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ABSTRACT 

One significant issue that is encountered by individuals who experience ill effects of 

cardiovascular sickness, is not having the option to distinguish their illness until the 

manifestations give an evident sign, generally at the critical stage, which brings about 

a high threat of death. Furthermore, the most common method of treating severe cases 

is by invasive medical treatment, which is agonizing to patients. As a means to reduce 

this threat of severe cases or abrupt demise among individuals today due to cardiovas-

cular disease, this research proposes to create a medical system focusing on the up-

stream blood pressure waveform and artificial intelligence, which would indicate the 

risk of cardiovascular disorder. The work in this thesis lays the groundwork for a novel 

risk indication system with three key sub systems. First a data acquisition system that 

uses a human wrist wearable device for acquiring data non-invasively, next a signal 

conversion system to transform radial waveforms to aortic waveforms, and finally the 

risk prediction system that uses a combination of a Convolutional Neural Network 

(CNN) and a zero-dimensional cardiovascular model’s parameters. In today's world, 

this combination of methods to indicate the risk of cardiovascular diseases has yet to 

be explored and developed, giving rise to a new pathway of risk indication. This thesis 

shows the details of the proposed medical system, along with testing of the hardware 

and the various sub systems. 

For data acquisition, as currently marketed devices could not be used for this project, 

a wearable device with an embedded pressure sensor (Honeywell FSS005WNSB) was 

selected to acquire radial waveforms from the wearer’s wrist. As this is yet to be de-

veloped into a fully wearable device, pairs of radial and aortic signals were obtained 

from two databases (PhysioNet and HaeMod) for this research. These radial signals 

are then converted to aortic signals with the use of the newly developed Electrical 

Impedance Function (EIF), which is then compared to current conversion methods 

such as the Generalised Transfer Function (GTF), N-Point Moving Average (NPMA), 

and the Adaptive Transfer Function (ATF). Waveforms produced by the EIF have an 

average RMSE of 9.4838 and MAPE of 0.0661, with a peak difference of 6.35mmHg 

and 0.0129ms computational time, demonstrating a comparable performance with the 

GTF and a better estimation approach when compared with NPMA and ATF. 
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The transformed signals were then used for risk indication, utilizing Vincent Rideout’s 

cardiovascular model to produce data for the CNN. From the iterative investigation of 

the Vincent Rideout model, it is discovered that there are 16 parameters that signifi-

cantly influences the model's aortic wave. Next a regression-based CNN is trained, 

with aortic waveforms as inputs, and their corresponding 16 parameters as outputs. 

When the trained CNN is tested with cardiovascular disease aortic pulse waveforms, 

which were converted from radial pulse waveforms utilizing both transfer functions 

(EIF and GTF) separately, it is observed that 2 key parameters out of the 16 could be 

used for indicating cardiovascular diseases. The two parameters - Pulmonary Vein 2 

(RL2) and Systemic Aortic Artery 1 (RA1) – could be related biologically, as it can 

be postulated that they relax concurrently to permit the blood to flow smoothly in its 

closed-loop framework resulting in the decrease of the resistance value.  

From the experiments conducted, the values of RL2 and RA1 when it acclimates to 

cardiovascular conditions is equal to or beneath 10.640691 g · s/cm4and 9.7667933 

g · s/cm4  respectively when using EIF as the transfer function. On the other hand, by 

using GTF as the transfer function, the values of RL2 and RA1 when it acclimates to 

these cardiovascular conditions is equal to or beneath 10.530969 g · s/cm4 and 

9.8313036 g · s/cm4 respectively. An 80.0% and 82.5% classification accuracy was 

obtained when these limits were used as identifiers on cardiovascular disease data ob-

tained from Hospital Sultanah Bahiyah using EIF and GTF respectively as the transfer 

function. 

Overall, this research shows that the proposed medical system can provide a minimum 

identification accuracy of 80% for cardiovascular disease, which can be considered a 

reasonably good performance, increasing the number of early detections and thus help-

ing those at risk of cardiovascular disease on time. 
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 INTRODUCTION 
 

1.1 Introduction 

Cardiovascular diseases (CVD) are the leading cause of death worldwide and are be-

coming one of the most life-threatening diseases in most countries. By developing a 

medical system which monitors and provides risk indication to the user, the risk of 

sudden death among heart patients today can be significantly reduced. Distinguishing 

early on signs of unhealthy conditions using effective approaches will certainly be a 

major step forward. The motivation behing this research as well as the key problems to 

be addressed are stated in this chapter. Furthermore, the research objectives with which 

these accomplishments could be attained through this research are discussed, providing 

the research with a direction. The scope and the significance of the research is well 

defined in this chapter as well. Finally, the potential impact and contributions of the 

research is described in detail.  

1.2 Overview of research  

Cardiovascular diseases (CVD) causes nearly 30% of mortality worldwide and may 

even lead to disability [1] . Approximately 17.7 million people died from CVD in 

2017[2] . This makes CVD the largest cause of death globally and it is becoming one 

of the most life-threatening diseases in most countries. It is known that total world-wide 

mortality caused by the various forms of CVD are approximately 2.2% or 16.7 million 

of the total global deaths [3].  

In today’s era, CVD still poses a grand challenge as its occurrence on aged people are 

more frequent [4]. Hence, early identification and prevention are critical to decrease 

cardiovascular mortality by giving the required treatments early. This could be done by 

having a reliable monitoring framework that would continuously monitor and indicate 

risk for people’s health condition. However, the early detection of CVD is typically 

conducted discontinuously by a one-off measurement of blood pressure, Doppler ultra-

sonography, photo-plethysmography [5], magnetic resonance imaging and electrocar-

diography[6]. These methods are costly, intermittent, bulky and inconvenient [7]. A 

wearable sensor with a compact size, high sensitivity, ultralow energy consumption, 

and accessible usage in various scenarios are desired to monitor various cardiovascular 

conditions in a comfortable, continuous, real-time manner to uncover the deterioration 
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of cardiovascular conditions [7], [8]. In today’s technological world, the above men-

tioned devices do exist, to estimate the central aortic blood pressure waveform from the 

peripheral artery (radial artery) pulses such as SphygmoCorCVMS (AtCor Medical, 

Australia) [9]–[11] and BPro + A‐Pulse( HealthSTATS) [9], [12], [13]. For estimating 

the central aortic blood pressure waveform from the user’s wrist, the Sphygmo-

CorCVMS (AtCor Medical, Australia) utilizes the Generalize Transfer Function (GTF) 

[9]–[11]  where else the BPro + A‐Pulse (HealthSTATS) utilizes the N-point moving 

average [9], [12], [13]  . These devices estimate the central aortic blood pressure wave-

form to continuously update the user on their blood pressure reading (systolic and di-

astolic values) where these values are used to determine hypertension as a risk indicator. 

1.3 Motivation 

There are two main reasons to develop this system. Firstly, hospitals attain the blood 

pressure measurement from the arm using sphygmomanometer (Blood pressure cuff) 

to attain the blood pressure reading to indicate high or low blood pressure of the patient. 

This method doesn’t analyse the blood pressure features but just indicates the systolic 

and diastolic pressure values. Secondly, patients showing obvious symptoms can be 

exposed to extra tests, different types of imaging and invasive techniques such as angi-

ogram are done for a more conclusive diagnosis, despite the fact that it can convey 

critical dangers that must be deliberately gauged. This invasive method where a part of 

the body is catheterized, either by puncture or incision is the current method of diagno-

sis. This medical procedure is painful as well as time-consuming for patients who are 

suspected of illness in the blood circulatory system. 

By developing a medical system that monitors and provides risk indication non-inva-

sively for healthy users, one can significantly reduce the risk of sudden cardiac arrest 

among users by creating awareness on their health status all the time. The medical sys-

tem will acquire radial waves for predicting possibilities of a patient having a cardio-

vascular risk. Additionally, the medical system will lay a foundation in developing a 

wearable device that will reduce the patient’s frequent visit to the hospital as it provides 

regular monitoring. It would be convenient to wear, thus, can be used throughout the 

day.  

Central aortic pressures signal has the factors of cardiac loading and perfusion which is 

important on cardiovascular function [14]. Information of this signal is often crucial for 
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precise monitoring and diagnosis of cardiovascular diseases [14]. However, central aor-

tic pressure signal is currently obtained invasively, it would be ideal if the central aortic 

blood pressure waveform can be accurately estimated. In this research, the medical sys-

tem is placed on the wrist of the user, hence the radial blood pressure waveform needs 

to be utilized to estimate the nearest representation of the aortic blood pressure wave-

form to be used as a risk indicator.  

By collecting and analysing various radial wave signals and converting to the nearest 

estimation of the aortic blood pressure waveform, the patterns of healthy and unhealthy 

signals can be identified by feature extraction, and the algorithm formed can be inte-

grated into the hardware.  

 

1.4 Problem statement and project direction 

Analysing the wearables described above, the main point of focus on the systolic pres-

sure reading which is related to hypertension. Which is treated as a key indicator for 

cardiac risks and has generated many debates and editorial commentaries[15]–[17]. Al-

ternatively, by analyzing the entire blood pressure pulse, rather than just the systolic 

and diastolic values, more information about the health condition of the user could be 

obtained.  As current devices do not focus on this aspect, this research aims to investi-

gate this. 

In clinical diagnoses, it is known that central aortic pressure is a better physiological 

indicator for diagnosing diseases [18]–[20].  However, measuring central aortic pres-

sure waveform is an invasive and expensive procedure. In hospitals, to measure the 

central aortic pressure non-invasively, blood pressures measured non-invasively from 

peripheral locations are taken and approximated. An example of this is the use of a 

brachial oscillometer [21]–[24] where the reading of the brachial artery is used to esti-

mate the reading of the central aortic blood pressure. In addition, current research shows 

a lot of interest in investigating the relationship of central aortic pressure and peripheral 

pressure at the location of brachial, radial, carotid, and femoral arteries to be used as a 

risk factor for cardiovascular diseases [25]–[29]. Therefore, this research focuses on 

developing a medical system which acquires the signal from the wrist (radial artery) of 

a normal user to estimate the aortic blood pressure waveform, which will then be used 
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to indicate the risks. This would alert the user to be aware of their health conditions and 

identify the risks associated to CVD. 

Once the central aortic blood waveform has been estimated, risk indication needs to be 

performed, and one of the key methods being used is artificial intelligence. In today’s 

research world, numerous research [30]–[33] are published, relating artificial intelli-

gence to diverse areas of importance to the cardiovascular expert. Majority of the im-

plementation of artificial intelligence are on the blood pressure signal directly from the 

radial artery from the wrist [34]. This research intends to utilize the central aortic blood 

pressure waveform as the blood pressure signal to indicate risk, because it is the gold 

standard blood pressure measurement internationally [34] whereby it has a better phys-

iological indicator for diagnosing diseases. However, there is an imbalance of data for 

the central aortic blood pressure waveform where hospitals would only provide dis-

eased central aortic blood pressure waveforms. It is worth highlighting that doctors will 

not perform angiograms on subjects who appear healthy and the proposed medical sys-

tem is intended for healthy users. This problem is addressed by introducing a zero-

dimension (0D) model that would provide data of the central aortic blood pressure 

waveform to be utilized for the risk indicator.  

The zero-dimension (0D) model of the cardiovascular system was developed to simu-

late the global hemodynamics of the entire circulation system as a lumped circuit 

model. This 0D model is able to simulate the aortic blood pressure waveform. The 

model represents the blood pressure and flow-rate with voltage and current, describing 

the effects of friction and inertia in blood flow and of vessel elasticity with resistance 

R, inductance L and capacitance C in the electric circuit respectively [35]. The 0D 

model utilizes the hydraulic-electric concept where non-linearities in cardiovascular 

mechanics including the convective acceleration terms in the momentum equation 

and/or the nonlinear relationship between pressure and volume in a real vessel can be 

specifically addressed in solving the governing equations [35]. Sensitivity analysis is 

done later in this work, to identify the R, L and C parameters which contributes to 

changes in the aortic blood pressure waveform of the 0D model. There are two type of 

sensitivity analysis which are the local sensitivity analysis (LSA) and the global sensi-

tivity analysis (GSA). LSA is a sensitivity analysis technique that iterates one parameter 

value at a time around its default value by keeping the rest of the other parameters fixed 

at their default values [36], [37]. This procedure is repeated for all the parameters to 
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study the parameter’s independent response to the output signal. On the other hand, the 

GSA is an advanced technique compared to the LSA that explores the interrelationship 

and the entire parameter response on the output signal [38]–[41]. When comparing the 

LSA and GSA, it is known that LSA is simple, easy to implement and computationally 

less expensive compared to the GSA. This research utilizes LSA as the sensitivity anal-

ysis technique because it is less computationally intensive and it studies the parameter’s 

independent response to identify the significant parameter that affects the feature of the 

model’s output signal. 

These significant parameters are trained into the Artificial Intelligence (AI) whereby 

when a blood pressure signal is fed to the AI, the numerical change in each parameter 

will be output and will be used to identify the cardiac risk for the user. In this research, 

the artificial intelligence is built based on the feature extraction of the aortic pressure 

wave using the convolutional neural network. This artificial intelligence establishes the 

relationship between the independent response of the R, L and C parameters to the 0D 

model’s aortic blood pressure by the sensitivity analysis conducted. The insignificant 

parameters are not utilized to train the artificial intelligence because there would not be 

a significant change in the signal’s feature which may provide trivial information to the 

AI, consequently contributing errors.  

In addition, since the 0D model has multiple degree of freedom to reconstruct the same 

aortic blood pressure waveform with different variables, the AI resolves this problem 

because it is constrained to the data it is trained with from the sensitivity analysis. 

Therefore, an input of a blood pressure signal will give a specific output of R, L and C 

parameters in respect to the sensitivity analysis conducted to the 0D cardiovascular 

model, where the change in the numerical values is analysed to indicate risk to the user. 

 

1.5 Research Aims and Objectives 

The aim of this work is to develop a medical system for users to detect and indicate 

blood circulatory system risk by analysing the blood pressure signal where the system 

is strapped on the user’s wrist. In order to achieve the aims of the proposed research, 

the work here was broken down into specific objectives which are as follows:  
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1. Identify a sensor to acquire the radial blood pressure signal in order to develop 

a prototype.  

2. Identify and implement a method to convert a radial blood pressure waveform 

to an aortic blood pressure waveform which has the closest representation of the 

actual aortic blood pressure waveform. 

3. Utilize the converted aortic blood pressure waveform for indicating risk by the 

implementation of a convolutional neural network. 

4. To develop an algorithm for the risk identification for healthy users from the 

radial blood pressure waveform data collected, based on the features of blood 

pressure wave variations. 

5. To validate the developed algorithm against clinical patient data. 

 

1.6 Research scope  

The main scope of this study is to create a medical system capable of indicating risk of 

cardiovascular disease to the users, by implementing a convolutional neural network on 

the upstream blood pressure waveform, which is the central aortic blood pressure wave-

form, while the medical system would be strapped on the user’s wrist. Hence, a con-

version from a radial blood pressure waveform to an estimation of the aortic blood 

pressure needs to be done. The system is broken into 3 key subsystems – the wearable 

device (prototype), radial to aortic blood pressure waveform conversion, and finally 

risk indiciation. For each subsystem, choices are made in this research to prove that the 

proposed medical system with the said subsystems works with an acceptable perfor-

mance, and further in-depth research can be carried out in the future for each subsystem 

to improve the overall performance. 

As data for healthy aortic blood pressure waveform of humans is not available in to-

day’s world, because angiogram’s are not conducted on healthy subjects, this research 

utilizes Vincent Rideout’s zero-dimension complete cardiovascular loop model sys-

tem’s default aortic blood pressure waveform to create the data set for the convolutional 

neural network. The Local Sensitivity Analysis technique is conducted on the model to 

identify the independent response of each parameter to the model’s aortic output signal 

whereby the parameters and the response signals are used to identify the significant 

parameters that were used to create the datasets. Hence, the convolutional neural 
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network doesn’t remodel the Vincent Rideout zero-dimension model but develops a 

relationship between the parameters and the aortic blood pressure signals in respect to 

the independent response of each parameter attained by the local sensitivity analysis.  

In its current form, the developed medical system is restricted to the usage of blood 

pressure signals obtained using an invasive method due to the wearable device being at 

the prototype stage and not viable for data collection in a medical setting. This research 

is done in collaboration with Collaborative Research in Engineering, Science and Tech-

nology (CREST) Malaysia and Chulia Facilities Management Sdn. Bhd, and the core 

requirement of this research was to identify a sensor to acquire the radial blood pressure 

signal in order to develop a prototype as well as a risk indication system, which could 

be embedded in it. Following the identification of the sensor in this study, Chulia Fa-

cilities Management Sdn Bhd will continue to develop the wearable device.This proto-

type uses Arduino as its current computing platform, though this does not restrict other 

available wearable devices to be utilized for the implementation of this medical system. 

The datasets for validating the medical system were obtained via an invasive method 

from Hospital Sultanah Bahiyah, and online sources: HaeMod database and PhysioNet 

database. As previously mentioned, doctors will not perform angiograms on subjects 

who are healthy. Hence, the HaeMod database is an ideal choice for this research as it 

has many healthy subjects’ blood pressure waveform. Physionet has both cardiovascu-

lar disease subjects and non-cardiovascular disease subject’s radial waveforms, which 

will be used in this research to identify unhealthy blood pressure signals. Both the Hae-

Mod and Physionet databases were verified by Dr. Saravanan Krishinan, the Head of 

Hospital Sultanah Bahiyah’s Cardiology Department. The computer programming lan-

guage used to conduct this research is MATLAB. 

 

1.7 Research significance 

The development of a medical system to indicate risk of cardiovascular disease allows 

the user to discern their condition before the consequences lead to an undeniable indi-

cation, which is usually at the crucial stage, resulting in a significant risk of death. Early 

identification and prevention are critical to decrease cardiovascular mortality. This 

might be accomplised by having a reliable medical system that would indicate risk for 

people’s cardiovascular condition. In the current age, there are several wearables that 
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estimate the central aortic blood pressure waveform from the peripheral artery (radial 

artery) pulses to continuously update the user on their blood pressure reading (systolic 

and diastolic). This is used to determine hypertension as a risk indicator for cardiovas-

cular disease, which is not the most ideal approach according to several other research 

as previously mentioned. Hence, there is a lack in today’s available medical device 

systems to analyze the entire blood pressure pulse to provide reliable information to 

indicate risk of cardiovascular disease.  

In addition, recent developments in biomedical engineering research, specifically in 

biomedical signal analysis, the entire blood pressure pulse waveform was utilized in 

training deep learning models. According to them, Convolutional Neural Networks 

(CNN) are the ideal deep learning method as they mimic the human’s neuron network 

interpreting the entire signal with regards to the signal’s features to relate to the cardi-

ovascular disease [42]–[46]. However, these CNN models are used for pattern/feature 

classification and does not indicate risk or act as a predictive role for cardiovascular 

disease.  

During the development of this medical system, novelty was introduced in the risk in-

dication algorithm by applying CNN with a numerical regression output trained with 

parameters of the zero-dimensional cardiovascular model to indicate risk of cardiovas-

cular disease. A pressure sensor acquires the radial waveform from the user's wrist and 

transforms it to an estimated aortic blood pressure waveform using a transfer function, 

which is then fed into a CNN trained with a zero-dimensional cardiovascular model’s 

parameters to be applied for risk prediction. The hardware and software foundation for 

the medical system to indicate the risk of cardiovascular disease in this approach has 

yet to be studied and established in today's world. The overall system is built on 3 key 

subsystems, and this unique combination and connections between the subsystems in a 

novel method proposed in this research. The created system could also be continuously 

improved by either improving or replacing the methods in each subsystem, giving rise 

to more possible risk indicators and performances. Other significant novelties are pre-

sent in the form of a newly developed transfer function for converting radial to aortic 

blood pressure waveforms (EIF), as well as the combination of CNN and 0D model for 

risk indication. 

 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 9  

 

1.8 Research impact and contribution  

Sustainable human development is strongly influenced by CVD which is one of the 

major reasons for mortality in the world [47]. Up to 422.7 million and 17.92 million 

people died of CVD all over the world in 2015 [48]. It is highly recommended in clinical 

practice to screen high-risk population, and early intervention of CVD would be ideal 

[49]. The challenges of prediction and evaluation of potential CVD remains unsolved 

despite a lot of effort taken by the medical community [49]. Research shows that car-

diovascular coincidences occur at uneven distribution during 24 hours of the day [50] 

and has a high tendency to occur during the moment between wakefulness and sleep 

instead of later in the day [51]. However, the reason for the increase in cardiovascular 

occurrences in the morning is still unclear [51]–[56]. Patients normally visit the hospital 

for a medical check-up during the day which results in blood pressure monitoring. Iso-

lated clinic blood pressure measurements from patients are not satisfactory to represent 

the daily blood pressure of the patients away from the medical environment over the 

last 50 years [57], [58]. Blood pressure measurements taken during daily activities by 

continuous ambulatory blood pressure monitoring will provide a more valid evaluation 

of a patient’s true blood pressure reading [59]. In addition, inconsistency in heart rate 

over 24 hours is an important indicator of the disease progression [60], [61]. Hence, a 

continuous monitoring medical system would be ideal for a patient to be aware of their 

health condition and to be able to be on time to get the treatment from doctor before the 

critical stage. A medical system to monitor healthy users and indicate CVD risks is yet 

to be developed in the present-day context. 

The  main research contribution is indicating risk for healthy users using electrical pa-

rameters obtained from the combination of the zero-dimension cardiovascular circula-

tory system and a convolutional neural network. Hence, the numerical changes in the 

parameters shall be analysed to classify the risk of irregular blood circulation which 

may lead to a cardiovascular disease, so that the user is well aware of their health con-

dition. These parameters can then be utilised further by the medical practitioners as a 

reference to correlate the patient’s parameters before prescribing a treatment. 

The success of proving this research methodology is very impactful to the world be-

cause it may give reasonable hope to construct a wearable device which would guaran-

tee persistent monitoring and risk indication to the user. This would ensure the user to 
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be aware of their health and identify the risk of illness before the symptoms shows 

obvious signs, usually at the critical stage, which results in high risk of mortality. 

1.9 Thesis outline 

This thesis is divided into five chapters. Chapter 1 introduces the research’s main aims, 

problem statement, the proposed solution, research aim, objectives and scope, as well 

as the significance and contributions of this work, Chapter 2 outlines the literature re-

view carried out on cardiovascular disease and medical technologies, choices of the 

sensor,  transfer function techniques in estimating aortic blood pressure waveform from 

the radial blood pressure waveform, risk indication for cardiovascular disease, Artifical 

Intelligence for detection of cardiovascular disease, cardiovascular system modelling 

and a summary of literature explaining the novel approach of this research. In this chap-

ter, comparisons and choices are made for the sensors and the heart’s blood flow model 

to be implemented for the research. Chapter 3 talks about the methodology of the re-

search. In this chapter, system design and its methodology are explained. Besides that, 

the calculation related to the choice of the sensor and the implementation of the sensor 

hardware is presented. Electrical impedance function, Generalised transfer function, N-

point moving average, Adaptive transfer function and their implementations is also 

shown. The model parameter values and the convolutional neural network where these 

parameters are fed is explained. In Chapter 4, the results obtained during the testing of 

the hardware are presented. Electrical impedance function study results are shown with 

comparisons to Generalised transfer function, N-point moving average and Adaptive 

transfer function. Results obtained by the parameter model and its values, which are fed 

into the convolutional neural network (CNN) are presented. The results of the predic-

tion of the CNN and the results of classification of data for cardiovascular disease and 

non-cardiovascular disease are well explained. These results are discussed to get a bet-

ter understanding of the cardiovascular risk prediction proposed in this research. Lastly, 

Chapter 5 concludes the thesis, by summarising the key points of the overall developed 

system. 
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 LITERATURE REVIEW 
 

2.1 Introduction 

The persistent overall incline in deaths due to cardiovascular disease has instilled mo-

tivation for researchers to develop strategies and methods to assist medical profession-

als. These areas of research on the development of a medical system to indicate risk of 

cardiovascular disease have been growing gradually, yet are to be implemented in the 

medical world. This chapter provides a literature review on understanding cardiovas-

cular disease and recent medical technologies used for risk indication for cardiovascular 

disease to obtain a better understanding of the recent advances in this field. Addition-

ally, the medical technology subsection discusses the selection of sensors to obtain the 

radial blood pressure waveform. Since most medical technology acquires the radial 

blood pressure waveform from the wrist and estimates the aortic blood pressure wave-

form, transfer function methods to estimate the aortic blood pressure waveform have 

been reviewed to gain a better understanding of them. That knowledge can be then used 

to convert the radial pressure signal obtained from the patient's wrist to their respective 

aortic signal in this project. This chapter addresses risk indication for cardiovascular 

disease and artificial intelligence for detection of cardiovascular disease in order to 

comprehend and create a risk indication algorithm that incorporates artificial intelli-

gence. Furthermore, cardiovascular models are evaluated in order to determine the 

heart's response and reaction to other factors without the requirement for patient testing. 

To summarize the interpretation of the literature to be used for this research, a review 

of equivalent work and a summary of the literature review were done. 

2.2 Cardiovascular disease 

Cardiovascular disease continues to be the dominant cause of demise worldwide, re-

sulting in deaths that are higher than 17.3 million per year [62]. A study conducted by 

The Global Burden of Disease in 2010 concludes that 29.6% of all deaths globally were 

resulted by cardiovascular disease [63] and the percentage increased to 31% in 2013 

[62]. Studies also show that cardiovascular diseases show higher mortality than all 

forms of cancer combined [62]. An estimated 17 million people died from cardiovas-

cular disease in 2005, which represents 30% of all global deaths; reported by the World 

Health Organization (WHO). The WHO also estimates that the number could increase 

to 23.6 million by the year 2030 if the current trend remains [64] where it incorporates 
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coronary heart disease (CHD), cerebrovascular disease and arterial disease. Figure 2.1 

shows the graphical representation  of the major cause of deaths. 

 

Figure 2.1.Major causes of death 

In addition, Cardiovascular disease (CVD) includes several conditions that affect the 

heart and vasculature [65]. This may also include those influencing the blood vessels, 

for example, coronary artery, peripheral artery, or cerebrovascular infection. The basic 

reason for diminished bloodstream is the development of atherosclerotic plaque, which 

brings about the narrowing of veins and confines bloodstream [66]. This expansion is 

related to an increase in smoking and dietary changes provoking an addition in serum 

in cholesterol levels [67], [68]. The chronic CVD can hasten into a solitary horrible 

mishap whenever it is left untreated, for example, myocardial infarction or stroke, the 

two of which are related to high death rates [69]–[72]. Moreover, CHD and cerebro-

vascular disease were the first and second reasons for demise in 2016, with a rise of 

39.6% and 23.8% individually since 2005 [18]. According to the National Cardiovas-

cular Disease-Acute Coronary Syndrome (NCVD-ACS) Registry for 2011-2013, 

96.8% of patients had at least one cardiovascular hazard factor, for example, hyperten-

sion [73]. 

Screening tests and increasingly complex examinations for the early detection of is-

chemic coronary illness are sketched out. They can be depended upon to distinguish the 

individuals who are susceptible to heart disease in future. Screening in essential primary 
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settings and frequent wellbeing advancement to increase community awareness and re-

sponsibility to healthy living and care should be constantly emphasized [73]. 

It is accepted that a greater part of the deaths due to CVD are totally preventable by 

fundamental alterations in lifestyle habits [74]–[77]. While this underlines the signifi-

cance of improved instruction and a huge scope counteraction activities, it additionally 

focuses on the significance of having successful methods for distinguishing indications 

of ailment in the clinic, especially at an early stage [77]–[79]. Sustainable human de-

velopment is strongly influenced by CVD which is one of the major reasons for mor-

tality in the world [47]. Up to 422.7 million had CVD and 17.92 million people died of 

it all over the world in 2015 [48]. It is highly recommended in clinical practice to screen 

a high-risk population and early intervention of CVD [49]. The challenges of prediction 

and evaluation of potential CVD remains unsolved despite a lot of effort taken by the 

medical community [49]. Research shows that cardiovascular coincidences occur at 

uneven distribution during the 24 hours of the day [50] and has a high tendency to occur 

during the moment between wakefulness and sleep instead of later in the day [51]. 

However, the reason for the increase in cardiovascular occurrences in the morning is 

still unclear [51]–[56]. Patients normally visit the hospital for a medical check-up dur-

ing the day which results in blood pressure monitoring. Isolated clinic blood pressure 

measurements from patients are not satisfactory to represent the daily blood pressure of 

the patients away from the medical environment over the last 50 years [57], [58]. Blood 

pressure measurement taken during daily activities by continuous ambulatory blood 

pressure monitoring will provide a more valid valuation of a patient’s true blood pres-

sure reading [59]. In addition, inconsistency in heart rate over 24 hours is an important 

indicator of the disease progression [60], [61]. Hence, a continuous monitoring medical 

system would be ideal for a patient to be aware of their health condition and to assist 

the doctor in prescribing treatment.  

Coronary artery disease (CAD) is the common type of cardiovascular disease that in-

volves angina pectoris and myocardial infarction commonly known as heart attack [80]. 

Other types of cardiovascular diseases include heart failure, stroke, rheumatic heart dis-

ease, venous thrombosis, peripheral artery disease, congenital heart disease, blood ves-

sels disease and heart valve disease [80], [81]. One of the main underlying cause of 

coronary artery disease, stroke and diseases of the aorta and arteries are known as ath-

erosclerosis which is the narrowing of the arteries wall due to the deposition of fatty 
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deposits, known as atheroma [80]. The deposits cause the inner surface of the arteries 

to become irregular and narrow, hence disrupting the blood flow. Eventually, atheroma 

in the arteries can break away, causing the formation of a blood clot. When the blood 

clot blocks the artery that transports blood to the brain, the blood supply to the part of 

the brain is cut thus causing stroke [59]. Similarly, when the blood clot occurs in the 

coronary artery, it can lead to a heart attack. 

Several risk factors may contribute to an increased likelihood of developing cardiovas-

cular diseases, such as genetics, age, gender, ethnic background, smoking habits, high 

blood pressure, high blood cholesterol, obesity and diabetes. Inherited DNA sequence, 

which is a form of a fixed risk factor increases the possibility of an offspring developing 

cardiovascular disease, by 3 times if the parent has a history of cardiovascular disease 

[82]. Besides that, mortality is also found to be higher by 2.3 to 2.7-fold for every dec-

ade of life for men and 2.9 to 3.7-fold for women in terms of gender [83]. The risk 

factor of gender also shows that men are more vulnerable to cardiovascular diseases 

than pre-menopausal women [84] due to the oestrogen hormone that is present in 

women which improves the endothelial cell function and functioning as a defence [85]. 

Lifestyle and behavioural changes such as mindful eating and implementing physical 

exercises into daily life are highly recommended. For instance, it is found that diets rich 

in saturated fat leads to 31% of coronary heart disease and 11% stroke worldwide [86]. 

On top of that, it is also important for a person to always be updated on their current 

health status through regular medical check-ups for early detection and prevention.  

For early detection and prevention, blood pressure is one of the biggest indicators of 

cardiovascular diseases during a medical check-up. Blood pressure mirrors the con-

tracting and relaxing of arterial walls that creates pressure waves, which is known as a 

pulse wave signal [87]. The pressure sensor is best in detecting arteriosclerosis, a con-

dition of thickening and the hardening of blood vessels and deposition of plaque on the 

inner walls of the vessels that creates blocks and ultimately leads to cardiac arrest. 

Therefore, using the pressure sensor to detect and collect wrist pulse signals can assist 

in conducting further studies on better arteriosclerosis prediction [88], [89]. 

Besides arteriosclerosis, arrhythmia is another form of cardiac diseases which can be 

detected by using the same pulse wave signal. Arrhythmia is an abnormal electrical 

activity in the cardiovascular system where it’s irregularity that will appear in the signal 
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reflecting the increase and decrease of heart rate. In addition to that, the time variance 

that exists between continuous pulses exceeding the average level, incomplete wave-

form and merged waveform will also further help to detect arrhythmia by using pulse 

wave signals [90]. 

2.3 Medical technology 

Constant and rapid technological advancement, especially in mobile and electronic 

healthcare has significantly expanded the capabilities of physiological monitoring such 

as the usage of wearable devices in recent times. A wearable device is a smart electronic 

device that is small enough to be worn on a human body and also able to incorporate 

powerful sensor technology for collecting and providing information about its sur-

roundings. Wearable devices are currently used in healthcare services in the medical 

world, ranging from clinical-centric to patient-centric services, known as telemedicine. 

There are two types of telemedicine, namely live communication and store-and-for-

ward. Live communication telemedicine functions by creating a real-time communica-

tion between the doctor and the patient by using a wearable device that is equipped with 

high bandwidth and good data speed for timely data transmission. Meanwhile, store-

and-forward telemedicine functions by collecting and storing the patient’s medical data 

on their specific medical condition to be passed to the doctor for assessment upon re-

quest [91]–[94]. It has become easier for doctors to monitor a patient’s body response 

constantly if the patient is using a wearable device [95]–[97]. Moreover, some interme-

diate level of local real-time classification is proposed by researchers, for example, the 

classification of heart rates, by utilizing smartphones or Personal Digital Assistants 

(PDAs) [98]–[101]. These methods have yet to give a total CVD diagnosis solution 

[102]. There are also telemedical functionalities through remote real-time monitoring 

system where most of it uses (PDAs) to collect Electrocardiography (ECG) where those 

signals are sent to a monitoring centre for analysis and classification, subsequently 

denying the user for the continuous outcome of their health [103]–[105].  

Wearable devices are also useful to patients as it gives the patient flexibility to carry 

out their daily routine while ensuring that their health is constantly monitored. When a 

patient performs various activities throughout the day, medical monitoring is widened 

as a bigger range of data can be obtained to provide better analysis for any conditions 

that may be present [106]. Patients who live further away from medical centres can 

benefit from using a wearable device as it allows monitoring of chronic cardiovascular 
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diseases such as heart attack, by using a wireless monitoring system, reducing the pa-

tient’s travelling frequency to hospitals [107]. Furthermore, a wearable device can also 

be made an integral part of routine care for acute or chronic diseases as it will provide 

information to both the hospital and the patient, raising the awareness level of both 

parties on the patient’s health condition [94]. Several wireless and sensor technologies 

have been developed, such as finger-ring sensors [108], smartwatches [109]and mobile 

applications [110], [111], to help patients understand and control their heart conditions 

in their daily lives. Studies show that patients who are more aware of their health con-

dition tend to give higher importance in bettering their lifestyle and habits [112], [113].  

The common way of monitoring health condition is to monitor a person’s blood pres-

sure. In today’s technological era, the wearable device can monitor a person’s blood 

pressure. This wearable device is placed at the user’s wrist where the radial artery is 

located. There are three types of sensors that are used universally to measure signals 

from the radial artery which are: pressure sensors such as strain gauges, photoelectric 

sensors such as plethysmography and ultrasonic sensors such as Doppler. Table 2.1 

shows the current available medical technologies and their type of sensors. Table 2.2 

shows the accuracy, sensitivity and specificity of the three types of sensors which are 

pressure to measure the blood pressure waveform, photoelectric for measuring the pres-

sure-dependent vessel diameter change and ultrasound sensor for measuring the blood 

flow.  

Table 2.1.Summarizes currently available medical technologies for measuring central 

blood pressure. 

Medical 

technology 

Type of 

care 

Site of 

record 

Type of 

sensor  

Estima-

tion 

method 

Pressure 

calibra-

tion 

Invasive 

valida-

tion 

FDA 

aprova

l 

ABPM 

7100Welch 

Allyn, Inc 

(acquired by 

Hillrom) 

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography  

General-

ised Trans-

fer Func-

tion 

Brachial 

cuff 

SBP/DBP 

No No 

ARCsolver 

+ VaSer-

aVS‐

1500Aus-

trian Insti-

tute of 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes[114] Yes 
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Technol-

ogy, Austria 

Arterio-

graph 24 h, 

TensioMED 

Ltd., Hun-

gary 

Ambu-

latory 

care 

Bra-

chial 

artery 

Supra‐sys-

tolic bra-

chial cuff 

plethys-

mography 

SBP2 + re

gression 

Brachial 

cuff 

MAP/DBP 

Yes 

[115], 

[116] 

No 

Arteri-

ographTen-

sioMed 

Ltd., Hun-

gary 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Supra‐sys-

tolic bra-

chial cuff 

plethys-

mography 

SBP2 + re

gression 

Brachial 

cuff 

MAP/DBP 

Yes No 

BP + Usco

m Ltd., Aus-

tralia (ac-

quire Pulse-

cor Ltd., 

Cardio-

scope II) 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Supra‐sys-

tolic bra-

chial cuff 

plethys-

mography 

Physical 

model 

Brachial 

supra‐sys-

tolic wave-

form 

Brachial 

cuff 

SBP/DBP 

Yes 

[117] 

No 

BPLab Petr 

Telegin, 

Russia 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes 

[118] 

Yes 

BPro + A‐

Pulse, 

Health-

STATS, 

Singapore 

(acquired by 

Hillrom) 

Ambu-

latory 

care 

Radial 

artery 

Applana-

tion to-

nometry 

Single, 

fixed 

(watch 

type 

N‐point 

moving 

average 

Brachial 

cuff 

SBP/DBP 

Yes [9], 

[12], [13] 

Yes 

cBP301Cen

tron Diag-

nostics, UK 

(acquired 

bySunTech 

Medical) 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff ple-

thysmog-

raphy 

GTF Brachial 

cuff 

SBP/DBP 

Yes 

[119] 

Yes 

Complior 

Alam Medi-

cal, France 

Non-

Ambu-

latory 

care 

Carotid 

artery 

Applana-

tion to-

nometry, 

Single, 

fixed 

Simple 

substitu-

tion 

Brachial 

cuff 

MAP/DBP 

Yes 

[120] 

No 
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DynaPulse 

Pulse Met-

ric Inc, USA 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Supra‐sys-

tolic bra-

chial cuff 

plethys-

mography 

Physical 

model 

Brachial 

cuff 

SBP/DBP 

Yes 

[121] 

Yes 

GaonHan-

byul Med-

itech, Korea 

Non-

Ambu-

latory 

care 

Radial 

artery 

Applana-

tion to-

nometry 

Single, 

fixed 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes 

[122] 

Yes 

HEM‐

9000AI 

Omron 

Healthcare, 

Japan 

Non-

Ambu-

latory 

care 

Radial 

artery 

Applana-

tion to-

nometry 

Arrayed 

[123], 

fixed 

SBP2 + re

gression 

Brachial 

cuff 

SBP/DBP 

Yes [10], 

[124]–

[126] 

No 

Mobil‐O‐

Graph 

NGI.EM 

GmbH, 

Germany 

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes [11] Yes 

Mobil‐O‐

GraphI.EM 

GmbH, 

Ger-

manyBrachi

alartery 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes [11] Yes 

NIHem Car-

diovascular 

Engineering 

Inc, USA 

Non-

Ambu-

latory 

care 

Carotid 

artery 

Applana-

tion to-

nometry, 

Single, 

manual 

Simple 

substitu-

tion 

Brachial 

cuff 

MAP/DBP 

Yes 

[127] 

No 

Oscar 2 with 

Sphygmo-

Cor Sun-

Tech Medi-

cal, USA-

Brachial 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Subdias-

tolic bra-

chial cuff 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes Yes 

Oscar 2 with 

Sphygmo-

Cor, Sun-

Tech Medi-

cal 

Ambu-

latory 

care 

Bra-

chial 

artery 

Subdias-

tolic bra-

chial cuff 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes 

[128] 

Yes 
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PulsePen 

DiaTecne 

srl., Italy 

Non-

Ambu-

latory 

care 

Carotid 

artery 

Applana-

tion to-

nometry 

Single, 

manual 

Simple 

substitu-

tion 

Brachial 

cuff 

MAP/DBP 

Yes 

[129] 

No 

Sphygmo-

Cor 

XCELAtCo

r Medical, 

Australia 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Subdias-

tolic bra-

chial cuff 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes 

[130] 

Yes 

Sphygmo-

CorCVMS, 

AtCor Med-

ical, Aus-

tralia 

Non-

Ambu-

latory 

care 

Radial 

artery 

Applana-

tion to-

nometry 

Single, 

manual 

Generalise 

Transfer 

Function 

Brachial 

cuff 

SBP/DBP 

Yes [9]–

[11], 

[14], 

[131]–

[135] 

Yes 

Vicorder 

Skidmore 

Medical 

Ltd., UK 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

Generalise 

Transfer 

Function 

Brachial 

cuff 

MAP/DBP 

Yes 

[132], 

[136] 

Yes 

WatchBP 

Microlife 

Corp, Tai-

wan 

Non-

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

(SBP2, 

DBP, As, 

Ad) + re-

gression 

Brachial 

cuff 

SBP/DBP 

Yes 

[137], 

[138] 

Yes 

WatchBP 

O3, Micro-

life AG, 

Widnau, 

Switzerland 

Ambu-

latory 

care 

Bra-

chial 

artery 

Brachial 

cuff pulse 

volume 

plethys-

mography 

(SBP2, 

DBP, As, 

Ad) + re-

gression 

Brachial 

cuff 

SBP/DBP 

Yes 

[139] 

Yes 

 

Table 2.2 Diagnosis performance of the three types of sensor[140] 

 Accuracy Sensitivity Specificity 

Pressure 86.4% 87.6% 85.2% 

Photoelectric 79.3% 83.1% 75.8% 

Ultrasonic 83.7% 85.4% 82.1% 

Combination of three types of signals 89.7% 91.0% 88.4% 
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After comparing these three electronic sensors through Table 2.2, it can be concluded 

that a pressure sensor may best suit the need to develop the medical device for contin-

uous monitoring. The pressure sensor has the best accuracy, sensitivity and specificity 

to detect the radial pulse wave compared to the photoelectric and ultrasonic sensors. 

