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Abstract 

Listening effort is the deliberate allocation of mental resources to carry out a listening 

task. Spending effort can be rewarding if it yields desired results but to invest listening 

effort constantly will lead to negative consequences such as fatigue, difficulties in 

speech recall, and social disengagement, especially for hearing-impaired individuals.  

Listening effort can be measured subjectively via questionnaire and/or objectively via 

behavioural and physiological measures. One of the most used measures for listening 

effort objectively is electroencephalography (EEG). EEG is a brain-imaging modality 

which provides excellent temporal resolution to study brain oscillations. EEG picks up 

electrical activities on the head (scalp EEG) or from the ears (ear-EEG) for 

investigating the brain in different cognitive tasks. Alpha power is one of the features 

that can be extracted from the EEG signal and has been widely used for measuring 

auditory and non-auditory effort. In this thesis, EEG will be recorded during effortful 

listening tasks, and alpha power will be extracted to investigate listening effort.  

One of the downsides of the studies on listening effort is controlling (or not 

controlling) different parameters in the experimental environment which reduces 

generalisability to real-life scenarios. The aim of the current thesis is to measure 

listening effort in settings which are more ecologically valid compared to traditional 

laboratory scenarios. To increase ecological validity, motivation of individuals will be 

manipulated (through monetary reward) to account for personal factors, and different 

rooms will be simulated (through characterisation of reverberation time) to account for 

environmental factors in effortful tasks which involve listening to speech in noise. 

Single sentences or continuous discourse will be presented as stimuli speech to cover 

more realistic conversation in everyday life. Additionally, as a new and wearable 

technology, ear-EEG will be used in one study which has the potential to be used as 

an ambulatory EEG measurement in hearing aids.   

The main hypothesis of the thesis is that alpha power increases with increased listening 

effort. The overall results of five different studies in ecologically valid situations 

showed that the pattern of alpha power can be opposite when listeners are presented 

with single-sentence stimuli or continuous discourse. In single-sentence paradigm, in 

line with the hypothesis, alpha power reflected listening effort. However, in 

continuous speech alpha power indicated performance of the individuals rather than 

expenditure of resources in the brain. These results suggest that applying a one-

measure-for-all-scenarios approach when measuring listening effort is not reliable in 

a real-life setting.  
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Chapter 1  

Concepts and Background 

1.1 Introduction 

In our everyday lives, we are constantly listening to the world around us. Listening is 

the key to effective communication with people around us. However, when the 

listening situation is difficult, it becomes an unpleasant experience that people would 

try to avoid it.  

A reason for that is when listening situation is difficult, we need to invest more 

“listening effort”. Listening effort, similar to any other kind of mental effort, requires 

resources which should be drawn from the brain that could be otherwise used for other 

cognitive tasks. Spending effort can be rewarding if it yields desired results but to 

invest listening effort constantly will lead to many negative consequences as well. The 

most obvious one is that listening effort makes the person fatigued (McGarrigle et al., 

2014). Spending too much effort also takes away “recall-speech” resources in the 

brain, which makes remembering things they hear more difficult (van Engen et al., 

2012; Ward et al., 2016). Another downside is that when the listener has to spend effort 

constantly in order to hear sounds or speech, they prefer to disengage from social 

situations that require constant listening (e.g., Hallberg & Carlsson, 1993) .  

Many listening situations in our daily lives (e.g., sitting in a noisy restaurant and 

listening to a conversation) can be demanding. Such situations make the listener 

exhausted due to fact that they need to invest listening effort to understand the speech. 

The effort, in this case, is to attend to the desired sound source(s) and suppress the 

unwanted interfering sound source(s) in the background. Such suppression requires 

complex processing in the brain which in return requires valuable cognitive resources 

that could be saved or used otherwise. With impaired auditory periphery more 

problems can occur as people with hearing loss have increased difficulty focusing on 

one sound source and ignoring background noise (Gatehouse & Akeroyd, 2006).   

Traditionally, behavioural measures of listening difficulty have mainly focused on 

speech intelligibility in noise  (e.g., Koelewijn et al., 2012; Nilsson et al., 1994; Plomp 

& Mimpen, 1979). However, the covert problem with listening effort is that even if 

speech intelligibility is optimal, other cognitive factors might be changing with the 
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difficulty of the task. In fact, there are several studies that have shown objectively that 

listening effort can vary, even if speech intelligibility is unchanged (e.g., Houben et 

al., 2013; Sarampalis et al., 2009; see Section 1.3 below). Therefore, studying listening 

effort beyond measures of speech intelligibility is necessary.  

Measuring listening effort can be done subjectively and objectively. The main focus 

of this thesis will be on measuring listening effort objectively via electrical brain 

activities using electroencephalography (EEG). The advantage of using EEG is in its 

rich temporal information that can capture small electrical changes on the scalp within 

milliseconds order. In addition to that, EEG has the potential to be used as a wearable 

technology, possibly alongside hearing aids (see Chapter 5). This opens up new 

opportunities for automated hearing aids setting which can change according to the 

listening situation which is constantly shifting in our daily lives.  

Therefore, it is also important to measure effort in listening situations which are 

relevant to real life. In order to do so, I will introduce different factors which are either 

personal (such as motivation) or environmental (such as conversation-like stimuli) that 

can be overlooked in studies related to listening effort. I will explore whether the 

listening effort measured with EEG data (specifically by alpha power) are affected by 

such personal and environmental factors, as well as task demand.    

1.2 Listening effort 

But what is exactly listening effort? A recent theoretical framework called Framework 

for Understanding Effortful Listening (FUEL; Pichora-Fuller et al., 2016) incorporated 

Kahneman’s Capacity Model of Attention (Kahneman, 1973), Brehm’s Motivation 

Intensity Theory (MIT; Brehm & Self, 1989), and  the Ease of Language 

Understanding (ELU) model (Rönnberg et al., 2013) to listening studies. In FUEL, 

listening effort has been defined as “the deliberate allocation of mental resources to 

overcome obstacles in goal pursuit when carrying out a [listening] task” (Pichora-

Fuller et al., 2016, p. 10S). There is one important key phrase in this definition that 

needs more elaboration: deliberate allocation of resources.  

Deliberate allocation of resources could be explained as one’s willingness and 

motivation to invest effort in a task. Therefore, motivation is an integral part of FUEL 

model. The motivation aspect of this theory is mainly derived from MIT (Brehm & 
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Self, 1989). MIT postulated that people only put in more effort for cognitive tasks if 

their effort expenditure is perceived to yield appropriate benefit. In other words, effort 

investment is proportional to task demand, but the importance of performing the task 

also plays a role in how much the person is willing to invest effort. FUEL took this 

idea and expanded it by including cognition. Also, other confounding factors such as 

working memory capacity and fatigue can vary the measured effort during a listening 

task.  

But what are the resources required for listening effort and why are they important? 

Resources are defined as means available for the execution of [listening] tasks in the 

brain (Wingfield, 2016). Their expenditure limits the available resources for other 

cognitive task such as recalling speech. The modulation of listening effort according 

to demand and motivation may be partly explained by increased allocation of working 

memory, which is particularly important for speech communication. In demanding 

listening situations, noisy representations of words lead to mismatches between the 

episodic memory and semantic memory in the working memory. Episodic memory is 

personal experiences tagged by time, place, and emotions. On the other hand, semantic 

memory is common knowledge such as meaning of the words and phonology. The 

mismatch between episodic and semantic memory calls for further explicit processing 

and storage capacity (Rönnberg et al., 2013). Thus these mismatches in speech 

representation require more cognitive processing resources for correct representation 

of words in working memory (Lemke & Besser, 2016; Peelle, 2018) which can lead to 

increased listening effort. 

In our everyday lives, listening to a speech often includes listening to multiple 

sentences that may last for more than a few seconds. Therefore, it is a natural reaction 

that the person does not invest effort evenly over time. A person can adapt to, get 

fatigued by, or lose/gain motivation in the difficult situation during this long period. 

Therefore, it is more realistic to consider a time varying resource management of 

listening effort during an ongoing task (Fig. 1.1; Strauss & Francis, (2017)). For this 

reason, it is vital to study listening effort over an extended period for more ecological 

validity.  
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Fig. 1.1 Non-stationary changes of listening effort over an extended time period (modified 

figure from Strauss & Francis, (2017)). 

1.3 Measuring listening effort 

There are great number of ways to evaluate listening effort (see Alhanbali et al., 2019) 

which can be categorized into subjective and objective measures. Subjective measures 

are based on the perception of the person who performed the task and evaluated with 

questionnaire. On the other hand, objective measures are quantifiable outcomes that 

were collected from the person during performing the task. Objective measurements 

can themselves be divided into behavioural and physiological measures (see Fig. 1.2). 

Both subjective and objective (whether it is behavioural or physiological) measures 

have their own advantages and disadvantages. In this section, I briefly introduce each 

one and discuss their strengths and weaknesses when it comes to studying listening 

effort.  

 

Fig. 1.2 Different methods of measuring listening effort with an example 
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1.3.1 Subjective measures  

To evaluate listening effort subjectively, many researchers have developed different 

questionnaires, such as NASA Task Load Index (NASA-TLX; Hart & Staveland, 

1988), Listening Effort Questionnaire-Cochlear Implant (LEQ-CI; Hughes et al., 

2019), and Adaptive Categorical Listening Effort Scaling (ACALES; Krueger et al., 

2017), that can be used for both normal hearing or hearing impaired. Subjective 

measures are based on listeners’ own perception of the difficulty of the task. Collecting 

subjective measures are convenient and can be used in many various listening 

situations. There are few instances where subjective measures have been more 

sensitive to changes of effort compared to objective measures. For example, in a study 

by Johnson et al., (2015), participants were presented a set of words with four different 

signal-to-noise ratios (SNRs) either with high or low predictability context. The results 

showed that the self-reported effort (on a four-point scale) decreased linearly with 

increasing SNR for both predictability contexts compared to word recall which was 

used as a behavioural measure of listening effort. While this study showed the 

effectiveness of subjective measures, using word recall accuracy may have not been a 

reliable measure of listening effort. Such a measure can be highly dependent on 

memory span of the individuals, which may hinder studying the effects of listening 

effort (McGarrigle et al., 2014).  

One of the reasons that subjective and objective measures do not align together is the 

fact that subjective effort is changed linearly with changing task demand, whereas 

objective measures often follow an inverted U-shaped pattern when a wide range of 

task demand is used. As an example, in the study by Zekveld and Kramer (2014), 

participants listened to speech-in-noise in 9 different SNRs from -36 dB SNR to -4 dB 

SNR in 4 dB steps. In addition to measuring correct percentage of repeated sentences 

as the performance, listening effort was measure subjectively (by a self-report scale) 

and objectively (by pupillometry). The results showed decreasing SNR led to 

decreased performance and increased subjective effort ratings, but for pupillometry it 

revealed an inverted U-shaped pattern. The inverted U phenomenon suggested the 

participants started to disengage in the lowest SNR (i.e., the most demanding 

condition) and thus highest effort was spent at the medium SNR. The inconsistencies 

between subjective and objective measures of listening effort may not be due to the 

superiority of one type of measurement to the other, but rather an indication that they 
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do not capture the same cognitive processing. In Chapter 3, we investigate how 

subjective and objective measures of listening effort can differ from each other and 

how we may be able to interpret each one.   

1.3.2 Objective measures 

1.3.2.1 Behavioural  

There are several behavioural methods that can be used for evaluation of listening 

effort (see McGarrigle et al., 2014), such as reaction time (e.g., Houben et al., 2013). 

The idea behind using reaction time is that if the task is more effortful, then it should 

take the listener longer to perform a competing task. Alternatively, dual task paradigms 

can be also used to evaluate listening effort objectively (e.g., Sarampalis et al., 2009). 

Dual task measures are based on Kahneman’s Capacity Model of Attention 

(Kahneman, 1973): if more attention is devoted to a task due to its difficulty, then less 

attention resources are available for a simultaneous task. Therefore, the reduced 

allocated attention for the secondary task can negatively impact the performance which 

can be observed via higher reaction time.   

As an example for a single-task paradigm, Houben et al., (2013) used reaction time for 

identification of the final digit of a triplet, and the summation of the initial and final 

digit. Using four different SNRs (-6, -1, +4 dB, quiet), they observed reaction time 

increased with lower SNR in both tasks. Therefore, increasing the difficulty of the task 

increased reaction time which in return could be used as a sign of listening effort 

(Houben et al., 2013). Similar results were also found using a dual-task paradigm in a 

study by Sarampalis et al., (2009). Hearing-impaired participants repeated sentences 

presented in quiet and four-talker babble over headphones while simultaneously 

responding to a visual task, measured by participant’s reaction time. Two different 

hearing aids settings (with or without noise reduction scheme) with four different 

SNRs [-6, -2, +2 and +∞ dB (quiet)] for the speech recognition task were used. The 

results of the reaction time of the secondary visual task showed an interaction between 

SNR and noise reduction scheme. Based on such an objective method, the authors 

concluded that noise reduction can decrease listening effort in the lowest SNR 

condition, but not in the highest SNR condition. 
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1.3.2.2 Physiological 

While behavioural data provides us with valuable information, there are some benefits 

of using physiological recordings over behavioural data as an objective measure. 

Firstly, most of the physiological measures are time-series within an individual trial. 

While behavioural data can show trends over trials during an experiment, time-series 

data can give us a better idea of when listening effort starts to kick in or how it evolves 

over time in orders of milliseconds or seconds after the onset of the stimuli (Winn et 

al., 2018). Secondly, physiological measurements can be used in devices and 

technologies for the automatic evaluation of listening. While behavioural data needs 

to be collected and interpreted by an operator, an automated and supervised device 

which is trained by machine learning algorithms can record physiological data by its 

sensors, classify it, and make real-time decisions and adjustments without the need for 

listener intervention. Thirdly, as mentioned in Section 1.1, there are changes in 

listening which are not behaviourally manifest and can be detected by physiological 

measures. This is especially true when a wide range of task demand is used. In extreme 

task-demand situations (either very low or very high), physiological measures can 

show similar measured values due to inverted-U phenomenon. While the non-linearity 

of physiological effort can be a problem for any automated system to detect whether 

the task is too easy or too difficult, other simultaneous environmental measures by a 

hearing aid (e.g., sound pressure level) can be taken into account for more accurate 

decision making.  

Physiological measures of listening effort mostly record activities in central (CNS) 

and autonomic nervous system (ANS) as their activities are altered by spending more 

effort. The most used modalities for this purpose are EEG, functional magnetic 

resonance imaging (fMRI), pupillometry, cardiovascular measures and skin 

conductance. I introduce each one briefly in the next section, but as EEG is the main 

outcome measure in the current thesis, it will be described in depth in Section 1.4.  

1.3.2.2.1 Pupillometry 

Pupil dilation has been associated with arousal (Darwin, 1872) and resource allocation 

(Granholm et al., 1996) and is caused by the interaction of the sympathetic (SNS) and 

parasympathetic nervous systems (PNS) (Zekveld et al., 2018). Two most used indices 

of listening effort in pupillometry studies are peak pupil dilation (PPD) and mean pupil 
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dilation (MPD) which are the basic measures of task-evoked pupil response (TEPR). 

It has been shown that  PPD and MPD are increased when more effort is invested in 

the task (e.g., Ohlenforst et al., 2018; Wendt et al., 2018; Zekveld et al., 2011). In these 

studies, often PPD and MPD started to decrease in very demanding listening 

conditions which may be due to disengagement from the task. However, changes in 

pupil size may not be only affected by listening effort, as it is also sensitive to other 

personal and environmental factors such as age, sound features or luminance level. 

While some of them may reveal valuable information, they can complicate 

interpretation of pupil results (Naylor et al., 2018). 

The inverted U-shaped pattern of effort has been observed in pupillometry studies 

numerous times (e.g., Cabestrero et al., 2009; Granholm et al., 1996; Ohlenforst et al., 

2017, 2018; Wang et al., 2018; Wendt et al., 2018; Zekveld & Kramer, 2014). For 

example, Wendt et al., (2018) showed that peak pupil dilation was altered after 

exposing the participants to a wide range of SNRs (12 different SNRs, varying from -

20 to +8 dB) during a speech-in-noise task. Their results indicated that there was an 

inverted U-shaped pattern of pupil dilation that may reflect listening effort as a 

function of SNR. The peak pupil dilation was highest around 50% sentence 

recognition, decreasing when the task became easier (higher SNR) or more difficult 

(lower SNR). Using pupil data, the same authors investigated if different types of 

maskers can affect listening effort. To test this, they used two levels of SRTs (50% 

and 84%) in a speech-in-noise task in presence of 1-talker masker, 4-talker masker, 

and fluctuating noise. They observed that listening with 1-talker masker in the 

background increased pupil dilation slightly more compared to 4-talker masker and 

fluctuating noise. Although this may have indicated that 1-talker masker is more 

distracting compared to more energetic masking types, but comparisons of pupil 

dilations were drawn between listening situations that differed in SNRs (almost as high 

as 13 dB). Such a huge variation in SNR can lead to different pupil dilation that might 

have been unrelated to listening effort.  

1.3.2.2.2 fMRI 

fMRI is a neuroimaging technique that measures blood oxygen level dependent 

(BOLD) that has fine spatial resolution but suffers from poor temporal resolution 

(Glover, 2011). The high spatial resolution of fMRI has proved to be useful in studying 

brain functions during effortful listening (e.g., Kuchinsky et al., 2015; Rosemann & 
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Thiel, 2020; Zekveld et al., 2014) . However, there are downsides to using fMRI in 

hearing studies compared to other physiological measurement devices. The gradient-

induced vibration in fMRI can cause interfering acoustic noise as a form of energetic 

masking in hearing tests (Peelle, 2014). Another issue is fMRI complexity of use 

compared to pupillometry or EEG, which has made it a far less desirable target for 

ambulatory or portable measurements of any sorts. 

Despite its disadvantages, fMRI has helped hearing sciences immensely in better 

understanding of effortful listening. Investigating complex brain concepts such as top-

down/bottom-up1 processing of the brain during listening is more reliable with fMRI 

than other recordings including EEG. As an example, Davis et al., (2011) examined 

whether semantic context in different SNRs can lead to top-down processing in the 

brain. For this purpose, participants were presented with coherent (e.g., “her new skirt 

was made of denim”) and incoherent sentences (e.g., “her good slope was done in 

carrot”). The goal was to look for difference in BOLD recording when there was 

context to the sentence compared to when there was not (in other words, whether 

BOLD activities show top-down processing). Despite not finding enough neural 

evidence for top-down processing during perception of degraded speech in this study, 

one of the findings indicated that BOLD activities in left inferior frontal gyrus changed 

in inverted U-shaped pattern as a function of SNR (1 dB incremental increase from -5 

to 0 dB, in addition to clear speech), which might have reflected listening effort.  

1.3.2.2.3 Cardiovascular and skin conductance measures 

Similar to pupillometry, cardiovascular measurements have also been used to evaluate 

SNS and PNS activity in listening task (Sherwood et al., 1990). Two main methods in 

cardiovascular studies of listening effort are heart rate variability (HRV) to measure 

PNS (e.g., Cvijanović et al., 2017; Mackersie et al., 2015) and pre-ejection period 

(PEP) to measure SNS (e.g., Plain et al., 2020; Richter, 2016). In these studies, 

decrease in HRV and PEP reactivity are considered as markers of increased SNS and 

PNS activity during effortful listening.  

Another method for measuring SNS activity is skin conductance which reflects the 

amount of moisture excreted from the eccrine glands. Increase in skin conductance is 

 

1 For a brief introduction of top-down and bottom-up concepts, see Section 1.4.4.4.  
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marker for increased SNS activity which may be as a result of increased task difficulty 

(Mackersie et al., 2015).  

In the study by Mackersie & Calderon-Moultrie (2016), both HRV and skin 

conductance were used simultaneously to look for changes in listening effort. 

Participants were asked to repeat the sentences they heard in a speech-in-noise 

paradigm. The sentences were presented either at normal speaking rate at 0 dB SNR 

or a fast-speaking rate at +3 dB SNR, both conditions approximating 80% correct word 

repetition. The results showed that HRV reactivity for high frequencies decreased, and 

skin conductance reactivity increased during the more effortful fast-rate condition 

compared to the normal-rate condition. While the authors concluded HRV and skin 

conductance can be used as indices for listening effort, they also mentioned the 

possibility of these being measures of stress and/or motivation.  

1.4 EEG  

1.4.1 Physiology 

EEG measures electrical activities of the brain by placing a cap with attached 

electrodes on the scalp. It was Hans Berger who showed this for the first time by 

recording electrical activity of a human’s brain in changes of voltage over time 

(Berger, 1929). The electrical activity recorded by EEG is the summation of 

postsynaptic potential in the brain that typically lasts over tens or hundreds of 

milliseconds. When neurotransmitters bind to receptors on the membrane of the 

postsynaptic cell, ion channels are altered. This leads to a voltage change across the 

cell membrane called postsynaptic potential. EEG signals often range in microvolts, 

but the amplitude of the signals depends on different factors such as thickness of 

person’s scalp or skull or cortical folding patterns (Luck, 2014). 

1.4.2 Brain oscillations 

After the discovery by Berger, Adrian and Matthews discussed the findings and 

introduced the concept of oscillatory waves in the brain. They named the most 

dominant oscillations in the brain within 10-12 Hz frequency “alpha rhythm” (Adrian 

& Matthews, 1934). Since then, EEG oscillations have been key features in many 

neuroscientific studies.  
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Oscillations within different frequency bands are categorized into distinct brain waves. 

Any cognitive task requires certain oscillations in one or several specific bands in 

certain areas of the brain. Those associated oscillations can either be used as neural 

markers of a cognitive processing or as a way of understanding how the brain functions 

in certain situations.  

Slowest waves (0.5-4 Hz) are called delta band which is seen in deep sleep and is 

prominent in the frontocentral regions. Slightly faster waves (4-8 Hz) are called theta 

band which is also most prominent in the frontocentral region of the brain and can 

coordinate memory processing (Kragel et al., 2020) or encode new information 

(Hasselmo & Stern, 2014). Probably the most studied band among EEG oscillations is 

alpha waves (8-12 Hz) which manifests during resting state or also during several 

different cognitive tasks such as selective attention (Foxe & Snyder, 2011) or increased 

memory load (Jensen et al., 2002). Alpha band is mostly present in posterior regions 

of the brain. Faster oscillating waves compared to alpha are called beta band (12-30 

Hz) which is involved in somatosensory processing and motor control (Barone & 

Rossiter, 2021) and gamma band (30-100 Hz) which are thought to integrate the 

processing of neuronal networks in the brain (Kaiser & Lutzenberger, 2003) .   

However, there are issues with such traditional labels with fixed definitions. The first 

issue is that even within a defined band, there can be two functionally independent 

oscillations. For example, alpha power can be divided into low (8-10 Hz) and high 

(10-12) alpha power. It has been shown that low and high alpha have separate 

functions which each may reflect attentional process and stimulus-related cognitive 

process respectively (Klimesch et al., 1993). 

The second issue is that the frequency range of these oscillations has changed often in 

the literature as they have been sensitive to diverse experimental manipulations.  Also, 

other physiological factors such as age (e.g., Rondina et al., 2019) can change the range 

and power of such oscillations. Even within an individual alpha peak frequency is 

liable to rapid changes at shorter time scales (e.g., Mierau et al., 2017). For these 

reasons, it has been argued that such traditional labels may have outlived their 

usefulness (see Weisz & Obleser, 2014). The frequency range of such brain waves 

should not be strictly fixed, but rather examined carefully within a particular 

experimental design and set of participants. This issue with fixed EEG bands is 

carefully examined throughout all the chapters of this thesis. In Chapter 2 and 
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Chapter 3, divided alpha power (low vs high) will be further explored to see if they 

differ from each other.   

1.4.2.1 Synchronization and desynchronization  

To measure the power or phase of brain oscillations, different mathematical methods 

such as a Fourier or wavelet transform are used. The essence of these methods is that 

any waveform can be deconstructed into a set of sine waves (of varying intensity and 

phase) or wavelets, respectively. This does not mean, however, that the waveform truly 

consists of a set of sine waves. Hence, when applying the transforms to an EEG signal, 

power at a given frequency does not mean that the brain is oscillating at that frequency. 

Therefore, obtaining non-zero values for power calculations is mathematically 

inevitable and not an evidence for physiological oscillation (Luck, 2014). In addition 

to that, absolute values of brain oscillations are prone to unwanted variance over 

experiments (e.g., alpha increase due to fatigue) or participants (e.g., some individuals 

may have thicker scalp and thus lower magnitude signals) that may complicate the 

interpretation of the results. In order to claim that a given value in power is actually 

reflecting oscillation, power bands need to be normalized to a task-free baseline. The 

relative changes which are discriminable in the power spectrum (for example in the 

form of a peak) can be considered as neural oscillations of the brain. The changes of 

power compared to the baseline can be positive or negative. If the changes are positive, 

the power band is considered to be synchronized due to the stimulus (i.e., event-related 

synchronization; ERS). Conversely, if the changes are negative, the oscillation is 

desynchronized (i.e., event-related desynchronization; ERD).It is also important to 

notice that ERS and ERD refer to relative measures and are dependent on the baseline. 

Baseline can be chosen during a silent period or during a secondary task such as 

reading an instruction or listening to background noise. Determining whether the task 

or baseline is passive or active (and if so, what kind of task) can also change the 

outcome of ERS/ERD (Weisz & Obleser, 2014). As an example, it has been observed 

that with passive baseline (listening to background noise), alpha ERS is significantly 

different during active listening where participants listened to a speech intently 

compared to passive listening where the main task was visual and the same speech is 

ignored by the participants (Dimitrijevic et al., 2019). Therefore, any interpretation on 

the frequency domain of EEG signals should be drawn with great cautious.  
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1.4.3 Working memory  

Effortful listening requires allocation of cognitive resources in the brain. By 

investigating different tasks, such as working memory tasks which can vary the 

allocation of resources, changes in listening effort can be studied. Working memory is 

the process which is involved in the control and regulation of information in order to 

complete a complex cognitive task (Miyake & Shah, 1999). In working memory 

terminology, most memory tasks consist of three key phases: encoding, maintenance 

and recall (Pinal et al., 2014). In a listening task, the “encoding” phase involves 

listening to the signal whether in the presence or absence of distractors. The 

“maintenance” phase comes after the signal of interest is finished and requires keeping 

the information in short term memory (STM). It is important to note that the terms 

“working memory” and “STM” are often used interchangeably. However, in this 

thesis, as suggested by Baddeley (2012), temporary storage of information will be 

referred as STM, and a combination of storage and different phases of listening as 

working memory. Finally, the “recall” phase requires using the information stored in 

the STM, in order to interpret the signal to complete a task.  

However, often encoding and maintenance are entangled, and their neural processing 

may overlap. Information that is maintained in working memory can be updated with 

new encoded information. Therefore, for successful working memory performance, 

information should be replaced and updated when necessary. The process of constantly 

manipulating information and maintaining it is an important feature of working 

memory which can happen in a wide range of complex cognitive task such listening to 

a continuous speech. The overlap between encoding and maintenance in working 

memory can be done without much manipulation operations if the task is not 

demanding. However, in demanding tasks, relevant manipulations are triggered by 

task demand which manifests in activation of certain brain networks (Nyberg & 

Eriksson, 2016) which can be visible through different neural correlates such as power 

changes in different bands.  

1.4.4 Alpha power as a measure of effort 

The power of alpha oscillations is a commonly used neural correlate of listening effort.  
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There are several theories on the role of alpha power during a cognitive task. In one of 

the earlier theories, Pfurtscheller (1996, 2001) introduced “cortical idling”. With this 

theory, he argued that alpha ERD reflects an activated level of cortical neurons which 

can be interpreted as increased cortical excitability. If alpha ERD is characteristic for 

an activated cortical area, then alpha ERS may describe a resting or cortical idling in 

which no information is being processed (Pfurtscheller, 2001; Pfurtscheller et al., 

1996). Later, Jensen and Mazaheri (2010) argued that cortical idling does not explain 

why an improvement in behavioural performance is accompanied by an increase in 

alpha power. Instead, they proposed “functional inhibition” theory can cover this 

shortcoming. The idea of this theory is that information is routed by inhibiting task-

irrelevant pathways which is reflected by increase in alpha activity. This is consistent 

with the notion that optimal task performance is dependent on inhibition of task-

irrelevant regions in order to allocate resources to task-relevant regions (Jensen & 

Mazaheri, 2010). 

