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ABSTRACT  

Asian rice (Oryza sativa) is a staple food for billions of people worldwide. There has been 

increasing focus on the introgression of diverse material to develop productive rice cultivars 

that are resilient to a changing climate. African rice (Oryza glaberrima) evolved 

independently to Asian rice and demonstrates exceptional abiotic stress resilience. O. 

glaberrima has been recognised as a potential source for crop improvement for over two 

decades but the heritable variation in the species remains relatively uncharacterised. The 

research described here uses a new genomic resource of 155 re-sequenced accessions to 

explore the diversity O. glaberrima has to offer.  

 

O. glaberrima accessions were grown to late tillering stage in an agronomy glasshouse and 

measured for traits   that contribute to water use efficiency and productivity. Photosynthetic 

traits were measured by gas exchange and chlorophyll fluorescence, along with root and 

shoot biomass, stomatal density and leaf area. Photosynthetic steady state and kinetic 

responses were modelled. Using this phenotypic data, a genome wide association study 

(GWAS) was completed using four different algorithms to identify significant trait related 

candidate genes and genomic regions. Multi-variate analyses were used to explore the 

ecological and environmental factors that contribute to trait and genetic adaption in the O. 

glaberrima collection used here. 

 

This study identified broad heritable variation and candidate genes in a range of useful 

morphological, steady-state and dynamic photosynthetic traits, including genes known for 

mitigating drought and heat stress, alongside regulators of key phytohormones. This thesis 

highlights the importance of O. glaberrima as a source of heritable variation. The information 

compiled here provides a solid base for future elucidation of physiological processes and the 

functional validation of candidate genes to support future crop improvement efforts.  
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ABBREVIATIONS 

Abbreviation Definition Units 

A Net CO2 assimilation µmol m-2 s-1 

Abaxial SD SD on the lower leaf side mm2 

Adaxial SD SD on the upper leaf side mm2 

ANOVA Analysis of variance  

API  Application programming 

interface 

 

BLUPs Best linear unbiased prediction  

DIADE Diversité Adaptation 

Developpement des plantes 

 

ETR Electron transport rate of PSII. μmol electrons m−2 s−1 

FOV Field of view  

gs  Stomatal conductance to water 

vapour 

mmol m-2 s-1 

gs max Maximum gs achieved under 

1500 µmol m-2 s-1 PPFD. 

mmol m-2 s-1 

GWAS Genome wide association study  

H2 Broad sense heritability   

H-clustering Hierarchical clustering  

HCPC Hierarchical clustering on 

principal components 

 

iWUE Intrinsic water use efficiency. µmol mol-1 

IQR Inter-quartile range  

IRGA Infra-red gas analyser  

LED Light emitting diode  

NPQ Non-photochemical quenching.  

PAR Photosynthetically active 

radiation 

 

PCA Principal component analysis  

PC Principal component  

PGV Percentage genetic variation  
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FPSII Relative quantum yield of 

photochemical energy conversion 

at steady state A. 

 

PPFD Photosynthetically active photon 

flux density  

µmol m-2 s-1 

qP Photochemical quenching  

R-CNN Regional convolutional neural 

networks 

 

RICE Rice interspecies comparison & 

evolution team at University of 

Montpellier.  

 

sd Standard deviation  

SD Stomatal density mm2 

SE  Standard error  

Trmmol Transpiration rate. mmol H2O m-2 s-1 

VPD Vapour pressure deficit between 

leaf and air. 

kPa 

X trait max Maximum of X trait achieved 

under 1500 mmol m-2 s-1 PPFD. 

Examples include Amax and gsmax.  

Unit of X trait 

   

Dynamic modelling definitions for chapters three and four: 

X trait i    

X trait r   

Ai | gsi | NPQi Induction response to a change of 

PPFD from 0 to 1500 mmol m-2 s-

1 (difference between) 

Ai = mmol m-2 s-1 

gsi = mmol m-2 s-1 

Ar | gsr | NPQr Relaxation response to a change 

of PPFD from 1500 to 100 mmol 

m-2 s-1 

 Ar = mmol m-2 s-1 

gsr = mmol m-2 s-1 

Ai slope | gsi slope | NPQi 

slope  

Model estimated slope gradient 

for the induction (i) and relaxation 

(r) response curves. 
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Ar slope | gsr slope |NPQr 

slope 

Ai min | gsi min | NPQi min 

Ar min | gsr min | NPQr min 

Model estimated minimum value 

at the beginning of an induction (i) 

curve and at the end of a 

relaxation (r) curve. 

Ai | Ar = mmol m-2 s-1 

gsi | gsr = mmol m-2 s-1 

gsi max | Ai max | NPQi max 

gsr max | Ar max | NPQr max 

Model estimated maximum value 

at the top of an induction (i) or 

relaxation (r) curve. 

Ai | Ar = mmol m-2 s-1 

gsi | gsr = mmol m-2 s-1 

Ai 10 | gsi 10 | NPQi 10 

Ar 10 | gsr 10 | NPQr 10 

Model estimated time taken to 

reach 10% of the maximum value 

achieved on the induction (i) or 

relaxation (r) response curve. 

Time (secs) 

Ai 50 | gsi 50 | NPQi 50 

Ar 50 | gsr 50 | NPQr 50 

Model estimated time taken to 

reach 50% of the maximum value 

achieved on the induction (i) or 

relaxation (r) response curve. 

Time (secs) 

Ai 90 | gsi 90 | NPQi 90 

Ar 90 | gsr 90 | NPQr 90 

Model estimated time taken to 

reach 90% of the maximum value 

achieved on the induction (i) or 

relaxation (r) response curve. 

Time (secs) 

Ai rate | gsi rate | NPQi rate Unit per second taken to induce 

from 0 seconds to the time taken 

to achieve 90% of the upper limit 

induction curve. 

Trait unit per second 

Ar rate | gsr rate | NPQr rate Unit per second taken to relax 

from 900 seconds to the time 

taken to achieve 90% of the lower 

limit relaxation curve. 

Trait unit per second 
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CHAPTER ONE 

Thesis introduction and research rationale 

 

1.1 Introduction 

We are living in an era that is widely accepted as a geological epoch and often referred to as 

the Anthropocene (Lewis & Maslin, 2015; Ellis et al., 2016). Human induced climate change 

is progressing at an alarming rate, the average global temperature has risen by 1.4oC since the 

pre-industrial era and is estimated to continue increasing by 0.2oC per decade (Shukla et al., 

2019; Yerlikaya et al., 2020). The world-changing consequences are causing dramatic shifts 

in all natural systems, with species unable to adapt quickly enough to mitigate deleterious 

effects (Panetta et al., 2018; Capblancq et al., 2020; Román-Palacios & Wiens, 2020). This 

extends to human managed crop species, which have been selected by farmers for maximum 

yield gains but not resilience to an increasingly warm and unpredictable climate (Kang et al., 

2009; Gao, 2021). The ability to meet global food demands in response to a burgeoning 

population and a climate crisis is a substantial challenge. Rising atmospheric CO2 

concentration has been stimulating photosynthesis and productivity through increased 

Rubisco carboxylation efficiency and the reduction of stomatal conductance, which may 

improve leaf level water use efficiency. However, the magnitude and longevity of such ‘CO2 

fertilisation’ effects are unclear (Ainsworth & Long, 2005). A recent study casts doubt on 

how long this effect may continue and suggests that the major crop producing regions will 

experience the negative effects of climate change sooner than anticipated (Jägermeyr et al., 

2021). It is estimated that we could experience up to 37% yield losses by the end of the 

century, through temperature increases, drought events, climate change associated 

desertification and extreme weather events (IPCC, 2014; Zhao ). These yield losses are 

anticipated to occur in the regions which supply most of the worlds key cereal crops; maize, 

wheat, soy and rice (Black et al., 2008; Challinor et al., 2014). Therefore, diverting plant 

research efforts to the development of climate resilient crop species is imperative to secure 

future crop productivity and food security in the face of the climate crisis.  

 

1.2 Abiotic stress limitations on rice growth and productivity  

Oryza sativa (Asian rice) is a dietary staple to approximately 50% of the global population 

(Seck et al., 2012; Muthayya et al., 2014). Billions of people depend upon reliable O. sativa 

productivity as their primary source of nutrients, calories and income, particularly in 
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developing countries. The increasing frequency of drought and natural disaster events have 

the propensity to cause widespread famine and poverty due to rice yield losses. For example, 

the 2015-2016 drought event in Thailand, which caused $1.7 billion in economic losses and 

affected 9.56 million people. Catastrophic events such as this are occurring more regularly 

due to the effects of climate change (Kang et al., 2021). In conjunction with this, the global 

rising temperatures are already negatively affecting rice yields (Iizumi et al., 2018; Ray et al., 

2019), which are predicted to continue to decline, even under conservative temperature 

increases (Fig.1.1) (Zhao et al., 2017). While there is a degree of uncertainty between the 

modelling estimates, the overall trend is consistent and shows future yield reductions (Parry 

et al., 2005; Zhao et al., 2017; Wang et al., 2020). These projections are in direct conflict 

with the substantial yield increases that are required to feed an estimated global population of 

9.7 billion people by 2050 (Charles et al., 2010). Therefore, it is essential that research is 

directed into developing abiotic stress tolerant cultivars to mitigate against significant yield 

losses in the future. 

 

 
 

Figure 1.1: Estimates of rice yield changes in response to 1oC global warming. The five major rice 

producing countries are shown, accompanied by a plot showing multi-method analyses estimating 

yield changes. The study uses field warming experiments, statistical regression, global grid-based and 

local point-based models to generate estimates. Each bar shows the estimate for each model used in 

the study, where; red = Grid-Sim, blue = Point-Sim, yellow = Point-Obs, green = Regress A, orange = 
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Regres C, grey = Regres D-K, black = average).  The y-axis shows the percentage change for a 1oC 

temperature increase and error bars show the 95% confidence interval. Image is adapted from Zhao et 

al. (2017).  

 

 

Abiotic stress is an umbrella term that is used to describe environmental pressures that may 

constrain plant growth and productivity, but these individual stressors result in differing 

negative consequences and physiological responses. The main abiotic stressors are extreme 

temperature, drought, salinity and flooding; a summary of their effects is discussed below.  

 

o Extreme temperatures 

Increasing levels of atmospheric CO2 concentrations are responsible for global 

warming and more frequent heat waves. The rice producing regions of the world are 

likely to experience extreme temperatures in the form of heat stress, rather than cold 

(Ramírez & Maiti, 2016). Rice can tolerate relatively high temperatures, with an 

optimal cultivation temperature range of 25-35oC. Outside of this range, rice growth 

and yields are substantially reduced, particularly if temperature increases are 

accompanied by drought or high humidity (Bailey-Serres et al., 2019). The sensitivity 

to extreme temperature varies throughout the plant growth cycle and development. 

For example, rice plants are particularly sensitive during the reproductive phase, when 

heat stress can reduce male fertility, seed quality and lead to yield reduction (Bita & 

Gerats, 2013). The consequences of exposure to moderate heat stress includes the 

inhibition of protein synthesis, enzyme inactivation in the mitochondria and 

chloroplasts, protein denaturation and increased cell membrane fluidity and leakage 

(Wahid et al., 2007). This results in the production of reactive oxygen species (ROS; 

O2.-, H2O2, OH., 1O2), toxic compounds and the reduction of photosynthesis (Fig. 1.2).  

 

o Drought 

Drought can be defined as a period with below average rainfall, or high evaporation 

levels due to heat. It affects over a third of the cultivated land area and 4.3x107 square 

hectometres (hm2) in Asia alone (Singh et al., 2016). Among all the abiotic factors 

experienced by plants, drought places the greatest limitation on rice yields, which will 

only worsen under the climate crisis (Pandey & Shukla, 2015; Zhao et al., 2016). 

Plants experience drought stress through a lack of water supply to the roots or an 
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excessive transpiration rate. Akin to heat stress, drought stress severely impairs 

growth and productivity due to the various effects on processes essential to 

photosynthesis. Stomata close to limit water loss, a lack of stomatal conductance 

limits carbon assimilation, reduces mesophyll conductance, increases ROS and 

damages photosynthetic apparatus, resulting in the reduction of photosystem II (PSII) 

and Rubisco activity (Pandey & Shukla, 2015; Panda et al., 2021). These 

consequences of drought are associated to a slowing of processes essential to 

photosynthesis and cell expansion, to help limit water use.  

 

 

Figure 1.2: Plant heat-shock tolerance mechanisms, showing the key stress-related proteins and their 

interactions. Reactive oxygen species (ROS), mitogen activated protein kinases (MAPK), histidine 

kinase (HSK), calcium dependant protein kinase (CDPK) and heat shock protein (HSP). Image taken 

from Wahid et al. (2007). 

 

o Salinity  
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Soils are considered saline when the presence of soluble salts, such as sodium and 

magnesium chlorides and sulphates, exceed the electrical conductivity concentration 

of 4 dSm-1. Concentrations beyond this value are considered to impair crop growth 

and rice is considered a saline sensitive species, with a threshold tolerance of 3 dSm-1 

(Ghassemi & Nix, 1995). As an abiotic stress factor, salinity has one of the largest 

impacts on rice yields, second only to drought. Approximately 30% of rice growing 

land suffers from soil salinity, which is likely to increase in future climates due to 

rising sea levels and water limitations (Singh et al., 2021). High salinity conditions 

cause two major stressors, osmotic and ionic stress. Osmotic stress occurs in response 

to external high salinity, leading to an inhibition in water uptake and cell expansion. 

While ionic stress occurs in response to an internal toxic accumulation of ions (such 

as Na+) in plants tissues, leading to reduced photosynthesis and leaf mortality. Both 

processes lead to a reduction in productivity and tissue necrosis (Horie, Karahara, & 

Katsuhara, 2012).  

 

Flooding 

Cultivated rice is one of the crops at greatest flood risk and experiences substantial 

annual yield losses as a result, where globally 22 million hectares of rice fields 

experience annual flooding, affecting over 100 million people (Singh et al., 2016; 

Panda & Barik, 2021). Flooding has multiple detrimental effects on the plant, which 

different species mitigate dependent upon their evolutionary adaptation to flooding 

stress. As a semi-aquatic species, rice demonstrates suites of adaptive strategies to 

flooding related abiotic stress. 

Photosynthesis is impaired during the submergence of plants due to limited 

opportunity for gas exchange, reduced light levels and disintegration of chloroplasts. 

Due to submergence and anaerobic soil conditions, leaf CO2 concentrations decline 

and produce ROS, which when left unchecked can cause cellular damage and trigger 

apoptosis (Bailey-Serres et al., 2012; Panda & Barik, 2021). When submerged, some 

species have developed an ‘escape strategy’ to rise the canopy above the water line 

and restore gas exchange. Rice is such as species, where the increased ethylene 

concentration in submerged plant tissues causes the enhancement of shoot growth 

(Mustroph, 2018; Panda and Barik, 2021). However, this rapid elongation can deplete 

carbohydrate stores, so rice varieties with slower shoot elongation are preferred in 
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cultivation areas that experience brief flash flooding (Panda and Barik, 2021).  

Root traits are vital in the fight for survival during flooding events. The physical force 

generated through heavy rainfall and sudden flooding can destabilise a plant and 

cause physical damage to delicate rice roots and shoots. Some species, such as rice 

and Zea mays, develop adventitious roots that helps to withstand this force and 

maintain stability during water logging (Mustroph, 2018). Rice stems develop 

adventitious root primordia at each node, only emerging in response to flooding (Lin 

and Sauter, 2018). The formation of aerenchyma is essential for the survival of 

waterlogged plants, which facilitate the diffusion of oxygen from shoot to root. The 

formation of aerenchyma is ethylene-induced, formed by programmed death of cortex 

cells. Rice constitutively form aerenchyma even under aerobic conditions, which is 

then further induced under anoxic conditions, when tissue concentrations of ethylene 

rise (Mustroph, 2018, Mohammed et al., 2019; Panda and Barik, 2021).  

Flooding events can also cause further damage to plants by increasing the solubility of 

metals in the soil, iron being an example. Iron usually occurs as Fe3+ but when 

flooded for prolonged periods (greater than two to three days), Fe3+ is reduced to Fe2+, 

which is toxic to plants at high concentrations, causing distribution to cellular 

homeostasis (Oort, 2018). Due to this, paddy grown rice is at particular risk to iron 

toxicity. Rice utilises four main mechanisms to defend against iron toxicity, each with 

its own complex molecular pathway. In order of events, these include 1. Suppression 

of iron uptake by the roots, 2. Iron retention in roots, to prevent damage to the 

canopy, 3. Iron mitigation at the shoot via compartmentalisation in old leaves and 4. 

ROS detoxification in the body of the plant in response to iron stress (Aung and 

Masuda, 2020). While rice demonstrates adaptation to iron stress, this is still an area 

of concern and ongoing research.  

As a semi-aquatic species, rice demonstrates natural adaptation to water logging and 

flooding, crop development efforts are seeking to enhance these traits and minimise 

the effects of flooding on future food security (Panda and Barik, 2021).  
 

The effects of abiotic stressors are substantially more complex and interconnected than the 

simple summary provided here and rarely occur in isolation. For example, drought stress is 

usually accompanied by high light radiation and heat stress. For this reason, the physiological 

effects of abiotic stress in plants are complex but often share commonalities, particularly in 
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the limitation of photosynthesis. Similarly, there are commonalities between plant defence 

responses to various abiotic factors. As described above, the production of reactive oxygen 

species (ROS) is a ubiquitous response to abiotic stress in plants. If left unchecked ROS can 

cause catastrophic cellular damage through oxidative stress, but ROS are also useful 

transduction signalling molecules that mobilise genetic responses that mitigate the effects of 

abiotic stress (Choudhury et al., 2017). Alongside ROS, heat shock proteins (HSPs) and 

proteins in the MAPK and CDPK super family are thought to be key signalling molecules to 

trigger responses to protect against the effects of abiotic stress on photosynthesis (Fig. 1.2; 

Cheng et al., 2002; Wahid et al., 2007; Ashraf & Harris, 2013). Phytohormones such as 

abscisic acid (ABA), gibberellin (GA), cytokinins, salicylic acid (SA), auxin and others also 

play an essential role in signalling cascades in response to abiotic stress (Fig. 1.3). For 

example, under heat and drought stress ABA induction is important in the expression of 

HSPs (Wahid et al., 2007; Wang et al., 2015) and GA signalling, causes a reduction of 

stomatal conductance (Gaion & Carvalho, 2021). Although there will be variation between 

plant responses to differing abiotic stress factors, it is worth noting that many mechanisms 

appear to overlap in the common goal of protecting photosynthesis (Fig. 1.3). 

 
 

Figure 1.3: Generalised biological responses to abiotic stress factors. Different abiotic stresses can 

cause similar biological injuries, including protein denaturation, osmotic stress, membrane and 

reactive species (RS) damage. Upon experiencing abiotic stress, common signalling responses (ROS, 

calcium ions, phytohormones etc) mobilise protein kinases and transcription factors to alter gene 
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expression pathways and launch defence systems to protect cellular function. Image taken from (He et 

al., 2018). 

 

The increasing frequency of extreme weather events and global warming means that crop 

improvements are required to develop resilience to these abiotic pressures, while 

simultaneously enhancing yield. A greater understanding of the physiology and genetic 

components associated with abiotic stress tolerance in rice will be essential for the 

development of productive climate change resilient rice.  

 

1.3 Desirable traits for drought, heat and high light resilience in rice  

Drought and heat stress pose the greatest threat to rice yields, which will decline if global 

temperatures continue to increase (Zhao et al., 2017). Understanding and harnessing the 

genetic basis of traits that contribute to drought and heat resilience is essential for securing 

future food security (Fig. 1.4). The tolerance of high light levels and optimising plant water 

use efficiency are important components when developing abiotic stress resilient crop 

varieties. However, the requirement to simultaneously enhance photosynthetic efficiency for 

yield gains is a substantial challenge (Ashraf & Harris, 2013; Kissoudis et al., 2016; Hubbart 

et al., 2018). 
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Figure 1.4: Strategies to reduce drought and heat stress are often conflicting. When these stresses are 

combined, trade-offs in physiological strategies are required to prevent catastrophic damage. The text 

in the image was taken from Costa et al. (2021).  

 

Drought is often accompanied by high heat and light intensity, but the mechanisms used to 

reduce these effects can often be conflicting (Fig. 1.4). During heat stress, water loss through 

transpiration is increased to reduce tissue temperature through evaporative cooling. Whereas 

during drought, stomata close to reduce transpiration and conserve plant water status. These 

combined stresses limit photosynthesis through direct cellular damage and a reduction in 

carbon assimilation via stomatal conductance (gs). Plant water use efficiency (WUE) is a 

term almost ubiquitously mentioned when discussing drought and stomatal conductance. 

WUE can be analysed at three (Medrano et al., 2015; Medlyn et al., 2017): 

1. Instantaneous leaf level - the instantaneous trade-off between carbon assimilation (A) for 

photosynthesis and water loss via transpiration is often shown calculated as A/gs. At the leaf 

level, instantaneous measures of WUE can be calculated via the measurement of A and gs, 

using an infra-red gas analyser (IRGA) to monitor changes in gas exchange (Lawson and 

Blatt, 2014; Medrano et al., 2015; Medlyn et al., 2017).  

2. Plant level - At the whole plant level, carbon isotope discrimination of d13C in plant tissues 

can be used as a proxy for WUE. Due to the preference for the lighter 12Carbon (12C) during 

photosynthesis, the ratio of carbon assimilation to stomatal conductance (and therefore WUE) 

can be estimated using the ratio of 12C to 13C in plant tissues (Adams, Buckley and Turnbull, 

2020). This method is used to measure WUE at the plant level and can also be used to 

estimate WUE over varying time scales, such as monthly or annually (Medlyn et al., 2017; 

Adams, Buckley and Turnbull, 2020).  

3. Groups of individuals - At the largest scale, WUE can be estimated across many 

individuals, such as the measurement of crops. This method is simply measured as biomass 

over water loss via evapotranspiration. The latter can be measured in several ways, including 

the weight of plant pots and the use of soil sensors combined with satellite data (Medrano et 

al., 2015).  

Because the main methods of WUE analysis vary across the scale of the plant, it is difficult to 

directly compare the estimate of WUE between these methods (Medlyn et al., 2017). The 

most appropriate measure of WUE will often depend upon the research question, capacity, 

equipment and funding resource available. Isotope discrimination and the measurement of 

gas-exchange using IRGAs can be costly, requiring specialist equipment. While the 



 23 

measurement of WUE via the ratio of biomass to water is cheap but lacks fine detail that may 

be useful for further analysis.  
 

As WUE improves when stomata close or reduce their aperture, research focusing on the 

improvement of WUE often surrounds stomata. Stomatal traits, photoprotection and 

photosynthesis are three interlinked components that can be optimised in the trade-off 

between water use efficiency and carbon assimilation. These traits and their importance in 

drought and heat tolerance are described below.  

 

o Stomata 

Stomata are small dynamic pores on the leaf surface that regulate water loss via 

transpiration and carbon assimilation (A) for photosynthesis. Stomata are important 

gatekeepers between the internal and external environments, managing gas exchange 

via stomatal conductance to effectively balance water use efficiency (WUE) and 

productivity (Lawson & Blatt, 2014). Light, CO2 and vapor pressure deficit (VPD) are 

the main above ground drivers of stomatal movement, alongside soil status signalling 

from the root (Foyer & Noctor, 2020). Increasing light, low internal CO2 and low 

VPD induces stomatal opening, to acquire CO2 required for photosynthesis, while the 

reverse triggers closure (Outlaw, 2003;  Moore et al., 2021). However, research has 

shown a hierarchical signalling response when controlling stomatal movements. For 

example, during drought stress stomata will remain closed to prevent damaging water 

loss, even in response to high CO2 demands and rising leaf temperatures (Moore et al., 

2021).    

There is a positive correlation between gs and A, but a negative correlation between 

gs and WUE, demonstrating plant productivity and WUE are directly at odds with one 

another (Fig. 1.4 and 1.5). Aperture is the dominant factor but the range of stomatal 

conductance values a plant can achieve has been shown to be affected by stomatal 

density and size. A higher maximum capacity gs (gsmax) is associated with smaller 

stomata at a greater density (Fig. 1.5), where there is a negative relationship between 

stomatal size and density across plant taxa (Hetherington & Woodward, 2003; Drake 

et al., 2013). Recent studies have shown the reduction of stomatal density, through the 

over expression of the OsEPF1 (epidermal patterning factor) gene, reduced gs and 

improved drought tolerance in O. sativa (Caine et al., 2019a; Mohammed et al., 

2019).  
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Figure 1.5: The effects of stomata size and density on conductance and dynamics. Arrows in the 

central box indicate the effect of stomatal size (left panel) and clustering (bottom panel) on stomatal 

conductance and carbon assimilation. The plots in the three diagonal boxes indicate the effects of 

stomatal size, density and clustering on the dynamics for stomatal conductance (red line), carbon 

assimilation (black dashed line) and the limitation of carbon assimilation by stomatal conductance 

(green area). The top-right arrow indicates the impact of stomatal anatomy on water use efficiency. 

Image taken from (Faralli et al., 2019).  
 

Recent research has highlighted the importance of stomatal dynamics, that is the 

speed of stomata opening and closure, on photosynthetic effiency and WUE. Strong 

correlations between A and gs are reported for steady state values at maximum 

capacity (Farquhar & Sharkey, 1982). However, this rarely occurs due to fluctuating 

fields environments and the requirement for plants to continually balance A and water 

status requirements (Kaiser et al., 2018; Slattery et al., 2018). Due to the physical 

movement of stomata, dynamic gs induction and relaxation reponses lag behind the 

biochemical reactions of photosynthesis. The effect of delayed stomatal opening has 

been estimated to limit A by 20%, causing a substantial impact on potential crop 



 25 

productivity (Lawson & Blatt, 2014; Taylor & Long, 2017). Likewise, delayed 

stomatal closure can result in unncessary water loss and reduce WUE (Vialet-

Chabrand et al., 2017; Lawson & Vialet-Chabrand, 2019). Research has proposed 

subtantial yield gain and enhanced WUE can be obtained through enhancing the rate 

of stomatal dynamics, causing the close coupling of gs and A (Faralli et al., 2019).  

Stomata are an integral layer in a complex system, these microscopic pores have 

integral roles in pathogen defence, whole plant water status and plant productivity. 

Compared to most plant taxa, rice have small stomata with rapid dynamics 

(McAusland et al., 2016). The effect of stomatal dynamics on photosynthetic 

efficiency and WUE is still a relatively unexplored area in crop species, and 

suggested as a possible mechanism to improve drought tolerance in rice (Qu et al., 

2020). It is clear that with dedicated research on the interplay between stomatal 

density, size and dynamics, there are substantial gains to be made in photosynthesis, 

water use efficiency and abiotic stress tolerance.  

 

o Photosynthesis  

Photosynthesis is one of the most important physiological processes on Earth, almost 

all life in the biosphere depends upon the oxygen and energy-rich carbohydrate 

products from this biochemical reaction. The importance of this process can be seen 

in the consequences of the abiotic stress factors discussed above, where 

photosynthesis and plant growth is affected in all examples given. Photosynthesis is a 

complex energy transducing process, involving CO2, water and light energy, to 

produce an essential source of carbohydrate energy to power plant function and 

growth. Chloroplasts house the photosynthetic reaction centres, where the light driven 

reactions in the thylakoid membranes split water into O2, protons and electrons for the 

generation of the energy molecules ATP (adenosine triphosphate) and NADPH 

(Nicotinamide adenine dinucleotide phosphate). These are used to reduce CO2 in the 

Calvin-Benson cycle reaction, converting carbon into a carbohydrate energy source in 

the chloroplast stoma (Johnson, 2016).  

In plants possessing stomata, approximately 98% of CO2 for photosynthesis is 

obtained through stomatal conductance and as discussed above, stomatal traits can be 

exploited to enhance productivity.  
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However, drought stress can inhibit CO2 acquisition, when stomata close to prevent 

water loss (Moore et al., 2021) and it is useful to separate the inhibition of 

photosynthesis by water deficit into those which directly result from a lack of access 

to CO2 (due to stomatal closure) and those which are an impairment of photosynthetic 

metabolism caused partly by associated stresses.  

 

Stomatal closure also prevents evaporative cooling and can potentially damage 

delicate photosynthetic organelles and proteins through increased leaf temperature 

(Caine et al., 2019a). Furthermore, under severe drought stress leaf loss of turgor and 

adverse water potentials can lead to reduced metabolic processes required for 

photosynthesis and utilisation of CO2 (Ashraf & Harris, 2013). Due to the 

complexities of photosynthesis, the strategies of abiotic stress tolerance are yet to be 

fully elucidated. However, the upregulated expression of protective proteins (Fig. 1.2) 

and higher turnover of Rubisco, thylakoid membrane proteins and other machinery 

related to photosynthesis is suggested to help maintain photosynthetic function and 

limit the effects of drought (Georgieva et al., 2010; Jarvit et al., 2013). To fully 

understand and utilise these protective molecular processes, the future 

characterisation of abiotic stress induction signalling pathways is essential for 

enhancing photosynthetic tolerance and productivity in challenging conditions 

(Bailey-Serres et al., 2019).  

 

The targets for enhancing photosynthetic productivity under optimal conditions are 

relatively better understood than abiotic tolerance mechanisms and tends to mirror 

those identified for stomatal conductance. Historically, gains in biomass and yield 

were achieved through the introduction of dwarfing varieties and enhancement of 

maximum carbon assimilation (A) , which continues to have validity as biomass can 

be correlated to high levels of A (Carmo-Silva et al., 2017). But under fluctuating 

field conditions and almost constant changes in stomatal conductance, recent research 

has also highlighted the importance of the speed of photosynthetic induction as a 

source of yield improvement (McAusland & Murchie, 2020). Rapid photosynthetic 

induction utilises fluctuating light more effectively, whereas slow responses can 

substantially reduce carbon acquisition throughout the day (Vialet-Chabrand et al , 

2017). Taylor and Long (2017) estimate 21% loss of carbon assimilation in wheat due 

to slow photosynthetic induction. Recent work in rice and wheat has suggested that 
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biochemistry, such as carboxylation rate of Rubisco, places the greatest limitation on 

photosynthetic induction (Taylor & Long, 2017; Acevedo-Siaca et al., 2020, 2021). 

Showing that while CO2 assimilation and stomatal conductance are interlinked, it is 

not the only limiting factor for productivity and provides other target traits to explore.  

 

o Photoprotection 

Increasingly high light intensities are likely to accompany drought and heat stress, 

which can have detrimental effects on photosynthetic efficiency and photochemistry. 

This is particularly relevant in rice growing regions near the equator, which receive 

especially high levels of solar radiation (Murchie et al., 2015). Under high light 

intensities photosynthetic machinery cannot utilise the absorbed excess light energy, 

this can lead to quantum yield reduction and photoinhibition. The latter is often 

considered to be inactivation of photosystem II because of protein damage (Murchie 

and Ruban 2020).  To limit photoinhibition there are several photoprotective 

mechanisms that occur in the thylakoid membranes (Müller et al., 2001). Non-

photochemical quenching (NPQ) is one of the most effective mechanisms, which acts 

by releasing the built-up excitation energy in the light-harvesting complexes of 

photosystem II (LHCII) as heat, thus protecting the photosynthetic antenna from over 

excitation and photoinhibition (Murchie & Ruban, 2020; Ruban & Wilson, 2021). 

While NPQ is a photoprotective mechanism, it can also momentarily behave in a 

photoinhibition-like manner. As part of the mechanism to dissipate excitation energy 

as heat, NPQ switches the LCHII between a light-harvesting to energy dissipation 

state. This temporarily reduces quantum yield and therefore photosynthesis, causing a 

trade-off between photoprotection and photosynthesis (Slattery et al., 2018; Murchie 

& Ruban, 2020). Relaxation from photoprotection takes minutes to achieve whereas 

photoinhibition can take days, requiring protein synthesis and a source of energy. 

 

NPQ has been receiving increasing attention as a potential method to enhance both 

photoprotection and improve photosynthetic efficiency. Under high light NPQ 

provides essential photoprotection, but under fluctuating light conditions NPQ 

relaxation can lag behind the change in light levels. This places a limitation on 

photosynthetic efficiency and crop yields (Kromdijk et al., 2016). Recent research has 

shown that enhancing NPQ relaxation responses to low light increases photosynthetic 
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efficiency and improves productivity (Fig. 1.6; Kromdijk et al., 2016; Hubbart et al., 

2018). While NPQ research is still in its infancy, it is clear this is an important trait 

when developing climate resilient cultivars. Improved NPQ capacity and dynamics 

could be harnessed to protect rice crops from increasing light intensities and enhance 

photosynthetic efficiency for much needed yield gains.  

 
Figure 1.6: CO2 fixation rates are 9% higher in mutant lines exhibiting a rapid NPQ relaxation rate. 

Here, the (A) NPQ relaxation rate and (B) CO2 fixation rate was compared between Nicotiana 

tabacum wild type (WT) and transgenic lines that overexpressed three key NPQ proteins (VPZ-

23/34/56). The left y-axis shows the normalised NPQ value and right y-axis net carbon assimilation, 

the x-axis shows the time (seconds) after (a) the light was switched off and (b) the light intensity was 

reduced from 2000 – 200 PPFD. Error bars show standard error. Image taken from (Kromdijk et al., 

2016).  

 

Stomatal, photosynthetic and photoprotective traits are essential to producing climate 

resilient, yet productive rice cultivars. However, the natural variation for these traits in rice is 

relatively unexplored, and therefore underutilised. Characterisation in genetically diverse rice 

populations will assist identifying useful phenotypes to facilitate crop improvement efforts.   

 

1.4 O. glaberrima as a source of natural variation for potential O. sativa crop      

improvement.  

The search for abiotic stress resistant rice cultivars has been subject to increasing research 

focus in recent years (Atwell et al., 2014). Advances have been made through traditional 

plant breeding methods but recently attention has turned towards the introgression of genes 

from a range of diverse interspecific material. Including the African rice species, Oryza 
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glaberrima, which demonstrates exceptional resilience to many abiotic stress factors 

(WARDA, 2006; Bocco et al., 2012). 

 

Oryza sativa and Oryza glaberrima are the only two domesticated crop species in the genus 

Oryza (Muthayya et al., 2014) but evolved independently to one another, last sharing a 

common ancestor approximately 600,000 years ago. O. glaberrima was domesticated 

approximately 3000 years ago independently to O. sativa, which underwent domestication 

around 10,000 years ago (Fig. 1.7; Atwell et al., 2014; Wang et al., 2014). O. glaberrima was 

cultivated along the West-African coast and has not been readily utilised outside of its 

domestication centre, where it has been steadily replaced by the higher yielding O. sativa  

(Muthayya et al., 2014).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7: The independent evolution and domestication of African and Asian rice species. Modern 

O. sativa and O. glaberrima varieties evolved in parallel, independently to one another on separate 

continents. While both provide a strikingly similar food source, each has evolved in response to 

independent environmental selective pressures, and this differential selection process could 

potentially be exploited to improve current commercial cultivars. Image taken from Purugganan, 

2014.  

 

The process of crop domestication through artificial selection, and the highly selective 

pressures of intensive agricultural environments, can cause large genetic changes over 
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comparatively short spaces of time. O. glaberrima appears to have experienced a severe 

bottleneck during the domestication process and thus is genetically narrow in comparison to 

O. sativa (Nabholz et al., 2014). O. glaberrima also exhibits undesirable traits, such as; 

milling difficulties and lower yields than O. sativa due to lodging and grain shattering 

(Linares, 2002). However, it shows physiological advantages over its more commercial 

sibling, including out-competing weeds with wide leaves and a swift maturation time, the 

latter making it an excellent emergency food source (Linares, 2002; Atwell, Wang, & 

Scafaro, 2014). Despite not being commercially viable, O. glaberrima demonstrates 

substantial resilience to a range of biotic and abiotic stresses, such as; bacteria, viruses, 

nematodes, iron toxicity, high salinity, nutrient deficiencies and drought (Linares, 2002; 

Albar et al., 2003; Orjuela et al., 2014). As a result, O. glaberrima is an untapped source of 

natural variation for the improvement of O. sativa.  

 

O. sativa and O. glaberrima are closely related, and while both possess the AA genome (Xu 

et al., 2014), interspecific hybridisation between the two species is restricted by a sterility 

barrier at the S1  locus. Hybridisation efforts result in 100% F1 hybrid sterility and this has 

impaired O. sativa interspecific breeding efforts (Orjuela et al., 2014; Shen et al., 2015). 

Consequently there has been valuable research directed into characterising the molecular 

basis of the sterility barrier between the two species to overcome these challenges (Xu et al., 

2014; Shen et al., 2015; Li et al., 2020).  

 

Despite these difficulties, interspecific hybrids have been generated by West Africa Rice 

Development Association (WARDA). Fertile interspecific hybrids between O. glaberrima 

Steud. and O. sativa L. were generated through a combination of traditional breeding 

techniques and the more complex anther culture and double-haploidisation, followed by 

embryo rescue and backcrossing (Fig. 1.8; WARDA, 2008). The lines produced from these 

dedicated breeding efforts are known as the NEw RICe for Africa (NERICA) cultivars 

(WARDA, 2006; Ikeda et al., 2009). 
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Figure 1.8: Schematic of the generation of NERICA cultivars. As 100% of F1 progeny produced by 

the O. glaberrima x O. sativa cross is sterile, anther culture and embryo rescue is performed to 

facilitate repeated backcrosses with O. sativa to produce fertile interspecific hybrids. Four 

backcrosses produce ~85-100% fertile, fixed lines which are then selected for desirable traits. The 

generation of upland NERICA varieties utilised O. sativa japonica, which is traditionally a rain fed 

rice species. Image taken from Nassirou & He, 2011. 

 

NERICA cultivars were initially selected for their tolerance to the dry, rainfed upland 

ecology, representative of large swathes of West and Central African agricultural regions 

(WARDA, 2008). Seven NERICA upland cultivars were released in 2000, followed by 

another 11 in 2006 (Ikeda et al., 2009). Since this time these varieties have been distributed 

across Africa to local farmers and further breeding efforts have been specifically targeting 

wet lowland agronomic conditions (WARDA, 2008). Ongoing research on the varieties 

shows that NERICAs can produce desirable features of both species, including those found in 

O. glaberrima such as; tolerance to pests, nutrient deficiencies and drought under controlled 

conditions while reflecting the higher yields of O. sativa (Orjuela et al., 2014; Kikuta et al., 

2017). However, major criticisms of the NERICA varieties include loss of seed viability over 

time and inconsistency in the performance of the cultivars experienced by farmers in field 

conditions, to the extent where 50% of farmers adopting it in 2004 had abandoned its use by 

2006 (Kijima et al., 2011). As a UN funded humanitarian effort, NERICAs were not 

developed to replace commercial O. sativa crops but provide a reliable food crop for West 

African farmers and an economic development opportunity (WARDA, 2006). Few studies 
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have assessed the impact of NERICA on African farmer’s livelihoods, however a study 

conducted by Kijima et al. (2008) suggested that NERICAs can increase income and decrease 

poverty significantly. Although this is suggested to only be the case when accompanied by 

appropriate agricultural equipment and cropping patterns, of which many African farmers 

simply do not have access to or rice specific agricultural knowledge. The problems 

encountered suggest that NERICAs may not be the solution as was initially hoped. 

Furthermore, the crop yields and initial purpose of the NERICA varieties is not appropriate 

for the replacement of high yielding O. sativa cultivars.  

 

1.5 Identifying and utilising the natural variation in O. glaberrima 

O. glaberrima is an underutilised source of genetic diversity and abiotic stress tolerance for O 

sativa improvement. The generation of NERICAs was based on the production of a range of 

interspecific hybrids using a small number of O. glaberrima parent accessions and did not 

target the characterised genetic variation of beneficial traits in O. glaberrima (Monat et al., 

2017). In this genomic era, it seems a logical step forward to first identify genes and alleles 

associated with traits of interest in O. glaberrima. Genome editing techniques such as 

CRISPR/Cas9, would be a direct method to introduce useful variation into the O. sativa 

genome, if trait-related genes of interest are found to be homologous between the two species 

(Song et al., 2016). However, complex traits associated with abiotic stress tolerance are likely 

to be quantitative and therefore will require good quality sequenced O. glaberrima accessions 

for gene identification (Tuberosa & Salvi, 2006). Until recently such data was lacking, except 

in the instance of the few cultivars used in NERICA production and even these had 20-30% 

gaps in the genome sequence (Orjuela et al., 2014; Monat et al., 2017). The RICE (Rice, 

Interspecies Comparison and Evolution) group within the Research Institute for Development 

(IRD), University of Montpellier, have gathered a panel of genetically diverse O. glaberrima 

accessions as a resource for O. sativa improvement (Cubry et al., 2018). The re-sequencing 

efforts of these accessions has provided a high-quality resource to identify trait-related genes 

within O. glaberrima, through analyses such as genome wide association studies (GWAS) 

(Cubry et al., 2020) and quantitative trait analysis (QTL) (Dufey et al., 2015). QTL analysis 

and allele mining has been used with O. glaberrima to identify loci associated with biotic and 

abiotic stress tolerance, such as iron toxicity (Dufey et al., 2015) and rice yellow mottle virus 

(RYMV) resistance (Thiémélé et al., 2010; Pidon et al., 2020).  
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GWAS has been used with great success in plant science to identify trait-related genes. With 

the advances in sequencing technology and high throughput phenotyping, GWAS is an 

important tool that can be used to explore the causal relationship between a phenotype and 

genotype within a group of organisms. (Wang et al., 2016; Zaidi et al., 2016). In a brief 

summary, GWAS analysis uses a sample population of a species whose genome has been 

characterised for polymorphisms, such as high-density single nucleotide polymorphism 

(SNP) arrays. The chosen group of individuals are then phenotypically characterised for traits 

of interest, to capture trait variation. An association algorithm is then used to scan all 

individual genomes, testing for a statistical association between a phenotypic trait and 

common genetic variation at a locus within the genome (Korte and Farlow, 2013).  

Like any analysis, GWAS has its strengths and weaknesses. From a practical perspective, 

GWAS is a reproducible, cost-effective method that (when shared) produces useful results 

that the wider scientific community can take forward in several ways (Tam et al., 2019). A 

particular strength of GWAS over traditional gene mapping methods, is that it can be 

performed on collections of individuals with unknown ancestry (Korte and Farlow, 2013; 

Tam et al., 2019). This overcomes the main limitation of QTL analysis, which requires 

established recombinant inbred line (RIL) families or F2 populations that have co-segregating 

loci for a trait, which does not represent the natural functional diversity. GWAS can also 

resolve mapping resolution, which can be a challenge in QTL analysis. However, it is 

recommended that GWAS and QTL analysis are conducted together, as they mitigate the 

different limitations in each method (Korte and Farlow, 2013).  

GWAS is a powerful method that has been proven to identify novel trait-gene associations 

and reveal new biological mechanisms across a myriad of species. However, there are several 

limitations that need to be considered when embarking on an association study. While 

GWAS is relevant to rare and low-frequency variants, these can be easily missed, and the 

analysis is better suited to the identification common sources of genetic variation (Korte and 

Farlow, 2013; Tam et al., 2019). A small sample size can place a limitation on GWAS 

efficacy, for this reason most GWAS studies will used sample sizes over >300 and may 

extend to thousands of individuals in human studies. Increasing the sample size increases 

statistical power, thus the detection of polygenic traits with small effect sizes, and captures a 

larger proportion of the population that may exhibit low-frequency or rare variants (Hong and 

Park, 2012). Conversely, large populations exert a higher degree of kinship and population 

structure, this can inflate the detection of false positives due to allelic fixation through genetic 
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drift, if not appropriately accounted for. Similarly, significant associations can be missed if 

these confounding factors are over corrected (Brachi, Morris and Borevitz, 2011; Korte and 

Farlow, 2012; Tam et al., 2019).  

These limitations may seem daunting but can be mitigated through good quality genome 

sequencing and assembly, appropriate experimental design, large sample sizes and accurately 

accounting for confounding factors (Korte and Farlow, 2013). In plants species particularly, 

GWAS is a powerful method that is actively utilised to elucidate trait-gene relationships.  

GWAS has been shown to successfully to partition complex traits. For example, the genes 

accelerated cell death6 (ACD6) in Arabidopsis thaliana (Todesco et al., 2010) and vacuolar 

H+ pyrophosphatase (VVP1) in Zea mays (Wang et al., 2016), were identified via GWAS and 

later functionally validated. GWAS is widely used to elucidate the genetic basis of key 

agronomic traits across crop species, such as flowering time, plant height and grain filling 

(Cortes, Zhang and Yu, 2021). Recent studies using GWAS in rice (O. sativa) explored the 

genetic basis of stomatal traits (Chen et al., 2020) and Cubry et al. (2020) identified a key O. 

sativa flowering time gene co-locating in O. glaberrima. 

