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Abstract

Single molecule sequencing technologies, such as nanopore sequencing, provide
new ways to investigate genomes and genetics. They permit the detailed analysis
of stretches of DNA orders of magnitude larger than previously possible. Studying
genomes at this detail allows for a better understanding of genome organisation and
structural variants that are typically difficult to resolve using short read sequencing.

OxfordNanopore Technologies sequencers drive singlemolecules ofDNA through
membrane bound protein nanopores by applying a voltage across the membrane.
This applied voltage draws ions and DNA through the nanopore, which is mea-
sured as a real-time data stream of ionic current. Inspecting the current data in
real-time allows for specific molecules to be rejected by reversing the voltage across
an individual nanopore. This process is called “Read Until”.

Previously, Read Until has been carried out by inspecting and comparing the cur-
rent data produced during sequencing. This dissertation proposes a method for
implementing Read Until using graphics cards to accelerate basecalling and opti-
mised real-time alignment.

To build up to a full system for selective sequencing, the raw signal data that
nanopore sequencers output must be assessed (Chapter 3). Specifically to better
understand the characteristics of the continuous data stream. This is accomplished
by inspecting bulk FAST5 files, first a visualisation application is built. This visual-
isation application is then used to assess both DNA and RNA samples, specifically
looking at how unblocking behaviour is actioned and the impact it has on sequenc-
ing.

With a grasp of raw signal data an application, readfish, is developed aiming
to enable real-time basecalling of read chunks for currently sequencing molecules
(Chapter 4). This approach uses GPU accelerated basecalling and fast alignment
to make decisions on selecting and rejecting individual molecules. In addition, a
schema is designed to allow for arbitrary experiments to be devised allowing mul-
tiple experiments to take place simultaneously. Then, an optimised CPU basecaller
and barcode demultiplexing are incorporated extending the platforms and types of
samples that can be considered.

As a proof-of-concept readfish is used to selectively sequence target panels en-
compassing thousands of loci in the form of whole exome sequencing of the human
cell line NA12878. This single experiment demonstrates great flexibility in the cho-
sen target panel and the ability to use reference genomes at a gigabase scale. In fur-
ther experiments using the ZymoBIOMICS mock community adaptive techniques
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are introduced as the experimental parameters are updated — dynamically — in
response to the data generated by the same experiment.

Finally, exemplar problems and applications of selective sequencing are consid-
ered as well as other practical mechanisms for real-time feedbackmaking the whole
process adaptive (Chapter 5). These exemplar problems show how the methods
developed in this thesis enable the time-efficient screening using panels of gene tar-
gets, decrease the time to identifying fusions in a leukaemic cell line, and reduce
sequencing costs through standard library preparation methods.
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Chapter 1

Introduction

Living systems can vary in scale including single cells, multicellular organisms, and
entire communities. A single cell is often considered the smallest, autonomous,
unit of life as it contains all the necessary components for self-propagation (Alberts
et al., 2017). Therefore, one approach to learn how a living system functions is to
study and understand its underlying molecular organisation. All cells use carbon-
based (organic) molecules that can be categorised into sugars, fatty acids, amino
acids, and nucleic acids (Alberts et al., 2017). Sugars are an immediate source of
energy for cells and can be incorporated into polysaccharides for energy storage.
Fatty acids are also used for energy storage but are essential for the formation of cell
membranes. Amino acids organise into long chains that fold into proteins. And, fi-
nally, nucleotides are used for energy transfer, while also serving as the subunits
for the informational macromolecules, ribonucleic acid (RNA) (Zalokar, 1960) and
deoxyribonucleic acid (DNA) (Avery et al., 1944; McCarty, 2003). This genetic in-
formation is carried between cells during cell division, and from one generation to
the next through reproduction; it determines the characteristics of individual cells
and whole organisms. Therefore, understanding the structure of DNA can inform
how different cells gain or lose their functions, how different organisms develop,
and how different species evolve.

1.1 Nucleic acids

Structure of DNA

DNA is formed from monomeric subunits, nucleotides. A nucleotide is assembled
from three distinct components: a phosphate ion, a sugar molecule, and a nucle-
obase (either a purine or pyrimidine; Figures 1.1a and 1.1b). The sugar, deoxyri-
bose, is in a cyclic form and covalently linked with one of four cyclic bases (Wat-
son and Crick, 1953; Saenger, 1984). This arrangement produces the four normal
nucleosides: adenine (A), cytosine (C), guanine (G), and thymine (T). To form a
nucleotide the sugar molecule must be phosphorylated (Saenger, 1984).

1
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Phosphate

Sugar

Purine

(a)
Phosphate

Sugar

Pyrimidine

(b)

5′ 3′

(c)

Figure 1.1: General structure of (a) purines: adenine and guanine, and (b) pyrim-
idines: cytosine and thymine, DNA nucleotides. (c) A polynucleotide
chain containing two nucleotides. The sugar-phosphate backbone can
be seen with bases protruding from it. The colours here representing
the specific bases adenine, yellow; guanine, green; cytosine, blue; and
thymine, red. These correspond to complementary pairing diagrams in
Figure 1.2.

A polynucleotide strand is formed by covalently linking nucleotides using the
sugar and phosphate molecules. This forms a “backbone” of alternating sugar-
phosphate-sugar-phosphate (Figure 1.1c). Base-base hydrogen bonding occurs, be-
tween two polynucleotide strands, according to a strict rule defined by the comple-
mentary structures of the nucleobases: A binds to T (Figure 1.2a), and C binds to
G (Figure 1.2b) (Alberts et al., 2017; Saenger, 1984). These two strands run antipar-
allel to each other and twist, forming a DNA double helix (Figure 1.2c), a double-
stranded structure where each stand is complementary to the other.

The way in which the nucleotides are linked together gives a DNA strand a chem-
ical polarity (Alberts et al., 2017). Each sugar molecule has a phosphate attached
to the 5′ carbon and a space on the 3′ carbon that allows phosphate to bond there.
Consequently, a polynucleotide chain will be formed of subunits all in the same ori-
entation and each endwill be distinguishable as either the 5′ or 3′ depending on the
sugar molecule (Figure 1.1c).

The hydrogen bonds between the nucleobases areweaker than the covalent bonds
in the sugar-phosphate backbone, this allows the DNA strands to be pulled apart



Introduction Sequencing nucleic acids 3

Adenine Thymine

N

O

N

O

H

CH3

H

H

N N

N
N

N

HH

(a)

N

O

N

N

H

H

H

N

NO

N

N

N

H

H

H

Cytosine Guanine
H

(b)

(c)

Figure 1.2: Complementary base pairing between the nucleobases, dashed lines rep-
resent hydrogen bonds. (a) base pairing between adenine and thymine;
(b) base pairing between cytosine and guanine. (c) Double stranded
representation of DNA; Adapted from: Difference between DNA and
RNA; used under CC BY 3.0.

without disrupting the order of the bases (Alberts et al., 2017). Each strand then can
serve as a template for the synthesis of a fresh DNA strand. Through this process
genetic instructions, in the form of nucleic acids, can be stored, retrieved, and trans-
latedwithin an organism. Moreover, this hereditary information is passed from one
generation to the next.

Structure of RNA

Like DNA, RNA is a linear polymer comprised of different nucleotide monomers
covalently linked by phosphodiester bonds. Unlike DNA, the nucleotides are ri-
bonucleotides (using ribose, not deoxyribose) and the base thymine is replaced by
uracil (Saenger, 1984). Uracil, like thymine, can pair by hydrogen-bonding with
adenine so the complementary base-pairing properties of DNA also apply to RNA.
Moreover, strands of RNA exhibit the same chemical polarity as DNA, having a 5′

and a 3′ end.
Despite these slight differences, DNA and RNA differ in overall structure. While

DNA occurs in a double-stranded helix, RNA is single-stranded. Though RNA
strands can fold into complex three-dimensional shapes, which allows some RNA
molecules to have precise structural and catalytic functions (Walter and Engelke,
2002; Raina and Ibba, 2014).

https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA.svg
https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA.svg
https://creativecommons.org/licenses/by/2.0/
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1.2 Sequencing nucleic acids

The central dogma of molecular biology is “DNA makes RNA, and RNA makes
protein”1. That is, the sequence of the DNA monomers determines the order of the
subsequent RNAmolecule, which in turn determines the sequence of amino acids in
the final protein. As DNA and RNA are capable of storing and transferring genetic
information, understanding how this information is encoded is critical.

There are currently three generations of sequencing technologies (Figure 1.3).
The “first-generation”methods, Sanger sequencing (Sanger andCoulson, 1975; Sanger
et al., 1977) and Maxam-Gilbert sequencing (Maxam and Gilbert, 1977). “Next-
generation” methods, mostly rely on the same concepts as first-generation sequenc-
ing but increased sequencing volume by introducingmassively parallel sequencing.
Finally, “single-molecule” (also known as third-generation) methods, incorporate
the scale of next-generation technologies with single-molecule, long-read, and real-
time sequencing.

Figure 1.3: Sequencing technologies milestones. These are split into three eras,
“first-generation”, “next-generation”, and “single-molecule”.
Adapted from Athanasopoulou et al. (2021)

1.2.1 First-generation sequencing

Sanger Sequencing

In 1977 Sanger et al. developed “Sanger sequencing” (also known as dideoxy or
chain termination sequencing) (Sanger et al., 1977). This method uses the same

1More precisely: “The central dogma ofmolecular biology dealswith the detailed residue-by-residue
transfer of sequential information.” Crick (1970)
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sequence as polymerase chain reaction (PCR): where DNA molecules are dena-
tured, a complementary DNA primer is annealed and extended using DNA poly-
merase. The DNA sample is divided into four separate reactions, each contains the
four standard dNTPs (dATP, dCTP, dGTP, dTTP) and the DNA polymerase. In
each round of primer extension small amounts of dideoxynucleotides (ddNTPs)
are included. These ddNTPs randomly terminate the extension as they lack the 3′

hydroxyl group required for creating the phosphodiester bond in the DNA back-
bone. By using labelled ddNTPs (either radiolabelled or a fluorescent dye) and the
exponential amplification of PCR an extremely large number of fragments, of vary-
ing size, can quickly be generated. The fragment length and the label distinguish
which base corresponds to this fragment size.

In the originalmethod, sequence is determined bypolyacrylamide gel electrophore-
sis, using a lane per ddNTP used. Modern Sanger sequencing platforms, for exam-
ple the Applied Biosystems 310 Genetic Analyzer, uses high-resolution capillary
electrophoresis to separate fragment sizes. A laser is used to excite the fluorescent
labels as fragments exit the capillary and the terminating colour is detected. This
generates a readout, or a Sanger sequencing “trace”, that can be basecalled and as-
signed error probabilities (Ewing et al., 1998).

Sanger sequencing is typically used for fragments of 500–700 bp, though sequences
of up to 1 kbp can be sequenced (Shendure and Ji, 2008). In addition, modern
Sanger sequencing has high basecall accuracies, as high as 99.999% (Shendure and
Ji, 2008).

1.2.2 Next-generation sequencing

Next-generation sequencing technologies are typically characterised by their use of
massively-parallel sequencing arrays. These arrays carry out a cyclic sequencing
procedure, conventionally an enzymatic manipulation followed by sensing. The
enzymatic manipulation is typically a cyclic reversible termination (Illumina) or a
single-nucleotide addition (454, Ion Torrent) (Goodwin et al., 2016). Sensing most
frequently uses imaging to detect fluorescence, though one example (Ion Torrent)
uses pH.

Library preparation is accomplished by random fragmentation of DNA, followed
by ligation of common adaptor sequences. Colonies of amplicons are then generated
by amplification using techniques such as emulsion PCR (Dressman et al., 2003) or
bridge PCR (Adessi, 2000; Fedurco, 2006). These amplification methods result in
spatially clustered libraries, either to a single location on a glass slide (bridge PCR)
or to the surface of a bead (emulsion PCR). Like Sanger sequencing next-generation
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platforms rely on sequencing by synthesis, either using a polymerase (Mitra et al.,
2003) or a ligase (Shendure et al., 2005) for the elongation step.

454 Pyrosequencing

Pyrosequencing, developed in the late 1990s (Ronaghi et al., 1996, 1998), is a tech-
nique that detects fluorescent bursts generated as a by-product of DNA strand syn-
thesis. A library is prepared by ligating fragments to genomicDNA then denaturing
to create single-stranded DNA. Mixing these fragments with micron-scale beads
and carrying out emulsion PCR results in millions of copies of each DNA template
on each bead (Figure 1.4a; Siqueira et al. (2012); Goodwin et al. (2016)). The beads
are then transferred to a picotiter plate such that each well on the plate is occupied
by a single bead.

Sequencing begins with the addition of enzymes and luciferin. Then, dNTPs are
added one at a time; the dNTPs are incorporated into the template strands releasing
pyrophosphate. Pyrophosphate is subsequently converted into adenosine triphos-
phate (ATP) by the enzyme ATP sulfuryase. ATP is used by the enzyme luciferase
to oxidise luciferin releasing light (McElroy and Green, 1956). The burst of light
is captured using a charge-coupled device that records the wells that fluoresce on
each cycle. Finally, the enzyme apyrase degrades remaining ATP and unincorpo-
rated dNTPs for the next dNTP to be added. As nucleotides are added in a fixed
and known order 454 data can be basecalled by recording the order and intensity
that each well fluoresces (Beuf et al., 2012).

Illumina

Libraries for Illumina sequencers are prepared by fragmenting the DNA sample
into short (<300 bp) sections. Adapters are then ligated on to the ends of the frag-
ments. The library can then be loaded on to a flow cell, a glass slidewith eight lanes,
for clustering. Each lane is a channel coated with a “lawn”, composed of oligonu-
cleotides that are complementary to one of the ligated adapters (Figure 1.4b). Bridge
amplification then occurs where the DNA fragments bind to the lawn and bend to
create a single-stranded bridge that is amplified by PCR. After repeated amplifica-
tion clusters containing millions of copies of the original input are tightly packed
together (Goodwin et al., 2016).

Sequencing is conducted by washing fluorescently labelled dNTPs in successive
rounds (one for each base). These dNTPs, like in Sanger sequencing, are chain-
terminating so that only one nucleotide is bound per cycle. Imaging then takes place
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where each cluster of strands fluoresces. After imaging the flow cell is washed re-
moving only the fluorophore and terminator leaving the incorporated nucleotide in
place (Goodwin et al., 2016). The data from the fluorescence is basecalled, produc-
ing a read from each cluster as well as error probabilities.

(a)

(b)

Figure 1.4: (a) Fragmented DNA templates are ligated to adapter sequences along-
side a bead covered with complementary adapters. PCR is carried out,
covering each bead with thousands of copies of the same DNA se-
quence (b) Solid-phase bridge amplification, DNA fragments are lig-
ated to adapters and bound to a primer on a solid support. The free
(unbound) end interacts with nearby primers, forming a bridge. PCR
is then used to create a second strand. Adapted from Goodwin et al.
(2016).

Ion Torrent

Sequencing of DNA is done using a semiconductor chip that has millions of wells
(Rothberg et al., 2011). These wells capture the change in pH that DNA polymeri-
sation generates and translates it into basecalls.

The sequencing process starts when a sample of DNA is fragmented and then
each fragment is attached to its own bead. The beads then undergo emulsion PCR
to amplify each fragment to millions of copies (Goodwin et al., 2016). These beads
then flow across the chip each depositing into a well. Then dNTPs are added one at
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a time, whenever a nucleotide is incorporated into a single strand of DNA a hydro-
gen ion is released. These hydrogen ions are sensed by the semi-conductor chip and
recorded. As the dNTPs are non-blocking runs of homopolymers can be incorpo-
rated in a single step. After the introduction of a single dNTP the unincorporated
bases are washed away allowing the next base to be added.

Ion Torrent devices have an accuracy of ~98–99% based on reads of ~200 b (Quail
et al., 2012). As the pH change is imperfectly proportional to the number of nu-
cleotides incorporate Ion Torrent has limited accuracy measuring homopolymer
lengths (Goodwin et al., 2016).

Limitations of next-generation sequencing platforms

Next-generation sequencingplatforms offer a trade-off betweenyield and read length.
Most sequencingplatforms offer shorter average read lengths (30–400 b) than Sanger
sequencing (500–1000 b;Hert et al., 2008). These shorter read lengths limit the avail-
able experiments that these methods are applicable to. For example, it is still diffi-
cult and time consuming to assemble a genome de novo into high-quality genomes
from short read fragments (Salzberg et al., 2011; Chin et al., 2014). These challenges
are a critical issue for large genome assembly as short reads result in highly frag-
mented assemblies due to regions with unsolvable repetitive or high GC content
(Alkan et al., 2010; Mardis, 2013; Petersen et al., 2017). As a result many whole
genome sequencingprojects, which use next-generation technologies, focus on com-
parisons with existing reference genomes — re-sequencing (Alkan et al., 2010; Lis-
cher and Shimizu, 2017); for example studies using UK Biobank samples (Backman
et al., 2021).

1.2.3 Single-moleccule sequencing

Compared to previous generation sequencing technologies, single-molecule sequenc-
ing technologies can sequence kilobase length sequences (>10 kb) directly from na-
tive (unamplified) DNA. These long reads are achieved using direct detection of
nucleotides in the target DNAmolecules without any [clonal] amplification step re-
quired. Long-read sequencing is particularly useful for genotyping as it can allow
for phasing alleles and address issues with de novo assembly (Stancu et al., 2017;
Loose, 2017).
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Pacific Biosciences

Pacific Biosciences (PacBio) published their method for real-time sequencing of sin-
gle molecules in 2009 (Eid et al., 2009). This method uses a single polymerase en-
zyme to perform uninterrupted synthesis of a single DNA template molecule incor-
porating fluorophore labelled dNTPs. PacBio “SMRT”2 sequencing is performed in
a nanoscale chamber called a Zero-ModeWaveguide (ZMW; Figure 1.5a). A ZMW,
like the wells in 454 Pyrosequencing and Ion Torrent can be observed from the un-
derside. The base of the ZMW is glass and constructed to act as a microscope, capa-
ble of focusing on a 20 zeptolitre (10−21 litre) volume (Eid et al., 2009). Unlike short
sequencing-by-synthesis platforms PacBio fix their polymerase to the bottom of the
ZMW, this keeps the site of dNTP incorporation stationary improving focusing on
single molecules (Eid et al., 2009; Goodwin et al., 2016).

Targetmolecules are prepared by fragmenting and ligating a pair of hairpin adapters
to each end, creating a topologically circular molecule (Logsdon et al., 2020). Then
a polymerase is bound and the molecule is loaded into on to a “SMRT cell” and
into the ZMW via diffusion or magnetic beads. The PacBio platforms (Sequel I and
Sequel II) have two sequencing modes: Continuous Long Reads (CLR) and Cir-
cular Consensus Sequencing (CCS, also called HiFi reads). CLR mode generates
data from a single pass of large (>25 kb)molecules. CCSmode exploits the circular
molecule created by the hairpins and sequencesmultiple copies of eachmolecule up
to 25 kb in length (Pacific Biosciences, 2021). During sequencing, the polymerase
removes the fluorophores from dNTPs so that they can be incorporated into the
strand being synthesised. A laser and camera beneath the SMRT cell capture the
colour and duration of fluorescence and use this data for basecalling (Goodwin
et al., 2016) (Figure 1.5b).

A single SMRT cell in a Sequel II has an average throughput of ~50–100Gb for
CLR reads and ~15–30Gb for HiFi (CCS) reads (Logsdon et al., 2020). The read
accuracy of reads from the Sequel II is 8–13% for CLR reads and >99% for HiFI
reads (Logsdon et al., 2020). In addition, it is possible to indirectly sequence RNA
molecules for full-length characterisation (Sharon et al., 2013).

Oxford Nanopore Technologies

All of the sequencing techniques described so far require an enzyme to synthesise
a complementary strand of DNA such that individual bases can be detected for se-
quencing. However, Oxford Nanopore Technologies (ONT) sequencing methods

2Single Molecule Real-Time, Pronounced “smart”

https://youtu.be/ls5BFzuxGw4
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(a) (b)

Figure 1.5: (a) DNA polymerase is immobilized at the bottom of a ZMW, which is
illuminated from below by laser light. (b) dNTP incorporation cycle. (1
and 2) A nucleotide is incorporated with the template molecule caus-
ing an elevation of the fluorescence output on the corresponding color
channel. (3) The dye-linker is cleaved along with the phosphate chain
and diffuses out of the ZMW. (4 and 5) The polymerase translocates to
the next position, and another nucleotide can bind creating a new pulse.
Adapted from Eid et al. (2009).

do not; instead they directly sense the modulations in electronic current a polynu-
cleotide strand exhibits when passing through a nanopore (Branton et al., 2008). A
more detailed description of nanopore sequencing is in Section 1.3.

1.3 Nanopore sequencing

1.3.1 A brief history

In 1989, Professor David Deamer proposed that a protein channel could be incor-
porated into the membrane of a liposome, and that ATP could then pass across the
membrane. In addition, if ATP can pass through this channel so could other dNTPs
and so could DNA. And further, if each nucleotide produces a specific blockade of
ionic current as it passed through the channel, they can be discriminated.

Later, Deamer, Branton, andKasiannowicz used alpha haemolysin (α-HL), a pore-
formingprotein secreted byStaphylococcus aureus, to detectDNA translocation through
an 𝛼-HL nanopore (Kasianowicz et al., 1996). However, these translocations were
too fast typically taking <1.3µs for a ~210 b long strand of single-stranded poly(U)
RNA. This was followed by using an engineered “DNA-nanopore” complex, de-
veloped by the Bayley lab, for the detection of single-stranded DNA molecules for
the detection of specific sequences such as antimicrobial resistance (AMR) genes
(Howorka et al., 2001). Though, these “DNA-nanopore” complexes required spe-
cific engineering that is complementary to each potential analyte. The next major
breakthrough came from the Akeson lab. This was the use of a molecular motor,
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in the form of phi29 DNA polymerase, that controlled the speed of translocation
(Lieberman et al., 2010; Cherf et al., 2012).

In parallel, a company “Oxford Nanolabs” was formed in 2005 which would later
become “Oxford Nanopore Technologies”. The chemistry and scale of nanopore
sequencingwas refined and adapted into a product thatwas first shownat theAGBT
[Advances in Genome Biology and Technology] conference in 2012 (Brown, 2015).
Finally, the MinION sequencer was released via the “MinION Access Programme”
in 2014.

1.3.2 Nanopore sensing

Nanopore sensing is a method that is able to detect DNA and RNAmolecules based
on the decrease in ionic current that the molecule produces when interacting with
the lumen of a nanopore. This is similar to Coulter counting used for detecting
analytes in electrolytes (Coulter, 1953; Bezrukov, 2000). The principle of Coul-
ter counting alongside developments in electrophysiology techniques reduced the
target analyte size from millimeters to nanometres, going from cells to individual
biomolecules (Wanunu, 2012).

In nanopore devices a salt solution is divided into twowells, cis and trans, divided
by a thin insulating membrane. Protein nanopores that span the membrane con-
nect the cis and trans wells, and are the only path between the compartments. Elec-
trodes placed in each compartment create a potential difference across the mem-
brane (Clarke, 2019). This difference in voltage causes ions to flow through the
pore by electrophoresis, which can be measured by an amplifier (Figure 1.6a). As
DNA is negatively charged it is also drawn through the pore, while in the lumen of
the pore the DNA reduces the flow of ions (Figure 1.6b), creating blockades. These
blockades, called resistive pulses, can be measured and characterised by their am-
plitude and duration (Kasianowicz et al., 1996). Once themolecule has translocated
the pore the current returns to it’s open value current until another molecule occu-
pies the channel again (Figure 1.6b).

The number of translocations is directly related to the concentration of DNA in
the cis well, therefore sequencing libraries with fewer molecules will see less fre-
quent translocations. Moreover, these translocations are too fast to resolve indi-
vidual nucleotides on a strand of DNA with the speed of sequencing being ~1–
7µs (Kasianowicz et al., 1996). Both of these issues are resolved by the addition of
molecular motors, such as DNA polymerase from phi29, which has been success-
fully used to control the rate of translocation (Lieberman et al., 2010; Cherf et al.,
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Figure 1.6: (a) Applying a voltage across a nanopore causes ions tomigrate towards
the membrane, as these ions pass through the nanopore an electric cur-
rent is measured using an ammeter. (b) When analytes, such as DNA,
are added to the cis chamber they diffuse towards the nanopore and en-
ter it. This results in measurable “resistive pulses”. These samples are
characterised by their dwell time (𝑡𝑑) and their event amplitude (𝛿𝐼).

2012) and the use of hydrophobic anchors to concentrate molecules at the mem-
brane.

With single base resolution possible (Cherf et al., 2012; Manrao et al., 2012) ionic
currents for known strands of polynucleotides could be characterised to allow the
development of basecalling algorithms. The identity of the nucleotides within the
constriction site of the nanopore specifically determine the current level at that point
along the strand. The raw — signal level — data is recorded by a picoammeter.
These raw signal data are typically called “squiggles” they are a time-series of 16-
bit integers that are sampled at 4 kHz. As DNA translocates at ~400–450 b/s there
are ~9–10 data points associated with each individual nucleotide.

The ASIC (Application Specific Integrated Circuit) is a high density array of low-
noise amplifier circuits. It is used to measure the current flow between each trans
compartment electrode and the common cis chamber electrode. The ASIC can also
receive commands from the controlling computer to control the sensor array (Clarke,
2019). Finally, theASIC is able to use the appliedpotential, that drawsDNA through
the nanopore, to eject any DNA or contaminants by momentarily reversing the ap-
plied potential across an individual pore. Furthermore, the ASIC is able to use
the applied potential, that draws DNA through the nanopore, to eject any DNA or
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contaminants by momentarily reversing the applied potential across an individual
pore. As data can be analysed whilst a molecule is still translocating a pore these
mechanisms allow for reads to be selectively ejected based on the first few bases in
the strand.

Nanopores and motors

There are currently two revisions of nanopores available from ONT R9 (released
in 2016) and the newer R10 (released in 2019). The R9 nanopore (Figure 1.7a) is
currently on version R9.4.1 and is a mutant form of the CsgG lipoprotein (Clarke,
2019). The newer R10 nanopore (Figure 1.7b), currently on version R10.4, consists
of two proteins, CsgF and CsgG, covalently attached together creating a pore with
two sensing regions (der Verren et al., 2020). This dual sensing region allows for
the length of homopolymers to be more accurately characterised and improves the
signal-to-noise ratio of the nanopore sensor (der Verren et al., 2020).

The amount of current that can pass through a nanopore depends upon the nu-
cleobase that is currently occupying the lumen. In reality it is not a single nucleotide
that creates the blockade but a group, known as a “kmer”. The R9 nanopore has a
“sharp” reader head (Figure 1.7a; Branton, 2019) that resulted in a sensing zone of
~4–5 nt (Branton, 2019). R10 adds a second reader head thatmaintains the ~0.75 nm
radius of the first reader head (der Verren et al., 2020).

(a) (b)

Figure 1.7: Cross section of (a) R9.4.1 nanopore and (b) R10 nanopore. The sens-
ing zone of each nanopore version is represented by the darker coloured
dots at the constriction point of each nanopore. Adapted from Oxford
Nanopore Technologies, (2019)

Aspreviouslymentionedprocessive enzymes,motor proteins, such as polymerases
and helicases were essential in slowing the rate of DNA translocation (Kasianowicz
et al., 1996). Moreover, the rate of translocation depends on the motor protein se-
lected with rates ranging from 10–1000 b/s (Byrd and Raney, 2019). The successful
detection of ionic current from a polynucleotide used DNA polymerase and pulled
the strand out of the pore (Manrao et al., 2012).



Introduction Nanopore sequencing 14

An alternative to a polymerase is a helicase enzyme. First, helicases are capable of
separating double-stranded DNA into single-stranded DNA; crucially helicases are
also capable of “unzipping” duplex RNA molecules and can move both 5′-3′ and
3′-5′ (Byrd et al., 2012; Byrd and Raney, 2019). This allows a single motor protein to
be used for all polynucleotide sequencing. Secondly, the motor protein is too large
to pass through the nanopore and binds tightly to polynucleotide strand; as such it
makes an good quality brake (Byrd and Raney, 2019). Finally, the helicase is only
activated when it is in contact with a nanopore in the presence of ATP (Byrd and
Raney, 2019).

ONT use proprietary motor proteins in their sequencing systems. When the first
nanopore sequencer was made available the nanopore used was R7 and the motor
protein was called “E5”. This combination permitted sequencing DNA at ~30 b/s,
this was improved to ~70 b/s by 2015 (ONT, 2021). Finally with the introduction
of the R9 pore and further improvement of the motor protein (E8) the speed of
sequencing DNA reached ~450 b/s with a direction of 5′–3′ (ONT, 2021). For direct
RNA sequencing the motor protein “M1” is used, with a speed of ~70 b/s and a
direction of 3′–5′ (Heron, 2019).

ONT Platforms

ONT launched the first commercial nanopore sequencing device, the “MinION” in
2014 (Figure 1.8; Jain et al. (2016)). The MinION is a pocket-sized, portable DNA
sequencer weighing only 90 g. It operates with a consumable flow cell that contains
a sensing array of 2, 048 ~1nm biological nanopores. Nanopores are controlled in
groups of four, allowing 512 pores to simultaneously report current.

In addition to the MinION ONT released the GridION and the PromethION in
2017 and 2019 respectively. The GridION builds in support for five MinION flow
cells while the PromethION uses a larger flow cell design with 3, 000 nanopores.
More recent additions include the MinION Mk1C, which incorporates a Jetson TX2
embedded computer (with GPU), that can manage a single MinION flow cell. Fi-
nally, the P2, a self-contained device with GPU and capacity for two PromethION
flow cells. Compute Unified Device Architecture (CUDA) enabled GPUs acceler-
ate basecalling by using their highly parallel architecture to process large blocks of
signal data in real-time, which is essential for live basecalling.

The sequencing control software, MinKNOW, continuously processes the incom-
ing raw signal for every sequencing nanopore on the flow cell. It is analysing these
signals to identify when strands of DNA enter and exit each nanopore and to check
whether a nanopore is blocked andmay require unblocking. As a result,MinKNOW
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writes segmented sections of raw signal data to read FAST5 files, with each section
representing a single molecule. These read files contain the necessary information
for a basecaller (Guppy) to convert the recorded current data into FASTQ format;
an essential step for bioinformatics analysis.

Figure 1.8: Timeline of ONT devices starting in 2014 with the MinION and
branching into PromethION, GridION, and MinION Mk1C. From
https://nanoporetech.com/about-us/news/blog-you-cant-put-label-
innovation-or-can-you

Basecalling

As data measured from nanopore sequences is delivered from the device as an elec-
trical current, “squiggle”, it must be decoded into bases for use with downstream
analysis tools. When the MinION was first released basecalling was performed us-
ing Hidden Markov Model (HMM) methods on a cloud compute platform called
Metrichor; requiring an active internet connection so that raw signal could be up-
loaded and decoded data downloaded. Later an open source basecaller, Nanocall
(David et al., 2016), which used an HMM with comparable performance to Metri-
chor was released allowing offline basecalling and analysis.

When basecallingwith anHMMfirst the raw signal is segmented into events. Each
event ideally corresponds to an individual kmer and so subsequent events will only
differ by a single base. In Nanocall the HMM has a series of states that represent all
possible kmers (Figure 1.9a). During basecalling, the most probable path through
these states is calculated by Viterbi decoding. The path is converted to nucleotide
sequence by overlapping consecutive states. Consequently, homopolymer repeats
of a length greater than the size of the kmer for this nanopore cannot be detected.

An alternate approach toHMMs is the use of RecurrentNeuralNetworks (RNNs).
This was first publicly implemented by DeepNano (Boža et al., 2017) which used
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segmented data and a RNN for basecalling. These RNNs do not rely on kmers for
classifications, taking into account both upstream and downstream event informa-
tion through the use of a bidirectional RNN (Figure 1.9b).

Early basecallers used segmented event data as input to determineDNAsequence;
however, current basecallers use raw current signal as input. For example, Base-
cRAWller (Stoiber and Brown, 2017) uses two separate RNNs (Figure 1.9c). The
first RNN predicts the probability that a raw signal corresponds to a new kmer and
the identity of the kmer. The raw signal is then segmented and the kmer proba-
bilities are averaged over the segments. The second RNN then predicts the final
DNA sequence. The use of long-short-term-memory (LSTM) allows information to
only pass forwards which allows BasecRAWller to keep up with reads in real-time
(Stoiber and Brown, 2017).

Unlike BasecRAWller, Chiron (Teng et al., 2018) does not undertake a segmenta-
tion step at all (Figure 1.9d). In Chiron, a Convolutional Neural Network (CNN)
takes raw signal as input detecting local structures. The CNN outputs are passed
through to a series of RNN in the form of LSTMs which pass their outputs to a
Connectionist Temporal Classification (CTC) decoder for decoding to bases.

Local basecallingwas integrated intoMinKNOW in the form ofAlbacore (a trans-
ducer basecaller) while research basecallers in the form of nanonet and scrappie
(ONT, 2019)weremade available for testing newneural-network approaches (Wick
et al., 2019).

In late 2017 ONT released Guppy, a graphical processing unit (GPU) accelerated
basecaller. Which, like scrappie, is a general purpose basecaller. Guppy is RNN
based basecaller that is trained using real sequencing data (Wick et al., 2019; Clarke,
2019). Guppy specifically aims for basecalling speed improvements by using the
hardware features of GPUs that enable parallelisation of basecalling.

Basecaller training

Oxford Nanopore Technologies develops and trains basecaller models using data
from sequencing experiments3. A dataset of reads is selected for using in train-
ing a model. These datasets typically contain both native and PCR-amplified reads,
which are>1000 b in length, from samples including human, Escherichia coli,Caenorhab-
ditis elegans, and the ZymoBIOMICSMicrobial Community Standard4. By including
native DNA base modifications are preserved in the training data.

3https://community.nanoporetech.com/technical_documents/data-analysis/v/
4https://www.zymoresearch.com/collections/zymobiomics-microbial-community-standards
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Figure 1.9: (a) Nanocall uses a Hidden Markov Model (HMM) for basecalling.
(b) DeepNano was the first published basecaller to use Recurrent Neu-
ral Networks (RNN). Labels h1–h3 represent three hidden layers in the
RNN. (c) BasecRAWller uses two RNNs, one to segment the raw mea-
surements and one to infer k-mer probabilities. (d) Chiron makes use of
a Convolutional Neural Network (CNN) to detect patterns in the data,
followed by an RNN to predict k-mer probabilities, which are evaluated
by a Connectionist Temporal Classification (CTC) decoder. Adapted
from Rang et al. (2018).
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Base modification

Single molecule nanopore sequencing of native DNA and RNA can detect modifi-
cations on individual nucleotides and has been show to discriminate among all five
C5-Cytosine variants in synthetic DNA (Schreiber et al., 2013; Wescoe et al., 2014).
Furthermore, N6-methyladeninemodifications in Escherichia coli genomic DNA can
be detected at 84–94% accuracy depending on coverage (McIntyre et al., 2017).

Milestones of Nanopore Sequencing

The portability, cost, and simple library preparation of the MinION uniquely en-
ables rapid progression from sequence acquisition to analysis. As such theMinION
and nanopore sequencing has seen widespread adoption for use in clinical settings
(Votintseva et al., 2017; Leggett and Clark, 2017), in the field for pathogen surveil-
lance and outbreak tracing (Quick et al., 2016), and environmental metagenomics
on a glacier (Edwards et al., 2016). Perhaps the most extreme example is the use
of the MinION sequencer on the International Space Station, which demonstrated
sequencing and de novo assembly of lambda phage and Escherichia coli genomes, as
well as mouse mitochondrial DNA (Castro-Wallace et al., 2017). Concluding that
there was no significant difference in the quality of sequence data generated aboard
the ISS and in control experiments thatwere performed in parallel on Earth (Castro-
Wallace et al., 2017).

The scale of the projects that nanopore based sequencers have been applied to
has increased in magnitude from making genome assembly more tractable for both
small bacterial genomes to the human genome (Koren and Phillippy, 2015; Jain
et al., 2018a). Then extending to the population level sequencing, using the Prome-
thION sequencer, of 3, 622 Icelanders (Beyter et al., 2021). In 2020, during the
COVID-19 pandemic, nanopore sequencers were used throughout academic and
hospital laboratories to create a large-scale network of surveillance locations for
monitoring SARS-CoV-2 in the UK (Nicholls et al., 2021).

Nanopore sequencing has been demonstrated detection of cytosine methylation
in genomic DNA (Simpson et al., 2017). This study developed an HMM that could
distinguish cytosine and 5-methylcytosine with 82% accuracy in human genomic
DNA. Similarly, Rand et al. (2016) used a HMM that distinguished cytosine and 5-
methylcytosine and 5-hydroxymethylcytosine with 80% accuracy, but in synthetic
DNA.
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Read Length Nanopore read lengths substantially exceed those of other sequenc-
ing platforms. Reads over 300 kb have been achieved using E. coli genomic DNA
(Ip et al., 2015) and using human genomic DNA reads greater than 1Mb have been
sequenced with putative reads exceeding 2Mb (Payne et al., 2018). The current
record read length for nanopore sequencers is >4Mb (ONT, 2022). These longer
reads are able to span gaps in reference genomes that are highly repetitive (Jain
et al., 2015, 2018b). Here reads of 36 kb and greater were used to resolve a ~50 kb
gap in the human reference sequence (Figure 1.10). This gap contained a series
of 4.8 kb tandem repeats of the gene CT47. Ultra-long reads are also important in
improving de novo assembly and have been shown to double NG50 from ~3Mb to
~6.4Mb during the nanopore sequencing of the human genome (Jain et al., 2018a).
The MinION-derived genome assembly expanded the Caenorhabditis elegans refer-
ence genome by more than 2.5Mb due to more accurate determination of repetitive
sequence (Tyson et al., 2018).

Figure 1.10: An unresolved scaffold gap on Xq24 (GRCh38; adjacent to scaffolds
AC008162.3 and AL670379.17). This gap spans a ~4.6 kb tandem re-
peat containing CT47. This gap was closed by assembly and has eight
tandem copies of the repeat. This repeat was validated by alignment
of >100 kb ultra-long reads also containing eight copies of the repeat.
Adapted from Jain et al. (2018a)

Read Until The combination of real-time inspection of raw signal and the ability
to eject molecules, both possible while a molecule is translocating enable nanopore
sequencers to be interactive. That is, the first few hundred bases of a strand of DNA
can be analysed; if this region is not of interest for the particular experiment that is
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being conducted it can be rejected and another molecule sampled from the library
that has been loaded. This procedure continues allowing only preferred strands of
DNA to be sequenced completely. This method of sequencing was first described
in a London Calling talk by Clive Brown in 2015 (Figure 1.11).

Figure 1.11: Initial presentation of Read Until from London Calling 2015. This car-
toon describes how an in-progress molecule can be analysed while in
the nanopore and ejected if it is not of interest, otherwise it is sequenced.

1.4 Targeted Sequencing

Targeted sequencing is commonly used in NGS workflows to remove regions of
DNA that are not of interest for a particular experiment. By targeting specific re-
gions such as exons, greater sequencing coverage can be achieved. As these ap-
proaches usually sample smaller regions of interest there is a saving in both time
and cost.

1.4.1 Molecular methods of targeted sequencing

Typical enrichment methods include hybrid capture, in which DNA strands are
hybridized specifically to prepared fragments that are complementary to the tar-
gets (Gnirke et al., 2009). There are commercial solutions for this from a variety
of vendors [Agilent, IDT, Life Technologies]. These assays have high performance
and are cost effective when used in parallel over the same genomic region in multi-
ple samples. However, they are costly for small target regions or use with a single
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sample. Moreover, the read fragment size of current technologies remain a limiting
factor, producing fragments generally shorter than 1 kb.

Another technique, selective circularisation, where single-stranded DNA circles
containing the target region sequences are formed, using gap-filling and ligation
chemistries, in a highly specific manner creating structures with common DNA el-
ements that are then used for selective amplification of the targeted regions.

PCR can be used on the targeted regions to amplify them; either by conducting
either multiple long-range PCR in parallel, a limited number of standard multiplex
PCR, or using highly multiplexed PCR. However, heavily relying on PCR amplifi-
cation may result in bias for sequences that amplify well and completely eliminates
any native features of the sample such as base modification.

Finally, engineeredDNA-bindingmolecules allow for physically selectingmolecules
from within samples based on DNA motifs. These include: zinc finger proteins
(ZFNs), transcription activator-like effector nucleases (TALENs)proteins, clustered
regularly interspaced short palindromic repeats (CRISPR) system, and immuno-
precipitation (ChIP) techniques. In these techniques, the CRISPR/Cas9 system is
the most convenient, economical and time-efficient. CRISPR/Cas9 has been used
for targeted sequencingmicrosatellite-spanning sequences (Shin et al., 2017) and to
achieve coverage of 675× over genomic targets that enabled single-nucleotide vari-
ants, structural variations, and methylation to be assessed (Gilpatrick et al., 2020).

1.4.2 Nanopore real time selective sequencing

First demonstrated by Loose et al. in 2016, Read Until is a unique feature of ONT’s
real-time single-molecule platform (Loose et al., 2016). It allowed for targeted en-
richment of specific genomic regions within a sample without any prior amplifica-
tion.