Klimesch and colleagues (2007, 2012) also argued that alpha ERS has a more complex 

role than what Pfurtscheller (1996, 2001) previously suggested. Based on many 

experiments that have shown alpha ERS reflects “functional inhibition”, he suggested 

alpha ERS is linked to both timing and blocking of information processing. Based on 

these attributes, alpha could be representing attention, as attention enhances the 

processing of information by blocking irrelevant processing within a specific time 

(Klimesch, 2012). With external information, this process is usually under top-down 

control which enables “the ability to be consciously oriented in time, space, and with 

respect to the meaning of all entities surrounding the individual” (Klimesch, 2012, 

P.612).  

In Section 1.2, it was pointed out that difficult listening situations can result in noisy 

STM representation which leads to mismatches between the representation of words 

in episodic and semantic memory. The working memory should engage actively in 

demanding situations in order to disambiguate of what had been heard (Rönnberg et 

al., 2013). Alpha oscillations as means of “functional inhibition” is one of the 

mechanisms that plays an important role to overcome the mismatch, as it facilitates 

the allocation of resources to task-relevant regions. The higher demand on working 

memory requires more inhibition to “shut down” task-irrelevant regions of the brain 

and thus more alpha power is generated in those regions (Wilsch & Obleser, 2016). It 
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should be noted that changes in alpha power are not specific to auditory tasks, as it has 

been observed during non-auditory tasks that alpha power increases with higher 

demand (e.g., Bonnefond & Jensen, 2012; Jensen et al., 2002; Manza et al., 2014; 

Tuladhar et al., 2007).  

1.4.4.1 Effort during maintenance  

Changes of listening effort are not limited to the encoding phase (i.e., listening), but 

also the maintenance phase of an auditory working memory task. In a study by  Obleser 

et al. (2012), normal-hearing participants performed an auditory working memory task 

which involved listening to and remembering digits with three different memory load 

(2, 4 and 6 items) and three different acoustic degradation (16, 8 and 4 bands in noise 

vocoding of the items). The authors specifically investigated the maintenance phase 

after listening to speech with alpha power to predict response time as an index for 

listening effort. They found out the degraded speech (a perceptual challenge) and 

increased memory load (a capacity challenge) increased central–parietal alpha activity 

during that maintenance phase and increased response time. The alpha increase was 

superadditive when most degraded was combined with highest memory load. The 

conclusion was that as more degraded speech and increased memory load led to 

increased alpha and response time, then both perceptual and capacity challenges 

require increased “functional inhibition”.  

The notion that increased alpha power during maintenance can be a sign of listening 

effort was also suggested in Wisniewski et al. (2017). In this study, two frequency-

modulated sweep tones (A and B) were presented back-to-back. The task for the 

participants was to identify tone A or B after listening to them. One of the tones always 

had a standard rate and the other one had a varying rate which made the task easy, 

difficult or impossible. After a maintenance period, participants were presented with 

the tone. They observed that the modulation of alpha and theta power was highest in 

difficult condition during maintenance, but lower for easy or impossible listening 

situations. This inverted U-shaped pattern in maintenance can be another evidence that 

alpha power reflects effort. In another study by Wisniewski et al., (2015), a speech-in-

noise task was used to evaluate the changes of EEG power during maintenance across 

five different SNRs. They used independent component analysis (ICA) to show that 

during maintenance, although activity increased in the theta and low beta bands (6 and 
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14 Hz peaks), and marginally decreased in the alpha band (centered at10 Hz), there 

were no effects of SNR. The authors concluded these EEG changes showed task 

engagement more than stimulus features.  

Increased activity of alpha/theta power during the maintenance phase is not limited to 

auditory studies. Increased alpha activity during maintenance with higher memory 

load has been observed in several non-auditory working memory tasks (e.g., Jensen et 

al., 2002; Tuladhar et al., 2007). This suggests that alpha activity during maintenance 

is not auditory-specific and has more global functions such as processing stored 

information in memory.   

1.4.4.2 Alpha comparison to subjective effort 

In Section 1.3.1, it was discussed how objective measures can deviate from the 

subjective measures of listening effort. This is no exception for EEG studies. There 

are several EEG studies that have opposing views on this matter. For example, a study 

by Decruy et al., (2020) showed that self-report scales of listening effort and EEG 

alpha power do not follow the same pattern. In this study, 40 sentences were 

concatenated together with a short silent gap between them. Six SNRs that 

corresponded to 20%, 35%, 50%, 65%, 80%, 95% word recognition for each 

individual were used, along with speech in quiet, to manipulate task demand. While 

self-report showed negative linear relation with SNR, alpha power showed inverted 

U-shaped pattern with 60-80% speech intelligibility being the highest alpha results.  

However, there are also experiments that have shown alpha activity is correlated to 

self-reported listening effort. In an experiment by Wöstmann et al., (2015), the 

modulation of alpha power in young and elderly participants were compared together. 

Participants were instructed to listen to two spoken digits in presence of a distracting 

talker and choose whether the second digit was lesser or greater than the first digit. 

Acoustic detail (temporal fine structure) and predictiveness (guessing if the second 

digit is smaller or larger) were changed to see their effects on alpha power. The results 

showed that decreasing acoustic detail and predictiveness (i.e., higher task demand) 

led to increased alpha power. Acoustic detail had a stronger effect on elderly, 

suggesting that alpha activity might be changing with age. Participants were also asked 

about their subjective listening effort (post experiment) and their confidence in 

providing the right answers (post trial). The results showed that alpha power was 



Chapter 1  17 

 

 

positively correlated to the subjective effort and negatively correlated to confidence 

levels. A possible reason for the significant linear correlations between alpha activity 

and self-reported effort and confidence in this experiment was the small range of task 

demands that was not wide enough (task performance was designed to range 60-80% 

accuracy) to cover the disengaged portion of the listening effort curve due to very high 

task demand.  

In an exploratory attempt to investigate different brain regions and bands which are 

correlated to subjective rating of listening effort in cochlear implant (CI) users, 

Dimitrijevic et al., (2019) used source localizing technique on EEG data. Participants 

listened to a digit-in-noise recognition task in both passive and active conditions. 

Active listening required identification of the presented digit which followed one-up 

one-down procedure to yield 50% correct identification. For the passive listening 

condition participants watched a movie and ignored the digits. The results showed that 

alpha power in the left inferior frontal cortex was highly positively correlated with the 

subjective rating of effort. However, using two levels of demand would have not been 

enough to capture the non-monotonic relationship of listening effort and demand. 

Similarly in the study by Wöstmann et al., (2015), the range of task demand was not 

broad enough (despite using four levels of task demand) to reveal any non-monotonic 

relationships between listening effort and demand. It will be shown in Chapter 3 that 

when task demand varies from very low to very high during a speech-in-noise task, 

then subjective and objective measures of effort do not correlate to each other.   

1.4.4.3 Alpha correlation to speech intelligibility  

Despite large number of reports on alpha power relating to listening effort, there are 

also other studies that could observe alpha association to speech intelligibility and not 

effort, especially during alpha ERD (e..g, Dimitrijevic et al., 2017; Obleser & Weisz, 

2012).  

The evidence for alpha correlation to speech-related performance was observed during 

an experiment in which participants were asked to listen to digits either actively or 

passively while watching a movie. The speech consisted of monosyllabic digits with a 

+2 dB fixed SNR (close to 100% digit-recognition accuracy) and a fixed SNR at the 

SRT (close to 50% accuracy). The authors observed that active listening produced 

alpha ERS in some listeners, whereas passive listening produced almost no such 
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oscillation. Using source localization, they showed that digit recognition performance 

was related to alpha ERD in temporal lobe but not to ERS observed in central/parietal 

regions (Dimitrijevic et al., 2017).  

Similar conclusion was also drawn in a study by Obleser & Weisz, (2012) using 

subjective speech comprehension ratings. Four levels of spectral (2, 4, 8, 16 band 

vocoding) and four levels of envelope degradation (2, 4, 8, 16 Hz envelope) during 

presentation of a single word were used to manipulate task demand. The grand average 

results showed that from 500 ms post word onset alpha ERD occurred. Using 

subjective comprehension ratings, they showed that there is a negative correlation 

between alpha and speech comprehension (i.e., more alpha ERD led to better speech 

comprehension). The authors concluded that alpha ERD in the beginning of the speech 

reflects speech intelligibility. They also showed that less acoustic detail (i.e., more 

demanding) led to increased alpha power, which is in line with theories about alpha 

and listening effort (i.e., more effort leads to more alpha). Therefore, the question 

remains whether alpha power is reflecting speech intelligibly or listening effort.  

It seems unlikely that alpha power can reflect both speech intelligibility and listening 

effort simultaneously, at least when task demand covers a wide range. As mentioned 

in Section 1.2, we know that listening effort is not always increased with increased 

task demand. On the other hand, speech intelligibility is decrease with increased task 

demand. Therefore, it is highly unlikely one measure can reflect both at the same time. 

Having said that, alpha might reflect either of them depending on the task. We will 

tackle this issue in Chapters 3, 4 and 5.  

1.4.4.4 Top-down or bottom-up  

Irrespective of whether alpha activity reflects listening effort or speech intelligibility, 

it is not entirely clear whether alpha activity is a result of top-down or bottom-up 

attention in the brain. While top-down attention describes voluntary selection of 

listening to a stimulus, bottom-up attention is exogenous and sensory-driven by a 

stimulus due to its saliency (for review see Katsuki & Constantinidis, 2014). Changes 

to alpha power due to listening effort (or speech intelligibility) can be caused by either 

top-down or bottom-up processing. However, most of the theories on alpha power 

mainly associate it to top-down attention (Jensen & Mazaheri, 2010; Klimesch et al., 

2007)  
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One EEG study by Wöstmann et al., (2017), specifically investigated whether alpha 

power reflects top-down or bottom-up attention during effortful listening. In this study, 

participants listened to a serial order of 9 to-be-recalled digits which lasted 

approximately for 6.5 s. This was followed by a 5-s maintenance phase during which 

one to-be-ignored distractor sentence was presented. Distractibility of the to-be-

ignored sentence was manipulated by noise-vocoding (1, 4 and 32 channels). They 

showed that in the maintenance phase, higher levels of acoustic details in the 

distracting speech disrupted listeners’ serial memory recall and increased their alpha 

power activity. The authors concluded that if the increase in alpha power in previous 

studies (e.g., McMahon et al., (2016); Obleser et al., (2012)) reflected higher acoustic 

detail of the target speech, then higher acoustic detail of distracting speech should have 

increased the alpha power. Since this did not happen, alpha activity probably did not 

reflect acoustic details (i.e., bottom-up), and rather reflected the amount of effort spent 

on the listening task (i.e., top-down) which increased when the task was more difficult, 

regardless of changing acoustic details in target or distracting speech. This study 

provided evidence that alpha activity during effortful listening is a proxy of top-down 

control. It can be argued that top-down alpha power serves as an interface with the 

external world and is related to perception (Klimesch, 2012).  

1.4.4.5 Alpha in hearing disorders 

In Section 1.4, it was mentioned that listening successfully depends on engaging task 

relevant and disengaging task-irrelevant brain areas which are manifested through 

alpha power activities. For this reason, decrease in ongoing alpha responses may be a 

key feature for many hearing-related problems as it reflects disturbances to the 

excitation and inhibition of different brain regions (Weisz & Obleser, 2014).  

Listening disengagement can also happen earlier with increased task demand in 

hearing impaired. To test this idea, Petersen et al., (2015) recruited three groups of 

participants that were fitted with hearing aids: no, mild and moderate hearing loss. In 

an auditory working memory task, participants were presented with different memory 

load (2, 4, or 6 digits to be remembered) embedded in a background noise level (4 dB, 

0 dB, or -4 dB relative to the individual level at which 80% of the words were correctly 

recalled in noise) during the encoding phase. After the stimulus-free maintenance 

phase, participants indicated if a digit appeared in the sequence of presented digits in 
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the recall phase. The effects of increasing memory load and background noise level on 

alpha activity during the delay were modulated by the degree of hearing loss. That is, 

participants suffering from a higher degree of hearing loss experienced disengagement 

with increasing task difficulty (i.e., inverted U in alpha activity), which was not 

observed for the participants with mild or no hearing loss. They suggested that more 

severe hearing loss can cause neural activity breakdown as a result of spending more 

resources than people with better hearing. 

An interesting example of the role of alpha power in hearing disorders can also be seen 

in tinnitus. Weisz et al., (2005) showed that tinnitus patients have significantly less 

alpha activity in resting state. To evaluate if, in fact, alpha power is related to any 

tinnitus distress, Hartmann et al., (2014) exposed tinnitus patients to three different 

treatments: Neurofeedback1, repetitive transcranial magnetic stimulation (rTMS)2 and 

sham in which the same parameters as rTMS were applied, but the coil was tilted 45°. 

The results showed that the highest increase in alpha power, and highest decrease in 

tinnitus distress followed neurofeedback treatment (Hartmann et al., 2014). While 

speculative and without a control group for neurofeedback treatment, the decrease in 

tinnitus distress level after neurofeedback session might reflect that observed alpha 

ERS in this treatment follows the “functional inhibition” theory. Increased alpha via 

neurofeedback treatment may have led to better inhibition of task-irrelevant areas, and 

thus followed by decrease in tinnitus distress. Therefore, not only can alpha power be 

a neural correlate for hearing disorders and some of their consequences, such as 

listening effort, but it may also be useful in clinical treatments.   

1.4.4.6 Conflicting alpha patterns  

There are a number of contradicting studies that have shown alpha power decreases 

with task difficulty. For example, EEG and pupillometry were simultaneously used in 

a sentence recognition task (lasting ~5 s) on young normal-hearing participants at each 

individual’s 50% and 80% SRT with two different levels of spectral degradation (6 

 
1 Neurofeedback is a method in which a representation of brain activity is shown to the user in real-time 

to help them in self regulate their brain activity (Enriquez-Geppert et al., 2017).  

2 rTMS is a therapeutic approach that stimulates a small current into the cortex. This current causes 

depolarization and hyperpolarization of the neurons triggering neuronal activation (Zuchowicz et 

al., 2019). 
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and 16 channel noise vocoding). While, similar to the literature discussed in section 

1.3.2.2.1, mean pupil dilation increased in the more spectrally degraded condition (6 

channel), alpha power decreased in this condition. No effect of SNR was observed on 

either pupil or EEG data (Miles et al., 2017). In a similar design, the same research 

group used a range of fixed SNRs (-7 to +7 dB in 1 dB increments; a total of 15 levels 

to cover a full range of 0-100% in speech intelligibility) with 6-channel and 16-channel 

speech degradation. Again, there was increased pupil dilation and decreased alpha 

power in the more spectrally degraded condition, averaged across SNRs. However, in 

the 16-channel condition, decreasing SNR led to increased alpha power. These 

conflicting results across literature might be a warning sign that the pattern of alpha 

ERS/ERD goes beyond an abstract concept like listening effort.  

Another study that showed alpha power decreased with higher task demand was the 

study by Hauswald et al., (2020) which used MEG on two experiments. In both 

experiments, participants listened to a continuous speech (approximately lasted 

between 30 s – 3 mins) and were asked to choose from two nouns that had occurred 

within the last four words of the trial. In experiment 1, three different levels of noise 

vocoding (original, 7 and 3 channels) and in experiment 2, three additional vocoding 

levels (5-channel, 2-channel and 1-channel) were also implemented. Both experiments 

showed that performance and alpha power decreased with more degradation of the 

speech. However, both studies showed that low-frequency oscillations (1–7 Hz) in 

frontal regions showed an inverted U-shaped pattern for speech tracking (i.e., 

coherence between speech envelope and brain activity) with changing degradation 

levels.  

1.4.4.7 Alpha phase 

Given that EEG data is rich in information, other methods can be used to extract 

features in EEG for evaluation of listening effort. For example, Bernarding et al., 

(2017) proposed a novel measure to look for changes in listening effort in hearing aid 

users; the novel measure was the instantaneous phase information of the ongoing EEG 

activity by the wavelet transform corresponding to a pseudo frequency of 7.68 Hz (low 

alpha). They postulated that the phase should be more uniformly distributed on the 
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unit circle1 for the less demanding listening condition. To compare the results of the 

proposed method with a more traditional method, self-reported listening effort and 

subjective intelligibility were also collected. In the experiment, four different hearing 

aid settings (strong/medium/no directional speech enhancement and omnidirectional 

microphone setting) were used during presentation of short sentences and a 10-minute-

long story. The task was to repeat the words for the short-sentence stimuli and answer 

a question relating to the story. The results of both subjective and objective 

measurements showed significant decrease in effort in the directional microphone 

settings compared to the omnidirectional microphone, but no significant changes 

among any of the three directional settings. In terms of low alpha phase, they 

concluded that the distribution of the instantaneous phase of low alpha band reflects 

cognitive effort and is more clustered during demanding listening situations. However, 

because low alpha phase was not directly compared to (low/high) alpha power, it 

remained unknown that which EEG measure can be more sensitive to the changes of 

listening effort in different levels of task demand.   

1.4.4.8 Pre-stimulus alpha 

Alpha power activity prior to stimulus presentation may also reflect the success chance 

of listening. In a study by Alhanbali et al., (2021), in an auditory working memory 

task, participants listened to 6 single digits and memorised them during a maintenance 

phase. The task was for the participants to recognize if a probe digit was presented 

during the initial sequence or not.  Alpha power in the maintenance phase, as well as 

alpha power in the pre-stimulus phase were positively correlated to participants’ 

performance in remembering the digits. The increase in pre-stimulus alpha power 

might have been an indicator of increased auditory attention that could have 

suppressed any unwanted distraction during the task. This interpretation could be in 

line with the study by Wöstmann et al., (2015) that decreasing stimuli predictiveness 

would increase alpha power due to increased auditory attention. However, any 

 
1 Unit circle is a way of quantifying the synchrony phase of specific EEG oscillation. It shows the 

distribution of the instantaneous phase which was extracted by applying a complex continuous 

wavelet transform in the mentioned study (Bernarding et al., 2017).  

 



Chapter 1  23 

 

 

interpretation on pre-stimulus alpha has been based on absolute values of power which 

has some critical shortcomings as discussed in Section 1.4.2.1.  

1.4.5 Measuring effort with theta  

While not as frequent as alpha power, theta power has also been used as a neural 

correlate of listening effort in auditory and non-auditory studies. More specifically, 

frontal midline theta can be measured during attention or working memory tasks. 

Similar to alpha, increased task difficulty leads to increased frontal theta activity 

(Onton et al., 2005).  

In Section 1.4.4.3, the possibility of alpha activity showing different cognitive aspects 

in different auditory tasks was discussed. Similarly, listening effort might be reflected 

in other measures such as theta ERS during specific auditory tasks as well. As an 

example, in a delayed pitch discrimination task, participants were instructed to 

recognize the interval containing higher pitch in two square wave stimuli differing in 

pitch. In a “Roving” condition, the lowest pitch stimulus was randomly selected on 

each trial (from 840 to 1160 Hz). In a “Fixed” condition, the lowest pitch was always 

979 Hz. The difference between the Fixed and Roving condition was that in Fixed 

condition participants could respond immediately following the first stimulus while in 

the Roving condition they needed maintenance of the first tone for comparison to the 

second. The results showed that while alpha power was unchanged, frontal midline 

theta in Roving was significantly increased in comparison to Fixed (i.e., when there 

was a need for maintenance). The authors concluded that not all difficult listening tasks 

will be accompanied by the same EEG indices of listening effort (e.g., alpha or theta 

ERS) (Wisniewski et al., 2018).  

In fact, using theta power as an objective measure of listening effort has been shown 

to be correlated to subjective ratings of effort. In the study by Wisniewski et al., (2015), 

speech-in-noise ( ~3 s) were presented to the participants with four different SNRs (-

12, -6, 0, 6 dB). The task included a baseline period with background noise, listening 

phase and maintenance phase which was without any background noise. EEG theta 

power and self-report scale were used to assess listening effort. Using ICA, medial 

frontal components showed increasing theta power with decreasing SNRs (i.e., 

increased task demand) during the listening phase. Self-report scales also were 

positively correlated to theta power during listening. Based on the previous literature 
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on listening effort, it might be expected such a wide range of SNR (18 dB wide) shows 

an inverted U-shaped pattern. Instead, theta power was linearly changed with SNR 

(similar to subjective ratings). So, it is plausible the changes of theta power were not 

reflecting listening effort, but rather showing the changes of SNR or sound pressure 

level (SPL).  

Theta phase is another measure that can be used to assess listening effort. In a standard 

auditory-oddball paradigm, participants were instructed to discriminate between 

deviant high-frequency tones (10%) interspersed among low-frequency ones (90%) 

“near” or “far” separated in frequency. Using inter-trial phase coherence (ITPC), the 

near condition (i.e., more difficult) led to great frontal theta and gamma compared to 

the far condition.  However, this only happened during active listening and presenting 

the participants with the same stimuli during passive listening, no such results were 

observed. The conclusion was that ITPC differences may reflect differences in 

attention-modulated stimulus encoding (Wisniewski, 2017). 

There are also contradicting results on theta power as a measure of listening effort. For 

example, Marsella et al. (2017) demonstrated that increasing demand in a speech 

recognition task consisting of disyllabic words presented free-field from a front 

loudspeaker in children with asymmetric sensorineural hearing loss did not increase 

frontal theta. There were four noise conditions (in order of demand): no noise (in 

quiet), four-talker babble presented from one loudspeaker 90° to the worse-ear side, 

babble noise presented from two loudspeakers at ±45°, and babble noise presented 

from one loudspeaker 90° to the better-ear side. While they did not observe any 

significant change in theta activity, there was an inverted U-shaped pattern in alpha 

power. Alpha was increased in intermediate difficulties (binaural noise and noise to 

the worse ear) compared to the quiet condition, but it also decreased in the most 

demanding listening condition (noise to the better ear).  

1.5 Thesis objectives 

The goal of the thesis is to investigate how listening effort can be measured objectively 

using EEG in ecologically valid situations. The focus of the EEG analysis will be on 

alpha ERS/ERD, but theta and beta bands will be investigated in an exploratory way 

as well. Five different experiments will be reported and discussed through chapters 2 

to 5, which all include speech-in-noise task in demanding situations.  
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In Chapter 1, the concept of listening effort was introduced and how different personal 

(e.g., motivation) or environmental (e.g., speech degradation) factors can manipulate 

effort. Subjective and objective measures of listening effort were also reviewed and 

how EEG signals could be useful to evaluate listening effort objectively. In Chapter 

2, the concept of motivation will be discussed more and how monetary reward can be 

used to manipulate motivation in a task. Task demand will also be varied by changing 

SNR to see how different levels of task demand can influence one’s motivation to 

invest effort.  

In Chapter 3, reverberation will be introduced and how listening can be affected when 

listener is in different acoustic environments. For this purpose, different simulated 

rooms in an anechoic chamber, each with distinct reverberation time, will be used. By 

manipulating task demand with SNR, the interaction between reverberation time and 

SNR in each room will be explored. For this study, subjective measures of listening 

effort with a self-report scale will also be investigated and compared to EEG data.  

In both Chapter 2 and Chapter 3, the speech material are short and interrupted 

sentences. To move towards more ecologically valid situations, continuous speech will 

be presented to the participants in Chapter 4, as listening to a continuous speech 

occurs more often in daily life compared to listening to a single short sentence. The 

aim of this paradigm is to see if the pattern of alpha power is any different during 

continuous speech compared to short speech. After observing how alpha power 

changes with varying SNR in continuous speech paradigm, noise reduction scheme of 

hearing aids will be investigated to see whether it affects listening effort in hearing 

impaired.  

In Chapter 5, ear-EEG will be introduced as a novel and ambulatory recording of 

brain signals. The usefulness of ear-EEG to measure listening effort will be evaluated 

(more specifically alpha power) during a continuous speech paradigm and compared 

to traditional (scalp) EEG.  

In Chapter 6, the findings across these five experiments will be discussed and how 

they may help us understand the role of alpha power during effortful listening in a real-

life setting.  
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Chapter 2  

The role of motivation in shaping listening effort 

2.1 Introduction 

Listening effort can be modified by personal (such as motivation) or environmental 

(such as task demand) factors. In this chapter it will be investigated that how the 

interaction of both factors should be considered when studying listening effort. 

2.1.1 Listening motivation  

As mentioned in Chapter 1, studies which have used physiological measures of 

listening effort have often found an inverted U-shaped pattern of listening effort (e.g., 

Wu et al., 2016; Wisniewski et al., 2017; Wendt et al., 2018; Decruy et al., 2020), 

meaning that people increase effort as demand increases, but only up to a point. This 

phenomenon is usually seen when the range of task demands varies from very low to 

very high and forms an inverted U-shaped pattern of listening effort. In Section 1.2, 

the role of motivation in expenditure of effort was discussed in Brehm’s theory of 

motivation intensity (Brehm & Self, 1989) which is not listening specific but a broad 

cognitive model. It is hypothesized that people only put in more effort for difficult 

tasks if their effort expenditure is perceived to yield appropriate benefit. If the task 

becomes too difficult, the effort will be low because its expenditure will be seen as 

yielding a return of insufficient value (Wright, 2008). In other words, effort decreases 

when the benefits of performing the task do not outweigh the costs of allocating 

resources to a task that is too difficult. Also, when a task is too easy, not many 

resources are required for optimal performance, so spending more effort does not lead 

to more behavioural advantages. It is in the intermediate cases that listeners apply 

greater effort due to the potential of optimizing performance. The importance of 

motivation has specifically been considered in relation to listening effort through 

FUEL. This framework drew upon MIT (Brehm & Self, 1989) and proposed that 

listening effort is not just a function of task demand (e.g., degraded speech), but also 

a function of the individual’s motivation, whether intrinsic or extrinsic. In other words, 

the amount of cognitive resources one is willing to expend in a listening task at a 
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particular level of difficulty, is also based on how motivated the person is (Pichora-

Fuller et al., 2016).  

The expenditure of effort is costly and the trade-off between effort and performance 

can be investigated through behavioural economics. This framework studies when and 

why people choose to listen, based on the cost and benefits of the task. The decision 

to spend more effort is usually made by an adaptive control in the brain to optimize 

performance during demanding tasks and sustain engagament. When the outcome is 

worth the effort, the adaptive control upregulates the neural activities for better speech 

understanding (Eckert et al., 2016).  

While task demand is enforced by environmental factors or hearing loss, the source of 

motivation can be intrinsic as well as extrinsic. Intrinsic motivation is driven by one’s 

own sake and satisfying results, whereas extrinsic motivation is formed by an outside 

reward or punishment. For example, a listener’s intention to engage in a friendly 

conversation triggers an intrinsic motivation to listen. In such a scenario, there is 

probably no benefit in listening, but the listener is still willing to spend the effort for 

their own satsifaction. On the other hand, if a reward is given for successful listening 

(such as monetary reward which is mostly unrealistic in real life) then the motivation 

is extrinsic. But even then, the borderline between intrinsic and extrinsic motivation 

cannot be well defined because extrinsic motivation can be internalized (Hidi, 2016). 

In the above example, the listener does not put effort to necessarily gain monetary 

reward, but they might do so to gain personal satisfaction of being rewarded.    

In order to manipulate motivation in the labarotary, researchers commonly rely on 

manipulating extrinsic motivation, often by introducing some forms of reward such as 

monetary incentives (e.g., Koelewijn et al., 2018; Kostandyan et al., 2019; Plain et al., 

2020) . For this reason, for the rest of the chapter, whenever the word “reward” is being 

used it implies the manipulation of extrinsic motivation.  

The theories and models on motivation and effort have been tested in several different 

listening studies using subjective and objective measures of effort. For example, Picou 

and Ricketts (2014) manipulated whether or not participants were evaluated at the end 

of an auditory task as a means of operationalizing motivation: participants either only 

listened to the speech (low motivation), or listened to the speech and answered quiz 

questions about it (high motivation). With two levels of SNR (targeting 50% and 80% 
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correct performance), they showed that in a difficult listening condition, participants 

reported increased effort when they were evaluated at the end of the task (high 

motivation) compared to when they were not (low motivation). However, for a 

relatively easy listening condition, there was no such effect. Despite promising results, 

the form of motivation used in this study was difficult to quantify, meaning that the 

motivation was binary; either it was there, or it was not. In real life, however, there are 

levels to one’s motivation and is hardly binary. Another problem might be that 

motivation in this study may have been rewarding (taking pride in correct answer) or 

punishing (embarrassment of incorrect answers) for different people and thus had 

different affects. Also, the measured effort was subjective and there are studies that 

have shown subjective effort can be different than objective effort (e.g, Zekveld & 

Kramer, 2014). Since then, more studies have implemented other forms of extrinsic 

reward that are easier to quantify and compare (such as monetary reward) and more 

objective outcomes of effort (such as pupillometry or EEG).    