As a self-fertilising species, O. sativa has proved a highly successful candidate for GWAS 

studies (Cortes, Zhang and Yu, 2021). However, considering the importance of O. 

glaberrima as a source of heritable natural variation in abiotic stress tolerant traits, the 

exploration of the phenotypic and genetic diversity in the species is surprisingly limited.  

However, the recent re-sequencing efforts has opened an exciting new opportunity to mine 

for abiotic stress trait-related genes using GWAS.  

 

While O. glaberrima offers many favourable traits for O. sativa improvement, research 

efforts on identifying trait-related genes to-date have focused on the tolerance to iron toxicity 

and viral stresses (Albar et al., 2003; Dufey et al., 2015). However, climate change is the 

biggest challenge facing the future of the planet and providing cultivars with tolerance to 

abiotic stressors is essential. The traits associated with abiotic stress tolerance and 

productivity are well documented. Therefore, it seems sensible that future research efforts 

should be directed towards identifying the trait-related genes in O. glaberrima. The 

investigation of traits, is often focused to one small plant process (Giuliani et al., 2013; Uga 

et al., 2013; Thi et al.,2016). While this makes the elucidation of specific traits and genes 

more tractable, it does not take into consideration that such responses are often intertwined. 

The relationships between traits may be obscured when measured in isolation. Therefore, the 

search for climate resilience related traits within O. glaberrima should ideally be approached 
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from a broader perspective, exploring the desirable traits mentioned above and their 

interconnecting associations.  

 

1.6 Statement of research purpose  

O. glaberrima possesses many novel abiotic stress tolerant qualities that can be exploited as a 

source of rice crop improvement. Despite being recognised as a source of novel genetic 

diversity for decades (Ghesquière et al., 1997; Sarla & Swamy, 2005), O. glaberrima remains 

relatively uncharacterised both phenotypically and genetically. The recent collection and re-

sequencing of genetically diverse O. glaberrima accessions (Cubry et al., 2018) provides an 

ideal opportunity to characterise the genes, or define regions within the genome, which are 

responsible for traits related to abiotic stress tolerance. Taking into consideration the serious 

impact of climate change and projected desertification in large areas of the world, 

considerable research efforts should be directed towards investigating the capabilities of O. 

glaberrima as a source for crop improvement. 

 

This project will explore the heritable natural variation within the re-sequenced population of 

155 O. glaberrima accessions. To achieve this, comprehensive phenotyping efforts will 

characterise the natural variation across a range of morphological and photosynthetic traits. 

Using this information, a GWAS will be completed to identify trait-related candidate genes 

and regions. Further to this, physiological associations between complex traits will be 

explored to highlight interesting relationships for future research. The research completed 

here aims to identify useful trait linked genetic markers, for the contribution to future 

translation and adaptation of O. sativa to a changing climate. 
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CHAPTER TWO 

Stomata Detector: High-throughput automation of stomata counting in a population of 

African rice (Oryza glaberrima), using transfer learning.  

 

2.1 Chapter two introductory statement 

The manuscript documents the development of a machine learning based software that 

automates the counting of stomata in a micrograph. The project conception arose from the 

large volume of stomatal impressions, and subsequent microscopy images (13,110), that were 

generated from phenotyping (further described in Chapter 3) the O. glaberrima population 

detailed in this thesis. Characterising the variation in O. glaberrima stomatal density was 

important to the objectives of the PhD project, but the manual phenotyping of stomatal 

density would have been too slow (estimated 9-12 months on top of 3-month image 

acquisition). There has been recent burgeoning of high throughput stomatal image analysis, 

but at the time (2018-2019) there was little-to-no open-source software on the subject. One 

resource was found to be freely available at the time, ‘StomataCounter’ (Fetter et al., 2019) 

from University of Vermont and Brown University. However, when tested it did not 

accurately identify rice stomata, had a slow image processing time, and did not offer a 

function to batch process large numbers of microscopy images. When repeatedly tested 

thereafter (2019 - 2021), the StomataCounter resource portal could not process images at all, 

despite our micrographs meeting the guidance specifications. For this reason, an automated 

stomatal counting method was developed that would be more accurate than manual methods, 

with the intention to be further developed as a shared community resource.  

 

This chapter consists of a draft manuscript that has been submitted and accepted to the pre-

print repository, bioRciv (doi.org/10.1101/2021.12.01.469618). We aim to submit this to a 

peer reviewed journal, pending re-training with micrographs from a wider taxonomic group.  

 

Text in grey was written by Dr. Hamidreza Soltani. 
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ABSTRACT 

Stomata are dynamic structures that control the gaseous exchange of CO2 from the external to 

internal environment and water loss through transpiration. The density and morphology of 

stomata have important consequences in crop productivity and water use efficiency, both are 

integral considerations when breeding climate change resilient crops. The phenotyping of 

stomata is a slow manual process and provides a substantial bottleneck when characterising 

phenotypic and genetic variation for crop improvement. There are currently no open-source 

methods to automate stomatal counting. We used 380 human annotated micrographs of O. 

glaberrima and O. sativa at x20 and x40 objectives for testing and training. Training was 

completed using the transfer learning for deep neural networks method and R-CNN object 

detection model. At a x40 objective our method was able to accurately detect stomata (n = 

540, r = 0.94, p<0.0001), with an overall similarity of 99% between human and automated 

counting methods. Our method can batch process large files of images. As proof of concept, 

we characterised the stomatal density in a population of 155 O. glaberrima accessions using 

13,100 micrographs. Here, we present developed Stomata Detector; an open source, 

sophisticated piece of software for the plant science community that can accurately identify 

stomata in Oryza spp., and potentially other monocot species.  
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2.2 INTRODUCTION  

The improvement of elite crop varieties is essential in meeting increasing global food demand 

(Ray et al., 2019; FAO et al., 2020) and resilience to a changing climate (Kissoudis et al., 

2016; Gao, 2021). A cornerstone in the development of crop resilience to global warming lies 

in balancing the trade-off between plant water relations and photosynthesis, in which stomata 

play a central role (Chaves et al., 2002; Lawson and Blatt, 2014) . Stomata are dynamic 

microscopic pores in the leaf epidermis, which act as the gatekeepers between a leaf’s 

internal and the external environments. Stomata open and close in response to internal and 

environmental stimuli, such as light and heat. In doing so, stomata regulate the degree of CO2 

assimilation for photosynthesis (A) and water lost through transpiration, both occurring 

during stomatal conductance (gs) (Lawson and Blatt, 2014; Kostaki et al., 2020; Yang et al., 

2020). However, there is a trade-off between improved plant water use efficiency (iWUE = 

A/gs) and CO2 assimilated for crop productivity (Blum, 2009; Lawson et al., 2010; Lawson 

and Blatt, 2014). Modifying the density of stomata on the leaf surface (SD) is one method 

that plants use to balance A with WUE, for example increasing SD in Arabidopsis thaliana 

has been shown to enhance photosynthetic rate by 30% (Tanaka, Sugano, Shimada, & Hara-

Nishimura, 2013), while in rice (Oryza sativa, cultivar IR64) a reduction in SD by greater 

than 50%, in comparison to the wild type, showed an improvement in WUE without 

compromising photosynthesis and yield (Caine et al., 2019; Mohammed et al., 2019).  

As a functional trait, understanding the effects of stomatal density is also important to several 

other plant research areas. The speed of stomatal dynamics of opening and closing places a 

limitation on photosynthetic efficiency under fluctuating light conditions, with consequences 

for both WUE and productivity and speed may be in part determined by stomata size  (Drake 

et al, 2013; Lawson and Blatt, 2014). Stomata are also known to be key players in mediating 

pathogen resistance, where density and anatomy effect the likelihood of colonisation 

(Melotto et al., 2008; McKown et al., 2014; Muir, 2020). Consequently, stomatal density and 

morphology are an important research focus in the search for improved crop productivity and 

resilience in future climates.  

 

Stomatal density has been shown to be a heritable trait, controlled by suites of genes, such as 

EPIDERMAL PATTERNING FACTORs (EPFs), EPF-LIKEs and the ERECTA-family (Hara 

et al., 2007; Hara et al., 2009; Hunt and Gray, 2009; Zoulias et al., 2018). The genetic control 

of stomatal development and patterning is relatively well-defined in Arabidopsis thaliana 

(Nadeau and Sack, 2002; Chowdhury et al., 2021). Elucidating the genetic control of 
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stomatal features has only begun in crops relatively recently (McAdam et al., 2021), which is 

a major barrier when harnessing stomatal traits for crop improvement. Considering the 

important role that stomata play in carbon acquisition and water use efficiency, the successful 

introgression of diverse drought and heat resilient plant genotypes is essential to future crop 

improvement (Qu et al., 2016; Faralli, Matthews and Lawson, 2019; Kimura et al., 2020; 

Moore et al., 2021). To achieve this, large scale stomatal phenotyping efforts are necessary to 

capture the diversity across crop species, their wild relatives and, ideally, the wider plant 

kingdom. This information can then be used to identify desirable stomatal traits, elucidate the 

underlying genetic control and the genetic diversity through genomic analysis for future 

breeding programs.  

 

The scientific resources and characterisation of genomic research has rapidly evolved, 

becoming increasingly precise and high throughout. Whereas rapid, large scale trait 

measurement pipelines are sorely lacking and recognised to be a major data collection 

bottleneck. This limits crop breeding progress in global food and nutritional security (Mir et 

al., 2019). The measurement of stomatal morphology and patterning is a manual process, that 

is slow, fraught with human error and limits whole population phenotyping efforts. The 

process comprises of three main steps; 1. acquisition of leaf surface impressions, usually via 

dental putty (non-destructive) or clear nail varnish (destructive but faster); 2. image 

acquisition using a microscope, obtaining up to 20 fields of view per peel, based on the 

microscope objective, peel quality and stomatal size; 3. Measurement of stomatal density and 

morphology, often completed using the image analysis software IMAGEJ (National Institute of 

Health, USA). Manual processing is an acceptable technique when working on small 

numbers of individuals but proves a significant limitation when measuring stomatal traits in a 

large population, which is necessary for documenting stomatal diversity and genomic 

analyses.  As mentioned above, genomic analyses are increasingly used for identifying trait-

related candidate loci and the underlying genetic variation in a trait of interest but require 

large numbers of individuals for accurate loci detection (Hong & Park, 2012).  

 

There have been recent developments towards the automated analysis of epidermal and 

stomatal traits (Laga, Shahinnia and Fleury, 2014; Duarte, De Carvalho and Martins, 2017; 

Jayakody et al., 2017), there are currently no established, open-source automated stomatal 

analysis methods available to hasten the process. Of the methods that have been developed, 

none can accurately identify stomata across variable taxa and do not reliably capture the core 
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crop species (wheat, rice, maize), that will be a focus in securing future food security. There 

is now an urgent need to develop automated, high-throughput phenotyping of stomatal traits 

for the scientific community, to benefit both fundamental research and crop improvement. In 

this project, we aim to substantially reduce the time, cost and error associated with the 

manual counting of stomata through the development of an automated counting method. This 

project uses a machine-learning based method to accurately count stomata from a microscopy 

image. As large volumes of images are produced during a population level phenotyping 

effort, the method can process a file of multiple images, as well as single micrographs. The 

accuracy and useability of the method is then tested by phenotyping stomatal density in a 

population of O. glaberrima accessions, consisting of 155 genotypes. Here, we develop a 

resource that will improve research standards and provide information on stomatal traits at a 

population level and assist in the identification of molecular markers in the selection of new 

crop varieties for a sustainable future. 

 

 

2.3 MATERIALS AND METHODS 

2.3.1 Plant material and growth  

The seed of 155 O. glaberrima accessions was provided by Diversité Adaptation 

Developpement des plantes (DIADE), IRD-Montpellier, France (Supplementary Table S2.1). 

Plants were grown and measured in a controlled environment glasshouse (Cambridge HOK, 

UK) at the Sutton Bonington Campus, University of Nottingham, UK. Conditions were 

maintained at 28±3 oC, 50-60% relative humidity and a 12-hour dark:light (07.00 – 19.00 hrs) 

photoperiod. Light levels were controlled using blackout blinds and metal halide lamps were 

used to maintain light levels when they fell below 200 µmol m-2 s-1 photosynthetically active 

radiation (PAR). Seeds were heat treated to prevent pathogenesis at the primary seedling 

stage through immersing in water at 55oC for 15 minutes. Seedlings were grown in module 

trays and transplanted to soil pits (5mx5mx1.25m, LxWxD) within the glasshouse at 2 weeks 

old. Five replicates of each accession were transplanted in east – west rows (Supplementary 

Figure S2.1), at 20cm intervals, into high nutrient loam-based soil. Accessions were grown 

and planted in rotations of twelve genotypes at a time, staggered at 1–2-week intervals. Plants 

were measured at eight weeks old, and the four healthiest plants for each accession were 

selected for measurement. Measurements commenced July 2017 and finalised October 2017 
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(Supplementary Table S2.2). The O. sativa variety ‘IR64’ was used as a reference genotype, 

as this is well characterised, and planted as a row in every batch. 

 

2.3.2 Stomatal impressions and image collection 

Impressions of the leaf epidermis were taken from an approximately 1cm2 mid-section of the 

first fully expanded leaf, using fast drying clear nail polish and adhered to a microscope slide. 

Impressions of the abaxial (basal) and adaxial (upper) leaf surface were taken, as stomatal 

density and morphology can differ between the two leaf sides (Franks and Farquhar, 2007; 

Chatterjee et al., 2020). Impressions of each leaf side were obtained from each of the four 

genotype replicate plants grown. An abaxial and adaxial impression was taken from these 

replicates, resulting in a total of eight impressions of the leaf surface: four abaxial and four 

adaxial. This was the case for each of the 155 accessions.  

Images were obtained on a Leica DM5000B light microscope at x20 and x40 objectives, 

using the image settings; 70% brightness, 0.35 gamma and greyscale. Images were saved as a 

1728x1944 intermediate quality resolution pdf, this was a compromise between image quality 

and size for computational processing speed. Microscopy images of impressions for the entire 

experimental panel of 155 O. glaberrima accessions and O. sativa ‘IR64’ replicates were 

obtained just using the x40 objective, with ten fields of view (FOV) per impression. Eight 

impressions were obtained for each O. glaberrima accession and the O. sativa IR64 check 

genotypes, with ten FOV obtained per impression. This produced a total of 13,110 

micrographs to process for phenotypic analysis.  

 

2.3.3 Image annotation  

Image annotation is a necessary process in training a computer vision model to accurately 

identify an object within an image. Our process included the manual definition, using a 

bounding-box, and a text-based description of a stoma within a micrograph. The generation 

of annotated stomata microscopy images for training was completed using the open source 

‘Labellmg’ software (Tzutalin, 2015) (Fig. 2.1). 380 images at x20 and x40 objectives were 

annotated, of which 20% was used for testing and 80% for training.  

Post software development, the accuracy of the software and experimental purpose was tested 

using the O. glaberrima population. Testing the accuracy of the software was completed on a 

subset of microscopy images at x20 and x40 microscope objectives. See Supplementary 

Figure S2.2 for images of the Stomata Detector software. 
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(a) 

 
 

(b) 

 
 

Figure 2.1: Image annotation using the graphical image annotation tool, Labellmg. Microscopy 

images of the rice species O. glaberrima and O. sativa were annotated at (a) x20 and (b) x40 

objectives using Labellmg software. 

 

2.3.4 Transfer learning 

Our method is based on transfer learning for deep neural networks. That is, we have utilised a 

pre-trained deep model for the different datasets and adapt it for our stomata samples. Here, 

we briefly review the transfer learning technique and provide the details of the used model in 

our experiment.   
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Transfer learning is a machine learning technique in which a learner learns a new task using 

the experiences of another task but related to the new task. It is also a popular approach in deep 

learning as it helps to significantly reduce the training time and complexity of designing a deep 

model resulting in a well-trained model for the target task with good generalisation 

performance. Transfer learning is used extensively in computer vision and natural language 

processing. For instance, if the target task is the classification of the CIFAR-10 images, it is 

better to use a pre-trained model on a very large dataset such as ImageNet as a starting point 

and adapt this pre-trained model for the new task (e.g., classifying of CIFAR-10 images) by 

only training a small part of the model. In this way, not only can we use the features learned 

by a related task, but also, we do not need to design and start training parameters of a model 

from scratch. This is indeed one of the important features of modern deep learning frameworks 

such as TensorFlow and PyTorch which provide a rich class of pre-trained models as a built-

in API. This helps practitioners and researchers to quickly train an existing model for their own 

setup to test the performance.  

  

2.3.5 Object Detection Model 

Based on the transfer learning approach, we utilise a pre-trained object detection model trained 

on the standard COCO datasets (Lin et al., 2014). This dataset is a collection of more than 330k 

images with 80 object categories for large-scale object detection, segmentation, and captioning 

tasks. Since our goal is detecting and classifying stomata, we use the Faster R-CNN model 

(Ren et al., 2015) as one of the state-of-the-art methods based on deep neural networks. In 

particular, we downloaded a pre-trained Faster R-CNN model available in Tensorflow with the 

Inception-V2 architecture (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016) as the base 

model. Inception-V2 is a variation of Inception-V1 also referred to as GoogLeNet was the 

state-of-the-art architecture at ImageNet competition in ILSRVRC 2014. After loading the pre-

trained Faster R-CNN, the last few layers of classification layers are changed to meet the aim 

of stomata classification and detection. In the next step, the Faster R-CNN with stomata images 

are trained with different hyper parameters such as learning rate and number of epochs to find 

out the best parameters to reduce execution time and errors. 

 

2.3.6 Stomata Detector software functionality 

A user-friendly interface was created (see Supplementary Figure S2.2 for screenshots) to 

facilitate automated stomatal detection for end users that are not literate in handling and 
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running code. Stomata detector requires a threshold value to be set before analysing stomatal 

micrographs. This is the value the requires an inputted value of 0-1, this is the estimated 

certainty that the algorithm has correctly identified an object in the micrograph as a stoma (1 

= 100% certainty). The user can then decide to load and execute a singular or file of many 

micrographs. The main interface shows a list of loaded micrographs on the right-hand panel, 

a summary of the historical and current analyses in the central window. A window is also 

generated, showing the code in the backend of the software, this can be useful when 

monitoring the progress when batch processing a file of micrographs. When an analysis is 

complete, a .csv output file is generated with columns detailing; the micrograph file path 

name, the chosen threshold value, number of detected stomata, number of stomata not 

included if they did not pass the defined threshold value, mean and standard deviation. 

 

The micrographs obtained from the O. glaberrima accessions and O. sativa IR64 were 

processed through the Stomata Detector software at a threshold value of 0.9. The number of 

stomata detected in each micrograph was scaled up to give an estimate of SD per mm2, based 

on the area of the micrograph (x20 = 0.3 mm2 and x40 = 0.08 mm2). The median SD for each 

genotype was then calculated. All statistical analysis was completed in R-Studio (v. 4.0.5), 

graphs were generated using the R package ggplot2 (v. 3.3.3).  

 

 

2.4 RESULTS 

2.4.1 Stomata Detector can rapidly batch process micrographs 

The Stomata Detector software can batch process a folder and singular micrographs. When a 

single micrograph is analysed by the software, the output includes both a .csv file of results 

and an image of the original micrograph overlaid with bounding boxes over objects that are 

identified as stomata (Fig. 2.2c - d and Supp. Fig. S2.2c). When sequentially batch processing 

a file of images, a .csv file of the results is still produced but to save on processing time and 

storage capacity, the image overlaid with bounding boxes is not. The software can batch 

process high numbers of images in a comparably short period of time, for example a folder of 

all 13,110 stomatal impression micrographs was completed within 24 hours, when left to run 

for this period. Single images, with accompanied image outputs, are processed almost 

instantly.  
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2.4.2 Stomatal detection accuracy 

The software was tested for accuracy on images of rice (O. glaberrima and O. sativa) stomata 

at x20 and x40 objective, to establish the accuracy at each magnification. The correlation 

between the automated Stomata Detector and manual counting methods were used as one 

indication of software accuracy. At x20 magnification a Pearson correlation test showed a 

significant association between manual and automated stomatal counts (n = 200, r = 0.66, 

p<0.0001; Fig. 2.2a and c), with an overall similarity of 83% between the two stomatal 

counting methods. While a higher correlation was observed at a x40 objective (n = 540, r = 

0.94, p<0.0001; Fig. 2.2b and d), with an overall similarity of 99% between the total sum of 

two stomatal counting methods.  A total of 20 micrographs, 10 for each leaf side, were 

randomly selected from the pool of 13,110 O. glaberrima population micrographs. These 

were used to further check the accuracy of the automated analysis method in comparison to 

manual stomata counting (Fig. 2.3a-b and Table 2.1). Counts matched for 12/20 micrographs 

between the two methods, with an overall similarity of 99.8% for the total stomatal counts (r 

= 0.94, p<0.0001). The remainder 8/20 micrographs showed a small difference in stomata 

count between manual and automated stomatal counting methods (Table 2.1). Of these, 

stomata were missed in 3/20 and false positives identified in 5/20 micrographs. Examples of 

false positive and negative stomata identification from these images can be seen in Fig. 2.4 

(a-b). 

 

 

   
 

 

(a) (b) 
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    (c)                                                                    (d)   

                      
Figure 2.2: Stomata Detector identifies stomata better at higher magnifications. The stomata count 

obtained from the automated software method was compared to the manual counting method for x20 

(a; r = 0.66, p<0.0001, n = 198) and (b; r = 0.94, p<0.0001, n = 538) x40 microscope objectives. The 

opacity is decreased for individual data points on Fig. 2.2a-b, therefore a greater density of colour 

indicates overlapping on data points. The blue line shows the line of best fit, banded by a grey 95% 

confidence interval. Images (c) and (d) show cropped Stomata Detector outputs, detected stomata are 

shown bound in green boxes.  

 

 (a) 
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(b) 

 
 

Figure 2.3: Bar charts showing the comparison of manual and automated software stomata counting 

methods from randomly selected micrographs. 20 outputs, taken from the analysis on 13,100 

micrographs from a population of 155 O. glaberrima accessions, using the automated stomata 

counting method were randomly selected ((a) 10 adaxial, (b) 10 adaxial). The micrographs of the 

randomly selected outputs were manually counted to compare the accuracy between the two methods.  

 
Table 2.1: Randomly selected micrographs showing a difference in stomata count between automated 

and manual methods. The table shows the micrograph identifying name (accession name, biological 

replicate (rep) and field of view (FOV)), the stomata count for the automated and manual stomata 

counting methods, followed by the difference between these two methods.  

Accession Rep FOV Leaf side Automated Manual Difference 

IRGC_86790 3 9 Abaxial 18 23 5 

TOG_8537 1 8 34 32 2 

UG30 2 5 34 30 4 

CG170 4 1 32 34 2 

      

TOG_5494 4 7 Adaxial 22 21 1 

IRGC_86789 2 8  19 23 4 
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(a)                                                                       (b) 

     
Figure 2.4: Samples showing errors in stomatal detection. False positive (a) identification occurs 

when features in the micrograph are erroneously detected as stomata. While false negatives (b) are 

stomata detected by a human during manual counting but not by the automated method. Black arrows 

indicate a false positive and false negative occurrence.  

 

2.4.3 Quantifying variation in a population of 155 individuals  

As proof of concept, we used Stomata Detector to process 13,100 micrographs, collected 

from a population of 155 O. glaberrima accessions and the O. sativa cultivar, IR64. This 

population was previously uncharacterised for stomatal traits. While the micrographs were 

obtained by hand, the automated analysis was completed within 24 hours. The stomatal 

density (per mm2) showed a normal trait distribution, with no spurious outliers (Fig. 2.5).  

The stomatal density values for the population (abaxial = 377 mm-2, adaxial = 305 mm-2) are 

in line with that reported by Chatterjee et al. (2020) for O. glaberrima accession 

IRGC_103544. Supplementary Figure S2.3 shows boxplots of the stomatal density for each 

accession, calculated from the outputs of Stomata Detector.   
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         (a)                                                                       (b) 

     
Figure 2.5: Trait distribution of (a) adaxial and (b) abaxial stomatal density for the O. glaberrima 

population, analysed by the automated method. Orange dashed line shows the mean value in the 

population (n=155).  

 

 

2.5 DISCUSSION  

We have a better understanding than ever that stomatal density and morphology is a critical 

functional trait for optimising carbon assimilation and minimising abiotic stress (Caine et al., 

2019; Faralli, Matthews and Lawson, 2019). As commercial crop species are genetically 

narrow (Meyer & Purugganan, 2013) and poorly adapted to challenging environmental 

conditions, the focus is upon underutilised crop species and wild relatives as a source of 

stomatal genetic diversity (Meyer & Purugganan, 2013). However, manual stomatal 

phenotyping is slow and thus limits the characterisation of stomatal genetic diversity within 

populations. The automatic machine-learning based software (Stomata Detector) developed 

here analyses the stomatal number from micrographs, that would otherwise not be feasible 

when manually phenotyping a large population.  

A prime example of this is the O. glaberrima population described here, which was collected 

as a resource for O. sativa crop improvement (Cubry et al., 2020). However, the stomatal 

diversity in this population remains uncharacterised, which limits the elucidation of the 

underlying trait genetic diversity. Using the automated counting method developed here, we 

have been able to characterise the stomatal density in a population of O. glaberrima 
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accessions. This will have a direct impact when exploring the role of stomata on O. 

glaberrima physiology, environmental resilience and elucidate trait-related gene loci. 

 

We have shown the Stomata Detector method can accurately identify stomata, though errors 

can occur. False positive stomatal identification may happen when there is a structure in the 

micrograph that is a similar size and shape to a stoma (Fig. 2.3a). Observed false positives 

included air bubbles and the contours of an epithelial cell, particularly when on the edge of a 

micrograph. False negatives, that being stomata not detected by the method, typically occur 

when images are blurry, have low contrast between epithelial and stoma subsidiary cells or 

very small stomata that can be present on leaf veins. When testing this method, we 

compromised on image quality in favour of high throughput processing, though this may 

have caused occurrences of false positive and negatives. Ensuring high quality sample 

preparation and obtaining micrographs with a greater pixel resolution will minimise these 

errors, though there will be an increase in processing time. Despite this guidance, perfect 

stomatal peels are not always possible, and the end user requires a method that is able to 

accurately identify stomata in a range of peel and micrograph qualities. This can be improved 

by increasing the sample size, and variability of image quality, used in the training data set.  

The importance of choosing the optimal magnification for stomatal identification was 

apparent in Fig. 2.2a-b. This shows that Stomata Detector performed accurately at x40 

objective and comparatively poorly at x20, relative to human manual analysis. It is worth 

noting, the comparison of this automated method to human manual counting (Fig. 2.2a-b) 

does not account for human error, which may be substantial when analysing hundreds of 

micrographs and is difficult to quantify. For example, the 20 randomly selected micrographs 

(Fig. 2.3; Table 2.1) was manually checked three times to ensure accuracy and reduce human 

error. 5 out of 20 images stomata were mis-counted on the first repetition of manual analysis.  

Stomata Detector was more accurate at a higher magnification due to the enhanced clarity 

and size of the leaf epidermis and stomata. Stomata are particularly small in Oryza spp., in 

comparison to other species. At the x20 objective, the leaf epidermal surface area covered is 

greater but means that the varnish peel across that area undulates more than at a higher 

magnification, causing many stomata to be out of focus and unidentifiable. Therefore, it is 

advised that end users dedicate thought and time to establishing the best microscope 

magnification, image size and quality for the species and peel quality at hand.  
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The Stomata Detector training set was developed using only a small number of training 

images, although the software was still found to identify O. glaberrima stomata relatively 

accurately (Fig. 2.2b). Though we will highlight this study did not fully consider the degree 

of human error, which we recommend quantifying in future use. As the algorithm was trained 

on a small dataset originating from one experiment, we would advise a degree of caution and 

quality checking to future users. Ideally, we would like the algorithm to be re-trained on a 

larger dataset before an open release to the scientific community. Currently our method is 

enriched with images of O. glaberrima and O. sativa and does not yet reliably identify other 

species.  There is currently no other resource that accurately identifies Oryza spp. stomata, 

other methods (Fetter et al., 2019) focuses on angiosperm taxa, with large dumbbell shaped 

stomata. We feel the method demonstrated here will be an asset to the scientific community 

with training on a larger dataset, especially considering the importance of rice crop 

improvement as a staple food for billions of people.  Though our aim would be to develop a 

resource to that enables taxonomically diverse stomatal identification. This would require the 

ongoing retraining of the method from future users.  

 

Our initial work has developed an image processing software which allows accurate stomatal 

counting of 1000s of stomatal impression in a few days, rather than several months. We 

would like to extend this to a mobile application, which could be used in field in conjunction 

with a mobile phone microscope (Orth, Wilson, Thompson, & Gibson, 2018), enabling non-

destructive real-time measurements. This would significantly alleviate the current stomata 

phenotyping bottleneck and alter the possibilities in trait characterisation, even extending to 

in field analysis of maximal stomatal conductance (Brown and Escombe, 1900; Dow, 

Bergmann and Berry, 2014). This would contribute to a major step forward in stomatal, and 

even wider leaf-level phenotyping.  

 

If we are to tackle food insecurity and future sustainability, the integration of differing 

scientific techniques and fields is essential. Our project developed an open source, 

sophisticated piece of software that can accurately identify stomata in Oryza, and potentially 

other monocot, species. Demonstrating that deep machine learning is the ideal partner for 

narrowing the bottleneck of high-quality plant phenomics and consequently enabling crop 

improvement. 
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2.6 CHAPTER TWO SUPPLEMENTARY MATERIAL 

 

2.6.1 Supplementary Tables 

 
Table S2.1: List of O. glaberrima accession codes, ecology, country and African region of 

origin. O. glaberrima germplasm was provided by Diversité Adaptation Developpement des 

plantes (DIADE), IRD-Montpellier, France. Information on accession ecology and country of 

origin was provided by AfricaRice. The list of accessions is ordered based on the ecological 

environment at origin.  

Accession code Ecology Country of origin African region 

RAM 131 Floating Rice Mali West inland 

RAM 137 Floating Rice Mali West inland 

RAM 24 Floating Rice Guinea West coast 

RAM 48 Floating Rice Mali West inland 

RAM 55 Floating Rice Mali West inland 

RAM 77 Floating Rice Mali West inland 

IRGC_96726 Irrigated lowland Nigeria West coast 

TOG_5314 Irrigated lowland Nigeria West coast 

IRGC_96740 Irrigated lowland Nigeria West coast 

IRGC_86764 Irrigated lowland Ghana West coast 

IRGC_96790 Irrigated lowland Nigeria West coast 

IRGC_56785 Irrigated lowland Liberia West coast 

IRGC_112568 Irrigated lowland Liberia West coast 

IRGC_86789 Irrigated lowland Liberia West coast 

IRGC_86790 Irrigated lowland Liberia West coast 

IRGC_86791 Irrigated lowland Liberia West coast 

TOG_5969 Irrigated lowland Nigeria West coast 

TOG_6205 Irrigated lowland Guinea West coast 

TOG_6206 Irrigated lowland Zimbabwe South inland 

TOG_6207 Irrigated lowland Zimbabwe South inland 

TOG_6211 Irrigated lowland Nigeria West coast 

TOG_6220 Irrigated lowland Burkina Faso West inland 

TOG_6943 Irrigated lowland Sierra Leone West coast 
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TOG_6951 Irrigated lowland Sierra Leone West coast 

TOG_7020 Irrigated lowland Sierra Leone West coast 

TOG_7047 Irrigated lowland Sierra Leone West coast 

TOG_7106 Irrigated lowland Mali West inland 

TOG_7108 Irrigated lowland Mali West inland 

CG10 Irrigated lowland Senegal West coast 

TOG_7132 Irrigated lowland Senegal West coast 

TOG_7134 Irrigated lowland Senegal West coast 

IRGC_103544 Irrigated lowland Mali West inland 

CG14 Irrigated lowland Senegal West coast 

TOG_14367 Irrigated lowland Guinea West coast 

TOG_7214 Irrigated lowland Upland West inland 

CG171 Irrigated lowland Senegal West coast 

TOG_7219 Irrigated lowland Mali West inland 

IRGC_103549 Irrigated lowland Mali West inland 

TOG_10434 Irrigated lowland Côte d'Ivoire West coast 

TOG_7255 Irrigated lowland Chad North inland 

TOG_7273 Irrigated lowland Cameroon West coast 

IRGC_104589 Irrigated lowland Burkina Faso West inland 

IRGC_86826 Irrigated lowland Ghana West coast 

TOG_7451 Irrigated lowland Burkina Faso West inland 

TOG_7455 Irrigated lowland Burkina Faso West inland 

TOG_7456 Irrigated lowland Burkina Faso West inland 

TOG_7455 Irrigated lowland Côte d'Ivoire West coast 

TOG_7993 Irrigated lowland Nigeria West coast 

TOG_8049 Irrigated lowland Nigeria West coast 

TOG_8527 Irrigated lowland Gambia West coast 

TOG_8537 Irrigated lowland Gambia West coast 

TOG_8545 Irrigated lowland Gambia West coast 

TOG_9524 Irrigated lowland Côte d'Ivoire West coast 

TOG_13645 Irrigated lowland Guinea West coast 

TOG_13708 Irrigated lowland Guinea West coast 

TOG_14093 Irrigated lowland Guinea West coast 
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TOG_14373 Irrigated lowland Guinea West coast 

TOG_14606 Irrigated lowland Guinea West coast 

TOG_14610 Irrigated lowland Guinea West coast 

TOG_7190 Irrigated lowland Côte d'Ivoire West coast 

TG10 Irrigated lowland Chad North inland 

TG19_G Irrigated lowland Chad North inland 

TG25 Irrigated lowland Chad North inland 

TG57 Irrigated lowland Chad North inland 

CG45 Irrigated lowland Senegal West coast 

CG46 Irrigated lowland Senegal West coast 

CG70 Irrigated lowland Senegal West coast 

CG150 Irrigated lowland Senegal West coast 

CG156 Irrigated lowland Senegal West coast 

CG164 Irrigated lowland Senegal West coast 

CG170 Irrigated lowland Senegal West coast 

TOG_5418 Lowland Nigeria West coast 

TOG_5400 Lowland Nigeria West coast 

LG33 Lowland Mali West inland 

TOG_5533 Lowland Nigeria West coast 

MG04 Lowland Mali West inland 

EG55 Lowland Tanzania East coast 

EG85 Lowland Tanzania East coast 

UG14 Lowland Cameroon West coast 

UG20 Lowland Cameroon West coast 

UG26 Lowland Cameroon West coast 

LG07_S Lowland Mali West inland 

LG64 Lowland Mali West inland 

MG53 Lowland Mali West inland 

1MG54 Lowland Mali West inland 

OG1 lowland Senegal West coast 

OG3 lowland Senegal West coast 

OG15 lowland Senegal West coast 

TOG_5321 Rainfed lowland Nigeria West coast 
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TOG_5424 Rainfed lowland Nigeria West coast 

TOG_5486 Rainfed lowland Nigeria West coast 

TOG_5494 Rainfed lowland Nigeria West coast 

TOG_5500 Rainfed lowland Nigeria West coast 

TOG_5556 Rainfed lowland Nigeria West coast 

TOG_5666 Rainfed lowland Nigeria West coast 

TOG_5672 Rainfed lowland Nigeria West coast 

TOG_5681 Rainfed lowland Nigeria West coast 

TOG_5814 Rainfed lowland Liberia West coast 

TOG_5882 Rainfed lowland Nigeria West coast 

TOG_5953 Rainfed lowland Nigeria West coast 

TOG_6356 Rainfed lowland Liberia West coast 

TOG_6603 Rainfed lowland Liberia West coast 

TOG_6688 Rainfed lowland Liberia West coast 

TOG_6698 Rainfed lowland Liberia West coast 

TOG_5286 Rainfed lowland Nigeria West coast 

TOG_5439 Rainfed lowland Nigeria West coast 

TOG_5464 Rainfed lowland Nigeria West coast 

TOG_5566 Rainfed lowland Nigeria West coast 

TOG_5591 Rainfed lowland Ghana West coast 

TOG_5639 Rainfed lowland Nigeria West coast 

TOG_5747 Rainfed lowland Liberia West coast 

TOG_5775 Rainfed lowland Liberia West coast 

TOG_7420 Rainfed lowland Sierra Leone West coast 

IG38 Rainfed lowland Côte d'Ivoire West coast 

YG353 Rainfed lowland Guinea West coast 

TOG_12086 Rainfed lowland Nigeria West coast 

TOG_12160 Rainfed lowland Nigeria West coast 

TOG_12188 Rainfed lowland Nigeria West coast 

TOG_12249 Rainfed lowland Nigeria West coast 

TOG_7406 Rainfed lowland Ghana West coast 

TOG_12366 Rainfed lowland Guinea-Bissau West coast 

TOG_12372 Rainfed lowland Guinea-Bissau West coast 
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TOG_12387 Rainfed lowland Tanzania East coast 

TOG_12388 Rainfed lowland Cameroon West coast 

YG330 Rainfed lowland Guinea West coast 

TOG_14116 Rainfed lowland Liberia West coast 

TOG_14184 Rainfed lowland Zimbabwe South inland 

YG482 Rainfed lowland Guinea West coast 

TOG_14361 Rainfed lowland Guinea West coast 

IG05 Rainfed lowland Côte d'Ivoire West coast 

IG09 Rainfed lowland Côte d'Ivoire West coast 

IG14 Rainfed lowland Côte d'Ivoire West coast 

IG15 Rainfed lowland Côte d'Ivoire West coast 

IG16 Rainfed lowland Côte d'Ivoire West coast 

IG19 Rainfed lowland Côte d'Ivoire West coast 

IG21 Rainfed lowland Côte d'Ivoire West coast 

IG23 Rainfed lowland Côte d'Ivoire West coast 

IG35 Rainfed lowland Côte d'Ivoire West coast 

IG43 Rainfed lowland Côte d'Ivoire West coast 

IG47 Rainfed lowland Côte d'Ivoire West coast 

IG324 Rainfed lowland Côte d'Ivoire West coast 

UG28 Rainfed lowland Cameroon West coast 

UG30 Rainfed lowland Cameroon West coast 

YG316 Rainfed lowland Guinea West coast 

TOG_5326 

Shallow forest 

swamp Nigeria West coast 

TOG_5453 

Shallow forest 

swamp Nigeria West coast 

TOG_7274 

Shallow Forest 

Swamp Cameroon West coast 

TOG_5997 Upland Nigeria West coast 

TOG_12358 Upland Côte d'Ivoire West coast 

TOG_12399 Upland Guinea West coast 

TOG_12401 Upland Guinea West coast 

TOG_12411 Upland Guinea West coast 
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TOG_12414 Upland Guinea West coast 

IG36 Upland Côte d'Ivoire West coast 

YG307 Upland Guinea West coast 

 

Table S2.2: Table detailing sowing and measurement dates of one hundred and fifty-five O. 

glaberrima accessions. This table details how the O. glaberrima accessions were grouped 

into rotations of twelve, each accession name was assigned a Nottingham line number for 

ease. The columns show the sowing date, date of the week that measurements commenced 

(Measurement start date) and date of the week that measurements ceased (Measurement end 

date) for each rotation of 12 accessions.   

 

O. glaberrima 

line no. 

Sowing date Measurement  

start date 

Measurement  

end date 

1 - 12 26/04/2017 12/06/2017 16/06/2017 

13-24 08/05/2017 26/06/2017 30/06/2017 

25-36 22/05/2017 10/07/2017 14/07/2017 

37-48 05/06/2017 24/07/2017 28/07/2017 

49-60 19/06/2017 07/08/2017 11/08/2017 

61-72 03/07/2017 21/08/2017 25/08/2017 

73-84 17/07/2017 04/09/2017 08/09/2017 

121-132 24/07/2017 11/09/2017 14/09/2017 

85-69 31/07/2017 18/09/2017 22/09/2017 

133-144 07/08/2017 25/09/2017 28/09/2017 

97-108 14/08/2014 02/10/2017 06/10/2017 

145-156 21/08/2017 09/10/2017 12/10/2017 

109-120 28/08/2017 16/10/2017 20/10/2017 
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2.6.2 Supplementary Figures 

 

Figure S2.1: O. glaberrima phenotyping experimental plan. (a) The left-hand side of the 

agronomy style glass house was divided into six small beds, three of these were used for the 

first six batches of measurements, following these all six beds were used until all accessions 

had been measured. (b) In each small bed twelve accessions and IR64, with five replicates, 

were grown. The accessions were surrounded by a border of spare seedlings, to minimise for 

edge effects. Accessions were not randomised to minimise plant damage and 

mismeasurement during LiCor analysis. Through this process, (c) a batch rotation through the 

available beds facilitated the growth and analysis of all accessions. 
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(b)                                                                                                             (c) 

 
 

Figure S2.2: Images of Stomata Detector software. Screenshots taken of the Stomata 

Detector software, showing (a) the graphical user interface, where files and folders are loaded 

and executed; (b) the back end, which gives a summary of which micrographs are running 

and the outputs; (c) image outputs from a single micrograph analysis, showing the objects 

identified as stomata in green bounding boxes, the total number of stomata identified and the 

micrograph file pathway.   
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Figure S2.3: Boxplot of stomatal density for the O. glaberrima population. The boxplots 

show stomatal density calculated from the automated stomata counts generated by Stomata 

Detector, showing (a) abaxial and (b) adaxial stomatal density for the 155 O. glaberrima 

accessions and O. sativa cultivar, IR64. Boxplot shows the median, interquartile range (IQR) 

and the whiskers show the minimum (lower quartile – 1.5*IQR)  and maximum (upper 

quartile – 1.5*IQR). Outliers are shown as black data points beyond the whiskers.  
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CHAPTER THREE 

Out of Africa: characterising the natural variation in dynamic photosynthetic 

traits in a diverse population of African rice (Oryza glaberrima). 
 

3. 1 Chapter three introductory statement 

This chapter consists of a research publication that was accepted for publication by the 

Journal of Experimental Botany (doi.org/10.1093/jxb/erab459) in October 2021.  

 

This manuscript focuses on describing the natural variation in 155 O. glaberrima accessions 

across 58 morphological and photosynthetic related traits that are important in abiotic stress 

tolerance and crop productivity. In conjunction to characterising the variation in the 

population, this information was used calculate trait heritability and percentage genetic 

variation to support future breeding efforts.  

Recent research on improving water use efficiency and yield gains has highlighted the 

importance of the optimisation of dynamic traits contributing to increased photosynthetic 

efficiency. In this chapter I used the response curve data for carbon assimilation, stomatal 

conductance and non-photochemical quenching to model dynamic induction and relaxation 

responses due to changes in light levels. This is the first study to complete dynamic analysis 

for both induction and relaxation for CO2 assimilation, stomatal conductance and non-

photochemical quenching. It was also the largest published study of genotypes for the 

analysis of photosynthesis dynamic traits. 

The key analytical phases of this paper compromise of;  

1. Characterising natural variation in physiological and photosynthesis related traits and 

comparing this to the O. sativa cultivar, IR64.  

2. Modelling carbon assimilation, non-photochemical quenching and stomatal 

conductance kinetics and how these interact with wider phenotypic traits 

3. Exploring the effect of environmental variables and ecology on trait adaptation 

 

 

A pdf copy of the publication can be found at the end of the chapter text.  
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3.2 INTRODUCTION 

The climate crisis places crop yields under increasing pressure from biotic and abiotic 

constraints and constitutes a major threat in meeting global food demand (Ray et al., 2019; 

Franco et al., 2020). Substantial yield decreases in key cereal crops are predicted to occur in 

both vulnerable and productive regions (Black et al., 2008; Challinor et al., 2014). Asian rice 

(Oryza sativa), a dietary staple to a third of the global population, is predicted to experience 

yield losses up to 37% by the end of the century due to climate change driven drought events 

( Bocco et al., 2012; Muthayya et al., 2014; Zhao et al., 2017). The development of 

productive and resilient rice cultivars has been subject of increasing research focus (Atwell et 

al., 2014) and advances have been made through traditional plant breeding methods within 

the O. sativa indica and japonica types.  But there has also been an interest in the 

introgression of genes from a range of diverse interspecific material. This includes the 

African rice species Oryza glaberrima, which was domesticated in Africa 2000-3000 years 

ago, independently to the domestication of Asian rice Oryza sativa.  O. glaberrima retains 

many properties that are specific to challenging African conditions of soil and climate, 

including limited water availability, abiotic stress, pest and diseases  (Bimpong et al., 2011; 

Agnoun et al., 2012; Bocco et al., 2012; Orjuela et al., 2014; Cubry et al., 2020). 

