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Abstract

Single molecule sequencing technologies, such as nanopore sequencing, provide
new ways to investigate genomes and genetics. They permit the detailed analysis
of stretches of DNA orders of magnitude larger than previously possible. Studying
genomes at this detail allows for a better understanding of genome organisation and
structural variants that are typically difficult to resolve using short read sequencing.

Oxford Nanopore Technologies sequencers drive single molecules of DNA through
membrane bound protein nanopores by applying a voltage across the membrane.
This applied voltage draws ions and DNA through the nanopore, which is mea-
sured as a real-time data stream of ionic current. Inspecting the current data in
real-time allows for specific molecules to be rejected by reversing the voltage across
an individual nanopore. This process is called “Read Until”.

Previously, Read Until has been carried out by inspecting and comparing the cur-
rent data produced during sequencing. This dissertation proposes a method for
implementing Read Until using graphics cards to accelerate basecalling and opti-
mised real-time alignment.

To build up to a full system for selective sequencing, the raw signal data that
nanopore sequencers output must be assessed (Chapter 3). Specifically to better
understand the characteristics of the continuous data stream. This is accomplished
by inspecting bulk FASTS5 files, first a visualisation application is built. This visual-
isation application is then used to assess both DNA and RNA samples, specifically
looking at how unblocking behaviour is actioned and the impact it has on sequenc-
ing.

With a grasp of raw signal data an application, readfish, is developed aiming
to enable real-time basecalling of read chunks for currently sequencing molecules
(Chapter 4). This approach uses GPU accelerated basecalling and fast alignment
to make decisions on selecting and rejecting individual molecules. In addition, a
schema is designed to allow for arbitrary experiments to be devised allowing mul-
tiple experiments to take place simultaneously. Then, an optimised CPU basecaller
and barcode demultiplexing are incorporated extending the platforms and types of
samples that can be considered.

As a proof-of-concept readfish is used to selectively sequence target panels en-
compassing thousands of loci in the form of whole exome sequencing of the human
cell line NA12878. This single experiment demonstrates great flexibility in the cho-
sen target panel and the ability to use reference genomes at a gigabase scale. In fur-

ther experiments using the ZymoBIOMICS mock community adaptive techniques



ii

are introduced as the experimental parameters are updated — dynamically — in
response to the data generated by the same experiment.

Finally, exemplar problems and applications of selective sequencing are consid-
ered as well as other practical mechanisms for real-time feedback making the whole
process adaptive (Chapter 5). These exemplar problems show how the methods
developed in this thesis enable the time-efficient screening using panels of gene tar-
gets, decrease the time to identifying fusions in a leukaemic cell line, and reduce

sequencing costs through standard library preparation methods.
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Chapter 1

Introduction

Living systems can vary in scale including single cells, multicellular organisms, and
entire communities. A single cell is often considered the smallest, autonomous,
unit of life as it contains all the necessary components for self-propagation (Alberts
et al., 2017). Therefore, one approach to learn how a living system functions is to
study and understand its underlying molecular organisation. All cells use carbon-
based (organic) molecules that can be categorised into sugars, fatty acids, amino
acids, and nucleic acids (Alberts et al., 2017). Sugars are an immediate source of
energy for cells and can be incorporated into polysaccharides for energy storage.
Fatty acids are also used for energy storage but are essential for the formation of cell
membranes. Amino acids organise into long chains that fold into proteins. And, fi-
nally, nucleotides are used for energy transfer, while also serving as the subunits
for the informational macromolecules, ribonucleic acid (RNA) (Zalokar, 1960) and
deoxyribonucleic acid (DNA) (Avery et al., 1944; McCarty, 2003). This genetic in-
formation is carried between cells during cell division, and from one generation to
the next through reproduction; it determines the characteristics of individual cells
and whole organisms. Therefore, understanding the structure of DNA can inform
how different cells gain or lose their functions, how different organisms develop,

and how different species evolve.

1.1 Nucleic acids
Structure of DNA

DNA is formed from monomeric subunits, nucleotides. A nucleotide is assembled
from three distinct components: a phosphate ion, a sugar molecule, and a nucle-
obase (either a purine or pyrimidine; Figures 1.1a and 1.1b). The sugar, deoxyri-
bose, is in a cyclic form and covalently linked with one of four cyclic bases (Wat-
son and Crick, 1953; Saenger, 1984). This arrangement produces the four normal
nucleosides: adenine (A), cytosine (C), guanine (G), and thymine (T). To form a

nucleotide the sugar molecule must be phosphorylated (Saenger, 1984).
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Purine

Pyrimidine

Sugar Sugar

Phosphate

(a) (b)

Phosphate

(c)

Figure 1.1: General structure of (a) purines: adenine and guanine, and (b) pyrim-
idines: cytosine and thymine, DNA nucleotides. (c) A polynucleotide
chain containing two nucleotides. The sugar-phosphate backbone can
be seen with bases protruding from it. The colours here representing
the specific bases adenine, yellow; guanine, green; cytosine, blue; and
thymine, red. These correspond to complementary pairing diagrams in
Figure 1.2.

A polynucleotide strand is formed by covalently linking nucleotides using the
sugar and phosphate molecules. This forms a “backbone” of alternating sugar-
phosphate-sugar-phosphate (Figure 1.1c). Base-base hydrogen bonding occurs, be-
tween two polynucleotide strands, according to a strict rule defined by the comple-
mentary structures of the nucleobases: A binds to T (Figure 1.2a), and C binds to
G (Figure 1.2b) (Alberts et al., 2017; Saenger, 1984). These two strands run antipar-
allel to each other and twist, forming a DNA double helix (Figure 1.2c), a double-
stranded structure where each stand is complementary to the other.

The way in which the nucleotides are linked together gives a DNA strand a chem-
ical polarity (Alberts et al., 2017). Each sugar molecule has a phosphate attached
to the 5" carbon and a space on the 3’ carbon that allows phosphate to bond there.
Consequently, a polynucleotide chain will be formed of subunits all in the same ori-
entation and each end will be distinguishable as either the 5’ or 3" depending on the
sugar molecule (Figure 1.1c).

The hydrogen bonds between the nucleobases are weaker than the covalent bonds

in the sugar-phosphate backbone, this allows the DNA strands to be pulled apart
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Adenine Thymine Cytosine Guanine

(0)

Figure 1.2: Complementary base pairing between the nucleobases, dashed lines rep-
resent hydrogen bonds. (a) base pairing between adenine and thymine;
(b) base pairing between cytosine and guanine. (c) Double stranded
representation of DNA; Adapted from: Difference between DNA and
RNA; used under CC BY 3.0.

without disrupting the order of the bases (Alberts et al., 2017). Each strand then can
serve as a template for the synthesis of a fresh DNA strand. Through this process
genetic instructions, in the form of nucleic acids, can be stored, retrieved, and trans-
lated within an organism. Moreover, this hereditary information is passed from one

generation to the next.

Structure of RNA

Like DNA, RNA is a linear polymer comprised of different nucleotide monomers
covalently linked by phosphodiester bonds. Unlike DNA, the nucleotides are ri-
bonucleotides (using ribose, not deoxyribose) and the base thymine is replaced by
uracil (Saenger, 1984). Uracil, like thymine, can pair by hydrogen-bonding with
adenine so the complementary base-pairing properties of DNA also apply to RNA.
Moreover, strands of RNA exhibit the same chemical polarity as DNA, having a 5’
and a 3" end.

Despite these slight differences, DNA and RNA differ in overall structure. While
DNA occurs in a double-stranded helix, RNA is single-stranded. Though RNA
strands can fold into complex three-dimensional shapes, which allows some RNA
molecules to have precise structural and catalytic functions (Walter and Engelke,

2002; Raina and Ibba, 2014).


https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA.svg
https://commons.wikimedia.org/wiki/File:Difference_DNA_RNA.svg
https://creativecommons.org/licenses/by/2.0/
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1.2 Sequencing nucleic acids

The central dogma of molecular biology is “DNA makes RNA, and RNA makes
protein”!. That is, the sequence of the DNA monomers determines the order of the
subsequent RNA molecule, which in turn determines the sequence of amino acids in
the final protein. As DNA and RNA are capable of storing and transferring genetic
information, understanding how this information is encoded is critical.

There are currently three generations of sequencing technologies (Figure 1.3).
The “first-generation” methods, Sanger sequencing (Sanger and Coulson, 1975; Sanger
et al.,, 1977) and Maxam-Gilbert sequencing (Maxam and Gilbert, 1977). “Next-
generation” methods, mostly rely on the same concepts as first-generation sequenc-
ing but increased sequencing volume by introducing massively parallel sequencing.
Finally, “single-molecule” (also known as third-generation) methods, incorporate
the scale of next-generation technologies with single-molecule, long-read, and real-

time sequencing.

Nanopore sequencing family

lon torrent PGM

'
' '
. Illumina GA . o '
Sanger sequencing M a \ . & <

+

13
.

M .
Y x
N 0

-~

(

2005 2006 2007

SR
NNl =

454 Pyrosequencing

Maxam-Gilbert sequencing

ABI's SoLiD system

PacBio Sequel System

Figure 1.3: Sequencing technologies milestones. These are split into three eras,

s

“first-generation”, “next-generation”, and “single-molecule”.
Adapted from Athanasopoulou et al. (2021)

1.2.1 First-generation sequencing

Sanger Sequencing

In 1977 Sanger et al. developed “Sanger sequencing” (also known as dideoxy or

chain termination sequencing) (Sanger et al., 1977). This method uses the same

More precisely: “The central dogma of molecular biology deals with the detailed residue-by-residue
transfer of sequential information.” Crick (1970)
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sequence as polymerase chain reaction (PCR): where DNA molecules are dena-
tured, a complementary DNA primer is annealed and extended using DNA poly-
merase. The DNA sample is divided into four separate reactions, each contains the
four standard dNTPs (dATP, dCTP, dGTP, dTTP) and the DNA polymerase. In
each round of primer extension small amounts of dideoxynucleotides (ddNTPs)
are included. These ddNTPs randomly terminate the extension as they lack the 3’
hydroxyl group required for creating the phosphodiester bond in the DNA back-
bone. By using labelled ddNTPs (either radiolabelled or a fluorescent dye) and the
exponential amplification of PCR an extremely large number of fragments, of vary-
ing size, can quickly be generated. The fragment length and the label distinguish
which base corresponds to this fragment size.

In the original method, sequence is determined by polyacrylamide gel electrophore-
sis, using a lane per ddNTP used. Modern Sanger sequencing platforms, for exam-
ple the Applied Biosystems 310 Genetic Analyzer, uses high-resolution capillary
electrophoresis to separate fragment sizes. A laser is used to excite the fluorescent
labels as fragments exit the capillary and the terminating colour is detected. This
generates a readout, or a Sanger sequencing “trace”, that can be basecalled and as-
signed error probabilities (Ewing et al., 1998).

Sanger sequencing is typically used for fragments of 500-700 bp, though sequences
of up to 1kbp can be sequenced (Shendure and Ji, 2008). In addition, modern
Sanger sequencing has high basecall accuracies, as high as 99.999% (Shendure and

Ji, 2008).
1.2.2 Next-generation sequencing

Next-generation sequencing technologies are typically characterised by their use of
massively-parallel sequencing arrays. These arrays carry out a cyclic sequencing
procedure, conventionally an enzymatic manipulation followed by sensing. The
enzymatic manipulation is typically a cyclic reversible termination (Illumina) or a
single-nucleotide addition (454, Ion Torrent) (Goodwin et al., 2016). Sensing most
frequently uses imaging to detect fluorescence, though one example (Ion Torrent)
uses pH.

Library preparation is accomplished by random fragmentation of DNA, followed
by ligation of common adaptor sequences. Colonies of amplicons are then generated
by amplification using techniques such as emulsion PCR (Dressman et al., 2003) or
bridge PCR (Adessi, 2000; Fedurco, 2006). These amplification methods result in
spatially clustered libraries, either to a single location on a glass slide (bridge PCR)

or to the surface of a bead (emulsion PCR). Like Sanger sequencing next-generation
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platforms rely on sequencing by synthesis, either using a polymerase (Mitra et al.,

2003) or a ligase (Shendure et al., 2005) for the elongation step.

454 Pyrosequencing

Pyrosequencing, developed in the late 1990s (Ronaghi et al., 1996, 1998), is a tech-
nique that detects fluorescent bursts generated as a by-product of DNA strand syn-
thesis. A library is prepared by ligating fragments to genomic DNA then denaturing
to create single-stranded DNA. Mixing these fragments with micron-scale beads
and carrying out emulsion PCR results in millions of copies of each DNA template
on each bead (Figure 1.4a; Siqueira et al. (2012); Goodwin et al. (2016)). The beads
are then transferred to a picotiter plate such that each well on the plate is occupied
by a single bead.

Sequencing begins with the addition of enzymes and luciferin. Then, dNTPs are
added one at a time; the dN'TPs are incorporated into the template strands releasing
pyrophosphate. Pyrophosphate is subsequently converted into adenosine triphos-
phate (ATP) by the enzyme ATP sulfuryase. ATP is used by the enzyme luciferase
to oxidise luciferin releasing light (McElroy and Green, 1956). The burst of light
is captured using a charge-coupled device that records the wells that fluoresce on
each cycle. Finally, the enzyme apyrase degrades remaining ATP and unincorpo-
rated dNTPs for the next ANTP to be added. As nucleotides are added in a fixed
and known order 454 data can be basecalled by recording the order and intensity

that each well fluoresces (Beuf et al., 2012).

Illumina

Libraries for Illumina sequencers are prepared by fragmenting the DNA sample
into short (<300bp) sections. Adapters are then ligated on to the ends of the frag-
ments. The library can then be loaded on to a flow cell, a glass slide with eight lanes,
for clustering. Each lane is a channel coated with a “lawn”, composed of oligonu-
cleotides that are complementary to one of the ligated adapters (Figure 1.4b). Bridge
amplification then occurs where the DNA fragments bind to the lawn and bend to
create a single-stranded bridge that is amplified by PCR. After repeated amplifica-
tion clusters containing millions of copies of the original input are tightly packed
together (Goodwin et al., 2016).

Sequencing is conducted by washing fluorescently labelled dNTPs in successive
rounds (one for each base). These dNTPs, like in Sanger sequencing, are chain-

terminating so that only one nucleotide is bound per cycle. Imaging then takes place
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where each cluster of strands fluoresces. After imaging the flow cell is washed re-
moving only the fluorophore and terminator leaving the incorporated nucleotide in
place (Goodwin et al., 2016). The data from the fluorescence is basecalled, produc-

ing a read from each cluster as well as error probabilities.

kMM A —

On-bead amplification Final product
Templates hybridize to bead-bound primers and are amplified; 100-200 million beads with
after amplification, the complement strand disassociates, thousands of bound template

leaving bead-bound ssDNA templates

(a)

Template binding
Free templates hybridize
with slide-bound adapters

Bridge amplification Cluster generation
Distal ends of hybridized templates After several rounds of
interact with nearby primers where amplification, 100-200 million
amplification can take place clonal clusters are formed

(b)

Figure 1.4: (a) Fragmented DNA templates are ligated to adapter sequences along-
side a bead covered with complementary adapters. PCR is carried out,
covering each bead with thousands of copies of the same DNA se-
quence (b) Solid-phase bridge amplification, DNA fragments are lig-
ated to adapters and bound to a primer on a solid support. The free
(unbound) end interacts with nearby primers, forming a bridge. PCR
is then used to create a second strand. Adapted from Goodwin et al.
(2016).

Ion Torrent

Sequencing of DNA is done using a semiconductor chip that has millions of wells
(Rothberg et al., 2011). These wells capture the change in pH that DNA polymeri-
sation generates and translates it into basecalls.

The sequencing process starts when a sample of DNA is fragmented and then
each fragment is attached to its own bead. The beads then undergo emulsion PCR
to amplify each fragment to millions of copies (Goodwin et al., 2016). These beads

then flow across the chip each depositing into a well. Then dNTPs are added one at
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a time, whenever a nucleotide is incorporated into a single strand of DNA a hydro-
gen ion is released. These hydrogen ions are sensed by the semi-conductor chip and
recorded. As the dNTPs are non-blocking runs of homopolymers can be incorpo-
rated in a single step. After the introduction of a single ANTP the unincorporated
bases are washed away allowing the next base to be added.

Ion Torrent devices have an accuracy of ~98-99% based on reads of ~200b (Quail
et al., 2012). As the pH change is imperfectly proportional to the number of nu-
cleotides incorporate Ion Torrent has limited accuracy measuring homopolymer

lengths (Goodwin et al., 2016).

Limitations of next-generation sequencing platforms

Next-generation sequencing platforms offer a trade-off between yield and read length.
Most sequencing platforms offer shorter average read lengths (30-400b) than Sanger
sequencing (500-1000b; Hert et al., 2008). These shorter read lengths limit the avail-
able experiments that these methods are applicable to. For example, it is still diffi-
cult and time consuming to assemble a genome de novo into high-quality genomes
from short read fragments (Salzberg et al., 2011; Chin et al., 2014). These challenges
are a critical issue for large genome assembly as short reads result in highly frag-
mented assemblies due to regions with unsolvable repetitive or high GC content
(Alkan et al., 2010; Mardis, 2013; Petersen et al., 2017). As a result many whole
genome sequencing projects, which use next-generation technologies, focus on com-
parisons with existing reference genomes — re-sequencing (Alkan et al., 2010; Lis-
cher and Shimizu, 2017); for example studies using UK Biobank samples (Backman
et al., 2021).

1.2.3 Single-moleccule sequencing

Compared to previous generation sequencing technologies, single-molecule sequenc-
ing technologies can sequence kilobase length sequences (>10kb) directly from na-
tive (unamplified) DNA. These long reads are achieved using direct detection of
nucleotides in the target DNA molecules without any [clonal] amplification step re-
quired. Long-read sequencing is particularly useful for genotyping as it can allow
for phasing alleles and address issues with de novo assembly (Stancu et al., 2017;
Loose, 2017).



Introduction Sequencing nucleic acids 9

Pacific Biosciences

Pacific Biosciences (PacBio) published their method for real-time sequencing of sin-
gle molecules in 2009 (Eid et al., 2009). This method uses a single polymerase en-
zyme to perform uninterrupted synthesis of a single DNA template molecule incor-
porating fluorophore labelled dNTPs. PacBio “SMRT"”? sequencing is performed in
ananoscale chamber called a Zero-Mode Waveguide (ZMW;, Figure 1.5a). A ZMW,
like the wells in 454 Pyrosequencing and Ion Torrent can be observed from the un-
derside. The base of the ZMW is glass and constructed to act as a microscope, capa-
ble of focusing on a 20 zeptolitre (10~2! litre) volume (Eid et al., 2009). Unlike short
sequencing-by-synthesis platforms PacBio fix their polymerase to the bottom of the
ZMW, this keeps the site of ANTP incorporation stationary improving focusing on
single molecules (Eid et al., 2009; Goodwin et al., 2016).

Target molecules are prepared by fragmenting and ligating a pair of hairpin adapters
to each end, creating a topologically circular molecule (Logsdon et al., 2020). Then
a polymerase is bound and the molecule is loaded into on to a “SMRT cell” and
into the ZMW via diffusion or magnetic beads. The PacBio platforms (Sequel I and
Sequel II) have two sequencing modes: Continuous Long Reads (CLR) and Cir-
cular Consensus Sequencing (CCS, also called HiFi reads). CLR mode generates
data from a single pass of large (>25kb) molecules. CCS mode exploits the circular
molecule created by the hairpins and sequences multiple copies of each molecule up
to 25kb in length (Pacific Biosciences, 2021). During sequencing, the polymerase
removes the fluorophores from dNTPs so that they can be incorporated into the
strand being synthesised. A laser and camera beneath the SMRT cell capture the
colour and duration of fluorescence and use this data for basecalling (Goodwin
etal., 2016) (Figure 1.5b).

A single SMRT cell in a Sequel II has an average throughput of ~50-100Gb for
CLR reads and ~15-30Gb for HiFi (CCS) reads (Logsdon et al., 2020). The read
accuracy of reads from the Sequel II is 8-13 % for CLR reads and >99 % for HiFI
reads (Logsdon et al., 2020). In addition, it is possible to indirectly sequence RNA

molecules for full-length characterisation (Sharon et al., 2013).

Oxford Nanopore Technologies

All of the sequencing techniques described so far require an enzyme to synthesise
a complementary strand of DNA such that individual bases can be detected for se-

quencing. However, Oxford Nanopore Technologies (ONT) sequencing methods

2Single Molecule Real-Time, Pronounced “smart”


https://youtu.be/ls5BFzuxGw4

Introduction Nanopore sequencing 10

Aluminum

278 %S

Emission

Intensity m—p

(a) (b)

Figure 1.5: (a) DNA polymerase is immobilized at the bottom of a ZMW, which is
illuminated from below by laser light. (b) dNTP incorporation cycle. (1
and 2) A nucleotide is incorporated with the template molecule caus-
ing an elevation of the fluorescence output on the corresponding color
channel. (3) The dye-linker is cleaved along with the phosphate chain
and diffuses out of the ZMW. (4 and 5) The polymerase translocates to
the next position, and another nucleotide can bind creating a new pulse.
Adapted from Eid et al. (2009).

do not; instead they directly sense the modulations in electronic current a polynu-
cleotide strand exhibits when passing through a nanopore (Branton et al., 2008). A

more detailed description of nanopore sequencing is in Section 1.3.

1.3 Nanopore sequencing
1.3.1 A brief history

In 1989, Professor David Deamer proposed that a protein channel could be incor-
porated into the membrane of a liposome, and that ATP could then pass across the
membrane. In addition, if ATP can pass through this channel so could other dNTPs
and so could DNA. And further, if each nucleotide produces a specific blockade of
ionic current as it passed through the channel, they can be discriminated.

Later, Deamer, Branton, and Kasiannowicz used alpha haemolysin («-HL), a pore-
forming protein secreted by Staphylococcus aureus, to detect DNA translocation through
an a-HL nanopore (Kasianowicz et al., 1996). However, these translocations were
too fast typically taking <1.3 ps for a ~210b long strand of single-stranded poly (U)
RNA. This was followed by using an engineered “DNA-nanopore” complex, de-
veloped by the Bayley lab, for the detection of single-stranded DNA molecules for
the detection of specific sequences such as antimicrobial resistance (AMR) genes
(Howorka et al., 2001). Though, these “DNA-nanopore” complexes required spe-
cific engineering that is complementary to each potential analyte. The next major

breakthrough came from the Akeson lab. This was the use of a molecular motor,
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in the form of phi29 DNA polymerase, that controlled the speed of translocation
(Lieberman et al., 2010; Cherf et al., 2012).

In parallel, a company “Oxford Nanolabs” was formed in 2005 which would later
become “Oxford Nanopore Technologies”. The chemistry and scale of nanopore
sequencing was refined and adapted into a product that was first shown at the AGBT
[Advances in Genome Biology and Technology| conference in 2012 (Brown, 2015).
Finally, the MinION sequencer was released via the “MinION Access Programme”

in 2014.

1.3.2 Nanopore sensing

Nanopore sensing is a method that is able to detect DNA and RNA molecules based
on the decrease in ionic current that the molecule produces when interacting with
the lumen of a nanopore. This is similar to Coulter counting used for detecting
analytes in electrolytes (Coulter, 1953; Bezrukov, 2000). The principle of Coul-
ter counting alongside developments in electrophysiology techniques reduced the
target analyte size from millimeters to nanometres, going from cells to individual
biomolecules (Wanunu, 2012).

In nanopore devices a salt solution is divided into two wells, cis and trans, divided
by a thin insulating membrane. Protein nanopores that span the membrane con-
nect the cis and trans wells, and are the only path between the compartments. Elec-
trodes placed in each compartment create a potential difference across the mem-
brane (Clarke, 2019). This difference in voltage causes ions to flow through the
pore by electrophoresis, which can be measured by an amplifier (Figure 1.6a). As
DNA is negatively charged it is also drawn through the pore, while in the lumen of
the pore the DNA reduces the flow of ions (Figure 1.6b), creating blockades. These
blockades, called resistive pulses, can be measured and characterised by their am-
plitude and duration (Kasianowicz et al., 1996). Once the molecule has translocated
the pore the current returns to it’s open value current until another molecule occu-
pies the channel again (Figure 1.6b).

The number of translocations is directly related to the concentration of DNA in
the cis well, therefore sequencing libraries with fewer molecules will see less fre-
quent translocations. Moreover, these translocations are too fast to resolve indi-
vidual nucleotides on a strand of DNA with the speed of sequencing being ~1-
7 ps (Kasianowicz et al., 1996). Both of these issues are resolved by the addition of
molecular motors, such as DNA polymerase from phi29, which has been success-

fully used to control the rate of translocation (Lieberman et al., 2010; Cherf et al.,
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Figure 1.6: (a) Applying a voltage across a nanopore causes ions to migrate towards
the membrane, as these ions pass through the nanopore an electric cur-
rent is measured using an ammeter. (b) When analytes, such as DNA,
are added to the cis chamber they diffuse towards the nanopore and en-
ter it. This results in measurable “resistive pulses”. These samples are
characterised by their dwell time (t;) and their event amplitude (¢I).
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2012) and the use of hydrophobic anchors to concentrate molecules at the mem-
brane.

With single base resolution possible (Cherf et al., 2012; Manrao et al., 2012) ionic
currents for known strands of polynucleotides could be characterised to allow the
development of basecalling algorithms. The identity of the nucleotides within the
constriction site of the nanopore specifically determine the current level at that point
along the strand. The raw — signal level — data is recorded by a picoammeter.
These raw signal data are typically called “squiggles” they are a time-series of 16-
bit integers that are sampled at 4kHz. As DNA translocates at ~400—450b/s there

are ~9-10 data points associated with each individual nucleotide.

The ASIC (Application Specific Integrated Circuit) is a high density array of low-
noise amplifier circuits. It is used to measure the current flow between each trans
compartment electrode and the common cis chamber electrode. The ASIC can also
receive commands from the controlling computer to control the sensor array (Clarke,
2019). Finally, the ASIC is able to use the applied potential, that draws DNA through
the nanopore, to eject any DNA or contaminants by momentarily reversing the ap-
plied potential across an individual pore. Furthermore, the ASIC is able to use

the applied potential, that draws DNA through the nanopore, to eject any DNA or
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contaminants by momentarily reversing the applied potential across an individual
pore. As data can be analysed whilst a molecule is still translocating a pore these
mechanisms allow for reads to be selectively ejected based on the first few bases in

the strand.

Nanopores and motors

There are currently two revisions of nanopores available from ONT R9 (released
in 2016) and the newer R10 (released in 2019). The R9 nanopore (Figure 1.7a) is
currently on version R9.4.1 and is a mutant form of the CsgG lipoprotein (Clarke,
2019). The newer R10 nanopore (Figure 1.7b), currently on version R10.4, consists
of two proteins, CsgF and CsgG, covalently attached together creating a pore with
two sensing regions (der Verren et al., 2020). This dual sensing region allows for
the length of homopolymers to be more accurately characterised and improves the
signal-to-noise ratio of the nanopore sensor (der Verren et al., 2020).

The amount of current that can pass through a nanopore depends upon the nu-
cleobase that is currently occupying the lumen. In reality it is not a single nucleotide
that creates the blockade but a group, known as a “kmer”. The R9 nanopore has a
“sharp” reader head (Figure 1.7a; Branton, 2019) that resulted in a sensing zone of
~4-5nt (Branton, 2019). R10 adds a second reader head that maintains the ~0.75nm
radius of the first reader head (der Verren et al., 2020).

1

R9.4.1 R10

(a) (b)

Figure 1.7: Cross section of (a) R9.4.1 nanopore and (b) R10 nanopore. The sens-
ing zone of each nanopore version is represented by the darker coloured
dots at the constriction point of each nanopore. Adapted from Oxford
Nanopore Technologies, (2019)

As previously mentioned processive enzymes, motor proteins, such as polymerases
and helicases were essential in slowing the rate of DNA translocation (Kasianowicz
et al., 1996). Moreover, the rate of translocation depends on the motor protein se-
lected with rates ranging from 10-1000b/s (Byrd and Raney, 2019). The successful
detection of ionic current from a polynucleotide used DNA polymerase and pulled

the strand out of the pore (Manrao et al., 2012).
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An alternative to a polymerase is a helicase enzyme. First, helicases are capable of
separating double-stranded DNA into single-stranded DNA; crucially helicases are
also capable of “unzipping” duplex RNA molecules and can move both 5-3" and
3'-5' (Byrd et al., 2012; Byrd and Raney, 2019). This allows a single motor protein to
be used for all polynucleotide sequencing. Secondly, the motor protein is too large
to pass through the nanopore and binds tightly to polynucleotide strand; as such it
makes an good quality brake (Byrd and Raney, 2019). Finally, the helicase is only
activated when it is in contact with a nanopore in the presence of ATP (Byrd and
Raney, 2019).

ONT use proprietary motor proteins in their sequencing systems. When the first
nanopore sequencer was made available the nanopore used was R7 and the motor
protein was called “E5”. This combination permitted sequencing DNA at ~30b/s,
this was improved to ~70b/s by 2015 (ONT, 2021). Finally with the introduction
of the R9 pore and further improvement of the motor protein (E8) the speed of
sequencing DNA reached ~450b/s with a direction of 5'-3" (ONT, 2021). For direct
RNA sequencing the motor protein “M1” is used, with a speed of ~70b/s and a
direction of 3'-5" (Heron, 2019).

ONT Platforms

ONT launched the first commercial nanopore sequencing device, the “MinION” in
2014 (Figure 1.8; Jain et al. (2016)). The MinION is a pocket-sized, portable DNA
sequencer weighing only 90 g. It operates with a consumable flow cell that contains
a sensing array of 2,048 ~1 nm biological nanopores. Nanopores are controlled in
groups of four, allowing 512 pores to simultaneously report current.

In addition to the MinION ONT released the GridION and the PromethION in
2017 and 2019 respectively. The GridION builds in support for five MinION flow
cells while the PromethION uses a larger flow cell design with 3,000 nanopores.
More recent additions include the MinION Mk1C, which incorporates a Jetson TX2
embedded computer (with GPU), that can manage a single MinION flow cell. Fi-
nally, the P2, a self-contained device with GPU and capacity for two PromethION
flow cells. Compute Unified Device Architecture (CUDA) enabled GPUs acceler-
ate basecalling by using their highly parallel architecture to process large blocks of
signal data in real-time, which is essential for live basecalling.

The sequencing control software, MinKINOW, continuously processes the incom-
ing raw signal for every sequencing nanopore on the flow cell. It is analysing these
signals to identify when strands of DNA enter and exit each nanopore and to check

whether a nanopore is blocked and may require unblocking. Asa result, MinKNOW



Introduction Nanopore sequencing 15

writes segmented sections of raw signal data to read FASTS5 files, with each section
representing a single molecule. These read files contain the necessary information
for a basecaller (Guppy) to convert the recorded current data into FASTQ format;

an essential step for bioinformatics analysis.
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Figure 1.8: Timeline of ONT devices starting in 2014 with the MinION and
branching into PromethION, GridION, and MinION MkI1C. From
https:/ /nanoporetech.com/about-us/news/blog-you-cant-put-label-
innovation-or-can-you

Basecalling

As data measured from nanopore sequences is delivered from the device as an elec-
trical current, “squiggle”, it must be decoded into bases for use with downstream
analysis tools. When the MinlON was first released basecalling was performed us-
ing Hidden Markov Model (HMM) methods on a cloud compute platform called
Metrichor; requiring an active internet connection so that raw signal could be up-
loaded and decoded data downloaded. Later an open source basecaller, Nanocall
(David et al., 2016), which used an HMM with comparable performance to Metri-
chor was released allowing offline basecalling and analysis.

When basecalling with an HMM first the raw signal is segmented into events. Each
event ideally corresponds to an individual kmer and so subsequent events will only
differ by a single base. In Nanocall the HMM has a series of states that represent all
possible kmers (Figure 1.9a). During basecalling, the most probable path through
these states is calculated by Viterbi decoding. The path is converted to nucleotide
sequence by overlapping consecutive states. Consequently, homopolymer repeats
of a length greater than the size of the kmer for this nanopore cannot be detected.

An alternate approach to HMM s is the use of Recurrent Neural Networks (RNNs).
This was first publicly implemented by DeepNano (Boza et al., 2017) which used
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segmented data and a RNN for basecalling. These RNNs do not rely on kmers for
classifications, taking into account both upstream and downstream event informa-
tion through the use of a bidirectional RNN (Figure 1.9b).

Early basecallers used segmented event data as input to determine DNA sequence;
however, current basecallers use raw current signal as input. For example, Base-
cRAWIler (Stoiber and Brown, 2017) uses two separate RNNs (Figure 1.9¢c). The
first RNN predicts the probability that a raw signal corresponds to a new kmer and
the identity of the kmer. The raw signal is then segmented and the kmer proba-
bilities are averaged over the segments. The second RNN then predicts the final
DNA sequence. The use of long-short-term-memory (LSTM) allows information to
only pass forwards which allows BasecRAWller to keep up with reads in real-time
(Stoiber and Brown, 2017).

Unlike BasecRAWIller, Chiron (Teng et al., 2018) does not undertake a segmenta-
tion step at all (Figure 1.9d). In Chiron, a Convolutional Neural Network (CNN)
takes raw signal as input detecting local structures. The CNN outputs are passed
through to a series of RNN in the form of LSTMs which pass their outputs to a
Connectionist Temporal Classification (CTC) decoder for decoding to bases.

Local basecalling was integrated into MinKNOW in the form of Albacore (a trans-
ducer basecaller) while research basecallers in the form of nanonet and scrappie
(ONT, 2019) were made available for testing new neural-network approaches (Wick
etal., 2019).

In late 2017 ONT released Guppy, a graphical processing unit (GPU) accelerated
basecaller. Which, like scrappie, is a general purpose basecaller. Guppy is RNN
based basecaller that is trained using real sequencing data (Wick et al., 2019; Clarke,
2019). Guppy specifically aims for basecalling speed improvements by using the

hardware features of GPUs that enable parallelisation of basecalling.

Basecaller training

Oxford Nanopore Technologies develops and trains basecaller models using data
from sequencing experiments®. A dataset of reads is selected for using in train-
ing a model. These datasets typically contain both native and PCR-amplified reads,
which are >1000 b in length, from samples including human, Escherichia coli, Caenorhab-
ditis elegans, and the ZymoBIOMICS Microbial Community Standard?. By including

native DNA base modifications are preserved in the training data.

Shttps://community.nanoporetech.com/technical_documents/data-analysis/v/
“https:/ /www.zymoresearch.com/collections/zymobiomics-microbial-community-standards
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Figure 1.9: (a) Nanocall uses a Hidden Markov Model (HMM) for basecalling.
(b) DeepNano was the first published basecaller to use Recurrent Neu-
ral Networks (RNN). Labels h1-h3 represent three hidden layers in the
RNN. (c) BasecRAWIler uses two RNNs, one to segment the raw mea-
surements and one to infer k-mer probabilities. (d) Chiron makes use of
a Convolutional Neural Network (CNN) to detect patterns in the data,
followed by an RNN to predict k-mer probabilities, which are evaluated
by a Connectionist Temporal Classification (CTC) decoder. Adapted

from Rang et al. (2018).



Introduction Nanopore sequencing 18

Base modification

Single molecule nanopore sequencing of native DNA and RNA can detect modifi-
cations on individual nucleotides and has been show to discriminate among all five
C5-Cytosine variants in synthetic DNA (Schreiber et al., 2013; Wescoe et al., 2014).
Furthermore, N6-methyladenine modifications in Escherichia coli genomic DNA can

be detected at 84-94% accuracy depending on coverage (McIntyre et al., 2017).

Milestones of Nanopore Sequencing

The portability, cost, and simple library preparation of the MinION uniquely en-
ables rapid progression from sequence acquisition to analysis. As such the MinION
and nanopore sequencing has seen widespread adoption for use in clinical settings
(Votintseva et al., 2017; Leggett and Clark, 2017), in the field for pathogen surveil-
lance and outbreak tracing (Quick et al., 2016), and environmental metagenomics
on a glacier (Edwards et al., 2016). Perhaps the most extreme example is the use
of the MinION sequencer on the International Space Station, which demonstrated
sequencing and de novo assembly of lambda phage and Escherichia coli genomes, as
well as mouse mitochondrial DNA (Castro-Wallace et al., 2017). Concluding that
there was no significant difference in the quality of sequence data generated aboard
the ISS and in control experiments that were performed in parallel on Earth (Castro-
Wallace et al., 2017).

The scale of the projects that nanopore based sequencers have been applied to
has increased in magnitude from making genome assembly more tractable for both
small bacterial genomes to the human genome (Koren and Phillippy, 2015; Jain
etal., 2018a). Then extending to the population level sequencing, using the Prome-
thION sequencer, of 3,622 Icelanders (Beyter et al., 2021). In 2020, during the
COVID-19 pandemic, nanopore sequencers were used throughout academic and
hospital laboratories to create a large-scale network of surveillance locations for
monitoring SARS-CoV-2 in the UK (Nicholls et al., 2021).

Nanopore sequencing has been demonstrated detection of cytosine methylation
in genomic DNA (Simpson et al., 2017). This study developed an HMM that could
distinguish cytosine and 5-methylcytosine with 82% accuracy in human genomic
DNA. Similarly, Rand et al. (2016) used a HMM that distinguished cytosine and 5-
methylcytosine and 5-hydroxymethylcytosine with 80% accuracy, but in synthetic
DNA.
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Read Length Nanopore read lengths substantially exceed those of other sequenc-
ing platforms. Reads over 300 kb have been achieved using E. coli genomic DNA
(Ip etal., 2015) and using human genomic DNA reads greater than 1 Mb have been
sequenced with putative reads exceeding 2Mb (Payne et al., 2018). The current
record read length for nanopore sequencers is >4 Mb (ONT, 2022). These longer
reads are able to span gaps in reference genomes that are highly repetitive (Jain
et al., 2015, 2018b). Here reads of 36 kb and greater were used to resolve a ~50 kb
gap in the human reference sequence (Figure 1.10). This gap contained a series
of 4.8 kb tandem repeats of the gene CT47. Ultra-long reads are also important in
improving de novo assembly and have been shown to double NG50 from ~3 Mb to
~6.4 Mb during the nanopore sequencing of the human genome (Jain et al., 2018a).
The MinlON-derived genome assembly expanded the Caenorhabditis elegans refer-
ence genome by more than 2.5 Mb due to more accurate determination of repetitive

sequence (Tyson et al., 2018).
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Figure 1.10: An unresolved scaffold gap on Xq24 (GRCh38; adjacent to scaffolds
AC008162.3 and AL670379.17). This gap spans a ~4.6kb tandem re-
peat containing CT47. This gap was closed by assembly and has eight
tandem copies of the repeat. This repeat was validated by alignment
of >100kb ultra-long reads also containing eight copies of the repeat.
Adapted from Jain et al. (2018a)

Read Until The combination of real-time inspection of raw signal and the ability
to eject molecules, both possible while a molecule is translocating enable nanopore
sequencers to be interactive. That is, the first few hundred bases of a strand of DNA

can be analysed; if this region is not of interest for the particular experiment that is
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being conducted it can be rejected and another molecule sampled from the library
that has been loaded. This procedure continues allowing only preferred strands of
DNA to be sequenced completely. This method of sequencing was first described
in a London Calling talk by Clive Brown in 2015 (Figure 1.11).

a {INANOPORE
Read Until...
o Oxford Manopore data is streamed from the device as it is acquired
An individual DNA strand can be read until a defined criteria is met
E New DNA strand
. b Ana yS€ secton - compare 1o =,
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Figure 1.11: Initial presentation of Read Until from London Calling 2015. This car-
toon describes how an in-progress molecule can be analysed while in
the nanopore and ejected if it is not of interest, otherwise it is sequenced.

1.4 Targeted Sequencing

Targeted sequencing is commonly used in NGS workflows to remove regions of
DNA that are not of interest for a particular experiment. By targeting specific re-
gions such as exons, greater sequencing coverage can be achieved. As these ap-
proaches usually sample smaller regions of interest there is a saving in both time

and cost.

1.4.1 Molecular methods of targeted sequencing

Typical enrichment methods include hybrid capture, in which DNA strands are
hybridized specifically to prepared fragments that are complementary to the tar-
gets (Gnirke et al., 2009). There are commercial solutions for this from a variety
of vendors [Agilent, IDT, Life Technologies]. These assays have high performance
and are cost effective when used in parallel over the same genomic region in multi-

ple samples. However, they are costly for small target regions or use with a single
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sample. Moreover, the read fragment size of current technologies remain a limiting
factor, producing fragments generally shorter than 1 kb.

Another technique, selective circularisation, where single-stranded DNA circles
containing the target region sequences are formed, using gap-filling and ligation
chemistries, in a highly specific manner creating structures with common DNA el-
ements that are then used for selective amplification of the targeted regions.

PCR can be used on the targeted regions to amplify them; either by conducting
either multiple long-range PCR in parallel, a limited number of standard multiplex
PCR, or using highly multiplexed PCR. However, heavily relying on PCR amplifi-
cation may result in bias for sequences that amplify well and completely eliminates
any native features of the sample such as base modification.