This implementation directly compared the live “squiggle” of molecules as they
passed through a nanopore against a simulated reference— a FASTA reference that
had been converted into squiggle. The algorithm chosen to match the squiggles is
called Dynamic Time Warping (DTW) (Kruskal, 1983). It is an audio processing
algorithm that is able to compare two time-based sequences that vary in speed and
amplitude. As the simulated reference is derived from the ideal sensing of kmers, at
a specific speed, it may not always be a closematch to squiggles that are seen during
a sequencing experiment (Figure 1.12). Indeed, only 20% of squiggle data could be
identified without normalization of the signal to account for changes in amplitude
(difference from the average value) and frequency. However, after applying 𝑧-score
normalization all 256 b sequences could be placed (Loose et al., 2016).
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Figure 1.12: (a) shows a model squiggle inferred from the first 100 b of bacterio-
phage lambda. Illustrative kmers are shown above asterisked events in
the squiggle. (b) an example read derived from the same 100 b region
as in (a) but incorporating shift, scale and drift, along with randomly
skipped kmers. (c) shows this same read, but stretched in the time axis
to map directly to the original reference. Comparing (a) with (b) re-
veals the requirement for an algorithm such as DTW for comparing a
read to reference. Adapted from Loose et al. (2016).

Using this approach two 5 kb regions of the lambda phage genomewere enriched
while all other regionswere discarded. This experimentwas runusing two sequenc-
ing chemistries: SQK5, whichmovedDNA at 30 b/s; and SQK6, whichmovedDNA
at 70 b/s.

While these experiments demonstrate the principle of Read Until, DTW required
a lot of computational power. The experiments previously described required a
22 core server to run the analysiswhile another computer ran the sequencing. More-
over, as the time taken to find a match by DTW is a function of the reference length
and the query length, the reference genome size that can be used was fixed at up to
5Mb.
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1.5 Aims

The aim of this research is to develop software based selective sequencing methods
using ONT sequencers. This will involve addressing the following objectives:

1. An assessment of raw nanopore signal, specifically looking at how the rejec-
tion of reads impacts sequencing. In addition, evaluating the ability to use all
of the raw signal data through using bulk data.

2. Following assessment of raw signal a basecalling approach for real-time read
fragment classification will be developed. This real-time classification system
aims to be used with in-progress reads for Read Until.

3. Implementation of a real-time selective sequencing method using the devel-
oped classification approach. Allowing for the arbitrary selection ofmolecules
of interest from a native genomic sequencing library.

4. Evaluation of software based real-time selective sequencing approaches for
some model experiments.



Chapter 2

Materials and Methods

2.1 Wet lab

2.1.1 DNA extraction

During this project we createdmany sequence datasets using nanopore sequencing.
In Chapter 3 the human cell line GM12878 was used and DNA was extracted using
the phenol chloroform protocol. In Chapters 4 and 5 the human cell lines GM12878
andNB4were used andDNAwas extracted using phenol chloroform andQIAGEN
genomic tip.

Phenol chloroform

Adapted from Quick (2018) and Sambrook and Russell (2001) (chapter 6 protocol
1). For the isolation of ultra-long unfragmented high molecular weight (HMW)
DNA.

1. Approximately 50million cells are resuspended in 100µL PBS and 10mL Tris-
Lysis Buffer (TLB) and incubated at 37 °C for 1 h.

2. Proteinase K (QIAGEN) was added and mixed by slow inversion then incu-
bated at 50 °C for 3 h.

3. The lysate was purified using 10mL buffer saturated phenol and phase-lock
gel falcon tubes, followed by phenol:chloroform (1:1).

4. DNA was precipitated by adding 4mL 5M ammonium acetate and 30mL ice-
cold ethanol.

5. DNA was recovered using a glass hook and washed twice in 70% ethanol.
6. After spinning down at 10,000×g, ethanol was removed followed by 10min

drying at 40 °C.
7. 150µl Elution Buffer was added to the DNA and left at 4 °C overnight to re-

suspend.

24
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QIAGEN genomic tip

For the isolation of non-ultra-long genomic DNA, that is sized up to 150 kb with
an average length of 50–100 kb, QIAGEN genomic tip was used. Cells were lysed
and cellular proteins are initially digested in the appropriate lysis buffer. Lysates
are then loaded into a column that binds DNA allowing other cell components to
pass through. Finally, pure DNA is eluted and precipitated in isopropanol before
drying and resuspension in Tris buffer.

Shearing DNA

Genomic DNA was mechanically sheared to fragments of ~20 kb using a g-TUBE
(Covaris) by spinning at the manufacturer’s recommended speed for the mass of
input DNA for one minute.

2.1.2 RNA extraction

Adapted from Workman et al. (2019).

1. ~5 × 107 cells, in a frozen pellet, were resuspended in 4mLTRI-Reagent (Invit-
rogen AM9738), vortexed immediately, and incubated at room temperature
for 5min.

2. Either 400µL 1-Bromo-3-chloro-propane or 200µLChloroformwas added for
each 1mL in the resuspended sample, vortexed, and incubated at room tem-
perature for 5min.

3. Then, vortexed again and centrifuged for 10min at 12,000×g at 4 °C.
4. The aqueous phase was pooled in a LoBind Eppendorf tube and combined

with an equal volume of isopropanol, mixed, and incubated at room temper-
ature for 15min.

5. Then centrifuged for 15min at 12,000×g at 4 °C.
6. The supernatant was removed and the RNA pellet was washed with 750µL

80% ethanol and then centrifuged for 5min at 12,000×g at 4 °C.
7. The supernatant was removed and the pellet was air-dried for 10min, resus-

pended in nuclease-free water with a final volume of 100µL for quantification
and either storage at −80 °C or further poly(A) purification.

Poly(A) Selection

Using RNA from the previous step, 100µg aliquotswere diluted in 100µL nuclease-
free water. Poly(A) RNA were selected using NEXTflex Poly(A) Beads (NOVA-
512980) and eluted into nuclease-free water and stored at −80 °C.
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2.1.3 DNA and RNA quantification

Following isolation DNA and RNA were quantified for purity and concentration.
Purity of DNA and RNA were roughly quantified using the NanoDrop 2000 spec-
trophotometer (Thermo Fisher) using the 𝐴260/𝐴280 ratio, aiming for values of
~1.8–2.0 for DNA and ~2.0–2.2 for RNA (as alkaline solutions will over-represent
𝐴260/𝐴280 values by ~0.2–0.3 [Wilfinger et al., 1997]). Deviation from these values
is indicative of protein or phenol contamination. Concentration of DNA and RNA
was assessed using either the dsDNA or RNA high-sensitivity assay on a Qubit flu-
orometer (Thermo Fisher). All quantification steps were carried out in accordance
with the manufacturer’s protocols.
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2.1.4 Library preparation

Ligation sequencing kit

SQK-LSK109 is the ligation sequencing kit from ONT. This sequencing kit is used
to prepare double stranded DNA for sequencing, taking roughly 1 h. DNA ends are
repaired and dA-tailed, and then sequencing adapters are ligated onto the prepared
ends (Figure 2.1a).

Rapid sequencing kit

SQK-RAD004 is the rapid sequencing kit from ONT. This kit generates sequencing
libraries from extracted gDNA in 10min using a two-step protocol (Figure 2.1b).
A transposase simultaneously cleaves template molecules and attaches tags to the
cleaved ends; sequencing adapters are then added to the tagged ends ready for se-
quencing.

Direct RNA sequencing

SQK-RNA002 is the direct RNA sequencing kit from ONT. It is used to prepare any
RNA with a 3‵ poly(A) tail for sequencing sequencing Figure 2.1c.

The Direct RNA sequencing protocol contains an optional reverse transcription
step. The synthesised cDNA strand is not sequenced but significantly improves
sequencing output.

DNA barcoding

Barcoding tags the ends of DNA with unique molecules, this allows samples to be
multiplexed on a single device (Figure 2.1d). The process of attaching barcodes is
relatively simple process, it is very similar to the SQK-LSK109 protocol. First, DNA
ends are repaired and dA-tailed. Then, a unique complementary barcode adapter is
ligated to the dA tail. Samples can now be pooled for sequencing adapter ligation,
before loading and sequencing.
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Figure 2.1: Library preparation and barcoding workflows. (a, b, d) SQK-LSK109,
SQK-RAD004, and barcoding uses DNA extracted as in Section 2.1.1;
(c) SQK-RNA002 RNA extracted as in Section 2.1.2.
In SQK-LSK109 (a), DNA undergoes optional size-selection, blunt ends
are dA-tailed (end-prep) and sequencing adapters ligated.
In SQK-RAD004 (b), DNA undergoes a simultaneous double strand
cleavage and tag attachment. In SQK-RNA002 (c), RNA adapters are
ligated to RNA molecules followed by reverse transcription. When
barcoding (d), DNA undergoes end-prep, followed by barcode ligation.
Following each of these preparation steps sequencing adapters are lig-
ated and the library is ready for loading on to a flow cell for sequencing.

Adapted from: (a) Ligation Kit (LSK109;
https://store.nanoporetech.com/uk/ligation-sequencing-kit.html),
(b) Rapid Kit (RAD004; https://store.nanoporetech.com/uk/rapid-
sequencing-kit.html), (c) RNA Kit (RNA002;
https://store.nanoporetech.com/uk/direct-rna-sequencing-kit.html),
and (d) Barcoding Kit (https://store.nanoporetech.com/uk/native-
barcoding-expansion-1-12.html).
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2.1.5 Running sequencing

MinKNOW

MinKNOW is the software that controls ONT sequencers and devices. It carries
out several core tasks required for sequencing: data acquisition from the flow cell,
real-time analysis of the data stream, base calling, controlling the flow cell and se-
quencer. It takes the raw data stream from every active channel and converts it into
reads. This is accomplished by recognising the characteristic change in current that
occurs when a DNA strand enters and leaves the pore. MinKNOW can then base
call the segmented reads, and writes out the data into FAST5 and FASTQ files. The
minimum specification for a computer running MinKNOW is given in Table 2.1.

Table 2.1: MinKNOWminimum IT requirements. These are lowest expected system
parameters for a device running MinKNOW. For real-time basecalling a
GPU is required.

Component Specification

CPU Modern (Intel i7/AMD Ryzen 5 or better), ≥ 4 cores
RAM ≥ 16 GB
Storage ≃ 1 TB of fast SSD storage

MinKNOW acquires data from the sequencing device in defined chunks. This
chunk size determines the frequency with which MinKNOW carries out all of it’s
underlying tasks and is configured prior to a run starting. These tasks include data
acquisition, segmentation, real-time analysis of library statistics, and sending data
for base calling. In addition, MinKNOW can grant access to the real-time data
stream through a gRPC endpoint. This allows for third-party tools to be used to
analyse the data stream for in-progressmolecules and provide feedback onwhether
to keep sequencing or eject each molecule.

MinKNOW is configured using a sequencing protocol. These protocols control
the hardware settings such as sequencing temperature or voltage; in addition they
also control real-timedetection settings such aswhenmolecules should be unblocked
or how the voltage should be adjusted. These protocols also expose a feature called
“playback” which uses a bulk FAST5 file (Chapter 3), to replay a previous run.

Guppy

Guppy is a base caller provided by ONT that can be used via it’s command-line
interface, throughMinKNOW, or as a serverwith arbitrary clients. It utilises custom
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Recurrent Neural Network algorithms, developed by ONT, to interpret the signal
data from the nanopore, and base call the molecule passing through the pore.

Guppy offers three different base calling models: a Fast model, a High accuracy
(HAC) model, and Super accurate (sup) model. The Fast model is designed to
process ~160 kb/s (when sequencing at ~400 bases/s) when sequencing with most
nanopore devices (MinION Mk1C, GridION, PromethION). The HAC model pro-
vides a higher raw read accuracy than the Fast model and is currently 5–8 times
more computationally-intensive. The Super accurate model has an even higher raw
read accuracy, and is ~3 times more intensive than the HAC model. All three mod-
els are trained on the same datasets, with the primary difference being the detailed
architecture of the recurrent neural networks.

Guppy is highly optimised for running on NVIDIA Graphical Processing Units
(GPUs) using CUDA. It is generally several orders of magnitude faster running on
a GPU compared to a CPU. Guppy implements stable features from development
and demonstrator software that ONT produces.

Throughout this work Guppy versions 3.4.5–5.0.11 have been used.

2.1.6 Flow cell washing

Washing a flow cell removes the previous library allowing it to be reused immedi-
ately or later.

1. Stop or pause the sequencing experiment in MinKNOW, leaving the flow cell
in it’s postion.

2. Prepare 400µL of washing solution by combining 2µL wash mix and 398µL
wash diluent.

3. Mix well by pipetting, and place on ice. Do not vortex the tube.
4. With the SpotON port and the priming port closed, remove all fluid from the

waste channel.
5. Open the priming port. Ensure that there is continuous buffer from the prim-

ing port across the sensor array.
6. Load 400µL of the prepared washing solution into the flow cell via the prim-

ing port, avoiding the introduction of air.
7. Close the priming port and wait for 60min.
8. Ensure that the priming port cover and SpotON sample port cover are both

closed.
9. Using a P1000 pipette, remove all fluid from the waste channel through the

waste port.
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The flow cell is now ready to either be stored for later use or run a second se-
quencing library.

2.2 Bioinformatics

2.2.1 Curation of target regions

The software presented throughout this thesis expects either individual chromo-
some names or a csv formatted string to be provided as targets for enrichment or
depletion. In addition to being specified inline, targets can be stored in an exter-
nal text file as a list or as a csv. If a csv is given the format chromosome,target-
start,target-end,target-strand is expected. When loaded the targets file are
tested to ensure that the target contigs are present in the reference being used for
the experiment and that the region specified is within it’s bounds.

Files in the csv format can be converted to a six column BED (BED6) file that
preserves the strand information like so:
sed "s/,/\t/g; s/\t/\t.\t.\t/3" < TARGETS.txt > TARGETS.bed

Target sets were curated from online resources. EMBL-EBI (BioMart) was used
to ascertain exon coordinates in GRCH38.p13. Using the “Human Genes” dataset,
filters were applied to limit the chromosomes to those found in hg38 canonical set.
This set was further refined to include genes with transcript names (and IDs) only;
and finally to limit the gene type to only “protein coding”. The minimal attributes
required for this dataset are the chromosome name, exon region start, and exon
region end. The query should be visible here: BioMart bookmark URL.

For the COSMIC panel (Forbes et al., 2010; Tate et al., 2018) the target loci were
downloaded from cancer.sanger.ac.uk (COSMIC Release v90). All genes with co-
ordinates were converted into the csv format required by the software.

Target regions are routinely extended to increase the likelihood of seeing on tar-
get reads. This is done through the incorporation of flanking sequence both up-
stream and downstream of the original coordinates. These intergenic regions are
included so that reads starting close to— but outside of— the target region are also
sequenced.

2.2.2 Programmes and tools used

Throughout thisworkmanypre-existing bioinformatics programmes and tools have
been used. Custom scripts and programmes, written in Python, were used for data
analysis and management.

http://jan2020.archive.ensembl.org/biomart/martview/dffa992be78759a162c5a1a56738b3e8?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.structure.ensembl_gene_id|hsapiens_gene_ensembl.default.structure.ensembl_gene_id_version|hsapiens_gene_ensembl.default.structure.ensembl_transcript_id|hsapiens_gene_ensembl.default.structure.ensembl_transcript_id_version|hsapiens_gene_ensembl.default.structure.chromosome_name|hsapiens_gene_ensembl.default.structure.exon_chrom_start|hsapiens_gene_ensembl.default.structure.exon_chrom_end&FILTERS=hsapiens_gene_ensembl.default.filters.chromosome_name."1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22"|hsapiens_gene_ensembl.default.filters.biotype."protein_coding"|hsapiens_gene_ensembl.default.filters.with_hgnc_trans_name.only&VISIBLEPANEL=resultspanel
https://cancer.sanger.ac.uk/cosmic/download
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Alignment and classification tools

Minimap2 (Li, 2018) is a long read aligner that is designed for long-read sequenc-
ing data. It uses a hash table built from a reference genome’s 𝑘-mers to find “an-
chors”. These are short but perfect alignments. Then, by chaining anchors together
determines the approximate location of a read. Dynamic programming is then
used to join the gaps between anchors providing base-level alignment. In addition
to Minimap2, there is a Python interface called “Mappy”. This is just a CPython
layer that allows Python to utilise the underlying optimised C code. When running
Minimap2, default parameter values for Oxford Nanopore data were used. This is
acheived by supplying the flag -x map-ont.

For taxonomy assignment metagenomic classifiers Centrifuge (Kim et al., 2016)
and Kraken2 (Wood et al., 2019) have been used. Kraken2 was used to identify
species from assembled genomes (Sections 5.4.1 and 5.4.2) andCentrifugewas used
to classify unassembled DNA reads against a reference database (Section 5.4.2).
Typically, metagenomic classifiers use kmer (Kraken2) for assigning short DNA
fragments (~50 bases) but this can lead to very large index databases, so others
(Centrifuge) employ the Burrows–Wheeler transform to compress the database.

Data management and analysis

Samtools (Li et al., 2009; Danecek et al., 2021) is a programme for processing and
analysing high-throughput sequencing data. Primarily samtools is used for file for-
mat conversion and for querying, sorting, computing statistics and quality control
on aligned datasets.
Bedtools (Quinlan and Hall, 2010) is suite of tools built for handling genomic

data and doing genomic analyses. While it primarily is concerned with genomic
intervals and ranges, bedtools is able to parse many formats. Within this thesis bed-
tools has primarily been used in the management of genomic ranges in the curation
of target sets.
Mosdepth (Pedersen and Quinlan, 2017) is a tool for calculating genome-wide

sequencing coverage. Itmeasures depth fromBAMfiles and can calculate either per-
base coverage or coverage in a specified region. For sections of this thesis dealing
with genomic coverage, mosdepth will have been used with default parameters.
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Assembly

Miniasm (Li, 2016) is an overlap-layout-consensus (OLC) assembler that identifies
overlapping sequences, using an all-versus-all alignment. It is designed for usewith
long reads such as those fromOxfordNanopore Technologies and PacBio. Miniasm
does not actually carry out a consensus step, instead just merging unambiguous re-
gions into unitig sequences. As such, assemblies produced byminiasm have similar
base quality to the input reads.
Flye and MetaFlye (Kolmogorov et al., 2019, 2020) are both repeat-graph based

assemblers targeting single-genome and meta-genome assembly respectively. They
use approximate sequencematching instead of exact kmermatches aswith de Brujin
assemblers.

Consensus generation and base modification

Nanopolish (Loman et al., 2015; Simpson et al., 2017) uses the raw (electric current)
signal from nanopore-based sequencing and a hidden Markov model to evaluate
draft genome assemblies. This is accomplished by calculating the probability that an
arbitrary nucleotide sequence can be derived from the raw signal thatwas observed.
This consensus generation process is iterated with the improved assembly being
fed back into nanopolish (usually 50 times). In addition to improving consensus
sequence, nanopolish is also able to detect base modifications using an expanded
HMM and nucleotide alphabet.

Similarly, Medaka (ONT, 2021a) is used for creating consensus sequences using
only base called data. Using a draft assmebly generated using Flye medaka creates
a pileup of reads and processes these with neural-network models.

Structural variant calling

The error rates of long reads make accurate SNP and small indel calling complex.
However, structural variants (SV) can be identified where read alignments show
large breaks. Long reads are beneficial to SV detection as they are more likely to
cross break-points or completely span the gap.

Sniffles (Sedlazeck et al., 2018) detects indels, duplications, inversions, and translo-
cations. Likewise, SVIM (Heller and Vingron, 2019) is able to detect and classify
six classes of structural variation: deletions, insertions, inversions, tandem dupli-
cations, interspersed duplications, and translocations. truvari (https://github.
com/spiralgenetics/truvari) is used for comparison of SV calls between differ-
ent tools.

https://github.com/spiralgenetics/truvari
https://github.com/spiralgenetics/truvari
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These tools rely on alignment accuracy, and therefore the error profile of reads
and alignment tool chosen will impact results. In addition, errors in the reference
genome or source of base truth will cause false positives.

Other tools and libraries

Throughout this project dependency management has primarily been carried out
using conda conda.io. Conda allows for easy generation of isolated environments
that can be replicated on separate computers.

Data analysis and visualisation has been carried out using the Python libraries
NumPy (Harris et al., 2020), Pandas (The Pandas Development Team, 2021), Mat-
plotlib(Hunter, 2007), and seaborn (Waskom, 2021).

2.2.3 Published datasets used

• Nanopore human genome, (Jain et al., 2018a)
• Nanopore human transcriptome, (Workman et al., 2019)
• BulkVis bulk FAST5 file, (Payne et al., 2018)
• Comparison Zymo data, (Nicholls et al., 2019)

https://docs.conda.io/en/latest/


Chapter 3

Raw Nanopore Data

Preface

Research presented as part of this chapter has been published as

Payne, A., Holmes, N., Rakyan, V., & Loose, M. BulkVis: a graphical viewer for Ox-
ford nanopore bulk FAST5 files. Bioinformatics 35(13), 2193–2198 (2018). (Page 157)
and
Workman, R. E., et al. Nanopore native RNA sequencing of a human poly(a) tran-
scriptome. Nature Methods 16(12), 1297–1305 (2019). (Page 163)

3.1 Introduction

As previously covered (Section 1.3) raw nanopore data, squiggles, are the direct
detection of polynucleotide strands using a picoammeter. These picoammeter read-
ings are streamed from the ASIC at frequent intervals, typically occuring at a rate
of 4 kHz for every sequencing pore. This continuous data stream is the real-time
data that Read Until needs to process to enable selective sequencing. The data in
this stream differs from the raw output of the sequencing experiment as it contains
portions of signal that are not measurements of DNA or RNA; for example: open
pore current, when there is no analyte present orwhen there is some non-nucleotide
contaminant. Thiswhole process ismanaged byMinKNOW, the sequencing control
software.

During a sequencing experiment, MinKNOW determines if a pore is present and
available through a flow cell quality control (QC) and “mux selection” (muxing)
process. When the flow cell is undergoing QC/muxing each of the four wells in
each of the 512 channels are tested and ranked on signal quality. Channels that are
identified as being viable are used and a voltage difference is maintained across
each channel. This keeps ions flowing from cis to trans and keeps drawing DNA
molecules into the nanopores to be analysed. As such, every channel on the flow
cellmust be constantly sampled so that data can be collected about every sequencing

35
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molecule. The flow cell is sampled in 1 s chunks, but this value can be changed prior
to starting sequencing.

MinKNOW processes the real-time data stream to monitor for signals that are
characteristic of DNA and RNA, or issues with a well such as membrane break-
down or a blocked pore. If a pore is “sequencing” a molecule, MinKNOW attempts
to partition the signal that has been captured into discrete reads, excluding non-
read-signal, in a process called segmentation. In addition to read segmentation,
MinKNOW will use this real-time data stream to generate some general library
statistics aswell as saving the rawdata to disk. All subsequent analysis assumes that
each read corresponds to the complete translocation of a single molecule through a
nanopore; that is, the continuous stream of data from the sequencer has been cor-
rectly segmented into individual reads. Incorrectly segmenting reads can lead to
either accidentally concatenating two (or more) reads into one, creating chimeras;
or over-segmenting a read into multiple reads. When live basecalling is enabled,
MinKNOW incorporates extra information in the general statistics panels, showing
both estimated (from the real-time stream) and basecalled metrics (from FASTQ).

3.1.1 FAST5 files

The FAST5 format is based on theHierarchical Data Format 5 (HDF5) format, which
mimics a file system containing folders (called groups) and files (called datasets).
The groups and datasets can have metadata associated with them in the form of
attributes that are stored as key-value pairs. As it is a highly generic format, with
a mature set of libraries that facilitate working with HDF5 files on any computing
platform, it is an ideal format for storing raw data and metadata.

There are two kinds of FAST5 file, a “read” file and a “bulk” file. MinKNOW
writes segmented signal data into read FAST5 files, these files only contain the raw
signal data and relevant metadata for the sequencing run. This metadata includes
what is needed for basecalling, the offset and scaling parameters, which are used for
normalization and signal conversion. Once basecalled the read FAST5 files are not
essential unless using tools that utilise raw data such as nanopolish andmegalodon
(Simpson et al., 2017; ONT, 2021b). MinKNOW will also, optionally, write a bulk
FAST5 file. These contain the entirety of the unsegmented signal data seen through-
out the duration of an experiment. This file includes both the raw current traces and
metadata for every sequencing channel on the flow cell. One such piece of metadata
is the real-time classifications that MinKNOW made during sequencing, these are
real-time decisions that MinKNOWmade about DNAmolecules. These are used to
label what the pore can “see”, for example classifications include “strand”, “pore”,
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or “adapter” (Table 3.1) and correspond to occupied by a molecule, unoccupied,
and occupied by adapter sequence respectively. These can typically be seen in a
“duty time” plot, within theMinKNOW interface, that is used for gauging sequenc-
ing efficiency. Finally, as the bulk FAST5 file is a complete record of the sequencing
experiment it can be used to replay experiments to simulate sequencing and test
real-time processes without the need to actually use consumables.

3.1.2 Aims

Typically the basecalled FASTQ data is the most important output from a sequenc-
ing experiment. In contrast, when considering real-time processes — like Read Un-
til — the initial signals that are observed are the most important for classification.
Due to the read segmentation thatMinKNOWcarries out, we noticed that there was
some data loss that in the raw data outputs. Moreover, these data losses are ampli-
fied when running selective-sequencing. These losses cannot be seen nor analysed
as they are not written to read FAST5 files. This is because the duration that an
unblock signal is being sent to a nanopore is never seen in read FAST5 files, which
we were particularly interested in observing as Read Until aims to send unblocks.
Therefore, a bulk FAST5 visualiser was required to understand what is happening
on the flow cell surface as this was the only way to capture discarded (segmented
regions) of the raw signal stream.

3.1.3 Work contribution

The author of this thesis carried out the majority of the work presented in this chap-
ter. Including data analysis and programming. The bulk FAST5 files used in this
analysis were derived from sequencing carried out by Deep Seq at the University
of Nottingham. DNA extractions and sequencing were carried out by Sunir Malla.
RNA extractions and sequencing were carried out by Nadine Holmes.

3.2 Results

3.2.1 BulkVis

BulkVis is a bulk FAST5 file visualization tool and associated command line scripts.
For visualization, BulkVis uses Python3 and the bokeh package and the Python
HDF5 library (Bokeh Development Team, 2018; Collette, 2013). Bokeh was selected
as it had a large set of features centered around interactivity that enabled quick pro-
gression from an initial concept to an application that allowed quick inspection of
raw signal data from bulk FAST5 files. The command line interface was also written
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Table 3.1: Classification Descriptions. There is no detailed description of the rela-
tionship between bulk FAST5 file classifications and MinKNOW labels
seen in the “channel panel” and “duty time plots”. This table presents
our assumptions about the relationship between bulk FAST5 labels and
MinKNOW classifications.

Bulk FAST5
classifications MinKNOW Labels Description

pore, good_single, inrange pore A single sequencing pore is
present in the channel

strand, strand1 strand DNA is detected in a single
pore in the channel

unavailable unavailable A single porewhich is currently
blocked

multiple multiple More than one pore is detected
in the channel

adapter adapter An adapter sequence is cur-
rently detected within the pore

mux_uncertain, unblocking active feedback The channel is being unblocked
saturated saturated A channel is passing too much

current and has been switched
off

zero zero No current is passing through
the pore — likely no pore is
present in the channel

below, user1 out of range 1 Negative current is being seen
above, user2 out of range 2 Current is flowing but it is nei-

ther pore nor strand
unclassified, unclassed unlabelled An unlabelled channel which

has no classification assigned.
event Unknown No precise definition of event is

available.
transition Unknown We believe this represents a

rapid and large change in cur-
rent measured.

unclassified_following_reset Unknown A state associated with mux
changes.

pending_manual_reset Unknown A state associated with mux
changes.

pending_mux_change Unknown A state associated with mux
changes.
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using Python3 and utilises the pandas and HDF5 libraries (The Pandas Develop-
ment Team, 2021; Collette, 2013).

Visualisation server

BulkVis is started via a command-line interface. On startup, BulkVis scans either the
current or specified input folder for bulk FAST5 files. As both read FAST5 and bulk
FAST5 files utilise the same file extension bulk files are identified by their unique
datasets (which are also required for visualisation). After this scan is complete the
web-browser is opened and all available bulk FAST5 files are listed in a dropdown
list that is presented to the user. Once a file has been selected from the list a user
can begin to browse the raw signal dataset for any channel or they can choose to
inspect a specific read by providing the header from a FASTQ record. If “browsing”
an individual channel and time offset (in seconds), in the form channel:start-

end, must be entered and the corresponing squiggle will be drawn. In addition to
drawing the squiggle for that period overall metadata for the sequencing run will
be displayed on the left (Figure 3.1).

Figure 3.1: Screenshot of a typical bulkvis view. After selecting a bulk FAST5 file to
view using the dropdown (top left) coordinates are required to navigate
to a specific channel and then a specific time range in that channel’s data
stream. Once this information is provided the viewer displays the signal
trace for the coordinates.
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BulkVis overlays MinKNOW classification labels (Table 3.1 and Figure 3.1) at the
time point that they occured over the raw signal plot. These labels correspond to
more generic labels that are seen in the “duty time” plots and are used for internal
classification of reads within MinKNOW. This further aids inspection as a user can
quickly see when MinKNOW made these decisions and what signal the classifica-
tion was based on. Optionally, a user can associate alignments, from a PAF file (Li,
2018), to annotate each read’s genomic position. After an alignment has been done
it is integrated with the sequencing summary file for this experiment and saved
alongside the bulk FAST5 file with a file name that corresponds to the unique run
identifier for this experiment1. When a bulk FAST5 file is opened by BulkVis the
corresponding alignment-summary is also loaded if it is available. Both of these
annotations can be seen in Figures 3.2a to 3.2d. MinKNOW’s annotations are over-
laid on the signal plot as vertical dashed lines, labelled with the type and associated
ID if available (Figure 3.2). Alignments can also be overlaid horizontally above
the signal, with blue and red spans indicating forwards and reverse mappings, re-
spectively (Figure 3.2). The alignments include the chromosome, start, and stop
coordinates for the read IDs that mapped. This process continues until the sever is
closed, allowing any available channel to be inspected. Selecting another file from
the dropdown menu will close the current file and open the new selection.

In addition to being a viewer for signal data, run metadata, and signal contextual
data (classifications and alignments) BulkVis is able to export signal for basecall-
ing, quickly navigate between classification labels and only show labels of interest.
Jumping between labels is useful for quickly assessing if there was a relationship
between a specific signal and classification (e.g. “transition”, see Table 3.1). Min-
KNOW makes a lot of classifications so it is essential that they can be selectively
turned on and off otherwise the signal plot could be entirely obscured. Enabling
specific annotations also makes them available for navigation, allowing a user to
jump to the next or previous occurence of a classification of interest, for example
unblock signals. Exporting arbitrary sections of signal to a new read FAST5 file
is useful for when MinKNOW has incorrectly segmented a read or truncated the
read early. These new BulkVis derived FAST5 files can be basecalled by ONT base-
callers, such as Albacore and Guppy. Through basecalling these incorrectly seg-
mented reads as though it were a single molecule some extra nucleotide data is
recovered from the inclusion of signal that was discarded by MinKNOW.

1That is: <run id>.bmf
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BulkVis was developed in part to observe the effects of unblocking— the removal
of molecules by the reversal of voltage across a specific channel. In BulkVis’ devel-
opment data generated in the course of sequencing the human genome on a Min-
ION (Jain et al., 2018a), using ultra-long DNA molecules (Quick, 2018), was used.
During library preparation, adapter sequences are added to DNA molecules such
that every sequenced read should begin with an adapter sequence. Using BulkVis
we observed reads that did not follow the expected “pore”, “adapter”, “strand” se-
quence (Figure 3.2a). We found “strand” sequences separated by either “above”
or “transition” (Figure 3.2c) or even “unblock” (Figure 3.2d) signals without any
evidence of “pore” or “adapter” sequences present. Every sequenced read should
begin with a pore and adapter state, reads that do not can be described as having
“unusual split events”.

Close examination of reads before and after these unusual read split events, look-
ing at read mappings just prior and post the events shown in Figures 3.2c and 3.2d,
showed the two sequences were derived from adjacent positions on the same chro-
mosome (Table 3.2). These reads, sequenced one after another, were most likely
derived from single molecules. The alternative explanation is the chance sequenc-
ing of two independent molecules that map adjacently on the human reference, one
after another, through the same pore.

Table 3.2: Alignments for Figures 3.2c and 3.2d. The “Read ID” has been trun-
cated for clarity. These reads are separated by either unusual current
(Figure 3.2c) or by an unblock signal (Figure 3.2d). When these reads
were aligned to GRCh38, using minimap2 (Li, 2018), they aligned con-
tiguously.

Read ID Channel Length Chr Start End

Figure 3.2c 7ed4aafb… 176 10,275 5 122,184,560 122,199,454
83d0cea6… 43,145 122,133,985 122,184,329

Figure 3.2d c13c1e73… 68 5068 19 55,435,454 55,439,579
50117d5d… 25,596 55,409,626 55,433,153

Command line scripts

The scripts described in this section are available: https://github.com/LooseLab/
bulkvis.

While it is possible to determine whether a pair of consecutive reads are incor-
rectly segmented by eye, this process is cumbersome and time consuming. It is
instead possible to use the data found in consecutive reads alignments to determine

https://github.com/LooseLab/bulkvis
https://github.com/LooseLab/bulkvis
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Figure 3.2: Continued of the following page.
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(d)

Figure 3.2: Raw signal features. (a) The start of a read mapping to chromosome 6.
Open channel “pore”, followed by an “adapter”, and “strand” as anno-
tated by MinKNOW. (b) Read ending with an “unblock” followed by
“pore” and then a new read. (c) Adjacent reads from a channel sepa-
rated by unusual current patterns. These two reads are reported as dis-
tinct molecules by MinKNOW, they map consecutively to the reference.
(d) Two adjacent reads separated by an “unblock” signal. The unblock
does not successfully remove the DNA. Instead the read continues to
sequence again mapping adjacently to the reference. From Payne et al.
(2018).
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whether they are incorrectly split or not. Using the order that each read translo-
cated through a channel and their alignment we could establish if reads mapped to
contiguous positions of their reference genome. This is carried out using the anal-
ysis script “whale_watch.py”2 or command bulkvis fuse. Using a single flow cell
of data from Jain et al. (2018a) we aligned the reads to the human reference genome
(Schneider et al., 2017); 2983 of 75,689 total reads were incorrectly split with pairs
of reads mapping adjacently to the reference. Concatenating the basecalled reads
together (using “whale_merge.py” or command bulkvis merge) increased the read
length N50 from 98,876 to 103,925 bases. In addition the mean read length of incor-
rectly split reads, 55,190 bases, is higher than the entire dataset, 23,717 bases. Re-
examining previous ultra-long datasets revealed incorrect read splitting occurred
1–10% of the time (Table 3.3). Incorrectly split reads had consistently higher mean
read lengths than those which appear to be true single molecules.

Table 3.3: Read length statistics for 14 runs from Jain et al. (2018a) with incorrectly
split reads calculated using whale_watch.py after alignment to GRCh38.

Read count Mean N50

Original Split % Original Split Corrected Original Corrected Increase

82,136 3953 4.81 22,532 64,810 23,134 126,793 138,627 11,834
53,720 1539 2.86 24,431 41,913 24,804 84,015 85,947 1932
41,384 932 2.25 20,299 51,910 20,534 59,500 61,168 1668
19,673 908 4.62 31,962 37,958 32,738 132,277 135,990 3713
73,752 2489 3.37 28,268 56,948 28,777 129,792 135,156 5364
75,689 2982 3.94 24,957 55,190 25,482 98,876 103,925 5049
61,223 2769 4.52 26,129 59,149 26,776 114,934 123,304 8370
65,138 4193 6.44 26,340 49,005 27,271 102,785 111,444 8659

270,189 12,045 4.46 10,680 14,967 10,936 26,744 27,759 1015
9663 882 9.13 35,380 63,434 37,242 110,455 125,144 14,689

72,931 6860 9.41 21,243 55,293 22,410 102,621 123,768 21,147
68,167 1209 1.77 26,477 71,002 26,722 132,550 136,916 4366
71,150 2687 3.78 25,611 54,145 26,152 129,656 137,644 7988

451,019 2697 0.60 8475 10,554 8501 14,957 15,016 59

Analysing the annotation states from a bulk FAST5 file showed that the some clas-
sifications occur alongside the start and end of incorrectly split reads (Figure 3.3).
The most frequent classifications occuring at the start and end of split reads are
“above” and “transition”; both “unblocking” and “unclassified” also occur occa-
sionally, but not as frequently. The “transition” classification can be seen in Fig-

2Colloquially referring to the “whale scale” https://nanoporetech.com/about-us/news/
blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome

https://nanoporetech.com/about-us/news/blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome
https://nanoporetech.com/about-us/news/blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome
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ure 3.2c. Analysis of the physically adjacent channels on the flow cell did not show
any indication of these signals “above” or “transition” signals co-occuring.
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Figure 3.3: (a) Shows the labels used for reads. Unique Read Starts and Split Read
Starts are genuine new molecules being sequenced. Unique Read Ends
and Split Read Ends are the real end of a read. Internal Read End and
Start refers to just those incorrectly split reads. (b) Shows the density
of each selected MinKNOW classifications (Table 3.1) in a 10 second
window before and after each of these read labels. The classifications
“above” and “transition” mainly occur at split read starts and ends.

Reads that are incorrectly partitioned by MinKNOW can be rejoined, either by
concatenation of the basecalled FASTQ or by generating a read that encompasses
all the sub-reads using BulkVis. In the case of creating new FAST5 for basecalling,
the region captured by three single reads (Figure 3.4a) has a combined length of
215,153 bases; when basecalled again as a single read has a length of 215,662 bases
that aligns contiguously with the original three (Figure 3.4b).
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In additional experiments when sequencing for ultra-long reads as in Jain et al.
(2018a) and Quick (2018), BulkVis was able to detect incorrectly split reads in up
to 30% of reads in one run. The differences between these runs include the in-
put library, the sequencing kit (RAD004 rather than LSK108), and other equip-
ment such as the flow cell (both r9.4) and MinKNOW (version 1.10.23). In this
experiment a single read with a length of 1,204,840 bases was sequenced, when
analysing this dataset for split reads a set of eleven reads were discovered that,
when merged together, spanned 2,272,580 bases and aligned to 2,290,436 bases of
the human genome. Unfortunately, this part of the sequencing experiment was not
captured in a bulk FAST5 file. The longest incorrectly split read that was present in
a bulk FAST5 file was 1,385,925 bases in length. It was derived from nine individual
reads (Figures 3.5a and 3.5b). In this instance, BulkVis could be used to generate
a single read from these nine that, when basecalled, results in a single read align-
ing entirely to a single genomic locus. Highlighting the value of the data discarded
during segmentation.

Investigating further revealed changes in normal current flow that cause real-
time MinKNOW read detection to split the read. These events sometimes trigger
an unblock signal to be sent to the channel, after which the read should be ejected.
However, reads can occasionally continue to sequence from the same point on the
molecule. In one instance a read failed to unblock for more than 46min, as the
molecule occupying that pore appeared to be stuck (Figure 3.6). In this example the
pore could not sample further molecules until the blockage was cleared preventing
>1.2Mb of data being generated. Furthermore, this molecule was not rejected from
the pore by the unblock, instead it continued sequencing.

The most complex fused read observed consists of 38 individual reads mapping
contiguously to the genome (Figures 3.7a and 3.7b).

Thus far, just looking at raw signal data from DNA has shown that extra, useful,
contextual information can be recovered. Through visualisation, sequences where
MinKNOW cannot make optimal decisions can be observed.



(a)

(b)

Figure 3.4: (a) BulkVis plot of three reads as determined byMinKNOW. These reads are separated by strand classifications, but not pore or adapter.
Using BulkVis a new read FAST5 file was generated, for basecalling, that encompasses all three reads. (b) Last alignment and dot plot of
the three individual base-called reads aligned against the merged signal for the same three reads but basecalled as one read by BulkVis.
A zoomed in view can be seen in Figure A.1 (Page 143)



(a)

(b)

Figure 3.5: (a) BulkVis plot of nine reads as determined byMinKNOW. These reads are separated by strand classifications, but not pore or adapter.
Using BulkVis a new read FAST5 file was generated, for basecalling, that encompasses all nine reads. (b) Alignment of the 1,385,925
bases from the merged signal results into a single contiguous alignment to chromosome 13 on the human reference spanning 1,470,878
bases.



Figure 3.6: A read that could not be unblocked. Unblock signals were sent to this channel for over 46 minutes, but the next sequenced molecule
aligns in the same genomic location. Note that the second read does not appear to have an adapter. Dashed lines indicate the start of
new molecules as determined in real-time by MinKNOW.



(a)

(b)

Figure 3.7: BulkVis full length signal plot for a region spanning 38 individual reads from a bulk FAST5 file. Dashed lines indicate new reads as
identified by MinKNOW. When generating a new read from this entire sequence it base calls as a read with length 263,744 bases.
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RNA

Nanopore RNA sequencing shares the same features as nanopore DNA sequencing.
That is, a motor protein (M1) drives a polynucleotide strand of RNA through a
protein pore at a steady rate (70 b/s). As this method of sensing is the same the
effects seen in DNA molecules are likely not just limited to DNA molecules.