Pressure sensors (Strain gauge sensor) also echoes the way a traditional diagnosis is 

done to a certain extent besides generating pulse wave signals with less noise as com-

pared to the photoelectric sensor and ultrasonic sensor. 

2.3.1 Pressure sensor 

The pressure sensor is a type of sensor that is used to determine the transmural pressure 

at the radial blood vessel to obtain the wrist pulse signal. Figure 2.2 below shows the 

radial pulse wave signal that was formed using pressure sensors. Figure 2.3 below 

shows the parameters which can be obtainable through a pressure sensor reading. 

 

Figure 2.2. Radial pulse wave obtained from pressure sensor [140] 

 

Figure 2.3. Parameters obtainable by readings from the pressure sensor [140] 

There are a lot of researchers working on pressure sensors. For example, M.Sharmila 

et.al, [141] have done research on diagnosing diseases through radial pulse wave signal 
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using a piezoelectric sensor. The research objective was to obtain a radial pulse wave 

signal from the wrist and relate it to the Indian traditional method of diagnosis. The 

Indian traditional method takes the pulse from the wrist by using three fingertips. The 

three energies which significantly influence the pulse rhythms that can be detected us-

ing the fingertips are called Kapha, Pitta and Vata. Therefore, three pressure transducers 

were attached at the wrist to obtain the three pulses. The first sensor which was used 

was ‘1 PSI’ pressure sensor from ‘Sensym Products’. This was a failure as it was unable 

to capture intricacies of the pulse. Therefore, ‘Millivolt Output Medium Pressure Sen-

sor’ form Mouser Electronics, Inc was used which could be seen in Figure 2.4. There 

is a tiny diaphragm at the centre which has ‘0–4 inches H2O’ pressure range. The data 

was captured with a sampling rate of 500Hz by using 16-bit multifunction data acqui-

sition card NI USB-6210 which inter-links to collect data from the pressure sensor. Lab 

view was used as the data acquisition software to control the digitization. The research 

had two phases [141]. Figure 2.5 shows the flow of how the research was conducted. 

 

© 2012 IEEE. 

Figure 2.4. The sensor of reading the (Vata, Pitta and Kapha data) [141] 
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© 2012 IEEE. 

Figure 2.5. The flow of the research which has two-phase by M.Sharmila et.al  [141] 

Suket, et al. had used a pressure sensor to obtain a radial pulse wave signal. The work 

was mainly about wrist pulse acquisition and recording system. The pressure sensor 

which was used for this project was MPXM2053D piezo-resistive pressure sensor 

[142], as shown in Figure 2.6. Along the line, ARM Cortex M4 architecture was used 

for digitization of signals and fed into the LCD for real-time monitoring. The signals 

were recorded into a micro SD memory card for offline processing and analysis. The 

purpose of the project was to have a better understanding of the wrist pulse wave signal 

and to support the Ayurvedic practitioner to detect pulse wave signals [143] . Figure 

2.7 shows the wrist pulse signal data which was stored in an Excel sheet.  

 

Figure 2.6. MPXM2053D piezo-resistive pressure sensor [142] 

 

 

Phase Ⅰ 

 

   

 

 

 

 

Phase Ⅱ 

     

  

 

      

 

Pulse sensor Pulse data 

processing 

Transmitter 

and receiver 

Manual tagging 

classification of 

each received data 

for appropriate class 

Preprocessor Building 

classifier 

Classification 

model 

Pulse data Preprocessor Classifier 

model 
Diagnosis 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 23  

 

 

Figure 2.7. Wrist pulse signal data stored in excel sheet  [143]. 

Research about flexible polymer transistors with high-pressure sensitivity for applica-

tion in electronic skin and health monitoring was done by Gregor Schwartz, et al. The 

research was aimed towards developing a pressure sensor by using Polydimethylsilox-

ane (PDMS) material. PDMS materials are from a group of polymeric organosilicon 

compounds which are also known as silicones. The sensor was fabricated in the form 

of pyramids of 3mm height, 6mm base length and 8.85mm spacing, as shown in Figure 

2.8. The sensor showed that it had a response time less than 10ms due to the effect of 

the micro structured PDMS dielectric upon pressure release [144]. The result of this 

research is shown in Figure 2.9. 

 

 [5186940874102]: [Nature] [Nature Communication] [144], [COPYRIGHT] (2013) 

Figure 2.8. Sensor measuring the radial pulse wave of the patient  [144] 
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 [5186940874102]: [Nature] [Nature Communication] [144], [COPYRIGHT] (2013) 

Figure 2.9. A real-time signal of the radial pulse wave [144] 

Choon Meng Ting and Ngak Hwee Chua invented the Bpro watch which functions as 

a radial pulse wave acquisition device. This device can be used in either right or left 

wrist to obtain the radial pulse wave signal. The watch measures in 10-second intervals 

to obtain a block of the radial pulse wave signal. It can be connected through Bluetooth 

to ease data transfer and weighs only around 60 grams. However, it has onboard 

memory to save only 96 blocks of radial pulse wave signals. The watch monitors sys-

tolic and diastolic blood pressure, heart rate, central aortic systolic pressure (CASP) 

and 24-hour blood pressure patterns. The watch currently can only diagnose hyperten-

sive patients [145], [146]. Figure 2.10 and Figure 2.11  shows the BPro® Radial Pulse 

Wave Acquisition Device. 

 

Figure 2.10. BPro® Radial Pulse Wave Acquisition Device [145]. 
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Figure 2.11. The cross-section of the wrist that the BPro® is attached [145] 

2.3.2 Photoelectric sensor 

The photoelectric sensor, on the other hand, is used to measure the blood volume at the 

radial blood vessel by transmitting light and receiving the signal by the reflected light, 

which is in proportion with the volume of the vessel. Figure 2.12 below shows the radial 

pulse wave signal that was formed using photoelectric sensors. Figure 2.13 below 

shows the parameters which can be obtainable through a photoelectric sensor reading. 

 

Figure 2.12. Radial pulse wave obtains from photoelectric sensor[140] 

 

Figure 2.13. Parameters obtainable by readings from the photoelectric sensor[140] 
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Photoelectric sensors have various designs but all of them provide similar results where 

they measure the change in blood volume[147]. The change in blood volume is meas-

ured by the LEDs emitting light and using the photodiode to measure the intensity of 

the non-absorbed light reflected from tissue [148]. Red and green are the most common 

LED colours used in most studies but there are some studies showing yellow LED been 

used [149]. The LED light which has longer wavelengths will be able to penetrate more 

deeply into the tissue such as infrared light. It can penetrate deeper compared to the 

green light LED [150]. The infrared light which has longer wavelength do have its dis-

advantage where it is more prone to motion artifacts. Motion artifact is a patient-based 

artifact that occurs with voluntary or involuntary patient movement during data acqui-

sition. Hence, green light LED which has shorter wavelength would be a better option 

in certain applications [150]. To avoid motion artifact, wearable devices nowadays are 

equipped with accelerometer to record the movements [149] especially during physical 

activity.  

2.3.3 Ultrasonic sensor 

The ultrasonic sensor which works similarly to the photoelectric sensor uses sound 

wave rather than light to measure the blood velocity in the vessel [88], [140]. Figure 

2.14 below shows the radial pulse wave signal that was formed using ultrasonic sensors. 

Figure 2.15 below shows the parameters which can be obtainable through a ultrasonic 

sensor reading. 

 

 

Figure 2.14. Radial pulse wave obtains from ultrasonic sensor [140] 

U
lt

ra
so

n
ic

 S
ig

n
al

0 1000



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 27  

 

 

Figure 2.15. Parameters obtainable by readings from the ultrasonic sensor [140] 

The ultrasonic waves can effectively penetrate human tissues up to a depth of 4cm 

which allows better sensing range in today’s technology [151]. Moreover, the main 

frequency of a blood pressure waveform for an average resting heart rate of 60bpm is 

less than 12Hz [152], [153] which is lower than the 10 MHz frequency range of an 

typical ultrasonic device. An ultrasonic device can safeguard a conformal close contact 

with the curved skin surface when acquiring blood flow, which reduces the difficulty 

or instability compared to the other methods [151]. The ultrasonic sensor is similar with 

the cardiac ultrasound process where it uses high frequency sound wave. In doppler 

ultrasound, it uses an electrical signal source [154] to produce the ultrasonic wave trans-

mitted through the human body. The doppler effect occurs when there is a change in 

frequency. This happens when the red blood cells move into the blood stream where 

the change in time from one position to another, when related to the frequency shift 

shows a positive or negative change depending on the direction of the blood flow. 

Hence, with an ultrasonic sensor, the direction of blood flow can be determined. 

2.4 Estimation of central aortic blood pressure waveform from radial 

blood pressure waveform   

In hospital practice, the blood pressure is measured using the brachial oscillometer 

[21]–[24] where the reading of the branchial artery is considered the same as the central 

aortic pressure (CAP) by clinicians[130]. Despite the fact that the branchial artery is 

close to the aorta artery, the branchial blood pressure waveform reading is not the same 

as the central aortic pressure waveform due to the wave reflection, systolic blood pres-

sure, diastolic blood pressure, pulse pressure and mean artery pressure. It is known that 
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the blood pressure at the aorta and peripheral artery such as the branchial artery differs 

for the pulse pressure, diastolic blood pressure and mean artery pressure. Where the 

pulse pressure increases from the aorta to the peripheral artery while the mean artery 

pressure and diastolic blood pressure decreases by 1-2mmHg from the aorta to the pe-

ripheral arteries[155]–[157]. CAP waveforms have the factors of cardiac loading and 

perfusion which are important on cardiovascular function[14]. Information of this 

waveform is often crucial for precise monitoring and diagnosis of cardiovascular dis-

eases [14]. Recent  research evidence has shown that  cardiovascular outcomes can be 

strongly related to the CAP [18], [20], [165], [57], [158]–[164]. For an instance, 

Agabiti-Rosei et al. has conducted a research showing that the central pressure has a 

closer correlation with surrogate measures of cardiovascular disease [57]. Furthermore, 

Conduit Artery Function Evaluation (CAFE) has studied the differential effects of in-

terventions on central and peripheral pressure [166] and has shown that CAP provides 

a superior measure of hemodynamic load on the heart and central organs. CAP is com-

monly used to determine hypertension. Besides that, CAP has given insights into the 

prevention, diagnosis, and treatment of cardiovascular diseases including coronary ar-

tery disease, stroke, myocardial infarction, and heart failure[130]. Measurement of CAP 

is usually conducted invasively, which is not ideal for continuous monitoring or to be 

used as a screening tool. In today’s technological world, there are commercialized 

wearable devices which estimates the CAP non-invasively from the peripheral artery. 

These wearable devices are strapped at the user’s wrist to acquire the radial blood pres-

sure waveform and estimates the CAP. Current wearable devices utilizes the radial 

blood pressure waveform as it would be comfortable to the user and also calibration of 

systolic and diastolic blood pressure using cuff-sphygmomanometric is more suitable 

for  applying the  tonometry technique at the upper limb site such as radial artery com-

pared to another peripheral artery such as carotid artery due to the pulse pressure am-

plification[167]. In addition, the bony structure (radius) underlying the radial artery 

gives an advantage compared to other peripheral arteries where it ensures an easy and 

optimal applanation tonometry[167]. However, radial blood pressure waveforms must 

be mathematically transformed  in order to attain the central aortic blood pressure wave-

form[167].  
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2.4.1 Generalized transfer function (GTF) 

The common way of converting a radial pulse wave signal to the aortic wave signal is 

by using “generalized transfer functions” (GTF) [14], [26], [168]–[173]. GTF in time 

or frequency domain is used to obtain the central aortic waveform from the radial wave-

form by relating the aortic hemodynamic indices [14], [26], [168].  This technique as-

sumes the relationship between the radial blood pressure waveform and the aortic blood 

pressure waveform is kept the same for a set of subjects with similar physiological and 

pathological characteristics[130]. However, errors occur, when applying a GTF gener-

ated from one specific group of patients to another group with different ages undergoing 

different treatment [169], [170].  The error caused by GTF is very dependent to the 

heart rate and blood pressure level. Hence, this should be taken into consideration when 

the GTF is applied to a set of subjects with different hemodynamic conditions[174]. 

SphygmoCorCVMS, AtCor Medical, Australia [9]–[11] was the first device accepted 

by US Food and Drug Administration (FDA) that utilized GTF to estimate the central 

aortic blood pressure waveform. This commercial device calculates the generalized 

transfer function by using multiple central and peripheral blood pressure waveforms 

which undergo a Fourier analysis. This device obtains the peripheral pressure waveform 

from the user which is converted to the frequency domain and multiplied with the cal-

culated GTF, the result of this is then converted back to time domain  to obtain the 

estimated central aortic blood pressure waveform[11], [131], [135], [168], [175], [176].  

The research conducted on 30 patients by Cloud et al [177]has shown that the GTF 

method by SphygmoCor for estimating the central aortic blood pressure waveform un-

derestimates the systolic pressure and overestimates the diastolic pressure of the central 

aortic pressure by 13.3mmHg and 11.5mmHg respectively.  Since the SphygmoCor 

method underestimates the systolic blood pressure, it may not be suited to determine 

patients for hypertension because it is known that systolic blood pressure is a better 

predictor of hypertension risk [178]which relates to cardiac disease.  

2.4.2 N-point moving average (NPMA) 

A simpler method in accessing the central aortic blood pressure waveform compared to 

the GTF is the N-point Moving Average (NPMA).  The NPMA is a first-order low-pass 

filter where it removes all the high frequency related pulse wave features as it travels 

from central aorta to the periphery[130]. The high frequency features removed by 

NPMA are related to wave reflections, and the NPMA provides a smooth central aortic 
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blood pressure waveform capable of capturing the systolic reading [130].  The N-point 

moving average with a denominator of one-quarter of the tonometer sampling fre-

quency accurately defines the central aortic pressure when applied to non-invasively-

acquired radial signals from the patient [12] which is utilized  by BPro + A‐Pulse 

(HealthSTATS)[9], [12], [13]. This method is also a generalised method where it will 

contribute error for subject variability.  

2.4.3 Adaptive transfer function (ATF) 

An adaptive transfer function was created by Gao, M. et al to address the limitation of  

GTF’s population averages where the GTF is not able to adapt to the variations in the 

ratio of radial to aortic pulse pressure (pulse pressure (PP) amplification)[179]. There 

are several adaptive transfer function methods proposed to tune the GTF to obtain a 

more reliable central aortic pressure[180], [181]. The simple ATF for deriving the cen-

tral blood pressure waveform from a radial blood pressure waveform which was devel-

oped by Gao, M. et al was able to give a greater accuracy than GTF in the low pulse 

pressure amplification subjects while showing a similar accuracy with high pulse pres-

sure amplification subjects [179]. This ATF is a model based transfer function where it 

takes into consideration  the wave travel time and wave reflection coefficient parame-

ters of a  physiologic model of arterial wave transmission and reflection[179]. From the 

research by Gao, M. et al, it is known that the ATF is not able to improve the estimation 

of the augmentation index and ejection interval of the central blood pressure waveform. 

This is due to the physiological model being developed by two parameters, which is too 

simple to adapt to the detailed features of the central blood pressure waveform[179].  

2.4.4 Second systolic pressure of periphery 

The attained radial or branchial blood pressure waveform can be used to estimate the 

systolic blood pressure reading of the central aortic blood pressure waveform by ana-

lysing the second systolic pressure of the periphery (radial or branchial)[182]. The re-

flected wave peak of the radial or branchial blood pressure which is the second systolic 

pressure waveform approximates the systolic pressure of the aortic blood pressure 

waveform because the pressure gradient in the blood flow from the central aortic to the 

peripheral are relatively small during late systole where the late systolic shoulder rep-

resents the dominant peak in most adults in their midlife [124], [182]. On the other 

hand, systolic blood pressure of the central aortic blood pressure waveform for older 

adults [131]can be calculated using a regression equation where the second systolic 
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pressure of the periphery will act as an independent variable[125], [183] . The technique 

of utilizing the second systolic pressure of periphery to directly estimate the systolic 

blood pressure reading of the central aortic blood pressure waveform is used by the 

commercial device HEM‐9000AI Omron Healthcare, Japan [10], [124]–[126] . The 

limitation of this technique is that it will not work when the second peak of the periph-

ery disappears which normally occurs in old patient, patients with hypertension or ar-

terial stiffness[130].  In addition, this technique depends on the morphology of the pe-

ripheral waveform (radial or branchial blood pressure waveform) to estimate the central 

aortic pressure. Hence, the systolic blood pressure of the central aortic would be inac-

curate for younger individuals with non-augmented peak systolic pressure[126]. 

2.4.5 Summary of literature review on estimation of central aortic blood pressure 

waveform 

From the literature, it is known that majority of the wearable ambulatory devices are 

utilizing generalize transfer function (GTF) to estimate the central aortic blood pressure 

waveform such as Mobil‐O‐Graph NGI.EM GmbH, Germany [11], Oscar 2 with 

SphygmoCor, SunTech Medical[128] and ABPM 7100Welch Allyn, Inc.   There are 

wearable ambulatory devices that are utilizing second systolic pressure of periphery 

with regression to estimate the systolic blood pressure reading such as Arteriograph 

24 h, TensioMED Ltd., Hungary[115], [116] and WatchBP O3, Microlife AG, Widnau, 

Switzerland  [139]. Besides that, there is the BPro + A‐Pulse, HealthSTATS, Singapore 

[9], [12], [13] which utilizes the N‐point moving average (NPMA)  to estimate the cen-

tral aortic blood pressure waveform.  The research conducted on 30 patients by Cloud 

et al [177] has shown that the GTF method by SphygmoCor for estimating the central 

aortic blood pressure waveform underestimates the systolic pressure and it may not be 

suited to determine patients for hypertension because it is known that systolic blood 

pressure is a better predictor of hypertension risk [178]. Moreover, the ambulatory de-

vices that utilizes second systolic pressure of the periphery to estimate the central aortic 

blood pressure waveform will not work when the second peak of the periphery disap-

pears which normally occurs in old patient, patients with hypertension or arterial stiff-

ness[130].  The NPMA technique utilised by the Bpro watch provides the central aortic 

systolic blood pressure reading instead of the aortic blood pressure waveform[130].  In 

addition, all the current commercialized ambulatory devices utilize these techniques 

using a software in the central processing unit (CPU) to convert the radial to aortic 
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blood pressure waveform, where the device is acquiring the radial blood pressure signal 

and transmits the data to the computer to process the conversion of radial blood pressure 

waveform to aortic blood pressure waveform for analysis of the signal and indication 

of hypertension.  For example, the BPro wearable watch which is an ambulatory device 

acquires the radial blood pressure waveform and transfers the acquired data via Blue-

tooth or cable to the computer where the + A‐Pulse Health STATS software with 

NPMA converts the acquired signal to an estimate aortic blood pressure waveform for 

analysis. Hence, there is a need to identify a current method or develop a novel method 

with low computational intensity which is able to give a close estimate of the actual 

aortic blood pressure waveform with a close prediction of the systolic pressure that can 

be embedded in the user’s watch (micro-controller) to ensure continuous conversion of 

central aortic blood pressure waveform. Then, the estimated central aortic blood pres-

sure waveform can be directly analyzed to indicate the risk to the user without the need 

of transmitting data to a computer or any cloud platforms.  This will ensure the user is 

always aware of their health even if there isn’t any WIFI, Bluetooth or wireless com-

munication to a computer or cloud platforms for processing and analyzation.  

2.5 Risk indication for cardiovascular disease 

Cardiovascular disease risk indication scores were initially conducted in the Framing-

ham study [184] which was used to predict an individual’s cardiovascular risk by using 

variables such as age, gender, cholesterol, smoking habit, blood pressure levels, etc. 

This Framingham technique in indicating risk of cardiovascular diseases had certain 

methodological drawbacks when it was applied to different populations around the 

world (Seven Countries Study dataset)  such as over-estimates risk in young people and 

overpredict absolute risk in low-risk European populations which was identified by 

Menotti  et al [185] in the early 2000s.  To address the drawbacks when applied risk 

indication to different population size and types, the European Society of Cardiology 

(ESC) established the SCORE project in the early 2000s which developed a more ac-

curate risk prediction tool for the European populations [186]. The European Society 

of Cardiology (ESC) SCORE was recalibrated later by a Greek team into the Hellen-

icSCORE which takes the consideration of the pervasiveness of cardiovascular risk fac-

tors in the Greek population [187].  This shows that a variety of cardiovascular disease 

risk prediction tools exist with different set of risk factors from different countries and 

populations, which have large variations in regards to their performance [188]. Majority 
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of the scores use a common set of risk factors which is known as classical and are 

similar to that mentioned previously such as age, gender, etc. [188], while other risk 

prediction tools which have incorporated more advance markers of cardiovascular dis-

ease like C-Reactive Protein (CRP) Test, Heart-type fatty acid binding protein (H-

FABP) ,etc.  [188]. The majority of the risk prediction tools are based on stochastic 

statistical models that consider individual variables based on cohort studies to calculate 

the overall risk for a future event [189]. Some recent studiest of risk indication of car-

diovascular disease utilizing United Kingdom Prospective Diabetes Study (UKPDS) 

cardiovascular risk equations, Framingham Risk Score (FRS), Systematic Coronary 

Risk Evaluation (SCORE) , Reynolds Risk scores(RRS), Joint British Society risk cal-

culator 3(JBS3), American College of Cardiology/American Heart Association 

(ACC/AHA), Pooled Cohort Risk Equation (PCE- ASCVD) and National institute for 

health and care excellence (NICE) risk is shown in Table 2.3 where odds ratios  is OR, 

Area under the curve is AUC,  net reclassification improvement  is NRI and integrated 

discrimination improvement is IDI. 
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Table 2.3 shows some of the recent studies that compared conventional statistically 

driven predictive CVD risk models [190]. 

Refer-

ences 

Data-

base 

Data 

size 

Age  Indica-

tion 

Method Risk 

Stratifi-

cation 

PE 

Metrix 

Summary 

Davis 

et.al 

2009 

[191] 

Aus-

tralia 

815 30–

74 

MI, 

CHD, 

Stroke 

FRS-

CVD, & 

UKPDS 

28% 

fewer 

CHD 

events 

than oc-

curred, 

underesti-

mated the 

number of 

events by 

38% for 

stroke 

AUC, 

Brier 

score, 

Hosmer- 

Leme-

show test 

The UKPDS 

stroke equation 

is acceptable for 

the Australian 

population (but 

not the UKPDS 

and FRS CHD 

equations). 

Ahn 

et.al 

2011 

[192] 

Korea 1275 - Carotid 

athero-

sclerosis 

FRS-

CVD, 

UKPDS, 

& 

SCORE 

- AUC, OR FRS, UKPDS, 

and SCORE had 

no significance 

on the predicta-

bility of carotid 

atherosclerosis. 

Cook 

et.al 

2012 

[193] 

United 

States 

America 

1722 50–

79 

CVD 

Events 

FRS & 

RRS 

<5%, 5%–

9%, 10%–

19%, 

≥20% 

IDI, NRI The RRS was 

better calibrated 

than the FRS. 

Van 

Staa 

et.al 

2014 

[194]  

United 

King-

dgom  

1.8 

mil-

lion 

35–

74 

CVD 

Events 

FRS, AS-

SIGN, 

QRISK2 

<10%, 

10%–14% 

15%–

19%, 

≥20% 

Relative 

Rate 

These three risk 

models consist-

ently predicted 

low risk (but not 

high risk). 

Selva-

rajah 

et.al 

2014 

[195] 

Malay-

sia 

14,86

3 

40–

65 

CVD 

event 

FRS-

CVD, 

SCORE 

high-risk 

chart, 

SCORE 

low-risk 

chart, & 

WHO 

≥20% 

(FRS) 

≥5% 

(SCORE), 

≥30% 

(WHO) 

AUC FRS and 

SCORE-high 

risk chart (but 

not the WHO) 

may be utilized 

to predict the 

risk of CVD in 

Malaysian cho-

rot. 

Bansal 

et.al 

2015  

[196] 

North 

India 

489 18–

75 

CHD FRS-

CVD, & 

UKPDS 

≥20% Kappa 

Coeffi-

cients 

Despite the 

strong agree-

ment, a different 

population was 

identified as be-

ing at high risk. 

Garg 

et.al 
India 1110 25–

85 

CVD FRS-

CHD, 

FRS- 

<10%, 

10%–19% 

20%–

 FRS-CVD and 

NICE guidelines 

are appropriate 
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2017 

[197] 

CVD, 

QRISK2, 

JBS-3, 

ASCVD, 

& WHO 

29%, 

30%–

39%, 

≥40% 

for the indian pa-

tients. 

Al-

barqo-

uni 

et.al 

2019 

[198] 

Aus-

tralia 

5453 40–

74 

CVD ASCVD, 

1991 

FRS, 

2009 

FRS, 

2008 of-

fice- 

based 

FRS 

≥20% 

(FRS) 

≥7.5% 

(ASCVD) 

Brier 

Score, C-

statistics, 

D-statis-

tics 

The 1991 FRS or 

ASCVD models 

should be em-

ployed to esti-

mate CVD risk 

in the Australian 

population. 

 

The predictive risk models perform differently in various populations, as shown by 

these comparison studies between the risk assessment tools (Table 2.3), and clinicans 

must consider the baseline risk profile, demographics, and risk variables before propos-

ing any treatment regimens.Despite all the above-mentioned techniques for early de-

tection of cardiovascular disease by risk indication, there is still a high percentage of 

cardiovascular diseases occurrence in people without the risk factors or categories in 

low-to-moderate risk. Besides that, approximately 20% of the high risk category of car-

diovascular disease was misjudged due to the misclassification of the risk[188]. Hence, 

there is a need to identify new methodologies that would improve the risk prediction of 

cardiovascular diseases [199]–[202]. Artificial intelligence algorithms have drastically 

altered the landscape of healthcare applications in today's world[203]–[206]. Local and 

global patterns from healthcare databases are easily recorded, and complex interactions 

among such patterns of health risk have been analyzed to assist clinicians in making 

clinical decisions using artificial intelligence-based algorithms[203], [207]. 

2.6 Artificial intelligence for detection of cardiovascular disease 

With today’s fast developing technology with advanced computing speeds and newer 

artificial intelligence learning techniques, artificial intelligence has been increasingly 

used in the application of health care [34]. Artificial intelligence has been incorporated 

in risk indication techniques in various scientific fields, including health monitoring 

due to the large amount of data, analytical processing, and algorithms for data manipu-

lation [188]. The two sub-areas of artificial intelligence, is called Machine learning and 

Deep learning. Machine learning is a scientific algorithm and statical model that is used 
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to perform a specific task relying on the inference derived from the data. Deep learning 

can process a wider range of data, requires lesser manual preprocessing of data by hu-

mans and can sometimes produce more accurate results compared to machine learning 

when trained with sufficient amount of data.  Figure 2.16 shows the summary of the 

core difference between machine learning and deep learning.   

 

Figure 2.16 Machine learning Vs Deep learning 

 

2.6.1 Machine learning 

Since the early 2000s, machine learning has grown in the area of health science [208] 

where it has been applied in various healthcare and biomedicine applications [209]. 

This application includes cancer prediction [210], radiology imaging [211], research on 

ageing [212] and cardiovascular risk prediction [213]. Machine learning is a technique 

of learning from data which is well-known and established by statical approach where 

the model is built based on the data which is a subset of a larger population [188]. For 

machine learning, there is a need of human intervention in each stages to build the 

model [214] such as manual feature extraction of data and the efficiency of the machine 

learning is evaluated by the prediction performance. Currently for cardiovascular dis-

ease risk indication, machine learning techniques are built with complex models con-

sidering features from the accessible data of patient’s bio-clinical risk factors, socio-

economic, lifestyle and psychological characteristics [188]. Artificial Neural Networks 

(ANN) is a machine learning technique which has been used in current research in the 

area of healthcare. ANN is an arithmetic tool for pattern recognition that have been the 

subject of renewed research interest during the past 10 years. In 1960, Minsky [215] 
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showed that the research in neural networks which began in the 1940s had applications 

to solve simple problems. Neural network research is being revived currently as learn-

ing models which are commonly used in different network formats and learning rules. 

ANN is a computer system modelled on the human brain and nervous system for deci-

sion-making, and the artificial neuron is called a perceptron. Therefore, ANN is formed 

by a multi-layer perceptron, which is a combination of multiple perceptrons in more 

than one layer as shown in Figure 2.17. 

 

Figure 2.17 Multi-layer perceptron 

Each neuron is a sum weighted input that transmits a transfer function to the next neuron 

level, which finally activates the output unit and produces the artificial neural network 

output [216] . Feeding in training data and adapting the weights according to the error 

from network output to intended output, is the process of training the ANNs. There are 

two types of methods, one of which is supervised learning and the other, unsupervised 

learning. Supervised learning technique is to connect inputs to learned outputs whereas 

unsupervised learning techniques are typically used for classifications of the database. 

A key algorithm for the weight update procedure is the introduction of the backpropa-

gation algorithm by Rumelhart et al. [217], [218] in 1986, which is commonly used 

although there are alternative processes, such as cascade correlation and general regres-

sion [216], [219].  

In the identification of cardiovascular disease, ANN is utilized in four significant car-

diovascular medicinal zones, which are coronary artery disease, electrocardiography, 

cardiac image analysis and cardiovascular drug dosing [164]. Numerous research [30], 

[31], [220] have been published that relates ANNs to diverse areas of importance to 
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cardiovascular experts. ANNs was a contrivance by Akay [32] to diagnose coronary 

artery disease with a backpropagation trained algorithm with the input data of the his-

tory of the patient, physical examination data and pre-processed recordings of diastolic 

heart sound. From the research study of 63 abnormal and 37 normal subjects, the ANNs 

gave an output of 84% for positive prediction accuracy and 89% for negative accuracy. 

ltchhaporia D et al. [219] have done similar research for diagnosing coronary artery 

disease. This research obtained 80% positive prediction accuracy and 90% for negative 

prediction accuracy. By setting >50% obstruction of the left main coronary artery, the 

ANNs was trained to recognize significant coronary artery disease.  

Electrocardiography (ECG) can be interpreted and analysed using computer technology 

[221], [222] and ANNs can be used to automate the analysis and interpretation of the 

ECG signals. Bortolan et al. [223] mentioned that ANNs can also be used for interpre-

tation of ECGs to statistical analysis of conventional linear discriminant analysis and 

multi-group logistic discriminant analysis. Edenbrandt et al. [224] used ANNs to cate-

gorize ECG ST-T segment and compared it with clinical findings. The output of ANNs 

gave an 80% accuracy compared to an experienced cardiologist. Heden et al. [225] used 

ANNs to diagnose myocardial infarction from the analysis of the ECGs of 1,107 pa-

tients who had undergone diagnostic cardiac catheterization. This research study has 

compared the ANNs with the conventional automated ECG interpretation with the 

Glasgow program [221]. The conventional method showed a 66% sensitivity where 

else ANNs showed a 78% sensitivity. Therefore, there is only a minor difference be-

tween both approaches.   

Radiofrequency catheter ablation is used as therapy for patients with cardiac arrhyth-

mias. Before performing radiofrequency ablation, ANNs are used to focus on the ac-

cessory pathways. The trained ANN provides an output of each of the network which 

indicates the presence or absence of the accessory pathway site. After the ANN was 

trained manually by Dassen et al [226] to generate data from 60 cases, 25 cases were 

used to test the network. Predicted locations and actual locations were exact fits for 15 

cases, a border zone between two locations predicted by the network for 8 cases and 

the prediction was incorrect for two other cases. ANNs could be useful in these types 

of studies even where causal relations between physiologic mechanisms and ECG find-

ings are concluded by the investigators. ANNs will potentially reduce process time, 

decrease radiation exposure, prevent unsuccessful energy applications and increase 
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overall success rates by optimizing the ablation technique with the localization of an 

accessory pathway by pre-processing information. Recognition of lesions as benign or 

malignant images on mammography, hepatic ultrasound images and avascular necrosis 

of the femoral head in magnetic resonance images have been trained in ANNs [222]. 

ANNs can be used to automate the segmentation and recognition of structures or re-

gions of interest in echocardiographic and scintigraphy images in cardiovascular appli-

cations. 

The limitation of above-mentioned techniques of utilising ANNs for cardiovascular dis-

ease detection is that it cannot be incorporated for 24-h monitoring as the technique of 

acquiring the data is by Holter monitoring or one time measurement. Hence, ANNs 

using blood pressure data would be ideal as in today’s technology era where there are 

ambulatory medical devices which could acquire the blood pressure readings non-in-

vasively such as  SphygmoCorCVMS, AtCor Medical, Australia [9]–[11] and 

BPro + A‐Pulse, HealthSTATS[9], [12], [13]. Many researchers are working in the 

field of cardiovascular disease prediction utilizing blood pressure data with other addi-

tional information such as chronic risk factors (diabetes, obesity, smoking, etc) , psy-

chobehavior (physical activity, sleep quality, respiration, stress, depression, etc) , ge-

nome (family history)  and others [227].  An ANN based system that utilizes 24-h blood 

pressure monitor input to diagnose and analyse therapeutic interventions for ambulatory 

hypertensive patients named "Hypernet" was developed by Poll et al. [31]. The thera-

peutic recommendations of Hypernet were tested against those of an experienced spe-

cialist for a test set of 35 patients. The output showed that Hypernet achieved a sensi-

tivity of 92% and a specificity of 96% when evaluated for both diagnosis and treatment 

ability. The Self-Applied Questionnaire (SAQ) study to predict cardiovascular disease 

proposed by Shen et al [228] was utilised where the study was based on the analysis of 

the common risk features of the disease and other data information by the SAQ. The 

study was based on blood pressure, smoking, blood cholesterol, sex and age to deter-

mine the risk of having cardiovascular disease. The study utilised an ANN which is a 

multi-layered feed forward neural network with the backpropagation method. The out-

come of the ANN was a 67% accuracy for the detection.  A hybrid system constructed 

by genetic algorithm and ANN was proposed by Amin et al.[229] to predict cardiovas-

cular disease based on risk factor. Amin et al.[229] highlighted the two major disad-

vantages of the algorithm which are: it is impossible to find the initial weights which 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 40  

 

are globally optimised and the algorithm takes a lot of time to converge. To address 

these disadvantages, these researchers applied genetic algorithm to optimize the 

weights of the ANNs which gave a better performance than the basic ANN which re-

sulted in 96.2% accuracy for training and 89% accuracy for testing.  Sonawane and 

Patil [230] developed an ANN trained by Vector Quantization algorithm using random 

order incremental training to predict cardiovascular disease. The input layer of the ANN 

consists of 13 neurons which are the clinical features of cardiovascular disease dataset 

and the output layer was a single neuron which shows the presence or absence of car-

diovascular disease. The output is set to a single neuron to obtain less error and high 

accuracy. The performance of the ANN is improved by training the network with higher 

number of epochs where the obtained accuracy was 85.55%. Other than ANNs, a hybrid 

machine learning model based on Decision Tree, Support Vector Machine, and Naïve 

Bayes was proposed by Bashir et al.[231]. This research utilized different classifiers to 

obtain the majority voting scheme where the scheme works in two different steps. The 

first step is the three classifiers output results, and the second step combines the deci-

sions of the three classifiers output to develop a new model created by the majority 

voting scheme. The approach attained a 74% sensitivity, 82% accuracy and 83% spec-

ificity for the prediction of cardiovascular disease. Feshki and Shijani [232] developed 

a model on cardiovascular disease prediction by using feature selections and classifica-

tion for a specific dataset. The developed model operates by partitioning the dataset 

into subsets (sick and healthy people) and identifying the subset having the highest 

accuracy using particle swarm optimization with a feed-forward backpropagation algo-

rithm as a classifier.  From the outcome of the model, it is known that the feature selec-

tion and backpropagation feed-forward neural network with particle swarm optimiza-

tion is an effective method as it was able to give 91.94% accurate results.  

These studies illustrate the potential of artificial neural networks in blood pressure mon-

itoring wearable devices as it can continuously monitor the blood pressure reading and 

incorporate risk factors of cardiovascular diseases such as age, gender, smoking habits, 

obesity, etc. However, these studies with ANNs or machine learning techniques which 

utilise history and physical examination data such as obesity, is just an indication of 

risk but can’t be relied as a predictive indicator for cardiovascular disease. For example, 

despite obesity being a strong independent cardiovascular disease predictor even in the 

absence of other risk factors, the clinical outcome is not linear for a relationship 
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between higher BMI with the onset of cardiovascular disease [233]. Assumption of 

excess body mass (obesity) as a lead to cardiovascular disease is not necessarily accu-

rate because there are studies showing the potential of protective effects of obesity when 

it coexists with cardiovascular disease where this phenomenon is call obesity paradox 

[234]–[236]. This paradox has been investigated with heart failure and coronary heart 

disease [233], and recently research data has also shown that this paradox applies to 

hypertension[237], [238], atrial fibrillation [239], [240], pulmonary arterial hyperten-

sion [241] and congenital heart disease [242].  As for blood pressure monitoring, the 

reading of systolic and diastolic are normally a good indicator for hypertension. Despite 

hypertension being a leading risk factor for premature death worldwide [243] which 

typically relates to cardiovascular risk, there are many generated debates and editorial 

commentaries [15]–[17] in regards of hypertension being an indicator for cardiovascu-

lar disease. Therefore, there is a need of using the entire blood pressure pulse as training 

for machine learning, rather than just the systolic and diastolic values to give a better 

detection of cardiovascular disease. As by feeding in the entire blood pressure pulse 

waveform into an artificial intelligence, the waveform’s morphology change can be 

used to determine cardiovascular disease. The blood pressure waveform is a fusion of 

the forward waveform generated by left ventricular ejection and a reverse/backward 

travelling reflected waveform caused by the sites of impedance mismatch, for example 

the arterial taper and difference in vessel stiffness, which often occur at bifurcations 

[244], [245] . The impedance change generates numerous reflected ‘wavelets ‘which 

are summed together to produce the effective reflected wave, which results in the in-

crease of the systolic pressure in the central arteries and also produces the features in 

the blood pressure waveform such as the notch. Other than the systolic pressure being 

an indicator for hypertension resulting to cardiovascular events, the feature of the blood 

pressure waveform can be used to indicate cardiovascular events. For example, the 

notch which is one of the blood pressure waveform features, is the primary signaling 

that facilitates the endothelial-to-mesenchymal transformation during cardiac valve for-

mation. The endothelium is conceivably one of the largest organ systems, and research 

on its diversity and the multiplex functions it performs continues to emerge. Significant 

evidence has implicated 'endothelial dysfunction' as a contributing factor to a number 

of cardiovascular diseases [246]. To feed in the entire blood pressure waveform into an 

artificial intelligence, the blood pressure waveform would need a feature extractor to 

extract the features of the signal. However, the extraction of features is a laborious task 
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[247] and would need tremendous amount of information to identify the features which 

are related to cardiovascular disease. Hence, by utilizing deep learning the feature ex-

traction can be automated without the need of manual extraction as the deep learning 

model would identify the key features of the signal and relate to signal classification. 