Finally, engineered DNA-binding molecules allow for physically selecting molecules
from within samples based on DNA motifs. These include: zinc finger proteins
(ZFNs), transcription activator-like effector nucleases (TALENS) proteins, clustered
regularly interspaced short palindromic repeats (CRISPR) system, and immuno-
precipitation (ChIP) techniques. In these techniques, the CRISPR/Cas9 system is
the most convenient, economical and time-efficient. CRISPR/Cas9 has been used
for targeted sequencing microsatellite-spanning sequences (Shin et al., 2017) and to
achieve coverage of 675x over genomic targets that enabled single-nucleotide vari-

ants, structural variations, and methylation to be assessed (Gilpatrick et al., 2020).

1.4.2 Nanopore real time selective sequencing

First demonstrated by Loose et al. in 2016, Read Until is a unique feature of ONT’s
real-time single-molecule platform (Loose et al., 2016). It allowed for targeted en-
richment of specific genomic regions within a sample without any prior amplifica-
tion.

This implementation directly compared the live “squiggle” of molecules as they
passed through a nanopore against a simulated reference — a FASTA reference that
had been converted into squiggle. The algorithm chosen to match the squiggles is
called Dynamic Time Warping (DTW) (Kruskal, 1983). It is an audio processing
algorithm that is able to compare two time-based sequences that vary in speed and
amplitude. As the simulated reference is derived from the ideal sensing of kmers, at
a specific speed, it may not always be a close match to squiggles that are seen during
a sequencing experiment (Figure 1.12). Indeed, only 20% of squiggle data could be
identified without normalization of the signal to account for changes in amplitude
(difference from the average value) and frequency. However, after applying z-score

normalization all 256 b sequences could be placed (Loose et al., 2016).
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Figure 1.12: (a) shows a model squiggle inferred from the first 100b of bacterio-
phage lambda. Illustrative kmers are shown above asterisked events in
the squiggle. (b) an example read derived from the same 100b region
as in (a) but incorporating shift, scale and drift, along with randomly
skipped kmers. (c) shows this same read, but stretched in the time axis
to map directly to the original reference. Comparing (a) with (b) re-
veals the requirement for an algorithm such as DTW for comparing a
read to reference. Adapted from Loose et al. (2016).

Using this approach two 5 kb regions of the lambda phage genome were enriched
while all other regions were discarded. This experiment was run using two sequenc-
ing chemistries: SQK5, which moved DNA at 30b/s; and SQK6, which moved DNA
at70b/s.

While these experiments demonstrate the principle of Read Until, DTW required
a lot of computational power. The experiments previously described required a
22 core server to run the analysis while another computer ran the sequencing. More-
over, as the time taken to find a match by DTW is a function of the reference length

and the query length, the reference genome size that can be used was fixed at up to
5Mb.
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1.5 Aims

The aim of this research is to develop software based selective sequencing methods

using ONT sequencers. This will involve addressing the following objectives:

1. An assessment of raw nanopore signal, specifically looking at how the rejec-
tion of reads impacts sequencing. In addition, evaluating the ability to use all
of the raw signal data through using bulk data.

2. Following assessment of raw signal a basecalling approach for real-time read
fragment classification will be developed. This real-time classification system
aims to be used with in-progress reads for Read Until.

3. Implementation of a real-time selective sequencing method using the devel-
oped classification approach. Allowing for the arbitrary selection of molecules
of interest from a native genomic sequencing library.

4. Evaluation of software based real-time selective sequencing approaches for

some model experiments.



Chapter 2

Materials and Methods

2.1 Wetlab
2.1.1 DNA extraction

During this project we created many sequence datasets using nanopore sequencing.
In Chapter 3 the human cell line GM12878 was used and DNA was extracted using
the phenol chloroform protocol. In Chapters 4 and 5 the human cell lines GM12878
and NB4 were used and DNA was extracted using phenol chloroform and QIAGEN

genomic tip.

Phenol chloroform

Adapted from Quick (2018) and Sambrook and Russell (2001) (chapter 6 protocol
1). For the isolation of ultra-long unfragmented high molecular weight (HMW)
DNA.

1. Approximately 50 million cells are resuspended in 100 pL PBS and 10 mL Tris-
Lysis Buffer (TLB) and incubated at 37 °C for 1h.

2. Proteinase K (QIAGEN) was added and mixed by slow inversion then incu-
bated at 50 °C for 3 h.

3. The lysate was purified using 10 mL buffer saturated phenol and phase-lock
gel falcon tubes, followed by phenol:chloroform (1:1).

4. DNA was precipitated by adding 4 mL 5M ammonium acetate and 30 mL ice-
cold ethanol.

5. DNA was recovered using a glass hook and washed twice in 70 % ethanol.

6. After spinning down at 10,000 xg, ethanol was removed followed by 10 min
drying at 40 °C.

7. 150 pl Elution Buffer was added to the DNA and left at 4 °C overnight to re-

suspend.

24
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QIAGEN genomic tip

For the isolation of non-ultra-long genomic DNA, that is sized up to 150 kb with
an average length of 50-100 kb, QIAGEN genomic tip was used. Cells were lysed
and cellular proteins are initially digested in the appropriate lysis buffer. Lysates
are then loaded into a column that binds DNA allowing other cell components to
pass through. Finally, pure DNA is eluted and precipitated in isopropanol before

drying and resuspension in Tris buffer.

Shearing DNA

Genomic DNA was mechanically sheared to fragments of ~20 kb using a g-TUBE
(Covaris) by spinning at the manufacturer’s recommended speed for the mass of

input DNA for one minute.

2.1.2 RNA extraction

Adapted from Workman et al. (2019).

1. ~5 x 107 cells, in a frozen pellet, were resuspended in 4 mL TRI-Reagent (Invit-
rogen AM9738), vortexed immediately, and incubated at room temperature
for 5min.

2. Either 400 pL 1-Bromo-3-chloro-propane or 200 pL Chloroform was added for
each 1 mL in the resuspended sample, vortexed, and incubated at room tem-
perature for 5 min.

3. Then, vortexed again and centrifuged for 10 min at 12,000 xg at 4 °C.

4. The aqueous phase was pooled in a LoBind Eppendorf tube and combined
with an equal volume of isopropanol, mixed, and incubated at room temper-
ature for 15 min.

5. Then centrifuged for 15min at 12,000 xg at 4 °C.

6. The supernatant was removed and the RNA pellet was washed with 750 pL
80 % ethanol and then centrifuged for 5min at 12,000 xg at 4 °C.

7. The supernatant was removed and the pellet was air-dried for 10 min, resus-
pended in nuclease-free water with a final volume of 100 pL for quantification

and either storage at —80 °C or further poly(A) purification.

Poly(A) Selection

Using RNA from the previous step, 100 pg aliquots were diluted in 100 pL nuclease-
free water. Poly(A) RNA were selected using NEXTflex Poly(A) Beads (NOVA-

512980) and eluted into nuclease-free water and stored at —80 °C.
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2.1.3 DNA and RNA quantification

Following isolation DNA and RNA were quantified for purity and concentration.
Purity of DNA and RNA were roughly quantified using the NanoDrop 2000 spec-
trophotometer (Thermo Fisher) using the Ajqg/Asgg ratio, aiming for values of
~1.8-2.0 for DNA and ~2.0-2.2 for RNA (as alkaline solutions will over-represent
Aneo/Asgg values by ~0.2-0.3 [ Wilfinger et al., 1997]). Deviation from these values
is indicative of protein or phenol contamination. Concentration of DNA and RNA
was assessed using either the dsDNA or RNA high-sensitivity assay on a Qubit flu-
orometer (Thermo Fisher). All quantification steps were carried out in accordance

with the manufacturer’s protocols.
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2.1.4 Library preparation

Ligation sequencing kit

SQK-LSK109 is the ligation sequencing kit from ONT. This sequencing kit is used
to prepare double stranded DNA for sequencing, taking roughly 1h. DNA ends are
repaired and dA-tailed, and then sequencing adapters are ligated onto the prepared
ends (Figure 2.1a).

Rapid sequencing kit

SQK-RADO004 is the rapid sequencing kit from ONT. This kit generates sequencing
libraries from extracted gDNA in 10 min using a two-step protocol (Figure 2.1b).
A transposase simultaneously cleaves template molecules and attaches tags to the
cleaved ends; sequencing adapters are then added to the tagged ends ready for se-

quencing.
Direct RNA sequencing

SQK-RNAO002 is the direct RNA sequencing kit from ONT. It is used to prepare any
RNA with a 3' poly(A) tail for sequencing sequencing Figure 2.1c.

The Direct RNA sequencing protocol contains an optional reverse transcription
step. The synthesised cDNA strand is not sequenced but significantly improves

sequencing output.

DNA barcoding

Barcoding tags the ends of DNA with unique molecules, this allows samples to be
multiplexed on a single device (Figure 2.1d). The process of attaching barcodes is
relatively simple process, it is very similar to the SQK-LSK109 protocol. First, DNA
ends are repaired and dA-tailed. Then, a unique complementary barcode adapter is
ligated to the dA tail. Samples can now be pooled for sequencing adapter ligation,

before loading and sequencing.
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Figure 2.1: Library preparation and barcoding workflows. (a, b, d) SQK-LSK109,

SQK-RADO004, and barcoding uses DNA extracted as in Section 2.1.1;
(c) SQK-RNAQ002 RNA extracted as in Section 2.1.2.

In SQK-LSK109 (a), DNA undergoes optional size-selection, blunt ends
are dA-tailed (end-prep) and sequencing adapters ligated.

In SQK-RAD004 (b), DNA undergoes a simultaneous double strand
cleavage and tag attachment. In SQK-RNAQ002 (c), RNA adapters are
ligated to RNA molecules followed by reverse transcription. When
barcoding (d), DNA undergoes end-prep, followed by barcode ligation.
Following each of these preparation steps sequencing adapters are lig-
ated and the library is ready for loading on to a flow cell for sequencing.

Adapted from: (a) Ligation Kit (LSK109;
https://store.nanoporetech.com/uk/ligation-sequencing-kit.html),

(b) Rapid Kit (RADO004; https://store.nanoporetech.com/uk/rapid-
sequencing-kit.html), (c) RNA Kit (RNA002;
https://store.nanoporetech.com/uk/direct-rna-sequencing-kit.html),
and (d) Barcoding Kit (https://store.nanoporetech.com/uk/native-
barcoding-expansion-1-12.html).
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2.1.5 Running sequencing

MinKNOW

MinKNOW is the software that controls ONT sequencers and devices. It carries
out several core tasks required for sequencing: data acquisition from the flow cell,
real-time analysis of the data stream, base calling, controlling the flow cell and se-
quencer. It takes the raw data stream from every active channel and converts it into
reads. This is accomplished by recognising the characteristic change in current that
occurs when a DNA strand enters and leaves the pore. MinKNOW can then base
call the segmented reads, and writes out the data into FAST5 and FASTQ files. The

minimum specification for a computer running MinKNOW is given in Table 2.1.

Table 2.1: MinKNOW minimum IT requirements. These are lowest expected system
parameters for a device running MinKNOW. For real-time basecalling a

GPU is required.
Component Specification
CPU Modern (Intel i7/AMD Ryzen 5 or better), > 4 cores
RAM > 16 GB

Storage =~ 1 TB of fast SSD storage

MinKNOW acquires data from the sequencing device in defined chunks. This
chunk size determines the frequency with which MinKNOW carries out all of it’s
underlying tasks and is configured prior to a run starting. These tasks include data
acquisition, segmentation, real-time analysis of library statistics, and sending data
for base calling. In addition, MinKNOW can grant access to the real-time data
stream through a gRPC endpoint. This allows for third-party tools to be used to
analyse the data stream for in-progress molecules and provide feedback on whether
to keep sequencing or eject each molecule.

MinKNOW is configured using a sequencing protocol. These protocols control
the hardware settings such as sequencing temperature or voltage; in addition they
also control real-time detection settings such as when molecules should be unblocked
or how the voltage should be adjusted. These protocols also expose a feature called

“playback” which uses a bulk FASTS5 file (Chapter 3), to replay a previous run.

Guppy

Guppy is a base caller provided by ONT that can be used via it's command-line

interface, through MinKNOW), or as a server with arbitrary clients. It utilises custom
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Recurrent Neural Network algorithms, developed by ONT, to interpret the signal
data from the nanopore, and base call the molecule passing through the pore.

Guppy offers three different base calling models: a Fast model, a High accuracy
(HAC) model, and Super accurate (sup) model. The Fast model is designed to
process ~160 kb/s (when sequencing at ~400 bases/s) when sequencing with most
nanopore devices (MinlON Mk1C, GridION, PromethION). The HAC model pro-
vides a higher raw read accuracy than the Fast model and is currently 5-8 times
more computationally-intensive. The Super accurate model has an even higher raw
read accuracy, and is ~3 times more intensive than the HAC model. All three mod-
els are trained on the same datasets, with the primary difference being the detailed
architecture of the recurrent neural networks.

Guppy is highly optimised for running on NVIDIA Graphical Processing Units
(GPUs) using CUDA. It is generally several orders of magnitude faster running on
a GPU compared to a CPU. Guppy implements stable features from development
and demonstrator software that ONT produces.

Throughout this work Guppy versions 3.4.5-5.0.11 have been used.

2.1.6 Flow cell washing

Washing a flow cell removes the previous library allowing it to be reused immedi-

ately or later.

1. Stop or pause the sequencing experiment in MinKNOW, leaving the flow cell
in it’s postion.

2. Prepare 400 nL of washing solution by combining 2 uLL. wash mix and 398 pL
wash diluent.

3. Mix well by pipetting, and place on ice. Do not vortex the tube.

4. With the SpotON port and the priming port closed, remove all fluid from the
waste channel.

5. Open the priming port. Ensure that there is continuous buffer from the prim-
ing port across the sensor array.

6. Load 400 pL of the prepared washing solution into the flow cell via the prim-
ing port, avoiding the introduction of air.

7. Close the priming port and wait for 60 min.

8. Ensure that the priming port cover and SpotON sample port cover are both
closed.

9. Using a P1000 pipette, remove all fluid from the waste channel through the

waste port.
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The flow cell is now ready to either be stored for later use or run a second se-

quencing library.

2.2 Bioinformatics
2.2.1 Curation of target regions

The software presented throughout this thesis expects either individual chromo-
some names or a csv formatted string to be provided as targets for enrichment or
depletion. In addition to being specified inline, targets can be stored in an exter-
nal text file as a list or as a csv. If a csv is given the format chromosome, target-
start,target-end, target-strand is expected. When loaded the targets file are
tested to ensure that the target contigs are present in the reference being used for
the experiment and that the region specified is within it’s bounds.

Files in the csv format can be converted to a six column BED (BEDS6) file that

preserves the strand information like so:
sed "s/,/\t/g; s/\t/\t.\t.\t/3" < TARGETS.txt > TARGETS.bed

Target sets were curated from online resources. EMBL-EBI (BioMart) was used
to ascertain exon coordinates in GRCH38.p13. Using the “Human Genes” dataset,
filters were applied to limit the chromosomes to those found in hg38 canonical set.
This set was further refined to include genes with transcript names (and IDs) only;
and finally to limit the gene type to only “protein coding”. The minimal attributes
required for this dataset are the chromosome name, exon region start, and exon
region end. The query should be visible here: BioMart bookmark URL.

For the COSMIC panel (Forbes et al., 2010; Tate et al., 2018) the target loci were
downloaded from cancer.sanger.ac.uk (COSMIC Release v90). All genes with co-
ordinates were converted into the csv format required by the software.

Target regions are routinely extended to increase the likelihood of seeing on tar-
get reads. This is done through the incorporation of flanking sequence both up-
stream and downstream of the original coordinates. These intergenic regions are
included so that reads starting close to — but outside of — the target region are also

sequenced.

2.2.2 Programmes and tools used

Throughout this work many pre-existing bioinformatics programmes and tools have
been used. Custom scripts and programmes, written in Python, were used for data

analysis and management.


http://jan2020.archive.ensembl.org/biomart/martview/dffa992be78759a162c5a1a56738b3e8?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.structure.ensembl_gene_id|hsapiens_gene_ensembl.default.structure.ensembl_gene_id_version|hsapiens_gene_ensembl.default.structure.ensembl_transcript_id|hsapiens_gene_ensembl.default.structure.ensembl_transcript_id_version|hsapiens_gene_ensembl.default.structure.chromosome_name|hsapiens_gene_ensembl.default.structure.exon_chrom_start|hsapiens_gene_ensembl.default.structure.exon_chrom_end&FILTERS=hsapiens_gene_ensembl.default.filters.chromosome_name."1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22"|hsapiens_gene_ensembl.default.filters.biotype."protein_coding"|hsapiens_gene_ensembl.default.filters.with_hgnc_trans_name.only&VISIBLEPANEL=resultspanel
https://cancer.sanger.ac.uk/cosmic/download
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Alignment and classification tools

Minimap2 (Li, 2018) is a long read aligner that is designed for long-read sequenc-
ing data. It uses a hash table built from a reference genome’s k-mers to find “an-
chors”. These are short but perfect alignments. Then, by chaining anchors together
determines the approximate location of a read. Dynamic programming is then
used to join the gaps between anchors providing base-level alignment. In addition
to Minimap2, there is a Python interface called “Mappy”. This is just a CPython
layer that allows Python to utilise the underlying optimised C code. When running
Minimap2, default parameter values for Oxford Nanopore data were used. This is
acheived by supplying the flag -x map-ont.

For taxonomy assignment metagenomic classifiers Centrifuge (Kim et al., 2016)
and Kraken2 (Wood et al., 2019) have been used. Kraken2 was used to identify
species from assembled genomes (Sections 5.4.1 and 5.4.2) and Centrifuge was used
to classify unassembled DNA reads against a reference database (Section 5.4.2).
Typically, metagenomic classifiers use kmer (Kraken2) for assigning short DNA
fragments (~50 bases) but this can lead to very large index databases, so others

(Centrifuge) employ the Burrows-Wheeler transform to compress the database.

Data management and analysis

Samtools (Li et al., 2009; Danecek et al., 2021) is a programme for processing and
analysing high-throughput sequencing data. Primarily samtools is used for file for-
mat conversion and for querying, sorting, computing statistics and quality control
on aligned datasets.

Bedtools (Quinlan and Hall, 2010) is suite of tools built for handling genomic
data and doing genomic analyses. While it primarily is concerned with genomic
intervals and ranges, bedtools is able to parse many formats. Within this thesis bed-
tools has primarily been used in the management of genomic ranges in the curation
of target sets.

Mosdepth (Pedersen and Quinlan, 2017) is a tool for calculating genome-wide
sequencing coverage. It measures depth from BAM files and can calculate either per-
base coverage or coverage in a specified region. For sections of this thesis dealing

with genomic coverage, mosdepth will have been used with default parameters.
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Assembly

Miniasm (Li, 2016) is an overlap-layout-consensus (OLC) assembler that identifies
overlapping sequences, using an all-versus-all alignment. It is designed for use with
long reads such as those from Oxford Nanopore Technologies and PacBio. Miniasm
does not actually carry out a consensus step, instead just merging unambiguous re-
gions into unitig sequences. As such, assemblies produced by miniasm have similar
base quality to the input reads.

Flye and MetaFlye (Kolmogorov et al., 2019, 2020) are both repeat-graph based
assemblers targeting single-genome and meta-genome assembly respectively. They
use approximate sequence matching instead of exact kmer matches as with de Brujin

assemblers.

Consensus generation and base modification

Nanopolish (Loman et al., 2015; Simpson et al., 2017) uses the raw (electric current)
signal from nanopore-based sequencing and a hidden Markov model to evaluate
draft genome assemblies. This is accomplished by calculating the probability that an
arbitrary nucleotide sequence can be derived from the raw signal that was observed.
This consensus generation process is iterated with the improved assembly being
fed back into nanopolish (usually 50 times). In addition to improving consensus
sequence, nanopolish is also able to detect base modifications using an expanded
HMM and nucleotide alphabet.

Similarly, Medaka (ONT, 2021a) is used for creating consensus sequences using
only base called data. Using a draft assmebly generated using Flye medaka creates

a pileup of reads and processes these with neural-network models.

Structural variant calling

The error rates of long reads make accurate SNP and small indel calling complex.
However, structural variants (SV) can be identified where read alignments show
large breaks. Long reads are beneficial to SV detection as they are more likely to
cross break-points or completely span the gap.

Sniffles (Sedlazeck etal., 2018) detects indels, duplications, inversions, and translo-
cations. Likewise, SVIM (Heller and Vingron, 2019) is able to detect and classify
six classes of structural variation: deletions, insertions, inversions, tandem dupli-
cations, interspersed duplications, and translocations. truvari (https://github.
com/spiralgenetics/truvari) is used for comparison of SV calls between differ-

ent tools.


https://github.com/spiralgenetics/truvari
https://github.com/spiralgenetics/truvari
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These tools rely on alignment accuracy, and therefore the error profile of reads
and alignment tool chosen will impact results. In addition, errors in the reference

genome or source of base truth will cause false positives.

Other tools and libraries

Throughout this project dependency management has primarily been carried out
using conda conda.io. Conda allows for easy generation of isolated environments
that can be replicated on separate computers.

Data analysis and visualisation has been carried out using the Python libraries
NumPy (Harris et al., 2020), Pandas (The Pandas Development Team, 2021), Mat-
plotlib(Hunter, 2007), and seaborn (Waskom, 2021).

2.2.3 Published datasets used

e Nanopore human genome, (Jain et al., 2018a)

e Nanopore human transcriptome, (Workman et al., 2019)
e BulkVis bulk FASTS5 file, (Payne et al., 2018)

e Comparison Zymo data, (Nicholls et al., 2019)


https://docs.conda.io/en/latest/

Chapter 3

Raw Nanopore Data

Preface
Research presented as part of this chapter has been published as

Payne, A., Holmes, N., Rakyan, V., & Loose, M. BulkVis: a graphical viewer for Ox-
ford nanopore bulk FASTS files. Bioinformatics 35(13), 2193-2198 (2018). (Page 157)
and

Workman, R. E,, et al. Nanopore native RNA sequencing of a human poly(a) tran-
scriptome. Nature Methods 16(12), 1297-1305 (2019). (Page 163)

3.1 Introduction

As previously covered (Section 1.3) raw nanopore data, squiggles, are the direct
detection of polynucleotide strands using a picoammeter. These picoammeter read-
ings are streamed from the ASIC at frequent intervals, typically occuring at a rate
of 4kHz for every sequencing pore. This continuous data stream is the real-time
data that Read Until needs to process to enable selective sequencing. The data in
this stream differs from the raw output of the sequencing experiment as it contains
portions of signal that are not measurements of DNA or RNA; for example: open
pore current, when there is no analyte present or when there is some non-nucleotide
contaminant. This whole process is managed by MinKINOW, the sequencing control
software.

During a sequencing experiment, MinKNOW determines if a pore is present and
available through a flow cell quality control (QC) and “mux selection” (muxing)
process. When the flow cell is undergoing QC/muxing each of the four wells in
each of the 512 channels are tested and ranked on signal quality. Channels that are
identified as being viable are used and a voltage difference is maintained across
each channel. This keeps ions flowing from cis to trans and keeps drawing DNA
molecules into the nanopores to be analysed. As such, every channel on the flow

cell must be constantly sampled so that data can be collected about every sequencing
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molecule. The flow cell is sampled in 1 s chunks, but this value can be changed prior
to starting sequencing.

MinKNOW processes the real-time data stream to monitor for signals that are
characteristic of DNA and RNA, or issues with a well such as membrane break-
down or a blocked pore. If a pore is “sequencing” a molecule, MinKNOW attempts
to partition the signal that has been captured into discrete reads, excluding non-
read-signal, in a process called segmentation. In addition to read segmentation,
MinKNOW will use this real-time data stream to generate some general library
statistics as well as saving the raw data to disk. All subsequent analysis assumes that
each read corresponds to the complete translocation of a single molecule through a
nanopore; that is, the continuous stream of data from the sequencer has been cor-
rectly segmented into individual reads. Incorrectly segmenting reads can lead to
either accidentally concatenating two (or more) reads into one, creating chimeras;
or over-segmenting a read into multiple reads. When live basecalling is enabled,
MinKNOW incorporates extra information in the general statistics panels, showing

both estimated (from the real-time stream) and basecalled metrics (from FASTQ).

3.1.1 FASTS5 files

The FASTS5 format is based on the Hierarchical Data Format 5 (HDF5) format, which
mimics a file system containing folders (called groups) and files (called datasets).
The groups and datasets can have metadata associated with them in the form of
attributes that are stored as key-value pairs. As it is a highly generic format, with
a mature set of libraries that facilitate working with HDF5 files on any computing
platform, it is an ideal format for storing raw data and metadata.

There are two kinds of FASTS5 file, a “read” file and a “bulk” file. MinKNOW
writes segmented signal data into read FASTS5 files, these files only contain the raw
signal data and relevant metadata for the sequencing run. This metadata includes
what is needed for basecalling, the offset and scaling parameters, which are used for
normalization and signal conversion. Once basecalled the read FASTS5 files are not
essential unless using tools that utilise raw data such as nanopolish and megalodon
(Simpson et al., 2017; ONT, 2021b). MinKNOW will also, optionally, write a bulk
FASTS5 file. These contain the entirety of the unsegmented signal data seen through-
out the duration of an experiment. This file includes both the raw current traces and
metadata for every sequencing channel on the flow cell. One such piece of metadata
is the real-time classifications that MinKNOW made during sequencing, these are
real-time decisions that MinKNOW made about DNA molecules. These are used to

label what the pore can “see”, for example classifications include “strand”, “pore”,
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or “adapter” (Table 3.1) and correspond to occupied by a molecule, unoccupied,
and occupied by adapter sequence respectively. These can typically be seen in a
“duty time” plot, within the MinKNOW interface, that is used for gauging sequenc-
ing efficiency. Finally, as the bulk FASTS5 file is a complete record of the sequencing
experiment it can be used to replay experiments to simulate sequencing and test

real-time processes without the need to actually use consumables.

3.1.2 Aims

Typically the basecalled FASTQ data is the most important output from a sequenc-
ing experiment. In contrast, when considering real-time processes — like Read Un-
til — the initial signals that are observed are the most important for classification.
Due to the read segmentation that MinKINOW carries out, we noticed that there was
some data loss that in the raw data outputs. Moreover, these data losses are ampli-
fied when running selective-sequencing. These losses cannot be seen nor analysed
as they are not written to read FASTS5 files. This is because the duration that an
unblock signal is being sent to a nanopore is never seen in read FAST5 files, which
we were particularly interested in observing as Read Until aims to send unblocks.
Therefore, a bulk FASTS5 visualiser was required to understand what is happening
on the flow cell surface as this was the only way to capture discarded (segmented

regions) of the raw signal stream.

3.1.3 Work contribution

The author of this thesis carried out the majority of the work presented in this chap-
ter. Including data analysis and programming. The bulk FASTS5 files used in this
analysis were derived from sequencing carried out by Deep Seq at the University
of Nottingham. DNA extractions and sequencing were carried out by Sunir Malla.

RNA extractions and sequencing were carried out by Nadine Holmes.

3.2 Results
3.2.1 BulkVis

BulkVis is a bulk FASTS5 file visualization tool and associated command line scripts.
For visualization, BulkVis uses Python3 and the bokeh package and the Python
HDF5 library (Bokeh Development Team, 2018; Collette, 2013). Bokeh was selected
as it had a large set of features centered around interactivity that enabled quick pro-
gression from an initial concept to an application that allowed quick inspection of

raw signal data from bulk FASTS5 files. The command line interface was also written
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Table 3.1: Classification Descriptions. There is no detailed description of the rela-
tionship between bulk FASTS5 file classifications and MinKNOW labels
seen in the “channel panel” and “duty time plots”. This table presents
our assumptions about the relationship between bulk FAST5 labels and
MinKNOW classifications.

Bulk FAST5

e MinKNOW Labels Description
classifications

pore, good_single, inrange pore A single sequencing pore is
present in the channel

strand, strand1 strand DNA is detected in a single
pore in the channel

unavailable unavailable A single pore which is currently
blocked

multiple multiple More than one pore is detected
in the channel

adapter adapter An adapter sequence is cur-

mux_uncertain, unblocking
saturated

zero
below, userl
above, user2
unclassified, unclassed

event

transition

unclassified_following_reset
pending_manual_reset

pending_mux_change

active feedback
saturated

zero

out of range 1
out of range 2

unlabelled
Unknown

Unknown

Unknown
Unknown

Unknown

rently detected within the pore
The channel is being unblocked
A channel is passing too much
current and has been switched
off

No current is passing through
the pore — likely no pore is
present in the channel
Negative current is being seen
Current is flowing but it is nei-
ther pore nor strand

An unlabelled channel which
has no classification assigned.
No precise definition of event is
available.

We believe this represents a
rapid and large change in cur-
rent measured.

A state associated with mux
changes.

A state associated with mux
changes.

A state associated with mux
changes.
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using Python3 and utilises the pandas and HDEF5 libraries (The Pandas Develop-
ment Team, 2021; Collette, 2013).

Visualisation server

BulkVis is started via a command-line interface. On startup, BulkVis scans either the
current or specified input folder for bulk FASTS5 files. As both read FAST5 and bulk
FASTS files utilise the same file extension bulk files are identified by their unique
datasets (which are also required for visualisation). After this scan is complete the
web-browser is opened and all available bulk FASTS5 files are listed in a dropdown
list that is presented to the user. Once a file has been selected from the list a user
can begin to browse the raw signal dataset for any channel or they can choose to
inspect a specific read by providing the header from a FASTQ record. If “browsing”
an individual channel and time offset (in seconds), in the form channel:start-
end, must be entered and the corresponing squiggle will be drawn. In addition to
drawing the squiggle for that period overall metadata for the sequencing run will

be displayed on the left (Figure 3.1).
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Figure 3.1: Screenshot of a typical bulkvis view. After selecting a bulk FASTS5 file to
view using the dropdown (top left) coordinates are required to navigate
to a specific channel and then a specific time range in that channel’s data
stream. Once this information is provided the viewer displays the signal
trace for the coordinates.
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BulkVis overlays MinKNOW classification labels (Table 3.1 and Figure 3.1) at the
time point that they occured over the raw signal plot. These labels correspond to
more generic labels that are seen in the “duty time” plots and are used for internal
classification of reads within MinKNOW. This further aids inspection as a user can
quickly see when MinKNOW made these decisions and what signal the classifica-
tion was based on. Optionally, a user can associate alignments, from a PAF file (Li,
2018), to annotate each read’s genomic position. After an alignment has been done
it is integrated with the sequencing summary file for this experiment and saved
alongside the bulk FASTS5 file with a file name that corresponds to the unique run
identifier for this experiment!. When a bulk FASTS5 file is opened by BulkVis the
corresponding alignment-summary is also loaded if it is available. Both of these
annotations can be seen in Figures 3.2a to 3.2d. MinKNOW's annotations are over-
laid on the signal plot as vertical dashed lines, labelled with the type and associated
ID if available (Figure 3.2). Alignments can also be overlaid horizontally above
the signal, with blue and red spans indicating forwards and reverse mappings, re-
spectively (Figure 3.2). The alignments include the chromosome, start, and stop
coordinates for the read IDs that mapped. This process continues until the sever is
closed, allowing any available channel to be inspected. Selecting another file from
the dropdown menu will close the current file and open the new selection.

In addition to being a viewer for signal data, run metadata, and signal contextual
data (classifications and alignments) BulkVis is able to export signal for basecall-
ing, quickly navigate between classification labels and only show labels of interest.
Jumping between labels is useful for quickly assessing if there was a relationship
between a specific signal and classification (e.g. “transition”, see Table 3.1). Min-
KNOW makes a lot of classifications so it is essential that they can be selectively
turned on and off otherwise the signal plot could be entirely obscured. Enabling
specific annotations also makes them available for navigation, allowing a user to
jump to the next or previous occurence of a classification of interest, for example
unblock signals. Exporting arbitrary sections of signal to a new read FAST5 file
is useful for when MinKNOW has incorrectly segmented a read or truncated the
read early. These new BulkVis derived FASTS5 files can be basecalled by ONT base-
callers, such as Albacore and Guppy. Through basecalling these incorrectly seg-
mented reads as though it were a single molecule some extra nucleotide data is

recovered from the inclusion of signal that was discarded by MinKINOW.

IThat is: <run id>.bmf
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BulkVis was developed in part to observe the effects of unblocking — the removal
of molecules by the reversal of voltage across a specific channel. In BulkVis’ devel-
opment data generated in the course of sequencing the human genome on a Min-
ION (Jain et al., 2018a), using ultra-long DNA molecules (Quick, 2018), was used.
During library preparation, adapter sequences are added to DNA molecules such
that every sequenced read should begin with an adapter sequence. Using BulkVis
we observed reads that did not follow the expected “pore”, “adapter”, “strand” se-
quence (Figure 3.2a). We found “strand” sequences separated by either “above”
or “transition” (Figure 3.2c) or even “unblock” (Figure 3.2d) signals without any
evidence of “pore” or “adapter” sequences present. Every sequenced read should
begin with a pore and adapter state, reads that do not can be described as having
“unusual split events”.

Close examination of reads before and after these unusual read split events, look-
ing at read mappings just prior and post the events shown in Figures 3.2c and 3.2d,
showed the two sequences were derived from adjacent positions on the same chro-
mosome (Table 3.2). These reads, sequenced one after another, were most likely
derived from single molecules. The alternative explanation is the chance sequenc-
ing of two independent molecules that map adjacently on the human reference, one

after another, through the same pore.

Table 3.2: Alignments for Figures 3.2c and 3.2d. The “Read ID” has been trun-
cated for clarity. These reads are separated by either unusual current
(Figure 3.2c) or by an unblock signal (Figure 3.2d). When these reads
were aligned to GRCh38, using minimap2 (Li, 2018), they aligned con-

tiguously.
Read ID Channel Length Chr Start End
Fioure 300 7ed4aafb... e 10275 122,184,560 122,199,454
EUIE 2-2C - g340ceasb... 43,145 122,133,985 122,184,329
. c13cle73... 5068 55,435,454 55,439,579
Figure 3.2d =1 17454... 68 5506 17 55400626 55433153

Command line scripts

The scripts described in this section are available: https://github.com/LooselLab/
bulkvis.

While it is possible to determine whether a pair of consecutive reads are incor-
rectly segmented by eye, this process is cumbersome and time consuming. It is

instead possible to use the data found in consecutive reads alignments to determine


https://github.com/LooseLab/bulkvis
https://github.com/LooseLab/bulkvis
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Figure 3.2: Continued of the following page.
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Figure 3.2: Raw signal features. (a) The start of a read mapping to chromosome 6.
Open channel “pore”, followed by an “adapter”, and “strand” as anno-
tated by MinKNOW. (b) Read ending with an “unblock” followed by
“pore” and then a new read. (c) Adjacent reads from a channel sepa-
rated by unusual current patterns. These two reads are reported as dis-
tinct molecules by MinKNOW, they map consecutively to the reference.
(d) Two adjacent reads separated by an “unblock” signal. The unblock
does not successfully remove the DNA. Instead the read continues to
sequence again mapping adjacently to the reference. From Payne et al.
(2018).
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whether they are incorrectly split or not. Using the order that each read translo-
cated through a channel and their alignment we could establish if reads mapped to
contiguous positions of their reference genome. This is carried out using the anal-
ysis script “whale_watch.py”? or command bulkvis fuse. Using a single flow cell
of data from Jain et al. (2018a) we aligned the reads to the human reference genome
(Schneider et al., 2017); 2983 of 75,689 total reads were incorrectly split with pairs
of reads mapping adjacently to the reference. Concatenating the basecalled reads
together (using “whale_merge.py” or command bulkvis merge) increased the read
length N50 from 98,876 to 103,925 bases. In addition the mean read length of incor-
rectly split reads, 55,190 bases, is higher than the entire dataset, 23,717 bases. Re-
examining previous ultra-long datasets revealed incorrect read splitting occurred
1-10% of the time (Table 3.3). Incorrectly split reads had consistently higher mean

read lengths than those which appear to be true single molecules.

Table 3.3: Read length statistics for 14 runs from Jain et al. (2018a) with incorrectly
split reads calculated using whale_watch.py after alignment to GRCh38.

Read count Mean N50

Original Split % | Original Split  Corrected | Original Corrected Increase

82,136 3953 4.81 | 22,532 64,810 23,134 | 126,793 138,627 11,834
53,720 1539 2.86 | 24,431 41,913 24,804 | 84,015 85,947 1932
41,384 932 225 | 20,299 51,910 20,534 | 59,500 61,168 1668
19,673 908 4.62 | 31,962 37,958 32,738 | 132,277 135,990 3713
73,752 2489 3.37 | 28,268 56,948 28,777 | 129,792 135,156 5364
75,689 2982 394 | 24,957 55,190 25,482 | 98,876 103,925 5049
61,223 2769 452 | 26,129 59,149 26,776 | 114,934 123,304 8370
65,138 4193 6.44 | 26,340 49,005 27,271 | 102,785 111,444 8659
270,189 12,045 4.46 | 10,680 14,967 10,936 | 26,744 27,759 1015
9663 882 9.13 | 35380 63,434 37,242 | 110,455 125,144 14,689
72,931 6860 9.41 | 21,243 55,293 22,410 | 102,621 123,768 21,147
68,167 1209 1.77 | 26,477 71,002 26,722 | 132,550 136,916 4366
71,150 2687 3.78 | 25,611 54,145 26,152 | 129,656 137,644 7988
451,019 2697 0.60 8475 10,554 8501 | 14,957 15,016 59

Analysing the annotation states from a bulk FASTS5 file showed that the some clas-
sifications occur alongside the start and end of incorrectly split reads (Figure 3.3).
The most frequent classifications occuring at the start and end of split reads are
“above” and “transition”; both “unblocking” and “unclassified” also occur occa-

sionally, but not as frequently. The “transition” classification can be seen in Fig-

2Colloquially referring to the “whale scale” https://nanoporetech.com/about-us/news/
blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome


https://nanoporetech.com/about-us/news/blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome
https://nanoporetech.com/about-us/news/blog-kilobases-whales-short-history-ultra-long-reads-and-high-throughput-genome
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ure 3.2c. Analysis of the physically adjacent channels on the flow cell did not show

any indication of these signals “above” or “transition” signals co-occuring.
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Figure 3.3: (a) Shows the labels used for reads. Unique Read Starts and Split Read
Starts are genuine new molecules being sequenced. Unique Read Ends
and Split Read Ends are the real end of a read. Internal Read End and
Start refers to just those incorrectly split reads. (b) Shows the density
of each selected MinKNOW classifications (Table 3.1) in a 10second
window before and after each of these read labels. The classifications
“above” and “transition” mainly occur at split read starts and ends.

Reads that are incorrectly partitioned by MinKNOW can be rejoined, either by
concatenation of the basecalled FASTQ or by generating a read that encompasses
all the sub-reads using BulkVis. In the case of creating new FAST5 for basecalling,
the region captured by three single reads (Figure 3.4a) has a combined length of
215,153 bases; when basecalled again as a single read has a length of 215,662 bases
that aligns contiguously with the original three (Figure 3.4b).
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In additional experiments when sequencing for ultra-long reads as in Jain et al.
(2018a) and Quick (2018), BulkVis was able to detect incorrectly split reads in up
to 30 % of reads in one run. The differences between these runs include the in-
put library, the sequencing kit (RADO004 rather than LSK108), and other equip-
ment such as the flow cell (both r9.4) and MinKNOW (version 1.10.23). In this
experiment a single read with a length of 1,204,840 bases was sequenced, when
analysing this dataset for split reads a set of eleven reads were discovered that,
when merged together, spanned 2,272,580 bases and aligned to 2,290,436 bases of
the human genome. Unfortunately, this part of the sequencing experiment was not
captured in a bulk FASTS file. The longest incorrectly split read that was present in
a bulk FASTS file was 1,385,925 bases in length. It was derived from nine individual
reads (Figures 3.5a and 3.5b). In this instance, BulkVis could be used to generate
a single read from these nine that, when basecalled, results in a single read align-
ing entirely to a single genomic locus. Highlighting the value of the data discarded
during segmentation.

Investigating further revealed changes in normal current flow that cause real-
time MinKNOW read detection to split the read. These events sometimes trigger
an unblock signal to be sent to the channel, after which the read should be ejected.
However, reads can occasionally continue to sequence from the same point on the
molecule. In one instance a read failed to unblock for more than 46 min, as the
molecule occupying that pore appeared to be stuck (Figure 3.6). In this example the
pore could not sample further molecules until the blockage was cleared preventing
>1.2 Mb of data being generated. Furthermore, this molecule was not rejected from
the pore by the unblock, instead it continued sequencing.

The most complex fused read observed consists of 38 individual reads mapping
contiguously to the genome (Figures 3.7a and 3.7b).

Thus far, just looking at raw signal data from DNA has shown that extra, useful,
contextual information can be recovered. Through visualisation, sequences where

MinKNOW cannot make optimal decisions can be observed.
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Figure 3.4: (a) BulkVis plot of three reads as determined by MinKNOW. These reads are separated by strand classifications, but not pore or adapter.
Using BulkVis a new read FASTS file was generated, for basecalling, that encompasses all three reads. (b) Last alignment and dot plot of
the three individual base-called reads aligned against the merged signal for the same three reads but basecalled as one read by BulkVis.