With poly(A) RNA sequencing full-length3 transcripts are expected. However,
some mitochondrial transcripts showed a random distribution of truncated reads
below their expected full length (Figure 3.8b). Quantifying the fraction of truncated
reads by their expected transcript length for ten mitochondrial mRNAs, we found a
strong negative correlation (Figure 3.8c). This can also be seen in the number of full-
length transcripts over eachmitochondrial gene as there aremore partial transcripts
creating a saw-tooth coverage distribution on the heavy strand (Figure 3.8a).
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Figure 3.8: (a) Read coverage of the heavy strand (top) and the light strand (bot-
tom). (b) Distribution of nanopore read lengths for MT-CO2 and MT-
ND4L + MT-ND4 transcripts. Each point represents 1 of ~5000 reads
in the order acquired from a single MinION experiment. Horizontal
arrows are expected transcript read lengths. (c) Relationship between
expected transcript read length and fraction of nanopore poly(A) RNA
reads that were full length. (d) Percent of artificially truncated reads
where sequence was recovered from the ionic current signal. Dot sizes
indicate relative number of reads. Adapted fromWorkman et al. (2019).

Analysis of bulk FAST5 files derived from these RNA sequencing experiments,

3Extending to within at least 25 nt of the genes expected 5′ terminus
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revealed that MinKNOW sometimes removes too much signal when segmenting
reads into discrete molecules (Workman et al., 2019). Using 2729 mitochondrial
RNA reads aligning to mitochondrially encoded cytochrome c oxidase I (MT-CO1),
a systematic analysis identified 527 reads that started or ended abnormally. By using
the methods developed in BulkVis and including ionic current segments that were
identified before or after many of these truncations, ~300 reads were reconstructed
with longer alignments to MT-CO1 (Figure 3.9). These truncation events are length
dependent (Figure 3.8d), ranging from 4.2% of reads with rescued segments for
ND3 (full length 346 nt) to 17.6% for ND5 (full length 2379 nt).

Visual analysis4, through read overlapping, indicated that read truncations were
more often caused by electronic signal noise such as current spikes of unknown ori-
gin (Figures 3.9a to 3.9c). However, despite these current spikes meaningful signal
can be recovered from the raw signal data in the bulk FAST5 file. We showed that
meaningful biological signals can be recovered from bulk FAST5 files around these
truncations, suggesting that future improvements to the MinKNOW read segmen-
tation pipeline are needed.

4https://github.com/nanopore-wgs-consortium/NA12878/tree/master/
nanopore-human-transcriptome/scripts/bulk_signal_read_correction

https://github.com/nanopore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts/bulk_signal_read_correction
https://github.com/nanopore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts/bulk_signal_read_correction
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Figure 3.9: (a) Example ionic current signal for a MT-CO1 transcript. This trace
is representative of reads that were artificially truncated by a signal
anomaly. The highlighted blue section represents the MinKNOW seg-
mented read (positions 474–1532 of theMT-CO1 gene), and the blue and
right grey sections represent the manually segmented and rescued read
(positions 27–1532 of the MT-CO1 gene). The signal in grey was not
present in theMinKNOWoutput read FAST5 file, but could be extracted
from the continuous FAST5 file using BulkVis. (b) Recovery of data at
the 3′ end of a read (shaded) using BulkVis. (c) Recovery of data at the
5′ end of a read (shaded) using BulkVis. (d,e) Effect of additional ionic
current data on the mapping coordinates (start and end positions for an
alignment) relative to the reference transcript for all MT-CO1 reads in
bulk FAST5 files. Increasing the amount of decodable nucleotide data
enables for better, longer alignments that better place the reads in their
genomic context.
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3.3 Discussion

Nanopore sequencers allow the capture of continuous raw signal data, in a bulk
FAST5file. This includes continuous ionic current for all channels on a flowcell sam-
pled at 4 kHz for DNA and 3kHz for RNA; and the real-time classifications made
by MinKNOW during the original sequencing run. This crucially differs from the
more widely known read FAST5 file, that only contains raw data and some limited
metadata.

There is no need for the routine collection of bulk FAST5 files. However, as ex-
tra data can be rescued resulting in longer, more contiguously aligning, reads; the
methods of generating “fused” reads (by either concatenation or re-basecalling) are
likely of interest for de novo genome assembly. Especially of non-model organisms,
which may not sequence or basecall as well as standard models, such as human or
bacterial samples.

Analysing a bulk FAST5 file and the outputs of a sequencing experiment is rel-
atively easy using the provided command line interface; which is a useful post-
sequencing check for users working with a well curated reference genome. De-
spite these limitations, bulk FAST5 file analysis has show evidence of of incorrect
read segmentation across all Oxford Nanopore platforms (MinION, GridION, and
PromethION) and both of the current analytes (DNA and RNA).

In response to some of these findingsONThave refinedMinKNOW’s ability to de-
tect and avoid incorrect segmentation (introduced in MinKNOW 2.0 between May-
Oct 2018). One such mechanism is the use of a “progressive unblock”, which re-
places the original unblock (2 s of reverse current) with a more gentle (starting at
~0.1 s) reversal duration and only intensifying if needed. Moreover, ONT have also
introduced molecular methods such as the nuclease-flush5 and reload to physically
clear blocked channels (Sept 2019).

BulkVis provides a tool for the visual inspection of raw signal data with the goal
of understanding what is being seen and discarded during a sequencing experi-
ment. Crucially, it provides the opportunity to re-interpret the signals andmeasure-
ments that were recorded during sequencing. Unfortunately these measurements
are not entirely free from some interpretation as MinKNOW is still managing the se-
quencing. But, greater information can be acquired by inspecting signal whereMin-
KNOW’s classification deviates from the expected cycle: “pore”, “adapter”, strand”.
This could be of particular use for challenging sequences and samples to discern if
there are unexpected artefacts as in (Parker et al., 2020).

5https://store.nanoporetech.com/uk/flow-cell-wash-kit-r9.html
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There is a lot of information held in the signal data. It is primarily used for base-
calling, as this is a nucleotide sequencing platform. But some tools are able to make
use of the signal data to provide enhanced biological information in the form of
modified bases (Simpson et al., 2017; Müller et al., 2019; Boemo, 2021), or by rescu-
ing truncated signal to extend reads (Payne et al., 2018), or through alignment of
raw signal data (Kovaka et al., 2020; Zhang et al., 2021).



Chapter 4

Readfish development

Preface

Research presented as part of this chapter has been published as

Payne, A., Holmes, N., Clarke, T., Munro, R., Debebe, B.J., & Loose, M. Readfish
enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol
39, 442–450 (2021). (Page 175)

4.1 Introduction

4.1.1 Nanopore sequencing

As covered in Section 1.3 the technology at the heart of Oxford Nanopore Tech-
nologies’ platform consists of a protein nanopore embedded in a synthetic mem-
brane. Molecules of DNA or RNA are actively driven through the channels that
these nanopores create, travelling from the cis to trans side of the membrane, by
a combination of electrophoretic force and from a motor protein that mechanically
“walks” the nucleotide strand to control the rate of translocation (Branton andDeamer,
2019).

During the course of a normal sequencing experiment a library of molecules is
prepared and loaded on to a flow cell. As themolecules pass through the nanopores
the current difference across the membrane is recorded at regular intervals. This
process is continuous for the duration of the sequencing run. In the event that
a molecule blocks the channel or cannot continue sequencing the applied voltage
across the membrane can be inverted to reverse the direction the molecule is trav-
elling; sending it back out the way it came in. Here I will define some terms to dif-
ferentiate between unblocking reads during the normal course of sequencing and
specifically for selective sequencing applications.

56
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Unblocking reads is a mechanism, used initially to prevent pores from blocking,
can also be used to stop sequencing a molecule at any point. This process is called
“Read Until”, which allows a single molecule to be sequenced until the voltage is
reversed to remove the strand from the nanopore. Not only can the change in voltage
can be activated by MinKNOW, but the user of the sequencing device can be given
control to unblock individual reads on a pore-by-pore basis.

Selective sequencing uses pre-defined, immutable, conditions to make real-time
decisions about currently sequencing molecules. MinKNOW’s “active unblock” is
an example of selective sequencing as it aims to detect nanopores that have become
blocked and clear them by reversing the voltage. Likewise, selecting specific ge-
nomic regions (as demonstrated in Loose et al. (2016)) is selective-sequencing.

Adaptive sampling is the process by which the experimental conditions are up-
dated as sequencing progresses — directly in response to the data generated by the
sequencer. Thus far true adaptive sampling has only been shown by Loose et al.
where specific viral amplicons were sequenced until they had reached sufficient
coverage for a consensus sequence to be generated (Loose et al., 2016).

For selective sequencing to work molecules must be analysed in real time. As
a strand is progressing through a nanopore the current is streamed from the se-
quencer to the controlling computer. Through inspecting these live current traces
themolecule present in a channel can be classified and a decision can bemade about
whether to continue collecting data, allowing the read to end naturally, or whether
to eject the molecule and sample another molecule from the available pool.

4.1.2 Current selective sequencing implementations

Selective sequencing is dependent on the ability to match molecules currently pro-
gressing through a nanopore with a reference sequence. This requires either con-
verting the live signal data from the nanopore to nucleotides and aligning to a bi-
ological reference or converting the biological reference into a signal-like represen-
tation.

Signal based methods

Matchingun-basecalled signalwith a simulated reference is themost commonmethod
used to implement selective sequencing (Loose et al., 2016;Masutani andMorishita,
2018; Kovaka et al., 2020). First demonstrated by Loose et al. in 2016 using a mod-
ified audio sampling algorithm called Dynamic Time Warping (DTW) (Kruskal,
1983). This process matches the raw electrical signal from the DNA in a nanopore
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to a simulated reference signal. The process of simulating signal from a reference
sequence is accomplished by pre-calculating the mean current value for every 5
base window (5-mer) in the reference genome. Each simulated reference squiggle
is unique to the kmer model that it was generated from as each model is dependent
on the sequencing chemistry (nanopore version) that it was created with. In addi-
tion to matching raw current this DTW approach needed to compensate for noise
introduced by the sequencing environment, thus incoming read fragments were
𝑧-score normalized to overcome these variations between the original kmer model
used to simulate the reference and the kmer values reported by nanopores during
sensing. Loose et al. were able to enrich for specific genomic regions and then
prioritise alternate regions when a target coverage depth had been reached (Loose
et al., 2016). Though this was limited to smaller genomes (< 5 Mb in length) and
required a 22-core server to process the data fast enough.

The DTW approach was refined by Masutani and Morishita who applied refined
DTWalgorithms such as Sparse-DTW(Al-Naymat et al., 2012) andFast-DTW(Salvador
and Chan, 2007) among others to increase the throughput of the naive DTW ap-
proach (Masutani and Morishita, 2018). Despite improved algorithms, due to the
time complexity of DTW being quadratic1 (Kruskal, 1983; Loose et al., 2016) longer
assembled contigs were hard to place reads within optimally.

Finally, in techniques utilizing raw signal is, UNCALLED (Kovaka et al., 2020),
which employs efficient index and seeding techniques to reduce the computational
time of matching signal. Specifically, Kovaka et al. use a Ferragina-Manzini (FM)
index built from approximate kmer— called events— generated from the reference
sequence which is then queried using the most probable kmer from the live signal.
Their event detector is based on Scrappie which uses rolling t-tests to detect the
sudden changes in signal that define event boundaries. Like in Loose et al. each
event is represented by themean of the signal that it covers. These events are are also
normalized so that the mean and standard deviation match the kmer model. After
normalization, UNCALLED calculates the probability that each event matches each
possible kmer from ONT’s kmer model. Lastly, in the seed-mapping stage, short
but perfect alignments between the most probable read and FM-index reference
are sought which are then used to create longer alignments used in the selective
sequencing process.

1Given an input of size 𝑛, it will take 𝑛2 steps to complete the task
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Nucleotide based methods

It is also possible to replace signal matching with a two-step process of basecalling
and alignment. This technique was concurrently attempted by Edwards et al. in
2019. Their software, RUBRIC, used the (now obsolete) nanonet basecaller and the
LAST aligner (Kiełbasa et al., 2011). RUBRIC demonstrated benefit compared to
non-selective sequencing, by filtering unwanted reads, but did not provide any en-
richment. This approach required considerable computational resources that were
provided by an additional computer to the one controlling the sequencer.

4.1.3 Aims

A recurring theme in selective sequencing software is that it often takes more than a
single computer to process the signal stream for real-time inspection. This is the case
in DTW (Loose et al., 2016), UNCALLED (Kovaka et al., 2020), and RUBRIC (Ed-
wards et al., 2019); and in the case ofDTWandUNCALLED large high-performance
servers were used. For this reason a primary goal was to utilise reasonable compu-
tational resources, ideally using a single computer such as a laptop or one that fits
in MinKNOW’s computational requirements (Table 2.1).

In addition, the reference genome constraints seen in signal based methods ini-
tially limited reference length to ~5 kb (Loose et al., 2016). As such, signal based
methods are limited in both the size of the reference genome they can use and, by
extension, the number of target regions they can consider.

Finally, with the advent of fast basecalling on GPU it has become easier to gen-
erate nucleotide data in real-time. With the addition of fast read alignement using
minimap2 (Li, 2018) a completely real-time process should be possible. Leveraging
this data would allow for reference genomes and target sets to be updated during
the course of sequencing in response to data that has already been generated; which
would make these runs adaptive as they change in response to the sample. An ex-
ample of this kind of adaptive sampling is for both reference and targets, of any size,
to be added or removed during an experiment.

Overall our goals for this Read Until software was to: work with a reference
genome of any size, work with any number of genomic targets, allow the refer-
ence genome to be updated during an experiment, allow the targets to be updated
during an experiment, work on a single computer.



Readfish development Results 60

4.1.4 Work contribution

The majority of the work in this chapter was done by the author apart from DNA
library preparation and flow cell flushing and reloading which was carried out by
Nadine Holmes in Deep Seq. The initial design and selection of target panels was
done in collaboration with Matt Loose.

4.2 Results

4.2.1 Application Programming Interfaces

TheMinIONdevice is controlled byONT’s sequencing control software,MinKNOW.
MinKNOWprovides anApplicationProgramming Interface (API) that enables real-
time interactivity between the controlling computer and the sequencer (ONT, 2021c);
a subset of this API has been curated as the Read Until API (ONT, 2020).

These APIs all use Google’s Remote Procedural Call (gRPC; grpc.io) framework
which standardises communication between applications without needing specific
details of how they are connected. These operate fastest when both applications are
on the same computer, but can create a seamless interface between distinct com-
puters. An overview of how data is passed between applications can be seen in
Figure 4.1.

Read Until API

Read Until requires bidirectional communication with the sequencing device, this
is provided by the Read Until API (Figure 4.1). This API provides chunks of signal
from every sequencing pore on the flow cell continuously for the duration of the
sequencing experiment.

During the course of developing readfish the Read Until API has been contin-
uously maturing as a result of both community contributions and ONT’s develop-
ment. Some of these developments are as a result of past research; for example both
Loose et al. and Edwards et al. found there was a critical need for filtering incoming
raw signal such that only data from that represented DNA molecules were served
(Loose et al., 2016; Edwards et al., 2019). In response ONT implemented a classifi-
cation filter so that only reads classified as “strand” or “adapter” were served over
the Read Until API. These classifications were chosen as they represent either an in-
progress molecule or the very beginning of a molecule, just before it’s classification
becomes “strand”.

https://grpc.io
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Figure 4.1: Flow diagram of how data passes between the MinION sequencer, Min-
KNOWand the ReadUntil API. When the sequencer is started the gRPC
system in MinKNOW is accessed by the Read Until API and a cache of
raw data (un-basecalled signal) for in-progress reads is created. This
cache can be sampled by an application for the purpose of Read Until.
The application can then wait for more data or make a decision to ei-
ther select (“keep sequencing”) or reject (“unblock”) and the action is
relayed back to the Read Until API and stored in the action queue, which
is then communicated to the sequencer via the MinKNOW API and ef-
fected. In the case of an “unblock” decision the current is reversed and
the molecule ejected; in the case of “keep sequencing” the channel will
not send data to the read cache for this channel until a new read has
begun sequencing.

Initially we were using a fork2 of the Read Until API that allowed the inclusion
of new features and key performance improvements. These improvements have
since been incorporated into the stable 3.0 version of the Read Until API3 (ONT,
2020). The aimof these improvementswas to increase the portability of our selective

2https://github.com/LooseLab/read_until_api_v2
3Additions to the Read Until API weremade duringmy iCASE placement at Oxford Nanopore Tech-

nologies



Readfish development Results 62

sequencing approach so that it was easier to install.
Most notably, we migrated the API from Python 2 to Python 3 which allowed us

to take advantage of newer programming practices, improve the speed and perfor-
mance of the API, and ensure that the API was not constrained by internal imple-
mentation details of MinKNOW. This migration entailed removing obsolete depen-
dencies and enabling the gRPC MinKNOW API.

An essential component of the Read Until API is the read cache. This cache sits
between the Read Until code and theMinKNOWAPI. It runs concurrently with the
ReadUntil application to fetch and store new read chunks as they become available.
The read cache was re-implemented to make the transfer of read chunks, from the
cache to the selective sequencing code, faster by up to two orders of magnitude.
There was a bottleneck in a function (popitems) that meant the read cache would
repeatedly poll for new data even when it was empty. Each time the empty cache
was polled caused an exception to occur in the Read Until API, which is a very ex-
pensive operation — especially when it was occurring many times on each attempt
to get data from the cache4. With this step removed data could be served from the
Read Until API much faster allowing better overall performance.

In it’s original implementation the read cache would only supply the most re-
cently received read chunk. Therefore, data would be missed in the event that
analysing a batch of read chunks takes longer than the cache update period. To
address missing chunks of data a new read cache was written5, the accumulating
cache, that does not discard consecutive chunks of data and instead combines them.
This accumulating behaviour is essential when converting data from signal to nu-
cleotides as any extra signal can aid in correctly placing a molecule in the correct
genomic context (Section 3.2.1). In addition, an obscure effect of discarding missed
read chunks is that it is unknowable, to the selective sequencing software, what
length of nucleotides have been processed. Knowing the approximate length of a
molecule that may be rejected is essential as rejecting molecules longer than ~2 kb
is more likely to destroy or block the channel and reduce the overall sequencing
capacity of the flow cell (Section 3.2.1).

4.2.2 Alignment

To place basecalled data in their genomic context we opted to use minimap2 (Li,
2018) over other aligners, such as LAST (Kiełbasa et al., 2011) which was used in

4https://docs.python.org/3/faq/design.html#how-fast-are-exceptions
5This read cache was originally written for readfish to use, and has since been ported into the ONT

implementation of Read Until (by me, on my placement)
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RUBRIC (Edwards et al., 2019). This was primarily as minimap2 is specifically op-
timised for use with long-read data from Oxford Nanopore and PacBio, allows for
the use of pre-computed indexes that further improve alignment time, and has a
mature and stable Python interface, mappy. Moreover, minimap2 works with both
DNA and RNA reads of any length (e.g. short reads or assembly contigs). It is ac-
curate and efficient and outperforms other alignment tools in terms of both speed
and accuracy (Li, 2018).

4.2.3 Basecalling

Basecalling ONT data is the process of translating the raw electrical signal into nu-
cleotides. It is a challenging problem as the number of possible states that a given
strand of DNA could have is determined by the number of nucleotides being de-
coded raised to the power of the number of nucleotides that can fit in the lumen of
the nanopore. Currently, for the canonical DNA bases and R9.4 pores (which use
~5 nucleotides) that yields 45 = 1 024 possible states.

Due to the exponentially increasing complexity of classifying nanopore signal
data, machine learning is the primary method used for decoding signal into bases.
ONT have released multiple different basecallers over the years, most notably Al-
bacore (now deprecated) and Guppy, which use CPUs and GPUs respectively. In
addition, there’s Scrappie6, Flappie7, and Bonito8 which are open-sourced “demon-
strator” technologies that are used to refine features before their incorporation into
Guppy. There are also third-party basecallers that have been developed such as
Chiron (Teng et al., 2018), DeepNano, and DeepNano-Blitz(Boža et al., 2017, 2020).

Scrappie

Scrappie is an experimental basecaller, described as a “demonstrator” technology. It
provides a Python interface to a basecaller programmed in C. The basecaller makes
use of neural network models, which are trained to convert raw signal data into
nucleotides. Scrappie’s architecture is based on a gated recurrent unit (GRU),which
is similar to a long short-term memory architecture, but has better performance
on tasks such as speech signal modelling (Ravanelli et al., 2018); and as has been
demonstrated by Loose et al. audio processing algorithms are readily applicable to
the electrical signal that nanopores produce (Loose et al., 2016).

As Scrappie is a basecaller that can be called programmatically it is ideal candi-
date for incorporating into a programme that requires basecalling. For ReadUntil to

6https://github.com/nanoporetech/scrappie; deprecated
7https://github.com/nanoporetech/flappie; deprecated
8https://github.com/nanoporetech/bonito



Readfish development Results 64

be effective it needs to make good decisions about where reads are from in their tar-
get genome; and it needs to do this quickly. Therefore, when assessing Scrappie for
use in Read Until we must gauge both the speed at which it can basecall sequences
and the accuracy of the alignments those basecalls produce.

The models9 that Scrappie provides for basecalling vary in how the parameters
used in their generation. For examplemodels rgr_94 and rgrgr_r94 use alternating
reverse GRU (rgr) and GRU (gr) layers. Other networks, using the k3_… or k5_…
naming scheme also use a reverse GRU and GRU layers, but the parameters used to
generate them have been modified and are encoded in the name. These parameters
are the kmer model, either 3 or 5; the window and stride, which alters how much
contextual data amodel useswhen considering raw input; and finally the layers and
size of the hidden data layers, which are used internally by the model.

Scrappie’s models generally have good alignment accuracy, with the best models
having mean accuracy of ~90%. The two best performing models had mean accu-
racies of 0.896 (rgrgr_r94) and 0.882 (k5_w11_s5_l3_u96) (Figure 4.2).
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Figure 4.2: Scrappie alignment accuracy. Comparison of 750 reads basecalled with
each available Scrappie model. Calculated from minimap2 alignments
using matches and indels in the CIGAR string. The two best performing
models were rgrgr_r94 (row 1, col 2) and k5_w11_s5_l3_u96 (row 3, col
2) with overall mean accuracy of 0.905 and 0.899 respectively.

9Provided with Scrappie and from ONT
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Scrappie’s speed of basecalling varies with the model being used, with the fastest
model being k3_w11_s6_l5_u24with an average time of 0.026 seconds per read and
the slowest being rgrgr_94 with an average time of 0.117 seconds per read (Fig-
ure 4.3). The speed of basecallingwith Scrappie has been quite consistent over time,
but it struggles to exceed 105 bases per second.
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Figure 4.3: Mean Scrappie basecalling speed per model. Different Scrappie base
calling models have varying basecalling speeds, ranging from 0.026 to
0.117 seconds per read. Some models, particularly those using the 5-
mer model, have greater variability and take longer. While Scrappie is
capable of calling reads quickly it still may not be fast enough, as at the
fastest speed of 0.026 seconds per read a full flow cell (512 sequencing
channels) of data would take > 13 seconds to basecall.

4.2.4 readfish

In tandem to assessing the performance of Scrappie, the initial scripts that would
become readfish were being written. These earliest scripts only attempted basic
enrichment or depletion. Eventually, a flexible configuration schema was imple-
mented that allowed running different experiments on the same sequencing library
simultaneously.

Readfish operates by receiving a series of targets for the experiment, supplied in a
configuration TOML file. This file specifies what basecaller to use and the required
parameters, what reference genome to use, and what regions of the reference are to
be selected for (enriched) or selected against (depleted).

With a suitable configuration readfish has the required information to start selec-
tive sequencing. In general this follows the procedure (also outlined in Figure 4.4):

1. Initialise a connection to the MinKNOW API via the Read Until API
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2. Initialise a connection to a basecaller
3. Initialise a minimap2 aligner with a pre-computed reference file
4. Begin streaming live data from the live sequencing experiment
5. For each iteration of the Read Until API chunk cycle:

a) Stream raw signal from the current batch of read chunks to the basecaller
b) Stream the returned basecalled data directly to the aligner
c) Stream the alignment results back to the readfish programme
d) Parse the alignments against the experiment configuration, determining

whether the read is on or off target, then pass the decision to the Read
Until API for it to be effected on the sequencer

e) (Optionally) Check for updated configuration parameters with a new
reference or targets

Device

Read Until API

readfish

MinION

MinKNOW API
(gRPC)

raw
signal

Read Cache

readfish app

raw
signal

Action Queue

response

Base Caller

nucleotide
data

TOML
configuration

raw
signal

minimap2

nucleotide
data

logic from
configuration

alignments alignments

unblock
keep

sequencing

Start

response

raw
signal

Figure 4.4: Flowdiagram showing the additional components that readfish includes
which are highlighted in grey. The readfish application draws raw signal
from the read cache where it is packaged for basecalling. As base called
data are received back they are immediately dispatched to minimap2
which aligns them with the reference supplied in the TOML configura-
tion. These alignments are then passed through the selective sequencing
logic that is determined from the TOML configuration and a decision is
sent to the action queue and on to MinKNOW and the sequencing de-
vice.
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Experimental configuration — TOML files

The TOML configuration requires the experiment settings to be defined at the be-
ginning of the experiment. In this schema a single reference genome is used for the
entire flow cell and then experiment regions (conditions) are specified. The num-
ber of regions must be a factor of the flow cell dimensions so that an even number
of pores can be assigned to each region. Each region is either a control region or
specifies it’s own strategy for selective sequencing. By setting a strategy per region
different targets can be used in each experimental condition. Moreover, each region
can set the actions that happen in response to each of the available classifications
(Table 4.1).

Table 4.1: Possible classification states for a read chunk in readfish. All non-control
read chunks will be assigned one of these states depending on howmany
alignments to the reference genome they (individually) have andwhether
the locus of any of the alignments is within a region specified in a target
list. no_seq is a specific case that only occurs when basecalling fails.

Classification Alignment
number in targets list

single_on = 1 Yes
single_off = 1 No
multi_on > 1 Yes
multi_off > 1 No
no_map 0 N/A
no_seq N/A

Unblocking half a flow cell

To test the performance of real-time basecalling with Scrappie for enrichment and
depletion a playback experiment was setup. The flow cell was divided into two
halves based on each channel’s position on the flow cell surface. On the left half of
the flow cell all reads would be rejected, while on the right half all reads would ac-
cepted. As all reads are basecalled and aligned during this experiment the unblock
efficiency can be observed by looking at just the left half (NOTHING). This is the case
as instead of being assigned as a control region the NOTHING region processed all
read chunks as normal and always sent an unblock response.

As a proof-of-concept, this experiment workedwith a clear difference in the read-
length distributions between the conditions (Figure 4.5a). However, there was little
extra data gathered from the accept all portion of the flow cell as the median read
length was ~1 kb longer than those seen in the rejected condition (Figure 4.5b).
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Figure 4.5: (a) Violin plot of read lengths per flow cell condition. On the left is the
reject all condition that sends an unblock signal after basecalling and
aligning the read chunks; on the right is the accept all condition which
accepts all reads after basecalling and aligning. The reject all condition
has amean read length of 1 672 bases while accept all has amean of 5 449
bases. (b) Median read length in the two conditions. The median read
length in the accept all condition is not far from the reject all condition.
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Scaling to the human genome

As an initial test of using real-time basecalling for selective sequencing using a
gigabase-sized reference, an experiment was setup that divided the flow cell sur-
face into four quadrants. Each of these quadrants was assigned a condition: control
(no selection), chromosomes 1–8 (50% of reads accepted), chromosomes 9–14 (25%
of reads accepted), and finally chromosomes 16–20 (12.5% of reads accepted). The
Read Until API allows channels to be excluded from selective sequencing, how-
ever these can only be specified as a range of included channels. Because the ac-
tual flow cell layout is not contiguous this method of setting aside control channels
is incompatible with how readfish divides the flow cell. Therefore, all data were
processed from all channels throughout the duration of the experiment. As read
chunks were made available they were basecalled by Scrappie and aligned to the
human reference genome by minimap2 (hg38, excluding alternate and unplaced
chromosomes). After the run finished all completed FASTQ data were aligned to
the same reference used during selective sequencing and the median read lengths
per chromosome were plotted (Figure 4.6a). The median read length for reads on
targeted contigs closely matches the median lengths seen in the control region (all
~2 kb) while the rejected reads in conditions half, quarter, and eighth are shorter
(~1–1.5 kb) (Figure 4.6a). In addition to subsets of chromosomes having the ex-
pected median read length as the control Figure 4.6b shows the yield ratio for each
chromosome compared to the control region. All targeted chromosomes sequenced
as well as those in the control region, withmost sequencing > 1.5× the amount seen
on the control.
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Figure 4.6: (a) Median read lengths for reads in each quadrant aligned to hg38. The
panels are organised as the quadrants were on the flow cell. In the con-
trol, all reads are sequenced; in the second, third and fourth quadrants,
reads mapping to chromosomes 1–8, 9–14 and 16–20, respectively, are
sequenced. The combined length of each of these target sets equates
to approximately 1

2 ,
1
4 and 1

8 of the human genome, respectively. The
chromosomes that were targeted in each section are highlighted in black.
(b) The yield ratio for each chromosome in each condition normalized
against the yield observed for each chromosome in the control quadrant.
(c) Channel heat map of throughput for each sequencing channel on the
flow cell surface.
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Guppy

About the time that these experiments with Scrappie and readfish were being de-
veloped, Guppy version 3.0 was released with wider GPU support. As Guppy is a
muchmore performant basecaller than Scrappie (Wick et al., 2019)we sought to use
it for the real-time basecalling step in readfish. Like Scrappie, Guppy uses recurrent
neural networks (RNNs) for their base calling models; however, the architecture
of Guppy’s models is proprietary and unknown. Guppy’s speed of basecalling is
also dependent on the model being used, either “fast” or “hac” (high accuracy).
Guppy’s models are tied to it’s version so can vary between upgrades. Moreover,
as Guppy utilises GPUs it’s performance is tied to the “compute capability” of the
hardware in use (Figure 4.7). An upgrade from Guppy version 3.4.5 to 3.6.0 in-
creased the size of the underlying models, leading to larger read batches in Read
Until. These larger read batches take longer to basecall and therefore accumulate
more data with each read batch. As more read chunks become available for analy-
sis basecalling progressively becomes slower until it cannot keep up with real-time
sequencing. The chunks in these larger batches also contain more data and so take
even longer to basecall (Figure 4.7 and Table 4.2).

Table 4.2: Descriptive statistics for basecalling time. The NVIDIA GTX 1080 and
Quadro GV100 GPUs have different compute capabilities (6.1 and 7.0 re-
spectively) which allows the GV100 to process more data faster using the
same underlying RNN model.

Time (seconds)
mean SD min max

GPU Guppy Model

1080
3.4.5 fast 0.139 0.083 0.025 0.413

hac 1.631 0.470 0.686 3.293

3.6.0 fast 1.459 1.887 0.059 6.354
hac 19.713 22.127 1.147 87.555

GV100
3.4.5 fast 0.070 0.026 0.014 0.183

hac 0.393 0.178 0.107 0.858

3.6.0 fast 0.553 0.441 0.058 1.404
hac 3.723 6.033 0.232 46.602

As Guppy is the current state of the art basecaller for ONT data we opted to use
Guppy for the real-time basecalling in readfish. This is made possible through the
ont-pyguppy-client-lib (ONT, 2021), a Python library that enables interactive
basecalling. As Guppy is used through a different library interface to Scrappie it
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Figure 4.7: Comparison of Guppy v3.4.5 and v3.6.0 on the NVIDIAGTX 1080 and
Quadro GV100 GPUs. Using playback and the Read Until API batches
of reads were retrieved as they would be during a normal experiment
and basecalled. The time to basecall all the read chunks in each batch
was recorded. Different calling models are shown hac (high accuracy)
in black and fast in grey. The size of the basecalling models increased
between these two Guppy versions and this can be seen in the time that
it takes to basecall batches of reads. With Guppy v3.4.5 all batches took
less than 10 seconds, in contrast, batches of reads took between 10 and
100 seconds to call with Guppy v3.6.0.

required restructuring and refactoring parts of readfish to allow the use of ont-
pyguppy-client-lib.

Getting smaller chunks of data fromMinKNOW

When running selective sequencing the requirement to inspect molecules at fre-
quent intervals needs to be balanced with what the computer is capable of supply-
ing. Chunks of live signal, by default, are one second in duration. This however,
can be altered prior to beginning an experiment. We found that a chunk duration
of 0.4 seconds was ideal when sequencing with a MinION flow cell (512 pores) as
this yields ~180 bases of nucleotides per iteration (Figure 4.8a). This allowed reads
to be placed within the first few chunks that are inspected (Figure 4.8b). In typi-
cal experiments 90% of reads are processed (called, mapped, and a decision made)
within three chunks, ~1.2 seconds (Figure 4.8b).
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Figure 4.8: (a) Mean read length per chunk, error bars show standard deviation
from the mean, and red triangles show expected read length for a given
chunk, calculated as 𝑐ℎ𝑢𝑛𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑐ℎ𝑢𝑛𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑏𝑎𝑠𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑. So
a chunk duration of 0.4 seconds and a sequencing speed of ~450 b/s
results in {180, 360, 540, … , 𝑁}. (b) Proportion of read fragments pro-
cessed in a given number of chunks. 90% of reads are processed in 3
chunks, 95% in 5 chunks and 99% in 12 chunks.
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4.2.5 Human chromosome enrichment

Once Guppy had been integratedwith readfish it’s performance needed to be quan-
tified. To do this the previous experiment, splitting the flow cell into fractions of the
human genome (Section 4.2.4), was repeated. As before, the flow cell surface was
divided into the same four quadrants: control (no selection), chromosomes 1–8
(50% of reads accepted), chromosomes 9–14 (25% of reads accepted), and finally
chromosomes 16–20 (12.5% of reads accepted). Selectively sequenced reads have a
median read length of ~15 kb (Figure 4.9a); while rejected reads have amedian read
length of ~500 bases, equating to ~1.1 seconds of sequencing time (Figure 4.8b).

This run generated 9.5Gbof sequence data, whichwasunevenly distributed across
the quadrants; 3.47 Gb in the control, 2.79 Gb at 50% acceptance,1.84 Gb at 25% ac-
ceptance and only 1.22 Gb at 12% (Figure 4.9c). For each quadrant the optimal en-
richment is 2-fold, 4-fold and 8-fold but observed enrichment is lower, most likely
due to reduced yield (Figures 4.9b and 4.9c).

Analysis of available channels contributing to data generation shows that sequenc-
ing capacity is lost faster as more reads are rejected(Figure 4.9d). We did not nu-
clease flush the flow cell, as this was not currently available. Though, this should
increase throughput and enrichment as it recovers lost sequencing capacity due to
blocked pores.

4.2.6 trans-nuclease flow cells

An alternative to washing the cis surface of the flow cell is a trans-nuclease. A trans-
nuclease is the application of nuclease enzymes to the transwell of the flow cell. This
nuclease would act on strands of nucleotides that have already begun to progress
through a nanopore in a similar manner to the enzyme in Section 2.1.6. These se-
quenced strands would be cleaved in the trans compartment of the flow cell. This
would, in principle, reduce the length of the molecules that need to be ejected from
a nanoporewhen unblocking and reduce the number of pores going into the “recov-
ering” or “unavailable” states (Table 3.1). This would have the effect of increasing
flow cell throughput without the need to flush and reload — reducing the amount
of sequencing library needed.

To test this out, ONT provided a custom flow cell that included a trans-nuclease.
We used our initial human-chromosome quadrants experiment as a template. In
this instance the experimental conditions are reversed with “control” on the right
and 12% on the left.

This run generated 1.184 Gb of data in 18 hours. With yields comparable to the
initial experiment with Guppy in 12% and 25% conditions (Figure 4.10b). The 50%



Readfish development Results 75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

0
2
4
6
8

10
12
14
16

M
ed

ia
n 

Re
ad

 L
en

gt
h 

(k
b) 0: Control

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

1: 50% (chr1-8)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

2: 25% (chr9-14)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

3: 12% (chr16-20)

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

0.0

0.5

1.0

1.5

2.0

2.5

Yi
el

d 
ra

tio

0: Control
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

1: 50% (chr1-8)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

2: 25% (chr9-14)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

Chromosome

3: 12% (chr16-20)

(b)
0: Control 1: 50% (chr1-8) 2: 25% (chr9-14) 3: 12% (chr16-20)
3.47 GB 2.79 GB 1.84 GB 1.22 GB

0 8 16 24 32
Mb

(c)

0 5 10 15 20 25 30
Hour

0
20
40
60
80

100
120
140

Se
qu

en
cin

g
Ch

an
ne

ls

0: Control
1: 50% (chr1-8)

2: 25% (chr9-14)
3: 12% (chr16-20)

(d)

Figure 4.9: (a) Median read lengths for reads sequenced from NA12878 and
mapped against hg38 excluding alt chromosomes. The panels are or-
ganised as the quadrants were on the flow cell. In the control, all reads
are sequenced; in the second, third and fourth quadrants, readsmapping
to chromosomes 1–8, 9–14 and 16–20, respectively, are sequenced. The
combined length of each of these target sets equates to approximately
1
2 ,

1
4 and 1

8 of the human genome, respectively. (b) Yield ratio for each
chromosome normalised against the yield observed in the control quad-
rant. (c) Heat map of throughput per channel in each quadrant on the
flow cell. As the proportion of the genome being rejected increases (left
to right) the yield decreases. (d) A plot of the number of channels con-
tributing sequence data over the course of the sequencing run. Channels
are lost at a greater rate when more reads are rejected.
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condition, however, sequenced less relative to the control, and so did not enrich
for these targets at all. In addition the median read length for on-target reads was
variable in across the experimental conditions (Figure 4.10a)with the 12% condition
having amedian on-target read length of ~5.8 kb, while the 25% and 50% conditions
had ~8.8 kb and ~8.4 kb respectively.

Due to the extremely low throughput compared to the other iterations of this
experiment (Section 4.2.5) trans-nuclease flow cells are not a viable alternative to
nuclease flushing and reloading at the moment.
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Figure 4.10: trans-nuclease flow cell: (a) Median read lengths for reads sequenced
from NA12878 and mapped against hg38 excluding alt chromosomes.
The panels are organised as the quadrants were on the flow cell. In
regions 0, 1, and 2 reads mapping to chromosomes 16–20, 9–14 and
1–8, respectively, are sequenced. In the control region all reads are se-
quenced. (b) Yield ratio for each chromosome normalised against the
yield observed in the control quadrant.

4.2.7 Nuclease flushed flow cell

Another approach to improve throughput and yield on a sequencing run is to nu-
clease flush and wash the flow cell (Section 2.1.6). Here the quadrants experiment
was repeated with a nuclease flush and library reload every 24 h. The same quad-
rants were used generating a total of 30.5Gb of data in 72 h. Like the initial run
using Guppy (Section 4.2.5) the yieldwas spread unevenly across the flow cell (Fig-
ure 4.11c) with 9.37Gb in the control region; 8.70Gb at 50% acceptance; 6.38Gb at
25% acceptance; and 4.78Gb at 12.5% acceptance.
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Across the entire flow cell, reads that were rejected had a median read length of
458 b while selected reads had a median read length of ~6.6 kb (Figure 4.11a).

4.2.8 Exon enrichment

Despite the cost of sequencing dropping year on year, it is still too expensive to carry
out whole genome re-sequencing at a large scale; for example the cost of sequencing
a human genome is roughly $1,00010. Instead, looking at a relevant genomic subset
is more cost effective. One genome-wide target set is the exome, all the protein
coding regions, which encompasses ~1–2% of the human genome (International
Human Genome Sequencing, 2001, 2004; Venter et al., 2001).

Initial efforts to sequence human exomes required the generation of exome cap-
ture arrays with 164, 007 regions (Ng et al., 2009). In contrast, selective sequencing
of exonic regions using readfish only requires the curation of target coordinates.
These target coordinates were selected by identifying protein coding genes from
the human genome (GRCh38) excluding X, Y, and alternate chromosomes (Sec-
tion 2.2.1). In total, 19, 296 genes were identified. Of these genes ~10, 000 were
selected as they are situated on odd numbered chromosomes. Each target region
was expanded by 3 kb both upstream and downstream; overlapping targets were
then merged into single regions. This resulted in 25, 600 targets covering a selected
region of ~176Mb, which is ~5% of the human genome.

Two sequencing runs were conducted using a singleMinIONflow cell, with a nu-
clease flush performed at 24 h. Both runs used MinKNOW (for GridION) version
3.6.0 andGuppy (GPU) version 3.2.8. Readfishwas run as normal, with only one re-
quired change to MinKNOW’s configuration: setting break_reads_after_seconds

to 0.4; to ensure that reads can be unblocked before they have sequenced too much.
The initial run started with 1, 640 pores available for sequencing and finished with
286 pores at the last mux scan. Nuclease flushing and reloading additional library
restored 791pores (1, 077 pores total). This complete sequencing runyielded 11.68Gbp
of sequence data; of which 8.5 Gbp were selectively sequenced and 3.18 Gbp were
unblocked (Table 4.3). Both the sequenced and unblocked subsets are similar be-
tween each run with a mean read length of 7, 794.2 and 7, 941.4 bases in the se-
quenced groups and 509.6 and 521.6 bases in the unblockedgroups (Table 4.3 andFig-
ure 4.12a). The unblocked subsets consist of ~5–6× more reads than the sequenced
subset; which has ~2.5–3× greater yield concentrated on exons on odd chromo-
somes.