2.6.2 Deep learning 

Deep learning originated from the study of Artificial Neural Networks (ANNs), which 

are computation models inspired by biological neural networks in human brains which 

has been extensively studied since the 1980s[248]. The idea of implementation of deep 

learning is inspired by biological processes, powered by high performance computing 

hardware which has made very deep models computationally practicable for a real-

world application. For example, in the convolutional neural network, the connectivity 

between neurons reassembles the network of neurons in the animal/human visual cortex 

[249].  Deep learning models have achieved superior results compared to other high 

end machine learning models and even compared to human experts in many applied 

areas in recent years [248]. Furthermore, in recent years of research and development 

in deep learning, various neural network’s structures have been designed for signal pro-

cessing.  Recurrent neural network (RNN) [250] is a deep learning model based on 

internal memory where it is used to process arbitrary time series input sequences such 

as speech recognition, handwriting recognition, etc. Long Short-Term Memory 

(LSTM) [251], another deep learning model can effectively prevent the occurrence of 

gradient vanishing from processing time series signals. The most remarkable achieve-

ments in recent years for pattern/feature classification using deep learning is done using 

Convolutional Neural Networks (CNN) [42]–[46]. Convolutional neural networks pro-

vide an end-to-end learning model where a trained CNN by gradient descent method 

can learn the characteristics of the input data and further complete the pattern classifi-

cation. CNN has a very strong ability of learning the features and pattern classification 

because the features of the lower layers are derived from the partial information and 

convolutional kernel with sharing weights from the upper layer [42]. In the field of 

biomedical engineering, as in biomedical signal analysis the entire blood pressure pulse 

waveform was utilized in training deep learning models, CNN is the ideal deep learning 

method as it mimics the visual of the human’s neuron network interpreting the entire 

signal with regards to the signal’s features to relate to the cardiovascular disease. A 
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typical CNN consists of a number of convolutional layers, pooling layers and fully con-

nected layers as its hidden layers shown in Figure 2.18.  

 

 

Figure 2.18 A typical Convolutional Neural Network architecture 

In recent years, the CNN has been used for classification of human physiological signal 

patterns such as electrocardiogram (ECG), Phonocardiogram (PCG) and blood pressure 

waveform. Table 2.4 shows some of the recent work of using the electrocardiogram 

(ECG) signal for classification/detection. For Phonocardiogram (PCG), there are re-

searchers who utilized the Aalborg University heart sounds database from Physio-

Net/Computing in Cardiology Challenge 2016 to verify the developed algorithms for 

classification of normal and abnormal heart sound recordings using CNN shown in Ta-

ble 2.5. The database consists of five databases labelled from A to E that contains 3126 

phonocardiogram (PCG) recordings, with recording lasting from 5 to 120 seconds.  

Table 2.4. Convolutional neural network (CNN) using Electrocardiogram (ECG) 

Input

Convolution

Pooling

Fully 

Connected

Output

Feature Extraction Classification

Reference Detection Method Accuracy 

Zubair 

et.al  2016 

[252] 

Arrhythmia 

non-linear transform for R-peak de-

tection and a 1D CNN with a varia-

ble learning rate 

92.7% 

Li et.al  

2017 [253] 
Arrhythmia 

Wavelet transform (WT) for de-

noising and R-peak detection and a 

two-layer 1D CNN 

97.5% 

Isin et.al  

2017 [254] 
Arrhythmia 

Denoising filters, Pan-Tomkins, 

AlexNet for feature extraction and 

PCA for classification 

92.0% 
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Rajpurkar  

et.al 2017 

[255] 

Arrhythmia 

34-layer CNN to classify the ECG 

signals into 14 types of output clas-

ses. 

80% 

Acharya 

et.al  

2017[256] 

Arrhythmia 

11-layer CNN with the output layer 

of four neurons, each representing 

the normal (Nsr), Afib, Afl, and Vfib 

ECG class. 

92.5% 

R.Acharya 

et.al  2017 

[257] 

Myocardial In-

farction 

CNN for the automated detection of 

a normal and MI ECG beats (with 

noise and without noise). 

93.53%, 

95.22% 

R.Acharya  

et.al  2017 

[258] 

Coronary Ar-

tery Disease 

Using different durations (two- and 

five-seconds durations) of ECG seg-

ments with CNN. 

94.95%, 

95.11% 

Yao et.al  

2017 [259] 

Atrial Fibrilla-

tion 

Multiscale CNN (AFDB, LTAFDB, 

private) 
98.18% 

Jin  et.al  

2017 [260] 
Abnormal ECG 

Identify abnormal ECG using lead-

CNN and rule inference 
86.22% 

Wu et.al  

2018[261] 
Arrhythmia 

active learning and a two-layer CNN 

fed with ECG and RR interval 

Multiple 

[nearly 100% 

accuracy in 

normal and 

ventricular 

ectopic beat 

predictions] 

 

Xia et.al  

2018 [262] 

Atrial Fibrilla-

tion 

CNN with spectrograms from short 

time Fourier transform or stationary 

WT (AFDB) 

98.29% 

R.Acharya  

et.al  2018 

[263] 

Congestive 

Heart Failure 

11-layer CNN model for CHF diag-

nosis 
98.97% 

Xiao  et.al  

2018[264] 
ST event 

Classify ST events from ECG using 

transfer learning on Inception v3 
0.867b 

Zhong  

et.al  2018 

[265] 

Fetal ECG seg-

ments 

Three-layer CNN for classifying fe-

tal ECG segments 
77.85% 

Yao et.al  

2020[266] 
Arrhythmia 

Attention-based time-incremental 

CNN, achieving both spatial and 

temporal fusion of information from 

ECG signals 

81.2% 

Avanzato 

et.al  2020 

[267] 

Heart disease 
Automatic ECG diagnosis using 

CNN to detect normal, atrial prema-

ture beat and premature ventricular 

98.33% 
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Table 2.5 Convolutional neural network (CNN) using Phonocardiogram (PCG) 

Reference Method Accuracy 

Potes et.al 

2016 [269] 

124 time-frequency features were extracted as the input to a var-

iant of the AdaBoost classifier and a second classifier using 

CNN was trained using PCGs cardiac cycles decomposed into 

four frequency bands. The outputs were combined with the de-

cision rule from both AdaBoost and CNN.  

86.02% 

Ryu et.al 

2016 [270] 

Filtered by using Windowed-sinc Hamming filter algorithm to 

remove signals regarded as noise. The filtered recordings are 

then scaled and segmented. Using the filtered and segmented re-

cordings, a 4-layer CNN was trained to extract features and con-

struct a classification function. 

79.5% 

Rubin et.al 

2017 [271] 

2-layer CNN and Mel-frequency cepstral coefficients for auto-

matic classification of heart sound 

83.99% 

Kucharski 

et.al 2017 

[272] 

Spectrogram by extracting a set of time-frequency parameters to 

be fed into a 5-layer CNN with dropout 

91.6% 

Dominguez 

et.al 2018 

[273] 

Spectrogram by segmenting and preprocessing by using the neu-

romorphic auditory sensor to decompose the audio information 

into frequency bands to feed into the CNN which has a modified 

AlexNet 

94.16% 

 

On the other hand, for blood pressure waveforms, Hu et al utilized Shannon Energy 

Envelope, Hilbert Transform (SEEHT) and a convolutional neural network to classify 

the blood pressure pulse waveform into health and subhealth [274]. The outcome of the 

research shows a 72.31% accuracy on classification of health against subhealth and a 

96.33% accuracy on arteriosclerosis against non-arteriosclerosis. This research also 

shows that TCM doctors are able to identify health for about 60% using pulse wave 

because the effective features for classification are uncertain [274]. This shows that the 

contraction for the classification of 

heart disease. 

Wang et.al  

2021 [268] 
Arrhythmia 

Continuous Wavelet Transform 

(CWT) is used to decompose ECG 

signals to obtain different time-fre-

quency components, and CNN is 

used to extract features from the 2D-

scalogram composed of the above 

time-frequency components 

98.74% 
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CNN performs better in feature identification and classifying the blood pressure pulse 

signal compared to a human. Young-Jin Moon et al applied arterial blood pressure 

waveform data recorded from liver transplantation surgeries to the convolutional neural 

network to estimate stroke volume (SV) which attained a concordance rate of 74.15% 

during surgery [275].  Shota Shimazaki et.al investigated convolutional neural network 

on Photoplethysmography (PPG) signals based on the relationship between pulse wave-

form and blood pressure reading. The pulse wave and blood pressure data were col-

lected from 78 subjects to conduct a precision assessment experiment where the CNN 

was able to attain a correlation coefficient (R) of 0.71 compared to using conventional 

methods (geometric features + Multiple Regression Analysis (MRA)) which attained 

0.63 correlation coefficient [276]. In addition, Gaoyang Li et.al utilized a convolutional 

neural network model to identify one to one pulse pattern to its corresponding cardio-

vascular disease [42]. In the study by Gaoyang Li et. al, five cardiovascular diseases 

and complications were extracted from medical records for the first CNN classifier and 

four physiological parameters related to selected diseases were also extracted to build 

the second CNN classifier. The outcome of each CNN was able to attain 95% and 89% 

accuracy for the first and second CNN respectively [42]. From these research areas, it 

is known that the diversity of pulse wave morphology results in difficulty in pulse-

based diagnosis especially in pulse waveform pattern classification. Nevertheless, from 

the above findings, it known that convolutional neural network is a promising method 

that can be utilized for pulse waveform pattern classification and it outperforms the 

conventional methods in pattern classification due to its ability to extract informative 

features. Furthermore, majority of convolutional neural network [42]–[46] models are 

used for pattern/feature classification but this doesn’t indicate risk or act as a predictive 

role.  

Hence, to attain a risk indication-based convolutional neural network for future imple-

mentation in a predictive role, the output must be based on a numerical regressive out-

come where the input of the convolutional neural network would be a full physiological 

signal waveform and the output would be a numerical number rather than a classifier. 

By having the numerical output for CNN, this technique can mimic the conventional 

technique of risk assessment, similar to how it was conducted for indicating the risk for 

hypertension. For example, the numerical reading of blood pressure over a time of 24 

hours is considered healthy if the blood pressure reading is in the range between 
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90/60mmHg and 120/80mmHg and if the blood pressure reading is in the range of 

140/90mmHg or higher, it would be high blood pressure which is a risk indication for 

hypertension. Therefore, to develop a pulse waveform pattern regression based on CNN 

to attain a numerical output, there is a need of input data of blood pressure pulse wave-

form and its corresponding numerical output. This can be attained as in today’s research 

world cardiovascular models are available, where the inputs of the models are numeri-

cal values, and the output is the corresponding blood pressure waveform.  

2.7 Cardiovascular system model 

Modelling of the cardiovascular system was first done to study the circulation of blood 

in the human body. By studying the blood circulation of the human body using cardio-

vascular models, conceptional ideas can be tested out before proceeding to clinical tri-

als. Harvey announced the discovery of the cardiovascular system in the 17th century 

by denoting the heart as the pump of the cardiovascular system [277]. The model sets 

the blood flow in a unidirectional flow in a closed-loop circuit through systemic and 

pulmonary circulations [278]. Modelling starts by doing a mathematical model of the 

cardiovascular system. The equation for each part of the cardiovascular system is iden-

tified, and all the equations are then combined to form a full equation for the cardiovas-

cular system. The mathematical model uses basic fluid dynamic equations especially 

Navier-Stokes equations. Poiseuille flow and Reynolds number play a big part in de-

termining the mathematical model of the cardiovascular system. The lower the Reyn-

olds number, the higher the viscosity of the blood. The equation is then placed into a 

computational simulation, which is known as a fluid-structure interaction (FSI) model 

so that the unknown parameters can be altered using an iterative method to know the 

effect of the parameters to the cardiovascular system. The FSI model can be converted 

to a 3D model, and then, to a 1D and finally to a simplified 0D model [279]–[286]. In 

some 3D models, a Navier-Stokes equation can be utilise to couple with a structural 

model for the vessel wall. On the other hand, in the 1D model, a net of systems of 

hyperbolic equations are used to determine mean pressure and flow rate. The 0D model 

uses a system of algebra-ordinary differential equations which is often non-linear to 

determine the mean pressure and flow rate in time [279]–[286]. By comparing all the 

3D, 1D and 0D models in Table 2.6 below, it reasonably justified to use the 0D model 

as the model for overall cardiovascular blood circulation analysis to detect cardiovas-

cular disease because it is comprehensively simple, requires less computational effort 
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and the model covers the whole cardiovascular circulation system which analyses the 

overall pressure, volume and flow of the blood.  Figure 2.19  shows all the scales of the 

3D, 2D and 1D modelling from the 0D model.  

Table 2.6.Summarised comparison of various computational cardiovascular models 

[287] 

Mode

l 

Type of 

parame-

ter 

model 

Type of 

flow dis-

tribu-

tion 

Types of governing 

equations 

Applications of model 

0-D Lumped Uniform Ordinary differential 

equation (ODE) for 

conservation of mass 

and momentum, and 

Algebraic Equilib-

rium Equation to 

convert volume to 

pressure 

Appropriate for analysation of 

pressure, flow and volume of 

blood distribution in system. 

Can, at times, give boundary 

conditions for three-dimen-

sional models. 

1-D Distrib-

uted 

Non- 

Uniform 

Partial differential 

equation (PDE) of 

conservation of mass 

and momentum, and    

Equilibrium Equa-

tions 

Appropriate for analysation of 

reflection or transmission im-

pact which permits for better 

boundary conditions for three-

dimensional models. 

2-D Distrib-

uted 

Non- 

Uniform 

Partial differential 

equation (PDE) of 

conservation of mass 

and momentum, and    

Equilibrium Equa-

tions 

Appropriate for analysation on 

the change of velocity in an ax-

isymmetric tube which permits 

for better boundary conditions 

for three-dimensional models 

with certain limit off applicabil-

ity. 

3-D Distrib-

uted 

Non- 

Uniform 

Partial differential 

equation (PDE) of 

conservation of mass 

and momentum, and 

Equilibrium Equa-

tions 

Appropriate for analysation of 

complex flow pattern in small 

region of the cardiovascular cir-

culatory system.  
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Figure 2.19 Different scales of modelling [35] 

2.7.1 Zero-Dimensional model 

For modelling a 0D model, the concept of hydraulic-electrical analogue is often used. 

The 0D model relates the blood flow circulation to electric conduction in a circuit. In 

0D models, blood flow follows the law of mass conservation, Poiseuille law for steady-

state momentum equilibrium and Navier-Stokes law for unsteady-state momentum bal-

ance, which in the analogy is similar to an electric circuit, which uses Ohms law for 

steady-state voltage-current relation, Kirchhoff law for current balance and the trans-

mission line equation for the high frequency voltage-current relation [35]. The electrical 

circuit has a resistor, capacitor and inductance, which correlates with a cardiovascular 

system. Inductance represents inertance, which is the measure of the pressure difference 

in a fluid due to the change in blood flow rate over time. Capacitance represents com-

pliance that is the measure of the change in blood volume when subjected to an applied 

force. Resistance represents the peripheral resistance in the vessels of the blood flow in 

the cardiovascular system [288].  
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Figure 2.20 shows (a) Idealized segment of a vein or artery and (b) Equivalent lumped 

fluid-flow circuit, ignoring wall compliance [288]. 

Figure 2.20 (a)  is a 3D model which is converted to its 0D model as shown in Figure 

2.20 (b) . In Figure 2.20 (b) , R and L are used to model resistance and represent the 

wall inertia respectively. The change of pressure from 𝑝𝑎 (input pressure) to 𝑝𝑏 (output 

pressure) can be discovered in Equation 2.1.  

 (𝑝𝑎 − 𝑝𝑏)|𝑣𝑖𝑠 =  𝑓 ∗ 𝑅 (2.1) 

For this Equation 1, it is assumed that flow is uniform across the vein or artery where 

the volume flow rate is 𝑓. Mass of the blood flow can be determined by Equation 2.2. 

 𝑀 =  𝜌 ∗ 𝐴 ∗ ∆𝑍 (2.2) 

 where 𝜌 is blood density, A is the cross-sectional area of the vessel and ∆𝑍  is 

the change of length of the vessel for Equation 2.2. Blood flow velocity (𝑣 ) across the 

vessel radius is assumed to be uniform, whereby the total flow is given as: 

 𝑓 = 𝑣 ∗ 𝐴.  (2.3) 

The second law of motion rule in Newton relates to the behaviour of objects for which 

all existing forces are not balanced. This second law states that the acceleration of an 

object is dependent upon two variables which are the net force acting upon the object 

and the mass of the object. In this case, Newton’s second law is used to drive the force 

needed to balance the acceleration of blood using Equation 2.3 

(a) 

(b) 
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 𝑀
𝑑𝑣

𝑑𝑡
= (𝜌 ∗ 𝐴 ∗ ∆𝑧) ∗

𝑑(
𝑓

𝐴
)

𝑑𝑡
= (𝜌 ∗ ∆𝑧) ∗

𝑑𝑓

𝑑𝑡
   (2.4) 

This acceleration force must be equal to the acceleration at the pressure difference at 

the end of the cross-sectional area of the vein or artery. Hence, the pressure differences 

between 𝑝𝑎 and 𝑝𝑏 is multiplied with the cross-sectional area of the vein or artery using 

Newton's second law of motion. 

 (𝑝𝑎 − 𝑝𝑏) ∗ 𝐴  (2.5) 

To obtain the acceleration part of the pressure drop equation of 

 (𝑝𝑎 − 𝑝𝑏)|𝑎𝑐𝑐𝑒𝑙 =  (𝜌 ∗ ∆𝑧/𝐴) ∗
𝑑𝑓

𝑑𝑡
 .  (2.6) 

Inertance is the coefficient of the flow derivative in this equation resulting in: 

 𝑙 =  𝜌 ∗ ∆𝑧/𝐴 (2.7) 

The resistance of flow is obtained by using Poiseuille steady-state formula which is 

given as: 

 𝑅 = 8 ∗ 𝜋 ∗ 𝜇 ∗ ∆𝑧/𝐴  (2.8) 

Therefore, the pressure drop is equated to the sum of the viscous resistance and mass 

of acceleration, which is: 

 𝑝𝑎 − 𝑝𝑏 =  𝑓 ∗ 𝑅 + 𝑙 ∗
𝑑𝑓

𝑑𝑡
 (2.9) 

In fact, velocity is lower near to the wall of the vessel with an overall parabolic cross 

section of the flow velocities which gives a slightly better value for the inertance base 

on a two radial segment approximation resulting in: 

 𝑙 =  9 ∗ 𝜌 ∗ ∆𝑧/4 ∗ 𝐴 =  9 ∗ 𝜌 ∗ ∆𝑧/(4 ∗ 𝜋 ∗ 𝑟2) (2.10) 

So far, the elasticity of the vessel walls has been neglected. However, the compliance 

of a cylindrical vessel can be shown using Equation 2.11.  

 𝐶 = 3 ∗  𝜋 ∗ 𝑟3 ∗ ∆𝑧/2 ∗ 𝐸 ∗ ℎ (2.11) 

where the radius is r, the length is ∆𝑧, wall thickness is h, and young bulk modulus of 

elasticity, E. The wall material is uniform with a Poisson ratio of: 

 𝜎 = 1/2 (2.12) 
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When the fluid velocity is zero, pressure through the vessel is pa. Meanwhile, q is the 

total volume of the segment and 𝑞𝑢 is the unstressed volume when transmural pressure 

is zero. 

 𝑞 = 𝑞𝑢 + 𝑝𝑎 ∗ 𝐶 (2.13) 

Compliance may be determined by varying pa by ∆𝑝𝑎 in 𝑞 = 𝑞𝑢 + 𝑝𝑎 ∗ 𝑐 by observing 

diameter and the volume change rather than using Equation 2.14 as E and h are usually 

unavailable because it will not be practical to be obtained from a living being. Compli-

ance is found by: 

 𝐶 =  ∆𝑞/∆𝑝𝑎 . (2.14) 

Compliance has a limited range of positive transmural pressure. This is to ensure that 

the vessel walls would not reach its limit of expansion and result in vessel rupture [127]. 

As can be seen below in Figure 2.21 and Figure 2.23 are two examples of 0D models 

of cardiovascular circulations. 

 

Figure 2.21 A complete 0D cardiovascular circulatory system by T. Korakianitis and 

Y. Shi [35]. 

Figure 2.21 shows a complete 0D cardiovascular circulatory system by T. Korakianitis 

and Y. Shi which shows the human cardiovascular system in the simplest form where 

the schematic of the model was extracted from Shi et al.’s model in the CellML model 
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repository. This 0D cardiovascular circulation model can be regarded as a limited rep-

resentation of a 1D model [289]. The model is made up of 3 main parts which are the 

heart, systemic loop and pulmonary loop, as can be seen in Figure 2.21. The above 

model divides the heart model with chambers exactly like the human heart and diodes 

are used as valves to ensure the flow is in one direction. The systemic loop is modelled 

with 5 main parts which are systemic aortic sinus, systemic artery, systemic arteriole, 

and systemic capillary and systemic vein. Same as the systemic loop, the pulmonary 

loop is modelled with 5 main parts which are pulmonary aortic sinus, pulmonary artery, 

pulmonary arteriole, pulmonary capillary and pulmonary vein. The systemic aortic si-

nus, systemic artery, pulmonary aortic sinus and the pulmonary artery are modelled as 

RLC components. Moreover, systemic arteriole, systemic capillary, pulmonary arteri-

ole and pulmonary capillary are modelled as resistors. Finally, the systemic vein and 

pulmonary vein are modelled as RC components like the Windkessel model [289].  

For this model, the parameters related to electrical equivalents, such as pressure, flow, 

resistance, compliance, and inertance, are represented by the voltage, current, re-

sistance, capacitance, and inductance in the circuit respectively. Table 2.7 shows the 

parameters represented by its electrical equivalent in the circuit. 

Table 2.7 Electrical Equivalence of Parameters in Blood Flow Model by T. Korakia-

nitis and Y. Shi [35]. 

 

The same table can also be used to relate the body cardiovascular system to give the 

correlation between the electrical equivalents and the human body cardiovascular sys-

tem. Table 2.8 below shows the parameters represented by its cardiovascular system. 

  

Symbol Parameter Electrical Equivalent 

P Pressure Voltage 

Q Flow Current 

R Resistance Resistance 

C Compliance Capacitance 

L Inertance Inductance 
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Table 2.8 Cardiovascular System Described by Parameters in Blood Flow Model by 

T. Korakianitis and Y. Shi [35] 

 

There are three templates (TempR, TempRC and TempRLC) which were defined to 

provide zero dimensional representations of the linearized governing equations for 

pressure and flow in the vessel segments to establish the relationships between P, Q, R, 

L and C components at the input to express the output. The TempR defines the rela-

tionship between pressure and flow whereas the TempRC defines the first derivative of 

the input pressure in terms of flow and capacitance. Meanwhile, the TempRLC defines 

the first derivative of the output flow where this shows the relationship between the R, 

L and C components. Table 2.9 shows the equations that were obtained from the ‘Math-

ematics’ section of Shi et al.’s CellML model in the CellML model repository [290]. 

Table 2.9 The relationship between the model parameters and TempR, TempRC and 

TempRLC equations respectively [290]. 

Components Equations 

TempR 𝑃𝑖𝑛 = 𝑃𝑜𝑢𝑡 + 𝑅𝑄𝑖𝑛 

𝑄𝑜𝑢𝑡 = 𝑄𝑖𝑛 

TempRC 𝑑

𝑑𝑡
(𝑃𝑖𝑛) =

𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝐶
 

𝑄𝑜𝑢𝑡 =
𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡

𝑅
 

TempRLC 𝑑

𝑑𝑡
(𝑃𝑖𝑛) =

𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝐶
 

𝑑

𝑑𝑡
(𝑄𝑜𝑢𝑡) =

𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 − 𝑅𝑄𝑜𝑢𝑡

𝐿
 

 

This complete 0D cardiovascular circulatory system by T. Korakianitis and Y. Shi can 

simulate pressure, flow and volume of blood and generates results which are 

Symbol Parameter Cardiovascular system 

R Resistance Frictional Loss 

C Compliance Wall Elasticity 

L Inertance Blood Inertia 

E Elastance Wall Stiffness 

CV Flow Coefficient Blood Flow Through 

Valves 
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satisfactory given its simplicity. However, the downside of the 0D model is its inability 

to simulate the nonlinear convective acceleration term compared to its 1D model. The 

output responses simulated by the 0D model are shown in Figure 2.22. 

 

 

 

Figure 2.22 shows the (a) Pressure Output (b) Flow Output and (c) Volume Output of 

Model by Korakianitis and Shi [35]. 

(a) 

(b) 

(c) 
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Figure 2.23 A complete 0D cardiovascular circulatory system by V. Rideout [288]. 

Figure 2.23 shows the cardiovascular circulatory system that was modelled by Vincent 

Rideout. This system uses the pressure-flow model while incorporating RLC compo-

nents of an electrical circuit. The model is made up of 4 main parts which are the right 

heart, left heart, systemic loop and pulmonary loop which can be seen as segments in 

the figure. The heart is modelled with right and left heart chambers to allow blood to 

flow from the left heart through the systemic loop and to the right heart before travelling 

to the rest of the body. The heart is modelled with atrium and ventricle for both right 

and left using RLC components with the capacitance as the ventricle variable. The sys-

temic loop has 3 major parts which are aorta, systemic artery, and systemic vein 

whereas the pulmonary loop has 2 major parts which are pulmonary artery and pulmo-

nary vein. For the systemic loop, the aorta and the systemic vein are divided into two 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 57  

 

parts where the first part of the aorta and the second part of the systemic vein are mod-

elled using RLC components, and the second part of the aorta and the first part of the 

systemic vein are modelled using RC components. However, for pulmonary loop, the 

pulmonary artery is divided into three parts, the first part is modelled using an RLC 

component while the second and third parts are modelled using RC components and 

lastly, the pulmonary vein is divided into two parts where the first part is modelled 

using an RC component and the second part is modelled using an RLC component. 

For this model, the parameters are also related to its electrical equivalents. For example, 

pressure, flow, resistance, compliance, inertance and volume are represented by the 

voltage, current, resistance, capacitance, inductance and charge in the circuit respec-

tively. Table 2.10 summarizes this information of parameters and their electrical equiv-

alent in the circuit. 

Table 2.10 Electrical Equivalence of Parameters in Blood Flow Model by V. Rideout. 

 

Pressure-Flow components of the model obey the same fundamental equations as the 

electrical circuit equivalent referring to Table 2.10, for example:  

     𝑃 = 𝑅 × 𝐹                                             𝑉 = 𝑅 × 𝐼 (2.15) 

 𝑃 = 𝐿
𝑑𝐹

𝑑𝑡
                                              𝑉 = 𝐿

𝑑𝐼

𝑑𝑡
 (2.16) 

Pressure-Flow-Volume  

(V.Rideout model) 

Electrical Circuit Equivalent 

Sym-

bol 

Model Pa-

rameter 

Units Sym-

bol 

Electrical Pa-

rameter 

Units 

P Pressure mmHg or 

g/cm/s^2 

V Voltage Volt 

F Flow ml/s   I Current Amper 

Q Volume ml Q Charge Coulomb or 

Ampere×s 

R Resistance g/cm^4/s R Resistance Ohm or 

Volt/Amper 

C Compliance cm^4×s^2/g C Capacitance Farad or 

s/Ohm 

L Inertance g/cm^4 L Inductance Henry or 

s*Ohm 
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 𝑃 = 𝑄/𝐶                                              𝑉 = 𝑄/𝐶 (2.17) 

 𝐹 =
𝑑𝑄

𝑑𝑡
                                                𝐼 =

𝑑𝑄

𝑑𝑡
 (2.18) 

 

The compliances in this model are modelled linearly with unstressed volumes. Equation 

2.19 sums of the volume of stressed and unstressed are as shown below. 

 𝑄𝑛 = 𝑄𝑛𝑢 + 𝑄𝑛𝑠 (2.19) 

Volume at a node in this model is defined as Equation 2.20 of this model: 

 𝑄𝑛 = ∫ (𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡) 𝑑𝑡
𝑡

0
+ 𝑄𝑛(0) (2.20) 

The pressure is calculated from the stressed volume using Equation 2.21 of this model: 

 𝑃𝑛 =
𝑄𝑛𝑠

𝐶𝑛
=

𝑄𝑛−𝑄𝑛𝑢

𝐶𝑛
 (2.21) 

This complete 0D cardiovascular circulatory system by Vincent Rideout generates re-

sults which are satisfactory even though it does not include baroreceptor sensor con-

nections to the central nervous system. Besides that, despite the model being uncon-

trolled, it is stable due to the Frank-Starling mechanism. Pressure, flow, and volume of 

the blood can be simulated using this model. The output responses simulated by the 

model are shown in Figure 2.24 below [288]. 

 

(a) 
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Figure 2.24. shows the  (a) Right Ventricular and Pulmonary Artery Pressures (b) Left 

Ventricular and Aortic Pressures (c) Aortic Flow and Mitral Valve Inflow to Ventricle  

and (d) Pressure-Volume Plot for Left Ventricle of Vincent Rideout model [288] 

The Vincent Rideout model has 36 different dynamic parameters which consist of 16 

resistance parameters, 12 compliance parameters and 8 inductance parameters. All the 

parameters’ default value is given to form a healthy patient output signal. The Vincent 

(b) 

(c) 

(d) 
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Rideout model can produce four main output signals, which are right ventricular pres-

sure (PRV), the pulmonary artery pressure (PPV), the left ventricular pressure (PLV), 

and the aortic pressure (PA1). The aortic pressure (PA1) can be used to study the feature 

of the signal which coincides with a cardiovascular disease signal as an aortic signal is 

common for medical experts to determine the patient’s heart condition.   

2.7.2 One-Dimensional model 

1-Dimension (1-D) model is developed using the simplified Navier–Stokes equations 

which represents the pressure and flow at any point of the blood vessel of the cardio-

vascular system [291]–[293]. With large amount of computation, a 1D model can be 

used to represent the phenomenon of blood pressure wave propagation. The common 

applications of 1-D model are simulation of pulse wave propagation dynamics [28], 

[294]–[299], wave intensity analysis [300]–[302], estimation of central aortic pressure 

[303]–[306] and assessing the performance of algorithms and indexes [307]–[309]. The 

blood in the cardiovascular system is assumed to be an incompressible Newtonian fluid 

and the vessel is an axisymmetric cylindrical tube for a 1-D model. Hence, the 1-D 

model is governed by two equations which are the continuity equation and momentum 

equation [310] . Both these equations describe the motion of the blood flow in the vessel 

and contraction and expansion of the vessel’s wall during blood flow. Equation 2.22 is 

the continuity equation and equation 2.23 is the momentum equation where F is the 

blood flow rate, x is the distance along the vessel, A is the cross-sectional area of the 

blood vessel, t is time taken for the flow, ρ is the blood density, p is the blood pressure, 

r is the vessel radius and µ is the viscosity. 

 𝜕𝐹

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 0 (2.22) 

 
𝜕𝐹

𝜕𝑡
+

4

3

𝜕(
𝐹2

𝐴
)

𝜕𝑥
= −

𝐴

𝜌

𝜕𝑝

𝜕𝑥
−

8𝜇

𝜌𝑟2
𝐹 (2.23) 

For solving a 1-D model using the Navier–Stokes equations, there are two type of do-

main methods which are time domain and frequency domain. In time domain, the 

method can solve for linear and non-linear equations. However, frequency domain can 

only solve linear equations. The Navier–Stokes equations for 1-D model are generally 

non-linear where it is solved in time domain using numerical methods. There are many 

numerical methods for solving the partial differential equation of Navier–Stokes such 

as the method of characteristics, finite difference method, finite volume method, finite 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 61  

 

element method and spectral method. It is very complicated to utilize the method of 

characteristic to solve the differential equation which has three independent variables 

and there may still be problems to be solved. By using the method of characteristics, 

the governing equations can be solved [311]–[313]. The finite difference method is 

used for solving complex partial differential equations. The complex partial differential 

equations are solved by approximating the derivatives with finite differences. In addi-

tion, the finite volume method is derived from the finite difference method where the 

area of calculation is focused on the series of control volumes and there is a control 

volume at the surrounding of each grid point. This control volume is integrated, and a 

set of discrete equations are formed where they need to be solved. The finite volume 

method needs a high computing speed and low requirements for the grid. This method 

is commonly used for computations of fluid and recently this method can also be used 

to solve differential equations [314], [315].  On the other hand, the spectral method is 

a method that uses an orthogonal function or intrinsic function with a class of compu-

ting techniques to solve certain differential equations where this method is able to ob-

tain a higher precision using fewer grid points.  However, the weakness of this method 

is that it has poor stability and high complexity in setting the boundary conditions. This 

method had been used by several researchers to resolve the 1-D model’s pulse wave 

propagation equations [316], [317].  

In the frequency domain method, a transmission line method is utilised to solve the 

Navier–Stokes equations in order to minimise the computational complexity of the non-

linear model where the method requires the 1D Navier–Stokes equations to be linear-

ized. Equation 2.27 and 2.28 are the equations of linear 1D Navier–Stokes equations in 

hemodynamic where C =
dA

dp
 =

3πr2

2Eh
  is the capacitance (E is the Young’s modulus, and 

h is the arterial wall thickness), L =  
ρ

A
 =

ρ

πr2 is the inductance and  R =  
8µ

πr4 is the 

resistance. These equations are converted to equation 2.29 and 2.30 which are electrical 

transmission line equations in a circuit [318] where I is the current, V is the voltage, 

and G is the conductance that describes the leakage of  blood flow (usually neglected).  

Hence, methods of solving circuit equations can be utilized to solve 1D Navier–Stokes 

equations where the electrical parameters are resistive, inductive and capacitive ele-

ments. The values for these elements are obtained from the mechanical and geometric 

parameters of the blood vessel of the human cardiovascular system.  



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 62  

 

 −
𝜕𝑞

𝜕𝑥
+ 𝐶

𝜕𝑝

𝜕𝑡
= 0 (2.24) 

 −
𝜕𝑝

𝜕𝑥
= 𝐿

𝜕𝑞

𝜕𝑡
+ 𝑅𝑞 (2.25) 

 −
𝜕𝐼

𝜕𝑥
= 𝑉𝐺 + 𝐶

𝜕𝑉

𝜕𝑡
 (2.26) 

 −
𝜕𝑉

𝜕𝑥
= 𝐼𝑅 + 𝐿

𝜕𝐼

𝜕𝑡
 (2.27) 

2.7.3 Multi-Dimensional model 

Multi-scale models are a combination of 3-D, 2-D, 1-D and 0-D to form a complex 

model of the cardiovascular system.The 2-D and 3-D models are mostly based on the 

Navier-Stokes equations which are non-linear partial differential equations. The model 

behaviour may be parabolic, hyperbolic or elliptic which depends on the specific study. 

These models can provide detailed information of the blood flow in the vessel where 

the model describes the hemodynamic phenomena in a specific region of the cardiovas-

cular system. The 2-D models are usually utilised to describe the change of blood flow 

velocity of the radial vessel in an axisymmetric tube [319], [320] . On the other hand, 

the 3-D models are generally utilised to simulate and study the interaction between 

blood flow and the vascular walls [321], [322]. 2-D and 3-D models need a great 

amount of computational resources since they provide detailed pressure and velocity 

distribution in a certain vessel segment of the cardiovascular system using the concept 

of computational fluid dynamics. Furthermore, a multi-scale model needs special atten-

tion as it is required to handle all the boundary conditions to ensure the desired output 

of the model is obtained mathematically. This is because one boundary condition is 

needed for each part of the blood vessel parameters which interlinks with the next part 

of the blood vessel to form a proper blood flow in the cardiovascular circulatory system. 

Hence, to establish a multi-scale model such as a 3-D model of the whole cardiovascular 

system, it would need complex geometrical and mechanical information which results 

in massive computational complexity. It would not be practical to be done. However, 

by using a multi-scale model with segments of 3-D or 2-D with another model such as 

1-D or 0-D, this would be possible. For example, a 3-D model of a ventricular blood 

flow merged with a 0-D model for the rest of the cardiovascular circulatory system was 

done by Watanabe et al [323] where the 0-D model was able to provide the pressure 

values as the boundary conditions for the 3-D model. Similarly, Migliavacca et al.[324]  

merged a 3-D model of a systemic to pulmonary flow in a 0-D model of multiple 

branched circulation system model. The 0-D model was used to calculate the total sum 
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of static and kinetic pressure which was used as the boundary condition for the upstream 

interface of the 3-D model and for the downstream interface, the static pressure of the 

0-D model was used as the boundary condition. In addition, a 0-D model of a vessel 

network was used by Vigono-Clementel et al. [325] as terminal loads to a complex 3-

D model of arterial branching where the 0-D model was supplied with the pressure-

flow rate relation to obtain the impedance values for the 3-D model’s  boundary condi-

tion. On the other hand, a 1-D model was merged by Formaggia et al. [326] with a 3-D 

model to remove the effect of the outgoing pressure waves and reduce computational 

complexity when analysis of blood flow was done in regards to the compliance of the 

vessels. A variational approach and a Lagrange multiplier approach are the two ap-

proaches proposed by Formaggia et al. [281], [327] to derive the variable distributions 

at the model interface. These approaches were further elaborated by Formaggia et al to 

be utilised for transient flow problems which was implemented by Vigono-Clementel 

et al.[325] for the model interfaces. Hence, to obtain a cardiovascular system model by 

minimizing the computational complexity using multi-scale is possible by combining 

two or more model such as combination of 3-D or 2-D models which are high dimen-

sional models with lower dimensional models such as 1-D and 0-D models.  

2.8 Summary 

From the literature review, it is identified that there are many wearables to estimate the 

central aortic blood pressure waveform from the peripheral artery (radial artery) pulses 

to monitor the blood pressure reading. The findings from the literature review also show 

that a pressure sensor is the best choice to acquire the blood pressure waveform at the 

radial artery and it is possible to utilise the tonometry method as the pressure sensor has 

the best accuracy, sensitivity and specificity compared to a photoelectric or ultrasonic 

sensor [140]. The existing wearable devices estimate the central aortic blood pressure 

waveform to continuously update the user on their blood pressure reading (systolic and 

diastolic values) where these values are used to determine hypertension as a risk indi-

cator. It is also known that hypertension is treated as a key indicator for cardiac risks 

which has generated many debates and editorial commentaries [15]–[17]. In regards of 

risk indication for cardiovascular disease, classical cardiovascular disease risk factors 

such as age, gender, smoking habits, obesity and blood pressure which can be obtained 

non-invasively, leads to misclassification of risk despite utilizing artificial intelligence 

such as ANN. Therefore, there is a need to utilize the entire blood pressure pulse with 
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artificial intelligence, rather than just the systolic and diastolic values, to give a better 

risk indication of cardiovascular disease. This is because by feeding in the entire blood 

pressure pulse waveform into an artificial intelligence, the waveform’s morphology 

change (feature of the waveforms) can be used to determine cardiovascular disease.  

Current research in artificial intelligence has shown remarkable achievements for pat-

tern/feature classification using deep learning which is called Convolutional Neural 

Networks (CNN)[42]–[46].  CNN utilizing blood pressure waveform to classify cardi-

ovascular disease has been established by some researchers [42], [274]–[276] and the 

research by Hu et al discovered that the CNN performs better in feature identification 

and classifying the blood pressure pulse signal compared to TCM doctors . Further-

more, majority of convolutional neural network [42]–[46] models using physiological 

waveform are used for pattern/feature classification although this doesn’t indicate risk 

or act as a predictive role. Hence, to attain a risk indication-based convolutional neural 

network for future implementation in a predictive role, the output must be based on a 

numerical regressive output where the input of the convolutional neural network would 

be a full physiological signal waveform and the output would be a numerical number 

rather than a classifier. For blood pressure waveforms, this can be attained as today’s 

research world has cardiovascular models where the inputs of the models are numerical 

values and the output is the corresponding blood pressure waveform. From the litera-

ture, it is known that the 0D model can provide the complete cardiovascular model 

for analysation of pressure, flow and volume of blood distribution in the system com-

pared to the 1D, 2D, and 3D with the least amount of computational resources. If inputs 

of the 0D model (R, L and C parameters) are altered it would provide its corresponding 

output waveform where each parameter would relate to each output of time in the output 

waveform.  

