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Abstract

Characterising the behaviour of a random process with respect to returns to pre-

vious states is a perennial concern of stochastic process theory, with applications

of results spanning the applied sciences—from reliability in physical systems and

networks, to the detection of surfaces in image analysis. The Gaussian stochastic

process is entirely specified by its autocorrelation, a function that measures memory

or time dependence in the process and whose form can lead to changes in higher

order properties of the process. For a zero-mean Gaussian process the most com-

mon returns are to the zero-level, meaning an exploration of the zero-crossings—as

influenced by the autocorrelation function—is a route for studying the interplay

between randomness and dependence.

In this thesis, autocorrelation with two forms of periodic modulation is used to

study changes in the zero-crossings of stationary Gaussian processes when the fre-

quency of periodicity is increased. Realisations of the process are simulated for a

variety of autocorrelations with either exponential or power-law decay, and the time

intervals between zero-crossings are shown to be well-approximated by either finite

or compound mixture distributions—the latter formulation pertaining to cases of

strong dependence in crossings. Sufficient conditions for observing three different

kinds of zero-crossing behaviour are determined and tested through a combination

of simulation and modelling tools. Critical values of the autocorrelation’s frequency

and respective modulations result in three distinct power spectrum profiles, particu-

larly so at extremely small/large cases of that dominant frequency. (1) Without the

periodic modulation, power is concentrated at small frequencies, with zero as the

peak frequency, so that crossing intervals have a large variance and are weakly cor-

related. (2) With a cosine modulation the origin is a minimum point, and the power

spectrum is maximal away from the origin, resulting in wave-like sample functions

with strongly correlated crossings. (3) With a cosine-squared modulation the spec-
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trum contains at least three maxima including the origin, and at least two minima,

leading to long sequences of regular crossings punctuated by rare but significantly

large periods of no axis crossings.

Mixture distributions provide an alternative to using Markov chains and stochastic

integrals to model the dependence between crossings. This approach provides the

added benefit for tail estimation that expressions are all either explicit or asymp-

totically integrable. A closer investigation of the behaviour at extreme cases when

the autocorrelation’s periodicity parameter a≥0 is either zero or very large further

reveals patterns in the zero-crossing sequence reminiscent of stochastic periodicity

in random dynamical systems. Lacunarity, a measure of spatial heterogeneity of

the crossings, reveals that at very small and large timescales there is Poisson-like

behaviour, and within that range, non-Poissonian features are observed. These are

moderately dissimilar when a=0, but for a≫1 the deviations are significant, persist

at large timescales relative to the correlation length, and contain oscillations typical

of a deterministic process. Further proof of the proposed tripartite classification

and ensuing analyses is demonstrated in a case study involving magnetoencephalog-

raphy signal data that are approximately Gaussian distributed; level-crossings of the

mean values recognise a change between two brain states associated with before

and after trial participants perform a voluntary action.
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1
I NTRODUCT ION

The study of randomness has grown significantly since its foundations in 17th cen-

tury games of chance [1]. The more formal idea of a random process now suffuses

the applied sciences, playing a significant role in refining deterministic models (e.g.

incorporating a stochastic dependent variable into a differential equation model of vi-

bration in a mechanical system [2]), likewise in the simulation of discrete/continuous

events (e.g. finding the waiting time for customers in queues [3]). Obtaining a char-

acterisation of the random behaviour remains a central objective when analysing

mathematical objects or data that are stochastic in nature, whereupon explanations

and/or predictions are possible. One particular interest is the degree of correlation

between states or values of a random process, and for realisations of that process

the autocorrelation function provides a measurement of memory relative to previous

values. The autocorrelation of a time-varying process usually has at least one time-

scale, a correlation decay-length typifying the range of time over which dependence

on the past persists. Long-term correlation has been shown to preclude the cluster-

ing of extremal events [4], and additional time-scales imbue further dependence in

the process, for example: modulation of an autocorrelation with a periodic function

serves to regularise extremal properties, demonstrated by increased frequency of

zeros and turning points [5].

Periodic functions have also been applied in discrete and continuous dynamical

systems where of interest is the evolution from an initial configuration into stable,

cyclical or unstable behaviour [6]. In the discrete case, highly organized structures

relative to equilibrium points and attractors are observed in two-dimensional plots

1
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Figure 1.1.: Illustration of deterministic periodicity. Time series (plot a) and phase
diagram (plot b) for the logistic map xn+1 = f (xn), where x0 = 0.5,
f (x) = γx(1 − x), and γ ≈ 3.545 is such that as n → ∞, the oscilla-
tions in xn repeat every eight iterations [7].

of sequential mappings of the form xn+1 = f (xn), n∈N0; similarly in the contin-

uous case, but for systems of differential equations like ẋ= f (x, t), t∈R≥0, with

attractors termed limit cycles. The logistic map (e.g.[6]) constrained to the interval

[0, 1] exemplifies deterministic periodicity (see Fig. 1.1) provided the growth rate γ

satisfies 3≤γ≤γ∞≈3.5699; and for γ>γ∞ the evolution is chaotic, an exhibition

suggestive of randomness and yet is completely deterministic. Stochastic periodic-

ity has been investigated in dynamical systems prescribed by stochastic differential

equations (e.g. [8]), and there equilibrium states are of two kinds: stationary so-

lutions, which are random variables independent of shifts in time; random periodic

solutions, which consist of an infinite family of curves traversed from one to the

other as time progresses. The latter differs in the deterministic case for which a

periodic solution is a closed curve such that if the system starts at such a curve its

orbit remains on that curve. Thus, stochastic periodicity manifests differently from

the deterministic kind, but there is still a boundedness to the behaviour.
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Figure 1.2.: Schematic for the level-crossing problem. Level crossings occur when
the sample function x(t) = c, c ∈ R, and the time duration between
these points are termed crossing intervals. Up-/down-crossings are
level-crossings with positive/negative slope. An excursion is the seg-
ment of the sample function between two level crossings. Also indi-
cated are two extrema of x(t), a maximum and a minimum point.

1.1 the level-crossing problem

Degrees of randomness, correlation in time, and detection of patterns are repre-

sented in the ‘level-crossing problem’ (LCP), which studies the behaviour of random

processes with respect to returns to a prescribed level, so as to establish the fre-

quency and dependence structure of the time intervals between returns or crossings.

Figure 1.2 illustrates some of the associated attributes that may be extracted from

the sample function x(t) of a random process: the time duration between crossings;

the number of level-crossings and extrema in fixed time windows; the behaviour of

excursions after a crossing. Each of these give rise to random variables that enable

classification of extremal properties of the sample function as a whole. In the case

where the level c = 0 either because the zero-level is of particular interest, or the

prescribed level has been incorporated into the definition of x(t), the research topic

is then the ‘zero-crossing problem’ (ZCP), and this shall be the main phrasing in

subsequent chapters.
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1.2 applications of the level-crossing problem

Historical accounts of the LCP usually start with Rice’s detailed study [9, 10] of

noise arising as a result of random fluctuations in the flow of electrons in physical

devices, and his presentation cemented the utility of the spectral representation of

stochastic processes. Elsewhere in electronic engineering, zero-crossings have been

pivotal in monitoring and decision making processes for various networks. Quality,

continuous mobile communication is maintained by network algorithms that decide

which base station handles incoming and outgoing radio signals, and switching (or

handoff) occurs when the signal from another base station exceeds a critical value

(see [11, 12]). Instability in power systems can be inferred from stability in the asso-

ciated frequencies, as decline/increase from nominal frequency values is indicative

of energy shortage/excess [13, 14].

Applications of the level-crossing problem in mechanical engineering include: find-

ing the steady state distribution of the water level in a dam with a general release

rule [15]; modelling the asymmetric distribution of ocean waves which exhibit both

Gaussian and non-Gaussian characteristics [16]; examining statistics of the hori-

zontal wind flow speed in wind power systems [17]; and intermittency, a natural

environment for level-crossing perspectives, being the irregular shifting of a system

in and out of less active states [18]. The zero-crossing rate (ZCR) has been a ubiq-

uitous measure in textural analysis of image and speech data, [19, 20, 21]. There

the task is to first represent the data as a curve, and then use a numerical algorithm

to extract essential features, detect boundaries, and discard noisy data. Encoded

information can be thought of as data with a correlation structure.

Machine learning is a modern computational tool in which numerical algorithms

and statistical models are used to find and predict patterns in data sets. The two

main categories are ‘supervised learning’ (data presented with labels) and ‘unsuper-

vised learning’ (data presented unlabelled). Zero-crossings enter as a convenient

method to simplify data, and through their summary statistics establish features

of time series data. When this is repeated for other time-domain and frequency-
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domain attributes, a vector of features is obtained, which acting as an identifier

can then be used to establish associations that can only be accessed numerically

[22]. These approaches are particularly useful in analysis of sound data, examples

of which include: distinguishing between speech from a health or unhealthy (due

to some pathology) individual [23]; determination of bat species from echolocation

calls [24]; and earthquake source characterisation prior to seismic events [25].

Whilst the LCP usually involves a correlated random process, the crossing frame-

work readily finds application in diverse fields of theoretical research. In ‘system

point analysis’ a sample path is constructed such that its level-crossings represent

state changes of a particular stochastic process [26]. Classical extreme value theory

usually applies to the extrema of independent and identically distributed random

variables; a comprehensive account of the theorems relating to extremal properties

of random sequences and processes which puts the LCP in the extreme value context

is given in [27]. Another related and major research area relating to stochastic pro-

cesses is that of so called first-passage and escape times—the first and subsequent

times that a process crosses and exists a barrier (see [28]). Closely connected is the

idea of ‘persistence’ [29], which using the schematic in Fig. 1.2 is the probability

that x(t) has a long positive excursion; that is

Pr {x(t) > c | x(s) = c} for t ∈ (s, s + T) , s ∈ R as T → ∞. (1.1)

The idealised framework of characterising a random process by returns to prescribed

levels means developments in level-crossing theory enable further applications, as

seen in possibly the most general contribution to date: the Wave Analysis for

Fatigue and Oceanography numerical package (see [30] and references therein),

which enables simulation of random processes, whether Gaussian or non-Gaussian,

and accepting as inputs either empirical data or appropriate analytical functions.

Also possible is corresponding numerical computation of marginal and joint proba-

bility density functions for intervals between level-crossings, and heights of extrema.
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1.3 case studies

Before outlining the work in this thesis, we shall briefly spotlight certain contem-

porary applications which especially embody the approaches we take in tackling

the zero-crossing problem. A common theme is the launching of real-world data

analysis after exploring a range of computer-generated data. Nomenclature relating

to the analyses is expanded further in subsequent chapters.

1.3.1 Case Study 1: Wave Periods in Combined Sea States

Context [31]: In oceanography, a wave period is the time spent between the peaks

of two ocean waves relative to a prescribed level. The wave period and its density

are important in probabilistic descriptions of sea states. Real sea states can consist

of wind waves and swells, and this dual nature makes difficult a combined statistical

representation of the system. Mixture models are one way to capture the increased

complexity in wave period distributions, and they avoid the unsuitable assumptions

behind traditional theoretical distributions.

Analysis: The data consist of nine combined sea states simulated via a commonly

used two-peaked power spectrum, and field data (collected by buoys) with two

sea states. The analysis was performed on up-crossings of the zero-level, with

the time intervals assigned mixture models that separated wind-sea and wind-swell

dominated sea states.

1.3.2 Case Study 2: Geological Fractures

Context [32]: The spacings within rock formations are collectively labelled fractures,

and their structure affects fluid flow such that the rocks are either a barrier or

a conduit. Fracture modelling is therefore critical for predicting fluid flow, and

extracting fluids (e.g. water, gas and oil), and the first step is characterising existing

fracture data. Scan lines are constructed by identifying points along a line where a
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fracture is present or absent. (Under the ZCP nomenclature fracture locations are

analogous to zero-crossing locations.) The concept of lacunarity is used to classify

fracture randomness and clustering.

Analysis: Lacunarity based classification is applied both to synthetic data with

known fractal features, and geological data on carbonate rocks. Significant breaks

in the log-lacunarity slope match with critical spacings between fracture clusters,

and these corresponded to length scales for both cluster and inter-cluster distance.

1.3.3 Case Study 3: Sleep States

Context [33]: The human electroencephalogram (EEG) enables monitoring of elec-

trical activity in the brain. Taking measurements of potential difference from differ-

ently positioned electrodes, the activity from different areas integrate so intricately

that the EEG may be regarded as a time series. Yet, because neural electrical sig-

nals in their function carry important physiological information, there will also exist

short term structure and regularity. Whilst clinicians are trained to ascribe different

EEG wave forms to brain states, it is convenient and efficient to automate the pro-

cess using mathematical and computational tools. Zero-crossings can be used to

assign frequencies to EEG signals and thereby detect rhythms, and lacunarity can

reveal further details.

Analysis: Lacunarity is used to establish similarities and dissimilarities in the four

phases of sleep that humans alternate through during the night. Comparing the

lacunarity curves to a surrogate pure random process demonstrates that as sleep

deepens, the EEG signals show more irregularity. Characteristic times obtained by

finding the maximum lacunarity curvature are identifiable with each particular sleep

phase.
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1.4 original contributions

There are three essential frameworks through which this thesis adds to current zero-

crossing literature.

