualizations found in MSNV documents: newspapers, blogs and

textbooks (see Figure 2.4). They also explore the possible value of long-term user

characteristics in order to further customize the delivery of gaze-driven adaptation

in MSNVs.

In order to assess the gaze-driven adaptive highlights for MNSVs, they compare the

output of the group of users who read MNSV (see Figure 2.4) with the highlights of

the intervention (adaptive group) and the control group that reads the same MSNV

without highlights. They used a group of 14 bar chart-based MSNVs, extracted

by Toker et al. [94] from the existing 40 MSNV datasets, e.g. Pew Research, The

Guardian or The Economist. In total, 119 individuals were recruited through ad-

vertisements on campus and on the Craigslist (63 for adaptive study, 56 for control
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Figure 2.5: Activity View. This view consists of a question display box (a), instructions
(b), choices to select from (c), a feedback box (d), and character sprites (e, f). Follow-up
“interpret the chart” questions include a picture of the previously-chosen chart (g), and
choices of written answers (h). Image courtesy of Huynh et al. [7]

study). The 90 minute session begins with participants receiving an eye-tracker

calibration. Next, participants are provided the assignment of reading the MSNV

document on the computer screen and signaling when they are finished by pressing

‘next’. Participants see a monitor with a collection of questions that reveal their

view of the document and test their understanding.

Five user characteristics are specified in order to test participants. The first charac-

teristic, visual literacy relates to how well users can process visualization. The other

three verbal WM, reading abilities, and verbal IQ relate to the ability to process tex-

tual elements. The last one, for need cognition is a personality trait that determines

how much users like cognitive activities. The results indicate that the interventions

enhanced the performance of users with low visualization literacy, while the inter-

ventions did not affect high literacy users. Barral et al. [89] expand this research by

identifying the particular visual behaviors that adaptive guidance produces in users,

based on their level of visualization literacy. Barral et al. [90] extend their previ-

ous user study [6] by examining the speed with which users process newly triggered

intervention in order to understand how effective interventions are to direct the at-

tention of the user in the visualization and how this adaptive mechanism influences

the users according to their visual literacy levels.

Huynh et al. [7] introduce a novel story-based role-playing game to facilitate visu-

alization literacy education for children aged between 11-13 that features a series

of exercises, overarching narratives, and mechanics to reinforce narrative elements.

The game contains educational activities that focus on pie charts and histograms

presented as multiple-choice questions, consisting of a chart question followed by

an interpretation. The game consists of three key views: the Action View showing
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Literature Data Sources

Baker et al. [82] Global properties, Brand Price and Quality

Delmas et al. [83] Baseball, Food Cost, Duration of Sleep, etc.

Schönborn et al. [18] Biochemistry Education

Grammel et al. [77] Sales Data

Kodagoda et al. [78] Social Service Website

Boy et al. [37] Monthly Unemployment Rates

Huron et al. [84] Fictional Financial Data

Ruchikarhorn and Mueller [15] Energy, Time

Maltese et al. [39] Average Temperature, Greenhouse gases, Tornado Events, etc.

Kwon and Lee [16] Features of Cars

Börner et al. [5] Sources of Nitrogen, Energy Consumption, US Unemployment, US Population, etc.

Alper et al. [8] Flowers, Animals, Ingredients, etc.

Lee et al. [22] Oil Price, Internet Speed, Cost of Food, etc.

Wojton et al. [85] Health and Wealth of Nations, International Airports, Competitive Eating Records, etc.

Lee et al. [17] Oil Price, Internet Speed, Cost of Food, etc.

Fuchs et al. [9] Shape , Points, Clustering Algorithms

Gäbler et al. [10] Fictional Data, Fictional Characters

Bishop et al. [11] Fictional Data

Lallé et al. [6] Car Sales, Syrian Refugees, World Economy

Krekhov et al. [12] Music, Eating, Screens, Water, etc.

Firat et al. [42] Market, Earthquakes, Investment Funds, Medals, Health etc.

Wang et al. [13] Olympics, Iris, Cliques, Clusters, or Bridges

Rodrigues et al. [14] Mock Data

Huynh et al. [7] Constellations, Fictional Data, Fictional Characters

D’Ignazio and Bhargava [87] Data-driven Story

Donohoe and Costello [88] Oil Price, Internet speed, Cost of Food, etc.

Barral et al. [89] Car Sales, Syrian Refugees, World Economy

Barral et al. [90] Car Sales, Syrian Refugees, World Economy

Peppler et al. [91] Personal data

Table 2.5: A table indicate the data themes used in the literature.

the puzzles, the Dialog View and the Exploration View to support the narrative

component of the game (see Figure 2.5). In order to provide a narrative component

to the tasks, players are engaged in a game world where they can discover and find

characters to communicate with them by dialogues.

To evaluate the effect of narrative elements in games based on visualization liter-

acy, a study is designed to evaluate two game variations: one with and one without

narrative elements. A total of 33 children aged 11–13 participate in the study.

Participants are tested in independent sessions conducted in a lab with only the

participant and investigator. The study is designed with four phases: pre-test, play

time, post-test and interview. The participants were asked about their experience

with pie charts and histograms in the pre-test phase. In play time, participants

were all provided with the same activities and randomly allocated to either the non-

narrative (i.e. activities only) presented in sequence without additional context) or

with-narrative (i.e., activities, exploration and dialogue) context. In the post-test,

participants are provided a paper-based test to evaluate changes in their understand-

ing of the subject. Then, participants are asked to express their thoughts on the

different aspects of the game in the interview phase. The findings indicate that the
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Literature
United

Classroom
Divided

Classroom
Education Level

Baker et al. [82] High School

Delmas et al. [83] High S., Higher E.

Alper et al. [8] Primary School

Fuchs et al. [9] Higher Education

Gäbler et al. [10] High School

Bishop et al. [11] Primary School

Krekhov et al. [12] Higher Education

Firat et al. [42] Higher Education

Wang et al. [13] Higher Education

Rodrigues et al. [14] Higher Education

Total : 10 8 2

Table 2.6: A classification table of studies that use a classroom evaluation approach. Lit-
erature is classified as using a united (the entire classroom of students) or divided (the
classroom is divided in half: a control group and an experimental group). Participants’
education level (primary school, high school, or higher education) is provided in the table.

narrative elements provide a substantial positive effect on children’s interaction and

enjoyment although it requires players to spend much more time engaging with ele-

ments. Interviews reveal that children in the narrative condition setting are usually

satisfied with the story and related interactions.

Data Sources: Table 2.5 provides an overview of the data sets that are displayed

and used in the literacy evaluation in the literature. The data sources span a very

wide breadth of different subjects and categories and do not show convergence on

any particular subjects. While some fictional data is chosen for a few studies, most

of the selected data sets are non-fictional based on convenience that can be easily

accessible online. The table does not indicate any special data source theme that

the researchers studied in the visualization literacy field. For example, Huynh et

al. [7] introduces role-playing games which include asking questions using fictional

data. Börner et al. [5] present test questions shows data on energy consumption and

US population to assess museum visitors’ literacy level while the study by Fuchs et

al. [66] is an example to a special case in which the data set used to increase users’

understanding of clustering algorithms.

2.3.3 Classroom-Based Evaluation

In a classroom setting, researchers design tests for pre- and post-experiments and

investigate the visualization literacy skills of users based on participants’ answers

to questions. In this category, a cohort of participants carry out an experiment as

a group simultaneously, usually in a classroom. Preparing questionnaires to ask in
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pre- and post-experiments in a classroom environment is the most popular evaluation

method among all categories. Papers by Alper et al. [8] and Fuchs et al. [9] present

examples of a classroom-based assessment.

Table 2.6 displays a summary of studies that use a classroom evaluation approach.

Evaluation categories are further sub-divided according to the classroom evaluation

method. In some cases, the entire class experiences the same education: pre-test, a

new educational technology, and a post-test. We call this a united evaluation. In

other evaluations, the classes are split in half. The whole class takes the same pre-

and post-tests. However one half of the class is taught the traditional way, while

the other half uses new visualization technology. We call this a divided classroom

evaluation. Table 2.6 indicates that researches mainly prefer the united classroom

approach for the experimental setting. We also provide the education level of the

participants (primary school, high school, or higher education) involved in the study.

Baker et al. [82] investigate middle school students’ reasoning abilities with three

graphical representations: histograms, scatterplots, and stem-and-leaf plots. They

run an experiment to see how novices perform when it comes to interpreting, gen-

erating, and selecting visual representations. In the study, 52 students from grades

8 and 9 completed 3-4 exercises in which they were asked to draw a histogram,

scatterplot, or stem-and-leaf plot, in response to a set of interpretation questions for

each visual design or to select the most appropriate representation for a particular

question.

Overall, students performed moderately well on graph interpretation, with an aver-

age of 56% correct answers. Student performance on graph selection and generation

is quite poor. In graph selection, students performed no better than 25% correct-

ness. They were also unsuccessful in producing histograms and scatterplots. The

performance of the 15 students to generate stem-and-leaf plots was relatively poor,

with only 20% of them scoring completely correct. This result, however, was signifi-

cantly better than the performance of the 12 students who generate histograms and

the 12 students who generate scatterplots (0%).

Delmas et al. [83] define graph comprehension as the ability to translate a graph

or a table and being able to interpret connections or major elements in a graph.

The focus is to evaluate learning results in a first statistics course through the As-
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Figure 2.6: Deployment in grade 2 showing the setup in the classroom, discussions between
students and written activity. Image courtesy of Alper et al. [8]

sessment Resource Tools for Improving Statistical Thinking (ARTIST) [95] project

over three years. The project is designed to address the challenge of evaluation

difficulty in statistics education. In addition, the project team develops an over-

all Comprehensive Assessment of Outcomes in Statistics (CAOS) that includes a

group of multiple-choice items to assess student’s comprehension and reasoning on

the topic of variability when interpreting distributions, and making comparisons.

The evaluation data is collected by testing high school and college students. A

group of 909 students take the CAOS test (97 students from high schools and 812

students from universities), and 555 students take one or more of the ARTIST topic

scales (205 students from 4 high schools and 350 students from universities). All

questions are multiple choice. Results indicate that students do not have difficulty

understanding simple histograms and matching different graphs of the same data,

as long as they have clear features to guide them. When students are asked to

coordinate more information, the matching is more challenging. Students perform

well when matching graphs to the definition of variables. Participants also show

difficulty in many aspects of reasoning about images of distributions. They mainly

have difficulty reading the data when the bars contain intervals of values rather than

single values of a variant.

Alper et al. [8] investigate visualization literacy teaching methods for elementary

school children and present an online platform C’est La Vis, that enables students

to create and interact with visual data representations. It is used by instructors

in the classroom by creating exercises for children (see Figure 2.6). Alper et al. [8]

provide the results of an investigation of visualization types taught in grades K-4, in

a formative study. They analyze visuals designs included in elementary textbooks

and study textbooks that follow the US common core standards. These include

five math eTextBooks from the Go Maths collection, six French by Éditions Hatier
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Figure 2.7: The five main components of EduClust visualization application. Image cour-
tesy of Fuchs et al. [9]

and eight Turkish elementary math textbooks provided by the Turkish Ministry of

Education [8].

Students interacting with the tool are evaluated in a field study that aims to under-

stand their interest and understanding of the exercise and to collect feedback from

the teachers on how the tool enhances current teaching in the classroom. Some 15

students, split into small groups, from two classrooms (grades K and 2) have their

activities observed. An observer takes notes during the sessions with C’est La Vis,

occasionally asking or answering questions from students. The main goals are to un-

derstand touch interactivity, verbal activity and class dynamics. Observers reported

13 students interacting with the app as playing a game rather than learning. A

selection of 6 students also verbalize visualization literacy concepts (how to read an

axis), and they are generally willing to use the app. Also, 16 teachers are surveyed

to identify educational strategies for teaching simple visual designs. As a result, a

set of design goals are provided to enhance visualization literacy in early grades.

Fuchs et al. [9] develop EduClust, an online application that assists both learning

and teaching of clustering algorithms. This application combines visual designs,

interaction, and intermediate clustering results to facilitate the comprehension and

teaching of clustering algorithms. A web-based tool is developed that enhances the

teaching and learning of clustering algorithms for both lecturers and students (see

Figure 2.7). The tool facilitates rapid exploration for quick understanding of clus-

tering algorithms with interactive data sets. EduClust is evaluated in a classroom

environment where participant feedback is collected.
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Figure 2.8: An example of a quiz asking about which of the three pie charts corresponds to
the bar chart. Image courtesy of Gäbler et al. [10]

Students are shown different clustering algorithms in the classroom to answer a ques-

tionnaire based on their experience of the application. The results of the feedback

indicate that 50% of the class strongly agreed that EduClust helps them comprehend

the clustering algorithms. Also, 47% of students strongly agree that they would ben-

efit from the tool for exam preparation. Moreover, students are asked to share their

thoughts on the current implementation of the different algorithms and whether it

would advance their comprehension of the algorithmic behavior. Some 22 students

(77%) agreed or strongly agreed with this statement while five students (18%) were

neutral in their decision and one student (4%) disagreed.

Gäbler et al. [10] developed Diagram Safari, an interactive mobile game for teaching

diagrams and charts to children aged 9-11. The game is about learning how to

construct bar charts, how to read and interpret them and how to match them to

pie charts. In the game, the player navigates a ball across a bar chart by adjusting

the bar height. The game includes numerous challenges in the form of quizzes,

interactions between drag and drop, and it is designed in a visually appealing format

for children (see Figure 2.8).

The game is tested with 23 children in the fourth grade of primary school to obtain

initial input from the target group evaluating the game design and playability. First,

the children complete a questionnaire about their diagram literacy. Then, four tasks

are given that require the bar chart to be assigned to the appropriate pie chart (see

Figure 2.8). This is used to assess the ability of bar charts to correlate with pie

charts. The kids play the game for about 15 minutes. In the last step, they are

asked to complete a second questionnaire that examines their perspectives on the
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Figure 2.9: Linked visual representations created by pairs in Task 3. Image courtesy of
Bishop et al. [11]

game. This questionnaire includes “Do you like the game”, “Would you like to play

the game at home?”. The result indicates that children assigned on average 3.76 of

4 (%94) bar charts correctly to the corresponding pie chart in the first step. After

playing the game, they assigned 5.76 out of 6 (%96) bar charts correctly. The study

also indicates the children’s interest in the subject of diagrams and that they are

motivated to continue playing.

Bishop et al. [11] investigate the visual reasoning processes of children while they

participate in free-form visualization (not regular visual designs) practices with

Construct-A-Vis, a tablet-based, free-form visualization application. The tool is

designed to (1) help the development of free-form visualization, (2) make data-to-

visual mappings clear, (3) offer visual input for scaffolding, (4) provide functionality

for various ability levels and (5) facilitate shared activities. A qualitative study

including three tasks increasing in complexity is conducted to test the Construct-

A-Vis tool with 24 elementary school students aged 5-12. The students are asked

to visualize a fictional data set about school subjects (maths, music, sports, science,

arts, represented as icons) using the tool. The study focuses on examining whether

children construct meaningful visualizations with Construct-A-Vis without formal

instructions or models, the types of processes that children adopt while making in-

dividual and group visualizations, and how the tool encourages active participation

in children’s data visualization.
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In Task 1, children are provided icons, color, and the shape for their visual designs.

The task is designed to promote specific mappings between data points and symbols

by providing icons that correlate directly to school subjects. Task 2 requires children

to use size and color for their representations. The aim is to lead children toward

abstract mappings using size for coding values. In Task 3, the children are provided

with an additional shared tablet and told to jointly create a single representation

showing an overview of their combined data sets (see Figure 2.9). The purpose is

to support the communication to children. The results indicate that children are

engaged in the visualization process and that processes lead to effective discussions

and behaviors.

The paper by Krekhov et al. [12] seeks for an opportunity to develop computer

graphics and visualization courses in a way that would allow students to create vi-

sualizations that are easy to understand, engage the students, and memorable. The

design of the course is especially inspired by the book Dear Data [96], in which

visualization was generated by the composing of visualization information and cre-

ativity. The purpose of the research is to enable participants to focus on design

thinking and hands-on exploration of the visualization without being compelled to

proceed in a linear manner that is often prescribed by existing tools.

The paper presents a 12-week teaching experiment and designs a course curriculum.

The purpose of the course how to transform various datasets into useful and engaging

visualizations for a wider audience. The course is divided into the following compo-

nents: understanding data, visualizing data, and design thinking. For each session,

students are assigned the task of creating an appealing, detailed visualization based

on the data they are given. Topics include such as water, music, eating (see Figure

2.10). After the submission of the design, students present their outcomes at weekly

meetings. They learn more from feedback received from the lecturers and from the

other outcomes.

Some 11 students participated in the study who identified themselves as being be-

ginners in the field of visualization. During the first 6 weeks, subjects worked on

their own, while in the second half, they are divided into groups of 2-4 participants

and asked to construct a single collective visualization. During the course, partic-

ipants were surveyed and an online questionnaire was presented at the end of the
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Figure 2.10: An example design of the student’s early and intermediate prototypes. Image
courtesy of Krekhov et al. [12]

experiment. The qualitative results reveal that the concept of thinking motivates

novices to experiment with a wider variety of visualization methods. Ten students

state that they formulated the main message or purpose of their visualization dur-

ing or before data collection and mention that the most important factors to a good

visualization are the appeal, metaphor, and comprehension.

Research by Firat et al. [42] identifies the barriers and challenges of understand-

ing and creating treemaps by examining the results of two years of an information

visualization assignment. In order to assess the barriers, a treemap visualization

literacy test is developed. In addition, a pedagogical tool that advances treemap

visualization literacy is introduced. Firat et al. [42] conducted a classroom-based

experiment with 25 computer science students from undergraduate and postgradu-

ate levels to evaluate the participants’ treemap literacy and the effectiveness of the

treemap tool. Participants are assigned into one of two groups and both groups

answer the pre-test treemap questionnaire. In the first session, one group expe-

riences traditional treemap teaching using slides. Another group is introduced to

the interactive treemap tool. On completion of teaching, all participants answer

the post-tutorial and interview questionnaires. The results show that students who

attended the slide session answered on average 79% of the post-intervention test

questions correctly, while the students who attended the software session answered

89% correctly. Also, participants’ feedback indicates that the treemap software of-

fered them an effective learning experience.

Wang et al. [13] present the notion of ’cheat sheets’ to support data visualization

education. Cheat sheets are a collection of graphic descriptions and text annotations,

like data comics. Cheat sheets enable a broad audience to understand the data
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Figure 2.11: Part of Construction for PCP, showing its “creation” from three-dimensional
scatterplot in a comic-strip. Image courtesy of Wang et al. [13]

visualization techniques and support two scenarios (i) first-time learning assisted by

slides, posters, books, or activities; and (ii) as testing material during the actual

data discovery process.

Six forms of cheat sheets are introduced: Anatomy, Construction (see Figure 2.11),

Well-Known Relatives, Visual Patterns, Pitfalls, and False-Friends. Cheat sheets

are a combination of six forms and describe individual aspects of visualization tech-

niques. Cheat sheets types are organized for a specific presentation purpose: by

type and by technique.

Wang et al. [13] conduct a user study with participants from a local university. An-

swers from 11 participants who reported that they are novice with visualization are

analyzed. For each of the three techniques (boxplots, PCP, matrix), a cheat sheet

is produced. Participants are provided a visualization example of a given technique

and asked to respond to a small quiz to evaluate their understanding. During the

quiz, participants receive printouts of anatomy, visual patterns, and pitfalls. Next,

participants are asked to think a loud and write down the content that was unclear.

Finally, participants receive a questionnaire asking them to rate comprehensibility,

aesthetics, usefulness, etc. The results indicate that novice participants liked and

considered the cheat sheets useful for improving comprehension of complex visual-

izations and that the development of cheat sheets facilities understanding of novel

techniques.



Chapter 2. The State-of-the-Art on Interactive Visualization Literacy 40

Figure 2.12: A sample of the visual designs used in the study presented in the paper by
[14]. Image courtesy of Rodrigues et al. [14]

Rodrigues et al. [14] analyze individuals’ initial questions to ask when they first

experience a visualization. In this way, they understand the common mistakes in-

dividuals make when asking data related questions in an attempt to interpret the

data. They designed a study to gauge the quality of data-related questions generated

by individuals with low visualization literacy skills when they are shown different

types of visual design. A group of 22 participants from graduate and undergraduate

studies who self-assessed their prior (no or limited) experience of data visualizations

are involved in the study. The research is performed through an online question-

naire, which displays visualizations in random order. Each participant is asked to

generate up to five questions about the underlying data that could be answered by

analyzing the images. For each question, they are asked to indicate the amount of

effort needed to produce the question.

For the study, 20 visualizations (bar chart, heatmap, chord, Sankey, network, his-

togram, scatterplots, etc.) are created with a dataset made of variables given mean-

ingless names (e.g. klon, neji) (see Figure 2.12). The questionnaire collected a total

of 1058 responses. The responses are examined by three researchers to created stan-

dardized versions of the questions as an attempt to reduce the number of unique

questions. The 8000 clear questions are classified as ‘OK’ and 250 problematic ques-

tions are classified as ‘problem’. The clear questions are reviewed to describe the

different types of questions people can answer through each visualization. The prob-
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Baker et al. [82]

Delmas et al. [83]

Grammel et al. [77]

Kodagoda et al. [78]

Boy et al. [37]

Huron et al. [84]

Ruchikarhorn and Mueller [15]

Maltese et al. [39]

Kwon and Lee [16]

Börner et al. [5]

Alper et al. [8]

Lee et al. [22]

Wojton et al. [85]

Fuchs et al. [9]

Lee et al. [17]

Gäbler et al. [10]

Bishop et al. [11]

Lallé et al. [6]

Krekhov et al. [12]

Firat et al. [42]

Wang et al. [13]

Rodrigues et al. [14]

Huynh et al. [7]

D’Ignazio and Bhargava [87]

Donohoe and Costello [88]

Barral et al. [89]

Barral et al. [90]

Peppler et al. [91]

Total 15 13 9 8 8 8 7 5 3 3 3 3 2 2 1 1 1 1 1 1

Table 2.7: An overview of the literature and the visual designs evaluated. The table displays
the type of visual designs tested by column and chronically sorted literature on the y axis.
Each individual paper is colored according to evaluation techniques used: blue: In the wild,
pink: Controlled User-study, orange: Classroom-based, green: Crowdsourcing. Literature
review papers are left out of this table.

lematic questions are examined and classified to understand which kinds of problems

in the questions occurred more often for each type of image. The findings of the

study can be an important source for teaching visual designs as they reveal and iden-

tify common errors that individuals make when thinking about visually presented

data.

Table 2.7 provides an overview of which visual designs are included in the evalua-

tion in previous visualization literacy studies, as well as expressing the evaluation

methods in the studies using color according to our main classification (see Table

2.3). The table indicates that the most evaluated designs in literacy are bar charts

and scatterplots. In contrast, images such as bubble charts, spiral charts, sankey

diagrams, and chord diagrams have only been evaluated in one study.

2.3.4 Visualization Literacy and Crowdsourced-Based Evaluation

Some studies prefer to conduct experiments using an online platform to recruit

a large number of participants from a geographically diverse pool of participants.

Crowdsourcing using Amazon’s Mechanical Turk (MTurk) offers access to a great

number of participants at affordable prices for collecting data in a relatively short
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Literature &
Crowdsourcing Platforms

Amazon
Mechanical Turk

Other

Boy et al. [37]

Ruchikarhorn and Mueller [15]

Maltese et al. [39] Online Test

Kwon and Lee [16]

Lee et al. [22]

Lee et al. [17]

Donohoe and Costello [88] Online Test

Total: 7 5 2

Table 2.8: A summary table of literature that presents experiments carried out utilizing
crowdsourcing platforms. The table indicates studies which experiments use the most popu-
lar platform, Amazon Mechanical Turk, or an online test designed by authors for gathering
responses.

period of time. For example, Kwon and Lee [16] and Boy et al. [37] chose to engage

participants and designed online experiments using MTurk. Table 2.8 summarizes

visualization literacy literature that designs experiments carried out utilizing crowd-

sourcing platforms or create online tests for sharing with crowd. The studies are

grouped according to the type of platform used for collecting participants’ responses.

We can see that Amazon Mechanical Turk is a popular platform for crowdsourced

studies.

Boy et al. [37] aim to develop a method for visualization literacy evaluation. They

use the Item Response Theory (IRT) [38] to separate the impacts of item difficulty

and examinee ability. The main purpose is to create fast, efficient, and reliable

tests that researchers can use to identify test takers with lower visualization literacy

ability. The tests are developed based on a 3-part structure. These are a stimulus, a

task, and a question. The stimuli are the selected visual designs being studied. Tasks

are defined based on the visual operations and mental projections that a participant

performs when answering a given question. Tasks and questions are linked. This

distinction is emphasized because different orientations of a question could influence

participants’ performance.

They focus on tasks that require only basic intelligence, such as identifying min-

imum, maximum, variation, intersection, average, and comparison. They test the

user’s ability to find these characteristics on line graphs using Amazon Mechanical

Turk with 40 participants. They also perform experiments using bar charts and

scatterplots. The results indicate that IRT modelling is useful for differentiating

and assessing visualization literacy, especially for examinees with lower ability.

The aim of the research paper by Maltese et al. [39] is to examine differences in
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data visualization ability along a spectrum of expertise from novice undergraduate

students to STEM practitioners to gain a better understanding of how users interpret

graphical representations of data. The study reports on the design of the data

visualization and evaluation results. In order to collect data, participants respond

to questions while viewing given graphs and tables to test their ability to read and

interpret them. Task performance data is collected from teaching staff and doctoral

students with a range of science expertise in science education. Some 19 of 20 core

test items were visualizations from widely published textbooks, government websites,

or published reports.

Maltese et al. [39] conducted an analysis to better understand the psychometric

features of the items (internal consistency for dichotomous items, item difficulty,

item discrimination) used in the study evaluation. Some 202 participants, mainly

university and college graduates (68%) and graduate students (9%) participate the

study and report the average number of STEM classes that they completed. Their

scores from an online assessment of the 20 test items range between 6-18 correct

answers. A reasonable correlation was found between the number of STEM course-

work participants completed and their performance, but overall this relationship is

not strongly positive. The findings indicated that even participants that completed

advanced science and mathematics coursework found it difficult to interpret basic

data representations.

Ruchikachorn and Mueller [15] present a learning-by-analogy technique that explains

an unfamiliar visualization method by showing a step-by-step conversion between

two visual designs. The research shows the concept using four visualization pair

examples such as a data table and parallel coordinates, a scatterplot matrix and

hyper box, a linear chart and spiral chart (see Figure 2.13), and a hierarchical pie

chart and Treemap. The participants understand the uncommon visual designs more

quickly after they interact with the transitions.

In the first stage of evaluation, a short task and questionnaire are prepared to test

22 participants via Amazon Mechanical Turk. The pair of linear and spiral charts

are chosen. Eleven participants are shown the spiral chart and 11 are shown the

linear chart. Results indicate that only half of the spiral chart answers are correct,

while all answers on the linear chart are correct.
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Figure 2.13: A pie chart–treemap pair example: (a) target visualization, (b) series of
the intermediate images from the source visualization, (c) animation, and (d) interactive
visualization. Image courtesy of Ruchikachorn and Mueller [15]

For the first main study, six male and five female participants are asked about their

background and are given the source visualization descriptions. Four visualizations

and morphings are displayed and ordered as (a) the target visualization, (b) a series

of the intermediate from the source visualization, (c) an animation, and (d) an

interactive visualization (see Figure 2.13). This order is chosen to demonstrate the

interaction cost from the smallest to highest. The order also indicates how much

help participants need to comprehend and learn the unfamiliar visual designs. All

participants describe the morphing as an effective tutoring way to understand new

visual designs. A further 11 participants are chosen to test if they can read the

underlying data and view the trend on the target visualization. Participants were

shown the target visualizations with different data sets before being asked open-

ended questions about their comprehension of the data. Results indicate 7 out of

10 participants could read and provide observations from the target visualizations.

The other participants had already seen similar visual representations prior to the

experiment.

Kwon and Lee [16] focus on Parallel Coordinates, an efficient method to display

multidimensional data, to study the impacts of multimedia learning environments

for teaching data visualization to non-expert users. The inspiration behind this

research is to examine active learning theory. Four experimental conditions are

created: baseline, interactive, static, and video. The baseline condition contains

a single-page description of how data is presented in parallel coordinates. In the

interactive condition, the user can draw parallel coordinates by entering values and

creating edges. The static condition displays instructions with screenshots taken

from the interactive condition without providing feedback. The video provides screen

activities of a walk-through of the activities in the Interactive mode, so it includes

the same feedback. The other three conditions provide a description and a tutorial



Chapter 2. The State-of-the-Art on Interactive Visualization Literacy 45

Figure 2.14: The Build tutorial page: as people click on points in parallel coordinates, lines
are drawn connecting them. Image courtesy of Kwon and Lee [16]

using different media (see Figure 2.14).

An experiment was conducted on Amazon Mechanical Turk with 75 male and 45

female participants (30 people per condition). After the tutorial session, participants

are asked 18 questions based-on tasks such as mapping between data points and

visual elements, data distribution, comparison and similarities. They are also given

6 interview questions related to the tutorial. Results indicate that participants with

the interactive condition perform better than the static and baseline conditions, and

stated that they had a better experience than those with the static condition.