O. glaberrima is not suitable for commercial rice production due to lodging, shattering, 

milling difficulties and low yields in comparison to O. sativa (Linares, 2002). However the 

resilience to a range of abiotic and biotic stresses make O. glaberrima an attractive target for 

gene mining and translation (Fig. 3.1; Sarla and Swamy, 2005), which was one of the 

motivations for the interspecific New Rice for Africa (NERICA) breeding programme 

(Wambugu et al., 2019). This underlying genetic diversity might allow commercial rice to 

tolerate increasingly unpredictable climatic conditions. Recent genomic sequencing advances 

for O. glaberrima have now added new possibilities (Cubry et al., 2020). 

 

Photosynthetic efficiency and water use efficiency are important components of productivity 

and abiotic stress resilience (Zhao et al., 2017a). Stomata are key players in both processes, 

regulating CO2 assimilation (A; parameter abbreviation list can be found in Supp. Table 3.1) 

acquired for photosynthesis and the water lost by transpiration via stomatal conductance (gs). 

However, improvements in water use efficiency (WUE) incorporates a trade-off between 

transpiration rate at the expense of net CO2 assimilation rate (A) (Blum, 2009; Lawson et al., 

2010; Lawson and Blatt, 2014). The leaf stomatal density (SD) value can affect gs; recent 

work using rice with reduced stomatal density has demonstrated that photosynthesis was not 



 68 

compromised in well-watered conditions but enhanced WUE in all conditions and improved 

biomass and yield under water limitation (Caine et al., 2019; Mohammed et al., 2019). 

Consequently, improved yield in water-limiting environments might be achieved by 

optimisation of stomatal morphology and density. Dynamics of stomatal aperture alteration 

have also been increasingly highlighted as playing an essential role in improving 

photosynthetic efficiency and WUE (Drake et al., 2013; Lawson and Blatt, 2014). Stomata 

can take some time to reach stable gs (McAusland et al., 2016). Increasing the speed of 

stomatal opening and closing, closely coupling to A (Fig. 3.1), may be important in 

conserving water and improving crop yields (Tracy Lawson & Vialet-Chabrand, 2019a). 

 

Historically, light saturated carbon assimilation capacity (Amax) (mostly under ambient 

atmospheric [CO2]) has been a parameter of interest for photosynthesis improvements 

(Murchie et al 2018). However, recent research now makes it clear that the dynamic 

responses of photosynthesis and photoprotection (such as non-photochemical quenching, 

NPQ) to the fluctuating field environment are essential for photosynthetic efficiency-based 

yield gains (Kromdijk et al., 2016; Taylor and Long, 2017; Murchie et al., 2018; Acevedo-

Siaca et al., 2020). Light in plant canopies is transient due to architecture, intermittent cloud 

cover, solar angle and wind (Burgess et al., 2016). The ability of A to rapidly adjust to 

changes in light levels is limited by two major processes; stomatal dynamics and 

photosynthetic biochemistry (McAusland et al., 2016; Slattery et al., 2018; Acevedo-Siaca et 

al., 2020). In wheat, slow induction dynamics were estimated to cost 21% of carbon 

assimilation acquisition (Taylor & Long, 2017). Further dynamic leaf photosynthetic 

efficiency can be improved through the rapid relaxation of photoprotection (Kromdijk et al., 

2016; Hubbart et al., 2018). Under high light NPQ dissipates excess excitation energy as 

heat. However, in fluctuating light conditions NPQ dynamics can lag behind shifts in light 

level, limiting photosynthesis.  On this basis, it is clear that elucidating photosynthesis related 

dynamics are an essential focus of improving crop yields and improving abiotic stress 

tolerance, whereby plants can utilise light and CO2 with increased efficiency.  

 

Variation in photosynthetic, NPQ and stomatal traits has been examined in O. sativa, 

however there is no comprehensive analysis which compares both induction and decline. We 

hypothesise that due to the origins within the diverse African climates, substantial variation 

for dynamic photosynthesis traits may exist within the genome of O. glaberrima and we have 

used a new, whole-genome re-sequenced, resource of 155 O. glaberrima accessions 
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(Wambugu et al., 2019; Cubry et al., 2020) to characterise 58 phenotypic traits for 

photosynthesis and leaf WUE. This includes the use of automated machine-learning to 

describe stomatal density and gas-exchange methods to facilitate the modelling of A, NPQ 

and gs induction and decline dynamics across a large population of individuals. Furthermore, 

as the effect of environment driven trait adaptation is central to O. glaberrima’s novelty, we 

explore the effect of twenty climatic variables and ecological niche upon trait adaptation 

within the population.  Here, we describe an African rice population with broad heritable 

variation in a range of useful traits and we provide evidence that dynamic and steady state 

photosynthesis and photoprotective traits are linked to whole plant growth. To our knowledge 

this is the largest survey of dynamic photosynthesis for a species in the Oryza genus to date. 

This further highlights the importance of O. glaberrima as an essential source of variation for 

crop improvement and providing a solid base for future research to elucidate physiological 

processes and pursue trait-related gene identification.  

 

 

3.3 MATERIALS AND METHODS 

3.3.1 Plant material and growth conditions 

The seeds of 155 O. glaberrima accessions were provided by the Interspecies Comparison & 

Evolution (RICE) team within Diversité Adaptation Developpement des plantes (DIADE), 

IRD-Montpellier, France. A table of information presenting the plant material is provided in 

Supp. Table 3.2.   

Plants were grown, measured and processed at the Sutton Bonington Campus, University of 

Nottingham, UK. Plants were sown and grown in the controlled environment agronomy style 

glasshouse (Cambridge HOK, UK). Conditions were maintained at a 12-hour dark:light 

(07.00 – 19.00 hrs) photoperiod, controlled using blackout blinds, temperature of 28±3 oC 

and 50-60% relative humidity. Metal halide lamps were used to maintain light levels when 

they fell below 200 mmol m-2 s-1 photosynthetically active radiation (PAR). Seeds were heat 

treated to prevent pathogenesis at the primary seedling stage through immersing in water at 

55oC for 15 minutes. Seeds were germinated in a module tray for two weeks before being 

transplanted to soil pits (5mx5mx1.25m, LxWxD) within the glasshouse. Five replicates of 

each accession were transplanted in east – west rows, at 20cm intervals, into high nutrient 

loam-based soil in 2 x 5m concrete pits. Plants were irrigated by drip tapes twice a day, to 

provide a soil water content close to field capacity.   
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Due to the size of the population accessions, planting was staggered at 1–2-week intervals. 

Accessions were grown in rotations of 12 genotypes at a time, with 5 biological replicates, 4 

of which were selected for measurement. Plants were measured at 8 weeks old when they 

were approximately in the mid to late tillering stage. After the measurement of each rotation 

of 12 genotypes, the top ~12 inches of soil was removed and replaced with fresh loam-soil 

before commencing the next rotation. Measurements commenced July 2017 and finalised 

October 2017. The elite O. sativa variety ‘IR64’ was used as a reference genotype and 

planted as a row in every batch. IR64 was not included in the first four rotations of 

measurements, as a check genotype was not initially considered, and was measured from 7th 

August 2017 onwards.  

 

3.3.2 Gas-exchange measurements 

An IRGA (infra-red gas analyser, Li-Cor 6400XT, Lincoln, NB, USA) was used on the 

uppermost fully expanded leaf.  A light-induction programme was used:  leaves were dark 

adapted for one hour, the sample leaf was then placed in the leaf cuvette and allowed to 

achieve steady state in darkness before being subject to a PPFD of 1500 µmol m-2 s -1, from 

in-built red and (10%) blue LED lights, from 0-900 secs, reducing to 100 µmol m-2 s -1 from 

900-1200 secs. A graphical representation of the induction assay can be seen in Fig. 3.1. The 

leaf cuvette conditions were maintained at a block temperature of 30 oC, 400 mmol-1 mol-1 

CO2, flow rate 500 ml min-1 and 50-65% humidity. Gas exchange data was logged every 10 s. 

Measurements were collected between 09.00 and 16.00 hrs. Chlorophyll fluorescence 

parameters were collected simultaneously, by applying a single saturating pulse before the 

application of actinic light to attain Fo and Fm and then at intervals of 60s following this for 

the calculation of FPSII (PSII operating efficiency in the light), qP (Photochemical 

quenching) and NPQ (non-photochemical quenching: measurement of a photoprotective 

process that estimates the rate constant for PSII heat loss) (Murchie & Lawson, 2013). 

Intrinsic water use efficiency (iWUE) was calculated post-data collection as CO2 assimilation 

rate (A) / stomatal conductance (gs). We calculate that vapour pressure deficit in the cuvette 

was approximately 1.51 – 2.10 kPa.  Saturation or near-saturation was achieved within this 

timescale. Raw data for A, gs and NPQ is shown graphically in Supplementary fig. S3.4 as 

individual replicates and means per accession. Supplementary figures and data are deposited 

at Zenodo repository:  https://doi.org/10.5281/zenodo.5555930: Murchie., 2021). 
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3.3.3 Stomatal density and automated stomatal counting 

The methodology for the leaf surface impressions, image acquisition, development of an 

automated stomatal counting method and calculation of the stomatal density can be found in 

chapter two, method sections 2.3.2 to 2.3.6.   

 

3.3.4 Morphological traits 

Plant height, leaf area, root and shoot dry biomass were taken at 8 weeks post-germination, 

after the completion of gas exchange measurements. Each plant was dug up and care taken to 

preserve the root system. The shoot area was measured using LiCor LI-3100 area meter 

(Lincoln, NB, USA). The root ball was soaked and carefully washed to preserve root 

structure, as described by York et al. (2018). The shoot and root material were then placed in 

a drying oven at 70oC for 72 hrs before weighing for dry biomass.  

 

3.3.5 Data analysis  

All data analyses were performed using R-Studio (v. 4.0.1).  

To reduce the temporal and spatial effects of measuring the accessions in batches, a linear 

mixed-effects model (‘lme4’ package, v.1.1-26) was used to calculate best linear unbiased 

predictions (BLUPs) and predicted means, considering the random effects of; accession, 

sowing date, measurement date, location within the glasshouse (1|block and the interaction of 

1|set:block)  and, if relevant, IRGA machine (Supp. Fig S3.2 at Zenodo). In the statistical R 

coding language, this was written as: 

 
lmer(trait_of_interest ~ (1|genotype) + (1|sowing_day) + (1|measurement_date)  

+ (1|LiCOR) + (1|set:block) + (1|block), data = data) 

 

BLUPs are commonly used to account for the random effects that accompany measuring 

large populations in fluctuating environments (Robinson, 1991) Merk et al., 2012;  

Zendonadi et al., 2021). After genotype, the largest source of variation was attributed to 

sowing date, while the position in the glasshouse showed the least variation in the model 

outputs. The coefficients of the mixed effects model were also used to estimate broad sense 

heritability (H2). All results reported here use the adjusted means data generated from the 

mixed effects model. Normality was tested using the Shapiro-Wilk test. A 0.01 a value was 

used, as the Shapiro-Wilk test tends to report false negatives in sample sizes exceeding 50 

individuals. All data for IR64 were found to be normally distributed, whereas 25 out of 57 



 72 

traits in the O. glaberrima panel showed a deviation from a statistically normal distribution. 

In the results, and O. glaberrima descriptive statistics Table 1, non-normal traits report values 

for median and interquartile range (IQR) (median (IQR)), whereas normally distributed traits 

will report mean and standard deviation (mean value (sd value)). A full breakdown of IR64 

and O. glaberrima normality statistics, box and distribution plots can be found in Supp. Files 

S2 - S4 at Zenodo.  

A bespoke Python pipeline was written to identify the data point at 95% of the maximum and 

extract values within the induction side of a curve (Supp. File S5 at Zenodo).  

The correlation analyses were completed using a Pearson correlation coefficient in the 

‘Corrplot’ package (v. 0.84), with a correlation significance threshold of p<0.1005.   

The percentage genetic variation (PGV) was calculated as follows; [( xmax - xmin)/x)] x 100. 

Where xmax, xmin and x respectively denote the maximum, minimum and mean values for a trait 

in the population (Gu et al., 2014). This measure is used to quantify the genetic variation of a 

trait within the combined population. Values more than 100% signify where the range is greater 

than the mean and representing particularly high underlying genetic variation.  

 

3.3.6       Kinetic modelling 

Dynamic modelling of A, NPQ and gs was performed using a dose-response curve fitting 

method, previously used to model stomatal responses by Barratt et al. (2021) . The ‘drc’ (v. 

3.0) package was used to analyse and extract several useful parameters for both curve induction 

and reduction responses (Ritz et al., 2015), denoted by i and r respectively. The measured 

parameters are detailed in Table 3.1 and include curve slope (i/r slope), lower limit (i/r min), upper 

limit (i/r max) and the time taken to reach a defined percentage of the dependant variable, in this 

case 10 (i/r 10), 50 (i/r 50) and 90 (i/r 90) %. A representation of these parameters on A and gs 

response curves can be found in Fig. 3.1. The LL.4 (log-logistic 4-parameter) model was 

chosen as the best fit for both the A induction, gs induction and reduction responses. The LL.3 

(log-logistic 3-parameter) model was used for NPQ induction and the W2.4 (4-parameter 

Weibull2) model for NPQ relaxation. The comparison of 8 different models, followed by 

Akaike’s information criterion analysis was used to select the best model fit. All 155 accessions 

were analysed for A induction curves, 24 accessions were removed for gs induction and gs 

decline curve fitting, due to unusable curve measurements.   
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Figure 3.1: Schematic showing example induction and reduction responses to changes in light 

intensity during the IRGA gas exchange assay used in this study. At zero seconds, dark adapted leaves 

are exposed to a light change from 0-1500 PPFD until 900 seconds (grey area), followed by a 

decrease in light from 1500-100 PPFD between 900-1200 seconds (white area). This plot shows real 

examples of A (right hand axis) and gs (left hand axis) gas-exchange measurements, and where the 

parameters; minimum, maximum, slope and time to reach a defined percentage of the curve maximum 

are captured.  

 

Due to the volume of data, the best fitting model was selected for the induction and reduction 

curve for each parameter (gs, A, NPQ) and then applied to all data (e.g. for gs induction, a LL.4 

model was applied to all 155 genotypes). To ensure that the model selection process captured 

the variation that may occur in the population, 5 genotypes were randomly chosen for model 

selection and the consensus model was used. The estimated parameters were generated from 

the model (min, max, ed50 and slope) was manually cross referenced to the raw data, to ensure 

these outputs closely represented the raw data. To evidence the fit of the selected models to the 

raw data, we include a table showing the model fit of a randomly selected accession for each 

parameter (Supp Table S3.3 at Zenodo). We note the large SE for Ar slope, likely due to the rapid 

and steep drop in A that occurs between two data points, so we attribute less confidence in this 

parameter. 

 

 

3.3.7 Multivariate and Climatic Analysis 

The multivariate analyses, principal component analysis (PCA) and hierarchical clustering 

(H-clustering) methods require a complete dataset, with no missing values. Consequently, 

missing phenotype data was imputed using the missMDA package (v. 1.18). PCA and H-
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clustering was performed using the FactoMineR (v. 2.4) package, the H-clustering was 

performed using the HCPC method. Details of the FactoMineR package and HCPC algorithm 

can be found in Lê et al. (2008) . 

The PCA and H-clustering of the phenotypic dataset contained all 155 O. glaberrima 

accessions and the IR64 O. sativa representative. The analysis included 64 quantitative trait 

variables and 4 qualitative variables, including ecological niche from the collection location, 

country of origin and African region for each accession.   

Agroecological niche and geographical coordinates of the collection sites for each O. 

glaberrima accession was provided by AfricaRice (Fig. 3.2).  

 

(a)                                               (b)                                              (c) 

       
Figure 3.2: Map showing the geographical collection locations for 105 O. glaberrima accessions and 

the annual (a) temperature range, (b) precipitation and (c) elevation range across Africa. Collection 

locations were provided by AfricaRice and climatic data obtained from the WorldClim bioclimatic 

variables resource.    

 

We have complete ecological information for all 155 accessions, and geographical 

coordinates for 105 accessions (Fig.3.2a-c). 19 variables for temperature and precipitation, at 

the collection site of each accession, were obtained using the BIOCLIM data set (Hijmans et 

al., 2005). Information on the elevation above sea level was obtained using the elevatr 

package (v. 0.3.1). PCA and H-clustering analysis, and subsequent climate – trait 

correlations, was performed on the subset of 105 accessions for which we had geographical 

co-ordinates.  

FactoShiny was used to generate summary reports of the PCA and H-clustering analyses on 

both the phenotype data and climate data, these can be found in Supp. Files S6-S9 at Zenodo. 
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3.4 RESULTS 

3.4.1 Phenotypic analysis of morphology and steady state photosynthesis  

Significant variation and high levels of percentage genetic variation (PGV) was identified 

between accessions across all morphological, gas-exchange and fluorescence traits measured 

in this O. glaberrima panel (Table 3.1, Supp. File S2 and S4 at Zenodo).   

 
Table 3.1: Table showing the range of natural variation and broad-sense heritability (H2) within a 

population of diverse O. glaberrima accessions across dynamic and static traits. Normally distributed 

traits report the trait mean and standard deviation (sd), whilst the median and interquartile range 

(IQR) is given for non-normally distributed traits. PGV is the percentage of genetic variation. Sig. 

refers to the ANOVA test between two mixed effects models, where the accession is present as an 

effect in one model and not in another. H2 was calculated using a linear mixed effects model, as the 

variation attributed to genotype over total trait variation.  A significant result suggests that the 

accession genotype has an effect and therefore the trait is heritable. *** p<0.0001, ** p<0.001, * 

p<0.01.  

Trait Min Max Mean (sd) Median (IQR) PGV Sig. H2 

Steady state   

Amax 17.92 22.42 20.16 (0.87)  22.30 *** 0.11 

ETRmax 104.10 144. 30 123.00 (7.60)  32.69 *** 0.22 

gsmax 0.26 0.46 0.34 (0.03)  58.82 *** 0.17 

iWUEmax 58.34 71.81  62.63 (3.08) 21.40 *** 0.07 

NPQmax 1.98 2.30 2.13 (0.06)  14.88 *** 0.12 

FPSIImax 0.16 0.22 0.19 (0.01)  32.70 *** 0.22 

qPmax 0.43 0.51 0.47 (0.02)  18.71 *** 0.17 

Trmmolmax 4.13 5.75 4.81 (0.27)  29.84 *** 0.12 

VPDmax 1.43 1.52 1.47 (0.01)  6.38 *** 0.00 

Morphological         

Shoot:Root 3.36 9.50  5.55 (1.13) 73.22 *** 0.12 

Shoot biomass 2.36 7.85  4.40 (0.89) 123.33 *** 0.14 

Shoot area 279.07 1068.97  652.73 (126.27) 118.51 *** 0.16 

Root biomass 0.36 1.98  0.77 (0.18) 203.75 *** 0.23 

Plant height 61.79 93.86 78.77 (6.20)  40.72 *** 0.18 

Adaxial SD 260.16 353.50 314.08 (18.04)  29.72 *** 0.21 

Abaxial:Adaxial 1.05 1.40 1.24 (0.06)  18.87 *** 0.15 

Abaxial SD 324.31 435.99 388.83 (22.54)  28.72 *** 0.21 
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Dynamic        

gsi slope -3.90 -1.90  -2.44 (0.38) 78.43 *** 0.14 

gsi max 0.35 0.49 0.42 (0.03)  31.88 * 0.11 

gsi min 0.06 0.14  0.08 (0.01) 112.50 ** 0.12 

gsi 10 65.50 207.09  108.19 (29.45) 126.83 *** 0.18 

gsi 50 179.53 324.80  223.71 (48.40) 64.17 * 0.11 

gsi 90 477.70  684.41  539.21 (48.40) 37.53 NS 0.08 

gsi rate 0.0005 0.0008  0.0006 (<0.01) 45.45 * 0.09 

Ai slope  -2.42 -1.50  -1.78 (0.17) 50.84 ** 0.10 

Ai max 20.44 27.83 23.43 (1.47)  31.53 *** 0.20 

Ai min -1.32 -1.09 -1.22 (0.04)  18.85 NS 0.01 

Ai 10 49.01 140.97  63.79 (13.96) 136.43 *** 0.15 

Ai 50 189.56 334.26  217.84 (24.73) 64.97 ** 0.12 

Ai 90 652.34 849.54  718.78 (52.10) 27.14 NS 0.06 

Ai rate 0.03 0.04 0.03 (0.002)  33.33 NS 0.05 

NPQi slope -3.48 -2.32  -2.72 (0.22) 42.65 *** 0.12 

NPQi max 2.12 2.44 2.24 (0.05)  14.29 *** 0.08 

NPQi 10 19.57 28.12 23.80 (1.53)  35.75 *** 0.11 

NPQi 50 50.98 56.44 53.65 (1.02)  10.16 NS 0.05 

NPQi 90 118.70 132.30 125.58 (2.71)  10.82 NS 0.03 

NPQi rate  0.017 0.02 0.02 (<0.01)  15.00 ** 0.07 

gsr slope 6.48 10.49  8.05 (0.80) 49.43 NS 0.07 

gsr min -0.30 0.02  -0.13 (0.08) 228.57 ** 0.11 

gsr max 0.38 0.61 0.48 (0.05)  48.96 ** 0.15 

gsr 10  908.91 956.10  922.35 (8.56) 05.11 NS 0.07 

gsr 50 1061.65 1385.05 1208.21 (76.16)  26.77 *** 0.26 

gsr 90 1370.52 2116.04  1640.46 (266.31) 44.56 *** 0.23 

gsr rate 0.0006 0.0101  0.001 (<0.01) 339.28 *** 0.25 

Ar slope -332.60 -322.20  -328.45 (2.15) 3.17 NS 0.01 

Ar min 2.88 3.60 3.22 (0.11)  24.05 *** 0.11 

Ar max 17.09 21.72 19.22 (0.96)  22.36 NS 0.04 

Ar 10 901.90 902.20 902.09 (0.04)  0.03 NS 0.03 

Ar 50 905.30 905.70  905.45 (0.05) 0.04 NS 0.03 

Ar 90 910.60 911.00  910.77 (0.05) 0.04 NS 0.02 

Ar rate 0.79 2.36  1.51 (0.09) 103.97 * 0.08 

NPQr slope -49.71 -36.27 -41.83 (2.65)  34.35 *** 0.21 
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NPQr min 0.56 0.66 0.61 (0.02)  23.00 *** 0.16 

NPQr max 1.99 2.30 2.13 (0.06)  14.55 *** 0.10 

NPQr 10 921.31 923.66 922.60 (0.39)  0.27 *** 0.19 

NPQr 50 946.63 954.76 950.23 (1.41)  0.97 *** 0.19 

NPQr 90 985.20 1008.16 995.50 (4.13)  02.50 *** 0.19 

NPQr rate 0.013 0.020 0.016 (<0.01)  43.75 *** 0.14 

 

Root biomass, shoot biomass and shoot area showed a five, three and four-fold variation 

respectively.  Plant height showed a 1.3-fold variation across the O. glaberrima population. 

Significant (p<0.001) positive correlations were identified between shoot biomass, shoot:root 

ratio, shoot area and plant height. While a negative correlation was found between root 

biomass and shoot:root ratio but a positive correlation between root biomass, against shoot 

biomass and area. (Fig. 3.3a and c).  

Even though key steady state photosynthesis traits showed a relatively narrow distribution  

(typically between  15 and 40 %), both shoot biomass and shoot area showed (p<0.01 - 0.05; 

Fig. 3.3a and Supp. File S10 at Zenodo), positive correlations to Amax, qPmax, ETRmax and 

FPSIImax, providing confidence that steady state photosynthesis is linked to biomass 

production. gsmax showed an almost two-fold variation across O. glaberrima accessions. PGV 

for steady-state traits ranged from 6.38% to 58.82% (Table 3.1), with most traits in the 20 – 

30% range, including key photosynthetic traits.  All key steady state photosynthetic traits 

showed significant (p<0.0001) positive correlations to one another (Supp. Fig. S3.3; Supp. 

File S10 at Zenodo).  As expected, and detailed in the literature (Lawson and Blatt, 2014), 

iWUEmax was highly correlated with gsmax (Fig. 3.3b) (and Trmmolmax) but not Amax, 

indicating stomatal limitation of A.  

 

Stomatal morphology did not show a clear relationship with conductance. A relatively 

modest 1.3-fold accession dependent variation in the abaxial SD and adaxial SD was 

observed. The abaxial SD was 1.24 fold greater than adaxial (Fig. 3.4). PGV showed that all 

SD traits were highly significant (p<0.0001, Table 3.1) across the O. glaberrima accessions, 

showing that SD has a genetic basis. However, no association between any SD traits and 

iWUEmax, or gsmax were detected. Unexpectedly the adaxial SD showed a significant but weak 

correlation to NPQmax, similarly abaxial SD showed a negative association with plant height 

(Fig. 3.3d). The SD ratio also showed correlations with NPQmax and plant height, along with 

Amax, ETRmax, FPSIImax, qPmax (Fig. 3.3c), the reasons for which are unclear. 
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(a)                                                                             (b) 

    
(c)                                                                            (d) 

    
 

Figure 3.3: O. glaberrima shows a range interesting morphological and steady state photosynthetic 

trait correlations. The colour gradient shows a second correlation against the y-axis variable. (a) 

Positive correlation between root and shoot biomass (r=0.66, p<0.001, n=155), the second correlation 

shows root biomass and shoot area (r=0.66, p<0.001, n=155). (b) The effect of gsmax on Amax (r=0.61, 

p<0.001) and the second correlation of gsmax against iWUEmax (r=-0.65, p<0.001, n=131),. (c) Pearson 

correlation matrix showing associations between morphological and steady-state gas exchange traits, 

filtered to show trait associations at a p<0.1005 significance threshold. Correlations are scaled by 

colour, shown in the right-hand scale bar, stars indicate significance between traits (p<0.001***, 

p<0.01**, p<0.05*). (d) Negative correlation between SD ratio and plant height (r=-0.29, p<0.001, 
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n=155),, while SD ratio against NPQmax (r=0.22, p<0.01, n=155), shows a positive correlation. Line of 

best fit is shown with a grey band showing the 95% confidence interval.  

 

(a) TOG_5464 adaxial                                      (c) TOG_14116 adaxial  

    
(b)  TOG_5464 abaxial                                           (d) TOG_14116 abaxial 

    
Figure 3.4: Microscope images showing examples of the O. glaberrima accessions with highest 

(TOG_14116) and lowest (TOG_5464) recorded SD within a population of 155 individuals. These 

images demonstrate the extent of SD variation in the population and the qualitative correlation 

between high SD and small stomatal size, (a) TOG_5464; Adaxial SD = 260 mm-2, (b) TOG_5464; 

Abaxial SD = 325 mm-2 , (c) TOG_14116; Adaxial SD = 345 mm-2 , (d) TOG_14116; Abaxial SD = 

426 mm-2 

 

3.4.2 Phenotypic analysis of dynamic photosynthesis   

Dynamic responses are now recognised as important determinants of photosynthetic 

productivity. Responses of gas exchange, fluorescence and photoprotection to light shifts 

were modelled and show significant variation in 29 traits (Table 3.1, column ‘Sig’; Fig. 3.5 

(a-d) and Fig. 3.6 (a-b) and Supp. Fig. S3.4(a-f) at Zenodo). A full list of correlation 

coefficients and significance can be found in Supplementary Data File S3.10. 
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The well-documented divergence between the induction of gs and A was observed, where a 

lag in gs induction and reduction occurs relative to A (Fig. 3.1 and 3.5a-c). The mean upper 

limit estimates for A induction and reduction curves (Ai max and Ar max) and gs induction and 

reduction (gsr max and gsi max) curves were similar (p<0.0001, Supp. Fig. S3.5a-b at Zenodo) to 

measured values. The estimated averages for the mean lower limits of the A induction (Ai min), 

gs induction and reduction (gsi min and gsr min) curves are close to zero (Table 3.1).  

 
                       (a)                      (b)                              (c)                      (d) 

 
(e)                                                                              (f) 
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Figure 3.5: Demonstrating the variation of (a, b) A and (c, d) gs dynamic responses to light intensity 

changes within the O. glaberrima population using four example accessions. IG35 and TOG_6356 

were used as example of a ‘slow’ and ‘fast’ responding accession respectively, whereas EG85 and 

TOG_12160 are used to demonstrate intermediate gradient of responses in the population. (e) gsi slope 

was correlated with gsr slope (r=-0.38, p<0.0001, n=131) and Ai slope (r=0.72, p<0.0001, n=131); during 

induction a greater negative value indicates a steeper slope, this relationship is reversed for the 

decrease. (f) Ar rate shows positive associations to gsr 50 (r=-0.26, p<0.01, n=131) and shoot biomass 

(r=-0.27, p<0.001, n=155).  

 

The average time taken to reach 10% of the maximum induction curve was significantly less 

for CO2 assimilation (Ai 10) than gs (gsi 10) whereas the time taken to reach 50% of the 

induction curve for Ai 50 and gsi 50, did not significantly differ.  However, the average time to 

reach induction to 90% of the maximum (Ai 90), was significantly longer than that of gsi 90.  

 

Interactions between stomatal and CO2 assimilation indicate co – dependence, although 

correlation coefficients are not as strong as expected considering the known stomatal 

limitation of photosynthesis (Fig. 3.5 e-f). Notably the steepness of the gs induction slope (gsi 

slope) shows consistent positive correlation across with key induction traits, such as gsi 90, Ai 

slope, Ai 90, Ai rate and  NPQislope. The negative correlations between the rate of gsi slope with gsi rate 

and Ai rate indicates the association between a steeper gs induction slope and faster rate of 

induction for both gs and A.  

 

The rate of induction in high light was positively correlated with rates of decline in low light 

(Fig. 3.5). There are positive correlations between both gsi rate vs gsr rate and Ai rate vs Ar rate, and 

a negative correlation between gsi slope vs gsr slope, these consistent correlations between traits 

suggest that accessions exhibiting rapid stomatal opening also close at a greater rate (Fig. 

3.5c-d and Supp. Fig S3.5 at Zenodo). It was also identified that rapid stomatal closure was 

correlated with enhanced iWUEmax. A steeper gsr slope was found to be negatively correlated to 

iWUEmax and accessions with a faster relaxation time (gsr 10, gsr 50 and gsr 90) showed negative 

correlations to improved iWUEmax.  

 

Like steady state traits, A and gs dynamics were also linked to plant biomass and morphology 

in these data further supporting the role of photosynthesis in determining growth. Greater Ai 

rate was positively correlated with total plant biomass and shoot biomass. Ar rate showed 
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positive associations to total plant biomass, shoot biomass, shoot:root ratio and shoot area.  Ar 

slope had negative associations to shoot biomass, shoot:root ratio and plant height, while a 

more rapid Ar 90 was correlated to a greater shoot biomass, shoot:root ratio and shoot area. gsi 

rate showed positive associations to total plant biomass, shoot biomass root biomass and shoot 

area.  

Again, there were fewer links with stomatal morphology; a negative association was 

identified between SD ratio and Ar rate. Only upper leaf SD was also found to have positive 

relationships to gsi 50 and Ar rate, negative to gsr min. 

 

3.4.3 Non-photochemical quenching dynamics  

NPQ is of particular interest here because it showed multiple relationships with 

photosynthesis and biomass. The model estimation of the NPQ induction and relaxation 

curve upper limit (NPQi max and NPQr max) was close to the measured value for NPQmax, 

providing confidence in the method (Table 3.1; Supp. Fig. S3.5c at Zenodo)  

 

 We observed limited significance between the kinetics of NPQ relaxation and kinetics of A. 

Importantly consistent negative correlations between the A reduction curve lower limit (Ar 

min) achieved under 100 PPFD, and NPQr slope, NPQr 50 and NPQr 90 suggest that A maintains a 

higher value under low light conditions when NPQ relaxes rapidly (Kromdijk et al., 2016). 

Additionally, NPQi slope, NPQi rate and the time taken to induce 90% of the maximum (NPQi 

90), showed negative correlations with Amax.   

Speed of induction was not closely related to NPQ capacity: only the time taken to reach 90% 

of the NPQ curve upper limit (NPQi 90) positively correlated to a greater NPQmax. Like gas 

exchange traits NPQ induction and relaxation traits were positively correlated (NPQi slope vs 

NPQr slope and NPQi rate vs NPQr rate).  

 

Interestingly, NPQ and gs dynamic traits also showed numerous correlations. A positive 

correlation was identified between gsi slope and NPQi slope, and negative correlations between 

gsi slope and NPQi 10, NPQi 50 and NPQi 90. gsi rate was positively related to NPQi slope and NPQi 

90. Accessions with steeper gsr slope were also found to have a greater NPQr rate (Fig. 3.6d). 

These associations highlight a complex interdependent relationship between gs, A and NPQ 

and the recent link noted between underlying control of NPQ by PsbS and the dynamics of 
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stomatal conductance and gas exchange (Fig. 3.6c-d) (Kromdjik et al 2016; Glowacka et al 

2018).  

 

Further NPQ relaxation traits were related to morphological and SD traits, indicating that 

photoprotection has a role in determining growth. NPQi slope and NPQi 90 (Fig. 3.6e) showed 

negative correlations with shoot biomass and shoot area. NPQi rate positively correlated to 

shoot biomass and shoot area. A more pronounced set of associations was observed during 

NPQ relaxation; shoot biomass and shoot area, (respectively) showed negative correlations to 

NPQr slope, NPQr 50 and NPQr 90 (Fig. 3.6f) and positive correlations to NPQr 10 and NPQr rate. 
Root biomass showed similar, but not as strong, association to NPQr slope, NPQr 10, NPQr 90 and 

NPQr rate.  

 

 
Figure 3.6: Demonstrating the variation of NPQ (a) induction and (b) relaxation responses to light 

intensity changes within the O. glaberrima population using four example accessions, as explained in 

Fig. 3.5. (c) Negative correlations were identified with NPQi 90 against Amax (r=0.32, p<0.001) and 

NPQi rate (r=-0.83, p<0.0001). (d) NPQr rate showed a positive relationship to gsr slope (r=-0.83, 

p<0.0001), where a high value indicates a steeper slope. A negative correlation between NPQr rate and 

NPQr slope (r=-0.78, p<0.0001), where for this model a more negative value suggests a steeper 
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relaxation slope. NPQi 90 (e) and NPQr 90 (f) both showed associations to shoot biomass (r=-0.21, 

p<0.01; r=-0.28, p<0.01) and shoot area (r=-0.22, p<0.01; r=-0.27, p<0.01).  

 

3.4.4 Trait and ecological comparison between O. glaberrima and O. sativa  

It is informative to compare the O. glaberrima trait variation to that of the elite Asian O. 

sativa cultivar, IR64 (Supp. File S3 at Zenodo and Table 3.1) even though caution should be 

observed using just one genotype. We highlight the slower induction rates of photosynthesis 

of IR64.  

 

IR64 had a slightly smaller shoot than O. glaberrima but a greater root biomass, reflected in 

the lower shoot:root ratio of IR64, suggesting a greater investment in roots. IR64 height was 

lower. IR64 displayed a greater SD on the abaxial leaf side than O. glaberrima and IR64 had 

a lower SD ratio.  

 

IR64 did not differ from O. glaberrima for Amax and NPQmax. However, average ETRmax and 

FPSIImax were higher in IR64.  IR64 showed a slightly lower gsmax and greater iWUEmax in 

comparison to O. glaberrima. The latter is likely a direct result of the higher levels of gsmax 

observed in O. glaberrima. Clear differences were found in dynamics of A, gs and NPQ 

between the two species.  

 Induction appears to be slower in O. sativa (IR64) than O. glaberrima, according to mean 

comparisons in gsi 10, gsi 50, Ai 10, Ai 50, Ai 90, Ai rate, NPQi 10 and NPQi 50 (Supp. Fig. S3.4 at 

Zenodo). This implies IR64 had a longer gs and NPQ lag phase. The initial rapidity of the gs 

induction curve may facilitate the significantly faster A response observed in O. glaberrima, 

suggesting that O. glaberrima may be able to respond better to the onset of high light than 

IR64. During the decrease, IR64 and O. glaberrima did not significantly differ for gsr 10, gsr 

50, gsr 90, gr rate, Ar 10, Ar 90, Ar rate, NPQr 10 and NPQr rate. IR64 was found to have a faster 

reduction response for Ar 50, NPQr 50 and NPQr 90 in comparison to O. glaberrima (Table 3.1 in 

comparison to Supp. File S3 at Zenodo).  

 

3.4.5 Impact of country and ecology of origin on O. glaberrima trait adaptation 

An important aspect of O. glaberrima’s novelty is the independent evolution and phenotypic 

variation to O. sativa. We used principal component analyses (PCA) and hierarchical (H)-

clustering to explore natural trait variation and the adaptive effect of environmental climatic 
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variables. Here we identify phenotypic trends which cluster according to country and 

environment, indicating adaptation and possibly variation in growth strategy. 

 

                       (a) 

 

 

(b)                                                                              (c) 

    
 

TO
G

_1
36

45
TO

G
_1

20
86

TO
G

_5
88

2
TO

G
_7

99
3

TO
G

_7
45

5_
V

2
TO

G
_6

69
8

TO
G

_5
50

0
TO

G
_1

21
60

TO
G

_7
13

2
TO

G
_1

40
93

EG
85

U
G

30
1M

G
54

TO
G

_7
27

3
TO

G
_5

40
0

Y
G

30
7

TO
G

_5
42

4
TO

G
_6

21
1

IR
G

C
_1

03
54

4
TO

G
_5

99
7

TO
G

_1
23

87
IR

G
C

_1
04

58
9

TO
G

_6
20

6
IR

G
C

_8
67

91
TO

G
_5

45
3

TO
G

_1
23

58
IG

35
TO

G
_1

24
01

TO
G

_7
40

6
IR

G
C

_9
67

26
IG

43
M

G
04

U
G

14
C

G
46

TO
G

_7
25

5
U

G
28

TO
G

_7
42

0
U

G
26

TO
G

_5
59

1
IG

05
TO

G
_7

19
0

IG
47

IG
19

TO
G

_7
45

5_
V

1
TO

G
_6

22
0

TO
G

_8
53

7
TO

G
_7

21
4

TO
G

_1
22

49
M

G
53

IG
38

LG
33

TG
10

TO
G

_5
74

7
LG

64
C

G
17

1
TO

G
_1

23
66

TO
G

_1
46

10
C

G
14

IR
G

C
_9

67
40

TO
G

_5
55

6
C

G
15

6
Y

G
33

0
TO

G
_8

52
7

TO
G

_7
10

6
TO

G
_7

13
4

O
G

1
R

A
M

 7
7

R
A

M
 4

8
IG

32
4

IR
G

C
_1

03
54

9
TG

57
TO

G
_5

81
4

U
G

20
TO

G
_5

63
9

TO
G

_5
95

3
IG

36
TO

G
_1

24
11

R
A

M
 1

31
TO

G
_7

10
8

IR
G

C
_8

67
89

TO
G

_6
95

1
TO

G
_8

54
5

TO
G

_9
52

4
TO

G
_6

35
6

TO
G

_7
27

4
TO

G
_1

41
16

TO
G

_5
49

4
TO

G
_5

32
1

IR
G

C
_8

68
26

TO
G

_6
60

3
TO

G
_5

66
6

R
A

M
 2

4
IG

21
C

G
10

TO
G

_7
02

0
LG

07
_S

TO
G

_1
24

14
TO

G
_5

41
8

TO
G

_1
41

84
C

G
70

TG
25

TO
G

_5
68

1
IG

23
TO

G
_1

23
99

C
G

16
4

IR
G

C
_1

12
56

8
IR

G
C

_9
67

90
IG

09
TO

G
_5

48
6

TO
G

_1
23

88
IG

16
Y

G
31

6
Y

G
48

2
O

G
3

TO
G

_5
43

9
TO

G
_5

67
2

TO
G

_1
43

67
IR

64
R

A
M

 5
5

TO
G

_1
46

06
IG

14
TO

G
_7

04
7

IG
15

O
G

15
TO

G
_6

20
5

TO
G

_1
37

08
Y

G
35

3
TO

G
_5

31
4

C
G

17
0

IR
G

C
_8

67
90

TO
G

_7
45

1
TO

G
_5

96
9

R
A

M
 1

37
TO

G
_5

32
6

TO
G

_5
46

4
IR

G
C

_8
67

64
TO

G
_8

04
9

TO
G

_6
68

8
TO

G
_6

20
7

TO
G

_7
21

9
TO

G
_1

21
88

TO
G

_5
77

5
IR

G
C

_5
67

85
TO

G
_1

04
34

TO
G

_5
28

6
TO

G
_7

45
6

C
G

45
TO

G
_1

43
73

TG
19

_G
TO

G
_5

56
6

TO
G

_6
94

3
TO

G
_5

53
3

TO
G

_1
23

72
TO

G
_1

43
61

EG
55

C
G

15
00

50
00

10
00

0
15

00
0

20
00

0

Phenotype Analysis H-Cluster Dendrogram

H
ei

gh
t

Cluster 1 Cluster 2 Cluster 3

Burkina Faso

Cameroon

Chad

Côte d'Ivoire

Gambia

Ghana

Guinea

Liberia

Mali

Nigeria

Senegal

Sierra Leone

Tanzania

Zimbabwe

Cluster 1 Cluster 2 Cluster 3

C
ou

nt
ry

 o
f o

rig
in

0

8

16

Number of 
accessions

Irrigated 
lowland

Lowland

Rainfed 
lowland

Shallow 
forest swamp

Upland

Cluster 1 Cluster 2 Cluster 3

Ec
ol

og
y

0

15

30

Number of 
accessions



 86 

Figure 3.7: Hierarchical clustering on principal components was completed on 155 O. glaberrima 

accessions (a) for 64 phenotypic traits. K-means were used to decide at which point to cut the tree 

(k=4). Plots were generated detailing the frequency of individuals assigned to each (b) country of 

origin and (c) ecological niche with the clusters (1-3) identified from hierarchical clustering analysis 

on climatic data.  

 

The PCA and H-clustering were separated into two grouped analyses for phenotypic and 

climatic variables. For the PCA of phenotypic traits (Supp. Fig. S3.6b at Zenodo), 12 PCs 

were selected as they explain 95% of the variance (Supp. Fig. S3.6 at Zenodo). The H-

clustering analysis identified three clusters (Fig. 3.7a) with common sources of trait variation 

(Supp. File S3.7 at Zenodo).  

 

The accessions in cluster 1 are characterised by a slow gs reduction time (gsr 10/50/90), rapid A 

and NPQ induction time (Ai 50 and NPQi 90), steep A reduction curve (Ar slope), rapid A 

reduction time (Ar 50/90), high values for gsmax, Ar rate, NPQi rate, shoot:root ratio and low values 

for root biomass, VPDmax and iWUEmax. Accessions present in cluster 2 demonstrate gs 

reduction curves with a steep slope and rapid reduction times (gsr 10/50/90), high trait values for 

NPQmax, VPDmax, iWUEmax and low values for plant biomass, shoot biomass, shoot area, 

gsmax, ETRmax and FPSIImax. Accessions in the largest group, cluster 3, show high trait values 

for total biomass, shoot biomass, shoot area, root biomass, Amax, low levels of NPQ (NPQr 

min) under reduced light (100 PPFD) and rapid gs reduction time (gsr 50/90). Cluster 3 is the 

group where IR64 can be found and consists mostly of lowland type accessions.  

 

Adaptation to different environments was explored during the multivariate analyses. Figure 

3.8a-b shows axes PC1 and 2 overlaid with ecological niche and country of origin. O. 

glaberrima accessions cluster separately dependent upon their ecological origin, in particular 

upland or lowland types (Fig. 3.8b). While most accessions originate from lowland-type 

ecologies, it can still be seen that upland and lowland types show trait variation to one 

another. Accessions also show a high degree of trait variation due to country of origin that 

have contrasting climates (Fig. 3.8a). For example, distinct clustering can be seen between 

landlocked Burkina-Faso, which borders the Sahara, and coastal Gambia. A categorical 

analysis was performed to establish if the accessions that occupy each cluster of the H-

clustering analysis share similar origins (Supp. Fig. 3.7b-c at Zenodo). While there is no 

obvious relationship, a greater proportion of upland accessions occupy cluster 1, whereas a 
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large proportion of accessions originating from lowland ecologies are present in cluster 3 

(Supp. Fig. S3.7c at Zenodo).  