1. Classification of stationary Gaussian processes. Analytical investigations

into the ZCP seek to predict crossing behaviour directly from a process’s governing

equation (e.g. autocorrelation, power spectrum, differential/regression equation).

Here we demonstrate that for a stationary Gaussian process, the behaviour can be

divided into three classes which are attributable to three power spectrum forms.

To the author’s knowledge, only two of those classes are found in the literature,

possibly due in part to historical application-driven analysis in the areas of telecom-

munications and oceanography.

2. Mixture models for crossing intervals. As will be evidenced in the literature

review, the complex nature of dependent zero-crossing intervals is reflected in a

long record of analytical results that shed light on non-trivial and surprising aspects

of the ZCP. Here we pair data simulated from an exhaustive list of power spectrum

forms, with the construction of different mixture models informed by established

results. In this way, the usual direction of analysis is in a sense reversed. Fur-

thermore, by setting up an optimisation problem, we align the discussion with the

aforementioned machine learning perspective, in particular, regression which falls

under supervised learning.

3. Lacunarity and crossing dependence. Zero-crossings of non-Markov, sta-

tionary Gaussian processes are dependent, and this long-standing result is further

interrogated using the concept of lacunarity. We are keen to emphasis the geometri-

cal nature of the ZCP—different from fractal processes, and imbued with non-trivial

patterns captured by the lacunarity measure. The role of the tripartite classifica-

tion is again well demonstrated. Another important contribution of this work is

the detailed of critique the gliding-box algorithm used prolifically in numerical la-

cunarity computations, despite previous critiques. The zero-crossings of simulated

one-dimensional processes provide a context to evaluate the algorithm and reliabil-
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ity of the resulting statistic absent from issues relating to orientation and limited

computing resources, each of importance in data of two dimensions and higher.

Supplementary to the frameworks just listed, the work here brings together ideas

from different sub-disciplines of applied statistics: frequency-based analysis; Monte-

Carlo simulation methods; point process theory; parametric inference; numerical

optimisation; stochastic geometry; and, of course, Gaussian processes. It is hoped

that these connections help expand the audience of thesis. Mixture models are not

discussed in the publication related to this work, and the models provide a novel

mechanism that by analogy tracks the effects of strong crossing dependence.

1.5 publications

The paper “Lacunarity of the zero crossings of Gaussian processes” [34] arose out

of the work covered in this thesis. Its main themes are: a critique of box-counting

methods for lacunarity computation of time series; and a study of the various

lacunarity signatures arising from oscillatory autocorrelation in stationary Gaussian

processes. The contributions by the present author included numerical simulations

and related computational aspects. Derivations and evaluation of the main ideas,

together with the write-up, were jointly contributed with the other authors.

1.6 thesis outline

Chapter 2: Literature Review

This chapter begins with a survey of pertinent results of zero-crossing theory, in par-

ticular for Gaussian processes and averages relating to attributes marked in Fig. 1.2.

Next, two established methods for computing the probability density of time inter-

vals between zero-crossings are described: (1) Markov chain and Laplace transform

methods; (2) Slepian-regression models and evaluating conditional expectations.

Following that, the two main analytical tools of the thesis—mixture modelling and
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lacunarity—are summarised and shown to be useful for the ZCP. Finally, descriptions

and elementary properties are given for two non-Gaussian stationary processes that

represent extremes of crossing dependence: (1) a random telegraph-wave in which

zero-crossings form a Poisson process, so that crossing intervals are independent;

(2) a cosine-wave for which the length of all crossing intervals is the half-period

of the cosine, so that crossing intervals are dependent. In later chapters Gaussian

processes will be seen to exhibit similar behaviour depending on the autocorrelation

function.

Chapter 3: Simulations of Oscillatory Correlated Gaussian Processes

As with many treatments in zero-crossing literature, our analysis begins with the au-

tocorrelation. In this chapter, the governing autocorrelation function for the thesis

is presented, its form chosen to explore different types of correlation decay, smooth-

ness, and periodic modulation, the latter controlled by a periodicity parameter a≥0.

The modulation is achieved using the functions cos(aτ) and cos2
(

aτ/
√

2
)
, and

as a increases, three distinct power spectrum profiles are observed, while the mean

crossing interval is unchanged by the choice of cosine function. These enable a sim-

ple classification based on turning points of the power spectrum: (1) when a= 0,

the origin is a maximum point, and power is concentrated around small frequen-

cies; (2) when the cosine modulation is used, the origin becomes a minimum point,

and maxima occur away from the origin; 3) when the cosine-squared modulation

is used, the origin remains a maxima, and there are either two inflection points or

two additional maxima, with minima occurring away from the origin.

Next, the algorithm used to generate realisations of each process is described and

shown to converge such that the error in sample correlations is minimised. Further

proof of the reliability of simulations is provided by comparison of crossing interval

moments to analytical results from the previous chapter. Realisations show that

as periodicity in the autocorrelation increases, sample functions begin to exhibit

wave-like properties due to the increased frequency of zero-crossings and turning
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points. The extent of this emergent regularity is determined by the type of peri-

odic modulation, and less by the type of correlation decay, or smoothness of the

process. All observed features agree with the subdivisions established using the

power-spectrum, and thus we conclude subsequent analyses should be performed

in view of the three classes.

Chapter 4: Finite Mixture Models for the Interval Density

Having validated simulation methods, this chapter considers the first class of sta-

tionary Gaussian processes, represented here by the absence of periodic modula-

tion, and we label them as class 0. The similarity within this categorisation is

further demonstrated using finite mixtures of a generalised exponential distribution

to model the crossing intervals. The models incorporate known asymptotic forms

for very small/large intervals, and parameter estimates are obtained via maximum

likelihood estimation (MLE). Autocorrelations with either exponential or power-law

correlation decay are investigated, most previously encountered in the literature,

and almost all are either a summation of exponential functions, or part of a se-

quence that converges to the squared exponential function. Mixture models are

shown to compare favourably and in some cases better than the Markov chain and

Slepian-regression methods for computing the interval density.

Chapter 5: Compound Mixture Models for the Interval Density

This chapter investigates the effects of periodic modulation on the examples stud-

ied in the chapter 4, particularly the effects on the interval density. For the non-

oscillatory part of the autocorrelation, we concentrate on the squared exponential,

representative of smooth processes, and also Wong’s exponential sum [35], repre-

sentative of sub-fractal processes. Wong’s process is the only case for which the

interval density is known exactly; though the density is composed of elliptic inte-

grals, the previous chapter informs us that a mixture of two exponential distributions
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provides a satisfactory model. The periodic modulation introduces shifts and addi-

tions in the power spectrum, and a careful analysis identifies critical values of the

periodicity parameter beyond which the aforementioned duality of spectrum profiles

exist, distinct from the earlier class 0 case. We label those caused by cos(aτ) as

class 1, and those caused by cos2
(

aτ/
√

2
)
as class 2.

For the crossing intervals resulting from the transformed spectra, a random vari-

able is proposed to model additional crossings caused by increasing the periodic

modulation—this construction influenced by discussions in the penultimate chapter

of [36]. The associated distribution of the new random variable provides a way to

transform the interval density in the class 0 case (where the periodicity parameter a

is zero), to the densities for each of the other two classes (transitioned into beyond

critical values of a). The transformation is achieved using a mixing density, itself

constructed as a finite mixture, and the model parameters are again found using

MLE. In addition to the generalised exponential distribution previously employed,

beta distributions are used to capture new features in the density profile. Asymp-

totic forms are derived for the integral equation that defines the interval density,

p(T). According to the model, the right density-tail for a class 1 process decays

like a beta density, whilst in the class 2 case the decay is like a gamma density.

Chapter 6: Patterns and Other Properties of the Crossing Sequence

Mixture models of the two previous chapters demonstrate that the long run or

asymptotic behaviour of zero-crossing intervals is approximately analogous to sam-

pling from a mixture distribution, with dependence attributable to either a discrete

or a continuous mixing distribution. The crossing sequence itself is dependent in

time, and so this chapter explores behaviour at extreme periodicities (a = 0 and

a=100) as determined by the counting process defined by the zero-crossings.

The lacunarity measure is used to reveal scale dependence in the crossing sequence.

When a=0, lacunarity signatures for the Gaussian processes are similar to that of a

Poisson process. Whilst this is also true when a=100 and the time scales are very
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small/large relative to the mean crossing interval, at intermediary time scales, the

lacunarity clearly separates the three classes of Gaussian process. Turning points

in the log-lacunarity slope demonstrate more clearly the distinction from a Poisson

process, for which the slope is constant. The differences are even more emphatic

when a = 100. In the class 1 case, because the power spectra for the Gaussian

and cos-wave processes are concentrated at the large frequencies∼±a/(2π), their

lacunarity is also similar; however the oscillations in the Gaussian case gradually at-

tenuate towards the Poisson limit. In the class 2 case, lacunarity decays significantly

more slowly, indicative of the greater scale dependence caused by the presence of

both slow and fast time scales, respectively caused by the power spectrum being

concentrated at the origin as well as the larger frequencies∼±a/
(√

2π
)
.

Following on from the lacunarity analysis, time series plots and phase diagrams

of the sequence of crossing intervals are investigated more closely. At large a the

crossing interval pairs encircle a diagonal line that reflect their correlation coeffi-

cient, and the display bears a strong resemblance to a stochastic dynamical system.

The presentation is meant to highlight the geometric aspects of the ZCP, and ex-

pand on why a complete Markov-chain model for the crossings may be possible but

will be particularly difficult.

Chapter 7: Zero-Crossing Analysis in Practice

This chapter first evaluates a common numerical method for calculating lacunar-

ity based on gliding boxes, and identifies its limitations. The standard method of

counting events which uses contiguous boxes is preferable as it allows reliable com-

parison with analytical results for random data sets. Following that discussion, the

lacunarity measure (using contiguous boxes) is used to analyse magnetoencephalog-

raphy signals for the purpose of differentiating the brain states before and after a

button is pressed. After the button press, level-crossings of the mean-level occur

with greater regularity and become positively correlated. Power spectrum estimates

most resemble those belonging to the class 1 category. Consequently, the lacunarity
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curves also contain oscillations similar to those previously observed. Informed by

the analysis in chapter 5, finite mixtures of beta densities are used to model the

interval density. Crossing intervals in the signal after the button press are bimodal,

and the density shape is qualitatively similar to that for the periodically modulated

version of Wong’s process when the periodicity parameter is close to the critical

value. This case study lends support to the utility of dividing stationary processes

into three categories.

Chapter 8: Conclusion

A summary of the preceding chapters is given followed by examples for continuing

research, namely: the behaviour of level- and curve-crossings of Gaussian and non-

Gaussian processes; the connection to correlated Bernoulli trials as represented by

the indicator function for zero-crossings; and stochastic periodicity in a dynamical

system with finite variance.

Appendices

These contain additional details on formulae used throughout the thesis, and code

for numerical simulations.

Appendix Title

A Power Spectra of Class 0 Processes

B Probability Distributions

C Tail Behaviour of the Interval Density

D Higher Order Distributions

E Formulae for Contiguous and Gliding Box Count Methods

F Parameter Values and Additional Statistics: Class 0 Densities

G Parameter Values: Classes 1 and 2 Densities

H MATLAB Code for Simulating a Correlated Random Process

I MATLAB Code for Computing Lacunarity
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J
MATLAB Code for Computing the Interval Density and Crossing

Count Distributions



2
L ITERATURE REV I EW

This chapter presents key results on the zero-crossing statistics of stationary Gaus-

sian processes, and summarises the two main analytical tools of the thesis, namely

mixture modelling and lacunarity. Two non-Gaussian processes are also introduced

as comparators for analysing crossing dependence: a switching process with jumps

that are Poissonian; and a cosine wave that has a uniformly distributed random

phase.

2.1 gaussian processes

Much of the progress concerning the zero-crossing problem (ZCP) has involved

Gaussian processes. These have the property of being fully characterised by their

mean vector and covariance matrix: for example, the probability density of a Gaus-

sian vector-valued process X ∈Rd with mean µ and covariance matrix ΛX is [1]

fX(X) =(2π det[ΛX ])
−d/2 exp

(
−1

2
(X − µ)T Λ−1

X (X − µ)

)
, (2.1)

and when the dimension d=2, the covariance matrix takes the form

ΛX =

 σ2
X ρXσXσY

ρXσXσ2 σ2
Y

 , (2.2)

where X =(X, Y), the respective components have means µX, µY, and variances

σ2
X, σ2

Y, and their correlation is ρX = σ−2
X σ−2

Y Cov[X, Y]. The univariate Gaussian

16
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distribution obtains from (2.1) when d=1, and properties of this case are listed in

App. B.1. The simplicity of its definition gives a Gaussian process a completeness

property that allows for various simplifying assumptions in the derivation of zero-

crossing results, as do the twin concepts of ‘stationarity’ and ‘ergodicity’. A time

dependent stochastic process with sample functions x(t) is strictly stationary if

distributions derived from it are independent of shifts in time; it is weakly stationary

if its mean is constant and its covariance function, Cov[x(t) , x(t + τ)], depends on

the lag time τ alone [37]. The two types of stationarity are equivalent for a Gaussian

process since it depends only on its mean and covariance function. A process is

strictly ergodic if the behaviour of a single sample function within a suitably large

time window is typical of the entire ensemble of possible sample functions observed

at one or more instants in time [38]. This then implies that time averages along a

sample function are equivalent to ensemble averages.