Lee et al. [22] develop a test to assess ordinary users’ visualization literacy skills, es-

pecially users who are not experts in data visualization. Three different sources are

examined: K-12 curriculum, data visualization authoring tools, and news articles in

order to determine the content of the test. They organize a pilot study before gener-

ating the test items to analyze the usage of vocabulary and phrases when test takers

read and interpreted the data visualizations, which may influence test participants’

performance. After developing a group of test items, domain experts review them to

ensure the test contains appropriate contents and tasks. A total of 191 participants

(MTurk) consisting of 105 females and 86 males with an age range of 19-72 take the

visualization literacy test. The test includes 54 test questions composed of 34 four-

option multiple choices, 3 three-option multiple-choice, and 17 true-false questions.

Based on the results, all the items are reviewed in order to eliminate inappropriate

items and finalize test items for the Visualization Literacy Assessment Test (VLAT).

A final experiment is preformed with finalized VLAT test item choices. A total of 37

people (MTurk) 14 females and 23 males in the age range of 22-58 participated in the
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Figure 2.15: The experiment procedure that consists of six stages. Stages 2, 3, 4, and 5
were randomly presented to the participants. Image courtesy of Lee et al. [17]

study. The experiment is designed to measure visualization literacy and the ability

to learn an unfamiliar visualization. Participants completed 53 questions and were

redirected to a Parallel Coordinates Plot (PCP) test with an online learning tutorial

developed by Kwon and Lee [16]. After the tutorial material, participants are asked

to answer 13 test items related to PCPs. The result shows that visualization literacy

is positively linked with the users’ ability to learn an unfamiliar visualization.

The research by Lee et al. [17] aims to find the connection between visual literacy

and the following three cognitive characteristics: numeracy as cognitive ability, cog-

nitive motivation and cognitive style. An experiment with 178 participants using

MTurk is conducted. Participants are evaluated against four categories: visualiza-

tion literacy, numeracy, need for cognition, and visualizer/verbalizer. Participants

are asked to complete four assessments: a Visualization Literacy Assessment Test

(VLAT) [22], Decision Research Numeracy Test (DRNT) [97], Need for Cognition

Scale (NCS) [98], and Verbalizer-Visualizer Questionnaire (VVQ) [99] (see Figure

2.15).

For example, VLAT asks the participants to choose, within a time limit, the best

response for each item. The DRNT asks participants to respond quickly and accu-

rately rather than with a time limit. The NCS and the VVQ ask participants to

show in what manner each object represents its cognitive features on a 7-point scale

ranging from a strong disagree to a strong agree. At the end of the experiment, the

participants are required to complete a demographic questionnaire. Results indi-

cated that an individual’s numeracy and need for cognition are positively correlated

to individual’s visualization literacy. However, the visualizer-verbalizer cognitive

style did not indicate a correlation with visualization literacy.

Research by Donohoe and Costello [88] evaluates participant’s perceived utility and
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Literature & Contributions VL Test Vis Tool Other

Baker et al. [82] Results of novices’ performance on VL

Delmas et al. [83] Results of assesment of reasoning visual designs

Grammel et al. [77] A model to identify barriers, Implications for tool design

Kodagoda et al. [78] Identification of barriers, Design principles for novices

Boy et al. [37] Assessment of examinee’s VL level, Definition of VL

Huron et al. [84] Visual mapping model, Implications for tool design

Ruchikarhorn and Mueller [15] Introducing a familiarity concept

Maltese et al. [39] Evaluation result of an assessment test

Kwon and Lee [16] Testing result of the active learning theory

Börner et al. [5] Testing result of familiarity with visual designs

Alper et al. [8] Identification of barriers to VL and design principles

Lee et al. [22] Evidence for the validity of the test

Wojton et al. [85] Introducing the simplicity-familiarity matrix

Lee et al. [17] Relationship between VL and cognitive characteristics

Fuchs et al. [9] Result of use-case scenario

Gäbler et al. [10] Result of evaluation and playtesting a game

Bishop et al. [11] Insights into the design of free-form visualization

Lallé et al. [6] Investigation of gaze-driven adaptation in narrative visualization

Krekhov et al. [12] Insights into the thinking process and the visualization pipeline

Firat et al. [42] Identifying barriers to treemap literacy, Result of tool evaluation

Wang et al. [13] Introducing visualization teaching concept

Rodrigues et al. [14] Results of novices’ performance on assessment test

Huynh et al. [7] Evaluation of narrative elements in a game

Donohoe and Costello [88] Evaluation of users’ VL level

Barral et al. [89] Investigation of gaze-driven adaptation in narrative visualization

Barral et al. [90] Investigation of gaze-driven adaptation in narrative visualization

Peppler et al. [91] Exploration design aspects to support VL

Table 2.9: An overview table summarizing the contributions of the literature for research
purpose on visualization literacy (VL). Contributions in the papers are classified based
on common themes: 1) creating a VL test to evaluate user’s VL level, 2) developing a
visualization software or game to support VL 3) or other. The rest of contributions are
briefly explained in the other column. The number of citations of each paper is also shown.
Literature reviews papers are left out of this table.

confidence in understanding visual designs by modifying current research tools used

in other studies.

A questionnaire is designed that consists of two questions on perceived useful-

ness [100] and two modified skills questions to test participant’s perception of their

peer’s literacy level and evaluate their perceived skill. These questions are followed

by 24 multi-choice test items from VLAT [22] covering six data visualizations based

on eight tasks. The study is sent to 157 prospective participants and responses are

returned by 32 participants (20.4%). The results reveal that visual designs are use-

ful, but the goal of some data visualizations is not always understood. Findings also

indicate that participants consider their data visualization literacy to be higher than

their peers’ assumption. In contrast to their high confidence, their literacy level was

sometimes lower.

Table 2.9 summarizes the contributions provided in the literature and shows common

research direction in the field. The main themes in visualization literacy literature

are grouped: 1) tests that are created to assess users’ visualization literacy level,

2) developed tools or games aimed at advancing user’s visualization literacy level
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or support learning visual designs, 3) other. While the studies generally focus on

examining the users’ visualization literacy skills using a test and assessing the test

results, on the other hand, the impact of the developed tools on the users is evaluated.

The rest of the contributions are provided in the other column. The novelty in the

literature includes the effects of tool designs, the results of the evaluation of users’

visualization skills, and the identification of barriers to visualization literacy, etc.

Kwon and Lee [16] introduce a parallel coordinates tool and a tool demo was used

in an experiment. The paper discusses the test results of active learning theory.

2.3.5 Literature Reviews on Visualization Literacy

This category is intended to collect literature and does not feature any specific

assessment methodology. The literature is summarized in the (see Table 2.10) with

number of references provided. This provides a type of meta-assessment. A study

by Chevalier et al. [40] is an example of a literature review.

Schönborn et al. [18] describe the value of visualization in biochemistry education

and support the idea of teaching visual literacy and skills using visualization tools as

key components of all education programs in biochemistry. A selection of 10 guide-

lines are introduced to encourage visualization and visual literacy in biochemistry

education. At the molecular organizational level, students may need to translate

a more practical electron micrograph of the binding complex from various repre-

sentations of antibodyantigen binding ranging from a molecular representation to a

stylized two-dimensional diagram or computer image (see Figure 2.16). This implies,

among other things, that students may need to make sense of an abstract represen-

tation of a molecular phenomenon alongside stylised and concrete representations

of the same phenomenon, something that students find very challenging. There-

fore, students are required not only to translate between the macro, micro, and

Literature Number of References

Schönborn et al. [18] 47

Chevalier et al. [40] 17

Zoss et al. [19] 37

Mansoor and Harrison [86] 21

Börner et al. [20] 72

Stoiber et al. [21] 55

Total: 6

Table 2.10: The summary table of literature that introduces the number of references are
provided in literature reviews on visualization literacy.
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Figure 2.16: Multiple ERs of antibody-antigen binding on a continuum from abstract to
stylized (top) and to realistic (bottom). Image courtesy of Schönborn et al. [18]

molecular levels of organization, but also between external representations (ERs)

presenting phenomena at each level of abstraction, which becomes extremely cogni-

tively challenging for students in combination. However, it would not be possible

to interpret ERs without visualization and the associated processes and abilities of

human imagination, studying, teaching, and analysis of molecular structure.

Another study by Chevalier et al. [40] presents an evidence-based discussion of visu-

alization literacy and how it can be improved in early education and provides future

research directions on visualization literacy. Chevalier et al. [40] investigate how

children study visual designs and how their visualization literacy skills are improved

at elementary school. They collected data from teachers on how much they use

visual materials in class. Moreover, C’est la Vis, a tool that supports teaching and

learning of pictographs and bar charts, is used to acquire data about child learning

activities and interaction with the tool.

Three thought-provoking learning paradoxes arising from empirical information col-

lected and observations in the field are described.

• Visuals are omnipresent in grades K–4.

• Teachers believe visual images are intuitive.

• Elementary students learn to read and create visual designs in early grades.
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Figure 2.17: Sample network visualizations, using a circular layout algorithm (a), a geo-
graphic layout (b), and a science map (c). Image courtesy of Zoss et al. [19]

Moreover, three specific insights are derived and help inform the design of future

visualization teaching materials for early education.

• Technology could curtail learning: Children interact with technology, espe-

cially when it features visuals and animations. Children may focus on solving

exercises rather than concentrate on learning on underlying concepts.

• Technology could curtail social interactions: Teachers believe social interac-

tions and verbal formulation, or reformulation, of knowledge acquired is nec-

essary to the learning process.

• Technology can be too helpful, preventing beginners from practicing other

abilities they need to obtain, and the advantages were sometimes skeptical.

Zoss et al. [19] define network visualization literacy (NVL) as the ability to read,

interpret, and visualize different types of networks. In this paper, they provide

on a series of topics that attempt to develop a more objective understanding for

NVL including how to evaluate NVL, the role of NVL in teaching and learning, and

suggestions based on understanding of the effective ways to enhance NVL. Challenges

to interpret visualizations arise due to a lack of clarification about the limitations

of network visualizations in the understanding of very complicated structures and

the characteristics network components (see Figure 2.17). Zoss et al. [19] study

some three aspects of NVL: Representational Literacy, Metaphoric Literacy, and

Topological Literacy.

Zoss et al. [19] state that research is mainly based on experimental studies of the

understanding of network visualization, restricted to particular tasks by design. For

a better understanding of network visualization literacy, the visualization commu-

nity must also take into account both how individuals interpret network images in
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Figure 2.18: Process of data visualization construction and interpretation with major steps.
Image courtesy of Borner et al. [20]

their everyday lives and how they acquire the skills required to create their own

network representations. Thus, a mix of formal and informal education is necessary

to enable more users to read and visualize network data. The paper presents three

current approaches: Connections: The Nature of Networks (a public science mu-

seum exhibition at the New York Hall of Science), NetSci High (a research program

for high school students), and the Information Visualization MOOC course at In-

diana University. The paper also provides recommendations for improving network

visualization literacy based on the review of relevant research and experiences with

teaching and learning with network visualization.

Mansoor and Harrison [86] provide a case for combining parallel threads of data vi-

sualization literacy and visualization bias. The study address research in cognitive

biases which claims that cognitive ability and experience can have an effect in how

responsive a person is to a particular type of bias [101]. Mansoor and Harrison [86]

review previous work on visualization biases to demonstrate how visualization liter-

acy and biases may relate. For example, they cover research on attraction bias and

availability bias by Dimara et al. [[102], [103]] and address how data literacy inter-

ventions potentially affect their analyses and resulting discussions. The paper also

includes studies proposing the use of visualizations to mitigate bias, such as Drag-

icevic et al. [104], and demonstrates how results in visualization literacy [22] can

facilitate their efficacy. These examples indicate that, as data visualization research

continues to identify biases that occur in visualizations, the influence of individuals’

abilities can be an significant factor for analysis and design.

Research by Borner et al. [20] provides a framework for data visualization literacy
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Figure 2.19: Visualization onboarding in visual analytic system. Image courtesy of Stoiber
et al. [21]

(DVL-FW) that has been specifically developed to describe, teach and analyse DVL.

The DVL-FW facilitates both reading and construction of visual designs, a pairing

similar to that of both reading and writing in textual literacy as well as compre-

hension and application in computational literacy. Although DVL requires textual,

mathematical and visual literacy skills, DVL-FW relies on key DVL concepts and

procedural knowledge. The main process for the construction and interpretation of

data visualization is defined and the process is interconnected with the typology of

DVL-FW that contains 7 core types. These were derived from a broad literature

review and collected from feedback gained from projects in the Information Visual-

ization massive open online course [105]. Borner et al. [20] address the important

role of stakeholders and describe the five steps (acquire, analyze, visualize, deploy,

and interpret) (see Figure 2.18) of the system and their relationship to typology.

Borner et al. [20] introduce selected activities that support learning and evaluation of

data visualization literacy (DVL) such as assessment of graphic symbols/variables

knowledge, naming and classifying of visualizations, assessing students’ ability to

interpret visualizations and assessing students’ ability to create and evaluate visu-

alizations with practical assignments. Additional theoretical lectures and practical

exercises are accessible online via the IVMOOC [105]. DVL-FW typology, activities

and evaluations outlined in the paper have been applied in the Information Visual-

ization course at Indiana University, supplying initial evidence that the framework

can be used to instruct and test DVL. Information on student outcomes, success

and feedback have directed the improvement of DVL-FW.
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Another study by Stoiber et al. [21] introduces the design space of visualization

onboarding and structures it along with the Five W’s and How tool (see Figure

2.19). The process of assisting users in reading, interpreting, and extracting infor-

mation from visual representations of data is defined as visualization onboarding

(WHAT). This supports observers in dealing with large and complex information

structures, to make visualizations more comprehensible (WHY). Another aspect is

to determine the knowledge gap that the user has. The users’ prior knowledge con-

sidered for developing onboarding concepts is presented such as domain knowledge,

data knowledge, knowledge of visual encoding & interaction concepts, and analyt-

ical knowledge (WHO). Other relevant aspects of how visualization onboarding is

implemented are defined as onboarding type, context sensitivity, and interaction

(HOW). The visualization onboarding system can be integrated internally in the

visualization or external source (WHERE). Visualization onboarding concepts can

be connected before or during the use of visualization tools (WHEN).

2.4 Future Work

We examined each paper to identify common research areas that are discussed in

each individual paper presented in Table 2.3 and summarize the common future

research directions in Table 2.11. The summary facilities identifying a number of

potential research areas in the scope of visualization literacy.

Further Evaluation: The most common future research goal identified in eight

papers is to continue the investigation with new experimental settings including

different parameters or materials with the aim of understanding barriers to visual-

ization literacy. For instance, Firat et al. [42] recommend conducting more studies

with a large and diverse group from non-computer science fields to reinforce the effi-

cacy and to study the impact of participants’ familiarity with the design. Similarly,

to reproduce the findings, Rodrigues et al. [14] intend to perform a similar study

with more participants while Gäbler et al. [10] focus on evaluating the effectiveness

of game’s education in terms of improving visualization literacy.

New Visual Designs: Much of the research uses specific visual methods (see Table

2.7) and targets incorporating various visual representations for further investigation

on advancing visualization literacy. Boy et al. [37] aim to assess the suitability of
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Further Evaluation

New Visual Designs

Improving Software

Improving Literacy Test

Larger/New Target Group

Studying Cognitive Impact

New/Larger Datasets

Table 2.11: The table shows future research directions discussed for each paper. The direc-
tions displayed represent common research areas that reoccur in the literature and sorted
according to occurrence frequency.

the approach studied for other forms of representation (e. g., parallel coordinates,

node-link diagrams, star plots, etc.). Similarly, Lallé et al. [6] would like to study

gaze-driven adaptation in MSNVs with different visual designs beyond bar charts.

Wang et al. introduce cheat sheets and suggest including more examples of patterns

and illustrations that will be combined with each cheat sheet as a part of an extension

of their work.

Improving Software: Another common future work direction is developing the

visualization tools introduced further by including new features to the applications

to support visualization literacy. Fuchs et al. [9] suggest advancing the software

into a framework for enabling users to upload new algorithms and visual designs.

Kodagoda et al. [78] recommend investigating the design principles introduced, as

the system may be appropriate for users with low literacy, but it may influence the

performance of users’ with high literacy in some cases. The future goals of Firat et

al. [42] are to enable users to upload new hierarchical datasets and displaying new

treemap layout algorithms in their pedagogical treemap tool.

Larger/New Target Group: In order to gain a better understanding of the visual

literacy skills of individuals from various ages and backgrounds as well as achieving

more reliable results, some papers suggest conducting experiments with larger or

different target groups. Alper et al. [8] intend to explore how the approach presented

in their paper can be adopted to instruct adult populations rather than children.

The future focus of Maltese et al. [106] is to collect data from a broad sample of the

population in order to increase understanding of the development of visualization



Chapter 2. Chapter Summary 55

literacy skills.

Studying Cognitive Impact: Individuals’ cognitive differences affect visualiza-

tion literacy skills. Chevalier et al. [40] recommend exposing examples of perceptual

and cognitive biases that influence interpretation to raise awareness in this area.

Similarly, Mansoor and Harrison [86] indicate that studying the relation between

cognitive bias and visual literacy can be useful in the understanding of visual de-

sign. Lee et al. [17] suggest examining the impact of other cognitive characteristics

on visualization literacy including personality, level of experience, and demographic

information.

New/Larger Datasets: The type and size of a dataset plays an important role in

individuals’ comprehension of visual designs. For example, the size of the data is a

barrier to treemap literacy [42]. Instead of using simple datasets, Kwon and Lee [16]

suggest using real-world datasets that can uncover hidden insight that would require

more particular expertise than learning the simple principles of parallel coordinates.

The future work of Firat et al. [42] includes a wider variety of datasets in their

literacy test.

2.5 Chapter Summary

In this chapter, we present a comprehensive review of the literature in visualization

literacy, classifying the literature into five groups. We summarize each publication to

provide insight into the study and presented guidelines for improving literacy skills.

In addition, we provide tables that include extensive meta-data that summarize

the characteristics in the literature and facilitate comparisons. We also reviewed

and discussed common future directions in the paper collection. This complete

review provides an essential and unique starting point for beginners and experienced

researchers in the field.
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Treemap Literacy: A

Classroom-Based Investigation

“Tell me and I forget. Teach me and I remember.

Involve me and I learn.”

—Benjamin Franklin, Politician (1706-1790)

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 The Challenges of Interpreting Treemaps . . . . . . . . . . . . . . . . 60

3.4 Treemap Literacy Assessment . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Treemap Visualization Literacy Test . . . . . . . . . . . . . . . . . . 68

3.6 A Pedagogical Treemap Tool . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Classroom Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Advanced data visualization techniques are often significantly challenging to com-

prehend and interpret. Based on our literature review on visualization literacy,

we can see that one of the less studied visual designs is treemaps. Therefore, this

chapter focuses on the treemap, one of the advanced visual designs for displaying

hierarchical data. We aim to explore and examine the barriers to treemap literacy.

We also introduce a treemap literacy test to evaluate users’ literacy ability while

56
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attempting to improve understanding of the design with novel educational software.

Finally, we utilize the literacy test and educational tool for a user-study and report

its results. This chapter is based on a paper published at Eurographics [42].

3.1 Introduction

Visualization is becoming a fundamental component of education. The use of visual

design in pedagogy has a long history and is still evolving rapidly. Enhancing the

educational process by enabling a better understanding of a given subject with

graphical representations and promoting visualization literacy skills are important

challenges. Visualization literacy is recognized as an important direction of research,

indicative in workshops at EuroVis 2014 “Towards Visualization Literacy” [107] and

at IEEE VIS 2014 “Towards an Open Visualization Literacy Testing Platform” [108].

It is also widely studied in the visualization community, e.g. [5, 22, 37]. For purpose

of this study, we define treemap literacy as the ability to construct and interpret

treemaps.

Treemaps are an efficient way to represent hierarchical data and they require a special

layout algorithm. But displaying large hierarchical data sets increases the complexity

of the treemap, causing difficulty in treemap comprehension. Poor design parameter

choices for a treemap can cause ambiguity and pose challenges in exploring the

information represented in the treemap [109]. An investigation into the barriers of

interpreting and designing useful treemaps is essential to enhance their effectiveness

and intelligibility. Hence, the focus of this study is to identify these barriers to

enable a complete literacy of treemaps.

This study is the first one of its kind focusing on treemaps. While the challenges

posed by treemaps are not exclusive to this type of visualization, treemaps do have

unique properties such as representing hierarchical data and requiring a special lay-

out algorithm. We propose a novel treemap literacy test to assess the barriers to

treemap literacy and advance a user’s treemap literacy skills by designing an effective

pedagogical tool that enables novices to improve their skills of reading, comprehend-

ing, interpreting, and creating treemaps. The tool attempts to transform the passive

learning experience to an active learning process. Moreover, the educational software

supports the analysis of hierarchical data and facilitates correct observations of that
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which it represents. The research prototype tool demonstrates the correspondence

between the traditional tree structure and a treemap design simultaneously.

In order to investigate the potential impact, the result of an experiment conducted

in a classroom environment with participants from a computer science department

is reported. This study presents the results of the treemap evaluation using the edu-

cational tool in an attempt to improve understanding of users’ visualization literacy

abilities. The main contributions of this study are as follows:

1. Identifying and investigating the barriers to treemap literacy;

2. Introducing a treemap visualization literacy test and conducting a classroom-

based user study to evaluate the impact of an interactive tool for the compre-

hension of treemaps;

3. Developing a novel pedagogical application that facilitates both teaching and

the learning of treemaps, advancing treemap visualization literacy.

Supplementary Material URL

Treemap Literacy Presentation https://bit.ly/3r2QSyn

Treemap Software Demo https://bit.ly/3ADdtEX

Pre-Intervention Test http://bit.ly/2kHChcn

Post-Intervention Test http://bit.ly/2kfsdqQ

Table 3.1: Supplementary materials with URLs.

Table 3.1 provides a summary of supplementary material for this literacy study. The

supplementary material makes the study fully reproducible.

3.2 Background

Several studies focus on comprehension and interpretation of visual designs and

assess users’ understanding of visual representations. We start by examining the

related literature on visualization literacy through the Survey of Surveys (SoS) on

information visualization [4] and a survey of information visualization books [110].

A survey of interactive visualization for education [44] does not include any study

on visualization literacy.

https://www.youtube.com/watch?v=yfbj846xlzc
https://www.youtube.com/watch?v=150zAE1aLz8&ab_channel=DataVisBobLaramee
http://bit.ly/2kHChcn
http://bit.ly/2kfsdqQ
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The survey by Scheibel et al. [111] presents an overview of treemap layout algorithms

and describes the more effective use of treemap visualization techniques. The study

presents an extensive classification of treemap layouts and presents the difficulty

in understanding the characteristics of different algorithms. A study by Stasko

et al. [112] compares treemap and sunburst charts and presents a study of two

space-filling information visualization techniques for depicting file hierarchies. The

sunburst technique assisted task performance more frequently, both in correctness

and in time, especially for larger file hierarchies. The detailed depiction of the

structure appeared to be a major contributor to this advantage, as participants in

the study preferred the Sunburst chart overall. This outcome reflects the difficulties

in comprehending data displaying techniques and hierarchies.

The goals of the research by Long et al. [113] are to explain the challenge that node-

link diagrams encounter and to determine which types of treemaps are more helpful

in understanding tree structure representation. The study focuses on understanding

various types of treemaps and assists users in perceiving various parts of information

with a hierarchical structure. Similarly, Müller et al. [114] focus on hierarchies and

undertake user research that examines three of the most often used hierarchical

data visualizations: node-link, treemap, and icicle plot. These three visualization

techniques were tested with four tasks that are common for these types of visual

designs. According to the statistical analysis results, participants’ performed the

worst with the treemap tasks. Because treemaps do not explicitly follow a structural

order with multiple hierarchy levels, participants must continually reorient and recall

which components have already been processed. They assume that this disparity

contributes to the participants’ poor performance with treemaps.

Tu and Shen [115] present a new treemap design algorithm to minimize abrupt

changes in layout and establish clear visual patterns, and build a contrast treemap

to compare attributes in one treemap from two snapshots of hierarchical data. An

experiment to test the new layout and a user study to compare the data and ex-

amine the changes were conducted. Moreover, Tu and Shen [116] introduce Balloon

Focus, a seamless technique for treemaps in multi-focus+context. A user study was

conducted with 12 participants who were asked to perform a variety of tasks as well

as a case study on the use of the system to convey NBA statistics.
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Ziemkiewicz and Kosara [117] investigated how the structure of a visualization affects

how we interpret it. They evaluated the effects of a visual metaphor and a verbal

metaphor on understanding of tree visualizations by measuring the participants’ data

comprehension questions on either a treemap or a node-link diagram. Another work

by Woodburn et al. [118] compared three common visualizations for hierarchical

quantitative data, treemaps, icicle plots and sundown charts with a controlled user

study with 12 participants. The study looked at performance task accuracy of the

visualizations and the participant’s visual designs preferences.

3.3 The Challenges of Interpreting Treemaps

Treemaps are a good solution for presenting large hierarchical data sets. The avail-

able screen space is divided into rectangles that are scaled, placed, and color-mapped

to the variables in the data [119]. They do, however, present certain challenges to

some. One aim of our study is to test the hypotheses related to the existence of these

barriers. We examined the twelve most popular visual designs presented in Figure

3.1 and observed differences between treemap and other designs. These observations

relate to the requirements of creating successful treemaps. The observations reflect

differences between treemaps and the other visual designs and show how treemaps

can be more complex. We show the connection between these observations and our

hypotheses in parentheses. The design complexity results in barriers to comprehen-

sion and interpretation of treemap visualization. In addition, we investigated the

barriers based on the review of related literature ([112, 113, 114, 120, 121]) and

examined coursework submissions from Data Visualization modules for two years

and we noticed that these errors came up repetitively in the submissions (see Sec-

tion 3.4). This is how we identified the five hypotheses to treemap literacy barriers:

H-Hierarchy, H-Layout, H-Size, H-Labels, and H-Legend.

• H-Hierarchy One of the barriers to treemap literacy is likely based on the fact

that treemaps convey hierarchical data. A treemap displays the relationship

between hierarchically structured data attributes. Identifying the multiple lev-

els of the hierarchy can be a challenge to treemap comprehension. The paper

by Stasko [112] reflects the difficulties in comprehending data displaying tech-

niques and data hierarchies.
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Figure 3.1: (a, top) Data visualization types surveyed from three sources: K-12 curricula,
data visualization authoring tools, and popular news outlets. (b, bottom) The 12 visual
designs that compose the VLAT. Images courtesy of Lee et al. [22]

• H-Layout The layout algorithms build useful treemaps by controlling the

placement and aspect ratios of the rectangles that compose a treemap. Algo-

rithms aim to increase the visibility of small items in a single image. However,

the complexity of the layout algorithm, failing to maintain the order of the

data, and layouts that are difficult to visually explore [112, 122] may lead to

challenges in comprehension.

• H-Size The larger the data set size, the more difficult a treemap image would

be to understand, because a larger number of rectangles results in higher visual

complexity. Rosenbaum and Hamman [120] states that visualization of large

dataset shares a common flaw with many other visualizations: data details are

difficult to understand.

• H-Labels Node labels enable users to identify which variable a given treemap

rectangle corresponds to. Absence of labels or limited display of the labels

shown in a designated screen space can cause difficulty in understanding and

interpretation.
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• H-Legend A color legend situated near the treemap can be used to represent

value ranges visually. The absence of a color scale can lead to barriers in

treemap interpretation.

The last two hypotheses relate to the simple absence or presence whereas the rest

are more algorithmic in nature.

In this chapter, we study these barriers preventing users from interpreting and com-

prehending treemaps correctly. Afterwards, we attempt to improve literacy skills in

understanding of treemaps.

3.3.1 Comparisons with Most Common Visual Designs

Our work is inspired by the Visualization Literacy Assessment Test (VLAT) devel-

oped by Lee et al. [22]. VLAT identifies three major sources to search and determine

the most popular visualizations to incorporate in their test [22]. Figure 3.1 (a) com-

piles the most frequently used visual designs from three different sources: the K-12

educational programs (core state standards for mathematics) [123, 124, 125, 126],

data visualization authoring tools (Google Chart Tools, D3.js, and news articles

(The New York Times, The Guardian, and The Washington Post).

They identify data visualization designs included in the curriculum and the designs

most often used in authoring tools and popular news outlets. Some of the visual

designs covered by educational programs, however, are not as popular with authoring

tools and news articles. Figure 3.1 (a) indicates that the Choropleth Map is the

most frequently used visual design in news articles although it was not included

in the K-12 curriculum. Conversely, pie charts and histograms are used in the

educational program and supported by tools, but they were not the most frequently

used visualization types in news articles. Figure 3.1 (b) illustrates the 12 data

visualizations chosen for VLAT, selected from the most popular visualization types

used in news articles e.g. Treemaps, Choropleth Maps, Scatterplots.