10https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
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Table 4.3: Exon enrichment run summary statistics from NanoStat for both the run
before the nuclease flush and reload (Run 1) and after (Run 2). Each run
is split into the sequenced and unblocked subsets and thewhole run. Both
Run 1 and Run2 performed similarly as can be seen by the consistent read
length and quality values.

Run 1
Sequenced Unblocked Complete run

Active channels: 512 512 512
Mean read length: 7,794.2 509.6 1,527
Median read length: 7,059.0 414.0 440.0
Mean read quality: 11.1 11.4 11.4
Median read quality: 12.2 11.8 11.9
Number of reads: 607,000 3,737,288 4,344,288
Read length N50: 11,641.0 500.0 8,949.0
Total bases: 4,731,092,828 1,904,399,825 6,635,492,653

Run 2
Active channels: 506 499 506
Mean read length: 7,941.4 521.6 1,731.1
Median read length: 7,241.0 412.0 444.0
Mean read quality: 10.9 11.0 11.0
Median read quality: 11.7 11.4 11.5
Number of reads: 474,564 2,436,819 2,911,383
Read length N50: 11,463.0 511.0 9,238.0
Total bases: 3,768,718,814 1,271,162,488 5,039,881,302
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Exons had a average median coverage of 17.23× (mean 17.40×) and 0.98× (mean
1.22×) for target and control exons respectively (Figures 4.13a and 4.13b and Ta-
ble 4.4). 99% of exon targets had a coverage >7.17× compared with 99% of control
regions having a coverage of ≤4.34× (Figure 4.12b and Table 4.4).

Table 4.4: Mean coverage for exon targets (odd chromosomes) and exon controls
(even chromosomes). Quantile 50% represents the median. Exon targets
had much greater coverage, with 99% of targets having at least 7.17× cov-
erage.

Mean coverage
mean std 1% 50% 99%

Exon Controls 1.22 1.09 0.00 0.98 4.34
Exon Targets 17.40 5.02 7.17 17.23 29.77

Using just computational selective sequencing we were able to select ~5% of the
human genome, by only sequencing exonic regions on odd numbered chromo-
somes. With the addition of nuclease flushing and reloading lost sequencing capac-
ity can be recovered, this can be seen in Figure 4.14 as the experiment progresses
fewer reads are seen in each successive read batch until the restart. Readfish is also
able to keep up with the rate of live data generation on the device as the mean time
for processing a read batch never exceeds the 0.4 s period that they are sent on (Fig-
ure 4.14e).
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Figure 4.11: (a) Median read lengths for reads sequenced from NA12878 and
mapped against hg38 excluding alt chromosomes. The panels are or-
ganised as the quadrants were on the flow cell as in Section 4.2.5.
(b) Yield ratio for each chromosome normalised against the yield ob-
served in the control quadrant. (c) Heat map of throughput per chan-
nel in each quadrant on the flow cell. As the proportion of the genome
being rejected increases (left to right) the yield decreases. (d) A plot
of the number of channels contributing sequence data over the course
of the sequencing run. Channels are lost at a greater rate when more
reads are rejected. But flushing and reloading (dashed lines) restore all
regions to the same level.
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Figure 4.12: (a) Read length distribution for sequenced and unblocked reads from
both runs in the exome enrichment experiment. Here, x-axis is read
length (log scale) and y-axis is the count for each bin. As in Table 4.3 the
unblocked reads have a much shorter distribution than the sequenced
reads, showing that readfish is able to make it’s decisions quickly.
(b) Distribution of mean coverage for Read Until exon targets (odd
chromosomes) and control exons (even chromosomes). >99% of tar-
get regions had at least 7.17× coverage, while only 1% of control regions
had >4.34× coverage. (Table 4.4)
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Figure 4.13: Coverage plots for two example loci, BRCA1 and the HOX cluster (cov-
eringHOXC4–13). (a) BRCA1was enriched for as it resides on chromo-
some 17 and shows greater coverage over exonic regions, shown in the
bottom two tracks displaying exons and readfish targets respectively.
There is also a visble reduction in coverage (on both Run 1 and Run 2)
at ~43.15 mb where there no exons or targets. (b) HOX cluster, which
resides on chromosome 12, has coverage close to 0× in both exonic and
intergenic regions. Note there are no target regions in (b) as this is an
even numbered chromosome.
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Figure 4.14: Human Exome (a) Histogram of read batch size throughout the se-
lective sequencing program. (b) Histogram of decision times (time
to choose unblock, stop receiving, or proceed from an alignment).
(c) Counts of decision classifications for read fragments seen a given
number of times. (d) Mean batch size, in bins of 2000, seen through-
out the selective sequencing program. (e) Mean process time, in bins
of 2000, for batches of read fragments throughout the run. (f) Mean
decision time per read fragment, in bins of 2000, throughout the run.
As the number of reads in a batch reduces, the overhead time of calling
becomes more apparent. The vertical dashed lines mark flushing and
restart of the run and illustrate the benefits of flushing.
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4.2.9 DeepNano-Blitz — CPU basecalling

To allow readfish to be more broadly usable a suitably performant CPU basecaller
was required. For this, DeepNano-Blitz was selected as the fastest mode is 100×
faster than Guppy (v3.4.4, CPU) using the high accuracy model and ~13× faster
thanGuppyusing the fastmodel (Boža et al., 2020). DeepNano-Blitz is able tomain-
tain read accuracy while processing much more data, dropping only 4.5% points of
median read accuracy comparingDeepNano-Blitz’s fastestmodelwithGuppy’s fast
model. As DeepNano-Blitz does not require a GPU for basecalling this expanded
the compatible platforms from just linux to include MacOS and Windows.

With the exception of how the basecaller is initialised there is no difference to
how readfish operates when using DeepNano-Blitz as the basecaller. In these ex-
periments we ran the DeepNano-Blitz basecaller on a subset of the human exome
(Section 4.2.8) panel that consists of 717 gene targets that are implicated in cancer,
from the COSMIC panel (Tate et al., 2018). These experiments were carried out on
a variety of platforms that have little or no support for GPU accelerated basecalling,
most notably MacOS and Microsoft Windows.

ForMacOS there is no specific setup required as DeepNano-Blitz can be compiled
natively on this platform. However, on Windows compilation is challenging so a
“Windows Subsystem Linux” installation is required. This is a virtual container
that allows a linux installation to be operated on a Windows computer. Once WSL2
is setup readfish installation occurs as normal for a UNIX computer.

To compare CPU basecalling with GPU basecalling we set up six experiments.
Two utilised Guppy on the NVIDIA Quadro GV100 and GTX 1080 Ti on a Grid-
ION Mk1 and a linux workstation respectively. The remaining four CPU runs were
split between the GridION Mk1, the two workstations (linux and Windows) and a
MacBook Pro (from 2018, with a ~3GHz i7 processor). In all cases enrichment is
comparable to that seen with GPU accelerated basecalling (Table 4.5).

The differences in coverage are mostly the result of differences in yield for each
experiment. This can be seen in the GPU experiments, which both have a yield
of < 10 Gb, but have the lowest mean and median read lengths (Table 4.5). As a
result of more efficient rejection more on-target coverage is achieved. This is further
exemplified by the Windows run, which sequenced ~17 Gb in total, but achieves
similar coverage to GridION GPU run that had a roughly half the yield.
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Table 4.5: Comparison of GPU and CPU basecalling. Mean andMedian read length
are a proxy for readfish efficiency aswhen these are lower they correspond
to unwanted reads being ejected faster. Basecalling on GPU is the most
efficient, but CPU basecalling is performant and delivers enrichment of
targets.

Mean Read
Length

Median Read
Length

Yield
Gb

Mean
Coverage
of Targets

Coverage
SD Flushes

GridION GPU 735.6 423.0 9.08 31.30 5.54 2
GridION CPU 878.9 662.0 14.93 29.78 5.30 2
Linux GPU 683.7 402.0 5.90 19.11 3.23 2
Linux CPU 771.2 564.0 14.31 27.78 5.09 2
MacBook CPU 1085.0 745.0 14.03 29.08 5.24 2
Windows CPU 1146.9 823.0 17.27 34.47 6.62 3

4.2.10 Selective sequencing with barcoded samples

Enrichment and depletion by barcode

Barcoding is useful when the amount of data needed for a sample is less than the
throughput of a single flow cell. By attaching unique tags to ends of dsDNA during
library preparationmany samples can be sequenced simultaneously (multiplexed).
Then, following sequencing each sample can be de-multiplexed by decoding the
attached barcodes. By pooling samples on a single flow cell the sequencing capacity
is shared between libraries making more efficient use of the flow cell and reducing
the cost of sequencing a single sample.

Guppy v4.0 and newer allows a barcode kit to be specified when passing read
chunks for basecalling. As such readfish was further developed so that individual
barcodes can be configured to be included or excluded instead of selecting based
on genomic alignment. This configuration was trialled over three hour-long exper-
iments using four barcoded samples of Clostridioides difficile. Initially a control run
was conducted to ascertain a baseline for each sample. Then two subsequent exper-
iments were carried out; the first sought to enrich barcodes 8 and 11while depleting
barcodes 9 and 10. The final experiment was the inverse of the second, enriching
barcodes 9 and 10 while depleting barcodes 8 and 11.

The control gave ~180 Mb of sequence data, the enrichment for barcodes 8 and
11 gave ~91 Mb, and barcodes 9 and 10 gave ~103 Mb (Table 4.6). The distribution
of read lengths in the sequenced conditions is similar to that seen in the control
run (Table 4.6 and Figure 4.15a). None of the enriched targets exceeded the yield
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seen in the control experiment, however depleted targetswere greatly reduced (Fig-
ure 4.15b). The read count for each enriched barcode is similar to that seen in the
control, with depleted targets diminished to almost zero (Figure 4.15c). In the en-
rich and deplete conditions the “unclassified” read count is greatly increased due
to using a “barcode at both ends” configuration that requires a read to have both a
forwards and reverse barcodes to be fully classified. If a read is successfully ejected
in response to an unblock request then it will, by definition, not have both barcodes
and so will be classed as “unclassified”. This is why the “unclassified” category is
increased in the experimental conditions.

Table 4.6: Read length statistics for each of the enrichment/depletion experiments,
subset on whether the reads were enriched (“Sequenced”) or depleted
(“Unblocked”). The mean and N50 of the sequenced groups are similar
to that of the control showing that sub-samples can be enriched without
impacting the sequencing library characteristics.

Experiment Sequenced Read length
Yield (Mb) Mean N50

Control Sequenced 180.75 2,590.70 4267

Barcodes 08 & 11 Sequenced 62.62 2,523.89 4600
Unblocked 28.67 469.53 498

Barcodes 09 & 10 Sequenced 72.30 2,179.14 3672
Unblocked 31.38 471.24 501

Selective sequencing — barcode specific targets

While it is convenient to be able to stop sequencing entire barcoded samples after a
run has started it is more likely that each barcoded sample requires it’s own target-
ing that is more nuanced than on or off. To address this readfish was modified to
enable multiple conditions, similar to the quadrants (Sections 4.2.4 and 4.2.5) con-
figuration, but instead all channels are considered and the identified barcode deter-
mines the selective sequencing criteria; read chunks that do not receive a barcode
classification within four chunks are unblocked as they will likely remain unclassi-
fied.

An experiment was set up, using the C. difficile sample aiming to enrich quarters
of the ~4Mb genome on each barcode. That is, barcodes 8, 9, 10, and 11 consider the
regions 0–1, 1–2, 2–3, and 3–4 Mb respectively. In one hour this experiment gener-
ated 384.38 Mb of data which was basecalled and aligned to the C. difficile genome
used during selective sequencing. The per-base read depth was computed using
samtools depth (v1.11) for each barcode group subdivided into “sequenced” and
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Figure 4.15: Barcode enrichment and depletion. In each figure columns left to right
are control, select barcodes 8 and 11, and select barcodes 9 and 10.
(a) Read length distributions for each barcode classification (including
unclassified) split by whether the read was selected (“Sequenced”)
or rejected (“Unblock sent”). (b) Yield for each experiment and bar-
code compared to the control experiment. No enriched targets ex-
ceeded the yield seen in the control experiment, but depleted targets
are greatly reduced compared to the control. (c) Read count for each
barcode over each experiment. Enriched targets have similar read count
to that seen in the control while depleted targets are greatly reduced.
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“unblocked” reads. In barcodes 9, 10, and 11 the mean read depth for the targeted
region was ~5× greater in the sequenced categories compared with the unblocked
off-target categories (Table 4.7). The target regions are clearly enriched compared
to the rest of the genome (Figure 4.16); moreover the target regions have lower read
depth in the “Unblocked” category, suggesting that read chunks are correctly iden-
tified with both their barcode and genomic position.

Table 4.7: Mean coverage over theC. difficile genome split by barcode andbywhether
reads were sequenced or unblocked.

Barcode Sequenced Mean coverage depth
on-target off-target

split total split total

barcode08 sequenced 0.197 0.198 0.056 0.162unblocked 0.001 0.106

barcode09 sequenced 7.059 7.220 0.610 1.510unblocked 0.161 0.900

barcode10 sequenced 7.821 7.931 0.750 1.572unblocked 0.111 0.821

barcode11 sequenced 12.328 12.490 0.803 1.815unblocked 0.162 1.013
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Figure 4.16: Coverage depth over Clostridioides difficile per barcode (rows) and split
bywhether the readswere sequenced (left column) or unblocked (right
column). Each barcode was selecting approximately 1

4 of the C. diffi-
cile genome; with barcodes 8, 9, 10, and 11 targeting coordinates 0.00–
1.03 Mb, 1.03–2.06 Mb, 2.06–3.09 Mb, and 3.09–4.12 Mb respectively.
Target regions are labelled in black for each barcode while off-target
regions are labelled in grey.
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4.3 Conclusion

Selectively sequencing individual molecules using only computational methods is
a unique capability of nanopore sequencing. Using real-time basecalling instead
of raw signal allows selective sequencing experiments to be carried out on com-
puters capable of live basecalling, rather than using network connected servers for
analysis (Loose et al., 2016; Edwards et al., 2019; Kovaka et al., 2020). The careful
management of the time that readfish takes while processing real-time data was
essential as handling the real-time stream too slowly results in a backlog of unpro-
cessed chunks. Having an unprocessed backlog, in turn, means that readfish is no
longer synchronised with the sequencer and cannot effectively carry out selective
sequencing. Using a sufficiently fast basecalling and a performant aligner are es-
sential for this approach to work. As demonstrated in the difference between using
Scrappie, a CPU basecaller (Figure 4.6) and Guppy, a GPU accelerated basecaller
(Figure 4.9). Though, as DeepNano-Blitz demonstrates (Section 4.2.9 and Table 5.3)
an optimised CPU basecaller can still be used on platforms where GPU basecalling
is not yet enabled.

Throughout the development of readfish we have demonstrated that software-
based enrichment is possible and results in real enrichment (Figure 4.11). For se-
lective sequencing in this form to be effective though efficiency is everything. That
is, the faster reads can be identified and unblocked, the better; and standard tech-
niques for increasing yield, such as flushing and reloading library on to your flow
cell can help recover capacity and improve enrichment. This is particularly evi-
denced by Scrappie, which shows very little enrichment (Figure 4.6b) due to the
speed of basecalling (Figure 4.3); and, to a certain degree, DeepNano-Blitz, which
shows acceptable levels of enrichment but is still slower than GPU accelerated base-
calling (Table 4.5).

Most importantly, though, readfish has done what it set out to do. Using the
processing power available on a single computer — whether it is GPU equipped or
not —we are able to enrich for an arbitrary number of targets across gigabase-sized
genomes.

In addition the inclusion of real-time barcode demultiplexing allows readfish to
work in more common sequencing workflows where samples are pooled. It is not
necessary for all barcoded samples to be under selection as this approach is flexible
to many different sequencing configurations.

Signal based methods, such as UNCALLED (Kovaka et al., 2020) and Sigmap
(Zhang et al., 2021) are able to utilise longer signal references; that is, >5 kb. Though,
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UNCALLED’s performance still degrades with reference genome length and repet-
itiveness; using intensivemasking procedures on subsets (rather thanwhole) of the
reference genome are essential for UNCALLED to work. Moreover, due to the na-
ture of the pre-processing UNCALLED carries out — at least 30 iterations of kmer
masking — it is unlikely that UNCALLED will be able to achievable real-time ref-
erence or target updates. Sigmap performs raw signal alignment faster than UN-
CALLED but does not have an interface with real-time data yet (Zhang et al., 2021).
It is not likely to be useful for large scale selective sequencing as the signal index
generated is ~30–34× larger than the corresponing genomic index.



Chapter 5

Applications of readfish

5.1 Introduction

Readfish is able to enrich arbitrary targets within a library of molecules using a two-
step basecalling and alignment process. During the course of developing readfish
this approach was trialled by enriching fractions of the human genome, half of the
human exome, and a panel of target loci implicated in cancer (COSMIC). The ad-
vantage of this approach, over signal based methods, is that other existing tools —
such as barcode demultiplexers andmetagenomic classifiers— can be incorporated
to provide greater information for selective sequencing.

In this chapter we will take a look at more real-world uses for readfish. Con-
sidering panels of targets genes, barcode specific gene panels, adaptive control of
sequence depth both with and without a priori knowledge of the sample.

5.1.1 Work contribution

The majority of the work in this chapter was done by the author apart from DNA
library preparation and flow cell flushing and reloading which was carried out by
Nadine Holmes in Deep Seq. The initial design and selection of target panels was
done in collaboration with Matt Loose. Real-time centrifuge analysis was written
in collaboration with Rory Munro and Thomas Clarke. All of the bioinformatics
analysis was carried out by the author.

5.2 Gene panels

Making targeted panels with molecular methods, such as CRISPR-Cas9 or PCR am-
plification, is both time consuming and expensive. With software-based selective
sequencing target panels can easily be customised or changed by selecting a new
reference genome and target coordinates.

These two experiments, whole exome and a panel of genes implicated in cancer
(COSMIC) demonstrate just that. We can provide a minimal set of targets and go
from there, then you can re-evaluate and try again.

92
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5.2.1 COSMIC panel

With the ability to target and enrich thousands of genomic loci at a low percentage
of the human genome, we sought another target set. We settled on the Catalogue of
Somatic Mutations in Cancer (COSMIC) (Tate et al., 2018). This panel consists of
717 genes implicated in somatic cancers. To prepare the targets, they were down-
loaded and all loci with genomic coordinates had 5 kb added both upstream and
downstream. This resulted in a panel of 678 genes covering 89.9 Mb, or ~2.7% of
the human genome.

Initially, two sequencing runs were conducted using a single MinION flow cell,
with a nuclease flush performed within 24 h. Both runs used MinKNOW (for Grid-
ION) version 3.6.0 and Guppy (GPU) version 3.2.8. Readfish was run as normal,
setting break_reads_after_seconds to 0.4. The initial run started with 1, 724 pores
available for sequencing and finished with 250 pores at the last mux scan. The first
run generated 3.70 Gb of sequence data. After nuclease flush and reload the flow
cell generated a further 6.33 Gb, resulting in a total yield of ~10 Gb (Table 5.1).

For these 678 targets, the average coverage was 30.89× while the depleted portion
of the genome was at 3.38×; 99% of COSMIC targets are covered at 3.65× while 99%
of the rest of the genome is covered at ~1× (Table 5.2).

Table 5.1: COSMIC panel run summary statistics from NanoStat for experiment
“ml_032”. Split into the sequenced and unblocked subsets for the com-
plete run. Extended table in Table B.1 (Page 145)

Sequenced Unblocked Complete run
Active channels: 511.0 511.0 511.0
Mean read length: 5,848.0 505.6 764.6
Mean read quality: 9.6 11.0 10.9
Median read length: 3,098.0 424.0 430.0
Median read quality: 10.7 11.3 11.3
Number of reads: 636,138.0 12,487,287.0 13,123,425.0
Read length N50: 11,191.0 501.0 855.0
STDEV read length: 6,730.2 334.0 1,902.2
Total bases: 3,720,138,912.0 6,314,097,902.0 10,034,236,814.0

With the COSMIC panel being easy to use for both sequencing and analysis we
chose to use it for benchmarking and testing other platforms andwith alternate base
callers. These other experiments encompass six sequencing runs. Two experiments
utilise GPU base calling with Guppy running on a GridIONMK1 and a linux work-
station; they differ in the GPU used, with the GridION using an NVIDIA Quadro
GV100while the linuxworkstationwas equippedwith anNVIDIAGTX1080 Ti. The
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Table 5.2: Coverage of COSMIC panel targets and the rest of the genome. 99% of
COSMIC targets are covered at 3.65× while 99% of the rest of the genome
is covered at ~1×

count mean std 1% 50% 99%
Cancer Panel 678 30.89 6.63 3.65 32.28 40.16
Rest of the genome 700 3.38 9.28 1.02 2.03 26.54

four other experiments utilise CPU base calling with DeepNano-Blitz, with each be-
ing run on a different computer. Two CPU runs used Ubuntu 16.04 on the GridION
MK1 and linux workstation, one run used Ubuntu 18.04 running using Windows
Subsystem for Linux (WSL) on a Windows 10 workstation; finally one run used
macOS running on a 2018 MacBook Pro.

DNA for each run was extracted as in Section 2.1.1. Following extraction DNA
was sheared to be in the range 10–20 kb. Each sequencing library was prepared us-
ing SQK-LSK109 sequencing kits. Each run was carried out as normal for a targeted
sequencing run, with a nuclease flush and library reload every 24 h.

With the exception of the “Linux GPU” run all experiments had good yield, rang-
ing from ~10–18 Gb on GridION using GPU to WSL using CPU respectively (Ta-
ble 5.3). In addition, each run showed efficient rejection read lengths, indicating
that readfish was able to keep upwith data generation in real-time andmake timely
repsonses (Table 5.3). Mean coverage of targets was consistent with flow cell yields,
as theworst performing flow cell (LinuxGPU) also had the lowest coverage of these
runs (Table 5.3). Despite this, mean on-target coverage ranged from 19.19× (Linux
GPU) to 34.64× (WSL) (Tables B.7 and 5.3). All platformswere able to enrich target
loci compared to the rest of the genome (Figures 5.1b to 5.1e).

The difference in coverage between each run is primarily as a result of yield for
each flow cell. However, both the runs utilising GPU base calling have much lower
yield but have comparable target enrichment to CPU base calling runs. This is down
to the time it takes to unblock a read, as the faster an unwanted read can be ejected
the more other molecules can be sampled. In addition, faster unblock times likely
reduce thewear on flow cells that repeatededly unblocking can cause as there is less
opportunity for molecules to become tangled and block the nanopore from further
sequencing.
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Figure 5.1: Continued of the following page.
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Figure 5.1: (a) Mean coverage over all genes found in the COSMIC panel and the
rest of the human genome. Panel targets have a mean coverage of 30.89×
compared with a mean coverage of 3.38× in off-target regions (for a sin-
gle GridION run). Coverage plots for four example loci, BRCA1 (b),
HOXC11 & HOXC13 (c), PML (d), and RARA (e). Coverage plots in
descending order are: GridION CPU, Linux CPU, MacBook Pro CPU,
Windows CPU, Linux GPU, and GridION GPU. (b,c) both have a win-
dow of ~220 kbp and (d, e) both have a window of ~150 kbp; coverage
aligns well with the selected region (bottom track on each plot) and in
each run coverage over the targets is approaching 40×.
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Table 5.3: Run statistics for GPU and CPU base calling experiments, calculated us-
ing NanoStat. Mean read length is split into sequenced and unblocked
subsets as determined by readfish logs. Rejection is most efficient when
using GPU base calling (highlighted), but CPU base calling is still perfor-
mant enough for targeted sequencing.

Mean Read Length Yield Mean FlushesSequenced Unblocked (Gb) Coverage
GridION MK1 CPU 3,773.8 667.7 14.93 29.78 2
GridION MK1 GPU 5,848.0 505.6 9.08 31.30 2
Linux CPU 2,517.9 625.5 14.31 27.78 2
Linux GPU 4,792.7 486.8 5.90 19.11 2
MacBook Pro CPU 3,524.0 891.3 14.03 29.08 2
Windows CPU 3,003.9 975.9 17.27 34.47 3
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5.3 Barcoded samples

Readfish can be configured to handle barcodes in twoways. For simple experiments,
the user can identify a list of barcodes to be either rejected or accepted. In this way
users can exclude or include a subset of barcodes on a sequencing run (Section 4.2.10
and Figure 4.15). For more complex experiments, the user can configure a set of
targets for each individual barcode in a library and so sequence specific regions from
each (Section 4.2.10 and Figure 4.16). There is no requirement for each sample to be
from the same organism and so readfish can target multiple references in a single
genomic index.

To test this approach, we used three previously described cell lines: GM12878,
from the Utah/CEPH pedigree (Jain et al., 2018a); NB4, a cell line carrying a fu-
sion between PML andRARA representing an acute promyelocytic leukemia (APL)
(Mozziconacci et al., 2002); and 22Rv1, a prostate cancer derived cell line containing
significant chromosomal abnormalities (Liu et al., 2010). Each sample used a spe-
cific panel of gene targets based on known variation (Table 5.4). GM12878 used the
TruSight 170 Tumor panel (Na et al., 2019). The NB4 cell line used TruSight RNA
Fusion Panel (Siegfried et al., 2018) as it contains an APL fusion. Finally, 22Rv1
being a prostate cancer line we used the previously described COSMIC panel (Tate
et al., 2018).

Table 5.4: Run metric performance per barcode and over the entire flow cell.

Barcode Sample Panel Gene Number

01 GM12878 TruSight 170 Tumor Panel 170
02 NB4 TruSight RNA Fusion Panel 508
03 22Rv1 COSMIC 717

Samples were barcoded and sequenced on a single flow cell, and run for 72 h,
including a nuclease flush and reload every 24 h. In a single experiment using a
flow cell with 1,330 pores, 18.1Gb of data were generated, with a total of 15.0Gb
being barcoded successfully (Table 5.5).

Across the whole experiment, the on target reads had an N50 of ~7 kb, with the
rejected read N50 being 579 b, or approximately 1.3 s of sequencing which is fully
in-line with the observed classification time in non barcoded samples (Figure 4.8b).
This results in mean read coverage on target regions of between 11–15×. Inspec-
tion of individual targets including BRCA1, NBR1, PML and RARA demonstrates
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the ability to specifically target unique regions on each sample (Figure 5.3). Cur-
rent best practice for variant calling requires higher minimal depth than we achieve
when looking at three samples. However, long range structural variants can be
measured and so we used cuteSV (Jiang et al., 2020) to analyse these three samples.
As expected, multiple reads supporting the detection of a fusion between PML and
RARA were detected in the NB4 cell line (Figure 5.3). In contrast, this rearrange-
ment was not found in the 22Rv1 line and it cannot be excluded in GM12878 as nei-
ther PML nor RARA were within the gene panel used for this cell line (Figures 5.2
and 5.3).

Table 5.5: Run metric performance per barcode and over the entire flow cell.

Barcode Sample Yield
(Gb)

On
Target
(Gb)

On
Target
N50

On
Target
Mean

Off
Target
Mean

Mean
Target

Coverage

01 GM12878 3.80 0.355 8,149 1,926 554 11.0
02 NB4 6.10 1.240 7,191 4,203 551 15.0
03 22Rv1 5.10 1.250 6,858 5,065 556 11.5

Unclassified 3.10 736
Total 18.79 3,221 587
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Figure 5.2: Continued on the following page.
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Figure 5.2: Illustration of coverage over each barcoded sample for each target in the
panel. Blue is sequenced read coverage, red illustrates coverage of re-
jected reads. (a) shows coverage over BRCA1 and the adjacent gene
NBR1. BRCA1 was a target for barcode 1 and 3, but not 2. The targeted
regions are illustrated below the coverage plots. Note that the region rep-
resenting BRCA1 differs in barcode 1 and 3 by design. NBR1 was only
targeted on barcode 2. (b, c) illustrate coverage over PML and RARA
respectively, which were only targeted on barcodes 2 and 3.



Figure 5.3: Using Ribbon, we visualise reads covering PML (chromosome 15) and any known fusions. (a) Barcode 01, GM12878, has only two reads
in the candidate region as PML is not included within the targets for this sample. (b) Barcode 02, NB4, shows multiple reads spanning
PML and linking to RARA (chromosome 17) as expected for this fusion cell line. (c) Barcode 03, 22Rv1, also had PML within the target
gene list, but had no structural variant in this region as expected. SVs were identified using CuteSV
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5.4 Adaptive sampling or “Run Until”

5.4.1 Iterative Alignment

A typical metagenomic scenario involves the amplification of all DNA from a sam-
ple. This is usually achieved using 16S amplicon sequencing which cannot achieve
the same level of taxonomic assignment as full-length sequencing (Johnson et al.,
2019). However, using full-length sequencing there are still questions about the
appropriate read depth that is needed to answer a particular question. There have
been attempts to calculate a suitable read depth (Ni et al., 2013); however, what
must be sequenced to answer different questions may vary considerably. For ex-
ample, the identification of sample composition will require broad coverage over as
much of the sample as possible, whereas detecting specific single nucleotide poly-
morphisms in specific genes will require concentrated coverage over the genes of
interest.

To simulatemetagenomics questions, weutilised theZymoBIOMICShigh-molecular-
weight DNA standard (D6322). As this sample consists of high-quality extracted
DNAwith amean read length≥24 kb itwill de facto improve sequencing and subse-
quent analysis. This standardmixture can be used to benchmark the performance of
sequencing approaches for microbiomics and metagenomics analysis. The theoret-
ical composition of this sample is seven bacterial species, each at 14% (Pseudomonas
aeruginosa, Escherichia coli„ Salmonella enterica, Enterococcus faecalis, Staphylococcus au-
reus, Listeria monocytogenes, and Bacillus subtilis) and a single fungal species at 2%
(Saccharomyces cerevisiae).

In a similar metagenomics benchmarking experiment, Nicholls et al. generated
a reference dataset using the similar ZymoBIOMICS Microbial Community Stan-
dards. This DNA standard included two extra species, a bacteria Lactobacillus fer-
mentum and a yeast Cryptococcus neoformans; all bacterial species were present at
12% while both yeast species were present at 2%. The data generated using the
even community, sequencing on GridION, enabled Nicholls et al. to create de novo
assemblies of the bacterial species. However, neither of the eukaryotic genomes
could not be reconstructed reliably as they were present at too low abundance. This
resulted in the coverage depth for Saccharomyces cerevisiae being 17× and Cryptococ-
cus neoformans being 10×.

For this reason, using a mock metagenomic community is an ideal experiment
as it allows for the simulation of depleting host genomic material that is highly
abundant (~98%). In addition to “depleting” host material, this programme aims
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for each target to meet a coverage threshold, such as 40×. The readfish align pro-
gramme (Figure 5.4) watches for base called data from completed reads, aligning
them to the reference used for readfish targets and calculates read depth over all
contigs present in the reference. Once a user-defined threshold is met, readfish tar-
gets’ experiment criteria is updated with the contigs that have sufficient coverage
depth and they are depleted.

Device

readfish align

MinION

minimap2

FASTQ

Live TOML
configuration

wait for more data readfish targets app

samtools depth

alignments

coverage above
threshold

update
targets

no

Figure 5.4: Flow diagram of iterative alignment programme. As completed reads
are base called byMinKNOW they are written to disk. Readfish iteralign
polls the output folder for the current run. When FASTQ files are writ-
ten, they are aligned and coverage depth calculated using the defined
reference in the readfish TOML file. Chromosome targets that reach or
surpass a defined level are then added as targets for depletion, which are
picked up by the readfish targets app and effected.

In addition to dynamically depleting species that have reached 40× readfish align
implements a “RunUntil” condition. That is, once all targets in the reference genome
are being depleted (all targets have reached the coverage goal) the sequencing run
can be stopped. This can be seen in Figure 5.5, mean read length reduces as the cov-
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erage target is reached. Plotting coverage over time for reads not rejected by read-
fish (middle column) shows a decrease in coverage accumulation for completed
genomes with an increase in sequencing potential for the least abundant sample, S.
cerevisiae (Figure 5.5).
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Figure 5.5: Mean read length and cumulative coverage of readfish align. Each row
is split into all data, sequenced reads, and unblocked reads. Top row is
mean read length, below is cumulative coverage. As species reach the
coverage threshold of 40× the mean read length reduces as these tar-
gets are now being depleted. This frees sequencing capacity for the low
abundance S. cerevisiae targets. This is clearly visible as the rate at which
coverage accumulates for S. cerevisiae increases at ~2 h in the sequenced
subset.

The proportion of basesmapping to each constituent genome in the sample shows
how sequencing capacity increases for S. cerevisiae as other targets are depleted (Fig-
ure 5.6a). This gradually tapers back to roughly the proportions of each genome in
the sample as the sequencing run concludes (Figure 5.6a). Notably, however, rela-
tive abundance of the constituent species can still be determined by observing the
proportion of reads aligning to each genome in the sample (Figure 5.6b) as these
remain consistent throughout the duration of the experiment. The run automati-
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cally stops once each genome reaches 40×, taking ~16 h and 4.4 Gb of sequence data
(Table 5.6 and Figure B.2).

Table 5.6: Iteralign NanoStat Summary — This run was conducted before the un-
blocked_read_ids.txt file was collected, therefore summary stats are
only available for the entire run.

Complete run
Active channels 504.0
Mean read length 1,247.1
Mean read quality 12.0
Median read length 675.0
Median read quality 12.6
Number of reads 3,540,936.0
Read length N50 1,544.0
Total bases 4,415,735,206.0
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Figure 5.6: (a) Stacked area plot, as individual species reach 40× coverage they
are rejected. As such, the proportion of bases mapping to each species
changes over time. This is particularly evident in the SC band as it
starts out as at ~2% of the sample, but just after 2 hours the proportion
greatly increases as sequencing capacity is redirected to only this organ-
ism. (b) Conversely, the proportion of reads mapping to each species
over time does not change during the run. Species: BS, Bacillus subtilis;
EF, Enterococcus faecalis; EC, Escherichia coli; LM, Listeria monocytogenes;
PA, Pseudomonas aeruginosa; SC, Saccharomyces cerevisiae; SE, Salmonella
enterica; SA, Staphylococcus aureus.



Applications of readfish Adaptive sampling or “Run Until” 108

5.4.2 Iterative Centrifuge

The approach usedwith readfish align assumes total knowledge of the sample com-
position a priori, as such it is impractical. Instead, by integrating a metagenomic
classifier we can simulate no prior knowledge.

In this programme, readfish centrifuge, a broad centrifuge (Kim et al., 2016) in-
dex is used to classify completed reads. These classifications are accumulated and
tracked, when a single classification has been made more than 2,000 times the cor-
responding RefSeq genome is dynamically retreived from NCBI; then an index for
minimap2 is generated and passed to readfish targets to carry out selective sequenc-
ing. This process iterates until a coverage threshold is achieved (Figure 5.7).

Using this method, we generated 5.99 Gb of sequence data, identifying all bacte-
rial genomes in the sample. Although we observed enrichment, readfish centrifuge
struggled to keep up with data generation (Figure B.3), likely due to the intensive
background classification process. In addition, the flow cell became completely
blocked after 24 h before reaching 40× on the final species, S. cerevisiae (Figure 5.8).

This is due to the entirety of a read being considered for selection rather than just
the first few chunks. As a result reads were sequenced when they should have been
unblocked and some reads were unblocked too late, potentially damaging the flow
cell surface (Figure 5.8; top center and right). This can also be seen in themean read
length of unblocked reads (Table 5.7). This experiment was completed within 24 h,
illustrating the benefits in terms of time-to-answer. As expected, improved coverage
depth results in almost complete assemblies using MetaFlye (Figure 5.10), this is in
part due to improved read lengths compared with Nicholls et al..

Table 5.7: Itercent NanoStat Summary
Sequenced Unblocked Complete run

Active channels: 464.0 451.0 467.0
Mean read length: 7,707.1 1,005.3 2,160.6
Mean read quality: 10.2 11.3 11.1
Median read length: 2,548.0 869.0 905.0
Median read quality: 11.2 11.6 11.5
Number of reads: 478,349.0 2,296,491.0 2,774,840.0
Read length N50: 22,704.0 1,079.0 8,268.0
Total bases: 3,686,701,649.0 2,308,737,840.0 5,995,439,489.0

Similarly to readfish align, readfish centrifuge shows the same behaviour with
proportion of reads being consistent with sample composition throughout the en-
tire duration of the run Figure 5.9b. However, the proportion of bases starts out as
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Figure 5.7: Flow diagram of iterative centrifuge programme. As completed reads
are base called byMinKNOW they are written to an output folder. Read-
fish centrifuge polls the specific folder for the run that it is monitoring.
When files are written, they are classified using centrifuge (Kim et al.,
2016). Once 2000 reads have been seen for any individual species the
reference genome is retrieved from NCBI/RefSeq. Using these down-
loaded genomes a new reference is generated for readfish to use. All
targets in the multi-reference index are monitored for read-depth. Once
a threshold has been reached for any given species it is depleted using
readfish targets.
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Figure 5.8: Mean read length and cumulative coverage of readfish centrifuge. Each
row is split into all data, sequenced, and unblocked reads. Top row
is mean read length, below is cumulative coverage. Despite bacterial
species reaching the target coverage quickly, they were not effectively
depleted. This results in coverage continuing to climb (bottom left) re-
ducing available capacity for low abundance targets.

expected, but does not return to this composition at the end of the run (Figure 5.9a).
This is due to the fact that S. cerevisiae did not reach the target threshold and was
still being enriched for when the flow cell stopped sequencing at 24 h.
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Figure 5.9: (a) Stacked area plot, as individual species reach 40× coverage they
are rejected. As such, the proportion of bases mapping to each species
changes over time. This is particularly evident in the SC band as it
starts out as at ~2% of the sample, but just after 2 hours the proportion
greatly increases as sequencing capacity is redirected to only this organ-
ism. (b) Proportion of reads mapping to each species over time does
not change during the run. Species: BS, Bacillus subtilis; EF, Enterococcus
faecalis; EC, Escherichia coli; LM, Listeria monocytogenes; PA, Pseudomonas
aeruginosa; SC, Saccharomyces cerevisiae; SE, Salmonella enterica; SA, Staphy-
lococcus aureus.
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Figure 5.10: Assemblies for ZymoBIOMICS mock microbial community using data from readfish align and readfish centrifuge. Data assembled
usingMetaFlye using an estimated genome size of 40Mb. Bacterial genomes are comparable to the estimated genomes for each species.
Eukaryotic (SC) is more fragmented than the estimated genome, but is close in overall size.



Applications of readfish Discussion 113

5.5 Discussion

Real-time selective sequencing is an appropriate approach in situations with well
defined targets in a well characterised sample. The primary benefits of software
based selective sequencing is easy curation of target databases, as these are ex-
tremely flexible allowing custom targets to be generated on a whim. In addition to
the flexibility of the panel format, readfish allows target panels to be updated mid-
run such that an experiment can react to data in real-time. This allows an external
process to inform on selective sequencing without the need to stop and start the
analysis, particularly this process can be automated as in readfish align and cen-
trifuge. These automated processes allow sequencing runs to continue until they
would be producing too much data for the question at hand. By stopping early,
readfish improves on the time to answer freeing up sequencing infrastructure for
other experiments. There is also a reduction in the cost of sequencing as a run that
may, by shotgun sequencing, have required multiple runs to yield on-target data
can now be accomplished using fewer consumables such as flow cells and library
preparation reagents. Costs can further be reduced by employing standard effi-
ciency steps such as multiplexing samples by barcoding them. This allows many
samples to be sequenced concurrently and with readfish allows arbitrary selection
of barcode specific panels.

Real-time selective sequencing is not amagicmethod. It is an appealing technique
but is very sensitive to good sequencing libraries. That is, an experiment that has
problems with low-yield, low occupancy, not enough computational power, or a
short library read length— to name a few—will struggle to acheive anymeaningful
enrichment of targets.



Chapter 6

Discussion

6.1 Conclusion

Sequencing DNA is a central part of modern molecular biology. Ranging from
whole genome sequencing and assembly to just confirming plasmid features during
an experiment. Year-on-year the cost of sequencing reduces, enabling the inexpen-
sive production of large volumes of data. This volume of data can quickly become
unmanageable as well as difficult to analyse and distribute. Targeted sequencing
approaches aim to address these issues either through upfront filtering and ampli-
fication, using molecular methods such as CRISPR-Cas9 or PCR; or by real-time se-
lective sequencing on single molecule sequencing platforms, such as the MinION.
All these techniques can reduce sequencing costs and achieve high coverage over
regions of interest. Though the molecular methods (CRISPR-Cas9 and PCR) have
low throughput, high input requirements and may result in loss of extra data such
as detecting nucleotide modifications.

The aims of this project were to: increase the scale of useable reference genomes
for selective sequencing; and (by extension) increase the number of target regions
that could be considered simultaneously; reduce the computational requirements
so that a single workstation or laptop is capable of running Read Until; and finally,
enable true adaptive sampling allowing real-time feedback throughout an experi-
ment.