 

          (a)                                                                  (b) 

 
          (c)                                                                   (d) 

 
 

Figure 3.8:  Graphical PCA outputs exploring the effects and associations of climate, country and 

ecological origin for 155 O. glaberrima accessions.  The PCs 1 and 2 generated from the PCA 

analysis of phenotypic data are overlaid with 95% confidence ellipses for the O. glaberima accessions 

categorical variables of (a) country and (b) ecological origin. (c) PCs 1 and 3 from the PCA of 

phenotypic data show the separate clustering of O. sativa (IR64), based on country of origin and 

ecology categories, from O. glaberrima. (d) PC1 from the PCA on phenotypic data was found to be a 

function of PC4 of climatic data PCA analysis.  
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The diversity of climates and elevations (Fig. 3.2a-c) are likely to have directly impacted trait 

adaptation and resilience. A PCA focused on climatic traits explored the relationship between 

climate and phenotype. The first 4 PCs explain 90% of trait variation in the population (Supp. 

File S8 at Zenodo). H-clustering identified three distinct clusters of accessions with common 

sources of variation in climatic variables (Supp. Files S9 and S11 at Zenodo). A categorical 

analysis of ecological niche and country of origin, for the accessions present in each cluster 

showed a clear distinction of climate-based clustering due to country of origin (Fig. 3.7c). 

Cluster 1 contains all accessions that originate from the neighbouring countries of Liberia and 

Sierra Leone. Cluster 2 contains all accessions from Zimbabwe and most accessions 

originating from Nigeria. While cluster 3, which contains the largest number of accessions, 

contains all individuals originating from Cameroon, Chad, Ghana, Tanzania and the majority 

of accessions from Côte d’Ivoire and Senegal. 

 

With the extensive phenotypic and climatic variables reduced to a small number of 

components, we completed a correlation analysis between the phenotypic and climatic trait 

PCs to identify groups of climatic drivers on trait adaptation. A significant positive 

association was identified between trait PC1 and climatic PC4 (r=-0.20, p<0.05; Fig. 3.8d), 

suggesting key traits contributing to phenotypic traits PC1, which includes photosynthetic 

traits and shoot biomass, have adapted in response to precipitation related variables that 

contribute to climate PC4 loadings. Other significant associations were identified between 

phenotype PC5 and climate PC4 (r=0.25, p<0.05), phenotype PC8 and climate PC2 (r=0.24, 

p<0.05), phenotype PC11 and climate PC3 (r=0.25, p<0.05) (Supp. File S12 and Supp. Fig. 

S3.8 at Zenodo). 

 

During the multivariate analyses, we observed that O. sativa IR64 values cluster separately 

from O. glaberrima for both ecology and country of origin. This can be seen most clearly 

when plotting PCs1 and 3, where the two species cluster distinctly for the Asian country of 

origin and paddy field ecology (Fig. 3.8c).  
 

 

3.5 DISCUSSION 

Crop production in future climates has the challenge of increasing productivity whilst 

retaining resilience. To do so, optimising interactions and trade-offs between carbon 

assimilation, photoprotection and water loss will be essential. However, we do not yet have 



 89 

complete understanding of the genetic basis of the co-regulation of the interlinked processes 

and components (light harvesting, photoprotection, electron transport, carbon assimilation 

and stomatal conductance) involved. Recent progress shows that crop productivity and water 

use efficiency is only partly dependent upon ‘steady state’ maximum values of Amax and gsmax. 

SD, stomatal conductance and photoprotection dynamics have been identified as critical traits 

to optimise carbon assimilation and minimise abiotic stress (Kromdijk et al., 2016; Caine et 

al., 2019; Faralli et al., 2019). However, elite gene pools may be genetically narrow and 

poorly adapted to challenging environmental conditions. Attention is increasingly focused 

upon underutilised crop species and wild relatives as a source of genetic diversity to improve 

resilience in commercial species (Draic et al., 2011). Whilst the variation for photosynthesis 

induction has been partly characterised in O. sativa, this is not true of O. glaberrima 

(Acevedo-Siaca et al., 2020; Acevedo-Siaca et al., 2021) . The O. glaberrima association 

panel used here was developed as a resource for crop improvement, which may have 

diversity not available in O. sativa (Agnoun et al., 2012). For the first-time a comprehensive 

analysis of photosynthesis and morphology- related traits has been completed in O. 

glaberrima. Our novel approach uses a large pool of accessions, with a large range of 

heritable natural variation to explore the natural variation and relationships in these traits. 

While we cannot make a meaningful comparison between O.glaberrima and O.sativa  we 

observed key differences with the former showing faster photosynthesis induction. Though a 

caveat should be made this observation is only against one O. sativa cultivar and 

demonstrates the need for a comprehensive comparison between the two species in future. 

This may be an indication of adaptation to drier soils and air generally, requiring faster 

opening and closure of stomata (Lawson and Vialet-Chabrand 2019). 

 

Here we have described extensive natural variation in O. glaberrima for steady state, 

induction and relaxation / reduction responses for A and gs. This suggests underlying genetic 

diversity to these traits that could be identified and exploited. We identified indications of 

heritability (H2) and underlying genetic variation (PGV) in many of these traits (Table 3.1). 

Trait heritability values were comparable to estimates of similar traits from maize (Choquette 

et al., 2019) but they are marginally lower than those previously demonstrated in O. sativa 

(Qu et al., 2017) though a genetic component still indicated. A calculation of heritability 

using genomic data would provide a more accurate estimation (Zhu & Zhou, 2020). This 

would be useful when selecting traits for genetic introgression or characterisation. The large 

number of accessions used here (155) permits a statistical comparison that was not possible 
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in related studies on dynamic photosynthesis in O.sativa where fewer lines were analysed 

(Acevedo-Siaca et al., 2020).   

 
A global PCA and clustering analysis showed a distinction between clusters of high biomass 

(cluster 3), low biomass (cluster 2) and low root biomass (cluster 1). The fast gs decrease, 

low gsmax, high NPQmax and high iWUEmax of cluster 2 would suggest a conservative type 

geared toward water conservation, whilst the high total biomass of cluster 3 is consistent with  

a fast growth type displaying rapid gs decrease, low NPQ and a higher Amax. The association 

of cluster 3 with wetter lowland environments is consistent with higher productivity. We 

therefore see a general consistency in these 2 clusters with photosynthetic, water-use and 

biomass production ‘strategy’. It is also notable that steady state Amax correlates well with 

biomass, suggesting that capacity for higher photosynthesis is still important. Increases in 

photosynthetic capacity are known to improve light responses in rice (Sun et al., 2016). 

 
3.5.1 Extensive natural variation identified in dynamic photosynthetic traits  

In recent years there has been a shift in photosynthesis related research towards dynamic 

responses in place of steady state values (Kromdijk et al., 2016; Taylor and Long, 2017; 

Murchie et al., 2018; Acevedo- Siaca et al., 2020). It is now recognised that irradiance 

fluctuations in field conditions, and the ability of stomatal and photosynthetic responses to 

respond instantaneously can substantially affect plant productivity (Taylor & Long, 2017). To 

enable greater productivity in dynamic environments such as a crop canopy, one would 

anticipate that all components of photosynthesis would respond rapidly to ‘track’ light 

closely. Each component has a different effect, thus fast activation of the Calvin cycle and 

CO2 assimilation during induction is beneficial, while rapid reduction of NPQ and fast 

stomatal closure at transition to low light enables the attainment of improved CO2 efficiency 

and iWUE at low light.  

It is clear that we see some independence of dynamic traits, but interesting associations 

appear which indicate a link with biomass. Recent research suggests that major yield gains 

can be made by enhancing photoprotection capacity and NPQ dynamic responses (Kromdijk 

et al., 2016; Hubbart et al., 2018). Rapid NPQ relaxation can remove the limitation on 

quantum yield of CO2 assimilation, allowing a quicker recovery of photosynthetic efficiency 

upon A reduction (Kromdijk et al., 2016; Murchie and Ruban, 2020). Our findings support 

this: NPQ relaxation dynamics were the only group found to have ubiquitous associations to 
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increased shoot biomass and area. Notably, we also observed that values for A under low 

light were greater in those accessions that exhibited rapid NPQ relaxation and those that have 

lower NPQ capacity under low light (NPQr min). It is also hypothesised that faster induction of 

CO2 assimilation may reduce the need for photoprotection during induction (McAusland & 

Murchie, 2020), however we found no association between A induction traits and NPQ 

dynamic or steady state values. We did find that faster NPQ induction is associated with 

greater photosynthetic capacity, shoot area and biomass. 

 

Whilst no associations were identified between NPQ and A reduction dynamics, we found 

strong positive correlations between the speed of gs and NPQ dynamics. This may highlight 

the importance of the key NPQ protein, Photosystem II Subunit (PsbS), on stomatal 

conductance, as shown by Głowacka et al. (2018). Whereby PsbS overexpression, which 

increases both NPQ capacity and NPQ dynamic rate (Kromdijk et al., 2016; Głowacka et al., 

2018; Hubbart et al., 2018), it also reduces the extent of stomatal opening in tobacco. This 

may be reflected here by the negative correlation between NPQmax and gsmax, also that gs 

induction rate was lower when NPQ induction was faster. This highlights the need to further 

explore the associations between NPQ and gs dynamics:  these have not been elucidated 

although there is a general principle that limitations imposed by gs or Rubisco activation state 

would result in a further reduction of electron transport and an enhanced NPQ. We suggest 

that in O.glaberrima NPQ may be a key factor in regulating the degree of gs, through the 

effect of PsBs on stomatal opening, and A reduction dynamics. Akin to the relation between 

A and gs, there is a trade off in NPQ as it reduces photosynthetic quantum yields under low 

irradiance.  

 

No association was identified between the water use related traits, gs and iWUEmax and 

stomatal density, this may be because the variation was less than that needed to produce 

changes in gas exchange traits (Caine et al., 2019; Mohammed et al., 2019). It is also 

possible this highlights the importance of stomatal size and morphology, rather than density, 

on these traits. Smaller stomata have been shown to have improved water use efficiency, 

maximal stomatal conductance and dynamics (Chatterjee et al., 2020; Drake et al., 2013; 

Dittberner et al., 2018; Lawson and Vialet-Chabrand, 2019).  However, the positive 

correlations we identified between SD ratio, NPQmax and the level of NPQ achieved under 

low light (NPQr min) is unusual. The significant negative association between SD ratio and Ar 

rate has no direct interpretation but may indicate SD ratio is a trait worthy of further work. 
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Upper leaf SD had positive relationships to gsi 50 and Ar rate, negative to gsr min also indicates 

that distinction between the leaf surfaces may be important. 

 

We note that some relationships highlighted in the Pearson pairwise correlation analysis 

showed significant but relatively low correlation coefficient (r) values (Fig. 3.6e-f), but those 

noted here in the text were found to have consistent relationships. Therefore, we consider 

these findings to be biologically relevant, particularly as they support prior findings in the 

literature (Lawson and Blatt, 2014; Kromdijk et al., 2016; Glowacka et al., 2018; Taylor and 

Long, 2018). However, we suggest these findings are followed up with an improved 

experimental design and a larger number of biological replicates, which may provide further 

clarity to the initial findings here. The further elucidation between the interplay of 

photoprotective, stomatal and assimilation dynamics should include detailed morphological 

characterisation (Ohsumi et al., 2007; Drake et al., 2013; McAusland et al., 2016), including 

the associated mesophyll conductance (Campany et al., 2016; Deans et al., 2019). The 

proportion that photosynthetic dynamics are limited by stomata or biochemistry seems 

species dependent (Tinoco-Ojanguren and Pearcy, 1993; Taylor and Long, 2017; De Souza et 

al., 2020). O. sativa photosynthetic induction has been shown to be predominantly limited by 

biochemistry (Acevedo-Siaca et al., 2020; Acevedo-Siaca et al., 2021) and the same 

assumption might be extended to O. glaberrima due to a similar genomic composition (Stein 

et al., 2018), however we conclude  from our data that stomatal limitations may be more 

pronounced in O. glaberrima.   

 

We recognise limitations in the glasshouse experimental design used here. A linear mixed 

effects model and the calculation of BLUPs was used to mitigate the effects of temporal and 

spatial factors, where variation may have been overrepresented in certain genotypes due to 

the lack of randomised design and measurement of accessions across the summer - autumn 

seasonal transition. Furthermore, while O. sativa IR64 was used as a check-genotype, it was 

not introduced until the fifth rotation of accessions and could not be used to normalise the 

dataset against. A repeat experiment would be recommended to confirm our associations 

identified here. A randomised design, ideally with all genotypes sown at once in subsequent 

repetitions, would be more statistically robust and may have yielded clearer trait associations. 

We also recommend the inclusion of multiple O. sativa genotypes in each measurement 
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rotation that could be used to check for environmental effects, to normalise against and as an 

opportunity to complete a greater comparison between the two species.   

 

 

3.5.2 Accessions have adapted to variable ecological and environmental regimes in 

different countries 

No comprehensive studies exist that tease apart the ecological and environmental variables 

that correlate to specific trait adaptation in O. glaberrima. This information is useful from an 

evolutionary perspective but may be essential in the selection of cultivars for abiotic stress 

tolerance and trait-related genetic characterisation.  

Of note, we identified a significant association between the climate PC4 and phenotype PC1 

(Fig. 3.8d; Supp. File. S12 at Zenodo). This relationship suggests that key photosynthetic 

traits contributing to PC1 have adapted in response to climatic pressures associated with PC4, 

such as elevation and the combined effect of temperature and precipitation. However, these 

are broad observations for climatic-trait correlations across the African continent, lacking 

resolution that can be seen in studies on a discrete geographical area (Wolfe & Tonsor, 2014).  

For the selection of abiotic stress tolerance adapted cultivars, the H-clustering analyses would 

be of particular use, as this generated three distinct clades of O. glaberrima accessions 

stemming from similar climatic and phenotypic variables. These clusters of individuals 

should be treated with caution, and we recommend re-analysis with equal numbers of 

individuals representing the categories discussed here. This will ensure the clusters identified 

here are not because of unequal weighting. Furthermore, the climatic H-clustering 

demonstrated clear grouping of accessions due to country of origin (Fig. 3.7b), suggesting 

that a higher resolution analysis of environmental effect on trait adaptation would  

be beneficial. Re-analysis using equal representation from each country or ecological group 

would be possible within this panel, though would substantially reduce the overall sample 

size as lowland accessions predominate. Alternatively, a greater number of accessions, 

representing each factor discussed here, could be obtained from the AfricaRice seed bank.   

We identified adaptation based upon ecological origin in the PCA analysis (Fig. 3.8b), 

supporting a known distinction between O. glaberrima upland and lowland phenotypes 

(Ghesquière, 1997). However, there is no comprehensive description in the literature of the 

physiological differences that are associated with each ecological origin. Though due to the 
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unequal representation of accessions from each ecological niche in this analysis it is difficult 

to obtain a clear indication of the effect of ecology on trait adaptation. 

The environmental analysis completed here produces useful information of accessions 

displaying similar phenotypic qualities because of environmental adaptation. Equally, this 

also highlights the requirement for a dedicated study to truly elucidate the environmental and 

ecological trait adaptation of O. glaberrima, utilising equally represented accessions from a 

range of ecological niches and assessing physiological adaptation to climatic variables at a 

range of spatial scales.  

 

4.3.2 Conclusions 

Here, we have demonstrated that O. glaberrima has broad, heritable natural variation in a 

range of important traits, which are likely to aid in the improvement of O. sativa. This is the 

first study to describe photosynthetic, photoprotection and dynamic traits in O. glaberrima, 

the size of which is not matched in panels of O. sativa accessions. The phenotyping efforts 

compiled here will provide a basis for the identification of interesting traits for physiology 

research, aid in the selection of accessions for crop improvement efforts and information for 

genetic characterisation.  
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Abstract 

African rice (Oryza glaberrima) has adapted to challenging environments and is a promising source of genetic vari-
ation. We analysed dynamics of photosynthesis and morphology in a reference set of 155 O. glaberrima accessions. 
Plants were grown in an agronomy glasshouse to late tillering stage. Photosynthesis induction from darkness and 
the decrease in low light was measured by gas exchange and chlorophyll fluorescence along with root and shoot 
biomass, stomatal density, and leaf area. Steady-state and kinetic responses were modelled. We describe extensive 
natural variation in O. glaberrima for steady-state, induction, and reduction responses of photosynthesis that has 
value for gene discovery and crop improvement. Principal component analyses indicated key clusters of plant bio-
mass, kinetics of photosynthesis (CO2 assimilation, A), and photoprotection induction and reduction (measured by 
non-photochemical quenching, NPQ), consistent with diverse adaptation. Accessions also clustered according to 
countries with differing water availability, stomatal conductance (gs), A, and NPQ, indicating that dynamic photosyn-
thesis has adaptive value in O. glaberrima. Kinetics of NPQ, A, and gs showed high correlation with biomass and leaf 
area. We conclude that dynamic photosynthetic traits and NPQ are important within O. glaberrima, and we highlight 
NPQ kinetics and NPQ under low light.

Keywords:   African rice, dynamic modelling, natural variation, NPQ, O. glaberrima, photosynthesis, rice, stomatal conductance.

Introduction

The climate crisis places crop yields under increasing pres-
sure from biotic and abiotic constraints and constitutes a 
major threat in meeting global food demand (Ray et al., 2019). 

Substantial yield decreases in key cereal crops are predicted to 
occur in both vulnerable and productive regions (Black et al., 
2008; Challinor et al., 2014). Asian rice (Oryza sativa), a dietary 

This paper is available online free of all access charges (see https://academic.oup.com/jxb/pages/openaccess for further details)

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/erab459/6398698 by guest on 16 M

ay 2022



Copyedited by: OUP

Page 2 of 16  |   Cowling et al.

stable to a third of the global population, is predicted to ex-
perience yield losses up to 37% by the end of the century due 
to climate change-driven drought events Bocco et al., 2012; 
Zhao et al., 2017). The development of productive and resilient 
rice cultivars has been the subject of increasing research focus 
(Atwell et al., 2014), and advances have been made through 
traditional plant breeding methods within the O. sativa indica 
and japonica types. However, there has also been an interest in 
the introgression of genes from a range of diverse interspecific 
material. This includes the African rice species Oryza glaberrima, 
which was domesticated in Africa 2000–3000 years ago, inde-
pendently of the domestication of Asian rice O. sativa. Oryza 
glaberrima retains many properties that are specific to challen-
ging African conditions of soil and climate, including limited 
water availability, abiotic stress, pests, and diseases (Bimpong et 
al., 2011; Agnoun et al., 2012; Bocco et al., 2012; Cubry et al., 
2020).

Oryza glaberrima is not suitable for commercial rice produc-
tion due to lodging, shattering, milling difficulties, and low 
yields in comparison with O. sativa (Linares, 2002). However, 
the resilience to a range of abiotic and biotic stresses makes O. 
glaberrima an attractive target for gene mining and translation 
(Fig. 1; Sarla and Swamy, 2005), which was one of the motiv-
ations for the interspecific New Rice for Africa (NERICA) 
breeding programme (Wambugu et al., 2019). This underlying 
genetic diversity might allow commercial rice to tolerate in-
creasingly unpredictable climatic conditions. Recent genomic 
sequencing advances for O. glaberrima have now added new 
possibilities (Cubry et al., 2020).

Photosynthetic efficiency and water use efficiency (WUE) 
are important components of productivity and abiotic stress 
resilience (Zhao et al., 2017). Stomata are key players in both 
processes, regulating CO2 assimilation (A; the parameter ab-
breviation list can be found in Supplementary Table S1 and 

the water lost by transpiration via stomatal conductance (gs). 
However, improvements in WUE incorporate a trade-off be-
tween transpiration rate at the expense of net CO2 assimilation 
rate (A) (Blum, 2009; Lawson et al., 2010; Lawson and Blatt, 
2014). The leaf stomatal density (SD) value can affect gs; recent 
work using rice with reduced SD has demonstrated that photo-
synthesis was not compromised in well-watered conditions but 
enhanced WUE in all conditions and improved biomass and 
yield under water limitation (Caine et al., 2019; Mohammed 
et al., 2019). Consequently, improved yield in water-limiting 
environments might be achieved by optimization of stomatal 
morphology and density. Dynamics of stomatal aperture al-
teration have also been increasingly highlighted as playing 
an essential role in improving photosynthetic efficiency and 
WUE (Drake et al., 2013; Lawson and Blatt, 2014). Stomata 
can take some time to reach stable gs (McAusland et al., 2016). 
Increasing the speed of stomatal opening and closing, closely 
coupling to A (Fig. 1), may be important in conserving water 
and improving crop yields (Lawson and Vialet-Chabrand, 
2019).

Historically, light-saturated carbon assimilation cap-
acity (Amax) (mostly under ambient atmospheric [CO2]) has 
been a parameter of interest for photosynthesis improve-
ments (Murchie et al., 2018). However, recent research now 
makes it clear that the dynamic responses of photosynthesis 
and photoprotection [such as non-photochemical quenching 
(NPQ)] to the fluctuating field environment are essential for 
photosynthetic efficiency-based yield gains (Kromdijk et al., 
2016; Taylor and Long, 2017; Murchie et al., 2018; Acevedo-
Siaca et al., 2020). Light in plant canopies is transient due to 
architecture, intermittent cloud cover, solar angle, and wind 
(Burgess et al., 2016). The ability of A to rapidly adjust to 
changes in light levels is limited by two major processes: sto-
matal dynamics and photosynthetic biochemistry (McAusland 

Fig. 1.  Schematic showing example induction and reduction in response to changes in light intensity during gas exchange measurements. These 
examples of raw A and gs gas exchange measurements show the modelled dynamic response parameters; minimum, maximum, slope, and time to 
reach a defined percentage of the curve maximum.
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et al., 2016; Slattery et al., 2018; Acevedo-Siaca et al., 2020). 
In wheat, slow induction dynamics were estimated to cost 
21% of carbon assimilation acquisition (Taylor and Long, 
2017). Further dynamic leaf photosynthetic efficiency can 
be improved through the rapid relaxation of photoprotection 
(Kromdijk et al., 2016; Hubbart et al., 2018). Under high light, 
NPQ dissipates excess excitation energy as heat. However, in 
fluctuating light conditions, NPQ dynamics can lag behind 
shifts in light level, limiting photosynthesis. On this basis, it 
is clear that elucidating photosynthesis-related dynamics is an 
essential focus of improving crop yields and improving abiotic 
stress tolerance, whereby plants can utilize light and CO2 with 
increased efficiency.

Variation in photosynthetic, NPQ, and stomatal traits have 
been examined in O. sativa; however, there is no comprehen-
sive analysis which compares both induction and decline. We 
hypothesize that due to the origins within the diverse African 
climates, substantial variation for dynamic photosynthesis traits 
may exist within the genome of O. glaberrima and we have 
used a new, whole-genome re-sequenced, resource of 155 O. 
glaberrima accessions (Wambugu et al., 2019; Cubry et al., 2020) 
to characterize 58 phenotypic traits for photosynthesis and leaf 
WUE. This includes the use of automated machine learning to 
describe SD and gas exchange methods to facilitate the mod-
elling of A, NPQ, and gs induction and decline dynamics across 
a large population of individuals. Furthermore, as the effect of 
environment-driven trait adaptation is central to the novelty of 
O. glaberrima, we explore the effect of 20 climatic variables and 
ecotype upon trait adaptation within the population. Here, we 
describe an African rice population with broad heritable vari-
ation in a range of useful traits and we provide evidence that 
dynamic and steady-state photosynthesis and photoprotective 
traits are linked to whole-plant growth. To our knowledge, this 
is the largest survey of dynamic photosynthesis for a species in 
the Oryza genus to date. This further highlights the import-
ance of O. glaberrima as an essential source of variation for crop 
improvement and providing a solid base for future research to 
elucidate physiological processes and pursue trait-related gene 
identification.

Materials and methods

Plant material and growth conditions
The seeds of 155 O. glaberrima accessions were provided by the 
Interspecies Comparison & Evolution (RICE) team within Diversité 
Adaptation Developpement des plantes (DIADE), IRD-Montpellier, 
France. A table of information presenting the plant material is provided 
in Supplementary Table S2.

Plants were grown, measured, and processed at the Sutton Bonington 
Campus, University of Nottingham, UK. Plants were sown and grown in 
a controlled-environment agronomy-style glasshouse (Cambridge HOK, 
UK). Conditions were maintained at a 12 h dark:light (07.00–19.00 h) 
photoperiod, controlled using blackout blinds, temperature of 28±3 °C, 
and 50–60% relative humidity. Metal halide lamps were used to maintain 
light levels when they fell below 200 μmol m−2 s−1 photosynthetically 

active radiation (PAR). Seeds were heat treated to prevent pathogenesis 
at the primary seedling stage through immersing in water at 55 °C for 
15 min. Seeds were germinated in a module tray for 2 weeks before being 
transplanted to soil pits (5 m×5 m×1.25 m, L×W×D) within the glass-
house. Five replicates of each accession were transplanted in east–west 
rows, at 20 cm intervals, into high nutrient loam-based soil in 2×5 m 
concrete pits. Plants were irrigated by drip tapes twice a day, to provide 
a soil water content close to field capacity. Soil top layers were replaced 
every 2 weeks from the same batch.

Due to the size of the population accessions, planting was staggered at 
1–2 week intervals. Accessions were grown in rotations of 12 genotypes 
at a time, with five biological replicates, four of which were selected for 
measurement. Plants were measured at 8 weeks old when they were ap-
proximately in the mid to late tillering stage. Measurements commenced 
in July 2017 and ended in October 2017. The elite O. sativa variety ‘IR64’ 
was used as a reference genotype and planted as a row in every batch (see 
‘Data analysis’ below).

Gas exchange measurements
An IRGA (infra-red gas analyser; Li-Cor 6400XT, Lincoln, NE, USA) 
was used on the uppermost fully expanded leaf. A light induction pro-
gramme was used: leaves were dark adapted for 1 h, the sample leaf was 
then placed in the leaf cuvette and allowed to achieve steady state in dark-
ness before being subject to a photosynthetic photon flux density (PPFD) 
of 1500 µmol m−2 s−1, from in-built red and (10%) blue LED lights, 
from 0 s to 900 s, reducing to 100 µmol m−2 s−1 from 900 s to 1200 s. A 
graphical representation of the induction assay can be seen in Fig. 1. The 
leaf cuvette conditions were maintained at a block temperature of 30 °C, 
400 μmol−1 mol−1 CO2, flow rate 500 ml min−1, and 50–65% humidity. 
Gas exchange data were logged every 10 s. Measurements were collected 
between 09.00 h and 16.00 h. Chlorophyll fluorescence parameters were 
collected simultaneously, by applying a single saturating pulse before the 
application of actinic light to attain Fo and Fm and then at intervals of 60 s 
following this for the calculation of ϕPSII (PSII operating efficiency in 
the light), qP (photochemical quenching), and NPQ (non-photochemical 
quenching: measurement of a photoprotective process that estimates the 
rate constant for PSII heat loss) (Murchie and Lawson, 2013). Intrinsic 
water use efficiency (iWUE) was calculated post-data collection as CO2 
assimilation rate (A)/stomatal conductance (gs). We calculate that vapour 
pressure deficit (VPD) in the cuvette was ~1.51–2.10 kPa. Saturation or 
near-saturation was achieved within this time scale. Raw data for A, gs, 
and NPQ are shown graphically in Supplementary Fig. S1 as individual 
replicates and means per accession. 

Stomatal density and automated stomatal counting
Stomatal impressions were taken from the same area of the first fully ex-
panded leaf where the IRGA measurements were obtained. A ~1 cm2 
negative impression of the abaxial (basal) and adaxial (upper) leaf surface 
was taken using fast-drying clear nail polish and adhered to a microscope 
slide. Impressions were obtained after all other measurements had been 
taken.

Images were obtained on a Leica DM5000B light microscope at ×40 
objective with 10 fields of view per impression. Due to the volume 
of images (13  110), a bespoke machine learning-based software was 
created to automatically calculate the number of stomata in each 
image. The software can reliably identify O. glaberrima and O. sativa sto-
mata, showing a high correlation (r=0.94; n=540 images per counting 
method) between software and manual stomatal counts. Our method 
was based on transfer learning for deep neural networks: we have util-
ized a pre-trained deep model for the different datasets and adapt it for 
user-annotated rice stomata samples. Based on the transfer learning ap-
proach, we utilize a pre-trained object detection model trained on the 
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standard COCO datasets (Lin et al., 2014). Since our goal is detecting 
and classifying stomata, we use the Faster R-CNN model (Ren et al., 
2015) as one of the state-of-the-art methods based on deep neural 
networks. We used the Faster R-CNN model available in Tensorflow 
with the Inception-V2 architecture (Szegedy et al., 2016) as the base 
model. Inception-V2 is a variation of Inception-V1, also referred 
to as GoogLeNet, which was the state-of-the-art architecture at the 
ImageNet competition in ILSVRC 2014. After loading the pre-trained 
Faster R-CNN, the last few layers of classification layers are changed 
to meet the aim of stomata classification and detection. In the next 
step, the Faster R-CNN with stomata images are trained with different 
hyperparameters such as learning rate and number of epochs to find 
out the best parameters to reduce execution time and errors. Further 
information on our methodology is located in File S1 at the Zenodo 
repository; Murchie, 2021).

Morphological traits
Plant height, leaf area, and root and shoot dry biomass were taken at 8 
weeks post-germination, after the completion of gas exchange meas-
urements. Each plant was dug up and care taken to preserve the root 
system. The shoot area was measured using a LiCor LI-3100 area meter. 
The root ball was soaked and carefully washed to preserve root struc-
ture, as described by York (2018). The shoot and root material were 
then placed in a drying oven at 70 °C for 72 h before weighing for dry 
biomass.

Data analysis
All data analyses were performed using R-Studio (v. 4.0.1).

To reduce the temporal and spatial effects of measuring the acces-
sions in batches, a linear mixed-effects model (‘lme4’ package, v.1.1-26) 
was used to calculate best linear unbiased predictions (BLUPs) and pre-
dicted means, considering the effects of accession, sowing date, meas-
urement date, location within the glasshouse, and, if relevant, IRGA 
machine (Supplementary Fig. S2). BLUPs are commonly used to 
account for the random effects that accompany measuring large popu-
lations in fluctuating environments (Robinson, 1991; Merk et al., 2012). 
The coefficients of the mixed-effects model were also used to estimate 
broad sense heritability (H2). All results reported here use the adjusted 
means data generated from the mixed-effects model. Normality was 
tested using the Shapiro–Wilk test. A 0.01 α value was used, as the 
Shapiro–Wilk test tends to report false negatives in sample sizes ex-
ceeding 50 individuals. All data for IR64 were found to be normally 
distributed, whereas 25 out of 57 traits in the O. glaberrima panel showed 
a deviation from a statistically normal distribution. In the results, and O. 
glaberrima descriptive statistics Table 1, non-normal traits report values 
for median and interquartile range (IQR), whereas normally distrib-
uted traits will report mean and standard deviation. A full breakdown of 
IR64 and O. glaberrima normality statistics, box, and distribution plots 
can be found in Files S2–S4 at Zenodo.

A bespoke Python pipeline was written to identify the data point at 
95% of the maximum and extract values within the induction side of a 
curve (File S5 at Zenodo).

The correlation analyses were completed using a Pearson correlation 
coefficient in the ‘Corrplot’ package (v. 0.84), with a correlation signifi-
cance threshold of P<0.1005.

The percentage genetic variation (PGV) was calculated as follows; 
[(xmax–xmin)/x)]×100. Where xmax, xmin, and x, respectively, denote the 
maximum, minimum, and mean values for a trait in the population (Gu 
et al., 2014). This measure is used to quantify the genetic variation of a 
trait within the combined population. Values >100% signify where the 

range is greater than the mean and represent particularly high underlying 
genetic variation.

Kinetic modelling
Dynamic modelling of A, NPQ, and gs was performed using a dose–re-
sponse curve-fitting method, previously used to model stomatal responses 
by Barratt et al. (2021). The ‘drc’ (v. 3.0) package was used to analyse and 
extract several useful parameters for both curve induction and reduction 
responses (Ritz et al., 2015), denoted by i and r, respectively. The measured 
parameters are detailed in Table 1 and include curve slope (i/r slope), lower 
limit (i/r min), upper limit (i/r max), and the time taken to reach a defined 
percentage of the dependent variable, in this case 10 (i/r 10), 50 (i/r 50), and 
90% (i/r 90). A representation of these parameters on A and gs response 
curves can be found in Fig. 1. The LL.4 (log-logistic 4-parameter) model 
was chosen as the best fit for both the A induction, and gs induction 
and reduction responses. The LL.3 (log-logistic 3-parameter) model was 
used for NPQ induction, and the W2.4 (4-parameter Weibull2) model 
for NPQ relaxation. The comparison of eight different models, followed 
by Akaike’s information criterion analysis, was used to select the best 
model fit. All 155 accessions were analysed for A induction curves; 24 
accessions were removed for gs induction and gs reduction curve fitting 
due to unusable curve measurements.

Due to the volume of data, the best fitting model was selected for the 
induction and reduction curve for each parameter (gs, A, and NPQ) and 
then applied to all data (e.g. for gs induction, a LL.4 model was applied to 
all 155 genotypes). To ensure that the model selection process captured 
the variation that may occur in the population, five genotypes were ran-
domly chosen for model selection and the consensus model was used. 
The estimated parameters generated from the model (min, max, ed50, 
and slope) were manually cross-referenced to the raw data, to ensure 
these outputs closely represented the raw data. To evidence the fit of the 
selected models to the raw data, we include a table showing the model 
fit of a randomly selected accession for each parameter (Supplementary 
Table S3). We note the large SE for Ar slope, probably due to the rapid and 
steep drop in A that occurs between two data points, so we attribute less 
confidence in this parameter.

Multivariate and climatic analysis
The multivariate analyses, principal component analysis (PCA), and hier-
archical clustering (H-clustering) methods require a complete dataset, 
with no missing values. Consequently, missing phenotype data were im-
puted using the missMDA package (v. 1.18). PCA was performed using 
the FactoMineR (v. 2.4) package, and the H-clustering was performed 
using the HCPC method. Details of the FactoMineR package and 
HCPC algorithm can be found in Lê et al. (2008).

The PCA and H-clustering of the phenotypic dataset contained all 
155 O. glaberrima accessions and the IR64 O. sativa representative. The 
analysis included 64 quantitative trait variables and four qualitative vari-
ables, namely narrow ecotype, broad ecotype, country of origin, and 
African region.

Agroecological niche and geographical coordinates of the collection 
sites for each O. glaberrima accession were provided by AfricaRice. We 
have complete ecological information for all 155 accessions, and geo-
graphical coordinates for 105 accessions (Fig. 2A–C). Nineteen variables 
for temperature and precipitation, at the collection site of each acces-
sion, were obtained using the BIOCLIM dataset (Hijmans et al., 2005). 
Information on the elevation above sea level was obtained using the 
elevatr package (v. 0.3.1). PCA and H-clustering analysis, and subsequent 
climate–trait correlations, were performed on the subset of 105 accessions 
for which we had geographical coordinates.
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Table 1.  The range of natural variation and broad-sense heritability (H2) within a population of diverse O. glaberrima accessions across 
dynamic and static traits

Trait Min Max Mean (SD) Median (IQR) PGV Sig. H2 

Steady state

Amax 17.92 22.42 20.16 (0.87) 22.30 ∗∗∗ 0.11
ETRmax 104.10 144.30 123.00 (7.60) 32.69 ∗∗∗ 0.22
gsmax 0.26 0.46 0.34 (0.03) 58.82 ∗∗∗ 0.17
iWUEmax 58.34 71.81 62.63 (3.08) 21.40 ∗∗∗ 0.07
NPQmax 1.98 2.30 2.13 (0.06) 14.88 ∗∗∗ 0.12

ϕPSIImax 0.16 0.22 0.19 (0.01) 32.70 ∗∗∗ 0.22

qPmax 0.43 0.51 0.47 (0.02) 18.71 ∗∗∗ 0.17
Trmmolmax 4.13 5.75 4.81 (0.27) 29.84 ∗∗∗ 0.12
VPDmax 1.43 1.52 1.47 (0.01) 6.38 ∗∗∗ 0.00
Morphological
Shoot:root 3.36 9.50 5.55 (1.13) 73.22 ∗∗∗ 0.12
Shoot biomass 2.36 7.85 4.40 (0.89) 123.33 ∗∗∗ 0.14
Shoot area 279.07 1068.97 652.73 (126.27) 118.51 ∗∗∗ 0.16
Root biomass 0.36 1.98 0.77 (0.18) 203.75 ∗∗∗ 0.23
Plant height 61.79 93.86 78.77 (6.20) 40.72 ∗∗∗ 0.18
Adaxial SD 260.16 353.50 314.08 (18.04) 29.72 ∗∗∗ 0.21
Abaxial:adaxial 1.05 1.40 1.24 (0.06) 18.87 ∗∗∗ 0.15
Abaxial SD 324.31 435.99 388.83 (22.54) 28.72 ∗∗∗ 0.21
Dynamic
gsi slope –3.90 –1.90 –2.44 (0.38) 78.43 ∗∗∗ 0.14
gsi max 0.35 0.49 0.42 (0.03) 31.88 ∗ 0.11
gsi min 0.06 0.14 0.08 (0.01) 112.50 ∗∗ 0.12
gsi 10 65.50 207.09 108.19 (29.45) 126.83 ∗∗∗ 0.18
gsi 50 179.53 324.80 223.71 (48.40) 64.17 ∗ 0.11
gsi 90 477.70 684.41 539.21 (48.40) 37.53 NS 0.08
gsi rate 0.0005 0.0008 0.0006 (<0.01) 45.45 ∗ 0.09
Ai slope –2.42 –1.50 –1.78 (0.17) 50.84 ∗∗ 0.10
Ai max 20.44 27.83 23.43 (1.47) 31.53 ∗∗∗ 0.20
Ai min –1.32 –1.09 –1.22 (0.04) 18.85 NS 0.01
Ai 10 49.01 140.97 63.79 (13.96) 136.43 ∗∗∗ 0.15
Ai 50 189.56 334.26 217.84 (24.73) 64.97 ∗∗ 0.12
Ai 90 652.34 849.54 718.78 (52.10) 27.14 NS 0.06
Ai rate 0.03 0.04 0.03 (0.002) 33.33 NS 0.05
NPQi slope –3.48 –2.32 –2.72 (0.22) 42.65 ∗∗∗ 0.12
NPQi max 2.12 2.44 2.24 (0.05) 14.29 ∗∗∗ 0.08
NPQi 10 19.57 28.12 23.80 (1.53) 35.75 ∗∗∗ 0.11
NPQi 50 50.98 56.44 53.65 (1.02) 10.16 NS 0.05
NPQi 90 118.70 132.30 125.58 (2.71) 10.82 NS 0.03
NPQi rate 0.017 0.02 0.02 (<0.01) 15.00 ∗∗ 0.07
gsr slope 6.48 10.49 8.05 (0.80) 49.43 NS 0.07
gsr min -0.30 0.02 -0.13 (0.08) 228.57 ∗∗ 0.11
gsr max 0.38 0.61 0.48 (0.05) 48.96 ∗∗ 0.15
gsr 10 908.91 956.10 922.35 (8.56) 05.11 NS 0.07
gsr 50 1061.65 1385.05 1208.21 (76.16) 26.77 ∗∗∗ 0.26
gsr 90 1370.52 2116.04 1640.46 (266.31) 44.56 ∗∗∗ 0.23
gsr rate 0.0006 0.0101 0.001 (<0.01) 339.28 ∗∗∗ 0.25
Ar slope -332.60 -322.20 -328.45 (2.15) 3.17 NS 0.01
Ar min 2.88 3.60 3.22 (0.11) 24.05 ∗∗∗ 0.11
Ar max 17.09 21.72 19.22 (0.96) 22.36 NS 0.04
Ar 10 901.90 902.20 902.09 (0.04) 0.03 NS 0.03
Ar 50 905.30 905.70 905.45 (0.05) 0.04 NS 0.03
Ar 90 910.60 911.00 910.77 (0.05) 0.04 NS 0.02
Ar rate 0.79 2.36 1.51 (0.09) 103.97 ∗ 0.08
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FactoShiny was used to generate summary reports of the PCA and 
H-clustering analyses on both the phenotype data and climate data; these 
can be found in Files S6–S9 at Zenodo.

Results

Phenotypic analysis of morphology and steady-state 
photosynthesis

Significant variation and high levels of PGV were identified 
between accessions across all morphological, gas exchange, and 
fluorescence traits measured in this O. glaberrima panel (Table 1; 
Files S2, S4 at Zenodo).

Root biomass, shoot biomass, and shoot area showed a 5-, 3-, 
and 4-fold variation, respectively. Plant height showed a 1.3-fold 
variation in PGV. Significant (P<0.001) positive correlations be-
tween all plant growth traits were found (Fig. 3A, C).

Even though key steady-state photosynthesis traits showed 
a relatively narrow distribution (typically between 15% and 
40%), both shoot biomass and shoot area showed significant 
(P<0.01–0.05; Fig. 3A; File S10 at Zenodo), positive correlations 
to Amax, qPmax, ETRmax, and ϕPSIImax, providing confidence that 
steady-state photosynthesis is linked to biomass production. gsmax 

showed an almost 2-fold variation across O. glaberrima accessions. 
PGV for steady-state traits ranged from 6.38% to 58.82% (Table 
1), with most traits in the 20–30% range, including key photo-
synthetic traits. All key steady-state photosynthetic traits showed 
significant (P<0.0001) positive correlations to one another (Fig. 
S3). Some unexpected relationships were apparent, for example 
between NPQmax and VPDmax. iWUEmax was highly correlated 
with gsmax (Fig. 3B) (and Trmmolmax) but not Amax, indicating 
stomatal limitation of A.

Stomatal morphology (Fig. 4) did not show a clear relation-
ship with conductance. A relatively modest 1.3-fold accession-
dependent variation in the abaxial SD and adaxial SD was 
observed. The abaxial SD was 1.24-fold greater than the ad-
axial SD. PGV showed that all SD traits were highly signifi-
cant (P<0.0001, Table 1) across the O. glaberrima accessions, 
revealing that SD has a genetic basis. However, no association 
between any SD traits and iWUEmax, or gsmax was detected. 
Unexpectedly the adaxial SD showed a significant negative 
correlation to NPQmax, while abaxial SD showed a negative 
association with plant height (Fig. 3D). The SD ratio, however, 
showed significant associations with multiple traits (Fig. 3C); 
Amax, ETRmax, ϕPSIImax, qPmax, NPQmax, and plant height, the 
reasons for which are unclear.

Fig. 2.  Map showing the geographical collection locations of O. glaberrima accessions used in this study. The annual range of (A) temperature, (B) 
annual precipitation, and (C) elevation across Africa. 

Trait Min Max Mean (SD) Median (IQR) PGV Sig. H2 

NPQr slope –49.71 –36.27 –41.83 (2.65) 34.35 ∗∗∗ 0.21
NPQr min 0.56 0.66 0.61 (0.02) 23.00 ∗∗∗ 0.16
NPQr max 1.99 2.30 2.13 (0.06) 14.55 ∗∗∗ 0.10
NPQr 10 921.31 923.66 922.60 (0.39) 0.27 ∗∗∗ 0.19
NPQr 50 946.63 954.76 950.23 (1.41) 0.97 ∗∗∗ 0.19
NPQr 90 985.20 1008.16 995.50 (4.13) 02.50 ∗∗∗ 0.19
NPQr rate 0.013 0.020 0.016 (<0.01) 43.75 ∗∗∗ 0.14

Normally distributed traits report the trait mean and standard deviation, whilst the median and interquartile range is given for non-normally distributed 
traits. PGV is the percentage of genetic variation. Sig. refers to the ANOVA test between two mixed-effects models, where the accession is present as 
an effect in one model and not in another. A significant result suggests that the accession genotype has an effect and therefore the trait is heritable. 
∗∗∗P<0.0001, ∗∗P<0.001, ∗P<0.01

Table 1.  Continued
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Phenotypic analysis of dynamic photosynthesis

Dynamic responses are now recognized as important deter-
minants of photosynthetic productivity. Responses of gas ex-
change, fluorescence, and photoprotection to light shifts were 
modelled and show significant variation in 29 traits (Table 1, 
column ‘Sig’; Figs 5A–D, 6A, B; Supplementary Fig. S4A–F).