It is evident from Figure 3.1 (b) that the treemap design features several character-

istics that distinguish it from the other most popular visual designs shown:

• A treemap is not based on a simple Cartesian (nor geo-spatial) coordinate

system. (H-Layout)

https://developers.google.com/chart/
https://d3js.org/
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• It utilizes a layout algorithm, as opposed to a simple lookup table in order

to guide the placement of geometric primitives such as rectangles, labels, and

edges. (H-Layout)

• It is the only visual design out of the 12 most popular that incorporates hier-

archical data. (H-Hierarchical)

• The treemap requires a more sophisticated label placement algorithm than the

other visual designs. (H-Labels)

• In Figure 3.1 (b), particularly, the treemap is the only example that does not

feature a color legend (where necessary). (H-Legend)

• The treemap does not feature labelled and numbered axes like the other visual

layouts. (H-Labels)

• The treemap is the visual design that can be used to display the most individual

data samples with the exception perhaps of scatterplots. (H-Size)

3.4 Treemap Literacy Assessment

The data visualization module at our university has been taught to final-year un-

dergraduate and master’s level students since 2006. The course consists of two-hour

lecture and one-hour labs run weekly during one semester. As the construction of a

visual design is a way of assessing visualization literacy suggested by Borner [5], we

explored how effective students were at creating a treemap by looking at the histor-

ical results of the information visualization assignment in 2018 and 2019. Thus, we

sought to assess the students’ strengths and weaknesses in generating the treemap

images, as well as their level of comprehension and interpretation.

Based on our hypotheses and the work of Lee et al. [22], we derived criteria that

enabled the assessment of treemap literacy. The criterion consisted of questions

examining treemap features that were correctly interpreted by the user, including

the hierarchy, internal nodes, leaf nodes, labels and legends, and color mapping.

The main purposes of treemap questions are to provide students with a list of re-

quirements for successful treemap creation, as well as to evaluate their treemap
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submissions later. These questions are also a resource for researchers who need to

assess users’ treemap literacy skills (See Figure 3.2 and Figure 3.3).

The results of the treemap literacy assessment indicate how many treemap features

the students correctly incorporate and interpret while creating an appropriate image.

The list of literacy test questions was provided to students for first assignment in

2019.

1. Image: the treemap image you are describing

2. Name of Tool: The tool that was used to generate the treemap

3. Country: Name of country(s) data shown

4. Disease: Name of disease(s) shown

5. Year: The year(s) or time-span of data shown

6. Data Preparation: A helpful description of how you prepared the data

7. Color: What is color mapped to?

8. Hierarchy: What is the data hierarchy contained in the treemap?

9. What leaf node size is mapped to?

10. How are the leaf nodes laid out or positioned?

11. What are internal nodes mapped to?

12. What is internal node size mapped to?

13. Which treemap node layout algorithm is used?

The treemap literacy criterion was applied retroactively to evaluate treemaps sub-

mitted by students as part of an information visualization assignment. In 2018,

83 computer science students enrolled in the data visualization module. For the

information visualization coursework in 2018, students were required to submit five

visual designs to study the Public Health Data of England using existing visualiza-

tion software (see Figure 3.4 and 3.5). Public Health Data of England [127] is a

geographically hierarchical data with England divided into a hierarchy of areas and
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diagnosis [128]. Students were asked to create and explain at least five unique vi-

sual designs using existing data visualization tools. Although there was no explicit

requirement to generate a treemap, 68 students in the class attempted to create

a treemap as a part of the assignment. Only 38 out of the 68 students specified

how they prepared the data before producing the treemap. Usually, this involves

formatting to create a hierarchy. This result indicates that the data pre-processing

required for a treemap can lead to barriers in treemap generation (H-Hierarchy).

Some 16 (out of 68) treemaps did not feature a critical feature of a treemap, namely

a data hierarchy (H-Hierarchy), even when they were explicitly informed about

this challenge. 65 of the 68 students defined what color was mapped to, and the

color-map was described correctly by 58 (out of 68) of them (H-Color).

We examined the students’ ability to explain the internal and leaf nodes displayed

on the treemap, concluding that students struggled more to describe the internal

nodes. 57 out of the 68 students who provided treemaps defined the lowest level

(leaf node) rectangles and the leaf node size correctly. Only 42 students were able to

describe what the internal node rectangles represent accurately, and only 35 students

explain what the size of internal rectangles represents (H-Hierarchy). Again, this

provides evidence that the hierarchical aspect of treemaps can be a challenging

concept for some. Only 42 students provided labels or a legend, in spite of the

software being used in class allowing for the creating of a legend (H-Labels, H-

Legend). A correct interpretation of the treemap and unique observations were

provided by only 44 students.

We examined the information visualization coursework of the 2019 class using the

treemap literacy assessment described previously (see Figure 3.3). As a modification

to the previous year’s assignment, we asked students to go into greater depth and

create a treemap image from the Project Tycho data [129] in addition to generating

five images in the first part of the coursework. We provided students with 18 explicit

questions that assess treemap literacy related to the color mapping, data hierarchy,

internal nodes, leaf nodes, labels and legends, software choice, and the treemap

layout algorithm.

Some 66 students attempted the coursework, and only two of them did not provide

a treemap example. While 64 students in the class mentioned the software tool
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Treemap Literacy Assessment 2018

Figure 3.2: A treemap literacy assessment test results from the information visualization
assignment in 2018. Questions 2, 6, 11, 12, and 13 indicate difficulties with the hierarchical
aspect of treemaps.

used to create a treemap, only 42 students (of 64) supplied a detailed description

of the treemap example. Figure 3.3 demonstrates that colors used in the treemap

were identified appropriately by 59 out of 64 students (H-Color). However, 19

out of the 68 treemaps did not contain a data hierarchy, and 20 of them were

not defined correctly (H-Hierarchy), pointing towards the challenging nature of

the hierarchical aspect of treemaps. Some 49 out of the 64 students were able to

correctly identify what the lowest level rectangle size was mapped to, but only 35

of leaf node descriptions were accurate. Leaf node layout or position was described

incorrectly by 31 students. Similar to the 2018 test results, identification of an

internal node was a challenge for students in comparison with identification of the

leaf nodes.

All students attempted to define what the internal node size represents, but only

35 out of the 64 students did so accurately (H-Hierarchy). In contrast to 2018,

all treemaps had a label and a legend. Only 25 students provided unique treemap

observations and 29 correctly identified the layout algorithm used (H-Layout), indi-

cating that the layout algorithm is a barrier to treemap literacy. Overall, considering

that the students taking the course are all in their later stages of the computer sci-

ence degrees, the error rates and the interpretation of treemaps and topics related

specifically to H-Hierarchy and H-Layout can be considered somewhat high.

Additionally, we investigated the software used, the treemap layout algorithm (see

Figure 3.4 and Figure 3.5), the students’ observations about the data from looking
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Figure 3.3: A treemap literacy assessment test results from the information visualization
assignment in 2019.

Figure 3.4: The results of software tools used and treemap layout algorithm in 2018.

Figure 3.5: The results of software tools used and treemap layout algorithm in 2019.
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at the treemap image, and how students prepare the data to generate the treemap in

both years respectively. Students created treemaps using Tableau [130], IBM Watson

[131] etc. Students used a squarified or ordered treemap algorithm. Students’ unique

treemap observations were solicited to assess students’ abilities at the interpreting

the treemaps they produced. We also assessed the accuracy of the students’ answers

regarding their treemap submission. Our treemap literacy evaluation result provides

insights into students’ treemap literacy skills and enhances our understanding of the

barriers to treemap construction. This evidence guides the development process of

our educational treemap application.

The investigation of students’ software choice showed that even though some stu-

dents did not provide any software identification, 56 students (82%) preferred to use

Tableau [130], one of the popular commercial tools to create visualizations. How-

ever, caution must be used when interpreting this because we provide an explicit

Tableau tutorial for the class. The other tool choices were IBM Watson [131], Mi-

crosoft Power BI[132] etc. Forty eight students (71%) used a squarified treemap

algorithm to obtain a treemap (see Figure 3.4). The overall result of software and

treemap layout algorithm choice of the class in 2019 is displayed in the Figure 3.5.

3.5 Treemap Visualization Literacy Test

We developed a treemap visualization literacy test to measure a user’s treemap

literacy skills and identify the barriers to comprehension of a treemap. In-class

investigation is based on treemap construction whereas the treemap visualization

literacy test focuses more on treemap interpretation. We searched for appropriate

treemap examples with diverse treemap visual designs to test the comprehension of

users with varying levels of treemap literacy and enable them to attempt a range of

questions related to treemaps. We first selected examples with correct hierarchical

data structure and eliminated examples without labels or a legend – these provide

clues as to what internal and leaf nodes are mapped to and how color is used on the

treemap design. Finally, we ensured that the treemaps are of high quality, excluding

low resolution images (see Figure 3.6).

We surveyed four sources to find a number of treemaps chosen from each source as

follows: The Visualization Literacy Assessment Test by Lee et al. [22] (1 image), The

https://www.tableau.com/en-gb
https://www.ibm.com/watson
https://www.tableau.com/en-gb
https://www.ibm.com/watson
https://powerbi.microsoft.com
https://powerbi.microsoft.com
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Figure 3.6: An example question from the Treemap Visualization Literacy Test.

Book of Trees: Visualizing Branches of Knowledge by Manuel Lima [133] (3 images),

Google keyword search for “Treemap” (3 images), and students’ treemap examples

submitted for the information visualization coursework for the Data Visualization

course (6 images). We used Google search engine that provides high resolution, and

interpretable treemap images with a correct hierarchy. All treemaps were static for

consistency.

Once the treemap examples were selected, we prepared five questions for each

treemap image that test the comprehension of different aspects of a treemap. The

test was prepared to explore the user’s ability to make sense of the treemap by asking

them a variety of questions. Answering treemap literacy test questions requires the

evaluation of multiple factors. Therefore, the questions were coded to identify how

users perform in interpreting the data hierarchy, internal and leaf nodes, labels color

mapping, a range of data sizes, a legend and layout algorithm (see Hypotheses) using

treemap literacy skills. Each question in the literacy test required understanding of

at least two treemap features (see Figure 3.24). The full list of questions is available

at pre-intervention test [134] and post-intervention test [135].)

https://swanseasom.au1.qualtrics.com/jfe/form/SV_bCxxZDqz3MnsS8J
https://swanseasom.au1.qualtrics.com/jfe/form/SV_8D4spO0qXvMHDnf
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3.6 A Pedagogical Treemap Tool

In order to improve treemap literacy, we developed an instructional software tool

for classroom use. The treemap application facilitates understanding of a hierar-

chical data structure and supports accurate observations by displaying the data

correspondence between a traditional tree structure and a treemap layout simul-

taneously (Figure 3.7). Our treemap tool can be used on different kinds of data,

which can be set up by the user. The educational tool was designed following the

Sedlmair [136] design methodology, and the design process did not explicitly include

the end-user’s needs. However, the software was designed based on the assumption

that most users understand the traditional tree hierarchy. Therefore, we introduced

a tree view to depict the data hierarchy and the correspondence with the treemap

view, and coordinated the two views using animation. The key design decisions

that were made were to support interaction with tree view and treemap and they

were linked together and synchronized. So users can clearly see the correspondence

between the traditional tree and treemap views. We considered several different

layout algorithms however, they were complicated to implement. We followed the

traditional treemap structure, slice and dice [137] which was the most fitting layout

algorithm to explain the treemap concept. The software is developed using C++

and the Qt framework [138].

Tree Features: The tree view (Figure 3.7 on the left) enables users to analyze the

hierarchical data structure and control the treemap.

• The user can hover the mouse over any rectangle in the tree view. The rectan-

gle is highlighted, increases in size and displays a tooltip with the underlying

data values.

• The user can click on any internal node, and the user selected node dynamically

displays its child nodes.

• If an internal node displays its children and the user clicks on it again, the

child nodes collapses into a representative rectangle.

• In addition, the tree view displays labels identifying the levels of the hierarchy.

Treemap Features: The treemap (Figure 3.7 on the right) demonstrates the hier-

archical data structure with a layout algorithm.
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Figure 3.7: Instructional treemap tool interface with traditional tree structure (left) and
linked treemap visualization (right).

• The treemap displays the equivalent of the tree view using a treemap layout

algorithm, in this case, slice and dice [137].

• The treemap view has a user-modifiable color-map where color is mapped

(redundantly) to the size of each leaf node rectangle.

• The user can hover the mouse over any rectangle, and a tooltip shows the

underlying data values. The rectangle is also highlighted/enlarged.

Coordinated and Linked Treemap and Tree Features: The traditional tree

and treemap views are linked and synchronized. Interacting with either one causes

updates to other. Interactive control of drawing treemap and tree view allows users

to determine the properties of the data hierarchy and provides real-time feedback.

• The treemap view is updated whenever the user clicks on a node on the tree

view.

• The treemap view reflects the number of internal and leaf nodes shown in the

tree view.

• If the user hovers the mouse cursor on any node or rectangle in the tree view

the corresponding node or rectangle is highlighted/enlarged in the treemap

view, and vice-versa.

Menu and User Options: The menu options offer more features to the user. The
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‘disease’ menu option lets the user choose between a selection of diseases to visual-

ize from Project Tycho [129]. The list of diseases includes: Hepatitis A, Measles,

Rubella, Mumps, Polio, Pertussis, and Smallpox.

Color Selection and Color Legend: Six color scales are provided in order to

explore different mappings. We utilize a color library [139] with the assistance of

Colowbrewer [140], an online source for selecting color scales.

• The user can choose any color scale among the given color-map options.

• The color legend is updated based on user choice of color scale options.

• The color legend shows maximum and minimum values of the smallest level

of the current treemap view and represents color distribution on the treemap

according to the current range of data values.

• Maximum and minimum values are updated when the user chooses a disease,

region, state and year for the treemap using tree view.

In our classroom-based experiment, we used Project Tycho – a large-scale data of the

US records disease incidence frequency data between the years 1888-2014, recorded

weekly. The dataset, provided by the Public Health Dynamics Laboratory at the

University of Pittsburgh Graduate School of Public Health, provides a record of the

number of cases or deaths due to a given disease in a specific location over a time

duration e.g. 5 people diagnosed with Hepatitis A in Alabama in week 33, 1966. For

our study, we selected a group of diseases recorded based on the states (some of them

contain specific cities). In order to create a hierarchy, we grouped states for each

disease according to five regions in the US (West, Southwest, Midwest, Southeast,

and Northeast [141]) as a level in the hierarchy.

3.7 Classroom Evaluation

We designed a classroom-based user study to evaluate the participants’ treemap

literacy and the effectiveness of the pedagogical treemap software. We provided two

tests, a pre-test [134] and post-test [135], which featured 30 and 27 questions,

respectively. Both tests contain a collection of treemaps, multiple choice questions,

and a description of each treemap (see Figure 3.6). Both the treemap designs and

the data sets used in this study varied in their complexity. For each correct answer,

https://swanseasom.au1.qualtrics.com/jfe/form/SV_bCxxZDqz3MnsS8J
https://swanseasom.au1.qualtrics.com/jfe/form/SV_8D4spO0qXvMHDnf
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Figure 3.8: A photo from the user study on treemap literacy with computer science students.

students were given 1 point in both tests. After the pre- and post-intervention tests,

12 open-ended interview question (see Section 3.7.5) were given to participants to

collect feedback. These tests were administered using Qualtrics [142], an online

survey tool for collecting data.

3.7.1 Experimental Classroom Procedure

The experiment was run in a classroom environment. Some 25 computer science

students (2 female) were recruited to participate in the study. Participants were

students at different degree levels (14 Bachelor’s, 4 Master’s, and 7 PhD). The age

of participants ranged from 18 to 38. Only 4 students had a data visualization back-

ground from various taught classes. Participants were randomly assigned to one of

the two groups: a presentation slides group and a software group. The partici-

pants in the software group were provided with a treemap software demonstration

and given time to interact with the educational treemap tool (see Figure 3.8). The

slides group was shown only traditional treemap slides, used for teaching treemap

concepts. Each participant was provided with an Amazon voucher upon the study’s

completion.

We described the procedure of our study and asked for the students’ consent to

participate. Upon their agreement, we provided all participants with the pre-

intervention test treemap questionnaire, which took approximately 20 minutes to

complete. After the completion of the pre-intervention test, we randomly sampled

half of the participants to be allocated to the software demonstration group (every

other participant).
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Figure 3.9: (Left) The percentage of correctly answered questions in the pre- and post-
intervention tests for software demonstration and slides groups. Error Bars (95% CI).
(Right) The average time participants in software demonstration and slides groups spent
answering questions in the pre- and post-intervention tests. Error Bars (95% CI).

Both sessions, slides and software, were delivered by the same member of aca-

demic staff to eliminate the possibility of a delivery confound. To facilitate this, half

of the students had the traditional slides delivered to them, while the other half (the

software group) waited in a different room. Once the slides session finished, the

software group switched rooms with the slides group. Both the software and

the slides sessions were 20 minutes long.

The software group were introduced to the pedagogical treemap application. They

were then asked five questions related to the Project Tycho data set provided. The

students answered the questions verbally by exploring the dataset for answers using

the features of treemap software.

The slides group returned to the classroom once the software session was over. Both

groups were then given the post-intervention test questionnaire. Upon its comple-

tion, all participants answered 12 interview questions, referring to their background,

the test questions, and the treemap software.

3.7.2 Quantitative Results of Test Data

The data we collected was normally distributed, as indicated by the Shapiro-Wilk

test for both pre- and post-intervention test groups. Hence, we used one-way

ANOVA for our data analysis (significance level at α = 0.05).

The pre-intervention test results did not differ significantly between the two groups:

F (1, 24) = 1.841, p = 0.188, η2
p = 0.074. Those students who then attended the

slides session answered on average 62% of the pre-intervention test questions (SD

= 19%), and the students who then took part in the software demo answered
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PRE-INTERVENTION TEST POST-INTERVENTION TEST
Slides Software F (1, 24) p η2p Slides Software F (1, 24) p η2p

C: Color 58.7 ± 22.8 74.2 ± 16.4 3.763 0.065 0.141 72.6 ± 20.1 88.0 ± 10.0 5.662 0.026* 0.198
H: Hierarchy 65.6 ± 20.8 71.6 ± 18.2 0.577 0.455 0.024 77.7 ± 17.5 87.3 ± 5.2 3.298 0.082 0.125
LN: Leaf node 59.2 ± 21.1 68.3 ± 15.3 1.504 0.233 0.061 81.4 ± 12.5 89.5 ± 5.0 4.398 0.047* 0.161
LB: Label 65.7 ± 19.0 77.3 ± 15.5 2.742 0.111 0.107 79.8 ± 15.3 89.2 ± 4.9 4.161 0.053 0.153
LA: Layout algorithm 58.0 ± 20.3 68.6 ± 17.2 1.973 0.173 0.079 75.5 ± 17.6 87.0 ± 5.0 4.770 0.039* 0.172

Table 3.2: The results of pre- and post-intervention tests for the Slides and Software
groups (M ± SD in percentages), based on the categories of questions. Significant results
are shown as follows: *p < 0.05.

72% of these questions (SD = 16%). However, the results of the post-intervention

test differed significantly between the two groups: F (1, 24) = 5.074, p = 0.034, η2
p

= 0.181. Those who attended the slides session answered on average 79% of the

post-intervention test questions (SD = 15%), which was significantly lower than the

results of the students who interacted with the software – they answered 89% of

the questions correctly (SD = 4%).

The slides group have seen a 17% improvement in their results from pre-intervention

test to post-intervention test (SD = 18%) and the software group have improved

their results on average by 17% (SD = 17%) (Figure 3.9 on the left). There was

no significant difference between the two groups with regards to their treemap liter-

acy improvement. Participants in both groups answered the post-intervention test

questions faster than the pre-intervention test ones: F (1, 24) = 23.222, p < 0.001,

η2
p = 0.492 (Figure 3.9 in the right). There was no interaction effect based on the

manipulation.

Nonetheless, as we hypothesized that the software would provide additional support

to the students in overcoming different barriers to understanding treemaps, we have

also looked at the students’ performance in the different parts of the test aimed

at measuring one’s comprehension of different attributes of a treemap. We did so

by looking at the question classification based on the treemap features that could

influence the participants’ answers in the test.

To investigate where participants struggle the most and evaluate their visualization

literacy skills, we developed a variety of treemap test questions, considering treemap

features such as: Color legend, Hierarchy and Internal node comprehension, Leaf

node, Labels, and Layout Algorithm. There was no significant difference between

the two groups of participants taking the pre-intervention test in any of the five

categories (Table 3.2).

In the post-intervention test, there was no difference in the results obtained by
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participants in both groups for the questions about neither Hierarchy and Internal

nodes nor Labels. However, participants who interacted with the software performed

much better in the questions related to the Color legend, Leaf nodes, and Layout

Algorithms (Table 3.2).

The number of correct answers in the pre-intervention test for all participants cor-

related negatively with the number of rectangles on a treemap (r = -0.520, p =

0.003). The higher the number of leaf nodes the more difficult the label placement,

and hence, they can be more difficult to interpret. However, there was no correla-

tion between the number of rectangles and the correct answers of participants in the

post-intervention test (r = -0.084, p = 0.677). Similarly, there was no correlation

between the number of rectangles on a treemap and the amount of time participants

spent answering each question: r = 0.207, p = 0.123.

3.7.3 Qualitative Analysis of Interview Data

Thematic analysis was jointly conducted by the authors using the feedback gath-

ered from the interview session. For this, we followed the procedure by Braun and

Clark [143]. We first familiarized ourselves with the answers to understand the

participants’ experiences of the treemap literacy test and the treemap instructional

sessions. We used a deductive approach to establish the themes based on the barri-

ers of the treemap literacy identified in the hypotheses. However, we did not limit

the analysis to the barriers alone and looked for further insights into the challenges

of treemap literacy through the feedback.

We identified five themes in our analysis of the qualitative data: Hierarchy, Labels,

Colors, Layout, and Size. These themes indicate that our analysis had strong links

to the initially identified barriers.

Hierarchy In contrast to the quantitative data, qualitative feedback gathered from

the students in both groups did not highlight many problems regarding the explo-

ration of the hierarchical relationship between data features on treemap designs.

Only one student mentioned this category in their feedback: “I had a hard time

recognizing the levels of hierarchy in the images.” (P10, Slides).

Labels Finding the right answer to the questions was possible through information

provided by labels. The visibility of labels on treemaps played a major role in

participants’ performance during the test. Feedback from five students indicated
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that too much or too little information about data was a challenge. This challenge

might have been a byproduct of the cluttered visual design showing a large dataset:

“Visual information is easier to process, so a lot of questions were simple.” (P24,

Software) and “[In] the question with commodities, labels where not visible and

too many of them.” (P11, Slides).

Colors Questions requiring interpretation of the treemap color-mapping were indi-

cated as difficult by four students. This was despite the inclusion of a color legend

or color description: “Treemap visualizations and attached explanation of mapping

color/size were clear.” (P19, Software), but “It [was] not clear how to compare

[the nodes] and sometimes too many colors.” (P11, Slides).

Layout Finding a specific data point among the treemap rectangles could be en-

hanced through the understanding of the layout algorithm. Feedback showed that

only three participants explicitly struggled with this aspect, e.g.: “Some of the cat-

egories or specific data was hard to find.” (P06, Software). However, “knowledge

of the domain represented seems to be very useful to answer quickly, as you know

where to look.” (P01, Software)

Size Qualitative evidence showed that both groups found data size to be an issue

regardless of which group they were in. Feedback from 10 students mentioned the

size of the data as a major barrier to being able to correctly interpret the treemap,

e.g. “The treemap contains many boxes that are hard to see.”(P15, Software)

and “The more data being represented translated in more convoluted/dense treemaps

which made certain things hard to spot.” (P17, Slides).

We also analyzed the feedback that referred specifically to our pedagogical applica-

tion, which was obtained from the students who had interactive practice with the

software. We coded the feedback based on the features of the software that were

perceived as having a positive effect on the student experience and the feedback

referring to the features that could be improved in the future software development

iterations. Two most prominent themes emerged: Hierarchy and Interaction and

Active Learning.

Hierarchy Responses collected showed that most participants in the Software

group found the ability to freely interact with and explore the hierarchical data

structure particularly helpful. Five students commented on the difficulty of inter-
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acting with the hierarchy, e.g. “It breaks the tree down so you can only view what

you want to see.” (P07) and “I can see the relationship and the categories of the

different data.” (P15).

Interaction and Active Learning Students who participated in the interactive

software session predominantly responded positively to their active learning experi-

ence, e.g. “The visual feedback when hovering and the pop up were helpful” (P01),

“Hands-on approach was effective” (P19) and “The tree next to the treemap al-

low[ed] me to view the path. The boxes in the treemap where also highlighted when

you hovered over them in the tree” (P07).

3.7.4 Supplementary Analysis

After completing the quantitative and qualitative analyzes, we examined the pre-and

post-intervention test results of the participants in both groups more closely. Figures

3.10 and 3.11 indicate number of questions answered correctly by each participant

in slides and software groups. This review enables us to view the performance

of each participant in the pre-intervention test with the post-intervention test.

Figure 3.10: The score of pre- and post-test students for the slides group.
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Figure 3.11: The score of pre- and post-test students for the software demonstration
group.

Figure 3.12: The percentage of correct answers on pre-intervention test questions for the
software demonstration and slides groups.
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Figure 3.13: The percentage of correct answers on post-intervention test questions are
shown for the software demonstration and slides groups.
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In addition, we created two graphs showing the percentages of participants in the

slide and software group who answered the questions correctly in both the pre-

intervention test and the post-intervention test, shown in Figures 3.12 and 3.13. We

ranked the percentages of answering the questions in both groups from smallest to

greatest. The result shows us the hardest and easiest questions in both tests. The

graphs show the easiest question for the pre-test is Q66 on page 173 while the most

difficult is Q20 on page 171. For the post-test, we see that the easiest question is

Q62 on page 183, while the most difficult is Q44 on page 187. Note that the pre-test

question numbers are mapped to the blue color, while the post-test ones are in red.

Based on the hypothesis that one of the factors affecting the participants’ perfor-

mance might be the number of rectangles in the treemap, we created graphs that

view the relationship between the number of rectangles in the treemap and the

number of questions that participants answered correctly in the pre-intervention

and post-intervention tests (see Figures 3.14 and 3.15). The results generally do not

show a strong correlation between the number of rectangles in the treemap in terms

of correctly answering the questions.

In addition, we created two additional graphs for both intervention tests to see the

relationship between the number of rectangles in the treemap and the time spent

to answer the question. We see that more time is spent answering questions with

treemaps that are dense in terms of the number of rectangles. The findings do not

indicate a direct relationship between the number of rectangles and the time spent

to answer the question correctly (see Figures 3.16 and 3.17).

Please see Appendix A for the pre-intervention and post-intervention test questions.
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Figure 3.14: The number of rectangles on a treemap versus the number of correct answers
on the pre-intervention test.

Figure 3.15: The number of rectangles on a treemap versus the number of correct answers
on the post-intervention test.
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Figure 3.16: The number of rectangles on a treemap versus the average time spent on each
question on the pre-intervention test.

Figure 3.17: The number of rectangles on a treemap versus the average time spent on each
question on the post-intervention test.
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3.7.5 Post-Interview Questions and Analysis of Participants’ Re-

sponses

We prepared a post-interview 12 questions given to the participants after comple-

tion of post-intervention test, in which we can evaluate the participants’ familiarity

with data visualization and treemaps, the difficulty of the test questions, and their

opinions on the effectiveness of the treemap software. The questions are as follows:

1. Have you seen treemaps before? If yes, where?*

2. Do you have a background in Data Visualization? If so, what is it?*

3. How difficult did you find the test questions?*

1-Not at all, 7-Very much

4. Please expand why you felt the test questions difficult or easy.*

5. Did you struggle to answer any questions? If yes, what in particular did you

struggled with?*

6. How helpful was the Treemap software and software demonstration? (Not

applicable for the participants who took slide demonstration)

1-Not at all, 7-Very much

7. Why (or why not) do you think it was helpful? (Not applicable for the partic-

ipants who took slide demonstration)

8. Was the Treemap software effective enough to visualize the data hierarchy?

(Not applicable for the participants who took slide demonstration)

1-Not at all, 7-Very much

9. Why (or why not) do you think it was effective enough? (Not applicable for

the participants who took slide demonstration)

10. Do you think you perform better on the test after the Treemap software demon-

stration? (Not applicable for the participants who took slide demonstration)

11. Do you recommend any improvements to the software? (Not applicable for

the participants who took slide demonstration)
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12. What is your level of English proficiency?*

• Fluent/Native or Bilingual

• Full Professional

• Professional Working

• Limited Working

• Elementary

We analyzed the answers collected from the post-interview. While half of the partici-

pants stated that they had seen the treemap before, only 4 of them had a background

in data visualization (see Figures 3.18 and 3.19). Figure 3.20 shows the number of

participants and the degree of how difficult they find the test questions. The average

was found to be 3.7 out of 7 while the Figure 3.21 displays the degree of how helpful

they find the treemap software and software demonstration with an average of 4.8

out of 7. The participants gave an average of 5.7 out of 7 when asked how effective

the treemap software was in showing the hierarchy in the data (see Figure 3.22). Fi-

nally, the participants also have language proficiency in English and they are fluent

in English, except 2 participants (see Figure 3.23). (Post-interview questions are

ranked based on this scale (1-Not at all, 7-Very much))

Figure 3.18: Yes or no response of participants
on whether they have seen a treemap before

Figure 3.19: Yes or no response of participants
whether they have data visualization background
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Figure 3.20: Number of participants and how dif-
ficult they find the treemap test questions

Figure 3.21: Number of participants to degree
how helpful they find the treemap software

Figure 3.22: Number of participants to degree
how effective they find the treemap software

Figure 3.23: Answers of participant’s level En-
glish proficiency
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Figure 3.24: The percentage of correct answers and the classification of questions in the
pre- and post-intervention tests.