A zoomed in view can be seen in Figure A.1 (Page 143)
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Figure 3.5: (a) BulkVis plot of nine reads as determined by MinKNOW. These reads are separated by strand classifications, but not pore or adapter.
Using BulkVis a new read FASTS5 file was generated, for basecalling, that encompasses all nine reads. (b) Alignment of the 1,385,925
bases from the merged signal results into a single contiguous alignment to chromosome 13 on the human reference spanning 1,470,878
bases.
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Figure 3.6: A read that could not be unblocked. Unblock signals were sent to this channel for over 46 minutes, but the next sequenced molecule
aligns in the same genomic location. Note that the second read does not appear to have an adapter. Dashed lines indicate the start of

new molecules as determined in real-time by MinKNOW.
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Figure 3.7: BulkVis full length signal plot for a region spanning 38 individual reads from a bulk FASTS5 file. Dashed lines indicate new reads as
identified by MinKNOW. When generating a new read from this entire sequence it base calls as a read with length 263,744 bases.
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RNA

Nanopore RNA sequencing shares the same features as nanopore DNA sequencing.
That is, a motor protein (M1) drives a polynucleotide strand of RNA through a
protein pore at a steady rate (70b/s). As this method of sensing is the same the
effects seen in DNA molecules are likely not just limited to DNA molecules.

With poly(A) RNA sequencing full-length® transcripts are expected. However,
some mitochondprial transcripts showed a random distribution of truncated reads
below their expected full length (Figure 3.8b). Quantifying the fraction of truncated
reads by their expected transcript length for ten mitochondrial mRNAs, we found a
strong negative correlation (Figure 3.8c). This can also be seen in the number of full-
length transcripts over each mitochondrial gene as there are more partial transcripts

creating a saw-tooth coverage distribution on the heavy strand (Figure 3.8a).
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Figure 3.8: (a) Read coverage of the heavy strand (top) and the light strand (bot-
tom). (b) Distribution of nanopore read lengths for MT-CO2 and MT-
ND4L + MT-ND4 transcripts. Each point represents 1 of ~5000 reads
in the order acquired from a single MinION experiment. Horizontal
arrows are expected transcript read lengths. (c) Relationship between
expected transcript read length and fraction of nanopore poly(A) RNA
reads that were full length. (d) Percent of artificially truncated reads
where sequence was recovered from the ionic current signal. Dot sizes
indicate relative number of reads. Adapted from Workman et al. (2019).

Analysis of bulk FASTS5 files derived from these RNA sequencing experiments,

SExtending to within at least 25 nt of the genes expected 5’ terminus



Raw Nanopore Data Results 52

revealed that MinKNOW sometimes removes too much signal when segmenting
reads into discrete molecules (Workman et al., 2019). Using 2729 mitochondrial
RNA reads aligning to mitochondrially encoded cytochrome c oxidase I (MT-CO1),
asystematic analysis identified 527 reads that started or ended abnormally. By using
the methods developed in BulkVis and including ionic current segments that were
identified before or after many of these truncations, ~300 reads were reconstructed
with longer alignments to MT-CO1 (Figure 3.9). These truncation events are length
dependent (Figure 3.8d), ranging from 4.2 % of reads with rescued segments for
ND3 (full length 346 nt) to 17.6 % for ND5 (full length 2379 nt).

Visual analysis*, through read overlapping, indicated that read truncations were
more often caused by electronic signal noise such as current spikes of unknown ori-
gin (Figures 3.9a to 3.9c). However, despite these current spikes meaningful signal
can be recovered from the raw signal data in the bulk FAST5 file. We showed that
meaningful biological signals can be recovered from bulk FASTS5 files around these
truncations, suggesting that future improvements to the MinKNOW read segmen-

tation pipeline are needed.

“https://github.com/nanopore-wgs-consortium/NA12878/tree/master/
nanopore-human-transcriptome/scripts/bulk_signal_read_correction


https://github.com/nanopore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts/bulk_signal_read_correction
https://github.com/nanopore-wgs-consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts/bulk_signal_read_correction
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Figure 3.9: (a) Example ionic current signal for a MT-CO1 transcript. This trace
is representative of reads that were artificially truncated by a signal
anomaly. The highlighted blue section represents the MinKNOW seg-
mented read (positions 474-1532 of the MT-CO1 gene), and the blue and
right grey sections represent the manually segmented and rescued read
(positions 27-1532 of the MT-COL1 gene). The signal in grey was not
present in the MinKNOW output read FASTS5 file, but could be extracted
from the continuous FASTS5 file using BulkVis. (b) Recovery of data at
the 3" end of a read (shaded) using BulkVis. (c) Recovery of data at the
5" end of a read (shaded) using BulkVis. (d,e) Effect of additional ionic
current data on the mapping coordinates (start and end positions for an
alignment) relative to the reference transcript for all MT-CO1 reads in
bulk FASTS5 files. Increasing the amount of decodable nucleotide data
enables for better, longer alignments that better place the reads in their
genomic context.
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3.3 Discussion

Nanopore sequencers allow the capture of continuous raw signal data, in a bulk
FAST5 file. This includes continuous ionic current for all channels on a flow cell sam-
pled at 4kHz for DNA and 3 kHz for RNA; and the real-time classifications made
by MinKNOW during the original sequencing run. This crucially differs from the
more widely known read FASTS5 file, that only contains raw data and some limited
metadata.

There is no need for the routine collection of bulk FAST5 files. However, as ex-
tra data can be rescued resulting in longer, more contiguously aligning, reads; the
methods of generating “fused” reads (by either concatenation or re-basecalling) are
likely of interest for de novo genome assembly. Especially of non-model organisms,
which may not sequence or basecall as well as standard models, such as human or
bacterial samples.

Analysing a bulk FASTS file and the outputs of a sequencing experiment is rel-
atively easy using the provided command line interface; which is a useful post-
sequencing check for users working with a well curated reference genome. De-
spite these limitations, bulk FASTS5 file analysis has show evidence of of incorrect
read segmentation across all Oxford Nanopore platforms (MinION, GridION, and
PromethION) and both of the current analytes (DNA and RNA).

In response to some of these findings ONT have refined MinKNOW's ability to de-
tect and avoid incorrect segmentation (introduced in MinKNOW 2.0 between May-
Oct 2018). One such mechanism is the use of a “progressive unblock”, which re-
places the original unblock (2's of reverse current) with a more gentle (starting at
~0.1s) reversal duration and only intensifying if needed. Moreover, ONT have also
introduced molecular methods such as the nuclease-flush® and reload to physically
clear blocked channels (Sept 2019).

BulkVis provides a tool for the visual inspection of raw signal data with the goal
of understanding what is being seen and discarded during a sequencing experi-
ment. Crucially, it provides the opportunity to re-interpret the signals and measure-
ments that were recorded during sequencing. Unfortunately these measurements
are not entirely free from some interpretation as MinKNOW is still managing the se-
quencing. But, greater information can be acquired by inspecting signal where Min-
KNOW's classification deviates from the expected cycle: “pore”, “adapter”, strand”.
This could be of particular use for challenging sequences and samples to discern if

there are unexpected artefacts as in (Parker et al., 2020).

Shttps:/ /store.nanoporetech.com/uk/flow-cell-wash-kit-r9.html
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There is a lot of information held in the signal data. It is primarily used for base-
calling, as this is a nucleotide sequencing platform. But some tools are able to make
use of the signal data to provide enhanced biological information in the form of
modified bases (Simpson et al., 2017; Miiller et al., 2019; Boemo, 2021), or by rescu-
ing truncated signal to extend reads (Payne et al., 2018), or through alignment of

raw signal data (Kovaka et al., 2020; Zhang et al., 2021).



Chapter 4

Readfish development

Preface
Research presented as part of this chapter has been published as

Payne, A., Holmes, N., Clarke, T., Munro, R., Debebe, B.J., & Loose, M. Readfish
enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol

39, 442-450 (2021). (Page 175)

4.1 Introduction
4.1.1 Nanopore sequencing

As covered in Section 1.3 the technology at the heart of Oxford Nanopore Tech-
nologies’ platform consists of a protein nanopore embedded in a synthetic mem-
brane. Molecules of DNA or RNA are actively driven through the channels that
these nanopores create, travelling from the cis to trans side of the membrane, by

a combination of electrophoretic force and from a motor protein that mechanically
“walks” the nucleotide strand to control the rate of translocation (Branton and Deamer,
2019).

During the course of a normal sequencing experiment a library of molecules is
prepared and loaded on to a flow cell. As the molecules pass through the nanopores
the current difference across the membrane is recorded at regular intervals. This
process is continuous for the duration of the sequencing run. In the event that
a molecule blocks the channel or cannot continue sequencing the applied voltage
across the membrane can be inverted to reverse the direction the molecule is trav-
elling; sending it back out the way it came in. Here I will define some terms to dif-
ferentiate between unblocking reads during the normal course of sequencing and

specifically for selective sequencing applications.

56
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Unblocking reads is a mechanism, used initially to prevent pores from blocking,
can also be used to stop sequencing a molecule at any point. This process is called
“Read Until”, which allows a single molecule to be sequenced until the voltage is
reversed to remove the strand from the nanopore. Not only can the change in voltage
can be activated by MinKNOW, but the user of the sequencing device can be given

control to unblock individual reads on a pore-by-pore basis.

Selective sequencing uses pre-defined, immutable, conditions to make real-time
decisions about currently sequencing molecules. MinKNOW's “active unblock” is
an example of selective sequencing as it aims to detect nanopores that have become
blocked and clear them by reversing the voltage. Likewise, selecting specific ge-

nomic regions (as demonstrated in Loose et al. (2016)) is selective-sequencing.

Adaptive sampling is the process by which the experimental conditions are up-
dated as sequencing progresses — directly in response to the data generated by the
sequencer. Thus far true adaptive sampling has only been shown by Loose et al.
where specific viral amplicons were sequenced until they had reached sufficient
coverage for a consensus sequence to be generated (Loose et al., 2016).

For selective sequencing to work molecules must be analysed in real time. As
a strand is progressing through a nanopore the current is streamed from the se-
quencer to the controlling computer. Through inspecting these live current traces
the molecule present in a channel can be classified and a decision can be made about
whether to continue collecting data, allowing the read to end naturally, or whether

to eject the molecule and sample another molecule from the available pool.

4.1.2 Current selective sequencing implementations

Selective sequencing is dependent on the ability to match molecules currently pro-
gressing through a nanopore with a reference sequence. This requires either con-
verting the live signal data from the nanopore to nucleotides and aligning to a bi-
ological reference or converting the biological reference into a signal-like represen-

tation.

Signal based methods

Matching un-basecalled signal with a simulated reference is the most common method
used to implement selective sequencing (Loose et al., 2016; Masutani and Morishita,
2018; Kovaka et al., 2020). First demonstrated by Loose et al. in 2016 using a mod-
ified audio sampling algorithm called Dynamic Time Warping (DTW) (Kruskal,

1983). This process matches the raw electrical signal from the DNA in a nanopore
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to a simulated reference signal. The process of simulating signal from a reference
sequence is accomplished by pre-calculating the mean current value for every 5
base window (5-mer) in the reference genome. Each simulated reference squiggle
is unique to the kmer model that it was generated from as each model is dependent
on the sequencing chemistry (nanopore version) that it was created with. In addi-
tion to matching raw current this DTW approach needed to compensate for noise
introduced by the sequencing environment, thus incoming read fragments were
z-score normalized to overcome these variations between the original kmer model
used to simulate the reference and the kmer values reported by nanopores during
sensing. Loose et al. were able to enrich for specific genomic regions and then
prioritise alternate regions when a target coverage depth had been reached (Loose
et al., 2016). Though this was limited to smaller genomes (< 5 Mb in length) and
required a 22-core server to process the data fast enough.

The DTW approach was refined by Masutani and Morishita who applied refined
DTW algorithms such as Sparse-DTW (Al-Naymat et al., 2012) and Fast-DTW (Salvador
and Chan, 2007) among others to increase the throughput of the naive DTW ap-
proach (Masutani and Morishita, 2018). Despite improved algorithms, due to the
time complexity of DTW being quadratic! (Kruskal, 1983; Loose et al., 2016) longer
assembled contigs were hard to place reads within optimally.

Finally, in techniques utilizing raw signal is, UNCALLED (Kovaka et al., 2020),
which employs efficient index and seeding techniques to reduce the computational
time of matching signal. Specifically, Kovaka et al. use a Ferragina-Manzini (FM)
index built from approximate kmer — called events — generated from the reference
sequence which is then queried using the most probable kmer from the live signal.
Their event detector is based on Scrappie which uses rolling t-tests to detect the
sudden changes in signal that define event boundaries. Like in Loose et al. each
event is represented by the mean of the signal that it covers. These events are are also
normalized so that the mean and standard deviation match the kmer model. After
normalization, UNCALLED calculates the probability that each event matches each
possible kmer from ONT’s kmer model. Lastly, in the seed-mapping stage, short
but perfect alignments between the most probable read and FM-index reference
are sought which are then used to create longer alignments used in the selective

sequencing process.

!Given an input of size n, it will take 12 steps to complete the task
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Nucleotide based methods

It is also possible to replace signal matching with a two-step process of basecalling
and alignment. This technique was concurrently attempted by Edwards et al. in
2019. Their software, RUBRIC, used the (now obsolete) nanonet basecaller and the
LAST aligner (Kietbasa et al., 2011). RUBRIC demonstrated benefit compared to
non-selective sequencing, by filtering unwanted reads, but did not provide any en-
richment. This approach required considerable computational resources that were

provided by an additional computer to the one controlling the sequencer.

41.3 Aims

A recurring theme in selective sequencing software is that it often takes more than a
single computer to process the signal stream for real-time inspection. This is the case
in DTW (Loose et al., 2016), UNCALLED (Kovaka et al., 2020), and RUBRIC (Ed-
wards etal., 2019); and in the case of DTW and UNCALLED large high-performance
servers were used. For this reason a primary goal was to utilise reasonable compu-
tational resources, ideally using a single computer such as a laptop or one that fits
in MinKNOW's computational requirements (Table 2.1).

In addition, the reference genome constraints seen in signal based methods ini-
tially limited reference length to ~5 kb (Loose et al., 2016). As such, signal based
methods are limited in both the size of the reference genome they can use and, by
extension, the number of target regions they can consider.

Finally, with the advent of fast basecalling on GPU it has become easier to gen-
erate nucleotide data in real-time. With the addition of fast read alignement using
minimap?2 (Li, 2018) a completely real-time process should be possible. Leveraging
this data would allow for reference genomes and target sets to be updated during
the course of sequencing in response to data that has already been generated; which
would make these runs adaptive as they change in response to the sample. An ex-
ample of this kind of adaptive sampling is for both reference and targets, of any size,
to be added or removed during an experiment.

Overall our goals for this Read Until software was to: work with a reference
genome of any size, work with any number of genomic targets, allow the refer-
ence genome to be updated during an experiment, allow the targets to be updated

during an experiment, work on a single computer.
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4.1.4 Work contribution

The majority of the work in this chapter was done by the author apart from DNA
library preparation and flow cell flushing and reloading which was carried out by
Nadine Holmes in Deep Seq. The initial design and selection of target panels was

done in collaboration with Matt Loose.

4.2 Results

421 Application Programming Interfaces

The MinION device is controlled by ONT’s sequencing control software, MinKINOW.
MinKNOW provides an Application Programming Interface (API) that enables real-
time interactivity between the controlling computer and the sequencer (ONT, 2021c);
a subset of this API has been curated as the Read Until API (ONT, 2020).

These APIs all use Google’s Remote Procedural Call (gRPC; grpc.io) framework
which standardises communication between applications without needing specific
details of how they are connected. These operate fastest when both applications are
on the same computer, but can create a seamless interface between distinct com-
puters. An overview of how data is passed between applications can be seen in

Figure 4.1.

Read Until API

Read Until requires bidirectional communication with the sequencing device, this
is provided by the Read Until API (Figure 4.1). This API provides chunks of signal
from every sequencing pore on the flow cell continuously for the duration of the
sequencing experiment.

During the course of developing readfish the Read Until API has been contin-
uously maturing as a result of both community contributions and ONT’s develop-
ment. Some of these developments are as a result of past research; for example both
Loose et al. and Edwards et al. found there was a critical need for filtering incoming
raw signal such that only data from that represented DNA molecules were served
(Loose et al., 2016; Edwards et al., 2019). In response ONT implemented a classifi-
cation filter so that only reads classified as “strand” or “adapter” were served over
the Read Until APIL. These classifications were chosen as they represent either an in-
progress molecule or the very beginning of a molecule, just before it’s classification

becomes “strand”.


https://grpc.io
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Figure 4.1: Flow diagram of how data passes between the MinlON sequencer, Min-
KNOW and the Read Until API. When the sequencer is started the gRPC
system in MinKNOW is accessed by the Read Until API and a cache of
raw data (un-basecalled signal) for in-progress reads is created. This
cache can be sampled by an application for the purpose of Read Until.
The application can then wait for more data or make a decision to ei-
ther select (“keep sequencing”) or reject (“unblock”) and the action is
relayed back to the Read Until API and stored in the action queue, which
is then communicated to the sequencer via the MinKNOW API and ef-
fected. In the case of an “unblock” decision the current is reversed and
the molecule ejected; in the case of “keep sequencing” the channel will
not send data to the read cache for this channel until a new read has
begun sequencing.

Initially we were using a fork? of the Read Until API that allowed the inclusion
of new features and key performance improvements. These improvements have
since been incorporated into the stable 3.0 version of the Read Until API® (ONT,

2020). The aim of these improvements was to increase the portability of our selective

Zhttps:/ /github.com/LooseLab/read_until_api_v2
3 Additions to the Read Until API were made during my iCASE placement at Oxford Nanopore Tech-
nologies
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sequencing approach so that it was easier to install.

Most notably, we migrated the API from Python 2 to Python 3 which allowed us
to take advantage of newer programming practices, improve the speed and perfor-
mance of the API, and ensure that the API was not constrained by internal imple-
mentation details of MinKNOW. This migration entailed removing obsolete depen-
dencies and enabling the gRPC MinKNOW APL

An essential component of the Read Until API is the read cache. This cache sits
between the Read Until code and the MinKNOW API. It runs concurrently with the
Read Until application to fetch and store new read chunks as they become available.
The read cache was re-implemented to make the transfer of read chunks, from the
cache to the selective sequencing code, faster by up to two orders of magnitude.
There was a bottleneck in a function (popitems) that meant the read cache would
repeatedly poll for new data even when it was empty. Each time the empty cache
was polled caused an exception to occur in the Read Until API, which is a very ex-
pensive operation — especially when it was occurring many times on each attempt
to get data from the cache*. With this step removed data could be served from the
Read Until API much faster allowing better overall performance.

In it’s original implementation the read cache would only supply the most re-
cently received read chunk. Therefore, data would be missed in the event that
analysing a batch of read chunks takes longer than the cache update period. To
address missing chunks of data a new read cache was written®, the accumulating
cache, that does not discard consecutive chunks of data and instead combines them.
This accumulating behaviour is essential when converting data from signal to nu-
cleotides as any extra signal can aid in correctly placing a molecule in the correct
genomic context (Section 3.2.1). In addition, an obscure effect of discarding missed
read chunks is that it is unknowable, to the selective sequencing software, what
length of nucleotides have been processed. Knowing the approximate length of a
molecule that may be rejected is essential as rejecting molecules longer than ~2 kb
is more likely to destroy or block the channel and reduce the overall sequencing

capacity of the flow cell (Section 3.2.1).

4.2.2 Alignment

To place basecalled data in their genomic context we opted to use minimap2 (Li,

2018) over other aligners, such as LAST (Kielbasa et al., 2011) which was used in

*https:/ /docs.python.org/3/faq/design.html#how-fast-are-exceptions
5This read cache was originally written for readfish to use, and has since been ported into the ONT
implementation of Read Until (by me, on my placement)
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RUBRIC (Edwards et al., 2019). This was primarily as minimap?2 is specifically op-
timised for use with long-read data from Oxford Nanopore and PacBio, allows for
the use of pre-computed indexes that further improve alignment time, and has a
mature and stable Python interface, mappy. Moreover, minimap2 works with both
DNA and RNA reads of any length (e.g. short reads or assembly contigs). It is ac-
curate and efficient and outperforms other alignment tools in terms of both speed

and accuracy (Li, 2018).

4.2.3 Basecalling

Basecalling ONT data is the process of translating the raw electrical signal into nu-
cleotides. It is a challenging problem as the number of possible states that a given
strand of DNA could have is determined by the number of nucleotides being de-
coded raised to the power of the number of nucleotides that can fit in the lumen of
the nanopore. Currently, for the canonical DNA bases and R9.4 pores (which use
~5 nucleotides) that yields 4> = 1024 possible states.

Due to the exponentially increasing complexity of classifying nanopore signal
data, machine learning is the primary method used for decoding signal into bases.
ONT have released multiple different basecallers over the years, most notably Al-
bacore (now deprecated) and Guppy, which use CPUs and GPUs respectively. In
addition, there’s Scrappie®, Flappie”, and Bonito® which are open-sourced “demon-
strator” technologies that are used to refine features before their incorporation into
Guppy. There are also third-party basecallers that have been developed such as
Chiron (Teng et al., 2018), DeepNano, and DeepNano-Blitz(Boza et al., 2017, 2020).

Scrappie

Scrappie is an experimental basecaller, described as a “demonstrator” technology. It
provides a Python interface to a basecaller programmed in C. The basecaller makes
use of neural network models, which are trained to convert raw signal data into
nucleotides. Scrappie’s architecture is based on a gated recurrent unit (GRU), which
is similar to a long short-term memory architecture, but has better performance
on tasks such as speech signal modelling (Ravanelli et al., 2018); and as has been
demonstrated by Loose et al. audio processing algorithms are readily applicable to
the electrical signal that nanopores produce (Loose et al., 2016).

As Scrappie is a basecaller that can be called programmatically it is ideal candi-

date for incorporating into a programme that requires basecalling. For Read Until to

®https://github.com/nanoporetech/scrappie; deprecated
"https:/ /github.com/nanoporetech/flappie; deprecated
Shttps://github.com/nanoporetech/bonito
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be effective it needs to make good decisions about where reads are from in their tar-
get genome; and it needs to do this quickly. Therefore, when assessing Scrappie for
use in Read Until we must gauge both the speed at which it can basecall sequences
and the accuracy of the alignments those basecalls produce.

The models’ that Scrappie provides for basecalling vary in how the parameters
used in their generation. For example models rgr_94 and rgrgr_r94 use alternating
reverse GRU (rgr) and GRU (gr) layers. Other networks, using the k3_.. or k5_...
naming scheme also use a reverse GRU and GRU layers, but the parameters used to
generate them have been modified and are encoded in the name. These parameters
are the kmer model, either 3 or 5; the window and stride, which alters how much
contextual data a model uses when considering raw input; and finally the layers and
size of the hidden data layers, which are used internally by the model.

Scrappie’s models generally have good alignment accuracy, with the best models
having mean accuracy of ~90%. The two best performing models had mean accu-

racies of 0.896 (rgrgr_r94) and 0.882 (k5_w11_s5_13_u96) (Figure 4.2).
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Figure 4.2: Scrappie alignment accuracy. Comparison of 750 reads basecalled with
each available Scrappie model. Calculated from minimap2 alignments
using matches and indels in the CIGAR string. The two best performing
models were rgrgr_r94 (row 1, col 2) and k5_w11_s5_13_u96 (row 3, col
2) with overall mean accuracy of 0.905 and 0.899 respectively.

Provided with Scrappie and from ONT
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Scrappie’s speed of basecalling varies with the model being used, with the fastest
model being k3_w11_s6_15_u24 with an average time of 0.026 seconds per read and
the slowest being rgrgr_94 with an average time of 0.117 seconds per read (Fig-
ure 4.3). The speed of basecalling with Scrappie has been quite consistent over time,

but it struggles to exceed 10° bases per second.
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Figure 4.3: Mean Scrappie basecalling speed per model. Different Scrappie base
calling models have varying basecalling speeds, ranging from 0.026 to
0.117 seconds per read. Some models, particularly those using the 5-
mer model, have greater variability and take longer. While Scrappie is
capable of calling reads quickly it still may not be fast enough, as at the
fastest speed of 0.026 seconds per read a full flow cell (512 sequencing
channels) of data would take > 13 seconds to basecall.

424 readfish

In tandem to assessing the performance of Scrappie, the initial scripts that would
become readfish were being written. These earliest scripts only attempted basic
enrichment or depletion. Eventually, a flexible configuration schema was imple-
mented that allowed running different experiments on the same sequencing library
simultaneously.

Readfish operates by receiving a series of targets for the experiment, supplied in a
configuration TOML file. This file specifies what basecaller to use and the required
parameters, what reference genome to use, and what regions of the reference are to
be selected for (enriched) or selected against (depleted).

With a suitable configuration readfish has the required information to start selec-

tive sequencing. In general this follows the procedure (also outlined in Figure 4.4):

1. Initialise a connection to the MinKNOW API via the Read Until API
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2. Initialise a connection to a basecaller

3. Initialise a minimap?2 aligner with a pre-computed reference file

4. Begin streaming live data from the live sequencing experiment

5. For each iteration of the Read Until API chunk cycle:

Stream raw signal from the current batch of read chunks to the basecaller
Stream the returned basecalled data directly to the aligner

Stream the alignment results back to the readfish programme

Parse the alignments against the experiment configuration, determining
whether the read is on or off target, then pass the decision to the Read
Until API for it to be effected on the sequencer

(Optionally) Check for updated configuration parameters with a new

reference or targets

readfish

TOML
configuration

l Device

MinION

Start

readfish app

nucleotide

alignments ( alignments data

response | .
P signal

MinKNOW API
(gRPC)

logic from
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Figure 4.4: Flow diagram showing the additional components that readfish includes

which are highlighted in grey. The readfish application draws raw signal
from the read cache where it is packaged for basecalling. As base called
data are received back they are immediately dispatched to minimap2
which aligns them with the reference supplied in the TOML configura-
tion. These alignments are then passed through the selective sequencing
logic that is determined from the TOML configuration and a decision is
sent to the action queue and on to MinKNOW and the sequencing de-
vice.
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Experimental configuration — TOML files

The TOML configuration requires the experiment settings to be defined at the be-
ginning of the experiment. In this schema a single reference genome is used for the
entire flow cell and then experiment regions (conditions) are specified. The num-
ber of regions must be a factor of the flow cell dimensions so that an even number
of pores can be assigned to each region. Each region is either a control region or
specifies it’s own strategy for selective sequencing. By setting a strategy per region
different targets can be used in each experimental condition. Moreover, each region
can set the actions that happen in response to each of the available classifications

(Table 4.1).

Table 4.1: Possible classification states for a read chunk in readfish. All non-control
read chunks will be assigned one of these states depending on how many
alignments to the reference genome they (individually) have and whether
the locus of any of the alignments is within a region specified in a target
list. no_seq is a specific case that only occurs when basecalling fails.

Classification Ahgnment. n

number in targets list
single_on =1 Yes
single_off =1 No
multi_on >1 Yes
multi_off >1 No
no_map 0 N/A
no_seq N/A

Unblocking half a flow cell

To test the performance of real-time basecalling with Scrappie for enrichment and
depletion a playback experiment was setup. The flow cell was divided into two
halves based on each channel’s position on the flow cell surface. On the left half of
the flow cell all reads would be rejected, while on the right half all reads would ac-
cepted. As all reads are basecalled and aligned during this experiment the unblock
efficiency can be observed by looking at just the left half (NOTHING). This is the case
as instead of being assigned as a control region the NOTHING region processed all
read chunks as normal and always sent an unblock response.

As a proof-of-concept, this experiment worked with a clear difference in the read-
length distributions between the conditions (Figure 4.5a). However, there was little
extra data gathered from the accept all portion of the flow cell as the median read

length was ~1kb longer than those seen in the rejected condition (Figure 4.5b).
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Figure 4.5: (a) Violin plot of read lengths per flow cell condition. On the left is the
reject all condition that sends an unblock signal after basecalling and
aligning the read chunks; on the right is the accept all condition which
accepts all reads after basecalling and aligning. The reject all condition
has a mean read length of 1672 bases while accept all has a mean of 5449
bases. (b) Median read length in the two conditions. The median read
length in the accept all condition is not far from the reject all condition.
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Scaling to the human genome

As an initial test of using real-time basecalling for selective sequencing using a
gigabase-sized reference, an experiment was setup that divided the flow cell sur-
face into four quadrants. Each of these quadrants was assigned a condition: control
(no selection), chromosomes 1-8 (50% of reads accepted), chromosomes 9-14 (25%
of reads accepted), and finally chromosomes 16-20 (12.5% of reads accepted). The
Read Until API allows channels to be excluded from selective sequencing, how-
ever these can only be specified as a range of included channels. Because the ac-
tual flow cell layout is not contiguous this method of setting aside control channels
is incompatible with how readfish divides the flow cell. Therefore, all data were
processed from all channels throughout the duration of the experiment. As read
chunks were made available they were basecalled by Scrappie and aligned to the
human reference genome by minimap2 (hg38, excluding alternate and unplaced
chromosomes). After the run finished all completed FASTQ data were aligned to
the same reference used during selective sequencing and the median read lengths
per chromosome were plotted (Figure 4.6a). The median read length for reads on
targeted contigs closely matches the median lengths seen in the control region (all
~2 kb) while the rejected reads in conditions half, quarter, and eighth are shorter
(~1-1.5 kb) (Figure 4.6a). In addition to subsets of chromosomes having the ex-
pected median read length as the control Figure 4.6b shows the yield ratio for each
chromosome compared to the control region. All targeted chromosomes sequenced
as well as those in the control region, with most sequencing > 1.5x the amount seen

on the control.
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Figure 4.6: (a) Median read lengths for reads in each quadrant aligned to hg38. The

panels are organised as the quadrants were on the flow cell. In the con-
trol, all reads are sequenced; in the second, third and fourth quadrants,
reads mapping to chromosomes 1-8, 9-14 and 16-20, respectively, are
sequenced. The combined length of each of these target sets equates
to approx1mately 5/ 7 2 and & g of the human genome, respectively. The
chromosomes that were targeted in each section are highlighted in black.
(b) The yield ratio for each chromosome in each condition normalized
against the yield observed for each chromosome in the control quadrant.
(c) Channel heat map of throughput for each sequencing channel on the
flow cell surface.
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Guppy

About the time that these experiments with Scrappie and readfish were being de-
veloped, Guppy version 3.0 was released with wider GPU support. As Guppy is a
much more performant basecaller than Scrappie (Wick et al., 2019) we sought to use
it for the real-time basecalling step in readfish. Like Scrappie, Guppy uses recurrent
neural networks (RNNs) for their base calling models; however, the architecture
of Guppy’s models is proprietary and unknown. Guppy’s speed of basecalling is
also dependent on the model being used, either “fast” or “hac” (high accuracy).
Guppy’s models are tied to it’s version so can vary between upgrades. Moreover,
as Guppy utilises GPUs it’s performance is tied to the “compute capability” of the
hardware in use (Figure 4.7). An upgrade from Guppy version 3.4.5t0 3.6.0 in-
creased the size of the underlying models, leading to larger read batches in Read
Until. These larger read batches take longer to basecall and therefore accumulate
more data with each read batch. As more read chunks become available for analy-
sis basecalling progressively becomes slower until it cannot keep up with real-time
sequencing. The chunks in these larger batches also contain more data and so take

even longer to basecall (Figure 4.7 and Table 4.2).

Table 4.2: Descriptive statistics for basecalling time. The NVIDIA GTX 1080 and
Quadro GV100 GPUs have different compute capabilities (6.1 and 7.0 re-
spectively) which allows the GV100 to process more data faster using the
same underlying RNN model.

Time (seconds)

mean SD min max

GPU  Guppy Model
345 fast 0.139 0.083 0.025 0.413
1080 hac 1.631 0470 0.686 3.293
3.6.0 fast 1459 1.887 0.059 6.354
hac 19.713 22.127 1.147 87.555
345 fast 0.070 0.026 0.014 0.183
GV100 hac 0.393 0.178 0.107 0.858
3.6.0 fast 0.553 0.441 0.058 1.404
hac 3.723  6.033 0.232 46.602

As Guppy is the current state of the art basecaller for ONT data we opted to use
Guppy for the real-time basecalling in readfish. This is made possible through the
ont-pyguppy-client-1ib (ONT, 2021), a Python library that enables interactive
basecalling. As Guppy is used through a different library interface to Scrappie it
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Figure 4.7: Comparison of Guppy v3.4.5and v3.6.0 on the NVIDIA GTX 1080 and
Quadro GV100 GPUs. Using playback and the Read Until API batches
of reads were retrieved as they would be during a normal experiment
and basecalled. The time to basecall all the read chunks in each batch
was recorded. Different calling models are shown hac (high accuracy)
in black and fast in grey. The size of the basecalling models increased
between these two Guppy versions and this can be seen in the time that
it takes to basecall batches of reads. With Guppy v3.4.5 all batches took
less than 10 seconds, in contrast, batches of reads took between 10 and
100 seconds to call with Guppy v3.6.0.

required restructuring and refactoring parts of readfish to allow the use of ont-

pyguppy-client-1ib.

Getting smaller chunks of data from MinKNOW

When running selective sequencing the requirement to inspect molecules at fre-
quent intervals needs to be balanced with what the computer is capable of supply-
ing. Chunks of live signal, by default, are one second in duration. This however,
can be altered prior to beginning an experiment. We found that a chunk duration
of 0.4 seconds was ideal when sequencing with a MinION flow cell (512 pores) as
this yields ~180 bases of nucleotides per iteration (Figure 4.8a). This allowed reads
to be placed within the first few chunks that are inspected (Figure 4.8b). In typi-
cal experiments 90% of reads are processed (called, mapped, and a decision made)

within three chunks, ~1.2 seconds (Figure 4.8b).
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Figure 4.8: (a) Mean read length per chunk, error bars show standard deviation
from the mean, and red triangles show expected read length for a given
chunk, calculated as chunk number x chunk duration x bases per second. So
a chunk duration of 0.4 seconds and a sequencing speed of ~450 b/s
results in {180,360, 540, ..., N}. (b) Proportion of read fragments pro-
cessed in a given number of chunks. 90% of reads are processed in 3

chunks, 95% in 5 chunks and 99% in 12 chunks.
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4.2.5 Human chromosome enrichment

Once Guppy had been integrated with readfish it’s performance needed to be quan-
tified. To do this the previous experiment, splitting the flow cell into fractions of the
human genome (Section 4.2.4), was repeated. As before, the flow cell surface was
divided into the same four quadrants: control (no selection), chromosomes 1-8
(50% of reads accepted), chromosomes 9-14 (25% of reads accepted), and finally
chromosomes 16-20 (12.5% of reads accepted). Selectively sequenced reads have a
median read length of ~15 kb (Figure 4.9a); while rejected reads have a median read
length of ~500 bases, equating to ~1.1 seconds of sequencing time (Figure 4.8b).

This run generated 9.5 Gb of sequence data, which was unevenly distributed across
the quadrants; 3.47 Gb in the control, 2.79 Gb at 50% acceptance,1.84 Gb at 25% ac-
ceptance and only 1.22 Gb at 12% (Figure 4.9c). For each quadrant the optimal en-
richment is 2-fold, 4-fold and 8-fold but observed enrichment is lower, most likely
due to reduced yield (Figures 4.9b and 4.9¢).

Analysis of available channels contributing to data generation shows that sequenc-
ing capacity is lost faster as more reads are rejected (Figure 4.9d). We did not nu-
clease flush the flow cell, as this was not currently available. Though, this should
increase throughput and enrichment as it recovers lost sequencing capacity due to

blocked pores.

4.2.6 trans-nuclease flow cells

An alternative to washing the cis surface of the flow cell is a trans-nuclease. A trans-
nuclease is the application of nuclease enzymes to the trans well of the flow cell. This
nuclease would act on strands of nucleotides that have already begun to progress
through a nanopore in a similar manner to the enzyme in Section 2.1.6. These se-
quenced strands would be cleaved in the trans compartment of the flow cell. This
would, in principle, reduce the length of the molecules that need to be ejected from
ananopore when unblocking and reduce the number of pores going into the “recov-
ering” or “unavailable” states (Table 3.1). This would have the effect of increasing
flow cell throughput without the need to flush and reload — reducing the amount
of sequencing library needed.

To test this out, ONT provided a custom flow cell that included a trans-nuclease.
We used our initial human-chromosome quadrants experiment as a template. In
this instance the experimental conditions are reversed with “control” on the right
and 12% on the left.

This run generated 1.184 Gb of data in 18 hours. With yields comparable to the
initial experiment with Guppy in 12% and 25% conditions (Figure 4.10b). The 50%
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Figure 4.9: (a) Median read lengths for reads sequenced from NA12878 and

mapped against hg38 excluding alt chromosomes. The panels are or-
ganised as the quadrants were on the flow cell. In the control, all reads
are sequenced; in the second, third and fourth quadrants, reads mapping
to chromosomes 1-8, 9-14 and 16-20, respectively, are sequenced. The
combined 1ength of each of these target sets equates to approximately
;, 1and % g of the human genome, respectively. (b) Yield ratio for each
chromosome normalised against the yield observed in the control quad-
rant. (c¢) Heat map of throughput per channel in each quadrant on the
flow cell. As the proportion of the genome being rejected increases (left
to right) the yield decreases. (d) A plot of the number of channels con-
tributing sequence data over the course of the sequencing run. Channels
are lost at a greater rate when more reads are rejected.
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condition, however, sequenced less relative to the control, and so did not enrich
for these targets at all. In addition the median read length for on-target reads was
variable in across the experimental conditions (Figure 4.10a) with the 12% condition
having a median on-target read length of ~5.8 kb, while the 25% and 50% conditions
had ~8.8 kb and ~8.4 kb respectively.

Due to the extremely low throughput compared to the other iterations of this
experiment (Section 4.2.5) trans-nuclease flow cells are not a viable alternative to

nuclease flushing and reloading at the moment.
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Figure 4.10: trans-nuclease flow cell: (a) Median read lengths for reads sequenced
from NA12878 and mapped against hg38 excluding alt chromosomes.
The panels are organised as the quadrants were on the flow cell. In
regions 0, 1, and 2 reads mapping to chromosomes 16-20, 9-14 and
1-8, respectively, are sequenced. In the control region all reads are se-
quenced. (b) Yield ratio for each chromosome normalised against the
yield observed in the control quadrant.

4.2.7 Nuclease flushed flow cell

Another approach to improve throughput and yield on a sequencing run is to nu-
clease flush and wash the flow cell (Section 2.1.6). Here the quadrants experiment
was repeated with a nuclease flush and library reload every 24 h. The same quad-
rants were used generating a total of 30.5Gb of data in 72h. Like the initial run
using Guppy (Section 4.2.5) the yield was spread unevenly across the flow cell (Fig-
ure 4.11c) with 9.37 Gb in the control region; 8.70 Gb at 50% acceptance; 6.38 Gb at
25% acceptance; and 4.78 Gb at 12.5% acceptance.
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Across the entire flow cell, reads that were rejected had a median read length of
458 Db while selected reads had a median read length of ~6.6 kb (Figure 4.11a).

4.2.8 Exon enrichment

Despite the cost of sequencing dropping year on year, it is still too expensive to carry
out whole genome re-sequencing at a large scale; for example the cost of sequencing
a human genome is roughly $1,000'°. Instead, looking at a relevant genomic subset
is more cost effective. One genome-wide target set is the exome, all the protein
coding regions, which encompasses ~1-2 % of the human genome (International
Human Genome Sequencing, 2001, 2004; Venter et al., 2001).

Initial efforts to sequence human exomes required the generation of exome cap-
ture arrays with 164,007 regions (Ng et al., 2009). In contrast, selective sequencing
of exonic regions using readfish only requires the curation of target coordinates.
These target coordinates were selected by identifying protein coding genes from
the human genome (GRCh38) excluding X, Y, and alternate chromosomes (Sec-
tion 2.2.1). In total, 19,296 genes were identified. Of these genes ~10,000 were
selected as they are situated on odd numbered chromosomes. Each target region
was expanded by 3 kb both upstream and downstream; overlapping targets were
then merged into single regions. This resulted in 25, 600 targets covering a selected
region of ~176 Mb, which is ~5 % of the human genome.

Two sequencing runs were conducted using a single MinION flow cell, with a nu-
clease flush performed at 24 h. Both runs used MinKNOW (for GridION) version
3.6.0 and Guppy (GPU) version 3.2.8. Readfish was run as normal, with only one re-
quired change to MinKNOW's configuration: setting break_reads_after_seconds
to 0.4; to ensure that reads can be unblocked before they have sequenced too much.
The initial run started with 1, 640 pores available for sequencing and finished with
286 pores at the last mux scan. Nuclease flushing and reloading additional library
restored 791 pores (1,077 pores total). This complete sequencing run yielded 11.68 Gbp
of sequence data; of which 8.5 Gbp were selectively sequenced and 3.18 Gbp were
unblocked (Table 4.3). Both the sequenced and unblocked subsets are similar be-
tween each run with a mean read length of 7,794.2 and 7,941.4 bases in the se-
quenced groups and 509.6 and 521.6 bases in the unblocked groups (Table 4.3 and Fig-
ure 4.12a). The unblocked subsets consist of ~5-6x more reads than the sequenced
subset; which has ~2.5-3x greater yield concentrated on exons on odd chromo-

somes.

Ohttps:/ /www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
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Table 4.3: Exon enrichment run summary statistics from NanoStat for both the run
before the nuclease flush and reload (Run 1) and after (Run 2). Each run
is split into the sequenced and unblocked subsets and the whole run. Both
Run 1 and Run2 performed similarly as can be seen by the consistent read

length and quality values.