The well-documented divergence between the induction of 
gs and A was observed, where a lag in gs induction and reduc-
tion occurs relative to A (Figs 1, 5A–C). The mean upper limit 

estimates for A induction and reduction curves (Ai max and  
Ar max) and gs induction and reduction (gsr max and gsi max) curves 
were similar (P<0.0001, Supplementary Fig. S5A, B) to meas-
ured values. The estimated averages for the mean lower limits 
of the A induction (Ai min), gs induction and reduction (gsi min 
and gsr min) curves are close to zero (Table 1).

The average time taken to reach 10% of the maximum in-
duction curve was significantly less for CO2 assimilation (Ai 10) 
than for gs (gsi 10), whereas the time taken to reach 50% of the 

Fig. 3.  O. glaberrima shows a range of interesting morphological and steady-state photosynthetic trait correlations. The colour gradient shows a second 
correlation against the y-axis variable. (A) Positive correlation between root and shoot biomass; the second correlation shows root biomass and shoot 
area. (B) The effect of gsmax on Amax and the second correlation of gsmax against iWUEmax. (C) Pearson correlation matrix showing associations between 
morphological and steady-state gas exchange traits, filtered to show trait associations at a P<0.1005 significance threshold. Correlations are scaled 
by colour, shown in the right-hand scale bar; asterisks indicate significance between traits (∗∗∗P<0.001, ∗∗P<0.01, ∗P<0.05). (D) Negative correlation 
between SD ratio and plant height, while the SD ratio against NPQmax shows a positive correlation.
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induction curve for Ai 50 and gsi 50 did not significantly differ. 
However, the average time to reach induction to 90% of the 
maximum (Ai 90) was significantly longer than that of gsi 90.

Strong interactions between stomatal and CO2 assimilation 
indicate co-dependence (Fig. 5E, F). Notably the steepness of 
the gs induction slope (gsi slope) highly correlates with key in-
duction traits gsi 90, gsi rate, gsmax, Ai slope, Ai rate, iWUEmax, NPQislope, 
NPQimax, and NPQi50. gsi rate was also strongly correlated to 
many dynamic induction traits; gsmax, gsi 10, gsi 50, gsi 90, Amax, Ai 

90, and Ai rate.

The rate of photosynthetic induction in high light was as-
sociated with rates of decline in low light (Fig. 5). gsi slope versus 
gsr slope, gsi rate versus gsr rate, and Ai rate versus Ar rate were signifi-
cant, suggesting that accessions which exhibited rapid stomatal 
opening also close at a greater rate (Fig. 5C, D; Supplementary 
Fig. S5). Further, traits associated with rapid stomatal closure, 
gsr slope, gsr 10, gsr 50, and gsr 90 showed significant associations with 
enhanced iWUEmax.

Like steady-state traits, A and gs dynamics were also linked 
to plant biomass and morphology in these data, further 

supporting the role of photosynthesis in determining growth. 
A greater Ai rate was positively correlated with total plant and 
shoot biomass. Ar rate showed positive associations with total 
plant biomass, shoot biomass, shoot:root ratio, and shoot area. 
Ar slope had negative associations with shoot biomass, shoot:root 
ratio, and plant height, while a more rapid Ar 90 was correlated 
to a greater shoot biomass, shoot:root ratio, and shoot area. gsi 

rate showed positive associations with total plant biomass, shoot 
biomass, root biomass, and shoot area.

Again there were fewer links with stomatal morphology; a 
significant negative association was identified between the SD 
ratio and Ar rate. Only upper leaf SD was also found to have 
positive relationships to gsi 50 and Ar rate, and a negative relation-
ship to gsr min.

Non-photochemical quenching dynamics

NPQ is of particular interest here because it showed multiple 
relationships with photosynthesis and biomass. The model es-
timation of the NPQ induction and relaxation curve upper 

Fig. 4.  Microscope images showing examples of the O. glaberrima accessions with highest (TOG_14116) and lowest (TOG_5464) recorded SD. These 
images demonstrate the extent of SD variation in the population and the qualitative correlation between high SD and small stomatal size, (A) TOG_5464; 
adaxial SD=260 mm−2, (B) TOG_5464; abaxial SD=325 mm−2, (C) TOG_14116; adaxial SD=345 mm−2, (D) TOG_14116; abaxial SD=426 mm−2.
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limit (NPQi max and NPQr max) was close to the measured value 
for NPQmax, providing confidence in the method (Table 1; 
Supplementary Fig. S5C)

We observed limited significance between the kinetics of 
NPQ relaxation and kinetics of A. Importantly, there was a 
significant negative correlation between the A reduction curve 
lower limit (Ar min) achieved under 100 PPFD, and NPQr slope, 
NPQr 50, and NPQr 90, suggesting that A maintains a higher 
value under low light conditions when NPQ relaxes rapidly 
(Kromdijk et al., 2016). Additionally NPQi slope, NPQi rate, and 
the time taken to induce 90% of the maximum (NPQi 90) 
strongly correlated with Amax.

Speed of induction was not closely related to NPQ capacity: 
only the time taken to reach 90% of the NPQ curve upper 
limit (NPQi 90) positively correlated to a greater NPQmax. Like 
gas exchange traits, NPQ induction and relaxation traits were 
positively correlated (NPQi slope versus NPQr slope and NPQi rate 
versus NPQr rate).

Interestingly, NPQ and gs dynamic traits also showed nu-
merous significant correlations. gsi slope significantly correlated 
with NPQi slope, NPQi 10, NPQi 50, and NPQi 90. gsi rate was 
positively related to NPQi slope and NPQi 90. Accessions with 
steeper gsr slope were also found to have a greater NPQr rate (Fig. 
6D). These associations highlight a complex interdependent 

relationship between gs, A, and NPQ and the recent link 
noted between underlying control of NPQ by PsbS and the 
dynamics of stomatal conductance and gas exchange (Fig. 
6C, D) (Kromdjik et al., 2016; Glowacka et al., 2018).

Further NPQ relaxation traits were related to morpho-
logical and SD traits, indicating that photoprotection has a 
role in determining growth. NPQi slope and NPQi 90 (Fig. 6E) 
showed negative correlations with shoot biomass and shoot 
area. NPQi rate positively correlated to shoot biomass and shoot 
area. A more pronounced set of associations was observed 
during NPQ relaxation; shoot biomass and shoot area, respect-
ively, showed negative correlations to NPQr slope, NPQr 50, and 
NPQr 90 (Fig. 6F), and positive correlations to NPQr 10 and 
NPQr rate. Root biomass showed a similar, but not as strong, 
association with NPQr slope, NPQr 10, NPQr 90, and NPQr rate.

Trait and ecological comparison between O. 
glaberrima and O. sativa

It is informative to compare the O. glaberrima trait variation 
with that of the elite Asian O. sativa cultivar, IR64 (File S3 
at Zenodo; Table 1) even though caution should be observed 
using just one genotype. We highlight the slower induction 
rates of photosynthesis of IR64.

Fig. 5.  Demonstrating the variation of (A, B) A and (C, D) gs dynamic responses to light intensity changes within the O. glaberrima population using 
four example accessions. IG35 and TOG_6356 were used as example of a ‘slow’ and ‘fast’ responding accession, respectively, whereas EG85 and 
TOG_12160 are used to demonstrate the intermediate gradient of responses in the population. (E) gsi slope was correlated with gsr slope and Ai slope; during 
induction, with a greater negative value indicating a steeper slope; this relationship is reversed for the decrease. (F) Ar rate shows positive associations with 
gsr 50 and shoot biomass.
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IR64 had a slightly smaller shoot than O. glaberrima but a 
greater root biomass, reflected in the lower shoot:root ratio of 
IR64, suggesting a greater investment in roots. IR64 height 
was lower. IR64 displayed a greater SD on the abaxial leaf side 
than O. glaberrima, and IR64 had a lower SD ratio.

IR64 did not differ from O. glaberrima for Amax and NPQmax. 
However, average ETRmax and ϕPSIImax were higher in IR64. 
IR64 showed a slightly lower gsmax and greater iWUEmax in 
comparison with O. glaberrima. The latter is likely to be a direct 
result of the higher levels of gsmax observed in O. glaberrima. 
Clear differences were found in dynamics of A, gs, and NPQ 
between the two species.

During induction, IR64 was significantly slower than O. 
glaberrima for gsi 10, gsi 50, Ai 10, Ai 50, Ai 90, Ai rate, NPQi 10, and 
NPQi 50 (Supplementary Fig. S4). This implies that IR64 had 
a longer gs and NPQ lag phase. The initial rapidity of the gs 
induction curve may facilitate the significantly faster A re-
sponse observed in O. glaberrima, suggesting that O. glaberrima 
may be able to respond better to the onset of high light than 
IR64. During the decrease, IR64 and O. glaberrima did not 
significantly differ for gsr 10, gsr 50, gsr 90, gsr rate, Ar 10, Ar 90, Ar 

rate, NPQr 10, and NPQr rate. IR64 was found to have a faster 
reduction response for Ar 50, NPQr 50, and NPQr 90 in com-
parison with O. glaberrima (Table 1 in comparison with File 
S3 at Zenodo).

During the multivariate analyses, we observed that O. sativa 
IR64 values cluster separately from O. glaberrima for both 
ecology and country of origin. This can be seen most clearly 
when plotting principal components (PCs) 1 and 3, where the 
two species cluster distinctly for the Asian country of origin 
and paddy field ecology (Fig. 8C).

Impact of country of origin and ecotype on O. 
glaberrima trait adaptation

An important aspect of O. glaberrima’s novelty is the inde-
pendent evolution to O. sativa and adaptation to the variable 
African environment. We used PCA and H-clustering to ex-
plore natural trait variation and the adaptive effect of envir-
onmental climatic variables. Here we identify phenotypic 
trends which cluster according to country and environment, 
indicating adaptation and possibly variation in growth strategy.

Fig. 6.  Demonstrating the variation of NPQ (A) induction and (B) relaxation responses to light intensity changes within the O. glaberrima population using 
four example accessions, as explained in Fig. 5. (C) Negative correlations were identified with NPQi 90 against Amax and NPQi rate. (D) NPQr rate showed a 
positive relationship to gsr slope, where a high value indicates a steeper slope and a negative correlation between NPQr rate and NPQr slope, where for this 
model a more negative value suggests a steeper relaxation slope. NPQi 90 (E) and NPQr 90 (F) showed associations with both shoot biomass and shoot 
area.
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The PCA and H-clustering were separated into two grouped 
analyses for phenotypic and climatic variables. For the PCA of 
phenotypic traits 12 PCs were selected as they explain 95% of 
the variance (Supplementary Fig. S6). The H-clustering ana-
lysis identified three clusters (Fig. 7A) with common sources of 
trait variation (File S7 at Zenodo). The accessions in cluster 1 
are characterized by a slow gs reduction time (gsr 10/50/90), rapid 
A and NPQ induction time (Ai 50 and NPQi 90), steep A re-
duction curve (Ar slope), rapid A reduction time (Ar 50/90), high 
values for gsmax, Ar rate, NPQi rate, and shoot:root ratio, and low 
values for root biomass, VPDmax, and iWUEmax. Accessions pre-
sent in cluster 2 demonstrate gs reduction curves with a steep 
slope and rapid reduction times (gsr 10/50/90), high trait values 
for NPQmax, VPDmax, and iWUEmax, and low values for plant 
biomass, shoot biomass, shoot area, gsmax, ETRmax, and ϕPSIImax. 
Accessions in the largest group, cluster 3, show high trait values 
for total biomass, shoot biomass, shoot area, root biomass, and 
Amax, low levels of NPQ (NPQr min) under reduced light (100 
PPFD), and rapid gs reduction time (gsr 50/90). Cluster 3 is the 
group where IR64 can be found, and it consists mostly of low-
land type accessions.

Adaptation to different environments was explored during 
the multivariate analyses. In Fig. 8A and B, axes PC1 and 2 are 
shown overlaid with ecological niche and country of origin. 
Oryza glaberrima accessions cluster separately dependent upon 
their ecological origin, in particular upland or lowland (Fig. 
8B). Accessions from lowland-type ecologies dominate, though 
it is still clear that upland and lowland show trait differences. 
Accessions also show a high degree of trait variation due to 
countries of origin that have contrasting climates (Fig. 8A). For 
example, distinct clustering can be seen between landlocked 
Burkina-Faso, which borders the Sahara, and coastal Gambia. A 
categorical analysis was performed to establish if the accessions 

that occupy each cluster of the H-clustering analysis share 
similar origins (Supplementary Fig. S7B, C). While there is no 
obvious relationship, a greater proportion of upland accessions 
occupy cluster 1, whereas a large proportion of lowland acces-
sions are present in cluster 3 (Supplementary Fig. S7C).

The diversity of climates and elevations (Fig. 2A–C) are 
likely to have directly impacted trait adaptation and resilience. 
A PCA focused on climatic traits explored the relationship 
between climate and phenotype. The first four PCs explain 
90% of trait variation in the population (File S8 at Zenodo). 
H-clustering identified three distinct clusters of accessions 
with common sources of variation in climatic variables (Files 
S9, S11 at Zenodo). A categorical analysis of ecological niche 
and country of origin for the accessions present in each cluster 
showed a clear distinction of climate-based clustering due to 
country of origin (Fig. 7C). Cluster 1 contains all accessions 
that originate from the neighbouring countries of Liberia and 
Sierra Leone. Cluster 2 contains all accessions from Zimbabwe 
and most accessions originating from Nigeria. Cluster 3, which 
contains the largest number of accessions, contains all individ-
uals originating from Cameroon, Chad, Ghana, and Tanzania, 
and the majority of accessions from Côte d’Ivoire and Senegal.

With the extensive phenotypic and climatic variables re-
duced to a small number of components, we completed a 
correlation analysis between the phenotypic and climatic trait 
PCs to identify groups of climatic drivers on trait adaptation. 
A significant positive association was identified between trait 
PC1 and climatic PC4 (r= –0.20, P<0.05; Fig. 8D), suggesting 
that key traits contributing to phenotypic trait PC1, which in-
cludes photosynthetic traits and shoot biomass, have adapted 
in response to precipitation-related variables that contribute 
to climate PC4 loadings. Other significant associations were 
identified between phenotype PC5 and climate PC4 (r=0.25, 
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Fig. 7.  Hierarchical clustering of 155 O. glaberrima accessions (A) for 64 phenotypic traits and the frequency of accessions for each country of origin (B) 
and ecological niche (C) in the clades (1–3) identified in the climate hierarchical clustering analysis.
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P<0.05), phenotype PC8 and climate PC2 (r=0.24, P<0.05), 
and phenotype PC11 and climate PC3 (r=0.25, P<0.05) File 
S12; Supplementary Fig. S8).

Discussion

Crop production in future climates has the challenge of 
increasing productivity whilst retaining resilience. To do so, op-
timizing interactions and trade-offs between carbon assimila-
tion, photoprotection, and water loss will be essential. However, 
we do not yet have complete understanding of the genetic 
basis of the co-regulation of the interlinked processes and 
components (light harvesting, photoprotection, electron trans-
port, carbon assimilation, and stomatal conductance) involved. 

Recent progress shows that crop productivity and WUE are 
only partly dependent upon ‘steady-state’ maximum values of 
Amax and gsmax. SD, stomatal conductance, and photoprotection 
dynamics have been identified as critical traits to optimize 
carbon assimilation and minimize abiotic stress (Kromdijk et 
al., 2016; Caine et al., 2019; Faralli et al., 2019). However, elite 
gene pools may be genetically narrow and poorly adapted to 
challenging environmental conditions. Attention is increasingly 
focused upon underutilized crop species and wild relatives as a 
source of genetic diversity to improve resilience in commercial 
species (Draic et al., 2011). Whilst the variation for photosyn-
thesis induction has been partly characterized in O. sativa, this 
is not true of O. glaberrima (Acevedo-Siaca et al., 2020, 2021). 
The O. glaberrima association panel used here was developed as 
a resource for crop improvement, which may have diversity not 

Fig. 8.  Graphical PCA outputs; the phenotypic PCs 1 and 2 are overlaid with 95% confidence ellipses for the O. glaberima accessions; (A) country of 
origin and (B) ecotype categorical variables. (C) PCs and 3 show the separate clustering of O. sativa (IR64), based on country of origin and ecotype 
categories, from O. glaberrima. (D) PC1 from the phenotypic traits data PCA was found to be a function of PC4 from the climatic data PCA analysis.
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available in O. sativa (Agnoun et al., 2012). For the first time, a 
comprehensive analysis of photosynthesis- and morphology-
related traits has been completed in O. glaberrima. Our novel 
approach uses a large pool of accessions, with a large range 
of heritable natural variation to explore the natural variation 
and relationships in these traits. While we cannot here make 
a meaningful comparison between O. glaberrima and O. sativa, 
we observed key differences, with the former showing faster 
photosynthesis induction. This may be an indication of adap-
tation to drier soils and air generally, requiring faster opening 
and closure of stomata (Lawson and Vialet-Chabrand, 2019).

Here we have described extensive natural variation in O. 
glaberrima for steady-state, induction, and relaxation/reduction 
responses for A and gs. This suggests underlying genetic diver-
sity to these traits that could be identified and exploited. We 
identified indications of heritability (H2) and underlying gen-
etic variation (PGV) in many of these traits (Table 1). Trait her-
itability values were comparable with estimates of similar traits 
from maize (Choquette et al., 2019), but they are marginally 
lower than those previously demonstrated in O. sativa (Qu et 
al., 2017), though a strong genetic component is still indicated. 
A calculation of heritability using genomic data would pro-
vide a more accurate estimation (Zhu and Zhou, 2020). This 
would be useful when selecting traits for genetic introgression 
or characterization. The large number of accessions used here 
(155) permits a statistical comparison that was not possible in 
related studies on dynamic photosynthesis in O. sativa where 
fewer lines were analysed (Acevedo-Siaca et al., 2020).

A global PCA and clustering analysis showed a distinc-
tion between clusters of high biomass (cluster 3), low biomass 
(cluster 2), and low root biomass (cluster 1). The fast gs decrease, 
low gsmax, high NPQmax, and high iWUEmax of cluster 2 would 
suggest a conservative type geared toward water conservation, 
whilst the high total biomass of cluster 3 is consistent with a 
fast growth type displaying a rapid gs decrease, low NPQ, and 
a higher Amax. The association of cluster 3 with wetter low-
land environments is consistent with higher productivity. We 
therefore see a general consistency in these two clusters with 
photosynthetic, water use, and biomass production ‘strategy’. It 
is also notable that steady-state Amax correlates well with bio-
mass, suggesting that capacity for higher photosynthesis is still 
important. Increases in photosynthetic capacity are known to 
improve light responses in rice (Sun et al., 2016).

Extensive natural variation identified in dynamic 
photosynthetic traits

In recent years, there has been a shift in photosynthesis-related 
research towards dynamic responses in place of steady-state 
values. It is now recognized that irradiance fluctuations in field 
conditions, and the ability of stomatal and photosynthetic re-
sponses to respond instantaneously, can substantially affect plant 
productivity (Taylor and Long, 2017). To enable greater prod-
uctivity in dynamic environments such as a crop canopy, one 

would anticipate that all components of photosynthesis would 
respond rapidly to ‘track’ light closely. Each component has 
a different effect; thus, fast activation of the Calvin cycle and 
CO2 assimilation during induction is beneficial, while rapid 
reduction of NPQ and fast stomatal closure at transition to low 
light enable the attainment of improved CO2 efficiency and 
iWUE at low light.

It is clear that we see some independence of dynamic traits, 
but interesting associations appear which indicate a link with 
biomass. Recent research suggests that major yield gains can be 
made by enhancing photoprotection capacity and NPQ dy-
namic responses (Kromdijk et al., 2016; Hubbart et al., 2018). 
Rapid NPQ relaxation can remove the limitation on quantum 
yield of CO2 assimilation, allowing a quicker recovery of 
photosynthetic efficiency upon A reduction (Kromdijk et al., 
2016; Murchie and Ruban, 2020). Our findings support this: 
NPQ relaxation dynamics were the only group found to have 
ubiquitous associations with increased shoot biomass and area. 
Notably, we also observed that values for A under low light 
were greater in those accessions that exhibited rapid NPQ re-
laxation and those that have lower NPQ capacity under low 
light (NPQr min). It is also hypothesized that faster induction 
of CO2 assimilation may reduce the need for photoprotection 
during induction (McAusland and Murchie, 2020); however, 
we found no association between A induction traits and NPQ 
dynamic or steady-state values. We did find that faster NPQ 
induction is associated with greater photosynthetic capacity, 
shoot area, and biomass.

Whilst no associations were identified between NPQ and 
A reduction dynamics, we found strong positive correlations 
between the speed of gs and NPQ dynamics. This may high-
light the importance of the key NPQ protein, PSII subunit S 
(PsbS), on stomatal conductance, as shown by Głowacka et al. 
(2018), whereby PsbS overexpression, which increases both 
NPQ capacity and NPQ dynamic rate (Kromdijk et al., 2016; 
Głowacka et al., 2018; Hubbart et al., 2018), also reduces the 
extent of stomatal opening in tobacco. This may be reflected 
here by the negative correlation between NPQmax and gsmax, 
also that the gs induction rate was lower when NPQ induc-
tion was faster. This highlights the need to further explore 
the associations between NPQ and gs dynamics: these have 
not been elucidated although there is a general principle that 
limitations imposed by gs or Rubisco activation state would 
result in a further reduction of electron transport and an en-
hanced NPQ. We suggest that in O. glaberrima NPQ may be 
a major player in both gs and A reduction dynamics. Akin 
to the relationship between A and gs, there is a trade-off in 
NPQ as it reduces photosynthetic quantum yields under low 
irradiance.

No association was identified between the water use-related 
traits, gs and iWUEmax, and SD; this may be because the vari-
ation was less than that needed to produce changes in gas ex-
change traits (Caine et al., 2019; Mohammed et al., 2019). It is 
also possible that this highlights the importance of stomatal size 
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and morphology, rather than density, on these traits. Smaller sto-
mata have been shown to have improved WUE, gsmax, and dy-
namics (Drake et al., 2013; Dittberner et al., 2018; Lawson and 
Vialet-Chabrand, 2019; Chatterjee et al., 2020). However, the 
positive correlations we identified between SD ratio, NPQmax, 
and the level of NPQ achieved under low light (NPQr min) is 
unusual. The significant negative association between SD ratio 
and Ar rate has no direct interpretation but may indicate that the 
SD ratio is a trait worthy of further work. Upper leaf SD had 
positive relationships to gsi 50 and Ar rate, and negative to gsr min, 
also indicating that distinction between the leaf surfaces may 
be important.

Understanding the interplay of photoprotective, stomatal, 
and assimilation dynamics should include detailed morpho-
logical characterization (Ohsumi et al., 2007; Drake et al., 2013; 
McAusland et al., 2016), together with the associated meso-
phyll conductance (Campany et al., 2016; Deans et al., 2019). 
The proportion by which photosynthetic dynamics are limited 
by stomata or biochemistry seems to be species dependent 
(Tinoco-Ojanguren and Pearcy, 1993; Taylor and Long, 2017; 
De Souza et al., 2020). Oryza sativa photosynthetic induction 
has been shown to be predominantly limited by biochemistry 
(Acevedo-Siaca et al., 2020, 2021), and the same assumption 
might be extended to O. glaberrima due to a similar genomic 
composition (Stein et al., 2018); however, we conclude from 
our data that stomatal limitations may be more pronounced in 
O. glaberrima.

Accessions have adapted to variable ecological and 
environmental regimes in different countries

No comprehensive studies exist that tease apart the ecological 
and environmental variables that correlate with specific trait 
adaptation in O. glaberrima. This information is useful from an 
evolutionary perspective but may be essential in the selection 
of cultivars for abiotic stress tolerance varieties and trait-related 
genetic characterization.

Of note, we identified a significant association between 
the climate PC4 and phenotype PC1 (Fig. 8D; File S12 at 
Zenodo). This relationship suggests that key photosynthetic 
traits contributing to PC1 have adapted in response from cli-
matic pressures associated with PC4, such as elevation and the 
combined effect of temperature and precipitation. However, 
these are broad observations for climatic–trait correlations 
across the African continent, lacking resolution that can be 
seen in studies on a discrete geographical area (Wolfe and 
Tonsor, 2014).

For the selection of abiotic stress tolerance-adapted culti-
vars, the H-clustering analyses would be of particular use, as 
this generated three distinct clades of O. glaberrima accessions 
stemming from similar climatic and phenotypic variables. 
Furthermore, the climatic H-clustering demonstrated clear 
grouping of accessions due to country of origin (Fig. 7B), 

suggesting that a higher resolution analysis of environmental 
effect on trait adaptation would be beneficial.

We identified adaptation based upon ecotype in the PCA 
(Fig. 8B), supporting a known distinction between O. glaberrima 
upland and lowland phenotypes (Ghesquière, 1997). However, 
there is no comprehensive description in the literature of the 
physiological differences that contribute to these ecotypes. 
Though due to the unequal representation of accessions from 
each ecological niche in this analysis, it is difficult to obtain 
a clear indication of the effect of ecotype on trait adaptation.

The environmental analysis completed here produces useful 
information of accessions displaying similar phenotypic qual-
ities because of environmental adaptation. Equally, this also 
highlights the requirement for a dedicated study to truly elu-
cidate the environmental and ecological trait adaptation of O. 
glaberrima, utilizing equally represented accessions from a range 
of ecotypes and assessing physiological adaptation to climatic 
variables at a range of spatial scales.

Conclusions

Here, we have demonstrated that O. glaberrima has broad, her-
itable natural variation in a range of important traits, which 
are likely to aid in the improvement of O. sativa. This is the 
first study to describe photosynthetic, photoprotection, 
and dynamic traits in O. glaberrima, the size of which is not 
matched in panels of O. sativa accessions. The phenotyping ef-
forts compiled here will provide a basis for the identification 
of interesting traits for physiology research, aid in the selection 
of accessions for crop improvement efforts, and provide infor-
mation for genetic characterization.

Supplementary data

The following supplementary data are available at JXB online. 
Fig. S1. Original, un-fitted data for induction and reduction 

of CO2 assimilation (A), stomatal conductance (gs) and NPQ 
vs time.

Fig. S2. Correlations between the best linear unbiased pre-
dictor (BLUP) values and the original mean.

Fig. S3. Correlation matrix of all phenotypic traits measured.
Fig. S4. Modelled curves for two extreme O. glaberrima ac-

cessions and O. sativa IR64, plotted on a log scale.
Fig. S5. Linear regression plots showing strong positive cor-

relations between the actual measurement vs modelled esti-
mate values.

Fig. S6. Plots showing the scree plot and trait loadings for the 
phenotypic data PCA analysis.

Fig. S7. H-clustering dendrogram of 105 O. glaberrima acces-
sions and frequency plots generated from the H-clustering ana-
lysis of the phenotypic data from 155 O. glaberrima accessions.

Fig. S8. Correlation matrix for all phenotypic and climatic 
data, alongside their principal components.
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Table S1. List of parameter abbreviations, definitions and 
units of measurement.

Table S2. List of O. glaberrima ID codes, country of origin 
and ecology.

Table S3. Estimated model outputs.
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4.3 CHAPTER THREE SUPPLEMENTARY MATERIAL 

Due to the large volume of supplementary material included in this chapter the material is not 

included here to reduce the thesis file size. It can be accessed at the Zenodo repository:  

https://doi.org/10.5281/zenodo.5555930: Murchie., 2021. 

 

Supplementary material legends are listed below. 

 

4.3.2 Supplementary Figures  

Supplementary Figure S3.1: Original, un-fitted data for A, gs and NPQ vs time. Gas exchange 

data was logged every 10 s. (a) Mean values for A (mmol m-2 s-1); (b) individual replicates for 

A; (c) Mean values for gs (mmol m-2 s-1); (d) individual replicates for gs; (e) Mean values for 

NPQ; (f) individual replicates for NPQ. 

Supplementary Figure S3.2: Correlations between the best linear unbiased predictor (BLUP) 

values and the original mean. The BLUP value is generated from the linear mixed effect 

model that was used to account for undesirable variation due to spatial and temporal effects 

on the phenotype. The BLUP is then used to calculate the adjusted mean value. Here we 

grouped the plots into trait types: (a) steady state gas exchange and chlorophyll fluorescence; 

(b) dynamic CO2 assimilation; (c) dynamic stomatal conductance; (d) dynamic NPQ; (e) 

plant morphology.  

Supplementary Figure S3.3: Correlation matrix of all phenotypic traits measured. R value is 

indicated by colour, shown in the right-hand scale bar. Stars show the significance between 

traits; p<0.001***, p<0.01**, p<0.05*. 

Supplementary Figure S3.4: Modelled curves for two extreme O. glaberrima accessions and 

O. sativa IR64, plotted on a log scale, for example A, gs and NPQ induction and relaxation 

dynamic traits; (a) Ai rate, (b) Ar slope, (c) gsi rate, (d) gsr slope, (e) NPQi slope and (f) NPQr slope. The 

lines on all plots from the y and x-axes to the curve show the time to reach 50% of the curve 

maximum.  

Supplementary Figure S3.5: Linear regression plots showing strong positive correlations 

between the actual measurement vs modelled estimate values for (a) Amax vs Ai max, (b) gsmax 

vs gsi max and (c) NPQmax vs NPQi max.  

Supplementary Figure S3.6: Plots showing the (a) scree plot and (b) trait loadings for the 

phenotypic data PCA analysis. 
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Supplementary Figure S3.7: (a) H-clustering dendrogram of 105 O. glaberrima accessions 

analysed for similarities based on climatic traits, showing 3 distinct clusters. Frequency plots 

generated from the H-clustering analysis of the phenotypic data from 155 O. glaberrima 

accessions, showing the frequency of accessions in each cluster for (b) ecological niche and 

(c) country of origin. 

Supplementary Figure S3.8: Correlation matrix for all phenotypic and climatic data, 

alongside with their principal components. Correlation strength is indicated by colour, shown 

in the right-hand scale bar. Stars show the significance between traits; p<0.001***, 

p<0.01**, p<0.05*. 

 

4.3.2 Supplementary Tables 

Supplementary Table S3.1: List of parameter abbreviations, definitions and units of 

measurement. 

Supplementary Table S3.2: List of O. glaberrima ID codes, country of origin and ecology.  

Supplementary Table S3.3a: Estimated LL.4 model outputs on carbon assimilation (A) IRGA 

induction data, showing the 4 replicates for accession IRGC_96726.  

Supplementary Table S3.3b: Estimated LL.4 model outputs on stomatal conductance (gs) 

IRGA induction data, showing the 4 replicates for accession MG04.  

Supplementary Table S3.3c: Estimated LL.3 model outputs on non-photochemical quenching 

(NPQ) IRGA induction data, showing the 4 replicates for accession TOG_12188. 

Supplementary Table S3.3d: Estimated W2.4 model outputs on non-photochemical 

quenching (NPQ) IRGA relaxation data, showing the 3 replicates for accession EG55. EG55 

was one of a small number of accession where only 3 replicates were measured. 

Supplementary Table S3.3e: Estimated LL.4 model outputs on stomatal conductance (gs) 

IRGA relaxation data, showing the 4 replicates for accession TOG_5326. 

Supplementary Table S3.3f: Estimated LL.4 model outputs on carbon assimilation (A) IRGA 

relaxation data, showing the 4 replicates for accession UG26. 

 

4.3.2 Supplementary Data Files 

Supplementary Data File S3.1: Methodology of stomata detection and counting through 

machine learning.  

Supplementary Data File S3.2: Descriptive statistics of all data from Oryza glaberrima 

accessions. 
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Supplementary Data File S3.3: Descriptive statistics of all data from Oryza sativa accession 

IR64. 

Supplementary Data File S3.4: Box and distribution plots of linear mixed effects model 

adjusted means for Oryza glaberrima and Oryza sativa 

Supplementary Data File S3.5: The Python code for extracting a defined percentage of a 

curve. 

Supplementary Data File S3.6: This shows the Principal Component Analysis of key traits. 

Supplementary Data File S3.7: This shows the Hierarchical Cluster analysis of key traits. 

Supplementary Data File S3.8: This shows the Principal Component Analysis, climate data. 

Supplementary Data File S3.9: This shows the Hierarchical Cluster analysis , climate data . 

Supplementary Data File S3.10: Correlation table of phenotypic traits form Oryza sativa and 

Oryza glaberrima  

Supplementary Data File S3.11:  List of accessions in each hierarchical cluster clade. 

Supplementary Data File S3.12: Correlation table of Climate and Phenotypic data, 105 

accessions. 
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CHAPTER FOUR 

Genome Wide Association Study (GWAS) on stomatal, steady-state and dynamic 

photosynthetic traits in a diverse population of African rice (Oryza glaberrima). 

 

4.1 Chapter four introductory statement 

This chapter consists of a draft research manuscript, using the phenotypic data obtained in 

Chapter Three to identify trait genomic intervals and candidate genes for those traits. We 

intend to progress and submit this manuscript for publication during 2022. The draft 

manuscript shows the completed GWAS outputs and candidate gene lists for morphological, 

photosynthetic dynamic and steady-state traits. In addition to the work shown here, we would 

like to complete gene O. sativa expert enrichment lists and compare these to the O. 

glaberrima GWAS outputs, in line with the work by Cubry et al., 2020.  

At the start of this study the sequencing of the O. glaberrima population and downstream 

bioinformatic work was still in progress. At the beginning of the PhD (2017) we had access 

to 150 re-sequenced, but not yet cleaned accessions. There are a now a total of 163 sequenced 

O. glaberrima accessions, with no intentions for further sequencing. The GWAS results 

described here are the product of three cycles of association analysis and continuous 

improvement over the course of this study, with these stages described below: 

 

1.) Circa. 2018: no cleaned SNP file had been produced by the Research Institute for 

Development (IRD) at the University of Montpellier, but they allowed me access to 

the raw SNP files through the Gigwa database (Sempéré et al., 2016). A 

bioinformatician, Dr. Niraj Shah, in the Advanced Data Analysis Centre at Uni. Of 

Nottingham was commissioned to clean the raw SNP files. However, when this was 

used to complete an initial association analysis using FarmCPU and GAPIT in R-

studio, it was clear that the data was being affected by confounding factors. On 

reflection, the file was cleaned with O. bathii accessions also included and the 

missing allele frequency was not calculated based on the specific subset of accessions 

under use. This would have affected the ability to accurately calculate and adjust for 

the effects of population structure and kinship. 

 

2.) Shortly after identifying these issues, the Rice Group shared a cleaned and imputed 

SNP file, alongside an O. glaberrima specific GWAS pipeline. After successfully 



 99 

running this on my traits up until this point, it seemed that there were environmental 

interactions, likely from measuring the accessions being grown in non-randomised 

batches over time, which were effecting the GWAS results.  
 

 

3.) A linear mixed effects model was used to account for temporal and spatial effects in 

the raw phenotypic data and from this Best Linear Unbiased Predictors (BLUPs) and 

adjusted means were generated that were then used in the reported analyses (Chapters 

3 and 4). The final GWAS output shown here uses adjusted means, the cleaned and 

imputed SNP file and GWAS pipeline from the RICE group for a robust analysis.  
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ABSTRACT 

While climate change will mean a generally unstable climate, the main consequence is global 

warming. For this reason, breeding crops for future climates means improving water use 

efficiency and heat stress tolerance, while balancing the trade-off for productivity. African 

rice (Oryza glaberrima) exhibits many abiotic stress tolerance traits and may offer useful 

genetic variation beyond that found in the highly selected O. sativa. We measured 52 

phenotypic traits relating to climate resilience, including photosynthesis steady-state and 

dynamics, water use efficiency and stomatal density. Here we describe the results of a 

genome wide association study (GWAS) across these diverse traits in a population of 150 re-

sequenced O. glaberrima accessions. We identified candidate genes including those known 

for mitigating drought and heat stress, alongside regulators of key phytohormones. Of note, 

we identified several candidate genes for cytochrome subcomplexes across a range of 

photosynthesis related traits. This study provides a resource for the future breeding selection 

through application of linked markers for trait loci and genetic validation for traits of interest. 

It also highlights the importance O. glaberrima as a novel genetic resource in rice breeding 

for climate resilience.  
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4.2 INTRODUCTION  

The African rice species, Oryza glaberrima, underwent independent evolution and 

domestication to its Asian cousin, O. sativa. While the two species share orthologous genes 

that are associated with domestication (Wang et al., 2014), they show substantial genetic 

differentiation as they have not shared a common ancestor for approximately 0.6 – 0.9 

million years (Purugganan, 2014; Huang et al., 2015). O. glaberrima was domesticated in 

West Africa (Cubry et al., 2018) ~3 thousand years ago, from the wild Sahelian species O. 

bathii, and some 7 thousand years after O. sativa. Consequently, O. glaberrima retained 

many traits that facilitate abiotic and biotic stress resilience to the African environment, 

including drought, pest, salinity and soil toxicity resistance (Sarla & Swamy, 2005).  As a 

semi-aquatic plant, O. sativa is highly sensitive to drought events and the changing climate. 

Conservative predictions indicate up to 37% O. sativa yield losses due to temperature 

increases by the end of the century, but the reality may be far more serious (Bocco et al., 

2012; Zhao et al., 2017). The abiotic stress tolerance and ability to thrive under low-input 

conditions make O. glaberrima an ideal candidate for gene identification and translation to O. 

sativa and other crop species.  

 

O. glaberrima has been recognised as a potential source of genetic diversity for over two 

decades (Ghesquière et al., 1997; Sarla & Swamy, 2005). But considering the extent of 

potentially desirable variation observed in O. glaberrima, there is limited literature describing 

the phenotypic and underlying genetic variation that can be taken forward for translation. 

Allele mining has successfully identified Rust Yellow Mottle Virus (RYMV) resistance 

genes (Thiémélé et al., 2010; Pidon et al., 2020), association studies have been undertaken on 

salt tolerance (Meyer et al., 2016) and key agronomic traits (flowering time, panicle 

branching and RYMV resistance; Cubry et al., 2020).  

The recent re-sequencing of diverse O. glaberrima accessions provides a new resource to 

explore the genetic basis of functional traits, in what remains a relatively untapped resource 

(Cubry et al., 2018, 2020). Genome wide association studies (GWAS) have proven a 

powerful tool when exploring complex traits in O. sativa, such as elucidating the genetic 

basis of stomatal traits (Chen et al., 2020). GWAS may also prove an effective method for 

identifying the genetic basis of climate resilient traits in O. glaberrima. 

 

Water use efficiency and the tolerance of high light levels are important components for the 

development of abiotic stress resilient crops, but this also needs to be balanced with 



 103 

photosynthetic efficiency for productivity (Lawson & Blatt, 2014; Kissoudis et al., 2016; 

Hubbart et al., 2018). Stomata are key players when developing resilient and productive crop 

varieties for future climates (Xu et al., 2016; Faralli et al., 2019; Buckley et al., 2020). These 

small pores on the leaf surface regulate CO2 assimilation (A) and water lost via transpiration, 

both are essential in water use efficiency (WUE) and productivity in water limited 

environments (Lawson et al., 2010). Physical stomatal traits, such as density and 

morphology, are known to influence stomatal conductance (gs) (Drake et al., 2013). For 

example, reducing stomatal density in rice has been shown to improve water conservation 

under drought and high temperature conditions while maintaining yields (Caine et al., 2019; 

Mohammed et al., 2019). Recent developments in stomatal research have shown that along 

with stomatal density, altering stomatal dynamics can conserve water and enhance 

productivity through the close coupling of gs to dynamic photosynthetic responses to light 

(Lawson & Blatt, 2014; Lawson & Vialet-Chabrand, 2019; Acevedo-Siaca et al., 2020). It 

has been long established that stomatal traits are important in carbon assimilation, but 

photoprotection mechanisms are also important for preventing yield losses under high light 

conditions (Taylor and Long, 2017; Murchie et al., 2018; Acevedo-Siaca et al., 2020). Non-

photochemical quenching (NPQ) is a photoprotective mechanism that dissipates excess 

energy as heat. The rapid relaxation of NPQ has been shown to improve photosynthetic 

efficiency and yield gains under fluctuating light and high light conditions (Kromdijk et al., 

2016; Hubbart et al., 2018). For the first time, these complex stomatal and dynamic 

photosynthesis related traits have recently been characterised in O. glaberrima (Cowling et 

al., 2021). Elucidating the genetic basis of this suite of traits in African rice can contribute 

towards the development of crops that are resilient to the projected change in climate.  

 

As a notably resilient species, we hypothesised that O. glaberrima will prove an interesting 

source of candidate genes and quantitative trait loci (QTLs) in useful photosynthetic and 

stomatal traits. We used a diverse panel of 150 whole-genome re-sequenced O. glaberrima 

accessions (Cubry et al., 2018, 2020) to characterise 52 phenotypic traits. Using four 

complementary GWAS methods we were able to successfully identify genes and regions for 

many traits, including stomatal density and numerous dynamic traits for stomatal 

conductance, photosynthesis and NPQ. We hope this study highlights the importance of O. 

glaberrima as a potential source of novel genetic variation and provides useful material for 

developing future rice resilience in a changing climate.  
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4.3 MATERIALS AND METHODS 

4.3.1 Plant material and measurements conditions 

The description for plant material and growth conditions can be found in chapter three 

materials and methods, section 3.3.1.  

 

4.3.2 Acquisition of phenotypic data 

The acquisition of phenotypic data, including infrared gas analyser (IRGA), stomatal density 

and morphological measurements can be found in chapter three, materials and methods, 

sections 3.3.2 to 3.3.4.  

 

4.3.3 Phenotypic data analysis 

All data analysis was completed in R-Studio (v. 4.0.1). We used a linear mixed-effects model 

(lme4 package, v.1.1-26) to account for the variance due to temporal and spatial effects of 

measuring the accessions in batches. The linear mixed-effects model calculated best linear 

unbiased predictions (BLUPs), and from this generated adjusted mean for each trait. The model 

took into account the effects of: accession, sowing date, measurement date, nested location 

within the glasshouse and, for gas-exchange traits, LiCor machine. All results reported here 

use the adjusted means data generated from the mixed effects model. Broad sense heritability 

(H2) was calculated using this mixed effect model as the variance attributed to O. glaberrima 

accession divided by the sum of the variation due to genotype over the total variance.  

Trait distribution was calculated using the Shapiro-Wilk test, using a more stringent a = 0.01, 

as the Shapiro-Wilk test is biased by outliers and tends to report false negatives in sample sizes 

exceeding 50. Traits that showed a non-normal distribution were transformed using the Box-

Cox transformation method in the package Forecast (v. 8.14). Ten traits were resistant to 

transformation, due to heavy skew, and were checked for outliers using the Tukey’s method. 

The association models use parametric methods, which assume the input of datasets with a 

Gaussian distribution. To meet the test assumptions, data points that exceeded the 1.5 * 

interquartile range were removed and trait distribution was checked again using a Shapiro Wilk 

test. Three remaining traits were then transformed using the Box-Cox method. Traits with 

negatives values, such as gsi slope, that cannot be transformed using the Box-Cox method, were 

log transformed.  A complete list of traits, H2 values, descriptive statistics, transformation 

method and outlier removal can be found in Table 4.1.  
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The estimation of dynamic photosynthetic traits for A, NPQ and gs was completed using the 

‘drc’ (v. 3.0) package. This package analyses dose-response curves, in this case light response, 

through a suite of model fitting methods (Ritz et al., 2015). The ‘drc’ (v. 3.0) package was used 

extract parameters for the induction and relaxation responses, including the curve slope (i/r slope), 

lower limit (i/r min) and the time taken to reach a defined percentage of the dependant variable, 

in this case 10 (i/r 10), 50 (i/r 50) and 90 (i/r 90) %. A and gs induction and relaxation responses 

were modelled using a LL.4 (log-logistic 4-parameter). While a LL.3 (log-logistic 3-parameter) 

model was used for NPQ induction and a W2.4 (4-parameter Weibull2) model for NPQ 

relaxation. The comparison of eight different models, followed by Akaike’s information 

criterion analysis was used to select the best model fit to the response curves.  

Principal component analysis (PCA) and population structure analysis was completed using 

the function ‘snmf()’ (sparse non-negative matrix factorisation(sNMF)) in the R-package 

LEA (v. 3.0.0). This produces results akin to the programme STRUCTURE. Ancestral groups 

(K) were estimated to be between 1:10 groups and run for 5 repetitions. The estimated K was 

used to assist some association analysis methods to account for the confounding effects of 

population structure. Dendrogram analysis was completed by computing genetic distance 

using Nei’s distance (Takezaki & Nei, 1996), and establishing population clusters (k = 9 as 

indicated by Bayes Information Criterion (BIC)) using hierarchical clustering. This analysis 

used the R packages adegenet (v. 2.1.3) and NAM (v. 1.7.3), for the multivariate analysis of 

genetic markers and nested association mapping respectively. The dendextend (v. 1.14) and 

circlize (v.0.4.1) packages were used for generating dendrogram plots. Pearson correlation 

coefficients were calculated using the Corrplot package (v. 0.84). 