3.8 Discussion and Limitations

We coded every question with respect to the treemap aspects that are necessary to

understand in order the answer questions correctly. The classification for the pre-

and post-intervention questions (see Figure 3.24) that are ranked from the easiest

to the most difficult based on the number of correctly answered questions. The

corresponding aspects of each question are annotated below it. Contrary to our

initial belief that questions might focus on only one aspect, for example, hierarchy,

questions require a user to understand three or four features of the treemap simul-

taneously. This finding indicates that perception of multiple aspects of a treemap

is required for its complete understanding and is a barrier to treemap literacy. We

also noticed that the most difficult questions were characterized by dense rectangles

with only partial labels. Of course, the more dense the rectangle, the more difficult

it is (or impossible) to place labels.

Despite the relatively small sample size, the open-ended questions allowed us to

gather sufficient data to interrogate and posit reasons for the students’ positive or

negative experiences with the software, as per our intentions for this study. The

majority of the participants who had the opportunity to interact with the software

provided positive feedback regarding their experiences.

Nonetheless, a self-selection bias, as well as availability bias, might have played a role

in shaping our findings, as the participant recruitment happened over the summer

period. Finally, some of the students taking part in the study had some background
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in data visualization, which could have impacted their ability to navigate treemaps.

Despite the split of students with this background between the two groups being

equal, we hope to investigate our hypotheses further using audiences from broader

backgrounds in our future studies.

3.9 Chapter Summary

We presented a study that explores potential barriers to treemap interpretation

and comprehension. In addition, a novel treemap literacy test is presented, which

comprises a range of treemap designs and treemap questions classified based on

treemap attributes. This work provides a better understanding of the barriers to

complete understanding of a treemap and a way for advancing treemap literacy.

Furthermore, we created an interactive educational treemap tool to aid in the train-

ing and understanding of a treemap design that enhances for the study of a hier-

archical data structure. The results of the user-study indicate that students who

interacted with the software outperformed students who learned through slides alone.

Also, participants’ feedback shows that pedagogical treemap software offers an effec-

tive learning experience through more straightforward and faster access to treemap

characteristics.
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P-Lite: A Study of Parallel

Coordinate Plot Literacy

“If you think in terms of a year, plant a seed; if in

terms of ten years, plant trees; if in terms of 100

years, teach the people.”

—Confucius, Philosopher, (551-479 BC)
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Following the initial study on improving advanced visualization literacy skills of

users by focusing on the treemap design, in this chapter, we concentrate on another

advanced visual design, parallel coordinate plots used to display multidimensional

data. This chapter investigates barriers to parallel coordinate plot literacy and

provides a novel literacy test to evaluate users’ parallel coordinates literacy skills.

89
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Figure 4.1: An example parallel coordinate plots of car dataset with 7 attributes. The
image was created using Xmdv [23].

In addition, we developed pedagogical software to increase the literacy level of users

and report the results of our user-study. This chapter is based on a technical report

[144].

4.1 Introduction

Parallel coordinates plots (PCPs) provide a graphical representation of multidimen-

sional relationships through the use of parallel axes (see Figure 4.1 and 4.2). This

design can display high-dimensional data with up to 10-15 dimensions in practice,

as each axis is visually separated [145]. Each polyline represents a data record that

intersects the parallel axes at given points that indicate the value of individual di-

mensions. In comparison to Cartesian Coordinate Plot (CCP), for example, PCPs

display this multidimensional data in a plane that offers additional advantages (see

Figure 4.2). The process of plotting data is different in the CCP and PCP spaces.

For the purposes of this chapter, we define PCP literacy as the ability to correctly

read, interpret, and construct PCPs. PCP literacy is essential for any user who is

interested in understanding multidimensional data, as this is what separates PCPs

from other more common visual designs. PCPs, however, have a reputation of be-

ing difficult to comprehend, called an expert-only visual design, especially if the
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Figure 4.2: An example of Cartesian Coordinate Plot and Parallel Coordinate Plots with
a 2D point data.

implementation lacks essential features e.g. interaction [146]. To improve the com-

prehension of PCPs, an assessment of barriers to the understanding and creation of

PCPs is required. The aim of this study, therefore, is to identify cognitive obsta-

cles to the successful interpretation of PCPs, and use them to design learning and

evaluation of PCP literacy.

We introduce a novel literacy test to investigate the barriers to PCP literacy. In

the test, we include datasets and images generated using popular, off-the-shelf PCP

tools. Based on our experience of teaching PCPs in the classroom, we develop an

interactive pedagogical tool that advances PCP literacy skills by enabling novices

to enhance their comprehension, interpretation, and construction of PCPs. As well

as supporting literacy skills of users, the tool empowers the effective transformation

of data into knowledge and can be used to support an active learning experience in

the classroom. Our fundamental hypothesis is that a software tool that interactively

links CCP and PCPs will advance PCP literacy more than static slides alone. We

assess the learning experience using traditional slides versus our novel software tool

and investigate the efficiency of the educational software on PCP literacy with an

online, crowdsourced user-study. The main contributions of this chapter are:

1. Identifying and investigating the barriers to PCP literacy;

2. Developing a novel educational tool that facilitates both the teaching and

learning of parallel coordinates, advancing parallel coordinates literacy;
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3. Developing a novel PCP literacy test [24] and conducting a user-study to

assess the impact of our pedagogical software on the comprehension of parallel

coordinates.

Supplementary Material URL

Educational PCP Software [25] https://bit.ly/3ddTMJl

Instructions for the Experiment [147] https://bit.ly/36UobZH

Slides Video Tutorial [148] https://bit.ly/36MSRvU

Software Video Tutorial [149] https://bit.ly/3ix3ZSZ

PCP Literacy Test [24] https://bit.ly/3xOUEMr

Table 4.1: The table summarizes the supplementary materials with URLs.

Table 4.1 provides a summary of supplementary material for this literacy study. The

supplementary material makes the study fully reproducible.

The rest of the chapter is organized as follows: Section 2 introduces related work

that includes related literature on visualization literacy and PCPs with a user-study

evaluation. Section 3 identifies and presents some of the challenges of interpret-

ing parallel coordinates. The development of a parallel coordinates literacy test is

presented in Section 4 and the educational literacy tool is introduced in Section 5.

Section 6 explains how the user-study was conducted and Section 7 analyses the

results. Discussion is introduced in Section 8. Finally, a conclusion is presented in

Section 9.

4.2 Background

There are several previous projects on visualization literacy that study the influence

of visual designs on a user’s understanding and advance comprehension of visual

interfaces. Some studies investigate the user’s visualization literacy skills by pro-

viding reviews of user-study results. We searched the Survey of Surveys (SoS) on

information visualization [4], a survey of interactive visualization for education [44],

and a study of information visualization books [110] for related literature on visual-

ization literacy. In this section, we present a collection of parallel coordinate papers

that include user-studies with PCPs. While visualization literacy papers focus on

investigation and improving novice user’s literacy skills, papers with user-studies

evaluate PCPs to inform and evaluate the usability of the design. Differences be-

tween previous studies and the work presented here are summarized in Table 4.2.

https://bit.ly/3ddTMJl
https://www.youtube.com/watch?v=ReNKoU9AI5U
https://www.youtube.com/watch?v=_G7eJHtgH5Y
https://www.youtube.com/watch?v=JUfTNNlv97A
https://bit.ly/3xOUEMr


Chapter 4. Background 93

Inselberg has written extensively on parallel coordinates and provides an in-depth

guide [150]. We found three survey papers using the SoS [4] that concentrate on

parallel coordinates. A survey by Dasgupta et al. [151] seeks to identify various

sources of uncertainty in screen space and link them to different uncertainty effects

on the user. They review the research on parallel coordinates and use a taxonomy

to classify different techniques to reduce ambiguity [151]. Another survey provided

by Heinrich and Weiskopf surveys the parallel coordinates literature and develops

a categorization, aiming to guide research into new topic-related directions [152].

Johansson and Forsell present a detailed literature review that focuses on user-

centered evaluation and analyze the usability of parallel coordinates. The goal is

understanding how people use PCPs to identify barriers to PCP literacy as well as

providing a set of guidelines for future studies [79].

Yang et al. [153] propose a system for interactive hierarchical displays (IHDs) to

tackle the clutter challenge associated with hierarchical multivariate visualization

(HPC) techniques in the study of large datasets. For the evaluation of IHDs, 20 users

are asked to identify patterns using two separate forms of parallel coordinate plots:

flat parallel coordinates (FPC) and HPC. Patterns have been broadly described as

either clusters or outliers. Participants found 8-9 out of the 25 patterns that were

used. Subjects using HPC are more successful than subjects using FPC in finding

trends in large datasets. This work assesses whether the proposed framework of

IHDs provides users with effective help in exploring large datasets. Their study

assumes that participants already have a basic knowledge of PCPs whereas ours

does not.

Siirtola [154] compares two functionally different visual designs: PCPs and the Re-

orderable Matrix (RM), and examines how the two visual designs can be combined.

An experiment is conducted where 20 participants performed tasks with an appli-

cation featuring RM and PCP views of the same data, with and without linking.

Results indicate that while the view linking originally slows the performance of user

tasks, it accelerates learning and is well received by users. Similarly, our study

indicates links between CCPs and PCPs rather than RM and PCPs.

Siirtola and Räihä [146] discuss the methods of interaction found in PCP browsers

and review them in accordance with existing user interface guidelines. An empirical
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study is performed in which the usability of PCPs is tested. They indicate the rich

interaction opportunities of parallel coordinates and illustrate the value of interactiv-

ity for the method. We also incorporate an interaction to display the correspondence

between CCP and PCP designs that advances user understanding.

Lind et al. [155] provide a new layout of axes for multiple PCP displays to assist

users. The display of many-to-many relational parallel coordinates is designed to

enhance the visual exploration of relations between variables and can be used to

explore objects or object groups. Our work differs by presenting a standard PCP

layout rather than a new, enhanced design.

The goal of Claessen and Wijk [156] is to allow users to freely identify and position

flexible, linked coordinate axes and specify novel visual layouts by linking these axes

with a flexible layout. This enables users to compare scatterplots, PCPs, and radar

charts and also create a highly customized layout. The method is tested with 10

users who considered the idea easy to grasp and highly encouraging. This work

presents new PCP features e.g. axes layouts that can potentially provide future

work for our study. Their study assumes that participants already have a basic

knowledge of PCPs whereas ours does not.



Research Paper User-study Theme Visual Design Image Generation Evaluation Method Evaluation Tool Participant Task \ Question
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Boy et al. [37]
Calibration of visualization

literacy test
BC, LC, SP Manual Crowdsourcing Amazon MTurk [157] 43 48T

Ruchikachorn and Mueller [15]
Testing new framework that links

unfamiliar visualizations to familiar ones
LC, PC, S,
SP, PCP, T

Processing[158] Crowdsourcing Amazon MTurk [157] 22 12Q

Börner et al. [5]
Determining the familiarity of users

with different visual designs
BC, PC Manual In-field Forms 273 100Q

Alper et al. [8]
Testing users’ interests and

understanding of their activity
BC, P C’est La Vis (C) Classroom Tablets 21 7T

Lee et al. [22]
Evaluation of content validity

and test reliability
BC, CM, H, LN,
PC, SC, SP, T

Manual Crowdsourcing Amazon MTurk [157] 297 53Q

Firat et al. [42] [CH3]
Evaluation of the treemap test
and educational treemap tool

T
The Book of trees[133],

students’ designs,
Google search

Classroom Desktop Computers 25 57Q

U
se

r
S

tu
d

ie
s

w
it

h
P

C
P

Siirtola [154]
Testing the effect of linking

RM and PCP
RM, PCP RM–PCP Browser (C) Controlled User-study Desktop Computers 20 20T

Yang et al. [153]
Assessment of the IHD

framework
SC, SG, SP, PCP IHD Framework (C) Controlled User-study Desktop Computers 20 1T

Siirtola and Räihä [146]
Evaluation of the

PCP vs SQL
PCP PCP Explorer (C) Controlled User-study Desktop Computers 16 16Q

Lind et al. [155]
Evaluation of the new

PCP axis layout
PCP Many-to-Many Layout (C) Controlled User-study Desktop Computers 12 21Q

Claessen and Wijk [156]
Evaluation of the new

PCP prototype usability
PCP FlinaView (C) Controlled User-study Desktop Computers 10 7Q

Rosenbaum et al. [159]
Testing effectiveness of the new

style in pattern detection
PCP Progressive PCP (C) Crowdsourcing Amazon MTurk [157] 43 20Q

Palmas et al. [160]
Evaluation of the

new vs classic PCP
PCP Edge-bundling Layout (C) Crowdsourcing University email 137 2T

Kanjanabose et al. [161] Comparing SPs and PCPs PCP, SP Manual Controlled User-study Desktop Computers 42 4T

Kwon and Lee [16]
Investigating the efficacy of the

online learning environments
PCP Manual Crowdsourcing Amazon MTurk [157] 120 18Q

Our Work
Evaluation of PCP literacy

barriers and test development
PCP

High-D [162], Mondrian [163],
Quadrigam [164], PCP Tool,

Xmdv [23], XDat [165]
Crowdsourcing

Amazon MTurk [157],
Qualtrics [142]

60 28Q

Table 4.2: An overview of the related literature of visualization literacy and PCPs with user-studies. The columns are: user-study themes, visual designs tested,
image generation tools and methods, evaluation techniques, the tools used for evaluation, the number of participants included in the user-studies and number of
tasks (T) or questions (Q) asked are provided. The evaluation technique that each research paper uses is categorized into: controlled user-study, classroom setting,
and crowdsourcing. Abbreviations used for visual designs include BC: Bar Chart, CM: Choropleth Map, H: Histogram, LC: Line Chart, PC: Pie Chart, RM
Reorderable Matrix, PCP: Parallel Coordinates, P: Pictographs, S: Spiral Chart, SC: Stack Chart, SP: Scatterplot, T: Treemap, IHD: Interactive Hierarchical
Display. (C) indicates that the paper introduces a customized tool for image generation.



Chapter 4. Background 96

Rosenbaum et al. [159] implement positive PCP to overcome data collection and

design challenges due to processing large volumes of data. A systematic study was

performed with 43 participants to compare the usefulness of progressive PCP with

regular PCP. The participants were asked to perform a variety of exercises, such

as recognizing patterns in instances and looking for similarities in various stages

in refinement. The findings show there was no major difference between the two

methods in terms of accuracy. However, progressive PCP were slightly quicker for

pattern detection and, on average, just 37% percent of the data was required to

identify the patterns. Their study requires that participants start with a basic PCP

literacy level whereas ours does not.

Palmas et al. [160] introduce an edge-bundling technique using density-based clus-

tering for each dimension. It enables the clustered lines to be rendered using poly-

gons, significantly reducing the rendering time. They also develop attribute relations

with this technique to promote multidimensional clustering. A web-questionnaire

with two tasks is given to compare the classic PCP against the new visual design in

a user-study. The link to the questionnaire is sent to computer science students and

researchers at a local university and in total 137 respondents are analyzed. Their

user study assumes basic PCP literacy before participation, whereas our does not.

Kanjanabose et al. [161] conduct an experiment including 42 participants to compare

scatterplots (SP) and PCP and measure user performance in terms of accuracy and

response time using four specific tasks. Three levels of task difficulty are given to

users on three representations as a data table, SP and PCP. Similarly, we display the

connection between a CCP and PCP, and gauge participants’ level of PCP literacy.

Kwon and Lee [16] focus on parallel coordinates to study the impacts of multime-

dia learning environments for teaching data visualization to non-expert users by

examining the effects of active learning theory. To research the efficiency for data

visualization education, 18 questions are given to 120 participants in an experiment

based on tasks such as mapping between data points and visual elements, data dis-

tribution, comparison and similarities. In this research, focus on parallel coordinates

to study the impacts of multimedia learning environments for teaching data visual-

ization to non-expert users by examining the effects of active learning theory. The

video tutorial and the static tutorial approaches are similar to ours, but this study
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does not include viewing correlation with the standard method (CCP) to accelerate

learning, identify barriers to the comprehension of a PCP, and develop a literacy

assessment test.are similar to ours, but the study does not include viewing corre-

lation with the standard method (CCP) to accelerate learning, identify barriers to

the comprehension of a PCP, and develop a literacy assessment test.

The difference between research on literacy and research involving user-studies is

that, in general, user-studies on PCPs assume a basic prior knowledge of the visual

design whereas literacy studies assume no prior knowledge. This is because user

studies typically focus on a specific PCP design optimization over the standard

layout. Our work assumes no prior knowledge and develops a tutorial to promote

literacy. Table 4.2 summarizes how our work compares to previous related work.

This study is the first one of its kind focusing on PCPs. Unlike previous work, it

compares and links CCPs with PCPs. We also compare the visual design of PCPs

with the most popular visual designs to inform and identify the specific barriers

to PCP literacy. We design a novel pedagogical tool and conduct a crowdsourced

user-study to gather evidence and study barriers to PCP literacy. The focus of

our research is specifically on PCP literacy as we provide analysis and guidance to

address the barriers to reading, understanding, and interpreting PCPs. Together,

our work is a unique combination of barrier identification, PCP tool evaluation, PCP

literacy test development, and a user study on PCP literacy.

4.3 The Challenges of Interpreting PCPs

PCPs provide a visual solution to study the properties of multivariate and high

dimensional data. A PCP focuses on a continuous vertical dimension when posi-

tioning points along axes compared to a Cartesian Coordinate Plot (CCP) which

follows both a continuous vertical and horizontal plotting process.

We identify at least seven barriers to PCP literacy based on a review of previous

literature (Section 4.2) and survey papers on this topic [79, 151, 152]. This process

is supported by our experienced teaching PCPs in the classroom with traditional

slides and an assessment of coursework submissions in the Data Visualization mod-

ule. We systematically reviewed coursework submissions from previous years and

identified patterns of errors that are often associated with PCP comprehension and
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construction, e.g. understanding high dimensional data, overplotting, and relation-

ships between data attributes [152]. This is how we identified hypotheses to PCP

literacy barriers: Space, Multivariate, Correlation, Distribution, and Order

• (S) Space PCPs use an alternative layout of space when compared to CCPs

and other popular designs. The most popular visual designs are based on

two orthogonal axes whereas PCPs are based on repeated (typically 2-10)

parallel axes [22]. Unfamiliarity with this use of axes can create a barrier

when interpreting PCPs.

• (M) Multivariate An obstacle to parallel coordinates comprehension is the

requirement understanding of multivariate (n ≥3) or high-dimensional (n ≥5)

data attributes and their relationships [166].

• (C) Correlation Identifying the correlation and relationships between data

dimensions, as well as knowing how to interpret the slope of the edges, is one of

the obstacles to parallel coordinates interpretation. The slope of edges between

axes can convey a correlation. This barrier also requires understanding the

statistical terminology alone, i.e. correlation, outside the context of PCPs,

which make it more complex.

• (D) Distribution One of the barriers to interpretation is based on the spread

of edges over screen space. The more uneven the distribution of edges is, the

more difficult it may be to follow polylines as they cross and obstruct one

another. Overplotting can result in higher visual complexity and occlusion

[152].

• (O) Order Parallel coordinates rely on an axis layout order that specifies

placement of axes in screen space. The location of the axes may create an

obstacle to understanding the relationships between data dimensions that are

not adjacent neighbors in a PCP [152].

We also identify two general visualization barriers with respect to labels and legends.

However, we chose not to investigate these general concerns further, because lack

of labels and legends means that the PCP design is incomplete. For example, it is

difficult to identify data axes with no labels. Although we do not investigate them

further, for reference they are:
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• Labels Labels and minimum-maximum values on the axes facilitate user un-

derstanding. Missing axis labels can prevent PCP literacy.

• Legend When a color mapping is used in a PCP, a color legend presents the

range of values of a data attribute. The absence of a color legend can obstruct

understanding of a PCP.

4.3.1 Comparisons with Most Common Visual Designs

Lee et al. [22] investigated the 12 most popular visual designs included in the

education curriculum, and the most frequently used visual designs in news articles.

From their Figure 3.1 in Chapter 3, we observe that parallel coordinates plot is not

among the most popular graphical representations because a PCP is a visual design

which is difficult to comprehend. Considering the identified barriers, PCPs have

a number of characteristics that differentiate them from the other most common

visual designs Lee et al. describe:

• It uses a unique space and axis arrangement to plot points along vertical axes

that represent data variables. If we look at Figure 3.1 carefully, all other

designs use a Cartesian coordinate space except for pie charts and treemaps.

Axes are generally orthogonal whereas in PCPs they are in parallel and there

are often several of them. (Space)

• Parallel coordinates design is used to display multivariate data. Figure 3.1

contains only one multivariate visualization (the stacked bar chart). We believe

this is one of the barriers to a comprehension of a PCP. (Multivariate)

• The PCP is the only design that focuses on identifying direct relationships

between multiple (n ≥ 3) attributes. (Correlation)

• The PCP presents a high number of data records using polylines that cross

parallel axes. (Distribution)

• The PCP is the only visual design that requires decisions with respect to the

order of variates other than the treemap. (Order)

• Each data variate is associated with a specific category which may have dif-

ferent types of a attributes. (Labels)
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Features & Tools
Color Mapped

Polylines
Customizable

Color map
C. Polyline

Color Choice
C. Background

Color
Axis Labels C. Axis Labels Min-Max

Values
C. Min-Max

Values
Read

Text Data
Removable

Axes

GGobi [167]

High-D [162]

Mondrian [163]

Quadrigam [164]

Sliver [168]

PowerBI [169]

Spotfire [170]

SPSS [171]

XDat [165]

Xmdv [23]

Table 4.3: Tools used to create PCP images for the literacy test. The table shows name the
tool and some important features supported such as color mapped polylines, customizable
color map, customizable polyline color choice, customizable background color, axis labels,
customizable axis labels, min-max values, customizable min-max values, ability to read text
data, and removable axes. A green cell indicates support for the corresponding feature.

It is not possible to guarantee that these are all barriers with respect to interpret

PCPs. There may also be other barriers and investigating further barriers is a very

good opportunity for future work.

4.4 Developing a PCP Literacy Test

We propose a PCP literacy test to assess an individual’s literacy skills with PCP

images [24]. In order to develop an effective literacy test, we surveyed both re-

lated work and parallel coordinates tools for appropriate software and related data

while considering the various software features. Our primary hypothesis is that the

students taught with the interactive tool demonstration will perform better on the

literacy test than those taught with static slides.

4.4.1 Identifying PCP Tools

We reviewed visualization tools that create PCPs using online software collections

provided by Keshif [172] and Kirk [173] (see Table 4.3). In addition, we searched

for the most frequently used visualization tools to generate PCPs using Google.

We also examined students’ submissions of an information visualization assignment

for two years in the Data Visualization course we taught at Swansea University.

Students created parallel coordinates examples with a description of which tools or

technologies were used and the datasets used to create their images (see Figure 4.3).

We incorporate teaching experience to inform and identify barriers to PCP literacy.
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Figure 4.3: Parallel coordinates tool selection from computer science students’ on infor-
mation visualization assignments in 2018 and 2019.

Assessing these assignments, we saw some of the same errors repeatedly such as

limited understanding of correlation between data variables and multivariate data.

We assessed and compared each tool systematically based on the quality of the

rendering, the use of color, the presence and legibility of axis labels, and clearly

marked axis scales. By quality of rendering, we mean rendering without too much

line aliasing. We do not have a specific color that we believe that is required, but

generally darker colors on a light background with a good level of contrast. We

looked for good quality color mapping too. Moreover, axis labels are necessary in

order to interpret what each axis is for in a particular experiments. After testing

PCP tools from a variety of sources, we identified a collection of tools to create

quality PCPs for the literacy test as follows: Ggobi [167], High-D [162], Mondrian

[163], Quadrigam [164], Microsoft PowerBI [169], Sliver [168], Spotfire [170],

IBM SPSS Statistics [171], XDat [165], and Xmdv [23]. These tools provide

quality parallel coordinate plots with clear designs, coloring, and labeling options

(see Table 4.3 and Figure 4.4).

Table 4.3 indicates important features of the tested PCP tools. The color-mapped

polylines column identifies the ability to apply a color map to a set of polylines

while the customizable color map column indicates the option to change the color

map. Customizable polyline color is important for changing the color of individu-

ally selected polylines. Customizable backgrounds indicate the option to update the

background color. Axis labels refer to visible labels at the top or bottom of each axis

http://ggobi.org/
https://www.high-d.com/
http://www.theusrus.de/Mondrian/
https://www.quadrigram.com/
https://powerbi.microsoft.com/en-us/downloads/
http://www.sliversoftware.com/features.htm
https://www.tibco.com/products/tibco-spotfire
https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-26
https://www.xdat.org/
http://davis.wpi.edu/xmdv/
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Figure 4.4: Parallel coordinates matrix used to develop the PCP literacy test. The matrix
indicates a name of dataset and tools used to create PCP images. Since Tipping dataset has
many text attributes, PCPs images were not created using tools that cannot read text data
(see Table 4.3).

and some tools facilitate modification of axis labels through the software (customiz-

able axis labels). This feature is vital for creating legible PCP images for end users.

We use customizable polyline color to create images of polylines with special colors

that can be tracked across the display and hence multiple dimensions. We modified

some of axes labels to make them more legible. For example, if the axis labels are

too long or small, we shortened the labels or increased the font size. Min-max val-

ues indicates the software displays min and max attribute values and customizable

min-max values implies that user can change these values using the software. As a

consequence of changing min-max values, the axes should be re-scaled. We modified

a number of min-max values to simplify some of the PCP images including removing

a number of unnecessary decimal places. Some tools can read only numerical values.

This is important because some datasets features text data. Tools that can read text

data are indicated under the Read Text Data column. The remove axes feature can

enable making some axes visible or invisible on the image. We incorporated this

feature to lower the dimensionality of some the datasets thus simplifying some of

the images, for example, we aimed keeping the number dimensions ≤ 10.



Dataset Name Number of
Records

Number of
Dimensions

Name of Dimensions Data Source Description

Car 392 7
miles per gallon, cylinders, horsepower,

weight, acceleration, year and origin
Xmdv [174] Compares cars produced between 1968 and 1983.

Cereal 77 11

calories, protein, fat, sodium,
fiber, carbohydrates, sugar, potassium,

vitamins and minerals, display shelf, weight,
and number of cups for each serving

Xmdv [174]
Provides information on nutritional

properties in specific cereal products.

Chemical Elements 109 33

name, period group, chemical symbol, atomic mass,
year of discovery, density, melting point, boiling point,

enthalpy of fusion, enthalpy of vaporisation,
molar entropy, enthalpy of atomisation, etc.

High-D [175]
Records characteristic attributes of

chemical elements in the periodic table of elements.

Coal Disaster 191 5 months, years, day of year, interval, and deaths Xmdv [174]
Records a number of coal-mining accidents

between March 15, 1851 and March 22, 1962.

Energy 51 12

state, total energy consumption, per capita energy consumption,
residential sector, commercial sector, industrial sector,

transportation sector, petroleum, natural gas, coal power,
hydroelectric power, and nuclear electric power

Xmdv [174]
Records the energy consumption in US states

in terms of energy types and sectors that use the energy.

Olive oil 574 11
area, region, palmitic, palmitoleic, stearic, oleic,

linoleic, linolenic, arachidic, eicosenoic, test/training
Mondrian [163]

Describes eight chemical measurements on different
olive oil samples produced in different Italian regions.

Tipping 244 7
total bills, tip collected, gender, smoker, day,

time (day/night), size of team worked
Mondrian [163]

The data was collected to show tipping behavior
in a restaurant located in a shopping mall.

US Election 3111 53
name, state name, Bush, Kerry, Nader, total, male, female,

obese, unemployed, rent, pcturban, urbrural, etc.
Mondrian [163]

Records information on the 2004 US
presidential election that includes characteristics of on

voters’ demographics with state name for three candidates.

US Population 75 5
year, total population, percent change,

resident population, and civilian population
Xmdv [174]

Provides US Population census data
from 1900-2006 in thousands.

Venus 8784 7
date, hour, latitude, longitude, PV Plasma, Velocity (km/sec),
PD Plasma Density (no/cc) and PT Plasma Temperature (K).

Xmdv [174]
The Venus atmospheric data is time-oriented

and collected from a NASA mission.

Table 4.4: The original datasets used to develop the PCP literacy test (before modification). The table indicates a name of dataset, number of records, number of
dimensions, name of dimensions, data source, and description. Column 5 provides the URL of each data set via citation.

http://davis.wpi.edu/xmdv/datasets/cars.html
http://davis.wpi.edu/xmdv//datasets/cereal.html
https://www.high-d.com/datasets/
http://davis.wpi.edu/xmdv/datasets/coal_disaster.html
http://davis.wpi.edu/xmdv/datasets/energy.html
http://www.theusrus.de/Mondrian/
http://www.theusrus.de/Mondrian/
http://www.theusrus.de/Mondrian/
http://davis.wpi.edu/xmdv/datasets/uspop.html
http://davis.wpi.edu/xmdv/datasets/venus.html
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4.4.2 Exploring Datasets

Creating appropriate PCPs for the literacy test is important to assess users’ literacy

levels. Therefore, we carefully sought to find appropriate and interpretable multi-

variate datasets through the same websites of tools (e.g. Xmdv datasets [174]) that

we selected for creating PCP images. In order to select appropriate datasets for the

literacy test, we constrained them using the following criteria:

• Multi-dimensional including 4 or more dimensions,

• A minimum size of 5 records and a maximum of 10,000,

• Studying a theme or behavior that is not too common,

• Clearly documented data dimensions.