Theorem 2.1

A stationary Gaussian process with power spectrum S(ω) is ergodic if and only if

its spectral distribution function S̄(ω) =
∫ ω
−∞ S(w)dw is continuous everywhere

[37].

Thus, it is enough to speak of the stationary Gaussian process x(t) with mean µ and

variance σ2, and normalised autocorrelation ρ(τ), a real-valued function defined as

ρ(τ) =
(

E[x(0) x(τ)]− µ2
)

/σ2. (2.3)

Its validity depends on four properties: symmetry, ρ(−τ) = ρ(τ); boundedness,

|ρ(τ)| ≤ ρ(0); asymptotic decay, limτ→∞ ρ(τ)→ 0; a positive-definite spectrum

S(ω). The latter function is easily obtained through the following theorem.

Theorem 2.2 (Wiener-Khinchin)

The Fourier transform of the autocorrelation ρ(τ) of a weakly stationary process is

the power spectrum S(ω) [38].
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The k-th derivative of the stationary process x(t) has covariance function [37]

ρx(k)(τ) =(−1)k ρ(2k)(τ) = F
[
(2πω)2k S(ω)

]
, (2.4)

where F[ f (t)]=2
∫ ∞

0 f (t) cos(2πωt)dt is the Fourier transform of an even func-

tion f (t). Consequently, the process’s differentiability can be determined from its

autocorrelation; it is k-times differentiable if
∣∣∣ρ(2k−1)(0)

∣∣∣= 0. The process is la-

belled smooth if all the derivatives of ρ(τ) exist, sub-fractal if ρ(τ) is at least twice

(but not infinitely) differentiable, and fractal otherwise. Equivalently, a process is

smooth if an only if the integral in Eq. (2.4) exists for all k ≥ 0. For sub-fractal

processes, the integral exists for finitely many k.

Henceforth, it will be assumed the process x(t) is continuous, differentiable, and has

mean zero and variance unity; whence its autocorrelation is ρ(τ) = E[x(0) x(τ)].

Reference will also be made to quantities illustrated and labelled in Fig. 1.2.

2.1.1 On the Prevalence of Gaussian Processes

Gaussian processes are employed extensively in machine learning applications [39],

again because of their definitional flexibility. They also arise naturally as a conse-

quence of the ‘central limit theorem’. The classical version of the theorem states

[40]: given a sequence {X1, X2, . . . Xn} of independent and identically distributed

random variables with mean µ and variance σ2, as n→∞, the distribution of the

random variable

Yn =
1
n ∑n

i=1 Xi − µ

σ/
√

µ
(2.5)

tends to the standard normal distribution, which is a Gaussian distribution with

mean 0 and variance 1. Therefore, Gaussian-like behaviour will be observed for

example in the sample mean of any suitably long random experiment, or large

data set. Oceanography furnishes us with a further example relevant to the zero-

crossing problem, one model of ocean water being that of a moving incompressible

fluid of infinite depth and obeying the Euler equations [41]. The limit of a super-
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position of infinitely many elementary sea-waves is a random sea surface that can

be modelled as a stationary Gaussian process W(t, x, y). At each point (x, y) on

the surface, there is then a time wave W(t), from which obtains wave height and

length/duration, and ultimately an analysis of the level-crossings.

2.1.2 Stochastic Memory

To further explicate what we mean by memory in a stochastic process, we provide

the following definitions based on the power spectrum [42]. Firstly, a function F(x)

is slowly varying at infinity if for any γ>0, F(γx)∼F(x) as x→∞. The function

F(x) is slowly varying at the origin if F̃(x) = F
(
x−1) is slowly varying at infinity.

A stationary process x(t) with power spectrum S(ω) is said to exhibit linear (a)

long-range dependence, (b) intermediate dependence, (c) short-range dependence,

or (d) antipersistence, if

S(ω) = F(ω) |ω|−2q , as ω → 0, (2.6)

where F(ω) is a symmetric function that is slowly varying at zero and

(a) q ∈ (0, 1/2) ,

(b) q = 0 and lim
ω→0

F(ω) = ∞,

(c) q = 0 and 0 ≤ F(0) < ∞, or

(d) q ∈ (−1/2, 0) . (2.7)

Out of these four sub-definitions for stochastic memory, the third (short-range de-

pendence) is the primary focus of this thesis. For alternative definitions of stochastic

memory, particularly as extending to nonlinear or higher order dependence, non-

stationary processes, and the prevalence of long-term correlation in time series, see

further [42, 43, 44].



2.2 zero-crossing theory 20

2.2 zero-crossing theory

2.2.1 Crossing Counts

In 1944 Rice [9] produced the seminal result that for a Gaussian process with

autocorrelation ρ(τ), the mean number of zero-crossings in a time window r is

⟨N(r)⟩ = Rr = π−1
√
−ρ′′(0)r, (2.8)

and µT =R−1 is the mean length of crossing intervals T. Rice further showed that

the average number of maxima NM(r) accrues similarly as

⟨NM(r)⟩ = RMr =(2π)−1
√
−ρ(4)(0) /ρ′′(0)r, (2.9)

and excursions above a large level behave according to a Rayleigh distribution (a

type of Weibull distribution with shape parameter 2, see App. B.5). Generalizing

Rice’s work and with greater rigour was the tenor of results that followed; conditions

were weakened for ⟨Nc(r)⟩, the mean number of crossings of level c ∈ R by x(t)

[9, 27]:

⟨Nc(r)⟩ = π−1
√
−ρ′′(0)re−c2/2 = Rre−c2/2. (2.10)

Leadbetter [45] computed corresponding quantities for crossings of arbitrary curves,

i.e. zero-crossings of x(t)−u(t), for some continuous function u(t). The next

major contribution, by Steinberg et al. [46], found the variance of zero-crossings in

time r, which unlike (2.8)–(2.10) depends on the global properties of the autocor-

relation ρ(τ):

Var[N(r)] = Rr + 2R
∫ r

0
(r − T)

(
U(T)− R

)
dT, (2.11)
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where

U(T) =
1

π2R(1 − ρ2(T))3/2

(∣∣∣A2 − B2
∣∣∣1/2

+ B arctan

(
B

|A2 − B2|1/2

))
,

A = −ρ′′(0)
(

1 − ρ2(T)
)
− ρ′2(T) ,

B = ρ′′(T)
(

1 − ρ2(T)
)
+ ρ(T) ρ′2(T) , (2.12)

and U(T)dT is the conditional probability of a zero occurring in the interval

(t+T, t+T+dT), given a crossing at time t [10]. Equations (2.8)–(2.11) were

arrived at through construction of integrals involving x(t) and its derivative(s),

which are then evaluated by substitution of the multivariate Gaussian distribution

(2.1).

The ‘Fano factor’ for a counting process N(r), defined as

F(r) = Var[N(r)] /⟨N(r)⟩ , (2.13)

is a statistic used to compare fluctuations in the counts relative to a Poisson process,

for which the variance and mean are equal, whereupon F(r)= 1. Smith [47] used

simulation studies to show that for Gaussian processes, the zero-crossings at large

time windows can be either sub-Poissonian (F(r)<1, crossings are anti-bunched) or

super-Poissonian (F(r)>1, crossings are bunched). This depended on the smooth-

ness of the process, and consequently there is memory in the crossing sequence.

These results were echoed in [5], where variation of periodicity in the autocorrela-

tion initiated a transition from slight anti-bunching of crossings to asymptotically

deterministic characteristics demonstrated by oscillations in the Fano factor.

2.2.2 Crossing Intervals

The behaviour of the crossing intervals is even more complex and less amenable

to exact derivation even when using properties of the Gaussian distribution. Thus,
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a different approach was required, most prominently, McFadden’s work on Markov

chain models for the intervals [48]. The clipped process ξ(t),

ξ(t) =

1, x(t) ≥ 0,

−1, x(t) < 0,
(2.14)

identifies the sign changes in x(t). The product ξ(t) ξ(t + τ) is even if and only if

an even number of zero-crossings occurs in time τ, so the autocorrelation of ξ(t)is

given by

R(τ) =
∞

∑
m=0

(−1)m PN(N(τ) = m). (2.15)

This is related back to the autocorrelation of a stationary Gaussian process in the

Van Vleck arcsine law [49]:

R(τ) =(2/π) arcsin(ρ(τ)). (2.16)

McFadden [48] derived the following identities relating the count distribution

PN(N(τ)=m), and the density for intervals formed by m+2 zero-crossings, pm(T):

P′′
N(N(τ) = m) = R (pm(τ)− 2H1(m − 1) pm−1(τ) + H1(m − 2) pm−2(τ)) ,

(2.17)

where the function H1(m) is one if m≥0, and zero otherwise. Note: p0(T)= p(T),

the density for successive intervals. Substituting (2.17) into the second derivative

of (2.15) leads to (
4R
)−1 R′′(T) =

∞

∑
m=0

(−1)m pm(T). (2.18)

A second infinite sum follows from the definition of U(T) as the conditional density

of observing additional intervals of length T:

U(T) =
∞

∑
m=0

pm(T). (2.19)
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If successive crossing intervals are assumed independent, the convolution method for

random variable sums enables computation of pm(T) through Laplace transforms:

p̄m(s) = p̄m+1
0 (s) , (2.20)

where p̄m(s) =L[pm(T)] =
∫ ∞

0 pm(T) e−sTdT denotes the Laplace transform of

pm(T). Two further transforms can be made; from (2.18)&(2.19),

h(s) = L
[(

4R
)−1 R′′(T)

]
, u(s) = L[U(τ)] , (2.21)

and substituting these into the model (2.20) yields two equations for p̄0(s):

p̄0(s) = h(s) /(1 − h(s)) , (2.22)

p̄0(s) = u(s) /(1 + u(s)) , (2.23)

the which are identical if the independence assumption holds. Being the generating

function of p(T), p̄0(s) may be expanded as a sum of interval moments:

p̄0(s) = 1 −⟨T⟩ s +
〈

T2
〉

s2 + O
(

s3
)

. (2.24)

As T→∞, R′′(T)→0 and U(T)→R [10], and so h(s) and v(s)=L
[
U(τ)− R

]
both admit Taylor expansions about s = 0. The three expansions are then substi-

tuted into (2.22)&(2.23); each equation after matching coefficients of s2 respec-

tively produce two expressions for the interval variance:

σ2
1 = 4

(
πR
)−1

∞∫
0

arcsin(ρ(τ))dτ,

σ2
2 = R−2

1 + 2
∞∫

0

(
U(τ)− R

)
dτ

 ; (2.25)

matching coefficients of s returns Rice’s result for the mean interval, i.e. µT =R−1.

The pair of equations in (2.25) will not be equal if the intervals are dependent, but

in many examples [5, 34, 50] the geometric mean of σ2
1 and σ2

2 is a sufficiently
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accurate estimate of the true interval variance, σ2
T.

The Markov chain model (2.20) implies the correlation coefficient between the m-th

and m+ j-th intervals,

κm,m+j =

〈
TmTm+j

〉
−⟨Tm⟩2

⟨T2
m⟩ −⟨Tm⟩2 =

〈
TmTm+j

〉
− µ2

T

σ2
T

, (2.26)

factorises as κm,m+j = κ
j
m,m+1 ≡ κ

j
1. Specific cases of j and refinements to Mc-

Fadden’s models were tested in [5, 50] using simulations of Gaussian processes

with parametrised autocorrelation or power spectra. Increases of the controlling

parameter result in the peak frequencies moving away from the origin, a decrease

in interval variance, and the correlation coefficients κm,m+j initially oscillate with

j, before monotonically increasing towards 1. Power spectra that are narrow and

concentrated at frequencies away from the origin are variously referred to as narrow-

band [46, 48, 49, 50]. The Markov Chain models produce relatively accurate esti-

mates of the interval variance, and also for the first correlation coefficient κ1 when

the power spectrum is concentrated around the origin. For higher order correlation

coefficients, the signs do not always agree with that of simulations, implying that

the Markov chain model breaks down. As the intervals become more correlated

(κ1→1), the gap between predicted and simulated values of κm,m+j widens.