There are many 0D complete cardiovascular models in today’s world that can be uti-

lised to produce dataset for the convolutional neural network. The architecture of the 

CNN will vary depending on the dataset. For the dataset, from the literature review, V. 

Rideout complete cardiovascular model looks promising to be implemented for this 

technique, where a model is used in conjunction with a CNN. However, the research 

concept of this technique does not constrain the choice of the model, as long as there is 

a dataset of input of blood pressure waveform and numerical output where the numeri-

cal output can be utilised to indicate risk due to the variation of feature in the input 
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signal (blood pressure waveform). In the literature review, two 0D cardiovascular sys-

tem models were reviewed which are the Vincent Rideout 0D model and the Korakia-

nitis and Shi 0D model. The Vincent Rideout 0D complete cardiovascular model is 

preferred because the model represents a real human cardiovascular system with more 

insight whereas the model by Korakianitis and Shi is simplified. Moreover, Vincent 

Rideout model has more parameters than Korakianitis and Shi’s model which can be 

helpful in studying the numerical change in the parameters to its corresponding output 

waveform to be utilised as a risk indicator. This is because each parameter would relate 

to each output of time in the signal. The computational time and complexity are also 

well balanced in the Vincent Rideout model. On top of that, end-diastolic pressure, 

initial flow, and unstressed volumes of the blood vessels are also provided by Vincent 

Rideout. Should these values be obtained via clinical study, it would have been time-

consuming. So, this model presents an advantage in terms of time as well. Hence, the 

Vincent Rideout 0D model, seems more promising and adaptable to this technique 

while still enabling this technique to be implemented with other 0D models such as the 

Korakianitis and Shi 0D model. 

In this project, a prototype would be developed to obtain the non-invasive radial pulse 

waveform by using a pressure sensor, which is then converted to an aortic pulse wave-

form. An investigation will be carried out to identify the best approach for converting 

the acquired radial waveform to the estimated aortic blood pressure waveform. Then, 

analysis would take place on the 0D model to identify the parameters that affects the 

model’s aortic waveform. These identified parameters and its corresponding output 

waveform will be the dataset to be trained to the CNN. The trained CNN with the da-

taset is then utilised to provide the numerical output of the estimated aortic blood pres-

sure waveform. This numerical output is then investigated against the 0D model’s de-

fault values to identify the numerical output values of healthy and cardiovascular dis-

ease waveforms.  By knowing the distinct numerical output value’s range of healthy to 

cardiovascular disease, this CNN can be a risk indicator for cardiovascular disease.  
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 METHODOLOGY 
 

3.1 Introduction 

This chapter addresses the methodology used to establish a medical system to indicate 

risk of cardiovascular disease. The system is split into 3 key subsystems, which are the 

wearable device, estimation of aortic waveform from radial, and finally the artificial 

intelligence for risk indication. This section describes the overall system design, the 

databases used, as well as the in-depth methodology of each sub-system. This chapter 

demonstrates the selection of sensors for non-invasive acquisition of the radial blood 

pressure waveform. Next, available transfer functions are investigated and the method-

ology for converting the radial blood pressure waveform into an estimated aortic blood 

pressure waveform was developed via an electrical impedance function. Finally an ar-

tificial intelligence (CNN) is used to identify and relate the features of the blood pres-

sure waveform to the parameters of the estimated aortic waveform. These parameters 

are then used to indicate risk of cardiovascular disease by understanding the parameter 

changes with relation to healthy and unhealthy individuals’ data. 

3.2 Overall system design 

The pressure sensor is placed on the medical system user's wrist to collect a pulse wave 

signal from the radial artery. The radial pulse wave signal is used to estimate the aortic 

wave signal by employing a transfer function, chosen and developed after reviewing 

the available techniques. The estimated aortic wave signal is then fed into the Convo-

lutional Neural Network, which was trained with the 0D cardiovascular model to gen-

erate parameter values. After determining the inidicating parameter values, the change 

in parameter value that indicates the occurrence of cardiovascular disease will be iden-

tified. Finally, the proposed medical system would show the user's risk for cardiovas-

cular disease. This design is summarized in a block diagram shown in Figure 3.1.  
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Figure 3.1 Proposed design of the medical system 

For evaluating the system, as live patient data could not be collected using the prototype 

wearable device, and the system had to be verified before data could be requested from 

the hospital, two online databases were used to supplement the need for data. The two 

types of databases are PhysioNet MIMIC II Database [328] and HaeMod Database 

[329] of virtual subjects. In this project, the PhysioNet MIMIC II Database was used as 

the first batch of patient data while HaeMod Database of Thousands of Virtual Subjects 

used as the second batch of patient data. The reason for using online patient data is to 

ensure that the methodology works, and the hypothesis can be proven before visiting 

the hospital in order to verify the system with the cardiologist (Appendix 1). PhysioNet 

MIMIC II Database [328] contains radial blood pressure waveform of cardiovascular 

disease signals and other medical disease signals while HaeMod Database [195] has 

healthy virtual subjects of radial blood pressure waveforms and aortic blood pressure 

waveforms. The PhysioNet MIMIC II Database’s other medical disease radial wave-

forms and HaeMod Database of virtual healthy subjects’ radial waveforms were cate-

gorized as non-cardiovascular disease signals while the PhysioNet MIMIC II Data-

bases’ cardiovascular disease radial waveform is categorized as cardiovascular disease 

signals.  
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3.3 Non-invasive wearable device for blood pressure waveform acqui-

sition 

The findings from the literature review has shown that a pressure sensor is the best 

choice for the medical system to conduct continuous monitoring. The pressure sensor 

has the best accuracy, sensitivity and specificity to detect the radial pulse wave com-

pared to the photoelectric and ultrasonic sensor [140]. As for the choice of pressure 

sensor, the piezo-resistive pressure sensors are taken in consideration because they are 

commonly used to measure blood pressure pulse waves of the human radial artery. This 

represents the most prominent method for precisely measuring radial artery blood pres-

sure waveforms, because they can acquire both static and dynamic information of pulse 

waves with high sensitivity [330]. The piezoelectric sensor has a diaphragm structure, 

which is an ideal design for measuring fluctuating input pressure signals [331]. Piezo-

electric sensors use piezoelectric-sensitive materials which contacts the human body 

skin directly to measure artery blood pressure waveform by generating charge and 

changes by itself in response to mechanical pressure applied on the material [331] and 

converting the sensed pressure reading into electric signals. Since this research is done 

in collaboration with Collaborative Research in Engineering, Science and Technology 

(CREST) and Chulia Facilities Management Sdn. Bhd, there is a requirement to identify 

a sensor which is able to acquire the radial blood pressure waveform to ensure the de-

velopment of the wearable device. Figure 3.2 below shows the block diagram of the 

methodology on identifying the sensor and developing the prototype. 

 

 

 

 

 

 

 

Figure 3.2 Methodology for sensor selection 
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Table 3.1 Specification of piezo-resistive pressure sensor to acquire radial blood pres-

sure waveform 

Parameter Definition 

Pressure range 0 to ≥300 mmHg 

Pressure sensitivity ≤2 mV/mmHg 

Response time <0.4 ms 

Precision ≤0.5% 

 

3.4 Estimation of central aortic blood pressure waveform from radial 

blood pressure waveform   

From the literature review, it is known that there is a need to investigate the current 

methods or develop a novel method which is able to give a close estimate of the actual 

aortic blood pressure waveform with a close prediction of the systolic pressure. In ad-

dition to this, the method should have a low computational intensity so that the overall 

system can be embedded in the user’s wearable device, to guarantee onboard continu-

ous monitoring even without wireless communication. This section investigates the ex-

isting methods and proposes a new mathematical technique using circuit analysis to 

reconstruct the central aortic blood pressure waveform from the acquired radial blood 

pressure waveform with low computing requirements. A circuit analysis approach was 

taken as the approach for the newly proposed technique, because circuits can be de-

signed to modify, reshape or reject all unwanted frequencies of an electrical signal and 

accept or pass only those signals wanted by the circuit’s designer. This is similar to the 

NPMA, which is a first-order low-pass filter which removes all the high frequency re-

lated pulse wave features as it travels from the central aorta to the periphery [130]. 

Furthermore, the pressure transducer acquires the radial blood pressure signal as a volt-

age reading which would be ideal to utilize the circuit analysis approach. Since the 

circuit analysis is done using electrical impedance circuit analysis, the derived mathe-

matical function is called the electrical impedance function (EIF) and is then compared 

with the GTF, NPMA and ATF to evaluate its performance. The second systolic pres-

sure technique was not compared, due to its limitation where it will not work if the 

second peak of the periphery disappears, which normally occurs in old or hypertension 

patients [130]. Figure 3.3 is the methodology on constructing the electrical impedance 

function to estimate central aortic blood pressure waveform.  
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Figure 3.3 Methodology flow chart for developing a mathematical equation to esti-

mate the central aortic blood pressure waveform 

For the choice of the circuit to develop the Electrical Impedance Function (EIF), the 

Windkessel circuit model is taken as a reference. The Windkessel model has three types 

of variants: a two-element model, three-element model and four-element model [332]. 

The two-element model assumes a constant pressure-to-volume ratio and that the out-

flow from the Windkessel model is proportional to fluid pressure. For the two-element 

model, the volumetric inflow must equal the sum of the capacitive element's volume 

and the resistive element's volumetric outflow. The three-element model is an improved 

version of the two-element model as it considers the characteristic resistance of the 

aorta. However, the two-element model and three-element model does not have an in-

ductor in their model where inductance represents the total inertia of the arterial system. 

This is implemented in the four-element Windkessel model and research by Roberto 

et.al [333] , which shows that the inductor placed in series to aorta characteristic re-

sistance (W4S) is suitable to represent the inertial properties of blood motion compared 

to the inductor placed in parallel to aorta characteristic resistance (W4P). Furthermore, 

the research by Roberto et.al [333] showed that the W4S was able to attain a lower root 

mean square error compared to the W4P for experimental and model predicted pressure 

readings. These modelling techniques utilises the hydraulic-electric analogue where it 

would require more computing time due to the ODE solver. Hence, for this research an 

electrical impedance technique was utilised as a signal processing approach to reduce 

the computing time as this research requires to embed the conversion algorithm in the 

micro-controller. This research utilised the W4S four-element windkessel model circuit 

 
Derive the electrical 

impedance function to 

convert radial to aortic 

blood pressure 

waveform 

Determine the values 

of the electrical 

parameters for each of 

the corresponding 

subjects. 

Find the ideal value of 

the electrical 

parameter for all the 

subjects 

Insert the values to the 

electrical impedance 

function 

Identify the circuit to 

develop the electrical 

impedance equation  

Check the error 

compared to the original 

waveform and compare 

the method with ATF, 

GTF and NPMA 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 71  

 

to derive the electrical impedance function to estimate the central aortic blood pressure 

waveform. Figure 3.4 shows the equivalent circuit of the four-element Windkessel 

model where R and r are resistors, L is an inductor and C is a capacitor.  

 

Figure 3.4 Four-element Windkessel model 

The effective impedance of the four-element Windkessel model is given by the equation 

stated below. 

𝑍𝑒(𝑠) = 𝑠𝐿 +  
𝑅 + 𝑟 + 𝑠𝐶𝑅𝑟

1 + 𝑠𝐶𝑟
 

(3.1) 

where R and r are resistors, C is the capacitance, and L is the inductance. 

The input equation is given by 

𝑃𝑖 =  𝑍𝑒 × 𝐼 (3.2) 

where 𝑃𝑖 is input, 𝑍𝑒 is total impedance and 𝐼 is total current. 

Hence, the total current equation is given by 

𝐼 =  
𝑃𝑖

𝑍 𝑒
 

(3.3) 

and the output equation is given by 

𝑃𝑜 =  𝐼 ×
𝑟

1 + 𝑠𝐶𝑟
 (3.4) 

 

The input and output, which are the aortic and radial waveforms respectively, were 

taken from the HaeMod database [329] and Hospital Sultanah Bahiyah in Malaysia. 

HaeMod contains 3325 virtual subject’s aortic and radial waveforms. The clinical data 

of 40 patients for evaluating the system was obtained from Hospital Sultanah Bahiyah 

(HSB) under the ethical approval of the Clinical Research Centre (CRC) for this re-

search. The cardiologist of HSB attained the consent from the patients before collecting 

the data for this research. The clinical data comes from a cohort of cardiac catheteriza-

tion patients. Each patient’s record had a radial blood pressure waveform and aortic 
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blood pressure waveform which was obtained by the cardiologist of the above-men-

tioned hospital during an angiogram procedure. The cardiologist first collects the radial 

blood pressure waveform at the wrist and then continues to the aortic blood pressure 

waveform close to the patient's heart. A continuous eight blood pressure waveforms of 

both aortic and radial blood pressure waveforms were recorded from each patient by 

the medical officer of HSB. The best out of the eight-blood pressure waveforms of both 

radial and aortic blood pressure waveforms which did not have distortion in the signal 

was selected to conduct this research. Since the cardiovascular system is a closed loop 

system, the continuous aortic blood pressure waveform was analysed, and it was deter-

mined that each pulse had a similarity of 98.5% on average to the other pulses obtained 

from the reading of a patient. This analysis was undertaken to ensure that the aortic 

blood pressure waveform retains its shape and features during the angiogram procedure. 

Table 3.2 summarizes the patient data characteristics. Appendix 2 has a breakdown of 

subject numbers and associated cardiovascular diseases for the hospital data.  An ex-

ample of the aortic and radial waveforms of HaeMod can be seen in Figure 3.5. 

Table 3.2  Patient data characteristics 

Patient Characteristics Cohort (n= 40) 

Men 23 

Women 17 

Age (years) 55 ± 18 

Aortic systolic pressure (mmHg) 137 ± 44 

Aortic diastolic pressure (mmHg) 74 ± 16 

Branchial systolic pressure (mmHg) 132 ± 37 

Branchial diastolic pressure (mmHg) 77 ± 21 

Radial systolic pressure (mmHg) 159 ± 54 

Radial diastolic pressure (mmHg) 74 ± 28 

3 Vessel Defect 1 
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Dilated Cardiomyopathy 2 

Hypertension & Diabetes Mellitus 1 

Ischemic Heart Disease 10 

Ischemic Heart Disease & 3 vessel de-

fect 
1 

Myocardial Infarction (MI) 11 

Positive Exercise Stress Test (EST) 5 

Unstable Angina 8 

Vascular heart disease 1 

 

 

 

(a) 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 74  

 

 

Figure 3.5 (a) HaeMod virtual subject aortic waveform & (b) HaeMod virtual subject 

radial waveform. 

There are multiple unknown parameters to identify the optimum values for each param-

eter. Hence, the MATLAB optimization function 'fminsearch' was used to generate the 

values for the four-elements of the Windkessel model. The function uses the Nelder-

Mead simplex algorithm which is a numerical method used to find the optimum of an 

unconstrained objective function in a multidimensional space. The boundary condition 

is set to start from 1 Farads for capacitor, 1 Henry for inductor and 1 Ohm for resistor. 

Since the databases (HaeMod and Hospital) provide the waveforms in pressure readings 

(mmHg), this pressure waveform is converted to voltage values following the prototype 

calibration where 1Volt = 3215.6178 mmHg.  This was identified in the sensor selection 

section where the prototype can sense a maximum of 5N with 5Volts which is equiva-

lent to 16078.089 mmHg. The equation 3.5 below shows the derivation for 1 Volt’s 

pressure reading.  

The development of the EIF is broken down into five steps:  

(ⅰ)  The four-element Windkessel model is coded in MATLAB using electrical im-

pedance circuit analysis and the Symbolic Math Toolbox™ is used to obtain the result-

ing equation (EIF) which is used to generate the radial waveform from the aortic wave-

form. 

(b) 
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(ⅱ) This function is then mathematically rearranged so the equation (EIF) will now 

take the radial waveform as an input, to output the estimated aortic waveform. 

(ⅲ)  A set of 20 random data each from HaeMod and Hospital is the training data 

that were taken to be fed to the Symbolic toolbox to obtain all the four-element’s value 

of its corresponding subject for these datasets. These 20 randomly selected data from 

HaeMod and Hospital are chosen because the Hospital data has 40 data and half of it is 

used to identify the ideal/generalized four-element’s value. Another 20 data were taken 

from HaeMod to maintain a balanced dataset for healthy (non-cardiovascular disease) 

and cardiovascular disease in identifying the ideal/generalized four-element’s value and 

the rest of the HaeMod data is used for validation.  

(ⅳ)  These 4 element values are then substituted into the equation and calculations 

are done for all the values to obtain the lowest Root Mean Square Error (RMSE) and 

mean absolute percentage error (MAPE), when comparing the calculated aortic wave-

forms to the actual ones from the database. The four-element values which had the 

lowest RMSE value and MAPE for all these datasets (20 CVD & 20 non-CVD) were 

considered to be the ideal/generalized four-element values. This is done because the 

four-elements values are interlinked to one-another. Hence, mathematically averaging 

all the four-elements values obtained in (iii) to identify the generalized four-element’s 

value will contribute to error. 

 (ⅴ)  These generalized values of the four-elements are then fed into the function to 

create an EIF to convert the radial to an aortic waveform.  

After developing the EIF to estimate the central aortic blood pressure, it is then com-

pared with the GTF, NPMA and ATF. The GTF is derived by extracting the radial and 

aortic pressure waveforms from the subject. Similar to the EIF, since Hospital data has 

only 40 data and half of it is 20 data, to keep the data set balanced, 20 healthy blood 

pressure signals were taken from HaeMod and 20 cardiovascular disease blood pressure 

signals was taken from Hospital data to develop the GTF. This is to test the efficiency 

of GTF for the balanced signals of the database. The extracted waveforms are trans-

formed into the frequency domain. A Transfer Function (TF) was derived for each spe-

cific subject’s radial and aortic blood pressure waveform for all the half data as men-

tioned above. All the attained TFs were averaged in order to obtain a GTF. To obtain 

the estimated aortic blood pressure waveform, the radial blood pressure waveform is 
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transformed to frequency domain and multiplied with the obtained GTF. The estimated 

aortic pressure waveform is then transformed back into the time domain. Equation 3.7 

is the defined generalized transfer function of pressure waveforms between radial and 

aortic blood pressure waveform where 𝑃 𝑎(𝜔) 𝑎𝑛𝑑 𝑃 𝑟(𝜔) are the pressure waveforms 

represented in the frequency domain of the aortic and radial blood pressure waveform 

respectively and (𝜔) is the angular frequency. If the moduli are denoted as 𝑀 𝑎(𝜔) and 

𝑀 𝑟(𝜔) and phases denoted as 𝜑 𝑎(𝜔) 𝑎𝑛𝑑 𝜑 𝑟(𝜔) the pressure waveforms can be 

written as 𝑃 𝑎(𝜔) = 𝑀 𝑎(𝜔)𝑒𝑖𝜑   𝑎𝑛𝑑 𝑃 𝑟(𝜔) = 𝑀 𝑟(𝜔)𝑒𝑖𝜑 for aortic and radial blood 

pressure waveforms respectively. 

For the NPMA, the technique generates an array of incrementally averaged data points 

based on a constant denominator. The optimal NPMA denominator to derive the central 

aortic blood pressure waveform from the radial blood pressure waveform would be in 

one of a range of fractions of the sampling frequency of the signal. It is known from 

[12], that the N value as 4 is the best  denominator for the averaging method to convert 

radial to aortic blood pressure waveforms for their sampling frequency of 128Hz. Sim-

ilarly, this research followed the exact same method as [12] and identified the N value 

for the dataset which is used in this research.  

For ATF, the transfer function is defined in the terms of the wave travel time (Td) and 

reflection coefficient parameters (Γ) of an arterial model. The parameters are estimated 

from the radial blood pressure waveform by investigating the visualization that central 

blood pressure waveforms exhibit exponential diastolic decays [123], [179] .  Figure 

3.6 shows the procedure of the ATF method to derive the central blood pressure wave-

form. Equation 3.8 is the ATF to estimate the central blood pressure waveform from 

the radial blood pressure waveform. For the ATF, an investigation was carried out to 

identity the Td in the wide range of 0 to 150 ms, with increments of 5 ms, and Γ in the 

physical range of 0 to 1, with increments of 0.05, following exactly the method done in 

this paper [179]. 

𝐻 (𝑎−𝑟) =
𝑃 𝑎(𝜔)

𝑃 𝑟(𝜔)
 

(3.7) 
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Figure 3.6 Adaptive transfer function (ATF) for deriving the central blood pressure 

waveform from a radial blood pressure waveform where radial blood pressure is Pr(t) 

,  central blood pressure Pc(t), the wave travel time is Td, wave reflection coefficient 

is Γ [179]. 

All the methods were developed and compared in the results and discussion section for 

the Root Means Square Error (RMSE), Mean Average Percentage Error (MAPE), peak 

difference and computational time. This is to identify a low computational intensity 

method which would be able to give a close estimate of the actual aortic blood pressure 

waveform with a close prediction of the systolic pressure. So that the system can be 

embedded in a wearable device to ensure continuous conversion of central aortic blood 

pressure waveform. 

3.5 Modelling and artificial intelligence 

This section shows the overall development of the risk indication system, based on the 

use of a convolutional neural network (CNN), as CNNs have shown remarkable con-

tribution in recent years for pattern/feature classification based on the literature review. 

As opposed to the regular CNNs for classification, this CNN’s output must be based on 

a numerical regressive output where the input of the CNN would be the blood pressure 

waveform and the output would be numerical rather than a classifier. Vincent Rideout’s 

complete cardiovascular model is utilised to produce the dataset for the convolutional 

neural network. This model was chosen as it is a zero-dimensional model, making it 

less complex and easier to be implemented into this newly proposed medical system.  

To have a better understanding of Vincent Rideout’s complete cardiovascular loop 

model, an iterative study of the parameters is done. This is to study the relationship 
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between each parameter and its response to the aortic pressure signal. The study is fo-

cused on the second peak of the aortic pressure signal (PA1), as the second peak on-

wards of the model’s output would have obtained a steady-state response which can be 

utilised to measure the effect on PA1. This is evaluated and proven in the results section 

(Section 4.4.1 Modelling). After identifying parameters of Vincent Rideout’s model 

that affects the aortic signal, these parameters and the corresponding aortic blood pres-

sure waveform is used to produce the dataset for the CNN where the input of the CNN 

would be the aortic blood pressure waveform and the output would be the identified 

parameters that affect the aortic blood pressure waveform. Figure 3.7 shows the overall 

methodology flowchart of the risk indication-based convolutional neural network 

(CNN), where it is split into two sections (Modelling and AI) for ease of explanation. 

 

Figure 3.7 The flowchart of the overall methodology of the risk indication-based con-

volutional neural network (CNN) 

3.5.1 Modelling 

This section elaborates the method used to obtain the dataset for the CNN from Vincent 

Rideout’s complete cardiovascular model. Firstly, Vincent Rideout’s complete cardio-

vascular loop model was coded in MATLAB and the model was analysed to investigate 

the effects of the parameters. This was done to eliminate the parameters that are not 

significant to the aortic pressure signal by keeping them as constants. There are 36 
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parameters in Vincent Rideout’s complete cardiovascular loop model, which are shown 

in Table 3.3 with their corresponding default values where the units for the resistance 

is g · s/cm4 , compliance is cm4 · s2/g and inertance is g/cm4.  

Table 3.3 The 36 parameters in Vincent Rideout’s complete cardiovascular loop 

model and their corresponding default values. 

No Param-

eter 

Description Default 

values  

 
No Param-

eter 

Description Default 

values  

1 RP1 Pulmonary Ar-

tery 1 Re-

sistance 

10 
 

19 LLA Left Atrium In-

ertance 

1 

2 RP2 Pulmonary Ar-

tery 2 Re-

sistance 

40 
 

20 LLV Left Ventricle 

Inertance 

1 

3 RP3 Pulmonary Ar-

tery 3 Re-

sistance 

80 
 

21 LA1 Aortic 1 In-

ertance 

1 

4 RL1 Pulmonary 

Vein 1 Re-

sistance 

30 
 

22 LV2 Systemic Veins 

2 Inertance 

1 

5 RL2 Pulmonary 

Vein 2 Re-

sistance 

10 
 

23 LRA Right Atrium 

Inertance 

1 

6 RLA Left Atrium 

Resistance 

5 
 

24 LRV Right Ventricle 

Inertance 

1 

7 RLV Left Ventricle 

Resistance 

5 
 

25 CP1 Pulmonary Ar-

tery 1 Capaci-

tance 

0.00010 

8 RA1 Aortic 1 Re-

sistance 

10 
 

26 CP2 Pulmonary Ar-

tery 2 Capaci-

tance 

0.00030 

9 RA2 Aortic 2 Re-

sistance 

160 
 

27 CP3 Pulmonary Ar-

tery 3 Capaci-

tance 

0.00270 

10 RA3 Systemic Ar-

tery Resistance  

1000 
 

28 CL1 Pulmonary 

Veins 1 Capac-

itance 

0.00100 

11 RV1 Ventricle 1 Re-

sistance 

90 
 

29 CL2 Pulmonary 

Veins 2 Capac-

itance 

0.00100 
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12 RV2 Ventricle 2 Re-

sistance 

10 
 

30 CLA Left Atrium 

Capacitance 

0.01176 

13 RRA Right Atrium 

Resistance  

5 
 

31 CA1 Aortic 1 Ca-

pacitance 

0.00018 

14 RRV Right Ventricle 

Resistance 

5 
 

32 CA2 Aortic 2 Ca-

pacitance 

0.00023 

15 RPW1 Relative Pul-

monary Re-

sistance 1 

10 
 

33 CA3 Aortic 3 Ca-

pacitance 

0.00182 

16 RPW2 Relative Pul-

monary Re-

sistance 2 

10 
 

34 CV1 Systemic Veins 

1 Capacitance 

0.02100 

17 LP1 Pulmonary 

Aortic 1 In-

ertance 

1 
 

35 CV2 Systemic Veins 

2 Capacitance 

0.04500 

18 LL2 Pulmonary 

Vein 2 In-

ertance 

1 
 

36 CRA Right Atrium 

Capacitance 

0.04500 

 

The R, L, and C parameters that significantly contribute to changes in the aortic blood 

pressure waveform of Vincent Rideout's full cardiovascular loop model were found 

using a sensitivity analysis. This is done to identify the essential parameters that affect 

the aortic waveform. There are two types of sensitivity analysis, which are the local 

sensitivity analysis (LSA) and the global sensitivity analysis (GSA). LSA is a sensitiv-

ity analysis technique that iterates one parameter value at a time around its default value 

by keeping the rest of the other parameters fixed at their default values [36], [37]. This 

procedure is repeated for all the parameters to study the parameter’s independent re-

sponse to the output signal. On the other hand, the GSA is an advanced technique com-

pared to the LSA, as it explores the interrelationship and the entire parameter response 

on the output signal [38]–[41]. When comparing the LSA and GSA, it is known that 

LSA is simple, easy to implement and computationally less expensive compared to the 

GSA. This research utilizes LSA as the sensitivity analysis technique because it is less 

computationally intensive and it studies the parameter’s independent response to iden-

tify the significant parameter that affects the features of the model’s output signal. In 

addition to this, as this work focuses on the use of these parameters as CNN outputs, it 

is preferable to be able to tune the outputs to each parameter's changes when trained 
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with the CNN, to ensure a better relationship with each parameter and their correspond-

ing influence on the signal shape and feature can be obtained. Hence the choice of LSA 

over GSA is deemed to be the correct one for this work overall.  

Furthermore, as previously mentioned, this study focuses on the second peak of the 

aortic pressure signal (PA1), as the from second peak onwards of the model’s output 

(second output waveform) a close to steady-state response would be achieved, which 

can be utilised to measure the effect on PA1. At the second peak, one full blood flow 

circulation is completed whereas the first peak only quantifies the first pump of blood 

flow out of the heart (initial conditions of the model before reaching a steady-state re-

sponse). A range from the parameter’s nominal or default value was selected to examine 

the effect of an independent response of the R, L and C parameters in model inputs. For 

the value selection, two conditions had to be followed: the R, L and C values should 

not be zero; and all the parameter values should be positive. This resulted in the choice 

of a range of ± 75% from the default values stated in Table 3.3, with a resolution of 

25% in between the range, which gave an evaluation of 7 values for each parameter, 

and 252 evaluations overall. The model's runtime was kept constant while each param-

eter was changed from its default value, as indicated above, with the variation ranging 

from 0.25 to 1.75 times the default value, known as the minimum and maximum values 

respectively. This method is done by iterating one model input parameter value around 

its default value, while keeping all other parameters fixed at their default values to see 

the effect of the model’s output [36], [37]. Then, the iterated input variable is returned 

to its default value and the procedure repeated for all parameters one by one, to capture 

the effect of each individual input parameter variation on the output. The results were 

analysed, and the parameters that affect the aortic pressure signal were computed. Fig-

ure 3.8 shows the methodology flowchart that is used for identifying the V.Rideout 

model's parameters that affect the aortic blood pressure waveform. 
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Figure 3.8 The methodology flowchart for identifying the V.Rideout model's parame-

ters that affect the aortic blood pressure waveform 

This analysis in Figure 3.8 is used to identify the independent response of the parame-

ters that affect the aortic blood pressure waveform. This is done by differentiating the 

minimum and maximum amplitude values of the PA1 signal's second peak, where 7 

output PA1 signals were obtained for the assessment of each parameter. If the differ-

ence between the minimum and maximum amplitude values of the second peak is 

greater than 2.5 mmHg, then the parameter is shortlisted as a parameter that contributes 
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in affecting the aortic blood pressure waveform. Any differences in the minimum and 

maximum amplitude values of the second peak that are lower than 2.5mmHg is not 

considered as parameters that affect the aortic blood pressure waveform. A change of 

pressure lesser than 2.5mmHg is considered as not significant. This pressure change 

can be related to physical activities done by humans. When a physical activity is con-

ducted, there is a change in the blood pressure due to the intensity of the heart to pump 

blood to muscles during a vigorous activity. Hence, this pressure may be considered  

insignificant because it does not indicate any heart related disease as it is a part of nor-

mal human physiology [334].   

3.5.2 Artificial intelligence 

This section is divided into two subsections that provides details on the technique used 

to develop the risk indication-based CNN. The first subsection elaborates on the data 

generation process using Vincent Rideout's complete cardiovascular model, and the 

second subsection elaborates on the methodology of CNN development for the identi-

fication of parameter values for cardiovascular disease (CVD) and non-cardiovascular 

disease (non-CVD).  

3.5.2.1 Data Generation 

After shortlisting the parameters that affect the aortic pressure signal (PA1), these pa-

rameters were used to create the training data and validation data for the neural network. 

The data creation process is done by utilising two ranges of parameter values, where 

the first range is the maximum range of the parameter values and the second range is 

the initial range of the parameter.The data creation process starts by identifying the 

maximum range of values of each parameter, while keeping the rest of the parameters 

in the initial range, where the identified maximum range and the initial range of the 

parameters will be utilised to create the dataset.  

To determine the maximum range, a standard deviation of ± 10%  times of the default 

value given by Vincent Rideout that affects PA1 is used as the initial range for the 

parameters. This is done while changing each parameter’s standard deviation in an in-

crement of (± 10% ) of the corresponding parameters default value, to obtain the max-

imum standard deviation of that parameters before the Vincent Rideout’s complete car-

diovascular loop model starts simulating a non-physiological aortic pressure signal. 

These default values given by Vincent Rideout produces a healthy aortic pressure signal 
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(PA1). By knowing the maximum standard deviation of each parameter that affects the 

PA1 signal, training data was formed by keeping all the parameters that affect the PA1 

as randomised data within the (± 10% ) initial range of its parameter’s default value, 

while changing each of those parameters one at a time to a randomised value within the 

maximum range.  

The parameters that affect the PA1 were kept in an initial randomised range of 

(± 10% ) of the parameter’s default value, to avoid the neural network from having a 

bias of one dominant parameter output compared to all the parameters that affect the 

PA1. This process of data creation is repeated to form the validation data, which is 20% 

of the total training data made. The sample size of the data would be dependent on the 

number of identified parameters, which affects the aortic blood pressure waveform.  

3.5.2.2 Convolutional Neural Network 

This subsection elaborates the methodology for the development of the risk indication-

based CNN by using the dataset produced from Vincent Rideout’s complete cardiovas-

cular model. In addition to this, the identification of the parameter values for cardio-

vascular disease (CVD) and non-cardiovascular disease (non-CVD), which includes 

healthy cardiovascular signals is covered here. The training data (parameters) is fed into 

the neural network as the output and its corresponding PA1 signals of those parameters 

are placed as the input. Convolutional neural networks (CNN) were used as the neural 

network to replicate the idea of a doctor investigating a patient’s signal and extracting 

its features to predict or identify the patient’s health condition. CNNs have shown 

greater achievement in recent years for pattern / feature identification [42]–[46] which 

is suitable to be applied in this work, since the aortic pressure signal can be fed into the 

CNN, so that its features can be identified and related to the model’s parameter values. 

The CNN structure which was selected is one with two-convolution layers. This is be-

cause by viewing the waveform, it can be observed that the crucial features of the wave-

form are minuscule and would be difficult to be captured by a single convolution layer 

structure. Furthermore, a majority of current research works utilising CNN for physio-

logical signals have utilised more than a single convolution layer structure [42], [255], 

[256], [259], [263], [274] which has shown better accuracy. Hence, a two-convolution 

layer structure would increase the detection of these features due to the higher number 

of processes performed on it. This research investigates the feasibility of this method 

of detection, which utilizes a CNN structure of 2 convolution layers, with other 
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supplementary layers in between that are required for the CNN, which are two max-

pooling and a fully connected layer, as shown in Figure 3.9. 

 

Figure 3.9 The CNN structure used in this work, with 2 convolution layers, 2 pooling 

layers, and 1 fully connected layer along with the input and output layers 

An investigation must be conducted to identify the ideal CNN architecture, in which 

each layer of the CNN structure has its own hyperparameters that must be adjusted in 

order to determine the best combination. To find the optimal CNN architecture, a grid 

search of hyperparameters must be performed to find the best combination of hyperpa-

rameters. The CNN structure has 2 convolution layers and 2 maximum pooling layers 

where the convolution layer consists of hyperparameters, which are filter size, number 

of filters and stride while the maximum pooling layers has filter size and stride. In ad-

dition, the CNN has a learning rate which needs to be investigated, where the learning 

rate is a hyperparameter that controls how much to change the model in response to the 

estimated error each time the model weights are updated. These hyperparameter values 

need to be identified to attain the CNN’s best architectures with the lowest validation 

RMSE. After the CNN is trained with the best architecture, it is validated with the val-

idation data. If the validation achieves the lowest root mean square error (RMSE), the 

CNN is accepted. This is to ensure that the CNN will give reliable parameter results 

when an aortic pressure signal is fed into it. The overall methodology for identifying 

the CNN is shown in Figure 3.10 . 
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Figure 3.10 The methodology flow chart in identifying the CNN using the dataset pro-

duced from V. Rideout cardiovascular model. 

As seen from Figure 3.10, there are two datasets being investigated, which are the initial 

dataset and twice the sample size of the initial dataset. The initially available training 

data would be dependent on the number of identified parameters that affects the aortic 

blood pressure waveform. Hence, a 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑘 × 100 is chosen, where k is the 

total number of parameters that affect the aortic blood pressure waveform. As CNNs 
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usually take thousands of data, 100 samples for each parameter that affects the aortic 

blood pressure waveform were selected to attain a sufficient number of samples per 

parameter. Two datasets were made available to investigate the requirement of data for 

fine tuning the CNN where another dataset was made available which is double the size 

of the initial dataset, 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑘 × (100 ×  2). The initial dataset is utilised to 

identify the CNN’s top 10 architectures with the lowest validation RMSE (Step 1 in 

Figure 3.10), where these top 10 architectures are used to retrain and validate with the 

dataset which is double the sample size of the initial dataset (Step 2 in Figure 3.10). 

The top 10 lowest validation RMSE CNN of both datasets are tested with a constant 

testing dataset to obtain the lowest RMSE, where the constant testing data is 20% of 

the total initial training data. This is done to investigate if the initial dataset is sufficient 

for the finetuning of the CNN, or if there is a necessity to increase the sample size of 

the dataset to improve the accuracy of the CNN, and to avoid overfitting in the neural 

network due to a large sample size of dataset.  

Finally, the selected choice of the best CNN from the analysis is then utilized to obtain 

the parameters for the signals obtained from the online database, PhysioNet [328]. 

These parameter values are used as the base indicator parameters for cardiovascular 

disease and non-cardiovascular disease. After identifying the indicator parameters for 

CVD and Non- CVD, they are used to verify the classification of parameters for the 

healthy signals from HaeMod [329] and the cardiovascular disease signals obtained 

from the hospital.  Figure 3.11 summarizes the flow chart of identifying the parameters 

of CVD and non-CVD and the verification of the classification by the CNN. The reason 

for using online patient data is to ensure that the methodology works, and the hypothesis 

can be proven before visiting the hospital in order to verify the system with the cardi-

ologist (Appendix 1). 
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Figure 3.11 The flowchart of identifying the parameters of CVD and non-CVD and 

the verification of the classification by the CNN 
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 RESULTS AND DISCUSSION   
 

4.1 Introduction 

This chapter presents the findings and discussion of the medical system to indicate risk 

of cardiovascular disease. As previously mentioned, the system is divided into three 

main subsystems that cover key sections of this research. First, the results of the sensor 

used in the prototype are shown and discussed. Next, the developed Electrical Imped-

ance Function was used to convert the radial blood pressure waveform to an estimated 

aortic blood pressure waveform, and the results obtained were analysed. In order to 

demonstrate comparable estimation capabilities, the EIF was also compared with the 

Generalised Transfer Function,  N-Point Moving Average and Adaptive Transfer Func-

tion. In addition, a study was shown in this chapter on the parameter which affects the 

zero-dimension cardiovascular model’s aortic blood pressure. Afterwhich the best CNN 

architecture to interlink the parameter of the zero-dimension cardiovascular model with 

the estimated aortic blood pressure waveform has been utilised to identify baseline pa-

rameters for risk indication of cardiovascular disease. Finally the chapter reveals the 

overall outcome of the medical system methodology which was assessed using the hos-

pital data obtained. 

4.2 Non-invasive wearable device for blood pressure waveform acqui-

sition 

This section is broken into three subsection. The first subsection elaborates the choice 

of the sensor and its findings. The second subsection elaborated on the development of 

the hardware for the non-invasive prototype device to acquire the radial blood pressure 

waveform from the user’s wrist. Finally, the third subsection elaborates the limitation 

of the hardware of the non-invasive prototype device for blood pressure waveform ac-

quisition.  

4.2.1 Sensor selection 

For this research, the pressure sensor (Honeywell FSS005WNSB) shown in Figure 4.1 

was selected to be used as the sensor to acquire the radial blood pressure waveform.  
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Figure 4.1. Honeywell FSS005WNSB 

 

The sensing force of Honeywell FSS005WNSB is from 0 to 5N. The maximum sensing 

ability of this sensor is calculated by using the pressure Equation 4.1, while Equation 

4.2 shows the calculation of the sensing area where r is the radius of the actuator and h 

is the height of the actuator.  