The datasets search is intended to create an adequate variety of images and enable

test takers with various literacy skill levels to attempt a range of questions. We

found 10 datasets identified in Table 4.4. We noticed many previous related papers

only test one or two data sets. We wanted a wider variety than many of the pre-

vious related work. We also created images with a balance of clusters, correlations,

patterns, and outliers across images. The axes are generally ordered in the same

order as the original data.

4.4.3 PCP Image Generation Process

Together, we used these datasets and tools to create quality PCP images for the

literacy test questions. We imported the datasets using each tool, removed some

redundant dimensions, updated some polylines, and background colors for higher

quality images. We encountered some difficulties generating PCPs due to some

limitations of tools. Not every tool provides the same features such as displaying

visible and large axes labels, a color map, showing min-max values, and reading non-

numerical values (see Table 4.3). These barriers inspired us to try each combination

of dataset with different tools to determine the most appropriate images for the test

(see Figure 4.4). Only some images in Figure 4.4 were selected – we tried to choose

only those which were of high quality.
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Our image selection criteria was also based on using anti-aliasing and color mapping

for polylines. As color is useful for a range of purposes, such as aesthetics, color

mapping, and visibility options, we used color to experiment with these parameters.

For example, color mapping can be mapped to a data variable for one dimension.

Color is also used to modify the background in order to display a contrasting polyline

color. We followed some rules such as choosing visually appealing colors although

this is subjective. We tested for color blindness and ensured that colors of the

polylines and background did not interfere with each other e.g. yellow polylines on

a white background. We left out the images that have a distracting background or

background color that interferes with the polyline color. Moreover, we wanted to

make sure that clusters, patterns, outliers, and correlations were balanced across

images. For the images that ended up in the test, refer to Table 4.1.

4.4.4 Deriving a PCP Literacy Test

The test was created to examine the understanding of different aspects of parallel

coordinates design and the methods of visual exploration and analysis. For the

literacy test, a matrix of parallel coordinates images for each dataset and tool (see

Figure 4.4) were used to inform the most appropriate examples which provide a

good color choice and display data attributes correctly in an image. From the

collection, we chose the highest quality images based on the properties in Table 4.3.

Once the PCP image selection was completed for the test, we prepared questions

with multiple-choice answers for each PCP image. Test questions were derived from

previous user-studies [16, 146, 156, 161], involving parallel coordinates and targets

the barriers identified in Section 4.3. We chose to derive some test questions from

these studies since they have been subject to a refereeing process and approved by

reviewers.

PCP Question Classification: We categorized each question with respect to the

barriers we identified in Section 4.3. An example is shown in Figure 4.5.

• (S) Space requires the user to search the PCP for specific data points.

• (M) Multi-variate requires an understanding of two or more variables.

• (C) Correlation identifies questions that target understanding of the rela-
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Figure 4.5: An example PCP literacy test question. Which variable has an indirect corre-
lation with the unemployment rate? Options: A) Bush, B) Kerry, C) Nader, D) Not sure,
E) None of the above. The full set of questions can be found at [24].

tionship between two attributes; direct, indirect, or no relationship.

• (D) Distribution indicates those questions that require an understanding of

polyline distribution; characterized by how edges are distributed along an axis.

• (O) Order identifies questions that are influenced by axis order. (non-

neighboring axes)

As a result, we compiled a total of 28 questions for the PCP literacy test. Each

question in the test requires understanding at least two challenges to answer. For

example, Figure 4.5 displays information from the 2004 US presidential election that

includes records of voters’ demographics including the names of three political can-

didates. The data variables are presented as state name, candidates Bush, Kerry,

and Nader the total number of votes, rent in US Dollars, unemployment, and obesity

rates. The question is “Which variable has an indirect correlation with the unem-

ployment rate?” In order to answer this question, the user is required to understand

Space, Multivariate, and Distribution aspects. Figures 4.9 and 4.10 record the

classification of the each test question in terms of PCP literacy barriers and indicate

which aspects of PCPs a user is required to understand in order to answer it. Each

image in the literacy test is accompanied by a description of each data dimension.

We believe if we do not describe the data dimensions, it would be very difficult to

answer the questions without knowing what the dataset and data columns are.
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4.5 Developing an Educational PCP Literacy Tool

In addition to a PCP literacy test, we developed a novel, interactive pedagogical tool

to enhance a non-expert user’s PCP literacy skills. Testing many different existing

PCP tools in conjunction with developing the PCP literacy test was very informative

when developing our own pedagogical software. Our tool is intended to facilitate

the interpretation and exploration of multivariate data as well as enable users to

create and interpret PCPs interactively. The software features correspondence be-

tween CCP and PCP views and links the points in Cartesian space with polylines in

parallel coordinates space (see PCP Literacy Tool Demonstration Video [25]). The

pedagogical tool is developed as a desktop application and the design is inspired by

Alfred Inselberg’s software [150] that draws the correspondence between CCP and

PCPs. This is the way that Inselberg himself taught PCPs after many years of using

slides. We added new functionality to his software; in particular, we increased the

number of dimensions, included glyphs, labels, and color mapping. Developing PCP

software based on this approach is a novel aspect of our work. The pedagogical tool

was created using the Sedlmair [136] design approach, and the design process did

not explicitly contain the end-user requirements. The software was built around the

idea that most users comprehend CCP with point data. As a result, we introduced

the CCP view, which allows users to draw points and see how they correspond with

the edges on the PCP view. We also provide the reverse functionality (drawing edges

on PCP to draw a point on the CPP) to enable user to have better understanding.

The software was created with the C++ language and the Qt framework [138].

Cartesian Coordinate Plot Features (CCP): Seeing the correspondence be-

tween the traditional CCP and the new PCP can help users understand the PCP.

The interface (Figure 4.6, left) shows a CCP where users can specify points and in-

teractively position them in a traditional 2D coordinate system by clicking on them.

Moreover, a user can right-click on each point to resize, change the shape, return

to the default shape/location, and remove the point. The color variable is mapped

to the x-position of each point by default. Any update to a point will update the

x-position and color accordingly.

Parallel Coordinates Plot (PCP) Features: The tool (Figure 4.6, right) presents

a PCP with up to five attributes that represent the dimensions such as x-position
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Figure 4.6: Pedagogical tool interface with Cartesian coordinate space (left) and the corre-
sponding parallel coordinates plot (right). Our PCP Literacy Tool Demonstration Video can
be found at [25].

and y-position in Cartesian space, the size of each point, color, and shape. Each

component (edge or point) of the PCP corresponds to a component (point or edge)

in the CCP. The size, color, and shape axes can be toggled interactively to observe

the direct connection between dimensions in the CCP and PCP. For each point ren-

dered in the CCP, an edge is created in parallel coordinates. The user can hover

the mouse over any point or edge. This highlights and displays the correspondence

between the CCP and PCP views. Interactive control of either point or edge updates

the other in both spaces. Moreover, users can create edges between x and y axes in

the PCP that result in the corresponding points in Cartesian space with default size,

color and shape settings. This feature facilitates the creation of points by drawing

edges and increases the user’s comprehension of the relationship between points and

edges.

Menu and User Options: The menu options provide more features to the user.

The file menu can save the points and corresponding polylines on the screen or load

from a previous file as well as deleting all of the current points. These features were

intended for a classroom-based experiment which was not possible. However, these

features are useful for testing purposes and creating tutorial videos.

Labels: In order to convey the link between the points and polylines, each point

and polyline can be labelled with a letter. This feature facilitates understanding by

matching a point in the CCP view and corresponding polyline in the PCP with the

assistance of the corresponding labels. Also, the user can toggle display labels and
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change the label font size.

4.6 Experimental Design and Crowdsource User-study

The purpose of this experiment is to evaluate the PCP literacy skills of participants

with our novel test by concentrating on the identified barriers, as well as seeking

evidence of the educational PCP software efficacy compared to traditional slides in

advancing novices’ PCP literacy skills.

4.6.1 Experimental Setting

Our original intention was to conduct an in-class user-study similar to that of Fi-

rat et al. [42] to evaluate our pedagogical software tool. Hence, we believe our

software helps both students and the general population. However, enabling the

interaction of participants with the PCP software tool during an in-person lecture

was no longer feasible. As the researchers were not teaching a visualization class at

the time of the pandemic, it wasn’t possible to conduct this study with the students

at the university where the researchers are based. Thus, we chose crowdsourcing for

an empirical evaluation of PCP images and software during this challenging period

and we designed a crowdsourced user-study as opposed to a classroom-based one.

This choice is inspired by the many crowdsourced experiments performed in the

visualization literature e.g. Borgo et al. [176]. Crowdsourcing enables us to reach

users from a large and diverse pool of backgrounds and to evaluate both varying

levels of PCP literacy and the efficacy of the educational PCP tool. We designed

the experiment incorporating the checklist provided by Borgo et. al [176] for com-

pleteness and to minimize error. We split our PCP literacy test for the study into

two parts: pre-tutorial and post-tutorial. Both tests contain 14 randomly assigned

literacy questions from a larger collection. Each question consists of a PCP image,

a description of each image and a multiple-choice question with a single correct an-

swer. Each question is accompanied by a description of each data dimension. We

believe if we do not describe the data dimensions, it would be very difficult to answer

the questions without knowing what the dataset and data columns are. However,

designing a PCP literacy test that requires no data descriptions may be a good

future work even though it is challenging. We also used additional PCP questions
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as simple screening tests. Each PCP design, dataset, and question provided in the

test varies in complexity. The tests [24] were administered using Qualtrics [142], an

online survey tool for collecting data.

4.6.2 Condition Groups

The user-study participants were divided into two experimental conditions: slides

and software. We investigated the impact of our educational PCP software that

shows the correspondence between a CCP and PCP, based on improving the PCP

literacy of users by comparing the novel software to the traditional PCP slides. For

the purpose of this study, we prepared a video tutorial for the slides condition

that explains the features of PCP with traditional lecture-style slides only [148]

because this is the most commonly used presentation material in the classroom.

Time constraints prevent the use of interaction with the dozens of visual designs

taught in a visualization class. For the software condition, we prepared a video

tutorial that briefly introduces PCPs with slides but also displays the interaction

featured in the pedagogical tool demo by showing each of the features described in

Section 4.5 [149].

A hands-on approach to interacting with the educational tool is not part of our

assessment because it introduces a new variable into the experiment (e.g. hard-

ware). This would make the experiment more complicated and could confound the

results. For example, the interaction is different depending on the input device be-

ing used (mouse, touchpad, trackball, touchscreen, joystick, etc.). In a crowdsourced

experiment, we do not have as much control over the hardware input-device used.

Moreover, users often encounter static PCPs rather than tools with which inter-

action is possible. This is especially true in the classroom and in presentations in

general. This also indicates the importance of studying every challenge with respect

to PCPs that may enable or prevent users to advance PCP literacy. In some cases

the investigation provided by interaction eliminates some barriers to PCP compre-

hension. Given the importance of interaction, studying this topic is a good direction

for future work.

The slides [148] and software [149] tutorial videos are approximately 10 minutes

long. Overall, it took approximately 40 minutes for each participant to complete
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the study. We also believe that length of the tutorial video and the test impact

the number of valid responses collected in the user-study. To mitigate for the bias

between two groups in terms of the content taught, we delivered the same essential

information about PCPs in both tutorial videos e.g. example PCP designs, relation-

ships between axes (direct, indirect, or none). This means that with respect to the

topics presented, the slides were the same for both groups. The essential difference

between the slides and software groups was the software demonstration video,

which therefore comes down to the animation used in the software that interactively

displays the links between a CCP and a PCP. Thus, we rely on participants previ-

ous knowledge of CCPs in the software. Both groups answer the same set of PCP

literacy test questions, e.g. the independent variable.

4.6.3 Participants Screening

We recruited participants through Amazon Mechanical Turk (MTurk) and estab-

lished a strict screening process to improve data quality. Participants were required

to have a total of 1,000 or more approved HITs and a 95% or greater HIT ap-

proval rate on MTurk. Before the experiment started, we ruled out participants

who self-reported that they were using a mobile phone since the PCP images re-

quire significant screen space due to their high level of detail. We also screened out

participants who did not recognize the numbers in color blind test images as our

PCP images do not use color-blind safe colors. We also identified participants that

attempted to take part in the study more than once. We used longitude and lati-

tude data and looked at time stamp information to screen these participants. The

responses obtained from those participants were removed from the data to analyze.

4.6.4 Pilot Study-1

Our experiment was initially started with a pilot study to test the experimental

design and procedures. A total of 15 participants were recruited regardless of their

background and all of them completed the tests. Although participants are informed

on the importance of watching the video tutorial in the instruction video, our screen-

ing identified that only 3 participants spent the time necessary (or close) to watch the

entire tutorial according the data provided by Qualtrics. This initial trial informed
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us that we need to ask questions specifically about the video tutorials to encourage

participants to watch the tutorial video until the end and to pay attention to it.

4.6.5 Pilot Study-2

Based on the experience obtained from the first pilot study, we prepared 3 ques-

tions on the tutorial video with multiple correct answers (e.g., Which topics were

mentioned in the video tutorial?, What was the example data about on the last slide

of the video tutorial?, Which one of the following was a data attribute in the last

example? ) to assess their engagement with the presented material. We followed the

same procedure in the second pilot study with 10 participants. As a result, even if

some participants watched the tutorial video in its entirety, all but 2 participants

selected random answers to the video tutorial on all 3 screening questions. Conse-

quently, we decided to carefully screen for attentive participants to gather quality

data for the main study.

4.6.6 Experimental Procedure

We published the link of the survey on the MTurk website [157] and asked for Turk-

ers’ consent to participate in the study. With their agreement, participants were

provided with an instruction video that describes the experimental procedure, fol-

lowed by some demographics questions. After that, they began the pre-tutorial test

which consists of 14 randomly selected PCP images and multiple-choice questions

with the goal of determining the current level of a participant’s PCP literacy. Upon

the completion of a pre-tutorial test, one of the video tutorials was randomly as-

signed to participants (slides or software). The participants were instructed to

watch the video tutorial carefully until the end.

After the video tutorial, participants answered questions about the tutorial and took

the post-video tutorial test. The correct answers to pre- and post-video tutorial tests

were counted and participants were awarded 1 point in both tests for each correct

answer and 0 points for any incorrect answers. To evaluate a participant’s PCP

literacy using this test, we then calculated the percentages of correctly answered

questions by adding all points up and dividing the result by the overall number of

questions. These percentages were then used as the data samples for our analysis.
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After both tests, 7 open-ended questions were given to collect feedback about the

experiment and measure their confidence in the material. Additionally, 4 questions

are asked specifically about the educational tool to the participants included in the

software condition. After giving the questionnaire for feedback collection, partic-

ipants were provided with a unique completion code by Qualtrics that is submitted

to the survey page on the MTurk website to complete the study.

Each part of the PCP literacy test (pre- and post-tutorial video) begins with two

multiple-choice PCP questions as screening checks before randomly selected PCP

literacy questions ( e.g., How many parallel axes are there in the image?, What is

the dataset about? ). Three questions about the tutorial video follow the completion

of the video tutorial session. Correct responses to these simple questions about the

videos, and the recorded time spent on playing the tutorial video, helped us screen

for attentive user-study participants. Inattentive participants were excluded from

the data.

4.6.7 Data Collection and Filtering

We continued with the recruitment process until we obtained 60 valid responses

from the same number of participants for both experimental conditions in order

to provide a balanced comparison and effective quantitative analysis. Initially, we

identified a total of 202 attempts to participate in the experiment. After filtering

the participants based on color vision deficiency, using mobile phones, or those who

tried to participate more than once from the same location, 170 participants re-

mained. In the next step, we looked at the time participants watched the video

tutorial, the answers given by the participants to the screening questions, and the

simple questions about the video tutorial. At the end of filtering process, we col-

lected responses from a total of 60 participants which is a comparable sample size

to previous crowdsourced studies [176].

The number of participants involved in each crowdsourced user-study in Table 4.2

shows that three studies use fewer than 60 participants and three others use more

than 60 participants. This puts our 60 participants at the median of the related

literature. We also believe that the duration of the study has an impact on collect-

ing data provided by attentive participants (approximately 40 minutes). Thus, we

screened out a total of 110 participants (65%) from the experiment after about a
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Figure 4.7: The percentage of correctly answered questions in the pre- and post-intervention
tests for software demonstration and slides groups. Error Bars (95% CI).

week spent for collecting data.

Among the 60 participants (30 participants per condition slides and software),

the majority of the participants reported that they were from the United States

(29 US, 15 India, 10 Europe, 3 Brazil, 1 Bangladesh, 1 Indonesia, 1 Pakistan).

Participants (36 male and 24 female) had different degree levels: 28 Bachelor’s, 17

Master’s, 8 Ph.D., and 7 High School. The age of participants ranged from 18 to 60

with an average age of 33.4 years.

4.7 Results

Our primary hypothesis was that the students taught with the interactive tool

demonstration would perform better on the literacy test than those taught with

static slides.

4.7.1 Quantitative Results of Test Data

The percentages calculated for each participant were normally distributed, as in-

dicated by the Shapiro-Wilk test for both pre- and post-intervention test groups.

Hence, we used one-way anova for our data analysis (significance level at α = 0.05).

The pre-intervention test results did not differ significantly between the two groups:

F(1,58) = 0.564, p = 0.456, η2
p = 0.010. Those participants who then watched

the slides video correctly answered on average 55.71% of the pre-intervention test

questions (SD = 19.35%), and the participants who were in the software condition
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SLIDES SOFTWARE
Pre-Intervention Post-Intervention F (1, 29) p η2

p Pre-Intervention Post-Intervention F (1, 29) p η2
p

S: Space 56.33± 25.26 59.57± 26.34 0.392 0.536 0.013 64.47± 27.73 72.70± 22.47 3.724 0.063 0.114
M: Multi-variate 52.90± 19.30 54.77± 27.72 0.122 0.729 0.004 55.93± 22.07 68.30± 24.00 10.153 0.003* 0.259
C: Correlation 47.60± 30.70 56.43± 31.88 1.018 0.321 0.034 46.00± 30.40 56.93± 29.71 3.602 0.068 0.110
D: Distribution 60.07± 31.34 63.97± 19.64 0.346 0.561 0.012 65.37± 30.32 72.90± 20.88 2.018 0.166 0.065
O: Order 42.50± 34.45 54.97± 33.37 1.778 0.193 0.058 41.03± 33.50 54.03± 32.06 3.862 0.059 0.118

Table 4.5: The results of pre- and post-intervention tests for the slides and software
groups (M ± SD in percentages), based on the categories of questions. Significant results
are shown as follows: *p < 0.05.

answered 59.76% of these questions (SD = 22.31%).

As for the post-intervention test results, those who were in the slides condition

on average responded correctly to 58.81% of the questions (SD = 24.36%), while

the subjects who watched the software video answered 69.05% of the questions

correctly (SD = 21.74%). This difference, however, was not significant: F (1, 58) =

2.950, p > 0.05.

The slides group have seen a 3% increase in the percentage of correctly answered

questions from pre-intervention test to post-intervention test. This increase was

not significant: F(1,29) = 1.796, p = 0.191, η2
p = 0.058. On the other hand, the

software group performed significantly better in the post-intervention test than in

the pre-intervention test, having improved their results on average by 9%: F(1,29)

= 8.092, p = 0.008, η2
p = 0.218 (Figure 4.7).

Further to these findings, we hypothesized that the software tutorial video would

provide additional support in overcoming different barriers to understanding PCPs.

Thus, we have also looked at the participants’ performance in the different parts of

the test aimed at measuring one’s comprehension of different attributes of parallel

coordinates. We did so by looking at the question classification based on the parallel

coordinates features that could influence the participants’ answers in the test.

In the post-intervention test, there was no difference in the results obtained by

participants in both groups for the questions about Correlation (C), Distribution

(D), and Order (O). However, participants who were in the software condition

performed much better than participants in the slides condition when answering

the questions related to the Space (S) (F(1,58) = 4.316, p = 0.042, η2
p = 0.069) and

Multi-variate (M) (F(1,58) = 4.087, p = 0.048, η2
p = 0.066) categories.

Within condition, comparing pre- and post-intervention, participants in the slides

group did not improve their performance significantly in any specific category of the

questions. Within the software condition, our participants significantly increased
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the number of correct responses for the Multi-variate (M) category of questions

(Table 4.5), but no significant improvement was observed in the other four question

categories.

4.7.2 Qualitative Analysis of Feedback Data

To analyze the feedback collected from our participants at the end of the survey,

we followed a lightweight approach related to the initial inductive thematic analysis

steps as described by Braun and Clarke [143]. We divide the themes based upon

whether they come from questions about the PCP literacy test, or from questions

about our PCP literacy tool.

PCP Literacy Test

We identified three themes about the PCP literacy test questions: Impact of the

tutorial video, Distribution, and Correlation.

Impact of the tutorial video: Participants were asked to reflect on their ex-

perience of answering post-intervention test questions. The feedback from some

participants in both conditions indicates a high difficulty level of the test questions

although they watched the tutorial video and answered randomly chosen questions.

Some 14 participants stated questions were generally difficult: “All questions are

very difficult to find the answers.” (P1) and “More difficult but not much” (P15).

This result reveals that although the test questions have varying difficulties, the

PCP literacy skills of these participants are weak. However, 16 participants (27%)

stated that the post-tutorial test was easy or became easier after watching the video

tutorial: “After the tutorial, it is easy to identify what is meant by the image, the

only normal difficulty of evaluating a problem” (P42). It is clear that most of partic-

ipants found the video tutorial very helpful in Figure 4.8. Participants also indicated

an increase in confidence after watching the tutorial video.

Distribution (D): A high number of data records using polylines that cross paral-

lel axes result in overplotted PCP designs – a barrier to PCP literacy. This challenge

may be the result of not understanding crowded PCP images. This can play a signifi-

cant role in participants’ performance during the test. This difficulty is expressed by

5 participants (8%): “There were complex plots with intermeshing lines being hard

to follow the destination” (P33) and “[The questions were] very difficult because the
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(a) (b)

Figure 4.8: Participants’ answers to feedback questionnaire about video tutorials.

data showed was very messy” (P48).

Correlation (C): Observing values and axes labels to understand the relationship

between two neighboring data attributes (direct, indirect, or none) is required to

answer correlation questions correctly. Consistent with the quantitative data anal-

ysis, the qualitative feedback collected from participants in both groups did not

show statistical improvement in every category (except the Multi-variate and Space

categories in the software group). According to the feedback data, some 5 par-

ticipants (8%) stated that they had difficulty understanding the correlation topic

and answering the questions related to it: “Before and after [the tutorial video], I

still had the most difficulty with direct and indirect correlation.” (P23), “I was torn

between the direct and indirect.” (P27), and “I had a hard time remembering the

difference between direct and indirect.” (P47). This study gathers both qualitative

and quantitative evidence identifying correlation as a barrier to PCP literacy. We

hypothesize that this is due to the mathematics background required to understand

this topic.

Educational PCP Software – We also evaluated the feedback directly relevant

to our pedagogical application. The feedback was collected from participants who

were provided with the tutorial video of the educational PCP software. Most of

the participants (73%) reported that the educational PCP tool was effective and

helpful for a better understanding of the relationships between data attributes. We

coded the feedback based on the features of the software tool that were recognized

as having a positive learning effect on the participants. We identified two aspects:

Multi-variate, and Correspondence and Animation.

Multi-variate (M): Some six participants (20%) identified that the PCP tool was

helpful to understand the PCP concept and convey the mapping of multivariate data
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which is one of the main challenges of high dimensional data. Participants stated:

“Connecting multiple data [attributes] in a single graph is better to get information

easily.” (P41) and “It [the tool] helps in understanding data with more than 2

variables.” (P43), and “It [the tool] provides a direct visual demonstration of the

mapping between axes.” (P50).

Correspondence and Animation: The educational tool demonstrates the cor-

respondence between views of the CCP and the PCP using animation. Some five

participants (17%) stated how the feature enabled them to understand the data

through interaction between plots: “It [the tool] provides to represent the data on

both charts at the same time that explained everything clearly.” (P33) and “It gave

a good real-time illustration of the relation between the two coordinate types, and

it [the tool] gave a clear way of displaying the data, with a more easily identifiable

scale.” (P38), and “Being able to see the changes from parallel coordinates chart

to Cartesian chart made for better understanding of the relationships between data

attributes.” (P56)

The Summary of Evidence– The results of quantitative analysis indicate that the

software group has experienced a 9% increase in the percentage of correctly answered

questions from the pre-intervention test to the post-intervention test while the slides

group had improved their results on average by only 3%. According to the feedback

collected from our participants at the end of the survey, most of the participants

(73%) in the group who watched the software video reported that the educational

PCP tool was effective and helpful for a better understanding of the relationships

between data attributes. They rated the software tool demonstration on average of

5-6 out of 7 (1-Not at all, 7-Very much) in terms of being helpful (see Figure 4.8b)

and responded to our question on the efficiency of the software tool positively e.g.

“Because it [the tool] allows learners to see how the graph works in action.” (P123)

and “It [the tool] gave a thorough explanation. And so, I felt like I could move my

way around more effectively.” (P105). These findings provide evidence that the

software tool facilitates PCP literacy and supports our hypothesis.
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Figure 4.9: The percentage of correct answers on the pre-tutorial test by groups and the
classification of questions. The questions are ranked from the most difficult to the easiest.

4.8 Discussion

4.8.1 Designing Questions for the PCP Literacy Test

Figures 4.9 and 4.10 couples the classification of PCP literacy test questions with

percentage of correct answers given by the participants in both pre- and post-tutorial

tests. Questions are ranked from the easiest to the most difficult based on the

percentage of correctly answered questions for both groups. The corresponding

testing categories of each question are given below (see Appendix B for example

questions). Originally, we thought we could design test questions that isolate the

different cognitive processes required to interpret the PCP images. However, this

did not turn out to be true. Observers usually have to understand two or three

cognitive properties of PCPs in order to successfully answer PCP questions. We

hypothesize that this confounding effect is itself a PCP literacy barrier. In addition,

the results indicate that some participants may not be very familiar with the new

terminology. Understanding the terms may also be a barrier to PCP literacy (e.g.

Correlation). One of the participants stated that “There were a lot of terminologies

to remember, and so that increased difficulty.” (P44). This indicates reinforcing the

prerequisite terminology is an essential step in advancing a non-expert users’ PCP

literacy level.
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Figure 4.10: The percentage of correct answers on the post-tutorial test by groups and the
classification of questions. The questions are ranked from the most difficult to the easiest
(different to pre-tutorial).

4.8.2 The effectiveness of the PCP Literacy Tool

The pedagogical PCP tool shows the correspondence between CCP and PCP views

to improve PCP understanding. The two views are connected and synchronized so

that the mapping of multivariate data to geometric primitives is clearly illustrated.

To lessen the impact of barriers to PCP literacy, the PCP tool facilities toggling

axes in the display between different data attributes (M, C, O). Points in the CCP

can be added, deleted, or moved to demonstrate data distribution (D, S). The

experimental results and Figure 4.8b reveal the positive effect of the educational

tool video tutorial on PCP literacy, based on participants’ experience with the PCP

tool demonstration. Although participants did not explicitly address all individual

barriers to understanding PCPs in their feedback, overall feedback on the tool was

very positive as indicated in Figures 4.8 (a) and 4.8 (b).

Answering the literacy test questions requires perceiving more than one property of

PCP. To help others who are not significantly influenced by the literacy tool, we can

add new features such as loading new datasets and axis reordering axes as future

work. A user-study dedicated to interaction in a controlled lab (an experiment which

is currently not possible) might also be insightful.
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4.9 Chapter Summary

We examined barriers to understanding PCPs. We introduced a novel literacy test

that includes tools and datasets to assess non-expert users’ literacy skills with a

variety of PCP images. We also compiled a list of the most often used visualiza-

tion tools and multivariate datasets for generating PCPs for our literacy test. To

aid with the comprehension and investigation of multivariate data, we created an

educational PCP tool and used the tool for the evaluation of users’ PCP literacy

skills. The results showed that students who trained with the pedagogical practice

training video scored better on the post-tutorial literacy test. Participants stated

that depicting the relationship between the PCP and CCP of view is a convenient

method to improve PCP literacy and facilitate understanding of multidimensional

data.
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DPCP Vis: Techniques for

Dense Parallel Coordinate Plots

“To acquire knowledge, one must study; but to

acquire wisdom, one must observe.”

—Marilyn vos Savant, Writer (1946-)
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In Chapter 4, we gain a deeper understanding of barriers to PCP literacy. Informed

by our study in Chapter 4, this chapter addresses the challenges of understanding

large amounts of data due to overplotting and the relationship between data di-

mensions on the PCPs. To help overcome these challenges we introduce interaction

techniques to facilitate comprehension of data and data dimensions. The RAMP

VIS project [1] inspires the study, and the results of our user-study provided in

Chapter 4 reveal that identifying correlation can be a barrier to PCP literacy. Fi-

nally, we discuss our novel techniques and provide feedback from domain experts.

This chapter is based on a technical report [48].
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5.1 Introduction and Motivation

The Parallel Coordinate Plot (PCP), introduced by Inselberg [177], is a visual de-

sign showing multidimensional relations using parallel axes. PCPs facilitate data

exploration and understanding relationships for multivariate data. One of the well-

known challenges with PCPs is associated with overplotting. Rendering thousands

of polylines causes overlapping edges that may obscure the underlying patterns in

the image, especially in high data density areas [178]. In these cases, interaction

can be crucial in exploring the data and minimizing ambiguity. However, processing

and analyzing overplotted data requires new approaches to support understanding.