Analysis of bulk FAST5data allowsdetailed inspection of current traces thatwould
be expected during sequencing. These are the data that must be processed and
considered during Read Until. In post-sequencing data the interpretation of each
molecule, as determined by MinKNOW, is presented. Though, this is not necessar-
ily the complete reading of that single molecule as there are extra useable data that
can be rescued from reads (Payne et al., 2018; Workman et al., 2019).

This deeper view of useable signal allows for tuning real-time processes to enable
better and faster classification. Moreover, this extra information can be utilised for
better post-sequencing data recovery.
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Building on the initial work of Loose et al. and with improvements to the Read
Until API, a basecalling and alignment approach for selective sequencing was de-
veloped. This initially utilised open source CPUbase calling in the form of Scrappie,
but took advantage of the GPU accelerated Guppy basecaller. As Guppy requires
GPU acceleration for efficient basecalling another CPU basecaller, DeepNano-Blitz,
was also integrated. The Guppy and DeepNano-Blitz basecallers were both perfor-
mant enough to allow for real enrichment of thousands of target loci in the human
genome. Guppy requires the use of a GPU, so has higher computational require-
ments, but these are modest compared to the multi-core servers that other selective
sequencing tools require (Loose et al., 2016; Kovaka et al., 2020); with readfish only
requiring a workstation computer for sequencing that meets ONT’s recommenda-
tions, such as the GridION (Table 2.1). Such a relatively small computational foot-
print makes this approach quite practical in most sequencing labs.

Having a system that works at the scale of gigabase-sized references and many
target regions increases the practicality of this targeted sequencing approach. Eval-
uating this system with hypothetical real-world scenarios help ensure that readfish
is a feasible solution. For example, applying different gene panels in the form of
the COSMIC panel (Tate et al., 2018) and TruSight 170 Tumor (Na et al., 2019) and
TruSight RNA Fusion panels (Siegfried et al., 2018) These panels have been applied
to both single experiments addressing different operating systems (Linux, MacOS,
and Windows) and hardware configurations (with and without GPU) as well as
to different experimental configurations such as the inclusion of multiplexed (bar-
coded) samples on a single flow cell. These experiments demonstrate that target loci
are sequenced at a greater depth than the rest of the (off-target) genome, therefore
enriching these samples.

Using the ZymoBIOMICSmockmicrobial community allowed for the assessment
of readfish to distinguish and select for microbial genomes from a mixed back-
ground. These experiments also applied truly adaptive sampling techniques to
assess genome coverage in real-time. These adaptive examples evaluate genome
coverage using either a priori knowledge or real-time classifications of the sample
composition. In the first case minimap2 (Li, 2018) is used alongside the official
ZymoBIOMICS reference sequence. In the second case completed reads are evalu-
ated using a broad centrifuge classification index and dynamic retrieval of reference
genomes from NCBI/refseq, which are then used to create a reference for selective
sequencing. This approach aims to gradually deplete all samples from the library
focusing available pores on under-represented sequences. Finally, these adaptive
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approaches reduced the time to sequence each constituent genome to a target depth
of ~50×.

6.2 Current uses of readfish

Readfish has been open source and available on GitHub since February 2020. Since
then the Read Until API improvements and underlying basecalling and alignment
approach have been incorporated into MinKNOW. The version of Read Until that
MinKNOW implements1 is a subset of the features that readfish has such as, enrich-
ment or depletion of specific target regions of a reference or enrichment or depletion
of entire references.

Readfish provides more fine-grain control over the selective sequencing logic.
This allows for greater customisation of how each molecule seen will be consid-
ered. For example, readfish allows setting both a minimum and maximum number
of times a single molecule should be evaluated before being selected or rejected. In
addition, there are rules regarding specific cases, such as multiple alignment, are
handled.

Papers that use readfish or ONT adaptive sampling broadly fall into two cate-
gories: human diagnostic and metagenomic communities. Here I will consider
publications that have used readfish or ONT adaptive sampling for targeted en-
richment.
Targeted long-read sequencing identifiesmissingdisease-causing variation (Miller

et al., 2021) aims to increase genetic diagnosis of patients using targeted long read
sequencing. Here the targeted sequencing aims to replace multiple other steps in
the process include microarray and whole exome sequencing, saving both time and
costs. Miller et al. intend to address complex copy number variant changes, specifi-
callymultiple deletions or duplications on one ormore chromosomes. Target panels
consisted of clinically relevant genes with flanking sequence of up to 100 kb up- and
down-stream added. In addition, other regions of non-target chromosomes were
enriched to serve as internal copy number and coverage controls. These panels rou-
tinely yielded 7–40× coverage (Miller et al., 2021).
Rapid-CNS2: Rapid comprehensive adaptive nanopore-sequencing of CNS tu-

mors, a proof of concept study (Patel et al., 2021) aims for a comprehensive muta-
tional, methylation, and copy number profiling of central nervous system tumours
with a single, cost effective sequencing assay. This assay selects for a panel of brain-
tumor related regions and CpG sites. They found complete concordance with the

1Called “ONT Adaptive Sampling”
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EPIC array2 for copy number profiles and consistent classification for MGMT pro-
moter status and methylation. This pipeline has a complete turnaround time of
~5d, with a long-term goal of integrating adaptive nanopore sequencers into hos-
pitals and care locations for faster diagnosis.
Comprehensive genetic diagnosis of tandem repeat expansion disorders with

programmable targeted nanopore sequencing (Stevanovski et al., 2021) used tar-
geted long read sequencing in combination with high-depth PromethION shotgun
sequencing. They sampled ~1.6% of the human genome for Short Tandem Repeats
(STRs) and other clinically relevant regions for 27 individuals. Similarly to Miller
et al., a ~4.5× increase in sequencing depthwas observed for target regions yielding
7–32× median coverage.

All these applications, so far, have been using readfish directly and are only con-
sidering human genomics. The human reference genome is extensively studied and
very well characterised. This level of detail allowed these approaches to rapidly
progress from designing a panel of targets to selective sequencing.

With metagenomic communities, these samples are typically a mock community
(Martin et al., 2022) or a clinical samplewith a host (human) background (Marquet
et al., 2021; Zhao et al., 2021). Reducing the abundance of these host sequences is
difficult due to short read fragments, mixed samples, and (potentially) lower base-
call accuracy. For example, Marquet et al. found that they could reduce human
background from 87.9% to 34.7% by depleting human-aligning sequences when us-
ing readfish. This reduction can go even further when enriching for a subset of
the population (87.9% to 8.3%) but this also rejects 96% of all reads (Marquet et al.,
2021). Similarly, Martin et al. saw 40% of on-target reads getting rejected incorrectly
when using ONT adaptive sampling.

6.3 Other approaches to selective sequencing

6.3.1 Mapping raw signal

UNCALLED is one such technique, which aims to map raw signal without base-
calling (Kovaka et al., 2020). It builds an FM-index from a reference genome and
converts the raw signal into “events” that represent kmers based on the pore/kmer
model fromONT. The high-probability kmers are used to query the FM-index, each
successive query refines the mapping location until there is one location that is sig-
nificantly better than the others. UNCALLED is able to work with small genomes,
such as theZymoBIOMICSmixed community, without issue. However, UNCALLED

2https://emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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cannot make use of larger genomes without subsetting to the target region and in-
tensive repeat masking.

Another tool is Sigmap that aims to implement a signal streaming method, sim-
ilar to UNCALLED (Zhang et al., 2021). Unlike UNCALLED, Sigmap converts the
reference genome into a simulated squiggle that is indexed using an optimised k-d
tree data structure. This signal reference is queried and used in the same fashion
as minimap2, using specific “seed” matches that are chained together. Sigmap is
benchmarked against UNCALLED, showing a 4.4× speedup when mapping yeast
sequences. However, Sigmap is not presently implemented in any real-time selec-
tive sequencing applications and generates simulated references that are ~26–35×
larger than their corresponding FASTA reference. Finally, Sigmap requires a large
amount of external3 computational resources that greatly reduces it’s portability.

6.3.2 Bloom filter

A recent tool, ReadBouncer, implements a bloom filter that acts on basecalled data
rather than using an aligner (Ulrich et al., 2022). Like readfish, ReadBouncer uses
exactly the same basecalling routines (both Guppy andDeepNano-Blitz) for decod-
ing raw signal. However, instead of using minimap2 for read alignment a bloom
filter is used.

Briefly, a bloom filter makes use of kmer hashing (similar to minimap2’s seeding
step) but forgoes chain extension between seeds. An index for the bloom filter is
created by using successive hash functions on the unique kmers in the target se-
quence. Therefore, ReadBouncer can only yield two possible results: “not in the
target set” and “possibly in the target set”. No mapping location is given. In this
regard, ReadBouncer and bloom filter approaches maybe appropriate for host de-
pletion or binary classification experiments, but this depends on the hash functions
chosen.

6.3.3 Other approaches

A recent, SARS-CoV-2 inspired, approach (SquiggleFilter) created a hardware ac-
celerated DTW implementation for selectively sequencing SARS-CoV-2 only (Dunn
et al., 2021). This technique acts as a binary filter that only targets viral reads from
SARS-CoV-2. Similarly, a neural network based binary filter (SquiggleNet) attempts
to separate human from bacterial reads (Bao et al., 2021). This requires the specific
training of a model for the purpose of selective sequencing.

3from the sequencing workstation
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6.4 Future directions

Readfish is functional and actively maintained, but requires some proactive im-
provements as newer dependencies become available. For example, upgraded ver-
sions of Guppy4 introduced API changes that broke the basecalling step when us-
ing Guppy. Likewise, the classification step, using minimap2 (Li, 2018), works ex-
tremely efficiently even with large (gigabase-sized) genomes. However, when as-
sessing a mixed sample using minimap2 can become more risky as the chance of
false positives when assessing small read chunks can increase (Martin et al., 2022;
Marquet et al., 2021). In these scenarios, particularly when attempting to deplete a
host or background, a broad classifier such as those used by centrifuge (Kim et al.,
2016) or kraken (Wood et al., 2019) would be more appropriate and allow for a
many more samples to be included.

6.4.1 Adaptive sampling

There needs to be an expansion of truly adaptive sampling workflows. These are
ones where meaningful analysis is done iteratively as the experiment generates out-
put and this analysis then re-informs the sequencer with updated targets. This has
been attempted already for smoothing coverage over a genome and assigning tar-
gets where there is the greatest benefit (e.g. low coverage areas) (Maio et al., 2020).
Other sequencing schemes should be considered or explored especially for tasks
like de novo assembly, for example generating a high-coverage dataset using a large
single molecule platform such as a PacBio Sequel II or an ONT PromethION. This
large dataset can then be assembled and specific gaps in the assembly targeted using
a single MinION flow cell.

6.4.2 Copy number variation

While nanopore sequencing experiments typically aim for extending read length,
copy number variation (CNV) can be accessed by sequencing many (millions) of
short reads (Baslan et al., 2021). This was achieved by optimising the sequencing
library for short reads. Alternatively, this can be done by using the selective se-
quencing features of nanopore sequencers; unblocked (off-target) reads are very
short (typically <1kb). These short reads will still align to a reference genome and
can be binned to approximate copy number across the genome. This technique is
likely going to be a useful complement to methods such as cytogenetic testing and
karyotyping.

4https://community.nanoporetech.com/posts/guppy-v6-0-0-release
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6.4.3 Barcode balancing

Real-time selective sequencing lets the user of a nanopore device control andmodify
the result of a sequencing experiment by applying arbitrary rules. The outcome of
this control is, in part, determined by the initial library loaded on the flow cell. That
is, a library with a low concentration of DNA molecules will have lower through-
put compared with a higher concentration library. And, as previously mentioned,
readfish and Read Until are not “magic methods” they work within the constraints
of the sequencing experiment being carried out.

With that in mind, multiplexed samples add an extra dimension of complexity as
the overall library composition will affect overall sequencing efficiency while indi-
vidual samples (barcodes) in the library will be present at their own concentration.
Barcode balancing aims to normalise the amount of data that each sub-sample in a
barcoded library produces, whether it is read number or overall yield. This makes
this system extremely sensitive to the unique composition of each barcoded library.
For these reasons, selective sequencing of barcoded samples is not a trivial problem
unless the overall goal is to filter barcodes once they reach set thresholds.

6.5 Closing remarks

So should I use readfish or Read Until? Yes, no, maybe…5 It really depends on what
your end goal is with this sequencing. For whole exome sequencing without target
capture or controlling coverage over an entire genome, readfish could work excep-
tionallywell (Payne et al., 2020, 2021;Miller et al., 2021; Patel et al., 2021; Stevanovski
et al., 2021). For samples that are not so highly studied there are methods in devel-
opment to dynamically target areas of most interest (Maio et al., 2020). Though,
selective sequencing should not be blindly applied without some care and thought
into the desired result.

This dissertation has presented a new implementation of real-time selective se-
quencing, readfish. Hopefully, the work here makes selective sequencing practical
and accessible.

5https://youtu.be/O8SMmG6sW9k
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Table B.1: COSMIC panel run summary statistics from NanoStat for experiment
“ml_032” both the run before the nuclease flush and reload (Run 1) and
after (Run 2).

Run 1
Sequenced Unblocked Complete run

Active channels: 510.0 510.0 510.0
Mean read length: 6,290.8 516.7 795.7
Mean read quality: 9.7 11.2 11.1
Median read length: 3,728.0 433.0 439.0
Median read quality: 11.0 11.5 11.5
Number of reads: 224,821.0 4,428,557.0 4,653,378.0
Read length N50: 11,691.0 509.0 941.0
Total bases: 1,414,312,427.0 2,288,331,832.0 3,702,644,259.0

Run 2
Active channels: 476.0 479.0 479.0
Mean read length: 5,606.0 499.6 747.5
Mean read quality: 9.6 10.9 10.8
Median read length: 2,845.0 419.0 425.0
Median read quality: 10.6 11.2 11.2
Number of reads: 411,317.0 8,058,730.0 8,470,047.0
Read length N50: 10,891.0 496.0 820.0
Total bases: 2,305,826,485.0 4,025,766,070.0 6,331,592,555.0

Complete Run
Active channels: 511.0 511.0 511.0
Mean read length: 5,848.0 505.6 764.6
Mean read quality: 9.6 11.0 10.9
Median read length: 3,098.0 424.0 430.0
Median read quality: 10.7 11.3 11.3
Number of reads: 636,138.0 12,487,287.0 13,123,425.0
Read length N50: 11,191.0 501.0 855.0
STDEV read length: 6,730.2 334.0 1,902.2
Total bases: 3,720,138,912.0 6,314,097,902.0 10,034,236,814.0
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Figure B.1: COSMIC panel Run 1 (a) Histogram of read batch size throughout
the selective sequencing program. (b) Histogram of decision times
(time to choose unblock, stop receiving, or proceed from an alignment).
(c) Counts of decision classifications for read fragments seen a given
number of times. (d) Mean batch size, in bins of 2000, seen through-
out the selective sequencing program. (e) Mean process time, in bins
of 2000, for batches of read fragments throughout the run. (f) Mean
decision time per read fragment, in bins of 2000, throughout the run.
As the number of reads in a batch reduces, the overhead time of calling
becomes more apparent.
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Table B.2: GridION MK1 CPU
Run 1

Sequenced Unblocked All
Active channels: 512.0 512.0 512.0
Mean read length: 4,119.5 700.5 899.0
Mean read quality: 9.7 11.0 10.9
Median read length: 1,496.0 691.0 694.0
Median read quality: 10.9 11.5 11.5
Number of reads: 465,897.0 7,556,623.0 8,022,520.0
Read length N50: 8,631.0 773.0 854.0
Total bases: 1,919,276,876.0 5,293,311,213.0 7,212,588,089.0

Run 2
Active channels: 492.0 492.0 494.0
Mean read length: 3,781.9 653.3 823.0
Mean read quality: 9.4 10.6 10.6
Median read length: 655.0 663.0 663.0
Median read quality: 10.4 11.2 11.1
Number of reads: 318,620.0 5,553,384.0 5,872,004.0
Read length N50: 8,621.0 737.0 799.0
Total bases: 1,204,990,366.0 3,627,816,134.0 4,832,806,500.0

Run 3
Active channels: 477.0 467.0 480.0
Mean read length: 3,294.0 632.0 812.0
Mean read quality: 8.8 10.1 10.0
Median read length: 575.0 627.0 625.0
Median read quality: 9.1 10.6 10.5
Number of reads: 341,022.0 4,702,331.0 5,043,353.0
Read length N50: 8,407.0 712.0 787.0
Total bases: 1,123,339,604.0 2,971,970,803.0 4,095,310,407.0

Complete Run
Active channels: 512.0 512.0 512.0
Mean read length: 3,773.8 667.7 852.3
Mean read quality: 9.4 10.6 10.6
Median read length: 729.0 665.0 665.0
Median read quality: 10.2 11.2 11.2
Number of reads: 1,125,539.0 17,812,338.0 18,937,877.0
Read length N50: 8,572.0 745.0 819.0
Total bases: 4,247,606,846.0 11,893,098,150.0 16,140,704,996.0
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Table B.3: Linux GPU
Complete Run

Sequenced Unblocked All
Active channels: 512.0 512.0 512.0
Mean read length: 4,792.7 486.8 711.5
Mean read quality: 9.2 10.0 9.9
Median read length: 3,981.0 402.0 407.0
Median read quality: 10.2 10.3 10.3
Number of reads: 491,653.0 8,931,842.0 9,423,495.0
Read length N50: 8,180.0 464.0 799.0
Total bases: 2,356,363,784.0 4,348,280,265.0 6,704,644,049.0
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Table B.4: Linux CPU
Run 1

Sequenced Unblocked All
Active channels: 503.0 503.0 503.0
Mean read length: 2,935.8 638.1 777.3
Mean read quality: 8.7 10.4 10.3
Median read length: 450.0 575.0 572.0
Median read quality: 9.4 10.9 10.9
Number of reads: 415,860.0 6,448,876.0 6,864,736.0
Read length N50: 8,203.0 724.0 799.0
Total bases: 1,220,873,524.0 4,114,773,085.0 5,335,646,609.0

Run 2
Active channels: 485.0 488.0 488.0
Mean read length: 2,584.7 614.1 740.8
Mean read quality: 8.5 10.4 10.3
Median read length: 391.0 572.0 565.0
Median read quality: 9.1 10.9 10.8
Number of reads: 517,357.0 7,528,276.0 8,045,633.0
Read length N50: 7,966.0 701.0 762.0
Total bases: 1,337,218,403.0 4,623,312,751.0 5,960,531,154.0

Run 3
Active channels: 465.0 469.0 470.0
Mean read length: 2,051.3 626.3 732.9
Mean read quality: 7.9 9.9 9.7
Median read length: 384.0 601.0 586.0
Median read quality: 7.8 10.2 10.1
Number of reads: 446,538.0 5,525,462.0 5,972,000.0
Read length N50: 7,631.0 713.0 764.0
Total bases: 915,995,052.0 3,460,688,401.0 4,376,683,453.0

Complete Run
Active channels: 503.0 504.0 504.0
Mean read length: 2,517.9 625.5 750.5
Mean read quality: 8.4 10.3 10.1
Median read length: 402.0 581.0 573.0
Median read quality: 8.7 10.7 10.7
Number of reads: 1,379,755.0 19,502,614.0 20,882,369.0
Read length N50: 7,966.0 711.0 774.0
Total bases: 3,474,086,979.0 12,198,774,237.0 15,672,861,216.0
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Table B.5: MacOS run
Run 1

Sequenced Unblocked All
Active channels: 509.0 508.0 509.0
Mean read length: 3,185.3 943.9 1,168.6
Mean read quality: 10.3 12.1 12.0
Median read length: 1,028.0 817.0 823.0
Median read quality: 10.8 12.5 12.4
Number of reads: 88,424.0 793,565.0 881,989.0
Read length N50: 9,740.0 945.0 1,121.0
Total bases: 281,654,228.0 749,023,928.0 1,030,678,156.0

Run 2
Active channels: 481.0 481.0 482.0
Mean read length: 4,264.3 882.7 1,124.0
Mean read quality: 10.8 12.1 12.0
Median read length: 1,290.0 778.0 785.0
Median read quality: 11.5 12.4 12.4
Number of reads: 65,642.0 854,358.0 920,000.0
Read length N50: 10,703.0 881.0 1,044.0
Total bases: 279,915,896.0 754,181,345.0 1,034,097,241.0

Run 3
Active channels: 463.0 466.0 470.0
Mean read length: 4,012.6 909.2 1,138.7
Mean read quality: 10.1 11.8 11.7
Median read length: 1,160.0 771.0 778.0
Median read quality: 10.9 12.2 12.1
Number of reads: 195,438.0 2,446,511.0 2,641,949.0
Read length N50: 10,663.0 897.0 1,123.0
Total bases: 784,210,007.0 2,224,303,806.0 3,008,513,813.0

Run 4
Active channels: 440.0 439.0 441.0
Mean read length: 2,426.0 925.6 1,102.2
Mean read quality: 9.5 11.8 11.5
Median read length: 826.0 810.0 810.0
Median read quality: 9.6 12.1 11.9
Number of reads: 34,846.0 261,154.0 296,000.0
Read length N50: 9,208.0 914.0 1,042.0
Total bases: 84,534,921.0 241,729,008.0 326,263,929.0

Run 5
Active channels: 439.0 441.0 444.0
Mean read length: 3,252.0 978.4 1,181.5
Mean read quality: 10.0 11.9 11.8
Median read length: 988.0 851.0 855.0
Median read quality: 10.5 12.3 12.2
Number of reads: 66,101.0 673,899.0 740,000.0
Read length N50: 10,314.0 972.0 1,129.0
Total bases: 214,961,204.0 659,339,653.0 874,300,857.0
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Table B.5 continued
Run 6

Sequenced Unblocked All
Active channels: 423.0 422.0 432.0
Mean read length: 3,724.2 863.3 1,078.7
Mean read quality: 10.0 11.7 11.6
Median read length: 1,035.0 721.0 728.0
Median read quality: 10.6 12.1 12.0
Number of reads: 213,365.0 2,621,139.0 2,834,504.0
Read length N50: 10,482.0 860.0 1,138.0
Total bases: 794,621,738.0 2,262,838,406.0 3,057,460,144.0

Run 7
Active channels: 397.0 394.0 400.0
Mean read length: 2,510.7 891.2 1,078.1
Mean read quality: 9.5 11.7 11.4
Median read length: 829.0 768.0 770.0
Median read quality: 9.7 12.0 11.8
Number of reads: 30,306.0 232,262.0 262,568.0
Read length N50: 9,308.0 878.0 1,040.0
Total bases: 76,088,740.0 206,982,496.0 283,071,236.0

Run 8
Active channels: 434.0 437.0 439.0
Mean read length: 3,564.9 855.5 1,071.7
Mean read quality: 10.1 11.8 11.7
Median read length: 979.0 711.0 717.0
Median read quality: 10.6 12.2 12.1
Number of reads: 231,852.0 2,674,351.0 2,906,203.0
Read length N50: 10,594.0 856.0 1,149.0
Total bases: 826,521,815.0 2,287,955,988.0 3,114,477,803.0

Run 9
Active channels: 415.0 409.0 418.0
Mean read length: 3,094.2 903.9 1,100.5
Mean read quality: 9.7 11.6 11.5
Median read length: 955.0 744.0 749.0
Median read quality: 10.1 12.0 11.9
Number of reads: 184,710.0 1,872,800.0 2,057,510.0
Read length N50: 9,936.0 921.0 1,210.0
Total bases: 571,528,135.0 1,692,808,317.0 2,264,336,452.0

Complete Run
Active channels: 511.0 508.0 511.0
Mean read length: 3,524.0 891.3 1,107.3
Mean read quality: 10.0 11.8 11.6
Median read length: 1,021.0 753.0 759.0
Median read quality: 10.6 12.2 12.1
Number of reads: 1,110,684.0 12,430,039.0 13,540,723.0
Read length N50: 10,387.0 894.0 1,129.0
Total bases: 3,914,036,684.0 11,079,162,947.0 14,993,199,631.0
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Table B.6: Windows Subsystem Linux run
Run 1

Sequenced Unblocked All
Active channels: 507.0 507.0 507.0
Mean read length: 3,658.9 985.0 1,240.7
Mean read quality: 10.9 12.7 12.6
Median read length: 1,084.0 855.0 863.0
Median read quality: 11.8 13.0 12.9
Number of reads: 396,023.0 3,745,681.0 4,141,704.0
Read length N50: 10,616.0 1,000.0 1,157.0
Total bases: 1,449,025,461.0 3,689,642,942.0 5,138,668,403.0

Run 2
Active channels: 490.0 489.0 492.0
Mean read length: 3,448.7 971.5 1,215.7
Mean read quality: 10.8 12.8 12.6
Median read length: 1,032.0 839.0 845.0
Median read quality: 11.7 13.0 12.9
Number of reads: 425,554.0 3,891,638.0 4,317,192.0
Read length N50: 10,204.0 980.0 1,145.0
Total bases: 1,467,619,590.0 3,780,742,828.0 5,248,362,418.0

Run 3
Active channels: 465.0 462.0 467.0
Mean read length: 2,592.9 965.0 1,165.4
Mean read quality: 10.7 12.6 12.3
Median read length: 880.0 822.0 825.0
Median read quality: 11.3 12.8 12.7
Number of reads: 541,215.0 3,855,175.0 4,396,390.0
Read length N50: 8,140.0 972.0 1,130.0
Total bases: 1,403,303,224.0 3,720,290,059.0 5,123,593,283.0

Run 4
Active channels: 449.0 445.0 450.0
Mean read length: 2,350.5 987.1 1,175.4
Mean read quality: 10.5 12.4 12.1
Median read length: 794.0 834.0 831.0
Median read quality: 11.0 12.6 12.4
Number of reads: 346,283.0 2,160,916.0 2,507,199.0
Read length N50: 7,719.0 995.0 1,168.0
Total bases: 813,949,140.0 2,133,061,980.0 2,947,011,120.0

Complete Run
Active channels: 507.0 507.0 507.0
Mean read length: 3,003.9 975.9 1,201.5
Mean read quality: 10.7 12.6 12.4
Median read length: 934.0 837.0 841.0
Median read quality: 11.4 12.9 12.8
Number of reads: 1,709,075.0 13,653,410.0 15,362,485.0
Read length N50: 9,372.0 986.0 1,148.0
Total bases: 5,133,897,415.0 13,323,737,809.0 18,457,635,224.0
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Table B.7: Coverage of COSMIC targets when repeated using DeepNano-Blitz
(CPU) on different platforms. With the exception of a single run (Linux
GPU) 99% of targets in each run have at least 15× coverage, this is an
effect of the yield of this run (Table 5.3).

mean std 1% 50% 99%
GridION MK1 CPU 30.02 5.14 15.60 31.18 38.39
GridION MK1 GPU 31.51 5.44 17.33 32.49 40.15
Linux CPU 27.98 4.96 15.58 29.08 36.70
Linux GPU 19.19 3.19 10.00 19.70 24.81
MacBook Pro CPU 29.24 5.21 16.83 30.29 36.30
Windows CPU 34.64 6.59 18.76 35.75 42.91
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Abstract

Motivation: The Oxford Nanopore Technologies (ONT) MinION is used for sequencing a wide var-
iety of sample types with diverse methods of sample extraction. Nanopore sequencers output
FAST5 files containing signal data subsequently base called to FASTQ format. Optionally, ONT
devices can collect data from all sequencing channels simultaneously in a bulk FAST5 file enabling
inspection of signal in any channel at any point. We sought to visualize this signal to inspect chal-
lenging or difficult to sequence samples.
Results: The BulkVis tool can load a bulk FAST5 file and overlays MinKNOW (the software that con-
trols ONT sequencers) classifications on the signal trace and can show mappings to a reference.
Users can navigate to a channel and time or, given a FASTQ header from a read, jump to its specific
position. BulkVis can export regions as Nanopore base caller compatible reads. Using BulkVis, we
find long reads can be incorrectly divided by MinKNOW resulting in single DNA molecules being
split into two or more reads. The longest seen to date is 2 272 580 bases in length and reported in
eleven consecutive reads. We provide helper scripts that identify and reconstruct split reads given a
sequencing summary file and alignment to a reference. We note that incorrect read splitting appears
to vary according to input sample type and is more common in ’ultra-long’ read preparations.
Availability and implementation: The software is available freely under an MIT license at https://
github.com/LooseLab/bulkvis.
Contact: matt.loose@nottingham.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Oxford Nanopore Technologies (ONT) range of sequencing platforms

(MinION, GridION and PromethION) utilize biological nanopores,

embedded in synthetic membranes, to sequence individual single-

stranded molecules of DNA (Jain et al., 2015). As DNA passes through

the nanopore it creates sequence specific disruptions in current flow (Ip

et al., 2015). The resultant reads are written to disk as soon as the

DNA has translocated the pore; uniquely enabling rapid analysis of se-

quence data ideal for both field and clinical work (Euskirchen et al.,

2017; Quick et al., 2016). The software controlling sequencing

(MinKNOW) does this by monitoring the flow cell in real time to deter-

mine if the signal observed from each channel represents DNA.

MinKNOW processes the continuous data stream from the sequencer

into individual read FAST5 files containing raw signal data that are sub-

sequently base called to reveal the sequence.The sequence of the DNA

can even be analysed while the DNA is in the pore, enabling approaches

such as ‘Read Until’ where specific molecules can be dynamically

rejected according to user customisable parameters (Loose et al., 2016).

Partitioning the real-time data stream into reads results in infor-

mation loss about the current state before and after an individual
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read. To better understand these events and view the effects of user

intervention on sequencing when developing methods for read until

or using difficult samples, we wished to visualize the entire data

stream from the MinION device. ONT provide an optional bulk

FAST5 file format to capture the entire data stream from every

channel on the sequencing device (see http://bulkvis.readthedocs.io

for guidance on how to collect a bulk FAST5 file). This file includes

raw signal and metadata for every channel including MinKNOW

classifications (see Supplementary Table S1). To visualize bulk

FAST5 files, we developed BulkVis using the bokeh visualization

package (https://bokeh.pydata.org). BulkVis annotates signal fea-

tures based on the metadata and optionally mappings from a PAF

file. These annotations provide a simple method to relate base called

reads back to the channel and time in the data stream from which

they originate and visualize their genomic location.

Whilst developing BulkVis, we observed examples of reads in-

correctly segmented by MinKNOW leading to a reduction in the

read lengths reported. This incorrect splitting of reads appears to

correlate with read lengths such that ultra-long reads are more likely

to be affected. In some cases there is no apparent reason for the read

to have been split, but in many others we observe examples of reads

that exhibit unusual signal patterns prior to the incorrect split.

2 Results

BulkVis scans a folder containing bulk FAST5 files at startup. An in-

dividual file is selected and specific channels plotted (Fig. 1). Basic

metadata are displayed to the user. To navigate coordinates are

input in the format channel: start_time-end_time.

Alternatively pasting a FASTQ read header from a base called read

will jump to its channel, time and raw signal from the bulk FAST5

file. Files can also be navigated by jumping to the next or previous

instance of a specific annotation (Supplementary Table S1).

Annotations are overlaid on the signal plot as vertical dashed lines,

labelled with the type and associated ID if available (Fig. 1); map-

pings, generated by gen_bmf.py, are overlaid horizontally above the

signal, with blue/red indicating forward/reverse mappings, respect-

ively (Fig. 2). Raw signal data are proportionally smoothed to

aid rapid visualization. BulkVis allows export of the signal section

being viewed to a read FAST5 file compatible with Nanopore

base callers. To avoid confusion with MinKNOW derived

reads, BulkVis reads are custom named and include the

channel number and the start and end index of the read segment

recorded in samples. The read segment shown in Figure 1 results

in a read FAST5 file named plsp57501_20170308_fnfaf14035_m

n16458_sequencing_run_nott_hum_wh1rs2_60428_bulkvis-read_22

448000-25724000_ch_450.FAST5. This region captures three single

reads that when called as one read generates a 215 662 base sequence

(Supplementary File Collection S1). The three individual reads

base call with a combined length of 215 153 bases (Supplementary

File Collection S1) and the single called read maps well to the original

three (Supplementary Fig. S1a).

During library preparation, adapter sequences are added to

DNA molecules such that every sequenced read should begin with

an adapter sequence. MinKNOW classifies sequences in real time,

usually labeling read starts with the annotation ‘adapter’. A channel

without DNA in a pore will be labelled ‘pore’. Typically then adapt-

er sequences should be detected (labelled ‘adapter’) followed by the

Fig. 1. Screenshot of the BulkVis application running. The vertical dashed lines indicate different annotations overlaid by MinKNOW on the signal trace in real

time. The left panel provides configuration and navigation options for the selected bulk FAST5 file
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signal derived from the read itself (‘strand’) (Fig. 2a). BulkVis was

developed in part to observe the effects of unblocking (the reversal

of voltage across a specific channel to eject material from the pore)

on DNA sequence in a nanopore. Unblocking is used in two ways;

firstly the sequencer detects and removes blockages in the pore and,

secondly, for the rejection of unwanted DNA in selective sequencing

or ‘Read Until’ (Loose et al., 2016). To observe the effect of an un-

block (Fig. 2b) on a channel immediately after the read has been

ejected users must analyse a bulk FAST5 file. Alternatively reads can

be inspected in order from an individual channel. For the data pre-

sented here, unblocks have a fixed duration of 2 seconds after which

the channel should return to its normal state. ONT have released an

updated version of unblock, termed ‘Progressive Unblock’ that grad-

ually increases the duration of the flick time (MinKNOW 2.0 Stuart

Reid Pers Comm.).

During recent efforts sequencing the human genome on a

MinION (Jain et al., 2018), a protocol to sequence ultra-long DNA

molecules was generated by Quick (2018). We used BulkVis to in-

vestigate the signal from MinKNOW during one of these runs (ASIC

ID 3976726082, Supplementary Note S1). We observed reads with-

out the expected ‘pore’, ‘adapter’, ‘strand’ sequence. We found

‘strand’ sequences separated by either ‘above’ and/or ‘transition’

(Fig. 2c) or even ‘unblock’ (Fig. 2d) signals without any evidence of

‘pore’ or ‘adapter’ sequences present. This was surprising given that

every sequenced read should begin with an adapter. We therefore

closely examined reads before and after these unusual read split

events. By looking at read mappings prior and post the events shown

in Figure 2c and d, we determined the two sequences were derived

from adjacent positions on the same chromosome (Table 1). These

reads, sequenced one after another, were most likely derived from

single molecules. The alternative explanation is the chance sequenc-

ing of two independent molecules that map adjacently on the human

reference, one after another, through the same pore.

Mapping all the reads (ASIC ID 3976726082) against the

GRCh38 reference (Schneider et al., 2017) and using read and chan-

nel numbers to sort by order through each channel we asked how

many adjacent reads mapped to contiguous positions [whale_

watch.py (Colloquially, Nanopore reads exceeding 1 Mb have been

Fig. 2. Illustrative segments from a bulk FAST5 file visualized with BulkVis. (a) The start of a read mapping to chromosome 6. Open channel ‘pore’, followed by an

‘adapter’, and ‘strand’ as annotated by MinKNOW. (b) Read ending with an ‘unblock’ followed by ‘pore’ and then a new read. (c) Adjacent reads from a channel

separated by unusual current patterns.These two reads are reported as distinct molecules by MinKNOW, they map consecutively to the reference. (d) Two adja-

cent reads separated by an ‘unblock’ signal. The unblock does not successfully remove the DNA. Instead the read continues to sequence again mapping adja-

cently to the reference

BulkVis: bulk FAST5 file visualiser 2195
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referred to as ‘whales’, with the species of whale determined by con-

verting the length of a read in kb to a mass in kg, hence our script

naming conventions.)]. About 2983 of 75 689 reads were incorrect-

ly split with pairs of reads mapping adjacently to the reference.

Stitching these reads together (using whale_merge.py) increased

read length N50 from 98 876 to 103 925 bases. Mean read length

of incorrectly split reads (55 190 bases) is higher than the entire

dataset (23 717 bases). Re-examining previous ultra-long datasets

revealed incorrect read splitting occurred 1-10% of the time

(Supplementary Table S2). Incorrectly split reads had consistently

higher mean read lengths than those which appear to be true single

molecules. As such, these reads have significant effects on read N50

(up to 21 kb).

We generated additional ultra-long reads from the same refer-

ence human genomic DNA sample using the RAD004 transposase

kit for ultra-long reads (Jain et al., 2018; Quick, 2018). This

revealed more incorrectly split reads with up to 30% of reads in one

run affected and increases in read N50 of up to 40 kb (data not

shown). Differences between runs include the input DNA, the

sequencing kit, other unknown variables within the flowcells and

MinKNOW software itself. Within this dataset we found a single

read of 1 204 840 bases that maps to 1 325 742 bases on chromo-

some 5 (Fig. 3a). Remarkably, we found a set of eleven reads that,

when merged, were 2 272 580 bases in length. This merged read

maps to a single location in the human genome spanning 2 290 436

bases (Supplementary Table S3, Fig. 3b, Supplementary File

Collection S2). Unfortunately, we did not collect a bulk FAST5 file

for this run. The next longest ‘fused’ read caught in a bulk FAST5

file was 1 385 925 bases in length, derived from nine individual

reads (Supplementary Table S4, Fig. 3c, Supplementary Fig. S2).

Using BulkVis we created a single read FAST5 file from the signal

covering all these reads and base called it using albacore resulting in

a read that maps in its entirety to a single location in the genome.

Investigating further revealed changes in normal current flow

that cause real time MinKNOW read detection to split the read.

Occasionally, these events trigger unblock activity, after which the

read continues to sequence from the same point in the reference (in

one instance this unblock loop lasted >40 minutes, then continued

to sequence the same molecule, Supplementary Fig. S3). The most

complex fused read observed to date consists of 38 individual reads

mapping contiguously to the genome (Fig. 3d), Supplementary Fig.

S4, Supplementary File Collection S2]. The plot seen in Figure 1

(Supplementary Fig. S1B) also represents a ‘fused read’. When called

as a single read, the base called sequence maps contiguously to

chromosome 1 from 60 882 202 to 61 129 414 bases (spanning

247 212 bases).

Analysis of a representative bulk FAST5 file identifies annotation

states correlating with the starts and ends of incorrectly split reads

(Fig. 4). These are either ‘above’ or ‘transition’ classifications occur-

ing at the change from one read to the next. At lower frequency

unblocks can split reads. The ‘above’ or ‘transition’ signals can be

seen in the signal traces (Fig. 2). We asked if interference from sur-

rounding channels might cause this but grouping signals from sur-

rounding channels failed to reveal any clear pattern (not shown).

Clearly, correcting split reads should result in more contiguous

assemblies. To test this, we ran our whale_merge.py analysis across

the entire data set generated by the Nanopore Human Genome con-

sortium (Jain et al., 2018). This dataset consists of 16.1 million

reads with an N50 of 13 kb. Running whale_watch.py across this

entire dataset identifies almost 100 000 incorrectly split reads. To

demonstrate the impact of split reads on assembly we identified all

reads mapping to chromosome 20 and used minimap2/miniasm to

assemble reads before and after correction ( Li, 2016, 2018). Prior

to correction, the assembly length was 52.5 Mb with an N50 of 3

699 497 bases. After correction, the assembly length increased to

55 Mb with an N50 of 4 673 412 bases, an N50 increase of just

under 1 Mb.

3 Discussion

BulkVis enables visualization of bulk FAST5 files collected from

Nanopore sequencers. Whilst developing BulkVis, we identified

ultra-long reads can be incorrectly split by MinKNOW. This dispro-

portionately affects ultra-long read preparations. We note that the

method used for ultra-long reads is outside the normal operating

conditions for nanopore sequencing (Quick, 2018). Similarly, the

number of ultra-long datasets analysed in this way is limited.

However, for those wishing to maximize read length the fact that

adjacent reads from a single pore may represent a single molecule of

DNA is significant. We have no formal explanation for why this

occurs, but speculate that potential causes include DNA damage or

contaminants physically linked to the DNA causing spikes in the sig-

nal. We cannot exclude the possibility that some observed split reads

are caused by single strand breaks.

Additionally we note some instances where reversal of the volt-

age does not successfully reject a read. This effect is apparently rare

and typically occurs within long reads. For applications such as se-

lective sequencing (Loose et al., 2016), reads will be rejected early in

the sequencing process. We expect this will be more efficient than

reads rejected midway through their length, aligning with our previ-

ous observations on ‘read until’ (Loose et al., 2016). Whilst it is pos-

sible to determine the length of a read that is not rejected from a

pore, it is impossible to measure the true length of reads that are suc-

cessfully rejected. When running read until, reads that do not suc-

cessfully unblock can be identified using the whale_watch.py script

as they will appear as fused reads.