2.2.3 The Interval Density

Devising a method that exactly determines p(T), the probability density function

(pdf) of zero-crossing intervals, has been the critical aspect of the ZCP since its

inception by Rice. Referring to Rice’s conditional density (2.12), McFadden [51]

commented that U(T) approximates p(T) when T is small, and for a narrow-

band spectrum the “range of agreement includes most of the practical range of

axis-crossing intervals” since most of these are near µT. However, as T → ∞,

U(T)→R and is therefore not a valid density function. Refinements that use more

complicated Rice series have been used to obtain limiting forms of p(T) [52].
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Asymptotic results for p(T) given the autocorrelation of a smooth or sub-fractal

process have been derived [53, 54] based on the joint distribution of observing

two crossings in an infinitesimally small interval, and bounds found by making

comparison to related processes with known results; and the asymptotics depend

on the autocorrelation. In particular, for the left-tail,

ρ′′′(0) = 0 ⇒ p(T) ∼ O(T) as T → 0,

ρ′′′(0) ̸= 0 ⇒ p(T) ∼ O(1) as T → 0; (2.27)

and for the right tail, if |ρ(τ)|< ατ−d for some α> 0, d> 1, and all τ > 0, then

as T→∞,

1 − P(T) =
∫ ∞

T
p(t) dt ∼ e−ΘT. (2.28)

This particular result when ρ(τ) is oscillatory was interrogated in [5], and the

persistence exponent Θ for a periodic autocorrelation was shown to approach infinity

as the periodicity parameter increases. Therefore, we proceed with the following

definition from [55] for a stationary Gaussian process: there exists a nonnegative,

possibly infinite, limit

Θ = − lim
T→∞

1
T

log

(
Pr

{
sup

t∈[0,T]
x(t) < 0

})
; (2.29)

and this is finite for nonnegative autocorrelations [56]. (Note: sup denotes the

‘supremum’, or least upper bound.) Analytical methods for obtaining p(T) are

examined in [48, 52, 57], and we now describe the two most capable in the sense of

providing an estimate over a large range of interval sizes, and being easy to adopt

with the aid of well-established numerical routines.
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2.2.3.1 Laplace transform method

An approximation of the interval density may be obtained by Laplace inversion of

the Markov chain model outlined above. From (2.21), and applying integration by

parts,

h(s) =
1

4R

∫ ∞

0
R′′(T) e−sTdT

=
1

4R

(
−R′(0+) + s

∫ ∞

0
R′(T) e−sTdT

)
=

1
2
+

s
2πR

∫ ∞

0

ρ′(T) e−sT√
1 − ρ2(T)

dT, (2.30)

the last line following from the arcsine law (2.16) and the result limτ→0+ R′(τ)=

−2R [51]. Substituting this into (2.22) then allows computation of the interval

density as

p(T) = L−1[h(s) /(1 − h(s))] . (2.31)

Depending on the autocorrelation ρ(τ) of the process, (2.31) can be inverted; nu-

merical Laplace inversion is possible using for example the Talbot method [58].

The denominator in (2.31) means L[p(T)] has at least one pole. In the simplest

case, this occurs once on the negative s-axis and prescribes the persistence exponent

Θ (2.29), which can then be found by solving h(−Θ) = 1. Wilson [5] performed

a systematic study of the poles in (2.31) and revealed that for a periodic auto-

correlation there are multiple poles, which in turn make the inversion particularly

difficult to set-up and then evaluate. For small values of the periodicity parameter

associated with the process, the first two poles are sufficient in predicting the per-

sistence exponent. However, the estimate worsens as the frequency of oscillations

in ρ(τ) increases, even with refinements to (2.20) in the form of correlated Markov

chain models [5, 48]. Those refinements do produce improvements to the interval

variance, but less so for the correlation coefficient, demonstrating that the Laplace

transform method is correct up to O
(
s2).
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2.2.3.2 Slepian regression method

Unlike the previous method, here the distribution of zero-crossing intervals of x(t) is

obtained by conditioning on the process directly in a manner similar to derivations of

crossing count moments [9, 46]. The following description is adopted from Sec. 8.4

of [37].

Suppose an up-crossing of the level c ∈ R by x(t) occurs at time t = t0, i.e.

x(t0) = c, x′(t0)> 0. Define ξc(t) as the excursion from t0 to t0 + T, at which

a down-crossing of c occurs. Without loss of generality, set t0 = 0. The length in

time of the excursion, T, has probability density function

p(T) = fξc(t)(c)E
[
I{ξc(s)>c, s∈(0,T)} ·

(
−ξ ′c(T)

− | ξc(T) = c
)]

, (2.32)

where fξc(t)(ξc) is the density of ξc(t), IA is the indicator function of the event A,

and ξ ′c(t)
− =min{0, ξ ′c(t)} is the negative part of the derivative. The excursion

is constructed as a Slepian model, which for a Gaussian process with normalised

autocorrelation ρ(τ) is

ξc(t) = cρ(t) + ζρ′(t) /ρ′′(0) + κ(t) , (2.33)

where ζ ≥ 0 has Rayleigh density (z/ |ρ′′(0)|) exp
(
−z2/(2 |ρ′′(0)|)

)
, and κ(t) is

a nonstationary, zero-mean Gaussian residual process, independent of ζ, and with

covariance function

ρκ(τ1, τ2) = ρ(τ2 − τ1)− ρ(τ1) ρ(τ2) + ρ′(τ1) ρ′(τ2) /ρ′′(0) . (2.34)

To obtain the interval density, the infinite-dimensional conditional expectation in

(2.32) is approximated by discretisation of the interval [0, T] and performing the

ensuing numerical integration, which is now possible with high accuracy for nor-

mal distributions. If necessary, the regression approximation (2.33) is improved

by including values of κ(s) at additional points s ∈ (0, T). The WAFO toolbox

[30] implements the solution method for finding the distribution of level-crossings
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and related quantities; only the power spectrum (or autocorrelation) of the origi-

nal process is required, which can be supplied analytically or estimated numerically,

making the procedure even more useful when analysing real world data. In [52]

the method is described as exact, and examples of output level-crossing interval

densities compared with their simulated counterparts are provided therein for differ-

entiable Gaussian processes.

When the underlying assumptions of the Slepian regression method are revisited,

the interpretative reliability appears less certain. The result (2.32) is an application

of the more general formula by Durbin [37]:

Theorem 2.3

Let {y(t) , 0≤ t<∞} be a continuous process and define T= inft>0{y(t)>0}<

∞. If the conditional distribution of y(s), 0≤ s≤ t, given y(0), is non-degenerate,

then T has density function

fT(t) = fy(t)(0)E
[
I{y(s)<0, s∈(0, t)} · max

{
0, y′(t)

}
| y(t) = 0

]
.

(Note: inf denotes the ‘infimum’, or greatest lower bound.). Proving this theorem

rests on the following connection between distributions of level-crossing intervals

and the differentiable process y(t): if, with probability one, y(s) has no tangent of

the level c ∈ R, then

Pr{T ≥ t} = Pr{y(s) , ∀s ∈ (0, t)} .

From (2.27), this does not hold for sub-fractal processes; indeed, there may be no

excursion since with probability greater than zero, crossings occur in time windows

of arbitrary small extent—granted, these tangents are finite in any window of time

by Rice’s result (2.8). Furthermore, since the correlation between x(t) and x(t + T)

goes to zero as T→∞, the Slepian model becomes less appropriate. Crossings of

other levels also become more likely because the average number of turning points

increases with time (2.9). Thus, estimation of the tail behaviour will be particularly

affected unless σ2
T is small. In spite of these points, the Slepian regression approach
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is “more general, more accurate and relatively unknown”[57], compared to alter-

natives like the Laplace transform method, and simulation/optimisation studies,

including for certain sub-fractal processes. In principle, tuning the input parameters

for the WAFO toolbox should allow for the more complex cases.

2.3 mixture distributions

2.3.1 Finite Mixtures

In the analysis of statistical data from an unknown distribution one approach is to

combine different known distributions and fit the resulting distribution to the data.

Given sample data T ={Tm, m=1, . . . , nT}, a ‘finite mixture’ model proposes that

the associated probability density function may be expressed as

p(T) =
K

∑
k=1

αkgk(T; θk) , (2.35)

where K < ∞, the mixing weights αk satisfy 0< αk < 1, with αK = 1 − ∑K−1
k=1 αk,

and θk is a vector of parameters for the k-th component density function gk(T; θk).

The component densities need not all be from the same distribution family, and the

random variable under consideration may be either continuous or discrete (in which

case p(T) is a probability mass function).

A finite mixture model like (2.35) implicitly segments the data into K groupings,

each group modelled by one of the component densities. In the analysis of failure

time data, these groups may correspond to different but known causes of failure;

whilst in cluster analysis the objective is to obtain optimal groupings as judged by a

sequential procedure [59]. A comprehensive list of applications of finite mixtures is

provided in Tab. 2.1.3 of [60], covering disciplines such as agriculture, economics,

medicine, geology and engineering. In the literature, mixtures commonly use mem-
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bers of the exponential family of distributions (EXPF) which have density functions

of the form [61]

exp(a(T) · θ− b(θ)− c(T)), (2.36)

where θ is a vector of parameters, a(T) and c(T) are respectively vector and scalar

functions of the independent variable, b(θ) is a scalar function of the parameters,

and ‘·’ is the dot product operator. Examples from the exponential distribution

family when the random variable T is continuous include the normal, exponen-

tial, gamma and Weibull distributions, and the latter three—being defined only for

nonnegative values of the independent variable—are relevant when modelling data

based on time records. Basic properties of these three special cases of (2.36) can

be found in App. B.3–B.5.

2.3.2 Compound Mixtures

As an extension to (2.35), if the component densities are from the same distribution

family, and all but one of the parameters are fixed (i.e. θk 7→(θ, ηk), gk(T; θk) 7→

g(T; θ, ηk)) the weights αk may be read as probabilities at a finite number of

points ηk from an infinite set D⊆R, i.e. αk ≡ fk(ηk). In the limit where positive

probabilities are assigned to all values η∈D, the mixed pdf becomes

p(T) =
∫
D

g(T; θ, η) f (η)dη; (2.37)

f (η) is the ‘mixing density’ and g(T; θ, η) operates as a ‘kernel function’. Models

of the form (2.37) are ‘compound mixtures’, also referred to in the literature as

continuous or general mixtures [62]. The random variable T can be interpreted as

exhibiting behaviour due to some unobserved ‘latency variable’, η. Other generali-

sations from standard distributions are possible (see [63]); likewise, the compound

mixture form can be specified directly as in ‘Bayesian inference’ [60]. We note that

the density (2.32) is also defined as an integral equation.

A counting process{N(t) , t ≥ 0} represents the total number of events that have
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occurred by time t for an associated stochastic process. Renewal theory studies

counting processes where the times between successive events are ‘independent

and identically distributed’, the canonical example being a Poisson process where

the inter-event times, T, have an exponential distribution with mean ⟨T⟩=R, and

the event counts follow a Poisson distribution [64]:

PN(N(t) = n) = e−Rt(Rt
)n /n!, n = 0, 1, 2, . . . (2.38)

The count distribution has also been derived for cases where the inter-event times

have Erlang [65], Weibull [66] or hyperexponential [67] distributions. Models in

renewal theory can be improved using ‘randomisation’; given a count distribution,

a compound mixture is constructed by randomising (i.e. assigning a distribution

to) a variable or parameter. One example is a group of independent sources of

Poissonian renewals, each with different renewal rates; the rate R in (2.38) appears

as a random variable η with a density f (η) [64], and the distribution of counts in

a fixed time t becomes

PN(N(t) = n) =
∫ ∞

0
e−ηt(ηt)n

n!
f (η)dη, n = 0, 1, 2, . . . . (2.39)

The zero-crossing problem is concerned with crossing events that are correlated in

time; when the random process is non-Markov and stationary, the times between

successive crossings are ‘dependent and identically distributed’. This thesis seeks

to align the study of zero-crossings to that of renewal processes by using similar

analytical tools, particularly mixture modelling.

Further extensions of the mixture paradigm (e.g. mixtures using survival functions

and regression models, incorporating dependence using latency and hidden Markov

models) can be found in [59]; the forms outlined above prove sufficient for our

purposes. Mixture modelling of zero-crossings is represented in the literature. In

case study 1 (Sec. 1.3.1), the authors use finite mixtures of 2–4 Weibull and log-

normal distributions to model zero-level up-crossings. The same authors develop a

(bivariate) mixture copula model [68], which uses a Gaussian ‘copula function’ to



2.4 parameter estimation 32

combine the marginal distributions of wave height and zero-up-crossing period. In

[69], a coupled hidden Markov model based on zero-crossings of vibration signals

is devised as a method for estimating bearing performance degradation.

2.4 parameter estimation

To fit the finite mixture model (2.35), a form for the component densities gk(T; θk)

is chosen, usually from the same distribution family. To fit the compound mixture

model (2.37), a kernel function g(T; θ, η) must be specified, as well as a mixing

density f (η), the latter of which may be selected from a known distribution family

as a single or mixed density function, thereby contributing additional parameters.