We propose novel visual feature and interaction methods to address challenges in

PCPs that occur as a result of overlapping line segments. We introduce interactive

glyph lenses that enable users to explore an overplotted area using a dynamic lens

that hovers over the PCP based on mouse location. This interaction summarizes

edges that intersect with the lens represented by arrow glyphs showing the average

slope of a dense collection of edges. To convey relationships between dimensions,

we display arrow glyphs placed below each adjacent pair of axes that indicate the

correlation. We introduce a dimension reduction technique that enables users to

evaluate a PCP by looking at the correlation value between neighboring axes and

collapsing axis pairs that do not add information to the display. We also present a

user option we call a subtraction operator, ∆, that displays the difference between

two multi-dimensional data sets for quick comparison. The ∆ operator addresses

the unsolved problem of visually comparing multivariate ensemble data. In this

chapter, we specifically concentrate on interaction techniques for dense PCPs. The

main contributions of this study are as follows:

• The introduction of interactive correlation glyphs for adjacent axis pairs

• Novel dynamic glyph lenses to support data analysis and comprehension

• A subtraction operator, ∆, to indicate differences between two multi-dimensional

data sets

• Relationship-guided dimensionality reduction based on collapsing of axis pairs

to reduce redundancy
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We evaluate our methods with a case study based on the simulation of Covid-19

contagion behavior together with a modelling expert in this area. Visual comparison

of ensemble data is considered an unsolved problem [179].

The rest of the chapter is organized as follows: In Section 2, we review the previous

work on reducing the impact of clutter in PCPs. In Section 3, we demonstrate

interaction design including correlation glyphs, dynamic and static lenses, and the

∆ operator. In Section 4, we discuss the performance of our visualizations and

provide feedback from domain experts. Section 5 wraps up with conclusions and

future work.

5.2 Background

Displaying a large multivariate data set in a 2D space has always been a challenge

for data exploration due to over-plotting and clutter. We start by reviewing related

surveys and focus on literature for the discovery of the information in dense and

cluttered areas in PCPs.

Surveys: Dasgupta et al. [151] investigate different types of ambiguity in the PCP

images and introduce a taxonomy for classifying them to reduce uncertainty. By

creating a taxonomy, they aim to detect distinct sources of uncertainty in the design

and link them to different impacts of uncertainty for the user. Similarly, Heinrich

and Weiskopf [152] propose a taxonomy and assessment of strategies for modeling,

visualizing, analyzing, and interacting with PCPs, as well as a classification of com-

mon tasks for investigation. Johansson and Forsell [79] summarize and categorize

studies on evaluating PCPs. A thorough examination of previous research presents

user-centered evaluations to report on the human-centered aspects of PCPs.

In this section, we focus primarily on previous work on PCPs that address visual

clutter and ambiguity. We briefly introduce solutions to analyze large data on PCPs.

In general, the methods for reducing the impact of clutter on dense displays can be

categorized as frequency-based, using interaction and brushing, clustering, and edge-

processing.

Frequency-based: Artero et al. [180] present a method for creating frequency and

density plots from PCPs. The new plots enable interactive data exploration of large

and high-dimensional data, enabling users to remove noise and highlight data-rich
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areas. Work by Geng et al. [178] proposes angular histograms and attribute curves

that enable users to investigate clustering and linear correlations in large data sets

to address over-plotting and clutter in PCPs. The state-of-the-art reported by Hen-

rick and Weiskopf [152] has a particular subsection on frequency-based techniques

that address aggregating edges together as an approach to overplotting and provides

numerous methods for aggregating the data [159, 181, 182, 183, 184]. Our work in-

corporates a frequency-based approach that counts the number of edge intersections

with an interactive lens.

Interaction and Brushing: Blass et al. [185] present quantization and compres-

sion techniques for data pre-processing, as well as joint density distributions for

adjacent variables enabling efficient GPU-based rendering of PCPs. In addition,

they propose faster brushing methods for interactive data selection in several linked

views. Raidou et al. [186] introduce a novel technique, Orientation-enhanced PCPs,

to improve the view by visually enhancing segments of each PCP line emphasizing

slope when there are several overlapping edges or when outliers and structures are

obscured by noise. A novel effective selection method, the Orientation-enhanced

Brushing (O-Brushing) is also presented that eliminates unnecessary user interac-

tion. Another brushing method to enhance dense PCPs by Roberts et al. [187] in-

troduces higher-order, smart data-driven brushing, and sketch-based brushing. The

sketch-based brush is generated by connecting mouse clicks across the PCP on each

axis at the chosen brush-axis intersection. Smart brushing assists the user during

interaction by revealing patterns at run time. Some of our methods are based on

interaction, however, none involve traditional brushing on PCPs.

Clustering: Data clustering is one method for reducing clutter in a PCP. Fua et

al. [181] use hierarchical clustering to create a multiresolution representation of

the data, and a variation on the PCP to express aggregated information for the

clusters that facilitates navigation and filtering to explore the patterns and trends

in the data. Ellis and Dix [188] propose several approaches for measuring occlusion

by interactively adjusting the level of sampling. They explore three algorithms

(raster, line, random) to measure the degree of occlusion. When compared to other

algorithms, the raster algorithms result in higher accuracy.
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Figure 5.1: Overview of the PCP software tool. (A) The image displays user options, (B) the data with correlation glyphs under each axis pair, (C) interactive
feedback in a dense area with an arrow glyphs lens, (D) collapsed axes pairs with stacked labels, and (E) a color legend. The PCP displays the predictions that the
number of recovery in those under the age of 20 (Group 1) and the number of deaths in patients over the age of 70 (Group 7) will be higher than in other age groups.
It also shows that mortality is lower for health care workers.
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In addition to hierarchical clustering and calculating polyline occlusion techniques,

Johansson et al. [189] use transfer functions to display different characteristics of

clusters and transform each K-means-derived cluster to high-precision structural

texture that, applied to a colored polygon, creates the cluster’s final visual appear-

ance. Our methods do not use explicit clustering. However, the lens we introduce

summarize the edges that pass through them depicting average slope.

Edge-Processing: McDonnell and Mueller [190] introduce a technique that shows

each data point as a poly curve to facilitate edge bundling and declutter the display.

Palmas et al. [160] present an edge-bundling technique that applies density-based

clustering for each dimension. It represents the clustered lines as polygons, which

reduces rendering time. They also use this strategy to enhance multidimensional

clustering by developing attribute connections. Divino et al. [191] describe an edge

bundling strategy used in PCPs to expose cluster information directly from the

overview. The edge-bundling survey by Lhuillier et al. [192] presents a data-based

taxonomy for classifying bundling methods and introduces a framework to describe

the steps of bundling algorithms. The survey provides a subsection on PCPs and

describes edge bundling papers that apply edge bundling for reducing the clutter and

increasing readability [184, 190, 193, 194]. Our dynamic lens could be considered as

a kind of edge processing technique.

In contrast to previous work, the techniques we describe generally focus on the

space between axis pairs rather than on axes themselves. Most previous literature

focuses on either the parallel axes or the polyline edges. We focus on supporting

cognition of relationships between axis pairs in the context of dense PCPs. We

introduce novel techniques to facilitate data analysis guided by correlation glyphs

between neighboring axis pairs, showing the differences between data sets using a

subtraction operator, and enabling the user to reduce dense areas and dimensions

by collapsing axis pairs.

5.3 Visualization Design

This work is completed in part in partnership with the RAMP VIS [1] team, who

are assisting the modelling scientists and epidemiologists in the Scottish COVID-19

Response Consortium (SCRC) [195]. They provide the ensemble data (see Section
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5.3.1), which is a significant motivation of the techniques we present here. In ad-

dition, we have brainstorming sessions with visualization experts, modellers, and

statisticians. These conversations aid in the comprehension of the data simula-

tions, the exploration of the most significant input parameters. We also identify the

requirements of modelling scientists and epidemiologists as well as getting the visu-

alization experts’ feedback on the software. We follow the design study methodology

introduced by Sedlmair [136] to evaluate a specific real-world problem encountered

by domain experts and design a visualization system to aid in problem-solving.

In addition to that, we adopt the nested four-level model for visualization design

and evaluation by Munzner [196]. First, we describe the problems and data before

mapping them into abstract processes and data types. We then created the visual

encoding and interface to enable those processes. Finally, we develope an algorithm

to perform that design efficiently. The software was written in C++ using the Qt

framework [138].

In order to convey the strength of the correlation between axis pairs, correlation

glyphs for each adjacent pair (Section 5.3.2) are presented in the PCP view. This

provides users with a summary perspective of the multivariate relationships and an

improved understanding of the link between axis pairs, which may not be visible by

glancing at a dense set of edges. One of our techniques for dense displays is based on

detecting the intersection of the edges with a glyph lens. The lens offers interactive

feedback to the user as a function of the current mouse position that specifies center

of the lens in the PCP (Section 5.3.3) in dense areas where the relationship between

the axes may be difficult to interpret. The ∆ operator (Section 5.3.4) is one of the

techniques developed in order to understand the difference between two comparable

data sets. Also, axis pairs can be collapsed (Section 5.3.5) through a selection that

enables users to view a reduced set of axes, motivated by redundant information.

Figure 5.1 shows an overview of the PCP tool we developed that allows a user

to view different data sets via the user interface on the right of the screen (A).

To demonstrate the relationship between each adjacent axis pair, correlation arrow

glyphs are positioned under the PCP view (B). The figure also shows an example of

a dynamic edge glyph lens (C) and some collapsed axes with stacked labels (D). The

color scale on the left (E) is initially mapped to the edges on the first axis. This can



Chapter 5. Visualization Design 129

be updated by selecting another axis. One of the user options offered by the tool

is to display data labels and points where an edge crosses the axes by hovering the

mouse over the edges and highlighting them. In addition, features such as rendering

the average edge by taking the average of all edges and showing the zero point on

the axes are also supported.

5.3.1 Ensemble Data from a Covid-19 Simulation

The ensemble data we study is a major motivation for the techniques we develop

here. RAMP VIS [1] is a VIS volunteer group that responded to a call by the

Scottish COVID-19 Response Consortium (SCRC) to support modeling scientists

and epidemiologists [195]. The primary objective is to build a stronger and im-

proved understanding of possible strategies to deal with the Covid-19 outbreak in

the United Kingdom. We study the ensemble data set provided by the modelers by

processing the large amount of simulation data given to the RAMP VIS group in

our study. The data includes hundreds of time series for different regions of Scotland

and different indicators (e.g., test, case, hospitalized, and fatality) and different age

groups. The ensemble data is aggregated based on eight age groups and contains

23 parameters (see Figure 5.1). Each age group exemplifies an age interval (e.g.

Group 1 → [age≤20], Group 2 → [20-29], ...,Group 7 → [70≤age], and Group 8

→ Healthcare Workers). The data contains the total numbers of susceptible, ex-

posed, asymptomatic, symptomatic, hospitalized, recovered, deceased patients with

a minimum, maximum, and mean values. Each age group is recorded on daily basis

for 198 days. Each row in the data set represents a record of one day. See the

Supplementary Material for a more detailed description of the ensemble data.

By investigating the ensemble data in our novel PCP software, we aim to assist users

in exploring models such that users can interactively compare outcomes across age

Figure 5.2: The figure shows the glyphs that represent the correlation coefficient value
between adjacent axis pairs displayed in the θ ∈ [-90, +90] range.
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Figure 5.3: An overview of (a) the glyph lens, (b) edge intersection summary with the
dynamic edge glyph lens, and (c) edge-grid intersection with the grid-based edge glyph lens.
This figure shows two attributes in the PCP and three line edges that connect A and B.
After the detection of the intersecting edges for both, arrows are shown as in the lens (a)
representing the edges. Since there are two positively sloped and one negatively sloped edges
showing the relationship between A and B, the arrow representing the positive slope is longer
than the other as it indicates two edges.

groups, identify differences between simulation parameters, and observe patterns as

well as reveal outliers and features in the data.

5.3.2 Axis Correlation Glyph

The correlation coefficient is beneficial to identify relationships between the two

variates. For some PCP examples, overlapped edges may create clutter and users

may have difficulty viewing patterns between axes. Results of a previous user-study

on PCP understanding reveal that identifying correlation can be a barrier to PCP

literacy [144]. Deriving the slope of the edges and interpreting the links between

data variables by looking at the PCP image can be challenging. Therefore, we intro-

duce arrow glyphs for each pair of axes to present correlation values explicitly (see

Figure 5.1, (B)). The appropriate design of glyphs is critical for usability and suc-

cessful visual communication. Relevant visual channels should be carefully selected

and integrated for an effective glyph design [197]. The study by Fuchs et al. [66]

methodically gathers and categorizes the literature on data glyphs, describing their

designs, questions, data, and tasks. The arrow glyph is included in the ”One-to-One

Mapping” category. Borgo et al. [198] describe that glyph design can use a variety

of visual channels, including shape, color, texture, size, and orientation. Our glyph

design reveals the relationship between axes-pairs by presenting an arrow shape, us-
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ing a peer-reviewed color library [139] and direction of the slope for the correlation

value. In addition, the color was consistent with the polylines and the color scheme

used in the PCP has also been adapted to the correlation glyphs based on κ.

Design Justification: The axis correlation glyph offers users a convenient way

to interpret the relationship between two dimensions by glancing at the correlation

glyphs. For dense PCPs, it may be difficult to determine relationships between

data dimensions by observing the slope of the edges. We use an arrow glyph that

conveys correlation value using slope information. The arrow glyph reveals the

trend between dimensions using both the slope and direction. There are several

other options possible here. Both bar charts and pie charts can encode the same

information such as a number of intersecting edges and average slope. However,

we wanted to map slope of edges to a glyph with slope intuitively built in. Arrow

glyphs already have these characteristics naturally build in whereas other charts and

glyphs generally do not.

The correlation values, κ, are calculated using Pearson’s Correlation Coefficient [199]

for each axis pair. The arrow glyph represents each pairwise coefficient value. The

individual distributions of the two related axis pairs are shown in the range κ ∈ [-1,

+1] and the arrow glyphs represent the range θ ∈ [-90, +90] and correspond to the

correlation values, κ, indicating negative and positive relationships respectively (see

Figure 5.2).

5.3.3 Dynamic Edge Glyph Lens

The underlying structure in the data is not always obvious in PCPs. The dense PCP

resulting from overlapping of the edges may cause information to be covered. This

may make it difficult for the user to interpret the existing correlation and observe

patterns. Thus, we introduce a glyph lens designed to reveal information that may

be obscured by edge overplotting. Observing the dynamic glyph by hovering the

lens over the edges offers the user a summary of the edges and of the average slope,

θAVG, of the edges represented by arrows.

Design Justification: This is a special type of lens that focuses on the space be-

tween the axes as opposed to the axes themselves. Frequency-based approaches pre-

viously presented in the related work focus primarily on axes instead of relationships
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Figure 5.4: An overview of (a) a color legend, (b) a dense area in the PCP, and (c)
summary of edges in the same area with dynamic edge glyph lens, and (d) grid-based edge
glyph lens (see section 5.3.3). The numbers indicate the number of edge intersections with
the lens.

between axes. Our dynamic edge glyph lens solution offers a user interaction-based

feature integrated into the PCP to uncover the trends between axes and improve

the interpretation of the data (see Figure 5.3). We chose the same arrow glyphs as

in Figure 5.2 because they intuitively encode slope and thus the correlation between

axes. Other charts and glyphs can encode this same information but not intuitively

because the slope is not the predominant characteristic of most charts and glyphs,

e.g., pie charts, bar charts, etc.

To address the overlap problem, we focused on the intersection of the edges with

the lens, starting from the left axis and ending on the right axis (in any pair). The

dynamic edge glyph shows the number of edges that intersect with the lens and av-

erage slope, θAVG, of each intersecting edge (see Figure 5.1, (C)). After calculating

θAVG, the edges intersecting the lens are grouped according to whether the edge has

a positive or negative slope. The two groups are represented by two arrows placed

in the lens glyph (see Figure 5.3a). The upward arrow in the glyph lens represents

the average positive, θAVG+, and the other represents the average negatively sloped

edges, θAVG-. The resulting arrows are designed similar to the correlation glyph

arrow (Section 5.3.2). They display the angle, θ ∈ [-90, +90] by calculating the

average angles of inclination θAVG+, θAVG- (see Figure 5.3b). The magnitude of

the arrows is also scaled by the number edges (with positive and negative slope)

that intersect with the lens. The color of the arrows is mapped to the color legend

provided. This interactive feature facilitates uncovering hidden correlation informa-

tion between data axes by hovering the lens and observing the trends in the data.
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See Figure 5.4. An accompanying detailed demonstration video [200] introduces our

previously mentioned techniques.

Grid-Based Edge Glyph Lens: One limitation we encounter with a dynamic

lens is run-time edge detection, which may slow down when there are too many

edges. With very large data sets, the performance of detecting edge intersections

starts to degrade. One way to address this challenge is to pre-compute a summary

of edge intersections in a static grid and then display the meta-data, rather than

trying to calculate the edge intersections at run-time. In order to pre-compute edge

intersections, we divide the space between two neighboring axes into nxm squares,

[3x30] square cells by default. As an example, we use a resolution of [66x30] cells in

our display space for 22 axis pairs. To calculate the edge and grid cell intersection,

we adopt the technique presented by Ericson [201].

For each grid cell, we pre-computed and store the edge intersections. Thus, we

identify the number of positive and negative edges and their average slope, θAVG+,

θAVG-, in each cell. In the pre-computed grid view, the summary information for

the edges that overlap with a given grid cell and containing the center of the lens is

used (see Figures 5.3c and 5.4d).

5.3.4 Multivariate Subtraction Operator, ∆

Plotting two data sets on the same PCP or two adjacent PCPs is a common approach

for comparison. However, both of these can lead to challenges with large data sets as

both may be dense to start with. We introduce a multivariate subtraction operator,

∆, that we can apply to compare two similar data sets on the same PCP.

Design Justification: In our case, we have ensemble data from a Covid-19 sim-

ulation, thus, the simulation configurations are directly comparable. The Covid-19

simulation data is major inspiration for our features because the modelers are very

interested in comparing different simulation configurations. The ∆ operator reveals

the differences between similar data sets e.g., the case of ensemble data. The vari-

ation between data attributes such as hospitalization or recovery numbers can be

interpreted quickly. Plotting the difference S∆ between two simulations, S1 and S2,

in the same space as S1 and S2 themselves is simple, fast, and intuitive.

In order to perform the multivariate subtraction, the attributes of the data sets
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Figure 5.5: Multivariate subtraction performed on the Group 1 ([dage ≤20]) and Group 7
([70≤ dage]) in yellow and red respectively. The difference, ∆, is shown in the PCP with blue
polylines. Using ∆, multivariate differences between age groups become obvious with respect
to hospitalizations, h, and mortality, d. Green points on each axis address zero values on
the axis.

are the same and in the same order, such as the Covid-19 simulation [195] we use.

The edges of the difference obtained after the subtraction can also be rendered and

shown in the PCP (see Figure 5.5). As a result of plotting the difference data, S∆,

labels for minimum, d(min), and maximum, d(max), values are updated.

The subtraction operator, ∆, is implemented to highlight changes in simulation

output parameters for different input configurations that may or may not be similar.

We perform subtraction on two configurations selected through the user interface

(see Figure 4.6 (A)). The second selected, S2, is subtracted from the first, S1. This

operation is applied by subtracting the corresponding values in the same dimensions.

Given a simulation, S, with dimensions S(d0, d1, ..., dn) the subtraction operator

computes the difference, ∆x, between data values, x, that correspond to one another

e.g.,

S∆ = S1(dn(xm))− S2(dn(xm))

Where dn is a given dimension and m is a given data index. With the selection of S1

and S2, the maximum value of the axis, d(max), is derived as the maximum value,

d(min), of both S1(dn) and S2(dn), and the minimum value is set as −1× d(max).
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The S∆ obtained as a result of subtraction is plotted on the PCP. Positive or negative

differences can be seen within the updated d(min) and d(max).

Figure 5.5 displays the output of the subtraction operator, ∆, applied to Group 1

([ ≤20]) and Group 7 ([70≤ dage]) provided in the Covid-19 simulation [195]. The

calculation is performed by subtracting Group 7 from Group 1 plotted with polylines

in yellow and green respectively. We can see an example of this by looking at the

age group dimension. By subtracting the values of dage, the result is -6 (1-7 = -6).

The edges representing the difference between two data sets are plotted within age

groups ∈ [-8, +8], shown in red. Green points on each axis indicate zero values for

each dimension and enable viewing the negative differences. The result is shown in

Figure 5.5. The number of hospitalizations, h, and deaths, d, in patients over 70

years of age is much greater than in patients under 20 years of age.

5.3.5 Dimensionality Reduction by Collapsing Axis Pairs

The purpose of using parallel coordinates is to expose particular features in the mul-

tivariate data. However, the essential information sometimes may not be obvious

due to overlapping edges and a high number of dimensions plotted in the PCP. The

images vary depending on the order of axes. In order to display the relationship

between dimensions, we use glyphs showing the tendency between each axis pair

and the corresponding correlation, κ, (see Section 5.3.2). By using on these correla-

tion glyphs, the user may exploit relationship-guided dimensionality reduction via

collapsing of axis pairs.

Design Justification: The high-dimensional ensemble data is based on eight age

groups and contains 23 parameters with minimum, maximum and mean values of

each indicator. The data includes repetitive information. We introduce this user

option that gives a different perspective on the data dimensions by removing some of

the redundant elements that do not add new information to the PCP. The objective

of collapsed axis pairs is to decrease the number of dimensions and depict a less

complex PCP view e.g., especially for values of κ = 1. This feature enables the user

to explore and display the relationship between dimensions, d, that they choose to

emphasize and with less redundant information (see Figure 4.6 (D)).

The user option provides a new view of the data dimensions by reducing some of the
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Figure 5.6: The collapsing of the hmean and hmin axis pair by right-clicking on the correla-
tion glyph showing the relationship between them. The labels of hmin are stacked to indicate
the collapsing process.

redundant dimensions that do not present a particularly notable pattern in the PCP.

Collapsing axes can be guided by observing correlation glyphs. For example, pairwise

axes with a correlation κ of unity may be collapsed without loss of information. The

process is performed by right-clicking on a correlation glyph for a given axis pair

and reducing the space between them by translating the right axis closer to the left

axis. In the new layout, the axis name and maximum value labels of the right axis

are stacked under the left labels of the pair axis while the minimum label is placed

on the top of other minimum value labels. The collapsing procedure can be undone

by right-clicking on the same correlation glyph to obtain the previous PCP view.

Figure 5.6 demonstrates an example of axis pair collapsing between hmean and hmin

(h:Hospitalization). Selected collapsed axis groups are data variables with, κ = +1,

in other words, showing a direct relationship. As a result of the collapsing of an

axis pair, two dimensions are positioned side-by-side and axis labels stacked on top

of each other are displayed. Figure 5.1 (D) shows an example where 3 dimensions

are juxtaposed after collapsing two-axis pairs. With the dimensionality reduction

feature, redundant and repetitive information that makes it more challenging to

reveal patterns in the data can be excluded.



Chapter 5. Evaluation 137

Additional Features: In addition to the previous features we introduced, the

software includes features that are helpful in exploring the ensemble simulation data.

We provide a feature that allows the min and max labels to be updated such that

the axis data in a given range can be scaled. We enable the user to change the given

default static grid resolution by entering a new value for the x and y axis of the PCP

through the user interface. We offer six different color scales for color mapping in the

PCP using a color library by Roberts et al. [139]. We also introduce the features

of drawing the average polyline using the average of the edges, or rendering the

positive and negative sloped edges by right-clicking on any area of the PCP, using

focus+context. Finally, we developed a κ matrix to understand the relationship

between each data dimension combination. In the matrix, the user can select one of

the dimensions and sort the correlation values from smallest to largest.

5.4 Evaluation

We provide three use cases to evaluate our techniques and provide a demo video for

these use cases. We demonstrated the software to the domain expert and reported

feedback collect from the expert in this section. Our primary goals are to evaluate the

usefulness of our approaches in comparing multidimensional data and determining

the most effective parameters, and to make sure that they enable users to make

some new observations.

5.4.1 Case-Study

In this section, three use cases demonstrate the effectiveness of our techniques in

understanding underlying trends in the Covid-19 ensemble data.

Use Case 1: Multivariate Comparison of Age Groups To explore the mul-

tivariate differences between age groups, we used the ∆ operator between two age

groups in the first simulation configuration presented in Figure 5.1. For example,

we render the relationship between the simulation results under age 20 (Group 1)

and above age 70 (Group 7) (see Figure 5.5) by applying the ∆ operator to these

age groups. We observe that the hospitalization and mortality numbers are much

higher compared to Group 1.

Use Case 2: Comparing Input Parameter Values, pinf Probability of infec-
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tion, pinf, is one of the most interesting input parameters of the simulation according

to the simulation domain experts. We selected the two simulations with the mini-

mum and maximum, pinf (min) and pinf (max), for input parameter values. Then

we utilized the ∆ operator to compare the outcomes for these two simulations to in-

vestigate how influential the pinf parameter is and understand how input parameter

values influence the output. To compare two simulations, we sorted simulations by

the pinf value and included all age groups in Simulation 3 with the lowest pinf value

and Simulation 101 with the highest pinf. We then used ∆ operator to render the

difference between these simulations. As a result of ∆, Simulation 101 shows a very

clear difference for all output parameters compared to Simulation 3 (see Figure 5.7).

The ∆ operator indicates that pinf is a very influential input parameter.

Use Case 3: κ-guided Dimensionality Reduction We examine the PCP in

Figure 5.1 and the correlation glyphs under each axis pair. We observe that there is

always a direct relationship between the mean, min and max values of each param-

eter in the output. We used this observation to reduce the redundant dimensions

and produce a new image with the redundant axes removed. The dimensionality

reduction technique we utilize by collapsing axis pairs results in an image that re-

duces the number of dimensions by almost 50% in the PCP (see Figure 5.8). Note

that the pairwise glyphs are also preserved and remind the user of the redundancy.

5.4.2 Domain Expert Feedback

This work is partially carried out in collaboration with RAMP VIS [1] team, who

support the modelling scientists and epidemiologists in the Scottish COVID-19 Re-

sponse Consortium (SCRC) [195] (see Subsection 5.3.1). We had three meeting

sessions, including visualization experts, modellers, and statisticians. The brain-

storming sessions facilitated understanding of the data simulations and exploring

the most influential input parameters. We organized a feedback session and in-

terviewed Dr Ben Swallow, with a PhD in Statistics and working in the School of

Mathematics & Statistics, University of Glasgow. He has been working in statistical

simulation and estimation for seven years and has spent approximately four years on

epidemiological studies. Some of his work focuses on Bayesian parameter inference

and model selection and methods for zero-inflated data. Our interview questions
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Figure 5.7: This figure displays the subtraction operator applied to Simulation 3 with lowest
pinf and Simulation 101 with highest pinf.

were adopted from Hogan et al. [202].

Correlation Glyph: We demonstrated the correlation glyphs, and he reported:

”It’s a really good way of guiding the dimension reduction when you have so much

information. Users are trying to find a way of deciding how to reduce it down and

extract information. It’s pretty cool.”

Dynamic and Grid-based Edge Glyph Lenses: When we presented the both

glyph lenses to watch the behavior of the glyphs and discover areas with a lot of

variation, he stated that the feature is useful and added; ”I think it’s just another

way of looking at the kind of sensitivity to that particular parameter and in what

direction it’s going. I particularly know the type of people that would likely use this.

I think you can get this through more hardcore mathematical sensitivity analysis,

but I think getting an idea of a sensitivity across regions of parameters and different

parameters will be very welcome. It would be huge benefit of having this type of

software. Yes, I really like that.”

Dimensionality Reduction: We mentioned that there are a lot of redundant

dimensions in the data and to the expert. He agreed on this and reported: ”Yes,

that’s what we found from the mathematical analysis as well. It was pinf and Ps that

we really the only two parameters that had any impact at all. It seems that that’s
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Figure 5.8: This figure demonstrates dimensionality reduction applied on axis pairs with κ
= 1.

what’s being visualized here and in a much more clear manner.”

Use Case 1: Comparing Age Groups When we first demonstrated the sub-

traction operator, ∆, to the expert, he liked the concept of presenting the difference

between two multidimensional data sets visually to compare them and stated: ”I

think it’s highlighting differences. The differences are going to be specific to par-

ticular groups or compartments of the model. So I like being able to observe that.

From a policy point of view, you think “if I change this parameter, what’s it going to

change?” If it has a negative impact on say younger people, in terms of the number

of cases, but maybe it reduces the deaths in another age category, then that’s going

to be useful from a policy perspective rather than just saying, “well, we’ve just looked

at the combined groups”. There’s going to be more cases in group two. You know

group two is going to be less impacted by Covid-19 in general. And knowing how it’s

affecting things in a more detailed and visual way, I think, is really useful.”

Use Case 2: Comparing Input Parameter Values, pinf The pinf input parame-

ter has a significant influence on the outcome, and the difference between simulations

verifies that. We demonstrated this in Figure 5.7 and asked the expert if he finds

this helpful. He commented: ”I would like confirming what we have done already

[formal mathematical sensitivity analysis], or if we used the software first and look-

ing at what we think might be the most important parameters. You know most of the
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model developers will have an idea of which is the most important parameters are.