Table 4.1: List of traits, variation and data distribution in the O. glaberrima association panel. The 

skew and Shapiro-Wilk p-value are given in columns two and three respectively. Traits that were 

found to deviate significantly (p<0.01) from the normal distribution, per the Shapiro-Wilk normality 

test, were transformed. Whether a trait was transformed, and the method used, is detailed in the 

‘Trans.method’ column, where a blank cell means no transformation occurs, ‘BC’ refers to the Box-

Cox method and ‘log’ is log10. In traits resistant to transformation, outliers were identified and 

removed using the Tukey method. ‘Outliers removed’ details how many outliers were removed. Trait 

distributed was then re-tested using the Shapiro Wilk normality test after transformation or outlier 

removal, the result can be found in ‘Post trans p-value’ column.   
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Trait Skew p-value Outliers 
removed 

Trans. 
method 

Post trans 
p-value 

Ai 10 2.08 <0.00 9 BC 0.09 

Ai 50 1.55 <0.00 8 BC 0.08 

Ai 90 0.59 0.001  BC 0.03 

Ai min 0.42 0.054    

Ai rate -0.01 0.678    

Ai slope -1.27 <0.00 9  0.22 

Ar 10 -0.48 0.059    

Ar 50 1.67 <0.00 8 BC 0.30 

Ar 90 0.82 <0.00 7 BC 0.38 

Ar min 0.28 0.109    

Ar rate -2.41 <0.00 3 BC 0.19 

Ar slope 0.64 0.001 7  0.37 

Abaxial SD -0.25 0.050    

Adaxial SD -0.33 0.168    

Amax 0.13 0.190    

ETRmax 0.06 0.740    

gsi 10 1.00 <0.00  BC 0.98 

gsi 50 0.86 0.001  BC 0.89 

gsi 90 1.03 <0.00 6 BC 0.02 

gsi min 1.37 <0.00  log 0.01 

gsi rate 0.65 0.002  BC 0.35 

gsi slope -0.71 0.003 3  0.21 

gsr 10 1.20 <0.00 6 BC 0.01 

gsr 50 0.21 0.035    

gsr 90 0.41 0.005  BC 0.05 

gsr min -0.43 0.013    

gsr rate 3.91 <0.00 10 BC 0.13 

gsr slope 0.81 0.001  BC 0.37 

gsmax 0.33 0.276    

iWUEmax 0.73 <0.00  BC 0.01 

NPQmax 0.17 0.706    

NPQi 10 0.08 0.989    
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NPQi 50 0.08 0.744    

NPQi 90 0.13 0.577    

NPQi rate 0.22 0.443    

NPQi slope -0.62 0.001  log 0.07 

NPQr 10 -0.05 0.868    

NPQr 50 0.33 0.207    

NPQr 90 0.27 0.414    

NPQr min 0.04 0.897    

NPQr rate 0.37 0.047    

NPQr slope -0.33 0.158    

fPSIImax 0.06 0.740    

Plant height 0.15 0.299    

qPmax 0.01 0.822    

Ratio SD 0.17 0.114    

Root biomass 1.78 <0.00  BC 0.01 

Shoot area 0.47 0.004  BC 0.02 

Shoot biomass 0.58 0.007  BC 0.20 

Total biomass 0.82 <0.00  BC 0.11 

Trmmolmax 0.07 0.596    

VPDmax -0.07 0.264    

 

4.3.4 Genome re-sequencing  

The genome re-sequencing, relevant bioinformatics and genomic description was completed 

by the RICE team at DIADE, IRD, University of Montpellier, a detailed description of these 

methods can be found in Cubry et al. (2018). The genotypic data in this study uses single 

nucleotide polymorphism (SNP) markers from 150 of 163 O. glaberimma re-sequenced 

accessions. The prepared libraries were sequenced using Illumina (USA) HiSeq2000 or 

HiSeq4000 machines at 2x101 or 2x151 bp reads. The Oryza sativa japonica cv. Nipponbare 

reference genome (MSU Rice Genome Annotation project/IRGSP 1.0, release 7.0; Kayahara 

et al., 2013)) was used to map and call O. glaberrima SNPs. SNPs with >5% missing data 

were filtered out and the remainder of the missing SNP data was imputed using the ‘impute()’ 

function in the LEA package in R-studio. After cleaning and imputation, 892539 SNP 
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markers were used to complete the GWAS. Linkage disequilibrium was computed as 150kb 

by Cubry et al. (2020), using the PopLDdecay software.  

 

4.3.5 Association Analysis   

The GWAS was completed in R-Studio (v. 4.0.1), using a pipeline consisting of four 

association analysis methods; 1.) Latent Factor Mixed Model (LFMM; Frichot et al, 2013) , 

2.) Genome Association and Prediction Integrated Tool (GAPIT; Lipka et al., 2012), 3.) 

Fixed and random model Circulating Probability Unification (FarmCPU; Liu et al., 2016) and 

4.) Efficient Mixed Model Association (EMMA; (Kang et al., 2008). These four methods 

comprise of two different classes of association models, LFMM and Mixed Linear Model 

(MLM). The MLM method is used in the GAPIT, FarmCU and EMMA methods but each 

differs in how they account for confounding factors. The pipeline described here was 

developed by and described in Cubry et al. (2018), the script for this analysis can be found on 

the ‘Africrop/gwas_african_rice’ GitHub repository. At the beginning of each trait analysis, 

SNPs with a MAF <5% are filtered out. The results of each GWAS analysis and model fit 

were graphically represented by Manhattan and QQ-plots respectively, using the R-package 

qqman (v.0.1.4). Traits and regions were considered reliable and retained for further 

exploration when statistically significant regions were identified in two or more GWAS 

methods. Candidate genes were identified and considered within a 50kb window (+/- 25kb) 

of the statistically significant SNP, using a threshold of p<10-5. Both the threshold value and 

size of the window surrounding each associated SNP were used in the methodology 

successfully used by Cubry et al. (2020) to identify flowering time genes in this O. 

glaberrima panel. 

 

 

4.4 RESULTS  

4.4.1 Associations between population structure, agro-ecology and trait diversity 

The genetic structure within O. glaberrima was found to be rather diffuse, with a substantial 

amount of admixture between groups. All analyses used to explore population structure in the 

O. glaberrima association panel indicated four main sub-populations (Fig. 4.1a-c). The 

sNMF method estimated four ancestral groups (K), selected from the cross-entropy criterion 

values (Supp. Fig. S4.1a). The cross-entropy criterion values showed an initial decrease from 

K = 1- 4, a slight knee can be seen at K=4 and the values plotted against K = 5:10 do 
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continue to decrease but only very slightly. The slow decay shown in the cross-entropy 

criterion values is also reflected in the kinship plot (Supp. Fig S4.1b).  Therefore, K = 4 was 

selected as the best estimation for the number of ancestry groups. A principal components 

analysis (PCA) also shows four dispersed clusters of accessions, where the first two PCs 

account for 69.4% of the total genetic variance. H-clustering based dendrogram and kinship 

matrix (Supp. Fig S4.1b) also show four major clades in the O. glaberrima population.  

 

 

 

(a) 
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(b) 
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Figure 4.1: Evaluating O. glaberrima population structure and the effect of agroecological niche and 

country of origin on genetic similarity, using 892539 SNP markers. (a) Ancestry matrix bar plot, 

computed using the sNMF method, showing the estimated the population structure when K = 4. Each 

bar corresponds to an accession and the coloured proportion indicates the estimated ancestry 

coefficient (q). (b) Principal Component Analysis (PCA), showing a scatter plot of PCs 1 and 2. 

Individual accessions are coloured by the agroecological niche for their collection location. (c) 

Dendrogram computed from hierarchical clustering analysis using Nei’s distance of SNP data, each 

terminal branch indicates an O. glaberrima accessions, which is labelled and coloured by country of 

origin. 

 

The independent adaptation of O. glaberrima to variable African environments, not 

encountered by O. sativa in Asia, is an important source of the natural variation for potential 

breeding traits into O. sativa. We used the population analyses shown here to explore the 

potential association between the agro-ecological environment and genetic structure within 

the O. glaberrima sub-populations. Individuals shown in the PCA and dendrogram analyses 

were overlaid with their agro-ecological niche and country of origin respectively (Fig. 4.1, 

Supp. Figs S4.1, S4.2 and S4.3), based on the geo-coordinates from where the accessions 

were collected. The PCA shows (Fig. 4.1b) that accessions from shallow forest swamp and 

floating rice appear to cluster together. This can also be seen in Supp. Fig. S4.3c dendrogram, 

where all the floating rice and shallow forest swamp individuals cluster together in their 

respective clades.  There is no obvious genetic clustering of accessions from other ecologies, 

either in the dendrogram or PCA out puts (Fig. 4.1b-c and Supp. Fig. S4.2a-d, S4.3c). All 

floating rice accessions, shown in the orange sub-clade, originate from Mali, while most 

accessions from forest swamp conditions originate from Nigeria (Fig. 4.1c). This suggests a 

distinct genetic similarity of accessions from these two countries, while the remaining 

accessions show no apparent clustering based upon country of origin.  
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Figure 4.2: O. glaberrima ancestry groups show clear associations with specific phenotypic traits. 

The Pearson correlation matrix shows associations between the four ancestry groups, generated from 

the sNMF analysis, and phenotypic traits. Correlation values are shown by the coloured scale bar and 

asterisks indicate the significance between associations (∗∗∗p<0.001, ∗∗p<0.01, ∗p<0.05). Traits with 

significance results only are shown here, see Supp. Table S4.1 for the correlation matrix containing all 

traits in this study.  

The O. glaberrima ancestry groups identified in the sNMF population structure analysis 

showed clear associations with groups of phenotypic traits (Fig. 4.2; Supp. Fig. S4.4 and 

Supp. Table S4.1). Ancestry group 1 showed significant associations with NPQ relaxation 

dynamics and biomass (p<0.05 – 0.001). While ancestry group 2 showed associations with 

enhanced adaxial stomatal density (p<0.05), a slower initial NPQ relaxation time (NPQr 10; 

p<0.01) and lower levels of NPQ achieved under low light (NPQr min; p<0.05). Ancestry 

group 3 showed correlations to enhanced stomatal conductance (p<0.05), lower iWUE and 

longer time taken for NPQ relaxation (p<0.01). Finally, individuals belonging most strongly 

to ancestry group 4 showed a higher abaxial stomatal density (p<0.01) and indications of an 

association with faster NPQ induction rate and shoot biomass (p<0.05).  

 

4.4.2 Genome Wide Association Study  

We used four GWAS methods (LFMM, GAPIT, FarmCPU and EMMA) to identify statistical 

associations between 52 phenotypic traits and 892, 539 single nucleotide polymorphism 

(SNP) genetic markers across 150 O. glaberrima individuals. For 44 out of 52 traits a total of 

5992 candidate genes were identified in a 50kb window around each SNP (threshold = p<10-

5), across the four methods used here. With the results consolidated to remove duplicates 

between methods, a total gene list of 754 was created. No significant associations were 

identified for Amax, root biomass and six photosynthetic dynamic traits; Ar min, gsi 50, gsi rate, gsr 

50, gsr min and NPQr min. Significant associations were identified in 13 traits but only through a 

single GWAS method, these will not be reported here but are still valid and are presented in 

supplementary data. The remaining 30 traits showed significant genetic associations in two or 

more GWAS methods and will be reported here. Supplementary Table S4.2 details a list of 

traits and which GWAS methods produced significant associations. The EMMA method 

produced the largest number of significant associations, for 34 out of 52 traits, and of the 13 

traits where only one method detected SNP/trait associations, EMMA was responsible for 

71% of these. The other methods gave; LFMM (29/52 traits), FarmCPU (26/52 traits) and 
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lastly GAPIT showed the most conservative results (9/52 traits). The GWAS results are 

separated and discussed in respect to their physiological groups of morphology, steady state 

and then dynamic photosynthesis related traits. A full list of SNP/trait associations and 

Manhattan plots, based on a threshold of p<10-5, can be found in Supplementary Table S4.3 

and Supplementary Figures S4.5.  

 

(a) Abaxial stomatal density 

 
(b) iWUEmax 

 
(c) NPQmax 

 
(d) Ai slope 
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(e)     gsi 90 

 
(f)     NPQr 10 

 
Figure 4.3: Manhattan plots of GWAS results with notably SNP/trait associations (threshold p<10-5) 

across morphology, steady-state and then dynamic photosynthesis related traits, which include: (a) 

Abaxial SD, identified in two different GWAS methods (LFMM and EMMA). (b) iWUEmax, which 

showed significant SNPs across three methods (LFMM, FarmCPU and EMMA). (c) NPQmax showed 

significant associations across all methods (LFMM, GAPIT, FarmCPU and EMMA). (d) Ai slope 

showed significant SNP markers were identified across all GWAS methods. (e) gsi 90 SNP/trait 

associations were identified across all GWAS methods. (f) Finally, significant associations were 

identified in three methods (LFMM, FarmCPU and EMMA) for NPQr 10. To view all Manhattan plots, 

please see Fig. S4.5.  

 

4.4.3 Morphological traits  

The GWAS of morphological traits in the O. glaberrima population identified 4 traits, 

abaxial stomatal density (SD), SD ratio, shoot area and plant height, with significant 

associations to SNPs. Abaxial SD was associated with 7 SNPs and a total of 31 candidate 

genes (Fig. 4.3a). SD ratio showed 3 SNP/trait associations and a total of 16 candidate genes, 

including a potential candidate for WRKY18, WRKY refers to a conserved amino acid 

domain and the large WRKY transcription factor gene family. Abaxial and SD ratio do not 

share significant SNPs. 7 SNPs and 22 candidate genes, including the O. sativa f-box/kelch 

repeat gene (OsFBK21), were associated with shoot area across all GWAS methods. 7 SNPs 

and 20 genes were identified for plant height across three methods, including the Arabidopsis 
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thaliana gene CSLA5 (cellulose synthase-like a5), a variant in the Cellulose Synthase-Like 

gene family.  

 

4.4.4 GWAS of steady-state photosynthetic traits 

SNP/trait associations were detected for the key photosynthetic traits; gsmax, iWUEmax, 

NPQmax, qPmax, trmmolmax and VPDmax. These traits showed some of the most significant 

SNP/trait associations in this study. 3 SNPs and 19 candidate loci on chromosomes 1, 4 and 

12 were associated with gsmax, across 3 GWAS methods. The gsmax candidate list included the 

O. sativa defined gene OsSAUR1, an Auxin responsive SAUR (small auxin up RNAs) gene 

family member (Jain et al., 2006). iWUEmax was associated with one of the largest numbers of 

significantly associated 39 SNPS, with a candidate gene list 66 genes in regions on 

chromosomes 1, 2, 6 and 8 (Fig. 4.3b). Two methods identified SNP/trait associations for 

qPmax, with 5 SNPs and 13 genes on chromosomes 5 and 10.  
For NPQmax we identified 24 SNPs and 43 genes in regions on chromosomes 2 and 5, with 

significant SNPs across all GWAS methods. Of note, the candidate gene for ferredoxin 

NADP+ reductase chloroplast precursor and the O. sativa MADS-box transcription factor, 

OsMADS60, were identified for NPQmax. Significant SNP associations were detected for 

trmmolmax and VPDmax across all GWAS methods and VPDmax included large regions of 

significant SNP associations on chromosomes 4 and 7.  

 

4.4.5 GWAS of dynamic photosynthesis-related traits  

To our knowledge, this study completes the first GWAS analysis on dynamic photosynthesis-

related traits. Significant SNPs were identified across 5 traits (Ai 10, Ai 90, Ai min, Ai rate and Ai 

slope), which measured the induction curve phase of carbon assimilation (A). The greatest 

number of SNPs (38) and candidate genes (40) were associated with the steepness of Ai slope, 

with a region of note on chromosome 1 (Fig. 4.5a), which included the O. sativa genes 

OsMAN2 (endo-b-mannanase 2) and OsIAA6 (indole-3 acetic acid 6). The latter being a 

member of the rice Auxin/IAA gene family.    

Significant SNPs were associated with 4 carbon assimilation traits (Ar 10, Ar 90, Ar slope and Ar 

rate). To echo the results for carbon assimilation induction, the strongest associations with the 

steepness of the A relaxation slope, with 26 potential candidate genes. Ar rate also displayed a 

strong signal on chromosome 12, with a putative YABBY domain containing gene. 
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Some of the most significant SNP/trait associations were with the dynamic stomatal 

conductance traits gsi 90 and gsi min. gsi 90 associated with 42 significant SNPs and 24 

candidate genes in regions on chromosomes 2 and 7 (Fig. 4.5b). Several of the candidate 

genes were found to be heat shock proteins. gsi min showed a region of 8 SNPs on 

chromosome 4 and gsi slope was associated with 16 SNPs, and 34 candidate genes, on 

chromosomes 3, 4 and 7. For the relaxation dynamics of stomatal conductance 3 traits (gsr 10, 

gsr 90 and gsr rate) significant SNP/trait associations were detected with the FarmCPU and 

EMMA methods.  

For non-photochemical quenching (NPQ) induction dynamics traits, NPQi slope was associated 

to 1 SNP on chromosome 12, the same location was also identified when analysing NPQi 10 

and includes a ca2+/calmodulin-dependant protein kinase (CDPK) candidate gene. NPQi 10 

also includes 23 other candidate genes, including two auxin-induced SAUR (small auxin up 

RNA) genes and two DUF1517 (domains of unknown function protein family) genes. We 

found 37 candidate genes associated with the NPQi rate. The only NPQ relaxation phenotype 

where significant SNPs were detected in two or more methods was NPQr 10, where 28 SNPs 

were identified in regions on chromosomes 6 and 7.  

 

 

4.5 DISCUSSION 

Under the current climate crisis and burgeoning human population, we are currently facing 

one of the most challenging periods of human history (Shukla et al., 2019. The ability to 

produce both climate resilient and productive crops will directly contribute to food security 

and the sustainable management of our environment (Ray et al., 2019; Franco et al., 2020). 

But this is no easy task, it requires the trade-off between the two conflicting physiological 

processes, water use efficiency and photosynthesis (Lawson and Blatt, 2014). We have very 

little genetic understanding of these processes and even less of dynamic photosynthesis 

related traits, which are now known to be important for carbon assimilation and abiotic stress 

tolerance (Kromdijk et al., 2016; Taylor & Long, 2017; Caine et al., 2019). O. glaberrima is 

renowned for its resilience to challenging environments but the genetic basis of these traits is 

relatively uncharacterised.  

Using 150 O. glaberrima re-sequenced accessions we have been able to identify genetic 

regions and candidate genes for 30 diverse traits across two-to-four GWAS methods. We 
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acknowledge the study uses a lower number of accessions, in comparison to most association 

analyses, which may limit the statistical power when identifying SNP/trait associations and 

the ability to detect rare or low frequency variants. For this reason, we used only reported 

results that were significant in two or more GWAS methods for added stringency and used a 

liberal threshold (p<10-5). We appreciate this threshold is relaxed compared to the classical 

Bonferroni, but it was considered a necessary compromise and was used in a previous GWAS 

analysis in O. glaberrima by Cubry et al. (2020). A threshold based on a false discovery rate 

performed poorly, likely due to a lack of statistical power, and a Bonferroni threshold was 

considered too stringent under these circumstances. However, there is merit in exploring the 

traits where significant SNPs were identified in only one method if the trait is of particular 

interest. There is also substantial natural variation in the traits measured here, which will 

contribute to the successful detection of associated loci. Outlier data points in the raw dataset 

were removed to meet the parametric test assumptions of the association models used here. 

However, it is worth noting that these apparent outlying data points may be a true 

representation of the genetic variation in the population. Consequently, their removal may 

reduce the ability of the model to detect important low frequency variants and we recommend 

repeating the analysis with these outlying data points included. Furthermore, it is apparent 

that in some instances the GWAS methods used are overfitting. The reasons that are not 

apparent, as all model assumptions are met and we have accounted for confounding factors. 

On results that indicate a poor model fit (Fig. S4.5) we recommend considering re-running 

the analysis with all data points included, as this may affect the model fit, and reassessing 

confounding factors to ensure they were accurately accounted for.  

Across these traits we identified 754 candidate genes, which may seem relatively few for the 

breadth of traits analysed here. However, these are all complex polygenic traits and are likely 

to exhibit multiple low effect sizes. When further exploring a particular suite of traits, we 

recommend ranking significant associations based on effect size and the threshold stringency 

could be reduced to p<10-4 to further increase the pool of candidate loci, though this will be a 

trade-off with increased likelihood of false positive SNPs. The candidate gene lists generated 

here should be used with caution. The gene lists were generated based on O. sativa, due to 

the close synteny between the two species and because O. glaberrima lacks a fully annotated 

genome or genetic characterisation. It is possible there are novel trait-related regions in O. 

glaberrima that are not present in O. sativa. The candidate gene lists were generated from a 

50kb window surrounding the significant SNP, we accept these are small compared to the 

calculated LD (150kb). Akin to the significant threshold (p<10-5), the 50kb genomic window 
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was deemed an appropriate compromise between capturing the most likely candidates, 

without producing an overly large candidate list. However, these windows can be broadened 

in future, when focusing on a particular trait of interest. Considering the extent of LD (150kb) 

within this population (Cubry et al., 2020), and even the reduced genomic window, we lack 

the ability to accurately pinpoint responsible loci. Therefore, the gene lists may contain 

spurious results and functional studies are the only methods to truly establish if candidates 

are indeed trait related. This could also be improved in future by scaling the window based on 

local LD and estimated recombination rates. 

 

4.5.1 O. glaberrima shows distinct physiology associations between ancestral groups  

The abiotic resilience exhibited in O. glaberrima is attributed to the independent evolution to 

O. sativa and adaptation to a more variable African set of environments. Despite this, there 

are no comprehensive studies that tease apart the phenotypic variation and genetic structure 

within the population.  

The O. glaberrima association panel used here demonstrates a diffuse population structure 

with relatively high amounts of admixture between ancestral groups, as seen in the ancestral 

matrix and PCA plots (Fig. 4.1a-b). This is beneficial for reducing confounding factors and 

successfully identifying significant SNP/trait associations. The weak population structure 

may be surprising in a species that evolved across Africa, with contrasting climates and 

elevation. However, historically O. glaberrima has been widely traded between African 

tribes and is still ceremonially important (Linares, 2002). This may account for what we see 

here and the lack of more distinct clustering of accessions that you would expect from 

separate agro-ecological origins, such as upland versus lowland accessions. The dendrogram 

showed distinct clustering of individuals that were collected from floating rice and shallow 

forest swamp ecologies. This suggests a group of accessions that may be physiologically 

distinct from other accessions and adapted for a specific environment. As far as we are aware, 

there is no description of the physiological traits associated with these agro-ecological niches 

and the environment itself. In future, it would be beneficial to utilise a range of accessions 

that are equally represented from ecological groups or countries of origin, as this study was 

unequally weighted.  

The pairwise correlation between ancestry groups and phenotypic traits indicates that despite 

admixture within the O. glaberrima population used here, there is still physiological 

distinction between ancestral groups. Likely based on adaptation to adaptive pressures of 
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their specific African environment. Ancestry group 1 showed significant correlations to 

slower NPQ relaxation time and reduced biomass, further supporting the recent findings in 

this area (Kromdijk et al., 2016; Hubbart et al., 2018). While the variation displayed in this 

group is not desirable for crop improvement, it does provide a group of individuals that could 

be used to elucidate the genetic basis in the interplay between NPQ relaxation dynamics, 

biomass and stomatal traits. Other ancestry groups also demonstrate correlations related to 

the interplay of NPQ dynamics and stomatal traits (density and conductance), which may 

reflect the effect of the NPQ protein Photosystem II Subunit (PsBs) on stomatal opening and 

density, as observed by Głowacka et al. (2018). These are traits with a complex interplay, but 

the correlations shown here support that NPQ may be a major player relating to 

photosynthesis related traits with a solid genetic basis that can be harnessed.  

The analysis performed in this area highlights useful information on the grouping of 

individuals based on environmental adaptation and demonstrates the need for a dedicated 

study in this area. We grouped accessions based on broad categories, such as country or 

ecological origin. Going forward, it would be interesting to also integrate how O. glaberrima 

ancestry groups are related based on bio-climatic variables at relatively fine resolution. While 

complex, the information gleaned from teasing apart these relationships may be essential 

when selecting groups of individuals with a genetic adaptation to abiotic stress tolerance for 

crop improvement.  

 

4.5.2 Important genetic candidates for climate resilient traits  

Recent research has shown that harnessing the combined effects of optimal stomatal density, 

capacity and rapid dynamic responses of photosynthesis related traits allows plants to 

respond instantaneously to fluctuating field conditions and stressful environmental stimuli, 

improving water use and productivity (Drake et al., 2013; Kromdijk et al., 2016; Taylor & 

Long, 2017; Vialet-Chabrand et al., 2017). Here, we have begun the journey in characterising 

the genetic basis of these important traits in a species known for its abiotic stress tolerance.    

 

Among the morphological traits measured here, stomatal density candidate genes hold the 

most interest when selecting characteristics for climate resilience. For reasons unknown, 

Stomatal density (SD) ratio has been shown to have associations with photoprotection and 

relaxation dynamics in O. glaberrima (Cowling et al., 2021). Here we identified 16 candidate 

genes for SD ratio (Table S4.3). This list includes a potential candidate for WRKY18, a 
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transcription factor associated with abiotic stress response (Chen et al., 2010). In banana 

(Musa acuminata) MusaWRKY18 has been shown to be exhibit high expression in stomatal 

guard cells when under stress in banana (Tak et al., 2021). It is also thought to be important 

in abscisic acid (ABA) signalling, where Chen et al. (2010) identified reduced ABA 

sensitivity in wrky18 knockout mutants. The ABA phytohormone plays an important role in 

mitigating drought stress and a regulatory role in stomatal movement (Fujita et al., 2006; 

Verslues & Zhu, 2007), thus this may be a good candidate to take forward for functional 

validation. Another key stomatal trait, maximal stomatal conductance (gsmax), showed 

significant associations to gibberellin (GA) and auxin related candidate genes in the same 

region on chromosome 1. The GA receptor gene GID1b identified here acts as a positive 

regulator in GA signalling (Ueguchi-Tanaka et al., 2005; Griffiths et al., 2006). While GA is 

important in plant growth, where gid1 causes dwarfing, it has also been shown to be a 

regulator in stomatal development (González et al., 2017), root to shoot communication and 

the reduction of stomatal conductance during drought stress (Gaion & Carvalho, 2021). In 

other peaks, an interesting CAF1 (ccr4-associated factor 1) candidate was identified on 

chromosome 4.  Increased CAF1 expression is induced by phytohormones under stressful 

environmental conditions and has been shown through expression studies to be of importance 

in biotic and abiotic stress tolerance (Wang et al., 2021).  

Several highly significant SNPS were associated with water use efficiency (iWUEmax) on 

chromosomes 1 and 6. We identified several highly significant SNPs on chromosomes 1 and 

6 for water use efficiency (iWUEmax). A candidate gene for a thylakoid lumenal protein was 

identified on chromosome 1. These proteins are essential for thylakoid function and 

restoration, which helps to prevent desiccation and facilitate rapid recovery after drought 

stress (Georgieva et al., 2010; Jarvit et al., 2013). A thylakoid lumenal protein was also 

identified for the photoprotection dynamic traits NPQi 10, NPQr 50 and NPQr 90. Thylakoid 

lumenal proteins have been shown to be important for the acclimation to fluctuating light 

conditions and photoprotection (Liu & Last, 2017).  

Maximal non-photochemical quenching (NPQmax) showed strong SNP/trait associations to a 

region on chromosome 2. This region included a candidate gene for ferredoxin NADP+ 

reductase chloroplast precursor, a precursor to ferredoxin-NADP+ oxidoreductase protein 

(FNR) that catalyses NADP+ reduction during the final steps of the Calvin cycle. The 

electron transfer process also generates a proton gradient across the thylakoid membrane, this 

drives ATP synthesis but also induces NPQ (Murchie & Ruban, 2020). Arabidopsis thaliana 

fnr mutants show higher levels of NPQ, demonstrating the ferredoxin NADP+ reductase 
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chloroplast precursor is an important gene when developing crop cultivars with appropriate 

levels of photo protection (Lintala et al., 2012; Bednarczyk et al., 2020). We feel this is a 

good candidate to explore further.  

Due to the volume of dynamic traits measured here, we will discuss one example from 

stomatal conductance, carbon assimilation and non-photochemical quenching suites of traits.   

gsi 90 was associated with significant region on chromosomes 2 (Table S4.3). Two DNAJ heat 

shock proteins, also known as Hsp or Hsf (heat shock proteins or transcription factors), were 

identified as candidates. These are chaperone proteins that interact with other heat shock 

proteins, mutants have been shown to be sensitive to ABA-mediated in stomatal closure, 

while over expression lines demonstrated improved drought and heat tolerance (Wang et al., 

2015). 

A region on chromosome 1 had the strongest association with Ai slope, and a number of 

candidate genes (Table S4.3). A candidate closest to a significant SNP was an ATP-

dependant protease, many homologues of these proteases play essential roles in regulating the 

chloroplast stroma, by proxy they may also be important in chloroplast function for 

photosynthesis (Sjögren et al., 2006). A putative protein for NADP-ME (NADP-malic 

enzyme), an essential decarboxylase in C4 species, the protein is non-photosynthetic in C3 

species but is associated with abiotic stress-resilience (Chen et al., 2019). A member of the 

auxin/IAA gene family, OsIAA6, that has been shown to be important in drought tolerance 

and tillering (Jung et al., 2015). OsMAN2, part of the endo-beta-mannanase gene family, 

thought to be important in cell wall synthesis (Yuan et al., 2007; Schröder et al., 2009). None 

of the 40 candidate genes for Ai slope (Supp. Table S4.3) showed a clear relationship to the 

physical rapidity of carbon assimilation induction. However, many genes listed are 

biochemically characterised, but their functions are largely unknown.  

The NPQ induction dynamic traits NPQi 10, NPQi 90 and NPQi slope showed candidate genes in 

the DUF (domains of unknown function) and CDPK (calcium dependant protein kinase) gene 

families. Genes in the DUF gene families are thought to be involved with mitigating heat 

stress with recent research suggesting that DUF proteins are linked to the photosynthetic 

pathway and its regulation (Zhou et al., 2020; Nabi et al., 2021). CDPK proteins are a diverse 

superfamily, which are thought to be key mediators in a range of stimuli, including abiotic 

stress (Cheng et al., 2002). Calcium (Ca+) and reactive oxygen species (ROS) are signalling 

molecules during photosynthesis when plants experience abiotic stress. ROS activate CDPK 

proteins, beginning a signalling cascade to induce abiotic stress mechanisms (Mohanta et al., 

2018). NPQ is thought to limit ROS generation, so it could a be reasonable to suggest high 
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levels of ROS contribute to the induction of NPQ (Murchie & Ruban, 2020). As mentioned 

for iWUEmax we also identified a putative thylakoid lumenal protein for NPQi 10, NPQr 50 and 

NPQr 90. Thylakoid lumenal proteins are required for abiotic stress tolerance, photosynthetic 

acclimation to fluctuating light and potentially important in photoprotection. NPQ regulation 

occurs in the lumen and this is the site where delta pH is sensed via proton accumulation, 

which causes an NPQ induction. The activity of the well-known NPQ regulatory PsbS 

(photosystem II subunit S) protein is modulated by the protons in the lumen, therefore it 

seems logical that other NPQ regulatory proteins could be found in the lumen. For example, a 

study in Arabidopsis thaliana showed that photoprotection impaired mutants grew normally 

when the thylakoid lumenal protein mph2 was knocked out (Liu & Last, 2017).  

Finally, we also identified cytochrome candidate genes in multiple dynamic and steady state 

photosynthesis related traits, including iWUEmax, gsi slope, gsr 10, gsr rate, NPQi rate, NPQi 90 and 

stomatal density ratio. The cytochrome complex generates the proton gradient across the 

thylakoid membranes in chloroplasts and is essential in the electron transport chain step of 

photosynthesis (Hippler et al., 2021). The interruption of the electron transport chain can 

increase NPQ and it’s been suggested that an increased turnover of the cytochrome complex 

increases photoprotection (Yoshida et al, 2006; Li et al., 2018). While the relevance of 

cytochrome proteins to photosynthesis and photoprotection is obvious, the associations to 

stomata related traits (gs, iWUE and SD) seen here is unclear. However, the consistency of 

cytochrome candidates across a range of photosynthesis related traits makes it clear this result 

should be pursued further.  

 

 

4.5.3 Conclusion 

This study reports the results of an extensive GWAS on 52 phenotypic traits related to 

climate resilience in O. glaberrima. This is the largest GWAS conducted in O. glaberrima 

and the only study to explore the genomic basis of the combined induction and relaxation 

dynamics for carbon assimilation, photo protection and stomatal conductance in any species. 

Our analysis identified candidate genes that have shown to be associated with the mitigation 

of drought and heat stress, including regulatory genes for key phytohormones, cytochrome 

and heat shock proteins. The efforts detailed here will provide a basis for the future filtering 

of key candidate genes, through trait-specific expert enrichment lists, and functional studies 

to validate gene-trait associations. Here, we provide useful information that can contribute to 
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the selection of O. glaberrima accessions for crop breeding efforts and the long-term 

development of climate resilient crop varieties.  
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4.6       CHAPTER FOUR SUPPLEMENTARY MATERIAL 

 

4.6.1      Supplementary Figures 

 

Figure S4.1: (a) Cross entropy criterion values for SNP data (892539 markers) in a 

population of 155 O. glaberrima accessions, generated from the sNMF ancestry analysis, 

plotted against the estimated ancestry number (K). (b) The kinship matrix and heatmap were 

generated using the VanRaden genomic relationship method within the GAPIT association 

analysis method. The colour variation indicates the relatedness between individuals (darker 

indicates higher relatedness) in the population and the length of the branches is proportional 

to the genetic distance.  
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Figure S4.2: PCA output of SNP data, each individual point denotes a O. glaberrima 

accession, overlaid with colour relating to the accessions origin, shown in the legend in the 

bottom right of each plot, for (a) broad ecology category, (b) descriptive ecology category, 

(c) country and (d) African region.  
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Figure S4.3: Dendrogram generated from a cluster analysis, computed using Nei’s distance 

and the tree cut using k-means (k=9). The analysis was completed using SNP data in 155 O. 

glaberrima accessions. Each individual arm denotes a O. glaberrima accession, overlaid with 

colour relating to the (a) accession sequencing codes , (b) African region (blue = west coast, 

red = north inland, green = south inland, teal = west inland, black = east coast), and (c) agro-

ecological niche (red = lowland, blue = upland, green = shallow forest swamp, black = 

floating rice, NK = not known).  
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Figure S4.4: Pearson correlation matrix between four O. glaberrima ancestry groups and 52 

phenotypic traits, the correlation coefficient values can be found in Table S.4.1. Correlations 

are displayed by the colour, indicated in the right-hand scale bar, filtered to only show 

associations p<0.1005. Asterisks indicate the significance between associations (∗∗∗P<0.001, 

∗∗P<0.01, ∗P<0.05). 

 

 
 

 

Figure S4.5: * Due to the size of this figure, it can be found the end of the thesis, after 

Chapter 5*. Complete list of GWAS Manhattan and diagnostic plots for all traits analysed 

and algorithms used. Each sub-figure shows a Manhattan plot for each of the four models 

used in the association analysis and the corresponding diagnostic qq-plot, to indicate the 

goodness of fit of the model. The red line on the Manhattan line indicates the significance 

threshold for this analysis, which is set at p<0.00001. 

 

 

4.6.2  Supplementary Tables  

 

Table S4.1: The table shows the correlation coefficients from a Pearson correlation test 

between O. glaberrima ancestry groups and phenotypic traits. ‘A’ refers to the ancestry 

group. Asterisks indicate the significance between associations (**** p<0.0001, ∗∗∗p<0.001, 

∗∗p<0.01, ∗p<0.05). 
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Plant_height -0.30***  0.08 0.13 0.16 

qP -0.06 0.02 -0.02 0.08 

Ratio_SD 0.1 -0.01 0.03 -0.16 

RootBiomass -0.07 0.06 0.01 0.01 

Shoot_area -0.22**   0.07 0.05 0.15 

ShootBiomass -0.25**   0.12 -0.01  0.20*    

Total_plant_biomass -0.23**   0.11 -0.01  0.18*    

Trmmol -0.07 -0.13 0.13 0.09 

VPD 0.04 -0.02 -0.08 0.05 

 

 

Table S4.2: Table detailing a list of traits analysed against each GWAS test (LFMM, 

FarmCPU, GAPIT and EMMA). ‘Yes’ indicates significant trait-related SNPs were detected 

using a particular GWAS method, ‘NA’ means a non-significant result. The number of 

significant GWAS results is colour coded for ease.  

 

No. Sig Tests  

1 

2 

3 

4 

 

Trait LFMM FarmCPU GAPIT EMMA 

Ai 10 Yes NA NA Yes 

Ai 50 NA NA NA Yes 

Ai 90 Yes NA NA Yes 
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Ai min Yes Yes NA Yes 

Ai rate Yes Yes Yes Yes 

Ai slope Yes Yes Yes Yes 

Ar 10 Yes Yes NA NA 

Ar 50 Yes NA NA NA 

Ar 90 Yes Yes NA NA 

Ar min NA NA NA NA 

Ar rate Yes Yes NA Yes 

Ar slope Yes Yes NA NA 

Abaxial SD Yes NA NA Yes 

Adaxial SD NA NA NA Yes 

Amax NA NA NA NA 

ETRmax NA NA NA Yes 

gsi 10 Yes NA NA NA 

gsi 50 NA NA NA NA 

gsi 90 Yes Yes Yes Yes 

gsi min Yes Yes Yes NA 

gsi rate NA NA NA NA 

gsi slope Yes Yes NA Yes 

gsr 10 NA Yes NA Yes 

gsr 50 NA NA NA NA 

gsr 90 NA Yes NA Yes 

gsr min NA NA NA NA 

gsr rate Yes Yes NA NA 

gsr slope Yes NA NA NA 

gsmax Yes Yes NA Yes 

iWUEma Yes Yes NA Yes 

NPQmax Yes Yes Yes Yes 

NPQi 10 Yes NA NA Yes 

NPQi 50 NA Yes NA NA 

NPQi 90 Yes Yes NA Yes 

NPQi rate Yes Yes NA Yes 

NPQi slope NA Yes NA Yes 
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NPQr 10 Yes Yes NA Yes 

NPQr 50 NA NA NA Yes 

NPQr 90 NA NA NA Yes 

NPQr min NA NA NA NA 

NPQr rate NA NA NA Yes 

NPQr slope NA NA NA Yes 

FPSIImax NA NA NA Yes 

Plant height NA Yes Yes Yes 

qPmax Yes NA NA Yes 

Ratio SD Yes Yes NA NA 

Root biomass NA NA NA NA 

Shoot area Yes Yes Yes Yes 

Shoot biomass NA NA NA Yes 

Total biomass NA NA NA Yes 

Trmmolmax Yes Yes Yes Yes 

VPDma Yes Yes Yes Yes 

 
 
 
Table S4.3: * Due to the size of this table, it can be found the end of the thesis, after Chapter 

5*. Gene list for 30 phenotypic traits from the GWAS analysis detailed in chapter 4.  The 

traits listed here were identified in 2 or more GWAS methods, SNPs were filtered based on a 

p<10-5 threshold.  
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CHAPTER FIVE 

Thesis Discussion 
 

5.1 Introduction  

Recent research has shown that crop yields are already decreasing under rising global 

temperatures and will continue to do so under the projected future climate conditions (Zhao 

et al., 2017; Ray et al., 2019). African rice (O. glaberrima) is comparatively more tolerant to 

many abiotic stresses than Asian rice (O. sativa), including drought and heat stress, because 

of extensive adaptation to variable African environments (Albar et al., 2003; Linares, 2002; 

Orjuela et al., 2014). While O. glaberrima is not suitable for commercial rice production due 

to harvesting difficulties and low yields (Linares, 2002) it does provide a novel source of 

genetic variation.  

The potential O. glaberrima represents as a source for crop improvement has been recognised 

for over two decades (Ghesquière et al., 1997; Sarla & Swamy, 2005) but there is limited 

literature describing the phenotypic and genetic variation present. The recent genomic re-

sequencing of 163 accessions has provided a new genomic resource to fully explore the 

potential O. glaberrima has to offer (Cubry et al., 2018). Using 155 of these re-sequenced 

accessions we characterised the phenotypic variation in 58 morphology, steady-state and 

dynamic photosynthesis related traits. Using this phenotypic data, a genome wide association 

study (GWAS) was completed using four different algorithms. Forty-four traits found to have 

significant SNP/trait associations were identified and over 700 associated candidate genes, 

many known for their role in drought, heat and abiotic stress tolerance. Multi-variate analyses 

were used to tease apart the ecological and environmental factors that contribute to trait and 

genetic adaption in O. glaberrima. This information will be essential when selecting 

accessions for specific traits of interest and/or adapted to specific environmental conditions.  

This thesis describes the analysis of complex traits and their underlying genetic basis and 

provides a solid base to further elucidate the functional validity of these findings.  

 

5.2 Key Findings  

This study aimed to explore the heritable variation in the O. glaberrima germplasm, to 

contribute towards the potential improvement of rice in future climate. The findings from this 

research can be described in three key sections, which are summarised below.  
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5.2.1 Characterising heritable phenotypic variation in O. glaberrima 

Chapter three describes extensive natural variation in traits associated with increased 

photosynthetic efficiency, photoprotection and water use efficiency.  

 

o Chapter two describes the development of a novel automated Machine Learning 

software that accurately identifies and counts Oryza spp. stomata from micrograph 

images. This allowed the characterisation of the variation in stomatal density across 

155 O. glaberrima accessions.  

o As O. glaberrima is proposed as a source of novel genetic variation for O. sativa crop 

improvement, it is useful to compare the phenotypic variation between the two 

species. In comparison to O. glaberrima, IR64 showed a slightly lower gsmax and 

higher iWUEmax, but exhibited slower stomatal conductance, carbon assimilation and 

non-photochemical quenching (NPQ) induction dynamics. The two species also 

clustered separately in the principal component (PCA) and hierarchical (H)-clustering 

analyses, based on phenotypic differences. These findings suggested O. glaberrima 

has a range of unique phenotypic variation, compared to O. sativa, with an indication 

of adaptation to drier conditions that require rapid stomatal movements and responses 

to high light. However, these findings should be interpreted with caution as only a 

single O. sativa genotype was used. 

o Ubiquitous associations were found between NPQ relaxation dynamics, during the 

transition from high – low light, and increased biomass. These findings support 

research that rapid NPQ relaxation can enhance productivity via the faster recovery of 

photosynthetic efficiency (Kromdijk et al., 2016; Hubbart et al., 2018; Murchie and 

Ruban, 2020). This was further supported by the finding that accessions with rapid 

NPQ relaxation, and a low NPQ capacity, exhibited higher carbon assimilation under 

low light. The ability to rapidly respond to fluctuating conditions is important at all 

levels of the canopy. The flag leaf is estimated to provide 50% of assimilates and is 

closely linked to rice yields (Nakano et al., 1995). It is essential the flag leaf can 

maximise photosynthetic efficiency, but the lower canopy is still of great importance, 

as it provides the remainder of assimilates. Therefore, it is important that at all levels 

the plant canopy can rapidly respond to changes in light that result from canopy 

architecture, cloud cover and wind (Burgess et al., 2016), to maximise photosynthetic 

processes and productivity. 
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o Unexpected but consistent correlations were identified between NPQ and stomatal 

conductance dynamic, and steady state traits. This may indicate the importance of the 

key NPQ protein, Photosystem II Subunit (PsbS) on stomatal conductance (Głowacka 

et al., 2018). Other associations were identified between stomatal density ratio, 

NPQmax and the level of NPQ achieved under low light (NPQr min), for unknown 

reasons. 

o Heritable (H2) variation and underlying genetic variation (PGV) was identified in 

many traits. Heritability values were comparable to similar traits in maize (Choquette 

et al., 2019) but lower than those described in O. sativa (Qu et al., 2017). A genetic 

component was indicated in most traits and this was supported through later the 

GWAS findings (chapter four).  

o An automated Machine Learning software was developed that accurately identifies 

and counts Oryza spp. stomata from micrograph images. 