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐹𝑜𝑟𝑐𝑒

𝐴𝑟𝑒𝑎
= 𝑆𝑡𝑟𝑒𝑠𝑠 

(4.1) 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝐴𝑟𝑒𝑎 =  2𝜋𝑟ℎ (4.2) 

𝑆𝑒𝑛𝑠𝑜𝑟 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝐴𝑟𝑒𝑎 = 2 × 𝜋 × 0.99𝑚𝑚 × 0.375𝑚𝑚 = 2.3326 × 10−6 𝑚2 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
5

2.3326 × 10−6
= 2143530.824 𝑁𝑚−2  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 2143530.824 𝑁𝑚−2 

Converting Millimetres of mercury (mmHg) to Newtons per metre squared( 𝑁𝑚−2) 

1 mmHg =  133.32 𝑁𝑚−2 

Hence, 

 the maximum sensing capability =  
2143530.824 

133.32
= 16078.089 𝑚𝑚𝐻𝑔  

 

The specification on the choice of sensor has been compared with HK-2000B (Hefei 

Huake Electronic Technology Research Institute, Hefei, China) [335]and MPX2053 

[141] which were previously used in other research to acquire the radial blood pressure 

waveform pulse. Table 4.1 shows the specification comparison of the sensors.  

Actuator 
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Table 4.1 Comparisons of sensor specification 

Parameter HK-2000B MPX2053 FSS005WNSB 

Pressure range 300 mmHg 362mmHg 16078mmHg 

Pressure sensitivity 2 mV/mmHg 1 mV/mmHg 0.18mV/mmHg 

Response time 0.4ms 1ms 0.1ms 

Repeatability error  0.5%  - 0.2% 

Operating Voltage 5V 10V 5V 

Operating Current 1.5mA 6mA 1.2mA 

Price RM 382.27 RM 50 RM 281.57 

 

From Table 4.1, it can be seen that the Honeywell FSS005WNSB sensor gives the larg-

est sensing range which is up to 16078mmHg, the best pressure sensitivity, the fastest 

response time and the lowest repeatability error (best precision). Moreover, the Honey-

well FSS005WNSB sensor requires the least power compared to the HK-2000B and 

MPX2053 where it has the lowest current requirement. The large sensing range of 

FSS005WNSB sensor is crucial for the tonometry method because there will be an op-

posing force exerted to the sensor where the sensor is pressed directly against the skin 

to measure the pressure pulse waveform. Figure 4.2 shows the tonometry method con-

ducted using Honeywell FSS005WNSB sensor. 

 

Figure 4.2 Diagram of the tonometry method 

Radius

Skin

Radial artery

FSS005WNSB

Po

Pi
TT
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When the Honeywell FSS005WNSB sensor is pressed against the skin above the radial 

artery as shown in Figure 4.2, the dynamic equilibrium on the pressed surface can be 

expressed by Equation 4.3 considering the thickness of the blood vessel wall based on 

Laplace’s law [336] where T is the circumferential tension on the blood vessel wall, 𝑃𝑖 

is the blood pressure, 𝑃𝑜 is the external pressure and the curvature radii on the sensor 

pressing surface on the inner and outer walls of blood vessel are 𝑟𝑖 and 𝑟𝑜respectively. 

𝑇 = 𝑃𝑖𝑟𝑖 − 𝑃𝑜𝑟𝑜 (4.3) 

The Equation 4.3 can be rewritten in the form of representing the blood pressure (𝑃𝑖) as 

shown in Equation 4.4.  

𝑃𝑖 =
𝑟𝑜

𝑟𝑖
𝑃𝑜 +

𝑇

𝑟𝑖
 

(4.4) 

As can be seen in Figure 4.2, if the blood vessel is squashed on the FSS005WNSB 

sensing surface and hold, 𝑟𝑜  ≈ 𝑟𝑖  and 𝑟𝑖  ≈ ∞. Hence, Equation 4.4 can be approximated 

to Equation 4.5. 

𝑃𝑖 ≈ 𝑃𝑜 (4.5) 

In other words, when an appropriate pressing force is exerted by the sensor to the blood 

vessel, the force detected by the FSS005WNSB sensors becomes equivalent to the force 

exerted by the blood flow. Therefore, if the FSS005WNSB sensor is retained with the 

optimum pressing force, it is possible to measure the blood pressure continuously with-

out interrupting the blood flow. This would measure the pressure pulse waveform which 

is equivalent to the blood pressure waveform measured by inserting a catheter in to the 

blood vessel. The best way to detect the pressure waveform is to locate it directly above 

the blood vessel so that the condition of Equation 4.5 can be attained.  Hence, it is 

necessary that the sensor’s diameter be close to the diameter of the radial artery. In this 

case, the sensor has a diameter of 1.98mm and it is known from literature that the radial 

artery has a diameter of  2.2 +/- 0.4 mm [337], [338]. The diameter of the sensor is 

sufficient because the sensor will not be pressed till the center of the radial blood vessel 

to avoid interruption to the blood flow.  Therefore, the sensor should have at least ¾ of 

the diameter of the radial artery (1.65mm) as its sensing diameter where in this case, 

the sensor has a diameter of 1.98mm.   
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4.2.2 Development of the hardware for blood pressure waveform acquisition de-

vice  

The chosen sensor acquires the signal in milli voltage where there is a need to amplify 

the signal before feeding it to the microcontroller. The amplification of the output signal 

is done by 1000 gain using AD524c. Then, an active low pass filter was placed with a 

gain of 5 where R1 =  16𝑘Ω , R2 =  1𝑘Ω  , R3 = 4𝑘Ω  and C3 =  1𝜇𝐹. An average 

healthy person at rest would have about 60 beats per minute and when in motion up to 

100 beats per minutes. As the normal heart beat ranges from 1Hz to 1.7Hz (60bpm to 

100bpm), the cut-off frequency is set to 10Hz. This is because the 10th  harmonic pro-

duces the central aortic blood pressure waveform [153], and this research is focusing 

on the upstream blood pressure waveform which is the central aortic blood pressure 

waveform, excluding the high frequency that is present in the radial blood pressure 

waveform.  The Figure 4.3 shows the RC circuit diagram for the cut off frequency 

where the input signal is from the ADC524c and the output signal is fed to TL071CP. 

Equation 4.6 shows the derivation on obtaining the resistor (R1) and capacitor (C5) 

values for the cut off frequency of 10Hz. After low passing the signal, the signal is 

reamplified with TL071CP where the gain is set to 5. Figure 4.4 shows the circuit dia-

gram of the reamplification with TL071CP where the input is obtained for the RC cir-

cuit in Figure 4.3 and the output is fed to the 16-bit Analog-Digital Converter (ADC). 

Equation 4.8 shows the derivation on obtaining both the resistors, R2 and R3 for ream-

plification. 

 

Figure 4.3 RC circuit. 

 

𝑓𝑐 = 10 𝐻𝑧 

𝑓𝑐 =
1

2𝜋𝑅1𝐶5
 

(4.6) 

Let R1 =  16𝑘Ω 

𝐶5 =
1

2𝜋𝑅1𝑓𝑐
 

(4.7) 

Input Output
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𝐶5 =
1

2𝜋 × 16𝑘Ω × 10
 

𝐶5 = 1.005309649𝜇𝐹 ≈ 1𝜇𝐹 

 

 

Figure 4.4 TL071CP amplifier circuit diagram 

 

𝐴𝐹 = 1 +
𝑅3

𝑅2
= 5 

(4.8) 

Let R2 =  1𝑘Ω   

𝑅3 = (5 − 1)𝑅2 

𝑅3 = 4𝑅2 

𝑅3 = 4𝑘Ω 

For the power supply, two lithium-ion polymer batteries of 7.4V sources the 2 units of 

7805 voltage regulators, which is used to power the sensor, microcontroller and both 

the amplifiers. The power supply circuit is built with two capacitors, which are C1 & 

C3 = 100𝑛𝐹 and C2 & C4 = 220𝑛𝐹 for each voltage regulator respectively. Figure.4.5 

shows the hardware and the circuit to acquire the radial pulse waveform. The hardware 

consists of a pressure sensor Honeywell FSS005WNSB, two amplifiers which are 

AD524C and TL071CP, 1 microcontroller which is NodeMCU Lua V3 ESP8266 WIFI 

with CH340C, 1 SD card module and 1 organic light-emitting diode (OLED) which is 

SSD1306. Figure 4.6 shows the printed circuit board (PCB) developed in KiCad EDA 

where the AD524C, NodeMCU Lua V3 ESP8266 WIFI with CH340C, SD card mod-

ule, the OLED and batteries will be plugged into it to form the prototype. 

Input
Output
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Figure.4.5 Hardware to obtain the radial signal from the patient 

 

Figure 4.6 Printed Circuit Board (PCB) developed in KiCad EDA 

The radial pressure waveform data acquisition device is shown in Figure 4.7. Figure 

4.8 shows the radial signal obtained from the hardware, projected on to the oscilloscope 

after the first amplification of ADC 524 while Figure 4.9 shows the radial signal after 
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it is lowpassed and reamplified by TL071CP before transmission to the microcontroller. 

Figure 4.10 shows the radial signal obtained from the hardware with the microcontrol-

ler.  

 

 

 

Figure 4.7 (a) Prototype of the overall device and (b) the circuit board displayed outside 

of the 3D printed enclosure of the prototype 

(a) 

(b) 
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Figure 4.8. The radial signal obtained from the hardware on to the oscilloscope after 

the first amplification 

 

Figure 4.9.The radial signal after lowpass and reamplified by TL071CP before acquir-

ing by the microcontroller   
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Figure 4.10 ADC values of the Radial pulse waveform from the microcontroller 

 

Figure 4.11 Radial signal captured by the hardware which is displayed by the OLED 

 

When comparing the Figure 4.8 and Figure 4.9, it can be seen that the lowpass filter 

was able to eliminate the noise in Figure 4.8 to produce the signal in Figure 4.9. More-

over, the resolution of the signal obtained from the hardware to the oscilloscope in Fig-

ure 4.9 shows that it is much more detailed compared to the resolution of the signal 

obtained from the hardware to the microcontroller in Figure 4.10. This is because the 

oscilloscope has a sample rate of up to 1GigaSamples/Second compared to the micro-

controller attached with a 16-bit Analog-Digital Converter (ADC) which has only a 

sample rate of 860 Samples/Second. Moreover, Figure 4.11 shows the OLED display 

of the signal captured by the microcontroller which has a resolution of 128 x 64 dot 

matrix panel of organic / polymer light-emitting diode which is too small-scale to dis-

play all the features of the signal obtained by the microcontroller. The purpose of the 

OLED is to display the signal process by the microcontroller. Hence, its resolution is 

good enough to visualise the signal acquired by the prototype.  
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4.2.3 Limitations of hardware 

It is known that the arterial tonometry is used to measure the blood pressure waveform 

within the blood vessel, which needs a controlled force to maintain the radial artery in 

an applanated state over time [339], [340]. However, applanation has been proven to 

be difficult because it must be frequently calibrated in practice to ensure the blood pres-

sure measurement to be accurate. Moreover using oscillometric blood pressure meas-

urement for calibration of the arterial tonometry method contributes significantly to 

error [341].  Therefore, for this prototype, obtaining the user's invasive radial blood 

pressure waveform is required for this prototype in order to calibrate the ADC values 

to blood pressure values and to examine the accuracy or correlation between non-inva-

sive and invasive blood pressure waveforms. This can be done in the hospital by strap-

ping the prototype on the patient before an angiogram procedure where the doctor 

would puncher through the radial blood vessel. In addition to this, the signal attained 

from the prototype can be examined for its accuracy with the invasive signal acquired 

in the hospital. However, the current state of the hardware doesn’t fulfill the criteria of 

Clinical Research Centre (CRC) in Malaysia where the prototype needs to be miniatur-

ised to be a wearable device, so that it would be compact and handy to collect data in 

the hospital. To ensure miniature prototypes are produced, there would be a need of 

industrial soldering and changing the current components to Surface-mount technology 

(SMT) components. For this ongoing development, the industrial collaborator Chulia 

Facilities Management Sdn. Bhd will further develop the prototype into the wearable 

device.  

4.3 Estimation of central aortic blood pressure waveform from radial 

blood pressure waveform 

This section present the findings on the existing and developed transfer function for 

estimating the central aortic blood pressure wave from the radial blood pressure wave-

form. This section is divided into three subsections: development of the Electrical Im-

pedance Function, identification of all transfer function method parameters, and com-

parison of the electrical impedance function to the Generalised Transfer Function, N-

Point Moving Average, and Adaptive Transfer Function. 
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4.3.1 Development of the electrical impedance function 

The four-element Windkessel circuit was coded using its equivalent circuit, by using 

the concept of Kirchhoff's voltage law (KVL) which implements complex frequency 

(‘s’), and the function is transformed to time domain using inverse Laplace transform 

as the acquired signal by the prototype is in time domain. By converting to time domain, 

this would reduce computational time as the signal doesn’t need to convert to frequency 

domain. Equation 4.9 shows the output equation to generate the radial from the aortic 

waveform.  

𝑃𝑜 =  𝑃𝑖 × 𝑟 × exp (
𝑅×𝑡×(

1

2
)

𝐿
) × exp (

𝑡×(−
1

2
)

𝐶×𝑟
) ×

sinh (
𝑡×√(𝐿2+𝐶2×𝑅2×𝑟2−𝐶×𝐿×𝑟2×4+𝐶×𝐿×𝑅×𝑟×2)

𝐶×𝐿×𝑟×2
) ×

1

√(𝐿2+𝐶2×𝑅2×𝑟2−𝐶×𝐿×𝑟2×4+𝐶×𝐿×𝑅×𝑟×2)
× 2  

(4.9) 

where Po is the output of the radial waveform, Pi is the input of the actual aortic wave-

form and t is the time (seconds). 

Equation 4.9 is then mathematically rearranged to obtain the EIF to estimate the central 

aortic blood pressure, which is shown in Equation 4.10.  

where “Po” is the output of the aortic waveform, and “Pi” is the input of the actual 

radial waveform and t is the time (seconds). 

4.3.2 Paramater identification for the estimation methods 

Once equation 4.10 was obtained, the estimated aortic waveform of the randomly se-

lected 20 data each of HaeMod and Hospital were fed in, and when compared with the 

actual aortic waveform, the four-element parameters with the lowest RMSE and MAPE 

were taken as the generalized values. Table 4.2 shows the top five lowest average 

RMSE and MAPE generalized four-element values for the random 40 data, where the 

first row is the four-element parameter with the lowest RMSE which was taken as the 

generalized values. 

"𝑃𝑜" =  "𝑃𝑖" /(𝑟 × exp (
𝑅×𝑡×(

1

2
)

𝐿
) × exp (

𝑡×(−
1

2
)

𝐶×𝑟
) ×

sinh (
𝑡×√(𝐿2+𝐶2×𝑅2×𝑟2−𝐶×𝐿×𝑟2×4+𝐶×𝐿×𝑅×𝑟×2)

𝐶×𝐿×𝑟×2
) ×

1

√(𝐿2+𝐶2×𝑅2×𝑟2−𝐶×𝐿×𝑟2×4+𝐶×𝐿×𝑅×𝑟×2)
× 2)  

(4.10) 
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Table 4.2 The top five lowest average RMSE and MAPE generalized four-element 

values for the random 40 data from HaeMod and Hospital 

Subsituting the lowest RMSE values into Equation 4.10 a simplified version (rounded 

to 3 s.f ) of the EIF used in this research is shown in Equation 4.11.  

where “Po” is the output of the aortic waveform, and “Pi” is the input of the actual 

radial waveform and t is the time (time). 

After attaining the four-element parameter’s generalised value, it is fed into the electri-

cal impedance function and this function is then compared with the GTF, NPMA and 

ATF. All the compared methods utilised the same dataset of random 20 data each from 

HaeMod and Hospital to attain their generalised function which was then validated with 

the overall database. For the NPMA, an investigation is carried out to identify the ideal 

N value, by investigating the impact of changing the N value from 2 to 10. Table 4.3 

below shows the N values which were investigated for the average RMSE, MAPE and 

peak difference compared to the database central aortic blood pressure waveform.  

Table 4.3 Average RMSE, MAPE and Peak difference for the N value of NPMA 

N value RMSE (mmHg) MAPE (mmHg) Peak difference 

(mmHg) 

2 22.93 0.1751 20.59 

3 17.60 0.1157 13.03 

4 14.04 0.0880 11.38 

No R (Resis-

tor) 

Ohm, Ω 

L (Induc-

tor) 

Henry, H 

C (Capacitor) 

Farads, F 

r (Resis-

tor) 

Ohm, Ω 

RMSE 

(mmHg) 

MAPE 

(mmHg) 

1 4.583 5.934 0.000421 6.268 12.55 0.1000 

2 4.843 6.142 0.000394 6.422 12.60 0.0988 

3 15.679 20.879 0.000121 22.086 12.73 0.1054 

4 1.877 2.611 0.000828 2.885 12.75 0.1092 

5 6.351 8.393 0.000608 9.243 12.82 0.1021 

"𝑃𝑜" =  "𝑃𝑖" /(2.12 × exp(0.386𝑡) × exp(−189𝑡) × sinh(189𝑡))  (4.11) 
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5 11.83 0.0813 10.93 

6 10.71 0.0798 10.65 

7 9.89 0.0794 10.26 

8 9.73 0.0796 10.14 

9 9.64 0.0803 9.97 

10 9.73 0.0808 10.04 

 

From Table 4.3 above, it is identified that N = 9 is the ideal value for this dataset as it 

was able to attain the lowest RMSE and Peak difference. For the ATF, an investigation 

was carried out to identify the Td in the wide range of 0 to 150 ms, with increments of 

5 ms, and Γ in the physical range of 0 to 1, with increments of 0.05. The Td and Γ are 

25 ms and 0.65 respectively for the random 20 data from HaeMod and Hospital respec-

tively which had the lowest average RMSE of 8.498 mmHg.  

4.3.3 Comparison of electrical impedance function with other methods 

The above-mentioned methods were then used to estimate the aortic blood pressure for 

all 3365 data from HaeMod (3325data) and Hospital (40 data), and the subject that had 

the lowest RMSE and MAPE for the 4 methods was chosen for comparison, as shown 

in Figure 4.12. After analyzing all the 3365 subjects, Table 4.4 shows the Average 

RMSE, MAPE, Peak difference and computational time for 3325 virtual subjects using 

all 4 methods. The results were obtained from a computer with Intel Core i7- 4510U 

CPU(2.0GHz) with 12GB RAM.  
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Figure 4.12 The estimated central aortic blood pressure of all the 4 methods against 

the corresponding database’s central aortic blood pressure waveform; highlighted is 

the feature of the database aortic waveform captured by the EIF method. 

Table 4.4 Averages of RMSE, MAPE, Peak difference and computational time for 

3365 datasets using all 4 methods 

Method RMSE (mmHg) MAPE (mmHg) 
Peak Differ-

ence (mmHg) 

Computa-

tional time 

(ms) 

EIF 9.4838 0.0661 6.35 0.0129 

GTF 6.2698 0.0477 7.46 0.0142 

NPMA 9.3596 0.0762 5.99 0.6481 

ATF 8.4952 0.0713 5.75 119.79 

 

Table 4.4 shows that estimating the aortic blood pressure by using the EIF had a lower 

average MAPE when compared to NPMA and ATF. When compared with GTF, the 

EIF has shown the lowest peak difference. The GTF was able to give the lowest average 
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RMSE and MAPE compared to all the methods. Overall, the EIF had the best compu-

tational time by far, having a big margin between the NPMA and ATF and a close 

difference between the GTF. A visual display of 3 simulated signals by all the methods 

compared to their respective aortic blood pressure waveform of the dataset is shown in 

Figure 4.13. All the methods are further investigated using the Bland Altman plot 

shown in Figure 4.14 for the diastolic, systolic and pulse pressure reading for all the 

3365 data where the Bland Altman plot gives a graphical representation of how accurate 

the data is within the tolerance of the Limit of Agreement (LOA) which is tabulated in 

Table 4.5. It is known that the notch is one of the primary signaling that facilitates the 

endothelial-to-mesenchymal transformation and significant evidence has implicated 

'endothelial dysfunction' as a contributing factor to cardiovascular diseases [246]. 

Hence, as seen in Figure 4.12 the highlighted area of the signal which displays the notch 

is further investigated to study the correlation between the estimated central aortic 

blood pressure waveform signals of all methods against the aortic blood pressure for all 

3365 from HaeMod (3325data) and Hospital (40 data) as shown in Table 4.6.    
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Figure 4.13 Comparison of the conversion performance for 3 signals of all the meth-

ods to the dataset’s aortic blood pressure waveform (Blue (solid) line: original signal, 

Red (dashed) line: estimated). 
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Figure 4.14 Bland Altman Plot for all the methods’ estimated blood pressure wave-

forms against the 3365 dataset of aortic blood pressure waveform. (Dashed lines are 

the Lower and Upper Limit of Agreement (LOA), Solid (Red) line is the Mean differ-

ence) 

Table 4.5 Number of points that were exceeding the Limit of Agreement (LOA) for 

the Bland Altman Plot 

Method EIF GTF NPMA ATF 

Diastolic 196 150 159 157 

Systolic 57 102 103 119 

Pulse Pressure 146 168 157 170 
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Table 4.6 Average correlation percentage of all the method against the 3365 datasets. 

Method  Correlation (%) 

EIF 99.92± 0.05 

GTF 99.97± 0.03 

NPMA 99.90± 0.08 

ATF 99.96± 0.04 

 

From the above results in Table 4.4, the GTF has shown the best results in estimating 

the central aortic blood pressure waveform as it was able to give the lowest RMSE, 

MAPE and a reasonable computing time. However, GTF has a greater peak difference 

compared to EIF, NPMA and ATF. Table 4.4 also shows that EIF was able to give the 

lowest MAPE compared to the NPMA and ATF and a reasonable peak difference of 

0.36 mmHg and 0.6mmHg respectively. As for the RMSE, when the EIF was compared 

with the NPMA and ATF, it was able to give a close difference of 0.1242 and 0.9886 

respectively. From the Bland Altman plot in Figure 4.14, it can be seen that the EIF 

shows a better estimation for systolic pressure and pulse pressure as it was able to keep 

98.31% and 95.66% respectively of the data of the 3365 datasets in the limit of agree-

ment (LOA) compared to GTF, NPMA and ATF where GTF attained 96.97% and 

95.01% respectively, NPMA attained 96.93% and 95.33% and ATF attained 96.46% 

and 94.95% respectively. The Bland Altman plot in Figure 4.14 also shows that the EIF 

was able to keep 94.18% data of the 3365 data’s diastolic pressure in the limit of agree-

ment (LOA) which is a reasonably close difference of 1.36% to the GTF method which 

is the best estimator for the diastolic pressure, as it was able to keep 95.54% data of 

3365 dataset in the limit of agreement (LOA). Generally, in studies where readings of 

systolic and diastolic blood pressure have been compared, systolic blood pressure has 

been a better predictor of hypertension risk [178]. Epidemiological and treatment stud-

ies suggest that systolic blood pressure should be the primary target of antihypertensive 

therapy [178]. Hence, EIF has shown that the method is capable to be a good predictor 

for hypertension risk compared to GTF, NPMA and ATF. Furthermore, this is line with 

this research, as it needs a low computing method to estimate the aortic blood pressure 

waveform to be embedded in the microcontroller to ensure that the risk is always 
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indicated to the user even if there is no wireless communication, EIF and GTF are the 

optimum choices. It is known from literature [169], [170] that GTF contributes error if 

the  GTF is applied to patients which are not in the specific group of patients which was 

used to generate the GTF. Hence, the EIF and GTF methods are further investigated to 

see its reliability when it is constructed with one dataset of patient’s specification and 

compared with the dataset of patients which are not in the dataset of patient’s specifi-

cation. This analysis is crucial as the medical system would be utilised by various users, 

and if the user characteristics is not considered in the method to estimate central aortic 

blood pressure waveform, the method will contribute to significant error.  Since hospital 

data has 40 data, it will be utilised as the validation of the methods and 40 data randomly 

selected from HaeMod will be used to reconstruct the methods. Table 4.7 shows the 

average RMSE and MAPE for the 40-hospital data when the EIF and GTF were con-

structed from the 40 data randomly selected from HaeMod. A visual display of 3 sim-

ulated signals by EIF and GTF constructed by the above-mention data comparing to the 

respective hospital aortic blood pressure waveform is shown in Figure 4.15 and these 

methods were further investigated using the Bland Altman plot shown in Figure 4.16 

for the diastolic, systolic and pulse pressure reading.  

Table 4.7 Averages of RMSE and MAPE for 40 hospital datasets 

Method RMSE (mmHg) MAPE (mmHg) 

EIF 13.5234 0.1131 

GTF 11.9634 0.1141 
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Figure 4.15 Comparison of conversion performance for 3 signals of EIF and GTF to 

the hospital’s aortic blood pressure waveform (Blue (solid) line: original signal, Red 

(dashed) line: estimated). 
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Figure 4.16 Bland Altman Plot for the EIF and GTF estimated blood pressure wave-

form against the 40-hospital dataset of aortic blood pressure waveform. (Dashed lines 

are the Lower and Upper Limit of Agreement (LOA), Solid (Red) line is the Mean 

difference) 

From Table 4.7,  EIF was able to give a lower MAPE and a RMSE with a reasonable 

difference of 1.56mmHg compared to the GTF method. When further investigated us-

ing the Bland Altman plot in Figure 4.16, the EIF was able to keep majority of the 

systolic data in the limit of agreement (LOA) except for underestimating 1 data which 

falls below the lower LOA, while the GTF overestimates 2 and underestimates 1 data’s 

systolic pressure, showing that 3 data’s systolic pressure were not able to be kept in the 

LOA. This shows the EIF is a better estimator of the systolic pressure despite its pa-

rameters being attained from the random 40 HaeMod data compared to the GTF.  How-

ever, the GTF gives a better average correlation of 99.86± 0.15 compared to the EIF 

which was able to attain an average correlation of 99.62± 0.25. The limitation of the 

hospital data is that the radial blood pressure waveform and aortic blood pressure wave-

form obtained from the hospital patients were not taken simultaneously due to proce-

dural limitations of obtaining an invasive reading, which results in the feature of the 
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aortic and radial waveform not being in-sync, as compared to the signals obtained from 

HaeMod. However, the EIF and GTF managed to retain the shape of the estimated aor-

tic blood pressure waveform to the waveform of the patient's blood pressure which can 

be seen in Figure 4.15. 

From the overall results obtained, the EIF has shown to be a comparable method to the 

GTF and it was a better estimator of the systolic pressure. The EIF has better computa-

tional performance when compared against NPMA and ATF, and it was comparable to 

the GTF method. It has proven its estimation capability for systolic blood pressure 

which is utilized to indicate risk of hypertension in medical practice, as it was able to 

attain the least number of data exceeding the Limit of Agreement for the Bland Altman 

plot when compared to the GTF, NPMA and ATF. In addition, the EIF requires lower 

computing time which would be very useful for today’s ambulatory wearable devices 

that would require to embed the conversion algorithm in the micro-controller to contin-

uously indicate cardiac risk to users without the need of wireless communication for 

CPU or cloud computing. Thus, it is evident that the EIF can be used to estimate the 

central aortic blood pressure waveform as a simple, accurate and low computing 

method when compared to GTF, NPMA and ATF methods. 

4.4 Modelling and artificial intelligence 

This section is divided into two subsections: modelling, and  artificial intelligence. The 

modeling section elaborates the findings and discussion of the parameter selection for 

the CNN training, and the artificial intelligence section elaborates the results and dis-

cussion of the CNN development for the risk indication system. 

4.4.1 Modelling 

As stated in the methodology section above for modelling (Section 3.5.1 Modelling), 

the first step is to simulate a healthy aortic signal from the complete cardiovascular loop 

model using MATLAB, as shown in Figure 4.17. The simulated aortic signal is healthy, 

and it has a blood pressure reading close to 120/65mmHg, which is within the normal 

range[342]. 
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Figure 4.17 MATLAB simulation of PA1 signal in a healthy human 

This study focused on the second peak of the aortic pressure signal (PA1) as the second 

peak onwards of the model’s output would have reached a steady-state response which 

can be utilised to measure the effect on PA1. At the second peak, one full blood flow 

circulation is completed whereas the first peak only quantifies the first pump of blood 

flow out of the heart (initial conditions of the model before reaching a steady-state re-

sponse). As such, the RMSE of the first pulse waveform against the next two corre-

sponding pulses (second and the third pulse waveforms), is 0.05±0.01. On the other 

hand, the RMSE of the second pulse waveform against the next two corresponding 

pulses (third and fourth pulse waveforms) is 0.02±0.01. This shows the second peak 

can be considered as a steady-state response with slight discrepancies, as the RMSE is 

closer to 0 as compared to the first pulse waveform. The sensitivity analysis is first 

performed in accordance with the methodology section (Section 3.5.1 Modelling) to 

determine the independent response of all 36 parameters that influence the aortic blood 

pressure waveform, and these 36 parameters were assessed to extract the parameters 

that will affect the aortic pressure signal (PA1) significantly. Table 4.8 shows the 36 

parameters and their minimum and maximum amplitude values of the 2nd peak of the 

PA1 signal.  
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Table 4.8.Minimum and maximum amplitude values of the 2nd peak of the PA1 sig-

nal. 

No Parame-

ter 

Mini-

mum 

(mmHg) 

Maxi-

mum 

(mmHg) 

 
No Parame-

ter 

Mini-

mum 

(mmHg) 

Maxi-

mum 

(mmHg) 

1 RP1 120.1 122.4 
 

19 LLA 116.1 126.2 

2 RP2 117.7 126.7 
 

20 LLV 114.2 127.5 

3 RP3 115.4 130.5 
 

21 LA1 119.4 124.3 

4 RL1 118.1 125 
 

22 LV2 121.2 121.2 

5 RL2 119.7 122.8 
 

23 LRA 121.2 121.2 

6 RLA 116.9 129 
 

24 LRV 120 122.3 

7 RLV 120 122.3 
 

25 CP1 121 121.3 

8 RA1 119.8 122.4 
 

26 CP2 121.2 121.2 

9 RA2 105.1 127.8 
 

27 CP3 117.8 124.4 

10 RA3 96.22 126.3 
 

28 CL1 120.3 121.9 

11 RV1 120.6 121.3 
 

29 CL2 121.2 121.2 

12 RV2 121.2 121.2 
 

30 CLA 118.3 122.1 

13 RRA 121.2 121.2 
 

31 CA1 116.6 128.1 

14 RRV 120.6 121.7 
 

32 CA2 112.4 127.7 

15 RPW1 121.2 121.2 
 

33 CA3 118.4 121.2 

16 RPW2 120.8 121.4 
 

34 CV1 121.2 121.2 

17 LP1 120.9 121.2 
 

35 CV2 121.2 121.2 

18 LL2 121.2 121.2 
 

36 CRA 121.2 121.2 

 

Table 4.8 shows the minimum and maximum amplitude values of the aortic signal for 

36 different parameters, where this analysis is used to categorize the 36 parameters into 

the key parameters that are affecting the aortic blood pressure waveform and the 
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insignificant parameters. This is done by distinguishing the minimum and maximum 

amplitude values of the 2nd peak of the PA1 signal for each parameter. If the difference 

between the minimum and maximum amplitude values of the second peak is greater 

than 2.5 mmHg, then the parameter is shortlisted as the parameter that may affect the 

aortic blood pressure waveform. If the difference between the minimum and the maxi-

mum amplitude values of the second peak are lower than 2.5 mmHg; it is not considered 

as a parameter that affect the aortic blood pressure waveform, otherwise stated as in-

significant parameters. Figure 4.18 shows the plot of the pressure difference between 

the minimum and maximum values for each parameter. It can be seen that 16 parame-

ters have a difference higher than 2.5mmHg, which makes them the most significant 

potential parameters relating to the changes in the signal. The 16 parameters are: RP2, 

RP3, RL1, RL2, RLA, RA1, RA2, RA3, LLA, LA1, LLV, CP3, CLA, CA1, CA2, and 

CA3. A detailed explanation of the parameters and the resultant signal when changing 

them from their default values can be seen in Appendix 3. 

 

 

Figure 4.18. Difference between maximum and minimum values of the aortic pressure 

As an example, in Figure 4.19 shows the effect of changing RA3 on PA1, where RA3 

is categorized as a parameter that affects PA1 is shown and Figure 4.20 shows the effect 

of changing CP2 on PA1 where CP2 is categorized as a parameter that does not affects 

PA1, otherwise known as an insignificant parameter. For both cases, the other 
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parameters were kept constant. When comparing Figure 4.19 and Figure 4.20, it can be 

seen that the response of RA3 has multiple changes, while CP2 remains constant re-

gardless of the changes that occur in the parameter values. 

 

Figure 4.19 Effect of changing RA3 on PA1 

 

Figure 4.20 Effect of changing CP2 on PA1 
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Figure 4.21 Rideout’s complete cardiovascular loop model [288] 

To further relate the chosen significant parameters to the impact on PA1, a deeper look 

is taken at Rideout’s model. Human blood circulation starts when the heart relaxes be-

tween two heartbeats. At this point, the atriums which are located at the upper two 

chambers of the heart will contract and this is made up of CRA, CLA, RRA, RLA, 

LRA, LLA in the model shown in Figure 4.21. Blood then flows into the ventricles 

made up of CRV, CLV, RRV, RLV, LRV, LLV of the model shown in Figure 4.21, 

which are located at the lower two chambers of the human heart. The ventricles then 

contract and pumps blood into the large arteries during the ejection period. 
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In the systemic circulation, the left ventricle pumps oxygen-rich blood into the aorta to 

reach all parts of the body. The blood travels from the aorta, which is PA1 in the model 

to larger and smaller arteries into the capillary network.  

The pulmonary circulation begins when the right ventricle pumps deoxygenated blood 

into the pulmonary artery, which is PPV in the model then branches off into smaller 

arteries and capillaries in the lungs.  

The analysis in Figure 4.18 and Table 4.8 shows that there are 9 parameters out of the 

16 parameters that affect the PA1 which has more than 8mmHg difference between the 

minimum and maximum amplitude values of the PA1 signal and these parameters are 

located near to the aorta in the model. On the other hand, the remaining 7 parameters 

out of the 16 parameters’ minimum and the maximum amplitude values of the 2nd peak, 

which are greater than 2.5mmHg and below 8mmHg, are either located further from the 

aorta or generally do not have a major effect on blood flow. The 20 insignificant pa-

rameters do not have any significant effect on PA1 since its difference of the minimum 

and the maximum amplitude values of the peak are less than 2.5mmHg, which is con-

sidered to be not significant and a majority of them are located away from the aorta, 

which can be seen in Figure 4.21.  

Since blood circulation is a closed-loop system, any obvious change in the system will 

affect the heart more, resulting in a significant change in parameters near the heart com-

pared to parameters away from it. Likewise, the Vincent Rideout model follows the 

blood flow system of the heart which caused the parameters near the heart to have a 

higher effect on the aortic pressure (PA1) compared to parameters away from it. Fur-

thermore, PA1 increases considerably for all resistor parameters that impact PA1 and 

are placed near the aorta in the model; RP2, RP3, RLA, RA1, RA2 and RA3 and vice 

versa. These resistances have a significant impact on the blood flow to the body result-

ing in a big change in the PA1. This is because the higher the resistance at the pathway 

of the flow, the higher the pressure at PA1. Therefore, as the pressure drop is equivalent 

to the voltage drop when resistance increases, this obeys Kirchhoff’s voltage law, as 

the 0D model relates to an electrical circuit. 

Furthermore, PA1 increases significantly when all the inertance parameters that affect 

the PA1, which are located near to the aorta in the model, LLA and LLV, increases and 

vice versa. LLV is a measurement of the required pressure gradient to cause a unit 
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change in blood flow rate at the left ventricle while LLA is a measurement of the re-

quired pressure gradient to cause a unit change in blood flow rate at the left atrium. 

LLV and LLA are represented by the inductance and PA1 are represented by the voltage 

at a point after LLV and LLA. This shows that, when LLV or LLA increases, the back 

electromotive force (EMF) across it also increases resulting in PA1 to increase as well. 

PA1 is affected by CA1 and CA2 because CA1 and CA2 are the elasticity of the wall 

at the first and second part of the aorta where the blood from the heart flows to the rest 

of the body. Therefore, when CA1 or CA2 increases, the pressure of the blood flow 

decreases due to the widening of the vessel. In the 0D model, CA1 and CA2 are repre-

sented by capacitance while PA1 is represented by the voltage at a point before CA1 or 

CA2. Therefore, as CA1 or CA2 increases, the systolic part of the response decreases 

due to charging of capacitance while the diastolic part increases due to discharging of 

capacitance. 

From Figure 4.18, RP2, RP3, RL1, RL2, RLA, RA1, RA2, RA3, LLA, LLV, LA1, 

CP3, CLA, CA1, CA2 and CA3 are grouped as the 16 parameters that affect the PA1 

signal. These parameters are then used further to create the training and validation data 

for the Convolutional Neural Network.  

4.4.2 Artificial intelligence  

This section is broken down into three subsection which are data generation, convolu-

tional neural network (CNN) and indicator parameters of CVD and Non-CVD includ-

ing healthy. The data generation subsection shows the data creation process and out-

come while the convolutional neural network subsection shows the choice of CNN ar-

chitecture, and the parameters results of the methodology incorporating both transfer 

fuctions which are EIF and GTF. Finally, the indicator parameter subsection shows the 

choice of the indicator parameters for both the transfer functions.  

4.4.2.1 Data Generation 

To create the training and validation data, the maximum standard deviation of a param-

eter value needs to be identified. Hence, a standard deviation of ± 10% times of the 

default value given by Vincent Rideout that affects PA1 is used as the initial range for 

the parameters, while changing each parameter’s standard deviation in an increment of 

(± 10%) of the corresponding parameters default value to obtain the maximum stand-

ard deviation of that parameters. Table 4.9 shows the default value and the maximum 
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standard deviation value of each parameter one at a time while the rest are kept within 

a standard deviation of ± 10% of their corresponding default value. 

Table 4.9 The default and the maximum standard deviation value of each parameter. 

Parameter Default value  Maximum standard deviation value  

RP2 40 20 

RP3 80 32 

RL1 30 12 

RL2 10 10 

RLA 5 5 

RA1 10 5 

RA2 160 32 

RA3 1000 200 

LLA 1 0.4 

LLV 1 0.4 

LA1 1 0.3 

CP3 0.0027 0.00081 

CLA 0.01176 0.004704 

CA1 0.00018 0.000036 

CA2 0.00023 0.000046 

CA3 0.0018 0.00036 

 

4.4.2.2 Convolutional neural network 

The training data and validation data are then fed into the convolution neural network 

as the output and its corresponding PA1 signals of those parameters are placed as the 

input to be trained and validated. For the choice of architecture, 118098 different 
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architectures were trained to obtain the top 10 CNNs with the lowest validation RMSE 

for a data size of 1920 samples (20% is used for validation). The top 10 architechtures 

were chosen as there is no guarantee that the CNN with the lowest validation of RMSE 

will perform the best on testing data, hence 10 are chosen and the best was chosen at a 

later stage. Table 4.10 shows the grid search hyperparameter ranges that were attained 

from the 118098 different CNN architectures. 

Table 4.10 shows the grid search hyperparameter ranges 

Layer type Hyperparameters Range Step size 

1st Convolution layer 

Filter size 15 to 25 5 

Number of filters 10 to 30 10 

stride 1 to 3 1 

1st Maximum pooling layer 

Filter size 1 to 3 1 

Stride 5 to 15 5 

2nd Convolution layer 

Filter size 3 to 9 3 

Number of filters 200 to 400 100 

Stride 1 to 3 1 

2nd Maximum pooling layer 

Filter size 1 to 3 1 

Stride 2 to 6 2 

Overall Learning rate 0.001 to 0.003 0.002 

 

The top 10 CNN architecture is then retrained with a data set that is twice the size of 

the initial data. This is to verify if there would be a need for more data to be fed into 

the CNN to obtain a better prediction of the 16 parameters and to avoid saturation of 

data in the CNN. The top 10 CNNS with lowest RMSE for both versions of the CNNs 

are tested with the use of the same testing data to obtain the lowest testing RMSE CNN 

architecture. Table 4.11 shows the best 10 CNN architectures with their Validation 
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RMSE values. Table 4.12 shows the best 10 CNN architectures testing RMSE values 

for initial data and data twice the size of the initial data. 