Visualizing that is very useful for confirmation.”

We also asked the expert how he figured out the most influential parameters without

the software and how long it takes. He reported: ”We normally have to do a

full mathematical sensitivity analysis of the model. You could look at things like

histograms of the output, so they would tend to be either visualized viewpoints, but

probably nowhere near as sophisticated as this. Or kind of formal mathematical

way you look at things like the derivative, i.e., changes in the output as a function

of the different parameters. But that’s a lot more complex and time-consuming

than this. The process really depends on the complexity of the model and number

simulations you have to do, but it would take probably at least a couple of hours

to run mathematical analysis. Because you generally use a Monte Carlo approach

across lots of simulations as you are plotting here. But again, there are lots of

different questions that you could ask using this the PCP software in terms of the

sensitivity across time, different age groups, and different classes. You would have

to do it on the separate simulation or sensitivity analysis for each of those different

configurations, whereas here you have the option of interrogating them all in one go

or very quickly switching between the different questions that you might want to ask

of them to the model.”

Use Case 3: κ-guided Dimensionality Reduction Dimensionality reduction

and axis ordering are still considered unsolved problems. We demonstrated our κ-

guided dimensionality reduction features by collapsing axis pairs (see Figure 5.8).

We asked the expert if the feature let him see anything that he might previously have

not been able to see or make some new observations or hypotheses. He reported:

”One of the common aspects of these types of models is over parameterization. When

you try and estimate the parameters, if the model is not sensitive at all to the input

parameters, then no matter how much you try and make any inference, it is not

going to be useful at all. So from that perspective, I think this feature is useful. The

standard approach to deal with overparameterization is that if you have got parameter

redundancies to make some model reduction - that’s quite complex to do without a

good understanding of the model and where it is lack of sensitivity arises. So I think

it would be really helpful in deciding how to think about either combining outputs into
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a single one. For example, if there was age differentiation or there was no impact on

the parameters on age, then I think you would see that here and in terms of looking

at the different compartments, I think that is really useful. Parameter redundancy

is generally quite a useful way of guiding model reduction and that would be very

helpful there.”

We asked the expert if the feature might increase confidence in terms of the cor-

rectness or accuracy of the simulations. He stated: ”Yes, I’m sure. If you are

seeing some of the maximum numbers, if you knew, for example, that hospitaliza-

tions never got above a particular point but your model is consistently estimating

numbers of hospitalizations to be in the hundreds of thousands, and you know that’s

not realistic, you would probably have some lack of confidence in that model. I think

that could be something else that this helps with. In terms of focusing where you

perhaps want to do data collection as well, if you know there’s a lot of sensitivity.

It seems like hospitalization in this model are a very sensitive, very valuable output.

Then you might try and focus your data collection on that when you want to make

inferences and try and estimate these parameters. That would probably be a good

way of guiding that decision as well.”

5.5 Limitations of the Tool and Future Improvements

We introduced techniques for investigating and understanding dense PCPs, including

sorting the correlation values of axis pairs in ascending order and updating the PCP

view accordingly. However, with the traditional PCP axis ordering, plotting axis

pairs according to pairwise order is not feasible. Another limitation we encounter

with a dynamic lens is run-time edge detection, which may slow down when there are

too many edges. In addition, with large data sets, the performance of detecting edge

intersections starts to degrade. A future improvement could be exploring techniques

to speed up the process. Scalability is one of the limitations, i.e., how to arrange

axis labels when ten or more pairs of neighboring axes are collapsed. The current

version of the software does not allow viewing multiple lenses, adjusting lens size,

or additional operators, such as addition, multiplication, and division of simulation

data sets. These limitations can be promising for future endeavors.
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5.6 Chapter Summary

This chapter introduces interactive glyph lenses, which enable users to investigate an

overplotted region with a dynamic lens that hovers over the PCP based on mouse lo-

cation. We provide an arrow glyph beneath each neighboring axis pair to highlight

the relationship between dimensions. In addition, we present a dimension reduc-

tion approach that allows users to simplify a PCP based on the κ correlation value

between neighboring axes and collapsing axis pairings that do not contribute infor-

mation to the display. We also give a user option, ∆, which displays the difference

between two multidimensional data sets for comparison. Finally, in collaboration

with a modelling specialist, we assess our approaches using a case study based on a

simulation of Covid-19.
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6.1 Main Contributions

This thesis studies methods for enhancing beginners’ visualization literacy skills as

well as barriers to visualization literacy. This section includes a discussion of how

each chapter contributes to the objectives, followed by more general conclusions,

limitations, and suggestions for further research.

Chapter 2: Interactive Visualization Literacy: The State-of-the-Art This

chapter contributes a literature review of visualization literacy papers published

from 2001-to the present. We provide a novel classification of literacy research that

enables readers to explore published literature. This classification emphasizes the

evaluation method chosen to test individuals’ visualization literacy skills, presents

guidelines for improving literacy skills, and indicates factors that affect individu-

als’ understanding of various visual designs. This STAR also offers overview tables

guided by the evaluation method-based classification. The tables present meta-data

that facilitate literature comparisons including visual designs, the number of partic-

ipants involved in the study, target groups ( e.g., age), chosen study platforms more.

The survey offers valuable information identifying experimental settings required to

assess individuals in uncovering problems in the area as well as having a more com-

144
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plete understanding of advancing visualization literacy skills. Moreover, we share

an overview of future work from the literature that enables readers to identify areas

of open research subjects in this scope. We believe our survey is beneficial for both

new or experienced researchers interested in visualization literacy.

Chapter 3: Treemap Literacy: A Classroom-based Investigation In this

chapter, we present a study that investigates possible barriers to the interpretation

and comprehension of treemaps. A novel treemap literacy test is introduced that

includes a variety of treemap designs and treemap questions with a test question

classification based on treemap features. This chapter offers researchers a better

understanding of barriers to a complete comprehension of a treemap and a method

to advance treemap literacy.

Moreover, we develop an interactive pedagogical treemap application for training

and cognition of a treemap design that supports the exploration of a hierarchi-

cal data structure. The educational treemap software transforms a passive study

into active practice in classrooms and can be used as a replacement for traditional

treemap teaching approaches. Results of the user study indicate that the students

who interacted with the software outperformed students who only learned through

slides before taking a treemap literacy test. Furthermore, participants’ feedback sig-

nifies that the pedagogical treemap software offers an effective learning experience

through easier and quicker understanding of treemap properties.

Chapter 4: P-Lite: A Study of Parallel Coordinate Plot Literacy In this

chapter, we investigate barriers to PCP literacy based on the research literature and

our teaching experience in data visualization classes. We provide insight into the

barriers to a complete understanding of the concept of the PCP. A novel literacy test

is presented to evaluate non-expert users’ literacy skills with a range of PCP images

using a collection of tools and datasets. We also collated the most frequently used

visualization tools and multivariate datasets used to generate PCPs for our literacy

test.

Furthermore, we developed an educational PCP tool to facilitate the interpretation

and exploration of multivariate data as well as enabling users to learn how to create

and interpret PCPs interactively. The software features correspondence between

CCP and PCPs views and connects the points in Cartesian space with polylines in
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parallel coordinates space. Results of the user study reveal that participants taught

with the pedagogical application tutorial video performed better on the PCP literacy

test. Participants indicate that the illustration of the relation between the two views

offers a simple way of improving PCP literacy as well as understanding data with

more than two dimensions.

Classroom vs. Crowdsourcing We conducted two studies to evaluate educational

Treemap and PCP tools. Both approaches have pros and cons. The crowdsourcing

experiment could recruit people from a large pool with diverse backgrounds and

collect data in a shorter time. However, there is no guarantee of collecting data from

attentive participants. For a classroom experiment, it is feasible to recruit people

with similar backgrounds and conduct an investigation in uniform conditions, even

though setting up the experiment takes time. There is also more control over the

experiment to collect credible results.

Chapter 5: DPCP Vis: Techniques for Dense Parallel Coordinate Plots

This chapter presents interactive glyph lenses, which enable users to explore an over-

plotted PCP with a dynamic lens that hovers over the PCP based on mouse position.

This interaction summarizes the edges that overlap with the lens, represented by ar-

row glyphs that show the average slope, θAVG, of a dense collection of edges. We

display an arrow glyph below each adjacent axis pair that indicates the correlation

between dimensions. We present a dimension reduction technique that allows users

to simplify a PCP based on the correlation value, κ, between adjacent axes and

collapsing axis pairs that do not add information to the display. We also provide a

user option we call a subtraction operator, ∆, which displays the difference between

two multidimensional data sets for comparison. We evaluate our techniques with

a case study based on a simulation of Covid-19 in collaboration with a modeling

expert.

6.2 Future Work

Each idea discussed in this thesis has the possibility for growth. Potential directions

for further improvement are presented below.

Interactive Visualization Literacy: The State-of-the-Art

With regards to our literature review, we have two unique directions as suggestions
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for further improvement in the visualization literacy field in addition to the most

frequent future work directions presented in our literature review in Chapter 2.

Visibility: We note that visualization literacy is not a very visible sub-field yet.

Even though data visualization is growing in prominence, the significance of visu-

alization literacy does not yet stand out in research communities. The amount of

literature we presented in the survey also supports this idea. Gaining visibility and

momentum is necessary in order to improve literacy skills which enable effective use

of visualization in various research areas.

Standards: Some basic subjects have a standard assessment test e.g. mathemat-

ics, languages, and analytic reasoning. Although some studies [22, 37] have taken

the first steps in this direction by providing visualization literacy tests, we suggest

developing a series of a standardized assessment tests for visualization literacy that

can vary according to the complexity of visual designs and data sets for students

with different backgrounds.

Treemap Literacy: A Classroom-based Investigation

We introduced the treemap literacy test that enables evaluation of users treemap

literacy skills in Chapter 3. For an even more reliable test for further research,

improving the literacy test with a wider variety of data and treemap visualization

designs is recommended. More studies are recommended with a more diverse group

and more participants to reinforce the efficacy of the educational treemap tool. Fur-

ther research with participants from non-computer science backgrounds for investi-

gating the influence of users’ familiarity with treemaps on the study result would

be interesting. Also, analyzing the experimental results from the varied background

of the participants can be a helpful next step to understand treemap visualization

literacy skills.

Improvements to the pedagogical software have been identified for the treemap view,

nesting the top level of the data hierarchy and providing labels for each rectangle

directly instead of requiring mouse-over interaction are potential further attributes

that might be possible. In addition, enabling users to display large datasets with

a different layout algorithms and a greater number of data hierarchies, interacting

with the treemap for additional nesting exploration, and keyboard control are future

endeavors.
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P-Lite: A Study of Parallel Coordinate Plot Literacy

Distance learning, a growing trend, offers a solution to access lecture material online

as well as a number of facing disadvantages such as difficulty staying engaged or

receiving immediate feedback. Our crowdsourcing user study in Chapter 4 features

similarities to distance learning settings in which a video tutorial is provided to

instruct the PCP design. Our findings reveal only 35% of the participants (60 out of

170) spent the time necessary (or close) to watch the entire tutorial. This indicates

that keeping students engaged while watching a tutorial video online is a non-trivial

challenge. We were not anticipating this barrier. For future research, we can conduct

a similar experiment in a classroom setting and offer participants interaction with

the educational PCP software instead of a video tutorial. Thus, we can examine

the results to investigate improvement between crowdsourcing and classroom-based

user-study settings.

Moreover, further studies are recommended to reinforce the effectiveness of the ed-

ucational tool where interaction is necessary. Also, we intend to teach PCP design

to novices by presenting the correspondence between a CCP and PCP, including

advanced PCP features (e.g. axis flipping, axes reordering, removing axes) in the

pedagogical PCP tool. Improving the PCP literacy test with a wider variety of

datasets and asking users to provide their observations given a PCP image using a

think-aloud protocol would be interesting for further study.

DPCP Vis: Techniques for Dense Parallel Coordinate Plots

In Chapter 5, we presented techniques for exploring and understanding dense PCPs

that could involve sorting axis pairs correlation value in ascending order and updat-

ing the PCP view accordingly. However, plotting axis pairs according to pairwise,

κ, is not feasible with the traditional PCP axis ordering. Therefore, introducing

a new axis sorting approach to convey the axes’ relationships can be a future en-

deavor. Another limitation is scalability, i.e., how to arrange axis labels when 10 or

more pairs of neighboring axes are collapsed. Future directions can involve, includ-

ing multiple lenses, adjustable lens size, and additional operators, such as addition,

multiplication and division of simulation data sets.
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Appendix A

Treemap Literacy Test

A.0.1 Pre-Intervention Test

1. Consent Form (Q1)

2. Please write first 5 digits of your student number. (Q2)

3. What is your current education level? (Q3)

A. Bachelor’s B. Master’s C. Ph.D. D. Other

4. What is your age? (Q4)

A. 18-22 B. 23-27 C. 28-32 D. 33-37 E. 38-Above

5. What is your gender? (Q5)

A. Female B. Male C. Prefer not to say

6. Are you color blind? (Q6)

A. Yes B. No
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The treemap shows the number of unique visitors for a range of categorized
websites in 2010. The size of each node represents the number of unique
visitors, and the color symbolize the different categories.(7, 8)

7. Which of the following website categories received more visits than the News
category? (Q12)

A. Computer B. Finance C. Social Media D. Retail E. Not Sure

8. The Apple website received more visits than Facebook. (Q52)

A. True B. False C. Not Sure
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The following treemap displays the distribution of money spent on entertain-
ment. Color is mapped to entertainment types and size is mapped to money
spent on each purchase. (9, 10, 11, 12)

9. Which entertainment industry has the least amount of money spent on it?
(Q22)

A. Music B. Books C. Video D. Electronics E. Not Sure

10. People spend more money on jazz music in comparison to history books. (Q48)

A. True B. False C. Not Sure

11. Which entertainment category has similar amount of money spent on all items
in this category? (Q56)

A. Books B. Music C. Computer & Tablets D. Video E. Not Sure

12. To which entertainment category does headphones belong to? (Q58)

A. Electronics B. Music C. Computer & Tablets D. Video
E. Not Sure
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The following treemap shows investment funds registered in Switzerland. The
size of each rectangle is proportional to total assets under each fund’s man-
agement. Colors represent the funds’ six-month performance with red showing
losses and green profit. (13, 14)

13. Which two markets do not have similar total assets? (Q14)

A. Equity Europe-Money Market USD B. Bond CHF-Equity Global
C. Equity Europe –Money Market EUR D. Money Market-Commodities
E. Not Sure

14. Which of the following funds have the largest assets despite showing a loss in
the past six months? (Q42)

A. Money Market EUR B. Equity Asia Pacific C. Bond Global
D. Equity Europe E. Not Sure
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The following treemap shows the distribution of states and their cities accord-
ing to a total number of cases for different historic diseases. (15, 16, 17, 18)

15. Which state has the greatest number of cases of Measles? (Q26)

A. Texas B. Ohio C. California D. New York E. Not Sure

16. How many diseases have a lower number of case than Chlamydia? (Q34)

A. 6 B. 7 C. 5 D. 4 E. Not Sure

17. Which of the following disease had a higher number of cases than Scarlet
Fever? (Q36)

A. Diphtheria B. Measles C. Chlamydia D. Chickenpox E. Not Sure

18. More Diphtheria cases are recorded in New York than Chicago. (Q38)

A. True B. False C. Not Sure
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The following treemap shows the instances of a disease by country and year.
Color is mapped to the percentage of number of cases which decreases from
red to green. Size indicates the number of people with disease in the country.
(19, 20, 21)

19. Which of the following countries has the lowest total number of people with a
disease? (Q16)

A. China B. Thailand C. Cuba D. Brazil E. Not Sure

20. In which year and country is the highest percentage of disease cases? (Q62)

A. Cuba-1981 B. Vietnam-1987 C. Cuba-1977 D. Brazil-2002
E. Not Sure

21. Which year has the smallest percentage of cases in Brazil? (Q64)

A. 2003 B. 2001 C. 1998 D. 1997 E. Not Sure
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The following treemap displays the most populated cities by continents. The
population is indicated by node size. (22, 23, 24)

22. The population of Asia is nearly equal to the total population of both Europe
and Africa combined. (Q18)

A. True B. False C. Not Sure

23. Karachi belongs to the most crowded continent. (Q44)

A. True B. False C. Not Sure

24. Lagos is less populated than Kinshasa and Cairo. (Q46)

A. True B. False C. Not Sure
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This following figure shows a medal standings table for three different medals
sorted by countries and sports branch. Size and color are mapped to the
number of medals. The number of medals decreases from green to light red.
(25, 26)

25. Does the number of countries with a silver medal equal the number with a
gold? (Q20)

A. True B. False C. Not Sure

26. Which country has the highest number of gold medals awarded for a single
event? (Q60)

A. GBR B. CHN C. USA D. AUS E. Not Sure
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This treemap demonstrates historic deadly diseases in the USA. Size is mapped
to the number of deaths. (27, 28)

27. Which region had the highest number of deaths? (Q24)

A. North Middle B. West Coast C. Southern Middle D. East Coast
E. Not Sure

28. Which of the following disease causes the fewest deaths in the USA? (Q50)

A. Tuberculosis B. Diphtheria C. Typhoid fever D. Pertussis
E. Not Sure
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The treemap displays the population of countries which are grouped by regions.
Color indicates the regions and node size indicates the population. (29, 30)

29. Which of the following regions has a higher population than Western Europe?
(Q28)

A. Northern America B. Near East C. Latin America D. Eastern Europe E.
Not Sure

30. To which region does Brazil belong, it being the largest population in that
region? (Q66)

A. Northern America-Near East B. Sub Saharan Africa-Asia C. Near East D.
Latin America E. Not Sure
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The following treemap displays the map of the market. The area of a rect-
angle corresponds to the market capitalization of the company, and the color
indicates you how the stock price has changed since the previous market close
with an increase in green and decrease in red. ( 31, 32)

31. Which market had the largest volume of trading? (Q8)

A. Communication B. Health Care C. Financial D. Transport
E. Not Sure

32. Which two financial sectors have similar market capitalization? (Q30)

A. Consumer Cyclicals and Technology B. Transport and Financial
C. Energy and Capital Goods D. Health Care and Utilities E. Not Sure
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The treemap displays the number of dengue cases observed in countries which
are group by region. Size and color are mapped to the number people with
dengue. (33, 34)

33. Which region had the highest incidence of dengue? (Q32)

A. Caribbean B. Central America C. North America
D. South America E. Not Sure

34. Vietnam and Thailand had a similar incidence of dengue. (Q54)

A. True B. False C. Not Sure
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Overview of the world’s deadliest earthquakes since 1900. The magnitude of an
earthquake is indicated by the color, with red indicating the highest magnitude.
Node size represents the number of deaths caused by each earthquake. (35,
36)

35. Which two countries have a similar number of deaths? (Q10)

A. China-Mexico B. Taiwan-India C. Greece-Iran
D. Japan-United States E. Not Sure

36. Which of the following earthquakes occurred in the country with the largest
number of deaths? (Q40)

A. Peru: ICA, Nazca B. China: Xinjiang, Turkestan
C. Ecuador: Off Coast D. Japan-Honshu E. Not Sure
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A.0.2 Post-Intervention Test

1. Please write first 5 digits of your student number. (Q1)

2. Please enter the Group ID (S Slides only, SD Software Demo only) (Q2)

The Treemap shows the number of unique visitors for a range of categorized
websites in 2010. The size of each node represents the number of unique
visitors, and the color symbolize the different categories. (3, 4)

3. Which website had the most unique visitors in 2010? (Q4)

A. Facebook B. Amazon C. Bing D. Google E. Not Sure

4. The number of unique visitors to Amazon was more than that of Yahoo in
2010. (Q6)

A. True B. False C. Not Sure

5. Samsung is in the Financial category. (Q8)

A. True B. False C. Not Sure
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Overview of the world’s deadliest earthquakes since 1900- The magnitude of an
earthquake is indicated by the color, with red indicating the highest magnitude.
Node size represents the number of deaths caused by each earthquake. (6, 7,
8)

6. Which country has the most deaths from earthquakes? (Q16)

A. Indonesia B. Russia C. Chile D. Japan E. Not Sure

7. Which of the following earthquakes had the largest magnitude? (Q18)

A. Alaska B. Chile: Atacama C. Indonesia: Sumatra
D. Japan: Honshu E. Not Sure

8. Which of the following earthquakes had the largest magnitude? (Q20)

A. Russia: Kuril Island B. China: Xinjiang province C. Chile: Chillan D.
Mexico: Guerrero E. Not Sure
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The following treemap displays the map of the market. The area of a rect-
angle corresponds to the market capitalization of the company, and the color
indicates you how the stock price has changed since the previous market close
with an increase in green and decrease in red. (9, 10, 11)

9. The market capitalization for the Transport sector is greater than that of Basic
Materials. (Q10)

A. True B. False C. Not Sure

10. The Technology sector has a greater market capitalization than the Commu-
nication sector. (Q12)

A. True B. False C. Not Sure

11. Which of the following sectors have a larger market capitalization than the
Energy sector? (Q14)

A. Utilities B. Basic Materials C. Transport D. Financial E. Not Sure
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The following treemap shows the instances of a disease by country and year.
Color is mapped to the percentage of number of cases which decreases from
red to green. Size indicates the number of people with disease in the country.
(12, 13)

12. Which country has the highest number of cases across all years? (Q28)

A. Cuba B. Vietnam C. Thailand D. Brazil E. Not Sure

13. Which country has the year with the highest percentage of cases? (Q30)

A. Vietnam B. Thailand C. Cuba D. Brazil E. Not Sure
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The following treemap shows investment funds registered in Switzerland. The
size of each rectangle is proportional to total assets under each fund’s man-
agement. Colors represent the funds’ six-month performance with red showing
losses and green profit. (14, 15, 16)

14. Which market has the largest investment funds? (Q22)

A. Money Market EUR B. Equity North America C. Money Market D.
Equity Global E. Not Sure

15. Which market’s total assets has the largest profit? (Q24)

A. Equity North America B. Money Market EUR C. Commodities
D. Mixed Assets E. Not Sure

16. Which of the following funds have the largest assets despite showing a loss in
the past six months? (Q26)

A. Money Market EUR B. Equity Asia Pacific C. Bond Global
D. Equity Europe E. Not Sure
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The following treemap shows the distribution of states and their cities accord-
ing to a total number of cases for different historic diseases. (17)

17. Which of the following diseases does New York not have the highest number
of cases? (Q50)

A. Scarlet Fever B. Influenza C. Whooping Couch
D. Tuberculous E. Not Sure
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The treemap displays the number of dengue cases observed in countries which
are group by region. Size and color are mapped to the number people with
dengue. (18, 19, 20)

18. Which country had the second highest number of dengue cases in South Amer-
ica? (Q58)

A. Brazil B. Ecuador C. Paraguay D. Venezuela E. Not Sure

19. To which region does Cuba belong, having the highest rate of Dengue in that
region? (Q60)

A. Central America B. North America C. South America
D. Caribbean E. Not Sure

20. The total number of people with Dengue in Central and North America is
more significant than people with Dengue in Brazil. (Q62)

A. True B. False C. Not Sure
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The following treemap displays the most populated cities by continents. The
population is indicated by node size. (21, 22)

21. Which of the following cities is located within a continent that is neither the
least populated nor the most populated? (Q32)

A. Sydney B. Shanghai C. Delhi D. Istanbul E. Not Sure

22. Which of the following continents has not a higher population than the conti-
nent containing Toronto? (Q34)

A. Africa B. South America C. Europe D. Australia E. Not Sure
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This following figure shows a medal standings table for three different medals
sorted by countries and sports branch. Size and color are mapped to the
number of medals. The number of medals decreases from green to light red.
(23, 24, 25)

23. Which of the following countries has more bronze medals than FRA? (Q36)

A. KOR B. RUS C. JPN D. CAN E. Not Sure

24. In how many sport categories did Russia win silver medals? (Q38)

A. 9 B. 8 C. 7 D. 2 E. Not Sure

25. Which of the following nation has more gold medals than silver and bronze
medals? (Q40)

A. KOR B. UKR C. CHN D. CAN E.Not Sure
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The following treemap displays the distribution of money spent on entertain-
ment. Color is mapped to entertainment types and size is mapped to money
spent on each purchase. (26)

26. On which of the following entertainment item was less money spent on than
TV? (Q42)

A. Rock albums B. Mystery books C. Tablets D. Cameras E. Not Sure
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This treemap demonstrates historic deadly diseases in the USA. Size is mapped
to the number of deaths. (27, 28, 29)

27. Which state has more deaths from Tuberculosis than deaths in Louisiana?
(Q44)

A. Pennsylvania B. Colorado C. California
D. District of Colombia E. Not Sure

28. Deaths caused by Typhoid fever is more than deaths caused by Diphtheria in
Ohio. (Q46)

A. True B. False C. Not Sure

29. In which of the following east coast states did more people die from Tubercu-
losis than died in California? (Q48)

A. New Jersey B. Florida C. New York D. Massachusetts
E. Not Sure
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The treemap displays the population of countries which are grouped by re-
gions.Color indicates the regions and node size indicates the population. (30,
31, 32)

30. Which of the following Asian countries has a larger population than Japan?
(Q52)

A. Thailand B. Pakistan C.Vietnam D. Philippines E. Not Sure

31. The population of the United States is smaller than the population of Russia.
(Q54)

A. True B. False C. Not Sure

32. The number of populations in Asia (Ex. Near East) is nearly equal to the
population of the rest of the regions combined. (Q56)

A. True B. False C. Not Sure



Appendix B

Parallel Coordinates Literacy
Test

1. Consent Form (Q1)

2. Thank you for accepting the HIT. Please watch the video for the instructions.
(Q2)

3. Which two numbers are shown in the images above? (Q3)

A. 87-48 B. 27-47 C. 27-42 D. 87-22

4. Which device are you using? (Q4)

A. Desktop B. Laptop C. Tablet D. Mobile Phone

5. Please write your Amazon Mechanical Turk Worker ID. (Q5)

6. Please check the time right now. Is the current minute an even (e.g. 11.02) or
an odd (e.g. 11.01) number? (Q6)

A. Even B. Odd

7. What is your age? (Q7)

A. 18-22 B. 23-27 C. 28-35 D. 36-45 E. 46-above

8. What is your gender? (Q8)

A. Female B. Male C. Prefer not to say

9. Where are you from? (Q9)

A. China B. Europe C. India D. USA E. Other (Space to type)
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10. What is your current education level? (Q10)

A. High School B. Bachelor’s C. Master’s D. Ph.D.

11. What is your English proficiency? (Q11)

A. Fluent/Native B. Full Professional C. Professional Working
D. Limited Working E. Elementary

12. Have you seen parallel coordinates before? If yes, where? (Q12)
(Space to type)

13. Do you have a background in Data Visualization? If so, what is it? (Q13)
(Space to type)
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The image shows tipping behavior in a restaurant located within a shopping mall.
The data attributes presented by polylines are total bills amount, tip amount, day
and time of tip, the gender, the smoking habit of a worker, and the size of the dining
party. (1, 2)

1. How many attributes does the data set have? (Q14)

A. 5 B. 6 C. 7 D. 8 E. Not sure F. None of the above

2. On which day of a week was the tipping information not recorded? (Q22)

A. Friday B. Saturday C. Sunday D. Monday E. Not sure
F. None of the above

3. What kind of relationship is there between the total bill and tip amounts?
(Q78)

A. Direct B. Indirect C. Not sure D. None of the above
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This image displays the distribution of attributes for the periodic table el-
ements. Each polyline represents one element. Each axis is mapped to an
element attribute. The attributes of each element that are mapped to axes
are the period number, group number, atomic mass, year of discovery, density,
melting point, the boiling point. (4, 5)

4. How many parallel axes are there in the image? (Q16)

A. 7 B. 8 C. 9 D. 10 E. Not sure F. None of the above

5. What is the approximate maximum value of the boiling point for all elements?
(Q42)

A. 1050 B. 3050 C. 4600 D. 5900 E. Not sure F. None of the above

6. Elements with the greatest atomic mass were found mostly in the 1980s. (Q65)

A. True B. False C. Not sure
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This parallel coordinate plot displays the energy consumption of US states in
terms of energy types and sectors that use energy. The attributes of the energy
consumption and generation sources presented on the parallel coordinates plot
by the state are residential, industrial, transportation, petroleum, natural gas,
and coal. (7, 8)

7. What kind of correlation is there between the residential and commercial at-
tributes? (Q18)

A. Direct B. Indirect C. None D. Not sure

8. What is the commercial energy value for the state which has a 2971 trans-
portation consumption value? (Q69)

A. 1509 B. 1570 C. 1567 D. 5521 E. Not sure F. None of the above
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The image shows chemical measurements from different olive oil samples pro-
duced across varying Italian regions. Each olive oil is represented by a poly-
line and represents measures of the following attributes: palmitic, palmitoleic,
stearic, oleic, linoleic, linolenic, arachidic, and eicosenoic. (9, 10)

9. What was the maximum arachicid value measured? (Q20)

A. 105 B. 280 C. 375 D. 1470 E. Not sure F. None of the above

10. Which chemical measurement has an indirect correlation with the attribute of
linoleic? (Q71)

A. Oleic B. Stearic C. Palmitoleic D. Eicosenoic E. Not sure
F. None of the above
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The image shows information from the 2004 US presidential election that in-
cludes records of voters’ demographics including the names of three political
candidates. The data variables are presented as the state name, candidates
Bush, Kerry, and Nader, the total number of votes, rent in US Dollars, un-
employment, female and male smokers, unemployed, and obesity rates. (11,
12)