One such study that used monetary reward to operationalize motivation and changes 

of pupil dilation as an objective measure of listening effort found no interaction 

between task demand and motivation (Koelewijn et al., 2018). Instead, higher 

motivation increased effort regardless of the difficulty of the SRT tasks (50% and 85% 

correct). These findings were not in total agreement with FUEL that there is an 

interaction between demand and motivation, but instead motivation led to increased 

effort regardless of task demand. One plausible explanation for this finding is that the 

range in task demand was not great enough, including both too-difficult and too-easy 

extremes, to elicit an interaction effect with reward. Furthermore, there was no 

improvement in behavioural performance due to the effort. The opposite outcome was 

perhaps expected, that if participants were to spend more effort, they should be able to 

perform better.  

To understand how reward and effort impact performance, another study investigated 

them in a visual-attention task (Kostandyan et al., 2019) using pupillometry as well as 

simultaneous EEG to measure effort. In the first experiment, trials with monetary 

reward were presented within a block (block-based) which led to higher activities of 

EEG alpha power and pupil size (i.e., thus more effort) compared to no-reward block, 

but without any benefits in performance. In the second experiment, trials with and 

without monetary reward were presented randomly within a block (trial-based). In this 
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experiment they observed increased effort as well as increased performance in 

rewarding trials. They concluded that reward-driven effort and performance may 

operate on different time scales and a preparatory phase is required to achieve 

behavioral benefits (Kostandyan et al., 2019). This might be one explanation that why 

Koelewijn et al., (2018), which used block-based reward design, did not observe 

effects of reward on performance despite changes in effort. 

Other than EEG and pupillometry, cardiovascular PEP is another marker for objective 

effort that has been used in motivational studies. For example, Richter (2016) used 

PEP to observe the interaction between reward and effort in an auditory pitch 

discrimination task. Two levels of task demand with 3 Hz (hard) and 20 Hz (easy) 

pitch discrimination with two levels of monetary reward (high and low) were tested on 

normal hearing participants. The results showed that there was an interaction between 

reward and effort; when the task demand was high, participants spent more effort in 

high reward situation compared to when the task demand was low. However, similar 

to the two previous studies, Richter (2016) also did not see an effect of reward on 

performance with a block-based reward paradigm.  

Conversely, there are studies that have reported neither main nor interaction effect of 

reward. For example, Plain et al., (2020) used PEP as a marker of listening effort in a 

speech-in-noise task. Six different SNRs varying from very easy to very difficult, with 

two levels of monetary reward, were tested on normal hearing participants. Even 

though higher reward increased the performance accuracy in the participants, but it did 

not influence PEP. The authors speculate that due to long sessions of listening, the 

assigned monetary reward were not motivating enough for the participants.  

2.1.2 Objectives 

The objective of this chapter is to investigate how the interaction of task demand and 

motivation modifies listening effort and if more effort is invested, whether it benefits 

performance or not. Based on the inverted U-shaped curve previously found in 

objective listening effort studies (e.g., Wu et al., 2016; Wendt et al., 2018), and MIT 

(Brehm & Self, 1989), it is hypothesized that there would be a quadratic interaction 

between task demand and motivation when the demands range from very easy to very 

hard. For this purpose, task demand and extrinsic motivation was varied by having 

participants listen to and repeat speech in four different SNRs (-8, -4, 0 and +4 dB) at 
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two levels of monetary reward (0.5 DKK or ~0.06 € for low reward and 7.5 DKK or 

~1 € for high reward per correct response).  By presenting short sentences, alpha power 

was measured during listening and maintenance phases of the auditory task to assess 

listening effort objectively. It was predicted that for the lowest and highest SNRs (-8 

and +4 dB), there would be no changes in effort due to reward because the task demand 

would be too hard and too easy, respectively. However, for the intermediate SNRs (-4 

and 0 dB), reward and SNR should interact to modify listening effort with increasing 

reward leading to increased listening effort. Although a conjecture might be that if 

more effort is invested due to higher reward then it should also improve the 

performance, but our expectation based on the results of Koelewijn et al., (2018) was 

that performance would remain unchanged due to reward.  

2.2 Study design  

2.2.1 Participants 

The participants for this study were 16 (8 females) native Danish-speaking adults with 

an average age of 25.8 ± 2.8 years who provided written consent prior to study start. 

Ethical approval for the study was obtained from the Research Ethics Committees of 

the Capital Region of Denmark. One additional participant was excluded due to non-

compliance with experimental instructions. None of the participants suffered from any 

neurological or hearing disorders. To make sure they were within normal-hearing 

criteria, the pure-tone average of air conduction thresholds at 0.5, 1, 2 and 4 kHz 

(PTA4) were tested and confirmed to be below 25 SPL HL.   

2.2.2 Apparatus 

The experiment was set up in a double-walled sound-proof booth. Five loudspeakers 

were positioned around the participants. The target was presented from a loudspeaker 

at 0° azimuth in front of the listener. The background noise, consisting of four talkers, 

was presented from four loudspeakers located at ±90° and ±150° azimuth. All the 

loudspeakers were 1.2 m away from the listener. The spatial setup of the test is 

illustrated in Fig. 2.1.  
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Fig. 2.1 Spatial setup of the task; Target was presented from a loudspeaker at 0° azimuth in 

front of the listener (in blue) and background noise was presented from four loudspeakers 

located at ±90° and ±150° (in red). The loudspeakers were 1.2 m away from the listener. 

 

Stimuli were routed through a sound card (RME Hammerfall DSB Multiface II, Audio 

AG, Haimhausen, Germany) and were played via Genelec 8040A loudspeakers 

(Genelec Oy, Iisalmi, Finland). EEG data were recorded by a BioSemi ActiveTwo 

amplifier system (Biosemi, Netherlands) with a standard cap including 64 surface 

electrodes mounted according to the international 10-20 system with a sampling 

frequency of 1024 Hz. The cap included DRL and CMS electrodes as references for 

all other recording electrodes. All electrodes were mounted by applying conductive 

gel to obtain stable and below 50 mV offset voltage. 

2.2.3 Stimuli 

Danish Hearing in Noise Test (HINT; Nielsen and Dau, 2011) sentences were used as 

the target stimuli in the presence of 4-talker babble noise (2 females and 2 males 

reading Danish text from a newspaper). The position of each babble talker changed 

randomly from block to block. The A-weighted SPL of the babble was fixed at 70 dB 

overall (64 dB each). The A-weighted SPL was measured by BK 2250 sound-level 

meter and BK4231 calibrator. The SPL for each loudspeaker was measured separately 

and together using unmodulated white noise (spectrally shaped to the stimuli). The 

level of the target was varied across blocks from 62-74 dB to generate 4 different 

SNRs: -8, -4, 0 and +4 dB. 
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2.2.4 Procedure 

To assess the effects of task demand, 4 different SNRs were chosen (-8 dB, -4 dB, 0 

dB and +4 dB) and to assess the effects of motivation, 2 different levels of reward were 

chosen (low = 0.5 DKK or ~0.06 €, high = 7.5 DKK or ~1 € per correct response). The 

experiment consisted of 160 trials, divided into 8 separate blocks. Each condition 

comprised one block of trials (20 trials). The order of conditions was randomized 

within and between the participants. There was also a training block (20 trials) in the 

beginning of the experiment (+4 dB SNR with no reward) to familiarize participants 

with the main experiment.  

The participants were informed verbally at the beginning of each block (and also by a 

written sign visible throughout the block as a reminder) about the reward level of the 

block (either low or high). Each trial started with 2 s of background noise which was 

used as the baseline for EEG analysis (baseline phase). After that the HINT sentences 

were played in the presence of the continuous background noise, during which test 

subjects were asked to attend to the target (encoding or listening phase). Due to the 

different lengths of the HINT sentences, this listening phase had a variable duration of 

between 1.2-1.8 s (mean 1.5 s). After the sentence was finished, the background noise 

continued for another 2 s during which participants needed to maintain the sentence 

they just listened to (maintenance phase). When the background noise stopped, the 

participants were instructed to repeat the sentence (recall phase). If they could repeat 

all the words within the sentence correctly, then they achieved the reward for that trial 

(i.e., sentence-based scoring). No feedback was given at the end of trials or blocks, in 

order to avoid excitement/disappointment (possible confounding motivation factor) 

from correct/incorrect answers. Only when the experiment was complete were 

participants informed about the number of sentences they recalled correctly, and hence 

the money they had earnt overall. The procedure for each trial is illustrated in Fig. 2.2.  

2.2.5 EEG analysis 

There are three major steps in the EEG processing:  

1) Preprocessing which includes cleaning the data, resampling and re-referencing  

2)  Segmentation to extract different phases of the trial  

3) Power extraction using wavelet in different frequency bands  
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4)  

5) Fig. 2.2 Trial procedure: Each trial started with 2 seconds of background noise 

(baseline). After that the target sentences were played in the presence of background 

noise (listening) which lasted between 1.2 s to 1.8 s. After the target sentence was 

finished, the background noise continued for another 2 s (maintenance). When the 

background noise was stopped, the participants were instructed to repeat the 

sentence (recall). 

2.2.5.1 Pre-processing 

Power line noise in the data was rejected with a 50-Hz notch filter with a quality factor 

of 25. After that, a 3rd-order zero-phase Butterworth bandpass filter with cutoff 

frequencies of 1-40 Hz was applied to the data and the resulting signals were down-

sampled to 256 Hz. Bad channels were detected by visual inspection. On average 6.4 

channels were detected as bad channels per participant and they were interpolated 

using spline interpolation. The eye movements and other sources of unwanted spikes 

in the data were removed with the joint decorrelation method (De Cheveigné & Parra, 

2014). Bad trials were rejected by visual inspection. In total 10.1% of all trials in the 

study were rejected and no participant had more than 23.7% of trials rejected. Finally, 

the resulted signals were common re-referenced. The codes used for this part were 

borrowed from EEGLAB (Delorme & Makeig, 2004), Fieldtrip (Oostenveld et al., 

2011), and NoiseTools (de Cheveigné & Arzounian, 2018) toolboxes in addition to 

custom-written codes.  

2.2.5.2 Segmentation 

Due to the different lengths of HINT sentences (1.2-1.8 s), the duration of trials across 

conditions and participants were unequal. This can raise several potential problems for 

EEG analysis (Luck, 2005), with unequal trial durations introducing unequal variance 

and bias estimates of power spectral density of the EEG signal. To overcome this issue, 
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the shortest duration of the Danish HINT stimuli was identified (1.2 s) and all the EEG 

signals during the listening phase were cut to this number (i.e., segments were cut to 

include only the first 1.2 s of each stimulus regardless of actual duration). Therefore, 

each trial for EEG analysis consisted of 2 seconds of baseline (-2 s to 0 s), and 1.2 

seconds of listening (0 s to 1.2 s). Varying durations were thus removed at the end of 

the listening period, which also meant that the onset of the maintenance phase varied 

in its relation to stimulus onset. It should be noted that the maintenance phase, 

regardless of the length of the target, always lasted for 2 seconds. For this reason, 

hereafter, the maintenance phase is shown as 1.2 s to 3.2 s in the Results section.  

2.2.5.3 Power extraction 

Event-related spectral perturbation (ERSP) (Makeig, 1993) was used to evaluate how 

the EEG power spectra changed over time relative to the baseline. The baseline was 

chosen as -1.9 s to -0.1 s of the background noise masker, prior to the onset of the 

target speech. The first 100 ms (i.e., -2 s to -1.9 s) was removed because of the low-

level evoked response potential (ERP) due to the start of the sound and the last 100 ms 

(i.e., -0.1 s to 0 s) was removed because of spectral leakage from the onset of the 

stimulus. To obtain time–frequency representations of the trials, EEG data were 

convolved with Morlet wavelets (7 cycles width) in a frequency range between 2 and 

35 Hz centered at 100 ms steps within a trial, and then ERSP was calculated using 

formula (1): 

𝐸𝑅𝑆𝑃𝑡,𝑓(%) =  
𝐴𝑡,𝑓 − 𝑅

𝑅
 × 100 (1) 

In which, the ERSP changes are calculated as a percentage. At,f is the absolute power 

of the post-stimulus signal in the time window t, and frequency range of f and R is the 

absolute power of the baseline signal.  

EEG power is a 3-dimesion data in space, time and frequency. In order to extract any 

comparable feature among the manipulations of the study, a specific range for all of 

the three dimensions needs to be defined.  

For the space dimension, based on the initial hypothesis of exploring changes of alpha 

power in the parietal region, the ERSPs of surrounding electrodes (consisting of CPz, 
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CP1, CP2, CP3, CP4, CP5, CP6, Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, 

PO7, PO8) were averaged together to get a more robust estimation of that region. For 

this particular study, as a strong activity around the frontal lobe was observed, 

electrodes of that area (AFz, AF3, AF4, Fz, F1, F2, FCz, FC1, FC2) were also averaged 

together as an additional analysis.  

For the frequency dimension, various frequency ranges of power estimation were 

chosen based on the distinct ERS and ERD in the grand average spectrum (Cohen, 

2014). In the listening phase there was one negative peak at 11 Hz which we 

considered as alpha band (6-13 Hz; Fig. 2.4). In the maintenance phase there were 

three peaks: a positive peak at 7 Hz, a negative peak at 11 Hz, and a positive peak at 

14 Hz. Based on this observation we divided our analyses into three different 

subgroup: low alpha (6-8 Hz; Fig. 2.5), high alpha (9-13 Hz; Fig. 2.6) and beta (14-18 

Hz; Fig. 2.7).  

For the time dimension, the ERSP time window in the listening phase was chosen from 

0.1 s to 1.1 s, and in the maintenance phase from 1.3 s to 2.8 s. The first 100 ms in 

both phases were cut to avoid getting parts of low-level ERPs. The last 100 ms in the 

listening phase (i.e., 1.1 s to 1.2 s) was removed because of spectral leakage from the 

onset of the maintenance phase. The last 400 ms in the maintenance phase (i.e., 2.8 s 

to 3.2 s) was removed due to time-frequency trade off in the wavelet analysis where 

wavelet cycles in lowest frequencies could not contain the signal around the edges. 

Due to participants’ different reaction times in responding, EEG in the recall phase 

could not be analyzed.  

2.2.6 Self-report 

At the end of the testing, each participant responded to a declarative sentence 

(presented in English), “My motivation to do this task was affected by the scale of the 

reward” on a five-point Likert scale (“Disagree”, “Slightly disagree”, “Neutral”, 

“Slightly agree”, “Agree”). The aim of this rating was to see how much each 

participant perceived themselves to be motivated by the change in monetary reward in 

the experiment.  
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2.2.7 Statistics 

Linear mixed model (LMM) analyses were used for statistical evaluation of the results. 

The advantage of LMM is that it can model fixed effects, as well as random effects 

within the experiment which provides more flexible functionality for model estimation 

(DeBruine & Barr, 2021). In this study, LMM was implemented to analyze task 

performance and EEG power in different bands and phases. In all the models, SNR 

and reward were treated as independent measures, thus as fixed factors, with 

participants as random factors. SNR values were centred around 0 (i.e., -6, -2, +2, +6 

dB) solely for the purposes of the LMM in order to avoid correlation between the main 

effects and interactions in the model (Harrison et al., 2018). The estimates of the LMM 

(β), standard error (SE), t-values and degrees of freedom (tDF) and P values are reported 

in the Results section. 

For the performance in the task (i.e., sentence recognition), the main effects of SNR 

and reward and their linear interaction (𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ~ 1 + 𝑆𝑁𝑅 × 𝑅𝑒𝑤𝑎𝑟𝑑 +

(1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷)) are reported in the Results section. For the EEG power, an additional 

quadratic term (𝑃𝑜𝑤𝑒𝑟 ~ 1 + 𝑆𝑁𝑅2 × 𝑅𝑒𝑤𝑎𝑟𝑑 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷)) was added to the 

LMM. Based on the hypothesis of an interaction between task demand and motivation, 

a quadratic interaction between SNR and reward is expected, i.e., more pronounced 

difference in effort in the middle conditions (-4 dB and 0 dB SNR) compared to the 

extreme conditions (-8 dB and +4 dB SNR). Furthermore, the two models for EEG 

power (𝑆𝑁𝑅 × 𝑅𝑒𝑤𝑎𝑟𝑑 vs. 𝑆𝑁𝑅2 × 𝑅𝑒𝑤𝑎𝑟𝑑) were compared against each other, 

using the MATLAB function compare to ensure a better fit of the LMM with the 

quadratic term. For this comparison, likelihood-ratio (Yuanjia Wang & Chen, 2012) 

with the difference of degrees of freedom (LRDF) and p value are reported in the 

Results section.  

In order to investigate if there is any correlation between performance and EEG power, 

code scripts from the Robust Correlation Toolbox were borrowed (Pernet et al., 2013). 

For this purpose, Pearson skipped correlation was used to avoid outliers skewing the 

results. Also, a bootstrap resampling process was done with 1000 repetitions to 

mitigate the correlation bias of inter-dependency of samples within an individual 

(Pernet et al., 2013). To determine whether Pearson coefficient r is significant or not, 

a 95% confidence interval (CI) of bootstrapped data should not contain zero (i.e., the 
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difference of correlation coefficients for the real data compared to shuffled data should 

be anything but zero). All the statistical tests were performed using the Statistics 

toolbox of MATLAB 2018b software. 

2.3 Results  

2.3.1 Performance 

The performance accuracy was measured based on sentence scoring meaning that the 

reward was only given if all the words within the sentence were repeated correctly. 

The results for performance (Fig. 2.3) showed a significant main effect of SNR (β = 

6.96, SE = 0.26, t124 = 25.90, p < 0.001), but no main effect of reward (β = 0.15, SE = 

2.40, t124 = 0.06, p = 0.94) nor any interaction between SNR and reward (β = -0.21, SE 

= 0.53, t124 = -0.40, p = 0.68).  

 

 

Fig. 2.3 Results of performance accuracy: The percentage of correctly repeated sentences. 

The error bars show standard error of the mean. There was a significant effect of SNR 

without any effects of reward. 

2.3.2 EEG 

2.3.2.1 Listening 

In the listening phase there was a desynchronization in alpha power (Fig. 2.4), however 

it did not show any significant changes by SNR and reward in either parietal (Table 

2.1) or frontal regions (Table 2.2). 
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2.3.2.2 Maintenance  

In the parietal region, there were synchronization of low alpha (Fig. 2.5) and beta 

bands (Fig. 2.7), and desynchronization of high alpha band (Fig. 2.6) in the 

maintenance phase. In the low alpha power during the maintenance phase, there was a 

significant inverted U-shaped pattern of SNR, as well as quadratic interaction between 

SNR and reward. Additionally, we tested the appropriateness of the model with the 

quadratic component included vs excluded, finding a nominal improvement in the fit 

of the LMM when the quadratic was included (LR2 = 14.64, p < 0.001). In other words, 

it can be concluded that 1) effort increased up until the task became too hard, and also 

2) when reward was higher, listeners increased their effort in intermediate conditions.   

In the frontal region, there was also a quadratic effect of SNR in low alpha, but without 

quadratic interaction between SNR and reward.  

 

Table 2.1 Results of mixed model based on SNR and reward predictors: estimates of relative 

power changes in the parietal region in different bands and phases. Significant p-values are 

shown in black.   

DF = 122 Listening Maintenance 

Band 

Predictor 

Alpha Low Alpha High Alpha Beta 

SNR 

 

 

 

 

β = 0.42 

SE = 0.25 

t = 1.65 

p = 0.099  

β = 0.28 

SE = 0.22 

t = 1.26 

p = 0.207 

β = 0.23 

SE = 0.27 

t = 0.87 

p = 0.380 

β = -0.33 

SE = 0.21 

t = -1.52 

p = 0.129 

SNR2 

 

 

 

 

β = -0.03 

SE = 0.07 

t = -0.46 

p = 0.640 

β = -0.19 

SE = 0.06 

t = -3.16 

p < 0.001 

β = -0.11 

SE = 0.07 

t = -1.50 

p = 0.134 

β = -0.09 

SE = 0.06 

t = -1.55 

p = 0.122 

Reward 

 

 

 

 

β = 5.33 

SE = 3.64 

t = 1.46 

p = 0.145 

β = 5.88 

SE = 3.21 

t = 1.82 

p = 0.069 

β = 5.03 

SE = 3.87 

t = 1.30 

p = 0.196 

β = 4.00 

SE = 3.11 

t = 1.28 

p = 0.200 

SNR:Reward 

 

 

 

 

β = 0.11 

SE = 0.50 

t = 0.21 

p = 0.827 

β = 0.01 

SE = 0.44 

t = 0.03 

p = 0.971 

β = 0.23 

SE = 0.54 

t = 0.43 

p = 0.663 

β = -0.09 

SE = 0.43 

t = -0.21 

p = 0.827 

SNR2:Reward 

 

 

 

 

β = -0.08 

SE = 0.14 

t = -0.59 

p = 0.553 

β = -0.29 

SE = 0.12 

t = -2.37 

p = 0.018 

β = -0.26 

SE = 0.15 

t = -1.72 

p = 0.086 

β = -0.17 

SE = 0.12 

t = -1.40 

p = 0.161 
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Fig. 2.4 Power changes during listening in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic map in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of alpha power by SNR and reward in 

the highlighted window of panel A which showed no significant modulation. The error bars 

show standard error of the mean. 

A 

B 

C 
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Fig. 2.5 Power changes during maintenance in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic map in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of low alpha power by SNR and 

reward in the highlighted window of panel A which showed significant quadratic interaction 

between the two. The error bars show standard error of the mean. 

A 

B 

C 
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Fig. 2.6 Power changes during maintenance in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic map in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of high alpha power by SNR and 

reward in the highlighted window of panel A which showed no significant modulation. The 

error bars show standard error of the mean. 

A 

B 

C 
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Fig. 2.7 Power changes during maintenance in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic map in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of beta power by SNR and reward in 

the highlighted window of panel A which showed no significant modulation. The error bars 

show standard error of the mean. 

A 

B 

C 
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Table 2.2 Results of mixed model based on SNR and reward predictors: estimates of relative 

power changes in the frontal region in different bands and phases. Significant p-values are 

shown in black.   

DF = 122 Listening Maintenance 

Band 

Predictor 

Alpha Low Alpha High Alpha Beta 

SNR 

 

 

 

 

β = 0.04 

SE = 0.29 

t = 0.16 

p = 0.869  

β = 0.11 

SE = 0.30 

t = 0.35 

p = 0.720 

β = 0.13 

SE = 0.39 

t = 0.35 

p = 0.724 

β = -0.56 

SE = 0.34 

t = -1.63 

p = 0.105 

SNR2 

 

 

 

 

β = -0.08 

SE = 0.08 

t = -1.04 

p = 0.297 

β = -0.18 

SE = 0.08 

t = -2.18 

p = 0.030 

β = -0.17 

SE = 0.10 

t = -1.61 

p = 0.109 

β = -0.04 

SE = 0.09 

t = -0.49 

p = 0.623 

Reward 

 

 

 

 

β = -0.06 

SE = 4.16 

t = -0.01 

p = 0.987 

β = 7.93 

SE = 4.43 

t = 1.78 

p = 0.076 

β = 8.14 

SE = 5.61 

t = 1.45 

p = 0.149 

β = 9.56 

SE = 4.95 

t = 1.93 

p = 0.055 

SNR:Reward 

 

 

 

 

β = 0.19 

SE = 0.58 

t = 0.33 

p = 0.741 

β = 0.61 

SE = 0.61 

t = 0.99 

p = 0.320 

β = 0.47 

SE = 0.78 

t = 0.61 

p = 0.542 

β = 0.97 

SE = 0.69 

t = 1.40 

p = 0.162 

SNR2:Reward 

 

 

 

 

β = -0.02 

SE = 016 

t = -0.14 

p = 0.881 

β = -0.33 

SE = 0.17 

t = -1.94 

p = 0.053 

β = -0.41 

SE = 0.21 

t = -1.91 

p = 0.058 

β = -0.36 

SE = 0.19 

t = -1.89 

p = 0.060 

 

2.3.3 “Motivated” subgroup 

When participants were asked whether their motivation was affected by the scale of 

monetary reward (i.e., the question at the end of the experiment), 1 disagreed, 2 slightly 

disagreed, 4 responded neutrally, 6 slightly agreed and 2 agreed.  

As a post-hoc analysis the minority of participants (3 out of 16) who disagreed/slightly 

disagreed to being motivated by reward was excluded to check if the alpha power 

results would be influenced by their absence. To put it briefly, there was no change of 

significant results as reported by 16 participants (as in Table 2.1). Parietal low alpha 

power still showed significant inverted U-shape pattern due to SNR and significant 

quadratic interaction between SNR and reward in maintenance. The details of the 

LMM results for this subgroup is in Table 2.3.  
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Table 2.3 Results of mixed model based on SNR and reward predictors for the “motivated” 

subgroup: estimates of relative power changes in the parietal region in different bands and 

phases. Significant p-values are shown in black.   

DF = 98 Listening Maintenance 

Band 

Predictor 

Alpha Low Alpha High Alpha Beta 

SNR 

 

 

 

 

β = 0.28 

SE = 0.28 

t = 1.01 

p = 0.313  

β = 0.28 

SE = 0.25 

t = 1.10 

p = 0.270 

β = 0.18 

SE = 0.31 

t = 0.58 

p = 0.557 

β = -0.37 

SE = 0.24 

t = -1.52 

p = 0.131 

SNR2 

 

 

 

 

β = -0.11 

SE = 0.07 

t = -1.49 

p = 0.137 

β = -0.21 

SE = 0.07 

t = -3.06 

p = 0.002 

β = -0.17 

SE = 0.08 

t = -1.93 

p = 0.055 

β = -0.10 

SE = 0.06 

t = -1.52 

p = 0.130 

Reward 

 

 

 

 

β = 5.25 

SE = 4.03 

t = 1.30 

p = 0.195 

β = 6.90 

SE = 3.62 

t = 1.90 

p = 0.059 

β = 5.78 

SE = 4.51 

t = 1.28 

p = 0.203 

β = 4.49 

SE = 3.55 

t = 1.26 

p = 0.208 

SNR:Reward 

 

 

 

 

β = 0.05 

SE = 0.56 

t = 0.09 

p = 0.927 

β = -0.08 

SE = 0.50 

t = -0.17 

p = 0.865 

β = -0.02 

SE = 0.63 

t = -0.03 

p = 0.972 

β = -0.01 

SE = 0.49 

t = -0.01 

p = 0.998 

SNR2:Reward 

 

 

 

 

β = -0.03 

SE = 0.15 

t = -0.21 

p = 0.832 

β = -0.31 

SE = 0.14 

t = -2.25 

p = 0.026 

β = -0.24 

SE = 0.17 

t = -1.38 

p = 0.170 

β = -0.21 

SE = 0.13 

t = -1.54 

p = 0.126 

2.3.4 Correlations  

The analysis of Pearson skipped correlation showed that there was no significant 

correlation between performance and the power of different bands in any phase (Table 

2.4). The correlation graphs with their respective r and 95% CI and bootstrapped 

resampling are shown in Fig. 2.8.    

Table 2.4 Pearson skipped correlation between performance and EEG power in the parietal 

region in different bands and phases. 

 Listening Maintenance 

Band 

Electrodes 

Alpha Low Alpha High Alpha Beta 

Parietal 

 

 

 

r = 0.07 

CI = [-0.14 0.25] 

 

r = 0.17 

CI = [-0.01 0.33] 

 

r = 0.08 

CI = [-0.10 0.25] 

 

r = -0.01 

CI = [-0.18 0.14] 
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Parietal 

 

 

 

 

Fig. 2.8 Pearson’s skipped correlation between performance and EEG power during 

maintenance (low alpha, high alpha and beta) and during listening (alpha). The red dots are 

considered as outliers by the robust correlation and the shaded area show the 95% CI.  
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2.4 Discussion  

2.4.1 Overview  

The results of this study showed that in in extreme SNRs (-8 and +4 dB) higher reward 

may not lead to increased effort. However, it was in the middle SNRs (0 and -4 dB) 

that increased parietal low alpha was observed during maintenance phase which 

suggested participants may have spent more effort in those conditions. Regardless of 

increased effort, there was no behavioural benefits due to reward.  