Table 4.11 Best 10 CNN architectures with Validation RMSE of initial data and data 

which is twice the size of the initial data 

No Convolu-

tion layer 

Max 

pool-

ing 

Convolu-

tion layer 

Max 

pooling 

Lear

ning 

rate 

RMSE 

for initial 

data 

RMSE 

for data 

twice the 

size of 

the ini-

tial data  

F
ilter size

 

N
o
. o

f filters 

S
trid

e 

F
ilter size

 

S
trid

e 

F
ilter size

 

N
o
. o

f filters 

S
trid

e 

F
ilter size

 

S
trid

e 

1 15 10 2 1 15 3 400 2 1 6 0.003 0.3927 0.3308 

2 15 10 3 1 15 3 300 2 1 4 0.003 0.3967 0.3293 

3 15 10 3 1 15 3 400 3 1 2 0.001 0.3990 0.3400 

4 15 10 3 1 15 3 400 3 1 4 0.003 0.4064 0.3286 

5 25 10 3 1 15 9 400 2 1 6 0.001 0.4167 0.3615 

6 25 10 3 1 15 3 300 3 1 6 0.001 0.4184 0.3293 

7 20 10 3 1 10 3 300 3 1 6 0.003 0.4221 0.3309 

8 20 10 3 2 15 3 400 3 1 6 0.001 0.4232 0.3306 

9 15 10 3 2 15 3 200 3 1 6 0.003 0.4235 0.3284 

10 15 10 2 1 10 3 400 2 1 6 0.001 0.4274 0.3538 

 

Table 4.12 Best 10 CNN architecture testing RMSE values for initial data and data 

that is twice the size of the initial data 

No RMSE 

for initial data 

RMSE 

for data twice the size of the 

initial data 

Selected 
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1 10.388 9.675 

2 9.853 9.522 

3 9.583 9.591 

4 9.594 9.622 

5 12.291 11.627 

6 10.677 9.507 

7 11.110 9.582 

8 15.817 10.006 

9 17.514 9.487 

10 10.587 9.829 

  

From Table 4.11 and Table 4.12, CNN with architecture 9 was selected as the best 

choice of CNN to predict the 16 parameters. CNN architecture 9 was selected because 

it has the lowest validation RMSE. Although the trend in the RMSE shows that this 

CNN could be further optimized by investigating it with an even larger data size for 

training, the investigation process would take more computational time to develop the 

CNN which is not possible with the time constraints of this research. However, as this 

CNN had the lowest RMSEs and these values are acceptable for performing the re-

quired detections, it was chosen to be used for the rest of this work.  

The CNN architecture 9 trained with the data twice the size is then utilized to obtain 

the parameter values of the cardiovascular disease signal and the non-cardiovascular 

disease signal for the online database PhysioNet [328], which contained radial blood 

pressure waveforms. The PhysioNet [328] radial blood pressure waveforms were trans-

formed to aortic blood pressure waveforms using transfer functions; Electrical Imped-

ance Function (EIF) and Generalised Transfer Function (GTF) before being fed into the 

CNN. These parameters’ values were analysed to obtain the baseline parameter values 

to differentiate between cardiovascular disease and non-cardiovascular disease, which 

includes healthy signals. The baseline parameter values obtained from PhysioNet [328] 

data is then used to verify the classification of parameters for the healthy signals from 

Selected 
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HaeMod [329] and the cardiovascular disease’ signal obtained from the hospital (Ap-

pendix 2). 

(i) Results for CNN using EIF as the transfer function to estimate the aortic wave-

form  

Table 4.13 shows the 16 parameters values of the cardiovascular disease signals while 

Table 4.14 shows the 16 parameters values of some of the non-cardiovascular disease 

signals, for the data obtained from the online database, PhysioNet [328]. The complete 

table of the parameter values of the non-cardiovascular disease signals for the data ob-

tained from the online database, PhysioNet [328] is shown in Appendix 4. 

Table 4.13 The parameters values of the cardiovascular disease’ signal for the data 

obtained from the online database, PhysioNet [328] (Using EIF as the transfer func-

tion) 

Parame-

ters 

Patient with an-

gina -subject 240 

Patient with an-

gina -subject 284 

Patient with 

MI/cardiogenic 

shock -subject 

237 

Patient with 

MI/cardiogenic 

shock -subject 

248 

RP2 39.921528 39.597858 39.702312 39.67569 

RP3 82.805679 81.922409 81.398293 83.753044 

RL1 29.193281 29.111124 29.259352 28.539837 

RL2 10.348585 10.421631 10.554657 10.369467 

RLA 5.2339392 5.2276015 5.2430434 5.3171124 

RA1 9.669692 9.5897036 9.6836967 9.3078136 

RA2 162.979 161.27461 161.77939 162.88301 

RA3 991.039 993.10828 997.87134 985.96411 

LLA 0.99918717 1.0070424 0.99170023 1.0056787 

LLV 0.96733814 0.96744424 0.9652229 0.95281929 

LA1 1.0035754 1.0066992 1.011359 1.0128677 

CP3 0.002615935 0.00264803 0.002592987 0.002610098 

CLA 0.01153529 0.011476284 0.01134548 0.01144887 

CA1 0.000180867 0.000181172 0.000180671 0.000182461 

CA2 0.00022572 0.000224255 0.000224976 0.000220873 

CA3 0.001871489 0.001895231 0.001903462 0.001935462 
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Table 4.14 The parameters values of the non-cardiovascular disease’ signal for the 

data obtained from the online database, PhysioNet [328] (Using EIF as the transfer 

function) 

Parame-

ters 

No Clinical 

class-subject 

037 

Bleed- Sub-

ject039 

Respiratory 

failure-Sub-

ject055 

Brain in-

jury-Sub-

ject449 

Sepsis-Sub-

ject438 

RP2 39.23801 39.618458 39.517422 39.949261 40.007732 

RP3 80.074959 81.849365 79.926659 82.93 83.22155 

RL1 28.938517 29.250366 29.728354 29.327848 29.303034 

RL2 10.98221 10.436772 10.442408 10.225227 10.407898 

RLA 5.2627368 5.2122388 5.1205125 5.2059598 5.2632961 

RA1 9.6456795 9.7677408 9.8907404 9.7514456 9.767061 

RA2 161.39848 161.18443 159.62439 162.36986 163.10709 

RA3 998.10468 992.06769 1001.031 989.80725 988.79169 

LLA 0.97762614 1.0057852 1.0112896 1.0091474 0.98952574 

LLV 0.95166695 0.9693464 0.98382866 0.97404778 0.96573919 

LA1 1.0309312 1.0054561 0.99837852 0.99653339 1.0061437 

CP3 0.002556005 0.002653254 0.002694746 0.002657074 0.002592569 

CLA 0.01107895 0.011499938 0.011528086 0.011652189 0.011500692 

CA1 0.000181434 0.000180926 0.000179776 0.00018065 0.000180655 

CA2 0.000221951 0.000225127 0.00022816 0.000226793 0.00022569 

CA3 0.001973349 0.00188379 0.001846782 0.00184561 0.001874694 

 

Table 4.15 shows the values of the parameters of some of the healthy signals for the 

data obtained from the online database, HaeMod [329]  while Table 4.16 shows the 

values of the parameters of some of the cardiovascular disease signals for the data ob-

tained from the hospital. The continuation of the results of parameter values of the 

healthy signal for the data obtained from the online database, HaeMod [329]  until sub-

ject 40 is in Appendix 5(if necessary, the  results of the remainder of the 3325 signals 

will be provided). The list of patients from the hospital with their corresponding 
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cardiovascular disease and the complete results of parameters values of the cardiovas-

cular disease signals for the data obtained from the hospital is in Appendix 6.  

Table 4.15 The parameters values of the healthy signal for the data obtained from the 

online database, HaeMod [329] (Using EIF as the transfer function) 

Table 4.16 The parameters values of the cardiovascular disease’ signal for the data 

obtained from the hospital (Using EIF as the transfer function) 

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

RP2 39.363396 39.454655 38.828232 39.150955 38.963463 

RP3 79.68325 80.748711 76.25531 78.760406 77.664665 

RL1 29.419716 29.537537 28.887789 29.303574 29.03619 

RL2 10.586229 10.695358 10.772797 10.780199 10.882107 

RLA 5.1359968 5.2041492 5.0384417 5.138916 5.1250744 

RA1 9.8594103 9.8616428 9.782794 9.8556538 9.7955608 

RA2 160.21736 159.6792 160.8645 159.94731 160.39261 

RA3 1037.8148 1012.5735 1104.2269 1047.605 1070.3629 

LLA 0.96337026 0.9679085 0.92263293 0.94860929 0.93214291 

LLV 1.016646 0.99671686 1.0551758 1.0195162 1.0282322 

LA1 1.0075091 1.012231 1.0192057 1.016116 1.0233076 

CP3 0.002596709 0.002608718 0.002485219 0.002561808 0.002506604 

CLA 0.011348858 0.011325932 0.011040625 0.011188992 0.011042911 

CA1 0.000189 0.000189 0.000184 0.000188 0.000188 

CA2 0.000236 0.000237 0.000235 0.000235 0.00023 

CA3 0.001936 0.001905 0.001861 0.001895 0.00175 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 126  

 

RP2 39.785065 40.307888 40.885029 39.217758 39.722198 

RP3 83.867638 84.293564 83.204002 79.830353 84.99749 

RL1 28.310261 28.860296 28.168083 29.058203 28.149103 

RL2 10.566881 10.640691 9.9095135 10.300001 10.54658 

RLA 5.3266177 5.3173108 5.4921885 5.1036787 5.3104224 

RA1 9.3937855 9.7667933 9.2371397 9.5508881 9.307847 

RA2 165.15138 167.1254 174.10156 159.77499 166.95908 

RA3 1002.1 998.43964 1038.4802 1018.0665 989.87372 

LLA 0.97002822 0.94503933 0.94788522 1.0128267 0.97050256 

LLV 0.96185231 0.96500391 0.92404985 0.99447042 0.95068413 

LA1 1.0225915 1.0207258 1.0196979 0.99986732 1.022458 

CP3 0.002514981 0.002453004 0.00212411 0.002686109 0.002504415 

CLA 0.011344761 0.011350284 0.010799509 0.011503946 0.011368714 

CA1 0.000181961 0.000180534 0.000180794 0.000180747 0.000182949 

CA2 0.000218869 0.000223349 0.000227229 0.000222646 0.000218259 

CA3 0.001917958 0.001876021 0.001877336 0.001854069 0.001925695 

 

(ii) Results for CNN using GTF as the transfer function to estimate the aortic 

waveform  

Table 4.17 shows the 16 parameters values of the cardiovascular disease signals while 

Table 4.18 shows the 16 parameters values of some of the non-cardiovascular disease 

signals, for the data obtained from the online database, PhysioNet [328]. The complete 

table of the parameters values of the non-cardiovascular disease’ signal for the data 

obtained from the online database, PhysioNet [328] is in Appendix 7. 
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Table 4.17 The parameters values of the cardiovascular disease’ signal for the data 

obtained from the online database, PhysioNet [328] (Using GTF as the transfer func-

tion) 

Parame-

ters 

Patient with an-

gina -subject 

240 

Patient with an-

gina -subject 

284 

Patient with 

MI/cardiogenic 

shock -subject 

237 

Patient with 

MI/cardiogenic 

shock -subject 

248 

RP2 39.75359 39.484039 39.57814 39.688686 

RP3 81.605675 80.394775 80.656425 82.179977 

RL1 29.48073 29.428125 29.512667 29.253183 

RL2 10.30215 10.469533 10.463786 10.26719 

RLA 5.178339 5.1620483 5.1674013 5.2037396 

RA1 9.763979 9.7570581 9.7415239 9.6252308 

RA2 161.14561 160.26077 160.47523 161.06248 

RA3 993.88867 1000.5076 998.40875 990.21497 

LLA 1.011261 1.0088592 1.0060869 1.0164105 

LLV 0.97682303 0.97681522 0.97556126 0.97218823 

LA1 0.99642134 1.0032064 1.0031608 0.99833977 

CP3 0.002673849 0.002671023 0.002660859 0.002680585 

CLA 0.011596347 0.011472742 0.011477972 0.011602929 

CA1 0.000180402 0.000180355 0.000180276 0.00018105 

CA2 0.000227316 0.000226282 0.000226733 0.000225663 

CA3 0.001849402 0.001871477 0.001870879 0.001868958 
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Table 4.18 The parameters values of the non-cardiovascular disease’ signal for the 

data obtained from the online database, PhysioNet [328] (Using GTF as the transfer 

function) 

Parame-

ters 

No Clinical 

class-subject 

037 

Bleed- Sub-

ject039 

Respiratory 

failure-Sub-

ject055 

Brain in-

jury-Sub-

ject449 

Sepsis-Sub-

ject438 

RP2 39.768658 39.574848 39.495876 39.798492 39.849735 

RP3 81.376137 80.708054 79.441338 81.754906 82.155609 

RL1 29.675625 29.527449 29.815395 29.549376 29.542809 

RL2 10.257393 10.416709 10.481297 10.237569 10.264812 

RLA 5.1482286 5.1569929 5.1089425 5.1592989 5.1813192 

RA1 9.8412342 9.7976999 9.9491205 9.7911081 9.7787857 

RA2 160.60188 160.35089 159.49049 161.10236 161.32257 

RA3 995.69684 998.81708 1003.4719 996.12524 992.16217 

LLA 1.014523 1.0096961 1.0090551 1.0138409 1.0097182 

LLV 0.98363459 0.97917503 0.98568058 0.98264277 0.97773916 

LA1 0.99228376 1.0002393 0.9981938 0.99322808 0.99567628 

CP3 0.002696325 0.002678379 0.002693097 0.002687736 0.002670346 

CLA 0.011653398 0.01152595 0.011507052 0.011656588 0.011635758 

CA1 0.000179949 0.000180185 0.000179513 0.000180114 0.000180305 

CA2 0.000228428 0.000227023 0.000228736 0.000227817 0.00022744 

CA3 0.001827581 0.001857216 0.001841724 0.001829117 0.001842299 

 

Table 4.19 shows the values of the parameters of some of the healthy signals for the 

data obtained from the online database, HaeMod [329] while Table 4.20 shows the val-

ues of the parameters of some of the cardiovascular disease signals for the data obtained 

from the hospital. The continuation of the results of parameter values of the healthy 

signal for the data obtained from the online database, HaeMod [329] until subject 40 is 

in Appendix 8 (if necessary, the results of the remainder of the 3325 signals will be 

provided). The list of patients from the hospital with their corresponding cardiovascular 

disease and the complete results of parameters values of the cardiovascular disease’ 

signal for the data obtained from the hospital is in Appendix 9.  



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 129  

 

Table 4.19 The parameters values of the healthy signal for the data obtained from the 

online database, HaeMod [329] (Using GTF as the transfer function) 

 

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

RP2 39.544495 39.588852 39.185055 39.371231 39.191513 

RP3 80.464302 80.814926 78.544724 79.702797 78.896065 

RL1 29.703077 29.648308 29.594379 29.64576 29.535976 

RL2 10.553349 10.600152 10.878093 10.744882 10.898881 

RLA 5.1562991 5.1745157 5.1583982 5.1639347 5.1706934 

RA1 9.8934526 9.8696489 9.909936 9.8995094 9.8782415 

RA2 159.77139 160.0009 159.20558 159.41393 159.19806 

RA3 995.28436 991.78143 1004.9548 996.81049 1000.7808 

LLA 1.0021328 0.99799275 0.98952913 0.99466252 0.98914075 

LLV 0.97756845 0.97417867 0.97260004 0.97283846 0.96872723 

LA1 1.004657 1.0074211 1.0175396 1.0127939 1.0198289 

CP3 0.002670485 0.002659091 0.002632026 0.002649922 0.002628945 

CLA 0.011474404 0.011445356 0.01121603 0.011340081 0.011212691 

CA1 0.000180014 0.000180228 0.000179992 0.00018015 0.000180288 

CA2 0.000227305 0.000226777 0.000225888 0.000226359 0.000225298 

CA3 0.001868907 0.001880838 0.00190984 0.001898163 0.001924638 
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Table 4.20 The parameters values of the cardiovascular disease’ signal for the data 

obtained from the hospital (Using GTF as the transfer function) 

Parameters Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

RP2 39.484886 39.832764 40.788189 39.32645 39.419521 

RP3 81.879539 82.596535 82.984451 79.382362 81.899635 

RL1 28.929182 29.116272 28.466957 29.59531 28.735197 

RL2 10.524129 10.450407 9.9516649 10.478569 10.530969 

RLA 5.259716 5.2610612 5.2787962 5.1082602 5.2362547 

RA1 9.5676813 9.6738129 9.290019 9.8313036 9.5152712 

RA2 161.18271 162.81952 171.39651 159.14218 162.36365 

RA3 992.66693 997.72192 1013.0205 1003.4451 998.27124 

LLA 1.0041887 0.98832566 0.98213947 1.010844 1.0001889 

LLV 0.96420538 0.97011888 0.9394691 0.98534471 0.96492863 

LA1 1.0121307 1.0093026 1.0009513 1.0012674 1.0131466 

CP3 0.002639923 0.002591488 0.002377217 0.002695261 0.00261981 

CLA 0.011431459 0.011460503 0.011240672 0.011470653 0.011422209 

CA1 0.000181356 0.000180655 0.000182175 0.000180157 0.000181713 

CA2 0.000223256 0.000224313 0.000225798 0.000226798 0.000222198 

CA3 0.001909683 0.001878122 0.001908644 0.001859069 0.001900423 
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4.4.2.3 Indicator parameters for CVD 

After obtaining the parameter results of the CNN for all the datasets using both the 

transfer functions (EIF and GTF), a hit analysis is done to identify the indicator param-

eters for CVD against non-CVD and healthy. To conduct the hit analysis, the first step 

is to identify the ranges for each of the 16 parameters for CVD. The range for CVD was 

found by considering the values for all 4 PhysioNet [328] CVD and 5 out of the 40 data 

from the hospital. The minimum and maximum values of these parameter values were 

chosen as the range in which CVD could occur, as shown in Table 4.21. For example, 

for the classification of CVD, for a given signal, the parameter value should be above 

or below the minimum and maximum value respectively of the given range in Table 

4.21. Only 5 hospital data were used because there is limited data available, hence only 

5 from this pool was used to determine the ranges, while the remaining 35 were kept 

for testing at a later stage. The CNN outputs as a result of EIF and GTF were examined 

separately, to evaluate how well this method worked on both methods, to show the 

validity of this system if either method is used. 

Table 4.21 shows the minimum and maximum values of all 16 parameter values of 

the range for CVD 

Parameter 

EIF GTF 

Minimum Maximum Minimum Maximum 

RP2 39.21776 40.88503 39.32645 40.788189 

RP3 79.83035 84.99749 79.38236 82.984451 

RL1 28.1491 29.25935 28.46696 29.59531 

RL2 9.909514 10.64069 9.951665 10.530969 

RLA 5.103679 5.492189 5.10826 5.2787962 

RA1 9.23714 9.766793 9.290019 9.8313036 

RA2 159.775 174.1016 159.1422 171.39651 

RA3 985.9641 1038.48 990.215 1013.0205 

LLA 0.945039 1.012827 0.982139 1.0164105 
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LLV 0.92405 0.99447 0.939469 0.98534471 

LA1 0.999867 1.022592 0.996421 1.0131466 

CP3 0.002124 0.002686 0.002377 0.00269526 

CLA 0.0108 0.011535 0.011241 0.01160293 

CA1 0.000181 0.000183 0.00018 0.00018218 

CA2 0.000218 0.000227 0.000222 0.00022732 

CA3 0.001854 0.001935 0.001849 0.00190968 

 

Then, 19 data each from HaeMod [329] healthy and PhysioNet [18] non-CVD signals 

were chosen because PhysioNet [18] only had 19 non-CVD data and to guarantee an 

equivalent number of data between healthy and non-CVD. Next, the hit analysis was 

performed to analyze each CNN parameters results that are within or outside of a spe-

cific range of the CVD occurrences. The 19 HaeMod [329] healthy and PhysioNet [18]  

non-CVD were used, and their distribution within the aforementioned ranges in Table 

4.21 were checked using hit analysis as shown in Figure 4.22 and Figure 4.23 for the 

parameter values from CNN using EIF as the transfer function and CNN using GTF as 

the transfer function respectively.  
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Figure 4.22 Hit analysis on the results of CNN using EIF as the transfer function 

(Dashed Grey line is the Maximum and Dashed Red line is the Minimum values for 

CVD occurrence) 
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Figure 4.23 Hit analysis on the results of CNN using GTF as the transfer function 

(Dashed Grey line is the Maximum and Dashed Red line is the Minimum values for 

CVD occurrence) 
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From the hit analysis in Figure 4.22 and Figure 4.23, the parameter values for the 19 

data from HaeMod [329] healthy and PhysioNet [18] non-CVD were analyzed  to iden-

tify the number of data that fell into 3 categories, which are: above the maximum (cat-

egory 1), between the minimum and maximum (category 2), and below the minimum 

(category 3) ranges for the CVD occurrence. Since the parameter value should be above 

or below the minimum and maximum value respectively for the CVD occurrence. 

Hence, the above or below category was determined by choosing the least number of 

non-CVD and healthy hits. The categories were observed and assigned for the CVD 

occurrence as follows: 

1) Above the minimum range values: 

(Category 2 + Category 3) > Category 1 

2) Below the maximum range values: 

(Category 1 + Category 2) > Category 3 

3) Unusable: 

No hits or equal hits are found in Category 1 and Category 3 

When there are no hits, or equal hits are found in category 1 and category 3, it means 

that relation of the values to the ranges for the CVD occurrences can not be determined. 

Table 4.22 shows the number of data hits from Figure 4.22 and Figure 4.23 for all the 

3 categories and the CVD occurrence range.  
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Table 4.22 All the categories with the number of data hits for results of CNN using 

both transfer function and the CVD occurrence range. 

Pa-

rame-

ter 

EIF GTF 

above 

max 

be-

tween 

min 

and 

max 

be-

low 

min 

CVD occur-

rence range 

above 

max 

be-

tween 

min 

and 

max 

be-

low 

min 

CVD occur-

rence range 

 
RP2 0 31 7 >= 39.217758 0 33 5 >= 39.32645  

RP3 1 26 11 >= 79.830353 1 33 4 >= 79.382362  

RL1 19 19 0 <= 29.259352 19 19 0 <= 29.59531  

RL2 15 23 0 <= 10.640691 15 23 0 <= 10.530969  

RLA 0 33 5 >= 5.1036787 0 38 0  Unusable   

RA1 24 14 0 <= 9.7667933 22 16 0 <= 9.8313036  

RA2 0 32 6 >= 159.77499 0 36 2 >= 159.14218  

RA3 9 26 3 <= 1038.4802 0 34 4 >= 990.21497  

LLA 0 32 6 

>= 

0.94503933 1 36 1  Unusable 
 

LLV 17 21 0 

<= 

0.99447042 2 36 0 

<= 

0.98534471 
 

LA1 5 27 6 

>= 

0.99986732 6 25 7 

>= 

0.99642134 
 

CP3 2 36 0 

<= 

0.002686109 3 35 0 

<= 

0.002695261 
 

CLA 6 32 0 

<= 

0.01153529 8 26 4 

<= 

0.011602929 
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CA1 0 15 23 

>= 

0.000180534 0 12 26 

>= 

0.000180157 
 

CA2 2 31 5 

>= 

0.000218259 11 27 0 

<= 

0.000227316 
 

CA3 3 17 18 

>= 

0.001854069 5 23 10 

>= 

0.001849402 
 

 

From Table 4.22 it can be seen that for CNN using GTF as a transfer function, the 

parameters RLA and LLA have shown no hits and equal hits respectively for categories 

1 and 3. These CVD occurrence range were then applied to the parameters of the 9 

CVD (4 PhysioNet [328]  CVD, 5 Hospital data), 19 HaeMod [329] healthy  and 19 

PhysioNet [328] non-CVD and the classification accuracy of CVD, healthy, and non-

CVD was tallied and is shown in Table 4.23. To obtain better classification accuracy, 

more non- CVD was required as the range is biased against CVD. 

Table 4.23 The classification accuracy of CVD and others ( healthy and non-CVD ) 

and the mean accuracy 

Param-

eter 

EIF GTF 

 Accuracy Accuracy 

CVD 

Others 

Mean 

CVD 

Others 

Mean 

Hae-

Mod  

Non- 

CVD  

Hae-

Mod  

Non-

CVD   

RP2 100.00 36.84 0.00 45.61 100.00 26.32 0.00 42.11  

RP3 100.00 57.89 0.00 52.63 100.00 21.05 0.00 40.35  

RL1 100.00 63.16 36.84 66.67 100.00 73.68 26.32 66.67  

RL2 100.00 63.16 15.79 59.65 100.00 78.95 0.00 59.65  

RLA 100.00 26.32 0.00 42.11 - - - -  
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RA1 100.00 100.00 26.32 75.44 100.00 100.00 15.79 71.93  

RA2 100.00 21.05 10.53 43.86 100.00 10.53 0.00 36.84  

RA3 100.00 47.37 0.00 49.12 100.00 10.53 10.53 40.35  

LLA 100.00 31.58 0.00 43.86 - - - -  

LLV 100.00 89.47 0.00 63.16 100.00 0.00 10.53 36.84  

LA1 100.00 0.00 31.58 43.86 100.00 0.00 36.84 45.61  

CP3 100.00 0.00 10.53 36.84 100.00 0.00 15.79 38.60  

CLA 100.00 0.00 31.58 43.86 100.00 0.00 42.11 47.37  

CA1 100.00 100.00 21.05 73.68 100.00 52.63 36.84 63.16  

CA2 100.00 21.05 0.00 40.35 100.00 15.79 42.11 52.63  

CA3 100.00 78.95 15.79 64.91 100.00 5.26 47.37 50.88  

Highest mean accuarcy  

Furthermore, it was observed from Table 4.23, that although the CVD classification 

accuracy was high, the non-CVD and healthy accuracy values were low in general. This 

could be attributed to the lesser data used in finding the classification ranges of the 

parameters, but also the fact that a single parameter might not be the best classifier. As 

using a single parameter for classification did not give a good overall performance, it 

is postulated that using a combination of more than one parameter could give a better 

overall result. Although every combination could be evaluated, in the essence of saving 

time and making the process efficient, only a few parameters were chosen to be com-

bined and further analyzed. The parameters were first ranked according to their mean 

accuracy values, and the top 5 parameters that were common for the EIF and GTF are 

shown in Table 4.24, as it is important for the overall system accuracy to be high. 
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Table 4.24 Top 5 list of parameters that were in common for the EIF and GTF with 

their highest mean accuracy 

Rank 

EIF GTF 

Parameters 

Mean 

accuracy Parameters 

Mean 

accuracy 

1 RA1 75.44 RA1 71.93 

2 CA1 73.68 RL1 66.67 

3 RL1 66.67 CA1 63.16 

4 CA3 64.91 RL2 59.65 

5 RL2 59.65 CA3 50.88 

 

These 5 common parameters for both methods were listed in the top 6 highest mean 

accuracy values for both methods in Table 4.22, where LLV and CA2 were not consid-

ered as they were not in common for EIF and GTF, despite LLV and CA2 being in the 

top 5 highest mean accuracy values for EIF and GTF respectively. They were discarded 

and only the common top 5 were chosen as ideally the same parameter selection should 

work on both EIF and GTF, as their output signals should have similar features. Hence 

common parameters would have better justification in their selection.  

Next, combinations of the conditions for the top 5 parameters in Table 4.24 were used 

to check their combined evaluation performance, by using the same CVD, healthy and 

non-CVD data. If the corresponding parameters for a signal satisfied each of the pa-

rameter conditions, it was deemed as CVD. To simplify the experiment, a combination 

of two parameters at a time was chosen, and the results are shown in Table 4.25. 
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Table 4.25 The parameter combination and the mean accuracy of classification for 

CVD and others (healthy and non-CVD). 

EIF  GTF 

Param-

eter 

combi-

nation 

Accuracy  

Param-

eter 

combi-

nation 

Accuracy 

CVD 

Others 

Mean 

 

CVD 

Others 

Mean 
Hae-

Mod 

Non-

CVD 

 
Hae-

Mod 

Non-

CVD  

 
RA1 + 

CA1 100.00 100.00 31.58 65.79 

 RA1 + 

RL1 100.00 100.00 26.32 63.16 
 

RA1 + 

RL1 100.00 100.00 42.11 71.05 

 RA1 + 

CA1 100.00 100.00 36.84 68.42 
 

RA1 + 

CA3 100.00 100.00 31.58 65.79 

 RA1 + 

RL2 100.00 100.00 15.79 57.89 
 

RA1 + 

RL2 100.00 100.00 42.11 71.05 

 RA1 + 

CA3 100.00 100.00 47.37 73.68 
 

CA1 + 

RL1 100.00 100.00 36.84 68.42 

 RL1 + 

CA1 100.00 89.47 36.84 63.16 
 

CA1 + 

CA3 100.00 100.00 26.32 63.16 

 RL1 + 

RL2 100.00 100.00 26.32 63.16 
 

CA1 + 

RL2 100.00 100.00 36.84 68.42 

 RL1 + 

CA3 100.00 73.68 47.37 60.53 
 

RL1 + 

CA3 100.00 100.00 36.84 68.42 

 CA1 + 

RL2 100.00 94.74 36.84 65.79 
 

RL1 + 

RL2 100.00 89.47 52.63 71.05 

 CA1 + 

CA3 100.00 52.63 47.37 50.00 
 

CA3 + 

RL2 100.00 100.00 31.58 65.79 

 RL2 + 

CA3 100.00 84.21 47.37 65.79 
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From Table 4.25, it can be observed that the mean accuracy has been increased as com-

pared to when these parameters were previously used individually. Although the accu-

racy values have increased, a clear winning combination cannot be determined for both 

EIF and GTF as multiple combinations have attained similar accuracy values (100% 

for CVD and healthy). This is because of the small size of the data pool which was used 

in the experiment above. Therefore, all the parameter combinations from Table 4.25 

were tested on the full hospital set of data (40) and the HaeMod [329] data (3325) shown 

in Table 4.26 where the rows for EIF and GTF are arranged separately according to the 

highest to lowest mean accuracy. Table 4.25 shows that non-CVD performance is poor, 

which is due to the fact that non-CVD may have overlapped with CVD in the way the 

physiological feature of the signal is, as discussed in detail later below. 

Table 4.26 Accuracy for all the parameter combination for Hospital and HaeMod 

[329]  data 

EIF  GTF 

Parameter 

combination 

Accuracy  
Parameter 

combination 

Accuracy 

Hospital HaeMod Mean  Hospital HaeMod Mean 

CA1 + RL2 57.50 93.95 75.73  RL1 + RL2 82.50 63.97 73.23 

CA3 + RL2 60.00 90.38 75.19  RA1 + RL2 82.50 60.36 71.43 

RA1 + RL2 80.00 68.45 74.23  CA1 + RL2 82.50 59.04 70.77 

RL1 + RL2 75.00 71.16 73.08  RL2 + CA3 70.00 56.60 63.30 

CA1 + RL1 57.50 82.98 70.24  RA1 + RL1 90.00 18.50 54.25 

RA1 + CA1 57.50 77.08 67.29  RA1 + CA1 90.00 15.28 52.64 

RL1 + CA3 57.50 72.45 64.98  RL1 + CA1 90.00 13.89 51.95 

RA1+CA3 57.50 65.44 61.47  RA1 + CA3 77.50 14.89 46.19 

CA1 + CA3 47.50 72.00 59.75  RL1 + CA3 77.50 12.60 45.05 

RA1 + RL1 75.00 35.82 55.41  CA1 + CA3 77.50 7.37 42.43 

Selected 
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Comparing the top 3 parameter combinations of each function from Table 4.26, it can 

be seen that the top 3 highest mean accuracy values of EIF can not be taken because 

the hospital accuracy is very low for the top 2 as compared to healthy. As it would be 

preferred to have a false positive detection for CVD detection rather than a false posi-

tive detection for non-CVD/healthy, a high accuracy in CVD is necessary, even if non-

CVD/healthy performance is lower. By giving a priority to a high CVD accuracy, as 

well as a relatively good performance in HaeMod, the highlighted combinations were 

considered to be the best from the results obtained in Table 4.26.  

From the highlighted combinations, it can be seen that RL2 is prominent in almost all 

the selected combinations. RL2 is Pulmonary Vein 2 Resistance and it is situated before 

the heart's input point from the pulmonary loop. The other parameters from the high-

lighted combinations are RA1, CA1 and RL1. RA1 and CA1 are the Aortic 1 Resistance 

and Compliance respectively and these parameters are situated at the heart's exit point 

at the aortic. On the other hand, RL1is the Pulmonary Vein 1 Resistance and it is situ-

ated after the lungs and before RL2. The highlighted combinations of parameters are 

basically made up of parameters which are situated before the input or after the output 

of the heart. PhysioNet’s CVD signals are from patients who have been diagnosed with 

Angina and MI/cardiogenic shock and the majority of hospital signals (72.5% of 40 

hospital data) are from patients who have been diagnosed for MI/cardiogenic shock 

(27.5%), ischemic heart disease (25%) and Angina (20%). Angina is a condition iden-

tified by chest pain, that is caused by reduced blood flow to the heart muscles and is-

chemic heart disease is a heart problem caused by narrowed heart arteries when arteries 

are narrowed, less blood and oxygen reach the heart muscle. On the other hand, MI/car-

diogenic shock is a condition in which the heart suddenly cannot pump enough blood 

to meet the body's needs. When confronted with these conditions, the parameters situ-

ated before and after the heart must respond in order to ensure that blood circulation 

continues to flow to satisfy the demands of the heart and the body. If it is a resistance 

parameter, it should be reduced, and if it is a compliance parameter, it should be in-

creased, in order to assure better blood flow in the blood circulatory system.  

When considering the data presented in Table 4.26, the best combination in common 

with EIF and GTF would be RA1+RL2, as the use of this for either system would give 

a minimum accuracy of 80% CVD and 60% for healthy signals, which can be consid-

ered as reasonably good performance. However, further work is needed to find the 
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optimum combination of the parameters, by considering a bigger dataset for the ranges, 

for testing, as well as using combinations of all 16 parameters and using more than 2 

per combination by incorporating Fuzzy or optimization methods for the combinations. 

A bigger set of data is needed as it can be seen in the small data size results in Table 

4.25 and bigger size results in Table 4.26, that some combinations did not perform well. 

This might be because the range is made up of smaller data sets. However, as the scope 

of this project is to investigate if the proposed medical system can perform at an ac-

ceptable level, the current results are deemed sufficient to prove that the system is ca-

pable of accurately classifying CVD and healthy signals. 

Over all, this method has shown that the combination of parameters was able to show 

an obvious change in values to differentiate CVD signal and non-CVD including 

healthy signal despite using two different transfer functions which are EIF and GTF to 

estimate the respective aortic waveform. Since RA1+RL2 is selected as the best com-

bination, when faced with conditions such as MI/cardiogenic shock, ischemic heart dis-

ease and angina, it is postulated from the results obtains from the CNN that the Pulmo-

nary Vein 2 (RL2) and Aortic 1 (RA1) naturally relaxes concurrently to allow the blood 

flow more fluently in its closed-loop system resulting in the reduction of the resistance 

value. Using the EIF to estimate the aortic waveform for the CNN, the values of RL2 

and RA1 when it adjusts to these cardiovascular conditions, suggest values equal and 

below 10.640691 g · s/cm4  and 9.7667933 g · s/cm4  respectively. On the other hand, 

using the GTF to estimate the aortic waveform for the CNN, the values of RL2 and 

RA1 when it adjusts to these cardiovascular conditions suggests values equal and below 

10.530969 g · s/cm4 and 9.8313036 g · s/cm4 respectively. For both methods, the op-

posite of the mentioned criteria can be used to classify those with non-cardiovascular 

conditions including healthy individuals.  

Furthermore, Table 4.25 shows that the results obtained for non-CVD data, are not op-

timal yet reasonable for the listed parameter combinations as PhysioNet’s non-CVD 

signals are made up of diseases such as severe respiratory failure and sepsis which are 

highly related to or may eventually cause cardio problems [343], [344]. For example, 

for patients with severe respiratory disease such as respiratory failure, the chances of 

those patients’ RL2 and RA1 values concurrently to be lesser than the above-mentioned 

indication values are high, indicating those patients may be prone to cardiovascular 

disease. This is because the function of the lung and heart are interrelated to maintain 
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the blood circulation in the human body. For example, as the heart gets weaker, the 

patient will have shortness of breath due to the inefficiency of the heart to attain oxy-

genated blood from the lungs. Some of the parameter’s values of the non-cardiovascular 

disease signals for the data obtained from the online database, PhysioNet [328] (in Ap-

pendix 4 for using EIF as the transfer function and Appendix 7 for using GTF as the 

transfer function), which are tagged for respiratory failure, have RL2 and RA1 values 

concurrently lesser than the above-mentioned indication values, indicating those pa-

tients may be prone to cardiovascular disease.  

The indication / baseline parameter values of the RL2 and RA1 are always subjective 

to the error contributed by the transfer function and the CNN prediction. Nevertheless, 

a constant error in the system allows the methodology to differentiate cardiovascular 

disease signals and non-cardiovascular disease signals. The combination of RA1+RL2 

in Table 4.26 shows that using GTF to estimate the aortic waveform for the CNN was 

able to give a better classification for CVD of 82.5% compared to the EIF, which was 

able to give a correct classification of 80.0%, this is because the GTF was able to give 

a lower RMSE of 6.2698 and a better correlation percentage of 99.97± 0.03 compared 

to the EIF which has a RMSE of 9.4838 and correlation percentage of 99.92± 0.05 for 

the estimation of aortic blood pressure waveform. On the other hand, using EIF to esti-

mate the aortic waveform for the CNN was able to give a better classification for 

healthy of 68.45% compared to the GTF which was able to give a correct classification 

of 60.36%. These maybe associated with the ability of EIF in the estimation of systolic 

pressure as it was able to keep 98.31% of the data of the 3365 datasets (total of hospital 

and HaeMod data) in the limit of agreement (LOA) compared to GTF which attained 

96.97%. In the Bland Altman plot, GTF overestimates systolic pressure by 59 data, but 

EIF only overestimates 14 data. This may cause the healthy signal to have higher sys-

tolic pressure using GTF as the transfer function and captured as CVD classification 

where it is known that systolic blood pressure has been an indicator of hypertension 

[178] and that hypertension is associated with the majority of cardiovascular disease. 
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4.5 Summary  

The prototype created for this project acquires the radial blood waveform using a non-

invasive method. However, applanation has been proven to be difficult because it must 

be frequently calibrated in practice to ensure the blood pressure measurement to be 

accurate and using oscillometric blood pressure measurement for calibration of the ar-

terial tonometry method can contribute to error [341]. Therefore, for this prototype, 

there is a need in obtaining an invasive radial blood pressure waveform of the user to 

calibrate the ADC values to the blood pressure values. This can be done in the hospital 

by strapping the prototype on the patient before an angiogram procedure where the 

doctor would puncture through the radial blood vessel. In addition, the signal obtained 

from the prototype can be examined for its accuracy with the invasive signal acquired 

in the hospital. However, the current state of the hardware does not fulfill the criteria 

of the Clinical Research Centre (CRC) in Malaysia where the prototype needs to be 

miniaturized to be a wearable device so that it would be compact and handy to collect 

data in the hospital. To ensure the miniature prototype could be produced, there is a 

need for industrial soldering and changing the current components to Surface-mount 

technology (SMT) components. For this ongoing development, the industrial collabo-

rator Chulia Facilities Management Sdn. Bhd will further develop the prototype into a 

wearable device.  