Run1
Sequenced Unblocked Complete run
Active channels: 512 512 512
Mean read length: 7,794.2 509.6 1,527
Median read length: 7,059.0 414.0 440.0
Mean read quality: 11.1 11.4 11.4
Median read quality: 12.2 11.8 11.9
Number of reads: 607,000 3,737,288 4,344,288
Read length N50: 11,641.0 500.0 8,949.0
Total bases: 4,731,092,828 1,904,399,825  6,635,492,653

Run 2
Active channels: 506 499 506
Mean read length: 7,941.4 521.6 1,731.1
Median read length: 7,241.0 412.0 444.0
Mean read quality: 10.9 11.0 11.0
Median read quality: 11.7 114 11.5
Number of reads: 474 564 2,436,819 2,911,383
Read length N50: 11,463.0 511.0 9,238.0
Total bases: 3,768,718,814 1,271,162,488 5,039,881,302
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Exons had a average median coverage of 17.23x (mean 17.40x) and 0.98x (mean
1.22x) for target and control exons respectively (Figures 4.13a and 4.13b and Ta-
ble 4.4). 99% of exon targets had a coverage >7.17x compared with 99% of control
regions having a coverage of <4.34x (Figure 4.12b and Table 4.4).

Table 4.4: Mean coverage for exon targets (odd chromosomes) and exon controls
(even chromosomes). Quantile 50% represents the median. Exon targets
had much greater coverage, with 99% of targets having at least 7.17x cov-
erage.

Mean coverage
mean std 1% 50%  99%

Exon Controls 1.22 1.09 0.00 098 4.34
Exon Targets 1740 5.02 717 1723 29.77

Using just computational selective sequencing we were able to select ~5% of the
human genome, by only sequencing exonic regions on odd numbered chromo-
somes. With the addition of nuclease flushing and reloading lost sequencing capac-
ity can be recovered, this can be seen in Figure 4.14 as the experiment progresses
fewer reads are seen in each successive read batch until the restart. Readfish is also
able to keep up with the rate of live data generation on the device as the mean time
for processing a read batch never exceeds the 0.4 s period that they are sent on (Fig-

ure 4.14e).
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Figure 4.11: (a) Median read lengths for reads sequenced from NA12878 and
mapped against hg38 excluding alt chromosomes. The panels are or-
ganised as the quadrants were on the flow cell as in Section 4.2.5.
(b) Yield ratio for each chromosome normalised against the yield ob-
served in the control quadrant. (c¢) Heat map of throughput per chan-
nel in each quadrant on the flow cell. As the proportion of the genome
being rejected increases (left to right) the yield decreases. (d) A plot
of the number of channels contributing sequence data over the course
of the sequencing run. Channels are lost at a greater rate when more
reads are rejected. But flushing and reloading (dashed lines) restore all
regions to the same level.
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Figure 4.12: (a) Read length distribution for sequenced and unblocked reads from
both runs in the exome enrichment experiment. Here, x-axis is read
length (log scale) and y-axis is the count for each bin. Asin Table 4.3 the
unblocked reads have a much shorter distribution than the sequenced
reads, showing that readfish is able to make it’s decisions quickly.
(b) Distribution of mean coverage for Read Until exon targets (odd
chromosomes) and control exons (even chromosomes). >99% of tar-
get regions had at least 7.17x coverage, while only 1% of control regions
had >4.34x coverage. (Table 4.4)
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Figure 4.13: Coverage plots for two example loci, BRCA1 and the HOX cluster (cov-
ering HOXC4-13). (a) BRCA1 was enriched for as it resides on chromo-
some 17 and shows greater coverage over exonic regions, shown in the
bottom two tracks displaying exons and readfish targets respectively.
There is also a visble reduction in coverage (on both Run 1 and Run 2)
at ~43.15 mb where there no exons or targets. (b) HOX cluster, which
resides on chromosome 12, has coverage close to 0x in both exonic and
intergenic regions. Note there are no target regions in (b) as this is an
even numbered chromosome.
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Figure 4.14: Human Exome (a) Histogram of read batch size throughout the se-
lective sequencing program. (b) Histogram of decision times (time
to choose unblock, stop receiving, or proceed from an alignment).
(c) Counts of decision classifications for read fragments seen a given
number of times. (d) Mean batch size, in bins of 2000, seen through-
out the selective sequencing program. (e) Mean process time, in bins
of 2000, for batches of read fragments throughout the run. (f) Mean
decision time per read fragment, in bins of 2000, throughout the run.
As the number of reads in a batch reduces, the overhead time of calling
becomes more apparent. The vertical dashed lines mark flushing and
restart of the run and illustrate the benefits of flushing.
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4.2.9 DeepNano-Blitz — CPU basecalling

To allow readfish to be more broadly usable a suitably performant CPU basecaller
was required. For this, DeepNano-Blitz was selected as the fastest mode is 100x
faster than Guppy (v3.4.4, CPU) using the high accuracy model and ~13x faster
than Guppy using the fast model (Boza et al., 2020). DeepNano-Blitz is able to main-
tain read accuracy while processing much more data, dropping only 4.5% points of
median read accuracy comparing DeepNano-Blitz’s fastest model with Guppy’s fast
model. As DeepNano-Blitz does not require a GPU for basecalling this expanded
the compatible platforms from just linux to include MacOS and Windows.

With the exception of how the basecaller is initialised there is no difference to
how readfish operates when using DeepNano-Blitz as the basecaller. In these ex-
periments we ran the DeepNano-Blitz basecaller on a subset of the human exome
(Section 4.2.8) panel that consists of 717 gene targets that are implicated in cancer,
from the COSMIC panel (Tate et al., 2018). These experiments were carried out on
a variety of platforms that have little or no support for GPU accelerated basecalling,
most notably MacOS and Microsoft Windows.

For MacOS there is no specific setup required as DeepNano-Blitz can be compiled
natively on this platform. However, on Windows compilation is challenging so a
“Windows Subsystem Linux” installation is required. This is a virtual container
that allows a linux installation to be operated on a Windows computer. Once WSL2
is setup readfish installation occurs as normal for a UNIX computer.

To compare CPU basecalling with GPU basecalling we set up six experiments.
Two utilised Guppy on the NVIDIA Quadro GV100 and GTX 1080 Ti on a Grid-
ION Mk1 and a linux workstation respectively. The remaining four CPU runs were
split between the GridION Mk, the two workstations (linux and Windows) and a
MacBook Pro (from 2018, with a ~3 GHz i7 processor). In all cases enrichment is
comparable to that seen with GPU accelerated basecalling (Table 4.5).

The differences in coverage are mostly the result of differences in yield for each
experiment. This can be seen in the GPU experiments, which both have a yield
of < 10 Gb, but have the lowest mean and median read lengths (Table 4.5). As a
result of more efficient rejection more on-target coverage is achieved. This is further
exemplified by the Windows run, which sequenced ~17 Gb in total, but achieves

similar coverage to GridION GPU run that had a roughly half the yield.
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Table 4.5: Comparison of GPU and CPU basecalling. Mean and Median read length
are a proxy for readfish efficiency as when these are lower they correspond
to unwanted reads being ejected faster. Basecalling on GPU is the most
efficient, but CPU basecalling is performant and delivers enrichment of

targets.
Mean Read Median Read  Yield C%Zi:ge Coverage Flushes
Length Length Gb SD
of Targets

GridION GPU 735.6 423.0 9.08 31.30 5.54 2
GridION CPU 878.9 662.0 14.93 29.78 5.30 2
Linux GPU 683.7 402.0 590 19.11 3.23 2
Linux CPU 771.2 564.0 14.31 27.78 5.09 2
MacBook CPU 1085.0 745.0 14.03 29.08 5.24 2
Windows CPU 1146.9 823.0 17.27 34.47 6.62 3

4.2.10 Selective sequencing with barcoded samples

Enrichment and depletion by barcode

Barcoding is useful when the amount of data needed for a sample is less than the
throughput of a single flow cell. By attaching unique tags to ends of dsDNA during
library preparation many samples can be sequenced simultaneously (multiplexed).
Then, following sequencing each sample can be de-multiplexed by decoding the
attached barcodes. By pooling samples on a single flow cell the sequencing capacity
is shared between libraries making more efficient use of the flow cell and reducing
the cost of sequencing a single sample.

Guppy v4.0 and newer allows a barcode kit to be specified when passing read
chunks for basecalling. As such readfish was further developed so that individual
barcodes can be configured to be included or excluded instead of selecting based
on genomic alignment. This configuration was trialled over three hour-long exper-
iments using four barcoded samples of Clostridioides difficile. Initially a control run
was conducted to ascertain a baseline for each sample. Then two subsequent exper-
iments were carried out; the first sought to enrich barcodes 8 and 11 while depleting
barcodes 9 and 10. The final experiment was the inverse of the second, enriching
barcodes 9 and 10 while depleting barcodes 8 and 11.

The control gave ~180 Mb of sequence data, the enrichment for barcodes 8 and
11 gave ~91 Mb, and barcodes 9 and 10 gave ~103 Mb (Table 4.6). The distribution
of read lengths in the sequenced conditions is similar to that seen in the control

run (Table 4.6 and Figure 4.15a). None of the enriched targets exceeded the yield
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seen in the control experiment, however depleted targets were greatly reduced (Fig-
ure 4.15b). The read count for each enriched barcode is similar to that seen in the
control, with depleted targets diminished to almost zero (Figure 4.15c). In the en-
rich and deplete conditions the “unclassified” read count is greatly increased due
to using a “barcode at both ends” configuration that requires a read to have both a
forwards and reverse barcodes to be fully classified. If a read is successfully ejected
in response to an unblock request then it will, by definition, not have both barcodes
and so will be classed as “unclassified”. This is why the “unclassified” category is

increased in the experimental conditions.

Table 4.6: Read length statistics for each of the enrichment/depletion experiments,
subset on whether the reads were enriched (“Sequenced”) or depleted
(“Unblocked”). The mean and N50 of the sequenced groups are similar
to that of the control showing that sub-samples can be enriched without
impacting the sequencing library characteristics.

. Read length
Experiment Sequenced Yield (Mb) Mean  NEO
Control Sequenced 180.75 2,590.70 4267

Sequenced 62.62 2,523.89 4600
Barcodes 08 & 11 1) cked 28.67  469.53 498
Sequenced 7230 2,179.14 3672
Barcodes 09 & 10 ;110 cked 3138 47124 501

Selective sequencing — barcode specific targets

While it is convenient to be able to stop sequencing entire barcoded samples after a
run has started it is more likely that each barcoded sample requires it's own target-
ing that is more nuanced than on or off. To address this readfish was modified to
enable multiple conditions, similar to the quadrants (Sections 4.2.4 and 4.2.5) con-
figuration, but instead all channels are considered and the identified barcode deter-
mines the selective sequencing criteria; read chunks that do not receive a barcode
classification within four chunks are unblocked as they will likely remain unclassi-
fied.

An experiment was set up, using the C. difficile sample aiming to enrich quarters
of the ~4 Mb genome on each barcode. That is, barcodes 8, 9, 10, and 11 consider the
regions 0-1, 1-2, 2-3, and 3-4 Mb respectively. In one hour this experiment gener-
ated 384.38 Mb of data which was basecalled and aligned to the C. difficile genome
used during selective sequencing. The per-base read depth was computed using

samtools depth (v1.11) for each barcode group subdivided into “sequenced” and
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Figure 4.15: Barcode enrichment and depletion. In each figure columns left to right
are control, select barcodes 8 and 11, and select barcodes 9 and 10.
(a) Read length distributions for each barcode classification (including
unclassified) split by whether the read was selected (“Sequenced”)
or rejected (“Unblock sent”). (b) Yield for each experiment and bar-
code compared to the control experiment. No enriched targets ex-
ceeded the yield seen in the control experiment, but depleted targets
are greatly reduced compared to the control. (c) Read count for each
barcode over each experiment. Enriched targets have similar read count
to that seen in the control while depleted targets are greatly reduced.
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“unblocked” reads. In barcodes 9, 10, and 11 the mean read depth for the targeted
region was ~5x greater in the sequenced categories compared with the unblocked
off-target categories (Table 4.7). The target regions are clearly enriched compared
to the rest of the genome (Figure 4.16); moreover the target regions have lower read
depth in the “Unblocked” category, suggesting that read chunks are correctly iden-

tified with both their barcode and genomic position.

Table 4.7: Mean coverage over the C. difficile genome split by barcode and by whether
reads were sequenced or unblocked.

Barcode Sequenced Orlt/_[;i;:fverageoﬁfilge n

split ~ total split total
barcode08 Zen%‘f)gigg 8:53{ 0.198 8:(1)82 0.162
barcode09 Zﬁaﬁ?ﬁgj (7):(1)2? 7.220 8:8(1)8 1.510
barcode10 Z‘;ﬁ:ﬁgj gfﬁ 7.931 8:;2(1) 1.572
barcodell z‘iﬂiﬁzj 13:?22 12.490 (1):3(1)2 1.815
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Figure 4.16: Coverage depth over Clostridioides difficile per barcode (rows) and split
by whether the reads were sequenced (left column) or unblocked (right
column). Each barcode was selecting approximately 411 of the C. diffi-
cile genome; with barcodes 8, 9, 10, and 11 targeting coordinates 0.00—
1.03 Mb, 1.03-2.06 Mb, 2.06-3.09 Mb, and 3.09—4.12 Mb respectively.
Target regions are labelled in black for each barcode while off-target
regions are labelled in grey.
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4.3 Conclusion

Selectively sequencing individual molecules using only computational methods is
a unique capability of nanopore sequencing. Using real-time basecalling instead
of raw signal allows selective sequencing experiments to be carried out on com-
puters capable of live basecalling, rather than using network connected servers for
analysis (Loose et al., 2016; Edwards et al., 2019; Kovaka et al., 2020). The careful
management of the time that readfish takes while processing real-time data was
essential as handling the real-time stream too slowly results in a backlog of unpro-
cessed chunks. Having an unprocessed backlog, in turn, means that readfish is no
longer synchronised with the sequencer and cannot effectively carry out selective
sequencing. Using a sufficiently fast basecalling and a performant aligner are es-
sential for this approach to work. As demonstrated in the difference between using
Scrappie, a CPU basecaller (Figure 4.6) and Guppy, a GPU accelerated basecaller
(Figure 4.9). Though, as DeepNano-Blitz demonstrates (Section 4.2.9 and Table 5.3)
an optimised CPU basecaller can still be used on platforms where GPU basecalling
is not yet enabled.

Throughout the development of readfish we have demonstrated that software-
based enrichment is possible and results in real enrichment (Figure 4.11). For se-
lective sequencing in this form to be effective though efficiency is everything. That
is, the faster reads can be identified and unblocked, the better; and standard tech-
niques for increasing yield, such as flushing and reloading library on to your flow
cell can help recover capacity and improve enrichment. This is particularly evi-
denced by Scrappie, which shows very little enrichment (Figure 4.6b) due to the
speed of basecalling (Figure 4.3); and, to a certain degree, DeepNano-Blitz, which
shows acceptable levels of enrichment but is still slower than GPU accelerated base-
calling (Table 4.5).

Most importantly, though, readfish has done what it set out to do. Using the
processing power available on a single computer — whether it is GPU equipped or
not — we are able to enrich for an arbitrary number of targets across gigabase-sized
genomes.

In addition the inclusion of real-time barcode demultiplexing allows readfish to
work in more common sequencing workflows where samples are pooled. It is not
necessary for all barcoded samples to be under selection as this approach is flexible
to many different sequencing configurations.

Signal based methods, such as UNCALLED (Kovaka et al., 2020) and Sigmap
(Zhangetal., 2021) are able to utilise longer signal references; thatis, >5kb. Though,
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UNCALLED's performance still degrades with reference genome length and repet-
itiveness; using intensive masking procedures on subsets (rather than whole) of the
reference genome are essential for UNCALLED to work. Moreover, due to the na-
ture of the pre-processing UNCALLED carries out — at least 30 iterations of kmer
masking — it is unlikely that UNCALLED will be able to achievable real-time ref-
erence or target updates. Sigmap performs raw signal alignment faster than UN-
CALLED but does not have an interface with real-time data yet (Zhang et al., 2021).
It is not likely to be useful for large scale selective sequencing as the signal index

generated is ~30-34x larger than the corresponing genomic index.



Chapter 5

Applications of readfish

5.1 Introduction

Readfish is able to enrich arbitrary targets within a library of molecules using a two-
step basecalling and alignment process. During the course of developing readfish
this approach was trialled by enriching fractions of the human genome, half of the
human exome, and a panel of target loci implicated in cancer (COSMIC). The ad-
vantage of this approach, over signal based methods, is that other existing tools —
such as barcode demultiplexers and metagenomic classifiers — can be incorporated
to provide greater information for selective sequencing.

In this chapter we will take a look at more real-world uses for readfish. Con-
sidering panels of targets genes, barcode specific gene panels, adaptive control of

sequence depth both with and without a priori knowledge of the sample.

5.1.1 Work contribution

The majority of the work in this chapter was done by the author apart from DNA
library preparation and flow cell flushing and reloading which was carried out by
Nadine Holmes in Deep Seq. The initial design and selection of target panels was
done in collaboration with Matt Loose. Real-time centrifuge analysis was written
in collaboration with Rory Munro and Thomas Clarke. All of the bioinformatics

analysis was carried out by the author.

5.2 Gene panels

Making targeted panels with molecular methods, such as CRISPR-Cas9 or PCR am-
plification, is both time consuming and expensive. With software-based selective
sequencing target panels can easily be customised or changed by selecting a new
reference genome and target coordinates.

These two experiments, whole exome and a panel of genes implicated in cancer
(COSMIC) demonstrate just that. We can provide a minimal set of targets and go

from there, then you can re-evaluate and try again.
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5.2.1 COSMIC panel

With the ability to target and enrich thousands of genomic loci at a low percentage
of the human genome, we sought another target set. We settled on the Catalogue of
Somatic Mutations in Cancer (COSMIC) (Tate et al., 2018). This panel consists of
717 genes implicated in somatic cancers. To prepare the targets, they were down-
loaded and all loci with genomic coordinates had 5 kb added both upstream and
downstream. This resulted in a panel of 678 genes covering 89.9 Mb, or ~2.7% of
the human genome.

Initially, two sequencing runs were conducted using a single MinION flow cell,
with a nuclease flush performed within 24 h. Both runs used MinKNOW (for Grid-
ION) version 3.6.0 and Guppy (GPU) version 3.2.8. Readfish was run as normal,
setting break_reads_after_seconds to 0.4. The initial run started with 1,724 pores
available for sequencing and finished with 250 pores at the last mux scan. The first
run generated 3.70 Gb of sequence data. After nuclease flush and reload the flow
cell generated a further 6.33 Gb, resulting in a total yield of ~10 Gb (Table 5.1).

For these 678 targets, the average coverage was 30.89x while the depleted portion
of the genome was at 3.38x; 99% of COSMIC targets are covered at 3.65x while 99%

of the rest of the genome is covered at ~1x (Table 5.2).

Table 5.1: COSMIC panel run summary statistics from NanoStat for experiment
“ml_032”. Split into the sequenced and unblocked subsets for the com-
plete run. Extended table in Table B.1 (Page 145)

Sequenced Unblocked Complete run
Active channels: 511.0 511.0 511.0
Mean read length: 5,848.0 505.6 764.6
Mean read quality: 9.6 11.0 10.9
Median read length: 3,098.0 424.0 430.0
Median read quality: 10.7 11.3 11.3
Number of reads: 636,138.0 12,487,287.0 13,123,425.0
Read length N50: 11,191.0 501.0 855.0
STDEYV read length: 6,730.2 334.0 1,902.2
Total bases: 3,720,138,912.0 6,314,097,902.0 10,034,236,814.0

With the COSMIC panel being easy to use for both sequencing and analysis we
chose to use it for benchmarking and testing other platforms and with alternate base
callers. These other experiments encompass six sequencing runs. Two experiments
utilise GPU base calling with Guppy running on a GridION MK1 and a linux work-
station; they differ in the GPU used, with the GridION using an NVIDIA Quadro
GV100 while the linux workstation was equipped with an NVIDIA GTX 1080 Ti. The
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Table 5.2: Coverage of COSMIC panel targets and the rest of the genome. 99% of
COSMIC targets are covered at 3.65x while 99% of the rest of the genome
is covered at ~1x

count mean std 1% 50% 99%

Cancer Panel 678 30.89 6.63 3.65 3228 40.16
Rest of the genome 700 338 928 1.02 203 26.54

four other experiments utilise CPU base calling with DeepNano-Blitz, with each be-
ing run on a different computer. Two CPU runs used Ubuntu 16.04 on the GridION
MKT1 and linux workstation, one run used Ubuntu 18.04 running using Windows
Subsystem for Linux (WSL) on a Windows 10 workstation; finally one run used
macOS running on a 2018 MacBook Pro.

DNA for each run was extracted as in Section 2.1.1. Following extraction DNA
was sheared to be in the range 10-20 kb. Each sequencing library was prepared us-
ing SQK-LSK109 sequencing kits. Each run was carried out as normal for a targeted
sequencing run, with a nuclease flush and library reload every 24 h.

With the exception of the “Linux GPU” run all experiments had good yield, rang-
ing from ~10-18 Gb on GridION using GPU to WSL using CPU respectively (Ta-
ble 5.3). In addition, each run showed efficient rejection read lengths, indicating
that readfish was able to keep up with data generation in real-time and make timely
repsonses (Table 5.3). Mean coverage of targets was consistent with flow cell yields,
as the worst performing flow cell (Linux GPU) also had the lowest coverage of these
runs (Table 5.3). Despite this, mean on-target coverage ranged from 19.19x (Linux
GPU) to 34.64x (WSL) (Tables B.7 and 5.3). All platforms were able to enrich target
loci compared to the rest of the genome (Figures 5.1b to 5.1e).

The difference in coverage between each run is primarily as a result of yield for
each flow cell. However, both the runs utilising GPU base calling have much lower
yield but have comparable target enrichment to CPU base calling runs. This is down
to the time it takes to unblock a read, as the faster an unwanted read can be ejected
the more other molecules can be sampled. In addition, faster unblock times likely
reduce the wear on flow cells that repeatededly unblocking can cause as there is less
opportunity for molecules to become tangled and block the nanopore from further

sequencing.
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Figure 5.1: Continued of the following page.
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Figure 5.1: (a) Mean coverage over all genes found in the COSMIC panel and the
rest of the human genome. Panel targets have a mean coverage of 30.89x
compared with a mean coverage of 3.38x in off-target regions (for a sin-
gle GridION run). Coverage plots for four example loci, BRCA1 (b),
HOXC11 & HOXC13 (c), PML (d), and RARA (e). Coverage plots in
descending order are: GridION CPU, Linux CPU, MacBook Pro CPU,
Windows CPU, Linux GPU, and GridION GPU. (b,c) both have a win-
dow of ~220 kbp and (d, e) both have a window of ~150 kbp; coverage
aligns well with the selected region (bottom track on each plot) and in
each run coverage over the targets is approaching 40x.
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Table 5.3: Run statistics for GPU and CPU base calling experiments, calculated us-
ing NanoStat. Mean read length is split into sequenced and unblocked
subsets as determined by readfish logs. Rejection is most efficient when
using GPU base calling (highlighted), but CPU base calling is still perfor-
mant enough for targeted sequencing.

Mean Read Length Yield Mean

Sequenced Unblocked (Gb) Coverage Flushes
GridION MK1 CPU 3,773.8 667.7 14.93 29.78 2
GridION MK1 GPU 5,848.0 505.6  9.08 31.30 2
Linux CPU 2,517.9 625.5 14.31 27.78 2
Linux GPU 4,792.7 486.8  5.90 19.11 2
MacBook Pro CPU 3,524.0 891.3 14.03 29.08 2
Windows CPU 3,003.9 975.9 17.27 34.47 3
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5.3 Barcoded samples

Readfish can be configured to handle barcodes in two ways. For simple experiments,
the user can identify a list of barcodes to be either rejected or accepted. In this way
users can exclude or include a subset of barcodes on a sequencing run (Section 4.2.10
and Figure 4.15). For more complex experiments, the user can configure a set of
targets for each individual barcode in a library and so sequence specific regions from
each (Section 4.2.10 and Figure 4.16). There is no requirement for each sample to be
from the same organism and so readfish can target multiple references in a single
genomic index.

To test this approach, we used three previously described cell lines: GM12878,
from the Utah/CEPH pedigree (Jain et al., 2018a); NB4, a cell line carrying a fu-
sion between PML and RARA representing an acute promyelocytic leukemia (APL)
(Mozziconacci et al., 2002); and 22Rv1, a prostate cancer derived cell line containing
significant chromosomal abnormalities (Liu et al., 2010). Each sample used a spe-
cific panel of gene targets based on known variation (Table 5.4). GM12878 used the
TruSight 170 Tumor panel (Na et al., 2019). The NB4 cell line used TruSight RNA
Fusion Panel (Siegfried et al., 2018) as it contains an APL fusion. Finally, 22Rv1
being a prostate cancer line we used the previously described COSMIC panel (Tate
etal., 2018).

Table 5.4: Run metric performance per barcode and over the entire flow cell.

Barcode Sample Panel Gene Number
01 GM12878 TruSight 170 Tumor Panel 170
02 NB4 TruSight RNA Fusion Panel 508
03 22Rvl COSMIC 717

Samples were barcoded and sequenced on a single flow cell, and run for 72h,
including a nuclease flush and reload every 24h. In a single experiment using a
flow cell with 1,330 pores, 18.1 Gb of data were generated, with a total of 15.0Gb
being barcoded successfully (Table 5.5).

Across the whole experiment, the on target reads had an N50 of ~7 kb, with the
rejected read N50 being 579b, or approximately 1.3 s of sequencing which is fully
in-line with the observed classification time in non barcoded samples (Figure 4.8b).
This results in mean read coverage on target regions of between 11-15 x. Inspec-
tion of individual targets including BRCA1, NBR1, PML and RARA demonstrates
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the ability to specifically target unique regions on each sample (Figure 5.3). Cur-
rent best practice for variant calling requires higher minimal depth than we achieve
when looking at three samples. However, long range structural variants can be
measured and so we used cuteSV (Jiang et al., 2020) to analyse these three samples.
As expected, multiple reads supporting the detection of a fusion between PML and
RARA were detected in the NB4 cell line (Figure 5.3). In contrast, this rearrange-
ment was not found in the 22Rv1 line and it cannot be excluded in GM12878 as nei-
ther PML nor RARA were within the gene panel used for this cell line (Figures 5.2
and 5.3).

Table 5.5: Run metric performance per barcode and over the entire flow cell.

On On On Off Mean
Target Target Target Target Target
(Gb) N50 Mean Mean Coverage

Yield

Barcode Sample (Gb)

01 GM12878 3.80 0.355 8,149 1,926 554 11.0

02 NB4 6.10 1.240 7,191 4,203 551 15.0
03 22Rv1l 510 1.250 6,858 5,065 556 11.5
Unclassified 3.10 736

Total 18.79 3,221 587
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Figure 5.2: lllustration of coverage over each barcoded sample for each target in the
panel. Blue is sequenced read coverage, red illustrates coverage of re-
jected reads. (a) shows coverage over BRCA1 and the adjacent gene
NBR1. BRCA1 was a target for barcode 1 and 3, but not 2. The targeted
regions are illustrated below the coverage plots. Note that the region rep-
resenting BRCA1 differs in barcode 1 and 3 by design. NBR1 was only
targeted on barcode 2. (b, c) illustrate coverage over PML and RARA
respectively, which were only targeted on barcodes 2 and 3.
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5.4 Adaptive sampling or “Run Until”
5.4.1 Iterative Alignment

A typical metagenomic scenario involves the amplification of all DNA from a sam-
ple. This is usually achieved using 16S amplicon sequencing which cannot achieve
the same level of taxonomic assignment as full-length sequencing (Johnson et al.,
2019). However, using full-length sequencing there are still questions about the
appropriate read depth that is needed to answer a particular question. There have
been attempts to calculate a suitable read depth (Ni et al., 2013); however, what
must be sequenced to answer different questions may vary considerably. For ex-
ample, the identification of sample composition will require broad coverage over as
much of the sample as possible, whereas detecting specific single nucleotide poly-
morphisms in specific genes will require concentrated coverage over the genes of
interest.

To simulate metagenomics questions, we utilised the ZymoBIOMICS high-molecular-
weight DNA standard (D6322). As this sample consists of high-quality extracted
DNA with a mean read length >24 kb it will de facto improve sequencing and subse-
quent analysis. This standard mixture can be used to benchmark the performance of
sequencing approaches for microbiomics and metagenomics analysis. The theoret-
ical composition of this sample is seven bacterial species, each at 14% (Pseudomonas
aeruginosa, Escherichia coli, Salmonella enterica, Enterococcus faecalis, Staphylococcus au-
reus, Listeria monocytogenes, and Bacillus subtilis) and a single fungal species at 2%
(Saccharomyces cerevisiae).

In a similar metagenomics benchmarking experiment, Nicholls et al. generated
a reference dataset using the similar ZymoBIOMICS Microbial Community Stan-
dards. This DNA standard included two extra species, a bacteria Lactobacillus fer-
mentum and a yeast Cryptococcus neoformans; all bacterial species were present at
12% while both yeast species were present at 2%. The data generated using the
even community, sequencing on GridION, enabled Nicholls et al. to create de novo
assemblies of the bacterial species. However, neither of the eukaryotic genomes
could not be reconstructed reliably as they were present at too low abundance. This
resulted in the coverage depth for Saccharomyces cerevisine being 17x and Cryptococ-
cus neoformans being 10x.

For this reason, using a mock metagenomic community is an ideal experiment
as it allows for the simulation of depleting host genomic material that is highly

abundant (~98%). In addition to “depleting” host material, this programme aims
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for each target to meet a coverage threshold, such as 40x. The readfish align pro-
gramme (Figure 5.4) watches for base called data from completed reads, aligning
them to the reference used for readfish targets and calculates read depth over all
contigs present in the reference. Once a user-defined threshold is met, readfish tar-

gets” experiment criteria is updated with the contigs that have sufficient coverage
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depth and they are depleted.

readfish align

Live TOML
configuration

Device

MinION

wait for more data

Figure 5.4: Flow diagram of iterative alignment programme. As completed reads
are base called by MinKNOW they are written to disk. Readfish iteralign
polls the output folder for the current run. When FASTQ files are writ-
ten, they are aligned and coverage depth calculated using the defined
reference in the readfish TOML file. Chromosome targets that reach or
surpass a defined level are then added as targets for depletion, which are
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picked up by the readfish targets app and effected.

In addition to dynamically depleting species that have reached 40x readfish align
implements a “Run Until” condition. Thatis, once all targets in the reference genome
are being depleted (all targets have reached the coverage goal) the sequencing run

can be stopped. This can be seen in Figure 5.5, mean read length reduces as the cov-
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erage target is reached. Plotting coverage over time for reads not rejected by read-
fish (middle column) shows a decrease in coverage accumulation for completed
genomes with an increase in sequencing potential for the least abundant sample, S.

cerevisine (Figure 5.5).
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Figure 5.5: Mean read length and cumulative coverage of readfish align. Each row
is split into all data, sequenced reads, and unblocked reads. Top row is
mean read length, below is cumulative coverage. As species reach the
coverage threshold of 40x the mean read length reduces as these tar-
gets are now being depleted. This frees sequencing capacity for the low
abundance S. cerevisiae targets. This is clearly visible as the rate at which
coverage accumulates for S. cerevisiae increases at ~2 h in the sequenced
subset.

The proportion of bases mapping to each constituent genome in the sample shows
how sequencing capacity increases for S. cerevisiae as other targets are depleted (Fig-
ure 5.6a). This gradually tapers back to roughly the proportions of each genome in
the sample as the sequencing run concludes (Figure 5.6a). Notably, however, rela-
tive abundance of the constituent species can still be determined by observing the
proportion of reads aligning to each genome in the sample (Figure 5.6b) as these

remain consistent throughout the duration of the experiment. The run automati-
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cally stops once each genome reaches 40x, taking ~16 h and 4.4 Gb of sequence data
(Table 5.6 and Figure B.2).

Table 5.6: Iteralign NanoStat Summary — This run was conducted before the un-
blocked_read_ids.txt file was collected, therefore summary stats are
only available for the entire run.

Complete run

Active channels 504.0
Mean read length 1,247.1
Mean read quality 12.0
Median read length 675.0
Median read quality 12.6
Number of reads 3,540,936.0
Read length N50 1,544.0

Total bases 4,415,735,206.0
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Figure 5.6: (a) Stacked area plot, as individual species reach 40x coverage they
are rejected. As such, the proportion of bases mapping to each species
changes over time. This is particularly evident in the SC band as it
starts out as at ~2% of the sample, but just after 2 hours the proportion
greatly increases as sequencing capacity is redirected to only this organ-
ism. (b) Conversely, the proportion of reads mapping to each species
over time does not change during the run. Species: BS, Bacillus subtilis;
EF, Enterococcus faecalis; EC, Escherichia coli; LM, Listeria monocytogenes;
PA, Pseudomonas aeruginosa, SC, Saccharomyces cerevisiae; SE, Salmonella
enterica; SA, Staphylococcus aureus.
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5.4.2 Iterative Centrifuge

The approach used with readfish align assumes total knowledge of the sample com-
position a priori, as such it is impractical. Instead, by integrating a metagenomic
classifier we can simulate no prior knowledge.

In this programme, readfish centrifuge, a broad centrifuge (Kim et al., 2016) in-
dex is used to classify completed reads. These classifications are accumulated and
tracked, when a single classification has been made more than 2,000 times the cor-
responding RefSeq genome is dynamically retreived from NCBI; then an index for
minimap?2 is generated and passed to readfish targets to carry out selective sequenc-
ing. This process iterates until a coverage threshold is achieved (Figure 5.7).

Using this method, we generated 5.99 Gb of sequence data, identifying all bacte-
rial genomes in the sample. Although we observed enrichment, readfish centrifuge
struggled to keep up with data generation (Figure B.3), likely due to the intensive
background classification process. In addition, the flow cell became completely
blocked after 24 h before reaching 40x on the final species, S. cerevisiae (Figure 5.8).

This is due to the entirety of a read being considered for selection rather than just
the first few chunks. As a result reads were sequenced when they should have been
unblocked and some reads were unblocked too late, potentially damaging the flow
cell surface (Figure 5.8; top center and right). This can also be seen in the mean read
length of unblocked reads (Table 5.7). This experiment was completed within 24 h,
illustrating the benefits in terms of time-to-answer. As expected, improved coverage
depth results in almost complete assemblies using MetaFlye (Figure 5.10), this is in

part due to improved read lengths compared with Nicholls et al..

Table 5.7: Itercent NanoStat Summary

Sequenced Unblocked  Complete run
Active channels: 464.0 451.0 467.0
Mean read length: 7,707.1 1,005.3 2,160.6
Mean read quality: 10.2 11.3 11.1
Median read length: 2,548.0 869.0 905.0
Median read quality: 11.2 11.6 11.5
Number of reads: 478,349.0 2,296,491.0 2,774,840.0
Read length N50: 22,704.0 1,079.0 8,268.0
Total bases: 3,686,701,649.0 2,308,737,840.0 5,995,439,489.0

Similarly to readfish align, readfish centrifuge shows the same behaviour with
proportion of reads being consistent with sample composition throughout the en-

tire duration of the run Figure 5.9b. However, the proportion of bases starts out as
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Figure 5.7: Flow diagram of iterative centrifuge programme. As completed reads
are base called by MinKNOW they are written to an output folder. Read-
fish centrifuge polls the specific folder for the run that it is monitoring.
When files are written, they are classified using centrifuge (Kim et al.,
2016). Once 2000 reads have been seen for any individual species the
reference genome is retrieved from NCBI/RefSeq. Using these down-
loaded genomes a new reference is generated for readfish to use. All
targets in the multi-reference index are monitored for read-depth. Once
a threshold has been reached for any given species it is depleted using
readfish targets.
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Figure 5.8: Mean read length and cumulative coverage of readfish centrifuge. Each
row is split into all data, sequenced, and unblocked reads. Top row
is mean read length, below is cumulative coverage. Despite bacterial
species reaching the target coverage quickly, they were not effectively
depleted. This results in coverage continuing to climb (bottom left) re-
ducing available capacity for low abundance targets.

expected, but does not return to this composition at the end of the run (Figure 5.9a).
This is due to the fact that S. cerevisiae did not reach the target threshold and was
still being enriched for when the flow cell stopped sequencing at 24 h.
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Figure 5.9: (a) Stacked area plot, as individual species reach 40x coverage they
are rejected. As such, the proportion of bases mapping to each species
changes over time. This is particularly evident in the SC band as it
starts out as at ~2% of the sample, but just after 2 hours the proportion
greatly increases as sequencing capacity is redirected to only this organ-
ism. (b) Proportion of reads mapping to each species over time does
not change during the run. Species: BS, Bacillus subtilis; EF, Enterococcus
faecalis; EC, Escherichia coli; LM, Listeria monocytogenes; PA, Pseudomonas
aeruginosa; SC, Saccharomyces cerevisiae; SE, Salmonella enterica; SA, Staphy-
lococcus aureus.
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Figure 5.10: Assemblies for ZymoBIOMICS mock microbial community using data from readfish align and readfish centrifuge. Data assembled
using MetaFlye using an estimated genome size of 40 Mb. Bacterial genomes are comparable to the estimated genomes for each species.
Eukaryotic (SC) is more fragmented than the estimated genome, but is close in overall size.
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5.5 Discussion

Real-time selective sequencing is an appropriate approach in situations with well
defined targets in a well characterised sample. The primary benefits of software
based selective sequencing is easy curation of target databases, as these are ex-
tremely flexible allowing custom targets to be generated on a whim. In addition to
the flexibility of the panel format, readfish allows target panels to be updated mid-
run such that an experiment can react to data in real-time. This allows an external
process to inform on selective sequencing without the need to stop and start the
analysis, particularly this process can be automated as in readfish align and cen-
trifuge. These automated processes allow sequencing runs to continue until they
would be producing too much data for the question at hand. By stopping early,
readfish improves on the time to answer freeing up sequencing infrastructure for
other experiments. There is also a reduction in the cost of sequencing as a run that
may, by shotgun sequencing, have required multiple runs to yield on-target data
can now be accomplished using fewer consumables such as flow cells and library
preparation reagents. Costs can further be reduced by employing standard effi-
ciency steps such as multiplexing samples by barcoding them. This allows many
samples to be sequenced concurrently and with readfish allows arbitrary selection
of barcode specific panels.

Real-time selective sequencing is not a magic method. Itis an appealing technique
but is very sensitive to good sequencing libraries. That is, an experiment that has
problems with low-yield, low occupancy, not enough computational power, or a
short library read length — to name a few — will struggle to acheive any meaningful

enrichment of targets.



Chapter 6

Discussion

6.1 Conclusion

Sequencing DNA is a central part of modern molecular biology. Ranging from
whole genome sequencing and assembly to just confirming plasmid features during
an experiment. Year-on-year the cost of sequencing reduces, enabling the inexpen-
sive production of large volumes of data. This volume of data can quickly become
unmanageable as well as difficult to analyse and distribute. Targeted sequencing
approaches aim to address these issues either through upfront filtering and ampli-
fication, using molecular methods such as CRISPR-Cas9 or PCR; or by real-time se-
lective sequencing on single molecule sequencing platforms, such as the MinION.
All these techniques can reduce sequencing costs and achieve high coverage over
regions of interest. Though the molecular methods (CRISPR-Cas9 and PCR) have
low throughput, high input requirements and may result in loss of extra data such
as detecting nucleotide modifications.

The aims of this project were to: increase the scale of useable reference genomes
for selective sequencing; and (by extension) increase the number of target regions
that could be considered simultaneously; reduce the computational requirements
so that a single workstation or laptop is capable of running Read Until; and finally,
enable true adaptive sampling allowing real-time feedback throughout an experi-
ment.

Analysis of bulk FAST5 data allows detailed inspection of current traces that would
be expected during sequencing. These are the data that must be processed and
considered during Read Until. In post-sequencing data the interpretation of each
molecule, as determined by MinKNOW), is presented. Though, this is not necessar-
ily the complete reading of that single molecule as there are extra useable data that
can be rescued from reads (Payne et al., 2018; Workman et al., 2019).

This deeper view of useable signal allows for tuning real-time processes to enable
better and faster classification. Moreover, this extra information can be utilised for

better post-sequencing data recovery.

114
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Building on the initial work of Loose et al. and with improvements to the Read
Until API, a basecalling and alignment approach for selective sequencing was de-
veloped. This initially utilised open source CPU base calling in the form of Scrappie,
but took advantage of the GPU accelerated Guppy basecaller. As Guppy requires
GPU acceleration for efficient basecalling another CPU basecaller, DeepNano-Blitz,
was also integrated. The Guppy and DeepNano-Blitz basecallers were both perfor-
mant enough to allow for real enrichment of thousands of target loci in the human
genome. Guppy requires the use of a GPU, so has higher computational require-
ments, but these are modest compared to the multi-core servers that other selective
sequencing tools require (Loose et al., 2016; Kovaka et al., 2020); with readfish only
requiring a workstation computer for sequencing that meets ONT’s recommenda-
tions, such as the GridION (Table 2.1). Such a relatively small computational foot-
print makes this approach quite practical in most sequencing labs.