We provide helper scripts identifying candidate incorrectly split

reads. These scripts are limited as they rely on suitable reference

genomes to map against. It is possible to recognize candidate reads

by close analysis of bulk FAST5 files although we anticipate

MinKNOW itself can be further optimized to avoid incorrectly split

Table 1. Mapping data for events shown in Figure 2c and d

Read ID Chan Read Length Chr Start End

2C 7ed4aafb-d058-481c-ad60-903fd8327240 176 943 10 275 5 122 184 560 122 199 454

83d0cea6-69ad-406b-87fb-7eaa2b178f68 43 145 122 133 985 122 184 329

2D c13c1e73-f7e0-4ae2-8cda-729f3b4dcb79 68 758 5068 19 55 435 454 55 439 579

50117d5d-b8d5-423c-b0d6-8fa8eaea9b65 25 596 55 409 626 55 433 153

Note: Reads mapped to GRCh38 (minimap2 -x map-ont). Combined read length (2C) is 56 284 bases, mapping to a span of 65 469 bases. Combined read

length (2D) is 30 664 bases, mapping to a span of 29 953 bases. All reads here map in reverse orientation.
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reads. These optimizations highlight the tension between under

splitting reads, leading to chimeras (White et al., 2017) versus over

splitting resulting in artificially shortened reads. For general use,

over splitting is clearly preferential to chimeras. However for de

novo assembly and maximizing long reads users should be aware

that decisions made by MinKNOW may not be correct. In future

identifying candidate incorrectly split reads from the absence of

adapter sequences might be of benefit.

Whilst we see no requirement for routine collection of bulk

FAST5 files, those interested in de novo assembly may benefit from

Fig. 3. Read mappings. (a) Longest single read. (b) Longest fused read (>2 Mb), sequenced in 11 reads. (c) Longest fused read sequenced with a bulk FAST5 file.

(d) Fused read comprising 38 individual sequences. (a–d) Reads mapped and visualized with last (-m 1) and last-dotplot (Kiełbasa et al., 2011). Horizontal lines in-

dicate breaks between individual reads. (e) Illustration of reads, shown as red rectangles, from A to D mapped against GRCh38 in ENSEMBL

BulkVis: bulk FAST5 file visualiser 2197
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these files. BulkVis is provided for the visual inspection of challeng-

ing or difficult to sequence samples or where the user wishes to in-

vestigate specific events during a run. In these instances analysis of a

bulk FAST5 file may provide some visual indication of the underly-

ing issues. We note that we have seen evidence of incorrect read

splitting by MinKNOW across all current versions of MinKNOW

and all Nanopore platforms including MinION, GridION and

PromethION.

4 Materials and methods

4.1 Sequencing
Sequencing using high molecular weight DNA extracted and pre-

pared as previously described (Jain et al., 2018; Quick, 2018).

RAD002 datasets are as described in Jain et al. (2018). RAD004

sequencing was performed using MinKNOW version 1.11.5.

Standard MinKNOW running scripts were used with manual

restarting to maximize the number of sequencing channels.

4.2 BulkVis installation and operation
BulkVis and companion scripts are available on github (https://

www.github.com/LooseLab/bulkvis). Scripts make use of the python

modules: NumPy (Oliphant, 2015), Pandas (McKinney, 2010),

bokeh (https://bokeh.pydata.org) and h5py (Collette, 2013). Full

instructions and documentation are provided at http://bulkvis.read

thedocs.io.
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S
equencing-by-synthesis (SBS) strategies have dominated RNA 
sequencing since the early 1990s1. They involve generation of 
cDNA templates by reverse transcription (RT)2,3 coupled with 

PCR amplification4. Nanopore RNA strand sequencing has emerged 
as an alternative single-molecule strategy5–7. It differs from SBS-
based platforms in that native RNA nucleotides, rather than copied 
DNA nucleotides, are identified as they thread through and touch a 
nanoscale sensor. Nanopore RNA strand sequencing shares the core 
features of nanopore DNA sequencing; that is, a processive heli-
case motor regulates movement of a bound polynucleotide driven 
through a protein pore by an applied voltage. As the polynucleotide 
advances through the nanopore in single-nucleotide steps, ionic cur-
rent impedance reports on the structure and dynamics of nucleotides 
in or proximal to the channel as a function of time. This continuous 
ionic current series is converted into nucleotide sequence using an 
ONT neural network algorithm trained with known RNA molecules.

Here we describe sequencing and analysis of a human poly(A) 
transcriptome from the GM12878 cell line using the Oxford 
Nanopore (ONT) platform. We demonstrate that long native RNA 
reads allow for discovery and characterization of polyA RNA mol-
ecules that are difficult to observe using short read cDNA meth-
ods8,9. Data and resources are posted online at https://github.com/
nanopore-wgs-consortium/NA12878/blob/master/RNA.md.

Results
RNA preparation, nanopore sequencing and computational 
pipeline. The protocol we used to isolate and sequence native 
poly(A) RNA from a human B lymphocyte cell line (GM12878) is  

summarized in Fig. 1a and detailed in Methods. A typical ionic current 
trace during TP53 mRNA translocation through a nanopore reveals 
key features (Fig. 1b). The ionic current readout for each poly(A) RNA 
strand was basecalled using Albacore version 2.1.0 (ONT).

We also performed nanopore cDNA sequencing using the identi-
cal GM12878 RNA sample and analysis pipeline, but with modified 
parameters that are appropriate for cDNA sequencing (Methods). 
Both the RNA and cDNA data were archived and used for down-
stream analyses (Fig. 1c).

Native poly(A) RNA sequencing statistics. Six laboratories per-
formed five nanopore sequencing runs each (Supplementary Table 1).  
These 30 runs produced 13.0 million poly(A) RNA strand reads, of 
which 10.3 million passed quality filters (PHRED > 7). Throughput 
varied between 50,000 and 831,000 pass reads per flow cell, with a 
read N50 length of 1,334 bases, and a median length of 771 bases. Of 
these, 9.9 million aligned using minimap2 (ref. 10) to the GRCh38 
human genome reference. The 360,000 unaligned pass reads had a 
median read length of 211 bases.

We next aligned the RNA pass reads to the GENCODE v27 tran-
scriptome reference using minimap2 (ref. 10). The aligned reads 
ranged in length from 85 nucleotides (nt) (a fragment of an mRNA 
encoding Ribosomal Protein RPL39), to 21 kb (a messenger RNA 
encoding spectrin repeat containing nuclear envelope protein 2 
(SYNE2)). A comprehensive list of the genes and isoforms can be 
found on GitHub and in Supplementary Tables 2 and 3, respectively.

MarginStats (version 0.1)11 was employed to calculate percent 
identity and the number of matches, mismatches and indels per 
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poly(A) transcriptome
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aligned read in this population (Supplementary Table 4). Median 
identity was 86 ± 0.86% (Fig. 2a). The mismatch, insertion and 
deletion errors were 2.4%, 4.3% and 4.4% respectively. The base-
caller seldom confused G-for-C or C-for-G (0.38% and 0.47% 
errors, respectively); C-to-U and U-to-C errors were substantially 
higher (3.62% and 2.23%, respectively) (Fig. 2b). We compared the 
observed read length with the expected transcript length as defined 
by GENCODE v27, and found general agreement (Fig. 2c). The dis-
crete clusters below the diagonal represent incorrect assignments 
to GENCODE isoforms, and the diffuse shading represents frag-
mented RNA (see the text concerning RNA truncation).

For nanopore cDNA data, we observed a median identity of 85%, 
which is comparable to recent published nanopore DNA results12. 
The substitution error patterns for cDNA data were similar to those 
for native RNA data (data not shown).

k-mer coverage. Previous analyses indicated that some nucleo-
tide subsequences (k-mers) are over- or under-represented in  
nanopore-based DNA sequence reads11,12. We assessed nanopore 
RNA and cDNA 5-mer coverage using reads aligned to GENCODE 
v27 isoforms. Only reads that covered 90% or more of a given ref-
erence sequence were chosen; this selected 2.9 million of the total  
10.3 million RNA reads. Of the 15.1 million pass cDNA reads,  
3.9 million pass cDNA reads were selected. These reads included all 
1,024 possible 5-mers (see Supplementary Fig. 1a,b for normalized 
native RNA and cDNA counts, respectively).

The 5-mers that were under-represented in native RNA and 
over-represented in cDNA are shown in Supplementary Tables 5 
and 6, respectively. Similar to previous studies11,12, the largest devia-
tion from expectation occurred for homopolymer-rich k-mers.

Nanopore sequencing performance assessed using mitochon-
drially encoded RNA. We reasoned that mitochondrial (MT) 

poly(A) transcripts could be used to benchmark nanopore sequenc-
ing performance because they are abundant in all human cells, 
are single exon, and vary substantially in length (349–2,379 nt). 
Approximately 10% (950,879) of reads aligned to the mitochondrial 
genome (Fig. 3a and public UCSC track (http://genome.ucsc.edu/s/
miten/nvRNA_f_r). As expected, most of these poly(A) transcripts 
corresponded to mitochondrial ribosomal RNA or to mitochon-
drial mRNA. Overall, the nanopore RNA reads recapitulated known 
features of the human MT-transcriptome (Supplementary Figs. 2 
and 3). We also observed poly(A) RNA strands that are difficult to 
observe by conventional means (Supplementary Figs. 4 and 5).

Mitochondrial RNA (MT-RNA) read length analysis was 
revealing. 5,000 reads aligned to mitochondrially encoded cyto-
chrome c oxidase II (MT-CO2) or to mitochondrially encoded 
NADH:ubiquinone oxidoreductase core subunit 4L (MT-ND4L) 
and MT-ND4 genes combined (Fig. 3b). For each transcript, a dom-
inant band corresponded closely to the expected length (732 nt and 
1,673 nt for MT-CO2 and MT-ND4L/ND4, respectively). However, 
for each of these, a population of truncated reads was randomly dis-
tributed between the dominant band and about 300 nt in length. 
When we quantified the fraction of truncated reads as a function 
of nominal transcript length for ten MT-mRNA of the heavy strand 
(Methods), we found a strong linear anti-correlation in most cases 
(Fig. 3c). The single outlier was MT-ND5, which is the mitochon-
drial transcript with a 568 nt 3′ untranslated region (UTR).

These MT-poly(A) RNA truncations could occur at any of sev-
eral non-biological steps during the sequencing process, or they 
could arise from regulated enzymatic degradation in the mitochon-
drion13. Here we considered three possible non-biological causes 
that were specific to the nanopore platform.

One systematic cause of read truncations occurred because the 
enzyme that controls translocation through the pore is 10–15 nt 
from the nanopore sensor. When the enzyme releases the last nt at 
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the 5′ end, the strand is rapidly driven through the pore which pre-
vents reading the terminal 10–15 nt. This phenomenon was evident 
by close inspection of read coverage at the 5′ end of MT-mRNA 
transcripts (http://genome.ucsc.edu/s/miten/nvRNA_f_r), and is 
expected for all direct RNA reads in the present ONT protocol.

Another possible cause was ionic current signal artifacts associ-
ated with enzyme stalls during RNA translocation, or with extra-
neous voltage spikes (Supplementary Fig. 6a). Similar artifacts 
have been shown to disrupt strand reads during MinION sequenc-
ing of DNA14. Systematic analysis of 2,729 MT-CO1 reads within 
bulk FAST5 files from Lab 1 identified 527 reads that started or 
ended abnormally (Methods). By including ionic current segments 
that were identified before or after many of these truncations, 
we reconstructed 300 reads with longer alignments to MT-CO1 
(Supplementary Fig. 6 and Supplementary Table 7). This phenom-
enon was length dependent (Fig. 3d), ranging from 4.2% of reads 
with rescued segments for ND3 (346 nt nominal length) to 17.6% 
for ND5 (2,379 nt nominal length).

A third possible cause was strand breaks during nanopore 
sequencing runs. We analyzed MT-CO1 read-length distribution for 
each of the six laboratories as a function of time on ONT flow cells. 
We found that the read frequency at all lengths declined steadily over 
36 h as expected, however the full-length fraction declined by only 
5% (Supplementary Fig. 7). This analysis also revealed that RNA 
from Lab 6 had degraded prior to the sequencing run. Therefore, 
isoform-level analyses (see below) focused on 8.17 million  
aligned poly(A) RNA reads from Labs 1–5.

Isoform detection and analysis. Long nanopore reads could 
improve resolution of RNA exon–exon connectivity, allowing for 
discovery of unannotated RNA isoforms. However, these reads aver-
aged 14% per-read basecall errors, confounding precise determina-
tion of splice sites. Also, biological RNA processing and in  vitro 
5′-end truncations (see above) can make it difficult to define tran-
scription start sites (TSS).

To overcome these limitations we employed FLAIR (full-length 
alternative isoform analysis of RNA, see Methods). We first replaced 
any nanopore-based splice sites bearing apparent sequencing errors 
with splice sites supported by GENCODE v27 annotations or by 
Illumina GM12878 cDNA data (Supplementary Fig. 8)15,16. Second, 
to overcome TSS uncertainty caused by truncated RNA reads, we 
considered only reads with 5′ ends proximal to promoter regions 

(defined by ENCODE promoter chromatin states for GM12878 
(refs. 17–19)). Third, we used FLAIR to group reads into isoforms 
according to chains of splice junctions.

We compiled two FLAIR isoform sets (Supplementary Table 8)  
using different supporting read criteria (see Methods and 
Supplementary Fig. 9): (1) a FLAIR-sensitive set that included 
isoforms with three or more uniquely mapped reads (see https://
github.com/nanopore-wgs-consortium/NA12878/blob/master/
RNA.md#analyses). This large set could be useful for isoform  
discovery, at the risk of false positives; (2) a FLAIR-stringent set 
that was compiled by filtering set (1) for isoforms having 3 or more  
supporting reads that spanned ≥80% of the isoform with ≥25 nt 
coverage into the first and last exon.

We screened for unannotated isoforms within the FLAIR-
stringent dataset. Of the 33,984 isoforms representing 10,793 genes 
(Supplementary Table 9), 52.6% had a splice junction chain that was 
unannotated in GENCODE (13.0% of total assigned reads) (Fig. 4a).  
We observed that non-coding genes had more complex splicing pat-
terns per gene than did coding genes (Fig. 4b), in agreement with 
prior studies demonstrating increased alternative splicing in non-
coding exons20,21.

As a conservative alternative to FLAIR, we compiled two 
GENCODE-based isoform sets using a lower coverage thresh-
old because GENCODE is curated (Supplementary Table 8): (1) a  
GENCODE-sensitive set that included isoforms with 1 or more 
reads that mapped uniquely to GENCODE v27; (2) a GENCODE-
stringent set that was compiled by filtering set (1) for isoforms hav-
ing 1 or more supporting reads that spanned ≥80% of the isoform 
with ≥25 nt coverage into the first and last exon.

To estimate the sequencing depth required to completely char-
acterize the GM12878 transcriptome, we plotted the number of 
isoforms detected in the GENCODE-sensitive and FLAIR-stringent 
isoform sets versus the number of subsampled reads in 10% incre-
ments. We then fitted a hyperbolic function to the data (Fig. 4c, 
Supplementary Fig. 10 and Supplementary Table 10). It is evident 
that the curves did not saturate and that additional reads would be 
required to capture a complete GM12878 transcriptome.

Assignment of transcripts to parental alleles. Allele-specific 
expression (ASE) is the preferential transcription of RNA from the 
paternal or maternal copy of a gene. Although the importance of 
this phenomenon has been characterized22, the consequences are 
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not fully understood. This is partly owing to technical limitations of 
haplotype identification using short read sequencing technologies.

We reasoned that the long nanopore RNA reads would be easier 
to assign to the parental allele of origin due to the greater chance 
of encountering a heterozygous SNP. Reads with at least two het-
erozygous SNPs were assigned to the parental allele of origin using 
HapCUT2 (ref. 23). To discover the most possible genes, we used the 
FLAIR-sensitive dataset. In it, we found 3,751 genes with at least 
10 haplotype informative reads. Of these genes, 3,707 were from 
autosomal chromosomes and 44 were from the X chromosome 
(Supplementary Table 11). Among autosomal genes, 228 (6.1%) 
showed significant ASE (binomial test, P < 0.001), and among X 
chromosome genes, 23 (95.7%) showed significant ASE (binomial 
test, P < 0.001). X chromosome expression was biased, with 22 of 23 
allele-specific X-linked genes originating from the maternal allele, 
consistent with previous results for this cell line24. The sole pater-
nally expressed X-linked locus encoded the long non-coding RNA 
XIST (Supplementary Fig. 11), which is transcribed from the inac-
tive X-chromosome and recruits epigenetic silencing machinery for 
X-inactivation in females25. The remaining genes were expressed 
equally from both parental alleles.

We combined these allele-specific reads with isoforms from the 
FLAIR-sensitive set to mine for allele specificity (Methods). We 
identified five genes with one isoform expressed from one allele 

and another isoform expressed from the other allele (binomial test, 
P < 0.001, Supplementary Table 12). One of these genes, interferon 
induced with helicase C domain 1 (IFIH1), had a paternal isoform 
with exon 8 retained, while the maternal isoform did not retain exon 
8 (Fig. 4d and Supplementary Fig. 12). The closest SNV used in allele-
assignment was 886 nt away from the alternative splicing event in this 
transcript. This would be undetectable using short read sequencing.

3′ poly(A) analysis. Transcript poly(A) tails are thought to have a 
role in post-transcriptional regulation, including mRNA stability 
and translational efficiency26. However, these homopolymers can be 
several hundred nucleotides long making them difficult to measure 
using short-read SBS data27,28.

We measured poly(A) tail lengths directly using a low-variance 
ionic current signal associated with the 3′ end of each poly(A) 
strand (Fig. 1b, iii). We developed a computational method (‘nanop-
olish-polya’, https://github.com/jts/nanopolish) to segment this 
signal and estimate how many ionic current samples were drawn 
from the poly(A) tail region. By correcting for the rate at which the 
RNA molecule passes through the pore, nanopolish-polya estimates 
the length of the poly(A) tail. Algorithmic details can be found in 
Supplementary Note 1.

To test this method, we obtained six MinION-derived poly(A) 
RNA control datasets generated by ONT (ENA accession 
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PRJEB28423). These datasets consisted of ionic current traces 
for synthetic S. cerevisiae enolase transcripts appended with 3′ 
poly(A) tails of 10, 15, 30, 60, 80 or 100 nt. A second version of the 
60-nt poly(A) tailed construct (60 nt-kN) contained a 10-nt ran-
domer between the enolase sequence and the 3′ poly(A) (Fig. 5a, 
Supplementary Table 13 and Supplementary Note 1).

We applied this poly(A) length estimator to the complete 
GM12878 native poly(A) RNA sequence dataset. Overall, the 
poly(A) length distribution centered at ~50 nt, with mitochon-
drial transcripts averaging 52 nt and almost no poly(A) tail lengths 
greater than 100 nt. This is consistent with results for mitochon-
drial poly(A) RNA from other human cell lines29. Conversely, 
nuclear transcripts showed a broader length distribution, with a 
peak at 58 nt, a mean of 112 nt, and a large number of poly(A) tails 
greater than 200 nt.

Next, we measured poly(A) tail length differences between genes 
with at least 500 reads and ranked 1,043 genes by median values 
(Fig. 5b and Supplementary Table 14). For some genes, for example 
the RNA-binding protein DEAD-box helicase 5 (DDX5), multiple 
peaks were observed (Fig. 5b), suggesting the presence of isoform-
specific poly(A) tail-length sub-populations. To explore this, we 
analyzed genes in the GENCODE-sensitive dataset, and found 215 
genes that had isoforms with significantly different poly(A) lengths 
(Supplementary Fig. 13).

When we compared two GENCODE isoforms of DDX5, we 
noted that an intron-retaining isoform (ENST00000581230, ‘230’) 

had a median poly(A) tail length of 327 nt, compared with the 
protein-coding isoform (ENST00000225792, ‘792’), which had a 
median poly(A) tail length of 125 nt (Fig. 5c). This difference moti-
vated us to explore the relationship between poly(A) tail length and 
RNA intron-retention. We classified each isoform in GENCODE-
sensitive as either protein-coding or intron-retaining. The subset of 
transcripts with retained introns tended to have longer poly(A) tails 
(median 232 nt) than did transcripts without introns (median 91 nt) 
(t-test P value < 2.2 × 10–16, Fig. 5d).

Modification detection. Nanopore sequencing has been used to  
identify base modifications in DNA30,31 and RNA5,7. N6- 
methyladenine (m6A) is the most common internal modification 
on mRNA32, and has been implicated in many facets of RNA metab-
olism33. m6A dysregulation has been linked to human diseases, 
including obesity and cancer34. Because m6A modifications are 
enriched in 3′ UTRs, with two-thirds of these containing miRNA 
sites35, the impact of this modification appears to be largely regula-
tory, as opposed to altering protein-coding sequence.

We focused our studies on the GGACU binding motif of meth-
yltransferase 3 (METTL3), a subunit of the m6A methyltransferase 
complex36. As an example, we compared the raw current signal at a 
putative m6A site (chr19:3976327) in eukaryotic elongation factor 
2 (EEF2) with the signal for an in vitro transcribed copy (Methods). 
This comparison revealed an ionic current change attributable to 
m6A (Fig. 6a). To validate this result, we used synthetic oligomers 

P < 2.2 × 10–16

0

200

400

600

Protein coding Intron retained

P
o

ly
(A

) 
le

n
g

th

d n = 4000819 n = 48539

c

0

200

400

600

Isoform 792 Isoform 230

P
o

ly
(A

) 
le

n
g

th

DDX5
P < 2.2 × 10–16

n = 766 n = 386

b

0

200

400

600

DDX17 DDX5 SRP14 OLA1 RPS24

P
o

ly
(A

) 
le

n
g

th

n = 847 n = 1,174 n = 2,213 n = 1,012 n = 12,251

10 nt 15 nt 30 nt 60 nt 60.kN 80 nt 100 nt

0

50

100

150

200

250

300

P
o

ly
(A

) 
le

n
g

th

a

n
 =

 2
7,

47
7

n
 =

 2
3,

00
0

n
 =

 1
8,

68
0

n
 =

 2
9,

82
3

n
 =

 9
1,

93
0

n
 =

 1
75

,1
62

n
 =

 5
9,

20
7

DDX5 isoforms

ENST00000225792 (792)

ENST00000581230 (230)

Fig. 5 | Testing and implementation of the poly(A) tail length estimator nanopolish-polya. a, Estimate of poly(A) lengths for a synthetic enolase control 

transcript bearing 3′ poly(A) tails of 10, 15, 30, 60, 80 or 100 nt. 60 nt-kN contained a 10-nt random sequence inserted between the enolase sequence and 

the 3′ poly(A) 60-mer. b, Violin and box plots showing poly(A) tail-length distributions for genes with the longest (DDX5, DDX17), median (SRP14) and 

shortest (RPS24, OLA1) values from a ranked list of 1,043 genes. c, Distribution of poly(A) tail lengths (top) and gene models (bottom) for two isoforms of 

DDX5. d, Distribution of poly(A) tail lengths for representative intron-retaining and intron-free transcripts identified using the GENCODE-Sensitive isoform 

set. Kruskal–Wallis P values are denoted. Each box plot shows the maximum and minimum values of the data (top and bottom lines), the third and first 

quartiles (edges of upper and lower boxes respectively) and the median (center line).

NATURE METHODS | VOL 16 | DECEMBER 2019 | 1297–1305 | www.nature.com/naturemethods1302

168



ARTICLESNATURE METHODS

that were identical except for the presence or absence of m6A within 
the GGACU motif (Fig. 6b). This revealed a clear current difference 
(Fig. 6c) consistent with the EEF2 result.

To determine if m6A modifications differed between isoforms 
of the same gene, we screened GENCODE-sensitive isoforms for 
ionic current changes at the GGACU motif. We found 86 genes (198 
isoforms) for which the median current levels at a single GGACU 
were significantly different between gene isoforms (Kruskal–
Wallis, Student’s t-test, and Kolmogorov–Smirnov statistical testing  
with Bonferroni multiple-testing correction). An example is 
illustrated for the SNHG8 gene (Fig. 6d, isoform models in 
Supplementary Fig. 14).

Another post-transcriptional modification, A-to-I RNA edit-
ing37, plays a role in splicing and regulating innate immunity38,39. 

NGS detects A-to-I editing as an A-to-G nucleotide variant in 
cDNA sequences.

Previous nanopore experiments documented the presence of 
systematic base miscalls in regions of E. coli 16S rRNA bearing 
modified RNA bases7. We found systematic base miscalls at puta-
tive inosine bearing positions in the GM12878 aryl hydrocarbon  
receptor (AHR) data (Supplementary Fig. 15). To cross-validate, we 
compared our cDNA sequence data relative to the GM12878 refer-
ence and found that putative inosines were detected as an A-to-G 
base change as expected (that is a single inosine for the CUACU 
5-mer, and multiple inosines for the AAAAA 5-mer).

The ionic current distribution for the putative single inosine 
5-mer (CUACU) was modestly different from the canonical 5-mer 
(Fig. 6e). The ionic current distribution for the inosine containing 
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AAAAA 5-mer was more complex, possibly reflecting the presence 
of multiple inosines (Fig. 6f).

Discussion
Nanopore RNA sequencing has two useful features. (1) The 
sequence composition of each strand is read as it existed in the cell. 
This permits direct detection of post-transcriptional modifications 
including nucleotide alterations and polyadenylation. (2) Reads can 
be continuous over many thousands of nucleotides providing splice-
variant and haplotype phasing. Although each of these features  
is useful in itself, the combination is unique and likely to provide 
new insights into RNA biology. The two principal drawbacks of the 
present ONT nanopore RNA sequencing platform is the relatively 
high error rate (compared to Illumina cDNA sequencing), and 
uncertainty about the 5′ end of the transcript.

We were concerned about read fragmentation due to RNA deg-
radation during sequencing. However, we found minimal (~5%) 
reduction in the full-length fraction of a 1.6 kb mRNA (MT-CO1) 
over 36 h. Preliminary analysis indicated that read truncations were 
more often caused by electronic signal noise due to current spikes of 
unknown origin. We showed that meaningful biological signals can 
be recovered from bulk Fast5 files around these truncations, sug-
gesting that future improvements to the MinKNOW read segmen-
tation pipeline are needed.

When combined with more accurate short Illumina reads, long 
nanopore reads allowed for end-to-end documentation of RNA 
transcripts bearing numerous splice junctions, which would not be 
possible using either platform alone. We documented a high pro-
portion (52.6%) of unannotated isoforms, similar to other long-read 
transcriptome sequencing studies (for example, 35.6% and 49%)40,41. 
While many of these unannotated isoforms are low abundance and 
their protein coding potentials are unknown, it is important to cata-
log them because subtle splicing changes can impact function42,43. 
We also note that the number of detected isoforms did not saturate 
using the nanopore poly(A) RNA dataset, indicating that greater 
sequence depth will be necessary to give a comprehensive picture of 
the GM12878 poly(A) transcriptome.

A variety of techniques have been used to examine allele-spe-
cific expression (ASE)15,24. However, identification of ASE is limited 
using short read platforms because heterozygous variants are rare 
within any given window of a few hundred nucleotides. Nanopore 
sequencing has the advantage of long reads, albeit limited by errors. 
We attempted to mitigate the effects of these errors by requiring 
multiple heterozygous variants and a stringent false-discovery rate 
(FDR) during ASE analysis. Therefore, the number of genes that 
we report as demonstrating ASE (167) is likely an underestimation. 
We report nearly exclusive use of the maternal X-chromosome, 
with the only paternal transcripts originating from the XIST locus, 
consistent with previous findings24. We have shown that nanopore 
sequencing enables allele-specific isoform studies, especially in 
cases where the splicing variation does not have a heterozygous 
variant within range of conventional short read sequencing.

Polyadenylation of RNA 3′ ends regulates RNA stability and 
translation efficiency by modulating RNA-protein binding and 
RNA structure26. However, transcriptome-wide poly(A) analysis 
has been difficult because of basecalling and dephasing errors28. 
Recently implemented modifications to the Illumina strategy 
address these limitations27,28; but cannot resolve distal relationships, 
such as between splicing and poly(A) length. Nanopore poly(A) 
tail length estimation using nanopolish-polya offers the advantages 
of both direct length assessment and maintenance of information 
about isoform and modification status per transcript. Our pre-
liminary studies revealed differences in poly(A) length distribu-
tion between mitochondrial and nuclear genes, between different 
nuclear genes, and between different isoforms of the same gene.  
We note in particular an increase in poly(A) tail length for some 

intron-retaining isoforms. This is consistent with previous work 
showing that hyper-adenylation targets intron-retaining nuclear 
transcripts for degradation through recognition by a poly(A)-bind-
ing protein (PABPN1)44. Additionally, deadenylation of cytoplas-
mic transcripts is a core part of the RNA-degradation pathway45, 
suggesting that time-course experiments investigating RNA decay 
kinetics46 could be possible with this technology.

We have demonstrated detection of N6-methyladenosine and 
inosine modifications in human poly(A) RNA. This validates prior 
work which showed modification-dependent ionic current shifts 
associated with m6A (S. cerevisiae)5. Differences in m6A modifica-
tion level proved to be discernible at the isoform level for human 
SNHG8 mRNA (Fig. 6d), documenting splicing variation and mod-
ification changes simultaneously.

Although other methods exist for high-throughput analysis of 
RNA modifications47, they often require enrichment, which limits 
quantification, and they are usually short-read based. The latter 
precludes analysis of long-distance interactions between modifica-
tions, and between modifications and other RNA features such as 
splicing and poly(A) tail length. The capacity to detect these long-
range interactions is likely to be important given recent work sug-
gesting links between RNA modifications, splicing regulation and 
RNA transport and lifetime48,49. We argue that nanopore native RNA 
sequencing could deliver this long-range information for entire 
transcriptomes. However, this will require algorithms trained on 
large, cross-validated datasets as has been accomplished for cytosine 
and adenine methylation in genomic DNA30,31.
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Methods
Unless otherwise noted, kit-based protocols described below followed the 
manufacturer’s instructions.

GM12878 cell tissue culture. GM12878 cells (passage 4) were received from the 
Coriell Institute and cultured in RPMI medium (Invitrogen cat no. 21870076) 
supplemented with 15% non heat-inactivated FBS (Lifetech cat no. 12483020) and 
2 mM l-Glutamax (Lifetech cat no. 35050061). Cells were grown to a density of 
1 × 106 per ml before subsequent dilution of 1/3 every ~3 d and expanded to 9 × 
T75 flasks (45 ml of medium in each). Cells were centrifuged for 10 min at 100 × g 
(4 °C), washed in 1/10th volume of PBS (pH 7.4) and combined for homogeneity. 
The cells were then evenly split between 8 × 15 ml tubes and pelleted at 100g 
for 10 min at 4 °C. The cell pellets were then snap frozen in liquid nitrogen and 
immediately stored at −80 °C before shipping on dry ice. Two tubes of 5 × 107 
frozen GM12878 cell pellets from passage 10 from a single passage, cultured at 
the University of British Columbia (UBC), were distributed and used at UBC, 
Ontario Institute of Cancer Research (OICR), Johns Hopkins University (JHU) 
and University of California Santa Cruz (UCSC). Two tubes of cells from passage 
11 were distributed to University of Nottingham from UBC, and an independently 
cultured passage of GM12878 was used at University of Birmingham.

Total RNA isolation. The following protocol was used by each of the six institutions. 
Four ml of TRI-Reagent (Invitrogen AM9738) was added to a frozen pellet of 5 × 107 
GM12878 cells and vortexed immediately. This sample was incubated at room 
temperature for 5 min. Four hundred μl BCP (1-Bromo-3-chloro-propane) or 200 μl 
CHCl3 (Chloroform) was added per ml of sample, vortexed, incubated at room 
temperature for 5 min, vortexed again and centrifuged for 10 min at 12,000g (4 °C). 
The aqueous phase was pooled in a LoBind Eppendorf tube and combined with an 
equal volume of isopropanol. The tube was mixed, incubated at room temperature 
for 15 min, and centrifuged for 15 min at 12,000g (4 °C). The supernatant was 
removed, the RNA pellet was washed with 750 μl 80% ethanol and then centrifuged 
for 5 min at 12,000g (4 °C). The supernatant was removed. The pellet was air-dried 
for 10 min, resuspended in nuclease-free water (100 μl final volume), quantified and 
either stored at –80 °C or processed further by poly(A) purification.

Poly(A) RNA isolation. One hundred μg aliquots of total RNA were diluted in 
100 μl of nuclease-free water and poly(A) selected using NEXTflex Poly(A) Beads 
(BIOO Scientific cat. no. NOVA-512980). Resulting poly(A) RNA was eluted in 
nuclease-free water and stored at –80 °C.

MinION native RNA sequencing of GM12878 poly(A) RNA. Biological poly(A) 
RNA (500–775 ng) and a synthetic control (Lexogen SIRV Set 3, 5 ng) were prepared 
for nanopore direct RNA sequencing generally following the ONT SQK-RNA001 
kit protocol, including the optional reverse transcription step recommended 
by ONT. One difference from the standard ONT protocol was in the use of 
Superscript IV (Thermo Fisher) for reverse transcription. RNA sequencing on the 
MinION and GridION platforms was performed using ONT R9.4 flow cells and 
the standard MinKNOW (version 1.7.14) protocol script

(NC_48 h_sequencing_FLO-MIN106_SQK-RNA001) recommended by ONT, 
with one exception — we restarted the sequencing runs at several time points to 
improve active pore counts and throughput during the first 24 h.

cDNA synthesis. First-strand cDNA synthesis was performed using Superscript IV 
(Thermo Fisher) and 100 ng of poly(A) purified RNA. Reverse transcription and 
strand-switching primers were provided by ONT in the SQK-PCS108 kit. After 
reverse transcription, PCR was performed using LongAmp Taq Master Mix (NEB) 
under the following conditions: 95 °C for 30 s, 11–15 cycles (95 °C for 15 s, 62 °C for 
15 s, 65 °C for 15 min), 65 °C for 15 min, hold at 4 °C. The 15 cycle PCR was performed 
when using the SQK-PCS108 kit and 11 cycle PCR was performed when using the 
SQK-LSK308 kit. PCR products were purified using 0.8X AMPure XP beads.

MinION sequencing of GM12878 cDNA. cDNA sequencing libraries were 
prepared using 1 μg of cDNA following the standard ONT protocol for SQK-
PCS108 (1D sequencing) or SQK-LSK308 (1D^2 sequencing) with one exception. 
That is, we used 0.8X aAMPure XP beads for cleanup. We used standard ONT 
MinKNOW scripts for MinION sequencing with one exception. That is, we 
restarted the sequencing runs at several time points to improve active pore counts 
and throughput during the first 24 h.

Acquiring continuous data for nanopore sequencing runs and resegmenting 
reads. For a subset of runs, ‘bulk FAST5 files’ containing continuous raw current 
traces and read decisions made by MinKNOW were recorded for more detailed 
analysis. This can be enabled in MinKNOW by looking at ‘Additional options’ 
under ‘Output’ when configuring a run to start in MinKNOW. Options were set 
to capture raw signal data and the read table. Events were not captured to reduce 
file size14. Bulk FAST5 files were investigated using BulkVis14 and scripts available 
on GitHub (https://github.com/nanopore-wgs-consortium/NA12878/tree/master/
nanopore-human-transcriptome/scripts/bulk_signal_read_correction). To identify 
reads with abnormal start or ends the read classifications made by MinKNOW 

in the 2 s before and after each read start or end respectively. Read starts should 
include ‘pore’, ‘good_single’, ‘inrange’ or ‘unblocking’ classifications14. Read ends 
should also end with these categories. Reads which did not start or end with these 
classifications were considered as potentially abnormal. Additional signal before 
and after the read was extracted from the bulk FAST5 file and a new synthetic read 
created for base calling (using Albacore version 2.1.3). For abnormal read starts, 
signal up to the start of the previous read was prepended. For abnormal read ends, 
signal up to the start of the following read was appended. Base calling is disrupted 
by signal incorrectly classified as open pore. Therefore these incorrect signal 
chunks were replaced with signal matching the mean for each read to generate 
a corrected read. These reads were recalled and mapped against the candidate 
targets using minimap2 with standard ONT parameters. This method can result 
in incorrectly concatenated reads, and so mapping to the target was used to filter 
out such sequences. The difference in target coverage for each read was used to 
indicate recovery of sequence data as summarized in Supplementary Fig. 7 and 
Supplementary Table 7. All corrected read files, basecalls, mapping files and scripts 
used to generate them are available on GitHub (link cited above).

Length analysis of mitochondrial protein-coding transcripts. In this analysis,  
we limited the test population for each gene to reads that aligned to a 50 nt 
sequence at the 3′ prime end of its ORF, except for MT-ND5 where alignment 
was to a 50 nt sequence at the end of its 568 nt 3′ UTR. Full length was defined 
as extending to at least within 25 nt of the genes expected 5′ terminus. This limit 
was chosen because the processive enzyme that regulates RNA translocation is 
distal from the CsgG nanopore limiting aperture and necessarily falls off before 
the 5′ end is read. The sharpest coverage drop-off is typically at 10 nt from the 5′ 
transcript end; we chose the 25 nt limit to ensure that all likely full-length reads 
were captured in the count.

In vitro transcription. cDNA synthesis was performed according to ONT 
instructions (SQK-PCS108 kit) by combining Superscript IV (Thermo Fisher), RT 
and ONT strand switching primers, and 100 ng of poly(A) purified RNA. Next, an 
11-cycle PCR reaction was performed using the ONT SQK-LSK308 kit but with 
a modified version of the primer that included a T7 promoter as recommended 
by NEB (catalog number E2040S). The PCR reaction was run under the following 
conditions: 95 °C for 30 s, 11 cycles (95 °C for 15 s, 62 °C for 15 s, 65 °C for 15 min), 
65 °C for 15 min, hold at 4 °C.

PCR products were purified using 0.8X AMPure XP beads. Next, in vitro 
transcription was performed using the NEB HiScribe T7 High Yield RNA Synthesis 
Kit following NEB instructions. The IVT product was poly(A) tailed using the 
same kit. The resulting IVT RNA was purified using LiCl precipitation and then 
adapted for RNA sequencing on the MinION the using SQK-RNA001 kit.

Oligomer ligation. The oligomer containing the N6-methyladenosine 
modification was obtained as a lyophilized pellet from Trilink BioTechnologies  
and resuspended to 20 μM using TE buffer (Quality Biological catalog no.  
351-011-721). The firefly luciferase (FLuc) transcript used as the carrier molecule 
was produced by in vitro transcription using the HiScribe ARCA mRNA Kit 
(with tailing) (NEB catalog no. E2060) and supplied protocol with the following 
exception: after DNase treatment, the reaction was terminated and the RNA 
purified using 1X Agencourt RNAClean XP beads (Beckman Coulter A63987). 
The oligomer was then treated with T4 polynucleotide kinase (PNK) (NEB catalog 
no. M0201) to phosphorylate the 5′ end for ligation. After phosphorylation, the 
oligomer was purified using the Oligo Clean & Concentrator kit (Zymo Research 
catalog no. D4060). The phosphorylated oligomer and FLuc transcript were 
quantified, combined in equimolar amounts, and ligated using T4 RNA Ligase 1 
(NEB catalog no. M0204). The reaction mixture was incubated at 16 °C overnight. 
After incubation, the RNA was purified using RNAClean XP beads. The ligated 
product was poly(A) tailed using E. coli Poly(A) Polymerase (NEB HiScribe ARCA 
mRNA Kit) according to the supplier’s instructions. After A-tailing, the RNA was 
purified using RNAClean XP beads. The isolated RNA was poly(A) selected using 
NEXTflex Poly(A) beads. The resulting poly(A) RNA was eluted in nuclease-free 
water and immediately prepared for sequencing using Oxford Nanopore’s direct 
RNA sequencing kit (SQK-RNA001) and protocol.

Basecalling, alignments and percent identity calculations. We used the ONT 
Albacore workflow (version 2.1.0) for basecalling direct RNA and cDNA data. A 
strand read with an average sequence quality of 7 or higher (Q7) was classified as 
pass (default setting for Albacore (version 2.1.0)). We used minimap2 version 2.1 
(ref. 10) (recommended parameters that is -ax splice -uf -k14 for alignments to the 
human genome and -ax map-ont for alignments to the human transcriptome) to 
align the nanopore RNA and cDNA reads to the GRCh38 human genome reference 
(https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/GRCh38_
reference_genome/) and to the GENCODE v27 transcriptome reference (https://
www.gencodegenes.org/releases/current.html). Minimap2 was chosen because it 
aligns nanopore reads to exons while spanning across introns. We used marginStats 
(version 0.1)11 to calculate alignment identities and errors for pass RNA strand 
reads and pass 1D cDNA strand reads. Substitutions were calculated using custom 
scripts available within marginAlign (version 0.1)11.
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k-mer analysis. We assessed nanopore RNA and cDNA 5-mer coverage using 
GENCODE isoforms. The read sequences were filtered by length and only reads 
covering 90% or more of the respective reference sequence were chosen. We 
calculated expected 5-mer counts from the set of reference sequences and observed 
5-mer counts from the set of read sequences. For plotting purposes, we normalized 
the read and reference counts to coverage per megabase. The scripts are available 
within marginAlign11.