There is a lot of motivation in measuring central blood pressure non-invasively in the 

medical world [57] and researchers are driven by the evidence that central aortic blood 

pressure waveform provides a better assessment of cardiovascular risk [162], [345]–

[348]. The EIF can be used to estimate the central aortic blood pressure waveform as a 

simple, accurate and low computing method when compared to GTF, NPMA and ATF 

methods. Furthermore, the EIF had a lower average MAPE (0.0661) when compared to 

NPMA (0.0762) and ATF (0.0713). When compared with GTF, the EIF has shown the 

lowest peak difference of 6.35 mmHg. The GTF was able to give the lowest average 

RMSE (6.2698) and MAPE (0.0477) compared to all the methods. Overall, the EIF had 

the best computational time to convert the signal, taking 0.0129ms only, having a big 

margin between the NPMA (0.6481ms) and ATF (119.79ms) and a close difference 

between the GTF (0.0142ms). Furthermore, EIF shows a better estimation for systolic 

pressure and pulse pressure as it was able to keep 98.31% and 95.66% respectively of 
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the data of the 3365 datasets in the limit of agreement (LOA) compared to GTF, NPMA 

and ATF where GTF attained 96.97% and 95.01% respectively, NPMA attained 

96.93% and 95.33% and ATF attained 96.46% and 94.95% respectively. Since this re-

search needs a low computing method to estimate the aortic blood pressure waveform 

as it requires to embed the method and the risk indication algorithm in the microcon-

troller to ensure that the risk is always indicated to the user even if wireless communi-

cation is not available, EIF and GTF are the optimum choices.   

There are 16 parameters that were identified that significantly influence the features of 

the Vincent Rideout 0D cardiovascular model's aortic wave. When the trained CNN is 

trained with cardiovascular disease aortic pulse waveforms which were converted from 

radial pulse waveforms using transfer functions which are EIF and GTF, it was identi-

fied that there were 2 common combination of parameters, which are RA1 + RL2 and 

RL1 + RL2 for both methods, which could be used to classify the signals. The best 

combination in common between EIF and GTF would be RA1+RL2, as the use of this 

for either system would give a minimum accuracy of 80% CVD and 60% for healthy, 

which can be considered as good performance. However, further investigation is re-

quired to find the optimum parameter combination, by considering a larger data set for 

the ranges, for testing, as well as using combinations of all 16 parameters and more than 

two per combination by incorporating other optimization methods such as Fuzzy logic 

for the parameter combinations. As RA1+RL2 were selected as the best combinations 

from the outcome of the data presented, it is postulated from the CNN results that the 

Pulmonary Vein 2 (RL2) and Aortic Artery 1 (RA1) relax simultaneously to permit the 

blood flow smoothly in its closed-loop system resulting in the decrease of resistance. 

The values of RL2 and RA1 when it acclimates to these cardiovascular conditions might 

be equal to or beneath 10.640691 g · s/cm4and 9.7667933 g · s/cm4  respectively when 

using EIF as the transfer function. On the other hand, by using GTF as the transfer 

function, the values of RL2 and RA1 when it acclimates to these cardiovascular condi-

tions might be equal to or beneath 10.530969 g · s/cm4 and 9.8313036 g · s/cm4 re-

spectively. An 80.0% and 82.5% of accurate classification was obtained when the ap-

proach was verified with cardiovascular disease data obtained from Hospital Sultanah 

Bahiyah using EIF and GTF respectively as the transfer function. In addition, 68.45 % 

and 60.36% of accurate classifications were obtained when the approach was verified 

with healthy data obtained HaeMod database [329] using EIF and GTF respectively, as 
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the transfer function. Overall, this research method of utilizing CNN trained with sig-

nificant parameters of 0D model has shown that the combination of parameters was 

able to show obvious changes in values to differentiate CVD signal and non-CVD in-

cluding healthy signal despite using two different transfer functions which are EIF and 

GTF to estimate the respective aortic waveform. From the results attained in this re-

search, it proves that the methodology used in this project to create a framework for the 

classification of CVD and healthy signals with the use of radial waveforms is valid, and 

has a sufficient level of accuracy and performance for it to be implemented in its current 

state. Though further improvements can be made in each individual section by the use 

of further research, to improve the system performance as a whole.  

To summarize the complete integration of the system developed, shown in Figure 4.24, 

the system acquires a radial blood pressure waveform from the Honeywell 

FSS005WNSB sensor, which is then estimated to the aortic blood pressure waveform 

using either the GTF or the EIF, which is then fed to the CNN. If the EIF is used as the 

transfer function for the system, and the CNN output for RL2 and RA1 is equal to or 

beneath 10.640691 g · s/cm4and 9.7667933 g · s/cm4  respectively, the user is at risk 

of cardiovascular disease. Similarly, if the GTF is used as the transfer function for the 

system, and the output for RL2 and RA1 is equal to or beneath 10.530969 g · s/cm4 

and 9.8313036 g · s/cm4 respectively, the user is at risk of cardiovascular disease. 

 

Figure 4.24 Complete integration of the system developed 
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 CONCLUSION AND FUTURE WORK 

The core aim of this study was to propose a solution to reduce the number of cardio-

vascular disease cases, as it is the leading source of death around the world. The most 

significant issue encountered by individuals who experience the ill effects of cardio-

vascular disease, is not having the option to distinguish their disease until the effects 

give an undeniable indication, generally at the critical stage, which results in a high risk 

of demise. Furthermore, the most common method of treatment, which is intrusive in 

nature, is agonizing to patients. Therefore, the proposed solution is to develop a medical 

system which would screen, and give an early identification of cardiovascular disease, 

to reduce the danger of abrupt demise among individuals today. The medical system 

consists of a pressure sensor that acquires the radial waveform from the user's wrist and 

converts it to an estimated aortic blood pressure waveform using a transfer function, 

which is then fed into a Convolutional Neural Network (CNN) that was trained with a 

zero-dimensional cardiovascular model’s parameters to be used for risk prediction. In 

today's world, the hardware and software framework for the medical system to indicate 

risk of cardiovascular disease in this manner is yet to be explored and established. In 

order to achieve this functionalble medical system, certain objectives had to be met 

successfully which were described : 

Objective 1: Identify a sensor to acquire the radial blood pressure signal in order to 

develop a prototype 

The medical system hardware comprises of a pressure sensor Honeywell 

FSS005WNSB, two amplifiers which are AD524C and TL071CP, 1 microcontroller 

which is NodeMCU Lua V3 ESP8266 WIFI with CH340C, 1 SD card module and 1 

organic light-emitting diode (OLED) which is SSD1306. The Pressure sensor (Honey-

well FSS005WNSB) has a diameter of 0.99 mm and can sense a force of 5N. It also has 

the option to detect a pressure range of 0 to 16078mmHg at the wrist. The chosen sensor 

could capture the radial blood pressure waveform of the user non-intrusively, which 

fulfils all the criteria for this objective.  

Objective 2: Identify and implement a method to convert radial blood pressure wave-

form to aortic blood pressure waveform which has the closes representation of the 

actual aortic blood pressure waveform. 
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An investigation of the current methods, which include the Generalised Transfer Func-

tion (GTF), N-Point Moving Average (NPMA), and Adaptive Transfer Function 

(ATF), was done to identify a method capable of providing a close estimate of the actual 

aortic blood pressure waveform. The method should give a close prediction of the sys-

tolic pressure while having a low computing time, to be embedded in the medical sys-

tem. This it requirement is to ensure that the risk is always indicated to the user even if 

there is no wireless communication, to ensure continuous monitoring is possible. Ac-

cording to the findings, GTF is the most suitable technique among the existing methods 

since it has the shortest computing time (0.0142ms), the lowest mean RMSE (6.2698), 

the lowest mean MAPE (0.0477), and the best correlation, though on the other hand, it 

overestimated systolic pressure. An Electrical Impedance Function was developed to 

estimate the aortic blood pressure waveform using a new approach, where it was able 

to give a better estimation of systolic pressure and pulse pressure, as it was able to keep 

98.31% and 95.66% of those values respectively in the limit of agreement (LOA), for 

the data of the 3365 data. As compared to GTF, NPMA and ATF where GTF attained 

96.97% and 95.01% respectively, NPMA attained 96.93% and 95.33% and ATF at-

tained 96.46% and 94.95% respectively. Since this research project requires a method 

with low computing requirements to estimate the aortic blood pressure waveform, EIF 

and GTF are the best options because they attained a run time of 0.0129ms and 

0.0142ms per signal respectively. Overall, EIF proved to be a comparable method to 

GTF, and a better estimator of systolic pressure. Both methods of transfer functions to 

estimate the aortic waveform was used in this work to evaluate the remainder of the 

subsystems.  

Objective 3: Utilize the converted aortic blood pressure waveform for indicating risk 

by the implementation of a Convolutional Neural Network. 

In this research, the EIF and GTF were utilized as transfer functions to convert the radial 

blood pressure waveform to an estimated aortic blood pressure waveform for determin-

ing the risk of cardiovascular disease through the implementation of Convolutional 

Neural Networks (CNN). A two-convolution layer structure was used for the CNN im-

plementation, and the 118098 different CNN architectures were investigated. CNN ar-

chitecture number 9 was chosen since it has the lowest RMSE of 0.3284. The CNN was 

trained on 3200 data and validated on 640 data. These data were generated from the 

zero-dimensional V.Rideout cardiovascular model. From the investigation of the 
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V.Rideout cardiovascular model, it was identified that 16 potential parameters signifi-

cantly affects the aortic blood pressure waveform. RP2, RP3, RL1, RL2, RLA, RA1, 

RA2, RA3, LLA, LA1, LLV, CP3, CLA, CA1, CA2, and CA3 are the 16 parameters 

that were identified and then used to create the data for the CNN training. The CNN 

trained with the zero-dimenisonal cardiovascular model is then investigated for the pa-

rameters that can indicate the risk of cardiovascular disease. This investigation was 

carried out by utlising the dataset from PhysioNet [328] which has 4 cardiovascular 

disease (CVD) signal and 19 non-cardiovascular disease signal (Non-CVD), 19 data 

from HaeMod [329] database which are healthy signals and 5 data from hospital which 

only contains CVD signals. These data were converted to the estimated aortic blood 

pressure waveform using both transfer function methods (EIF and GTF) and fed into 

the CNN to attain the parameters. The parameters of the cardiovascular disease signal 

of both of the transfer functions were used to identify the minimum and maximum range 

of the CVD occurance. A hit analysis was then done by mapping the Non-CVD and 

healthy parameter values in the CVD occurance range to identify the baseline parameter 

value for the indication of risk of cardiovascular disease. From the investigation, it was 

known that one parameter was insufficient to indicate risk of CVD with a high accuracy. 

Hence, an investigation of a combination of two parameter was able to discriminate 

CVD and Non-CVD including healthy for CNN. Overall, the best combination of pa-

rameters in common between EIF and GTF would be RA1+RL2, as the use of this for 

either system would give a minimum accuracy of 80% for CVD and 60% for healthy, 

which can be considered as good performance. 

Objective 4: To develop an algorithm for the risk identification for healthy user from 

the radial blood pressure wavefrom collected data based on the features of blood 

pressure wave variations. 

HaeMod [329] database was used as the healthy radial blood pressure waveform with 

the approval of the cardiologist in Hospital Sultanah Bahiyah. These HaeMod [329] 

signals were estimated to its aortic blood pressure waveform using both transfer func-

tion (EIF and GTF). The estimated aortic blood pressure of the HaeMod [329] is then 

fed into the CNN to attain the parameter values. As RA1+RL2 was selected as the best 

combination for indication risk of CVD, the HaeMod dataset was able to attain a 

68.45 % and  60.36%  correct classification for using EIF and GTF respectively as the 

transfer function.  
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Objective 5: To validate the developed algorithm against ranges of clinical patient 

data 

The clinical patient data was attained from Hospital Sultanah Bahiyah. The hospital 

data contained 40 patient blood pressure waveforms where from 27.5% are MI/cardio-

genic shock, 25% are  ischemic heart disease, 20% are Angina and the balance are other 

various cardiovascular diseases. These Hospital radial blood pressure wavefoms were 

estimated to its aortic blood pressure waveform using both transfer functions (EIF and 

GTF) and fed into the CNN to attain the parameter values. As RA1+RL2 was selected 

as the best combination for indication risk of CVD, the Hospital dataset was able to 

attain a 80.0 % and 82.5%  correct classification for using EIF and GTF respectively as 

the transfer function.  

Overall it can be safely stated that objectives set for this research were successfully met 

and completed. The developed medical system can also be considered as a novel frame-

work with 3 subsystems, where each subsystem can be further developed in the future 

to optimize the system for specific diseases or increasing the system performance. Other 

significant novelties are present in the form of a newly developed transfer function for 

converting radial to aortic blood pressure waveforms (EIF), as well as the combination 

of CNN and 0D model for risk indication. 

If this work is to be continued in the future, a list of possible future directions have been 

listed below : 

1) Miniaturization of the protoype to be a commercial standard wearable device, 

by embedding the overall system, so that it would be compact and handy to 

collect data in hospitals. 

2) Investigation of the research methodology with a larger set of data from hospi-

tals. 

3) Futher investigation on incoprating other available zero-dimensional cardiovas-

cular model’s parameters to be utilized as the dataset for the CNN training.  

4) Futher investigation on optimizing the CNN in term of the structure and archi-

tecture.  

5) Optimising the medical system by incorporating Fuzzy or other available opti-

mization methods for the parameter combinations to indicate risk of cardiovas-

cular disease in general or specific cardiovascular diseases. 
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6) Incorporating an IOT cloud system to the medical system to ensure the param-

eters are stored for daily or weekly comparison, to investigate the changes in 

the parameters and its relationship with risk of cardiovascular disease.  

In summary, while there are many avenues of possible future additions / improvements 

to the system, the work described in this thesis proves that the proposed medical system 

has an acceptable level of performance to be able to discriminate between CVD and 

healthy individuals. 
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APPENDICES 

Appendix 1 

 

Figure A1.1 Confirmation letter from the Cardiologist on the usage of HaeMod and 

PhysioNet databases. 
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Appendix 2 
Table A2.1 List of cardiovascular disease subjects from Hospital Sultanah Bahiyah 

No List of subjects Diseases 

1 Subject 1 Ischemic Heart Disease 

2 Subject 2 Unstable Angina 

3 Subject 3 Myocardial Infarction (MI) 

4 Subject 4 Myocardial Infarction (MI) 

5 Subject 5 Vascular heart disease 

6 Subject 6 Positive Exercise Stress Test (EST) 

7 Subject 7 Unstable Angina 

8 Subject 8 Myocardial Infarction (MI) 

9 Subject 9 Ischemic Heart Disease 

10 Subject 10 Myocardial Infarction (MI) 

11 Subject 11 Myocardial Infarction (MI) 

12 Subject 12 Unstable Angina 

13 Subject 13 Unstable Angina 

14 Subject 14 Positive Exercise Stress Test (EST) 

15 Subject 15 Myocardial Infarction (MI) 

16 Subject 16 Dilated Cardiomyopathy 

17 Subject 17 Ischemic Heart Disease & 3 vessel defect 

18 Subject 18 Ischemic Heart Disease 

19 Subject 19 Unstable Angina 

20 Subject 20 Ischemic Heart Disease 

21 Subject 21 Myocardial Infarction (MI) 

22 Subject 22 Positive Exercise Stress Test (EST) 

23 Subject 23 Ischemic Heart Disease 

24 Subject 24 Positive Exercise Stress Test (EST) 

25 Subject 25 Ischemic Heart Disease 

26 Subject 26 Unstable Angina 

27 Subject 27 Ischemic Heart Disease 
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28 Subject 28 Ischemic Heart Disease 

29 Subject 29 3 Vessel Defect 

30 Subject 30 Unstable Angina 

31 Subject 31 Myocardial Infarction (MI) 

32 Subject 32 Unstable Angina 

33 Subject 33 Unstable Angina 

34 Subject 34 Myocardial Infarction (MI) 

35 Subject 35 Ischemic Heart Disease 

36 Subject 36 Myocardial Infarction (MI) 

37 Subject 37 Ischemic Heart Disease 

38 Subject 38 Positive Exercise Stress Test (EST) 

39 Subject 39 Hypertension & Diabetes Mellitus 

40 Subject 40 Myocardial Infarction (MI) 
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Appendix 3 
The 16 parameters that affect the aortic blood pressure waveform (PA1) are discussed 

in detail below: 

1. Pulmonary Artery 2 Resistance (RP2) 

 

Figure A3.1 Effect of RP2 on PA1 

 

Figure A3.2 Second Peak of PA1 against RP2. 

Figure A3.1 and Figure A3.2 show that RP2 increases when PA1 decreases signifi-

cantly. RP2 has no effect on the changes in the shape of the response PA1.RP2 has an 

effect on the PA1 because RP2 is the resistance at the second part of the pulmonary 

artery where blood flows from the pulmonary artery into the heart through the pulmo-

nary vein. When RP2 increases, the pressure drops across it increases resulting PA1 

decreases due to the blood flows from RP2 to PA1. Since this a 0D model which related 
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to the electrical circuit, as RP2 increases, PA1 decreases where PA1 is represented by 

the voltage across at a point after RP2.  

2. Pulmonary Artery 3 Resistance (RP3)  

 

Figure A3.3 Effect of RP3 on PA1. 

 

Figure A3.4 Second Peak of PA1 against RP3. 

PA1 decreases significantly as RP3 increases and vice versa is shown in both Figures 

A3.3 and A3.4. The shape of the signal is not affected by the change in RP3. RP3 is the 

resistance at the third part of the pulmonary artery which the resistance at the blood 

back to the heart through the pulmonary vein. RP3 plays a big effect on PA1 on blood 

flow because for the heart to pump through the aorta it would need sufficient volume 

and pressure of the blood in the heart receiving it from the pulmonary vein. Since this 

a 0D model which is related to the electrical circuit, when RP3 increases, the voltage 
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drops across it also increases resulting to PA1 to decrease because PA1 is represented 

by the voltage at a point after RP3.  

3. Pulmonary Vein 1 Resistance (RL1) 

 

Figure A3.5 Effect of RL1 on PA1. 

 

Figure A3.6 Second Peak of PA1 against RL1. 

PA1 decreasing when RL1 increases can be seen in Figure A3.5 and Figure A3.6. 

Change in Rl1 has no effect on the changes in the shape of PA1 signal. RL1 is the 

resistance at the first part of the pulmonary vein where blood flows from the pulmonary 

vein into the heart. RL1 has less effect on PA1 because it is located further before the 

aortic vessel. 
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4. Pulmonary Vein 2 Resistance (RL2) 

 

Figure A3.7 Effect of RL2 on PA1. 

 

Figure A3.8 Second Peak of PA1 against RL2. 

PA1 decreasing as RL2 increases, as shown in Figures A3.7 and A3.8. However, there 

are no changes to the shape of the PA1 signal. RL2 is the resistance at the second part 

of the pulmonary vein where blood flows from the pulmonary vein into the heart. RL2 

has only a mild effect on the peaks of the signal in PA1. 
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5. Left Atrium Resistance (RLA) 

 

Figure A3.9 Effect of RLA on PA1. 

 

Figure A3.10 Second Peak of PA1 against RLA. 

RLA increases resulting in PA1 decreases significantly can be seen in Figures A3.9 and 

A3.10. PA1 signal shape is not affected by the RLA. RLA is the resistance at the left 

atrium which as effect to the PA1 because blood flows from the left atrium into the left 

ventricle then into the aorta. Therefore, an increase in friction in the left atrium will 

increase the pressure drop the aorta. Since this a 0D model which is related to the elec-

trical circuit, as RLA increases, PA1 decreases which is the voltage drop across at a 

point after RLA.  
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6. Aortic 1 Resistance (RA1) 

 

Figure A3.11 Effect of RA1 on PA1. 

 

Figure A3.12 Second Peak of PA1 against RA1. 

When RA1 increases, PA1 increases as can be seen from Figures A3.11 and A3.12. 

RA1 has some changes to the shape of the PA1 when RA1 is very small. RA1 is the 

resistance at the first part of the aorta where the blood from the heart flows into the rest 

of the body. However, RA1 shows less effect on the PA1 compared to the other  pa-

rameters even though RA1 is located near to PA1 because the RA1 is a big artery with 

lesser resistance compared to a smaller artery in the loop whereby a small change in 

resistance effects a small change in PA1. 
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7. Aortic 2 Resistance (RA2) 

 

Figure A3.13 Effect of RA2 on PA1. 

 

Figure A3.14 Second Peak of PA1 against RA2 

PA1 increasing significantly as RA2 increases can be seen in the above Figures A3.13 

and A3.14. The shape of the response changes drastically when RA2 is very small. RA2 

has a big impact on PA1 because RA2 is the resistance at the second part of the aorta 

which flows blood out to the rest of the part of the body. When RA2 increases, PA1 

increases because of the blood from PA1 flows into RA2. Since this a 0D model which 

related to the electrical circuit, when RA2 increases, the voltage drops across it also 

increases resulting to increase in PA1. 
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8. Systemic Artery Resistance (RA3) 

 

Figure A3 .15 Effect of RA3 on PA1. 

 

Figure A3.16 Second Peak of PA1 against RA3. 

PA1 increases significantly as RA3 increases and vice versa as shown in Figure A3.15 

and Figure A3.16 above. The change in RA3 is very responsive to the change in the 

PA1and also in the shape of the signal of PA1.RA3 is a systemic resistance which is 

the resistance to the blood flow from the aorta to the rest of the part of the body. There-

fore, RA3 gives a very big impact to the blood flow to the body which resolved in the 

big change in the PA1 because of the higher the resistance at the systemic partway flow, 

the higher the pressure at PA1.Since this a 0D model which related to the electrical 

circuit, the voltage drop across it also increases when RA3 increases using Kirchhoff's 
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circuit laws. As the voltage drop across RA3 increases, it results in PA1 also increases 

because PA1 is represented by the voltage at a point before RA3.  

9. Left Atrium Inertance (LLA) 

 

Figure A2.17 Effect of LLA on PA1. 

 

Figure A2.18 Second Peak of PA1 against LLA 

PA1 increases significantly as LLA increases, as shown in Figures A3.17 and A3.18. 

PA1 signal has no changes to the shape of the signal when LLA changes. LLA has an 

impact on the PA1 signal because LLA is the inertance at the left atrium where blood 

flows from the left atrium into the left ventricle then into the aorta which means LLA 

is a measurement of the required pressure gradient to cause a unit change in blood flow 

rate at the left atrium. Since this a 0D model which related to the electrical circuit, LLA 

is represented by the inductance and PA1 is represented by the voltage at a point after 
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LLA. Therefore, when LLA increases, the back EMF across it also increases resulting 

in an increase in PA1.  

10. Left Ventricle Inertance (LLV) 

 

Figure A3.19 Effect of LLV on PA1. 

 

Figure A3.20 Second Peak of PA1 against LLV. 

PA1 increasing significantly as LLV increases and vice versa can be seen in Figures 

A3.19 and A3.20. Change in LLV shows a significant change in the shape of the signal 

of PA1. LLV is the inertance at the left ventricle where blood from the left ventricle 

flows to the aorta which results in a change in PA1.  Moreover, LLV is a measurement 

of the required pressure gradient to cause a unit change in blood flow rate at the left 

ventricle. Since this a 0D model which related to the electrical circuit, LLV is repre-

sented by the inductance and PA1 is represented by the voltage at a point after LLV 
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shows that, when LLV increases, the back Electromotive force (EMF) across it also 

increases resulting PA1 to increase as well. 

11. Aortic 1 Inertance (LA1) 

 

Figure A3.21 Effect of LA1 on PA1. 

 

Figure A3.22 Second Peak of PA1 against LA1. 

Both Figure A3.21 and Figure A3.22 show that as LA1 increases, PA1 decreases. There 

are some changes to the shape of PA1 signal when LA1 value is very big or very small. 

LA1 is the inertance in the first part of the aorta where the blood from the heart flows 

to the rest of the body. LA1 does not have a huge effect on the aortic signal because 

LA1 is after the PA1 which small impact since the model is a close loop system. There-

fore, more blood circulation must be done to see a drastic change due to the effect of 

LA1.  
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12. Pulmonary Artery 3 Compliance (CP3) 

 

Figure A3.23 Effect of CP3 on PA1. 

 

Figure A3.24 Second Peak of PA1 against CP3. 

PA1 decreases as CP3 increases can be seen in Figure A3.23 and Figure A3.24. CP3 

does not affect the shape of the response of the signal of PA1. CP3 is the compliance at 

the third part of the pulmonary artery where the blood flows from the pulmonary artery 

into the heart through the pulmonary vein. CP3 is a component located before the lungs 

which too far to give a big impact in aortic pressure response. 
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13. Left Atrium Compliance (CLA) 

 

Figure A3.25 Effect of CLA on PA1. 

 

Figure A3.26 Second Peak of PA1 against CLA. 

The above Figure A3.25 and Figure A3.26 shows that PA1 increases as CLA increases. 

CLA has no effect on the shape of the PA1 signal. CLA is the compliance at the left 

atrium where blood flows from the left atrium into the left ventricle then into the aorta. 

CLA has less effect on the aortic pressure signal. 
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14. Aortic 1 Compliance (CA1) 

 

Figure A3.27 Effect of CA1 on PA1. 

 

Figure A3.28 Second Peak of PA1 against CA1. 

Figures A3.27 and A3.28 show the effect of CA1 on PA1 which shows that the systolic 

part of the response decreases significantly as CA1 increases while the diastolic part 

increases significantly. Change in CA1 has a significant effect on PA1 signal shape.  

CA1 is the compliance which is the elasticity of the wall in the first part of the aorta 

which has an impact on PA1. Therefore, when CA1 decreases the blood vessels be-

comes narrower resulting in the pressure to increases at PA1. Since this a 0D model 

which related to the electrical circuit, CA1 is represented by capacitance while PA1 is 

represented by the voltage at a point before CA1 resulting at the systolic part of the 
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response decreases due to capacitance charging while the diastolic part increases due 

to capacitance discharging. 

15. Aortic 2 Compliance (CA2)   

 

Figure A3.29 Effect of CA2 on PA1. 

 

Figure A3.30 Second Peak of PA1 against CA2. 

Both Figures A3.29 and A3.30 show how PA1 is affected by CA2. When CA2 in-

creases, the systolic part of the response decreases while the diastolic part increases 

significantly. The shape of the response changes drastically when CA2 changes. Pa1 is 

effect by CA2 because CA2 is the compliance which is the elasticity of the wall in the 

second part of the aorta where the blood from the heart flows to the rest of the body. 

Therefore, CA2 increases, the pressure of the blood flow experience decreases due to 

the widening of the vessel. Since this a 0D model which related to the electrical circuit, 

CA2 is represented by capacitance while PA1 is represented by the voltage at a point 
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before CA2. Therefore, as CA2 increases, the systolic part of the response decreases 

due to the charging of capacitance while the diastolic part increases due to discharging 

of capacitance. 

16. Aortic 3 Compliance (CA3) 

 

Figure A3.31 Effect of CA3 on PA1. 

 

Figure A3.32 Second Peak of PA1 against CA3. 

The effects of CA3 on PA1 both can be viewed on the above Figure A3.31 and Figure 

A3.32. The systolic part of the response increases as CA3 increases. The change in the 

PA1 signal due to the effect of CA3 is greater than the change of the peak. Moreover, 

an increment in CA3 causes the change of PA1 signal to be less at the systolic which is 

the peak of PA1signal but there is an increase at the diastolic part which is the valley 

of the PA1 signal.CA3 is the compliance at the third part of the aorta where the blood 
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from the heart flows to the rest of the body. CA3 does not have a huge impact on the 

Aortic signal. 

The other 20 parameters do not have any significant effect on PA1. Some of these pa-

rameters have an effect on blood flow in other parts of the blood flow but not the aortic 

part. Therefore, even though these parameters do not affect PA1 which it the aortic 

pressure signal, but the parameter would affect other parts of the cardiovascular circu-

lation system such as the pulmonary artery pressure (PP1).  

Appendix 4 
Table A4.1 The parameters values of the non-cardiovascular disease’ signal (no clini-

cal class and bleed) for the data obtained from the online database, PhysioNet 

[328].(Using EIF as the transfer function) 

Pa-

rame-

ters 

No Clinical 

class-subject 

037 

No Clinical 

class-sub-

ject 430 

No Clinical 

class-sub-

ject 474 

No Clinical 

class-sub-

ject 484 

No Clinical 

class-sub-

ject 485 

Bleed- Sub-

ject039 

RP2 39.23801 39.877243 39.574337 39.786343 39.542168 39.618458 

RP3 80.074959 84.566902 80.300171 82.190086 82.343307 81.849365 

RL1 28.938517 28.536709 29.759373 29.428387 28.893711 29.250366 

RL2 10.98221 10.364404 10.419588 10.303884 10.472708 10.436772 

RLA 5.2627368 5.34199 5.1317215 5.1972051 5.2490606 5.2122388 

RA1 9.6456795 9.3374348 9.8979464 9.7775906 9.5212793 9.7677408 

RA2 161.39848 164.26396 159.73138 161.28148 161.93599 161.18443 

RA3 998.10468 983.66211 999.82172 992.10449 990.08618 992.06769 

LLA 0.97762614 0.9961468 1.0099547 1.0092995 1.0052911 1.0057852 

LLV 0.95166695 0.94926155 0.98413348 0.97552592 0.96106601 0.9693464 

LA1 1.0309312 1.013317 0.99762625 0.99834746 1.0106878 1.0054561 

CP3 0.002556005 0.00257289 0.00269266 0.002668403 0.002634889 0.002653254 

CLA 0.01107895 0.011455808 0.011548613 0.01159981 0.011453104 0.011499938 

CA1 0.000181434 0.000182436 0.000179722 0.000180513 0.000181671 0.000180926 

CA2 0.000221951 0.000221192 0.000228239 0.000226575 0.00022315 0.000225127 

CA3 0.001973349 0.001928198 0.001841168 0.001854143 0.001909321 0.00188379 
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Table A4.2 The parameters values of the non-cardiovascular disease’ signal (respira-

tory failure) for the data obtained from the online database, PhysioNet [328].(Using EIF 

as the transfer function) 

Pa-

rame-

ters 

Respira-

tory fail-

ure-Sub-

ject055 

Respira-

tory fail-

ure-Sub-

ject211 

Respira-

tory fail-

ure-Sub-

ject226 

Respira-

tory fail-

ure-Sub-

ject 252 

Respira-

tory fail-

ure-Sub-

ject 411 

Respira-

tory fail-

ure-Sub-

ject 437 

Respira-

tory fail-

ure-Sub-

ject 439 

Respira-

tory fail-

ure-Sub-

ject 443 

RP2 39.517422 39.93232 39.391911 39.76881 40.10714 39.598797 39.826 39.775715 

RP3 79.926659 85.126015 81.184982 82.788895 84.910583 82.673134 82.164146 82.439407 

RL1 29.728354 28.480762 29.010981 29.096697 28.725775 28.882122 29.42907 29.303665 

RL2 10.442408 10.445491 10.558474 10.585011 10.685589 10.438455 10.290394 10.286405 

RLA 5.1205125 5.3951035 5.2269154 5.2899885 5.4409852 5.2659864 5.2031355 5.2125897 

RA1 9.8907404 9.3036785 9.5606956 9.6338949 9.4455423 9.4874802 9.751406 9.6590147 

RA2 159.62439 164.39464 160.77388 162.51581 164.74991 161.89949 161.49274 161.38727 

RA3 1001.031 980.50067 994.41626 988.09186 980.46362 988.98212 993.95392 991.31628 

LLA 1.0112896 0.98666453 1.0057306 0.98567295 0.96037871 1.0051284 1.0078899 1.0108261 

LLV 0.98382866 0.94391632 0.96334386 0.95866191 0.93809539 0.96022439 0.97527027 0.97332418 

LA1 0.99837852 1.019208 1.0127746 1.015558 1.0295196 1.010524 0.99819678 0.99936163 

CP3 0.00269475 0.002542545 0.002642749 0.002580919 0.002463145 0.002631717 0.002657501 0.002666679 

CLA 0.01152809 0.01138217 0.011377756 0.011372162 0.011184433 0.011454619 0.011581975 0.011593985 

CA1 0.00017978 0.000182588 0.00018144 0.000181203 0.000182008 0.000181735 0.000180431 0.000180779 

CA2 0.00022816 0.000220074 0.000223283 0.00022358 0.000220549 0.000222797 0.000226663 0.000225795 

CA3 0.00184678 0.001950905 0.001921367 0.001916062 0.001976528 0.001914376 0.001854239 0.001863527 
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Table A4.3 The parameters values of the non-cardiovascular disease’ signal (brain in-

jury and sepsis) for the data obtained from the online database PhysioNet 

[328].(Using EIF as the transfer function) 

Parameters Brain in-

jury-Sub-

ject220 

Brain in-

jury-Sub-

ject449 

Sepsis-Sub-

ject222 

Sepsis-Sub-

ject224 

Sepsis-Sub-

ject438 

RP2 39.805714 39.949261 39.62365 39.689896 40.007732 

RP3 83.461334 82.93 82.714546 82.163231 83.22155 

RL1 28.972458 29.327848 28.919117 29.119371 29.303034 

RL2 10.296579 10.225227 10.378671 10.666796 10.407898 

RLA 5.2711945 5.2059598 5.2525506 5.2730412 5.2632961 

RA1 9.5002909 9.7514456 9.499012 9.6278868 9.767061 

RA2 162.23996 162.36986 161.88405 162.2583 163.10709 

RA3 986.62372 989.80725 989.00177 993.37231 988.79169 

LLA 1.0077012 1.0091474 1.0094477 0.98885149 0.98952574 

LLV 0.96364099 0.97404778 0.96263808 0.96064675 0.96573919 

LA1 1.0047547 0.99653339 1.0073178 1.0140712 1.0061437 

CP3 0.002639245 0.002657074 0.002645341 0.002584516 0.002592569 

CLA 0.011553092 0.011652189 0.011503946 0.011351477 0.011500692 

CA1 0.000181552 0.00018065 0.000181651 0.000181065 0.000180655 

CA2 0.000223628 0.000226793 0.000223366 0.000223814 0.00022569 

CA3 0.001893274 0.00184561 0.00190219 0.001912523 0.001874694 
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Appendix 5 
Table A5.1 The parameters values of the healthy signal (Subject 1- 8) for the data ob-

tained from the online database, HaeMod [329] (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 1 Subject 2 Subject  

3 

Subject 

 4 

Subject  

5 

Subject 

 6 

Subject  

7 

Subject 8 

RP2 39.3634 39.45466 38.82823 39.15096 38.96346 39.29315 38.54703 39.61002 

RP3 79.68325 80.74871 76.25531 78.76041 77.66467 80.18013 74.80547 81.27654 

RL1 29.41972 29.53754 28.88779 29.30357 29.03619 29.46703 28.70813 29.60924 

RL2 10.58623 10.69536 10.7728 10.7802 10.88211 10.86863 10.97402 10.52111 

RLA 5.135997 5.204149 5.038442 5.138916 5.125074 5.21669 5.020054 5.189476 

RA1 9.85941 9.861643 9.782794 9.855654 9.795561 9.858142 9.775116 9.866318 

RA2 160.2174 159.6792 160.8645 159.9473 160.3926 159.3242 160.7011 160.0154 

RA3 1037.815 1012.574 1104.227 1047.605 1070.363 1015.869 1124.946 1009.464 

LLA 0.96337 0.967909 0.922633 0.948609 0.932143 0.957423 0.902588 0.978737 

LLV 1.016646 0.996717 1.055176 1.019516 1.028232 0.995395 1.065438 0.998162 

LA1 1.007509 1.012231 1.019206 1.016116 1.023308 1.01998 1.028421 1.004393 

CP3 0.002597 0.002609 0.002485 0.002562 0.002507 0.002584 0.002437 0.002634 

CLA 0.011349 0.011326 0.011041 0.011189 0.011043 0.011195 0.010853 0.011457 

CA1 0.000179 0.00018 0.000178 0.000179 0.000179 0.00018 0.000178 0.00018 

CA2 0.000222 0.000223 0.000215 0.00022 0.000217 0.000222 0.000213 0.000225 

CA3 0.001812 0.001856 0.001781 0.00183 0.001833 0.001878 0.001789 0.001833 
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Table A5.2 The parameters values of the healthy signal (Subject 9- 16) for the data 

obtained from the online database, HaeMod [329] (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 9 Subject 10 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15 Subject 16 

RP2 39.5615 39.10828 39.10661 39.69418 39.42353 39.2716 38.72961 39.45816 

RP3 81.31915 78.54604 77.66157 81.72363 80.87667 79.50324 75.94761 80.26513 

RL1 29.5813 29.10068 29.0699 29.64329 29.52089 29.36436 28.80427 29.46777 

RL2 10.62658 10.79023 10.57131 10.46582 10.78625 10.70709 10.87062 10.52721 

RLA 5.211567 5.143284 5.054874 5.194953 5.226018 5.154395 5.047381 5.148018 

RA1 9.857966 9.789357 9.792316 9.863374 9.853756 9.853432 9.76925 9.857489 

RA2 159.7813 160.5163 161.0228 160.0956 159.4483 160.0243 160.795 160.2775 

RA3 1007.405 1060.076 1083.892 1005.432 1009.504 1038.572 1109.143 1030.763 

LLA 0.972144 0.939773 0.942725 0.982155 0.962489 0.955014 0.913754 0.968519 

LLV 0.995167 1.023362 1.045201 0.996982 0.993437 1.015352 1.056634 1.013402 

LA1 1.009556 1.019541 1.009897 1.002245 1.016784 1.012963 1.024012 1.004977 

CP3 0.00262 0.002525 0.002533 0.002643 0.002598 0.002578 0.002464 0.00261 

CLA 0.011388 0.01113 0.011228 0.011506 0.01127 0.011262 0.010959 0.011407 

CA1 0.00018 0.000179 0.000179 0.00018 0.00018 0.00018 0.000179 0.000179 

CA2 0.000224 0.000219 0.000218 0.000225 0.000223 0.000221 0.000214 0.000223 

CA3 0.001851 0.00183 0.001772 0.001829 0.001872 0.001828 0.001791 0.00181 
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Table A5.3 The parameters values of the healthy signal (Subject 17- 24) for the data 

obtained from the online database, HaeMod [329] (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

17 

Subject 

18 

Subject 

19 

Subject 

20 

Subject 

21 

Subject 

22 

Subject 

23 

Subject 

24 

RP2 39.22804 39.55336 39.2251 38.97998 39.66813 39.55244 39.39134 39.13189 

RP3 78.41201 81.5733 79.5961 77.19939 81.88821 80.84541 80.24587 78.14745 

RL1 29.13207 29.57586 29.33695 28.96669 29.6257 29.51641 29.42599 29.045 

RL2 10.50111 10.70512 10.79926 10.68595 10.55872 10.46883 10.63496 10.59914 

RLA 5.072667 5.235426 5.178124 5.06092 5.2188 5.16008 5.169992 5.083656 

RA1 9.787481 9.850073 9.848184 9.777402 9.854924 9.855939 9.851732 9.771596 

RA2 161.0941 159.5639 159.8447 160.947 159.8761 160.332 160.093 161.0293 

RA3 1073.542 1003.143 1035.739 1091.194 1002.245 1023.726 1029.53 1078.14 

LLA 0.950202 0.967451 0.949356 0.931939 0.976299 0.973618 0.961356 0.941224 

LLV 1.039378 0.991547 1.012437 1.04789 0.993682 1.010191 1.011218 1.040568 

LA1 1.006932 1.013618 1.017117 1.015521 1.006912 1.002472 1.00984 1.011858 

CP3 0.002551 0.002612 0.002567 0.002507 0.002632 0.002623 0.002595 0.002529 

CLA 0.011298 0.011344 0.011203 0.011129 0.01145 0.011465 0.011334 0.011216 

CA1 0.000179 0.00018 0.00018 0.000179 0.00018 0.00018 0.00018 0.000179 

CA2 0.000219 0.000223 0.000221 0.000217 0.000224 0.000224 0.000222 0.000218 

CA3 0.001773 0.001867 0.001844 0.001782 0.001846 0.001808 0.001826 0.001783 
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Table A5.4 The parameters values of the healthy signal (Subject 25- 32) for the data 

obtained from the online database, HaeMod [329] (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