Having a system that works at the scale of gigabase-sized references and many
target regions increases the practicality of this targeted sequencing approach. Eval-
uating this system with hypothetical real-world scenarios help ensure that readfish
is a feasible solution. For example, applying different gene panels in the form of
the COSMIC panel (Tate et al., 2018) and TruSight 170 Tumor (Na et al., 2019) and
TruSight RNA Fusion panels (Siegfried et al., 2018) These panels have been applied
to both single experiments addressing different operating systems (Linux, MacOS,
and Windows) and hardware configurations (with and without GPU) as well as
to different experimental configurations such as the inclusion of multiplexed (bar-
coded) samples on a single flow cell. These experiments demonstrate that target loci
are sequenced at a greater depth than the rest of the (off-target) genome, therefore
enriching these samples.

Using the ZymoBIOMICS mock microbial community allowed for the assessment
of readfish to distinguish and select for microbial genomes from a mixed back-
ground. These experiments also applied truly adaptive sampling techniques to
assess genome coverage in real-time. These adaptive examples evaluate genome
coverage using either a priori knowledge or real-time classifications of the sample
composition. In the first case minimap2 (Li, 2018) is used alongside the official
ZymoBIOMICS reference sequence. In the second case completed reads are evalu-
ated using a broad centrifuge classification index and dynamic retrieval of reference
genomes from NCBI/refseq, which are then used to create a reference for selective
sequencing. This approach aims to gradually deplete all samples from the library

focusing available pores on under-represented sequences. Finally, these adaptive
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approaches reduced the time to sequence each constituent genome to a target depth
of ~50x.

6.2 Current uses of readfish

Readfish has been open source and available on GitHub since February 2020. Since
then the Read Until API improvements and underlying basecalling and alignment
approach have been incorporated into MinKNOW. The version of Read Until that
MinKNOW implements1 is a subset of the features that readfish has such as, enrich-
ment or depletion of specific target regions of a reference or enrichment or depletion
of entire references.

Readfish provides more fine-grain control over the selective sequencing logic.
This allows for greater customisation of how each molecule seen will be consid-
ered. For example, readfish allows setting both a minimum and maximum number
of times a single molecule should be evaluated before being selected or rejected. In
addition, there are rules regarding specific cases, such as multiple alignment, are
handled.

Papers that use readfish or ONT adaptive sampling broadly fall into two cate-
gories: human diagnostic and metagenomic communities. Here I will consider
publications that have used readfish or ONT adaptive sampling for targeted en-
richment.

Targeted long-read sequencing identifies missing disease-causing variation (Miller
et al., 2021) aims to increase genetic diagnosis of patients using targeted long read
sequencing. Here the targeted sequencing aims to replace multiple other steps in
the process include microarray and whole exome sequencing, saving both time and
costs. Miller et al. intend to address complex copy number variant changes, specifi-
cally multiple deletions or duplications on one or more chromosomes. Target panels
consisted of clinically relevant genes with flanking sequence of up to 100 kb up- and
down-stream added. In addition, other regions of non-target chromosomes were
enriched to serve as internal copy number and coverage controls. These panels rou-
tinely yielded 740 x coverage (Miller et al., 2021).

Rapid-CNS?: Rapid comprehensive adaptive nanopore-sequencing of CNS tu-
mors, a proof of concept study (Patel et al., 2021) aims for a comprehensive muta-
tional, methylation, and copy number profiling of central nervous system tumours
with a single, cost effective sequencing assay. This assay selects for a panel of brain-

tumor related regions and CpG sites. They found complete concordance with the

ICalled “ONT Adaptive Sampling”
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EPIC array? for copy number profiles and consistent classification for MGMT pro-
moter status and methylation. This pipeline has a complete turnaround time of
~5d, with a long-term goal of integrating adaptive nanopore sequencers into hos-
pitals and care locations for faster diagnosis.

Comprehensive genetic diagnosis of tandem repeat expansion disorders with
programmable targeted nanopore sequencing (Stevanovski et al., 2021) used tar-
geted long read sequencing in combination with high-depth PromethION shotgun
sequencing. They sampled ~1.6 % of the human genome for Short Tandem Repeats
(STRs) and other clinically relevant regions for 27 individuals. Similarly to Miller
etal., a ~4.5 x increase in sequencing depth was observed for target regions yielding
7-32 x median coverage.

All these applications, so far, have been using readfish directly and are only con-
sidering human genomics. The human reference genome is extensively studied and
very well characterised. This level of detail allowed these approaches to rapidly
progress from designing a panel of targets to selective sequencing.

With metagenomic communities, these samples are typically a mock community
(Martin et al., 2022) or a clinical sample with a host (human) background (Marquet
et al., 2021; Zhao et al., 2021). Reducing the abundance of these host sequences is
difficult due to short read fragments, mixed samples, and (potentially) lower base-
call accuracy. For example, Marquet et al. found that they could reduce human
background from 87.9% to 34.7% by depleting human-aligning sequences when us-
ing readfish. This reduction can go even further when enriching for a subset of
the population (87.9% to 8.3%) but this also rejects 96% of all reads (Marquet et al.,
2021). Similarly, Martin et al. saw 40% of on-target reads getting rejected incorrectly

when using ONT adaptive sampling.

6.3 Other approaches to selective sequencing
6.3.1 Mapping raw signal

UNCALLED is one such technique, which aims to map raw signal without base-
calling (Kovaka et al., 2020). It builds an FM-index from a reference genome and
converts the raw signal into “events” that represent kmers based on the pore/kmer
model from ONT. The high-probability kmers are used to query the FM-index, each
successive query refines the mapping location until there is one location that is sig-
nificantly better than the others. UNCALLED is able to work with small genomes,
such as the ZymoBIOMICS mixed community, withoutissue. However, UNCALLED

Zhttps:/ /emea.illumina.com/products/by-type/microarray-kits/infinium-methylation-epic.html
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cannot make use of larger genomes without subsetting to the target region and in-
tensive repeat masking.

Another tool is Sigmap that aims to implement a signal streaming method, sim-
ilar to UNCALLED (Zhang et al., 2021). Unlike UNCALLED, Sigmap converts the
reference genome into a simulated squiggle that is indexed using an optimised k-d
tree data structure. This signal reference is queried and used in the same fashion
as minimap2, using specific “seed” matches that are chained together. Sigmap is
benchmarked against UNCALLED, showing a 4.4 x speedup when mapping yeast
sequences. However, Sigmap is not presently implemented in any real-time selec-
tive sequencing applications and generates simulated references that are ~26-35 x
larger than their corresponding FASTA reference. Finally, Sigmap requires a large

amount of external® computational resources that greatly reduces it’s portability.

6.3.2 Bloom filter

A recent tool, ReadBouncer, implements a bloom filter that acts on basecalled data
rather than using an aligner (Ulrich et al., 2022). Like readfish, ReadBouncer uses
exactly the same basecalling routines (both Guppy and DeepNano-Blitz) for decod-
ing raw signal. However, instead of using minimap?2 for read alignment a bloom
filter is used.

Briefly, a bloom filter makes use of kmer hashing (similar to minimap2’s seeding
step) but forgoes chain extension between seeds. An index for the bloom filter is
created by using successive hash functions on the unique kmers in the target se-
quence. Therefore, ReadBouncer can only yield two possible results: “not in the
target set” and “possibly in the target set”. No mapping location is given. In this
regard, ReadBouncer and bloom filter approaches maybe appropriate for host de-
pletion or binary classification experiments, but this depends on the hash functions

chosen.

6.3.3 Other approaches

A recent, SARS-CoV-2 inspired, approach (SquiggleFilter) created a hardware ac-
celerated DTW implementation for selectively sequencing SARS-CoV-2 only (Dunn
et al.,, 2021). This technique acts as a binary filter that only targets viral reads from
SARS-CoV-2. Similarly, a neural network based binary filter (SquiggleNet) attempts
to separate human from bacterial reads (Bao et al., 2021). This requires the specific

training of a model for the purpose of selective sequencing.

3from the sequencing workstation
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6.4 Future directions

Readfish is functional and actively maintained, but requires some proactive im-
provements as newer dependencies become available. For example, upgraded ver-
sions of Guppy* introduced API changes that broke the basecalling step when us-
ing Guppy. Likewise, the classification step, using minimap?2 (Li, 2018), works ex-
tremely efficiently even with large (gigabase-sized) genomes. However, when as-
sessing a mixed sample using minimap2 can become more risky as the chance of
false positives when assessing small read chunks can increase (Martin et al., 2022;
Marquet et al., 2021). In these scenarios, particularly when attempting to deplete a
host or background, a broad classifier such as those used by centrifuge (Kim et al.,
2016) or kraken (Wood et al., 2019) would be more appropriate and allow for a

many more samples to be included.

6.4.1 Adaptive sampling

There needs to be an expansion of truly adaptive sampling workflows. These are
ones where meaningful analysis is done iteratively as the experiment generates out-
put and this analysis then re-informs the sequencer with updated targets. This has
been attempted already for smoothing coverage over a genome and assigning tar-
gets where there is the greatest benefit (e.g. low coverage areas) (Maio et al., 2020).
Other sequencing schemes should be considered or explored especially for tasks
like de novo assembly, for example generating a high-coverage dataset using a large
single molecule platform such as a PacBio Sequel II or an ONT PromethION. This
large dataset can then be assembled and specific gaps in the assembly targeted using

a single MinION flow cell.

6.4.2 Copy number variation

While nanopore sequencing experiments typically aim for extending read length,
copy number variation (CNV) can be accessed by sequencing many (millions) of
short reads (Baslan et al., 2021). This was achieved by optimising the sequencing
library for short reads. Alternatively, this can be done by using the selective se-
quencing features of nanopore sequencers; unblocked (off-target) reads are very
short (typically <1kb). These short reads will still align to a reference genome and
can be binned to approximate copy number across the genome. This technique is
likely going to be a useful complement to methods such as cytogenetic testing and

karyotyping.

*https://community.nanoporetech.com/posts/guppy-v6-0-O-release
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6.4.3 Barcode balancing

Real-time selective sequencing lets the user of a nanopore device control and modify
the result of a sequencing experiment by applying arbitrary rules. The outcome of
this control is, in part, determined by the initial library loaded on the flow cell. That
is, a library with a low concentration of DNA molecules will have lower through-
put compared with a higher concentration library. And, as previously mentioned,
readfish and Read Until are not “magic methods” they work within the constraints
of the sequencing experiment being carried out.

With that in mind, multiplexed samples add an extra dimension of complexity as
the overall library composition will affect overall sequencing efficiency while indi-
vidual samples (barcodes) in the library will be present at their own concentration.
Barcode balancing aims to normalise the amount of data that each sub-sample in a
barcoded library produces, whether it is read number or overall yield. This makes
this system extremely sensitive to the unique composition of each barcoded library.
For these reasons, selective sequencing of barcoded samples is not a trivial problem

unless the overall goal is to filter barcodes once they reach set thresholds.

6.5 Closing remarks

So should I use readfish or Read Until? Yes, no, maybe.. STt really depends on what
your end goal is with this sequencing. For whole exome sequencing without target
capture or controlling coverage over an entire genome, readfish could work excep-
tionally well (Payne et al., 2020, 2021; Miller et al., 2021; Patel et al., 2021; Stevanovski
et al., 2021). For samples that are not so highly studied there are methods in devel-
opment to dynamically target areas of most interest (Maio et al., 2020). Though,
selective sequencing should not be blindly applied without some care and thought
into the desired result.

This dissertation has presented a new implementation of real-time selective se-
quencing, readfish. Hopefully, the work here makes selective sequencing practical

and accessible.

Shttps:/ /youtu.be/O8SMmG6sW9k
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Table B.1: COSMIC panel run summary statistics from NanoStat for experiment

“ml_032" both the run before the nuclease flush and reload (Run 1) and

after (Run 2).

Run1

Sequenced Unblocked Complete run
Active channels: 510.0 510.0 510.0
Mean read length: 6,290.8 516.7 795.7
Mean read quality: 9.7 11.2 111
Median read length: 3,728.0 433.0 439.0
Median read quality: 11.0 11.5 11.5
Number of reads: 224,821.0 4,428,557.0 4,653,378.0
Read length N50: 11,691.0 509.0 941.0
Total bases: 1,414,312,427.0 2,288,331,832.0  3,702,644,259.0

Run 2
Active channels: 476.0 479.0 479.0
Mean read length: 5,606.0 499.6 747.5
Mean read quality: 9.6 10.9 10.8
Median read length: 2,845.0 419.0 425.0
Median read quality: 10.6 11.2 11.2
Number of reads: 411,317.0 8,058,730.0 8,470,047.0
Read length N50: 10,891.0 496.0 820.0
Total bases: 2,305,826,485.0 4,025,766,070.0  6,331,592,555.0
Complete Run

Active channels: 511.0 511.0 511.0
Mean read length: 5,848.0 505.6 764.6
Mean read quality: 9.6 11.0 10.9
Median read length: 3,098.0 424.0 430.0
Median read quality: 10.7 11.3 11.3
Number of reads: 636,138.0 12,487,287.0 13,123,425.0
Read length N50: 11,191.0 501.0 855.0
STDEV read length: 6,730.2 334.0 1,902.2
Total bases: 3,720,138,912.0 6,314,097,902.0 10,034,236,814.0
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Figure B.1: COSMIC panel Run 1 (a) Histogram of read batch size throughout
the selective sequencing program. (b) Histogram of decision times
(time to choose unblock, stop receiving, or proceed from an alignment).
(c) Counts of decision classifications for read fragments seen a given
number of times. (d) Mean batch size, in bins of 2000, seen through-
out the selective sequencing program. (e) Mean process time, in bins
of 2000, for batches of read fragments throughout the run. (f) Mean
decision time per read fragment, in bins of 2000, throughout the run.
As the number of reads in a batch reduces, the overhead time of calling
becomes more apparent.



Table B.2: GridION MK1 CPU

Run1
Sequenced Unblocked All
Active channels: 512.0 512.0 512.0
Mean read length: 4,119.5 700.5 899.0
Mean read quality: 9.7 11.0 10.9
Median read length: 1,496.0 691.0 694.0
Median read quality: 10.9 11.5 11.5
Number of reads: 465,897.0 7,556,623.0 8,022,520.0
Read length N50: 8,631.0 773.0 854.0
Total bases: 1,919,276,876.0  5,293,311,213.0  7,212,588,089.0

Run 2
Active channels: 492.0 492.0 494.0
Mean read length: 3,781.9 653.3 823.0
Mean read quality: 9.4 10.6 10.6
Median read length: 655.0 663.0 663.0
Median read quality: 10.4 11.2 11.1
Number of reads: 318,620.0 5,553,384.0 5,872,004.0
Read length N50: 8,621.0 737.0 799.0
Total bases: 1,204,990,366.0  3,627,816,134.0  4,832,806,500.0

Run 3
Active channels: 477.0 467.0 480.0
Mean read length: 3,294.0 632.0 812.0
Mean read quality: 8.8 10.1 10.0
Median read length: 575.0 627.0 625.0
Median read quality: 9.1 10.6 10.5
Number of reads: 341,022.0 4,702,331.0 5,043,353.0
Read length N50: 8,407.0 712.0 787.0
Total bases: 1,123,339,604.0  2,971,970,803.0  4,095,310,407.0

Complete Run

Active channels: 512.0 512.0 512.0
Mean read length: 3,773.8 667.7 852.3
Mean read quality: 9.4 10.6 10.6
Median read length: 729.0 665.0 665.0
Median read quality: 10.2 11.2 11.2
Number of reads: 1,125,539.0 17,812,338.0 18,937,877.0
Read length N50: 8,572.0 745.0 819.0
Total bases: 4,247,606,846.0 11,893,098,150.0 16,140,704,996.0




Table B.3: Linux GPU
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Complete Run

Sequenced Unblocked All
Active channels: 512.0 512.0 512.0
Mean read length: 4,792.7 486.8 711.5
Mean read quality: 9.2 10.0 9.9
Median read length: 3,981.0 402.0 407.0
Median read quality: 10.2 10.3 10.3
Number of reads: 491,653.0 8,931,842.0 9,423,495.0
Read length N50: 8,180.0 464.0 799.0
Total bases: 2,356,363,784.0  4,348,280,265.0 6,704,644,049.0




Table B.4: Linux CPU

Run1
Sequenced Unblocked All
Active channels: 503.0 503.0 503.0
Mean read length: 2,935.8 638.1 777.3
Mean read quality: 8.7 10.4 10.3
Median read length: 450.0 575.0 572.0
Median read quality: 9.4 10.9 10.9
Number of reads: 415,860.0 6,448,876.0 6,864,736.0
Read length N50: 8,203.0 724.0 799.0
Total bases: 1,220,873,524.0  4,114,773,085.0  5,335,646,609.0

Run 2
Active channels: 485.0 488.0 488.0
Mean read length: 2,584.7 614.1 740.8
Mean read quality: 8.5 10.4 10.3
Median read length: 391.0 572.0 565.0
Median read quality: 9.1 10.9 10.8
Number of reads: 517,357.0 7,528,276.0 8,045,633.0
Read length N50: 7,966.0 701.0 762.0
Total bases: 1,337,218,403.0  4,623,312,751.0  5,960,531,154.0

Run 3
Active channels: 465.0 469.0 470.0
Mean read length: 2,051.3 626.3 732.9
Mean read quality: 7.9 9.9 9.7
Median read length: 384.0 601.0 586.0
Median read quality: 7.8 10.2 10.1
Number of reads: 446,538.0 5,525,462.0 5,972,000.0
Read length N50: 7,631.0 713.0 764.0
Total bases: 915,995,052.0  3,460,688,401.0  4,376,683,453.0

Complete Run

Active channels: 503.0 504.0 504.0
Mean read length: 2,517.9 625.5 750.5
Mean read quality: 8.4 10.3 10.1
Median read length: 402.0 581.0 573.0
Median read quality: 8.7 10.7 10.7
Number of reads: 1,379,755.0 19,502,614.0 20,882,369.0
Read length N50: 7,966.0 711.0 774.0
Total bases: 3,474,086,979.0 12,198,774,237.0 15,672,861,216.0




Table B.5: MacOS run

Run1
Sequenced Unblocked All
Active channels: 509.0 508.0 509.0
Mean read length: 3,185.3 943.9 1,168.6
Mean read quality: 10.3 12.1 12.0
Median read length: 1,028.0 817.0 823.0
Median read quality: 10.8 12.5 12.4
Number of reads: 88,424.0 793,565.0 881,989.0
Read length N50: 9,740.0 945.0 1,121.0
Total bases: 281,654,228.0 749,023,928.0 1,030,678,156.0
Run 2
Active channels: 481.0 481.0 482.0
Mean read length: 4,264.3 882.7 1,124.0
Mean read quality: 10.8 12.1 12.0
Median read length: 1,290.0 778.0 785.0
Median read quality: 11.5 12.4 12.4
Number of reads: 65,642.0 854,358.0 920,000.0
Read length N50: 10,703.0 881.0 1,044.0
Total bases: 279,915,896.0 754,181,345.0  1,034,097,241.0
Run 3
Active channels: 463.0 466.0 470.0
Mean read length: 4,012.6 909.2 1,138.7
Mean read quality: 10.1 11.8 11.7
Median read length: 1,160.0 771.0 778.0
Median read quality: 10.9 12.2 12.1
Number of reads: 195,438.0 2,446,511.0 2,641,949.0
Read length N50: 10,663.0 897.0 1,123.0
Total bases: 784,210,007.0  2,224,303,806.0  3,008,513,813.0
Run 4
Active channels: 440.0 439.0 441.0
Mean read length: 2,426.0 925.6 1,102.2
Mean read quality: 9.5 11.8 11.5
Median read length: 826.0 810.0 810.0
Median read quality: 9.6 12.1 11.9
Number of reads: 34,846.0 261,154.0 296,000.0
Read length N50: 9,208.0 914.0 1,042.0
Total bases: 84,534,921.0 241,729,008.0 326,263,929.0
Run 5
Active channels: 439.0 441.0 444.0
Mean read length: 3,252.0 978.4 1,181.5
Mean read quality: 10.0 11.9 11.8
Median read length: 988.0 851.0 855.0
Median read quality: 10.5 12.3 12.2
Number of reads: 66,101.0 673,899.0 740,000.0
Read length N50: 10,314.0 972.0 1,129.0
Total bases: 214,961,204.0 659,339,653.0 874,300,857.0




Table B.5 continued

Run 6
Sequenced Unblocked All
Active channels: 423.0 422.0 432.0
Mean read length: 3,724.2 863.3 1,078.7
Mean read quality: 10.0 11.7 11.6
Median read length: 1,035.0 721.0 728.0
Median read quality: 10.6 12.1 12.0
Number of reads: 213,365.0 2,621,139.0 2,834,504.0
Read length N50: 10,482.0 860.0 1,138.0
Total bases: 794,621,738.0  2,262,838,406.0  3,057,460,144.0
Run 7
Active channels: 397.0 394.0 400.0
Mean read length: 2,510.7 891.2 1,078.1
Mean read quality: 9.5 11.7 11.4
Median read length: 829.0 768.0 770.0
Median read quality: 9.7 12.0 11.8
Number of reads: 30,306.0 232,262.0 262,568.0
Read length N50: 9,308.0 878.0 1,040.0
Total bases: 76,088,740.0 206,982,496.0 283,071,236.0
Run 8
Active channels: 434.0 437.0 439.0
Mean read length: 3,564.9 855.5 1,071.7
Mean read quality: 10.1 11.8 11.7
Median read length: 979.0 711.0 717.0
Median read quality: 10.6 12.2 12.1
Number of reads: 231,852.0 2,674,351.0 2,906,203.0
Read length N50: 10,594.0 856.0 1,149.0
Total bases: 826,521,815.0  2,287,955,988.0  3,114,477,803.0
Run 9
Active channels: 415.0 409.0 418.0
Mean read length: 3,094.2 903.9 1,100.5
Mean read quality: 9.7 11.6 11.5
Median read length: 955.0 744.0 749.0
Median read quality: 10.1 12.0 11.9
Number of reads: 184,710.0 1,872,800.0 2,057,510.0
Read length N50: 9,936.0 921.0 1,210.0
Total bases: 571,528,135.0  1,692,808,317.0  2,264,336,452.0
Complete Run
Active channels: 511.0 508.0 511.0
Mean read length: 3,524.0 891.3 1,107.3
Mean read quality: 10.0 11.8 11.6
Median read length: 1,021.0 753.0 759.0
Median read quality: 10.6 12.2 12.1
Number of reads: 1,110,684.0 12,430,039.0 13,540,723.0
Read length N50: 10,387.0 894.0 1,129.0
Total bases: 3,914,036,684.0 11,079,162,947.0 14,993,199,631.0




Table B.6: Windows Subsystem Linux run
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Run1
Sequenced Unblocked All
Active channels: 507.0 507.0 507.0
Mean read length: 3,658.9 985.0 1,240.7
Mean read quality: 10.9 12.7 12.6
Median read length: 1,084.0 855.0 863.0
Median read quality: 11.8 13.0 12.9
Number of reads: 396,023.0 3,745,681.0 4,141,704.0
Read length N50: 10,616.0 1,000.0 1,157.0
Total bases: 1,449,025,461.0  3,689,642,942.0  5,138,668,403.0
Run 2
Active channels: 490.0 489.0 492.0
Mean read length: 3,448.7 971.5 1,215.7
Mean read quality: 10.8 12.8 12.6
Median read length: 1,032.0 839.0 845.0
Median read quality: 11.7 13.0 12.9
Number of reads: 425,554.0 3,891,638.0 4,317,192.0
Read length N50: 10,204.0 980.0 1,145.0
Total bases: 1,467,619,590.0  3,780,742,828.0  5,248,362,418.0
Run 3
Active channels: 465.0 462.0 467.0
Mean read length: 2,592.9 965.0 1,165.4
Mean read quality: 10.7 12.6 12.3
Median read length: 880.0 822.0 825.0
Median read quality: 11.3 12.8 12.7
Number of reads: 541,215.0 3,855,175.0 4,396,390.0
Read length N50: 8,140.0 972.0 1,130.0
Total bases: 1,403,303,224.0  3,720,290,059.0  5,123,593,283.0
Run 4
Active channels: 449.0 445.0 450.0
Mean read length: 2,350.5 987.1 1,175.4
Mean read quality: 10.5 124 12.1
Median read length: 794.0 834.0 831.0
Median read quality: 11.0 12.6 124
Number of reads: 346,283.0 2,160,916.0 2,507,199.0
Read length N50: 7,719.0 995.0 1,168.0
Total bases: 813,949,140.0  2,133,061,980.0  2,947,011,120.0
Complete Run
Active channels: 507.0 507.0 507.0
Mean read length: 3,003.9 975.9 1,201.5
Mean read quality: 10.7 12.6 12.4
Median read length: 934.0 837.0 841.0
Median read quality: 11.4 12.9 12.8
Number of reads: 1,709,075.0 13,653,410.0 15,362,485.0
Read length N50: 9,372.0 986.0 1,148.0
Total bases: 5,133,897,415.0 13,323,737,809.0 18,457,635,224.0
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Table B.7: Coverage of COSMIC targets when repeated using DeepNano-Blitz
(CPU) on different platforms. With the exception of a single run (Linux
GPU) 99% of targets in each run have at least 15x coverage, this is an
effect of the yield of this run (Table 5.3).

mean  std 1%  50%  99%

GridION MK1 CPU  30.02 5.14 15.60 31.18 38.39
GridION MK1 GPU 3151 544 1733 3249 40.15
Linux CPU 2798 496 1558 29.08 36.70
Linux GPU 19.19 319 10.00 19.70 24.81
MacBook ProCPU  29.24 5.21 16.83 30.29 36.30
Windows CPU 34.64 659 1876 3575 4291
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Abstract

Motivation: The Oxford Nanopore Technologies (ONT) MinlON is used for sequencing a wide var-
iety of sample types with diverse methods of sample extraction. Nanopore sequencers output
FASTS files containing signal data subsequently base called to FASTQ format. Optionally, ONT
devices can collect data from all sequencing channels simultaneously in a bulk FAST5 file enabling
inspection of signal in any channel at any point. We sought to visualize this signal to inspect chal-
lenging or difficult to sequence samples.

Results: The BulkVis tool can load a bulk FAST5 file and overlays MinKNOW (the software that con-
trols ONT sequencers) classifications on the signal trace and can show mappings to a reference.
Users can navigate to a channel and time or, given a FASTQ header from a read, jump to its specific
position. BulkVis can export regions as Nanopore base caller compatible reads. Using BulkVis, we
find long reads can be incorrectly divided by MinKNOW resulting in single DNA molecules being
split into two or more reads. The longest seen to date is 2 272 580 bases in length and reported in
eleven consecutive reads. We provide helper scripts that identify and reconstruct split reads given a
sequencing summary file and alignment to a reference. We note that incorrect read splitting appears
to vary according to input sample type and is more common in "ultra-long’ read preparations.
Availability and implementation: The software is available freely under an MIT license at https://
github.com/LooselLab/bulkvis.

Contact: matt.loose@nottingham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
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OXFORD

Oxford Nanopore Technologies (ONT) range of sequencing platforms
(MinION, GridION and PromethION) utilize biological nanopores,
embedded in synthetic membranes, to sequence individual single-
stranded molecules of DNA (Jain et al., 2015). As DNA passes through
the nanopore it creates sequence specific disruptions in current flow (Ip
et al., 2015). The resultant reads are written to disk as soon as the
DNA has translocated the pore; uniquely enabling rapid analysis of se-
quence data ideal for both field and clinical work (Euskirchen et al.,
2017; Quick et al., 2016). The software controlling sequencing

©The Author(s) 2018. Published by Oxford University Press.

(MinKNOW) does this by monitoring the flow cell in real time to deter-
mine if the signal observed from each channel represents DNA.
MinKNOW processes the continuous data stream from the sequencer
into individual read FASTS files containing raw signal data that are sub-
sequently base called to reveal the sequence.The sequence of the DNA
can even be analysed while the DNA is in the pore, enabling approaches
such as ‘Read Until’ where specific molecules can be dynamically
rejected according to user customisable parameters (Loose et al., 2016).

Partitioning the real-time data stream into reads results in infor-
mation loss about the current state before and after an individual
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read. To better understand these events and view the effects of user
intervention on sequencing when developing methods for read until
or using difficult samples, we wished to visualize the entire data
stream from the MinlON device. ONT provide an optional bulk
FASTS file format to capture the entire data stream from every
channel on the sequencing device (see http://bulkvis.readthedocs.io
for guidance on how to collect a bulk FASTS file). This file includes
raw signal and metadata for every channel including MinKNOW
classifications (see Supplementary Table S1). To visualize bulk
FASTS files, we developed BulkVis using the bokeh visualization
package (https://bokeh.pydata.org). BulkVis annotates signal fea-
tures based on the metadata and optionally mappings from a PAF
file. These annotations provide a simple method to relate base called
reads back to the channel and time in the data stream from which
they originate and visualize their genomic location.

Whilst developing BulkVis, we observed examples of reads in-
correctly segmented by MinKNOW leading to a reduction in the
read lengths reported. This incorrect splitting of reads appears to
correlate with read lengths such that ultra-long reads are more likely
to be affected. In some cases there is no apparent reason for the read
to have been split, but in many others we observe examples of reads
that exhibit unusual signal patterns prior to the incorrect split.

2 Results

BulkVis scans a folder containing bulk FASTS files at startup. An in-
dividual file is selected and specific channels plotted (Fig. 1). Basic
metadata are displayed to the user. To navigate coordinates are
input in the format channel: start time-end time.
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Alternatively pasting a FASTQ read header from a base called read
will jump to its channel, time and raw signal from the bulk FASTS
file. Files can also be navigated by jumping to the next or previous
instance of a specific annotation (Supplementary Table S1).
Annotations are overlaid on the signal plot as vertical dashed lines,
labelled with the type and associated ID if available (Fig. 1); map-
pings, generated by gen_bmf.py, are overlaid horizontally above the
signal, with blue/red indicating forward/reverse mappings, respect-
ively (Fig. 2). Raw signal data are proportionally smoothed to
aid rapid visualization. BulkVis allows export of the signal section
being viewed to a read FASTS file compatible with Nanopore
base callers. To avoid confusion with MinKNOW derived
reads, BulkVis reads are custom named and include the
channel number and the start and end index of the read segment
recorded in samples. The read segment shown in Figure 1 results
in a read FASTS file named plsp57501_20170308_fnfaf14035_m
n16458_sequencing_run_nott_hum_wh1rs2_60428_bulkvis-read_22
448000-25724000_ch_450.FASTS. This region captures three single
reads that when called as one read generates a 215 662 base sequence
(Supplementary File Collection S1). The three individual reads
base call with a combined length of 215153 bases (Supplementary
File Collection S1) and the single called read maps well to the original
three (Supplementary Fig. S1a).

During library preparation, adapter sequences are added to
DNA molecules such that every sequenced read should begin with
an adapter sequence. MinKNOW classifies sequences in real time,
usually labeling read starts with the annotation ‘adapter’. A channel
without DNA in a pore will be labelled ‘pore’. Typically then adapt-
er sequences should be detected (labelled ‘adapter’) followed by the

B ks PSS RE Sen Fidos FUFAF ddd0d bl eejedvaiae] don BOTT b st bl isard
Chrawrwes 45 St B9 D didi Bomepss smen S8

P g LR S SRR RN B T
- £ s T
i

Brlpr] sreolafern T

Fad mlprilseila T

Firres i pcoa

Fig. 1. Screenshot of the BulkVis application running. The vertical dashed lines indicate different annotations overlaid by MinKNOW on the signal trace in real
time. The left panel provides configuration and navigation options for the selected bulk FAST5 file
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Fig. 2. lllustrative segments from a bulk FASTS5 file visualized with BulkVis. (a) The start of a read mapping to chromosome 6. Open channel ‘pore’, followed by an
‘adapter’, and ‘strand’ as annotated by MinKNOW. (b) Read ending with an ‘unblock’ followed by ‘pore’ and then a new read. (c) Adjacent reads from a channel
separated by unusual current patterns.These two reads are reported as distinct molecules by MinKNOW, they map consecutively to the reference. (d) Two adja-
cent reads separated by an ‘unblock’ signal. The unblock does not successfully remove the DNA. Instead the read continues to sequence again mapping adja-

cently to the reference

signal derived from the read itself (‘strand’) (Fig. 2a). BulkVis was
developed in part to observe the effects of unblocking (the reversal
of voltage across a specific channel to eject material from the pore)
on DNA sequence in a nanopore. Unblocking is used in two ways;
firstly the sequencer detects and removes blockages in the pore and,
secondly, for the rejection of unwanted DNA in selective sequencing
or ‘Read Until’ (Loose et al., 2016). To observe the effect of an un-
block (Fig. 2b) on a channel immediately after the read has been
ejected users must analyse a bulk FASTS file. Alternatively reads can
be inspected in order from an individual channel. For the data pre-
sented here, unblocks have a fixed duration of 2 seconds after which
the channel should return to its normal state. ONT have released an
updated version of unblock, termed ‘Progressive Unblock’ that grad-
ually increases the duration of the flick time (MinKNOW 2.0 Stuart
Reid Pers Comm.).

During recent efforts sequencing the human genome on a
MinION (Jain et al., 2018), a protocol to sequence ultra-long DNA
molecules was generated by Quick (2018). We used BulkVis to in-
vestigate the signal from MinKNOW during one of these runs (ASIC

ID 3976726082, Supplementary Note S1). We observed reads with-
out the expected ‘pore’, ‘adapter’, ‘strand’ sequence. We found
‘strand’ sequences separated by either ‘above’ and/or ‘transition’
(Fig. 2¢) or even ‘unblock’ (Fig. 2d) signals without any evidence of
‘pore’ or ‘adapter’ sequences present. This was surprising given that
every sequenced read should begin with an adapter. We therefore
closely examined reads before and after these unusual read split
events. By looking at read mappings prior and post the events shown
in Figure 2c and d, we determined the two sequences were derived
from adjacent positions on the same chromosome (Table 1). These
reads, sequenced one after another, were most likely derived from
single molecules. The alternative explanation is the chance sequenc-
ing of two independent molecules that map adjacently on the human
reference, one after another, through the same pore.

Mapping all the reads (ASIC ID 3976726082) against the
GRCh38 reference (Schneider et al., 2017) and using read and chan-
nel numbers to sort by order through each channel we asked how
many adjacent reads mapped to contiguous positions [whale_
watch.py (Colloquially, Nanopore reads exceeding 1 Mb have been
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Table 1. Mapping data for events shown in Figure 2c and d

Read ID Chan Read Length Chr Start End
2C 7ed4aafb-d058-481c-ad60-903fd8327240 176 943 10 275 5 122 184 560 122 199 454
83d0cea6-69ad-406b-87fb-7caa2b178f68 43 145 122 133 985 122 184 329
2D c13cle73-f7e0-4ae2-8cda-729f3b4dcb79 68 758 5068 19 55435 454 55439 579
50117d5d-b8d5-423c-b0d6-8fa8eacadb65s 25 596 55409 626 55433153

Note: Reads mapped to GRCh38 (minimap2 -x map-ont). Combined read length (2C) is 56 284 bases, mapping to a span of 65469 bases. Combined read
length (2D) is 30 664 bases, mapping to a span of 29 953 bases. All reads here map in reverse orientation.

referred to as ‘whales’, with the species of whale determined by con-
verting the length of a read in kb to a mass in kg, hence our script
naming conventions.)]. About 2983 of 75 689 reads were incorrect-
ly split with pairs of reads mapping adjacently to the reference.
Stitching these reads together (using whale_merge.py) increased
read length N50 from 98 876 to 103 925 bases. Mean read length
of incorrectly split reads (55 190 bases) is higher than the entire
dataset (23 717 bases). Re-examining previous ultra-long datasets
revealed incorrect read splitting occurred 1-10% of the time
(Supplementary Table S2). Incorrectly split reads had consistently
higher mean read lengths than those which appear to be true single
molecules. As such, these reads have significant effects on read N50
(up to 21 kb).

We generated additional ultra-long reads from the same refer-
ence human genomic DNA sample using the RAD004 transposase
kit for ultra-long reads (Jain et al., 2018; Quick, 2018). This
revealed more incorrectly split reads with up to 30% of reads in one
run affected and increases in read N50 of up to 40kb (data not
shown). Differences between runs include the input DNA, the
sequencing kit, other unknown variables within the flowcells and
MinKNOW software itself. Within this dataset we found a single
read of 1 204 840 bases that maps to 1 325 742 bases on chromo-
some 5 (Fig. 3a). Remarkably, we found a set of eleven reads that,
when merged, were 2 272 580 bases in length. This merged read
maps to a single location in the human genome spanning 2 290 436
bases (Supplementary Table S3, Fig. 3b, Supplementary File
Collection S2). Unfortunately, we did not collect a bulk FASTS file
for this run. The next longest ‘fused’ read caught in a bulk FASTS
file was 1 385 925 bases in length, derived from nine individual
reads (Supplementary Table S4, Fig. 3c, Supplementary Fig. S2).
Using BulkVis we created a single read FASTS file from the signal
covering all these reads and base called it using albacore resulting in
a read that maps in its entirety to a single location in the genome.

Investigating further revealed changes in normal current flow
that cause real time MinKNOW read detection to split the read.
Occasionally, these events trigger unblock activity, after which the
read continues to sequence from the same point in the reference (in
one instance this unblock loop lasted >40 minutes, then continued
to sequence the same molecule, Supplementary Fig. S3). The most
complex fused read observed to date consists of 38 individual reads
mapping contiguously to the genome (Fig. 3d), Supplementary Fig.
S4, Supplementary File Collection S2]. The plot seen in Figure 1
(Supplementary Fig. S1B) also represents a ‘fused read’. When called
as a single read, the base called sequence maps contiguously to
chromosome 1 from 60 882 202 to 61 129 414 bases (spanning
247 212 bases).

Analysis of a representative bulk FASTS file identifies annotation
states correlating with the starts and ends of incorrectly split reads
(Fig. 4). These are either ‘above’ or ‘transition’ classifications occur-
ing at the change from one read to the next. At lower frequency
unblocks can split reads. The ‘above’ or ‘transition’ signals can be

seen in the signal traces (Fig. 2). We asked if interference from sur-
rounding channels might cause this but grouping signals from sur-
rounding channels failed to reveal any clear pattern (not shown).

Clearly, correcting split reads should result in more contiguous
assemblies. To test this, we ran our whale_merge.py analysis across
the entire data set generated by the Nanopore Human Genome con-
sortium (Jain et al., 2018). This dataset consists of 16.1 million
reads with an N50 of 13 kb. Running whale_watch.py across this
entire dataset identifies almost 100 000 incorrectly split reads. To
demonstrate the impact of split reads on assembly we identified all
reads mapping to chromosome 20 and used minimap2/miniasm to
assemble reads before and after correction ( Li, 2016, 2018). Prior
to correction, the assembly length was 52.5 Mb with an N50 of 3
699 497 bases. After correction, the assembly length increased to
55Mb with an N50 of 4 673 412 bases, an N50 increase of just
under 1 Mb.

3 Discussion

BulkVis enables visualization of bulk FASTS files collected from
Nanopore sequencers. Whilst developing BulkVis, we identified
ultra-long reads can be incorrectly split by MinKNOW. This dispro-
portionately affects ultra-long read preparations. We note that the
method used for ultra-long reads is outside the normal operating
conditions for nanopore sequencing (Quick, 2018). Similarly, the
number of ultra-long datasets analysed in this way is limited.
However, for those wishing to maximize read length the fact that
adjacent reads from a single pore may represent a single molecule of
DNA is significant. We have no formal explanation for why this
occurs, but speculate that potential causes include DNA damage or
contaminants physically linked to the DNA causing spikes in the sig-
nal. We cannot exclude the possibility that some observed split reads
are caused by single strand breaks.

Additionally we note some instances where reversal of the volt-
age does not successfully reject a read. This effect is apparently rare
and typically occurs within long reads. For applications such as se-
lective sequencing (Loose et al., 2016), reads will be rejected early in
the sequencing process. We expect this will be more efficient than
reads rejected midway through their length, aligning with our previ-
ous observations on ‘read until’ (Loose et al., 2016). Whilst it is pos-
sible to determine the length of a read that is not rejected from a
pore, it is impossible to measure the true length of reads that are suc-
cessfully rejected. When running read until, reads that do not suc-
cessfully unblock can be identified using the whale_watch.py script
as they will appear as fused reads.

We provide helper scripts identifying candidate incorrectly split
reads. These scripts are limited as they rely on suitable reference
genomes to map against. It is possible to recognize candidate reads
by close analysis of bulk FASTS files although we anticipate
MinKNOW itself can be further optimized to avoid incorrectly split
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reads. These optimizations highlight the tension between under that decisions made by MinKNOW may not be correct. In future
splitting reads, leading to chimeras (White et al., 2017) versus over identifying candidate incorrectly split reads from the absence of
splitting resulting in artificially shortened reads. For general use, adapter sequences might be of benefit.

over splitting is clearly preferential to chimeras. However for de Whilst we see no requirement for routine collection of bulk

novo assembly and maximizing long reads users should be aware FASTS files, those interested in de novo assembly may benefit from
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these files. BulkVis is provided for the visual inspection of challeng-
ing or difficult to sequence samples or where the user wishes to in-
vestigate specific events during a run. In these instances analysis of a
bulk FASTS file may provide some visual indication of the underly-
ing issues. We note that we have seen evidence of incorrect read
splitting by MinKNOW across all current versions of MinKNOW
and all Nanopore platforms including MinION, GridION and
PromethION.