Isoform detection and characterization. To define isoforms from the sets of 
native RNA and cDNA reads, we used FLAIR v1.4, a version of FLAIR50 with 
additional considerations for native RNA nanopore data. For our analysis, we first 
removed reads generated by lab 6, because a disproportionate number of those 
molecules appeared to be truncated prior to addition to the nanopore flow cell. We 
also removed 71,276 aligned reads with deletions greater than 100 bases caused 
by minimap2 version 2.1. We then selected reads that had TSSs within promoter 
regions that were computationally derived from ENCODE ChIP-seq data18,19. Using 
FLAIR-correct, we corrected primary genomic alignments for pass reads based on 
splice junction evidence from GENCODE v27 annotations and Illumina short-read 
sequencing of GM12878. This step also removes reads containing non-canonical 
splice junctions not present in the annotation or short-read data. The filtered and 
corrected reads were then processed by FLAIR-collapse which generates a first-pass 
isoform set by grouping reads on their splice junctions chains. Next, pass reads 
were realigned to the first-pass isoform set, retaining alignments with MAPQ > 0. 
Isoforms with fewer than three supporting reads or those which were subsets of 
a longer isoform were filtered out to compile the FLAIR-sensitive isoform set. A 
FLAIR-stringent isoform set was also compiled by filtering the FLAIR-sensitive set 
for isoforms which had 3 supporting reads that spanned ≥80% of the isoform and a 
minimum of 25 nt into the first and last exons. Unannotated isoforms were defined 
as those with a unique splice junction chain not found in GENCODE v27. Isoforms 
were considered intron-retaining if they contained an exon which completely 
spanned another isoform’s splice junction. Isoforms with unannotated exons were 
defined as those with at least one exon that did not overlap any existing annotated 
exons in GENCODE v27. Genes that did not contain an annotated start codon 
were considered non-coding genes.

Defining promoter regions in GM12878 for isoform filtering. Promoter 
chromatin states for GM12878 were downloaded from the UCSC Genome Browser 
in BED format from the hg18 genome reference. Chromatin states were derived 
from an HMM based on ENCODE ChIP-seq data of nine factors18,19. The liftover 
tool51 was used to convert hg18 coordinates to hg38. The active, weak and poised 
promoter states were used.

Haplotype assignment and allele-specific analysis. We obtained genotype 
information for GM12878 from existing phased Illumina platinum genome data 
generated by deep sequencing of the cell donors’ familial trio52. The bcftools package 
was used to filter for only variants that are heterozygous in GM12878. Starting 
with aligned reads, we used the extractHAIRS utility of the haplotype-sensitive 
assembler HapCUT2 (ref. 23) to identify reads with allele-informative variants. For 
allelic assignment, we required a read to contain at least 2 variants, and required that 
greater than 75% of identified variants agreed on the parental allele of origin—this 
stringent threshold was selected to reduce the chances of incorrect assignment 
from nanopore sequencing errors. Through this approach, each read was annotated 
as maternal, paternal or unassigned. To identify genes that demonstrated a very 
strong bias for a single allele, we performed a binomial test of all reads assigned 
to a parental allele, with an FDR of 0.001. We also visually inspected numerous 
genes displaying genes demonstrating allele-specificity using IGV, to increase our 
confidence in proper mapping of the reads and evaluate the presence of variants.

We further integrated this haplotype-specific analysis with our isoform pipeline 
to explore for the presence of allele-specific isoforms. If reads for a specific isoform 
originated from a single parental allele (binomial test; false discovery rate, 0.001), 
the isoform was assigned as allele specific. We then filtered for any genes which 
contained both maternal and paternal allele-specific isoforms, and visually inspected 
these isoforms using IGV to compare location of variants and splicing events.

Poly(A) tail length analysis. Supplementary Note 1 describes use of nanopolish-
polya version 0.10.2 (https://github.com/jts/nanopolish) to estimate polyadenylated 
tail lengths of nanopore native RNA sequence reads. We used the Kruskal–Wallis 
test as implemented in Python to determine statistically significant changes 
between isoforms; code is available at https://github.com/nanopore-wgs-
consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts.

Modification detection and analysis. We focused our initial efforts on m6A 
modification in genes previously identified as enriched in modifications from 
m6A immunoprecipitation sequencing data on human cell lines36,53. We aligned 
native RNA reads and IVT RNA reads to candidate genes and then extracted ionic 
current information (mean current and standard deviation in pA) for specific 
5-mers using nanopolish eventalign (version 0.10.2). We compared ionic current 
kernel density estimates (KDE) for GGACU within the 3′ UTR of the EEF2 gene in 
native RNA with the KDE for its canonical IVT RNA counterpart. The extent and 

directionality of current shifts observed by m6A modification within the GGACU 
motif were orthogonally investigated using an in-vitro oligomer ligation assay, as 
described above. We compared KDEs for the modified and unmodified GGACU 
motifs within the synthetic oligomer. Statistical testing (Kruskal–Wallis, Student’s 
t-test, Kolmogorov–Smirnov and Bonferroni correction) was implemented in 
Python with code available at https://github.com/nanopore-wgs-consortium/
NA12878/tree/master/nanopore-human-transcriptome/scripts.

For detecting A-to-I editing, we focused on the 3′-UTR region of the human 
aryl hydrocarbon receptor (AHR) gene. Using the UCSC Genome Browser, 
we identified systematic G base variant calls in AHR cDNA data (probable 
inosine substitutions in RNA). We then tested for systematic base miscalls at the 
corresponding positions in native RNA data. Next, we used nanopolish eventalign 
(version 0.10.2) to extract ionic current information for two putative inosine-
containing 5-mers (CUACU and AAAAA), and for their respective IVT-derived 
canonical 5-mers from chromosome 7. Ionic current distributions for CUACU and 
AAAAA 5-mers between the biological and IVT data were compared using kernel 
density estimates.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequence data including raw signal files (FAST5), event-level data (FAST5), base-
calls (FASTQ) and alignments (BAM) are available as an Amazon Web Services 
Open Data set, for download from https://github.com/nanopore-wgs-consortium/
NA12878. The scripts used for various analyses are also available from the same 
GitHub under nanopore-human-transcriptome/scripts.

Code availability
General scripts available at: https://github.com/nanopore-wgs-consortium/
NA12878/tree/master/nanopore-human-transcriptome/scripts. Poly(A) caller 
(‘nanopolish-polya’, https://github.com/jts/nanopolish) and isoform analysis code 
for FLAIR (https://github.com/BrooksLabUCSC/flair).
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S
elective sequencing, or ‘Read Until’, refers to the ability of a 
nanopore sequencer to reject individual molecules while they 
are being sequenced. This requires the rapid classification of 

current signal from the first part of the read to determine whether 
the molecule should be sequenced or removed and replaced with a 
new molecule. We first demonstrated this using dynamic time warp-
ing (DTW) to compare the signal with a simulated current trace 
derived from a reference sequence1. Although DTW enabled a small 
set of use cases, it required substantial computational resources, 
preventing its generalized use2. Another recent method using raw 
signal, UNCALLED3, has a lighter computational footprint than 
previous signal-based methods, but is limited in search space and 
still requires considerable computational resources. An alternative 
approach, which uses direct base-calling of signal chunks4, demon-
strated benefit compared with sequencing without Read Until as it 
filtered out unwanted reads, but did not provide any enrichment 
and again required considerable computational resources.

Our goal was to work with nucleotide sequences rather than raw 
signals to exploit existing tools, utilize reasonable computational 
resources and show enrichment of targets. To do this, we used 
Oxford Nanopore Technologies (ONT) base-calling software. ONT 
have developed a number of base-callers for nanopore sequence 
data, initially utilizing hidden Markov models and available through 
the metrichor cloud service5. They replaced these with neural net-
work models running on central processing units and then GPUs. 
For real-time base-calling, ONT provide a range of computational 
platforms with integrated GPUs (minIT, Mk1C, GridION and 
PromethION). These devices enable real-time base-calling suffi-
cient to keep pace with flow cells generating data. Most recently, 
these base-callers acquired a server–client configuration, such that 
raw signal can be passed to the server and a nucleotide sequence 
returned. Using this, we show that GPU base-calling can be used 
to deliver a real-time stream of nucleotide data from flow cells 
sequencing with up to 512 channels simultaneously. At the same 
time, the GPU can base-call completed reads, and optimized tools 
such as minimap2 (ref. 6) can therefore be used to map reads as they 

are generated, enabling dynamic updating of both the targets and 
the reference genome as results change.

As our method does not use raw signal comparison, we do not 
have to convert reference genomes into signal space as in DTW or 
other signal methods1,3. We are constrained by access to a suffi-
ciently powerful GPU. The results presented here mainly utilize the 
ONT GridION MK1, which includes an NVIDIA GV100 GPU, but 
we also use an NVIDIA 1080, showing that this approach works on 
any device capable of real-time base-calling. We apply this approach 
to a range of model problems. First, we select specific human chro-
mosomes, illustrating that gigabase references are not a constraint. 
Second, we enrich low-abundance genomes from a mixed popula-
tion and find that we reduce the time required to answer a biologi-
cal question (time-to-answer) and improve the ability to assemble 
low-copy genomes. Adaptive sampling is the process by which the 
software changes what is being sequenced in response to what has 
been seen during an experiment. To illustrate this, we use centrifuge 
to identify the most abundant species present in a metagenomic 
sample, monitor depth of coverage for each in real time and enrich 
for the least abundant genomes without a priori knowledge of con-
tent7. This method is necessarily limited by the composition of the 
reference database and also requires network access to retrieve ref-
erences once identified. Finally, we enrich panels of human genes, 
including 25,600 target regions corresponding to ~10,000 genes 
and 717 genes from the Catalogue of Somatic Mutations in Cancer 
(COSMIC) panel8. We demonstrate how Read Until can be used 
to capture information on key targets without the need for custom 
library preparation and show that we can identify a known translo-
cation in the NB4 cell line in <15 h (ref. 9).

We provide a configurable toolkit, readfish, enabling targeted 
sequencing of gigabase-sized genomes. This includes depletion of 
host sequences as well as example methods giving the minimum 
coverage depth for specific sequences in a population. Configuration 
of these tools is relatively straightforward and requires no additional 
computing resources as long as a sufficiently powerful GPU capable 
of base-calling multiple flow cells in real time is available.

Readfish enables targeted nanopore sequencing 
of gigabase-sized genomes

Alexander Payne   , Nadine Holmes, Thomas Clarke, Rory Munro, Bisrat J. Debebe and 

Matthew Loose    ✉

Nanopore sequencers can be used to selectively sequence certain DNA molecules in a pool by reversing the voltage across indi-
vidual nanopores to reject specific sequences, enabling enrichment and depletion to address biological questions. Previously, 
we achieved this using dynamic time warping to map the signal to a reference genome, but the method required substantial com-
putational resources and did not scale to gigabase-sized references. Here we overcome this limitation by using graphical pro-
cessing unit (GPU) base-calling. We show enrichment of specific chromosomes from the human genome and of low-abundance 
organisms in mixed populations without a priori knowledge of sample composition. Finally, we enrich targeted panels compris-
ing 25,600 exons from 10,000 human genes and 717 genes implicated in cancer, identifying PML–RARA fusions in the NB4 cell 
line in <15 h sequencing. These methods can be used to efficiently screen any target panel of genes without specialized sample 
preparation using any computer and a suitable GPU. Our toolkit, readfish, is available at https://www.github.com/looselab/
readfish.
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Results
Methods overview. Selective sequencing requires bidirectional 
communication with a nanopore sequencer through the Read 
Until application programming interface (API; https://github.com/ 
nanoporetech/read_until_api). The API provides a stream of raw 
current samples from every sequencing pore on the flow cell and 
allows the user to respond in real time, either rejecting a read from 
a specific pore or allowing a read to finish naturally. Previous API 
implementations served any signal seen as a potential read and 
so required the processing of many signals that were not genuine 
reads, causing analysis challenges4. The current API discriminates 
true DNA signal from background more efficiently and is config-
ured to provide only signals identified as DNA, reducing the analy-
sis burden. We reasoned that the signal served by the API should be 
compatible with the Guppy base-caller and so capture short signal 
sequences and process them in base space.

Supplementary Fig. 1a illustrates the workflow for base-calling 
reads as they are being sequenced. Briefly, data chunks of signal are 
served from the Read Until API. Chunks default to 1-s duration 
but can be configured by the user. We found that 0.4-s chunk dura-
tions (~180 bases; see Methods) balanced the need for small chunks 
with API performance (Supplementary Table 1 and Supplementary 
Fig. 2). The data chunk (up to 512 reads from a MinION flow cell) 
is converted to a Guppy-compatible format and base-called using 
pyguppyclient (https://github.com/nanoporetech/pyguppyclient). 

Base-called data are then mapped to a reference with minimap2 
(ref. 6). Reads may uniquely map, map to multiple locations or may 
not map at all. In response, the user can choose to reject a read 
(unblock), acquire more data for that read (proceed) or stop receiv-
ing data for the remainder of that read (stop receiving).

Read Until performance. To test the performance of our real-time 
base-calling approach on enrichment and depletion, we sequenced 
the well-studied NA12878 reference cell line10. The flow cell was 
configured to operate in quadrants each sequencing: a control (all 
reads accepted), chromosomes 1–8 (50% of reads accepted), chro-
mosomes 9–14 (25% of reads accepted) and finally chromosomes 
16–20 (12.5% of reads accepted). Reads are base-called and mapped 
to the reference regardless of quadrant. Median read lengths per 
chromosome in each quadrant indicate those sequenced or rejected 
(Fig. 1a). Selectively sequenced reads have a median read length of 
~15 kilobases (kb). Rejected reads have a median length of ~500 
bases, equating to ~1.1 s of sequencing time at 450 bases per sec-
ond, although median data collected were closer to 1.5 s. Reads 
are base-called, mapped and the unblock action sent and actioned 
within ~1 s of the read starting. This run generated 9.32 Gb of aligned 
sequence data, unevenly distributed across the quadrants: 3.47 Gb in 
the control, 2.79 Gb at 50% acceptance, 1.84 at 25% acceptance and 
only 1.22 Gb at 12% (Fig. 1b and Supplementary Table 2). For each 
quadrant, the optimal enrichment is twofold, fourfold and eightfold, 
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Fig. 1 | Human-genome-scale selective sequencing. a, Median read lengths for reads sequenced from GM12878 and mapped against hg38 excluding 

alternate chromosome representations. The four panels each represent a quadrant of the flow cell. In the control, all reads are sequenced; in the second, 

third and fourth quadrants, reads mapping to chromosomes 1–8, 9–14 and 16–20, respectively, are sequenced. The combined length of each of these target 

sets equates to approximately 1/2, 1/4 and 1/8 of the human genome, respectively. b, A heatmap of throughput per channel in each quadrant from the 

flow cell illustrating reduced yield as the proportion of reads rejected is increased. c, The yield ratio for each chromosome in each condition normalized 

against the yield observed for each chromosome in the control quadrant. d, The yield of on-target reads calculated in a rolling window over the course 

of the sequencing run showing the loss of enrichment potential. e, A plot of the number of channels contributing sequence data over the course of the 

sequencing run. Channels are lost at a greater rate when more reads are rejected.
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but we see lower enrichments by the end of the experiment, presum-
ably due to reduced yield (Fig. 1c). We observe enrichment of target 
sequences in all cases compared with control. Relative enrichment  

is closer to the theoretical maximum at the beginning of the 
sequencing run (Fig. 1d). Analysis of available channels contribut-
ing to data generation shows that sequencing capacity is lost faster 
as more reads are rejected (Fig. 1e). For this experiment, we did not 
nuclease flush the flow cell, but anticipate improvements in both 
the yield and enrichment if we did. We were able to call all batches 
within our 0.4-s window (Supplementary Fig. 3e).

A common goal in sequencing library preparation is to remove 
host DNA to enrich for a metagenomic subpopulation11,12. Selective 
sequencing may be beneficial in conjunction with library prepa-
ration methods. We considered metagenomics applications as a 
similar class of problem. Nicholls et al. generated a reference data-
set using the ZymoBIOMICS Microbial Community Standards13. 
They were able to generate sufficient data to assemble several of the 
bacteria into single contigs (without binning). Notably, eukaryotic 
genomes that were present at lower abundance (2%) did not gener-
ate high-contiguity assemblies. This is not surprising as the coverage 
depth for Saccharomyces cerevisiae was 17× and that for Cryptococcus 
neoformans was 10× when sequencing on a single GridION flow 
cell13. Enriching for these low-abundance components is conceptu-
ally similar to depleting host material from a sample. In our experi-
ments, we utilize the ZymoBIOMICS high-molecular-weight DNA 
standard (D6322). This sample will a  priori improve assemblies 
owing to the longer read lengths and further differs from Nicholls 
et al. as it excludes C. neoformans.

To determine whether selective sequencing could improve the 
relative coverage of low-abundance material, we developed a simple 
pipeline (readfish align) to drive our selective sequencing decisions 
(Supplementary Fig. 1b). This pipeline aligns completed reads against 
a reference as they are written to disk, and then calculates the cover-
age depth. Once an individual species reaches the desired coverage 
depth, new reads mapping to that species are rejected. We simultane-
ously base-call both the real-time stream from Read Until and com-
pleted reads. Finally, we implemented Run Until to stop the run once 
all targets had reached sufficient coverage. These experiments used 
a community-specific reference file. Mean read lengths for target 
genomes reduce as they are added to the rejection list and the mean 
read length becomes dominated by short, rejected reads (Fig. 2a).  
Plotting coverage over time for reads not rejected by Read Until shows 
a decrease in coverage accumulation for completed genomes (that 
is, those at the desired coverage level) with an increase in sequenc-
ing potential for the least abundant sample, S. cerevisiae (Fig. 2b).  
The proportion of bases mapping to each genome reveals the shift 
in sequencing capacity to S. cerevisiae (Fig. 2c). Relative abundance 
can still be determined when running Read Until as the propor-
tion of reads mapping to each genome does not change (Fig. 2d).  
The run automatically stops once each genome reaches 40×, taking 
~16 h and 4.4 Gb of sequence data (Supplementary Fig. 4).

This sample should be 2% S. cerevisiae by bases, typically 
yielding ~88 Mb or 7× coverage of sequence data. Using selec-
tive sequencing, we see 40× coverage, naively a 5.7-fold increase 
in on-target data. However, a flow cell not implementing selective 
sequencing would have a higher yield, so real-world enrichment is 
lower. Nicholls et al. report 16 Gb on a similar sample generated in 
48 h, which would result in ~25× coverage of S. cerevisiae, bringing 
enrichment closer to 1.6× (ref. 13). Theoretically, enrichment of a 2% 
subset should be greater, but there is a cost to rejecting an individual 
read. Even so, we could enrich the least abundant element compared 
with that expected from the sample composition in multiple experi-
ments (n = 3). Thus, we accelerate time-to-answer for a particular 
coverage depth (16 h versus 48 h). This approach assumes knowl-
edge of the sample a priori and so is of limited practical relevance. 
By integrating a metagenomics classifier into our pipeline (readfish 
centrifuge), we avoid this requirement7. As strains are identified 
within the sample, they can be dynamically tracked and added to a 
rejection list, illustrating the principle of adaptive sequencing.

Complete dataset
25

a

b

c

d

20

M
e

a
n

 r
e

a
d

 l
e

n
g

th
 (

k
b

)

15

10

250

C
u

m
u

la
ti
v
e

 c
o

v
e

ra
g

e

200

150

100

50

0

5

0
0 2 5 8 10

Hour Hour Hour

12 15 18 0 2 5 8 10 12 15 18 0 2 5 8 10 12 15 18

0 2 5 8 10

Hour

Species EC

EC

EF

EF

PA

LM

LM

PA

SA

SC

SE

SC BS

BS

EC

EF

LM

PA

SA

SC

0 4 8

Hour

12

0 4 8

Hour

12

100

P
e

rc
e

n
ta

g
e

 o
f 

re
a

d
s 80

60

40

20

0

100

P
e

rc
e

n
ta

g
e

 o
f 

b
a

s
e

s 80

60

40

20

0

SE

BS

SA SE

Hour Hour

12 15 18 0 2 5 8 10 12 15 18 0 2 5 8 10 12 15 18

Sequenced Unblocked

Complete dataset Sequenced Unblocked
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ensuring uniform 40× coverage. a, Mean read lengths for reads sequenced 
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the provided references (ZymoBIOMICS). read lengths are reported for the 

whole run, the deliberately sequenced reads and those that were actively 

unblocked. b, Cumulative coverage of each ZymoBIOMICS genome during 

the sequencing run. The total coverage still accumulated as unblocked 
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once each sample reached 40×. c, A stacked area graph illustrating how 
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d, By contrast, the proportion of reads mapping to each species over 
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Using this approach, we generated 5.995 Gb of sequence data 
and identified all bacterial genomes in the sample; although we 
observed enrichment, the flow cell became completely blocked 

before reaching the target coverage (Fig. 3, Supplementary Table 2 
and Supplementary Figs. 5 and 6). Six gigabases of sequence should 
result in ~10× coverage; here we obtained 41× coverage (Fig. 3b). In 
this case, we considered the entire duration of a read as a candidate 
for Read Until; consequently, some reads are rejected later into the 
read. This results in a wider range of mean rejected read lengths, par-
ticularly for S. cerevisiae (Fig. 3a). This experiment was completed 
within 24 h, illustrating the benefits in terms of time-to-answer. 
As expected, improved coverage depth results in almost complete 
assemblies using MetaFlye compared to that achieved by Nicholls 
et  al. (Supplementary Fig. 7), in part a consequence of improved 
read lengths here13,14. Subsequent nuclease flushing of the flow cell 
would increase effective throughput, but this was not our goal.

Methods for target panel enrichment include PCR amplification, 
bait capture methods and CRISPR–Cas9 approaches15–18. These 
methods are reliable and cost effective at scale, but have develop-
ment, instrument and consumable costs. Unlike methods that cap-
ture native DNA17, PCR-based methods cannot capture methylation 
information without additional processing. Such panels cannot be 
altered easily.

Selective sequencing provides an alternative, and so we iden-
tified 19,296 target genes annotated as protein-coding with tran-
script name IDs (see Methods) from the human genome (GRCh38), 
excluding those on X and Y and ignoring alternate chromosome 
representations19. We extracted exon coordinates, extended 3 kb 
either side and collapsed overlapping targets. We enriched for tar-
gets found on odd-numbered chromosomes, rejecting all reads 
from outside these targets. This results in a total search space of 
176 Mb (~5%) containing 25,600 targets covering ~10,000 genes 
(Fig. 4a). A single GridION flow cell with 1,660 pores gave 6.1 Gb 
of sequence data in 24 h. After nuclease flushing, loading addi-
tional library and 24 h more sequencing gave 5.573 Gb (total yield: 
11.675 Gb, N50 (the read length such that reads of this length or 
greater sum to at least half the total bases): 9 kb; Supplementary 
Table 2). Exon targets had a median coverage of 17.23× (mean 
17.39×) with 75% >14.15× and 25% >20.42×. On ‘control’ 
even-numbered chromosomes, the median coverage was 0.98× 
(mean 1.2×). Detailed coverage plots of targets on odd-numbered 
(Fig. 4c,d) and even-numbered (Fig. 4e,f) chromosomes correlate 
with the target regions. Controlling for these experiments is com-
plicated by flow cell variability. We make comparisons with theo-
retical yields of 10, 20 and 30 Gb, resulting in approximately 3–10× 
coverage. Our effective enrichment is from 2.7× to 5.4×, consistent 
with our earlier observations. Nuclease flushing assists enrichment 
and flow cell efficiency (Supplementary Fig. 8).

Our exon panel contains 371 genes from COSMIC with a median 
coverage of 13.7× (Fig. 4b)8. Figure 4c,d shows the coverage for 
BRCA1, PML and surrounding targets. Although it is preferable to 
include introns, here we excluded intronic sequences to reduce the 
total search space (although not required). To further explore this 
and illustrate the flexibility of our approach, we targeted the entire 
COSMIC panel (717 genes) excluding genes with no given genomic 
coordinates (Supplementary File 1). Including flanking 5-kb 
sequences, our search space was 89.9 Mb (~2.7% of the genome). 
Using a flow cell with 1,724 pores, we generated 3.7 Gb within 24 h. 
Nuclease flush and reload generated a further 6.03 Gb, giving a total 
of 9.73 Gb, with a read N50 of 940 bases (Fig. 5, Supplementary 
Fig. 9 and Supplementary Table 2). Deliberately rejected reads had 
an N50 of 515 bases; sequenced reads had an N50 of 11,564 bases. 
Gene targets had a median coverage of 32.2× (mean 30.7×; Fig. 5a  
and Supplementary File 1), with 75% of genes >28× and 25% of 
genes >35×. Figure 5c–f shows the coverage for BRCA1, PML, 
WIF1 and HOXC11/C13. The specificity of selective sequencing 
is clear, particularly where neighboring genes in the HOXC cluster 
are not sequenced. A second run, utilizing three flushes, one every 
24 h, generated a total of 17.87 Gb with a read N50 of 793 bases 
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(Supplementary Fig. 10 and Supplementary Table 2). Gene targets 
had a median coverage of 42.3× (mean 40.5×; Fig. 5b), with 75% 
of genes >38× and 25% of genes >44×. To test the performance of 

readfish on non-ONT hardware, we ran the same experiment using 
an NVIDIA GeForce GTX 1080 GPU using the fast model of the 
base-caller. This run generated only 6.7 Gb of data with a read N50 
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of 799 bases (Supplementary Fig. 11 and Supplementary Table 2). 
The median coverage of genes was 19.6× (mean 19.1×), with 75% of 
genes >17.78× and 25% of genes >20.99×.

The difference in the yield between these runs is largely due to flow 
cell variation, particularly for the third run, which showed unusual 
flow cell activity (Supplementary Fig. 12). However, normalizing  
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Coverage of targets from the COSMIC panel - NB4 run 2

M
e

a
n

 c
o

v
e

ra
g

e

30

40

50
a

b

c d

e f

20

10

0

M
e

a
n

 c
o

v
e

ra
g

e

30

40

50

60

70

80

20

10

0

Cov (est) 30 Gb

Cov (est) 20 Gb

Cov (est) 10 Gb

Cov (est) 30 Gb

Cov (est) 20 Gb

Cov (est) 10 Gb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

1 2 3 4 5 6

1 2 3 4 5 6 7

0 2,000 4,000 6,000

Read

8,000 10,000

5,000 4,000 3,000

Read

2,000 1,000 0

8 9 10 11 12 13 14 15 16 17 18 19 2021 22 X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

73.95 Mb 73.97 Mb

73.96 Mb

N
B

4
 r

u
n

 1
N

B
4

 r
u

n
 2

73.98 Mb 74 Mb 74.02 Mb 74.04 Mb

PML

PML

RARA

PML

RARA

PML

RARA

PML

SND1

SND1

RARA

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 X Y

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 X Y

Reference

Reference

RARA

74.06 Mb

40.27 Mb 40.29 Mb

40.28 Mb 40.3 Mb 40.32 Mb 40.34 Mb 40.36 Mb 40.38 Mb 40.4 Mb

40.31 Mb 40.33 Mb 40.35 Mb 40.37 Mb 40.39 Mb

74.08 Mb

73.99 Mb 74.01 Mb 74.03 Mb 74.05 Mb 74.07 Mb 74.09 Mb

Chromosome 15 Chromosome 17

60
50
40
30
20
10

0
60
50
40
30
20
10

0

N
B

4
 r

u
n

 1
N

B
4

 r
u

n
 2

60
50
40
30
20
10

0
60
50
40
30
20
10

0

G
e

n
e

a
n

n
o

ta
ti
o

n
s

C
O

S
M

IC

ta
rg

e
ts

G
e

n
e

a
n

n
o

ta
ti
o

n
s

C
O

S
M

IC

ta
rg

e
ts

Fig. 6 | CoSMiC panel targeted sequencing of NB4. a,b, The mean coverage across each of the COSMIC target regions ordered by chromosome for 

two independent sequencing runs of the NB4 cell line. The horizontal dashed line indicates the expected coverage from a flow cell yielding ~10, ~20 or 

~30 Gb of sequence data in a single run. c,d, Coverage plots for each NB4 sequencing run shown in orange for PML (c) and RARA (d). e,f, reads mapping 

to chromosomes 15 and 17 derived from the NB4 cell line runs 1 and 2 respectively, indicating the fusion between PML and RARA. Mappings of example 

individual reads are shown. Break points were identified using SVIM; visualizations were performed using ribbon20.

NATuRe BioTeCHNoLogy | VOL 39 | AprIL 2021 | 442–450 | www.nature.com/naturebiotechnology448

181



ARTICLESNATURE BIOTECHNOLOGY

the enrichment to the total yield of each flow cell shows a similar per-
formance in each experiment for a selection of target genes includ-
ing PML, WIF1, HOXC11/C13, RARA and BRCA1 (Supplementary 
Figs. 13–17). This suggests that any steps taken to maximize the 
yield, such as flushing, will result in enhanced enrichment. As 
with any native nanopore sequence data, these data can be used 
to assess structural variants and nucleotide variation. As shown in 
Supplementary Table 3, these data show recall and precision equiva-
lent to, or better than, reference nanopore whole-genome data at a 
similar coverage without targeting10. Structural variants within the 
targeted regions can be detected with high recall (Supplementary 
Table 4). Crucially, between 5 and 10 typical flow cells would be 
required to generate equivalent coverage without Read Until.

To test screening for structural variants, we used the NB4 
acute promyelocytic leukemia cell line9. Using the same COSMIC 
panel, we identified the translocation using a flow cell with only 
1,196 pores, generating 4.5 Gb of sequence data in under 15 h 
(Supplementary Fig. 18). The median coverage of targets was 11.46× 
(mean 11.78×; Fig. 6a,c,d), with 75% of genes >9.5× and 25% of 
genes >13.4×. Analysis with SVIM looking for break-point ends, 
ignoring in/dels, identified two candidates passing default filtering 
(see Methods)20. The break point can also be detected with Sniffles 
(data not shown)21. Of these candidates, one captured the known 
break point supported by six reads. A further 24 h of sequencing 
(~3 Gb) resulted in a median coverage of 17.37× (mean 18×) and 9 
reads supporting the variant (Fig. 6e and Supplementary Table 5). 
No complex rearrangements were reported in NA12878 using the 
same COSMIC panel (Supplementary Table 5). A subsequent repeat 
of this experiment (Supplementary Fig. 19), with flushing every 
24 h, generated 15.9 Gb of sequence data. The median coverage of 
targets was 34× (mean 35.5×; Fig. 6b), with 75% of genes >30×, 
25% of genes >38× and 23 reads supporting the break point (Fig. 6f 
and Supplementary Table 5).

Discussion
The idea of selectively sequencing (Read Until) individual mol-
ecules using only computational methods is a unique capability of 
nanopore sequencing1. Here we exploit ONT tools to provide a true 
real-time stream of sequence data as nucleotide bases and provide 
a toolkit to design and control selective sequencing experiments 
called readfish. This approach removes the need for complex signal 
mapping algorithms but does require a sufficiently fast base-caller. 
Previous work illustrated that this method was feasible, but required 
extensive additional computation and did not show significant 
enrichment over throughput achieved without running Read Until4. 
Here we demonstrate real enrichment over that expected from a 
similar control flow cell. We also show that standard techniques for 
enhancing the flow cell yield such as nuclease flushing and load-
ing additional library are similarly beneficial for Read Until experi-
ments. Although not extensively exploited here, nuclease flushing 
and reuse of flow cells do increase the yield and enrichment, and we 
have taken to flushing Read Until experiments every 24 h.

We find that increased rejection of reads on a flow cell nega-
tively impacts the sequencing yield and so observed enrichment. 
The main benefit of selective sequencing in metagenomics and host 
depletion is to improve time-to-answer. For samples that sequence 
well (that is, do not tend to block the flow cell), additional enrich-
ment benefits may be observed. Notably, running selective sequenc-
ing does not disrupt the proportion of reads by count that map to 
a specific reference. Thus, for metagenomics, it is still possible to 
assess the relative abundance while focusing sequencing length 
on specific subsets of reads. Future methods proposed by ONT to 
address blocking, such as onboard nucleases, might increase the 
throughput in future.

The key benefit of our approach is that we utilize only com-
putational resources available in the GridION Mk1. As we use 

current commercially provided base-callers, we can utilize new 
algorithms and pores as they are developed. Thus, although not 
yet tested, we could use this method on RNA if sufficiently long 
reads require depletion. Similarly. we could use methylation-aware 
base-callers to sequence regions of DNA starting from either 
high- or low-methylation regions. As we obtain sequence, rather 
than signal, we greatly simplify the construction of pipelines for 
downstream analysis of reads. Although we focus on results  
for the GridION Mk1, we show that this method can be used with 
any MinION configuration provided there is sufficient available 
GPU to base-call a sequencing run in real time (Supplementary 
Note 1). As we show here, it is possible to utilize the fast base-calling 
model and obtain effective enrichment using a single NVIDIA 
GeForce GTX 1080 GPU. Other users have reported success with 
the high-accuracy model on systems configured with NVIDIA 
2080 GPUs (J. Tyson, personal communication). In cost terms, 
any platform capable of real-time base-calling will be compatible 
with our approach. In principle, this method should scale to the 
PromethION platform.

We demonstrate that selective sequencing of arbitrary targeted 
regions of the human genome results in actionable coverage and 
can identify single-nucleotide variants and structural variants in the 
COSMIC panel. For structural variant analysis, DNA extraction, 
library preparation, sequencing and analysis could be completed 
within 24 h. When sequencing a subset of a large genome, large 
numbers of off-target reads are sampled while detecting those of 
interest and the precise parameters of optimal target size and cover-
age have yet to be defined. Consequently, library preparation meth-
ods enriching for regions of interest will result in a higher coverage 
than Read Until. However, the design of such panels is relatively 
costly and inflexible once developed. Methods relying on amplifica-
tion result in the loss of methylation data, which can be found using 
the methods presented here.

In readfish selective sequencing, targets can be updated by a 
single configuration file. Developing a new panel is as straightfor-
ward as compiling a list of target regions. Here we also illustrate the 
concept of adaptive sequencing, as in our metagenomics examples, 
where targets can be dynamically adjusted during a run. In theory, 
a panel could be updated in response to observations of the data in 
real time, perhaps adding targets where candidate novel structural 
variants have been identified or removing targets where sufficient 
evidence is available to eliminate the possibility of a structural vari-
ant existing.

Of course, throughput achievable on platforms such as 
PromethION at scale provides efficient whole-genome sequenc-
ing22. Thus, any effective method for enrichment must be as effi-
cient, including the additional computation required. By utilizing 
the available GPU computational capacity during the sequencing 
run, we address this issue. There is no reason, in theory, why sam-
ples could not be multiplexed on a single flow cell as long as suffi-
cient yield can be obtained to address the biological question.

Although we have focused exclusively on applications for Read 
Until, we believe that a real-time sequence data stream as bases 
has significant advantages for future pipelines. If sequence data 
can be streamed directly into an analysis pipeline and conclu-
sions drawn without the requirements for data storage, then field 
deployment of sequencing for detection of specific sequences 
might be accelerated. Ultimately, it may be possible to stream 
sequence data for calling of structural variants and further analy-
sis in real time.
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Methods
Library preparation and sequencing. Standard LSK-109 (ONT) sequencing 
libraries were prepared from either the ZymoBIOMICS HMW DNA Standard 
(DS6322 ZymoBIOMICS) or DNA extracted from GM12878 cells (Coriell) or NB4 
cells (gift from M. Hubank) as described in Jain et al.10. Human DNA for exon 
enrichment or gene targeting was sheared to approximately 12 kb using g-TUBE 
(Covaris). Sequencing runs used either the GridION Mk1 or a MinION with an 
NVIDIA GeForce GTX 1080 GPU (see Supplementary Table 2). Standard scripts 
for sequencing were used with one modification, namely that the size of the data 
chunk delivered by MinKNOW was reduced from 1 s to 0.4 s by changing the value 
of the break_reads_after_seconds parameter in the relevant TOML file (located 
in ../minknow/conf/package/sequencing/ for MinKNOW core version 3.6). All 
sequencing used FLO-MIN106 R9.4.1 flow cells.

When running Read Until experiments seeking to maximize the yield, 
throughput on the flow cell should be monitored closely. Our practice has been 
to nuclease flush flow cells every 24 h to maximize throughput. For maximizing 
occupancy on the flow cell, users should experiment with loading more library 
than they might otherwise do. For example, where a user might load 400 ng of 
library with a read length N50 of 10–15 kb, we would recommend loading 600 ng of 
library. This assumes R9.4 flow cells. This protocol has not yet been tested on R10.

Detection of single-nucleotide variants. Single-nucleotide polymorphisms (SNPs) 
in NA12878 read data were called using Nanopolish in methylation-aware mode23. 
Reads were mapped to hg38 removing ALTs with minimap2 using standard 
settings for ONT reads6. High-confidence gold-standard SNPs were identified 
from the Genome In A Bottle truth set24. SNPs were compared with a 35× WGS 
NA12878 reference set recalled using the same Guppy base-caller model10. SNP 
comparisons were made using hap.py with default settings and the same target sites 
used for selective sequencing (https://github.com/Illumina/hap.py).

Structural variant detection and concordance. Reads were mapped to the hg38 
primary assembly with minimap2 and standard ONT settings. Variants were 
called using SVIM and Sniffles with default settings and the minimum variant 
length set as 50 (refs. 20,21). Only SVIM variant calls with QUAL above 10 and 
longer than 50 bp were kept. Variants of the same type present in both SVIM 
and Sniffles call sets were selected as the final call set using SURVIVOR and a 
maximal distance between break points was set to 500 (ref. 25). Only insertions and 
deletions intersecting the COSMIC target panel were considered for concordance 
calculations in the whole-genome-sequence dataset, run 1 and run 2. Concordance 
calculations were performed with Truvari (https://github.com/spiralgenetics/
truvari) with the reference distance set as 1.5 kb and the percentage size similarity 
set as 0.3, and only insertions and deletions larger than 50 bp within the COSMIC 
target panel were considered. For analysis of the translocation in the NB4 cell lines, 
variant calls were filtered with a quality score of 10 and non-BND (break-point 
end) structural variant types were ignored. Structural variants were visualized  
with Ribbon26.

Target lists. The exact target list used to configure exon capture can be obtained 
at http://jan2020.archive.ensembl.org/biomart/martview/59d93fb27bdffa5315
2236c6cb12c4b1?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapie
ns_gene_ensembl.default.structure.ensembl_gene_id%7Chsapiens_gene_ensembl.
default.structure.ensembl_gene_id_version%7Chsapiens_gene_ensembl.
default.structure.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.
structure.ensembl_transcript_id_version%7Chsapiens_gene_ensembl.default.
structure.chromosome_name%7Chsapiens_gene_ensembl.default.structure.
exon_chrom_start%7Chsapiens_gene_ensembl.default.structure.exon_chrom_
end&FILTERS=hsapiens_gene_ensembl.default.filters.biotype.%22protein_
coding%22%7Chsapiens_gene_ensembl.default.filters.chromosome_name. 
%221,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,X,Y%22%7Chsapie
ns_gene_ensembl.default.filters.with_hgnc_trans_name.only&VISIBLEPANEL= 

attributepanel.

Read Until cache configuration and chunk size. A read begins with adapter 
sequences as well as optional barcodes. Additionally, read starts sometimes stall as 
DNA engages with the pore before signal-containing sequence data are available. 
The first chunk of data may not provide an optimal base-call and additional data 
may be required. Calling any single fragment of data in isolation is less informative 
than calling the entire signal, and so we implement a read cache concatenating 
adjacent signal data from the same read. This enables base-calling the complete 
signal for each read since it started. As of MinKNOW version 3.6, the sequencing 
platform is effectively limited to a lower-bound chunk size of 0.4 s. As shown 
in Supplementary Fig. 2 and Supplementary Table 1, more than 80% of human 
reads can be base-called and aligned within 2 chunks or 0.8 s worth of data. For 
bacterial sequences, more than 40% of reads can be base-called and aligned 
within a single chunk or 0.4 s worth of data. Thus, by observation, the smallest 
possible chunk size will enable the fastest decision-making for any given sequence. 
In a typical experiment, we find that 90% of reads can be processed (called, 
mapped and decision made) within three chunks (1.2 s; Supplementary Fig. 2 and 
Supplementary Table 1).

Base-caller configuration. The Guppy base-caller contains several models for 
base-calling that trade speed (fast) for accuracy (high-accuracy model, hac) and 
can optionally call methylation. For selective sequencing, the goal is speed, and so 
we investigated the efficacy of both the fast and hac models, finding the GridION 
Mk1 easily powerful enough to use the hac model. Across all experiments shown 
here, the average batch of reads was called in 0.28 s and contained 30 reads. At the 
maximum load, individual reads are processed in less than 0.002 s. Thus, we call at 
least 100 read fragments per second and even at the peak load can typically call all 
512 reads (see Supplementary Figs. 3–7 and 10).