Let α now represent the full set of unknown parameters in a finite or compound

mixture model p(T; α); the task of fitting the distribution then reduces to obtaining

parameter estimates α̂. A primary concern is ‘identifiability’, and for a finite mixture,

this means a unique characterisation of p(T; α) exists, subject to relabelling of

indices. Various authors have stated that for continuous distributions involving

finite mixtures, problems with identifiability seldom arise [59, 60, 70]. There is

also a general rule that any probability density function can be approximated by

a finite mixture model to an arbitrary degree of accuracy—allowing for negative

mixing weights—and this was recently explored more concretely in [71]. Here we

are equally interested in modelling distributions and interpreting models; thus, the

number of finite mixture components should be minimised. Additional components

can be added to account for multimodality and when the data suggests a heavier tail

[63]. Most widely used as solution methods for parameter estimation are ‘method

of moments’ (MOM) and ‘maximum likelihood estimation’ (MLE).
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2.4.1 Method of Moments

In MOM, analytical moments as computed from the mixture model are equated to

the corresponding sample moments of the data T. For example: the raw moments

mr(α) and the central moments µr(α) are respectively calculated as

mr(α) =
∫

R
Tr p(T; α)dT, µr(α) =

∫
R
(T − m1(α))

r p(T; α)dT, (2.40)

and by the binomial theorem ([72], Eq. 1.37b) for r ∈ N, the central and raw

moments relate through

µr(α) =
r

∑
k=0

(
r
k

)
(−1)r−k mk(α)(m1(α))

r−k; (2.41)

likewise for the corresponding sample moments µ̂r and m̂r. (When working with

sample data, the mean m̂1 and central moments µ̂r, r≥2, are usually relied upon.)

A system of equations for the parameters then arises:

mr(α) = m̂r, for r = 1, . . . , |α| , (2.42)

where m̂r denotes the corresponding r-th sample moment, and |α| is the total

number of parameters. At least one solution exists when the number of equations

matches the total number of parameters. For the finite mixture model composed

of K exponential distributions, (2.42) is a system of polynomial equations of degree

at most 2K. This can be simplified further by eliminating some of the variables,

and when K≤3 the system can be solved analytically. In cases where the left-hand

side of (2.42) cannot be inverted due to the presence of non-linear functions and/or

irreducible integrals, a solution may be sought using numerical methods.
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2.4.2 Maximum Likelihood Estimation

The simplest version of MLE begins by assuming the sample data T are independent

observations from the proposed mixture density p(T; α), and treating their joint

probability density as a function of the parameters α. This produces the ‘likelihood

function’, a measurement of the relative likelihood that parameters α give rise to

the sample data. Taking the logarithm leads to the ‘log-likelihood function’

l(T ; α) = log

(
nT

∏
m=1

p(Tm; α)

)
=

nT

∑
m=1

log(p(Tm; α)). (2.43)

The goal is to then find the particular α̂ that maximises l(T ; α), which then means

the sample data is most likely to have come from p(T; α) with α= α̂ compared to

any other α. The logarithm is a monotone function meaning the location of turning

points are the same for both the likelihood and log-likelihood functions, and the

latter is easier to work with.

The traditional method of maximizing multivariate functions—i.e. solving first-

order partial differential equations for the α, and using the second-order derivatives

to verify the maxima—is not as easily performed due to the form of (2.43). There-

fore, parameter estimates are typically arrived at through numerical minimisation

of the negated log-likelihood function, and this thesis relies on the ‘Nelder-Mead

algorithm’ [73]. As a direct-search method, it does not require computation of

the objective function’s gradient. Rather, the domain is explored at each iteration

using a ‘simplex’ with vertices formed of the working guestimates based on vari-

ous function evaluations. This leads to reflection/expansion/contraction/shrinkage

transformations of the simplex, and in the ideal situation the simplex contracts

iteratively to the unique minimiser. Behaviour of the algorithm when the objective

function depends on more than two variables is relatively unknown [74], analytically

speaking; the method yet enjoys a pragmatism repeatedly reinforced in practical

problems, a key advantage over other methods being it requires in most cases only

two function evaluations at each iteration. We note that in probabilistic modelling
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the so-called ‘Expectation-Maximisation’ or ‘EM algorithm’ is the preferred strategy

of statisticians [31, 59, 60] as it does have better convergence properties than solely

performing numerical optimisation of the log-likelihood function, and accounts for

the data being incomplete (since the mixture grouping for each of the sample data

is unknown). However, the setup is more intricate, convergence can be slow, and,

crucially, we did not require that approach here.

2.4.3 Comparison of MOM and MLE

Both MOM and MLE become asymptotically consistent as the sample size nT goes

to infinity. The MOM has the advantage of being easy to setup and the approx-

imate solutions to the equations can usually be found. However, if the original

mixture model is not appropriate, the MOM can produce inadmissible parameters.

Furthermore, equations for unbiased sample moments exist for only the first four

central moments [75]. Thus, we make use of it mainly for obtaining initial param-

eter estimates. The MLE method is a better choice for parameter estimation as

it uses the target distribution directly, has the smallest asymptotic variance, and

not all the models we propose are mixtures of exponential distributions. Initiating

numerical procedures from different starting values can lead to multiple admissi-

ble solutions. When this occurs, other properties can be used to decide the most

suitable solution: higher-order moments; distance measures that compare empirical

and model-predicted cumulative density functions; known properties of the data,

which for us includes existing zero-crossing theory; location of turning points in

histograms of the data; and others discussed in [59, 60].

An independence assumption led to the log-likelihood function (2.43), and inde-

pendence of zero-crossing intervals has been critiqued and indeed demonstrated

to not strictly be true [5, 57]. However, as in the case of computing the interval

variance [51], a qualified independence can produce satisfactory results. Implicit to

any mixture model is the dependence encapsulated in the mixing density; and it
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will be shown in chapters 4 and 5 to be sufficient for obtaining the parameters of

both finite and compound mixture models.

2.5 lacunarity

2.5.1 Origins

Definitions of lacunarity include: “a multiscaled method for describing patterns of

spatial dispersion ”[76]; it “quantifies the degree of translational invariance of the

analyzed objects” [77]. The concept was introduced by Mandelbrot [78] as a com-

plementary tool for analysing objects that exhibit ‘fractal’ behaviours, and more

generally, it created a new dialogue for describing deterministic and stochastic ge-

ometries. Fractal objects possess distinct features that are similar at different scales.

Deterministic fractals can be generated iteratively, and often lead to geometrically

complex structures. Random fractals have been used to describe a variety of objects

in nature [78]—from ferns and snowflakes, to coastlines and galaxy clusters; and

they have also found application in stochastic modelling of financial markets [44]

and turbulence in fluids [18].

A stochastic process is a random fractal if it has the same statistics at different

scales. From these descriptions arise the concept of self-similarity or self-affinity;

only mathematically constructed fractals are infinitely self-similar. The power spec-

tra of a random stationary fractal signal x(t) is proportional to 1/ωq, q> 0 [79],

and as in Sec. 2.1.2, such processes have long term memory. A fractal Gaussian

process requires a different level-crossing analysis to the approach taking in this

thesis. The associated autocorrelation of such processes are not twice differentiable

at the origin, equation Eq. (2.8) implying the average number of crossings in any

time window is infinite; however, the crossing count distribution (and therefore also

the lacunarity measure) can in fact be related directly to the autocorrelation [80].

In this sense, crossings of differentiable stationary Gaussian processes exhibit a dif-

ferent kind of complexity.



2.5 lacunarity 37

The ‘box dimension’ of a fractal process is log(N)/ log(r) where N is the number

of nonempty boxes relative to a scale size r. The lacunarity measure provided a way

to distinguish between fractal objects with the same box dimension, but differing

degrees of translational invariance. Lacunarity was then later advocated by Plotnick

et al. [76] for any data set in one, two or three dimensions, including imaging data.

Properties such as correlated randomness, deterministic regularity, and clustering

relate to variability with respect to scale, and each have distinct lacunarity signa-

tures as outlined in case studies 2 and 3, Sec. 1.3. Derivatives of the lacunarity

measure can be used to detect scale dependent changes. A process that is the

same at all scales has a lacunarity slope that does not change significantly, and

it is possible to identify a decay exponent for the lacunarity by taking logarithms.

(This relates back to the box dimension under the concept of a Hurst exponent

[79, 80], also used when analysing fractal processes.) A periodic process has an

oscillating lacunarity slope. These two behaviours can be used to evaluate periodic

and aperiodic dependence as measured by lacunarity, in particular whether they are

preserved at different length scales.

2.5.2 Computation

The computation of lacunarity involves boxes b(r) of size r based on a discretisation

spanning the data set, and the b(r) can be closed intervals, squares or cubes,

depending on the data’s dimension. Within each box the occurrence of a particular

feature is counted as the box moves through the data; these counts N(r) are then

averaged to produce the lacunarity measure:

Λ(r) =
〈
N2(r)

〉
/⟨N(r)⟩2 = 1 + Var[N(r)] /⟨N(r)⟩2 . (2.44)

The standard ‘contiguous-box’ method uses non-overlapping boxes, and is the form

traditionally used when describing counting processes (e.g. [3]). Discussions of

lacunarity often involve the ‘gliding-box’ method [76, 81] which involves sliding

the boxes through the data one discretisation length at a time, resulting in more
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contributions to the lacunarity statistic. The calculation becomes computationally

costly when the discretisation of the data is large, and therefore also the total

number of possible box sizes. This necessitates methods that still produce accurate

estimates but more efficiently, ostensibly by limiting the number of times the data

is scanned for the box counting—refer to App. E, and to [82] for higher dimensions.

2.5.3 Lacunarity of Stationary Gaussian Processes

In [34], lacunarity of the zero-crossings of one-dimensional Gaussian processes with

periodic autocorrelation demonstrates the scale-dependent nature of crossings and

the strength of dependence in the crossing sequence. The dependence is particu-

larly complex in that at very small/large scales compared with the mean length of

crossing intervals, the behaviours resemble a Poisson process, whilst at intermedi-

ate time scales there are significant departures that are determined by the process’s

smoothness. Additionally, when the periodic correlation is strong, oscillations in the

lacunarity and its slope demonstrate the similarity at those intermediate time scales

to deterministic signals. The oscillations eventually decay as the box size increases.

2.6 roots of a stochastic time series

The zero-crossing problem can be seen as a subset-cum-reformulation of the general

task of solving the equation f (x)=0. If f (x) is a polynomial, the algebraic theorem

states that every polynomial of degree n with real or complex coefficients has n

real or complex roots [40]; that is,

f (x) = xn + an−1xn−1 + . . . a0 = A(x − x1) · · ·(x − xn) = 0, (2.45)

where aj are the coefficients, xj are the roots, and A∈R is a scaling factor. For

non-trivial cases where n > 5, or when f (x) is non-invertible, general algebraic

solutions are not possible, though there is a diverse range of numerical methods

(e.g. [83]) for obtaining approximate solutions.
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Fourier analysis involves the decomposition of an input function as a linear combi-

nation of sine and cosine functions, and in so doing identifying the periodicity (i.e.

returns to zero) of a function. Specifically, a function f (x) with period 2T has the

‘Fourier series‘ expansion [79]

f (x) =
α0

2
+

∞

∑
m=1

αm cos(πmx/T) +
∞

∑
m=1

βm sin(πmx/T), (2.46)

the coefficients αm, βm computed as

αm =
1
T

T∫
−T

f (x) cos(πmx/T)dx, βm =
1
T

T∫
−T

f (x) sin(πmx/T)dx.

(2.47)

Fourier series have always featured prominently in signal processing [9, 79].

Now let f (x) = x (i.e. the identity function), and suppose x(t) ∈ R, t ≥ 0,

represents a continuous random variable. By definition, there are infinitely many

zeros, and strictly speaking Pr{x(t)=0}=0. It is then needful to speak in terms

of the probability of a zero-crossing occurring in a time window [t + T, t + T + dt],

as described above. A further extension is the ‘auto-regressive process’ AR(p), a

simple version of which is [39]

x(t) =
p

∑
i=1

cix(t − i) + ϵ(t) + c0, (2.48)

for constants ci ∈ R, and uncorrelated Gaussian noise ϵ(t). Such processes are

‘discrete-time signals’ and ‘Markovian’. They are used widely in time series analysis;

indeed, it could be argued that time series analysis is concerned with ascribing

models to the fluctuations (i.e. crossings) in random signals.

Given a real signal x(t), the corresponding ‘analytical signal’ is [79]

xa(t)= x(t) + ixq(t) ≡ A(t) exp(iφ(t)), (2.49)
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where A(t) and φ(t) are respectively the amplitude and phase modulations, and

xq(t), also termed the quadrature, is the Hilbert transform, computed as

xq(t) = Ĥ[x(t)] =
1
π

p.v.
∫ ∞

−∞

x(τ)
t − τ

dτ, (2.50)

where p.v. stands for principal value. The analytic signal xa(t) is completely speci-

fied by its real and complex zero-crossings, the which are encoded in the amplitude

and phase modulations. Real zeros are those instances of time where A(t) van-

ishes, while complex zeros co-occur with more subtle changes in which A(t) does

not change sign. A real zero converted (RZC) signal can be constructed by adding

a sine wave Ω sin(ω0t) of known frequency ω0 greater than the highest frequency

in the data. Changing the amplitude Ω affects the number of complex zeros that

are converted into real zeros. Information in the original signal can be assessed

through the perturbations of the regular sine wave, particularly displacement of the

real zeros. When applied to an image, this can highlight features such as strong

scattering.