 

5.2.2 Identifying the genetic basis of complex traits  

Chapter four reports the genome wide association study completed on the phenotypic traits 

described in chapter three. The following are highlights of the most promising trait gene 

associations identified from the research: 

 

o A GWAS analysis using four methods identified significant (threshold p<10-5) SNP 

trait associations for 44 out of 52 traits. Thirty of these were identified using two or 

more methods.  

o Stomatal candidate genes were identified that have phytohormone regulatory roles 

associated with stomatal movement and conductance. The results for abaxial to 

adaxial stomatal density ratio included a candidate for WRKY18, which is highly 

expressed in stomatal guard cells (Tak et al., 2021). WRKY18 is also thought to be 

important in ABA signalling, a phytohormone that regulates stomatal movement 

(Fujita et al., 2006; Verslues & Zhu, 2007; Chen et al., 2010). gsmax showed 

significant associations to the gibberellin (GA) receptor, GID1B, which acts as a 

positive regulator in GA signalling (Ueguchi-Tanaka et al., 2005; Griffiths et al., 

2006) and reduces stomatal conductance during drought stress (Gaion & Carvalho, 

2021).  
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o iWUEmax and NPQ dynamic traits included thylakoid lumenal proteins as candidate 

genes. These proteins restore and maintain thylakoid function, and have been shown 

to be important for photoprotection and abiotic stress tolerance responses (Georgieva 

et al., 2010; Jarvit et al., 2013; Liu & Last, 2017).  

o NPQmax showed strong SNP/trait association to a region that includes a candidate 

gene for a ferredoxin NADP+ reductase chloroplast, a precursor protein to the 

ferredoxin-NADP+ oxidoreductase protein (FNR). FNR catalyses NADP+ reduction 

during the final steps of the Calvin cycle. The FNR gene, and therefore it’s precursor, 

are important in NPQ induction (Lintala et al., 2012; Bednarczyk et al., 2020). 

o The NPQ induction dynamic traits NPQi 10, NPQi 90 and NPQi slope all included 

candidate genes in the CDPK (calcium dependant protein kinase) gene family. CDPK 

proteins are triggered by high levels of Ca2+ ions, caused by abiotic stresses, 

triggering a cascade that activates abiotic stress resilience mechanisms. This causes 

the production of reactive oxygen species (ROS) during abiotic stress (Kumar et al., 

2018) and NPQ limits ROS generation. It is possible that CDPK proteins may 

contribute to the process of NPQ induction (Mohanta et al., 2018; Murchie & Ruban, 

2020).  

o Cytochrome candidate genes were implicated in multiple traits, including iWUEmax, 

gsi slope, gsr 10, gsr rate, NPQi rate, NPQi 90 and stomatal density ratio. Cytochrome proteins 

are essential during the electron transport chain stage of photosynthesis and genetic 

variation in these genes may affect a range of complex photosynthetic traits.  

 

5.2.3 Ecological and environmental impacts on phenotypic and genetic adaptation 

The scientific literature describes that O. glaberrima harbours exceptional abiotic stress 

resilience, in comparison to O. sativa (Ghesquière et al., 1997; Sarla & Swamy, 2005). This 

could be attributed adaptation to less intense agricultural inputs, domestic selection and the 

evolution to different selection pressures than O. sativa. In this context, it seems important to 

understand the association between environmental pressures and suites of traits and 

genotypes. This can inform the selection of useful accessions for future research. This area of 

work was explored in chapters three and four, the findings are summarised below: 
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o A PCA and clustering analysis identified three distinct clusters of accessions with 

adaptations to different environments and growth strategies. Cluster 2 contained 

individuals with physiologies geared towards water conservation, with high levels of 

water use efficiency, low gsmax, fast relaxation times for stomatal conductance and 

carbon assimilation. Whereas cluster 3 individuals were consistent with productive 

lowland phenotypes, with accessions demonstrating low levels of NPQ under low 

light, high trait values for Amax, shoot area, shoot and root biomass. Traits attributed to 

individuals in cluster 1 suggest an intermediate type, with accessions showing rapid 

induction and relaxation rates for A and NPQ but high gsmax and slow gs relaxation 

dynamics, which is reflected in a low water use efficiency.  

o A PCA of trait data, overlaid with agro-ecological and country origins, showed a 

distinct clustering between upland and lowland accessions. However, this was not 

fully supported in the genetic dendrogram analysis in chapter four but there was 

distinct clustering of accessions that were collected from floating rice and shallow 

forest swamp ecologies. The multivariate analyses in chapter three demonstrated a 

degree of clustering of individuals based on country of origin. This was supported to 

some extent in chapter four, where individuals from Mali and Nigeria form distinct 

clades in the dendrogram. 

o In chapter three the effect of environmental variables on trait adaptation was explored. 

We identified a significant correlation between the PCs 1 and 4, generated from the 

PCA for phenotypic and climatic variables respectively. Suggesting that traits 

contributing to PC1 adapted in response the selective drivers of elevation, and the 

combined effort of temperature and precipitation. Further to this, a hierarchical-

clustering analysis identified three clusters, showing accessions with common sources 

of climatic variation. 

o A pairwise correlation between ancestry groups and phenotypic traits indicated 

physical similarities between groups. Ancestry group 1 showed significant 

correlations to NPQ relaxation dynamics and biomass. While other ancestry groups 

showed correlations between NPQ and stomatal traits. These findings echo those 

identified in chapter three, where correlations were identified between these traits. 
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5.3 Research Limitations  

All research projects have their limitations, such as constraints in methodology or 

experimental design, that can have implications on the research outcomes. This section 

identifies the key limitations in the study, how they were addressed to minimise any potential 

impact and what improvements could have been made.  

 

5.3.1 Stomatal counting method 

o When developing the automated stomatal counting method, detailed in chapter two, 

only a relatively small number of training images were used. However, we were still 

satisfied with the accuracy of the resource for the purposes of this study (r=0.94 

between human and automated counts, see chapter two for more details). 

o Finally, when testing the accuracy of the software against human manual counts, it 

would have been useful to quantify human error. The automated counting may be 

more accurate than the human manual counts, but this was not explored and could 

affect the ability to accurately quantify the accuracy of the method.  

 

5.3.2 Glasshouse experimental design  

o Limitations were identified in the experimental plan, designed for the phenotyping 

efforts described in chapter three. This were largely an effect of limitations for 

tropical glasshouse space, where direct soil planting was possible. 

 The experimental plan grouped accessions into rows of five replicates, where twelve 

accessions were grown and measured together. The lack of random design and 

measurement of accessions across the seasonal transition from summer to autumn 

introduces opportunities for spatial and temporal variation. The systematic design was 

chosen to minimise the possibility of genotype misidentification and damaging plants 

by moving large IRGA machines.  

o To reduce the variation due to temporal and spatial effects, a linear mixed-effects 

model (lme) was used to account for the random effects that may have affected the 

population, including sowing and measurement date, location in glasshouse and 

IRGA machine. The lme model coefficients quantify the amount of variation 

attributed to each effect included in the model. It was found that sowing date was 

consistently the effect with the highest source of variation, while the position in the 

glasshouse often had negligible variation attributed to it. We used BLUPs here, as 
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they are commonly used to account for the random effects when measuring plants in 

fluctuating conditions (Robinson, 1991; Merk et al., 2012;  Zendonadi et al., 2021). 

However, there are alternative methods that could also be used to account for this, 

such as applying a spatial smoother using a generalised additive model, as described 

in Campos et al. (2021).  

o O. sativa IR64 was used as a check-genotype during this phenotyping experiment but 

was not introduced until the fifth rotation of accessions. Therefore, it could not be 

used to normalise the entire dataset against. Ideally, two O. sativa genotypes (IR64 

and Nipponbare, the latter being a hardier cultivar), should have been included from 

the beginning of the phenotyping efforts. It would have added consistency and 

assisted with normalisation for environmental effects.  

o In hindsight, a randomised design, proceeded by a power experiment constructed with 

the assistance of a biological statistician, would have preferable. Alternatively, the 

phenotyping could have been completed in controlled growth cabinets to minimise for 

environmental effects, but from experience the species does not grow well in these 

compared to a glasshouse.  

o A duplicate experiment the following year would have been desirable, to ensure trait 

measurements could be replicated. However, we have confidence in the phenotypic 

measurements. The thesis of Treeintong (2019) details the selection of extreme traits 

and accessions from the phenotyping experiment in chapter three, the subsequent 

replicated measurements are supported in his experiment.  

 

5.3.3 The estimation of heritability and GWAS statistical power  

o Heritability (H2) values can be useful when choosing traits of interest to pursue. The 

values calculated here may vary dependant on the method used to calculate broad 

sense heritability. Our values were generated by using the lme model coefficients, 

whereby the variation attributed to genotype was divided by the total variation 

attributed to all effects included in the model. However, there are numerous methods 

that can be employed to calculate the phenotype portion of heritability, which can 

substantially alter the H2 value. For example, when the method used in Cubry et al. 

(2020) was recently trialled, it increased all H2 estimates for traits measured here. 

While it may be worth dedicating time to identifying the most accurate method of 
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heritability estimation, as they can be a useful guide, H2 values are not essential when 

identifying the genetic basis in traits of interest.  

o It is recognised that the number of accessions used in the association analysis is 

relatively low for a GWAS, where the norm is >300 genotypes, and will limit the 

statistical power when detecting significant SNPs. To maximise the likelihood of 

detecting significant associations we accounted for confounding factors, used a 

relatively low significance threshold and multiple GWAS methods that are known for 

optimising statistical power.  

o It is also noted that for some traits and methods, the GWAS models were likely to be 

overfitting. This may be due to unresolved confounding factors and will need to be 

further examination before the manuscript is submitted for publication.  

 

5.4 Recommendations for Future Research   

This study has demonstrated the importance of O. glaberrima as an interesting and 

potentially useful source of heritable variation. However, it is just the beginning of a long 

path to truly elucidating the interplay between photosynthetic traits, genetic basis of the 

traits discussed here and their translation to crop improvement. In this section the 

immediate recommendations for future research will be discussed, based on the research 

goals of physiology, genetics and population adaptation. 

 

5.4.1 Physiology research 

The characterisation of O. Glaberrima traits and their interactions has raised many 

interesting avenues that could be pursued in future: 

o  An obvious first step would be to complete drought experiments on the population 

used here. This would be used to establish if accessions that display the desirable 

water conservation strategies detailed in chapter three, are in fact more resilient to 

water limited conditions. Furthermore, it would be interesting to include a range of 

O. sativa cultivars, to establish the degree of drought resilience between the two 

species.  

o Consistent associations were identified between NPQ relaxation dynamics and 

biomass. Future research should be completed to confirm if rapid NPQ relaxation 
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not only equates to greater biomass accumulation in O. glaberrima, but also 

greater yield.  

o Many correlations were identified between NPQ and stomatal traits, it would be 

useful to explore the basis of these relationships. In particular, the impact of the 

key NPQ protein, Photosystem II Subunit (PsbS), on stomatal conductance and 

density, using knock out mutants and expression studies in O. sativa.   

o Future research could include a dedicated stomatal characterisation in O. 

glaberrima. A wide variation in stomatal morphology was observed, such a 

prominence in the epidermis and size, but was not quantified due to time 

constraints. Stomatal morphology may have a greater impact on associated traits, 

such as water use efficiency and dynamics, than simply stomatal density.  

o In this study we were not able to establish if photosynthetic dynamics are mostly 

limited by stomata or biochemistry. O. sativa photosynthetic induction has been 

shown to be predominantly limited by Rubisco content (Acevedo-Siaca et al., 

2021). Therefore, it would be interesting to explore the Rubisco content across the 

accessions in the O. glaberrima resource used here and where the limitation in 

photosynthesis dynamics lies.  

o This study does include the measurement of root biomass but does not progress 

into characterising the natural variation of root density, architecture, or anatomy 

(such as aerenchyma formation) in O. glaberrima. It would be interesting to 

associate these traits at a whole plant level and describe root-shoot associations.  

 

5.4.2 Genetic characterisation  

The GWAS detailed here was the first step towards generating a formal list of trait candidate 

gene lists and elucidating gene-trait associations in O. glaberrima. 

 

o Where possible, we recommend the candidate gene lists generated here are further 

informed using expert gene lists generated from O. sativa. This is a list of genes, 

obtained from the literature, that are known to be associated with a trait of interest. 

The candidate genes can then be checked for enrichment against the expert gene list. 

Although, this will not be possible for all traits of interest, such as photosynthesis 

dynamics, but only for those that have a well characterised genetic basis in O. sativa. 

As the candidate gene lists were also generated using the SNP2gene tool, it would be 
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useful to dedicate time to manually searching for candidate genes in specific traits of 

interest.  

o Key candidate genes for traits of interest, such as GID1B for stomatal conductance, 

can be selected and explore using functional studies to validate causal genes.  

o Long read re-sequencing efforts are currently underway in O. glaberrima by IRD, 

University of Montpellier. Once this are complete, it is recommended to re-run the 

GWAS in case of regions that may be missed.  

o Considering the Illumina re-sequencing efforts were completed at a higher enough 

depth, the generation of a full O. glaberrima chromosome-level reference genome 

should be developed.  

o Finally, the driving research rationale in this thesis was the translation of useful 

natural variation in O. glaberrima to improve the resilience of O. sativa in a changing 

climate. Therefore, much consideration should be given as to how the research 

reported here can contribute towards the testing, selection and introgression of useful 

traits between the species. The translation of useful genomic regions between the two 

species could take place using traditional breeding methods, where the identification 

and generation of flanking genetic markers and chromosome substitution lines could 

be used to guide introgression. However, the S1 locus incompatibility between the two 

species is still a challenge, but good progress is being made by the development of 

interspecific bridge lines that are homozygous for the S1s allele (Wambugu et al., 

2019). Parallel efforts should also be dedicated to the identification of causal genes 

and mutations in traits of interest, that can be implemented in O. sativa through 

genome editing tools. While there are also challenges here due to the controversy of 

genetically modified crops, these are becoming increased accepted as essential to 

future food security (Gao, 2021).  

 

5.4.3 Exploration of adaptative pressures 

o The research completed in chapters three and four shows interesting groups of 

individuals with specific phenotypic and genetic environmental adaptation traits. This 

highlights the need for a dedicated study to fully elucidate the environmental and 

agro-ecological trait adaptation of O. glaberrima.  

o AfricaRice has a germplasm of over 2000 O. glaberrima accessions, using this it 

would be possible to obtain equally represented accessions from a range of ecologies 
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and assessing physiological adaptation to climatic variables at a range of spatial scales 

to tease apart these complex relationships.  

 

5.4.4 Developing the stomata detector software 

o The Stomata Detector software is a resource that is ready to use for the scientific 

community and does not require specialist skills. However, to be truly useful the 

software would require re-training with a greater number of training images and broad 

range of taxa. A larger training set, ideally across key crop species (rice, maize, 

wheat, soy), would improve the accuracy and prove a more useful resource for the 

scientific community. It would also be of particular use to the plant science 

community if the software could also measure stomatal morphology, such as pore 

size, guard cell length and width.  

o Currently, there is no reliable resource that can automate the counting of stomata from 

micrographs. Fetter et al.  (2019) released a promising web portal resource after the 

development of Stomata Detector, but from experience it was never functional and is 

currently exhibiting an error message. Jayakody et al. (2021) have developed a 

method that can reliably identify and bound stomatal guard cells across taxa. 

However, like many other stomatal resources, accessing and using the material 

requires a degree of computational knowledge, such as the use of GitHub and coding. 

 

5.5 Conclusion 

This thesis documents the results of extensive phenotypic characterisation, and the 

subsequent association study, in the reported abiotic stress tolerant species O. glaberrima. 

Promising heritable variation was identified in a range of important traits relating to climate 

resilience and productivity. The GWAS highlighted significant gene-trait associations and 

candidate genes known with previous evidence from other species of mitigating drought and 

heat stress, including regulatory genes for key phytohormones, cytochrome and heat shock 

proteins. Multivariate and genetic analyses completed here show the clustering of accessions 

with similar physical qualities, indicative of environmental adaptation strategies.   

This novel data can be used to identify interesting traits for physiology research, the 

functional validation of candidate genes and assist in the selection of accessions for crop 

improvement efforts. Finally, I hope the contents of this thesis can be used to bridge the gap 
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between trait characterisation and the translation for crop improvement in future changing 

climates. 
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CHAPTER FOUR SUPPLEMENTARY MATERIAL FIGURE S4.5 AND TABLE S4.3 
 

Figure S4.5: Complete list of GWAS Manhattan and diagnostic plots for all traits analysed 

and algorithms used. Each sub-figure shows a Manhattan plot for each of the four models 

used (from top to bottom, LFMM, EMMA, GAPIT and FarmCPU) in the association analysis 

and the corresponding diagnostic qq-plot, to indicate the goodness of fit of the model. The 

red line on the Manhattan line indicates the significance threshold for this analysis, which is 

set at p<0.00001. 
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WUEmax 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table S4.3: Gene list for 30 phenotypic traits from the GWAS analysis detailed in 

chapter 4.  The traits listed here were identified in 2 or more GWAS methods, SNPs were filtered 

based on a p<10-5 threshold. ‘#CHROM’ refers to the chromosome where the SNP association occurs. 

‘POS’ is the SNP position on the chromosome. ‘pValue’ is the p-value given to the statistical 

association between the trait of interest and SNP in question ‘GeneID’ is the unique identifier for the 

candidate gene in question, where ‘LOC_Os’ refers to an O. sativa locus, the following two letters 

describes the chromosome number, ‘g’ demonstrates a gene is detected and the following five digits 

describe the gene order on the chromosome. ‘Distance’ describes how far the candidate gene is from 

the significant SNP. ‘GeneNotes’ provide extra information on the candidate gene name and function.  
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Trait #CHROM POS pValue GeneID Distance GeneNotes
A_i_10 Chr4 777545 6.97E-06 LOC_Os04g02280 -15993 OsFBX114_-_F-box_domain_containing_protein_C_expressed
A_i_90 Chr1 20980454 9.65E-06 LOC_Os01g37520 22435 expressed_protein
A_i_90 Chr1 20980454 9.65E-06 LOC_Os01g37530 19585 expressed_protein
A_i_90 Chr1 20980454 9.65E-06 LOC_Os01g37510 24939 peptide_deformylase_C_putative_C_expressed
A_i_90 Chr1 20980454 9.65E-06 LOC_Os01g37560 -7306 chaperone_protein_dnaJ_49_C_putative_C_expressed
A_i_min Chr3 4722220 5.78E-06 LOC_Os03g09110 -15478 mitochondrial_carrier_protein_C_putative_C_expressed
A_i_min Chr2 15424545 6.97E-06 LOC_Os02g26220 20294 hypothetical_protein
A_i_min Chr2 15424545 6.97E-06 LOC_Os02g26260 1701 expressed_protein
A_i_min Chr2 15424545 6.97E-06 LOC_Os02g26290 -12024 fasciclin-like_arabinogalactan_protein_8_precursor_C_putative_C_expressed
A_i_min Chr2 15424545 6.97E-06 LOC_Os02g26294 -16630 expressed_protein
A_i_min Chr2 15424545 6.97E-06 LOC_Os02g26300 -22666 expressed_protein
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42470 4435 expressed_protein
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42480 1834 transferase_family_domain_containing_protein_C_expressed
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42500 -6551 dirigent_C_putative_C_expressed
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42510 -9233 tyrosine_aminotransferase_C_putative_C_expressed
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42520 -21204 DEFL34_-_Defensin_and_Defensin-like_DEFL_family_C_expressed
A_i_min Chr11 25587204 9.32E-06 LOC_Os11g42525 -24581 hypothetical_protein
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49670 20785 cytidylyltransferase_domain_containing_protein_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49680 12382 DNA_repair_helicase_XPB2_C_putative_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49710 -416 glutathione_S-transferase_C_putative_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49720 -2512 glutathione_S-transferase_C_putative_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49730 -5828 expressed_protein
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49750 -9605 expressed_protein
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49760 -11891 expressed_protein
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49770 -16634 zinc_finger_C_C3HC4_type_domain_containing_protein_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49660 24955 reticulon_domain_containing_protein_C_putative_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49690 5510 Ser_FThr_protein_phosphatase_family_protein_C_putative_C_expressed
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49780 -23740 hypothetical_protein
A_i_min Chr1 28566209 9.39E-06 LOC_Os01g49740 -6924 expressed_protein

A_i_min Chr1 28571284 9.39E-06 LOC_Os01g49790 -23663 expressed_protein

A_i_min Chr1 28572883 9.39E-06 LOC_Os01g49800 -24098 expressed_protein

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09020 22678 dehydrogenase_C_putative_C_expressed

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09030 17739 expressed_protein

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09040 14284 hypothetical_protein

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09060 7622 prenyltransferase_C_putative_C_expressed

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09090 -12837 expressed_protein

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09100 -18331 calmodulin-binding_transcription_activator_C_putative_C_expressed

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09070 2313 leucine_rich_repeat_domain_containing_protein_C_putative_C_expressed

A_i_min Chr3 4707808 9.55E-06 LOC_Os03g09080 -7288 ubiquitin_carboxyl-terminal_hydrolase_domain_containing_protein_C_expressed

A_i_min Chr3 4753591 9.95E-06 LOC_Os03g09120 3338 expressed_protein

A_i_min Chr3 4753591 9.95E-06 LOC_Os03g09130 -7020 expressed_protein

A_i_min Chr3 4753591 9.95E-06 LOC_Os03g09140 -10165 ras-related_protein_C_putative_C_expressed

A_i_min Chr3 4753591 9.95E-06 LOC_Os03g09150 -14973 pumilio-family_RNA_binding_repeat_domain_containing_protein_C_expressed

A_i_min Chr3 4753591 9.95E-06 LOC_Os03g09160 -21974 hydroxyproline-rich_glycoprotein_family_protein_C_putative_C_expressed

A_i_rate Chr11 15520831 1.21E-06 LOC_Os11g26950 22270 UDP-glucoronosyl_and_UDP-glucosyl_transferase_domain_containing_protein_C_expressed

A_i_rate Chr11 15520831 1.21E-06 LOC_Os11g26956 11569 hypothetical_protein

A_i_rate Chr11 15520831 1.21E-06 LOC_Os11g26970 840 hypothetical_protein

A_i_rate Chr11 15520831 1.21E-06 LOC_Os11g26990 -10549 expressed_protein

A_i_rate Chr3 26106375 7.40E-06 LOC_Os03g46140 11020 OsFBX101_-_F-box_domain_containing_protein_C_expressed

A_i_rate Chr3 26106375 7.40E-06 LOC_Os03g46150 9364 LTPL72_-_Protease_inhibitor_Fseed_storage_FLTP_family_protein_precursor_C_expressed

A_i_rate Chr3 26106375 7.40E-06 LOC_Os03g46200 -13593 acetyltransferase_C_GNAT_family_C_putative_C_expressed

A_i_rate Chr3 26106375 7.40E-06 LOC_Os03g46180 -8591 LTPL71_-_Protease_inhibitor_Fseed_storage_FLTP_family_protein_precursor_C_expressed

A_i_rate Chr3 26106375 7.40E-06 LOC_Os03g46190 -9473 parafibromin_C_putative_C_expressed

A_i_rate Chr11 15554065 8.61E-06 LOC_Os11g27000 0 expressed_protein

A_i_rate Chr11 15554065 8.61E-06 LOC_Os11g27010 -3129 hypothetical_protein

A_i_rate Chr11 15554065 8.61E-06 LOC_Os11g27020 -6778 expressed_protein

A_i_rate Chr11 15554065 8.61E-06 LOC_Os11g27030 -10476 expressed_protein

A_i_slope Chr1 31110005 4.88E-07 LOC_Os01g54140 -24247 expressed_protein

A_i_slope Chr1 31133795 7.27E-07 LOC_Os01g54170 -23598 expressed_protein
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A_i_slope Chr1 31231740 1.30E-06 LOC_Os01g54310 -24038 hypothetical_protein
A_i_slope Chr1 31179135 2.75E-06 LOC_Os01g54240 -24308 nucleoporin_C_putative_C_expressed
A_i_slope Chr1 31044158 3.46E-06 LOC_Os01g53970 12226 circumsporozoite_protein_precursor_C_putative_C_expressed
A_i_slope Chr1 31044158 3.46E-06 LOC_Os01g53980 -3352 IQ_calmodulin-binding_motif_family_protein_C_expressed
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47140 23437 growth_regulating_factor_protein_C_putative_C_expressed
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47160 13672 expressed_protein
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47169 10338 Peptidase_family_C50_C_putative_C_expressed
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47178 9577 hypothetical_protein
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47190 -614 expressed_protein
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47200 -10661 bZIP_transcription_factor_domain_containing_protein_C_expressed
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47149 15637 expressed_protein
A_i_slope Chr3 26705625 3.63E-06 LOC_Os03g47210 -16395 expressed_protein
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53860 24253 expressed_protein
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53880 9697 OsIAA6_-_Auxin-responsive_Aux_FIAA_gene_family_member_C_expressed
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53890 2676 RNA_methyltransferase_C_TrmH_family_protein_C_putative_C_expressed
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53900 -2944 elongation_factor_C_putative_C_expressed
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53920 -16559 receptor-like_protein_kinase_5_precursor_C_putative_C_expressed
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53930 -19539 hexokinase_C_putative_C_expressed
A_i_slope Chr1 30989467 3.74E-06 LOC_Os01g53910 -8518 dehydrogenase_C_putative_C_expressed
A_i_slope Chr1 31097018 4.93E-06 LOC_Os01g54100 -14273 CK1_CaseinKinase_1a.2_-_CK1_includes_the_casein_kinase_1_kinases_C_expressed
A_i_slope Chr1 31168835 5.41E-06 LOC_Os01g54180 3683 DUF640_domain_containing_protein_C_putative_C_expressed
A_i_slope Chr1 31168835 5.41E-06 LOC_Os01g54190 60 expressed_protein
A_i_slope Chr1 31168835 5.41E-06 LOC_Os01g54210 -11361 GATA_zinc_finger_domain_containing_protein_C_expressed
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g53990 23440 pectinesterase_C_putative_C_expressed
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54000 18745 expressed_protein
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54010 11767 peptidase_C_putative_C_expressed
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54020 5636 tRNA_synthetase_C_putative_C_expressed
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54050 -10117 histidine-containing_phosphotransfer_protein_C_putative_C_expressed
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54070 -15594 expressed_protein
A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54080 -17478 kinesin_motor_protein-related_C_putative_C_expressed

A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54030 538 NADP-dependent_malic_enzyme_C_putative_C_expressed

A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54040 0 ATP-dependent_protease_La_C_putative_C_expressed

A_i_slope Chr1 31081915 5.74E-06 LOC_Os01g54060 -14673 expressed_protein

A_i_slope Chr1 31227044 7.02E-06 LOC_Os01g54280 -3043 conserved_hypothetical_protein

A_i_slope Chr1 31227044 7.02E-06 LOC_Os01g54300 -21275 OsMan02_-_Endo-Beta-Mannanase_C_expressed

A_i_slope Chr1 31085537 8.03E-06 LOC_Os01g54090 -22780 expressed_protein

A_i_slope Chr1 30990911 8.95E-06 LOC_Os01g53940 -24962 expressed_protein

A_i_slope Chr1 31173515 9.02E-06 LOC_Os01g54230 -24614 expressed_protein

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12090 22495 miro_C_putative_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12100 20588 mTERF_family_protein_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12110 15891 mTERF_family_protein_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12129 9857 expressed_protein

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12140 6854 expressed_protein

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12150 3658 shikimate_kinase_C_putative_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12170 -13871 expressed_protein

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12180 -20419 jacalin-like_lectin_domain_containing_protein_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12120 13015 BRASSINOSTEROID_INSENSITIVE_1-associated_receptor_kinase_1_precursor_C_putative_C_expressed

A_r_10 Chr6 6501568 4.43E-06 LOC_Os06g12160 -2167 AAA-type_ATPase_family_protein_C_putative_C_expressed

A_r_10 Chr12 8156440 5.39E-06 LOC_Os12g14310 2183 expressed_protein

A_r_10 Chr12 8156440 5.39E-06 LOC_Os12g14320 588 expressed_protein

A_r_10 Chr12 8156440 5.39E-06 LOC_Os12g14330 -5032 disease_resistance_protein_RPM1_C_putative_C_expressed

A_r_10 Chr12 8156440 5.39E-06 LOC_Os12g14340 -13041 hypothetical_protein

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35860 19945 expressed_protein

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35870 15901 lectin_protein_kinase_family_protein_C_putative_C_expressed

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35880 12594 hypothetical_protein

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35890 7374 expressed_protein

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35900 2788 BES1_FBZR1_homolog_protein_C_putative_C_expressed

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35910 0 FYVE_zinc_finger_domain_containing_protein_C_expressed

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35920 -6377 expressed_protein

A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35930 -13643 aquaporin_protein_C_putative_C_expressed
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A_r_10 Chr6 20947063 9.31E-06 LOC_Os06g35940 -24563 osFTL12__FT-Like12_homologous_to_Flowering_Locus_T__gene%3B_contains_Pfam_profile_PF01161%3A_Phosphatidylethanolamine-binding_protein_C_expressed

A_r_10 Chr2 15877698 9.37E-06 LOC_Os02g27020 -5629 expressed_protein

A_r_10 Chr2 15877698 9.37E-06 LOC_Os02g27040 -22027 expressed_protein

A_r_10 Chr2 15877698 9.37E-06 LOC_Os02g26984 21475 expressed_protein

A_r_10 Chr2 15877698 9.37E-06 LOC_Os02g27000 1209 ATP-binding_region_C_ATPase-like_domain_containing_protein_C_expressed

A_r_10 Chr2 15877698 9.37E-06 LOC_Os02g27030 -13830 cysteine_proteinase_1_precursor_C_putative_C_expressed

A_r_90 Chr2 31418445 7.27E-06 LOC_Os02g51340 -24493 hypothetical_protein

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09130 22569 expressed_protein

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09140 19301 ras-related_protein_C_putative_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09150 12596 pumilio-family_RNA_binding_repeat_domain_containing_protein_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09160 9290 hydroxyproline-rich_glycoprotein_family_protein_C_putative_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09170 4100 ethylene-responsive_transcription_factor_C_putative_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09180 -348 trpH_C_putative_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09190 -3955 OsSCP11_-_Putative_Serine_Carboxypeptidase_homologue_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09200 -6382 domain_of_unknown_function_DUF966_domain_containing_protein_C_expressed

A_r_90 Chr3 4785670 7.27E-06 LOC_Os03g09210 -22253 NADH_dehydrogenase_1_alpha_subcomplex_subunit_13_C_putative_C_expressed

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62280 20216 expressed_protein

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62290 18204 expressed_protein

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62300 7909 expressed_protein

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62330 -2251 expressed_protein

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62340 -4846 protein_kinase_family_protein_C_putative_C_expressed

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62360 -22406 expressed_protein

A_r_90 Chr3 35307605 8.85E-06 LOC_Os03g62370 -24447 WD40-like_Beta_Propeller_Repeat_family_protein_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51280 18144 TCP-domain_protein_C_putative_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51300 3065 AP2_domain_containing_protein_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51310 0 TCP_family_transcription_factor_C_putative_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51330 -15343 MAG2_C_putative_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51290 7525 HVA22_C_putative_C_expressed

A_r_90 Chr2 31417249 9.00E-06 LOC_Os02g51320 -6694 helix-loop-helix_DNA-binding_domain_containing_protein_C_expressed

A_r_rate Chr12 26468692 6.84E-07 LOC_Os12g42590 15081 expressed_protein

A_r_rate Chr12 26468692 6.84E-07 LOC_Os12g42610 -8941 YABBY_domain_containing_protein_C_putative_C_expressed
A_r_rate Chr12 26468692 6.84E-07 LOC_Os12g42620 -21694 hypothetical_protein
A_r_rate Chr12 26468692 6.84E-07 LOC_Os12g42600 7354 ubiquitin_carboxyl-terminal_hydrolase_domain_containing_protein_C_expressed
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06830 13112 hypothetical_protein
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06840 4657 expressed_protein
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06850 0 expressed_protein
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06860 -4087 peroxidase_28_precursor_C_putative_C_expressed
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06879 -15524 expressed_protein
A_r_slope Chr4 3613262 3.22E-06 LOC_Os04g06900 -21910 expressed_protein
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38520 22628 pectate_lyase_family_protein_C_expressed
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38564 7263 expressed_protein
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38580 -7468 expressed_protein
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38590 -14227 receptor-like_protein_kinase_precursor_C_putative_C_expressed
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38594 -17863 expressed_protein
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38600 -21833 expressed_protein
A_r_slope Chr6 22848947 4.29E-06 LOC_Os06g38550 9407 expressed_protein
A_r_slope Chr3 27522816 7.82E-06 LOC_Os03g48310 5495 plasma_membrane_ATPase_C_putative_C_expressed
A_r_slope Chr3 27522816 7.82E-06 LOC_Os03g48320 1324 disease_resistance_RPP13-like_protein_1_C_putative_C_expressed
A_r_slope Chr3 27522816 7.82E-06 LOC_Os03g48380 -23295 expressed_protein
A_r_slope Chr3 27522816 7.82E-06 LOC_Os03g48300 18852 histidine_acid_phosphatase_C_putative_C_expressed
A_r_slope Chr3 27522816 7.82E-06 LOC_Os03g48370 -13918 disease_resistance_RPP13-like_protein_1_C_putative_C_expressed
A_r_slope Chr6 22812794 8.29E-06 LOC_Os06g38460 20926 expressed_protein
A_r_slope Chr6 22812794 8.29E-06 LOC_Os06g38470 12573 histone_deacetylase_19_C_putative_C_expressed
A_r_slope Chr6 22812794 8.29E-06 LOC_Os06g38500 -5037 expressed_protein
A_r_slope Chr6 22812794 8.29E-06 LOC_Os06g38510 -8323 pectate_lyase_precursor_C_putative_C_expressed
A_r_slope Chr8 8711723 8.73E-06 LOC_Os08g14490 2735 dehydrogenase-phosphopantetheinyltransferase_C_putative_C_expressed
A_r_slope Chr8 8711723 8.73E-06 LOC_Os08g14500 -4007 hypothetical_protein
A_r_slope Chr3 27535910 9.21E-06 LOC_Os03g48390 -16247 expressed_protein
A_r_slope Chr3 27535910 9.21E-06 LOC_Os03g48400 -18611 hypothetical_protein
Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g24970 24299 expressed_protein
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Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g24990 10814 CAF1_family_ribonuclease_containing_protein_C_putative_C_expressed

Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g25000 3325 spotted_leaf_11_C_putative_C_expressed

Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g25010 -2634 expressed_protein

Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g25030 -13956 expressed_protein

Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g25040 -16156 joka8_C_putative_C_expressed

Abaxial_SD Chr9 14943211 3.36E-06 LOC_Os09g24980 16905 vesicle_transport_v-SNARE_protein_C_putative_C_expressed

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09500 13289 lectin-like_receptor_kinase_C_putative_C_expressed

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09510 8535 legume_lectins_beta_domain_containing_protein_C_expressed

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09520 -2022 transporter_family_protein_C_putative_C_expressed

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09550 -20474 plant_protein_of_unknown_function_domain_containing_protein_C_expressed

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09530 -7653 expressed_protein

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09560 -23598 expressed_protein

Abaxial_SD Chr9 5135862 3.86E-06 LOC_Os09g09490 22904 disease_resistance_protein_RPM1_C_putative_C_expressed

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33890 23084 microtubule_associated_protein_C_putative_C_expressed

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33900 17607 auxin-induced_protein_5NG4_C_putative_C_expressed

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33910 13934 MATE_C_putative_C_expressed

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33920 -10924 pentatricopeptide_C_putative_C_expressed

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33930 -14777 expressed_protein

Abaxial_SD Chr5 20017174 4.28E-06 LOC_Os05g33940 -20674 alpha_Fbeta_hydrolase_fold_C_putative_C_expressed

Abaxial_SD Chr2 33937702 4.38E-06 LOC_Os02g55430 -15578 alginate_regulatory_protein_AlgP_C_putative_C_expressed

Abaxial_SD Chr2 33937702 4.38E-06 LOC_Os02g55440 -18589 transmembrane_9_superfamily_member_C_putative_C_expressed

Abaxial_SD Chr2 33946653 7.34E-06 LOC_Os02g55470 -24717 alpha-1_C6-mannosyl-glycoprotein_2-beta-N-acetylglucosaminyltransferase_C_putative_C_expressed

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55360 13058 hypothetical_protein

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55370 7727 60S_ribosomal_protein_L39_C_putative_C_expressed

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55380 1351 AP2_domain_containing_protein_C_expressed

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55400 -9449 ATPase_8_C_plasma_membrane-type_C_putative_C_expressed

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55410 -13819 MCM5_-_Putative_minichromosome_maintenance_MCM_complex_subunit_5_C_expressed

Abaxial_SD Chr2 33922369 8.46E-06 LOC_Os02g55420 -19655 aminotransferase_C_classes_I_and_II_C_domain_containing_protein_C_expressed

Abaxial_SD Chr9 2730690 9.61E-06 LOC_Os09g05040 18176 expressed_protein

Abaxial_SD Chr9 2730690 9.61E-06 LOC_Os09g05030 23342 armadillo_Fbeta-catenin-like_repeat_family_protein_C_expressed

gs_i_90 Chr2 5349758 7.43E-07 LOC_Os02g10260 -23298 outer_membrane_protein_C_OMP85_family_protein_C_expressed

gs_i_90 Chr2 5344490 1.18E-06 LOC_Os02g10250 -24787 expressed_protein

gs_i_90 Chr2 5324384 2.04E-06 LOC_Os02g10130 17948 tubulin_binding_cofactor_C_C_putative_C_expressed

gs_i_90 Chr2 5342135 5.24E-06 LOC_Os02g10240 -22244 ZOS2-05_-_C2H2_zinc_finger_protein_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10140 16170 bZIP_transcription_factor_domain_containing_protein_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10150 11769 bZIP_transcription_factor_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10170 3669 expressed_protein

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10180 0 dnaJ_homolog_subfamily_C_member_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10200 -11399 zinc_finger_A20_and_AN1_domain-containing_stress-associated_protein_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10210 -14529 expressed_protein

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10220 -17276 heat_shock_protein_DnaJ_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10160 5890 AGAP003371-PA_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10190 -4817 DUF1680_domain_containing_protein_C_putative_C_expressed

gs_i_90 Chr2 5334191 7.90E-06 LOC_Os02g10230 -23119 metal_cation_transporter_C_putative_C_expressed

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39070 24483 5-formyltetrahydrofolate_cyclo-ligase_C_putative_C_expressed

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39080 23032 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39100 14556 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39110 12083 AP2_FEREBP_transcription_factor_BABY_BOOM_C_putative_C_expressed

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39114 9611 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39120 5392 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39130 3817 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39140 2398 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39180 -24391 expressed_protein

gs_i_90 Chr7 23446937 8.69E-06 LOC_Os07g39090 16051 pentatricopeptide_repeat_domain_containing_protein_C_putative_C_expressed

gs_i_min Chr4 35003817 2.37E-07 LOC_Os04g58880 -17798 exo70_exocyst_complex_subunit_C_putative_C_expressed

gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58790 22186 expressed_protein

gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58800 16700 ubiquitin-conjugating_enzyme_C_putative_C_expressed

gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58810 12276 CAF1_family_ribonuclease_containing_protein_C_putative_C_expressed

gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58820 4353 ATOFP18_FOFP18_C_putative_C_expressed

gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58830 0 ribosome_biogenesis_regulatory_protein_C_putative_C_expressed
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gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58840 -2592 Eukaryotic_aspartyl_protease_domain_containing_protein_C_expressed
gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58850 -6490 harpin-induced_protein_1_domain_containing_protein_C_expressed
gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58860 -16461 harpin-induced_protein_1_domain_containing_protein_C_expressed
gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58870 -22110 exo70_exocyst_complex_subunit_C_putative_C_expressed
gs_i_min Chr4 34994479 1.03E-06 LOC_Os04g58780 24367 pentatricopeptide_repeat_protein_C_putative_C_expressed
gs_i_min Chr4 35046577 4.19E-06 LOC_Os04g58920 -7886 U-box_domain-containing_protein_C_putative_C_expressed
gs_i_min Chr4 35046577 4.19E-06 LOC_Os04g58940 -17430 expressed_protein
gs_i_min Chr4 35046577 4.19E-06 LOC_Os04g58960 -20704 regulator_of_chromosome_condensation_C_putative_C_expressed
gs_i_min Chr4 35017571 6.60E-06 LOC_Os04g58890 -13616 expressed_protein
gs_i_min Chr4 35017571 6.60E-06 LOC_Os04g58900 -17255 hydrolase_C_NUDIX_family_C_domain_containing_protein_C_expressed
gs_i_min Chr4 35017571 6.60E-06 LOC_Os04g58910 -22344 receptor_protein_kinase_TMK1_precursor_C_putative_C_expressed
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35470 13046 expressed_protein
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35480 1486 glucan_endo-1_C3-beta-glucosidase_precursor_C_putative_C_expressed
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35490 -2520 expressed_protein
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35510 -10872 glucan_endo-1_C3-beta-glucosidase_precursor_C_putative_C_expressed
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35520 -17475 glucan_endo-1_C3-beta-glucosidase_precursor_C_putative_C_expressed
gs_i_slope Chr7 21227397 3.00E-06 LOC_Os07g35500 -4716 mucin-associated_surface_protein_C_putative_C_expressed
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10760 10182 expressed_protein
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10770 6355 expressed_protein
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10780 1671 expressed_protein
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10790 0 expressed_protein
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10750 12153 inorganic_phosphate_transporter_C_putative_C_expressed
gs_i_slope Chr4 5861543 3.60E-06 LOC_Os04g10800 -3633 inorganic_phosphate_transporter_C_putative_C_expressed
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56090 19638 MYB_family_transcription_factor_C_putative_C_expressed
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56100 11286 expressed_protein
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56120 0 expressed_protein
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56130 -1903 lichenase-2_precursor_C_putative_C_expressed
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56140 -12435 homeobox_protein_rough_sheath_1_C_putative_C_expressed
gs_i_slope Chr3 31974267 3.62E-06 LOC_Os03g56110 3740 homeobox_protein_knotted-1_C_putative_C_expressed
gs_i_slope Chr3 31939292 4.74E-06 LOC_Os03g56050 13779 AP2-like_ethylene-responsive_transcription_factor_AINTEGUMENTA_C_putative_C_expressed

gs_i_slope Chr3 31939292 4.74E-06 LOC_Os03g56070 -3288 expressed_protein
gs_i_slope Chr3 31939292 4.74E-06 LOC_Os03g56080 -7848 hypothetical_protein
gs_i_slope Chr3 31939292 4.74E-06 LOC_Os03g56060 4668 CSLC9_-_cellulose_synthase-like_family_C_C_expressed
gs_i_slope Chr3 31993245 4.74E-06 LOC_Os03g56160 -15155 lectin-like_receptor_kinase_7_C_putative_C_expressed
gs_i_slope Chr3 31993245 4.74E-06 LOC_Os03g56170 -18844 expressed_protein
gs_i_slope Chr3 31993245 4.74E-06 LOC_Os03g56190 -24399 cytochrome_c_oxidase-related_C_putative_C_expressed
gs_i_slope Chr3 31993245 4.74E-06 LOC_Os03g56180 -19971 legume_lectins_beta_domain_containing_protein_C_expressed
gs_i_slope Chr3 31995241 4.74E-06 LOC_Os03g56200 -24331 expressed_protein
gs_i_slope Chr3 32015043 4.74E-06 LOC_Os03g56220 -12848 stress-induced_protein_C_putative_C_expressed
gs_i_slope Chr3 32015043 4.74E-06 LOC_Os03g56234 -19622 myb_FSANT_domain_protein_C_putative_C_expressed
gs_i_slope Chr7 21180803 6.77E-06 LOC_Os07g35370 22007 TKL_IRAK_DUF26-lc.15_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed
gs_i_slope Chr7 21180803 6.77E-06 LOC_Os07g35380 16911 TKL_IRAK_DUF26-lc.16_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed
gs_i_slope Chr7 21180803 6.77E-06 LOC_Os07g35400 8153 expressed_protein
gs_i_slope Chr7 21180803 6.77E-06 LOC_Os07g35410 2240 TKL_IRAK_DUF26-lc.18_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed
gs_i_slope Chr7 21180803 6.77E-06 LOC_Os07g35390 10117 TKL_IRAK_DUF26-lc.17_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed
gs_r_10 Chr9 5398647 2.61E-06 LOC_Os09g09900 18969 expressed_protein
gs_r_10 Chr9 5398647 2.61E-06 LOC_Os09g09920 5716 expressed_protein
gs_r_10 Chr9 5398647 2.61E-06 LOC_Os09g09930 1712 heavy_metal_transport_Fdetoxification_protein_C_putative_C_expressed
gs_r_10 Chr9 5398647 2.61E-06 LOC_Os09g09940 -2279 hypothetical_protein
gs_r_10 Chr9 5398647 2.61E-06 LOC_Os09g09944 -4633 expressed_protein
gs_r_10 Chr6 28796771 3.60E-06 LOC_Os06g47590 -21391 AP2_domain_containing_protein_C_expressed
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10630 21722 expressed_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10650 8753 phosphatidylinositol-4-phosphate_5-Kinase_family_protein_C_putative_C_expressed
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10660 -2176 expressed_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10670 -4801 hypothetical_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10680 -7090 hypothetical_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10690 -10501 expressed_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10700 -13702 hypothetical_protein
gs_r_10 Chr9 5815694 4.79E-06 LOC_Os09g10710 -20967 R-interacting_factor_1_C_putative_C_expressed
gs_r_10 Chr9 5415274 5.39E-06 LOC_Os09g09980 -15621 glucan_endo-1_C3-beta-glucosidase_precursor_C_putative_C_expressed