Experimental configuration. Depending on the configuration of the experiment, 
the response to read mapping varies (see Methods). If depleting contaminants 
(host depletion), then reads mapping to that reference should be rejected. For 
enrichment, reads mapping to a target should be sequenced. The action for 
non-mapping reads will depend on the experiment. If the experimental goal is 
enriching low-abundance or unknown targets, non-mapping reads should be 
sequenced. If enriching for subsets of a known reference, non-mapping reads 
might be rejected in favor of sampling more. Given the variety of options, we 
provide a configuration file allowing any mapping result to trigger any action. 
We include the option to dynamically update this file during sequencing, 
enabling target switches while sequencing. The configuration also allows different 
experiments on regions of the same flow cell (see https://github.com/LooseLab/
readfish/blob/master/TOML.md).

readfish code availability. The ONT Read Until API is required for running Read 
Until. The results presented here used an updated version of this API, available 
from our GitHub (https://github.com/LooseLab/read_until_api_v2; Git commit 
cff0f52). These changes were required for Python3 compatibility and also change 
the behavior of the read cache, enabling consecutive chunks of data to be stored for 
calling. As the ONT tool chain matures to Python3, such changes will no longer 
be required. pyguppyclient (v.0.0.5), a python interface to the Guppy base-calling 
server, is currently available on PyPI. Our code is available open source at http://
www.github.com/LooseLab/readfish and installable via PyPI.

readfish scripts. readfish is a set of scripts that control sequencing in real time. 
Each script is accessed as a sub-command, and a description is given below.

targets. This script runs the core Read Until process as specified in the experiment’s 
TOML file. It can select specific regions of a genome, mapping reads in real time 
using minimap2 and rejecting reads appropriately. This script should be started 
once the initial mux scan has completed. The experiment’s TOML file can be 
updated during a sequencing run to change the configuration of the Read Until 
process. It is through this mechanism that the align and centrifuge commands 
can change Read Until behavior during a run. The configuration parameters are 
available under the help flag. Tables 1 and 2 describe the mapping parameters and 
configuration options for various possible experiment types.

align. This script runs an instance of the ‘Run Until’ monitoring system that 
watches as completed reads are written to disk. When new data are detected, this 
pipeline will map the data against the target reference genome (specified in the 
experiment’s TOML file) and compute the cumulative coverage for the sequencing 
run. Once a genomic target reaches sufficient coverage, it will be added to the 
unblock list. Optionally, the user can provide additional targets from the start of 
the run to implement ‘host depletion’. Finally, the user can configure ‘align’ to stop 
the entire run if all samples have reached the required coverage depth. At present, 
this coverage depth is uniform for all samples, so it is not possible to have variable 
coverage over a target set.

centrifuge. This script runs an instance of the ‘Run Until’ monitoring system. As 
completed reads are written to disk, this program (Supplementary Fig. 1c) will 
classify the reads using centrifuge and a user-defined index. When 2,000 reads 
are uniquely classified, the corresponding reference genome is downloaded from 
RefSeq27 and incorporated into a minimap2 index. At this point, the same process 

Table 1 | Description of possible read mapping conditions

Mapping condition Description

multi_on The read fragment maps to multiple locations 
including a region of interest.

multi_off The read fragment maps to multiple locations not 
including a region of interest.

single_on The read fragment maps only to a region of interest.

single_off The read fragment maps to one location but it is not a 
region of interest.

no_map The read fragment does not map to the reference.

no_seq No sequence was obtained for the signal fragment.
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as in ‘align’ is used to determine the coverage depth. The new alignment index is 
passed to the core Read Until script (‘targets’) by updating the experiment’s TOML 
file, allowing dynamic updates for both the unblock list and the genomic reference.

unblock-all. This script is provided as a test of the Read Until API where all 
incoming read fragments are immediately unblocked. It allows a user to quickly 
determine whether their MinKNOW instance is able to provide and process 
unblock signals at the correct rate. Users should provide a bulk FAST5 file for 
playback for this testing process.

validate. This script is a standalone tool for validating an experiment’s TOML file. 
We provide an ru_schema.json (https://github.com/LooseLab/readfish/blob/14dd
f60c60c2697e86cf870f406751c7cd26daf8/ru/static/readfish_toml.schema.json) file 
that describes the required configuration format.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All reads generated in the course of this study are available from the ENA under 
project ID PRJEB36644.

Code availability
Our code is available open source at http://www.github.com/LooseLab/readfish. 
See also “readfish code availability” above.

References
 24. Zook, J. M. et al. An open resource for accurately benchmarking small 

variant and reference calls. Nat. Biotechnol. 37, 561–566 (2019).
 25. Jeffares, D. C. et al. Transient structural variations have strong effects on 

quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 
14061 (2017).

 26. Nattestad, M., Aboukhalil, R., Chin, C.-S. & Schatz, M. C. Ribbon: intuitive 
visualization for complex genomic variation. Bioinformatics https://doi.
org/10.1093/bioinformatics/btaa680 (2020).

 27. Pruitt, K. D. & Maglott, D. R. RefSeq and LocusLink: NCBI gene-centered 
resources. Nucleic Acids Res. 29, 137–140 (2001).

Acknowledgements
We thank J. Quick, J. Tyson, J. Simpson and N. Loman for helpful comments and 

(mainly) criticisms and E. Birney, N. Goldman and A. Senf for helpful insights and 

discussion on these approaches. We thank M. Hubank and L. Gallagher for access to 

materials and reagents as well as general boundless enthusiasm. We thank M. Jain for 

assisting in manipulating data. We also thank S. Reid, C. Wright, C. Seymour, J. Pugh and 

G. Pimm from ONT for advice on MinKNOW and Guppy operations as well as extensive 

troubleshooting. This work was supported by the Biotechnology and Biological Sciences 

Research Council (grant numbers BB/N017099/1, R.M. and M.L.; BB/M020061/1, M.L.; 

and BB/M008770/1, 1949454 A.P.), the Wellcome Trust (grant number 204843/Z/16/Z, 

N.H. and M.L.) and the Defence Science and Technology Laboratory (grant number 

DSTLX-1000138444, R.M. and M.L.).

Author contributions
M.L. and A.P. conceived the study. A.P., N.H. and M.L. acquired data. T.C. and R.M. 

designed and implemented metagenomics applications. A.P., B.J.D. and M.L. analyzed 

and interpreted data. All authors discussed the results and contributed to the final 

manuscript.

Competing interests
M.L. was a member of the MinION access program and has received free flow cells 

and sequencing reagents in the past. M.L. has received reimbursement for travel, 

accommodation and conference fees to speak at events organized by ONT.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/

s41587-020-00746-x.

Correspondence and requests for materials should be addressed to M.L.

Peer review information Nature Biotechnology thanks Jan Korbel and the other, 

anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Table 2 | example configurations for different experiment types

experiment type Region of interest for 
alignments

Mapping condition

multi_on multi_off single_on single_off no_map no_seq

Host depletion Known host genome unblock proceed unblock proceed proceed proceed

Targeted sequencing Known regions from one or 
more genomes

stop receiving proceed stop receiving unblock proceed proceed

Target coverage depth (known 
sample composition)

All known genomes within the 
sample, tracked for coverage 
depth

stop receiving proceed stop receiving unblock proceed proceed

Low-abundance enrichment 
(unknown sample composition)

All genomes within the sample 
that can be identified as well as 
those that cannot

stop receiving proceed stop receiving unblock proceed proceed

‘unblock’ causes a read to be ejected from the pore; ‘proceed’ means that a read continues to sequence and serve data through the ApI for later decisions; ‘stop receiving’ allows the read to continue 

sequencing with no further data served through the ApI.
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Abstract  

Background:  

The 2021 WHO classification of central nervous system tumors includes multiple molecular markers and patterns 

that are recommended for routine diagnostic use in addition to histology. Sequencing infrastructures for complete 

molecular profiling require considerable investment, while batching samples for sequencing and methylation 

profiling can delay turnaround time. We introduce RAPID-CNS2, a nanopore adaptive sequencing pipeline that 

enables comprehensive mutational, methylation and copy number profiling of CNS tumours with a single, cost-

effective sequencing assay. It can be run for single samples and offers highly flexible target selection that can be 

personalized per case with no additional library preparation.  

Methods: 

Utilizing ReadFish, a toolkit enabling targeted nanopore sequencing without the need for library enrichment, we 

sequenced DNA from 22 diffuse glioma samples on a MinION device. Target regions comprised our Heidelberg 

brain tumor NGS panel and pre-selected CpG sites for methylation classification using an adapted random forest 

classifier. Pathognomonic alterations, copy number profiles, and methylation classes were called using a custom 

bioinformatics pipeline. The resulting data were compared to their corresponding standard NGS panel sequencing 

and EPIC methylation array results.  

Results: 

Complete concordance with the EPIC array was found for copy number profiles. The vast majority (94%) of 

pathognomonic mutations were congruent with standard NGS panel-seq data. MGMT promoter status was 

correctly identified in all samples. Methylation families from the random forest classifier were detected with 96% 

congruence. Among the alterations decisive for rendering a WHO 2021 classification-compatible integrated 

diagnosis, 97% of the alterations were consistent over the entire cohort (completely congruent in 19/22 cases and 

sufficient for unequivocal diagnosis in all 22 samples).  

Conclusions: 

RAPID-CNS2 provides a swift and highly flexible alternative to conventional NGS and array-based methods for 

SNV/InDel analysis, detection of copy number alterations, target gene methylation analysis (e.g. MGMT) and 

methylation-based classification. The turnaround time of ~5 days for this proof-of-concept study can be further 

shortened to < 24h by optimizing target sizes and enabling real-time computational analysis. Expected advances 

in nanopore sequencing and analysis hardware make the prospect of integrative molecular diagnosis in an intra-

operative setting a feasible prospect in future. This low-capital approach would be cost-efficient for low throughput 

settings or in locations with less sophisticated laboratory infrastructure, and invaluable in cases requiring 

immediate diagnoses. 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261784doi: medRxiv preprint 

187



3 
 

Molecular markers are now unequivocally a requirement for integrative brain tumor diagnostics. The 2021 WHO 

classification of CNS tumors substantially increases the set of genes required in routine evaluation, and 

significantly increases the relevance of DNA methylation analysis in the diagnostic process [10]. Multiple 

approaches are available for such analyses. However, neuropathology labs cannot rely on current off-the-shelf 

products, since these do not cover all genes relevant for neuro-oncology, while including large target regions that 

are dispensable. Thus, custom assays have typically been set-up in neuropathology labs where the equipment for 

next-generation sequencing (NGS) is available. In turn, the advantages of custom neuropathology NGS panels can 

only be efficiently exploited when case numbers are sufficient for batchwise processing. Labs with lower specimen 

submission numbers hence may have to pool samples over multiple weeks. Here we introduce RAPID-CNS2 - a 

custom neurooncology molecular diagnostic workflow using third generation sequencing for parallel copy-number 

profiling, mutational and methylation analysis that is highly flexible in target selection, runs efficiently on single 

samples, and can be initiated immediately upon receipt of frozen sections.  

Nanopore sequencing has an advantage over current NGS methods in terms of longer read lengths, shorter and 

easier library preparation protocols, ability to call base modifications natively from extracted nucleic acids, real 

time analysis, and portablility of sequencing devices – all at relatively low cost [3]. However, smaller devices like 

the MinION yield low-coverage data when run genome-wide, that makes it difficult to detect pathognomonic 

genetic alterations or hard-to-map regions like the TERT promoter [6]. Nanopore provides a “ReadUntil” adaptive 

sampling toolkit that can reject reads in real-time during sequencing [7]. ReadFish harnesses this functionality to 

enable targeted adaptive sequencing with no additional steps in library preparation [9]. This considerably increases 

coverage over “target” regions by real-time enrichment during sequencing, to allow confident detection of 

clinically relevant alterations.  

RAPID-CNS2 leverages adaptive nanopore sequencing through ReadFish and is run here as a proof-of-concept 

using a portable MinION device. We formulated target regions covering the Heidelberg brain tumour NGS panel 

and CpG sites required for methylation-based classification [4, 11]. We performed ReadFish-based sequencing on 

22 diffuse glioma samples that had previously undergone brain tumor NGS panel and Infinium MethylationEPIC 

array (EPIC) analysis [2, 4, 11]. Samples were selected to cover a variety of the most clinically-relevant 

pathognomonic alterations (IDH1, 1p/19q codeletion, chr7 gain/chr10 loss, TERT promoter, EGFR amplification, 

CDKN2A/B deletion, MGMT status) and relevant methylation classes identified by conventional methods. 

Cryoconserved brain tumour tissue was prepared for Nanopore sequencing with the SQK-LSK109 Ligation 

Sequencing Kit from ONT. Incubation time and other parameters were optimized to improve quality, amount of 

data generated and on-target rate of the libraries (Supplementary methods). Single samples were loaded onto FLO-

MIN106 R9.4.1 flow cells and run on a MinION 1B. ReadFish controlled the sequencing in real-time and was run 

using a consumer notebook powered by an 8GB NVIDIA RTX 2080 Ti GPU. Samples were sequenced for up to 

72 hours. Our selected target regions covered 5.56% of the entire genome. Sequencing time can be reduced to less 

than 24 hours by further optimizing the size of the targeted regions. Sequenced data was analysed using a 

bioinformatics pipeline customized for neurooncology targets (which will be available on 

https://github.com/areebapatel/RAPID-CNS2). SNVs were filtered for clinical relevance by their 1000 genomes 

population frequency (<0.01) and COSMIC annotations [1, 13, 14]. Copy number alterations were estimated using 

depth-of-coverage of the mapped reads [12]. Nanopore sequencing provides the additional advantage of natively 

estimating base modifications from a single DNA sequencing assay. Methylated bases were identified using 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261784doi: medRxiv preprint 

188



4 
 

megalodon, a deep neural network-based modified base caller [8]. Megalodon’s output was used to compute 

methylation values over targeted CpG sites and assess MGMT promoter methylation status. A random forest 

classifier based on the previously published reference set [4] was trained to predict methylation classes for the 

samples. MGMT promoter methylation status was assigned by averaging methylation values over all CpG sites in 

the MGMT promoter region (Supplementary results). Mean run time from tissue collection to reporting for RAPID-

CNS2 was < 5 days. Nanopore sequencing considerably reduced library preparation time to 3.5 hours, as opposed 

to 48 hours for panel sequencing and 72 hours for the EPIC array (Figure 1). Additionally, it merged both data 

categories (sequencing and methylation) into one lab workflow. Despite the differences in sequencing technology 

and method-specific data analysis pipelines, congruence of detected SNVs, regardless of clonality and clinical 

relevance, was 78% (Supplementary data). Importantly, diagnostically relevant, pathognomonic mutations like 

IDH1 R132H/S and TERT promoter were congruent in 22/22 and 19/22 samples respectively (Figure 1b). In 

addition, we derived copy-number-plots (CNP) from calculated copy number levels for the Nanopore data 

(Supplementary figure 1a). Plots generated using Nanopore data displayed markedly better resolution than those 

obtained using panel sequencing data (Supplementary figure 1b). Complete concordance with EPIC array analysis 

was found for CNV levels in all samples. RAPID-CNS2 also enabled gene-level CNV detection (Supplementary 

data). Among the alterations decisive for rendering an integrated molecular diagnosis, 217/220 were consistent 

over the entire cohort (completely congruent in 19/22 cases).  

Including CpG sites relevant for methylation-based classification in the ReadFish targets also allowed for 

methylation class prediction. The ability of nanopore sequencing to reliably provide a methylation classification 

using low-pass whole genome sequencing has previously been demonstrated by nanoDx [5]. Methylation families  

predicted by RAPID-CNS2 (the level most relevant for treatment decisions) matched their corresponding EPIC 

array-based classification in 21/22 cases, while precise methylation sub-classes were concordant in 14 cases. 

MGMT promoter status was also congruent with its corresponding EPIC array analysis for all cases [2]. Nanopore 

identified the MGMT promoter status as unmethylated in one sample in line with the EPIC array, which was 

assigned as methylated by pyrosequencing. 

Targeted regions for RAPID-CNS2 can be easily altered by editing a BED file, in principle allowing lower 

sequencing times than in this study. With no additional library preparation steps required, it is possible to modify 

targeted regions for each individual sample as required. The MinION is a portable, handheld device which makes 

it a rational option for smaller neuropathology labs or in lower-infrastructure locations. While we used a GPU to 

run ReadFish, it can also be run using a sufficiently powerful CPU. Collectively, the RAPID-CNS2 approach can 

be set-up at low capital expense, is cost-efficient even in a low throughput setting, and provides a swift and highly 

flexible alternative to conventional NGS methods for SNV/InDel analysis, methylation classification and detection 

of copy number alterations. 
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Figure 1: RAPID-CNS2 timeline and concordance. Timeline for (a) NGS panel sequencing and analysis pipeline, and (b) EPIC array analysis 
pipeline for neuropathology diagnostics (x denotes number of days required to pool sufficient samples). (c) Timeline for RAPID-CNS2 
sequencing and analysis pipeline for a single sample. (d) Concordance of clinically relevant alterations & classification. Coloured blocks 
indicate presence of alteration, concordance for detected alterations is denoted in the legend. Triangular denotations for methylation class 
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indicate samples where methylation families were concordant and blocks indicate concordance for sub-classes as well. Percentages on the left 
indicate concordance for the alteration over all samples. 

 

Supplementary methods 

Nanopore library prep optimized for adaptive sampling 

Sections of 40x10 µm were prepared from cryoconserved tumor tissues with established molecular markers (IRB 

approval 2018-614N-MA, 005/2003) with tumor cell content (based on a H&E stain) > 60%. DNA was then 

extracted using the Promega Maxwell RSC Blood DNA Kit (catalogue # AS1400, Promega) on a Maxwell RSC 

48 instrument (AS8500, Promega) per manufacturer’s instructions. DNA concentrations were measured on a 

microplate reader (FLUOStar Omega, BMG Labtech) using the Invitrogen Qubit DNA BR Assay Kit (Q32851, 

Thermo Fisher Scientific). Next, the DNA was sheared to approximately 9 to 11 kb in a total volume of 50 µl 

using g-TUBEs (Covaris) at 7200 rpm for 120 sec. The fragment length was assessed on an Agilent 2100 

Bioanalyzer (catalogue # G2939A, Agilent Technologies) with the Agilent DNA 12000 Kit (catalogue # 5067-

1508, Agilent Technologies). Sequencing libraries were prepared with the SQK-LSK109 Ligation Sequencing Kit 

with the following modifications: 48 µl of the sheared DNA (2-2.5 µg) were taken into the end-prep reaction, 

leaving out the control DNA. The end-prep reaction was changed to an incubation for 30min at 20°C followed by 

30min at 65°C followed by a cool down to 4°C in a thermal cycler. The clean-up was performed using AMPure 

XP beads and 80% ethanol, elution time was changed to 5min. Adapter ligation was extended to an incubation for 

60min at room temperature. The ligation mix was then incubated with AMPure XP beads at 0.4x for 10min, clean-

up was performed using the Long Fragment Buffer (LFB) and the final library was eluted in a total volume of 31 

µl. Library concentrations were measured using the Invitrogen Qubit DNA HS Assay Kit (Q32851, Thermo Fisher 

Scientific) on a benchtop Quantus fluorometer (Promega). The libraries were loaded (500-600 ng) onto FLO-

MIN106 R9.4.1 flow cells with a minimum of 1100 pores available according to the FC Check prior to loading. 

The flow cells were flushed after around 24 hours for a total of two times per sample with the Flow Cell Wash Kit 

(EXP-WSH003) per manufacturer’s instructions. All sequencing was carried out on a MinION 1B (Oxford 

Nanopore Technologies).  

 

ReadFish 

Targeted nanopore sequencing was performed in real-time using a custom panel with ReadFish on an 8 GB 

NVIDIA RTX 2080 Ti powered consumer notebook [9]. The targets included regions from the neuropathology 

panel and CpG sites instrumental in classification by the random forest methylation classifier (available on 

GitHub). A 25kbp flank was added to the sites to ensure optimal targeting by ReadFish. Guppy 4.2.2’s fast 

basecalling (config dna_r9.4.1_450bps_fast) mode was used to run ReadFish.  

Bioinformatics analysis 

FAST5 files were basecalled using Guppy 4.4.1’s high accuracy configuration. QC and coverage analyses were 

performed by pycoQC and deepTools respectively. Adapter trimming by Porechop was followed by minimap2 

v2.18 alignment to the hg19 genome, samtools sorting and indexing. SNVs were called using longshot v0.4.1 and 

PEPPER-Margin-DeepVariant r0.4 . TERT promoter mutations were detected by mpileup and bcftools. Variant 
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annotation was performed by ANNOVAR. Filtering for clinical relevance was based on the 1000 Genomes (Aug 

2015) frequencies and COSMIC 68 database. Copy number plots (100kb bin size) and gene-level copy number 

files (1kb, 10kb and 100kb bin sizes) were generated using CNVpytor and a custom script. Megalodon v2.3.1 was 

used to obtain methylation values.  

Methylation classification 

To classify nanopore sequencing derived DNA-methylation profiles of central nervous system tumors, a random 

forest classifier was trained on publicly available 450k methylation array reference data set of the MNP classifier 

version 11 (GSE90496). This data set was preprocessed as described in [4]. 

For a batch of 22 nanopore sequencing samples, intersection of CpG probes measured for all samples were selected 

to train the classifier. The methylation array data set was reduced to these 3,285 probes. 

Often nanopore sequencing measures CpG probes with low coverage, which leads to discrete distributed 

methylation values, i.e. (0, 0.5, 1) for coverage 3. As finer methylation differences can often not be detected with 

nanopore sequencing for all CpG probes, we trained the RF classifier on dichotomized methylation values. This 

followed the assumption that splitting rules learned on binary data are more robust and can be applied to 

methylation signals from nanopore sequencing data. 

After dichotomizing the reduced reference methylation data set, a RF was trained with 1000 trees and the resulting 

permutation based variable importance measure was applied to select the 1000 CpGs with highest variable 

importance to train a final RF with again 1000 trees. The out-of-the-bag accuracy of this classifier was 96%. 

 

Supplementary results 

RAPID-CNS2 analysis pipeline 

The bioinformatics pipeline requires raw FAST5 files as input. Complete instructions for setting up the analysis 

are available on GitHub. Post set-up, RAPID-CNS2 runs the entire analysis with a single command. It can be run 

on an LSF cluster or a GPU workstation. Basecalling followed by SNV and CNV detection completes within 10 

hours while methylation calling and classification requires an additional 12 hours.  

 

SNV detection 

ANNOVAR annotated tables for all Nanopore sequenced samples and their corresponding panel sequencing 

results are attached. 

 

CNV detection 

Copy number plots obtained using the RAPID-CNS2 pipeline demonstrate higher resolution and clear visualization 

of the copy number levels as compared to NGS panel sequencing (Supplementary figure 1a (left and centre)). 

Calculating depth of mapped reads, copy number variations detected are comparable to EPIC array results 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261784doi: medRxiv preprint 

195



11 
 

(Supplementary figure 1a (left and right)). Normalised read depths are indicated on the Y-axis with “2” indicating 

mean autosomal level. Additionally, genes covered by the copy number variations and their zygosity are annotated 

and output as excel files (Supplementary files).  

 

MGMT promoter methylation 

Two probes used by the MGMT-STP27 approach were not reliably covered in all analysed samples [2]. 

Methylation frequencies over all CpG sites covering the MGMT promoter region were therefore averaged as an 

alternative measure. Using pyrosequencing as gold standard, methylated and unmethylated samples were found to 

have a significant difference in their average methylation (Wilcoxon rank sum test p-value= 2.719e-06). As shown 

in Suppl. Figure 1b, a threshold of 10% was assigned for MGMT promoter methylation status. 
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Supplementary Figure 1: (a) CNV plots obtained using RAPID-CNS2 (left), panel-sequencing (centre) and EPIC array analysis (right). (b) 
MGMT promoter methylation values averaged over the MGMT promoter region.  
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Abstract 

Adaptive sampling enables selection of individual DNA molecules from sequencing libraries, 

a unique property of nanopore sequencing. Here we develop our adaptive sampling tool 

readfish to become “barcode-aware” enabling selection of different targets within barcoded 

samples or filtering out individual barcodes. We show that multiple human genomes can be 

assessed for copy number and structural variation on a single sequencing flow cell using 

sample specific customised target panels.  

Main Text 

Adaptive sampling is the process by which individual DNA molecules within a library can be 

dynamically selected for sequencing, a property unique to Oxford Nanopore Technologies 

(ONT) sequencers 1. Recently we developed readfish, which uses real-time base calling to 

analyse read data as molecules are being sequenced 2. Using readfish, it is possible to 

enrich target regions of human genomes as well as manipulate sequencing coverage of 

metagenomic samples 2–4. Here we show this method can be extended by enabling the use 

of barcoded samples with readfish. This allows for individual barcodes to be switched off 

during a run or enables the use of targets specific to each sample and barcode. 
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An advantage of sequence based approaches to adaptive sampling is that existing tools, 

such as barcode demultiplexers, can be easily incorporated into the readfish workflow. 

Although signal based methods to identify barcodes exist, no sufficiently fast methods are 

currently available 5. We therefore adapted our existing readfish pipeline to be compatible 

with built-in Guppy demultiplexing (ONT) and incorporated barcode classifications into the 

data readfish uses to make a decision about sequencing or rejecting a read. 

 

An important consideration in adaptive sampling is what duration of signal data is needed for 

an accurate mapping of a read fragment. Previously we used chunks of 0.4 seconds of data 

2, (roughly 1,600 samples) but reasoned the inclusion of additional barcode sequence at the 

start of each read would require additional data. To test this we took a set of reads (see 

methods) and sampled signal from the start of each representing data seen when running 

adaptive sampling. We then used a variety of base caller models (see methods) and two 

signal alignment tools, Uncalled and Sigmap, to analyse mappings from each of these 

synthetic reads and methods 3,6. As readfish uses the start coordinate of a mapping to 

determine if a read is on target, we compared the predicted mapping coordinate with that 

from the full length read (high accuracy mode - HAC). A correct mapping is defined as one 

where the start mapping coordinates are within 100 bases of one another. We found that 

3,600 samples (or 0.8 seconds of data) was sufficient to correctly place reads (F1>0.9, fast 

model) (Figure 1A). Similarly, this same window also enabled appropriate barcode mapping 

accuracy (F1>0.9, fast model) (Figure 1B). Therefore we configured all our experiments to 

use data in chunks of 0.8 seconds (3,200 samples of data). 

 

Readfish can be configured to handle barcodes in two ways. For simple experiments, the 

user can identify a list of barcodes to be either rejected or accepted. In this way users can 

exclude or include a subset of barcodes on a sequencing run (Figure 2A). For more complex 

experiments, the user can configure a set of targets for each individual barcode in a library 

and so sequence specific regions from each. For example, a cancer gene panel for sample 
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A, a developmental disorders panel for sample B and a neuropathology panel for sample C. 

Figure 2B illustrates a simple barcoded sample where different regions of a bacterial 

genome are selected on each barcode in real-time. As readfish maps using sequences it is 

only limited by available memory and easily handles gigabase genomes. In addition there is 

no requirement for each sample to be from the same organism and so readfish can target 

multiple references. To simplify creation and dynamic update of readfish configuration files, 

we provide a set of command line tools to configure options for multiple barcodes 

(https://github.com/looselab/readfish-tools).  

 

To test the performance of this approach, we used three previously described cell lines: 

GM12878, from the Utah/CEPH pedigree; NB4, a cell line carrying a fusion between PML 

and RARA representing an acute promyelocytic leukemia (APL); and 22Rv1, a prostate 

cancer derived cell line containing significant chromosomal abnormalities 7–9. For each 

sample, we chose a specific gene panel. GM12878 was targeted using a panel defined by 

the gene list in the commercially available TruSight 170 Tumor panel 10. As the NB4 cell line 

contains an APL fusion, we selected the TruSight RNA Fusion Panel 11. For the more 

complex 22Rv1 prostate cancer line we used the previously described COSMIC panel 2,12. 

Samples were barcoded and sequenced on a single flow cell, and run for 72 hours (see 

methods). Every 24 hours the flow cell was washed with nuclease flush and another aliquot 

of the library loaded 2. In a single experiment using a flow cell with 1,330 pores, 18.1 Gb of 

data were generated, with a total of 15 Gb successfully demultiplexed into barcoded data 

(Table 1). 

 

Across the whole experiment, the on target read N50 was 7 kb, with the rejected read N50 

being 579 bases, or approximately 1.3 seconds of sequencing. This results in mean read 

coverage on target regions of between 11x and 15x. Inspection of individual targets including 

BRCA1, NBR1, PML and RARA demonstrates the ability to specifically target unique regions 

on each sample (Figure 3).  Current best practice for variant calling requires higher minimal 
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depth than we achieve when looking at three samples. However, long range structural 

variants can be measured and so we used cuteSV 13 to analyse these three samples. As 

expected, multiple reads supporting the detection of a fusion between PML and RARA were 

detected in the NB4 cell line (Figure 4). In contrast, this rearrangement was not found in the 

22Rv1 line. We cannot formally exclude the presence of this variant in GM12878 as neither 

PML or RARA were within the gene panel used for this cell line (Figures 3,4).  

 

Finally, we turned to a natural application for adaptive sampling which considers the 

mappings of rejected reads. Various approaches have been developed using binning of 

short reads to detect copy number variation by applying a variety of statistical approaches 14. 

These methods also work with nanopore sequencing 15, but the resolution of detection will 

be dependent on the total number of reads generated during a sequencing run. Adaptive 

sampling increases read count as a consequence of rejecting molecules once they are 

confidently mapped to an off-target region. We therefore developed a simple approach to bin 

read counts across the genome such that, on average, each bin would contain 100 reads, 

and monitored this in real-time using our minoTour tool 16. For each barcoded sample 

changes in copy number are immediately apparent and can be visualised using any change 

point detection approach, here we use Ruptures (Figure 5) 17. As expected, GM12878 

(barcode 1) does not show significant copy number changes, whereas NB4 (barcode 2) and 

22Rv1 (barcode 3) both closely recapitulate results generated by Bionano optical mapping 

(Figure 6).  

Discussion 

Extending readfish to become “barcode aware” enables more sophisticated selection 

experiments that are better able to exploit adaptive sampling in a variety of contexts. Here 

we demonstrate that individual samples can be targeted with unique panels of genes, 

selected based on knowledge of the sample, enabling the user to ask and answer specific 
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questions. On a single MinION flow cell, 3 human genomes can be analysed in real-time 

with coverage sufficient to detect structural and copy number variation. In this case, yield 

limitations prevent a realistic assessment of SNPs. However, we anticipate higher yield or 

running two human samples per flow cell would enable this. Of course, smaller genomes will 

generate proportionally higher coverage enabling more samples to be run on a single flow 

cell as well as providing greater depth for variant calling. Similarly, as flow cell yield 

increases, and these features become available on platforms such as the PromethION, it will 

become possible to target multiple human samples on single flow cells. 

 

Alongside these targeted experiments, this approach also allows users to simply switch off 

barcodes for which sufficient data have been generated. This will enable dynamic 

adjustment of yields obtained from individual samples in barcoded libraries. Our initial testing 

shows these approaches will work with the full 96 barcodes currently available on nanopore 

platforms. Coupling multiple samples with barcode aware readfish and real-time analysis of 

the data obtained will enable faster experimental turn around times, more efficient use of 

flow cell resources and more comprehensive analysis pipelines. 

Methods 

Synthetic read generation and analysis. 

To demonstrate our choice of parameters for read mapping and barcode calling, we 

obtained reads mapping to either chromosome 15 or 17 from the sequenced subset of reads 

ending up in the pass folder from NB4 (barcode02). Using the ONT Fast5 API 

(https://github.com/nanoporetech/ont_fast5_api), we generated varying sizes of chunks of 

signal from the start of these reads incrementing in 0.1 second equivalents (400 samples) to 

1 second, then 0.25 seconds to a total of 10,000 samples per read (2.5 seconds). These 

reads were base called using Guppy (v5.0.16+b9fcd7b) and mapped using minimap2 to the 
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target regions of chromosomes 15 and 17 defined by the trusight RNA fusion panel 11. 

Mapping used minimap2 18 with the -x map-ont and --paf-no-hit option to retain all reads 

regardless of mapping. We chose the high accuracy model as our truth set as this is the 

current standard base caller. By using the subset of reads from chromosome 15 and 17 

targets only, and hence a smaller reference,  we could also test signal based methods for 

mapping reads including uncalled (v2.2) and sigmap (v0.1) 3,6.  

 

For determining alignment accuracy we considered read starts mapping within 50 bases of 

the truth set as true positives, although for many applications this may be overly stringent. At 

this stringency, the fast base calling model recovered true mappings with an F1 score of 

0.903524 (precision = 0.927901, recall = 0.880395). The code is available in the 

accompanying data notebooks. As a result we selected 0.8 seconds of data for analysis. 

Neither sigmap nor uncalled were optimised beyond the default settings and performance 

could likely be improved further. 

 

For barcoding of data, we used Guppy demultiplexing and tested no other approach. Truth 

sets were defined using the full length reads as above. We compared the impact of the base 

caller model on barcode detection and found the fast model recovers the correct barcode 

with an F1 > 0.9 at 1,600 samples. 

Running readfish Barcoding 

Running read until and adaptive sampling requires the ONT Read Until API (version 3.0.0, 

https://github.com/nanoporetech/read_until_api/tree/release-3.0) and the ONT PyGuppy 

Client library (version 5.0.13, https://pypi.org/project/ont-pyguppy-client-lib/5.0.13/). Readfish 

(https://github.com/LooseLab/readfish; commit 9e8794a) was run using a GridION MK1 

(MinKNOW v4.3.2; Guppy v5.0.13; minimap2 v2.22), the MinKNOW configuration scripts 

were configured to serve data in 0.8 second chunks. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.12.01.470722doi: bioRxiv preprint 

203



 

The readfish script carrying out the selective sequencing was “readfish barcode-targets”. 

This script runs the core Read Until process as specified in the experiment’s TOML file. With 

a single reference genome the script can select specific target regions on each barcode by 

using Guppy to base call and demultiplex the raw signal in real-time. The resultant read is 

then aligned to the reference using minimap2 and is determined to be on or off target 

depending on it's barcode assignment and mapping start. 

Library Preparation, Sequencing and Analysis 

Barcoded LSK-110 (ONT) sequencing libraries were prepared from either GM12878 cells 

(Coriell), NB4 cells (gift from M. Hubank) or 22Rv1 cells (ATCC) as described in Jain et al. 7. 

For test experiments bacterial DNA was extracted using genomic tip (QIAGEN). Extracted 

DNA was sheared to approximately 12 kb using g-Tube (Covaris). All sequencing used FLO-

MIN106 R9.4.1 flow cells. Flow cells were run with flushing and reloading as previously 

described in Payne et al. 2.  

To investigate structural variation across the dataset, we ran CuteSV on each barcoded 

sample using standard options but varying the -s MIN SUPPORT values. No SVs in known 

fusion genes were reported in NA12878 or 22Rv1 (-s 2), known fusions including PML 

RARA were readily detected in NB4 (-s 5)13. SVs were visualised using Ribbon 19. 

To visualise changes in copy number, reads were mapped to hg38, filtered to mapping 

scores >20 and uniquely mapping. Then the first primary mapping for any read was 

determined and mappings binned into windows along the genome such that on average 

each bin contains 100 reads. Runs were monitored in real-time using minoTour 

(https://github.com/LooseLab/minotourapp/; commit: 1f9c678), providing coverage statistics, 

mappings and estimates of copy number variation in real-time 16.  During real-time analysis 

reads were mapped to Chm13 telomere-to-telomere assembly 20,21. Post-run copy number 

plots were generated using matplotlib with data mapped to hg38 to compare with the output 

of the Bionano copy number pipeline (see notebooks).  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2021. ; https://doi.org/10.1101/2021.12.01.470722doi: bioRxiv preprint 

204



 

To visualise coverage over specific targets reads were divided into those actively sequenced 

and those unblocked using the unblocked read ids file generated by readfish. Reads were 

mapped to hg38, coverage depth calculated using mosdepth v0.3.122 and visualised using 

matplotlib (v3.4.3).   

Bionano Methods 

DNA extraction and labelling for Bionano 

DNA was prepared from frozen cell pellets of 1.5 million cells using the Bionano Prep SP 

Blood and Cell Culture DNA Isolation Kit (Bionano Genomics; 80042) according to the 

manufacturer's instructions. DNA was homogenised and quantified using Qubit dsDNA BR 

Kit (Thermo Fisher; Q32853) on a Qubit 4 Fluorometer (Thermo Fisher; Q33238). 750 ng of 

gDNA was then labelled with Direct Label Enzyme 1 (DLE-1) and DNA backbone stain using 

the Bionano Prep Direct Label and Stain (DLS) kit (Bionano Genomics; 80005) according to 

the manufacturer’s instructions. Labelled DNA was quantified using the Qubit dsDNA HS Kit 

(Thermo Fisher; Q32851) on a Qubit 4 Fluorometer. Labelled DNA was loaded onto a 

Bionano Saphyr G2.3 chip (Bionano Genomics; 20366) and run on a Gen 2 Bionano Saphyr 

System (Bionano Genomics; 60325) until 1.320 Tbp of data had been collected for each of 

NB4 and 22Rv1. This data had respective mapping rates to hg38 reference sequence of 

89% and 79%, equating to 382x and 337x coverage respectively. 

Data analysis 

Post run data filtering and analysis was carried out using Bionano Access 1.5.2. For each 

sample the data set was filtered and sub-sampled to produce 320 Gbp of data with 150 kb 

minimum length and at least 9 labels per molecule. Filtered data was processed to produce 

annotated de novo assemblies using the default parameters, but with masking using the 

hg38 DLE-1 SV Mask BED file. Structural variant (SV) and copy number variants (CNV) 

coordinates were then visualised using Bionano Access. All described analysis was 
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performed on dedicated Bionano compute with the following versions installed: Bionano 

Access1.5.2, Bionano Tools 1.5.3, Bionano Solve Solve3.5.1_01142020, RefAligner 

10330.10436rel, HybridScaffold 12162019, SVMerge 12162019 , VariantAnnotation 

12162019, Compute on Demand 1.5.1. 
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Figures and Tables 

 

Figure 1 
Comparison of base callers, alignments and barcode classifications. A set of pass 
reads derived from chromosome 15 and 17 targets from the truSight Fusion panel were 
generated. A) Reads were base called using the super accuracy (sup), high accuracy (hac), 
fast (fast) or sketch (sketch) models of guppy and mapped to a synthetic genome containing 
only the target regions for those read targets. These same reads were also mapped using 
the signal aligners Uncalled and Sigmap. Truth was defined as the start mapping coordinate 
for the full length read (original). Read fragments were scored as mapping correctly if the 
start mapping coordinates were within 50 bases of the true start mapping position. 0.9 F1 is 
exceeded at 0.8 seconds of data (3200 samples) for the fast model. B) F1 score as 
measured by concordance in barcode identified where truth is the HAC model. 
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Figure 2 

 
Naive barcoding selective sequencing A) Demonstration of “switching off” individual 
barcodes from a sequencing library. Selected barcodes identified in the panel titles. Top row 
shows sequenced reads, lower panel shows the rejected or unblocked reads. As barcoding 
both ends is used to specify barcode, all rejected reads become unclassified (Un) by default.  
B) Switching the mode of operation for readfish from simple barcode rejection to differential 
targets. Sample shown is Clostridioides difficile. Targeted regions are shown in black.  
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Figure 3 

 
Target and barcode specific gene coverage. Illustration of coverage over each barcoded 
sample for each target in the panel. Blue is sequenced read coverage, red illustrates 
coverage of rejected reads. A) shows coverage over BRCA1 and the adjacent gene NBR1. 
BRCA1 was a target for barcode 1 and 3, but not 2. The targeted regions are illustrated 
below the coverage plots. Note that the region representing BRCA1 differs in barcode 1 and 
3 by design. NBR1 was only targeted on barcode 2. B) and C) illustrate coverage over PML 
and RARA respectively, which were only targeted on barcodes 2 and 3. 
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Figure 4 

 
Visualising Structural Variation. Using Ribbon, we visualise reads covering PML (chromosome 15) and any known fusions. A) Barcode 01, 
GM12878, has only two reads in the candidate region as PML is not included within the targets for this sample. B) Barcode 02, NB4, shows 
multiple reads spanning PML and linking to RARA (chromosome 17) as expected for this fusion cell line. C) Barcode 03, 22Rv1, also had PML 
within the target gene list, but had no structural variant in this region as expected. SVs were identified using CuteSV (supplementary file 1).  
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Figure 5 

Real-time monitoring of copy number change. MinoTour generates real-time counts of reads dynamically binned such that each bin 
contains on average 100 reads. Samples shown here mapped to Chm13 T2T reference. Left hand plots show coverage over all chromosomes, 
right hand plots show just chromosome 12. Red Blue banding indicates change points as dynamically detected by Ruptures. A) barcode 01, 
GM12878, bin width 86,600 bases. B) barcode 02, NB4, bin width 60,570 bases C) barcode 03, 22Rv1, bin width 76,470 bases. 
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Figure 6 

 
Matched Nanopore Bionano CNV visualization. Nanopore read data and Bionano optical 

reads both mapped against hg38. Blue points show where binned data indicates greater 

than expected copy number, red points where binned data indicates lower than expected 

copy number.  A) NA12878 showing Nanopore adaptive sampling data only from barcode 

01. B) NB4 and C) 22Rv1 showing Nanopore adaptive sampling data and Bionano optical 

mapping data.  
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Table 1 
 

Barcode Sample Panel Gene 
Number 

Yield 
(Gb) 

On 
Targe
t (Gb) 

On 
Targe
t N50 

On 
Targe
t 
Mean 

Off 
Target 
Mean 

Mean 
Target 
Coverage  

01 GM12878 TruSight 
170 Tumor 
Panel 

170 3.8 0.355 8,149 1,926 554 11.0 

02 NB4 TruSight 
RNA Fusion 
Panel 

508 6.1 1.240 7,191 4,203 551 15.0 

03 22Rv1 COSMIC 717 5.1 1.250 6,858 5,065 556 11.5 

Unclassified    3.1    736  

Total    18.79   3,221  587  

 
Sample Performance.  Run metric performance per barcode and over the entire flow cell. 

Metrics are derived from real-time monitoring with minoTour. 
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