2.4.2 No behavioural benefit of reward 

It could be expected that when people are more motivated to do a task (such as through 

greater reward), they spend more effort in the hope of achieving  a better outcome 

(Brehm & Self, 1989). However, in the current study higher reward did not lead to 

better performance even in the SNRs where increased effort was observed. While 

previous studies (Koelewijn et al., 2018) and theories (Lunner et al., 2016) speculate 

that listening effort may vary even if the performance is unchanged, it is also possible 

that our performance measure was insufficiently sensitive. Similar to Koelewijn et al., 

(2018), performance was measured based on whole sentences and not individual 

words, which may have missed word-level differences in performance due to reward. 

Another explanation could be that having block-based or trial-based reward could 

make a difference in overall performance. Trial-based cues have shown to help 

transient increases in preparatory effort which resulted in improving behavioural 

performance compared to sustained motivation (Kostandyan et al., 2019). Hence the 

block-based format of our manipulation may have led to a conservative sustained effort 

throughout the block. While this limitation could be addressed in future, our finding 

of changes in alpha power (interpreted as effort) in spite of no changes in performance 

nonetheless points to the importance of using objective measures of listening effort in 

addition to measures of performance.  

2.4.3 Alpha during maintenance 

The analyses of EEG data showed that varying SNR and level of reward during a 

listening task led to changes in low alpha power primarily in the maintenance phase, 

and not in the listening phase. The importance of the alpha activation in the 
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maintenance phase (i.e., after speech signal offset) has been shown in other studies 

such as Obleser et al., (2012), which reported alpha oscillations to be affected by both 

speech degradation and working memory load. This could be due to difficult listening 

situations resulting in noisy memory representations and word mismatch in the 

working memory, which puts more strain on the STM while the sentence is being held 

in mind (Wilsch & Obleser, 2016).   

Given that the maintenance phase occurred in the presence of background noise, the 

activation of the low alpha band could very well serve a function of inhibiting 

unattended sound sources (Wilsch & Obleser, 2016) to facilitate the retention of 

sentences. Lower SNRs cause more word mismatches during listening, which draws 

more resources from working memory to identify them. However, when the task 

became too difficult (-8 dB), the participants started to disengage and low alpha 

activity started to decrease. Such an inverted U-shaped curve has been shown in 

numerous effortful listening studies, using both EEG (Decruy et al., 2020) and 

pupillometry (Ohlenforst et al., 2018; Wendt et al., 2018).  

2.4.4 Alpha during listening 

In contrast to the maintenance phase, alpha activity during the listening phase did not 

change with manipulation of SNR and reward. One reason for this observation might 

be that EEG power in this phase (which lasted around 1 s) reflects task engagement 

rather than stimulus features. Despite lack of statistical significance, it is important to 

note that unlike maintenance phase, there is a wide frequency range of desynchrony 

during listening which reflects neural excitability that emerges from active processing 

of information (Klimesch, 2012; Klimesch et al., 2007; Palva & Palva, 2007; Wilsch 

& Obleser, 2016). It has also been suggested that such wide desynchronization 

represents maximal information capacity (Pfurtscheller, 2001).  

During the maintenance phase of a listening task, it has been shown that alpha power 

changes are sensitive to subtle manipulations of memory load, such as monotonic 

increase in spectral amplitude (Leiberg et al., 2006) or in a delayed-match-to-sample 

paradigm (Luo et al., 2005). However, these studies have not reported equivalent 

effects during their short listening phases (~1 s), which may be another indication that 

alpha power during early listening phase is more of a global feature and shows task 

engagement. In fact, studies that appear to show alpha power changes according to 
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task demand during the listening phase are those with a longer duration of target speech 

such as Wöstmann et al., (2015) (~3 s) or Seifi Ala et al., (2020) (~30 s). It is possible 

that longer auditory stimuli might be required to look for alpha changes to track 

listening effort. This is explored further in Chapter 4 and Chapter 5. 

2.4.5 Interaction of reward and SNR 

Previous listening studies have shown different effects of monetary reward on listening 

effort (e.g., Koelewijn et al., 2018; Picou & Ricketts, 2014). Similar to the current 

study, Koeleweijn et al. (2018) investigated the effects of motivation and task demand 

on listening effort in a speech-in-noise task, although effort was measured using 

pupillometry. They also used two levels of monetary reward (high vs low), but only 

two levels of task demand (50% and 85%-correct thresholds in an adaptive sentence-

recognition procedure). They observed higher reward increased effort as measured by 

peak pupil dilation, but there was no (linear) interaction between reward and task 

demand. To compare the current results with Koelewijn et al., I analyzed the effects of 

reward and SNR for only the two SNR conditions of our study (-4 and 0 dB) which 

were very similar in speech intelligibility (56% and 88%, respectively) to Koelewijn 

et al. (2018). Using LM, I did not find any effects of reward (β = 4.68, SE = 2.89, t60 

= 1.62, p = 0.110) or interaction between reward and SNR (β = -1.52, SE = 1.44, t60 = 

-1.05, p = 0.295). Using the same statistical approach as Koelewijn et al. (a repeated 

measure ANOVA), I could not find any significant effects of reward (F(1,15) = 1.92, 

p = 0.185) nor interaction between reward and SNR (F(1,15) = -1.61, p = 0.223).  

Therefore, to observe the interactive effects of reward and task demand on effort, as 

hypothesized in FUEL, it may be necessary to measure at a range of task demands 

spanning relatively difficult, intermediate and easy levels. However, in the study by 

Plain et al., (2020), even with a wide range of task demand, no interactive effect of 

reward on effort was observed in PEP data. Despite similar reward values to Koelewijn 

et al., (2018), they suspected that longer sessions in their design required higher 

monetary reward to increase effort compared to short sessions in Koelewijn et al., 

(2018).  
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2.4.6 Limitations  

One of the reasons that there were no behavioural benefits of reward in this 

experiment, might have been due to the fact that evaluation of performance was 

sentence based. That means a response with 4 out of 5 correct words was considered 

the same as a response with no correct words (both considered as wrong answers). 

Scoring the performance based on words might have been a more accurate approach 

to evaluate behavioural benefits. Future studies are needed to see how the difference 

between word and sentence scoring would influence any conclusions on the 

behavioural benefits of monetary reward.  

The other shortcoming was using a general questionnaire at the end of the experiment 

instead of a condition-specific questionnaire. While the participants declared whether 

they were motivated by scale of reward or not, they were not specifically asked if that 

varied across conditions. For this reason, this questionnaire could not be compared to 

other measurements of the study beyond what was done in Section 2.3.3 (by removing 

the “unmotivated” participants).  

2.5 Conclusion  

The hypothesis of this study was that higher reward would lead to increased listening 

effort when the task demand is moderate (i.e., not too high – leading to floor effects – 

or too low – leading to ceiling effects). To test this hypothesis, four different SNRs (-

8 dB, -4 dB, 0 dB and +4 dB) with two levels of reward (high and low) were presented 

to participants using Danish HINT speech material and EEG signals were recorded 

during the task. The normalized posterior low alpha (6-8 Hz) during the maintenance 

showed a quadratic interaction between SNR and monetary reward. In the intermediate 

(-4 and 0 dB SNR) conditions, increased effort was observed in the high reward 

condition compared to the low reward condition. However, in the very easy (+4 dB 

SNR) and very difficult (-8 dB SNR) conditions there was no such effect. These results 

show that both environmental factors (task demand) and personal factors (motivation) 

are important for the evaluation of listening effort.  
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Chapter 3  

Listening effort in simulated rooms 

The current study was a joint project with the fellow PhD student Sergio Aguirre at 

University of Nottingham, Hearing Sciences – Scottish Section. The contributions 

were as followed:  

TSA: Study design, preparing set up, data collection, data analysis, data interpretation.  

SA: Study design, room simulations, sound calibration, preparing set up, data 

collection, data interpretation.  

3.1 Introduction 

In the previous chapter I talked about how motivation (a personal factor) can interact 

with SNR (an environmental factor) to change listening effort. In this chapter, I will 

focus on interaction of SNR and rooms (two environmental factors) to investigate how 

they shape listening effort.  

3.1.1 Reverberation 

Sound generated by a source in an enclosed space can reach listener either directly 

(free field) or indirectly (reverberant). Reverberant fields are generated by reflected 

sounds from enclosed spaces and are time dependent. When the source suddenly 

ceases, a sound field persists for a finite interval as the result of multiple reflections 

and the low velocity of sound propagation. This residual acoustic energy constitutes 

the reverberant field. Reverberation time (RT) is a characterization of the acoustics of 

a space that represents the amount of time required to dissipate the energy of a sound 

source by 60 dB (T60) after the sound source has ceased (Rossing, 2007). The 

remaining sound energy distorts the envelope and fine structure of the received sound 

(Ratnam et al., 2003) and can blur auditory cues, rapid transitions between phonemes, 

decrease low frequency modulation of a signal, and may compromise speech 

intelligibility (Hazrati & Loizou, 2012). Moreover, the reverberation time is frequency 

dependent. How walls/objects absorb lower (audible) frequencies is often very 

different from higher frequencies. This not only affects the T60 across frequencies, but 

how the reverberation affects speech intelligibility. 
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Interest in studies with more ecologically valid test situations has encouraged 

researchers to include reverberation in hearing tests, as many listening situations in 

closed spaces are reverberant. Anechoic chambers that are often used in auditory 

studies have a T60 of close to 0. More realistic spaces (such as rooms/offices with 

furniture and people) have T60 of less than 1 s at 1 kHz (Knecht et al., 2002). Churches, 

cathedrals, and other large spaces with hard surfaces have T60 of larger than 2 s 

(Desarnaulds et al., 2002). Therefore, simulated rooms in anechoic chambers can 

provide the opportunity to study reverberation in more realistic enclosed spaces.  

In reverberant environments, speech understanding is difficult, especially for hearing-

impaired individuals. A study by Xia et al., (2018), evaluated the effects of noise and 

reverberation on speech intelligibility in normal hearing and hearing-impaired 

individuals. Sixteen acoustic scenes with four different reverberant rooms (T60 = 0, 

0.66, 0.8, 1.88 s) and four acoustic backgrounds (quiet, SNR = 5, 10 dB, one-talker 

speaker) were simulated. The initial results showed that speech intelligibility for 

hearing-impaired listeners was less than normal hearing listeners. However, when the 

ceiling effect was corrected for, the difference between the two groups became much 

smaller. Based on these results, the authors suggested that part of the difference in 

susceptibility to reverberation between normal-hearing and hearing-impaired listeners 

could be due to ceiling effects.  

There are also studies that have investigated the effects of reverberation on listening 

effort subjectively and/or objectively. In a study by Prodi & Visentin (2019), 

participants performed speech-in-noise task in three different reverberant conditions 

(T30 = 0, 0.3, 0.65 s) with stationary or fluctuating noise and SNR varying from –14.9 

dB to 4 dB. The task was to select the presented word among rhyming words which 

appeared on the screen. Listening effort was measured objectively with response time. 

The results showed significant increase of response time due to higher reverberation 

and noise level which showed increased effort for these conditions. The authors also 

found an interaction between reverberation and noise levels which suggests 

reverberation can affect listening effort differently depending on the noise type and 

level. 

Importantly, reverberation can affect listening differently depending on age. In a study 

by Kwak et al., (2018), young and elderly adults participated in a sentence recognition 

task with four different SNRs (0, +3, +6 dB and quite) and five levels of RT (0, 0.5, 1, 
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1.5, 2 s). Intelligibility was measured via a sentence recognition task, and listening 

effort was evaluated subjectively via a questionnaire. The results showed that 

decreasing SNR and increasing RT led to poorer sentence recognition and increased 

listening effort in both groups. However, RT affected the sentence recognition 

performance and listening effort more in the elderly group than in the younger group. 

This study suggests that listening in reverberant conditions may get worse with age.  

Opposite to the studies by Prodi & Visentin (2019) and Kwak et al., (2018), there are 

studies that have failed to find evidence that reverberation affects listening effort. For 

example, in a study by Picou et al., (2016), response time in a dual-task paradigm was 

used as a behavioural measure of listening effort. Participants were tested with variant 

SNRs in three levels of reverberation (T30 < 0.1, 0.4, 0.8 s). While word recognition 

was negatively affected by SNR and reverberation, response times only showed a 

significant effect of SNR. Therefore, reverberation in this study did not reveal any 

effect on listening effort. While inconsistent with previous results, the authors 

speculated that perhaps their young normal hearing participants were not sensitive 

enough to the difference of applied reverberant conditions in this study.  

3.1.2 Subjective vs. objective measures of effort 

In Section 1.3.1, it was mentioned that subjective and objective measures of listening 

effort may or may not agree with each other during an auditory task; similar conflicting 

findings have been found in reverberation studies. For example, in the study by Holube 

et al., (2016), reverberation effects on listening effort were found to be different using 

questionnaire (subjectively) and electrodermal activity (objectively). In this study, 

young normal-hearing and elderly hearing-impaired participants listened to sentences 

either with stationary background noise or with reverberation. Two levels of SNRs 

were used for creating easy listening situation (6 dB for normal-hearing and 10 dB 

SNR for hearing impaired) and difficult listening situation (-6 dB for normal-hearing 

and -2 dB SNR for hearing impaired). Similarly, two levels of RT were used for 

creating easy listening situation (0.5 s for normal-hearing and 0.3 s for hearing 

impaired) and difficult listening situation (4 s for normal-hearing and 2 s for hearing 

impaired). Easy situations led to 100% speech intelligibility whereas difficult listening 

situations led to 30%-80% speech intelligibility. While subjective ratings showed 

significant differences between the easy and hard conditions in both groups, the 
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electrodermal activity revealed no significant trends. It is possible that electrodermal 

activity should be regarded as a measure of autonomic stress reaction that could not 

capture listening effort in this context.  

However, there are studies that show subjective and objective measures of listening 

effort align with each other in reverberant conditions. In the study by Picou & Ricketts, 

(2018) adults with symmetrical sensorineural hearing loss participated in a dual-task 

paradigm with three microphone settings in a reverberant condition (T30 = 0.7 s). Using 

questionnaire (subjectively) and response time (objectively), the authors found that 

subjective rating aligned with response time as a measure of listening effort. The 

authors suggested that their conflicting results with their previous study where 

reverberation did not affect listening effort (Picou et al., 2016) was perhaps due to 

small RT coupled with the use of monosyllabic words in the earlier study that did not 

lead to any effects of reverberation on listening effort. However, it is notable that this 

study only used one reverberation time and did not elicit a large range in intelligibility 

performance, indicating that task demands were fairly similar throughout the study.  

The reason that subjective and objective measures of listening effort show conflicting 

results across studies might be because they capture different processing in the brain. 

I speculated in Chapter 1 that using a wide range of task demand might be the key in 

revealing the differences between subjective and objective ratings of listening effort. 

Subjective measures mostly change linearly with task demand, but if the task demand 

is large enough, an inverted U-shaped pattern of objective effort is expected. One 

plausible explanation is that subjective ratings of effort may be more related to speech 

intelligibility rather than expenditure of resources in the brain. In this chapter, the idea 

that subjective and objective measures of listening effort differ from each other when 

the range of task demand is large enough is put into test.  

3.1.3 Objectives 

The objective of this chapter is to investigate how SNR and reverberation interact with 

each other within a simulated room to affect speech intelligibility and listening effort. 

The hypothesis is that increasing RT would increase the SNR point where the listeners 

disengage from the task (i.e., higher RT leads to a faster disengagement due to added 

task demand). For this purpose, three different SNRs (-8, -3, +2 dB) and three 

simulated rooms (RT = 0, 0.5, 1.1 s) were used. Speech intelligibility was measured 



Chapter 3  54 

 

 

based on word scoring and listening effort was measured both subjectively and 

objectively. For the subjective measure of effort, a questionnaire was used. For the 

objective measure of effort, low alpha power in maintenance was used based on the 

findings in Chapter 2.  However, due to our focus on identifying appropriate measures 

of objective listening effort, I additionally explored the listening phase, and other 

power bands that seemed relevant in the maintenance phase. I expected to observe 

speech intelligibility and subjective ratings linearly change with SNR and RT. 

However, for low alpha power in the maintenance, I expected to see an inverted U-

shaped pattern because of the disengagement that may occur in the most demanding 

conditions in the study.  

3.2 Study design  

3.2.1 Participants  

18 normal-hearing native Danish-speaking adults (8 females) with an average age of 

36.9 ± 11.2 years participated in this study. All the participants signed a written 

consent form prior to the test. One participant was positioned incorrectly in the sound 

field, so his data was discarded and the data for the other 17 participants were used for 

further analysis. Ethical approval for the study was obtained from the Research Ethics 

Committees of the Capital Region of Denmark. For each participant, the pure-tone 

average of air conduction thresholds at 0.5, 1, 2 and 4 kHz (PTA4) were tested and 

confirmed to be below 25 SPL HL.   

3.2.2 Apparatus 

The experiment was set up in an anechoic room with inner dimensions of 4.3 x 3.4 x 

2.7 m. The experimental setup consisted of a circular array of 24 loudspeakers 

positioned on 15° azimuth intervals with 1.2 m distance to the centre of the circle 

where the participant was seated. The height of the seat was adjusted so that the 

loudspeaker drivers were at ear level. The target and maskers were simulated to be at 

the same distance as the actual loudspeaker array, with the target at 0° and maskers at 

90°, 150°, 210° and 270°. The position of the participant during all testing was 

monitored using a laser pointer and a camera to ensure they are placed in the middle 

of loudspeakers throughout the test.  
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Stimuli were routed through a sound card (MOTU PCIe-424) with an Firewire 440 

connection to the MOTU Audio 24I/O interface and were played via 24 calibrated 

loudspeakers (Genelec 8030A/C) described above. The EEG apparatus was as 

described in Section 2.2.2.  

3.2.3 Stimuli  

The speech materials, including target and 4-talker background noise, were from the 

Danish HINT, as described in Section 2.2.3. The overall maskers’ SPL was set at 70 

dB (64 dB for each background talker), and the targets were set at 62 dB, 67 dB and 

72 dB to generate three different SNR conditions: -8, -3, and +2 dB. In this study, SNR 

was defined as the input SNR, which means the long-term average sound level of the 

target signal compared to the background noise in anechoic conditions. Although the 

SNRs can be slightly different depending on the reverberant conditions, the input 

SNRs always stay constant.  

To create reverberant conditions, three rooms with different RTs were simulated: 

1) A room without reverberation (RT = 0 s), 

2) A classroom with desks (RT = 0.5 s; 9.46 m x 6.69 m x 3.00 m), and  

3) A restaurant dining area (RT = 1.1 s; 12.19 m x 7.71 m x 2.80 m). 

The rooms were modelled in ODEON. The simulated room impulse responses were 

generated using high-order Ambisonics which was then reduced to third-order 

Ambisonics to account for the limited number of channels. Target position (0°) and 

maskers’ positions (90, 150, 210 and 270°) were simulated by convolving the 

appropriate simulated room impulse responses with each stimulus on each trial. 

3.2.4 Procedure 

There were 9 different conditions based on SNR (-8, -3, +2 dB) and RT (0, 0.5, 1.1 s) 

of the sound. Each condition was presented in a sperate block, and each block consisted 

of 20 sentences (180 sentences in total). In addition to that, each participant went 

through a training round in the beginning, consisting of 20 sentences with random, but 

all, conditions.  
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Each trial started with 3 seconds of background noise which was used as the baseline 

for EEG analysis (baseline phase). It should be noted that there was no reverberation 

in the baseline for RT = 0 s, whereas for RT = 0.5 s and RT = 1.1 s the baseline was 

reverberant. After that the HINT sentences were played in the presence of background 

noise, during which test subjects were required to attend to the target (listening phase) 

which lasted between 1.2 s to 1.8 s (mean 1.5 s). After the target sentence was finished, 

the background noise continued for another 2 seconds during which participants 

needed to maintain the words they just listened to (maintenance phase). When the 

background noise was stopped, the participants were instructed to repeat all the words 

within the sentence (recall phase). The performance accuracy was scored based on the 

correct words they could repeat (i.e., word scoring for speech intelligibility) The 

procedure for each trial is illustrated in Fig. 3.1. 

 

 

Fig. 3.1. Trial procedure: Each trial started with 3 seconds of background noise (baseline). 

After that the target sentences were played in the presence of background noise (listening) 

which lasted between 1.2 s to 1.8 s. After the target sentence was finished, the background 

noise continued for another 2 s (maintenance). When the background noise was stopped, the 

participants were instructed to repeat the sentence (recall).  

 

3.2.5 EEG analysis 

The processing of EEG data was done similarly to Section 2.2.5. On average, 2.1% of 

the channels were detected as bad and were interpolated. 14.7% of all trials in this 
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experiment were rejected by visual inspection. No participant had more than 24.3% 

rejected trials.  

ERSP window segmentation was followed similarly to Section 2.2.5.3. As in Chapter 

2, The ERSP time window in the baseline was chosen from -2 s to -0.1 s, in the 

listening phase from 0.1 s to 1.1 s, and in the maintenance phase from 1.3 s to 2.9 s.  

Various frequency ranges of power estimation were chosen based on the grand average 

spectrum. In the listening phase there was a negative peak at 10 Hz, and thus we 

considered alpha band as 6-13 Hz (see Fig. 3.3). In the maintenance phase there were 

three peaks: a positive peak at 7 Hz, a negative peak at 11 Hz, and a positive peak at 

17 Hz. Based on this observation we divided our analyses into three different 

subgroups: low alpha at 6-9 Hz (see Fig. 3.4), high alpha at 10-13 Hz (see Fig. 3.5) 

and beta at 14-20 Hz (see Fig. 3.6).  

3.2.6 Questionnaire 

Participants were asked three questions at the end of each block. The questions were 

inspired by Zekveld & Kramer (2014), and were translated to Danish. The response to 

each question had a scale of 0 to 100, with change units of 1.  

The first question was “How many words do you think you understood correctly?” 

[English translation] and will be referred as “subjective intelligibility”.  The second 

question was “How much effort did you spend when listening to the sentences?” 

[English translation] and will be referred as “subjective effort”. The third question was 

“How often did you give up trying to perceive the sentences?” [English translation] 

and will be referred as “subjective disengagement”.  

As a post-hoc analysis and based on the obtained results (see Fig. 3.10), subjective 

effort was subtracted from subjective disengagement to obtain a new subjective 

measure called “derived effort”. The idea behind this measure was that the difference 

between the two measures should show a pattern similar to the EEG. Based on the 

previous literature (e.g., Zekveld & Kramer, 2014) and the results of current study, 

participant rate higher subjective effort and higher subjective disengagement when the 

task becomes more difficult, no matter how close to impossible the task gets. As these 

measures change in different directions (i.e., one increasing while the other 
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decreasing), I decided to subtract their effect from each other and investigate whether 

one is greater than the other, depending on the task demand.  

3.2.7 Statistics  

LMM was used for investigating the effects of SNR and RT on performance, 

questionnaire, and EEG power in different bands. SNR and RT were fixed factors and 

participants were random factors in the model. The MATLAB syntax for LMM 

implementation was 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ~ 1 + 𝑆𝑁𝑅 ∗ 𝑅𝑇 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷), with 

Dependent being either performance, questionnaire, or EEG power. Both SNR (-5, 0, 

5) and RT (-0.53, -0.03, 0.56) levels were centred around zero, for reasons discussed 

in Section 2.2.7.  

3.3 Results  

3.3.1 Performance 

In this experiment, performance accuracy was scored based on the number of correct 

words repeated within a sentence (i.e., word-based speech intelligibility). In terms of 

performance accuracy, there were significant effects of SNR (β = 5.98, SE = 0.30, t158 

= 19.67, p < 0.001), and RT (β = -31.17, SE = 1.78, t158 = -17.49, p < 0.001) and a 

significant interaction between the two (β = 1.76, SE = 0.43, t158 = 4.04, p < 0.001). 

The mean results for performance in each condition is shown in Fig. 3.2. 

3.3.2 EEG 

3.3.2.1 Listening 

In the listening phase, there was a negative peak at 10 Hz (alpha ERD). LMM showed 

significant effects of SNR, whereby a greater SNR related to higher alpha power (less 

ERD). There was no significant effect of RT and no interaction (Table 3.1). The grand 

average spectrogram, spectrum, topographic map, and alpha power graph chart are 

shown in Fig. 3.3.  
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Fig. 3.2 Performance accuracy based on correct repeated words: Increasing SNR and 

decreasing RT led to higher performance accuracy. Error bars represent standard error of the 

mean. 

 

Table 3.1 Results of mixed model based on SNR and RT predictors: estimates of relative 

power changes in the parietal region in different bands and phases. Significant p-values are 

shown in black font.   

DF = 158 Listening Maintenance 

Band 

Predictor 

Alpha Low Alpha High Alpha Beta 

SNR 

 

 

 

 

β = 0.50 

SE = 0.21 

t = 2.36 

p = 0.019  

β = 0.07 

SE = 0.21 

t = 0.35 

p = 0.725 

β = 0.87 

SE = 0.23 

t = 3.73 

p < 0.001 

β = 0.94 

SE = 0.20 

t = 4.53 

p < 0.001 

RT 

 

 

 

 

β = 0.15 

SE = 1.95 

t = 0.07 

p = 0.938 

β = 2.36 

SE = 1.98 

t = 1.19 

p = 0.235 

β = 3.87 

SE = 2.13 

t = 1.81 

p = 0.072 

β = 6.23 

SE = 1.90 

t = 3.26 

p = 0.001 

SNR x RT 

 

 

 

 

β = -0.42 

SE = 0.47 

t = -0.89 

p = 0.371 

β = -1.33 

SE = 0.48 

t = -2.73 

p = 0.006 

β = -0.54 

SE = 0.52 

t = -1.04 

p = 0.299 

β = -0.82 

SE = 0.46 

t = -1.75 

p = 0.081 
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Fig. 3.3 Power changes during listening in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic maps in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of low alpha power by SNR in the 

highlighted window of panel A which showed significant main effect. Error bars represent 

standard error of the mean. 

A 

B 

C 
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3.3.2.2 Maintenance 

In the maintenance phase, there was a positive peak at 7 Hz (low alpha ERS), a 

negative peak at 11 Hz (high alpha ERD), and a positive peak at 17 Hz (beta ERS). 

Based on Chapter 2, the main hypotheses related to the low alpha power for changes 

of listening effort. LMM results (Table 3.1) showed a significant interaction between 

SNR and RT in low alpha (Fig. 3.4). In additional analyses of high alpha and beta, we 

found a significant effect of SNR in high alpha (Fig. 3.5), and a significant effect of 

both SNR and RT in beta (Fig. 3.6).  

3.3.3 Questionnaire 

The statistical results for subjective intelligibility (Fig. 3.7), subjective effort (Fig. 

3.8), subjective disengagement (Fig. 3.9) and derived effort (Fig. 3.10) are shown in 

Table 3.2. All the measures show a significant interaction between SNR and RT. The 

first three measures appear to change linearly by SNR and RT (in the expected 

directions). However, the derived effort shows higher values for 1.1 s RT in the +2 dB 

SNR and higher values for dry condition in the -8 dB SNR (i.e., inverted U-shaped 

pattern).   

3.3.4 Performance vs. EEG power  

To sort the conditions from the lowest task demand to the highest task demand, the 9 

conditions of the experiment were ordered based on the performance (from highest to 

lowest). Low alpha power in the maintenance phase revealed an inverted U-shaped 

pattern across these conditions (Fig. 3.11). The peak of the inverted U occurred around 

60% speech intelligibility.  

Using a skipped Pearson correlation test (Table 3.3), there was a significant correlation 

between performance and high alpha as well as beta power in the maintenance phase 

(Fig. 3.12). However, there was no significant correlation between performance and 

alpha power in the listening phase, or between performance and low alpha power in 

the maintenance phase.  
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Fig. 3.4 Power changes during listening in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic maps in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of low alpha power by SNR and RT in 

the highlighted window of panel A which showed significant interaction effect. Error bars 

represent standard error of the mean. 