4 Materials and methods

4.1 Sequencing

Sequencing using high molecular weight DNA extracted and pre-
pared as previously described (Jain et al., 2018; Quick, 2018).
RADO02 datasets are as described in Jain et al. (2018). RAD004
sequencing was performed using MinKNOW version 1.11.5.
Standard MinKNOW running scripts were used with manual
restarting to maximize the number of sequencing channels.

4.2 BulkVis installation and operation
BulkVis and companion scripts are available on github (https://
www.github.com/LooseLab/bulkvis). Scripts make use of the python

modules: NumPy (Oliphant, 2015), Pandas (McKinney, 2010),
bokeh (https://bokeh.pydata.org) and h5py (Collette, 2013). Full
instructions and documentation are provided at http://bulkvis.read
thedocs.io.
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High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity
and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short
and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by
Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using
thirty MinlON flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned
length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined
these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plau-
sible RNA isoforms. We describe strategies for assessing 3’ poly(A) tail length, base modifications and transcript haplotypes.

sequencing since the early 1990s'. They involve generation of
cDNA templates by reverse transcription (RT)>* coupled with
PCR amplification*. Nanopore RNA strand sequencing has emerged
as an alternative single-molecule strategy””. It differs from SBS-
based platforms in that native RNA nucleotides, rather than copied
DNA nucleotides, are identified as they thread through and touch a
nanoscale sensor. Nanopore RNA strand sequencing shares the core
features of nanopore DNA sequencing; that is, a processive heli-
case motor regulates movement of a bound polynucleotide driven
through a protein pore by an applied voltage. As the polynucleotide
advances through the nanopore in single-nucleotide steps, ionic cur-
rent impedance reports on the structure and dynamics of nucleotides
in or proximal to the channel as a function of time. This continuous
ionic current series is converted into nucleotide sequence using an
ONT neural network algorithm trained with known RNA molecules.
Here we describe sequencing and analysis of a human poly(A)
transcriptome from the GMI12878 cell line using the Oxford
Nanopore (ONT) platform. We demonstrate that long native RNA
reads allow for discovery and characterization of polyA RNA mol-
ecules that are difficult to observe using short read cDNA meth-
ods*’. Data and resources are posted online at https://github.com/
nanopore-wgs-consortium/NA12878/blob/master/RNA.md.

Sequencing—by—synthesis (SBS) strategies have dominated RNA

Results

RNA preparation, nanopore sequencing and computational
pipeline. The protocol we used to isolate and sequence native
poly(A) RNA from a human B lymphocyte cell line (GM12878) is

summarized in Fig. 1a and detailed in Methods. A typical ionic current
trace during TP53 mRNA translocation through a nanopore reveals
key features (Fig. 1b). The ionic current readout for each poly(A) RNA
strand was basecalled using Albacore version 2.1.0 (ONT).

We also performed nanopore cDNA sequencing using the identi-
cal GM 12878 RNA sample and analysis pipeline, but with modified
parameters that are appropriate for cDNA sequencing (Methods).
Both the RNA and cDNA data were archived and used for down-
stream analyses (Fig. 1c).

Native poly(A) RNA sequencing statistics. Six laboratories per-
formed five nanopore sequencing runs each (Supplementary Table 1).
These 30 runs produced 13.0 million poly(A) RNA strand reads, of
which 10.3 million passed quality filters (PHRED > 7). Throughput
varied between 50,000 and 831,000 pass reads per flow cell, with a
read N50 length of 1,334 bases, and a median length of 771 bases. Of
these, 9.9 million aligned using minimap?2 (ref. ') to the GRCh38
human genome reference. The 360,000 unaligned pass reads had a
median read length of 211 bases.

We next aligned the RNA pass reads to the GENCODE v27 tran-
scriptome reference using minimap2 (ref. ). The aligned reads
ranged in length from 85 nucleotides (nt) (a fragment of an mRNA
encoding Ribosomal Protein RPL39), to 21kb (a messenger RNA
encoding spectrin repeat containing nuclear envelope protein 2
(SYNE2)). A comprehensive list of the genes and isoforms can be
found on GitHub and in Supplementary Tables 2 and 3, respectively.

MarginStats (version 0.1)'' was employed to calculate percent
identity and the number of matches, mismatches and indels per
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aligned read in this population (Supplementary Table 4). Median
identity was 86 + 0.86% (Fig. 2a). The mismatch, insertion and
deletion errors were 2.4%, 4.3% and 4.4% respectively. The base-
caller seldom confused G-for-C or C-for-G (0.38% and 0.47%
errors, respectively); C-to-U and U-to-C errors were substantially
higher (3.62% and 2.23%, respectively) (Fig. 2b). We compared the
observed read length with the expected transcript length as defined
by GENCODE v27, and found general agreement (Fig. 2c). The dis-
crete clusters below the diagonal represent incorrect assignments
to GENCODE isoforms, and the diffuse shading represents frag-
mented RNA (see the text concerning RNA truncation).

For nanopore cDNA data, we observed a median identity of 85%,
which is comparable to recent published nanopore DNA results'.
The substitution error patterns for cDNA data were similar to those
for native RNA data (data not shown).

k-mer coverage. Previous analyses indicated that some nucleo-
tide subsequences (k-mers) are over- or under-represented in
nanopore-based DNA sequence reads''?. We assessed nanopore
RNA and ¢cDNA 5-mer coverage using reads aligned to GENCODE
v27 isoforms. Only reads that covered 90% or more of a given ref-
erence sequence were chosen; this selected 2.9 million of the total
10.3 million RNA reads. Of the 15.1 million pass cDNA reads,
3.9 million pass cDNA reads were selected. These reads included all
1,024 possible 5-mers (see Supplementary Fig. 1a,b for normalized
native RNA and cDNA counts, respectively).

The 5-mers that were under-represented in native RNA and
over-represented in cDNA are shown in Supplementary Tables 5
and 6, respectively. Similar to previous studies'""?, the largest devia-
tion from expectation occurred for homopolymer-rich k-mers.

Nanopore sequencing performance assessed using mitochon-
drially encoded RNA. We reasoned that mitochondrial (MT)

1298

poly(A) transcripts could be used to benchmark nanopore sequenc-
ing performance because they are abundant in all human cells,
are single exon, and vary substantially in length (349-2,379 nt).
Approximately 10% (950,879) of reads aligned to the mitochondrial
genome (Fig. 3a and public UCSC track (http://genome.ucsc.edu/s/
miten/nvRNA_f r). As expected, most of these poly(A) transcripts
corresponded to mitochondrial ribosomal RNA or to mitochon-
drial mRNA. Overall, the nanopore RNA reads recapitulated known
features of the human MT-transcriptome (Supplementary Figs. 2
and 3). We also observed poly(A) RNA strands that are difficult to
observe by conventional means (Supplementary Figs. 4 and 5).

Mitochondrial RNA (MT-RNA) read length analysis was
revealing. 5,000 reads aligned to mitochondrially encoded cyto-
chrome ¢ oxidase II (MT-CO2) or to mitochondrially encoded
NADH:ubiquinone oxidoreductase core subunit 4L (MT-ND4L)
and MT-ND4 genes combined (Fig. 3b). For each transcript, a dom-
inant band corresponded closely to the expected length (732 nt and
1,673 nt for MT-CO2 and MT-ND4L/ND4, respectively). However,
for each of these, a population of truncated reads was randomly dis-
tributed between the dominant band and about 300 nt in length.
When we quantified the fraction of truncated reads as a function
of nominal transcript length for ten MT-mRNA of the heavy strand
(Methods), we found a strong linear anti-correlation in most cases
(Fig. 3c). The single outlier was MT-ND5, which is the mitochon-
drial transcript with a 568 nt 3’ untranslated region (UTR).

These MT-poly(A) RNA truncations could occur at any of sev-
eral non-biological steps during the sequencing process, or they
could arise from regulated enzymatic degradation in the mitochon-
drion’. Here we considered three possible non-biological causes
that were specific to the nanopore platform.

One systematic cause of read truncations occurred because the
enzyme that controls translocation through the pore is 10-15 nt
from the nanopore sensor. When the enzyme releases the last nt at

NATURE METHODS | VOL 16 | DECEMBER 2019 | 1297-1305 | www.nature.com/naturemethods
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the 5’ end, the strand is rapidly driven through the pore which pre-
vents reading the terminal 10-15 nt. This phenomenon was evident
by close inspection of read coverage at the 5 end of MT-mRNA
transcripts (http://genome.ucsc.edu/s/miten/nvRNA_f r), and is
expected for all direct RNA reads in the present ONT protocol.

Another possible cause was ionic current signal artifacts associ-
ated with enzyme stalls during RNA translocation, or with extra-
neous voltage spikes (Supplementary Fig. 6a). Similar artifacts
have been shown to disrupt strand reads during MinION sequenc-
ing of DNA'. Systematic analysis of 2,729 MT-COI reads within
bulk FASTS5 files from Lab 1 identified 527 reads that started or
ended abnormally (Methods). By including ionic current segments
that were identified before or after many of these truncations,
we reconstructed 300 reads with longer alignments to MT-COI
(Supplementary Fig. 6 and Supplementary Table 7). This phenom-
enon was length dependent (Fig. 3d), ranging from 4.2% of reads
with rescued segments for ND3 (346 nt nominal length) to 17.6%
for ND5 (2,379 nt nominal length).

A third possible cause was strand breaks during nanopore
sequencing runs. We analyzed MT-COI read-length distribution for
each of the six laboratories as a function of time on ONT flow cells.
We found that the read frequency at all lengths declined steadily over
36h as expected, however the full-length fraction declined by only
5% (Supplementary Fig. 7). This analysis also revealed that RNA
from Lab 6 had degraded prior to the sequencing run. Therefore,
isoform-level analyses (see below) focused on 8.17 million
aligned poly(A) RNA reads from Labs 1-5.

Isoform detection and analysis. Long nanopore reads could
improve resolution of RNA exon-exon connectivity, allowing for
discovery of unannotated RNA isoforms. However, these reads aver-
aged 14% per-read basecall errors, confounding precise determina-
tion of splice sites. Also, biological RNA processing and in vitro
5’-end truncations (see above) can make it difficult to define tran-
scription start sites (TSS).

To overcome these limitations we employed FLAIR (full-length
alternative isoform analysis of RNA, see Methods). We first replaced
any nanopore-based splice sites bearing apparent sequencing errors
with splice sites supported by GENCODE v27 annotations or by
MMumina GM12878 cDNA data (Supplementary Fig. 8)'>'°. Second,
to overcome TSS uncertainty caused by truncated RNA reads, we
considered only reads with 5" ends proximal to promoter regions

NATURE METHODS | VOL 16 | DECEMBER 2019 | 1297-1305 | www.nature.com/naturemethods

(defined by ENCODE promoter chromatin states for GM12878
(refs. '7*%)). Third, we used FLAIR to group reads into isoforms
according to chains of splice junctions.

We compiled two FLAIR isoform sets (Supplementary Table 8)
using different supporting read criteria (see Methods and
Supplementary Fig. 9): (1) a FLAIR-sensitive set that included
isoforms with three or more uniquely mapped reads (see https://
github.com/nanopore-wgs-consortium/NA12878/blob/master/
RNA.md#analyses). This large set could be useful for isoform
discovery, at the risk of false positives; (2) a FLAIR-stringent set
that was compiled by filtering set (1) for isoforms having 3 or more
supporting reads that spanned >80% of the isoform with >25 nt
coverage into the first and last exon.

We screened for unannotated isoforms within the FLAIR-
stringent dataset. Of the 33,984 isoforms representing 10,793 genes
(Supplementary Table 9), 52.6% had a splice junction chain that was
unannotated in GENCODE (13.0% of total assigned reads) (Fig. 4a).
We observed that non-coding genes had more complex splicing pat-
terns per gene than did coding genes (Fig. 4b), in agreement with
prior studies demonstrating increased alternative splicing in non-
coding exons®**..

As a conservative alternative to FLAIR, we compiled two
GENCODE-based isoform sets using a lower coverage thresh-
old because GENCODE is curated (Supplementary Table 8): (1) a
GENCODE-sensitive set that included isoforms with 1 or more
reads that mapped uniquely to GENCODE v27; (2) a GENCODE-
stringent set that was compiled by filtering set (1) for isoforms hav-
ing 1 or more supporting reads that spanned >80% of the isoform
with >25 nt coverage into the first and last exon.

To estimate the sequencing depth required to completely char-
acterize the GM12878 transcriptome, we plotted the number of
isoforms detected in the GENCODE-sensitive and FLAIR-stringent
isoform sets versus the number of subsampled reads in 10% incre-
ments. We then fitted a hyperbolic function to the data (Fig. 4c,
Supplementary Fig. 10 and Supplementary Table 10). It is evident
that the curves did not saturate and that additional reads would be
required to capture a complete GM 12878 transcriptome.

Assignment of transcripts to parental alleles. Allele-specific
expression (ASE) is the preferential transcription of RNA from the
paternal or maternal copy of a gene. Although the importance of
this phenomenon has been characterized”, the consequences are
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not fully understood. This is partly owing to technical limitations of
haplotype identification using short read sequencing technologies.

We reasoned that the long nanopore RNA reads would be easier
to assign to the parental allele of origin due to the greater chance
of encountering a heterozygous SNP. Reads with at least two het-
erozygous SNPs were assigned to the parental allele of origin using
HapCUT?2 (ref. »*). To discover the most possible genes, we used the
FLAIR-sensitive dataset. In it, we found 3,751 genes with at least
10 haplotype informative reads. Of these genes, 3,707 were from
autosomal chromosomes and 44 were from the X chromosome
(Supplementary Table 11). Among autosomal genes, 228 (6.1%)
showed significant ASE (binomial test, P<0.001), and among X
chromosome genes, 23 (95.7%) showed significant ASE (binomial
test, P<0.001). X chromosome expression was biased, with 22 of 23
allele-specific X-linked genes originating from the maternal allele,
consistent with previous results for this cell line**. The sole pater-
nally expressed X-linked locus encoded the long non-coding RNA
XIST (Supplementary Fig. 11), which is transcribed from the inac-
tive X-chromosome and recruits epigenetic silencing machinery for
X-inactivation in females®. The remaining genes were expressed
equally from both parental alleles.

We combined these allele-specific reads with isoforms from the
FLAIR-sensitive set to mine for allele specificity (Methods). We
identified five genes with one isoform expressed from one allele
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and another isoform expressed from the other allele (binomial test,
P<0.001, Supplementary Table 12). One of these genes, interferon
induced with helicase C domain 1 (IFIHI), had a paternal isoform
with exon 8 retained, while the maternal isoform did not retain exon
8 (Fig. 4d and Supplementary Fig. 12). The closest SNV used in allele-
assignment was 886 nt away from the alternative splicing event in this
transcript. This would be undetectable using short read sequencing.

3’ poly(A) analysis. Transcript poly(A) tails are thought to have a
role in post-transcriptional regulation, including mRNA stability
and translational efficiency*. However, these homopolymers can be
several hundred nucleotides long making them difficult to measure
using short-read SBS data**.

We measured poly(A) tail lengths directly using a low-variance
ionic current signal associated with the 3’ end of each poly(A)
strand (Fig. 1b, iii). We developed a computational method (‘nanop-
olish-polya, https://github.com/jts/nanopolish) to segment this
signal and estimate how many ionic current samples were drawn
from the poly(A) tail region. By correcting for the rate at which the
RNA molecule passes through the pore, nanopolish-polya estimates
the length of the poly(A) tail. Algorithmic details can be found in
Supplementary Note 1.

To test this method, we obtained six MinION-derived poly(A)
RNA control datasets generated by ONT (ENA accession
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PRJEB28423). These datasets consisted of ionic current traces
for synthetic S. cerevisiae enolase transcripts appended with 3’
poly(A) tails of 10, 15, 30, 60, 80 or 100 nt. A second version of the
60-nt poly(A) tailed construct (60 nt-kN) contained a 10-nt ran-
domer between the enolase sequence and the 3’ poly(A) (Fig. 5a,
Supplementary Table 13 and Supplementary Note 1).

We applied this poly(A) length estimator to the complete
GM12878 native poly(A) RNA sequence dataset. Overall, the
poly(A) length distribution centered at ~50 nt, with mitochon-
drial transcripts averaging 52 nt and almost no poly(A) tail lengths
greater than 100 nt. This is consistent with results for mitochon-
drial poly(A) RNA from other human cell lines”. Conversely,
nuclear transcripts showed a broader length distribution, with a
peak at 58 nt, a mean of 112 nt, and a large number of poly(A) tails
greater than 200 nt.

Next, we measured poly(A) tail length differences between genes
with at least 500 reads and ranked 1,043 genes by median values
(Fig. 5b and Supplementary Table 14). For some genes, for example
the RNA-binding protein DEAD-box helicase 5 (DDX5), multiple
peaks were observed (Fig. 5b), suggesting the presence of isoform-
specific poly(A) tail-length sub-populations. To explore this, we
analyzed genes in the GENCODE-sensitive dataset, and found 215
genes that had isoforms with significantly different poly(A) lengths
(Supplementary Fig. 13).

When we compared two GENCODE isoforms of DDX5, we
noted that an intron-retaining isoform (ENST00000581230, 230’)
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had a median poly(A) tail length of 327 nt, compared with the
protein-coding isoform (ENST00000225792, 792°), which had a
median poly(A) tail length of 125 nt (Fig. 5¢). This difference moti-
vated us to explore the relationship between poly(A) tail length and
RNA intron-retention. We classified each isoform in GENCODE-
sensitive as either protein-coding or intron-retaining. The subset of
transcripts with retained introns tended to have longer poly(A) tails
(median 232 nt) than did transcripts without introns (median 91 nt)
(t-test P value <2.2 X 107, Fig. 5d).

Modification detection. Nanopore sequencing has been used to
identify base modifications in DNA’*>' and RNA*. N6-
methyladenine (m6A) is the most common internal modification
on mRNA*, and has been implicated in many facets of RNA metab-
olism*. m6A dysregulation has been linked to human diseases,
including obesity and cancer™. Because m6A modifications are
enriched in 3" UTRs, with two-thirds of these containing miRNA
sites””, the impact of this modification appears to be largely regula-
tory, as opposed to altering protein-coding sequence.

We focused our studies on the GGACU binding motif of meth-
yltransferase 3 (METTL3), a subunit of the m6A methyltransferase
complex*’. As an example, we compared the raw current signal at a
putative m6A site (chr19:3976327) in eukaryotic elongation factor
2 (EEF2) with the signal for an in vitro transcribed copy (Methods).
This comparison revealed an ionic current change attributable to
m6A (Fig. 6a). To validate this result, we used synthetic oligomers
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that were identical except for the presence or absence of m6A within
the GGACU motif (Fig. 6b). This revealed a clear current difference
(Fig. 6¢) consistent with the EEF2 result.

To determine if m6A modifications differed between isoforms
of the same gene, we screened GENCODE-sensitive isoforms for
ionic current changes at the GGACU motif. We found 86 genes (198
isoforms) for which the median current levels at a single GGACU
were significantly different between gene isoforms (Kruskal-
Wallis, Student’s ¢-test, and Kolmogorov-Smirnov statistical testing
with Bonferroni multiple-testing correction). An example is
illustrated for the SNHGS8 gene (Fig. 6d, isoform models in
Supplementary Fig. 14).

Another post-transcriptional modification, A-to-I RNA edit-
ing”, plays a role in splicing and regulating innate immunity***.
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NGS detects A-to-I editing as an A-to-G nucleotide variant in
cDNA sequences.

Previous nanopore experiments documented the presence of
systematic base miscalls in regions of E. coli 16S rRNA bearing
modified RNA bases’. We found systematic base miscalls at puta-
tive inosine bearing positions in the GM12878 aryl hydrocarbon
receptor (AHR) data (Supplementary Fig. 15). To cross-validate, we
compared our cDNA sequence data relative to the GM12878 refer-
ence and found that putative inosines were detected as an A-to-G
base change as expected (that is a single inosine for the CUACU
5-mer, and multiple inosines for the AAAAA 5-mer).

The ionic current distribution for the putative single inosine
5-mer (CUACU) was modestly different from the canonical 5-mer
(Fig. 6e). The ionic current distribution for the inosine containing
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AAAAA 5-mer was more complex, possibly reflecting the presence
of multiple inosines (Fig. 6f).

Discussion

Nanopore RNA sequencing has two useful features. (1) The
sequence composition of each strand is read as it existed in the cell.
This permits direct detection of post-transcriptional modifications
including nucleotide alterations and polyadenylation. (2) Reads can
be continuous over many thousands of nucleotides providing splice-
variant and haplotype phasing. Although each of these features
is useful in itself, the combination is unique and likely to provide
new insights into RNA biology. The two principal drawbacks of the
present ONT nanopore RNA sequencing platform is the relatively
high error rate (compared to Illumina cDNA sequencing), and
uncertainty about the 5’ end of the transcript.

We were concerned about read fragmentation due to RNA deg-
radation during sequencing. However, we found minimal (~5%)
reduction in the full-length fraction of a 1.6kb mRNA (MT-CO1I)
over 36h. Preliminary analysis indicated that read truncations were
more often caused by electronic signal noise due to current spikes of
unknown origin. We showed that meaningful biological signals can
be recovered from bulk Fast5 files around these truncations, sug-
gesting that future improvements to the MinKNOW read segmen-
tation pipeline are needed.

When combined with more accurate short Illumina reads, long
nanopore reads allowed for end-to-end documentation of RNA
transcripts bearing numerous splice junctions, which would not be
possible using either platform alone. We documented a high pro-
portion (52.6%) of unannotated isoforms, similar to other long-read
transcriptome sequencing studies (for example, 35.6% and 49%)**..
While many of these unannotated isoforms are low abundance and
their protein coding potentials are unknown, it is important to cata-
log them because subtle splicing changes can impact function*>*.
We also note that the number of detected isoforms did not saturate
using the nanopore poly(A) RNA dataset, indicating that greater
sequence depth will be necessary to give a comprehensive picture of
the GM12878 poly(A) transcriptome.

A variety of techniques have been used to examine allele-spe-
cific expression (ASE)'>**. However, identification of ASE is limited
using short read platforms because heterozygous variants are rare
within any given window of a few hundred nucleotides. Nanopore
sequencing has the advantage of long reads, albeit limited by errors.
We attempted to mitigate the effects of these errors by requiring
multiple heterozygous variants and a stringent false-discovery rate
(FDR) during ASE analysis. Therefore, the number of genes that
we report as demonstrating ASE (167) is likely an underestimation.
We report nearly exclusive use of the maternal X-chromosome,
with the only paternal transcripts originating from the XIST locus,
consistent with previous findings**. We have shown that nanopore
sequencing enables allele-specific isoform studies, especially in
cases where the splicing variation does not have a heterozygous
variant within range of conventional short read sequencing.

Polyadenylation of RNA 3’ ends regulates RNA stability and
translation efficiency by modulating RNA-protein binding and
RNA structure’. However, transcriptome-wide poly(A) analysis
has been difficult because of basecalling and dephasing errors®.
Recently implemented modifications to the Illumina strategy
address these limitations?”*; but cannot resolve distal relationships,
such as between splicing and poly(A) length. Nanopore poly(A)
tail length estimation using nanopolish-polya offers the advantages
of both direct length assessment and maintenance of information
about isoform and modification status per transcript. Our pre-
liminary studies revealed differences in poly(A) length distribu-
tion between mitochondrial and nuclear genes, between different
nuclear genes, and between different isoforms of the same gene.
We note in particular an increase in poly(A) tail length for some
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intron-retaining isoforms. This is consistent with previous work
showing that hyper-adenylation targets intron-retaining nuclear
transcripts for degradation through recognition by a poly(A)-bind-
ing protein (PABPN1)*. Additionally, deadenylation of cytoplas-
mic transcripts is a core part of the RNA-degradation pathway*,
suggesting that time-course experiments investigating RNA decay
kinetics* could be possible with this technology.

We have demonstrated detection of N6-methyladenosine and
inosine modifications in human poly(A) RNA. This validates prior
work which showed modification-dependent ionic current shifts
associated with m6A (S. cerevisiae)’. Differences in m6A modifica-
tion level proved to be discernible at the isoform level for human
SNHG8 mRNA (Fig. 6d), documenting splicing variation and mod-
ification changes simultaneously.

Although other methods exist for high-throughput analysis of
RNA modifications”, they often require enrichment, which limits
quantification, and they are usually short-read based. The latter
precludes analysis of long-distance interactions between modifica-
tions, and between modifications and other RNA features such as
splicing and poly(A) tail length. The capacity to detect these long-
range interactions is likely to be important given recent work sug-
gesting links between RNA modifications, splicing regulation and
RNA transport and lifetime***. We argue that nanopore native RNA
sequencing could deliver this long-range information for entire
transcriptomes. However, this will require algorithms trained on
large, cross-validated datasets as has been accomplished for cytosine
and adenine methylation in genomic DNA**',
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Methods

Unless otherwise noted, kit-based protocols described below followed the
manufacturer’s instructions.

GM12878 cell tissue culture. GM12878 cells (passage 4) were received from the
Coriell Institute and cultured in RPMI medium (Invitrogen cat no. 21870076)
supplemented with 15% non heat-inactivated FBS (Lifetech cat no. 12483020) and
2 mM L-Glutamax (Lifetech cat no. 35050061). Cells were grown to a density of
1Xx10° per ml before subsequent dilution of 1/3 every ~3 d and expanded to 9 X
T75 flasks (45 ml of medium in each). Cells were centrifuged for 10 min at 100 X g
(4°C), washed in 1/10th volume of PBS (pH 7.4) and combined for homogeneity.
The cells were then evenly split between 8 x 15ml tubes and pelleted at 100g

for 10 min at 4°C. The cell pellets were then snap frozen in liquid nitrogen and
immediately stored at —80 °C before shipping on dry ice. Two tubes of 5x 107
frozen GM12878 cell pellets from passage 10 from a single passage, cultured at
the University of British Columbia (UBC), were distributed and used at UBC,
Ontario Institute of Cancer Research (OICR), Johns Hopkins University (JHU)
and University of California Santa Cruz (UCSC). Two tubes of cells from passage
11 were distributed to University of Nottingham from UBC, and an independently
cultured passage of GM12878 was used at University of Birmingham.

Total RNA isolation. The following protocol was used by each of the six institutions.
Four ml of TRI-Reagent (Invitrogen AM9738) was added to a frozen pellet of 5x 10
GM12878 cells and vortexed immediately. This sample was incubated at room
temperature for 5min. Four hundred pl BCP (1-Bromo-3-chloro-propane) or 200 pl
CHCI, (Chloroform) was added per ml of sample, vortexed, incubated at room
temperature for 5min, vortexed again and centrifuged for 10 min at 12,000g (4°C).
The aqueous phase was pooled in a LoBind Eppendorf tube and combined with an
equal volume of isopropanol. The tube was mixed, incubated at room temperature
for 15min, and centrifuged for 15min at 12,000g (4°C). The supernatant was
removed, the RNA pellet was washed with 750 pl 80% ethanol and then centrifuged
for 5min at 12,000¢ (4 °C). The supernatant was removed. The pellet was air-dried
for 10 min, resuspended in nuclease-free water (100 pl final volume), quantified and
either stored at —80 °C or processed further by poly(A) purification.

Poly(A) RNA isolation. One hundred pg aliquots of total RNA were diluted in
100 pl of nuclease-free water and poly(A) selected using NEXTflex Poly(A) Beads
(BIOO Scientific cat. no. NOVA-512980). Resulting poly(A) RNA was eluted in
nuclease-free water and stored at -80°C.

MinION native RNA sequencing of GM12878 poly(A) RNA. Biological poly(A)
RNA (500-775ng) and a synthetic control (Lexogen SIRV Set 3, 5ng) were prepared
for nanopore direct RNA sequencing generally following the ONT SQK-RNA001
kit protocol, including the optional reverse transcription step recommended
by ONT. One difference from the standard ONT protocol was in the use of
Superscript IV (Thermo Fisher) for reverse transcription. RNA sequencing on the
MinION and GridION platforms was performed using ONT R9.4 flow cells and
the standard MinKNOW (version 1.7.14) protocol script
(NC_48h_sequencing_FLO-MIN106_SQK-RNA001) recommended by ONT,
with one exception — we restarted the sequencing runs at several time points to
improve active pore counts and throughput during the first 24 h.

cDNA synthesis. First-strand cDNA synthesis was performed using Superscript IV
(Thermo Fisher) and 100 ng of poly(A) purified RNA. Reverse transcription and
strand-switching primers were provided by ONT in the SQK-PCS108 kit. After
reverse transcription, PCR was performed using LongAmp Taq Master Mix (NEB)
under the following conditions: 95°C for 30s, 11-15 cycles (95°C for 15s, 62 °C for
15s, 65°C for 15min), 65°C for 15min, hold at 4°C. The 15 cycle PCR was performed
when using the SQK-PCS108 kit and 11 cycle PCR was performed when using the
SQK-LSK308 kit. PCR products were purified using 0.8X AMPure XP beads.

MinION sequencing of GM12878 cDNA. cDNA sequencing libraries were
prepared using 1 pg of cDNA following the standard ONT protocol for SQK-
PCS108 (1D sequencing) or SQK-LSK308 (1DA2 sequencing) with one exception.
That is, we used 0.8X aAMPure XP beads for cleanup. We used standard ONT
MinKNOW scripts for MinION sequencing with one exception. That is, we
restarted the sequencing runs at several time points to improve active pore counts
and throughput during the first 24h.

Acquiring continuous data for nanopore sequencing runs and resegmenting
reads. For a subset of runs, ‘bulk FASTS5 files’ containing continuous raw current
traces and read decisions made by MinKNOW were recorded for more detailed
analysis. This can be enabled in MinKNOW by looking at ‘Additional options’
under ‘Output’ when configuring a run to start in MinKNOW. Options were set

to capture raw signal data and the read table. Events were not captured to reduce
file size'". Bulk FASTS5 files were investigated using BulkVis'* and scripts available
on GitHub (https://github.com/nanopore-wgs-consortium/NA12878/tree/master/
nanopore-human-transcriptome/scripts/bulk_signal_read_correction). To identify
reads with abnormal start or ends the read classifications made by MinKNOW

in the 2's before and after each read start or end respectively. Read starts should
include ‘pore; ‘good_single; ‘inrange’ or ‘unblocking’ classifications'*. Read ends
should also end with these categories. Reads which did not start or end with these
classifications were considered as potentially abnormal. Additional signal before
and after the read was extracted from the bulk FASTS5 file and a new synthetic read
created for base calling (using Albacore version 2.1.3). For abnormal read starts,
signal up to the start of the previous read was prepended. For abnormal read ends,
signal up to the start of the following read was appended. Base calling is disrupted
by signal incorrectly classified as open pore. Therefore these incorrect signal
chunks were replaced with signal matching the mean for each read to generate

a corrected read. These reads were recalled and mapped against the candidate
targets using minimap2 with standard ONT parameters. This method can result
in incorrectly concatenated reads, and so mapping to the target was used to filter
out such sequences. The difference in target coverage for each read was used to
indicate recovery of sequence data as summarized in Supplementary Fig. 7 and
Supplementary Table 7. All corrected read files, basecalls, mapping files and scripts
used to generate them are available on GitHub (link cited above).

Length analysis of mitochondrial protein-coding transcripts. In this analysis,
we limited the test population for each gene to reads that aligned to a 50 nt
sequence at the 3’ prime end of its ORF, except for MT-ND5 where alignment
was to a 50 nt sequence at the end of its 568 nt 3’ UTR. Full length was defined
as extending to at least within 25 nt of the genes expected 5’ terminus. This limit
was chosen because the processive enzyme that regulates RNA translocation is
distal from the CsgG nanopore limiting aperture and necessarily falls off before
the 5’ end is read. The sharpest coverage drop-off is typically at 10 nt from the 5’
transcript end; we chose the 25 nt limit to ensure that all likely full-length reads
were captured in the count.

In vitro transcription. cDNA synthesis was performed according to ONT
instructions (SQK-PCS108 kit) by combining Superscript IV (Thermo Fisher), RT
and ONT strand switching primers, and 100 ng of poly(A) purified RNA. Next, an
11-cycle PCR reaction was performed using the ONT SQK-LSK308 kit but with

a modified version of the primer that included a T7 promoter as recommended
by NEB (catalog number E2040S). The PCR reaction was run under the following
conditions: 95°C for 30s, 11 cycles (95°C for 15s, 62°C for 155, 65°C for 15min),
65°C for 15min, hold at 4°C.

PCR products were purified using 0.8X AMPure XP beads. Next, in vitro
transcription was performed using the NEB HiScribe T7 High Yield RNA Synthesis
Kit following NEB instructions. The IVT product was poly(A) tailed using the
same kit. The resulting IVT RNA was purified using LiCl precipitation and then
adapted for RNA sequencing on the MinION the using SQK-RNAO0O1 kit.

Oligomer ligation. The oligomer containing the N6-methyladenosine
modification was obtained as a lyophilized pellet from Trilink BioTechnologies
and resuspended to 20 pM using TE buffer (Quality Biological catalog no.
351-011-721). The firefly luciferase (FLuc) transcript used as the carrier molecule
was produced by in vitro transcription using the HiScribe ARCA mRNA Kit
(with tailing) (NEB catalog no. E2060) and supplied protocol with the following
exception: after DNase treatment, the reaction was terminated and the RNA
purified using 1X Agencourt RNAClean XP beads (Beckman Coulter A63987).
The oligomer was then treated with T4 polynucleotide kinase (PNK) (NEB catalog
no. M0201) to phosphorylate the 5" end for ligation. After phosphorylation, the
oligomer was purified using the Oligo Clean & Concentrator kit (Zymo Research
catalog no. D4060). The phosphorylated oligomer and FLuc transcript were
quantified, combined in equimolar amounts, and ligated using T4 RNA Ligase 1
(NEB catalog no. M0204). The reaction mixture was incubated at 16 °C overnight.
After incubation, the RNA was purified using RNAClean XP beads. The ligated
product was poly(A) tailed using E. coli Poly(A) Polymerase (NEB HiScribe ARCA
mRNA Kit) according to the supplier’s instructions. After A-tailing, the RNA was
purified using RNAClean XP beads. The isolated RNA was poly(A) selected using
NEXTflex Poly(A) beads. The resulting poly(A) RNA was eluted in nuclease-free
water and immediately prepared for sequencing using Oxford Nanopore’s direct
RNA sequencing kit (SQK-RNA001) and protocol.

Basecalling, alignments and percent identity calculations. We used the ONT
Albacore workflow (version 2.1.0) for basecalling direct RNA and cDNA data. A
strand read with an average sequence quality of 7 or higher (Q7) was classified as
pass (default setting for Albacore (version 2.1.0)). We used minimap?2 version 2.1
(ref. ') (recommended parameters that is -ax splice -uf -k14 for alignments to the
human genome and -ax map-ont for alignments to the human transcriptome) to
align the nanopore RNA and cDNA reads to the GRCh38 human genome reference
(https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/ GRCh38_
reference_genome/) and to the GENCODE v27 transcriptome reference (https://
www.gencodegenes.org/releases/current.html). Minimap2 was chosen because it
aligns nanopore reads to exons while spanning across introns. We used marginStats
(version 0.1)"" to calculate alignment identities and errors for pass RNA strand
reads and pass 1D cDNA strand reads. Substitutions were calculated using custom
scripts available within marginAlign (version 0.1)"".
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k-mer analysis. We assessed nanopore RNA and cDNA 5-mer coverage using
GENCODE isoforms. The read sequences were filtered by length and only reads
covering 90% or more of the respective reference sequence were chosen. We
calculated expected 5-mer counts from the set of reference sequences and observed
5-mer counts from the set of read sequences. For plotting purposes, we normalized
the read and reference counts to coverage per megabase. The scripts are available
within marginAlign''.

Isoform detection and characterization. To define isoforms from the sets of
native RNA and cDNA reads, we used FLAIR v1.4, a version of FLAIR*® with
additional considerations for native RNA nanopore data. For our analysis, we first
removed reads generated by lab 6, because a disproportionate number of those
molecules appeared to be truncated prior to addition to the nanopore flow cell. We
also removed 71,276 aligned reads with deletions greater than 100 bases caused

by minimap2 version 2.1. We then selected reads that had TSSs within promoter
regions that were computationally derived from ENCODE ChIP-seq data'*"’. Using
FLAIR-correct, we corrected primary genomic alignments for pass reads based on
splice junction evidence from GENCODE v27 annotations and Illumina short-read
sequencing of GM12878. This step also removes reads containing non-canonical
splice junctions not present in the annotation or short-read data. The filtered and
corrected reads were then processed by FLAIR-collapse which generates a first-pass
isoform set by grouping reads on their splice junctions chains. Next, pass reads
were realigned to the first-pass isoform set, retaining alignments with MAPQ > 0.
Isoforms with fewer than three supporting reads or those which were subsets of

a longer isoform were filtered out to compile the FLAIR-sensitive isoform set. A
FLAIR-stringent isoform set was also compiled by filtering the FLAIR-sensitive set
for isoforms which had 3 supporting reads that spanned >80% of the isoform and a
minimum of 25 nt into the first and last exons. Unannotated isoforms were defined
as those with a unique splice junction chain not found in GENCODE v27. Isoforms
were considered intron-retaining if they contained an exon which completely
spanned another isoform’s splice junction. Isoforms with unannotated exons were
defined as those with at least one exon that did not overlap any existing annotated
exons in GENCODE v27. Genes that did not contain an annotated start codon
were considered non-coding genes.

Defining promoter regions in GM12878 for isoform filtering. Promoter
chromatin states for GM12878 were downloaded from the UCSC Genome Browser
in BED format from the hgl8 genome reference. Chromatin states were derived
from an HMM based on ENCODE ChIP-seq data of nine factors'®". The liftover
tool’! was used to convert hg18 coordinates to hg38. The active, weak and poised
promoter states were used.

Haplotype assignment and allele-specific analysis. We obtained genotype
information for GM12878 from existing phased Illumina platinum genome data
generated by deep sequencing of the cell donors’ familial trio™. The bcftools package
was used to filter for only variants that are heterozygous in GM12878. Starting
with aligned reads, we used the extractHAIRS utility of the haplotype-sensitive
assembler HapCUT?2 (ref. **) to identify reads with allele-informative variants. For
allelic assignment, we required a read to contain at least 2 variants, and required that
greater than 75% of identified variants agreed on the parental allele of origin—this
stringent threshold was selected to reduce the chances of incorrect assignment
from nanopore sequencing errors. Through this approach, each read was annotated
as maternal, paternal or unassigned. To identify genes that demonstrated a very
strong bias for a single allele, we performed a binomial test of all reads assigned
to a parental allele, with an FDR of 0.001. We also visually inspected numerous
genes displaying genes demonstrating allele-specificity using IGV, to increase our
confidence in proper mapping of the reads and evaluate the presence of variants.
We further integrated this haplotype-specific analysis with our isoform pipeline
to explore for the presence of allele-specific isoforms. If reads for a specific isoform
originated from a single parental allele (binomial test; false discovery rate, 0.001),
the isoform was assigned as allele specific. We then filtered for any genes which
contained both maternal and paternal allele-specific isoforms, and visually inspected
these isoforms using IGV to compare location of variants and splicing events.

Poly(A) tail length analysis. Supplementary Note 1 describes use of nanopolish-
polya version 0.10.2 (https://github.com/jts/nanopolish) to estimate polyadenylated
tail lengths of nanopore native RNA sequence reads. We used the Kruskal-Wallis
test as implemented in Python to determine statistically significant changes
between isoforms; code is available at https://github.com/nanopore-wgs-
consortium/NA12878/tree/master/nanopore-human-transcriptome/scripts.

Modification detection and analysis. We focused our initial efforts on m6A
modification in genes previously identified as enriched in modifications from
m6A immunoprecipitation sequencing data on human cell lines’*. We aligned
native RNA reads and IVT RNA reads to candidate genes and then extracted ionic
current information (mean current and standard deviation in pA) for specific
5-mers using nanopolish eventalign (version 0.10.2). We compared ionic current
kernel density estimates (KDE) for GGACU within the 3’ UTR of the EEF2 gene in
native RNA with the KDE for its canonical IVT RNA counterpart. The extent and
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directionality of current shifts observed by m6A modification within the GGACU
motif were orthogonally investigated using an in-vitro oligomer ligation assay, as
described above. We compared KDEs for the modified and unmodified GGACU
motifs within the synthetic oligomer. Statistical testing (Kruskal-Wallis, Student’s
t-test, Kolmogorov-Smirnov and Bonferroni correction) was implemented in
Python with code available at https://github.com/nanopore-wgs-consortium/
NA12878/tree/master/nanopore-human-transcriptome/scripts.

For detecting A-to-I editing, we focused on the 3’-UTR region of the human
aryl hydrocarbon receptor (AHR) gene. Using the UCSC Genome Browser,
we identified systematic G base variant calls in AHR cDNA data (probable
inosine substitutions in RNA). We then tested for systematic base miscalls at the
corresponding positions in native RNA data. Next, we used nanopolish eventalign
(version 0.10.2) to extract ionic current information for two putative inosine-
containing 5-mers (CUACU and AAAAA), and for their respective IVT-derived
canonical 5-mers from chromosome 7. Ionic current distributions for CUACU and
AAAAA 5-mers between the biological and IVT data were compared using kernel
density estimates.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Sequence data including raw signal files (FAST5), event-level data (FAST5), base-
calls (FASTQ) and alignments (BAM) are available as an Amazon Web Services
Open Data set, for download from https://github.com/nanopore-wgs-consortium/
NA12878. The scripts used for various analyses are also available from the same
GitHub under nanopore-human-transcriptome/scripts.