Knowledge of the full set of zeros additionally provides an alternative way of rep-

resenting signals [84], similar to Eq. (2.45). Encoding of information in interspike

intervals of neural spike trains has been regarded as a mechanism for the auditory

system. Given a particular type of narrow band power spectrum (i.e. power concen-

trated at large frequencies), and certain refinements, reconstruction of a signal from

level-crossings is possible [84]. This further highlights the importance of research

on the level-crossing problem.

2.7 reference processes

In the analysis to follow, two stationary, ergodic, non-Gaussian processes will be

useful references in terms of dependence in a zero-crossing sequence. They have

previously featured in the literature alongside results for Gaussian processes [9, 48],

ideal because they possess relevant and easy to derive properties.
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2.7.1 Random Telegraph-Wave (TW)

Consider the process xTW(t) that jumps between values +1 and −1 such that

the number of jumps occurring in a time interval of length |τ| follow a Poisson

distribution (2.38) with rate R [38]. By analogy, the zero-crossings of this process

are the instantaneous jumps. In computing the autocorrelation we need only con-

sider pairs of time points t1, t2. Without loss of generality, suppose xTW(t1) = 1.

This then equals xTW(t2) if and only if there is an even number of jumps in time

|τ|= |t2 − t1|; else xTW(t2)=−1. It follows that the autocorrelation of the process

is

ρTW(τ) = ⟨xTW(t1) xTW(t2)⟩

= 1 · Pr{xTW(t1) = xTW(t2)} + (−1) · Pr{xTW(t1) ̸= xTW(t2)}

= ∑
m even

(
R |τ|

)m

m!
e−R|τ| − ∑

m odd

(
R |τ|

)m

m!
e−R|τ|

= e−R|τ|
∞

∑
m=0

(
−R |τ|

)m

m!
= e−2R|τ|, (2.51)

substituting (2.38). The the power spectrum is then

STW(ω) = F
[
e−2R|τ|

]
= R/

(
R2 + π2ω2

)
. (2.52)

Since the jump counts are Poisson distributed, the time intervals between them

have an exponential density function with mean R [3]; and because by definition

they are independent, their correlation coefficient κ1 is zero. The converse of

this last statement is not necessarily true. McFadden [85] was interested in the

similarity of the clipped Gaussian process (2.14) to a Poisson process in relation

to computing the fourth product moment E[x(t) x(t + τ1) x(t + τ2) x(t + τ3)], for

delay times τ1, τ2, τ3. When ξ(t) has the autocorrelation (2.51), the arcsine formula

(2.16) implies x(t) has autocorrelation ρ(τ)= sin
(

πe−2Rτ/2
)
. The higher order

properties of this process are not Poissonian, as demonstrated by its lacunarity [34].
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2.7.2 Random Cosine-Wave (CW)

The process described by

xCW(t) =
√

2 cos(at + ϕ), ϕ ∼ UNIF(0, 2π) , (2.53)

(where UNIF denotes the uniform distribution, App. B.2), has autocorrelation

ρCW(τ) =(2π)−1
∫ 2π

0
xCW(t) xCW(t + τ)dϕ

=(2π)−1
∫ 2π

0
(cos(aτ) + cos(2at + aτ + 2ϕ))dϕ = cos(aτ). (2.54)

The corresponding power spectrum is computed using the properties cos(aτ) =(
e−iaτ + eiaτ

)
/2 and F[1] = δ(ω), and the full form of the Fourier transform,

F[ f (t)]=
∫ ∞
−∞ f (t) e−i2πωtdt:

SCW(ω) = F[cos(aτ)] =
1
2

(
δ
(

ω +
a

2π

)
+ δ
(

ω − a
2π

))
. (2.55)

The zeros of xCW(t) occur when the argument of the cosine is an odd multiple

of π/2, and the crossing intervals are all of length π/a, resulting in a degenerate

distribution, δ(T − π/a); and thus the correlation coefficient κ1 is one. The den-

sity for crossing intervals of a Gaussian process with periodic autocorrelation does

resemble a delta-function [5], and the asymptotic similarity to the CW process is

replicated in the lacunarity [34] within intermediate time scales.

2.7.3 Periodicities and Returns

A probabilistic definition for the set of periodicities η>0 of a random function x(t),

t∈R, is

Dx(t) ={η : Pr{x(t) = x(t + η)} > 0, ∀t ∈ R} . (2.56)
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This differs from the set of time intervals T>0 between level-crossing returns:

Dc ={T : Pr{x(t) = c = x(t + T)} > 0, t ∈ R} . (2.57)

These should be treated as the supports for distributions of the periodicities and

crossing intervals, with respective densities fS(η) and p(T), where S denotes the

associated power spectrum S(ω). Both sets apply only to times between exactly

two returns, and their distinction can be demonstrated by the TW and CW processes

defined above. Our primary interest is in the zero-crossings, and for the CW process,

Dx(t)={2π/a}, with D0={π/a}, i.e. Dx(t) ∩ D0=∅. For the TW process, the

switches from 1 to −1, and vice versa, occur independently, so that Dx(t)=D1=

D−1= [0, ∞) .

For a stationary process x(t), the probability density function of positive frequencies

can be obtained from the power spectrum as 2S(ω); and correspondingly for the

periodicities, under the variable transformation ω=1/η,

fS(η) = 2
∣∣∣∣dω

dη

∣∣∣∣ S(ω(η)) =
2
η2 S

(
1
η

)
. (2.58)

The maximum periodicity (i.e. the supremum of Dx(t)) is necessarily an upper-

bound for the level-crossing intervals since the periodicities hold at every point in

time, for every value in the domain of x(t), and the crossing intervals have been

defined to span no more than two crossings. There are no such restrictions on

the smallest possible crossing interval, as demonstrated by the CW process. From

(2.52)&(2.55), the density functions for periodicities in the TW and CW processes

are, respectively,

2STW(ω) =
2
η2

R(
R2 + π2/η2

) =
2R

π2 + R2η2
, (2.59)

2SCW(ω) =
2
η2 δ

(
1
η
− a

2π

)
= δ

(
η − 2π

a

)
, (2.60)

For the essentially deterministic crossings of the cos-wave process, fS(η) and p(T)

have the same form; whereas for the telegraph-wave process the decay in fS(η) is
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power-law, and for p(T) exponential.

For a stationary Gaussian process with mean zero and variance 1, within every

suitably long time window r (10µT, say), Pr{|x(t)|>3} ∼ 10−3, so that returns

to levels large in magnitude though correlated are quite rare. More formally, (2.10)

implies all returns in r are finite in counts. Additionally, the following result is

recorded in the literature ([27, 37]) for cases where the process’s autocorrelation

ρ(τ) satisfies limτ→∞ log(τ)ρ(τ) → 0. From (2.10), set NC = Re−C2/2, for

C= |c|, c∈R. If r, C→∞ so that rNC → ÑC, then

lim
C→∞

PN(NC(r) = m) = exp
(
−ÑC

)
Ñm

C /m!. (2.61)

Nguyen [86] verified this result through simulations when ρ(τ)= e−τ2/2 and C=1.

Our main concern is with crossings of the zero-level, but given the symmetry of the

process, (2.61) would suggest runs of large crossing intervals (> 3µT, say) are rare,

and that the interval density never skews to the right.

2.8 summary

This chapter has described why a Gaussian process is a helpful launch-point for

characterising random zero-crossings. A fair amount of general results and analyses

relating to crossing averages exist, and these remain important benchmarks for any

future modelling. The task of finding the interval density has been solved numer-

ically speaking and subject to certain conditions, but there are still few analytic

expressions. As an alternative, the mixture model approach for approximating dis-

tributions was outlined, and in particular, the use of parametric forms reduces the

problem to one of optimisation—provided underlying assumptions are valid. Lacu-

narity is a particularly powerful tool in the analysis of counting processes, and it too

can provide information on the degree of dependence in crossing intervals. Finally,

elementary properties were given for two non-Gaussian processes that will be refer-

ence points in the analysis to follow, their respective crossing sequences exemplars

of two extremes of dependence. The next chapter introduces a type of Gaussian
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process with periodic autocorrelation, and via simulations will begin exploration of

the effects on sample functions, and by extension the zero-crossings.



3
S IMULAT IONS OF OSC I L LATORY CORRELATED GAUSS IAN

PROCESSES

This chapter describes simulation methods for generating a correlated process and

extracting its zero-crossings. Examples of Gaussian process are simulated to illus-

trate the foundational numerical procedures, and validate statistical results using

existing zero-crossing theory. The notion of oscillatory correlation is introduced

and shown to suggest a categorisation for stationary Gaussian processes such that

distinct zero-crossing behaviours can be expected. Here the emphasis is on mo-

ments of the crossing intervals to benchmark the simulation methods. Subsequent

chapters will explore the distributions of random variables relating to the intervals.

In this thesis all numerical computations (integrations, simulations, optimisations,

etc.) are performed in the programming environment MATLAB®.

3.1 autocorrelations and power spectra

Let x(t), −∞< t<∞, be a real stationary, ergodic, Gaussian process, with mean

⟨x(t)⟩ = 0, variance Var[x(t)] =
〈

x2(t)
〉
= 1, and zero-crossing intervals having

random variable T. The normalized autocorrelation of processes we shall consider

take the form

ρij(τ; a, L) = gi(τ; L) cosj
(

aτ/
√

j
)

, j = 1, 2, (3.1)

46
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where gi(τ; L) is itself an autocorrelation, a≥ 0 is the periodicity parameter, and

L>0 is the correlation length. Notionally, L−1 gives the rate of decay in the auto-

correlation; increasing the value of L means the influence of previous values persists

over a longer range in time. Similarly, increasing a gives the process more periodic

dependence, and this will be used to explore dependence in the zero-crossings. The

index j allows us to test two kinds of oscillatory correlation, the j = 2 case being

the non-negative type. For convenience, we shall at times refer to a process by

its autocorrelation without any argument; likewise, the parameters a, L may be

suppressed in ρij(τ; a, L) and gi(τ; L).

Our focus is on processes that are either smooth or sub-fractal, meaning they are at

least once differentiable and the mean crossing count (2.8) is finite. We prescribe

gi(τ) in (3.1) to expand as 1− τ2/
(
2L2)+O

(
|τ|3

)
. The full autocorrelation (3.1)

then has expansion

ρij(τ) =
∞

∑
m=0

(
2mam |τ|−1 + bm

) τ2m

(2m)!
, (3.2)

and the smoothness of the process is determined by the form of gi(τ; L). Using

the formula for the product of two power series ([72], Eq. 0.316) leads to

a0 = 0, b0 = 1;

a1 = 0, b1 = g′′i (0)− a2 = −
(

L−2 + a2
)

;

a2 = g′′′i (0) , b2 = g(4)i (0) + 6a2L−2 + ja4; etc. (3.3)

We are explicit in these expansions because they relate to higher order properties of

the process and its zero-crossings, and therefore relevant to the simulation method

and validation. The coefficients am and bm respectively give the value of odd

and even derivatives of ρij(τ). Only for smooth processes is am = 0 for all m;

additionally, for sub-fractal process a2≥0, independent of the periodicity parameter

a. By definition, ρij(τ) = ⟨x(t) x(t + τ)⟩, so b0 = ρij(0) =
〈

x2(t)
〉
; b0 is the
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variance of x(t). Rice’s result (2.8) gives the mean crossing count in time window

r as Rr, where

R =
√
−b1/π =

√
L−2 + a2/π ≡⟨T⟩−1 , (3.4)

⟨T⟩ being the mean crossing interval. Likewise, the expected number of maxima in

the path traced by x(t) is RMr, (2.9), where

√
−b2/b1/(2π) =

√(
g(4)i (0) + ja4 + 6a2

)
/(L−2 + a2)/2π =: RM, (3.5)

and unlike (3.4), here there is dependence on the type of oscillatory correlation

(j = 1 or 2). Note that if b2 > 0, RM does not strictly exist for the process,

and so for consistency of interpretation one may use the Wiener-Khinchin theorem

(Thm. 2.2) with Sij(ω) as the power spectrum:

ρij(τ) = 2
∫ ∞

0
Sij(ω) cos(2πωt)dω,

⇒ bm = ρ
(2m)
ij (0) = 2(−1)m

∫ ∞

0
(2πω)2m Sij(ω)dω. (3.6)

If the integral exists then RM exists, thereby providing a test for the sub-fractality

of the process [48]. Indeed, turning points of x(t) occur at zero-crossings of its

derivative x′(t).

There are of course an infinity of stationary Gaussian processes, but as for the

behaviour of their associated power spectra S(ω), in particular relating to the

maxima, there are only three forms: spectra with (1) a maximum at the origin

alone, (2) maxima displaced from the origin, and (3) a combination of these two.