A 

B 

C 
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Fig. 3.5 Power changes during maintenance in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic maps in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of low alpha power by SNR and RT in 

the highlighted window of panel A which showed significant interaction effect. Error bars 

represent standard error of the mean.  

A 

B 

C 
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Fig. 3.6 Power changes during maintenance in the parietal region: A) Grand average 

spectrogram, B) spectrum and topographic maps in the highlighted time window of panel A 

of all participants and conditions. C) The modulation of beta power by SNR and RT in the 

highlighted window of panel A which showed significant main effects. Error bars represent 

standard error of the mean. 

A 

B 

C 
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Table 3.2 Results of mixed model based on SNR and RT predictors: estimates of the 

questionnaire. Significant p-values are shown in black font.   

DF = 158 Self-report scales 

Question 

Predictor 

Subjective 

intelligibility 

Subjective 

effort 

Subjective 

disengagement 

Derived 

effort 

SNR 

β = 5.71 

SE = 0.42 

t = 13.48 

p < 0.001  

β = -5.60 

SE = 0.41 

t = -13.57 

p < 0.001 

β = -5.78 

SE = 0.48 

t = -11.85 

p < 0.001 

β = 0.18 

SE = 0.58 

t = 0.31 

p = 0.751 

RT 

β = -33.74 

SE = 2.47 

t = -13.61 

p < 0.001 

β = 23.58 

SE = 2.41 

t = 9.76 

p < 0.001 

β = 33.39 

SE = 2.85 

t = 11.68 

p < 0.001 

β = -9.81 

SE = 3.43 

t = -2.85 

p = 0.004 

SNR x RT 

β = 1.56 

SE = 0.60 

t = 2.57 

p = 0.010 

β = 1.50 

SE = 0.59 

t = 2.54 

p = 0.012 

β = -2.06 

SE = 0.69 

t = -2.94 

p = 0.003 

β = 3.56 

SE = 0.84 

t = 4.23 

p < 0.001 

 

 

Fig. 3.7 Subjective intelligibility: Increasing SNR and decreasing RT led to higher subjective 

estimation of intelligibility. Error bars represent standard error of the mean. 
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Fig. 3.8 Subjective effort: Decreasing SNR and Increasing RT led to increased perception of 

effort. Error bars represent standard error of the mean. 

 

Fig. 3.9 Subjective disengagement: Decreasing SNR and Increasing RT led to increased 

perception of disengagement from the task. Error bars represent standard error of the mean. 
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Fig. 3.10 Derived effort: A post-hoc measure derived from subtraction of subjective effort 

from subjective disengagement which showed interaction between SNR and RT. Error bars 

represent standard error of the mean. 

 

 

 

Fig. 3.11 Ordering 9 conditions of the experiment based on the performance (red chart). The 

changes of low alpha power in the maintenance phase (blue chart) showed an inverted U-

shaped pattern.  
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Table 3.3 Pearson skipped correlation between performance and EEG power in the parietal 

region in different bands and phases. Significant correlations are shown in black. 

 Listening Maintenance 

Band 

Electrodes 

Alpha Low Alpha High Alpha Beta 

Parietal 

 

 

 

r = 0.12 

CI = [-0.04 0.28] 

 

r = 0.14 

CI = [-0.02 0.28] 

 

r = 0.24 

CI = [0.10 0.38] 

 

r = 0.33 

CI = [0.20 0.45] 

 

 

Parietal 

 

 

 

Fig. 3.12 Pearson’s skipped correlation with bootstrapping between performance and high 

alpha and beta power during the maintenance phase in the parietal region. The red dots are 

considered as outliers by the robust correlation and the shaded area show the 95% CI.  

 

3.3.5 Performance vs questionnaire  

Based on Fig. 3.7, Fig. 3.8, and Fig. 3.9, self-report scales appear to have changed 

linearly with SNR and RT across conditions, similar to Fig. 3.2. In fact, all three self-

report scale questions were highly correlated to performance. Pearson skipped 

correlation revealed a significant r coefficient between performance and subjective 
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intelligibility (r = 0.95, CI = [0.93 0.96]), subjective effort (r = -0.79, CI = [-0.84 -

0.74]), and subjective disengagement (r = -0.94, CI = [-0.96, -0.92]). Derived effort 

(post-hoc analysis) was also significantly correlated to performance (r = 0.54, CI = 

[0.44, 0.64]).  

Subjective effort and derived effort were also compared to low alpha power in the 

maintenance phase (as the objective marker of effort). Based on skipped Pearson, 

subjective effort was not correlated to low alpha power in the maintenance phase (r = 

0.01, CI = [-0.14, 0.17]). However, derived effort and low alpha power in the 

maintenance phase were significantly correlated (r = 0.30, CI = [0.15, 43]; Fig. 3.13).  

 

Parietal 

 

 

Fig. 3.13 Pearson’s skipped correlation with bootstrapping between low alpha power in the 

maintenance phase and derived effort. The red dots are considered as outliers by the robust 

correlation and the shaded area show the 95% CI.  
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3.4 Discussion  

3.4.1 Overview  

In this study, three different SNRs (-8, -3, +2 dB) were used in three different simulated 

rooms (with RTs of 0, 0.5, 1.1 s) in an anechoic chamber. Decreasing SNR and 

increasing RT led to more demanding listening conditions that led to lower speech 

intelligibility in the participants. A questionnaire was used as a subjective measure of 

effort and EEG low alpha power in the maintenance phase was used as an objective 

measure of effort. All three questions within the questionnaire were strongly correlated 

(either positively or negatively) to the speech intelligibility of the participants and 

significantly changed with both SNR and RT and the interaction between them. 

Furthermore, low alpha in the maintenance showed an interaction between SNR and 

RT. Low alpha gradually increased from ~100% speech intelligibility to ~60% speech 

intelligibility and then started to decrease for the lower speech intelligibilities (i.e., 

when participants likely started to disengage from the task).  

3.4.2 Low alpha power and effort 

In Chapter 2, it was shown that low alpha power in the maintenance phase revealed a 

quadratic interaction between SNR and monetary reward. This was in line with the 

hypothesis of that study which was low alpha power in the maintenance might be a 

neural correlate of listening effort in a short-sentence paradigm. In the current study, 

a similar design was used, this time to test whether reverberation (via room 

simulations) also influences listening effort, and thus, I postulated that low alpha in 

the maintenance might reflect listening effort modified by SNR and RT. 

In fact, low alpha power in the maintenance showed an interaction between SNR and 

RT. In the dry (RT = 0 s) condition, decreasing SNR led to increased low alpha power 

in the maintenance phase, whereas in the highly reverberant condition (RT = 1.1 s), 

decreasing SNR led to decreased low alpha power in the maintenance phase. For RT 

= 0.5 s, low alpha followed an inverted U-shaped pattern with changing SNRs. To 

investigate whether there was a pattern to the changes of low alpha with manipulation 

of SNR and RT, the 9 conditions of the study were ordered from the highest speech 

intelligibility condition (+2 dB SNR, RT 0 s) to the lowest speech intelligibility 
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condition (-8 dB SNR, RT 1.1 s). Visualizing low alpha power in the maintenance 

phase with the same order revealed an inverted U-shaped pattern across the conditions 

(although this could not be statistically proven with LMM, as SNR and RT have 

different units). The peak of alpha power occurred at ~60% speech intelligibly (-3 dB 

SNR, 0.5 s RT). Similar findings were also observed in previous studies, where the 

peak of the inverted U occurred at 60-80% speech intelligibility with another alpha 

power measure (Decruy et al., 2020), and at 50% speech intelligibility with a pupil 

dilation measure (Wendt et al., 2018).  

Two conclusions can be drawn from the observation that low alpha showed an inverted 

U-shaped pattern with task demand. The first is that similar to Chapter 2, low alpha 

power in the maintenance phase may be a neural correlate of listening effort. That is, 

when listening condition was demanding, and more resources in the brain were needed 

to inhibit task-irrelevant areas of the brain, low alpha power increased. However, when 

the task became too difficult, and participants started to disengage from the task, low 

alpha power dropped. The second conclusion is that by looking at speech intelligibility, 

it might be plausible to predict when the peak of inverted U (whether alpha power or 

any other objective measure of effort) occurs. According to our data, this happened at 

~60% speech intelligibly (Fig. 3.11; -3 dB SNR, 0.5 s RT). However, it should be 

noted that the peak of the inverted U could have happened anywhere between ~80% 

(+2 dB SNR, 1.1 s RT) to ~45% (-8 dB SNR, 0 s) speech intelligibility. Nonetheless, 

based on previous literature (Decruy et al., 2020; Wendt et al., 2018), it is plausible 

that the peak of inverted U occurs around the middle point of psychometric function 

at ~50% speech intelligibly. 

3.4.3 Other EEG indicators  

Other than low alpha power in the maintenance phase, significant effects of SNR on 

alpha during listening (ERD) and high alpha and beta during maintenance (ERS) were 

observed. In all cases, higher SNR led to increased power (either ERD or ERS). No 

effects of SNR (-8, -4, 0, +4 dB) in Chapter 2 was observed. However, there is one 

key methodological difference between the two studies. While the baseline in the study 

of Chapter 2 was kept constant across different conditions, the baseline in the current 

study varied slightly depending on the reverberation. For example, there was no 

reverberation in the baseline for RT = 0 s, whereas for RT = 1.1 s the baseline was 
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reverberant. I will discuss in the limitations of the studies that any change in 

reverberation could slightly change the SNR received by the listener. Given that any 

EEG power bands in the baseline were averaged together for obtaining ERSP values, 

it is possible some of the effects of SNRs observed in the results were due to the 

difference in baselines.  

3.4.4 Subjective and objective effort 

When asked about subjective intelligibility, subjective effort and subjective 

disengagement, participants perceived that higher SNR and lower RT led to greater 

speech intelligibility, less subjective effort and less subjective disengagement. In fact, 

all three measures were highly correlated (either positively or negatively) to the speech 

intelligibility of the participants. That means if participants could hear the speech well, 

they perceived that they spent less effort and were less disengaged from the task.  

However, when analysing low alpha power in the maintenance phase (as an objective 

measure of listening effort), it was the interaction between SNR and RT that shaped 

an inverted U-shaped pattern of listening effort. The results showed that subjective 

effort and objective effort were not correlated to each other and showed completely 

different patterns. While several studies have shown that subjective and objective 

measures of effort can be correlated to each other, it can be speculated that these 

measures should not be correlated when the task covers a wide range of demands. In 

the current study, as changes of the task demand varied speech intelligibility from 

~100% to ~5%, subjective and objective effort were not correlated to each other.  

Using a post-hoc measure called derived effort, subjective effort was subtracted from 

subjective disengagement to show if participants’ perception of disengagement would 

offset their perception of effort and whether one is greater than the other in different 

task demands.  While this measure was still correlated to performance (expectedly, as 

the two measures leading to derived effort were both highly correlated to 

performance), it was also correlated to low alpha power in the maintenance phase 

(objective effort). One particular problem with this post-hoc analysis was that even 

though both subjective effort and disengagement were rated from 0 to 100, but the 

nature of the questions were different from each other because they required different 

senses of perception. This can falsify any attempt to put them in the same algebraic 

equation. While these post-hoc findings should be regarded with great caution, the idea 
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of combining two questionnaires that can closely follow objective measures can be 

further explored in future studies.   

3.4.5 Limitations  

One of the methodological limitations of this study was the use of third-order higher 

Ambisonics which led to a narrow “sweet spot” in the centre of loudspeaker arrays. 

Sweet spot is a spatial bubble of head location in which the listener would perceive the 

simulated sound the way it is intended to be heard. The narrow sweet spot called for 

an accurate placement of participants’ head in the centre of the field. Even slight 

displacement of head could lead to huge change of speech intelligibility and therefore, 

listening effort. This problem was mitigated by placing and monitoring a fixed laser 

pointer on participants’ ears. Other rendering methods can be used in future for 

obtaining a wider sweet spot.  

Another acoustic limitation was how the SNR was defined in this study. As mentioned 

in Section 3.2.3, SNR was defined as the input SPL of target speaker compared to the 

SPL of background 4-talker babble. That means, the actual sound SNR that reached 

the participants were slightly different in reverberant conditions. Therefore, this cannot 

be denied that part of the effects caused by RT were, in fact, slight changes of SNR.  

It should also be noted that in real life in high reverberant situations speakers tend to 

change the way they speak as listening is more difficult compared to low reverberant 

situations. For example, they might change their speaking pace or pronunciation for 

better intelligibility. Therefore, in real life listening effort may be ameliorated by 

adjustments to speech behaviour.  

The post-hoc measure introduced as derived effort comes with caveats. Derived effort 

was extracted from two questions (subjective effort and disengagement) which may 

not be part of the same domain. That is, when asking about "effort" per se, participants 

may or may not consider "disengagement" in their answers. Therefore, theoretically, 

the measure must be interpreted carefully.  

3.5 Conclusion 

In this study, three different SNRs (-8, -3, +2 dB) and three different simulated rooms 

(with RTs of 0, 0.5, 1.1 s) were used to manipulate task demand. Speech intelligibility 
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was highly correlated to questionnaires (subjective intelligibility, subjective effort, 

subjective disengagement), as all of them showed main effects and interaction of SNR 

and RT. However, low alpha power in the maintenance, as a neural correlate of 

listening effort, only revealed an interaction between SNR and RT and an inverted U-

shaped pattern which was highest at ~60% speech intelligibility. This study showed 

that reverberation inside a room has an impact on both speech intelligibility and 

listening effort.  
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Chapter 4  

Listening effort during continuous speech 

Two studies in this chapter have been published in peer-reviewed journals. The first 

study was published by PLOS ONE in 2020:  

Seifi Ala, T., Graversen, C., Wendt D., Alickovic, E., Whitmer, W. M., Lunner, T. 

(2020).  An exploratory Study of EEG Alpha Oscillation and Pupil Dilation in 

Hearing-Aid Users During Effortful listening to Continuous Speech. PLOS ONE 

15(7): e0235782. https://doi.org/10.1371/journal.pone.0235782 

The second study was published by Ear and Hearing in 2021:  

Fiedler, L., Seifi Ala, T., Graversen, C., Alickovic, E., Lunner, T., Wendt, D. (2021). 

Hearing aid noise reduction lowers the sustained listening effort during continuous 

speech in noise — a combined pupillometry and EEG study. Ear and Hearing - Volume 

Publish Ahead of Print - doi: 10.1097/AUD.0000000000001050 

The following chapter does not include any of the same tables or figures as the 

publications, with several sections rewritten. Also, despite having behavioural, EEG, 

and pupillometry measures in both studies, this chapter only, focuses on behavioural 

and EEG data, as TSA’s role was not to analyse the pupillometry data. 

 It should be mentioned that the EEG analysis in this chapter is slightly different than 

those presented in the published papers. This decision was made to ensure that the 

analyses across all chapters of my thesis were consistent and directly comparable to 

each other.  

4.1 Introduction 

4.1.1 Continuous speech 

In Chapter 2 and Chapter 3, the focus was mainly on the concepts of listening effort 

and speech intelligibility in short, interrupted speech. While such study designs 

provide more systematic control over involved parameters during listening, these sorts 

of stimuli are not typical in everyday life. In real life, most listening situations involve 

conversations with free-running, continuous discourse, and do not stop after every few 
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words (MacPherson & Akeroyd, 2013; Speaks et al., 1972). For this reason, in this 

chapter, the focus is on long, uninterrupted speech in the presence of competing talker 

and background noise to simulate a semi realistic conversation.  

A key difference between listening to a short versus long speech is that most of the 

observed oscillations in the brain during a short sentence are evoked potentials. The 

duration of event-related activities can vary from few hundreds of milliseconds to 1-2 

seconds and can be referred as phasic response. However, using longer stimuli opens 

a new opportunity for investigating the brain oscillations that are ongoing and more 

stable and can last longer than phasic response which are referred as tonic response. 

While phasic response might reflect goal-driven activity, tonic response is more of a 

sustained activity over a longer period (Dockree et al., 2007). When studying listening 

effort, it is important to determine if sustained effort is manifested through EEG 

oscillations (whether alpha or any other bands) during a continuous stimulus (whether 

speech or non-speech).  

Few EEG and pupillometry studies have investigated listening effort during long 

speech or non-speech stimuli. In one pupillometry study by Zhao et al., (2019), a 

number of concurrent and spectrally distinct tone streams were presented to young and 

older populations. Participants were asked to detect gaps in one of the streams in the 

presence of other disruptive tones. The number of streams (1, 2 or 3) determined the 

task demand. Each trial lasted for 25 s and pupillometry was recorded as a measure of 

sustained attention. More distracting streams led to more task difficulty and decreased 

the performance accuracy of the participants. The results of pupil dilation also were 

very similar to the results of studies with short stimuli designs (albeit usually using 

speech stimuli); harder tasks (higher number of streams) led to increased pupil dilation 

over 25 s of the trial (Zhao et al., 2019).  

For EEG studies, however, finding a neural marker for listening effort is not as 

straightforward due to discrepancy of results between short and long stimuli. In a study 

by Hjortkjær et al., (2020), participants performed n-back (1-back and 2-back) tasks 

on the speech sequences with different SNR levels (0 and 10 dB) which lasted for ~50 

s. Pupillometry and EEG were recorded together to look for changes in working 

memory load. Higher load of n-back task and lower level of SNR led to decrease in 

performance due to increased task demand. While the results of pupillometry was 

similar to the study by Zhao et al., (2019) (i.e., the harder condition led to increased 
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pupil dilation), posterior alpha power was decreased with higher load of n-back task 

without any effects of SNR. This observation was in contrast with previous literature 

using shorter stimuli, that found alpha to increase with higher task demand (see 

Chapter 1). However, they found that speech entrainment (i.e., linear mapping 

between the speech envelope and the EEG signal) was higher when working memory 

load was less demanding. This showed that working memory load affects how cortical 

activity tracks acoustic features of the speech (Hjortkjær et al., 2020), suggesting that 

the EEG spectrum in such continuous speech paradigm may have been reflecting 

acoustic features.  

The notion that alpha power may not reflect listening effort during continuous speech 

has also been suggested in two MEG studies by Hauswald et al., (2020). In both 

studies, participants listened to a continuous speech (approximately lasted between 30 

s – 3 mins) and were asked to choose from two nouns that had occurred within the last 

four words of the trial. In study 1, three different levels of noise vocoding (original, 7 

and 3 channels) and in study 2, three additional vocoding levels (5-channel, 2-channel 

and 1-channel) were also implemented. In both studies lower vocoding levels led to 

decreased performance. Both studies showed that low-frequency oscillations (1–7 Hz) 

in frontal regions showed an inverted U-shaped pattern for speech tracking (i.e., 

coherence between speech envelope and brain activity) with changing degradation 

levels. However, both studies showed that alpha power decreased with more 

degradation of the speech similar to the studies by Hjortkjær et al., (2020) or McMahon 

et al., (2016) and Miles et al., (2017)1 which all have used long auditory stimuli.  

Such EEG and MEG studies on long speech may indicate that the changes of theta and 

alpha power may reflect acoustic features of the stimuli instead of listening effort. A 

reasonable consequence of better acoustic during listening is better tracking of the 

sound. In fact, most of the EEG studies on long speech have shown improvement of 

speech tracking and attention decoding with better acoustics (e.g., Alickovic et al., 

2020; Das et al., 2018; O’Sullivan et al., 2015; Petersen et al., 2017). The difficulties 

in associating EEG oscillations to listening effort (or speech tracking) during 

continuous speech points to the importance of these studies. As mentioned earlier 

 
1 For a detailed description of the studies by (McMahon et al., 2016) and (Miles et al., 2017) see 

Section Error! Reference source not found.. 



Chapter 4  78 

 

 

continuous speech have more ecological relevance compared to single sentences in 

everyday lives.   

4.1.2 Hearing loss and hearing aids 

Individuals with hearing loss may suffer from a variety of challenges in listening 

situations including difficulties in speech perception, which can lead to 

communication difficulties and social isolation (Mathers et al., 2001). In particular, 

when the listening situation is difficult (e.g., when there is background noise), speech 

recognition is increasingly challenging for individuals who are hard of hearing 

(Arlinger, 2003). These issues in speech recognition can cause increased cognitive 

load, which can in turn lead to negative effects such as difficulties in comprehension 

(Wingfield et al., 2006), recalling the speech (van Engen et al., 2012; Ward et al., 

2016), fatigue (Yang Wang, Naylor, et al., 2018) or disengagement from conversations 

(Jaworski & Stephens, 1998).  

Hearing aids are one of the primary devices that are used for helping people with 

hearing loss. Hearing aids employ digital noise reduction that can reduce unwanted 

background noise and help listener to understand speech better. Noise reduction can 

be based on spatial, temporal, and spectral separation of speech and noise. Spatial 

separation can be obtained with directional microphones that identify sounds from 

different directions. Temporal separation relies on modulation rate and depth of the 

sound. Speech fluctuates at slow rate, but high modulation depth while environmental 

noise fluctuates at fast rate, but low modulation depth. For spectral separation, an 

estimate of the noise spectrum is subtracted from the noisy speech. However, the 

problem with spectral separation is that background noise is constantly fluctuating and 

therefore a priori is needed for estimation of spectrum in real time (Lakshmi et al., 

2021).  

Prior works have investigated how noise reduction in hearing aids can reduce listening 

effort for those with a hearing loss. It was discussed in Chapter 1 that dual-task 

paradigm is one of the objective measures to evaluate listening effort. Several studies 

have used dual-task paradigm to assess the benefits of hearing aids on listening effort. 

For example, in Picou et al., (2013), a dual task of monosyllable word recognition and 

the visual reaction time was used for assessing listening effort. There were six 

conditions changing hearing aids (unaided, aided), visual cues (auditory, auditory-
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visual), and background noise (present, absent). SNR was set to ~60% speech 

recognition performance. The performance results showed that that hearing aids and 

visual cues improved speech recognition performance and background noise impaired 

performance. The results of reaction time showed no effect of visual cues but increased 

with background noise and decreased with hearing aids which suggested that hearing 

aids can decrease listening effort.  

Using dual-task paradigms, there are also studies that have shown hearing aids may 

not benefit listening effort equally in certain populations. In the study by Wu et al., 

(2014), elderly participants (56 to 85 years old) performed a speech recognition task 

with either a simulation driving task or a visual reaction-time task. Three hearing aid 

conditions of unaided, aided with omnidirectional processing (OMNI), and aided with 

directional processing (DIR) were used. The change in the driving task or the visual 

reaction time were used as a measure of listening effort. In both tasks (driving 

performance and visual reaction time) speech recognition was higher in the OMNI and 

DIR conditions than in the unaided condition, but the other dual task was not affected 

by amplification and directional processing. These results showed that in elderly 

participants hearing aids may not benefit listening effort. In a follow-up study, the 

visual reaction-time dual-task experiment was conducted on younger adults with 

normal hearing. This time the results indicated that the OMNI and DIR conditions 

significantly improved speech recognition and reaction time. These findings suggests 

that the benefit of hearing aids on listening effort which are measured from younger, 

normal-hearing population may not be translated to older, hearing-impaired 

population.  

The benefits gained from hearing aids noise reduction can be dependent on task 

demand as well as individual differences. For example, the study by Ng et al., (2015) 

suggest that noise reduction may work more effectively in high task demand situations 

on people with better working memory capacity. In this stuyd, they used sentence-final 

word identification and recall (SWIR) and reading span tests on hearing impaired 

participants. Native speech was used as the target, while competing background babble 

was either in native or foreign languages. While word-recall performance was ~60% 

for all conditions, noise reduction schemes in hearing aids only improved recall 

performance in native (more disruptive) but not foreign competing speech. This might 

be because hearing aid noise reduction was more effective when listening demand was 
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higher. Also, in the same study, they found that participants with better reading span 

results (i.e., higher working memory capacity) showed recall benefit of noise reduction 

across list positions, while participants with worse reading span results (i.e., lower 

working memory capacity) mainly improved in late list positions. This showed that 

the effectiveness of noise reduction was dependent on listener’s working memory 

capacity. Even though participants with worse reading span might had heard the words 

in earlier lists, they could not remember it probably due to high workload on their 

working memory because of effortful listening.  

There are also studies that have used physiological measurements to demonstrate that 

the benefit of hearing aid processing is impacted by listening demand using. For 

example, in a pupillometry study by Ohlenforst et al., (2018), a wide range of SNRs 

(from -16 to 12 dB) with two different masker types (4-talker babble and stationary 

noise) were used in a sentence recognition task to test the effects of noise reduction 

scheme. Pupillometry data was simultaneously recorded for assessing listening effort. 

They observed an inverted U-shape curve in mean and peak pupil dilation across the 

ranges of SNR. For the 4-talker babble condition, the peak of the curves shifted 

approximately 5 dB towards lower SNRs when noise reduction scheme was activated. 

They concluded that with the 4-talker masker, the noise reduction scheme helped 

participants improve their intelligibility and also delay “giving up” under demanding 

listening situations. Similar to study by Ng et al., (2015), one type of masker (4-talker 

babble) disrupted the speech more compared to the other masker (stationary noise) and 

noise reduction was more effective during the demanding condition.  

These studies by Ng et al., (2015) and Ohlenforst et al., (2018) are particularly 

important since they use maskers that are similar to the conditions that listeners will 

experience in everyday life (albeit using short-sentence paradigm), showing the 

effectiveness of hearing aid noise reduction methods in ecologically valid situations. 

Having different talkers in the background (Ohlenforst et al., 2018), speaking with the 

same language (Ng et al., 2015), is a common theme of our daily lives’ listening 

situations. However, interestingly, these studies suggest that hearing aids noise 

reduction is effective only during demanding conditions. If the listening conditions are 

not demanding, then they appear to minimally impact the expenditure of users’ 

listening effort.  
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Given the early evidence that listening effort is employed quite differently between 

short and long speech stimuli, it is clear that to fully understand the experience of 

hearing-impaired individuals in everyday life we cannot simply assume that the 

findings from prior work using short stimuli extrapolate. There is currently a scarcity 

of research into continuous speech processing. In this chapter, we begin to address this 

gap by exploring listening effort in a comparable way to prior chapters, but now using 

continuous speech stimuli in hearing-impaired individuals.  

4.1.3 Objectives 

To explore listening effort in hearing-impaired individuals during continuous speech, 

two different studies are presented in this chapter. The first study was a pilot study in 

which hearing-impaired participants were exposed to uninterrupted speech in presence 

of a competing talker and background noise. We investigated how the changes of SNR 

in a continuous speech affected listening effort, measured by EEG alpha power. The 

hypothesis was that increasing SNR should decrease task demand which then leads to 

increased alpha power based on “function inhibition” theory (Section 1.4.4).  

After gaining insight on how alpha power manifests in continuous speech, the second 

study tests the benefit of specific hearing device processing by manipulating noise 

reduction. Similar to the first study, hearing-impaired participants listened to 

uninterrupted speech in presence of a competing talker and background noise. 

However, this time SNR and noise reduction scheme (Off vs. On) were manipulated 

in order to look for any benefits of hearing aids noise reduction on listening effort, 

measured by EEG alpha power. Similar to the hypothesis for the first study, increased 

alpha power was expected due to increased task demand in the second study. This 

time, changing SNR and activating/deactivating noise reduction were task demand 

manipulations.  

4.2 First Experiment 

4.2.1 Study design 

4.2.1.1 Participants  

Eight native Danish-speaking adults with an average age of 70 ± 12 years participated 

in the study and signed a written consent form prior to study onset. Ethical approval 
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for the study was obtained from the Research Ethics Committees of the Capital Region 

of Denmark. All test participants were experienced hearing-aid users (at least for 4 

months) with symmetrical, mild, sensorineural hearing loss. The pure-tone average of 

air conduction thresholds at 0.5, 1, 2 and 4 kHz was 31 ± 5.5 dB HL. The difference 

between the left and right ear in air conduction hearing thresholds for 0.5, 1, 2 and 4 

kHz were calculated and averaged together. No participant had more than 5 dB average 

difference between the ears. Participants had no history of neurological disorders, 

dyslexia or diabetes.  

4.2.1.2 Hearing aids 

The participants were fitted binaurally with behind-the-ear Oticon Opn1 mRITE 

hearing aids with miniFit Speaker Unit 85. Domes used in the test corresponded to 

what the test subject was currently using: either miniFit open domes or miniFit Bass 

domes with 1.4 mm vent effect. Noise reduction and directional microphones were 

deactivated so that the hearing aids just provided individualized audibility via the 

proprietary gain and frequency prescription rule. Volume control and the mute 

function were also deactivated to prevent the test subjects from changing the gain 

during testing. 