25 

Subject 

26 

Subject 

27 

Subject 

28 

Subject 

29 

Subject 

30 

Subject 

31 

Subject 

32 

RP2 39.3498 38.91232 39.45691 39.5949 39.72555 39.05441 39.24838 39.43858 

RP3 79.16554 77.09496 81.6878 82.01167 82.28635 78.97825 79.72244 80.42806 

RL1 29.1936 28.89993 29.55291 29.602 29.6542 29.04164 29.16634 29.29392 

RL2 10.43081 10.76729 10.94787 10.76099 10.57326 10.96506 10.76969 10.57252 

RLA 5.090658 5.075052 5.284634 5.261414 5.235075 5.199034 5.187316 5.173844 

RA1 9.782234 9.762976 9.838061 9.843357 9.850899 9.775809 9.786634 9.798039 

RA2 161.167 160.8871 158.9397 159.3991 159.8249 160.2594 160.4829 160.7013 

RA3 1063.18 1093.315 995.0317 995.6318 996.3172 1053.592 1045.02 1036.54 

LLA 0.957666 0.924881 0.954875 0.965352 0.97632 0.927654 0.943063 0.958883 

LLV 1.033522 1.047804 0.982069 0.985866 0.989764 1.017436 1.015417 1.013353 

LA1 1.003979 1.019631 1.02537 1.016741 1.008023 1.027674 1.01883 1.00981 

CP3 0.002568 0.00249 0.002586 0.002609 0.002633 0.002501 0.002538 0.002575 

CLA 0.011367 0.011065 0.011188 0.011319 0.011451 0.011027 0.011185 0.011342 

CA1 0.000179 0.000179 0.000181 0.00018 0.00018 0.00018 0.00018 0.00018 

CA2 0.00022 0.000216 0.000222 0.000223 0.000224 0.000217 0.000219 0.000221 

CA3 0.001774 0.001792 0.001912 0.001884 0.001855 0.00186 0.001839 0.001818 
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Table A5.5 The parameters values of the healthy signal (Subject 33-40) for the data 

obtained from the online database, HaeMod [329] (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

33 

Subject 

34 

Subject 

35 

Subject 

36 

Subject 

37 

Subject 

38 

Subject 

39 

Subject 

40 

RP2 38.63203 38.89622 39.59066 39.15894 39.70489 39.8109 39.36528 39.19706 

RP3 76.13477 77.38908 82.40346 78.59615 82.59269 82.73679 80.4429 79.85748 

RL1 28.72286 28.89561 29.61086 29.06998 29.64824 29.69006 29.22264 29.11112 

RL2 11.05255 10.83981 10.86837 10.62447 10.69436 10.51983 10.69678 10.87865 

RLA 5.093838 5.101328 5.294824 5.106488 5.268708 5.240518 5.202097 5.217327 

RA1 9.754626 9.763469 9.835151 9.773136 9.841186 9.849159 9.783763 9.77312 

RA2 160.5396 160.7243 159.0598 160.9134 159.498 159.9019 160.5582 160.3445 

RA3 1105.995 1088.268 988.3912 1070.965 990.2877 992.2103 1036.548 1043.246 

LLA 0.900544 0.920809 0.959701 0.941294 0.969378 0.97958 0.949194 0.934916 

LLV 1.052592 1.044276 0.980061 1.036218 0.984344 0.988623 1.011532 1.012797 

LA1 1.032587 1.022852 1.02225 1.012936 1.014136 1.005924 1.015801 1.024067 

CP3 0.002436 0.002484 0.0026 0.002532 0.00262 0.002642 0.002553 0.00252 

CLA 0.010843 0.011032 0.011262 0.01122 0.011381 0.0115 0.011256 0.011113 

CA1 0.000179 0.000179 0.000181 0.000179 0.00018 0.00018 0.00018 0.00018 

CA2 0.000213 0.000215 0.000222 0.000218 0.000224 0.000225 0.00022 0.000218 

CA3 0.001818 0.001805 0.001907 0.001792 0.001879 0.001851 0.001836 0.001857 
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Appendix 6 
Table A6.1 The parameters values of the cardiovascular disease’ signal (Subject 1- 8) 

for the data obtained from the hospital. (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 1 Subject 2 Subject  

3 

Subject 

 4 

Subject  

5 

Subject 

 6 

Subject  

7 

Subject 8 

RP2 39.78507 40.30789 40.88503 39.21776 39.7222 40.28477 39.13254 39.64227 

RP3 83.86764 84.29356 83.204 79.83035 84.99749 82.67987 84.92927 82.25959 

RL1 28.31026 28.8603 28.16808 29.0582 28.1491 29.0618 27.94537 28.66923 

RL2 10.56688 10.64069 9.909514 10.3 10.54658 10.70567 10.42001 10.61057 

RLA 5.326618 5.317311 5.492189 5.103679 5.310422 5.277943 5.307738 5.269579 

RA1 9.393786 9.766793 9.23714 9.550888 9.307847 9.897266 9.073786 9.525552 

RA2 165.1514 167.1254 174.1016 159.775 166.9591 166.1713 163.2065 164.3492 

RA3 1002.1 998.4396 1038.48 1018.067 989.8737 1014.259 979.0867 1004.518 

LLA 0.970028 0.945039 0.947885 1.012827 0.970503 0.938475 1.011862 0.975358 

LLV 0.961852 0.965004 0.92405 0.99447 0.950684 0.977872 0.951308 0.961934 

LA1 1.022592 1.020726 1.019698 0.999867 1.022458 1.021082 1.017333 1.01955 

CP3 0.002515 0.002453 0.002124 0.002686 0.002504 0.002449 0.002651 0.00253 

CLA 0.011345 0.01135 0.0108 0.011504 0.011369 0.011293 0.011539 0.011283 

CA1 0.000182 0.000181 0.000181 0.000181 0.000183 0.00018 0.000184 0.000182 

CA2 0.000219 0.000223 0.000227 0.000223 0.000218 0.000224 0.000216 0.000221 

CA3 0.001918 0.001876 0.001877 0.001854 0.001926 0.001862 0.001939 0.001915 
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Table A6.2 The parameters values of the cardiovascular disease’ signal (Subject 9- 

16) for the data obtained from the hospital. (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 9 Subject 

10 

Subject 

11 

Subject 

12 

Subject 

13 

Subject 

14 

Subject 

15 

Subject 

16 

RP2 40.54387 39.83043 39.59547 40.62866 39.42387 39.3453 39.89477 39.54234 

RP3 81.83505 82.39291 81.43162 81.2783 85.11646 85.85989 84.00452 82.76717 

RL1 29.32577 29.16047 28.78874 29.64231 27.94984 27.34894 28.86354 28.96233 

RL2 10.5466 10.14465 10.2885 10.30415 10.17203 10.13845 10.16344 10.15528 

RLA 5.333625 5.200994 5.141122 5.249208 5.378904 5.36537 5.228127 5.200161 

RA1 9.81105 9.612562 9.510343 9.823032 9.017818 8.783681 9.515554 9.47038 

RA2 166.9731 162.4019 162.687 165.9248 163.0648 163.8258 163.793 161.7707 

RA3 1025.926 1012.259 1019.552 1020.928 994.895 990.5536 994.2947 1004.232 

LLA 0.923156 1.000082 0.995354 0.947447 1.013042 1.021234 1.005024 1.0109 

LLV 0.967051 0.98941 0.99184 0.970147 0.958887 0.956608 0.975147 0.983533 

LA1 1.019816 0.996013 1.002669 1.004207 1.011423 1.015187 0.998447 0.996751 

CP3 0.002303 0.002628 0.00262 0.002365 0.002628 0.002643 0.002633 0.002668 

CLA 0.010969 0.011599 0.011524 0.011129 0.011554 0.011601 0.011677 0.011635 

CA1 0.000179 0.00018 0.000181 0.000179 0.000183 0.000185 0.000181 0.000181 

CA2 0.000226 0.000224 0.000222 0.000229 0.000216 0.000213 0.000224 0.000222 

CA3 0.001867 0.001825 0.001846 0.001836 0.001919 0.001943 0.001842 0.001843 

 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 225  

 

Table A6.3 The parameters values of the cardiovascular disease’ signal (Subject 17- 

24) for the data obtained from the hospital. (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

17 

Subject 

18 

Subject 

19 

Subject 

20 

Subject 

21 

Subject 

22 

Subject 

23 

Subject 

24 

RP2 39.39385 39.29086 39.70902 39.2767 39.28117 39.55988 39.74094 40.04008 

RP3 78.83205 81.59177 81.7802 79.57944 83.05164 80.21077 81.84816 83.66762 

RL1 29.39375 28.8961 29.18708 28.9141 28.27311 29.6099 30.16972 28.88827 

RL2 10.27394 10.31232 10.29064 10.39899 10.49385 10.61272 10.61423 10.46158 

RLA 5.044195 5.201638 5.187767 5.120599 5.245221 5.277572 5.136154 5.298171 

RA1 9.776069 9.465458 9.651126 9.577251 9.268559 9.748384 10.1629 9.668142 

RA2 160.4531 159.7257 161.897 161.2044 164.0056 159.8327 157.9113 165.5795 

RA3 1040.676 1005.591 1009.426 1035.342 994.9805 1020.362 980.4936 1003.523 

LLA 0.996036 1.014249 0.999234 0.991952 0.998714 0.964383 0.991526 0.966342 

LLV 1.015396 0.984984 0.985367 1.000161 0.956473 0.983099 1.000064 0.969848 

LA1 0.994428 1.003306 1.000074 1.00584 1.016476 1.014608 1.000617 1.01372 

CP3 0.002652 0.002695 0.002634 0.002619 0.002597 0.002514 0.002744 0.002512 

CLA 0.01151 0.011551 0.011541 0.011395 0.011405 0.011097 0.011693 0.011419 

CA1 0.000179 0.000181 0.00018 0.00018 0.000183 0.000179 0.00018 0.000181 

CA2 0.000224 0.000221 0.000224 0.000221 0.000219 0.000225 0.000228 0.000223 

CA3 0.001794 0.001872 0.001844 0.001848 0.001924 0.001866 0.001809 0.001865 
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Table A6.4 The parameters values of the cardiovascular disease’ signal (Subject 25- 

32) for the data obtained from the hospital. (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

25 

Subject 

26 

Subject 

27 

Subject 

28 

Subject 

29 

Subject 

30 

Subject 

31 

Subject 

32 

RP2 39.5972 39.76974 39.66606 39.95445 40.51241 40.35958 40.04538 39.35351 

RP3 84.88481 82.39924 79.97308 83.28428 86.03311 80.70664 83.89916 79.51886 

RL1 28.39052 28.93549 29.71853 29.01123 28.82498 29.52481 28.68183 29.18839 

RL2 10.56845 10.49408 10.22441 10.60476 10.7668 10.26776 10.50201 10.4595 

RLA 5.2762 5.275491 5.068581 5.315076 5.352051 5.283338 5.309228 5.121681 

RA1 9.488317 9.598325 9.914555 9.74966 10.00933 9.77284 9.608981 9.735082 

RA2 166.0678 162.9983 160.5467 165.4936 169.9439 165.6393 167.0605 160.7611 

RA3 985.1636 1014.361 1023.81 1013.24 983.1848 1032.466 1008.491 1033.788 

LLA 0.979904 0.968277 1.00176 0.944958 0.934605 0.959635 0.954665 0.98734 

LLV 0.957801 0.982314 1.009456 0.976561 0.957342 0.970556 0.967173 1.003714 

LA1 1.017615 1.01344 0.989354 1.019168 1.023267 1.005387 1.017635 1.004607 

CP3 0.002567 0.002539 0.002678 0.002464 0.002434 0.002385 0.002463 0.002624 

CLA 0.011524 0.011342 0.011634 0.011291 0.011493 0.011091 0.011343 0.011419 

CA1 0.000182 0.000181 0.000179 0.00018 0.00018 0.000179 0.000181 0.00018 

CA2 0.00022 0.000221 0.000227 0.000222 0.000226 0.000229 0.000222 0.000223 

CA3 0.001881 0.001875 0.001778 0.00186 0.001827 0.001831 0.001871 0.001828 
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Table A6.5 The parameters values of the cardiovascular disease’ signal (Subject 33- 

40) for the data obtained from the hospital. (Using EIF as the transfer function) 

Para 

me-

ters 

Subject 

33 

Subject 

34 

Subject 

35 

Subject 

36 

Subject 

37 

Subject 

38 

Subject 

39 

Subject 

40 

RP2 40.28597 39.72188 39.25089 39.41731 40.61163 39.49765 40.69701 39.28664 

RP3 82.73221 83.20364 83.251 82.76387 83.01474 82.81028 83.28427 83.72625 

RL1 29.05312 28.75974 28.38106 28.79524 29.35284 28.84336 28.89037 28.46718 

RL2 10.34022 10.46508 10.49065 10.33247 10.18529 10.40445 10.54909 9.801131 

RLA 5.304462 5.266884 5.25467 5.245479 5.284536 5.227933 5.302068 5.205571 

RA1 9.57909 9.571782 9.35922 9.513878 9.709211 9.593871 9.749054 8.920178 

RA2 165.5589 164.4319 163.1355 162.052 166.4116 162.5748 168.7897 158.968 

RA3 1012.221 1005.655 998.2877 1002.356 1005.299 1003.181 1011.8 971.9353 

LLA 0.967057 0.977012 0.995127 1.003545 0.967801 0.994731 0.93193 1.070081 

LLV 0.964486 0.972362 0.968121 0.976432 0.962214 0.980278 0.963681 0.962165 

LA1 1.008828 1.012479 1.014889 1.005645 1.003111 1.006584 1.018852 0.990393 

CP3 0.002456 0.002554 0.002617 0.002649 0.002435 0.002632 0.002353 0.002806 

CLA 0.011262 0.011444 0.011476 0.011571 0.011315 0.011568 0.011197 0.011767 

CA1 0.00018 0.000181 0.000183 0.000181 0.00018 0.000181 0.00018 0.000184 

CA2 0.000225 0.000222 0.000219 0.000222 0.000228 0.000222 0.000225 0.00022 

CA3 0.001881 0.001868 0.001894 0.001856 0.001851 0.001845 0.001885 0.001927 
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Appendix 7 
Table A7.1 The parameters values of the non-cardiovascular disease’ signal (no clini-

cal class and bleed) for the data obtained from the online database, PhysioNet 

[328].(Using GTF as the transfer function) 

Pa-

rame-

ters 

No Clinical 

class-subject 

037 

No Clinical 

class-sub-

ject 430 

No Clinical 

class-sub-

ject 474 

No Clinical 

class-sub-

ject 484 

No Clinical 

class-sub-

ject 485 

Bleed- Sub-

ject039 

RP2 39.768658 39.753468 39.576603 39.772488 39.479378 39.574848 

RP3 81.376137 82.722649 79.993423 81.518333 80.656593 80.708054 

RL1 29.675625 29.168232 29.819574 29.645863 29.324749 29.527449 

RL2 10.257393 10.26039 10.42291 10.244063 10.480638 10.416709 

RLA 5.1482286 5.2257934 5.1163015 5.148932 5.1834812 5.1569929 

RA1 9.8412342 9.5899153 9.939229 9.8213844 9.716485 9.7976999 

RA2 160.60188 161.69409 159.72935 160.66144 160.56093 160.35089 

RA3 995.69684 987.31006 1002.1807 995.95044 997.3241 998.81708 

LLA 1.014523 1.0138181 1.0092772 1.0152485 1.0081882 1.0096961 

LLV 0.98363459 0.96775228 0.98687732 0.98374516 0.97237849 0.97917503 

LA1 0.99228376 0.99956363 0.99655628 0.99242324 1.0043818 1.0002393 

CP3 0.002696325 0.002664338 0.002693882 0.002697173 0.002664788 0.002678379 

CLA 0.011653398 0.011600327 0.011549922 0.011659592 0.011461013 0.01152595 

CA1 0.000179949 0.000181314 0.000179532 0.000179973 0.00018067 0.000180185 

CA2 0.000228428 0.00022524 0.000228738 0.000228202 0.000225783 0.000227023 

CA3 0.001827581 0.001875537 0.001833441 0.001827616 0.001881245 0.001857216 
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Table A7.2 The parameters values of the non-cardiovascular disease’ signal (respira-

tory failure) for the data obtained from the online database, PhysioNet [328].(Using 

GTF as the transfer function) 

Pa-

rame-

ters 

Respira-

tory fail-

ure-Sub-

ject055 

Respira-

tory fail-

ure-Sub-

ject211 

Respira-

tory fail-

ure-Sub-

ject226 

Respira-

tory fail-

ure-Sub-

ject 252 

Respira-

tory fail-

ure-Sub-

ject 411 

Respira-

tory fail-

ure-Sub-

ject 437 

Respira-

tory fail-

ure-Sub-

ject 439 

Respira-

tory fail-

ure-Sub-

ject 443 

RP2 39.495876 39.699436 39.450138 39.686386 39.823921 39.626617 39.802177 39.743797 

RP3 79.441338 82.766586 80.183662 81.645142 83.015152 81.349869 81.591476 81.512054 

RL1 29.815395 29.02664 29.476547 29.439188 29.166794 29.414686 29.664755 29.578247 

RL2 10.481297 10.360232 10.488004 10.377567 10.389877 10.347476 10.213487 10.250495 

RLA 5.1089425 5.2580209 5.1507535 5.1894989 5.2649937 5.1737456 5.1492915 5.154984 

RA1 9.9491205 9.5351076 9.7866592 9.7502203 9.6110926 9.7248087 9.8213301 9.7886992 

RA2 159.49049 161.83818 159.9827 160.95259 162.09496 160.66196 160.68362 160.6367 

RA3 1003.4719 990.32684 1001.7001 992.4165 988.75983 995.82245 996.42041 996.51959 

LLA 1.0090551 1.0064955 1.0075123 1.0077864 0.9989209 1.0129194 1.0160317 1.0152379 

LLV 0.98568058 0.9649359 0.9800055 0.9740318 0.9657251 0.9769172 0.9849215 0.9832512 

LA1 0.9981938 1.0060638 1.0031554 1.0005518 1.0063852 0.9992666 0.9910886 0.9934284 

CP3 0.00269310 0.0026391 0.0026752 0.0026657 0.0026231 0.0026806 0.0026989 0.0026951 

CLA 0.01150705 0.0115065 0.0114701 0.0115565 0.0115019 0.011564 0.0116744 0.0116453 

CA1 0.00017951 0.0001814 0.0001803 0.0001806 0.0001811 0.0001805 0.0001799 0.0001801 

CA2 0.00022873 0.0002238 0.0002264 0.0002265 0.0002244 0.0002265 0.0002283 0.0002277 

CA3 0.00184172 0.0018953 0.0018665 0.0018641 0.0018881 0.0018599 0.0018228 0.0018329 

 



Development of a Medical System to Indicate Risk of Cardiovascular Disease 

 

 230  

 

Table A7.3 The parameters values of the non-cardiovascular disease’ signal (brain in-

jury and sepsis) for the data obtained from the online database PhysioNet 

[328].(Using GTF as the transfer function) 

Pa-

rame-

ters 

Brain in-

jury-Sub-

ject220 

Brain injury-

Subject449 

Sepsis-Sub-

ject222 

Sepsis-Sub-

ject224 

Sepsis-Sub-

ject438 

RP2 39.711735 39.798492 39.708889 39.533443 39.849735 

RP3 81.860451 81.754906 81.600784 80.791618 82.155609 

RL1 29.375975 29.549376 29.477337 29.401257 29.542809 

RL2 10.275523 10.237569 10.255637 10.506886 10.264812 

RLA 5.1836247 5.1592989 5.1630878 5.1848025 5.1813192 

RA1 9.6935406 9.7911081 9.7409868 9.7498617 9.7787857 

RA2 160.97676 161.10236 160.757 160.70084 161.32257 

RA3 994.82574 996.12524 995.80432 997.63959 992.16217 

LLA 1.0140227 1.0138409 1.016547 1.0034988 1.0097182 

LLV 0.97762704 0.98264277 0.98065037 0.97197443 0.97773916 

LA1 0.99717951 0.99322808 0.99471974 1.0061612 0.99567628 

CP3 0.002680806 0.002687736 0.002693187 0.002649067 0.002670346 

CLA 0.011605487 0.011656588 0.011633269 0.011442668 0.011635758 

CA1 0.000180568 0.000180114 0.000180338 0.000180527 0.000180305 

CA2 0.000226366 0.000227817 0.000227169 0.000225906 0.00022744 

CA3 0.001853255 0.001829117 0.00184157 0.001882756 0.001842299 
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Appendix 8 
Table A8.1 The parameters values of the healthy signal (Subject 1- 8) for the data ob-

tained from the online database, HaeMod [329] (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 1 Subject 2 Subject  

3 

Subject 

 4 

Subject  

5 

Subject 

 6 

Subject  

7 

Subject 8 

RP2 39.5445 39.58885 39.18506 39.37123 39.19151 39.45853 38.97633 39.71614 

RP3 80.4643 80.81493 78.54472 79.7028 78.89607 80.26527 77.54218 81.33041 

RL1 29.70308 29.64831 29.59438 29.64576 29.53598 29.59827 29.54167 29.7042 

RL2 10.55335 10.60015 10.87809 10.74488 10.89888 10.75615 11.1004 10.4443 

RLA 5.156299 5.174516 5.158398 5.163935 5.170693 5.183504 5.162485 5.165338 

RA1 9.893453 9.869649 9.909936 9.899509 9.878242 9.869545 9.926168 9.872599 

RA2 159.7714 160.0009 159.2056 159.4139 159.1981 159.7692 158.744 160.219 

RA3 995.2844 991.7814 1004.955 996.8105 1000.781 992.013 1007.512 991.7078 

LLA 1.002133 0.997993 0.989529 0.994663 0.989141 0.991937 0.981244 1.004246 

LLV 0.977568 0.974179 0.9726 0.972838 0.968727 0.969085 0.967784 0.979208 

LA1 1.004657 1.007421 1.01754 1.012794 1.019829 1.014361 1.026692 1.000436 

CP3 0.00267 0.002659 0.002632 0.00265 0.002629 0.00264 0.00261 0.002678 

CLA 0.011474 0.011445 0.011216 0.01134 0.011213 0.011334 0.011061 0.011556 

CA1 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 

CA2 0.000227 0.000227 0.000226 0.000226 0.000225 0.000226 0.000225 0.000228 

CA3 0.001869 0.001881 0.00191 0.001898 0.001925 0.001908 0.001943 0.001854 
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Table A8.2 The parameters values of the healthy signal (Subject 9- 16) for the data 

obtained from the online database, HaeMod [329] (Using GTF as the transfer func-

tion) 

Para 

me-

ters 

Subject 9 Subject 

10 

Subject 

11 

Subject 

12 

Subject 

13 

Subject 

14 

Subject 

15 

Subject 

16 

RP2 39.67374 39.31225 39.39604 39.78303 39.56205 39.47203 39.10983 39.62471 

RP3 81.29128 79.5831 79.5287 81.70443 80.84918 80.26904 78.30803 80.91361 

RL1 29.65393 29.54514 29.65096 29.70945 29.60441 29.65481 29.55058 29.71061 

RL2 10.52278 10.78527 10.65595 10.38253 10.66318 10.64997 10.96784 10.47777 

RLA 5.177673 5.175704 5.152721 5.168098 5.187659 5.167144 5.167679 5.158804 

RA1 9.85769 9.859713 9.895996 9.863571 9.854463 9.884921 9.903633 9.881987 

RA2 160.197 159.4834 159.6611 160.3725 160.0113 159.647 159.0752 159.9552 

RA3 990.2155 998.3325 1002.367 990.5041 990.0393 994.6905 1005.049 993.6136 

LLA 1.000349 0.992862 0.997919 1.006194 0.994724 0.997886 0.985634 1.004704 

LLV 0.975633 0.97044 0.977443 0.980342 0.970797 0.97418 0.969839 0.978675 

LA1 1.004461 1.015563 1.008345 0.998064 1.010809 1.009247 1.021709 1.001815 

CP3 0.002666 0.002639 0.002655 0.002683 0.002649 0.002658 0.002621 0.002677 

CLA 0.011502 0.011294 0.011372 0.011601 0.011402 0.011409 0.011154 0.011529 

CA1 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 

CA2 0.000227 0.000226 0.000227 0.000228 0.000226 0.000227 0.000225 0.000228 

CA3 0.00187 0.00191 0.001877 0.001845 0.001895 0.001886 0.001925 0.001859 
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Table A8.3 The parameters values of the healthy signal (Subject 17- 24) for the data 

obtained from the online database, HaeMod [329] (Using GTF as the transfer func-

tion) 

Para 

me-

ters 

Subject 

17 

Subject 

18 

Subject 

19 

Subject 

20 

Subject 

21 

Subject 

22 

Subject 

23 

Subject 

24 

RP2 39.48743 39.66507 39.44004 39.29813 39.75785 39.70482 39.57325 39.41251 

RP3 80.03927 81.43114 80.2872 79.18324 81.76599 81.36444 80.83997 79.82837 

RL1 29.65605 29.60987 29.61301 29.60061 29.65909 29.7182 29.66375 29.60589 

RL2 10.56633 10.57089 10.70993 10.76658 10.44624 10.40262 10.55541 10.65449 

RLA 5.155795 5.191802 5.17904 5.162395 5.181514 5.16137 5.170507 5.166656 

RA1 9.880495 9.839521 9.872047 9.890505 9.845931 9.870669 9.870306 9.870442 

RA2 159.8895 160.2521 159.6124 159.489 160.3925 160.137 159.8795 159.7771 

RA3 1000.705 988.1204 993.3007 1002.89 988.7014 991.9263 992.524 1000.794 

LLA 1.000925 0.997444 0.994859 0.993253 1.002704 1.007248 1.001082 0.996989 

LLV 0.978764 0.97256 0.971395 0.97426 0.977057 0.979791 0.975516 0.975883 

LA1 1.004997 1.007279 1.012408 1.01337 1.001517 0.998985 1.005711 1.009196 

CP3 0.002662 0.002657 0.00265 0.002641 0.002673 0.002684 0.002667 0.00265 

CLA 0.011434 0.01147 0.01137 0.011294 0.011558 0.011584 0.011478 0.011371 

CA1 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 

CA2 0.000227 0.000226 0.000226 0.000226 0.000227 0.000228 0.000227 0.000227 

CA3 0.001866 0.001882 0.001899 0.001896 0.00186 0.00185 0.001875 0.001882 
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Table A8.4 The parameters values of the healthy signal (Subject 25- 32) for the data 

obtained from the online database, HaeMod [329] (Using GTF as the transfer func-

tion) 

Para 

me-

ters 

Subject 

25 

Subject 

26 

Subject 

27 

Subject 

28 

Subject 

29 

Subject 

30 

Subject 

31 

Subject 

32 

RP2 39.57947 39.24485 39.5853 39.69245 39.79748 39.26957 39.43388 39.59672 

RP3 80.5537 79.08131 81.33955 81.71782 82.05849 79.84477 80.49457 81.11146 

RL1 29.6607 29.55748 29.52234 29.57838 29.64327 29.44714 29.52012 29.59651 

RL2 10.47649 10.83398 10.74403 10.58948 10.43544 10.88391 10.70024 10.51714 

RLA 5.159038 5.172685 5.223948 5.206867 5.189331 5.203254 5.193657 5.182801 

RA1 9.864705 9.879975 9.811967 9.819113 9.830335 9.822307 9.825626 9.830712 

RA2 160.1201 159.4131 160.2724 160.4307 160.5593 159.4102 159.7454 160.0761 

RA3 999.0258 1002.55 984.1193 985.0693 986.1657 994.5076 993.6832 993.0326 

LLA 1.003925 0.990068 0.988978 0.995706 1.002557 0.987572 0.994655 1.001808 

LLV 0.98007 0.971842 0.962894 0.968889 0.974943 0.965021 0.970207 0.975483 

LA1 1.001652 1.016725 1.016354 1.009129 1.001857 1.021385 1.013235 1.005019 

CP3 0.002669 0.002632 0.002627 0.002648 0.002669 0.002625 0.002645 0.002665 

CLA 0.011496 0.011247 0.011342 0.011453 0.011564 0.011237 0.011364 0.01149 

CA1 0.00018 0.00018 0.000181 0.000181 0.00018 0.000181 0.00018 0.00018 

CA2 0.000227 0.000226 0.000225 0.000226 0.000227 0.000224 0.000225 0.000227 

CA3 0.001855 0.001908 0.001922 0.001893 0.001864 0.001935 0.001904 0.001873 
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Table A8.5 The parameters values of the healthy signal (Subject 33-40) for the data 

obtained from the online database, HaeMod [329] (Using GTF as the transfer func-

tion) 

Para 

me-

ters 

Subject 

33 

Subject 

34 

Subject 

35 

Subject 

36 

Subject 

37 

Subject 

38 

Subject 

39 

Subject 

40 

RP2 39.05636 39.25047 39.69007 39.44601 39.77812 39.8649 39.53255 39.38912 

RP3 78.45943 79.33719 81.94082 80.1771 82.20667 82.43998 81.06274 80.53265 

RL1 29.46433 29.52763 29.52633 29.59229 29.58224 29.64743 29.52817 29.45663 

RL2 11.07952 10.85991 10.65169 10.64114 10.51281 10.37429 10.60773 10.77313 

RLA 5.193861 5.186354 5.22818 5.176637 5.209959 5.191532 5.197901 5.208348 

RA1 9.875371 9.865059 9.795512 9.856928 9.806128 9.820714 9.811149 9.805167 

RA2 159.0115 159.4401 160.5306 159.8527 160.6345 160.7133 159.9717 159.6818 

RA3 1001.626 999.9763 981.9153 998.4294 983.3174 984.8151 991.6944 992.0664 

LLA 0.979708 0.988189 0.991739 0.996806 0.998051 1.004471 0.997611 0.991093 

LLV 0.964172 0.969477 0.964427 0.97489 0.970224 0.976041 0.971715 0.966836 

LA1 1.027978 1.018616 1.012862 1.009252 1.006223 0.999532 1.009745 1.017207 

CP3 0.002604 0.002627 0.002635 0.00265 0.002655 0.002675 0.002653 0.002635 

CLA 0.011085 0.011236 0.01141 0.011387 0.01151 0.01161 0.011432 0.011319 

CA1 0.00018 0.00018 0.000181 0.00018 0.000181 0.00018 0.00018 0.000181 

CA2 0.000224 0.000225 0.000225 0.000226 0.000226 0.000227 0.000226 0.000225 

CA3 0.001951 0.001917 0.001909 0.001883 0.001883 0.001856 0.001892 0.00192 
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Appendix 9 
Table A9.1 The parameters values of the cardiovascular disease’ signal (Subject 1- 8) 

for the data obtained from the hospital. (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 1 Subject 2 Subject  

3 

Subject 

 4 

Subject  

5 

Subject 

 6 

Subject  

7 

Subject 8 

RP2 39.48489 39.83276 40.78819 39.32645 39.41952 39.80734 39.38723 39.33627 

RP3 81.87954 82.59654 82.98445 79.38236 81.89964 81.4248 82.07401 80.06594 

RL1 28.92918 29.11627 28.46696 29.59531 28.7352 29.2267 28.86228 29.08274 

RL2 10.52413 10.45041 9.951665 10.47857 10.53097 10.58008 10.46327 10.68811 

RLA 5.259716 5.261061 5.278796 5.10826 5.236255 5.225773 5.203735 5.176829 

RA1 9.567681 9.673813 9.290019 9.831304 9.515271 9.78192 9.510389 9.707521 

RA2 161.1827 162.8195 171.3965 159.1422 162.3637 162.5307 161.1756 161.3963 

RA3 992.6669 997.7219 1013.021 1003.445 998.2712 997.0507 985.5994 1010.958 

LLA 1.004189 0.988326 0.982139 1.010844 1.000189 0.98381 1.017013 0.983743 

LLV 0.964205 0.970119 0.939469 0.985345 0.964929 0.970534 0.964438 0.979708 

LA1 1.012131 1.009303 1.000951 1.001267 1.013147 1.009991 1.008269 1.015096 

CP3 0.00264 0.002591 0.002377 0.002695 0.00262 0.00259 0.002688 0.002602 

CLA 0.011431 0.011461 0.011241 0.011471 0.011422 0.01141 0.011531 0.011287 

CA1 0.000181 0.000181 0.000182 0.00018 0.000182 0.00018 0.000182 0.000181 

CA2 0.000223 0.000224 0.000226 0.000227 0.000222 0.000226 0.000223 0.000223 

CA3 0.00191 0.001878 0.001909 0.001859 0.0019 0.001881 0.001901 0.001889 
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Table A9.2 The parameters values of the cardiovascular disease’ signal (Subject 9- 

16) for the data obtained from the hospital. (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 9 Subject 

10 

Subject 

11 

Subject 

12 

Subject 

13 

Subject 

14 

Subject 

15 

Subject 

16 

RP2 39.92352 39.76912 39.43577 40.09892 39.45123 39.67042 39.85128 39.62494 

RP3 82.03384 81.67575 80.7895 82.41819 83.04952 82.80645 82.50504 82.0472 

RL1 29.11441 29.48886 29.43381 29.52453 28.96404 28.71149 29.3213 29.48842 

RL2 10.47843 10.22183 10.45567 10.36816 10.20002 10.18953 10.16791 10.23972 

RLA 5.299032 5.145182 5.140284 5.229685 5.23192 5.209682 5.171741 5.162353 

RA1 9.605334 9.763435 9.758049 9.750955 9.411598 9.417604 9.685202 9.691297 

RA2 163.3366 161.1021 160.2383 163.1353 161.0701 162.6327 161.824 160.1288 

RA3 1003.91 997.1014 993.1077 993.5541 986.0823 986.1953 993.2683 986.8405 

LLA 0.977833 1.014111 1.015836 0.990105 1.026726 1.019137 1.017578 1.025317 

LLV 0.961506 0.9849 0.974509 0.963163 0.963408 0.966323 0.979828 0.97558 

LA1 1.014421 0.99295 1.00104 1.003465 1.000212 1.000147 0.992667 0.993937 

CP3 0.002513 0.00269 0.002696 0.002567 0.002693 0.002668 0.002688 0.002722 

CLA 0.011232 0.011661 0.011553 0.011442 0.011617 0.011624 0.011704 0.011679 

CA1 0.000181 0.00018 0.000181 0.00018 0.000182 0.000182 0.000181 0.000181 

CA2 0.000225 0.000227 0.000227 0.000227 0.000223 0.000223 0.000227 0.000227 

CA3 0.0019 0.001828 0.001863 0.001879 0.001888 0.001883 0.001832 0.00185 
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Table A9.3 The parameters values of the cardiovascular disease’ signal (Subject 17- 

24) for the data obtained from the hospital. (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 

17 

Subject 

18 

Subject 

19 

Subject 

20 

Subject 

21 

Subject 

22 

Subject 

23 

Subject 

24 

RP2 39.52656 39.46106 39.68716 39.44966 39.32376 39.739 39.5114 39.737 

RP3 79.34243 80.87238 81.10783 79.86361 80.75299 81.1183 79.79271 82.02567 

RL1 29.80361 29.44894 29.49865 29.55946 28.94326 29.5164 29.88124 29.15939 

RL2 10.44271 10.40568 10.33518 10.51108 10.52323 10.5322 10.493 10.36373 

RLA 5.069019 5.166297 5.182553 5.125267 5.207943 5.21004 5.064616 5.218765 

RA1 9.954361 9.739871 9.778802 9.826389 9.541282 9.764541 10.03839 9.653446 

RA2 159.7329 159.6249 160.7334 159.8091 161.5667 161.3465 158.9681 162.4916 

RA3 1003.345 994.6257 995.3369 992.4132 999.1645 994.5236 1014.694 1000.302 

LLA 1.007059 1.016572 1.010694 1.009013 1.009943 0.993088 0.984938 0.999682 

LLV 0.989834 0.978055 0.977503 0.974579 0.962719 0.962457 1.015599 0.97206 

LA1 0.996491 1.000832 0.996393 1.003093 1.00825 1.009417 0.99619 1.004099 

CP3 0.002688 0.002705 0.002677 0.002678 0.002644 0.002588 0.002685 0.002618 

CLA 0.011534 0.011549 0.01157 0.011471 0.01139 0.011354 0.011568 0.011496 

CA1 0.00018 0.000181 0.00018 0.000181 0.000181 0.00018 0.000179 0.000181 

CA2 0.000229 0.000226 0.000227 0.000227 0.000224 0.000227 0.000227 0.000225 

CA3 0.001832 0.001866 0.001851 0.001882 0.001902 0.001896 0.001785 0.001868 
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Table A9.4 The parameters values of the cardiovascular disease’ signal (Subject 25- 

32) for the data obtained from the hospital. (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 

25 

Subject 

26 

Subject 

27 

Subject 

28 

Subject 

29 

Subject 

30 

Subject 

31 

Subject 

32 

RP2 39.48824 39.63016 39.76022 39.55689 39.84219 40.11076 39.80352 39.3517 

RP3 82.10339 81.58847 80.49598 82.21823 83.08931 81.54981 82.29425 79.25897 

RL1 28.97926 29.27498 29.86958 29.22255 29.05821 29.43023 28.98265 29.62423 

RL2 10.39449 10.48375 10.28651 10.45776 10.36289 10.3183 10.39615 10.56296 

RLA 5.234726 5.206081 5.113496 5.254781 5.26243 5.216736 5.211336 5.1296 

RA1 9.576602 9.700585 9.94878 9.677911 9.717631 9.721399 9.604254 9.884292 

RA2 161.723 160.9613 160.3692 162.3522 163.9663 163.6838 163.9226 159.415 

RA3 999.5613 992.7621 998.9238 997.3371 1005.221 1001.305 1000.254 1007.984 

LLA 1.006826 1.002794 1.01324 0.992151 0.984266 0.991882 0.992382 1.003073 

LLV 0.970824 0.971097 0.988064 0.966298 0.977683 0.965018 0.968438 0.984629 

LA1 1.006364 1.006794 0.989596 1.009266 1.005556 1.001372 1.006782 1.004645 

CP3 0.002646 0.002649 0.002702 0.002593 0.002581 0.002555 0.002586 0.002672 

CLA 0.011515 0.011483 0.011645 0.011412 0.01154 0.01138 0.011457 0.011421 

CA1 0.000181 0.000181 0.000179 0.000181 0.00018 0.00018 0.000181 0.00018 

CA2 0.000224 0.000225 0.00023 0.000225 0.000224 0.000228 0.000224 0.000227 

CA3 0.001874 0.001885 0.001814 0.001871 0.001833 0.001871 0.001877 0.00186 
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Table A9.5 The parameters values of the cardiovascular disease’ signal (Subject 33- 

40) for the data obtained from the hospital. (Using GTF as the transfer function) 

Para 

me-

ters 

Subject 

33 

Subject 

34 

Subject 

35 

Subject 

36 

Subject 

37 

Subject 

38 

Subject 

39 

Subject 

40 

RP2 39.8433 39.51954 39.41205 39.53022 40.12373 39.60985 39.6891 39.56434 

RP3 82.28047 81.64627 81.11388 81.73153 82.78087 81.47105 81.8131 81.95381 

RL1 29.28419 29.20968 29.09204 29.36095 29.34658 29.33991 29.14038 29.19156 

RL2 10.36369 10.40757 10.43072 10.32437 10.25505 10.37391 10.52824 10.06718 

RLA 5.231378 5.214317 5.204834 5.1829 5.23778 5.17593 5.250284 5.123662 

RA1 9.649571 9.653884 9.603117 9.694396 9.685567 9.749589 9.667126 9.52218 

RA2 162.3321 161.4434 160.925 161.1268 163.4125 161.0907 161.9616 160.0878 

RA3 992.2258 1000.082 1002.767 988.2906 996.3292 998.9056 998.551 987.2289 

LLA 1.000968 1.004804 1.0092 1.016589 0.994885 1.008042 0.982098 1.03683 

LLV 0.963796 0.972674 0.973013 0.970255 0.97072 0.980221 0.971124 0.981025 

LA1 1.004507 1.004608 1.006353 0.996912 0.999595 1.000304 1.014157 0.989515 

CP3 0.002609 0.002643 0.002656 0.002688 0.00259 0.002674 0.002573 0.002747 

CLA 0.011475 0.011494 0.01146 0.011603 0.011507 0.011581 0.011335 0.011735 

CA1 0.000181 0.000181 0.000181 0.000181 0.000181 0.00018 0.000181 0.000181 

CA2 0.000226 0.000225 0.000224 0.000226 0.000227 0.000226 0.000224 0.000226 

CA3 0.001888 0.00187 0.001884 0.001858 0.00186 0.001846 0.001896 0.001849 

 

 

 

 

 