By design, the choices we make for gi(τ) will have a power spectrum Gi(ω) that is

either maximal at the origin alone, or equals a positive constant on a closed interval

including the origin and is zero outside that interval. The associated spectra of the
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full autocorrelation ρij(τ) are easily calculated using the following properties of the

Fourier Transform. For b1, b2 ∈ R, and scalar, real-valued functions f1(t) , f2(t),

F[b1 f1(t) + b2 f2(t)] = b1F[ f1(t)] + b2F[ f2(t)] , (3.7)

F[ f1(t) cos(b1t)] =
1
2

(
F1

(
ω +

b1

2π

)
+ F1

(
ω − b1

2π

))
, (3.8)

where F1(ω)=F[ f1(t)]=2
∫ ∞

0 f1(t) cos(2πωt)dt gives the Fourier transform of

an even function f1(t). Given Gi(ω)=F[g(τ)], the Fourier transforms of ρij(τ),

j=1, 2 are, respectively,

Si1(ω) = F[gi(τ) cos(aτ)]

=
1
2

(
Gi

(
ω +

a
2π

)
+ Gi

(
ω − a

2π

))
, (3.9)

Si2(ω) = F
[

gi(τ) cos2
(

aτ/
√

2
)]

=
1
2
F[gi(τ)] +

1
2
F
[

gi(τ) cos
(√

2aτ
)]

=
1
2

Gi(ω) +
1
4

(
Gi

(
ω +

a√
2π

)
+ Gi

(
ω − a√

2π

))
, (3.10)

where the cosine double-angle formula is used to compute Si2(ω). Now, Sij(ω) is

an even function, and for all values of a,

0 ≤ Si1(0) ≤ Gi(0) , Gi(0) /2 < Si2(0) ≤ Gi(0) ; (3.11)

and as a → ∞,

Si1(0) = Gi

( a
2π

)
→ 0, (3.12)

Si2(0) =
1
2

(
Gi(0) + Gi

(
a√
2π

))
→ 1

2
Gi(0) . (3.13)

Evaluating the power spectrum at frequencies indicated by the shifts to Gi(ω) seen

in (3.9)&(3.10) gives

Sij

(
± a√

23−jπ

)
→ 1

2j Gi(0) , as a → ∞. (3.14)
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Equations (3.12)&(3.13) imply that at large a, Si1(ω) has a minimum point at the

origin and is maximal at frequencies ±ω0, for some ω0 ∼ a/(2π). The function

Si2(ω) instead retains a maximum point at the origin and develops two additional

maxima at the frequencies ±ω0, for some ω0 ∼ a/
(√

2π
)
. Thus our chosen

formulation will exemplify the aforementioned trio of forms as the periodicity pa-

rameter a is varied, and the effects of this categorisation are central to this thesis.

Recall that the power spectrum of the cos-wave process is a sum of delta functions,

each centred at frequencies ±a/(2π), (2.55), and this form of power spectrum

accompanies deterministic oscillations in sample functions. Equation (3.14) shows

that as a → ∞, the power spectrum never becomes a delta function, meaning

that even at large a there is still some randomness in the sample functions and

zero-crossings of the Gaussian process x(t).

3.2 simulation methods

3.2.1 Discretisation of Time

A random process may be simulated by constructing a finite numerical sequence with

the required distribution and correlation properties. These ‘realisations’ represent

sample functions of the process with time infinite in the past and future. Specifically,

the function x(t) is sampled at time points

tn=(n − 1)∆t, n=1, 2, ..., nmax, (3.15)

leading to a realisation x. The notation tn should be understood as the n-th element

of the vector t, the boldface used for vectors to differentiate between parameters

used elsewhere in the thesis.

The discretisation step ∆t and sampling length nmax must be chosen such that the

correct frequency of zero-crossings is observed, and there are three length scales to

bear in mind: a−1, L and ⟨T⟩, respectively corresponding to periodicity, memory

and zero-crossing intervals. We require that ∆t/L≪⟨T⟩, as well as ∆t/L ∝ a−1 at
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large a since from (3.4), larger a leads to a smaller mean interval. Without loss of

generality, we set L=1 and choose

∆t = 1/round
{

200
√

1 + a2
}
≈⟨T⟩ /(200π) , (3.16)

where the function ‘round’ gives the nearest integer to its argument. For conve-

nience, we set nmax=3.1416×106. It follows that for each realisation,

⟨no. of crossings⟩ ≈ total time
average time between crossings

≈ nmax∆t
⟨T⟩

≈ 5 × 103, (3.17)

3.2.2 Generating a Random Process

According to Thm. 2.1, all we require is a procedure that suitably produces a

discrete-time Gaussian process, and then by ergodicity, each realisation will possess

the average statistical properties of a sample function of the process. Adapted

from [4], Fig. 3.1 contains the algorithm we use to produce a single realisation of

the random process x(t), and it supersedes the standard Fourier filtering method

(FFM) for generating a process described in [87] and elsewhere.

The discrete Fourier transform (DFT) of the sequence of values xn, n=1, . . . , nmax,

can be calculated using

Xm+1 =
nmax−1

∑
n=0

xn+1ei 2πmn/nmax , m = 0, . . . , nmax − 1, (3.18)

and this relates to the xn through the inverse DFT

xn+1 =
1

nmax

nmax−1

∑
m=0

Xm+1ei 2πmn/nmax , n = 0, . . . , nmax − 1, (3.19)

i =
√
−1 being the imaginary unit. Below, the expression DFT{x} is used to

denote the DFT of the elements of x according to (3.18); likewise, DFT−1{X}

denotes the inverse DFT of X according to (3.19).
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Let τ and ω respectively be vectors of the delay times and frequency points associ-

ated with the above time discretisation; then for symmetric forms of autocorrelation

and power spectrum,

τn = ∆t × |n − nmax/2 − 1| , ωn =(∆t)−2 τn/nmax, n = 1, . . . , nmax.

(3.20)

The following relations (see [88], Sec. 7-9) are central to both the standard and

iterative Fourier filtering methods:

(∆t)−1 S(ω) ≈ DFT{ρ(τ)} ≈ n−1
maxX ⊙ X∗, (3.21)

where X∗ is the complex conjugate of X, the operator ‘⊙’ denotes element-wise

multiplication, and in order to match values of the theoretical and discrete Fourier

transforms, the frequencies ω are shifted circularly using

ωn =

ωn , n = nmax/2,

ω(n+nmax/2)mod nmax , otherwise.
(3.22)

The first approximation in (3.21) is the numerical analogue of the Wiener-Khinchin

theorem (2.2), with equality in the limit nmax → ∞ and ∆t → 0. The second

approximation gives the power spectrum estimate as obtained from a realisation x

and its DFT, X. In the notation of Fig. 3.1, the FFM stops at step 3, defining

a realisation through x = DFT−1{W⊙Y}. We found the FFM to almost always

yield a realisation that failed the Kolmogorov-Smirnov test for normality at the 5%

significance level [89]. It also required significantly increasing the sample length

nmax to obtain reliable zero-crossing statistics when the periodicity parameter a

was very large (a> 30), thereby requiring additional computing time and memory

resources.

The iterative Fourier filtering method (iFFM) uses the fact that correlation in time

for a discrete-time process is encoded in ranking of data values. After generating

an initial sequence of uncorrelated variates from a target distribution, this same
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Iterative Fourier filtering method (iFFM) for generating
a realisation x of a correlated random process

1. Calculate S, the power spectrum at frequency points ω, or calculate ρ,
the autocorrelation at delay times τ, then compute weight function W
using

W2
m =(∆t)−1 Sm or W2

m = |ρm| .

2. Generate uncorrelated sequence of random numbers y from target distri-
bution.

3. Compute Fourier transform of y, enforce desired power spectrum using
weight function and compute inverse Fourier transform:

Y = DFT{y} ; Xm = WmYm |Ym|−1 ; x = DFT−1{X} .

4. Compute ranks (in decreasing order) of x and y, rank-replace x with the
current y, then redefine y as x:

RX = rank{x} , RY = rank{y} ; xn 7→RXn = yn 7→RYn
; y = x.

5. Repeat steps 3–4 until xn (satisfactorily) has the target correlation prop-
erties.

Figure 3.1.: Algorithm 1. DFT refers to the discrete Fourier transform, and DFT−1

to its inverse, respectively defined in (3.18, 3.19). In step 2 we use
the standard normal distribution, with random variates generated by
MATLAB. We find 29 iterations at step 5 to be acceptable.

sequence is permuted recursively to have the required ranking (i.e. correlation),

and so the target distribution is preserved throughout. The rank-replacement in

step 4 slightly alters the long-term correlation, and so it and the filtering step are

repeated. These further iterations lead to convergence of the ranks RX, and since

these determine the magnitudes of DFT contributions (3.18) they invariably lead

to convergence in the realisation x. Consequently, the iFFM can produce reliable

realisations for arbitrary large a without adjusting the sample length nmax as a

increases. The quality of the standard normal variates (used at step 2) depends

only on the accuracy of MATLAB’s (or other software’s) pseudorandom number

generators.

A description of how computers produce pseudorandom numbers is given in [90],

and in particular, standard normal variates are obtained as transforms of standard
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uniform variates, themselves the result of a ‘multiplicative congruential algorithm’,

or similar method. Except where indicated, we use MATLAB’s implementation

of the ‘Mersenne Twister’ random number generator (RNG) [91], combined with

the ‘Ziggurat algorithm’ [92] for the distribution transformation, yielding an exactly

normally distributed sequence [90]. Given a seed or starting value for the RNG, one

obtains a cycle of numbers termed the ‘random number stream’. For the Mersenne

Twister, the stream has length (i.e. periodicity) 219937−1. Choosing different seeds

leads to different streams, which in our context leads to independent realisations of

the random process. Specifically, 103 realisations will use 103 nmax=3.1416×109≲

232 different pseudorandom numbers.

3.2.3 Zero-Crossing Statistics

Having generated a realisation x, the zero-crossings are obtained as follows. First

define ξ :=sign{xn}. A zero-crossing occurs in the time interval [tn−1, tn] if xn−1

and xn have opposite signs, i.e. ξn−1ξn=−1. Thus, identify all the zero-crossings

of x through

zn :=


(
1 − ξn−1ξn

)
/2, n = 2, ..., nmax,

0, n = 1,
(3.23)

and zn = 1 denotes a crossing in the interval [tn−1, tn]. Next, from the values

of n such that nzn ̸= 0, form a new sequence lk, k = 1, ..., N, the locations

immediately after the crossings. Given the time discretisation (3.15), the crossings

are (approximately) located at times l∆
k := ∆t(lk − 1)−∆t/2, and zero-crossing

intervals are given by

Tk := l∆
k+1 − l∆

k = ∆t(lk+1 − lk) , k = 1, .., N − 1. (3.24)

The smallest possible value of Tk is ∆t, meaning there is potentially some simulation

error, particularly when the principal mode of the interval density is zero. This

corresponds to tangent-type zero-crossings (instances of time where the process and
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its derivative are zero) being more frequent than up-/down-crossings. Numerical

operations performed by MATLAB (with the default precision of 32 digits after the

decimal place) mean the standard normal variates it generates are unlikely to be

exactly zero, so xn is almost always nonzero. Furthermore, the discretisation (3.16)

ensures the appropriate number of crossings are observed for each realisation, and

in all cases we expect

P(T ≤ ∆t) ≈ P
(

T ≤ (200π)−1⟨T⟩
)
≪ 1, (3.25)

P(T) being the analytical cumulative density function for crossing intervals. For

simulation estimates of the interval density, we use the frequency binning method

with a bin size of max
{

2,
√

1 + a2/2
}
—refer to App. J.

From (3.24) simulation estimates for zero-crossing interval moments can be com-

puted, and over multiple realisations the domain of crossing intervals (given a

particular autocorrelation function) is better sampled; then averaging over realisa-

tions improves the moment estimation. McFadden’s work [48] predicts the interval

variance σ2
T for a Gaussian process with autocorrelation ρ(τ) as

σ2
T = σ1σ2,

σ2
1 = 4

(
πR
)−1

∞∫
0

arcsin(ρ(τ))dτ,

σ2
2 = R−2

1 + 2
∞∫

0

(
U(τ)− R

)
dτ

 , (3.26)

where

U(τ) =
1

π2R(1 − ρ2(τ))
3/2

(∣∣∣A2 − B2
∣∣∣1/2

+ B arctan

(
B

|A2 − B2|1/2

))
,

A = −ρ′′(0)
(

1 − ρ2(τ)
)
− ρ′2(τ) ,

B = ρ′′(τ)
(

1 − ρ2(τ)
)
+ ρ(τ) ρ′2(τ) . (3.27)
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The variance and mean, µT, may be combined to give the coefficient of variation

cv = σT/µT, (3.28)

a measure of dispersion in the distribution of the random variable relative to the

mean. Each of the contributory estimates to σ2
T result from assuming the crossing

intervals are statistically independent. The linear correlation coefficient for adjacent

intervals is defined as

κ1 =
(
⟨T1T2⟩ − µ2

T

)
/σ2

T, (3.29)

where⟨T1T2⟩ is the product moment of adjacent intervals. By considering a Markov

Chain model for the crossing intervals, McFadden also derived an analytic form for

κ1 [48]:

κ1 = 1 − 2σ1/(σ1 + σ2) , (3.30)

where σ1, σ2 are defined in (3.26). These analytical results for the interval mo-

ments enable verification of the simulation method outlined above, and are there-

fore a foundation for subsequent investigations into the effect of correlation on

zero-crossing statistics. Later chapters will consider distributions of the crossing in-

tervals and of the counting process formed by the crossings, this secondary process

represented in simulations as the cumulative sum of (3.23).