4.2.1.3 Apparatus 

The experimental setup consisted of three loudspeakers positioned at ±30° and +180° 

azimuth relative to the participants (see Fig. 4.1). The loudspeakers in the front 

hemifield were the target and contralateral distractor locations, symmetrically off-

center to counterbalance any asymmetrical hearing abilities, and the loudspeaker in the 

rear hemifield presented 4-talker babble noise to increase task complexity. A computer 

screen for displaying the instructions and the questions were positioned in front of the 

participants in a way not to cause acoustic shadowing. The spatial setup of the test is 

illustrated in Fig. 4.1. The descriptions for loudspeakers and EEG device are the same 

as Section 2.2.2.  
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Fig. 4.1 Spatial setup of the task: Three loudspeakers positioned at ±30° and +180° azimuth 

relative to the participant’s head. The loudspeakers in the front hemifield (in blue) were the 

target and contralateral distractor locations, and the loudspeaker in the rear hemifield (in red) 

presented 4-talker babble noise. The loudspeakers were 1.2 m away from the listener. 

 

4.2.1.4 Stimuli 

Non-dramatic Danish news clips with neutral content were used for the target and 

contralateral distractor speech (30 seconds), while the 4-talker babble noise (35 

seconds) was provided by Danish audiobooks. The target and distractor speech were 

read by a randomized male or a female speaker, and for each trial the target and 

distractor were never the same gender.  

The A-weighted SPL at the center of the room was 50 dB for the babble and 65 dB for 

the target on every trial. The contralateral distractor level was either 65 dB or 70 dB 

on each trial to generate two different SNR conditions: 0 and -5 dB. For this study, 

SNR was defined as the long-term average sound level of the target signal (with pauses 

longer than 200 ms being cut out) compared to the competing front talker only. 

Although both SNRs were relatively low compared to common environments for 
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hearing-aid wearers (cf. Smeds, Wolters and Rung, 2015), the 0 dB and -5 dB SNR 

conditions will be referred as “high SNR” and “low SNR”, respectively. 

4.2.1.5 Procedure  

Before each trial, the participants were instructed on the screen to pay attention to the 

target on the right or left side and ignore the talker on the other side and the babble 

behind them. The location of the target (i.e., right or left front loudspeaker) was 

randomized between each trial.  

There were 54 trials for each SNR, randomly distributed across all 108 trials. Each 

trial consisted of 35 seconds of 4-talker babble played in the background. The target 

and distractor speech were presented 5 seconds after the onset of the babble (i.e., after 

the baseline period) and then continued for 30 seconds, followed by a three-choice 

question regarding the content of the attended target audio clip [e.g., “Who warns 

against the dangers of discrimination?” (English translation)] (See Fig. 4.2). 

Participants were given a rest period every 36 trials (i.e., twice during the experiment), 

while minor breaks were given between every 8th trial. To acclimatize to the hearing 

aids, the participants listened to four training trials before starting the experiment.EEG 

analysis.  

 

 

Fig. 4.2 Trial procedure: Each trial consisted of 35 seconds of 4-talker babble played in the 

background (in red). The target and distractor speech were presented 5 seconds after the 

onset of the babble and then continued for 30 seconds (in blue), followed by a three-choice 

question regarding the content of the attended target audio clip. 
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4.2.1.6 EEG analysis 

The pre-processing of EEG data was done similarly to Section 2.2.5.1. In total, 1.8% 

of the channels were detected as bad and were interpolated. Also, 4.7% of all trials in 

this experiment were rejected by visual inspection. No participant had more than 

11.1% of trials rejected. 

Power extraction was also done similarly to Section 2.2.5.3, except that due to longer 

length of stimuli, Morlet wavelets (7 cycles width) were centred at 500 ms steps within 

a trial (frequency range between 2 and 35 Hz). Baseline for analysis of ERSP was -4 

to 0 s prior to start of the target. The first second of background noise (-5 to -4 s) was 

removed to avoid ERPs. The EEG power for target stimuli was divided into two 

different sub-groups based on the timeline: phasic power (0 to 1 s) and tonic power (1 

to 30 s).  

For the phasic power, alpha power ERD (similar to listening phase in Chapter 2 and 

Chapter 3) in the parietal region was investigated. For the tonic power, theta 

(exploratory), alpha (hypothesis-driven), and beta (exploratory) power in the parietal 

and fronto-central regions were explored. In this study, theta is defined as 6 – 7 Hz (7 

Hz peak in the fronto-central region; see Fig. 4.5), alpha as 8 – 12 Hz (10 Hz peak in 

the parietal region; see Fig. 4.4), and beta as 13 – 20 Hz (despite no apparent peak; see 

Fig. 4.6, just to keep comparison between studies more consistent).  

4.2.1.7 Statistics  

To estimate the effects of SNR on performance and EEG power in different bands, 

several LMMs were implemented. For this study, SNR was the fixed factor with 

participants as random factors. The MATLAB syntax for LMM implementation was 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ~ 1 + 𝑆𝑁𝑅 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷), with Dependent being either performance 

or EEG power. The estimates of the LMM (β), t-values and degrees of freedom (tDF) 

and P values are reported in the Results section. 

Due to the longer length of the stimuli, changes of EEG power over time were also 

investigated. For this purpose, EEG power was averaged in 1s windows, to get a single 

value per second. Then, a first-degree polynomial curve was fitted to the alpha power 

in two different ways. The first approach was to fit the curve over the whole trial (30 

s) to investigate the slope of EEG power changes. For statistical evaluation, a one-
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sample t-test was used to look for any positive or negative slope (i.e., testing against 

0). The second approach was to break down alpha power to smaller chunks to 

investigate the time dynamic of slope changes (i.e., were the slope changes most 

dominant in the beginning or at the end of the stimuli?). The same process (polynomial 

fit and one-sample t-test evaluation) was repeated for each 5-s period instead of the 

whole trial (e.g., 0-5 s, 5-10 s, 10-15 s, etc.). To correct for multiple statistical tests, 

false discovery rate (FDR), using the Benjamini-Hochberg procedure (Benjamini & 

Hochberg, 1995), was applied.  

To explore the correlation between EEG power (theta, alpha, beta) and performance, 

a Pearson skipped correlation was used, as described in Section 2.2.7.  

4.2.2 Results 

4.2.2.1 Performance 

There was a significant improvement in performance due to increased SNR (β = 3.24, 

SE = 0.54, t14 = 5.92, p < 0.001) reflecting that the participants benefited from higher 

SNR in terms of understanding the contents of the speech (Fig. 4.3 ). Also, the above 

chance performance for the low SNR suggests that the speech in the worst condition 

was still partly intelligible.  

 

Fig. 4.3 Performance results: The correct percentage of the questions that were answered 

regarding the contents of the target speech. 
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4.2.2.2 EEG  

4.2.2.2.1 Phasic power 

Analysis of EEG power showed desynchronization of phasic alpha power (first second 

of the stimuli), but it was not significantly modulated by SNR in either the parietal or 

fronto-cental regions (see Table 4.1).  

4.2.2.2.2 Tonic power 

In the parietal region, tonic theta, showed no significant changes due to SNR. 

However, tonic alpha (after the first second) showed synchronization throughout the 

trial that was significantly increased by higher SNR (Fig. 4.4). Despite no apparent 

peak in the beta range, tonic beta also showed the same pattern and was significantly 

increased with higher SNR (Fig. 4.6). The details of the results are in Table 4.1.  

In the fronto-central region, despite synchronization of tonic theta, there was no 

significant modulation by SNR in theta (Fig. 4.5) or alpha band. However, tonic beta 

was significantly increased by higher SNR. Table 4.2 shows the results of the fronto-

central region.   

4.2.2.2.3 Changes over time 

The analysis of changes over time showed no significant effects (either in grand 

average data (Fig. 4.7 Top row) or individual SNR conditions (Fig. 4.7 Middle row). 

The analysis of 5-s slopes across the trial also did not show any significant results after 

FDR correction (Fig. 4.7 Bottom row).  

4.2.2.3 Correlations 

The analysis of Pearson skipped correlation showed that there was no significant 

correlation between performance and EEG power in any bands (Table 4.3). Even 

though both performance and tonic alpha/beta were significantly modulated by SNR, 

there was no correlation between performance and alpha/beta power (Fig. 4.8). 
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Table 4.1 Results of mixed model based on SNR predictor: estimates of different relative 

power changes in the parietal region in different bands and phases. Significant p-values are 

shown in black font.   

DF = 14 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = -0.56 

SE = 0.43 

t = -1.31 

p = 0.209  

β < 0.01 

SE = 0.23 

t = 0.03 

p = 0.972 

β = 0.64 

SE = 0.22 

t = 2.90 

p = 0.011 

β = 0.57 

SE = 0.15 

t = 3.69 

p = 0.002 

 

Table 4.2. Results of mixed model based on SNR predictor: estimates of different relative 

power changes in the fronto-central region in different bands and phases. Significant p-

values are shown in black font.   

DF = 14 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = -0.68 

SE = 0.64 

t = -1.06 

p = 0.306  

β = 0.54 

SE = 0.37 

t = 1.43 

p = 0.172 

β = 0.62 

SE = 0.33 

t = 1.90 

p = 0.077 

β = 0.50 

SE = 0.17 

t = 2.80 

p = 0.014 

 

4.2.3 Summary  

The first study showed that alpha and beta power in hearing-impaired participants were 

increased due to higher SNR in a continuous-speech paradigm. This pilot study 

showed that the pattern of alpha power in continuous speech under demanding 

conditions is different than what studies with short-speech paradigms have shown. To 

gain a better perspective on listening effort in continuous speech, a second experiment 

was conducted in which a similar paradigm was used with a larger population of 

hearing-impaired participants. This time the interaction between SNR and hearing aids 

noise reduction scheme to affect listening effort was investigated.   
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Fig. 4.4 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions. C) The modulation of alpha power by SNR in the highlighted window of panel A 

which showed significant effect. 

A 

B 

C 
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Fig. 4.5 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions. C) The modulation of theta power by SNR in the highlighted window of panel A 

which showed no significant effect. 

A 

B 

C 
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Fig. 4.6 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions. C) The modulation of beta power by SNR in the highlighted window of panel A 

which showed significant effect. 

A 

B 

C 
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Fig. 4.7 Changes of alpha power over time for A) grand average data and B) each condition 

in 1-sec windows with no significant slope. C) The analysis of slope within 5-s intervals did 

not show any significantly positive nor negative values in any time windows. 

 

 

 

A 

B 

C 
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Table 4.3 Pearson skipped correlation between performance and EEG power in different 

regions, bands, and phases.  

 Phasic Tonic 

Band 

Electrodes 

Alpha Theta Alpha Beta 

Parietal 

 

 

 

r = -0.03 

CI = [-0.55 0.61] 

 

r = 0.04 

CI = [-0.44 0.59] 

 

r = -0.07 

CI = [-0.50 0.49] 

 

r = -0.08 

CI = [-0.51 0.47] 

 

Fronto-central 

 

 

 

r = -0.11 

CI = [-0.63 0.55] 

 

r = -0.07 

CI = [-0.49 0.52] 

 

r = 0.07 

CI = [-0.39 0.63] 

 

 

r = -0.20 

CI = [-0.61 0.49] 

 

 

Parietal 

  

Fig. 4.8 Pearson’s skipped correlation with bootstrapping between performance and tonic 

alpha and beta power in the parietal region. The red dots are considered as outliers by the 

robust correlation and the shaded area show the 95% CI. No significant correlation (h = 0) 

was observed.  
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4.3 Second experiment  

4.3.1 Study design  

4.3.1.1 Participants  

For this experiment 22 hearing-impaired participants with an average age of 67 ± 11.2 

years were recruited. The study was approved by the ethics committee for the capital 

region of Denmark and all participants signed a written consent prior to the 

experiment. Participants had at least 4 months of experience with their hearing aids. 

The pure-tone average of air conduction thresholds at 0.5, 1, 2 and 4 kHz ranged from 

33 to 58 dB HL. The average difference between the left and right ear in air conduction 

hearing thresholds for the mentioned frequencies was a maximum of 8 dB. The 

inclusion criteria were mild to moderate sensorineural hearing loss, and no history of 

neurological disorders, dyslexia or diabetes.  

4.3.1.2 Hearing aids  

All participants were fit with identical hearing aids with non-individualized, closed 

soft tips. Two pairs of hearing aids were fit for each participant. In one pair, noise 

reduction was turned off and in the other pair, noise reduction was activated. Other 

than that, all signal processing features (e.g., feedback cancelling) were kept at default 

and did not vary between the conditions. 

Both pairs of hearing aids amplified the sound based on each individual’s hearing 

threshold via the Voice Aligned Compression (VAC) rationale. The VAC 

amplification rationale is based on a wide dynamic range compression scheme with 

compression knee points between 20 and 50 dB SPL depending on the frequency range 

and the individual’s hearing thresholds. Similar to other standard fitting procedures 

(Keidser et al., 2011), VAC was developed to fit hearing aids to individual needs to 

improve overall speech quality. It combines fast and slow compression in order to 

minimize distortion and to restore the amplitude modulation of speech. VAC is our 

standard fitting procedure for the hearing aids used in this study. The hearing aid was 

set to mimic the natural acoustic effect of the pinna by a microphone setting close to 

omnidirectional.  



Chapter 4  95 

 

 

With activated noise reduction, a fast-acting combination of minimum variance 

distortion-less response (MVDR) beam-former and a single-channel Wiener post-filter 

was applied before the VAC. The noise reduction algorithm is based on the finding 

that a multi-channel Wiener filter can be decomposed into a beam-former and a single-

channel Wiener filter, which is better suited for implementation into hearing aids. The 

noise reduction mainly attenuates interfering sounds originating behind the listener, 

which should mainly affect the background noise in the current study. To confirm this, 

the output SNR-improvement of the noise reduction in the hearing aids was measured, 

which was here defined as the difference between the two frontal talkers and four 

background talkers. The hearing aid output was measured on a Head and Torso 

Simulator (HATS). A pair of hearing aids were put on the HATS and the output SNRs 

of the hearing aids were derived using the phase-inversion technique (Hagerman & 

Olofsson, 2004). The articulation-index weighted SNR improvements were 6.24 dB 

and 5.17 dB at +3 dB SNR and +8 dB SNR when noise reduction was on compared to 

off (see Alickovic et al., 2020).  

4.3.1.3 Apparatus 

Six loudspeakers at an azimuthal angle of ±22° (competing talkers), ±90° and ±150° 

(maskers) degrees were set up around the participants. During the task the participant 

was positioned in the middle of the loudspeakers and the distance to each loudspeaker 

was 1.2 m. A screen was positioned between the frontal loudspeakers for displaying 

questions in a way not to cause acoustic shadowing. The setup (Fig. 4.9) was inspired 

by the design of Das et al. (2018). The descriptions for loudspeakers and EEG device 

are the same as Section 2.2.2.  

4.3.1.4 Stimuli 

86 speech excerpts (i.e., trials) were extracted from publicly available news clips by 

two different talkers. Half of the trials were spoken by a female talker (T1) and the 

other half by a male talker (T2). Each segment was 33 seconds long after pauses longer 

than 200 ms were removed. These news clips were used as target and distractor streams 

and presented from the frontal loudspeakers. The organization of the male and the 

female talker being target or distractor as well as their location (left or right 

loudspeaker) was randomized.  
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Fig. 4.9 Spatial setup of the task: Six loudspeakers at an azimuthal angle of ±22° (competing 

talkers – in blue), ±90° and ±150° (maskers – in red) degrees were set up around the 

participants. The loudspeakers were 1.2 m away from the listener. 

 

As background noise, four-talker babble containing news clip was presented from each 

loudspeaker. There were total of four loudspeakers in the back, resulting in a 16-talker 

babble noise. Each 4-talker babble-noise consisted of two female talkers and two male 

talkers, which were different from the talkers presented at the frontal loudspeakers. 

The set of four talkers was the same at each background loudspeaker, but it was assured 

that the identical news clip was not simultaneously presented at two different 

loudspeakers.  

After the two frontal talkers were rms-equalized, the SPL of each of the two frontal 

talkers was set to 62 dB, respectively. The long-term average spectrum of the babble 

noise was matched to the long-term average spectrum of the target talkers. The SPL 

of each 4-talker babble noise was set to 53 dB or 48 dB. Since the summed SPL of the 

16-talker babble noise is 6 dB above the SPL of the individual 4-talker babble noise, 

the SNR of the frontal talkers relative to the background noise was either +3 dB or +8 

dB. Note that the effective SNR was even lower, since one of the frontal talkers in the 

role of a distractor will add to the noise. However, +3 dB and +8 dB will be further 

used as condition labels for the factor SNR. 
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4.3.1.5 Procedure 

The order of conditions followed a blocked design with the order of blocks being 

randomized across participants. For each participant, the experiment consisted of four 

major blocks (20 trials per block). In order to blind the randomization of noise 

reduction to the participant, the hearing aids were always taken out of the booth and 

inserted again between the blocks. In two blocks, the noise reduction was switched on 

and in the other two blocks it was switched off. Within each block, the SNR was fixed 

at either +3 or +8 dB. The order was randomized such that all four possible 

combinations of SNRs (+3, +8 dB) and noise reduction (Off, On) occurred once per 

participant. This randomization was balanced across participants. Over the 20 trials 

within each block, the target talker and its location changed every fifth trial, such that 

all four combinations of talker (T1, T2) and position (left, right) occurred within each 

block in a random succession. To indicate the target talker and its position, before 

every fifth trial, a 5-s snippet from the talker’s voice was presented at the to-be-

attended loudspeaker. Before and during each trial, the to-be-attended loudspeaker was 

also indicated by an arrow at the screen. To acclimatize to the hearing aids, before the 

start of the experiment, the participants listened to six training trials with noise 

reduction on. 

Participants were instructed to visually fixate a cross in the middle of the screen during 

listening. The presentation of the sound started with background babble-noise of five 

seconds. This period mainly served as baseline for the acquired physiological 

measures. Subsequently, the two news clips were presented at the frontal speakers in 

the presence of the ongoing background babble-noise (Fig. 4.10). After each trial, a 

statement about the content of the to-be-attended news clip was displayed on the 

screen, [e.g., “An increasing number of cruise tourists come to Copenhagen.” (English 

translation)]. Participants were asked to indicate whether this statement was correct or 

wrong. Consequently, the chance level was 50%. 
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Fig. 4.10 Trial design: Each trial consisted of 37 seconds of 4-talker babble played in the 

background (in red). The target and distractor speech were presented 5 seconds after the 

onset of the babble and then continued for 32 seconds (in blue), followed by a yes/no 

question regarding the content of the attended target audio clip. 

4.3.1.6 EEG analysis 

The pre-processing of EEG data was done similarly to Section 2.2.5.1. Two 

participants due to poor performance (below average 55%), and three participants due 

to too few remaining trials to analyze (either due to missing trials or +30% rejected 

trials) were discarded. For the remaining participants, 3.9% of the channels were 

detected as bad and interpolated. Also, 5.6% of all trials were rejected with no 

participant having more than 16.2% of the trials rejected.  

Power extraction was also done exactly similarly to Section 4.2.1.6. For the phasic 

power, alpha power ERD in the parietal region was investigated. For the tonic power, 

theta (exploratory), alpha (hypothesis-driven), and beta (exploratory) power in the 

parietal and fronto-central regions were analysed. Similar to Section 4.2.1.6, theta is 

defined as 5 - 7 Hz, alpha as 8 - 12 Hz (10 Hz peak in the parietal region; see Fig. 

4.12), and beta as 13 - 20 Hz.  

4.3.1.7 Statistics 

LMM was used to investigate the effects of SNR and noise reduction (NR) on 

performance and EEG power. As most of the participants reported one talker (T1) 

being more intelligible than the other one (T2), we also considered Talker in our model 

as well as SNR and NR. Therefore, SNR, NR and Talker were treated as fixed factors 

and participants were considered as random factors. The MATLAB syntax for LMM 

implementation was 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ~ 1 + 𝑆𝑁𝑅 ∗ 𝑁𝑅 + 𝑇𝑎𝑙𝑘𝑒𝑟 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷), 

with Dependent being either performance or EEG power. In all the models, NR values 
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were coded as -0.5 (Off) and +0.5 (On) and Talkers were coded as -0.5 (T1) and +0.5 

(T2). Also, SNR values were centered around 0 (i.e., -2.5 and 2.5 dB) to avoid 

correlation between the main effects and interactions in the models. The estimates of 

the LMM (β), t-values and degrees of freedom (tDF) and P values are reported in the 

Results section. 

To analyze changes over time in parietal alpha and correlation between performance 

and EEG power, similar approaches to Section 4.2.1.7 were used.   

4.3.2 Results 

4.3.2.1 Performance 

The results of performance showed significant improvement in performance due to 

increased SNR (β = 0.91, SE = 0.38, t131 = 2.37, p = 0.018), but there was no such 

effect for NR (β = 2.79, SE = 1.91, t131 = 1.45, p = 0.147) nor a significant interaction 

between the two (β = -0.41, SE = 0.76, t131 = -0.53, p = 0.592). Interestingly, the 

strongest improvement on performance was due to the T1 Talker (β = 9.85, SE = 1.91, 

t131 = 5.13, p < 0.001). It is worth mentioning that correct response percentages were 

relatively high for all conditions (above 80%) and the difference between highest and 

lowest average performances was only 7.35% (Fig. 4.11).  

 

Fig. 4.11 Performance results: The correct percentage of the questions that were answered 

regarding the contents of the target speech. 
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4.3.2.2 EEG  

4.3.2.2.1 Phasic power 

Similar to the first study (Section 4.2.2.2), phasic alpha showed desynchronization, 

but it was not significantly modulated by either of SNR, NR, or Talker in either of the 

parietal or fronto-cental regions (see Table 4.4). 

 

Table 4.4 Results of mixed model based on SNR and NR predictors: estimates of different 

relative power changes in the parietal region in different bands and phases. Significant p-

values are shown in black font.   

DF = 131 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = 0.01 

SE = 0.46 

t = 0.03 

p = 0.970  

β = 0.54 

SE = 0.32 

t = 1.70 

p = 0.091 

β = 0.98 

SE = 0.47 

t = 2.05 

p = 0.042 

β = 0.45 

SE = 0.29 

t = 1.54 

p = 0.123 

NR 

 

 

 

 

β = 1.61 

SE = 2.32 

t = 0.69 

p = 0.486 

β = 0.21 

SE = 1.60 

t = 0.13 

p = 0.892 

β = 3.81 

SE = 2.38 

t = 1.59 

p = 0.112 

β = 2.39 

SE = 1.47 

t = 1.62 

p = 0.107 

Talker 

 

 

 

 

β = 0.31 

SE = 2.32 

t = 0.13 

p = 0.891 

β = 3.85 

SE = 1.60 

t = 2.40 

p = 0.017 

β = 5.43 

SE = 2.38 

t = 2.27 

p = 0.024 

β = 4.15 

SE = 1.47 

t = 2.81 

p = 0.005 

SNR:NR 

 

 

 

 

β = 0.03 

SE = 0.92 

t = 0.03 

p = 0.973 

β = 0.05 

SE = 0.64 

t = 0.08 

p = 0.931 

β = 1.49 

SE = 0.95 

t = 1.56 

p = 0.120 

β = 0.49 

SE = 0.59 

t = 0.83 

p = 0.407 

 

4.3.2.2.2 Tonic power 

Similar to the behavioural data, the Talker factor had the strongest effect, with T1 

talker (the more intelligible talker) leading to increased EEG power. This was observed 

in tonic theta, alpha and beta in parietal (Table 4.4) and tonic alpha and beta in the 

fronto-central regions (Table 4.5). Higher SNR only led to higher tonic alpha in the 

parietal region (Fig. 4.12) and NR did not change any of the bands in any of the 

explored locations.  
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Fig. 4.12 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions. C) The modulation of beta power by SNR in the highlighted window of panel A 

which showed significant effect. 

 

A 

B 

C 
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4.3.2.2.3 Changes over time 

The analysis of changes over time showed a significant positive slope of parietal alpha 

power in grand averaged data. Investigation of each individual condition showed 

significant slopes for all except the condition hypothesized to be hardest (+3 dB SNR, 

NR Off). The analysis of 5-s slope across the trial also showed a significant positive 

slope only in the first five seconds for all the conditions except +3 dB NR off, after 

FDR correction (Fig. 4.15). 

Table 4.5 Results of mixed model based on SNR and NR predictors: Estimates of different 

relative power changes in the fronto-central region in different bands and phases. Significant 

p-values are shown in black font.   

DF = 131 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = -1.05 

SE = 0.73 

t = -1.43 

p = 0.152  

β = 0.46 

SE = 0.31 

t = 1.49 

p = 0.137 

β = 0.44 

SE = 0.46 

t = 0.95 

p = 0.342 

β = 0.25 

SE = 0.29 

t = 0.88 

p = 0.377 

NR 

 

 

 

 

β = -2.11 

SE = 3.65 

t = -0.57 

p = 0.564 

β = 0.08 

SE = 1.57 

t = 0.05 

p = 0.958 

β = 2.59 

SE = 2.34 

t = 1.10 

p = 0.271 

β = 2.17 

SE = 1.45 

t = 1.49 

p = 0.138 

Talker 

 

 

 

 

β = -2.43 

SE = 3.65 

t = -0.66 

p = 0.507 

β = 1.29 

SE = 1.56 

t = 0.82 

p = 0.410 

β = 4.92 

SE = 2.34 

t = 2.09 

p = 0.037 

β = 3.60 

SE = 1.45 

t = 2.47 

p = 0.014 

SNR:NR 

 

 

 

 

β = -0.61 

SE = 1.46 

t = -0.42 

p = 0.674 

β = 0.73 

SE = 0.62 

t = 1.17 

p = 0.244 

β = 1.18 

SE = 0.93 

t = 1.25 

p = 0.210 

β = 0.76 

SE = 0.58 

t = 1.31 

p = 0.189 

4.3.2.3 Correlation 

The results for Pearson skipped correlation between performance and EEG power in 

different electrode regions are shown in Table 4.6. Based on the 95% CI the only 

significant correlations occurred in tonic theta, both in parietal and fronto-central 

regions (Fig. 4.16). That is, increase in theta power was co-modulated with increase 

in performance accuracy.  
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Fig. 4.13 Power changes over time: A) Grand average spectrogram , B) spectrum and 

topographic map  in the highlighted time window of panel A of all participants and 

conditions. C) The modulation of beta power by SNR in the highlighted window of panel A 

which showed significant effect. 

A 

B 

C 
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Fig. 4.14 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A  of all participants and 

conditions. C) The modulation of beta power by SNR in the highlighted window of panel A 

which showed significant effect. 

 

A 

B 

C 
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Fig. 4.15 Changes of parietal alpha power over time for A) grand average data and B) each 

condition in 1-sec windows. C) The analysis of slope within 5-s intervals showed significant 

positive slopes in the first five seconds (shown in large dots) for all except the hardest 

hypothesize condition (i.e., 3 dB SNR, NR Off). 

 

A 

B 

C 
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Table 4.6 Pearson skipped correlation between performance and EEG power in different 

regions, bands, and phases. Significant correlations are shown in black. 

 Phasic Tonic 

Band 

Electrodes 

Alpha Theta Alpha Beta 

Parietal 

 

 

 

r = 0.05 

CI = [-0.15 0.26] 

 

r = 0.27 

CI = [0.06 0.45] 

 

r = 0.14 

CI = [-0.09 0.34] 

 

r = 0.07 

CI = [-0.17 0.31] 

 

Fronto-central 

 

 

 

r = -0.17 

CI = [-0.38 0.07] 

 

r = 0.32 

CI = [0.12 0.48] 

 

r = 0.10 

CI = [-0.20 0.35] 

 

 

r = 0.26 

CI = [-0.01 0.48] 

 

 

Parietal Fronto-central 

  

Fig. 4.16 Pearson’s skipped correlation with bootstrapping between performance and tonic 

theta power in the parietal and fronto-central regions. The red dots are considered as outliers 

by the robust correlation and the shaded area show the 95% CI. Both showed statistically 

significant correlation (h = 1) with performance. 
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4.3.3 Summary 

The second study showed that alpha power in hearing-impaired participants were 

increased due to higher SNR and change of Talker in a continuous-speech paradigm. 