Code availability

General scripts available at: https://github.com/nanopore-wgs-consortium/
NA12878/tree/master/nanopore-human-transcriptome/scripts. Poly(A) caller
(‘nanopolish-polya, https://github.com/jts/nanopolish) and isoform analysis code
for FLAIR (https://github.com/BrooksLabUCSC/flair).
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Readfish enables targeted nanopore sequencing
of gigabase-sized genomes

Alexander Payne®, Nadine Holmes, Thomas Clarke, Rory Munro, Bisrat J. Debebe and
Matthew Loose ® 22

Nanopore sequencers can be used to selectively sequence certain DNA molecules in a pool by reversing the voltage across indi-
vidual nanopores to reject specific sequences, enabling enrichment and depletion to address biological questions. Previously,
we achieved this using dynamic time warping to map the signal to a reference genome, but the method required substantial com-
putational resources and did not scale to gigabase-sized references. Here we overcome this limitation by using graphical pro-
cessing unit (GPU) base-calling. We show enrichment of specific chromosomes from the human genome and of low-abundance
organisms in mixed populations without a priori knowledge of sample composition. Finally, we enrich targeted panels compris-
ing 25,600 exons from 10,000 human genes and 717 genes implicated in cancer, identifying PML-RARA fusions in the NB4 cell
line in <15 h sequencing. These methods can be used to efficiently screen any target panel of genes without specialized sample
preparation using any computer and a suitable GPU. Our toolkit, readfish, is available at https://www.github.com/looselab/

readfish.

nanopore sequencer to reject individual molecules while they

are being sequenced. This requires the rapid classification of
current signal from the first part of the read to determine whether
the molecule should be sequenced or removed and replaced with a
new molecule. We first demonstrated this using dynamic time warp-
ing (DTW) to compare the signal with a simulated current trace
derived from a reference sequence'. Although DTW enabled a small
set of use cases, it required substantial computational resources,
preventing its generalized use’. Another recent method using raw
signal, UNCALLED?, has a lighter computational footprint than
previous signal-based methods, but is limited in search space and
still requires considerable computational resources. An alternative
approach, which uses direct base-calling of signal chunks*, demon-
strated benefit compared with sequencing without Read Until as it
filtered out unwanted reads, but did not provide any enrichment
and again required considerable computational resources.

Our goal was to work with nucleotide sequences rather than raw
signals to exploit existing tools, utilize reasonable computational
resources and show enrichment of targets. To do this, we used
Oxford Nanopore Technologies (ONT) base-calling software. ONT
have developed a number of base-callers for nanopore sequence
data, initially utilizing hidden Markov models and available through
the metrichor cloud service®. They replaced these with neural net-
work models running on central processing units and then GPUs.
For real-time base-calling, ONT provide a range of computational
platforms with integrated GPUs (minIT, Mk1C, GridION and
PromethION). These devices enable real-time base-calling suffi-
cient to keep pace with flow cells generating data. Most recently,
these base-callers acquired a server—client configuration, such that
raw signal can be passed to the server and a nucleotide sequence
returned. Using this, we show that GPU base-calling can be used
to deliver a real-time stream of nucleotide data from flow cells
sequencing with up to 512 channels simultaneously. At the same
time, the GPU can base-call completed reads, and optimized tools
such as minimap?2 (ref.¢) can therefore be used to map reads as they

f elective sequencing, or ‘Read Until, refers to the ability of a

are generated, enabling dynamic updating of both the targets and
the reference genome as results change.

As our method does not use raw signal comparison, we do not
have to convert reference genomes into signal space as in DTW or
other signal methods'’. We are constrained by access to a suffi-
ciently powerful GPU. The results presented here mainly utilize the
ONT GridION MK]1, which includes an NVIDIA GV100 GPU, but
we also use an NVIDIA 1080, showing that this approach works on
any device capable of real-time base-calling. We apply this approach
to a range of model problems. First, we select specific human chro-
mosomes, illustrating that gigabase references are not a constraint.
Second, we enrich low-abundance genomes from a mixed popula-
tion and find that we reduce the time required to answer a biologi-
cal question (time-to-answer) and improve the ability to assemble
low-copy genomes. Adaptive sampling is the process by which the
software changes what is being sequenced in response to what has
been seen during an experiment. To illustrate this, we use centrifuge
to identify the most abundant species present in a metagenomic
sample, monitor depth of coverage for each in real time and enrich
for the least abundant genomes without a priori knowledge of con-
tent’. This method is necessarily limited by the composition of the
reference database and also requires network access to retrieve ref-
erences once identified. Finally, we enrich panels of human genes,
including 25,600 target regions corresponding to ~10,000 genes
and 717 genes from the Catalogue of Somatic Mutations in Cancer
(COSMIC) panel®. We demonstrate how Read Until can be used
to capture information on key targets without the need for custom
library preparation and show that we can identify a known translo-
cation in the NB4 cell line in <15h (ref.”).

We provide a configurable toolkit, readfish, enabling targeted
sequencing of gigabase-sized genomes. This includes depletion of
host sequences as well as example methods giving the minimum
coverage depth for specific sequences in a population. Configuration
of these tools is relatively straightforward and requires no additional
computing resources as long as a sufficiently powerful GPU capable
of base-calling multiple flow cells in real time is available.

DeepSeq, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK. ®e-mail: matt.loose@nottingham.ac.uk
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Fig. 1| Human-genome-scale selective sequencing. a, Median read lengths for reads sequenced from GM12878 and mapped against hg38 excluding
alternate chromosome representations. The four panels each represent a quadrant of the flow cell. In the control, all reads are sequenced; in the second,
third and fourth quadrants, reads mapping to chromosomes 1-8, 9-14 and 16-20, respectively, are sequenced. The combined length of each of these target
sets equates to approximately 1/2, 1/4 and 1/8 of the human genome, respectively. b, A heatmap of throughput per channel in each quadrant from the
flow cell illustrating reduced yield as the proportion of reads rejected is increased. ¢, The yield ratio for each chromosome in each condition normalized
against the yield observed for each chromosome in the control quadrant. d, The yield of on-target reads calculated in a rolling window over the course

of the sequencing run showing the loss of enrichment potential. e, A plot of the number of channels contributing sequence data over the course of the
sequencing run. Channels are lost at a greater rate when more reads are rejected.

Results

Methods overview. Selective sequencing requires bidirectional
communication with a nanopore sequencer through the Read
Until application programming interface (APL https://github.com/
nanoporetech/read_until_api). The API provides a stream of raw
current samples from every sequencing pore on the flow cell and
allows the user to respond in real time, either rejecting a read from
a specific pore or allowing a read to finish naturally. Previous API
implementations served any signal seen as a potential read and
so required the processing of many signals that were not genuine
reads, causing analysis challenges’. The current API discriminates
true DNA signal from background more efficiently and is config-
ured to provide only signals identified as DNA, reducing the analy-
sis burden. We reasoned that the signal served by the API should be
compatible with the Guppy base-caller and so capture short signal
sequences and process them in base space.

Supplementary Fig. la illustrates the workflow for base-calling
reads as they are being sequenced. Briefly, data chunks of signal are
served from the Read Until API. Chunks default to 1-s duration
but can be configured by the user. We found that 0.4-s chunk dura-
tions (~180 bases; see Methods) balanced the need for small chunks
with API performance (Supplementary Table 1 and Supplementary
Fig. 2). The data chunk (up to 512 reads from a MinION flow cell)
is converted to a Guppy-compatible format and base-called using
pyguppyclient  (https://github.com/nanoporetech/pyguppyclient).
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Base-called data are then mapped to a reference with minimap2
(ref.®). Reads may uniquely map, map to multiple locations or may
not map at all. In response, the user can choose to reject a read
(unblock), acquire more data for that read (proceed) or stop receiv-
ing data for the remainder of that read (stop receiving).

Read Until performance. To test the performance of our real-time
base-calling approach on enrichment and depletion, we sequenced
the well-studied NA12878 reference cell line'’. The flow cell was
configured to operate in quadrants each sequencing: a control (all
reads accepted), chromosomes 1-8 (50% of reads accepted), chro-
mosomes 9-14 (25% of reads accepted) and finally chromosomes
16-20 (12.5% of reads accepted). Reads are base-called and mapped
to the reference regardless of quadrant. Median read lengths per
chromosome in each quadrant indicate those sequenced or rejected
(Fig. 1a). Selectively sequenced reads have a median read length of
~15kilobases (kb). Rejected reads have a median length of ~500
bases, equating to ~1.1s of sequencing time at 450 bases per sec-
ond, although median data collected were closer to 1.5s. Reads
are base-called, mapped and the unblock action sent and actioned
within ~1s of the read starting. This run generated 9.32 Gb of aligned
sequence data, unevenly distributed across the quadrants: 3.47 Gb in
the control, 2.79 Gb at 50% acceptance, 1.84 at 25% acceptance and
only 1.22 Gb at 12% (Fig. 1b and Supplementary Table 2). For each
quadrant, the optimal enrichment is twofold, fourfold and eightfold,
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Fig. 2 | Adaptive sequencing enriching for the least abundant genome and
ensuring uniform 40x coverage. a, Mean read lengths for reads sequenced
from the ZymoBIOMICS mock metagenomic community mapped against
the provided references (ZymoBIOMICS). Read lengths are reported for the
whole run, the deliberately sequenced reads and those that were actively
unblocked. b, Cumulative coverage of each ZymoBIOMICS genome during
the sequencing run. The total coverage still accumulated as unblocked
reads, though short, still map. Sequencing was automatically terminated
once each sample reached 40x. ¢, A stacked area graph illustrating how
the proportion of bases mapping to each species changes over time.

d, By contrast, the proportion of reads mapping to each species over

time does not change significantly. Species and composition: BS, Bacillus
subtilis (14%); EF, Enterococcus faecalis (14%); EC, Escherichia coli (14%);
LM, Listeria monocytogenes (14%); PA, Pseudomonas aeruginosa (14%);

SC, Saccharomyces cerevisiae (2%); SE, Salmonella enterica (14%); SA,
Staphylococcus aureus (14%).

but we see lower enrichments by the end of the experiment, presum-
ably due to reduced yield (Fig. 1c). We observe enrichment of target
sequences in all cases compared with control. Relative enrichment
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is closer to the theoretical maximum at the beginning of the
sequencing run (Fig. 1d). Analysis of available channels contribut-
ing to data generation shows that sequencing capacity is lost faster
as more reads are rejected (Fig. le). For this experiment, we did not
nuclease flush the flow cell, but anticipate improvements in both
the yield and enrichment if we did. We were able to call all batches
within our 0.4-s window (Supplementary Fig. 3e).

A common goal in sequencing library preparation is to remove
host DNA to enrich for a metagenomic subpopulation'""”. Selective
sequencing may be beneficial in conjunction with library prepa-
ration methods. We considered metagenomics applications as a
similar class of problem. Nicholls et al. generated a reference data-
set using the ZymoBIOMICS Microbial Community Standards'.
They were able to generate sufficient data to assemble several of the
bacteria into single contigs (without binning). Notably, eukaryotic
genomes that were present at lower abundance (2%) did not gener-
ate high-contiguity assemblies. This is not surprising as the coverage
depth for Saccharomyces cerevisiae was 17X and that for Cryptococcus
neoformans was 10X when sequencing on a single GridION flow
cell”. Enriching for these low-abundance components is conceptu-
ally similar to depleting host material from a sample. In our experi-
ments, we utilize the ZymoBIOMICS high-molecular-weight DNA
standard (D6322). This sample will a priori improve assemblies
owing to the longer read lengths and further differs from Nicholls
etal. as it excludes C. neoformans.

To determine whether selective sequencing could improve the
relative coverage of low-abundance material, we developed a simple
pipeline (readfish align) to drive our selective sequencing decisions
(SupplementaryFig. 1b). This pipeline aligns completed reads against
a reference as they are written to disk, and then calculates the cover-
age depth. Once an individual species reaches the desired coverage
depth, new reads mapping to that species are rejected. We simultane-
ously base-call both the real-time stream from Read Until and com-
pleted reads. Finally, we implemented Run Until to stop the run once
all targets had reached sufficient coverage. These experiments used
a community-specific reference file. Mean read lengths for target
genomes reduce as they are added to the rejection list and the mean
read length becomes dominated by short, rejected reads (Fig. 2a).
Plotting coverage over time for reads not rejected by Read Until shows
a decrease in coverage accumulation for completed genomes (that
is, those at the desired coverage level) with an increase in sequenc-
ing potential for the least abundant sample, S. cerevisiae (Fig. 2b).
The proportion of bases mapping to each genome reveals the shift
in sequencing capacity to S. cerevisiae (Fig. 2¢). Relative abundance
can still be determined when running Read Until as the propor-
tion of reads mapping to each genome does not change (Fig. 2d).
The run automatically stops once each genome reaches 40X, taking
~16h and 4.4 Gb of sequence data (Supplementary Fig. 4).

This sample should be 2% S. cerevisiae by bases, typically
yielding ~88Mb or 7X coverage of sequence data. Using selec-
tive sequencing, we see 40X coverage, naively a 5.7-fold increase
in on-target data. However, a flow cell not implementing selective
sequencing would have a higher yield, so real-world enrichment is
lower. Nicholls et al. report 16 Gb on a similar sample generated in
48h, which would result in ~25X coverage of S. cerevisiae, bringing
enrichment closer to 1.6X (ref. *). Theoretically, enrichment of a 2%
subset should be greater, but there is a cost to rejecting an individual
read. Even so, we could enrich the least abundant element compared
with that expected from the sample composition in multiple experi-
ments (n=3). Thus, we accelerate time-to-answer for a particular
coverage depth (16h versus 48h). This approach assumes knowl-
edge of the sample a priori and so is of limited practical relevance.
By integrating a metagenomics classifier into our pipeline (readfish
centrifuge), we avoid this requirement’. As strains are identified
within the sample, they can be dynamically tracked and added to a
rejection list, illustrating the principle of adaptive sequencing.
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Fig. 3 | Adaptive sequencing enriching for the least abundant genome
with centrifuge read classification and ensuring uniform 50x coverage.
a, Mean read lengths for reads sequenced from the ZymoBIOMICS mock
metagenomic community mapped against the provided references. Read
lengths are reported for the whole run, the deliberately sequenced reads
and those that were actively unblocked. b, Cumulative coverage of each
ZymoBIOMICS genome during the sequencing run. The total coverage
still accumulated as unblocked reads, though short, still map. Sequencing
was automatically terminated once each sample reached 50x. The small
overshoot in sequenced read coverage is likely caused by the centrifuge
step lagging as reads are not instantly written to disk. ¢, A stacked area
graph illustrating how the proportion of bases mapping to each species
changes over time. d, By contrast, the proportion of reads mapping to
each species over time does not change significantly. The species and
composition are as in Fig. 2.

Using this approach, we generated 5.995Gb of sequence data
and identified all bacterial genomes in the sample; although we
observed enrichment, the flow cell became completely blocked
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before reaching the target coverage (Fig. 3, Supplementary Table 2
and Supplementary Figs. 5 and 6). Six gigabases of sequence should
result in ~10X coverage; here we obtained 41X coverage (Fig. 3b). In
this case, we considered the entire duration of a read as a candidate
for Read Until; consequently, some reads are rejected later into the
read. This results in a wider range of mean rejected read lengths, par-
ticularly for S. cerevisiae (Fig. 3a). This experiment was completed
within 24h, illustrating the benefits in terms of time-to-answer.
As expected, improved coverage depth results in almost complete
assemblies using MetaFlye compared to that achieved by Nicholls
et al. (Supplementary Fig. 7), in part a consequence of improved
read lengths here'>'“. Subsequent nuclease flushing of the flow cell
would increase effective throughput, but this was not our goal.

Methods for target panel enrichment include PCR amplification,
bait capture methods and CRISPR-Cas9 approaches'*'®. These
methods are reliable and cost effective at scale, but have develop-
ment, instrument and consumable costs. Unlike methods that cap-
ture native DNA'", PCR-based methods cannot capture methylation
information without additional processing. Such panels cannot be
altered easily.

Selective sequencing provides an alternative, and so we iden-
tified 19,296 target genes annotated as protein-coding with tran-
script name IDs (see Methods) from the human genome (GRCh38),
excluding those on X and Y and ignoring alternate chromosome
representations'’. We extracted exon coordinates, extended 3kb
either side and collapsed overlapping targets. We enriched for tar-
gets found on odd-numbered chromosomes, rejecting all reads
from outside these targets. This results in a total search space of
176 Mb (~5%) containing 25,600 targets covering ~10,000 genes
(Fig. 4a). A single GridION flow cell with 1,660 pores gave 6.1 Gb
of sequence data in 24h. After nuclease flushing, loading addi-
tional library and 24 h more sequencing gave 5.573 Gb (total yield:
11.675Gb, N50 (the read length such that reads of this length or
greater sum to at least half the total bases): 9kb; Supplementary
Table 2). Exon targets had a median coverage of 17.23X (mean
17.39%) with 75% >14.15x and 25% >20.42X. On ‘control’
even-numbered chromosomes, the median coverage was 0.98x
(mean 1.2x). Detailed coverage plots of targets on odd-numbered
(Fig. 4c,d) and even-numbered (Fig. 4e,f) chromosomes correlate
with the target regions. Controlling for these experiments is com-
plicated by flow cell variability. We make comparisons with theo-
retical yields of 10, 20 and 30 Gb, resulting in approximately 3-10x
coverage. Our effective enrichment is from 2.7X to 5.4X, consistent
with our earlier observations. Nuclease flushing assists enrichment
and flow cell efficiency (Supplementary Fig. 8).

Our exon panel contains 371 genes from COSMIC with a median
coverage of 13.7Xx (Fig. 4b)®. Figure 4c,d shows the coverage for
BRCA1I, PML and surrounding targets. Although it is preferable to
include introns, here we excluded intronic sequences to reduce the
total search space (although not required). To further explore this
and illustrate the flexibility of our approach, we targeted the entire
COSMIC panel (717 genes) excluding genes with no given genomic
coordinates (Supplementary File 1). Including flanking 5-kb
sequences, our search space was 89.9Mb (~2.7% of the genome).
Using a flow cell with 1,724 pores, we generated 3.7 Gb within 24 h.
Nuclease flush and reload generated a further 6.03 Gb, giving a total
of 9.73Gb, with a read N50 of 940 bases (Fig. 5, Supplementary
Fig. 9 and Supplementary Table 2). Deliberately rejected reads had
an N50 of 515 bases; sequenced reads had an N50 of 11,564 bases.
Gene targets had a median coverage of 32.2X (mean 30.7x; Fig. 5a
and Supplementary File 1), with 75% of genes >28% and 25% of
genes >35X. Figure 5c—f shows the coverage for BRCAI, PML,
WIF1 and HOXCI11/C13. The specificity of selective sequencing
is clear, particularly where neighboring genes in the HOXC cluster
are not sequenced. A second run, utilizing three flushes, one every
24h, generated a total of 17.87Gb with a read N50 of 793 bases
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Fig. 4 | Half-exome panel targeted sequencing. a, The mean coverage across each exon target in the genome ordered by chromosome. Exons on
odd-numbered chromosomes are enriched (green) and those on even-numbered chromosomes are depleted (red). b, The mean coverage across each
exon for genes within the COSMIC panels. In a and b, the horizontal lines represent the mean expected coverage for flow cells yielding ~10, ~20 or ~30 Gb
of data in a single run. The mean coverage was calculated by mosdepth?. c-f, Coverage plots for the highlighted genes including BRCAT (c), PML (d), WIF1
(e), and HOXC13 and HOXCT1 (f). The targets in ¢ and d are enriched as they are found on chromosomes 17 and 15 while those in e and f are depleted as
the genes are on chromosome 12. Exon target regions are indicated by arrows. In this experiment, different targets were used for the Watson and Crick
strands as illustrated by the offsets. Note the absence of target regions in e and f.

(Supplementary Fig. 10 and Supplementary Table 2). Gene targets  readfish on non-ONT hardware, we ran the same experiment using
had a median coverage of 42.3x (mean 40.5%; Fig. 5b), with 75% an NVIDIA GeForce GTX 1080 GPU using the fast model of the
of genes >38% and 25% of genes >44X. To test the performance of  base-caller. This run generated only 6.7 Gb of data with a read N50
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Fig. 5| COSMIC panel targeted sequencing. a,b, The mean coverage across the selected COSMIC gene regions ordered by chromosome for two
independent sequencing runs of NA12878. The horizontal lines represent the mean expected coverage for flow cells yielding ~10, ~20 or ~30 Gb of data

in a single run. The mean coverage was calculated by mosdepth?. ¢-f, Coverage plots from each run (light green) for the highlighted genes including
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Fig. 6 | COSMIC panel targeted sequencing of NB4. a,b, The mean coverage across each of the COSMIC target regions ordered by chromosome for

two independent sequencing runs of the NB4 cell line. The horizontal dashed line indicates the expected coverage from a flow cell yielding ~10, ~20 or
~30 Gb of sequence data in a single run. ¢,d, Coverage plots for each NB4 sequencing run shown in orange for PML (¢) and RARA (d). e f, Reads mapping
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individual reads are shown. Break points were identified using SVIM; visualizations were performed using Ribbon?°.

of 799 bases (Supplementary Fig. 11 and Supplementary Table 2). The difference in the yield between these runsislargely due to flow
The median coverage of genes was 19.6X (mean 19.1x), with 75% of  cell variation, particularly for the third run, which showed unusual
genes >17.78% and 25% of genes >20.99x. flow cell activity (Supplementary Fig. 12). However, normalizing
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the enrichment to the total yield of each flow cell shows a similar per-
formance in each experiment for a selection of target genes includ-
ing PML, WIF1, HOXC11/C13, RARA and BRCAI (Supplementary
Figs. 13-17). This suggests that any steps taken to maximize the
yield, such as flushing, will result in enhanced enrichment. As
with any native nanopore sequence data, these data can be used
to assess structural variants and nucleotide variation. As shown in
Supplementary Table 3, these data show recall and precision equiva-
lent to, or better than, reference nanopore whole-genome data at a
similar coverage without targeting'’. Structural variants within the
targeted regions can be detected with high recall (Supplementary
Table 4). Crucially, between 5 and 10 typical flow cells would be
required to generate equivalent coverage without Read Until.

To test screening for structural variants, we used the NB4
acute promyelocytic leukemia cell line’. Using the same COSMIC
panel, we identified the translocation using a flow cell with only
1,196 pores, generating 4.5Gb of sequence data in under 15h
(Supplementary Fig. 18). The median coverage of targets was 11.46X
(mean 11.78x; Fig. 6a,c,d), with 75% of genes >9.5x and 25% of
genes >13.4X. Analysis with SVIM looking for break-point ends,
ignoring in/dels, identified two candidates passing default filtering
(see Methods)®. The break point can also be detected with Sniffles
(data not shown)”. Of these candidates, one captured the known
break point supported by six reads. A further 24h of sequencing
(~3 Gb) resulted in a median coverage of 17.37X (mean 18x) and 9
reads supporting the variant (Fig. 6e and Supplementary Table 5).
No complex rearrangements were reported in NA12878 using the
same COSMIC panel (Supplementary Table 5). A subsequent repeat
of this experiment (Supplementary Fig. 19), with flushing every
24h, generated 15.9Gb of sequence data. The median coverage of
targets was 34X (mean 35.5%; Fig. 6b), with 75% of genes >30X,
25% of genes >38x and 23 reads supporting the break point (Fig. 6f
and Supplementary Table 5).

Discussion

The idea of selectively sequencing (Read Until) individual mol-
ecules using only computational methods is a unique capability of
nanopore sequencing'. Here we exploit ONT tools to provide a true
real-time stream of sequence data as nucleotide bases and provide
a toolkit to design and control selective sequencing experiments
called readfish. This approach removes the need for complex signal
mapping algorithms but does require a sufficiently fast base-caller.
Previous work illustrated that this method was feasible, but required
extensive additional computation and did not show significant
enrichment over throughput achieved without running Read Until*.
Here we demonstrate real enrichment over that expected from a
similar control flow cell. We also show that standard techniques for
enhancing the flow cell yield such as nuclease flushing and load-
ing additional library are similarly beneficial for Read Until experi-
ments. Although not extensively exploited here, nuclease flushing
and reuse of flow cells do increase the yield and enrichment, and we
have taken to flushing Read Until experiments every 24 h.

We find that increased rejection of reads on a flow cell nega-
tively impacts the sequencing yield and so observed enrichment.
The main benefit of selective sequencing in metagenomics and host
depletion is to improve time-to-answer. For samples that sequence
well (that is, do not tend to block the flow cell), additional enrich-
ment benefits may be observed. Notably, running selective sequenc-
ing does not disrupt the proportion of reads by count that map to
a specific reference. Thus, for metagenomics, it is still possible to
assess the relative abundance while focusing sequencing length
on specific subsets of reads. Future methods proposed by ONT to
address blocking, such as onboard nucleases, might increase the
throughput in future.

The key benefit of our approach is that we utilize only com-
putational resources available in the GridION Mkl. As we use
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current commercially provided base-callers, we can utilize new
algorithms and pores as they are developed. Thus, although not
yet tested, we could use this method on RNA if sufficiently long
reads require depletion. Similarly. we could use methylation-aware
base-callers to sequence regions of DNA starting from either
high- or low-methylation regions. As we obtain sequence, rather
than signal, we greatly simplify the construction of pipelines for
downstream analysis of reads. Although we focus on results
for the GridION Mk1, we show that this method can be used with
any MinION configuration provided there is sufficient available
GPU to base-call a sequencing run in real time (Supplementary
Note 1). As we show here, it is possible to utilize the fast base-calling
model and obtain effective enrichment using a single NVIDIA
GeForce GTX 1080 GPU. Other users have reported success with
the high-accuracy model on systems configured with NVIDIA
2080GPUs (]J. Tyson, personal communication). In cost terms,
any platform capable of real-time base-calling will be compatible
with our approach. In principle, this method should scale to the
PromethION platform.

We demonstrate that selective sequencing of arbitrary targeted
regions of the human genome results in actionable coverage and
can identify single-nucleotide variants and structural variants in the
COSMIC panel. For structural variant analysis, DNA extraction,
library preparation, sequencing and analysis could be completed
within 24h. When sequencing a subset of a large genome, large
numbers of off-target reads are sampled while detecting those of
interest and the precise parameters of optimal target size and cover-
age have yet to be defined. Consequently, library preparation meth-
ods enriching for regions of interest will result in a higher coverage
than Read Until. However, the design of such panels is relatively
costly and inflexible once developed. Methods relying on amplifica-
tion result in the loss of methylation data, which can be found using
the methods presented here.

In readfish selective sequencing, targets can be updated by a
single configuration file. Developing a new panel is as straightfor-
ward as compiling a list of target regions. Here we also illustrate the
concept of adaptive sequencing, as in our metagenomics examples,
where targets can be dynamically adjusted during a run. In theory,
a panel could be updated in response to observations of the data in
real time, perhaps adding targets where candidate novel structural
variants have been identified or removing targets where sufficient
evidence is available to eliminate the possibility of a structural vari-
ant existing.

Of course, throughput achievable on platforms such as
PromethION at scale provides efficient whole-genome sequenc-
ing”. Thus, any effective method for enrichment must be as effi-
cient, including the additional computation required. By utilizing
the available GPU computational capacity during the sequencing
run, we address this issue. There is no reason, in theory, why sam-
ples could not be multiplexed on a single flow cell as long as suffi-
cient yield can be obtained to address the biological question.

Although we have focused exclusively on applications for Read
Until, we believe that a real-time sequence data stream as bases
has significant advantages for future pipelines. If sequence data
can be streamed directly into an analysis pipeline and conclu-
sions drawn without the requirements for data storage, then field
deployment of sequencing for detection of specific sequences
might be accelerated. Ultimately, it may be possible to stream
sequence data for calling of structural variants and further analy-
sis in real time.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
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Methods
Library preparation and sequencing. Standard LSK-109 (ONT) sequencing
libraries were prepared from either the ZymoBIOMICS HMW DNA Standard
(DS6322 ZymoBIOMICS) or DNA extracted from GM12878 cells (Coriell) or NB4
cells (gift from M. Hubank) as described in Jain et al."’. Human DNA for exon
enrichment or gene targeting was sheared to approximately 12kb using g-TUBE
(Covaris). Sequencing runs used either the GridlON Mk1 or a MinION with an
NVIDIA GeForce GTX 1080 GPU (see Supplementary Table 2). Standard scripts
for sequencing were used with one modification, namely that the size of the data
chunk delivered by MinKNOW was reduced from 1s to 0.4s by changing the value
of the break_reads_after_seconds parameter in the relevant TOML file (located
in ../minknow/conf/package/sequencing/ for MinKNOW core version 3.6). All
sequencing used FLO-MIN106 R9.4.1 flow cells.

When running Read Until experiments seeking to maximize the yield,
throughput on the flow cell should be monitored closely. Our practice has been
to nuclease flush flow cells every 24 h to maximize throughput. For maximizing
occupancy on the flow cell, users should experiment with loading more library
than they might otherwise do. For example, where a user might load 400 ng of
library with a read length N50 of 10-15kb, we would recommend loading 600 ng of
library. This assumes R9.4 flow cells. This protocol has not yet been tested on R10.

Detection of single-nucleotide variants. Single-nucleotide polymorphisms (SNPs)
in NA12878 read data were called using Nanopolish in methylation-aware mode™.
Reads were mapped to hg38 removing ALTs with minimap2 using standard
settings for ONT reads®. High-confidence gold-standard SNPs were identified
from the Genome In A Bottle truth set”. SNPs were compared with a 35X WGS
NA12878 reference set recalled using the same Guppy base-caller model'’. SNP
comparisons were made using hap.py with default settings and the same target sites
used for selective sequencing (https://github.com/Illumina/hap.py).

Structural variant detection and concordance. Reads were mapped to the hg38
primary assembly with minimap2 and standard ONT settings. Variants were
called using SVIM and Sniffles with default settings and the minimum variant
length set as 50 (refs.***"). Only SVIM variant calls with QUAL above 10 and
longer than 50 bp were kept. Variants of the same type present in both SVIM

and Sniffles call sets were selected as the final call set using SURVIVOR and a
maximal distance between break points was set to 500 (ref. **). Only insertions and
deletions intersecting the COSMIC target panel were considered for concordance
calculations in the whole-genome-sequence dataset, run 1 and run 2. Concordance
calculations were performed with Truvari (https://github.com/spiralgenetics/
truvari) with the reference distance set as 1.5kb and the percentage size similarity
set as 0.3, and only insertions and deletions larger than 50 bp within the COSMIC
target panel were considered. For analysis of the translocation in the NB4 cell lines,
variant calls were filtered with a quality score of 10 and non-BND (break-point
end) structural variant types were ignored. Structural variants were visualized

with Ribbon™.

Target lists. The exact target list used to configure exon capture can be obtained
at http://jan2020.archive.ensembl.org/biomart/martview/59d93fb27bdffa5315
2236¢6cb12c4b1?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapie
ns_gene_ensembl.default.structure.ensembl_gene_id%7Chsapiens_gene_ensembl.
default.structure.ensembl_gene_id_version%7Chsapiens_gene_ensembl.
default.structure.ensembl_transcript_id%7Chsapiens_gene_ensembl.default.
structure.ensembl_transcript_id_version%7Chsapiens_gene_ensembl.default.
structure.chromosome_name%?7Chsapiens_gene_ensembl.default.structure.
exon_chrom_start%7Chsapiens_gene_ensembl.default.structure.exon_chrom_
end&FILTERS=hsapiens_gene_ensembl.default.filters.biotype.%22protein_
coding%22%7Chsapiens_gene_ensembl.default.filters.chromosome_name.
%221,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 ,22,X,Y%22%7Chsapie
ns_gene_ensembl.default filters.with_hgnc_trans_name.only&VISIBLEPANEL=
attributepanel.

Read Until cache configuration and chunk size. A read begins with adapter
sequences as well as optional barcodes. Additionally, read starts sometimes stall as
DNA engages with the pore before signal-containing sequence data are available.
The first chunk of data may not provide an optimal base-call and additional data
may be required. Calling any single fragment of data in isolation is less informative
than calling the entire signal, and so we implement a read cache concatenating
adjacent signal data from the same read. This enables base-calling the complete
signal for each read since it started. As of MinKNOW version 3.6, the sequencing
platform is effectively limited to a lower-bound chunk size of 0.4 s. As shown

in Supplementary Fig. 2 and Supplementary Table 1, more than 80% of human
reads can be base-called and aligned within 2 chunks or 0.8 s worth of data. For
bacterial sequences, more than 40% of reads can be base-called and aligned
within a single chunk or 0.4 s worth of data. Thus, by observation, the smallest
possible chunk size will enable the fastest decision-making for any given sequence.
In a typical experiment, we find that 90% of reads can be processed (called,
mapped and decision made) within three chunks (1.2's; Supplementary Fig. 2 and
Supplementary Table 1).
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Base-caller configuration. The Guppy base-caller contains several models for
base-calling that trade speed (fast) for accuracy (high-accuracy model, hac) and
can optionally call methylation. For selective sequencing, the goal is speed, and so
we investigated the efficacy of both the fast and hac models, finding the GridION
MK1 easily powerful enough to use the hac model. Across all experiments shown
here, the average batch of reads was called in 0.28 s and contained 30 reads. At the
maximum load, individual reads are processed in less than 0.002s. Thus, we call at
least 100 read fragments per second and even at the peak load can typically call all
512 reads (see Supplementary Figs. 3-7 and 10).

Experimental configuration. Depending on the configuration of the experiment,
the response to read mapping varies (see Methods). If depleting contaminants
(host depletion), then reads mapping to that reference should be rejected. For
enrichment, reads mapping to a target should be sequenced. The action for
non-mapping reads will depend on the experiment. If the experimental goal is
enriching low-abundance or unknown targets, non-mapping reads should be
sequenced. If enriching for subsets of a known reference, non-mapping reads
might be rejected in favor of sampling more. Given the variety of options, we
provide a configuration file allowing any mapping result to trigger any action.

We include the option to dynamically update this file during sequencing,
enabling target switches while sequencing. The configuration also allows different
experiments on regions of the same flow cell (see https://github.com/LooseLab/
readfish/blob/master/TOML.md).

readfish code availability. The ONT Read Until API is required for running Read
Until. The results presented here used an updated version of this API, available
from our GitHub (https://github.com/LooseLab/read_until_api_v2; Git commit
cffof52). These changes were required for Python3 compatibility and also change
the behavior of the read cache, enabling consecutive chunks of data to be stored for
calling. As the ONT tool chain matures to Python3, such changes will no longer

be required. pyguppyclient (v.0.0.5), a python interface to the Guppy base-calling
server, is currently available on PyPI. Our code is available open source at http://
www.github.com/LooseLab/readfish and installable via PyPI.

readfish scripts. readfish is a set of scripts that control sequencing in real time.
Each script is accessed as a sub-command, and a description is given below.

targets. This script runs the core Read Until process as specified in the experiment’s
TOML file. It can select specific regions of a genome, mapping reads in real time
using minimap2 and rejecting reads appropriately. This script should be started
once the initial mux scan has completed. The experiment’s TOML file can be
updated during a sequencing run to change the configuration of the Read Until
process. It is through this mechanism that the align and centrifuge commands

can change Read Until behavior during a run. The configuration parameters are
available under the help flag. Tables 1 and 2 describe the mapping parameters and
configuration options for various possible experiment types.

align. This script runs an instance of the ‘Run Until’ monitoring system that
watches as completed reads are written to disk. When new data are detected, this
pipeline will map the data against the target reference genome (specified in the
experiment’s TOML file) and compute the cumulative coverage for the sequencing
run. Once a genomic target reaches sufficient coverage, it will be added to the
unblock list. Optionally, the user can provide additional targets from the start of
the run to implement ‘host depletion’ Finally, the user can configure ‘align’ to stop
the entire run if all samples have reached the required coverage depth. At present,
this coverage depth is uniform for all samples, so it is not possible to have variable
coverage over a target set.

centrifuge. This script runs an instance of the ‘Run Until’ monitoring system. As
completed reads are written to disk, this program (Supplementary Fig. 1c) will
classify the reads using centrifuge and a user-defined index. When 2,000 reads
are uniquely classified, the corresponding reference genome is downloaded from
RefSeq” and incorporated into a minimap2 index. At this point, the same process

Table 1| Description of possible read mapping conditions

Mapping condition Description

multi_on The read fragment maps to multiple locations
including a region of interest.

multi_off The read fragment maps to multiple locations not
including a region of interest.

single_on The read fragment maps only to a region of interest.

single_off The read fragment maps to one location but it is not a
region of interest.

no_map The read fragment does not map to the reference.

no_seq No sequence was obtained for the signal fragment.
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Table 2 | Example configurations for different experiment types

Experiment type Region of interest for Mapping condition
alignments multi_on multi_off single_on single_off no_map no_seq
Host depletion Known host genome unblock proceed unblock proceed proceed proceed
Targeted sequencing Known regions from one or stop receiving proceed stop receiving unblock proceed proceed
more genomes
Target coverage depth (known All known genomes within the  stop receiving proceed stop receiving unblock proceed proceed
sample composition) sample, tracked for coverage
depth
Low-abundance enrichment All genomes within the sample stop receiving proceed stop receiving unblock proceed proceed

that can be identified as well as
those that cannot

(unknown sample composition)

‘unblock’ causes a read to be ejected from the pore; ‘proceed’ means that a read continues to sequence and serve data through the API for later decisions; ‘stop receiving' allows the read to continue

sequencing with no further data served through the API.

as in ‘align’ is used to determine the coverage depth. The new alignment index is
passed to the core Read Until script (‘targets’) by updating the experiment’s TOML
file, allowing dynamic updates for both the unblock list and the genomic reference.

unblock-all. This script is provided as a test of the Read Until API where all
incoming read fragments are immediately unblocked. It allows a user to quickly
determine whether their MinKNOW instance is able to provide and process
unblock signals at the correct rate. Users should provide a bulk FASTS5 file for
playback for this testing process.

validate. This script is a standalone tool for validating an experiment’s TOML file.
We provide an ru_schema.json (https://github.com/LooseLab/readfish/blob/14dd
f60c60c2697e86cf870f406751c7cd26daf8/ru/static/readfish_toml.schema.json) file
that describes the required configuration format.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All reads generated in the course of this study are available from the ENA under
project ID PRJEB36644.

Code availability
Our code is available open source at http://www.github.com/LooseLab/readfish.
See also “readfish code availability” above.
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Abstract
Background:

The 2021 WHO classification of central nervous system tumors includes multiple molecular markers and patterns
that are recommended for routine diagnostic use in addition to histology. Sequencing infrastructures for complete
molecular profiling require considerable investment, while batching samples for sequencing and methylation
profiling can delay turnaround time. We introduce RAPID-CNS?, a nanopore adaptive sequencing pipeline that
enables comprehensive mutational, methylation and copy number profiling of CNS tumours with a single, cost-
effective sequencing assay. It can be run for single samples and offers highly flexible target selection that can be

personalized per case with no additional library preparation.
Methods:

Utilizing ReadFish, a toolkit enabling targeted nanopore sequencing without the need for library enrichment, we
sequenced DNA from 22 diffuse glioma samples on a MinlON device. Target regions comprised our Heidelberg
brain tumor NGS panel and pre-selected CpG sites for methylation classification using an adapted random forest
classifier. Pathognomonic alterations, copy number profiles, and methylation classes were called using a custom
bioinformatics pipeline. The resulting data were compared to their corresponding standard NGS panel sequencing

and EPIC methylation array results.
Results:

Complete concordance with the EPIC array was found for copy number profiles. The vast majority (94%) of
pathognomonic mutations were congruent with standard NGS panel-seq data. MGMT promoter status was
correctly identified in all samples. Methylation families from the random forest classifier were detected with 96%
congruence. Among the alterations decisive for rendering a WHO 2021 classification-compatible integrated
diagnosis, 97% of the alterations were consistent over the entire cohort (completely congruent in 19/22 cases and

sufficient for unequivocal diagnosis in all 22 samples).
Conclusions:

RAPID-CNS? provides a swift and highly flexible alternative to conventional NGS and array-based methods for
SNV/InDel analysis, detection of copy number alterations, target gene methylation analysis (e.g. MGMT) and
methylation-based classification. The turnaround time of ~5 days for this proof-of-concept study can be further
shortened to < 24h by optimizing target sizes and enabling real-time computational analysis. Expected advances
in nanopore sequencing and analysis hardware make the prospect of integrative molecular diagnosis in an intra-
operative setting a feasible prospect in future. This low-capital approach would be cost-efficient for low throughput
settings or in locations with less sophisticated laboratory infrastructure, and invaluable in cases requiring

immediate diagnoses.
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Molecular markers are now unequivocally a requirement for integrative brain tumor diagnostics. The 2021 WHO
classification of CNS tumors substantially increases the set of genes required in routine evaluation, and
significantly increases the relevance of DNA methylation analysis in the diagnostic process [10]. Multiple
approaches are available for such analyses. However, neuropathology labs cannot rely on current off-the-shelf
products, since these do not cover all genes relevant for neuro-oncology, while including large target regions that
are dispensable. Thus, custom assays have typically been set-up in neuropathology labs where the equipment for
next-generation sequencing (NGS) is available. In turn, the advantages of custom neuropathology NGS panels can
only be efficiently exploited when case numbers are sufficient for batchwise processing. Labs with lower specimen
submission numbers hence may have to pool samples over multiple weeks. Here we introduce RAPID-CNS? - a
custom neurooncology molecular diagnostic workflow using third generation sequencing for parallel copy-number
profiling, mutational and methylation analysis that is highly flexible in target selection, runs efficiently on single

samples, and can be initiated immediately upon receipt of frozen sections.