11. Which variable has an indirect correlation with the unemployment rate? (Q24)

A. Nader B. Rent C. M Smoker D. Obese E. Not sure F. None of the
above

12. Which candidate has the maximum number of votes for an individual state?
(Q75)

A. Bush B. Kerry C. Nader D. Not sure E. None of the above
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This image provides information about the US Population from 1950 to 2006
in the thousands. The US Population data variables are plotted on axes such
as year, total population, the percent change in the population, resident pop-
ulation, and the civilian population. (13, 14)

13. The percentage of change started to increase after a certain year. (Q26)

A. True B. False C Not sure

14. Approximately, what is the maximum percent change over the years? (Q77)

A. 1.5 B. 1.8 C. 1.9 D. 2.9 E. Not sure F. None of the above
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The image plots the characteristics of time-oriented attributes of the planet
Venus. The attributes of Venus are presented as date, hour, latitude, longitude,
plasma velocity, plasma density, and plasma temperature. (15, 16, 17)

15. What is the approximate maximum value for velocity? (Q28)

A. 500 B. 600 C. 700 D. 800 E. Not sure F. None of the above

16. How many attributes does the data set have? (Q57)

A. 4 B. 5 C. 6 D. 7 E. Not sure F. None of the above

17. Which attribute has values that are the most proportionally and widely spread?
(Q79)

A. Hour B. Longitude C. Latitude D. Density E. Not sure F. None of the
above
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The parallel coordinate plot shows 7 variables for a collection of cars. Each
polyline represents a car with attributes as follows: miles per gallon (MPG),
cylinders, horsepower, weight, acceleration, production year, and origin. The
image displays 10 cars worth of data and each color represents a car type. (18,
19)

18. Approximately, what are the horsepower value and production year of the car
which has 9 MPG value? (Q30)

A. 4-54 B. 48-54 C. 193-70 D. 1613-70 E. Not sure F. None of the above

19. Which color represents a car with a direct correlation between year and accel-
eration? (Q81)

A. Purple B. Red C. Green D. Orange E. Not sure F. None of the above



199

The image shows the nutritional values of specific cereal products. Each cereal
is represented by a polyline and a color on the parallel coordinates plot. The
nutritional values are calcium, protein, fat, sodium, fiber, carbs, sugar, and
potassium. The image displays 10 kinds of cereal worth of data. (20, 21)

20. Which cereal mapped to color has the maximum value 14? (Q32)

A. Green B. Red C. Purple D. Blue E. Not sure F. None of the above

21. Which cereal type represented with color has the maximum values of both fat
and sugar attributes? (Q83)

A. Red B. Orange C. Pink D. Blue E. Not sure F. None of the above
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This image shows the correspondence between Cartesian Coordinates (left)
and Parallel Coordinates (right). Each point and the edge is drawn within
the range [-5, +5]. Each point and polyline are labeled with unique letters
intended to be used to answer the questions. (22, 23)

22. Which edge has negative X and Y values? (Q34)

A. T B. I C. L D. V E. Not sure F. None of the above

23. Using the labels, what is the corresponding point of edge T? (Q85)

A. S B. Q C. G D. N E. Not sure F. None of the above
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This image shows the correspondence between Cartesian Coordinates (left)
and Parallel Coordinates (right). Each shape on the Cartesian Coordinates
plot is represented by a polyline in the Parallel Coordinates plot. The data
variables are X position, Y position, Size, Color, and Shape. Each shape and
polyline are labeled with unique letters intended to be used to answer the
questions. (24, 25)

24. What is the corresponding polyline of shape D? (Q36)

A. N B. H C. L D. B E. Not sure F. None of the above

25. Which shape does the polyline labeled with R represent? (Q87)

A. Triangle B. Square C. Rectangle D. Pentagon E. Not sure
F. None of the above
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The parallel coordinate plot shows 7 variables for a collection of cars. Each
polyline represents a property of a car with attributes as follows: miles per
gallon (MPG), cylinders, horsepower, weight, acceleration, production year,
and origin. (26, 27)

26. Which attribute has an indirect correlation with the car weight? (Q38)

A. Horsepower B. Weight C. Acceleration D. Origin E. Not sure F. None
of the above

27. How many distinct car cylinder values are there? (Q61)

A. 3 B. 5 C. 7 D. 9 E. Not sure F. None of the above
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The image shows the nutritional values of specific cereal products. Each cereal
is represented by a polyline on the parallel coordinate plot. The nutritional
values are protein, calcium, fat, sodium, fiber, carbs, sugar, and potassium.
(28, 29)

28. For which nutrient do cereals contain the lowest maximum value? (Q40)

A. Fat B. Sodium C. Carbs D. Potassium E. Not sure
F. None of the above

29. There is a direct relationship between sodium and fiber in the data. (Q63)

A. True B. False C. Not sure
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The image shows information about coal-mining disasters for over a century.
Each polyline represents one coal disaster with information such as a month
of the accident, year of the accident, day of the year, intervals between coal
mining disasters, and the number of deaths. (30, 31)

30. There were generally more disasters recorded in the earlier years. (Q44)

A. True B. False C. Not sure

31. Approximately, what is the range of values for the year attribute? (Q67)

A. 1830-1952 B. 1850-1962 C. 1910-1955 D. 1810-1975 E. Not sure
F. None of the above
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The main purpose of this study is to understand the impact of video in learning
parallel coordinates. For this reason, you need to watch the video carefully to
the end. After watching the video, you will be asked questions about the video
tutorial. If you cannot answer these questions correctly, your answers will not
be included in the experiment.

32. Slides Video Tutorial (Q46)

33. Software Video Tutorial (Q47)

Questions for Attention Check

34. Which topics were mentioned in the video tutorial? (Q49)

A. Cartesian Coordinates B. Statistical Results C. Bar Charts
D. Profit from Sales E. Data Attribute Relationship
F. Colors of Polylines

35. What was the example data about on the last slides of the video tutorial?
(Q53)

A. Diseases B. Flights C. Trading D. Cars E. Not sure
F. None of the above

36. Which one of the following was a data attribute in the last example? (Q55)

A. Cylinders B. Price C. Year D. Airbags E. Horsepower
F.Camera System E.Weight
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Covid-19 Simulation Data

The simulation model used is from the Epidemiology, Economics and Risk Assess-
ment (EERA) model [203]. The model incorporates an inference process to estimate
the range of parameters of interest and the ranges of parameters to extract param-
eter configurations. In this case, there are 160 parameter configurations. For each
configuration there are multiple simulation runs. In this case, 1000 runs result in
different predictions.
The model takes the same set of input parameters, called simulation configurations
that yield different output results for each run. The model aims to provide the
range of output possibilities for each possible prediction. For each output result,
minimum, maximum and mean values of output parameters are provided.
For the model, there is a long list of parameters, some are inferred, some are esti-
mated a priori, and some are fixed across runs. Here are the critical input parame-
ters:

• nsse cases: Normalised sum of square error for the number of cases

• nsse deaths: Normalised sum of square error for the number of deaths

• p inf: Probability of infection

• p hcw: Probability of infection (Healthcare worker)

• c hcw: Mean number of healthcare worker contacts per day

• d: Proportion of population observing social distancing

• q: Proportion of normal contact made by people self-isolating

• p s: Age-dependent probability of developing symptoms

• rrd: Risk of death if not hospitalized

• lambda: Background transmission rate

For each age group (8 age groups) there are;

• 200 days of predicted time-series of each output data dimension in the model

• 16 distinct output data dimensions (see the list below)

The model generates a number of output files for each run. In total, 160 (parameter
configurations) × 16 (data dimensions) × 1000 (runs) × 8 (age groups) = 20,480,000
time series of 200 days each. The data we display by default is the first configuration.
The output simulation parameters are as follows:
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• Age Group: Age groups ID are used in the model.

• Day: The day for the record

• S: Number of susceptible individuals (not infected)

• E: Number of infected individuals but not yet infectious (exposed)

• I: Number of infected and infectious asymptomatic individuals

• IS: Number of infected and infectious symptomatic individuals

• H: Number of infected individuals that are hospitalized

• R: Number of infected individuals that are recovered from infection

• D: Number of dead individuals due to disease

The age groups ID as used in the model are here:

• Group 1: Under 20

• Group 2: 20-29

• Group 3: 30-39

• Group 4: 40-49

• Group 5: 50-59

• Group 6: 60-69

• Group 7: 70+

• Group 8: Health Care Workers



Appendix D

Inclusivity for Visualization
Education: A Brief History,
Investigation, and Guidelines

D.1 Introduction

Diversity and inclusion have become more and more important in several fields.
The main goal of this study is to address the topic of diversity and inclusion in the
visualization community. In particular, we aim to give an overview of studies on
diversity concerning spatial cognition and improve issues related to this subject. To
get a better understanding of the impact of possible bias in visualization education,
we investigate gender bias in data visualization class and evaluate the computer
science students’ scores. Additionally, we provide recommendations on how to make
the visualization classroom more inclusive, supporting diversity and inclusion. The
contributions of this paper are:

• A compilation of the historical study of gender bias in spatial cognition.

• The reporting of student scores from a data visualization class, focusing on
gender bias.

• To provide a list of recommendations for visualization teachers, helping cater
to a more diverse and inclusive classroom.

We start with a brief history of research on spatial cognition diversity with respect
to gender. This is followed by a small investigation of evidence of gender bias in a
data visualization course. This is followed by recommendations for inclusion in a
visualization classroom.

D.2 A Short History of Diverse Cognition

The study of spatial cognition and perception with respect to gender has a long his-
tory dating back to the 1940s. Spatial ability is the capacity of imagining the shape
of an object, its dimensions, co-ordinates, aspect ratio, movement, and geography.
Picturing an object being rotated in space, turning around an obstacle and seeing
things from a three-dimensional view can be included in the description of spatial
ability [204].
1940s: In 1943, O’Connor uses a performance test called the ”Wiggly Block” and
discovers that almost 25% of females outperform the average of males in spatial
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ability [205]. The earliest research paper reference we found on the topic dates back
to 1943.
1950s: Guilford [206] designs seven tests including spatial visualization, spatial
orientation, and perceptual speed to assess a diverse tendency factor or primary
mental ability. Results indicate that scores for females are significantly lower than
scores of males in spatial visualization and spatial orientation. In contrast, females
perform better than men in a perceptual speed test however the findings are not
conclusive in that participants represent their gender.
1960s: In one study from 1960s, 104 males and females are given the Identical
Blocks Test, as a standard test of spatial visualization, developed by Stafford in
1961. Results suggest that a gender-linked recessive gene may affect spatial abilities.
Also, test scores demonstrate that females’ scores are significantly lower than males
[207].
1970s: The right hemisphere plays a key role in spatial, holistic cognitive processing,
and handles visual and tactile spatial processing skills. An experiment with 200 boys
and girls between 6 and 13 years of age demonstrates that the right hemisphere of
boys is powerful in processing non-linguistic spatial information by about age 6 [208].
Conversely, the right hemisphere in girls is not spatially developed even by the age of
13. These outcomes indicate that boys have greater hemisphere specialization and
there is a gender dimorphism in the neural organization related to spatial cognition.
The outperformance of males to females on many spatial tests is related to neural
dimorphism. Spatial ability is connected to gender chromosomes and testosterone.
Genetic and hormonal agents are the factors of neural dimorphism for the two gender
[208].
Research by Waber [209] indicates that gender difference in adolescence has benefits
for males with respect to spatial ability. He reveals that early maturers score lower
on spatial ability tests than late maturers. Since puberty occurs earlier in females
than in males, adolescent females are expected to have poorer performance on the
spatial test.
1980s: Sanders et al. [210] indicate that male performance is higher on a task that
required subjects to mentally rotate three-dimensional arrays of cubes. Gilmartin
and Patton [211] test college students and undergraduates to study the student
skills with cartographic illustrations conveying geographic information. The gender
based differences are observed in the younger age groups, where males outperform
females and map use scores for females and boys are almost similar between college
students. Research by Gilmartin [212] investigates the effect of mental imagery on
recall of spatial information and whether there is gender-based differences in ability
to employ such a visualization technique. Subjects in three different groups are given
maps with geographic text, illustrated with text and mental images of the text to
read. Outcomes of the research indicate that gender has a significant impact on
recall of spatial relationships where men score higher than women on reading the
text with maps.
Dr Camilla Benbow, a psychology professor at Iowa State University, scanned the
brains of more than a million males and females to examine their spatial ability and
reports the distinction between gender is visible by the age of four. She finds that
while females are successful at perceiving two dimensions in the brain, males have
a better ability to perceive the third dimension [204].
Dr Benbow and Dr Stanley [213] test a set of talented children and discover that
males outperform females at spatial mathematics by 13 to 1. Males can build a
block building from 2D plans faster and easier than females. Males can predict
angles precisely.
Beatty and Tröster [214] perform a survey of 1800 undergraduate students indicating
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that males could locate targets on a US map more accurately than females. A group
of 202 male and female college students are tested by Chang and Andes [215] to
investigate gender differences when reading reference and topographic maps. Results
indicate that males outperform females in reading reference and topographic maps.
The gender difference in mental rotation ability was, in 1989, the largest cognitive
gender difference documented in the literature [216].

D.3 Diverse Spatial Cognition in Popular Literature

We highlight some findings from a popular book [204] on the subject of spatial
cognition with respect to gender.
1990s: A perspective on gender differences in spatial ability is published by Gold-
stein [217]. He supports that males outperform females on spatial ability tests.
However, his study also indicates that females’ spatial skills may be masked due to
lower confidence in their ability. If the confidence level of females could be lifted
through experiments, their performance on a timed test might be identical to that of
males. Males outscore females in spatial ability by a ratio of 4.1 on three-dimensional
video tests. Spatial ability also enables a man to rotate a map in his mind and under-
stand directions. The spatial field in his brain can store this information for future
events. Research indicates that a man’s brain can measure speed and distance to
understand when to change direction [204].
Reading maps and understanding current location are related to spatial ability.
Brain scans demonstrate male’s most powerful ability spatial ability is situated
mainly in the right brain of men. Spatial ability is located in both women’s left
and right brain hemispheres. However, most women have limited spatial ability.
Only 10% of them have spatial abilities as dynamic as men according to Pease et al.
[204].
The anatomy of Albert Einstein’s brain was examined and compared to the preserved
brains of 35 men and 56 women with average intelligence by Dr Sandra Witelson
with other scientists at McMaster University [208]. It was found that the spatial
area of Einstein’s brain, connected to his mathematical skills, is 15% larger on both
sides than in average men and women.
In males, the right brain improves faster than the left brain and develops more
connections with-in itself and fewer connections with the left brain. In females,
both sides of brain improve at a equal speed which provides females with a more
diverse range of skills. They also have more connections between left and right
through a thicker corpus callosum which results in a tendency of females to be more
ambidextrous than males. Many more women have difficulty identifying their left
hand from their right.
Pease et al. [204] state, ”Testosterone hormones inhibit the left-brain growth in boys
as a trade-off for greater right-side development, giving them a better spatial ability
for hunting. Studies of children between the ages of five and eighteen show that boys
outstrip girls in their ability to move a beam of light to hit a target, reproduce a
pattern by walking it out on the floor, assemble a range of three-dimensional objects
and solve problems requiring mathematical reasoning. All these skills are located
mainly in the right brain of at least 80% of men and boys”.
Dr D. Wechsler develops IQ tests to remove sexual bias against men or women dur-
ing spatial tests. People from cultures of primitive races to developed city residents
are examined. Findings indicate that although women have slightly smaller brains,
women exceed men in intelligence being around 3% smarter than men. When partic-
ipants are asked to solve maze puzzles, men outperform women, scoring 92% without
factoring in culture [204].
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The British Cartography Society declares that half of its members are female, and
maps are designed and edited by women as well. British cartographer Alan Collinson
states, ”Map design is a two-dimensional task in which women are equally as capable
as men”. Alan Collinson adds that the most women face challenges when reading
and navigating with the map because 3D perspective is required to navigate a route.
Tourist maps have a 3D perspective. Thus trees, mountains, and other landmarks
are featured on such maps which support women to perform better when reading
the maps. His study also indicates that men have the ability to cognitively turn a
2D map into a 3D view in their mind, but most women don’t seem to be able to do
this [204].
Woman develop the spatial ability on both sides of the brain thus this may interfere
with speech function. If a woman is given a street directory, she will stop talking
before she turns the guide around. Whereas men will maintain speech. However, he
will turn the radio off because he can-not manage to auditory processing while he is
engaging his map reading abilities [204].
Practice and recurrence of a task increase brain connections. As an example, brain
mass of a retired person who has nothing to do decreases over time. Whereas active
intellectual interests protect brain mass and even improve it [204].

D.4 Diverse Spatial Cognition in Visualization Litera-
ture

The impact of cognitive abilities on the understanding of visual designs and what
features of the visual designs influence users’ understanding are considered unsolved
problems. Velez et al. [26] aim to study spatial ability in a varied subject group to
examine subjects’ perceptions of complex visualizations. Velez et al. [26] contribute
a basic visualization test experiment to assess comprehension and difficulty when
visualizing spatial ability and report several outcomes from the experiment.

D.4.1 Challenges in Visualization Understanding

Classic 2D visualizations feature 2D slices and 3D volumetric orthographic projec-
tions. Research indicates that projection and slice-based visualizations are not ideal
for shape understanding [218] and comprehension of 3D space layout [219]. There-
fore, combining 2D and 3D methods, cross sections or orthogonal projections unified
with 3D position references are suggested.
Spatial ability is interrelated to skills involving the retrieval, retention and conver-
sion of visual information from a spatial source [220]. Researchers sub-divide the
concept of spatial ability into more specific factors to help understanding. Six spatial
factors are described by Kimura [221] and can be identified by experimental assess-
ment. These are: spatial orientation, spatial location memory, targeting, spatial
visualization, disembedding and spatial perception.

D.4.2 Visualization Comprehension

Rizzo et al. [222] studies subjects that have difficulty with the Shepherd and Metzler
[223] mental rotation test. Some users can develop their mental rotation ability
through training in a VR environment. Gender differences in 3D virtual environment
navigation is studied by Czerwinski [224], [218]. Their results indicate that larger
displays and a broad field of view enhanced female performance in navigation tasks
and was comparable to male performance.
An experiment is designed to assess a person’s ability to understand visual designs
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Figure D.1: Two object examples used in a visualization test. The figures in Screen 1 show
the orthogonal projections and Screen 2 shows four possible answers. The correct answer
appears highlighted [26]. Image courtesy of Velez et al. [26]

and define how this ability is related to spatial skills. Velez et al. [26] describe an
experimental method that focuses on fundamental visualization tasks by designing
a simple visualization test that requires participants to form a mental picture of
a 3D object based on its 2D projections. The test design is simple enough for
inexperienced users and resembles standard spatial ability tests. The goal is to
understand what makes a 3D visualization challenging based on the features of the
objects and their visualization presentation.
A total of 56 students, half of them female, aged between 18-31 studying or gradu-
ated from US University participate in the study. Each experimental session takes
approximately two hours. In the first hour, participants are given five paper-based
cognitive factor tests. After the paper tests, computer-based visualization tests are
administered. Subjects are seated in front of desktop computers on which the or-
thogonal projection test is administered and are expected to answer 38 questions.
Figure D.1 provides two examples used in the visualization test.

Figure D.2: Histogram of the Data Visualization Exam scores in 2018 includes the average
score for males (50) and females (50). Gender is indicated.

Data from the experiment is analyzed based on gender for visualization ability for
each of the spatial skill tests. The result indicates that males perform distinctly
better on the visualization test than females. Velez et al. [26] determine that
geometric objects, the number of original and hidden surfaces, edges and vertices
relate to accuracy, and that low spatial ability participants are able to understand
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only basic geometrical objects such as cubes and cones.
Velez et al. [26] summarize some results from the study.

• Spatial ability diversity in the population is quite large. They argue that they
examine a large enough subject pool.

• Understanding a visualization is related to spatial ability. The level of spatial
skill can help to explore the reasons behind comprehension problem by com-
paring distinct comprehension mistakes. Spatial ability can also be used to
classify the population so that visualizations can be customized for different
spatial ability groups.

• Time is not related to visualization accuracy. Time to understand projections
does not affect accuracy in a visualization test. Using time to assess the
properties impact on understanding of visualization is not recommended.

• The number of geometric properties influences visualization accuracy and ex-
amination time. This result indicates that if an animation is aimed for the
general population the speed of animations for complex objects presented can
be a strong influence.

• The hidden geometric properties in the visual representation of object influence
the accuracy of visualization. Hidden objects in the visualization make the
image difficult to understand for a user with low spatial ability. Rotating the
object will enhance understanding for a user.

• Small rotation is difficult to detect. To identify small changes of rotation with
small angles when comparing two objects is a difficult task.

D.5 Investigating Evidence of Gender Bias in a Data
Visualization Class

Surprised and interested in the gender-based diversity in spatial cognition research
literature, we decided to look for evidence of gender bias in the data visualization
module at Swansea University, Wales. The Data Visualization module has been
taught to third-year undergraduate and master level students since 2006. The course
includes two lecture hours and a one-hour lab session each week during the semester.
Many students enrolled in this course are from overseas countries, and most of the
class consists of male students, about 85% of the class, as do all computer science
classes at Swansea University.
The assessment consists of one exam at the end of the semester, and two assignments,
one of which is focused on information visualization and the other on scientific
visualization. Students are provided with a data set and asked to create and explain
at least five unique visual designs using existing data visualization tools for the first
assignment. For the next assignment, students must modify source code given by
the lecturer and use this code to produce volume visualizations with the help of
existing volume renderers and describe how they obtain the visual representations.
In addition to the programming aspect, they also use a volume data set provided
to them to use volume visualization software such as ParaView [225] and Inviwo
[226]. Both assignments are marked by focusing on students’ visual designs and the
description of each image.
We aim to investigate for evidence of gender bias and its impact on students in our
class by comparing scores for both genders. We produce six histograms for this in-
vestigation. Three histograms consist of the 2018 exam and coursework assessment
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Figure D.3: Histogram of the Data Visualization Coursework 1 in 2018 including the
average score for males (64) and females (74). Gender is indicated.

Figure D.4: Histogram of the Data Visualization Coursework 2 in 2018 includes the average
score for males (63) and females (68). Gender is indicated.

results. The other three histograms represent five years’ worth of exam and assign-
ment assessment results from 2013-2017.

2018 Exam Results
We classify students according to gender. The histogram for 2018 exam results
(See Figure D.2) displays the minimum and maximum exam scores as 0 and 86
respectively. Only seven students, one of them female, score higher than 80 (In the
UK, scores above 70 are considered excellent.).
Similar to higher scores, seven student scores are lower than 20 with four zeros by
male students. Much to our surprise, our initial investigation indicates that exam
results appear to be evenly distributed between male and female grades from 0 to
86. However, we do notice that a binomial distribution with a dip in the middle
with a score of 50. Upon further investigation we noticed a different kind of bias
based on language (Asian vs English). This cannot be seen in the histogram but
was observed first hand by the teacher.
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Figure D.5: Collective histogram of the Data Visualization Exam from 2013-2017 includes
the average score for males (60) and females (53). Gender is indicated by color.

2018 Information Visualization Assignment
The next two histograms reflect the distribution of the first and second assignment
grades. For the information visualization assignment, the females and males perform
similarly, and their scores are very close include the average score for males and
females. One female and one male student have a score of 98 while six male students
receive 0 on the first assignment. Zero indicates that a student does not submit any
assignments (See Figures D.3, D.4).
2018 Scientific Visualization Coursework
Male and female student score better results than on the first assignment. Almost
half of the class scores higher than 80 for both genders with some at almost 100%
while there are seven 0 scores by male students. None of the graphs for 2018 indicates
any gender-related differences.
2013-2017 Exam Results
Furthermore, we create three more histograms over a five-year period for the exam
and two coursework for the years 2013-2017 in order to find evidence of gender bias.
The histogram for five years’ worth of exam results indicates that the distribution of
scores is very similar for both genders. Similar to the histograms for 2018, not many
female students enrol in our module over these five years. There are 24 females and
148 males enrolled in the Data Visualization module over the 5 years. However,
exam results of female and male students show a similar tendency, and they have
a similar distribution of exams scores from 2013 to 2017. We observe a peak at a
score of 66 with eleven students, and five students receive 0 while only two students
receive 98 in five years (See Figure D.5).
2013-2017 Coursework Results
In addition, we have two histograms for coursework covering information and scien-
tific visualization over five years (See Figures D.6, D.7). The histogram representing
the first assignment demonstrates remarkable results for 19 students who score 0
and five students scoring 100. Another outcome shows a score of 81 with seven male
and one female student. The distribution of male and female student grades in the
histogram is very similar to the distribution of the first course-work in 2018. A large
subset of the student population performs well since their scores are mainly higher
than 50. We also analyse the results of the second assignment over the same pe-
riod. Compared to the exam and first coursework over a five-year period, the second
coursework result is at a higher level, and students receive full marks. Nine males
and two females receive the full mark on the scientific visualization assignment while
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Figure D.6: Collective histogram of the Data Visualization Coursework 1 scores from
2013-2017 include the average score for males (61) and females (62). Gender is mapped to
color.

seven male and one female receive 98. Eight male students receive a score of 0. We
also observed on the graph that gender bias is not reflected in the grade distribution.
This investigation indicates that scores are generally evenly distributed between
male and female students and gender bias is not evident on exams or assignments
in histogram graphs for 2018 or over a five-year period from 2017-2013. Although
we did not notice any gender bias, we notice cultural bias in our class. From our
perspective, overseas students, especially Chinese students, struggle with the under-
standing the language. In the next sub-section, we provide some recommendations
for inclusive teaching.

D.6 Recommendations for More Inclusive Teaching in
Data Visualization

Our Data Visualization course includes two assignments and students are provided
data sets to examine in order to produce images. However, some students have
difficulties analysing the data set and cannot generate sensible visualizations. One
suggestion could be that students should have a chance to select their own data
set to analyze and visualize. Students will likely choose data sets that they are
interested in and thus perhaps engage more with assignments. Another challenge in
the class is language. A language barrier may be present in the class, and many Asian
students are limited in their understanding of the lecturer including lecture notes,
assignments and exam questions due to a language barrier. This is mainly observed
with master level students rather than third-year undergraduate students. The
third-year students have time to improve their language skills until their final year at
university. A possible recommendation to address this challenge is higher university
entry English language requirements. Another approach to address this challenge
may be to divide the class based on language skills for the Data Visualization module.
The lecturer may adopt a different teaching approach considering students’ language
diversity. In addition, the lecturer can record the lectures and upload them to an
easily accessible web environment such as YouTube. This method enables students
to watch the lecture videos multiple times and support them to compensate for not
understanding part of lectures. Also, YouTube facilitates subtitles which enable
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Figure D.7: Collective histogram of the Data Visualization Coursework 2 from 2013-2017
includes the average score for males (67) and females (77). Gender is mapped to color.

students to follow and understand lecturers.
Our research is concerned with making classrooms more inclusive due to a variety
of cultures, student backgrounds and student learning types. Inclusive teaching has
many potential benefits such as being collaborative, engaging, and supports the
understanding that considers a diverse student body.
Montgomery [227] describes culturally responsive classrooms that consider cultur-
ally diverse students. Students need to engage with the subject topic and the tasks
that are given them. Instructional approaches and individual teaching attitudes can
encourage all students to get involved in learning activities that will lead to im-
proved academic success. Another point described by Montgomery [227] is that the
improvement of instructional programs that avoid failure and increase opportunities
for achievement should be the goal of every lecturer. Furthermore, Rodriguez-Falcon
et al. [228] at Sheffield University provide recommendations to adopt a lecturer’s
teaching approach to meet the needs of a diverse community with inclusive teaching.
These suggestions are:

• Lecturers can use clear language and not speak very quickly.

• Handouts and presentations are written and organized clearly. This means a
combination of correct color and font size, clear graphs and images. All course
material is accessible online.

• The lecturer gives the impression that they are available to answer students’
questions and approach them positively for personal engagement.

• Instructors can explain the processes of assessment and feedback. They do not
assume students already know the evaluation structure.

• The lecturer chooses common visualization examples for all students, especially
students who have different cultural backgrounds who can be familiar with the
example.

• Instructors can break up visualization lectures to ask questions or include short
’partner-work’ sessions.
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Other approaches to inclusive teaching for visualization teachers are to support crit-
ical and analytic thinking and considering conducting a peer mentoring scheme for
assistance for all students. As a result of this, a diverse community can communicate
and assist the learning process for each other in the class environment. Moreover,
students should be encouraged to feel comfortable in the classroom and participate in
the lecture with their ideas, thoughts and questions. More specific to visualization:

• Those visualization modules that require a visualization project may consider
allowing students to propose their own project as an alternative to a prescribed
project. Another option is to allow students to choose between two or more
options when selecting visualization assignments or visualization projects. Pro-
viding options may support a more diverse student background.

• Data visualization assignments can enable students to generate and collect
their own data to visualize rather than using a given data set which students
are not familiar to or struggle to analyze.

• We also recommend encouraging the use of diverse hardware including a range
of display devices of varying size.

• Another inclusive approach to data visualization class includes the use of low-
tech methods such as hand-sketched visual designs life those described by
Roberts et al. [229].

• And finally, more inclusive teaching can be supported by social media. Social
media groups can facilitate convenient and frequent communication between
students in a diverse classroom.
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