The results of this study were in line with the first study that alpha power decreases in 

continuous speech under demanding conditions. However unexpectedly, the strongest 

effect of the second experiment was due to Talker. Both performance and EEG power 

were significantly affected by Talker. The more intelligible talker had the highest 

impact on improving performance and led to increase in tonic theta, alpha, beta in the 

parietal and tonic alpha and beta in the fronto-central region.    

4.4 Discussion  

4.4.1 Overview 

In the two experiments of this chapter, it was investigated that how effortful listening 

manifests in more demanding situations while listening to long, uninterrupted speech 

in noise. In the first experiment, manipulation of SNR showed that alpha power in the 

parietal lobe was lower in the harder condition (low SNR) compared to the easy 

condition (high SNR). In the second experiment, manipulation of SNR showed a 

similar pattern (i.e., less parietal alpha for more demanding conditions) without 

significant effects of hearing aid noise reduction. However, an exploratory finding in 

the second experiment showed that the talker influenced the listeners (in terms of 

performance and expenditure of effort) more than changes of SNR and noise reduction 

scheme.  

4.4.2 Alpha in demanding continuous discourse 

Using alpha power as an outcome measure for listening effort has resulted in 

contradictory results in previous studies. While most of the studies that have used 

short-stimulus paradigm suggest the relationship between alpha power and task 

difficulty is direct, i.e. more difficulty equals increased alpha (e.g., Obleser et al., 2012; 

Petersen et al., 2015; Wisniewski, Thompson, et al., 2017; Wöstmann et al., 2015, 

2017), studies with longer stimuli have shown the inverse, i.e. more difficulty equals 

decreased alpha (Hjortkjaer et al., 2018; McMahon et al., 2016; Miles et al., 2017). 
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Therefore, it is possible that alpha power during short and continuous speech reflect 

different cognitive aspects.  

As mentioned in Chapter 1, two common and conflicting theories on alpha power in 

effortful situations exist. One theory explains that increased alpha is a sign of 

suppression of unattended sound sources (Holm et al., 2009) and inhibition of task-

irrelevant cortical regions (Klimesch, 2012), which as a consequence should increase 

alpha with increased difficulty. On the other hand, the “cortical idling” theory states 

that synchronized (i.e. increased) alpha is a correlate of a deactivated cortical network 

(Pfurtscheller, 2001) and therefore listening effort should lead to a desynchronized 

state of alpha power.  

Our results cannot be fully explained by either of the two theories. The inhibition 

theory indicates that more demanding situations should lead to increased alpha power, 

whereas in the current study it was the opposite. “Cortical idling” also cannot explain 

why there is a distinct synchronization of alpha power during attending to a speech 

which requires complex working memory processing.  

One possible explanation for our results comes from identifying commonalities with 

previous literature that have also found alpha power to decrease in more demanding 

situations. Jensen et al., 2002, speculated the reason for different patterns of alpha 

power with workload. In their study, participants performed the Stenberg task to see 

how parietal alpha alters with higher workloads. They observed increased alpha power 

with increased workload which was opposite to  another working memory study  (n-

back task), in which decreased alpha activity was observed with higher demand 

(Gevins et al., 1997). They concluded that in the Stenberg task the brain response is 

different when the encoding and retention phases are temporally independent from 

each other, compared to an n-back task where these phases are overlapping and require 

a constant update of information in the working memory. Given the nature of the 

stimuli in the current study, sustained attention and constant updating of working 

memory is required over 30 seconds of speech presentation. The entangled encoding 

and retention phases might call for decreased alpha activation when it is more difficult. 

This notion goes along with other studies that showed optimal sustained attention 

performance is linked to greater alpha oscillation (Dockree et al., 2007; Hjortkjaer et 

al., 2018).  
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In the design of two studies in this chapter, a narrow range of SNRs was chosen to 

mitigate the effects of stimulus-related responses. However, it is plausible that 

observed alpha changes is due to tracking of acoustic features of the speech (i.e., 

stimulus-related response). In that sense, it might be that not just alpha power, but also 

other bands in brain signals experience an overall increase while listening to more 

intelligible speech. The evidence for this suggestion came when listening to T1 talker 

(the more intelligible talker) in the second study, which led to increase of theta, alpha 

and beta power in the brain. It is also important to note that performance was also 

better with the T1 talker and subjective reports from participants also indicated that 

listening to T1 talker was actually easier. Therefore, it is also possible that alpha power 

reflected performance of the participants. This issue will be further explored in 

Chapter 5. 

In sum, if alpha oscillations in continuous speech is indeed inhibiting task-irrelevant 

regions of the brain, then higher task demands should have increased alpha power. 

Therefore, it is possible that in this continuous paradigm, alpha (or other bands) is not 

reflecting effort and might be just tracking the acoustic features of the speech.  

4.4.3 Changes of alpha power over time 

One of the advantages of using long speech (in this case around 30 s) was that it 

allowed for studying how alpha power modulates over time. Based on the overall time-

frequency results, alpha power was more prominent towards the end of the trial 

compared to the beginning. For this reason, I decided to look at the changes of alpha 

power over time using first-degree polynomial curve fitting.  

 In the first experiment, there was no positive slope throughout the trials in grand 

average data nor in any of the 5-s windows within a trial. This lack of significance 

might have happened due to low number of participants that led to type II error rate.  

However, in the second experiment with a larger population, the slope of alpha power 

was significantly positive in the grand average data (i.e., alpha power increased over 

time during trials). To further narrow the time dynamic of changes for this positive 

slope, shorter 5-s window periods were investigated. Interestingly, the only significant 

positive slope happened within the first 5 seconds of the trial for all the conditions 

except the hypothesized-hardest condition (+3 dB SNR, NR Off). As observed in Fig. 

4.12, the alpha power after the stimuli begins with a desynchronized phase and then 
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shifts to synchronized phase. Therefore, the slope of the first 5-s window can be 

interpreted as the magnitude of change in transition of alpha power from the 

desynchronized to the synchronized phase. It might be that if this transition from 

baseline is stronger in one condition (i.e., the slope is more positive), tonic alpha power 

would also be set to be higher for the rest of the listening for over 30 seconds. 

Therefore, looking at the changes of alpha power in the first few seconds of such a 

long speech might be enough to discriminate the difficulty of the ongoing listening 

task.  

4.4.4 Correlation of EEG power and performance 

As mentioned in Chapter 1, there is a considerable number of studies that have shown 

that EEG power (more specifically alpha power) can be correlated to behavioural 

performance. In the first study, no significant correlation between EEG and 

performance was observed, which might be another indication of small population 

leading to type II error rate.  

In the second study, there was a correlation between theta power and performance (in 

the parietal and fronto-central regions). Such a correlation may be related to speech 

tracking with EEG signals using different methods such as stimulus reconstruction  

(e.g., Alickovic et al., 2020; Das et al., 2018; O’Sullivan et al., 2015; Petersen et al., 

2017). In fact, using stimulus reconstruction, it has been shown in the very same 

dataset (second experiment) that higher SNR and activation of the noise reduction 

scheme enhanced the neural representation of speech and reduced the neural 

representation of background noise during such a long stimuli (Alickovic et al., 2020). 

As stimulus reconstruction mainly relies on the theta band (4-8 Hz) of the EEG signal, 

it is possible that this mediates the correlation.  

4.4.5 Limitations 

In the first experiment, one limitation is the low number of participants recruited (n = 

8). Due to small number of participants, chances for type II error rate in the statistical 

analyses were high and it might be one explanation that the results lacked the 

significant findings of the second experiment.  

In the second experiment, an unexpected strong effect was observed on both 

behavioural and EEG power data due to differences between the two talkers used as 
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stimuli. We cannot infer what caused this difference. Even though the stimuli were 

normalized, the subjectively reported difference in intelligibility could have been 

caused by a difference in energetic masking due to spectral differences. This would 

lead to increased effort at a comparably early stage of the neural encoding of the speech 

signal. As stated earlier we had two different talkers, each spoken by a different gender 

(T1 by a female vs. T2 by a male) which led to higher speech intelligibility in the 

female talker. While we did not infer the effect of gender from the effect of the talker, 

since we only presented one example of each gender, there have been other studies 

that have shown female talkers have led to higher speech intelligibility (Kwon, 2010; 

Yoho et al., 2019). With our design, we could not provide further insight into 

differences caused by gender, but we could show that both performance and EEG 

power were affected after participants consistently expressed intelligibility concerns. 

One other limitation of the second study is in how far the hearing aid fitting strategy 

generalizes to recommended fitting strategies. Here we used non-individualized, 

closed tips for better control of the signal that enters the auditory pathway. However, 

in practice, patients with mild to moderate hearing loss (and intact hearing in the low 

frequency range) would have been fitted with open domes. Therefore, noise reduction 

would only affect higher frequencies, such that the overall effect of noise reduction 

might be reduced for patients with open fit. Future studies should address this to claim 

higher ecological validity. Furthermore, the effect of noise reduction was only 

quantified once on a dummy head. In future studies, in-situ measurements should be 

conducted to quantify the effect of noise reduction in the individual patient. 

4.5 Conclusion 

In two experiments EEG signals were used to assess aspects of listening effort of 

hearing-aid users in a continuous speech setting, presented from either a right or left 

target in the presence of noise. In the first experiment, SNR, and in the second 

experiment, SNR and noise reduction schemes were manipulated for hearing aid users. 

Both experiments showed that more demanding conditions led to less activation of 

tonic alpha in the parietal region. In the first experiment this was due to SNR, and in 

the second experiment due to SNR and talker intelligibility. While the initial 

hypothesis was that more demanding listening conditions should lead to increased 
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parietal alpha, these results suggest there the pattern of alpha power in long speech is 

the opposite and it may not reflect listening effort.    

  



Chapter 5  113 

 

 

Chapter 5  

Ear-EEG as a wearable technology to measure 

listening effort 

The study in this chapter was a joint project with UNEEG medical A/S, Denmark. 

TSA’s contributions were data analysis and interpretation.  

5.1 Introduction 

5.1.1 Ear-EEG 

So far, this thesis has been focusing on scalp EEG. Many studies within auditory and/or 

cognitive neuroscience, have used EEG due to its non-invasiveness and excellent 

temporal resolution, along with several other advantages (Luck, 2014). However, 

despite high quality recordings by EEG, it is not yet suitable as a wearable technology 

and can be hardly used in real-life applications (Looney et al., 2012), which makes it 

limited mostly to the laboratory experiments.  

In the spirit of introducing a new wearable technology that can be used as an 

ambulatory measurement of brain electrical activities, EEG signals now can be picked 

up by ear-EEG electrodes (Bleichner et al., 2015; Looney et al., 2012). Despite the 

attraction of ear-EEG as a wearable technology, it still suffers from poorer spatial 

resolution compared to scalp EEG, as the signals are only limited to the brain areas 

close to the ears (Kappel et al., 2019). Nonetheless, researchers have shown that 

traditional analyses, such as P300 detection (Bleichner et al., 2015), frequency-domain 

representation (Mikkelsen et al., 2015), or steady-state evoked potential (Ahn et al., 

2018), commonly studied by scalp EEG are also relevant in ear-EEG. However, 

listening effort has not yet been explored using ear-EEG.    

The first generation of ear-EEGs required conductive gel to be applied between the 

electrodes and skin (e.g., Kidmose et al., (2013), Fiedler et al., (2017)), and thus they 

are referred to as wet ear-EEG. Recent improvement in hardware design of ear-EEGs 

have removed the need for conductive gel and hence they are called dry ear-EEG. Such 

hardware improvement made ear-EEGs even more valuable as a potential wearable 

technology, as it is now more user-friendly, comfortable and would enable the user to 

insert the device without assistance (Kappel et al., 2019). 
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Both wet and dry ear-EEGs have more advantages as well. The tight fit between the 

earpiece and the ear helps the electrodes to be held firmly in place and this can reduce 

motion or muscular movement artifact. Placing the electrodes next to the ear canal 

which is a strong electrically conductive medium due to earwax diminishes the 

interference from external electrical fields. These are some advantages that the signals 

picked up by ear-EEG can benefit compared to when they are picked up by scalp EEG 

(Looney et al., 2012).   

5.1.2 Objectives 

The study in this chapter, similar to those in Chapter 4, investigated the changes in 

brain activities during long, uniteruppted speech-in-noise task. The only variable for 

this study was SNR (-16, -8, -4, +8 dB) to manipulate task demand on normal-hearing 

participants. The main distinction between this study and those mentioned in Chapter 

4, was to implement ear-EEG as well as scalp EEG to look for changes in listening 

effort. In Chapter 4, the results showed that the power in scalp EEG can be modulated 

by manipulation of task demand, therefore, the aim of this chapter is to compare the 

changes in ear-EEG to its scalp EEG counterpart.     

5.2 Study design 

5.2.1 Participants 

Fifteen (4 females) normal-hearing Danish-speaking adults (average age of 42.4 ± 11.4 

years) participated in this study. One additional participant was excluded due to a 

problem in sending triggers to the EEG device. All participants signed a written 

consent form before the experiment. Ethical approval of this study was obtained from 

the Research Ethics Committees of the Capital Region of Denmark. No participant 

suffered from neurological or hearing disorders. The pure-tone average of air 

conduction thresholds at 0.5, 1, 2 and 4 kHz (PTA4) were tested for hearing abilities 

and confirmed to be below 25 SPL HL.     

5.2.2 Apparatus 

The experimental setup consisted of five loudspeakers positioned around the 

participant at 1.2 m distance. The target loudspeaker was positioned 0° azimuth in 
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front of the listener. The background noise, consisting of 4-talker babble noise, was 

presented from four loudspeakers (16-talker babble in total) located at ±90° and ±150° 

azimuth. The spatial setup of the test is illustrated in Fig. 5.1.  

 

Fig. 5.1 Spatial setup of the task; Five loudspeakers positioned around the participant at 1.2 

m distance. The target loudspeaker (in blue) was positioned 0° azimuth in front of the 

listener. The background noise, consisting of 4-talker babble noise (in red), was presented 

from four loudspeakers located at ±90° and ±150°. 

 

The descriptions for loudspeakers and scalp EEG device are the same as Section 2.2.2. 

The ear-EEG recordings were acquired with a sampling rate of 1000 Hz by a 32-

channel portable TMSi MOBITA EEG amplifier (TMSi, Netherlands). In addition, the 

amplifier enabled active shielding (guarding) of the ear-electrodes all the way to the 

backside of each of the 12 electrodes. For each participant, earmould impressions were 

acquired in a session before the test in order to make personalized ear-EEG.     

5.2.3 Stimuli 

Non-dramatic Danish news clips of neutral contents were used for the target speech 

(33 s) and16-talker babble noise (38 s). The A-weighted SPL of the babble was fixed 

at 70 dB overall (64 dB each). The level of the target was varied across trials from 54-

78 dB to generate four different SNRs: -16, -8, -4 and +8 dB. In this study, SNR was 
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defined as the long-term average sound level of the target signal (with pauses longer 

than 200 ms being cut out) compared to the background noise.  

5.2.4 Procedure 

There were 21 trials for each SNR, randomly distributed across 84 trials with an 

additional 4 training trials in the beginning of the test. Each trial (Fig. 5.2) consisted 

of 38 seconds of 16-talker babble played in the background. The target was presented 

5 seconds after the onset of the babble (i.e., after the baseline period) and then 

continued for 33 seconds, followed by a two-choice question regarding the content of 

the attended target audio clip. Participants were given a rest period every 28 trials. The 

percentage of correct answers were considered as performance accuracy. 

 

 

Fig. 5.2 Trial design; Each trial consisted of 38 seconds of 16-talker babble played in the 

background (in red) with 33 seconds of target speech starting 5 s after the onset of 

background noise (in blue). A two-choice question regarding the contents of the attended 

target audio clip was asked from the participants. 

 

5.2.5 Scalp EEG analysis 

The pre-processing of EEG data was done similar to Section 2.2.5.1. In total, 1.8% of 

the channels were detected as bad and were interpolated. Also, 9.2% of all trials in this 

experiment were rejected. No participant had more than 23.8% of trials rejected. 

For the resulting signals two different referencing methods were applied. The first 

method was the common average referencing which is acquired by subtracting the 

average of all channels from any single channel (Luck, 2014). The second method was 

the symmetrical bipolar referencing which was achieved by subtracting any two 
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channels mirrored to each other in opposite hemispheres (e.g., T7 - T8). The latter 

referencing approach allowed us for more direct comparison between the results of 

scalp EEG and ear-EEG (see Section 5.2.6). The resulting signals were used for power 

extraction which was also done similar to Section 4.2.1.6.  

Based on the spectrum of averaged data using common referencing (see Fig. 5.5) there 

was a peak at 10 Hz in parietal and using symmetrical referencing (see Fig. 5.8) there 

was a peak at 12 Hz. Therefore, we define the range of alpha power as 8-14 Hz in this 

experiment to contain both peaks and have a similar range for both common and 

symmetrical referencing. An exploratory analysis of tonic theta (5 – 7 Hz) and tonic 

beta power (15 – 20 Hz) was undertaken. 

5.2.6 Ear-EEG analysis 

For the analysis of the ear-EEG, first power line noise was rejected with a 50-Hz notch 

filter with a quality factor of 25. Then a 3rd-order zero-phase Butterworth bandpass 

filter with cut-off frequencies of 1-40 Hz was applied to the data and the resulting 

signals were down-sampled to 256 Hz. In total, 5 trials were missed in the ear-EEG 

data due to trigger issues.   

The first step in using ear-EEG was to select the best pair of electrodes, one in each 

ear. Given that the quality of signals in each electrode varied from participant to 

participant, we decided to choose the most consistent electrodes based on their 

normalized standard deviation (SD). For this purpose, the SD of all the electrodes 

within each participant were normalized to the smallest SD in that participant (except 

when there was no connection for an electrode). Any value further from 1 showed 

larger signal variance and most probably contained noise. Fig. 5.3 summarizes the 

normalized SD across all electrodes and participants (in both left and right ears). As 

shown, K electrode had the most consistent normalized SD and thus it was chosen as 

the main electrode for further analysis. However, in two participants the quality for K 

electrode was quite poor and instead, F electrode was used in order to replace it. The 

location of F electrode is also very close to K electrode, as both are placed close to ear 

canal (Fig. 5.3 bottom panel).  

After finding the best pair in each participant, the two electrodes were subtracted from 

each other (similar to symmetrical referencing in the scalp EEG). The rationale behind 

the choice of referencing in ear-EEG was that 1) independency from any external 
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referencing electrode while using ear-EEGs and 2) subtracting channels between ears 

would result in a bigger amplitude signal (compared to referencing to another channel 

in the same ear which would result in a smaller amplitude signal and thus more 

susceptible to noise). After that, bad trials were rejected by visual inspection. In total, 

10.8% of all trials in the ear-EEG data were rejected while no participant had more 

than 27.2% of trials rejected. 

Power extraction on resulted signals was done similar to power extraction in scalp 

EEG. Based on the spectrum of the ear-EEG signals there was a peak at 12 Hz. 

Therefore, we explored phasic and tonic alpha power (8 – 14 Hz) (see Fig. 5.11). An 

exploratory analysis of tonic theta (5 – 7 Hz) and tonic beta power (15 – 20 Hz) was 

undertaken. 

 

Fig. 5.3 Top row shows the location of the dry ear-EEG electrodes, consisted of 6 electrodes 

in each ear: A, B, C, F, K, T.  Bottom row shows the normalized standard deviation (SD) for 

each electrode in ear-EEG for all participants’ both ears (180 in total). The green channels 

(30) are the electrodes that are used for further analysis (28 Ks and 2 Fs). The unusable 

channels below the “No Connection” or above “> 6 x Normalized SD” had no output or were 

too noisy, respectively. 

5.2.7 Statistics 

For both scalp EEG and ear-EEG, LMM was used to estimate the effects of SNR on 

performance and EEG power in different bands. SNR was the fixed factor, and the 

participants were the random factors. The MATLAB syntax to implement LMM was 

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ~ 1 + 𝑆𝑁𝑅3 + (1|𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷) with Dependent variable being either 
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performance or EEG power. SNR values were centered around 0 (i.e., -11, -3, +1, +13 

dB) in the model to avoid correlations between the linear, quadratic, and cubic effects. 

The degree of the model was chosen based on the sigmoid pattern of grand average 

results of both performance and alpha power (see Section 5.3) that were used in this 

model. 

Due to long length of the stimuli, changes of EEG power over time were also 

investigated. The procedure was similar to the description in Section 4.2.1.7. For 

correlation analysis between EEG power and performance, Pearson skipped 

correlation was used as described in Section 2.2.7.  

5.3 Results 

5.3.1 Performance 

The performance was significantly improved with increasing SNR (β = 6.78, SE = 

0.96, t56 = 7.03, p < 0.001) without any quadratic effects of SNR (β = 0.01, SE = 0.02, 

t56 = 0.37, p = 0.710) and significant cubic effects of SNR (β = -0.03, SE= 0.01, t56 = 

-5.42, p < 0.001). The average results for each condition (Fig. 5.4) show that for the 

two most difficult conditions (-16 and -8 dB) the performance was just slightly above 

chance level (50%).  

  

Fig. 5.4 Performance correct percentage based on the two-choice questions regarding the 

contents of the attended speech. 
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5.3.2 Scalp EEG – Common 

Using common referencing in parietal region (Table 5.1), there was no significant 

change of phasic alpha due to SNR. However, for tonic power, theta, alpha and beta 

were modulated by SNR and only theta and beta were modulated by SNR3. The 

changes in tonic alpha are shown in Fig. 5.5.  

The analysis of changes over time showed significant slope in alpha power over 32 

seconds in grand averaged data (Fig. 5.6 top panel). Investigating each condition 

separately, it was observed the two most difficult conditions (-16 and -8 dB) were the 

only conditions with significant positive slope during 32-second period (Fig. 5.6 

middle panel). Dividing the alpha power into 5-s windows, the only significant 

positive slope happened during the first 5 second in the two easiest conditions (-4 and 

+8 dB) (Fig. 5.6 bottom panel).    

The results of skipped Pearson with common referencing in parietal region (Table 5.2) 

showed significant correlation between performance and tonic theta, alpha and beta 

bands. That means that all the bands which were significantly modulated by SNR also 

showed significant correlation with performance. The correlation between tonic alpha 

and performance is shown in Fig. 5.7.  

Table 5.1 Results of mixed model based on SNR predictor: estimates of different relative 

power changes using common referencing in the parietal region in different bands and 

phases. Significant p-values are shown in black font.   

DF = 57 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = -0.26 

SE = 0.91 

t = -0.29 

p = 0.772  

β = 2.52 

SE = 0.74 

t = 3.36 

p = 0.001 

β = 2.68 

SE = 0.96 

t = 4.48 

p < 0.001 

β = 2.33 

SE = 0.59 

t = 3.89 

p < 0.001 

SNR2 

 

 

 

 

β = 0.01 

SE = 0.02 

t = 0.32 

p = 0.746  

β = -0.03 

SE = 0.01 

t = -1.87 

p = 0.066 

β = -0.41 

SE = 0.02 

t = -1.98 

p = 0.052 

β = -0.01 

SE = 0.01 

t = -0.78 

p = 0.434 

SNR3 

 

 

 

 

β = 0.001 

SE = 0.006 

t = 0.19 

p = 0.842  

β = -0.01 

SE = 0.005 

t = -2.30 

p = 0.025 

β = -0.01 

SE = 0.006 

t = -1.91 

p = 0.061 

β = -0.01 

SE = 0.004 

t = -2.74 

p = 0.008 
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Fig. 5.5 Power changes over time: A) Grand average spectrogram (, spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions after common referencing. C) The modulation of alpha power by SNR in the 

highlighted window of panel A which showed significant linear effect. 

A 

B 

C 
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Fig. 5.6 Changes of alpha power using common referencing over time for A) grand average 

data and B) each condition over 32 seconds. C) The analysis of slope within 5-s intervals 

showed significantly positive values in the first 5 seconds for +8 and -4 dB conditions 

(shown in large dots). 

 

A 

B 

C 
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Table 5.2 Pearson skipped correlation between performance and EEG using common 

referencing in the parietal region in different phases. Significant correlations are shown in 

black. 

 Phasic Tonic 

Band 

Electrodes 

Alpha Theta Alpha Beta 

Parietal 

 

 

 

r = 0.03 

CI = [-0.20 0.26] 

 

r = 0.48 

CI = [0.31 0.63] 

 

r = 0.49 

CI = [0.28 0.67] 

 

r = 0.46 

CI = [0.28 0.61] 

 

 

Parietal (Scalp - Common) 

 

Fig. 5.7. Pearson’s skipped correlation between performance and tonic alpha power in the 

parietal region using common referencing. The red dots are considered as outliers by the 

robust correlation and the shaded area show the 95% CI. 
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5.3.3 Scalp EEG – Symmetrical 

Symmetrical referencing in parietal region (Table 5.3) showed similar results to 

common referencing in the same region. There was no significant change for phasic 

alpha, but tonic theta, alpha and beta were modulated by SNR and SNR3. The only 

difference between common and symmetrical referencing was the modulation of tonic 

alpha power by SNR3. The changes in tonic alpha are shown in Fig. 5.8. 

The analysis of changes over time with symmetrical referencing also showed similar 

results to common referencing. For the grand average data, there was a significant 

slope in alpha power over 32 seconds (Fig. 5.9 top panel). The two most difficult 

conditions (-16 and -8 dB) were the only conditions that showed positive slope during 

32-second period (Fig. 5.9 middle panel). However, unlike common referencing, 

dividing the alpha power into 5-s windows did not show any significant slope in any 

of the windows in any condition (Fig. 5.9 bottom panel).  

The results of skipped Pearson with symmetrical referencing (Table 5.4) were also 

following the same pattern as common referencing. Significant correlations between 

performance and tonic theta, alpha and beta bands were observed in parietal region. 

The correlation between tonic alpha and performance is shown in Fig. 5.10. 

Table 5.3 Results of mixed model based on SNR predictor: estimates of different relative 

power changes using symmetrical referencing in the parietal region in different bands and 

phases. Significant p-values are shown in black font.   

DF = 57 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = 0.21 

SE = 1.07 

t = 0.20 

p = 0.841  

β = 2.80 

SE = 0.86 

t = 3.24 

p = 0.001 

β = 2.85 

SE = 1.01 

t = 2.80 

p = 0.006 

β = 1.89 

SE = 0.58 

t = 3.24 

p = 0.001 

SNR2 

 

 

 

 

β = 0.02 

SE = 0.02 

t = 0.95 

p = 0.344  

β = -0.03 

SE = 0.01 

t = -1.70 

p = 0.092 

β = -0.03 

SE = 0.02 

t = -1.64 

p = 0.106 

β = -0.007 

SE = 0.01 

t = -0.57 

p = 0.566 

SNR3 

 

 

 

 

β = -0.002 

SE = 0.007 

t = -0.31 

p = 0.756  

β = -0.01 

SE = 0.006 

t = -2.24 

p = 0.028 

β = -0.01 

SE = 0.007 

t = -2.03 

p = 0.047 

β = -0.009 

SE = 0.004 

t = -2.24 

p = 0.028 
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Fig. 5.8 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions after symmetrical referencing. C) The modulation of alpha power by SNR in the 

highlighted window of panel A which showed significant linear and cubic effects. 
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Fig. 5.9 Changes of alpha power using symmetrical referencing over time for A) grand 

average data and B) each condition over 32 seconds. C) The analysis of slope within 5-s 

intervals showed no significant positive nor negative values in the first 5 seconds in any 

condition. 
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Table 5.4 Pearson skipped correlation between performance and EEG using symmetrical 

referencing in the parietal region in different phases. Significant correlations are shown in 

black.  

 Phasic Tonic 

Band 

Electrodes 

Alpha Theta Alpha Beta 

Parietal 

 

 

 

r = 0.14 

CI = [-0.13 0.39] 

 

r = 0.43 

CI = [0.26 0.60] 

 

r = 0.47 

CI = [0.28 0.65] 

 

r = 0.29 

CI = [0.06 0.51] 

 

 

Parietal (Scalp - Symmetric) 

 

Fig. 5.10. Pearson’s skipped correlation between performance and tonic alpha power in the 

parietal region using symmetrical referencing. The red dots are considered as outliers by the 

robust correlation and the shaded area show the 95% CI. 
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5.3.4 Ear-EEG 

The results of LMM on the ear-EEG data (Table 5.5) revealed that only tonic alpha 

and beta were significantly modulated by SNR and SNR3. The changes of tonic alpha 

in ear-EEG are shown in Fig. 5.11.  