Nanopore sequencing has an advantage over current NGS methods in terms of longer read lengths, shorter and
easier library preparation protocols, ability to call base modifications natively from extracted nucleic acids, real
time analysis, and portablility of sequencing devices — all at relatively low cost [3]. However, smaller devices like
the MinION yield low-coverage data when run genome-wide, that makes it difficult to detect pathognomonic
genetic alterations or hard-to-map regions like the TERT promoter [6]. Nanopore provides a “ReadUntil” adaptive
sampling toolkit that can reject reads in real-time during sequencing [7]. ReadFish harnesses this functionality to
enable targeted adaptive sequencing with no additional steps in library preparation [9]. This considerably increases
coverage over “target” regions by real-time enrichment during sequencing, to allow confident detection of

clinically relevant alterations.

RAPID-CNS? leverages adaptive nanopore sequencing through ReadFish and is run here as a proof-of-concept
using a portable MinION device. We formulated target regions covering the Heidelberg brain tumour NGS panel
and CpG sites required for methylation-based classification [4, 11]. We performed ReadFish-based sequencing on
22 diffuse glioma samples that had previously undergone brain tumor NGS panel and Infinium MethylationEPIC
array (EPIC) analysis [2, 4, 11]. Samples were selected to cover a variety of the most clinically-relevant
pathognomonic alterations (IDH1, 1p/19q codeletion, chr7 gain/chr10 loss, TERT promoter, EGFR amplification,
CDKN2A/B deletion, MGMT status) and relevant methylation classes identified by conventional methods.
Cryoconserved brain tumour tissue was prepared for Nanopore sequencing with the SQK-LSK109 Ligation
Sequencing Kit from ONT. Incubation time and other parameters were optimized to improve quality, amount of
data generated and on-target rate of the libraries (Supplementary methods). Single samples were loaded onto FLO-
MIN106 R9.4.1 flow cells and run on a MinION 1B. ReadFish controlled the sequencing in real-time and was run
using a consumer notebook powered by an 8GB NVIDIA RTX 2080 Ti GPU. Samples were sequenced for up to
72 hours. Our selected target regions covered 5.56% of the entire genome. Sequencing time can be reduced to less
than 24 hours by further optimizing the size of the targeted regions. Sequenced data was analysed using a
bioinformatics pipeline customized for neurooncology targets (which will be available on
https://github.com/areebapatel/RAPID-CNS2). SNVs were filtered for clinical relevance by their 1000 genomes
population frequency (<0.01) and COSMIC annotations [1, 13, 14]. Copy number alterations were estimated using
depth-of-coverage of the mapped reads [12]. Nanopore sequencing provides the additional advantage of natively

estimating base modifications from a single DNA sequencing assay. Methylated bases were identified using

3
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megalodon, a deep neural network-based modified base caller [8]. Megalodon’s output was used to compute
methylation values over targeted CpG sites and assess MGMT promoter methylation status. A random forest
classifier based on the previously published reference set [4] was trained to predict methylation classes for the
samples. MGMT promoter methylation status was assigned by averaging methylation values over all CpG sites in
the MGMT promoter region (Supplementary results). Mean run time from tissue collection to reporting for RAPID-
CNS? was < 5 days. Nanopore sequencing considerably reduced library preparation time to 3.5 hours, as opposed
to 48 hours for panel sequencing and 72 hours for the EPIC array (Figure 1). Additionally, it merged both data
categories (sequencing and methylation) into one lab workflow. Despite the differences in sequencing technology
and method-specific data analysis pipelines, congruence of detected SNVs, regardless of clonality and clinical
relevance, was 78% (Supplementary data). Importantly, diagnostically relevant, pathognomonic mutations like
IDHI R132H/S and TERT promoter were congruent in 22/22 and 19/22 samples respectively (Figure 1b). In
addition, we derived copy-number-plots (CNP) from calculated copy number levels for the Nanopore data
(Supplementary figure 1a). Plots generated using Nanopore data displayed markedly better resolution than those
obtained using panel sequencing data (Supplementary figure 1b). Complete concordance with EPIC array analysis
was found for CNV levels in all samples. RAPID-CNS? also enabled gene-level CNV detection (Supplementary
data). Among the alterations decisive for rendering an integrated molecular diagnosis, 217/220 were consistent

over the entire cohort (completely congruent in 19/22 cases).

Including CpG sites relevant for methylation-based classification in the ReadFish targets also allowed for
methylation class prediction. The ability of nanopore sequencing to reliably provide a methylation classification
using low-pass whole genome sequencing has previously been demonstrated by nanoDx [5]. Methylation families
predicted by RAPID-CNS? (the level most relevant for treatment decisions) matched their corresponding EPIC
array-based classification in 21/22 cases, while precise methylation sub-classes were concordant in 14 cases.
MGMT promoter status was also congruent with its corresponding EPIC array analysis for all cases [2]. Nanopore
identified the MGMT promoter status as unmethylated in one sample in line with the EPIC array, which was

assigned as methylated by pyrosequencing.

Targeted regions for RAPID-CNS? can be easily altered by editing a BED file, in principle allowing lower
sequencing times than in this study. With no additional library preparation steps required, it is possible to modify
targeted regions for each individual sample as required. The MinION is a portable, handheld device which makes
it a rational option for smaller neuropathology labs or in lower-infrastructure locations. While we used a GPU to
run ReadFish, it can also be run using a sufficiently powerful CPU. Collectively, the RAPID-CNS? approach can
be set-up at low capital expense, is cost-efficient even in a low throughput setting, and provides a swift and highly
flexible alternative to conventional NGS methods for SNV/InDel analysis, methylation classification and detection

of copy number alterations.

Acknowledgment:

This study was supported by the Deutsche Forschungsgemeinschaft (DFG) via Comprehensive Research Center
(SFB) 1389 Unite Glioblastoma.



medRxiv preprint doi: https://doi.org/10.1101/2021.08.09.21261784; this version posted August 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
erpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

190

References:

Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG,
Donnelly P, Eichler EE, Flicek P, Gabriel SB, Gibbs RA, Green ED, Hurles ME, Knoppers BM, Korbel JO,
Lander ES, Lee C, Lehrach H, Mardis ER, Marth GT, McVean GA, Nickerson DA, Schmidt JP, Sherry ST,
Wang J, Wilson RK, Gibbs RA, Boerwinkle E, Doddapaneni H, Han Y, Korchina V, Kovar C, Lee S, Muzny D,
Reid JG, Zhu Y, Wang J, Chang Y, Feng Q, Fang X, Guo X, Jian M, Jiang H, Jin X, Lan T, Li G, LiJ, Li Y, Liu
S, Liu X, Lu Y, Ma X, Tang M, Wang B, Wang G, Wu H, Wu R, Xu X, Yin Y, Zhang D, Zhang W, Zhao J,
Zhao M, Zheng X, Lander ES, Altshuler DM, Gabriel SB, Gupta N, Gharani N, Toji LH, Gerry NP, Resch AM,
Flicek P, Barker J, Clarke L, Gil L, Hunt SE, Kelman G, Kulesha E, Leinonen R, McLaren WM, Radhakrishnan
R, Roa A, Smirnov D, Smith RE, Streeter I, Thormann A, Toneva I, Vaughan B, Zheng-Bradley X, Bentley DR,
Grocock R, Humphray S, James T, Kingsbury Z, Lehrach H, Sudbrak R, Albrecht MW, Amstislavskiy VS,
Borodina TA, Lienhard M, Mertes F, Sultan M, Timmermann B, Yaspo M-L, Mardis ER, Wilson RK, Fulton L,
Fulton R, Sherry ST, Ananiev V, Belaia Z, Beloslyudtsev D, Bouk N, Chen C, Church D, Cohen R, Cook C,
Garner J, Hefferon T, Kimelman M, Liu C, Lopez J, Meric P, O’Sullivan C, Ostapchuk Y, Phan L, Ponomarov
S, Schneider V, Shekhtman E, Sirotkin K, Slotta D, Zhang H, McVean GA, Durbin RM, Balasubramaniam S,
Burton J, Danecek P, Keane TM, Kolb-Kokocinski A, McCarthy S, Stalker J, Quail M, Schmidt JP, Davies CJ,
Gollub J, Webster T, Wong B, Zhan Y, Auton A, Campbell CL, Kong Y, Marcketta A, Gibbs RA, Yu F,
Antunes L, Bainbridge M, Muzny D, Sabo A, Huang Z, Wang J, Coin LJM, Fang L, Guo X, Jin X, Li G, Li Q,
LiY,LiZ, Lin H, Liu B, Luo R, Shao H, Xie Y, Ye C, Yu C, Zhang F, Zheng H, Zhu H, Alkan C, Dal E,
Kahveci F, Marth GT, Garrison EP, Kural D, Lee W-P, Fung Leong W, Stromberg M, Ward AN, Wu J, Zhang
M, Daly MJ, DePristo MA, Handsaker RE, Altshuler DM, Banks E, Bhatia G, del Angel G, Gabriel SB,
Genovese G, Gupta N, Li H, Kashin S, Lander ES, McCarroll SA, Nemesh JC, Poplin RE, Yoon SC, Lihm J,
Makarov V, Clark AG, Gottipati S, Keinan A, Rodriguez-Flores JL, Korbel JO, Rausch T, Fritz MH, Stiitz AM,
Flicek P, Beal K, Clarke L, Datta A, Herrero J, McLaren WM, Ritchie GRS, Smith RE, Zerbino D, Zheng-
Bradley X, Sabeti PC, Shlyakhter I, Schaffner SF, Vitti J, Cooper DN, Ball E v, Stenson PD, Bentley DR,
Barnes B, Bauer M, Keira Cheetham R, Cox A, Eberle M, Humphray S, Kahn S, Murray L, Peden J, Shaw R,
Kenny EE, Batzer MA, Konkel MK, Walker JA, MacArthur DG, Lek M, Sudbrak R, Amstislavskiy VS, Herwig
R, Mardis ER, Ding L, Koboldt DC, Larson D, Ye K, Gravel S, Consortium T 1000 GP, authors C, committee S,
group P, Medicine BC of, BGI-Shenzhen, Harvard BI of MIT and, Research CI for M, European Molecular
Biology Laboratory EBI, Illumina, Genetics MPI for M, University MGI at W, Health USNI of, Oxford U of;
Institute WTS, group A, Affymetrix, Medicine AEC of, University B, College B, Laboratory CSH, University C,
Laboratory EMB, University H, Database HGM, Sinai IS of M at M, University LS, Hospital MG, University M,
National Eye Institute NIH (2015) A global reference for human genetic variation. Nature 526:68—-74. doi:
10.1038/nature15393

Bady P, Sciuscio D, Diserens A-C, Bloch J, van den Bent MJ, Marosi C, Dietrich P-Y, Weller M, Mariani L,
Heppner FL, Mcdonald DR, Lacombe D, Stupp R, Delorenzi M, Hegi ME (2012) MGMT methylation analysis
of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene
silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-

status. Acta neuropathologica 124:547-560. doi: 10.1007/s00401-012-1016-2



medRxiv preprint doi: https://doi.org/10.1101/2021.08.09.21261784; this version posted August 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
erpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

191

Bowden R, Davies RW, Heger A, Pagnamenta AT, de Cesare M, Oikkonen LE, Parkes D, Freeman C, Dhalla F,
Patel SY, Popitsch N, Ip CLC, Roberts HE, Salatino S, Lockstone H, Lunter G, Taylor JC, Buck D, Simpson
MA, Donnelly P (2019) Sequencing of human genomes with nanopore technology. Nature Communications

10:1869. doi: 10.1038/s41467-019-09637-5

Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DE,
Kratz A, Wefers AK, Huang K, Pajtler KW, Schweizer L, Stichel D, Olar A, Engel NW, Lindenberg K, Harter
PN, Braczynski AK, Plate KH, Dohmen H, Garvalov BK, Coras R, Hélsken A, Hewer E, Bewerunge-Hudler M,
Schick M, Fischer R, Beschorner R, Schittenhelm J, Staszewski O, Wani K, Varlet P, Pages M, Temming P,
Lohmann D, Selt F, Witt H, Milde T, Witt O, Aronica E, Giangaspero F, Rushing E, Scheurlen W, Geisenberger
C, Rodriguez FJ, Becker A, Preusser M, Haberler C, Bjerkvig R, Cryan J, Farrell M, Deckert M, Hench J, Frank
S, Serrano J, Kannan K, Tsirigos A, Briick W, Hofer S, Brehmer S, Seiz-Rosenhagen M, Hinggi D, Hans V,
Rozsnoki S, Hansford JR, Kohlhof P, Kristensen BW, Lechner M, Lopes B, Mawrin C, Ketter R, Kulozik A,
Khatib Z, Heppner F, Koch A, Jouvet A, Keohane C, Miihleisen H, Mueller W, Pohl U, Prinz M, Benner A,
Zapatka M, Gottardo NG, Driever PH, Kramm CM, Miiller HL, Rutkowski S, von Hoff K, Frithwald MC,
Gnekow A, Fleischhack G, Tippelt S, Calaminus G, Monoranu C-M, Perry A, Jones C, Jacques TS,
Radlwimmer B, Gessi M, Pietsch T, Schramm J, Schackert G, Westphal M, Reifenberger G, Wesseling P,
Weller M, Collins VP, Bliimcke I, Bendszus M, Debus J, Huang A, Jabado N, Northcott PA, Paulus W, Gajjar
A, Robinson GW, Taylor MD, Jaunmuktane Z, Ryzhova M, Platten M, Unterberg A, Wick W, Karajannis MA,
Mittelbronn M, Acker T, Hartmann C, Aldape K, Schiiller U, Buslei R, Lichter P, Kool M, Herold-Mende C,
Ellison DW, Hasselblatt M, Snuderl M, Brandner S, Korshunov A, von Deimling A, Pfister SM (2018) DNA
methylation-based classification of central nervous system tumours. Nature 555:469-474. doi:

10.1038/nature26000

Euskirchen P, Bielle F, Labreche K, Kloosterman WP, Rosenberg S, Daniau M, Schmitt C, Masliah-Planchon J,
Bourdeaut F, Dehais C, Marie Y, Delattre J-Y, Idbaih A (2017) Same-day genomic and epigenomic diagnosis of
brain tumors using real-time nanopore sequencing. Acta neuropathologica 134:691-703. doi: 10.1007/s00401-
017-1743-5

Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinlON: delivery of nanopore sequencing
to the genomics community. Genome Biology 17:239. doi: 10.1186/s13059-016-1103-0

Loose M, Malla S, Stout M (2016) Real-time selective sequencing using nanopore technology. Nature methods
13:751-754. doi: 10.1038/nmeth.3930

Oxford Nanopore Technologies Ltd. (2021) Oxford Nanopore Technologies GitHub - Megalodon. In: Github.
https://github.com/nanoporetech/megalodon

Payne A, Holmes N, Clarke T, Munro R, Debebe BJ, Loose M (2021) Readfish enables targeted nanopore
sequencing of gigabase-sized genomes. Nature Biotechnology 39:442—-450. doi: 10.1038/s41587-020-00746-x

Rushing EJ (2021) WHO classification of tumors of the nervous system: preview of the upcoming 5th edition.
memo - Magazine of European Medical Oncology. doi: 10.1007/s12254-021-00680-x



11.

12.

13.

14.

medRxiv preprint doi: https://doi.org/10.1101/2021.08.09.21261784; this version posted August 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

erpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

192

Sahm F, Schrimpf D, Jones DTW, Meyer J, Kratz A, Reuss D, Capper D, Koelsche C, Korshunov A, Wiestler B,
Buchhalter I, Milde T, Selt F, Sturm D, Kool M, Hummel M, Bewerunge-Hudler M, Mawrin C, Schiiller U,
Jungk C, Wick A, Witt O, Platten M, Herold-Mende C, Unterberg A, Pfister SM, Wick W, von Deimling A
(2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and

identifies actionable targets. Acta Neuropathologica 131:903-910. doi: 10.1007/s00401-015-1519-8

Suvakov M, Panda A, Diesh C, Holmes I, Abyzov A (2021) CNVpytor: a tool for CNV/CNA detection and
analysis from read depth and allele imbalance in whole genome sequencing. bioRxiv 2021.01.27.428472. doi:
10.1101/2021.01.27.428472

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E,
Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE,
Stefancsik R, Thompson SL, Wang S, Ward S, Campbell PJ, Forbes SA (2019) COSMIC: the Catalogue Of
Somatic Mutations In Cancer. Nucleic acids research 47:D941-D947. doi: 10.1093/nar/gky1015

Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic acids research 38:e164. doi: 10.1093/nar/gkq603



medRxiv preprint doi: https://doi.org/10.1101/2021.08.09.21261784; this version posted August 10, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

193

ae&

lb-y B el [P Bortormascy
-

g ([T

IDH R132H'S mutation

I .

L

1p Seleton
18q deleton
--lll--- o7 i

100 B EEoos ool
100% che19 gain -
100% 20 gain s o s
100% EGFR ampitcason
100% BB coxneaB celeson

MGMTp methylation

Mewvlation class”

Figure 1: RAPID-CNS?timeline and concordance. Timeline for (a) NGS panel sequencing and analysis pipeline, and (b) EPIC array analysis
pipeline for neuropathology diagnostics (x denotes number of days required to pool sufficient samples). (c) Timeline for RAPID-CNS?
sequencing and analysis pipeline for a single sample. (d) Concordance of clinically relevant alterations & classification. Coloured blocks
indicate presence of alteration, concordance for detected alterations is denoted in the legend. Triangular denotations for methylation class
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indicate samples where methylation families were concordant and blocks indicate concordance for sub-classes as well. Percentages on the left
indicate concordance for the alteration over all samples.

Supplementary methods

Nanopore library prep optimized for adaptive sampling

Sections of 40x10 pm were prepared from cryoconserved tumor tissues with established molecular markers (IRB
approval 2018-614N-MA, 005/2003) with tumor cell content (based on a H&E stain) > 60%. DNA was then
extracted using the Promega Maxwell RSC Blood DNA Kit (catalogue # AS1400, Promega) on a Maxwell RSC
48 instrument (AS8500, Promega) per manufacturer’s instructions. DNA concentrations were measured on a
microplate reader (FLUOStar Omega, BMG Labtech) using the Invitrogen Qubit DNA BR Assay Kit (Q32851,
Thermo Fisher Scientific). Next, the DNA was sheared to approximately 9 to 11 kb in a total volume of 50 pl
using g-TUBEs (Covaris) at 7200 rpm for 120 sec. The fragment length was assessed on an Agilent 2100
Bioanalyzer (catalogue # G2939A, Agilent Technologies) with the Agilent DNA 12000 Kit (catalogue # 5067-
1508, Agilent Technologies). Sequencing libraries were prepared with the SQK-LSK 109 Ligation Sequencing Kit
with the following modifications: 48 pl of the sheared DNA (2-2.5 pg) were taken into the end-prep reaction,
leaving out the control DNA. The end-prep reaction was changed to an incubation for 30min at 20°C followed by
30min at 65°C followed by a cool down to 4°C in a thermal cycler. The clean-up was performed using AMPure
XP beads and 80% ethanol, elution time was changed to Smin. Adapter ligation was extended to an incubation for
60min at room temperature. The ligation mix was then incubated with AMPure XP beads at 0.4x for 10min, clean-
up was performed using the Long Fragment Buffer (LFB) and the final library was eluted in a total volume of 31
pl. Library concentrations were measured using the Invitrogen Qubit DNA HS Assay Kit (Q32851, Thermo Fisher
Scientific) on a benchtop Quantus fluorometer (Promega). The libraries were loaded (500-600 ng) onto FLO-
MIN106 R9.4.1 flow cells with a minimum of 1100 pores available according to the FC Check prior to loading.
The flow cells were flushed after around 24 hours for a total of two times per sample with the Flow Cell Wash Kit
(EXP-WSHO003) per manufacturer’s instructions. All sequencing was carried out on a MinlON 1B (Oxford

Nanopore Technologies).

ReadFish

Targeted nanopore sequencing was performed in real-time using a custom panel with ReadFish on an 8 GB
NVIDIA RTX 2080 Ti powered consumer notebook [9]. The targets included regions from the neuropathology
panel and CpG sites instrumental in classification by the random forest methylation classifier (available on
GitHub). A 25kbp flank was added to the sites to ensure optimal targeting by ReadFish. Guppy 4.2.2°s fast
basecalling (config dna 19.4.1 450bps_fast) mode was used to run ReadFish.

Bioinformatics analysis

FASTS files were basecalled using Guppy 4.4.1°s high accuracy configuration. QC and coverage analyses were
performed by pycoQC and deepTools respectively. Adapter trimming by Porechop was followed by minimap2
v2.18 alignment to the hg19 genome, samtools sorting and indexing. SNVs were called using longshot v0.4.1 and

PEPPER-Margin-DeepVariant 10.4 . TERT promoter mutations were detected by mpileup and bcftools. Variant
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annotation was performed by ANNOVAR. Filtering for clinical relevance was based on the 1000 Genomes (Aug
2015) frequencies and COSMIC 68 database. Copy number plots (100kb bin size) and gene-level copy number
files (1kb, 10kb and 100kb bin sizes) were generated using CNVpytor and a custom script. Megalodon v2.3.1 was

used to obtain methylation values.
Methylation classification

To classify nanopore sequencing derived DNA-methylation profiles of central nervous system tumors, a random
forest classifier was trained on publicly available 450k methylation array reference data set of the MNP classifier

version 11 (GSE90496). This data set was preprocessed as described in [4].

For a batch of 22 nanopore sequencing samples, intersection of CpG probes measured for all samples were selected

to train the classifier. The methylation array data set was reduced to these 3,285 probes.

Often nanopore sequencing measures CpG probes with low coverage, which leads to discrete distributed
methylation values, i.e. (0, 0.5, 1) for coverage 3. As finer methylation differences can often not be detected with
nanopore sequencing for all CpG probes, we trained the RF classifier on dichotomized methylation values. This
followed the assumption that splitting rules learned on binary data are more robust and can be applied to

methylation signals from nanopore sequencing data.

After dichotomizing the reduced reference methylation data set, a RF was trained with 1000 trees and the resulting
permutation based variable importance measure was applied to select the 1000 CpGs with highest variable

importance to train a final RF with again 1000 trees. The out-of-the-bag accuracy of this classifier was 96%.

Supplementary results
RAPID-CNS? analysis pipeline

The bioinformatics pipeline requires raw FASTS files as input. Complete instructions for setting up the analysis
are available on GitHub. Post set-up, RAPID-CNS? runs the entire analysis with a single command. It can be run
on an LSF cluster or a GPU workstation. Basecalling followed by SNV and CNV detection completes within 10

hours while methylation calling and classification requires an additional 12 hours.

SNV detection

ANNOVAR annotated tables for all Nanopore sequenced samples and their corresponding panel sequencing

results are attached.

CNYV detection

Copy number plots obtained using the RAPID-CNS? pipeline demonstrate higher resolution and clear visualization
of the copy number levels as compared to NGS panel sequencing (Supplementary figure 1a (left and centre)).

Calculating depth of mapped reads, copy number variations detected are comparable to EPIC array results

10
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(Supplementary figure 1a (left and right)). Normalised read depths are indicated on the Y-axis with “2” indicating
mean autosomal level. Additionally, genes covered by the copy number variations and their zygosity are annotated

and output as excel files (Supplementary files).

MGMT promoter methylation

Two probes used by the MGMT-STP27 approach were not reliably covered in all analysed samples [2].
Methylation frequencies over all CpG sites covering the MGMT promoter region were therefore averaged as an
alternative measure. Using pyrosequencing as gold standard, methylated and unmethylated samples were found to
have a significant difference in their average methylation (Wilcoxon rank sum test p-value= 2.719¢-06). As shown

in Suppl. Figure 1b, a threshold of 10% was assigned for MGMT promoter methylation status.

11
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Supplementary Figure 1: (a) CNV plots obtained using RAPID-CNS? (left), panel-sequencing (centre) and EPIC array analysis (right). (b)
MGMT promoter methylation values averaged over the MGMT promoter region.

12
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Abstract

Adaptive sampling enables selection of individual DNA molecules from sequencing libraries,
a unique property of nanopore sequencing. Here we develop our adaptive sampling tool
readfish to become “barcode-aware” enabling selection of different targets within barcoded
samples or filtering out individual barcodes. We show that multiple human genomes can be
assessed for copy number and structural variation on a single sequencing flow cell using

sample specific customised target panels.

Main Text

Adaptive sampling is the process by which individual DNA molecules within a library can be
dynamically selected for sequencing, a property unique to Oxford Nanopore Technologies
(ONT) sequencers '. Recently we developed readfish, which uses real-time base calling to
analyse read data as molecules are being sequenced 2. Using readfish, it is possible to
enrich target regions of human genomes as well as manipulate sequencing coverage of
metagenomic samples 2. Here we show this method can be extended by enabling the use
of barcoded samples with readfish. This allows for individual barcodes to be switched off

during a run or enables the use of targets specific to each sample and barcode.
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An advantage of sequence based approaches to adaptive sampling is that existing tools,
such as barcode demultiplexers, can be easily incorporated into the readfish workflow.
Although signal based methods to identify barcodes exist, no sufficiently fast methods are
currently available °. We therefore adapted our existing readfish pipeline to be compatible
with built-in Guppy demultiplexing (ONT) and incorporated barcode classifications into the

data readfish uses to make a decision about sequencing or rejecting a read.

An important consideration in adaptive sampling is what duration of signal data is needed for
an accurate mapping of a read fragment. Previously we used chunks of 0.4 seconds of data
2 (roughly 1,600 samples) but reasoned the inclusion of additional barcode sequence at the
start of each read would require additional data. To test this we took a set of reads (see
methods) and sampled signal from the start of each representing data seen when running
adaptive sampling. We then used a variety of base caller models (see methods) and two
signal alignment tools, Uncalled and Sigmap, to analyse mappings from each of these
synthetic reads and methods *®. As readfish uses the start coordinate of a mapping to
determine if a read is on target, we compared the predicted mapping coordinate with that
from the full length read (high accuracy mode - HAC). A correct mapping is defined as one
where the start mapping coordinates are within 100 bases of one another. We found that
3,600 samples (or 0.8 seconds of data) was sufficient to correctly place reads (F1>0.9, fast
model) (Figure 1A). Similarly, this same window also enabled appropriate barcode mapping
accuracy (F1>0.9, fast model) (Figure 1B). Therefore we configured all our experiments to

use data in chunks of 0.8 seconds (3,200 samples of data).

Readfish can be configured to handle barcodes in two ways. For simple experiments, the
user can identify a list of barcodes to be either rejected or accepted. In this way users can
exclude or include a subset of barcodes on a sequencing run (Figure 2A). For more complex
experiments, the user can configure a set of targets for each individual barcode in a library

and so sequence specific regions from each. For example, a cancer gene panel for sample
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A, a developmental disorders panel for sample B and a neuropathology panel for sample C.
Figure 2B illustrates a simple barcoded sample where different regions of a bacterial
genome are selected on each barcode in real-time. As readfish maps using sequences it is
only limited by available memory and easily handles gigabase genomes. In addition there is
no requirement for each sample to be from the same organism and so readfish can target
multiple references. To simplify creation and dynamic update of readfish configuration files,
we provide a set of command line tools to configure options for multiple barcodes

(https://github.com/looselab/readfish-tools).

To test the performance of this approach, we used three previously described cell lines:
GM12878, from the Utah/CEPH pedigree; NB4, a cell line carrying a fusion between PML
and RARA representing an acute promyelocytic leukemia (APL); and 22Rv1, a prostate
cancer derived cell line containing significant chromosomal abnormalities "=°. For each
sample, we chose a specific gene panel. GM12878 was targeted using a panel defined by
the gene list in the commercially available TruSight 170 Tumor panel '°. As the NB4 cell line
contains an APL fusion, we selected the TruSight RNA Fusion Panel " For the more
complex 22Rv1 prostate cancer line we used the previously described COSMIC panel 22,
Samples were barcoded and sequenced on a single flow cell, and run for 72 hours (see
methods). Every 24 hours the flow cell was washed with nuclease flush and another aliquot
of the library loaded 2. In a single experiment using a flow cell with 1,330 pores, 18.1 Gb of
data were generated, with a total of 15 Gb successfully demultiplexed into barcoded data

(Table 1).

Across the whole experiment, the on target read N50 was 7 kb, with the rejected read N50
being 579 bases, or approximately 1.3 seconds of sequencing. This results in mean read
coverage on target regions of between 11x and 15x. Inspection of individual targets including
BRCA1, NBR1, PML and RARA demonstrates the ability to specifically target unique regions

on each sample (Figure 3). Current best practice for variant calling requires higher minimal
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depth than we achieve when looking at three samples. However, long range structural
variants can be measured and so we used cuteSV ' to analyse these three samples. As
expected, multiple reads supporting the detection of a fusion between PML and RARA were
detected in the NB4 cell line (Figure 4). In contrast, this rearrangement was not found in the
22Rv1 line. We cannot formally exclude the presence of this variant in GM12878 as neither

PML or RARA were within the gene panel used for this cell line (Figures 3,4).

Finally, we turned to a natural application for adaptive sampling which considers the
mappings of rejected reads. Various approaches have been developed using binning of
short reads to detect copy number variation by applying a variety of statistical approaches ™.
These methods also work with nanopore sequencing '°, but the resolution of detection will
be dependent on the total number of reads generated during a sequencing run. Adaptive
sampling increases read count as a consequence of rejecting molecules once they are
confidently mapped to an off-target region. We therefore developed a simple approach to bin
read counts across the genome such that, on average, each bin would contain 100 reads,
and monitored this in real-time using our minoTour tool '®. For each barcoded sample
changes in copy number are immediately apparent and can be visualised using any change
point detection approach, here we use Ruptures (Figure 5) 7. As expected, GM12878
(barcode 1) does not show significant copy number changes, whereas NB4 (barcode 2) and
22Rv1 (barcode 3) both closely recapitulate results generated by Bionano optical mapping

(Figure 6).

Discussion

Extending readfish to become “barcode aware” enables more sophisticated selection
experiments that are better able to exploit adaptive sampling in a variety of contexts. Here
we demonstrate that individual samples can be targeted with unique panels of genes,

selected based on knowledge of the sample, enabling the user to ask and answer specific
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questions. On a single MinlON flow cell, 3 human genomes can be analysed in real-time
with coverage sufficient to detect structural and copy number variation. In this case, yield
limitations prevent a realistic assessment of SNPs. However, we anticipate higher yield or
running two human samples per flow cell would enable this. Of course, smaller genomes will
generate proportionally higher coverage enabling more samples to be run on a single flow
cell as well as providing greater depth for variant calling. Similarly, as flow cell yield
increases, and these features become available on platforms such as the PromethION, it will

become possible to target multiple human samples on single flow cells.

Alongside these targeted experiments, this approach also allows users to simply switch off
barcodes for which sufficient data have been generated. This will enable dynamic
adjustment of yields obtained from individual samples in barcoded libraries. Our initial testing
shows these approaches will work with the full 96 barcodes currently available on nanopore
platforms. Coupling multiple samples with barcode aware readfish and real-time analysis of
the data obtained will enable faster experimental turn around times, more efficient use of

flow cell resources and more comprehensive analysis pipelines.

Methods

Synthetic read generation and analysis.

To demonstrate our choice of parameters for read mapping and barcode calling, we
obtained reads mapping to either chromosome 15 or 17 from the sequenced subset of reads
ending up in the pass folder from NB4 (barcode02). Using the ONT Fast5 API

(https://github.com/nanoporetech/ont_fast5 api), we generated varying sizes of chunks of

signal from the start of these reads incrementing in 0.1 second equivalents (400 samples) to
1 second, then 0.25 seconds to a total of 10,000 samples per read (2.5 seconds). These

reads were base called using Guppy (v5.0.16+b9fcd7b) and mapped using minimap2 to the
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target regions of chromosomes 15 and 17 defined by the trusight RNA fusion panel .
Mapping used minimap2 '® with the -x map-ont and --paf-no-hit option to retain all reads
regardless of mapping. We chose the high accuracy model as our truth set as this is the
current standard base caller. By using the subset of reads from chromosome 15 and 17
targets only, and hence a smaller reference, we could also test signal based methods for

mapping reads including uncalled (v2.2) and sigmap (v0.1) *®.

For determining alignment accuracy we considered read starts mapping within 50 bases of
the truth set as true positives, although for many applications this may be overly stringent. At
this stringency, the fast base calling model recovered true mappings with an F1 score of
0.903524 (precision = 0.927901, recall = 0.880395). The code is available in the
accompanying data notebooks. As a result we selected 0.8 seconds of data for analysis.
Neither sigmap nor uncalled were optimised beyond the default settings and performance

could likely be improved further.

For barcoding of data, we used Guppy demultiplexing and tested no other approach. Truth
sets were defined using the full length reads as above. We compared the impact of the base
caller model on barcode detection and found the fast model recovers the correct barcode

with an F1 > 0.9 at 1,600 samples.

Running readfish Barcoding

Running read until and adaptive sampling requires the ONT Read Until API (version 3.0.0,

https://github.com/nanoporetech/read until_api/tree/release-3.0) and the ONT PyGuppy

Client library (version 5.0.13, https://pypi.org/project/ont-pyguppy-client-lib/5.0.13/). Readfish

(https://github.com/LooseLab/readfish; commit 9e8794a) was run using a GridlON MK1

(MinKNOW v4.3.2; Guppy v5.0.13; minimap2 v2.22), the MinKNOW configuration scripts

were configured to serve data in 0.8 second chunks.
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The readfish script carrying out the selective sequencing was “readfish barcode-targets”.
This script runs the core Read Until process as specified in the experiment’'s TOML file. With
a single reference genome the script can select specific target regions on each barcode by
using Guppy to base call and demultiplex the raw signal in real-time. The resultant read is
then aligned to the reference using minimap2 and is determined to be on or off target

depending on it's barcode assignment and mapping start.

Library Preparation, Sequencing and Analysis

Barcoded LSK-110 (ONT) sequencing libraries were prepared from either GM12878 cells
(Coriell), NB4 cells (gift from M. Hubank) or 22Rv1 cells (ATCC) as described in Jain et al. .
For test experiments bacterial DNA was extracted using genomic tip (QIAGEN). Extracted
DNA was sheared to approximately 12 kb using g-Tube (Covaris). All sequencing used FLO-
MIN106 R9.4.1 flow cells. Flow cells were run with flushing and reloading as previously
described in Payne et al. 2.

To investigate structural variation across the dataset, we ran CuteSV on each barcoded
sample using standard options but varying the -s MIN SUPPORT values. No SVs in known
fusion genes were reported in NA12878 or 22Rv1 (-s 2), known fusions including PML
RARA were readily detected in NB4 (-s 5)'®. SVs were visualised using Ribbon .

To visualise changes in copy number, reads were mapped to hg38, filtered to mapping
scores >20 and uniquely mapping. Then the first primary mapping for any read was
determined and mappings binned into windows along the genome such that on average
each bin contains 100 reads. Runs were monitored in real-time using minoTour

(https://github.com/LooseLab/minotourapp/; commit: 1f9c678), providing coverage statistics,

mappings and estimates of copy number variation in real-time '°. During real-time analysis
reads were mapped to Chm13 telomere-to-telomere assembly 2°2'. Post-run copy number
plots were generated using matplotlib with data mapped to hg38 to compare with the output

of the Bionano copy number pipeline (see notebooks).
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To visualise coverage over specific targets reads were divided into those actively sequenced
and those unblocked using the unblocked read ids file generated by readfish. Reads were
mapped to hg38, coverage depth calculated using mosdepth v0.3.1%? and visualised using

matplotlib (v3.4.3).

Bionano Methods

DNA extraction and labelling for Bionano

DNA was prepared from frozen cell pellets of 1.5 million cells using the Bionano Prep SP
Blood and Cell Culture DNA Isolation Kit (Bionano Genomics; 80042) according to the
manufacturer's instructions. DNA was homogenised and quantified using Qubit dsDNA BR
Kit (Thermo Fisher; Q32853) on a Qubit 4 Fluorometer (Thermo Fisher; Q33238). 750 ng of
gDNA was then labelled with Direct Label Enzyme 1 (DLE-1) and DNA backbone stain using
the Bionano Prep Direct Label and Stain (DLS) kit (Bionano Genomics; 80005) according to
the manufacturer’s instructions. Labelled DNA was quantified using the Qubit dsDNA HS Kit
(Thermo Fisher; Q32851) on a Qubit 4 Fluorometer. Labelled DNA was loaded onto a
Bionano Saphyr G2.3 chip (Bionano Genomics; 20366) and run on a Gen 2 Bionano Saphyr
System (Bionano Genomics; 60325) until 1.320 Tbp of data had been collected for each of
NB4 and 22Rv1. This data had respective mapping rates to hg38 reference sequence of

89% and 79%, equating to 382x and 337x coverage respectively.

Data analysis

Post run data filtering and analysis was carried out using Bionano Access 1.5.2. For each
sample the data set was filtered and sub-sampled to produce 320 Gbp of data with 150 kb
minimum length and at least 9 labels per molecule. Filtered data was processed to produce
annotated de novo assemblies using the default parameters, but with masking using the
hg38 DLE-1 SV Mask BED file. Structural variant (SV) and copy number variants (CNV)

coordinates were then visualised using Bionano Access. All described analysis was
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performed on dedicated Bionano compute with the following versions installed: Bionano
Access1.5.2, Bionano Tools 1.5.3, Bionano Solve Solve3.5.1_01142020, RefAligner
10330.10436rel, HybridScaffold 12162019, SVMerge 12162019 , VariantAnnotation

12162019, Compute on Demand 1.5.1.
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Figure 1

Comparison of base callers, alignments and barcode classifications. A set of pass
reads derived from chromosome 15 and 17 targets from the truSight Fusion panel were
generated. A) Reads were base called using the super accuracy (sup), high accuracy (hac),
fast (fast) or sketch (sketch) models of guppy and mapped to a synthetic genome containing
only the target regions for those read targets. These same reads were also mapped using
the signal aligners Uncalled and Sigmap. Truth was defined as the start mapping coordinate
for the full length read (original). Read fragments were scored as mapping correctly if the
start mapping coordinates were within 50 bases of the true start mapping position. 0.9 F1 is
exceeded at 0.8 seconds of data (3200 samples) for the fast model. B) F1 score as
measured by concordance in barcode identified where truth is the HAC model.
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Naive barcoding selective sequencing A) Demonstration of “switching off” individual
barcodes from a sequencing library. Selected barcodes identified in the panel titles. Top row
shows sequenced reads, lower panel shows the rejected or unblocked reads. As barcoding
both ends is used to specify barcode, all rejected reads become unclassified (Un) by default.
B) Switching the mode of operation for readfish from simple barcode rejection to differential
targets. Sample shown is Clostridioides difficile. Targeted regions are shown in black.
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Target and barcode specific gene coverage. lllustration of coverage over each barcoded
sample for each target in the panel. Blue is sequenced read coverage, red illustrates
coverage of rejected reads. A) shows coverage over BRCA1 and the adjacent gene NBR1.
BRCA1 was a target for barcode 1 and 3, but not 2. The targeted regions are illustrated
below the coverage plots. Note that the region representing BRCA1 differs in barcode 1 and
3 by design. NBR1 was only targeted on barcode 2. B) and C) illustrate coverage over PML
and RARA respectively, which were only targeted on barcodes 2 and 3.
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Figure 4
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Visualising Structural Variation. Using Ribbon, we visualise reads covering PML (chromosome 15) and any known fusions. A) Barcode 01,
GM12878, has only two reads in the candidate region as PML is not included within the targets for this sample. B) Barcode 02, NB4, shows
multiple reads spanning PML and linking to RARA (chromosome 17) as expected for this fusion cell line. C) Barcode 03, 22Rv1, also had PML
within the target gene list, but had no structural variant in this region as expected. SVs were identified using CuteSV (supplementary file 1).
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Figure 5
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Real-time monitoring of copy number change. MinoTour generates real-time counts of reads dynamically binned such that each bin
contains on average 100 reads. Samples shown here mapped to Chm13 T2T reference. Left hand plots show coverage over all chromosomes,
right hand plots show just chromosome 12. Red Blue banding indicates change points as dynamically detected by Ruptures. A) barcode 01,
GM12878, bin width 86,600 bases. B) barcode 02, NB4, bin width 60,570 bases C) barcode 03, 22Rv1, bin width 76,470 bases.
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Table 1
Barcode Sample Panel Gene Yield On On On Off Mean
Number (Gb) Targe Targe Targe Target Target
t (Gb) t N50 t Mean Coverage
Mean
01 GM12878 TruSight 170 3.8 0.355 8,149 1,926 554 11.0
170 Tumor
Panel
02 NB4 TruSight 508 6.1 1.240 7,191 4,203 551 15.0
RNA Fusion
Panel
03 22Rv1 COSMIC 717 5.1 1.250 6,858 5,065 556 11.5
Unclassified 3.1 736
Total 18.79 3,221 587

Sample Performance. Run metric performance per barcode and over the entire flow cell.

Metrics are derived from real-time monitoring with minoTour.
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