 178 

 

 
 
 
 
 
 
 
 
 

gs_r_10 Chr9 5650513 5.98E-06 LOC_Os09g10330 24208 expressed_protein
gs_r_10 Chr9 5650513 5.98E-06 LOC_Os09g10340 4990 cytochrome_P450_C_putative_C_expressed
gs_r_10 Chr9 5650513 5.98E-06 LOC_Os09g10360 -7370 expressed_protein
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47540 9052 expressed_protein
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47544 600 expressed_protein
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47550 -71 cadmium_Fzinc-transporting_ATPase_C_putative_C_expressed
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47560 -10073 expressed_protein
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47580 -17757 REV1_C_putative_C_expressed
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47520 17877 expressed_protein
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47530 14513 TKL_IRAK_DUF26-lh.6_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed
gs_r_10 Chr6 28788944 6.03E-06 LOC_Os06g47570 -12807 PPR_repeat_containing_protein_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06100 22831 dihydroneopterin_aldolase_C_putative_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06115 9577 expressed_protein
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06130 0 glutamate_receptor_C_putative_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06140 -5683 hypothetical_protein
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06150 -8856 zinc_finger_C_C3HC4_type_domain_containing_protein_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06160 -15550 IQ_calmodulin-binding_motif_domain_containing_protein_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06170 -19829 expressed_protein
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06180 -21809 transferase_family_protein_C_putative_C_expressed
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06120 3567 expressed_protein
gs_r_10 Chr6 2839891 7.38E-06 LOC_Os06g06190 -23520 uncharacterized_protein_ycf45_C_putative_C_expressed
gs_r_10 Chr6 28801449 9.38E-06 LOC_Os06g47600 -24381 thaumatin_family_domain_containing_protein_C_expressed
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45570 19874 homeobox_associated_leucine_zipper_C_putative_C_expressed
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45600 -4382 expressed_protein
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45624 -19862 oleosin_C_putative_C_expressed
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45640 -22644 tat_pathway_signal_sequence_family_protein_C_expressed
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45650 -24998 OsFBX19_-_F-box_domain_containing_protein_C_expressed
gs_r_90 Chr1 25903592 5.66E-06 LOC_Os01g45620 -14031 CGMC_MAPKCMGC_2.5_-_CGMC_includes_CDA_C_MAPK_C_GSK3_C_and_CLKC_kinases_C_expressed
gs_r_90 Chr1 25907676 5.66E-06 LOC_Os01g45659 -23473 expressed_protein
gs_r_90 Chr1 25909752 6.30E-06 LOC_Os01g45670 -23864 expressed_protein

gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73920 22007 hypothetical_protein
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73950 10306 PPR_repeat_containing_protein_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73940 13377 expressed_protein
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73960 4776 drought_induced_19_protein_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73970 0 lysine_ketoglutarate_reductase_trans-splicing_related_1_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73980 -2730 xylem_cysteine_proteinase_2_precursor_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g74000 -7781 glycerol-3-phosphate_dehydrogenase_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g74010 -17597 cyclase_Fdehydrase_family_protein_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g74020 -21280 MYB_family_transcription_factor_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73910 24066 peptidase_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g74030 -23612 pumilio-family_RNA_binding_protein_C_putative_C_expressed
gs_r_rate Chr1 42852927 2.60E-06 LOC_Os01g73990 -5837 cytochrome_b5-like_Heme_FSteroid_binding_domain_containing_protein_C_expressed
gs_r_rate Chr4 19642144 2.93E-06 LOC_Os04g32610 0 expressed_protein
gs_r_rate Chr4 19642144 2.93E-06 LOC_Os04g32620 -9515 ethylene-responsive_transcription_factor_ERF114_C_putative_C_expressed
gs_r_rate Chr4 19642144 2.93E-06 LOC_Os04g32600 12286 expressed_protein
gs_r_rate Chr2 9893249 3.51E-06 LOC_Os02g17230 13973 flavin_monooxygenase_C_putative_C_expressed
gs_r_rate Chr2 9893249 3.51E-06 LOC_Os02g17240 4855 ATROPGEF7_FROPGEF7_C_putative_C_expressed
gs_r_rate Chr2 9893249 3.51E-06 LOC_Os02g17250 0 expressed_protein
gs_r_rate Chr2 9893249 3.51E-06 LOC_Os02g17270 -5598 expressed_protein
gs_r_rate Chr2 9893249 3.51E-06 LOC_Os02g17280 -9380 gamma-secretase_subunit_APH-1B_C_putative_C_expressed
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04710 22726 GDSL-like_lipase_Facylhydrolase_C_putative_C_expressed
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04730 9870 dehydrogenase_Freductase_SDR_family_member_2_C_putative_C_expressed
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04760 -8231 hypothetical_protein
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04790 -21727 PAP_fibrillin_family_domain_containing_protein_C_expressed
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04720 18853 SWIB_FMDM2_domain_containing_protein_C_expressed
gs_r_rate Chr9 2527147 5.85E-06 LOC_Os09g04770 -12243 hypothetical_protein
gs_r_rate Chr1 42828254 7.95E-06 LOC_Os01g73880 12964 eukaryotic_translation_initiation_factor_C_putative_C_expressed
gs_r_rate Chr1 42828254 7.95E-06 LOC_Os01g73890 7127 transcription_initiation_factor_IIA_gamma_chain_C_putative_C_expressed
gs_r_rate Chr1 42828254 7.95E-06 LOC_Os01g73900 3129 DEAD-box_ATP-dependent_RNA_helicase_C_putative_C_expressed
gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03260 17139 MATE_efflux_family_protein_C_putative_C_expressed



 179 

 

 
 
 
 
 
 
 
 

gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03270 4041 ELMO_FCED-12_family_protein_C_putative_C_expressed
gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03290 0 AP2_domain_containing_protein_C_expressed
gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03320 -11635 expressed_protein
gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03330 -18389 hypothetical_protein
gs_r_rate Chr12 1273195 9.32E-06 LOC_Os12g03340 -19474 protein_of_unknown_function_C_DUF618_domain_containing_protein_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06210 -158 gibberellin_receptor_GID1L2_C_putative_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06220 -2710 gibberellin_receptor_GID1L2_C_putative_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06230 -6838 OsSAUR1_-_Auxin-responsive_SAUR_gene_family_member_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06240 -8066 protein_kinase_C_putative_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06250 -11968 dirigent_C_putative_C_expressed
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06260 -14798 expressed_protein
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06270 -16769 expressed_protein
gsmax Chr1 2954356 9.23E-07 LOC_Os01g06150 21464 expressed_protein
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58810 21614 CAF1_family_ribonuclease_containing_protein_C_putative_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58820 13691 ATOFP18_FOFP18_C_putative_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58830 9018 ribosome_biogenesis_regulatory_protein_C_putative_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58840 4649 Eukaryotic_aspartyl_protease_domain_containing_protein_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58850 1671 harpin-induced_protein_1_domain_containing_protein_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58860 -7123 harpin-induced_protein_1_domain_containing_protein_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58870 -12772 exo70_exocyst_complex_subunit_C_putative_C_expressed
gsmax Chr4 35003817 5.67E-06 LOC_Os04g58880 -17798 exo70_exocyst_complex_subunit_C_putative_C_expressed
gsmax Chr12 11142380 7.35E-06 LOC_Os12g19170 8965 expressed_protein
gsmax Chr12 11142380 7.35E-06 LOC_Os12g19260 -23711 tetratricopeptide-like_helical_C_putative_C_expressed
gsmax Chr12 11142380 7.35E-06 LOC_Os12g19180 775 ATP_binding_protein_C_putative_C_expressed
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36370 23692 ER_lumen_protein_retaining_receptor_containing_protein_C_expressed
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36380 22494 expressed_protein
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36420 0 hsp90_protein_C_expressed
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36430 -8098 expressed_protein
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36440 -10808 transcription_initiation_factor_IIB_C_putative_C_expressed
NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36450 -14897 triosephosphate_isomerase_C_chloroplast_precursor_C_putative_C_expressed

NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36460 -19956 zinc_RING_finger_protein_C_putative_C_expressed

NPQ_i_10 Chr9 21018158 3.58E-06 LOC_Os09g36400 10716 expressed_protein

NPQ_i_10 Chr12 18090308 4.16E-06 LOC_Os12g30130 20510 hypothetical_protein

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02520 15404 OsSAUR31_-_Auxin-responsive_SAUR_gene_family_member_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02530 9574 OsSAUR32_-_Auxin-responsive_SAUR_gene_family_member_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02550 491 proteasome_subunit_C_putative_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02560 -782 DUF1517_domain_containing_protein_C_putative_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02580 -13119 expressed_protein

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02590 -18580 expressed_protein

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02600 -19702 methyltransferase_domain_containing_protein_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02570 -6731 DUF1517_domain_containing_protein_C_putative_C_expressed

NPQ_i_10 Chr8 1055591 6.38E-06 LOC_Os08g02540 5582 adenylate_kinase_C_putative_C_expressed

NPQ_i_10 Chr12 18113120 8.46E-06 LOC_Os12g30150 11283 CAMK_CAMK_like.47_-_CAMK_includes_calcium_Fcalmodulin_depedent_protein_kinases_C_expressed

NPQ_i_10 Chr12 18113120 8.46E-06 LOC_Os12g30160 3121 hypothetical_protein

NPQ_i_10 Chr12 18113120 8.46E-06 LOC_Os12g30170 0 expressed_protein

NPQ_i_10 Chr12 18113120 8.46E-06 LOC_Os12g30180 -2788 protein_kinase_domain_containing_protein_C_expressed

NPQ_i_10 Chr12 18113120 8.46E-06 LOC_Os12g30190 -8623 expressed_protein

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42920 24432 DTA2_C_putative_C_expressed

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42930 21163 expressed_protein

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42940 13676 MSP_domain_containing_protein_C_expressed

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42950 2583 YABBY_domain_containing_protein_C_putative_C_expressed

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42960 -10220 thylakoid_lumenal_protein_C_putative_C_expressed

NPQ_i_90 Chr2 25845312 3.25E-08 LOC_Os02g42970 -14192 NAC_domain_containing_protein_C_putative_C_expressed

NPQ_i_90 Chr7 25675834 1.41E-06 LOC_Os07g42910 -16000 cytochrome_c_oxidase_subunit_C_putative_C_expressed

NPQ_i_90 Chr7 25675834 1.41E-06 LOC_Os07g42924 -20966 dehydrogenase_C_putative_C_expressed

NPQ_i_90 Chr7 25638781 2.93E-06 LOC_Os07g42860 -23986 cyclin_C_putative_C_expressed

NPQ_i_90 Chr7 25659807 4.31E-06 LOC_Os07g42900 -23466 helicase_domain-containing_protein_C_putative_C_expressed

NPQ_i_90 Chr5 20030433 4.84E-06 LOC_Os05g33920 1079 pentatricopeptide_C_putative_C_expressed

NPQ_i_90 Chr5 20030433 4.84E-06 LOC_Os05g33930 -1518 expressed_protein

NPQ_i_90 Chr5 20030433 4.84E-06 LOC_Os05g33940 -7415 alpha_Fbeta_hydrolase_fold_C_putative_C_expressed
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NPQ_i_90 Chr5 20030433 4.84E-06 LOC_Os05g33960 -14761 peptide_transporter_PTR2_C_putative_C_expressed

NPQ_i_90 Chr5 20030433 4.84E-06 LOC_Os05g33970 -24913 hypothetical_protein

NPQ_i_90 Chr7 25656984 5.68E-06 LOC_Os07g42895 -23849 expressed_protein

NPQ_i_90 Chr7 25622487 5.91E-06 LOC_Os07g42820 -23501 ADP-ribosylation_factor_C_putative_C_expressed

NPQ_i_90 Chr7 25636635 5.94E-06 LOC_Os07g42850 -24935 hypothetical_protein

NPQ_i_90 Chr7 25648503 6.29E-06 LOC_Os07g42880 -23698 PPR_repeat_containing_protein_C_expressed

NPQ_i_90 Chr7 25619020 6.63E-06 LOC_Os07g42790 -14650 caltractin_C_putative_C_expressed

NPQ_i_90 Chr7 25619020 6.63E-06 LOC_Os07g42800 -17683 heat_shock_protein_DnaJ_C_putative_C_expressed

NPQ_i_90 Chr7 25619020 6.63E-06 LOC_Os07g42810 -21827 adaptor_complexes_medium_subunit_family_domain_containing_protein_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42680 15805 phytosulfokines_1_precursor_C_putative_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42690 10259 bZIP_transcription_factor_domain_containing_protein_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42700 5474 zinc_finger_C_C3HC4_type_domain_containing_protein_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42730 -10992 OsPOP14_-_Putative_Prolyl_Oligopeptidase_homologue_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42740 -16292 expressed_protein

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42754 -20928 expressed_protein

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42770 -24119 type_II_intron_maturase_protein_C_putative_C_expressed

NPQ_i_90 Chr6 25687749 7.49E-06 LOC_Os06g42720 -2348 amino_acid_transporter_C_putative_C_expressed

NPQ_i_90 Chr4 3298032 7.89E-06 LOC_Os04g06300 0 expressed_protein

NPQ_i_90 Chr4 3298032 7.89E-06 LOC_Os04g06340 -12303 MEGL11_-_Maternally_expressed_gene_MEG_family_protein_precursor_C_expressed

NPQ_i_90 Chr4 3298032 7.89E-06 LOC_Os04g06350 -14088 expressed_protein

NPQ_i_90 Chr4 3298032 7.89E-06 LOC_Os04g06280 20181 expressed_protein

NPQ_i_90 Chr5 19941411 8.23E-06 LOC_Os05g33810 8949 OsSPL9_-_SBP-box_gene_family_member_C_expressed

NPQ_i_90 Chr5 19941411 8.23E-06 LOC_Os05g33820 3167 lipase_C_putative_C_expressed

NPQ_i_90 Chr5 19941411 8.23E-06 LOC_Os05g33830 -11971 zinc_finger_C_C3HC4_type_domain_containing_protein_C_expressed

NPQ_i_90 Chr5 19941411 8.23E-06 LOC_Os05g33840 -15728 transketolase_C_putative_C_expressed

NPQ_i_90 Chr7 25652799 8.35E-06 LOC_Os07g42890 -24996 GRAM_domain_containing_protein_C_expressed

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42730 16714 EF_hand_family_protein_C_expressed

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42750 0 DDT_domain_containing_protein_C_putative_C_expressed

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42760 -8977 expressed_protein

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42770 -14216 CAMK_CAMK_like.35_-_CAMK_includes_calcium_Fcalmodulin_depedent_protein_kinases_C_expressed

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42780 -24655 expressed_protein

NPQ_i_90 Chr7 25602948 8.44E-06 LOC_Os07g42740 10138 DUF1645_domain_containing_protein_C_putative_C_expressed

NPQ_i_90 Chr3 27729841 9.63E-06 LOC_Os03g48600 19343 domain_of_unknown_function_DUF966_domain_containing_protein_C_expressed

NPQ_i_90 Chr3 27729841 9.63E-06 LOC_Os03g48610 9665 galactosyltransferase_family_protein_C_putative_C_expressed

NPQ_i_90 Chr3 27729841 9.63E-06 LOC_Os03g48626 787 expressed_protein

NPQ_i_90 Chr3 27729841 9.63E-06 LOC_Os03g48642 -732 hypothetical_protein

NPQ_i_90 Chr3 27729841 9.63E-06 LOC_Os03g48660 -6450 DUF1336_domain_containing_protein_C_expressed

NPQ_i_90 Chr9 18720950 9.81E-06 LOC_Os09g31100 19018 expressed_protein

NPQ_i_90 Chr9 18720950 9.81E-06 LOC_Os09g31120 10635 pirin_C_putative_C_expressed

NPQ_i_90 Chr9 18720950 9.81E-06 LOC_Os09g31130 2086 citrate_transporter_C_putative_C_expressed

NPQ_i_90 Chr9 18720950 9.81E-06 LOC_Os09g31140 -14065 ZOS9-16_-_C2H2_zinc_finger_protein_C_expressed

NPQ_i_90 Chr9 18720950 9.81E-06 LOC_Os09g31160 -19582 glutamate_receptor_precursor_C_putative_C_expressed

NPQ_i_rate Chr6 21007563 2.16E-06 LOC_Os06g35950 24315 expressed_protein

NPQ_i_rate Chr6 21007563 2.16E-06 LOC_Os06g35960 8696 HSF-type_DNA-binding_domain_containing_protein_C_expressed

NPQ_i_rate Chr6 21007563 2.16E-06 LOC_Os06g35970 0 meiosis_5_C_putative_C_expressed

NPQ_i_rate Chr6 21007563 2.16E-06 LOC_Os06g35980 -7896 expressed_protein

NPQ_i_rate Chr6 21007563 2.16E-06 LOC_Os06g35990 -14274 expressed_protein

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35814 18744 ras-related_protein_C_putative_C_expressed

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35830 13249 expressed_protein

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35850 1963 lectin_protein_kinase_family_protein_C_putative_C_expressed

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35860 -4076 expressed_protein

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35870 -8780 lectin_protein_kinase_family_protein_C_putative_C_expressed

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35880 -11172 hypothetical_protein

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35890 -18875 expressed_protein

NPQ_i_rate Chr6 20920460 5.30E-06 LOC_Os06g35900 -20660 BES1_FBZR1_homolog_protein_C_putative_C_expressed

NPQ_i_rate Chr6 20929176 6.44E-06 LOC_Os06g35920 -24264 expressed_protein

NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42850 17865 hypothetical_protein

NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42860 14871 cyclin_C_putative_C_expressed

NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42890 339 GRAM_domain_containing_protein_C_expressed

NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42895 -646 expressed_protein
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NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42900 -3086 helicase_domain-containing_protein_C_putative_C_expressed
NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42910 -11647 cytochrome_c_oxidase_subunit_C_putative_C_expressed
NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42924 -16613 dehydrogenase_C_putative_C_expressed
NPQ_i_rate Chr7 25680187 7.39E-06 LOC_Os07g42880 6112 PPR_repeat_containing_protein_C_expressed
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g31971 19041 expressed_protein
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g32000 9266 expressed_protein
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g32004 6029 expressed_protein
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g32020 -4641 2-oxoglutarate_dehydrogenase_E1_component_C_mitochondrial_precursor_C_putative_C_expressed
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g32030 -18060 heavy_metal-associated_domain_containing_protein_C_expressed
NPQ_i_rate Chr4 19171062 7.59E-06 LOC_Os04g32010 0 thiamine_pyrophosphate_enzyme_C_C-terminal_TPP_binding_domain_containing_protein_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08760 6414 choline_Fethanolamine_kinase_C_putative_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08770 1333 WD_domain_C_G-beta_repeat_domain_containing_protein_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08780 0 endonuclease_Fexonuclease_Fphosphatase_family_domain_containing_protein_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08790 -12002 histone-like_transcription_factor_and_archaeal_histone_C_putative_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08800 -13869 cytochrome_P450_C_putative_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08810 -17904 cytochrome_P450_C_putative_C_expressed
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08814 -20478 expressed_protein
NPQ_i_rate Chr1 4403414 7.73E-06 LOC_Os01g08750 9331 expressed_protein
NPQ_i_rate Chr6 20924713 7.79E-06 LOC_Os06g35910 -21431 FYVE_zinc_finger_domain_containing_protein_C_expressed
NPQ_i_slope Chr12 18122989 4.69E-06 LOC_Os12g30150 21152 CAMK_CAMK_like.47_-_CAMK_includes_calcium_Fcalmodulin_depedent_protein_kinases_C_expressed
NPQ_i_slope Chr12 18122989 4.69E-06 LOC_Os12g30160 12990 hypothetical_protein
NPQ_i_slope Chr12 18122989 4.69E-06 LOC_Os12g30170 9254 expressed_protein
NPQ_i_slope Chr12 18122989 4.69E-06 LOC_Os12g30180 2309 protein_kinase_domain_containing_protein_C_expressed
NPQ_i_slope Chr12 18122989 4.69E-06 LOC_Os12g30190 995 expressed_protein
NPQ_r_10 Chr7 3834831 1.21E-06 LOC_Os07g07690 -24924 PHD-finger_domain_containing_protein_C_expressed
NPQ_r_10 Chr7 3848041 1.27E-06 LOC_Os07g07709 -24093 ribosomal_protein_S13p_FS18e_C_putative_C_expressed
NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07580 22298 ROOT_HAIRLESS_1_C_putative_C_expressed
NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07590 17194 expressed_protein
NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07610 5800 RNA_polymerase_subunit_C_putative_C_expressed
NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07620 2412 pentatricopeptide_C_putative_C_expressed

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07630 0 expressed_protein

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07640 -2055 hypothetical_protein

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07646 -7370 expressed_protein

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07654 -11089 BT1_family_protein_C_putative_C_expressed

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07670 -20433 expressed_protein

NPQ_r_10 Chr7 3823141 2.82E-06 LOC_Os07g07680 -23230 frigida_C_putative_C_expressed

NPQ_r_10 Chr7 3855998 4.15E-06 LOC_Os07g07715 -24798 expressed_protein

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38870 19810 expressed_protein

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38880 17816 hypothetical_protein

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38910 0 expressed_protein

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38930 -6057 leucine-rich_repeat_receptor_protein_kinase_EXS_precursor_C_putative_C_expressed

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38950 -17264 ABC_transporter_C_ATP-binding_protein_C_putative_C_expressed

NPQ_r_10 Chr6 23087961 9.46E-06 LOC_Os06g38940 -10896 RMD5_homolog_A_C_putative_C_expressed

NPQmax Chr2 104656 1.78E-06 LOC_Os02g01200 -7772 glutaredoxin_C_putative_C_expressed

NPQmax Chr2 104656 1.78E-06 LOC_Os02g01210 -14735 amino_acid_transporter_C_putative_C_expressed

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35190 13554 powdery_mildew_resistant_protein_5_C_putative_C_expressed

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35200 7804 glycosyl_transferase_C_putative_C_expressed

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35210 -2470 hypothetical_protein

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35220 -18072 hypothetical_protein

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35230 -19669 expressed_protein

NPQmax Chr5 20911445 2.95E-06 LOC_Os05g35240 -24777 expressed_protein

NPQmax Chr2 202415 4.05E-06 LOC_Os02g01380 -17162 expressed_protein

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43650 13532 expressed_protein

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43660 11197 expressed_protein

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43670 6644 IQ_calmodulin-binding_motif_family_protein_C_putative_C_expressed

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43690 -76 glucan_endo-1_C3-beta-glucosidase-like_protein_3_precursor_C_putative_C_expressed

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43700 -3250 expressed_protein

NPQmax Chr5 25399165 4.33E-06 LOC_Os05g43680 3111 expressed_protein

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01110 16917 translation_initiation_factor_IF-3_C_putative_C_expressed

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01120 14690 expressed_protein
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NPQmax Chr2 81643 5.93E-06 LOC_Os02g01130 7779 expressed_protein

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01140 2064 GDSL-like_lipase_Facylhydrolase_C_putative_C_expressed

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01160 -3689 skp1_family_C_tetramerisation_domain_containing_protein_C_expressed

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01170 -4821 HECT-domain_domain_containing_protein_C_expressed

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01150 0 erythronate-4-phosphate_dehydrogenase_domain_containing_protein_C_expressed

NPQmax Chr2 81643 5.93E-06 LOC_Os02g01180 -16355 kinesin_motor_domain_containing_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01220 19955 rhodanese-like_domain_containing_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01230 17403 ribosomal_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01245 12437 expressed_protein

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01240 12437 CPuORF11_-_conserved_peptide_uORF-containing_transcript_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01250 9495 LSM_domain_containing_protein_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01275 -5196 expressed_protein

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01280 -11070 T-complex_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01300 -17901 invertase_Fpectin_methylesterase_inhibitor_family_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01310 -20849 invertase_Fpectin_methylesterase_inhibitor_family_protein_C_putative_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01270 0 START_domain_containing_protein_C_expressed

NPQmax Chr2 147592 6.99E-06 LOC_Os02g01290 -15719 expressed_protein

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01326 6456 auxin-induced_protein_5NG4_C_putative_C_expressed

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01332 2384 ribosomal_protein_L6_C_putative_C_expressed

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01340 499 ferredoxin--NADP_reductase_C_chloroplast_precursor_C_putative_C_expressed

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01350 -1652 expressed_protein

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01365 -13398 expressed_protein

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01355 -13398 MADS-box_transcription_factor_C_putative_C_expressed

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01360 -19598 OsMADS60_-_MADS-box_family_gene_with_MIKCc_type-box_C_expressed

NPQmax Chr2 185826 8.38E-06 LOC_Os02g01370 -21924 hypothetical_protein

NPQmax Chr2 86472 8.76E-06 LOC_Os02g01190 -24291 POEI25_-_Pollen_Ole_e_I_allergen_and_extensin_family_protein_precursor_C_expressed

Plant_height Chr11 12938384 1.38E-06 LOC_Os11g22490 9636 hypothetical_protein

Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26060 16787 expressed_protein

Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26070 14526 expressed_protein

Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26090 0 GPI-anchored_wall_transfer_protein_1_C_putative_C_expressed

Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26120 -11182 hypothetical_protein
Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26130 -15054 MYB_family_transcription_factor_C_putative_C_expressed
Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26044 22149 CSLA5_-_cellulose_synthase-like_family_A%3B_mannan_synthase_C_expressed
Plant_height Chr3 14952545 5.39E-06 LOC_Os03g26080 10242 nucleoside-triphosphatase_C_putative_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15740 13907 expressed_protein
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15750 5270 proteasome_Fcyclosome_repeat_containing_protein_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15760 2165 expressed_protein
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15770 -390 CPuORF13_-_conserved_peptide_uORF-containing_transcript_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15775 -2348 expressed_protein
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15780 -4805 expressed_protein
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15790 -9468 ras-related_protein_C_putative_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15810 -18117 bifunctional_protein_folD_C_putative_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15820 -21363 aldose_1-epimerase_C_putative_C_expressed
Plant_height Chr9 9634061 8.04E-06 LOC_Os09g15800 -13656 tetratricopeptide-like_helical_C_putative_C_expressed
Plant_height Chr9 9637938 8.04E-06 LOC_Os09g15830 -23835 expressed_protein
Plant_height Chr9 9640513 8.04E-06 LOC_Os09g15835 -22943 OBP32pep_C_putative_C_expressed
qP Chr5 18451100 1.43E-06 LOC_Os05g31730 -24423 transporter_C_monovalent_cation%3Aproton_antiporter-2_family_C_putative_C_expressed
qP Chr5 18449522 3.38E-06 LOC_Os05g31650 23103 expressed_protein
qP Chr5 18449522 3.38E-06 LOC_Os05g31660 20689 expressed_protein
qP Chr5 18449522 3.38E-06 LOC_Os05g31670 19229 AWPM-19-like_membrane_family_protein_C_putative_C_expressed
qP Chr5 18449522 3.38E-06 LOC_Os05g31680 11826 expressed_protein
qP Chr5 18449522 3.38E-06 LOC_Os05g31720 -17441 stromal_membrane-associated_protein_C_putative_C_expressed
qP Chr5 18449522 3.38E-06 LOC_Os05g31690 0 expressed_protein
qP Chr5 18449522 3.38E-06 LOC_Os05g31710 -13859 expressed_protein
qP Chr10 5335554 4.94E-06 LOC_Os10g09820 16919 no_apical_meristem_protein_C_putative_C_expressed
qP Chr10 5335554 4.94E-06 LOC_Os10g09830 14603 expressed_protein
qP Chr10 5335554 4.94E-06 LOC_Os10g09850 5583 EF_hand_family_protein_C_putative_C_expressed
qP Chr10 5335554 4.94E-06 LOC_Os10g09860 0 chalcone_synthase_C_putative_C_expressed
qP Chr10 5335554 4.94E-06 LOC_Os10g09870 -5412 HVA22_C_putative_C_expressed
SD_ratio Chr10 9171041 6.31E-06 LOC_Os10g18080 3189 expressed_protein
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SD_ratio Chr10 9171041 6.31E-06 LOC_Os10g18084 823 expressed_protein
SD_ratio Chr10 9171041 6.31E-06 LOC_Os10g18090 0 expressed_protein
SD_ratio Chr10 9171041 6.31E-06 LOC_Os10g18070 6219 expressed_protein
SD_ratio Chr10 9171041 6.31E-06 LOC_Os10g18099 -13584 WRKY18_C_expressed
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55030 24584 DNA-binding_protein-related_C_putative_C_expressed
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55040 16313 1_C3-beta-glucan_synthase_component_C_putative_C_expressed
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55060 5279 expressed_protein
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55070 776 pentatricopeptide_C_putative_C_expressed
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55080 -4659 expressed_protein
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55050 8538 protein_of_unknown_function_DUF1421_domain_containing_protein_C_expressed
SD_ratio Chr1 31665069 9.75E-06 LOC_Os01g55094 -13242 expressed_protein
SD_ratio Chr10 8518947 9.85E-06 LOC_Os10g16990 9320 expressed_protein
SD_ratio Chr10 8518947 9.85E-06 LOC_Os10g17000 4389 expressed_protein
SD_ratio Chr10 8518947 9.85E-06 LOC_Os10g17010 0 expressed_protein
SD_ratio Chr10 8518947 9.85E-06 LOC_Os10g16974 14618 cytochrome_P450_C_putative_C_expressed
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g09950 17940 acyl-desaturase_C_chloroplast_precursor_C_putative_C_expressed
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g09960 16094 expressed_protein
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g09970 9515 expressed_protein
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g09990 -2346 expressed_protein
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g10000 -9119 expressed_protein
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g10010 -15795 acyl-desaturase_C_chloroplast_precursor_C_putative_C_expressed
shoot_area Chr8 5771687 1.84E-06 LOC_Os08g09940 19201 GTP-binding_protein_C_putative_C_expressed
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38880 22898 DUF623_domain_containing_protein_C_expressed
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38890 15575 expressed_protein
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38910 7531 expressed_protein
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38920 4477 protein_kinase_domain_containing_protein_C_expressed
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38930 218 shikimate_Fquinate_5-dehydrogenase_C_putative_C_expressed
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38940 -5890 fatty_acid_hydroxylase_C_putative_C_expressed
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38954 -21071 hypothetical_protein
shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38900 7531 erythronate-4-phosphate_dehydrogenase_C_putative_C_expressed

shoot_area Chr10 20738531 3.69E-06 LOC_Os10g38950 -17558 CGMC_MAPKCMGC_2_ERK.14_-_CGMC_includes_CDA_C_MAPK_C_GSK3_C_and_CLKC_kinases_C_expressed
shoot_area Chr10 11276061 3.80E-06 LOC_Os10g21890 20472 glycosyl_transferase_family_8_C_putative_C_expressed
shoot_area Chr10 11276061 3.80E-06 LOC_Os10g21910 0 acetyl-CoA_carboxylase_C_putative_C_expressed
shoot_area Chr10 11276061 3.80E-06 LOC_Os10g21920 -13157 PPR_repeat_containing_protein_C_expressed
shoot_area Chr10 11276061 3.80E-06 LOC_Os10g21930 -24669 OsFBK21_-_F-box_domain_and_kelch_repeat_containing_protein_C_expressed
shoot_area Chr10 11282193 3.80E-06 LOC_Os10g21940 -22798 expressed_protein
shoot_area Chr10 11321265 8.58E-06 LOC_Os10g21970 -21267 expressed_protein
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18880 18021 ubiquitin_carboxyl-terminal_hydrolase_C_family_1_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18890 15661 peroxidase_precursor_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18900 10360 stigma_specific_peroxidase_precursor_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18910 5355 peroxidase_precursor_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18920 1935 hAT_dimerisation_domain-containing_protein_C_putative
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18930 -3777 peroxidase_precursor_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18940 -5934 expressed_protein
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18950 -15290 peroxidase_precursor_C_putative_C_expressed
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18960 -17907 hypothetical_protein
trmmol Chr1 10697849 5.41E-06 LOC_Os01g18970 -22570 peroxidase_precursor_C_putative_C_expressed
trmmol Chr5 14344075 9.26E-06 LOC_Os05g24760 -11121 harpin-induced_protein_1_domain_containing_protein_C_expressed
trmmol Chr5 14344075 9.26E-06 LOC_Os05g24770 -12005 reticulon_domain_containing_protein_C_putative_C_expressed
trmmol Chr5 14344075 9.26E-06 LOC_Os05g24780 -16659 OsCML21_-_Calmodulin-related_calcium_sensor_protein_C_expressed
VPD Chr4 7370371 5.19E-06 LOC_Os04g13300 -21264 hypothetical_protein
VPD Chr4 7356808 6.37E-06 LOC_Os04g13280 -3832 expressed_protein
VPD Chr4 7356808 6.37E-06 LOC_Os04g13260 0 expressed_protein
VPD Chr1 40330703 6.84E-06 LOC_Os01g69830 -1030 OsSPL2_-_SBP-box_gene_family_member_C_expressed
VPD Chr1 40330703 6.84E-06 LOC_Os01g69840 -6030 expressed_protein
VPD Chr1 40330703 6.84E-06 LOC_Os01g69850 -13626 OsMADS65_-_MADS-box_family_gene_with_MIKC_A_type-box_C_expressed
VPD Chr4 11930383 7.59E-06 LOC_Os04g21170 11300 hypothetical_protein
VPD Chr4 11930383 7.59E-06 LOC_Os04g21160 12328 triacylglycerol_lipase_1_precursor_C_putative_C_expressed
VPD Chr7 21075730 8.30E-06 LOC_Os07g35150 23779 hypothetical_protein
VPD Chr7 21075730 8.30E-06 LOC_Os07g35160 20936 expressed_protein
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VPD Chr7 21075730 8.30E-06 LOC_Os07g35180 12762 hypothetical_protein

VPD Chr7 21075730 8.30E-06 LOC_Os07g35190 2010 expressed_protein

VPD Chr7 21075730 8.30E-06 LOC_Os07g35200 261 expressed_protein

VPD Chr7 21075730 8.30E-06 LOC_Os07g35220 -7972 hypothetical_protein

VPD Chr4 11879396 8.34E-06 LOC_Os04g21120 -8408 expressed_protein

VPD Chr4 11879396 8.34E-06 LOC_Os04g21110 0 phosphoribulokinase_FUridine_kinase_family_protein_C_expressed

VPD Chr4 11879396 8.34E-06 LOC_Os04g21130 -15286 F-box_protein_PP2-B1_C_putative_C_expressed

VPD Chr4 7292815 8.76E-06 LOC_Os04g13190 3757 expressed_protein

VPD Chr4 7292815 8.76E-06 LOC_Os04g13200 -4522 expressed_protein

VPD Chr7 21135722 8.89E-06 LOC_Os07g35290 10427 TKL_IRAK_DUF26-lc.10_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35300 3192 TKL_IRAK_DUF26-lc.11_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35330 -5219 TKL_IRAK_DUF26-lc.13_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35335 -9067 expressed_protein

VPD Chr7 21135722 8.89E-06 LOC_Os07g35340 -10757 TKL_IRAK_DUF26-lc.14_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35360 -18363 expressed_protein

VPD Chr7 21135722 8.89E-06 LOC_Os07g35370 -19628 TKL_IRAK_DUF26-lc.15_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35280 14720 TKL_IRAK_DUF26-lc.1_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35310 0 TKL_IRAK_DUF26-lc.12_-_DUF26_kinases_have_homology_to_DUF26_containing_loci_C_expressed

VPD Chr7 21135722 8.89E-06 LOC_Os07g35350 -14289 glucan_endo-1_C3-beta-glucosidase_precursor_C_putative_C_expressed

VPD Chr4 12011935 9.31E-06 LOC_Os04g21320 -14983 membrane_associated_DUF588_domain_containing_protein_C_putative_C_expressed

VPD Chr4 7323981 9.66E-06 LOC_Os04g13230 -3210 expressed_protein

VPD Chr4 7323981 9.66E-06 LOC_Os04g13210 11686 multidrug_resistance-associated_protein_C_putative_C_expressed

VPD Chr4 7323981 9.66E-06 LOC_Os04g13220 0 ABC_transporter_family_protein_C_putative_C_expressed

VPD Chr10 3748132 9.68E-06 LOC_Os10g07080 17767 expressed_protein

VPD Chr10 3748132 9.68E-06 LOC_Os10g07114 4222 expressed_protein

VPD Chr10 3748132 9.68E-06 LOC_Os10g07120 3606 expressed_protein

VPD Chr10 3748132 9.68E-06 LOC_Os10g07130 1983 expressed_protein

VPD Chr1 40291506 9.75E-06 LOC_Os01g69279 13344 expressed_protein

VPD Chr1 40291506 9.75E-06 LOC_Os01g69290 4328 antifreeze_glycoprotein_C_putative_C_expressed

WUE Chr6 10535084 1.32E-06 LOC_Os06g18080 5130 collagen_adhesion_protein_C_putative_C_expressed

WUE Chr6 10535084 1.32E-06 LOC_Os06g18120 -14814 expressed_protein

WUE Chr6 10535084 1.32E-06 LOC_Os06g18140 -18225 UDP-glucoronosyl_and_UDP-glucosyl_transferase_domain_containing_protein_C_expressed

WUE Chr6 10485965 1.90E-06 LOC_Os06g17990 23003 expressed_protein

WUE Chr6 10485965 1.90E-06 LOC_Os06g18010 5063 UDP-glucoronosyl_and_UDP-glucosyl_transferase_domain_containing_protein_C_expressed

WUE Chr6 10485965 1.90E-06 LOC_Os06g18020 -2483 expressed_protein

WUE Chr6 10485965 1.90E-06 LOC_Os06g18040 -17626 hypothetical_protein

WUE Chr6 10485965 1.90E-06 LOC_Os06g18000 14737 protein_kinase_domain_containing_protein_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59020 23966 cytochrome_P450_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59030 22856 expressed_protein

WUE Chr1 34140727 2.69E-06 LOC_Os01g59040 15402 expressed_protein

WUE Chr1 34140727 2.69E-06 LOC_Os01g59050 7346 cytochrome_P450_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59060 5081 50S_ribosomal_protein_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59070 3143 expressed_protein

WUE Chr1 34140727 2.69E-06 LOC_Os01g59080 1018 expressed_protein

WUE Chr1 34140727 2.69E-06 LOC_Os01g59090 0 thylakoid_lumenal_20_kDa_protein_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59110 -5434 indole-3-acetate_beta-glucosyltransferase_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59120 -8704 cyclin_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59130 -12603 proline-rich_family_protein_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59140 -22792 DNA-directed_RNA_polymerases_I_C_II_C_and_III_subunit_RPABC1_C_putative_C_expressed

WUE Chr1 34140727 2.69E-06 LOC_Os01g59100 -676 cytokinin-N-glucosyltransferase_1_C_putative_C_expressed

WUE Chr2 6432419 2.71E-06 LOC_Os02g12330 13041 expressed_protein

WUE Chr2 6432419 2.71E-06 LOC_Os02g12350 1799 histone_deacetylase_C_putative_C_expressed

WUE Chr2 6432419 2.71E-06 LOC_Os02g12370 -10712 expressed_protein

WUE Chr2 6432419 2.71E-06 LOC_Os02g12380 -14659 histone_deacetylase_C_putative_C_expressed

WUE Chr2 6432419 2.71E-06 LOC_Os02g12360 -801 nuclear_protein_ZAP-related_C_putative_C_expressed

WUE Chr2 6432419 2.71E-06 LOC_Os02g12340 8415 conserved_hypothetical_protein

WUE Chr2 6445032 3.35E-06 LOC_Os02g12400 -23535 receptor-like_protein_kinase_precursor_C_putative_C_expressed

WUE Chr1 34144047 5.81E-06 LOC_Os01g59150 -23886 tubulin_FFtsZ_domain_containing_protein_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01590 18697 expressed_protein

WUE Chr8 372529 7.39E-06 LOC_Os08g01610 5965 DUF250_domain_containing_protein_C_putative_C_expressed
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WUE Chr8 372529 7.39E-06 LOC_Os08g01620 1543 shwachman-Bodian-Diamond_syndrome_protein_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01630 0 DNA_repair_metallo-beta-lactamase_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01640 -1562 Rf1_C_mitochondrial_precursor_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01650 -8778 Rf1_C_mitochondrial_precursor_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01660 -11559 mago_nashi_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01670 -17133 invertase_Fpectin_methylesterase_inhibitor_family_protein_C_putative_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01680 -22699 WD_domain_C_G-beta_repeat_domain_containing_protein_C_expressed

WUE Chr8 372529 7.39E-06 LOC_Os08g01600 11734 polygalacturonase_C_putative_C_expressed

WUE Chr1 34185829 7.93E-06 LOC_Os01g59200 -15690 DUF617_domain_containing_protein_C_expressed

WUE Chr1 34168462 8.16E-06 LOC_Os01g59170 -12221 hypothetical_protein

WUE Chr1 34168462 8.16E-06 LOC_Os01g59180 -13829 OsFBX27_-_F-box_domain_containing_protein_C_expressed

WUE Chr1 34168462 8.16E-06 LOC_Os01g59160 -7459 UBA_FTS-N_domain_containing_protein_C_expressed

WUE Chr1 34168462 8.16E-06 LOC_Os01g59190 -24518 expressed_protein

WUE Chr6 10584075 8.50E-06 LOC_Os06g18150 20216 expressed_protein

WUE Chr6 10584075 8.50E-06 LOC_Os06g18160 17894 expressed_protein

WUE Chr6 10584075 8.50E-06 LOC_Os06g18164 2556 expressed_protein

WUE Chr6 10584075 8.50E-06 LOC_Os06g18670 -4070 anthocyanidin_3-O-glucosyltransferase_C_putative_C_expressed

WUE Chr6 10584075 8.50E-06 LOC_Os06g18680 -11266 expressed_protein

WUE Chr6 10584075 8.50E-06 LOC_Os06g18690 -15129 expressed_protein

WUE Chr6 3933935 8.92E-06 LOC_Os06g08080 9526 inorganic_H_B_pyrophosphatase_C_putative_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08090 5990 heparanase-like_protein_precursor_C_putative_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08110 -92 nodulin_C_putative_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08120 -7752 plant_protein_of_unknown_function_domain_containing_protein_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08130 -12890 expressed_protein

WUE Chr6 3933935 8.92E-06 LOC_Os06g08154 -22978 receptor-like_protein_kinase_5_precursor_C_putative_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08140 -13991 protein_phosphatase_2C_C_putative_C_expressed

WUE Chr6 3933935 8.92E-06 LOC_Os06g08100 1133 jp18_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18850 17733 OsSPL1_-_SBP-box_gene_family_member_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18860 14375 S-adenosylmethionine_synthetase_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18880 -655 ubiquitin_carboxyl-terminal_hydrolase_C_family_1_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18890 -4976 peroxidase_precursor_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18900 -12681 stigma_specific_peroxidase_precursor_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18910 -16886 peroxidase_precursor_C_putative_C_expressed

WUE Chr1 10674512 9.15E-06 LOC_Os01g18920 -18815 hAT_dimerisation_domain-containing_protein_C_putative

WUE Chr1 10674512 9.15E-06 LOC_Os01g18870 7609 helix-loop-helix_DNA-binding_domain_containing_protein_C_expressed
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