The analysis of changes over time showed no significant slope in the grand average 

alpha power over 32 seconds (Fig. 5.12 top panel). Among all conditions, only the 

most difficult condition (-16 dB) showed significant positive slope over 32 seconds 

(Fig. 5.12 middle panel). Dividing the alpha power into 5-s windows did not show 

any significant slope in any of the windows in any condition (Fig. 5.12 bottom panel).  

Using skipped Pearson on ear-EEG data, tonic alpha power (Fig. 5.13) was the only 

condition that showed significant correlation with performance (Table 5.6).  

 

Table 5.5 Results of mixed model based on SNR predictor: estimates of different relative 

power changes in ear-EEG in different bands and phases. Significant p-values are shown in 

black font.   

DF = 57 Phasic Tonic 

Band 

Predictor 

Alpha Theta Alpha Beta 

SNR 

 

 

 

 

β = 0.15 

SE = 1.10 

t = 0.14 

p = 0.886  

β = 0.74 

SE = 0.61 

t = 1.21 

p = 0.231 

β = 1.90 

SE = 0.63 

t = 3.00 

p = 0.003 

β = 1.25 

SE = 0.42 

t = 2.95 

p = 0.004 

SNR2 

 

 

 

 

β = -0.01 

SE = 0.02 

t = -0.56 

p = 0.575  

β = -0.002 

SE = 0.01 

t = -0.22 

p = 0.825 

β = -0.01 

SE = 0.01 

t = -1.22 

p = 0.226 

β = 0.007 

SE = 0.009 

t = 0.76 

p = 0.446 

SNR3 

 

 

 

 

β = -0.001 

SE = 0.007 

t = -0.15 

p = 0.873  

β = -0.004 

SE = 0.004 

t = -0.99 

p = 0.325 

β = -0.01 

SE = 0.004 

t = -2.31 

p = 0.024 

β = -0.007 

SE = 0.002 

t = -2.54 

p = 0.013 

 

 

  



Chapter 5  129 

 

 

 

Fig. 5.11 Power changes over time: A) Grand average spectrogram, B) spectrum and 

topographic map in the highlighted time window of panel A of all participants and 

conditions in ear-EEG. C) The modulation of alpha power by SNR in the highlighted 

window of panel A which showed significant linear and cubic effects. 

A 

B 
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Fig. 5.12 Changes of alpha power (ear-EEG) over time for A) grand average data and B) 

each condition over 32 seconds. C) The analysis of slope within 5-s intervals showed no 

significant positive nor negative values in the first 5 seconds in any condition. 

 

A 

B 

C 



Chapter 5  131 

 

 

Table 5.6 Pearson skipped correlation between performance and ear-EEG in different 

phases. Significant correlations are shown in black.  

 Phasic Tonic 

Band 

Electrodes 

Alpha Theta Alpha Beta 

Ear-EEG 

 

 

 

r = -0.03 

CI = [-0.27 0.22] 

 

r = 0.13 

CI = [-0.10 0.35] 

 

r = 0.30 

CI = [0.07 0.51] 

 

r = 0.03 

CI = [-0.23 0.28] 

 

 

 

Ear-EEG 

 

Fig. 5.13. Pearson’s skipped correlation between performance and tonic alpha power in ear-

EEG. The red dots are considered as outliers by the robust correlation and the shaded area 

show the 95% CI. 
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5.4 Discussion 

5.4.1 Overview 

Using four different SNRs, from very low to very high task demand, alpha power ERS 

decreased with increasing demand. This was present in both scalp EEG (using 

common or symmetrical referencing) and ear-EEG. Investigating the changes of alpha 

power over time in scalp EEG using common referencing showed that less demanding 

(i.e., more intelligible) conditions had the biggest increase in alpha within the first 5s 

of the stimuli which led to higher ERS level in those conditions over the full 33s of the 

stimuli.  

Alpha ERS was also positively correlated to performance accuracy in scalp EEG and 

ear-EEG, which was based on answering questions regarding the contents of the 

speech. 

5.4.2 Changes of EEG power in a continuous speech 

One of the advantages of using long, continuous speech is to explore changes of alpha 

activity over an extended period of listening. Reasonably, it cannot be expected that a 

listener invests effort continuously and at a constant level during the whole 

presentation of a continuous speech. A person can adapt to specific listening 

difficulties, or get fatigued, or lose/gain motivation over time. 

Using continuous speech that lasted for 33s, alpha ERD was observed briefly in the 

beginning of the stimuli (~1 s) which then shifted to alpha ERS. Interestingly, higher 

SNRs had the biggest leap from alpha ERD to ERS in the first 5s of the stimuli in the 

highest SNR conditions (-4 and +8 dB). These findings might indicate that successful 

alpha ERS is necessary for speech understanding in such a continuous, uninterrupted 

paradigm. The early transition from alpha ERD to ERS might be an early indicator of 

whether a listening situation is easily intelligible or not.  

While similar findings were observed in ear-EEG, they were not statistically 

significant. This may be an indication that such alpha variations over a continuous 

speech in different SNRs are more prominent in the central regions of the brain and 

harder to pick up in or around the ears. 
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5.4.3 Feasibility of Ear-EEG  

Ear-EEG is a feasible device for ambulatory measurement of EEG. While ear-EEG is 

limited to picking up the electrical brain signals around the ears, it has been shown that 

it can be successfully used in auditory studies to decode the attended talker in the 

presence of distracting talkers (Bleichner et al., 2016; Fiedler et al., 2017; Mirkovic et 

al., 2016). However, to our knowledge no studies have investigated alpha oscillation 

in continuous speech by using ear-EEG.  

The first issue of using ear-EEG in a realistic listening scenario (i.e., continuous 

speech) is the quality of recorded data compared to the scalp EEG. In this study, for 

scalp EEG, conductive gel was applied for better contact to the skin, but for ear-EEG 

the electrodes were used dry. While using conductive gel leads to better-quality signals 

in general, it is important to implement dry electrodes for any further application of 

ear-EEGs in real life. Even with the differences in impedance of electrodes, ear-EEG 

had good quality compared to scalp EEG (on average 1.3 more trials were rejected in 

ear-EEG compared to scalp EEG), especially in the selected electrodes of the ear-EEG 

(i.e., K and F).  

The second aspect of the ear-EEG results was how the changes of alpha with task 

demand could be compared in scalp EEG and ear-EEG. It was observed that alpha 

power changed in a sigmoidal pattern in both scalp EEG (symmetrical referencing) 

and ear-EEG by manipulating SNR in continuous speech and were correlated to the 

performance. Similar to scalp EEG, alpha power during such stimuli is probably less 

a reflection of listening effort and more a measure of performance. More research is 

required to investigate the feasibility of ear-EEG to measure performance or speech 

intelligibility, a question that has potential for real-world impact if implemented in 

hearing aids. To this aim, using real-life scenarios similar to the conversation-like 

stimuli used in this study is encouraged.   

5.4.4 Limitations 

The range of implemented SNRs in this experiment varied 24 dB. While this decision 

of the experiment design was made to investigate a wide range of SNRs, interpreting 

LMM results on these conditions should be drawn with caution. As the difference 

between conditions were not equally distributed (8, 4, 12 dB difference between each 
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two consecutive conditions) it might make any non-linear conclusions of the results 

(such as cubic effect of SNR) spurious.  

Another shortcoming was that the scalp and ear-EEG were recorded using separated 

amplifiers. This decision was made because of hardware restrictions, but it should be 

considered that the triggers and the ground electrodes were used differently in these 

measures.   

5.5 Conclusion 

To our knowledge, this is the first time that oscillations in ear-EEG are investigated to 

look for changes in listening effort in continuous speech. To do so, we recorded the 

brain signals simultaneously with dry ear-EEG electrodes with a 64-channel scalp 

EEG in a continuous speech with four different SNRs to manipulate task demand. The 

results showed that increased SNR led to increased power activity in theta, alpha and 

beta bands in both scalp EEG and ear-EEG. It was speculated that such increases were 

not specific to listening effort and more reflecting performance accuracy.    
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Chapter 6  

General discussion and conclusion 

6.1 Overview 

According to the FUEL theoretical framework, personal and environmental factors can 

modify listening effort (Pichora-Fuller et al., 2016). In my thesis, I have investigated 

this framework in depth, by addressing listening effort using a variety of subjective 

and objective measurements, and by manipulating the listening task and participants’ 

motivations in a number of ways. Furthermore, given my goal of investigating EEG 

signals to measure listening effort and understand the neural basis of alpha power, I 

explored these effects in increasingly ecologically valid situations, and in participants 

with a variety of hearing abilities.  

In order to measure changes in listening effort, I introduced different subjective and 

objective measures in Chapter 1. One of the commonly used objective measures is 

EEG signals, which pick up electrical activities in the brain. I described one specific 

feature in EEG signals, alpha power, and how it has been widely used in the literature 

as a neural correlate of listening effort.  

In Chapter 2, I examined motivation (a personal factor) and its effects on listening 

effort, using alpha power. Monetary reward was introduced as a way of manipulating 

motivation. Task demand (an environmental factor) was also manipulated by varying 

SNR to create very easy to very difficult listening situations. A traditional speech-in-

noise task was used for evaluation of listening, with short sentences as the target audio. 

I also introduced a maintenance phase where the participants were asked to remember 

the sentence that they just heard in the presence of background noise. I did not find 

any effects of monetary reward or SNR on alpha power during the listening phase. 

However, in the maintenance phase, there was a quadratic interaction between reward 

and SNR that affected low alpha power: reward led to increased low alpha power when 

the SNR was not too high and not too low. I drew two conclusions from this 

experiment. The first conclusion was that during a short-sentence paradigm, low alpha 

band in the maintenance phase only could be used to evaluate listening effort. When 

listeners invested more effort, an increase in the alpha power was observed. However, 

when the task became too difficult, and they started to disengage from the task alpha 
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power decreased. The second conclusion was that reward and SNR interacted with 

each other to modify effort, as long as task demand was not extremely high or low.  

In Chapter 3, I used a similar design, but this time focused only on environmental 

factors, testing whether reverberation, using different room simulations, can affect 

listening effort. Similar to the results of Chapter 2, low alpha power in the 

maintenance phase was modulated by the interaction of SNR and room simulations. 

In this study, I also used questionnaires as a subjective measure of listening effort to 

investigate whether subjective and objective measures of listening effort are co-

modulated or correlated to each other. While the low alpha power in the maintenance 

phase (i.e., an objective measure of listening effort) was modified in an inverted U-

shaped form with task demand, self-reported effort (i.e., a subjective measure of 

listening effort) showed a linear increase in ratings with increasing task demand. I 

drew three conclusions from this experiment. The first conclusion was that, once again, 

the power of low alpha band could be utilized in the maintenance phase as a measure 

of listening effort in a short-sentence paradigm: when listeners invested more effort, 

increase in alpha power was observed until the task became too difficult and they 

started to disengage from the task which led to decrease in alpha power (more 

discussion in Section 6.2). The second conclusion was that different rooms (with 

different reverberation) could influence listening effort depending on the SNR. The 

third conclusion was that subjective and objective measures of listening effort did not 

show similar patterns. While the subjective measure changed linearly with task 

demand, the objective measure formed an inverted U-shaped curve with changes of 

task demand. I speculate the inconsistency between subjective and objective measures 

only happens when listening effort varies in a wide range of task difficulties which can 

cover a wide range of psychometric function of speech intelligibility. It is possible that 

for speech intelligibilities higher than the middle point of the psychometric function 

(50% speech intelligibility), both subjective and objective measures of effort agree 

with each other. This is because the more demanding the task gets the more effort 

listeners invest in the task and this is reflected by both subjective perception and 

physiological changes. However, for the speech intelligibilities below the middle point 

of psychometric function, subjective measures indicate that effort increases, while 

objective measures indicate that effort decreases. The physiological measures suggest 

that listeners start to disengage from the task even while listeners feel that they are 
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putting in additional effort. This shows the perception of putting more effort is not 

similar to physiological manifestation of effort. It is possible that not enough sensory 

information is delivered to the brain for processing of the information and thus less 

manifestation of effort is observed by exploring physiological changes, but the 

listeners still perceive they put in additional effort.    

In Chapter 4, I decided to move away from normal-hearing participants and the 

artificial short-sentence paradigm of chapters 1-3, which is quite different to everyday 

listening situations. I instead focused on longer, realistic monologue stimuli and how 

people with hearing impairment apply effort while listening to long stimuli. I used 

these longer stimuli from actual newscasts to see if prior effects held in a context that 

would be more generalisable to everyday life. Therefore, in Chapter 4, I introduced a 

continuous-speech paradigm lasting over 30 s and conducted two experiments on 

hearing impaired participants. In the first experiment hearing impaired participants 

(using hearing aids, but without any manipulations) were exposed to two different 

SNRs. The alpha changes were opposite to what we observed in the previous chapters: 

when listeners invested more effort during the listening, alpha power decreased. In the 

second experiment, SNR as well as the noise reduction scheme in hearing aids (on vs. 

off) were manipulated. While I did not observe any effects of noise reduction on alpha 

power, the condition requiring more effort (lower SNR) led to decreased alpha power. 

These findings were opposite to what I found in Chapter 2 and Chapter 3 where more 

effort led to more alpha power, potentially due to different tasks which might require 

different processing in the brain. While the task in short-sentence paradigms were to 

repeat the words, the task in continuous speech was to get the gist of the speech. It is 

possible that alpha power during continuous speech is more comparable to the listening 

phase in shorter speech paradigm and both are as results of stimulus-driven responses. 

This might be one explanation that why there was a significant correlation between 

alpha power in the continuous speech and performance.  

In Chapter 5, I intended to test the effects of continuous speech on normal-hearing 

participants to replicate the effects of lower alpha power being greater effort, as the 

results in Chapter 4 could have been due to the different population. I also explored 

whether the changes of alpha power in this paradigm can be picked up by an 

ambulatory measurement such as ear-EEG. To this end, I had a similar design to the 

studies in Chapter 4, but this time the experiment was conducted on normal hearing 
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individuals and ear-EEG was recorded simultaneously with scalp EEG. The 

participants listened to a continuous speech with four varying SNRs while scalp EEG 

and ear-EEG were simultaneously recorded. In line with the results of Chapter 4, I 

observed that with more effort, alpha power was decreased. This modulation could be 

detected both by scalp and ear-EEG in the alpha band. I drew two conclusions from 

this study. The first conclusion was that ear-EEG is capable of detecting alpha changes 

during listening to a continuous-speech paradigm. The second, and more general 

conclusion based on the results of Chapter 4 and Chapter 5, was that in a continuous-

speech paradigm alpha power might be reflecting something other than listening effort. 

Since alpha power and performance directly changed with changes of SNR (i.e., higher 

SNR led to higher alpha power and performance), it is possible that alpha power in 

continuous speech reflected performance (more discussion in Section 6.3).  

6.2 Alpha during short sentences 

Based on the results of the two experiments in Chapter 2 and Chapter 3, I did not 

find evidence that alpha power reflected changes of effort during the listening phase, 

while listening to a short sentence (~1 s). The alpha ERD during the listening phase 

was not modulated by SNR or reward (Chapter 2) or by room simulations (Chapter 

3), but it changed monotonically to SNR manipulations (Chapter 3). These results do 

not support some previous works that have shown alpha changes during listening to 

short sentences can be used as a measure of listening effort (e.g., Obleser et al., 2012; 

Wöstmann et al., 2015) or can be used to predict speech intelligibility (e.g., Obleser & 

Weisz, 2012). However, during the maintenance phase, low alpha power ERS was 

modulated by an interaction of SNR and reward (Chapter 2) and SNR and room 

simulations (Chapter 3) in an inverted U-shaped form. This complements the 

observed changes in alpha power related to task demand reported by numerous 

auditory and non-auditory studies during maintenance, (e.g., Jensen et al., 2002; 

Obleser et al., 2012; Tuladhar et al., 2007; Wisniewski et al., 2015, 2017).  

In Chapter 1, I discussed how alpha activation is considered as “functional inhibition” 

(Jensen & Mazaheri, 2010; Klimesch, 2012; Klimesch et al., 2007). During an effortful 

task, the role of alpha oscillation could be to inhibit the task-irrelevant regions, so the 

information is gated to the relevant areas of the brain. Given that during the 

maintenance phase of our studies background noise was present, it seems logical that 
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alpha activation served as “functional inhibition”. However, since the background 

noise was always constant, the changes of alpha power could not have related only to 

processing of that background noise. Instead, the changes may have related to 

continued processing of the speech during the maintenance phase, with the difficulty 

of processing that speech leading to different levels of alpha power being required to 

inhibit background noise during maintenance. This could have been due to the fact that 

more demanding listening situations led to more noisy representations of words and 

more mismatches between the representation of words in episodic memory and 

semantic memory. The greater the strain on working memory during listening, the 

greater the effort required during the maintenance phase, evident through alpha 

oscillation. However, it is unclear why alpha power did not change during listening 

with the changes of SNR and reward (Chapter 2) and reverberation time (Chapter 3). 

One possible explanation is that there might have been other alpha oscillations in other 

regions of the brain with different roles (for example possibly due to spatial attention) 

that cancelled out “effortful” alpha oscillation in EEG signals. It is important to note 

that alpha power showed a general desynchronization (i.e., ERD) in the short period 

of listening phase which was only significant with the manipulation of SNR (Chapter 

3), but it did not reflect any inverted U-shaped pattern. However, alpha power showed 

general synchronization (i.e., ERS) in the maintenance phase which changed in an 

inverted U-shaped pattern with task demand (Chapter 2 and Chapter 3) and 

motivation (Chapter 2). This might suggest that alpha ERD is more of a low-level 

response to auditory stimuli, whereas alpha ERS is probably more high level and can 

change based on the difficulty of the task.  

6.3 Alpha during continuous speech  

Based on the results of the three experiments in Chapter 4 and Chapter 5, in which I 

used continuous speech stimuli, I concluded that alpha power is modulated by SNR, 

but it is plausible that this does not reflect listening effort. I drew this conclusion based 

on two observations.  

The first observation was that alpha power decreased with increasing task demand. 

This was not in line with the “functional inhibition” theories on alpha power. Based 

on these theories if task demand is higher, then alpha power should be increased in 

order to inhibit irrelevant regions of the brain to gate the information to more relevant 
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regions to improve the SNR of the sound of interest (Jensen & Mazaheri, 2010; 

Klimesch, 2012; Klimesch et al., 2007). However, I observed that during continuous 

speech, lower SNR (i.e., more demanding) in fact led to decreased alpha power.  

The second observation was that the changes of alpha power were correlated to the 

performance of the participants. The performance in those continuous-speech 

experiments was measured for each trial by answering a single question regarding the 

contents of the speech. While this is a crude measurement of speech intelligibility, it 

was still affected significantly by the level of SNR: higher SNR led to more accuracy 

in responses. That is, an increase in SNR led to an increase in both performance and 

alpha power. While it is impossible to draw any conclusions on the causality between 

these measures (i.e., did higher SNR lead to more alpha power and thus better 

performance or did higher SNR lead to better performance and thus higher alpha 

power?), one plausible conclusion is that alpha power changed with performance. In 

an unexpected finding, different talkers (one spoken by a male and one by a female) 

led to significant changes in performance and alpha power in the second study of 

Chapter 4. While this was not controlled for, it still showed that alpha power is not 

merely an SNR tracker in a continuous speech and might as well reflect performance.  

If alpha power in continuous speech can reflect performance, then it may indirectly be 

used to measure speech intelligibility as well. The problem is that in continuous 

designs such as ours, it is difficult to have a perfect measure of speech intelligibility 

(one may hear all the words spoken over 30 s, but hardly remember all the words to 

repeat for a valid speech intelligibility score). It remains to be seen if future studies 

can overcome this obstacle and investigate the relation between alpha power and 

speech intelligibility in such a continuous-speech paradigm.  

6.3.1 Feasibility of ear-EEG  

Based on the results of the experiment in Chapter 5, alpha changes could be measured 

in ear-EEG by varying SNR in continuous speech. While ear-EEG has many 

limitations compared to scalp EEG (including fewer number of electrodes and limited 

spatial resolution), these results are promising for future advances in hearing aids. The 

electrodes used for ear-EEG were dry electrodes that needed no extra preparation 

including applying conductive gel for better contact with the skin. That makes dry ear-

EEG suitable for implementation in hearing aids.   
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Not much work has been done on evaluation of listening effort with ear-EEG. While 

previous studies have shown that ear-EEG can be used in auditory tasks for different 

purposes such as attention decoding (e.g., Fiedler et al., 2017; Mirkovic et al., 2016), 

more studies are required to look for applications of ear-EEG. Especially during 

listening to continuous speech which can often happen in daily life, ear-EEG can be 

implemented in hearing aids which can provide valuable information regarding alpha 

power. Based on the results of Chapter 4 and Chapter 5, alpha power in ear-EEG 

during continuous speech was increased with increasing SNR which can be used as a 

measure of performance during listening. However, the results of the study are based 

on group-level analyses and more individualized approaches are needed for real-life 

applications. Identifying individual alpha frequency (IAF) for each user (e.g., 

Klimesch, 1999) may help towards using ear-EEG in individual level. A possible 

application for ear-EEG is to be implemented within a hearing aid to help steer the 

signal processing towards the hearing-aid user’s intent. By using machine learning 

techniques and training on ear-EEG data, useful features can be extracted from the 

EEG signals of the user in order to automatically adjust a hearing aid setting in 

different listening situations for better hearing and/or reduced listening effort. While 

in this thesis, power in the alpha band may have been a measure for performance 

during continuous speech, there have been an increasing number of studies that 

showed ear-EEG in other bands can be used to decode attention when there are several 

sources of sound that are spatially separated from each other (e.g., Alickovic et al., 

2020; Bleichner et al., 2016). My work indicates the feasibility of using ear-EEG for 

extracting alpha power in continuous speech to measure performance depending on 

the task at hand. While promising, the potential of ear-EEG, especially within hearing 

aids in real-life situations, requires more research in future.   

6.4 Ecological validity  

I investigated the changes of alpha power during effortful listening in both short and 

continuous speech. As I found different patterns of alpha power, and possibly different 

roles of alpha power, between short and continuous speech, it is vital to revisit the 

main question of this thesis more closely. The original aim of this thesis was to 

investigate whether EEG signals (mainly alpha power) reflect listening effort in 

ecologically valid situations.  
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I studied a variety of conditions to draw conclusions about ecologically valid listening: 

in Chapter 2, I investigated the impact of different levels of motivation, and in 

Chapter 3, I investigated the impact of different room types. However, while short-

sentence paradigms such as those conducted in Chapter 2 and Chapter 3 allowed us 

to control for speech intelligibility and study EEG signals across a wide range of task 

demands, these short, single sentences barely happen in real life, especially with those 

added “artificial” maintenance phases. Using this standard paradigm helped me to 

investigate alpha changes related to different manipulations while measuring speech 

intelligibility (e.g., SNR, reward, and reverberation), but the cost of this level of 

experimental control was that I had to remove other variables from the experimental 

environment, potentially reducing generalisability to real-life scenarios (Keidser et al., 

2020). Therefore, I decided to move towards more realistic situations using continuous 

speech in Chapter 4 and Chapter 5 which led to some fundamental differences in the 

study designs. For example, speech intelligibility could not be controlled or measured 

anymore. Maybe more importantly, the nature of the task was different. While in short-

sentence paradigms participants have to memorise every single word without any 

context, in continuous-speech paradigms they are not required to memorise any words 

but instead get the gist of the speech. Another important difference between the two 

paradigms is that in short-speech paradigms the listening and maintenance phases are 

separated from each other, however in the continuous speech paradigm, listening and 

maintenance phases are entangled. These differences all may have played a part in the 

conflicting changes of alpha power in continuous speech compared to short sentences.  

Given the more natural listening task used in the later chapters, it might be most 

sensible to focus on Chapter 4 and Chapter 5 to address the main question of this 

thesis: How can alpha power be used to objectively measure listening effort in 

ecologically valid situations? My conclusion is that in such real-life situations, alpha 

power may not be a direct measure of listening effort but may instead reflect 

performance. However, it should be noted that ecological validity is not only limited 

to presenting continuous speech and many more parameters are involved in listening 

in real life. All of these show the complexity of studies on listening effort in ecological 

situations and that more research is required for us to answer how we can measure 

listening effort more consistently and reliably.     
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6.5 Limitations and future direction  

As mentioned in Section 6.4, the changes observed in alpha power due to 

manipulations of reward in Chapter 2 and reverberation time in Chapter 3 were 

during an artificially added maintenance phase where the target has ended but the noise 

continues. This allowed the measurement not to be confounded by the offset of the 

target. Also, the addition of maintenance phase was necessary to measure alpha power 

during a fixed SPL in order to show that the changes of alpha power was due to 

effortful listening to the target speech and not the overall SPL. However, during our 

daily lives, we are often exposed to either continuous speech or short sentences in a 

conversation that come constantly after each other without much time for pure 

maintenance phase. Therefore, such short-sentence paradigm with maintenance phase 

rarely happens in real life. More research is required to look for the effects of 

motivation and reverberation during more realistic listening scenarios, such as using 

continuous speech with those manipulations.  

One of the limitations of the studies with continuous speech in Chapter 4 and Chapter 

5 was our inability to measure speech intelligibility during the task. This is important 

because based on the results of Chapter 3, depending on the speech intelligibility 

level, alpha power may increase or decrease with increasing task demand. Therefore, 

speech intelligibility can help us to understand whether the listeners are trying to spend 

more effort or starting to disengage from the task. One way to overcome this issue in 

future is to ask the participants to estimate their own speech intelligibility. As shown 

in Chapter 3, test participants could have an accurate estimation of their own speech 

intelligibility. While it might be more difficult to estimate one’s subjective 

intelligibility during a longer stimulus, the information can still be useful in further 

interpretation of alpha power.   

Another limitation was that the only acoustic change during the continuous speech was 

SNR. The reason that I speculated that alpha power is not merely a SNR tracker is 

because of the results of Chapter 4, where an unanticipated difference between the 

two talkers (one male and one female) proved to change the alpha power significantly.  

As this was a strong effect, it suggests that features of the voice are more important 

than I anticipated. Given voices differ on features like saliency, a next step could be to 

control for other acoustic features such as saliency to test whether alpha power can 
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reflect those changes as well. Therefore, it is important to have more controlled 

acoustic parameters during continuous speech for better evaluation of alpha power.  

Last but not least, EEG data contains large amounts of information on different 

ongoing processing in the brain, as well as physiological and environmental artefacts 

(such as eye movement or heart rate variability which may be useful at times for task 

evaluation). The main focus of this thesis was on the changes of alpha power, which 

is just one of many features that can be extracted from the EEG signals (albeit a very 

important one). The challenge of studying alpha power is that it can change with 

fatigue or drowsiness during a cognitive task. As seen in Chapter 4 and Chapter 5, 

alpha power is also dynamic and can change over time. This can be an advantage 

towards understanding the cognitive aspects of fatigue, as well as potentially serve as 

a measure of listening engagement. Nevertheless, the changes in alpha power with 

changes in the realism of the task in these chapters urge caution on what conclusions 

should be drawn with any given conditions tested.   

6.6 Conclusion  

The aim of this thesis was to investigate how alpha power of EEG signals can be used 

as an objective measure of listening effort in ecologically valid situations. Two 

different listening paradigms were used: short and continuous speech. After listening 

to short sentences, I found evidence suggesting that low alpha power in the 

maintenance phase reflects listening effort. I observed that personal factors (such as 

motivation which was manipulated by reward) and environmental factors (such as 

different room simulations characterised through reverberation time) modified 

listening effort as a result of interacting with task demand (by varying SNR): when 

participants invested more effort, alpha power was increased until task demand became 

too high and participants started to disengage from the task and thus alpha power 

started to decrease (i.e., inverted U-shaped curve). However, using continuous speech, 

alpha power during listening decreased with increasing task demand (decreasing 

SNR). Different patterns of alpha power in short and continuous speech indicate 

various roles of alpha power when the speech is a single, short sentence versus when 

it is long, and uninterrupted. While it is possible that alpha power in the maintenance 

phase of short speech reflects listening effort, it would appear that in during listening 



Chapter 6  145 

 

 

to a continuous speech, alpha power is not a direct measure of listening effort and 

instead reflects performance of listening.      
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