3.3 simulation results

We now specify two forms for the function gi(τ) in (3.1):

g1(τ) = exp
(
−τ2/2

)
,

g2(τ) =
3
2

exp
(
− |τ| /

√
3
)
− 1

2
exp

(
−
√

3 |τ|
)

, (3.31)

each prescribing processes previously studied in the literature [48, 35], the first

a smooth process and the second sub-fractal. Substituting these forms into our

general autocorrelation (3.1) gives four processes (ρ11, ρ21, ρ12, ρ22), and these are
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sufficient at this juncture to check that simulations support the analytical results

listed above, particularly with regards to the smoothness of the process and the

type of oscillatory correlation. Equations for power spectra Gij(ω) can be found in

App. A.

3.3.1 Convergence of Algorithm

The simulation method as described in Fig. 3.1 guarantees that the output has

the distribution specified at step 2, and so it remains to check convergence of the

algorithm. In addition to the autocorrelation function ρ(τ)=⟨x(t) x(t + τ)⟩ for a

Gaussian process x(t), the following higher order correlations [38] can be expressed

in terms of ρ(τ): for delay times τ1≤τ2≤τ3≤τ4,

⟨x(τ1) x(τ2) x(τ3) x(τ4)⟩ = ρ(τ1 − τ2) ρ(τ3 − τ4) + ρ(τ1 − τ3) ρ(τ2 − τ4)

+ ρ(τ1 − τ4) ρ(τ2 − τ3) ,

and so in particular,

〈
x(t) x3(t + τ)

〉
= 3ρ(τ) ,

〈
x2(t) x2(t + τ)

〉
= 1+2ρ2(τ) . (3.32)

Let y be a realisation of a second process y(t), and from (3.22) define τ =

nmax(∆t)2 ω. Similar to (3.21), the cross-correlation of x(t) and y(t) at time

τ=τn is

⟨x(t) y(t + τ)⟩ ≈ n−1
maxDFT−1{DFT{x} ⊙ DFT{y}∗

}
, (3.33)

By redefining x(t) and y(t) appropriately, (3.33) can be used to obtain simulation

estimates for ⟨x(t) x(t + τ)⟩,
〈

x(t) x3(t + τ)
〉
, and

〈
x2(t) x2(t + τ)

〉
.

Figure 3.2 considers correlation functions for realisations of the process with auto-

correlation ρ11(τ; 10) = exp
(
−τ2/2

)
cos(10τ). Plot (a) shows the error in the

autocorrelation is reduced through repeated iterations of the filtering and rank-
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replacement steps of the iFFM, and plots (b, c) respectively contain numerical esti-

mates and corresponding analytical forms of
〈

x(t) x3(t + τ)
〉
and
〈

x2(t) x2(t + τ)
〉
.

Each iteration of the iFFM (Fig. 3.1) produces a realisation x and its ranks RX.

Let x(k) and RX(k) denote the realisation and ranks after the k-th iteration, k=1

being the first pass of the algorithm and k>1 the remaining reiterations at step 5.

Define also unit-delta functions δ1(t) , δ̄1(t) through

δ1(t) = 1 − δ̄1(t) =

1, t = 0,

0, otherwise.
(3.34)

Figure 3.3 compares x and RX over successive iterations. The plots show that as

the number of iterations k increases, changes in both the values of the realisation

and their ranks (i.e. relative positions of the xn with respect to magnitude, and

therefore the correlation) decrease; that is,

x(k) − x(k−1) → 0,
nmax

∑
n=1

δ̄1

(
RX(k)

n − RX(k−1)
n

)
→ 0 as k → ∞, (3.35)

where 0 is the zero vector. Plot (b) includes rank changes up to 100 iterations

of the algorithm to make the decline more apparent to the reader; however, the

adjacent plot and the plots in Fig. 3.2 indicate 30 iterations are sufficient and the

additional computer time not required. (Each iteration can last as long as 1 second,

and crossing statistics are to be calculated from multiple realisations.) Recall that

x was initially a sequence of uncorrelated normal variates, and since the correlation

properties converge we can trust the method does simulate correlated Gaussian

processes. Further validation of the simulation method are provided by subsequent

comparisons to existing analytical results for zero-crossings of Gaussian processes.

3.3.2 Sample Functions

The sample function properties are intimately connected to those of the crossing

intervals and provide a first look at how crossing behaviour is affected by the
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Figure 3.2.: Plots comparing analytical correlation functions with estimates given a
single realisation of the process ρ11 when a=10. The simulations use
the iFFM (Fig. 3.1) with 221 as the RNG seed. In (a) the legend refers
to iterations of the algorithm. The error (simulation estimates minus
analytical values) in the autocorrelation is seen to progressively decrease
after each iteration. In plots (b, c) simulation estimates of (3.32) use
the final realisation (30th iteration), and the simulation results match
well with analytical curves.
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Figure 3.3.: Plots demonstrating convergence of the iFFM (Fig. 3.1), for simulations

of the process with autocorrelation ρ11(τ; 10) and 221 as the RNG seed.
Plot (a) demonstrates the values xn make the realisation converge. Plot
(b) shows as a percentage the proportion of ranks that are changed at
each iteration; as k increases there are fewer changes, meaning the
correlation in x also converges.

autocorrelation. The realisations in Figs. 3.4&3.5 are of processes ρ1j and ρ2j for

different values of a (refer to Eq. (3.1)). Each realisation is generated using an RNG

seed of 221, so the only difference (in terms of simulation input) is their respective

power spectra. When a = 0, the autocorrelations reduce to g1(τ) and g2(τ)
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Figure 3.4.: Realisations of the processes g1 (a) and g2 (b), generated using the
iFFM with the same RNG seed. The curves are similar but additional
turning points in the g2 case indicate g1 is a smoother process. Zero-
crossings are marked as red circles, and the time intervals between these
show more variation in the g2 case.

(defined in (3.31)), and their realisations are shown in Fig. 3.4, the differences

clear. The g1 case is smoother, crossings are at times bunched together, but

crossing intervals do not vary a great deal. The g2 realisation has additional rapid

turning points away from the zero level, and here bunched crossings (i.e. short

intervals) usually precede much larger crossing intervals. This is expected given

the autocorrelation; the sub-fractality of g2(τ) means in a sample function shorter

crossings are more frequent, and the slower correlation decay (e−|τ|/
√

3 as opposed

to e−τ2/2 for g1(τ)) allows for larger crossing intervals. These two features balance

out so that the mean interval length is the same for both processes.

There are distinct changes in sample function behaviour when oscillatory correlation

is introduced. The number of zero-crossings and turning points both increase

linearly in time, (2.8)&(2.9), and we shall make reference to the rates of crossings,

R, and of turning points, 2RM: from (3.4)&(3.5),

R =

√
1 + a2

π
∼ a

π
as a → ∞;

2RM =

√(
g(4)i (0) + 6a2 + ja4

)
/(1 + a2)

π
∼
√

ja
π

as a → ∞. (3.36)
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Rice’s result (3.5) is for expected maxima, and since a Gaussian process is dis-

tributed symmetrically about its mean value (here zero), the result must also ap-

ply to the minima; whence the average number of turning points in time t′ is

2RMt′. Note: for sub-fractal processes with autocorrelation ρ2j(τ), RM exists

when a2>13/
(√

39j + 81 − 9
)
.

The first four plots in Fig. 3.5 illustrate the ‘cos’ type of oscillatory correlation;

the autocorrelation varies between ±1, so sample function values have positive and

negative correlation. As a increases, there is greater periodic memory in the process

and realisations begin to look more regular, almost sinusoidal due to the frequency

of turning points approaching that of zero-crossings (2RM ∼R∼ a/π). Addition-

ally, plots (b, d) show the sub-fractal properties are suppressed, but not removed

since from (3.3), a2 is independent of a., There is little difference between plots

(c, d), respectively smooth and sub-fractal cases with a=10.

The remaining four plots in Fig. 3.5 are for the ‘cos2’ type of oscillatory correla-

tion, for which the autocorrelation is non-negative. Again, as a increases we see

similarity in sample function behaviour, irrespective of the degree of smoothness,

and we label this effect as a ‘homogenisation’. Likewise, sample functions are reg-

ularised towards wave-like forms, though less pronounced than in the j=1 extreme

a cases. Realisations in plots (e–h) resemble a slowly changing random process

described by gi(τ) upon which is superimposed a rapid sinusoidal modulation of

frequency a/
(√

2π
)
. From (3.36), turning points in the j = 2 case occur more

frequently than zero-crossings when a is large (2RM ∼
√

2a/π > R). In the vein

of the ‘Bolzano Theorem’[40] (relating to roots of continuous functions on closed

intervals), it follows from continuity and symmetry (of a Gaussian process) that

there must be frequent bunched crossings as well as epochs during which no axis

crossings occur (so as to match the average crossing number in the j = 1 case),

and these are evidenced in plots (g, h).

In the above, not much has been said on sample functions when a ∈ (0, 3). Con-

tained in this interval are critical values of a which we shall argue are best determined

by a spectral analysis (see Ch. 5). In essence, when a is below the critical value,
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Figure 3.5.: Realisations of processes with autocorrelation gi(τ) cosj(aτ/
√

j
)
, for

the choices of gi(τ) given in (3.31). Plots (a–d) show that in j = 1
cases, the sample function regularises towards a sinusoidal function.
Conversely, plots (e–g) show another kind of regularity wherein be-
haviour from the a = 0 case is preserved. As a increases, the type
of oscillatory correlation (j = 1 or j = 2) is more significant than the
choice of gi(τ), and there is little difference between smooth (a, c, e,
g) and sub-fractal (b, d, f, h) processes.

the behaviour of the power spectrum near the origin is relatively unchanged, and

consequently neither are sample function and zero-crossing properties.

3.3.3 Interval Moments

From (3.4), the mean interval length is π/
√

1 + a2, so as a increases the mean

interval length decreases, in line with crossings occurring with greater frequency.
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This result holds for both sub-fractal and smooth choices of gi(τ) in (3.1), and

independent of the type of oscillatory correlation. By contrast, the variance of

the crossing intervals is impacted by both smoothness and periodicity. Figure 3.6

includes plots of the variance as computed from McFadden’s equations (3.26), and

they agree well with simulations. The similarity between smooth and sub-fractal

processes as a increases is reflected in the interval variance, and identifying the

asymptotic dependence on a is also useful in distinguishing between the two types

of oscillatory correlation. For this a third curve is included in each of the four plots

of Fig. 3.6, the values given in the legend found using nonlinear regression. The

interval variance decays (approximately) like a−7/2 for j=1 processes, and like a−1

when j=2. Since the mean decays like a−1, for the coefficient of variation (3.28)

cv ∼ a(5(j−1)−3)/4 as a → ∞; (3.37)

This implies that when j=1 the interval sizes become less dispersed relative to the

mean as a increases, but when j= 2 the reverse occurs, and both are glimpsed in

Fig. 3.5. These forms of cv prefigure modelling of the crossing interval distribution,

especially evolution of tail behaviour, as will be revealed in chapter 5.

The correlation coefficient (3.29), as estimated from simulations and application of

McFadden’s result (3.30), are contained in Fig. 3.7. When a is small, κ1 is similar

for both types of oscillatory correlation and McFadden’s model is in (approximate)

agreement with simulation results. For the j = 1 cases this agreement holds till

a=10, and beyond this the underestimation grows, though κ1 still approaches the

same limit as the simulations. Note that for the smooth process ρ11, κ1 increases

to 1 from a negative value, whilst for sub-fractal processes ρ21, κ1 is positive for all

values of a. Conversely, for j=2 cases when a=10, McFadden’s result converges

to a much different value to that of simulations and with a significantly different

gradient. Moreover, it is not immediately obvious how nonnegative correlation at

large a in the process leads to negative correlation in the interval sequence. The

coefficient κ1 defined in (3.29) is Pearson’s correlation coefficient, which measures
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Figure 3.6.: Plots of the interval variance as a function of a for processes with au-

tocorrelation gi(τ) cosj(aτ/
√

j
)
, for choices of gi(τ) given in (3.31).

Analytical results from McFadden’s equations (3.26) are shown as black
lines, simulation results (averaged over 102 realisations for each a) as
blue circles, and the asymptotic dependence on a as red lines. Simula-
tions were generated using the iFFM (Fig. 3.1) with RNG seeds chosen
at random for each realisation.

linear dependence [40]. Therefore, exploring the behaviour of crossing intervals as

a increases will require a closer look at dependence in the sequence of intervals.

3.4 stochastic periodicity revisited

In section Sec. 2.7.3 we gave a definition of probabilistic periodicity, and we now

discuss the density function fS(η) defined in (2.58); explicit expressions for the
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Figure 3.7.: Plots of the linear correlation coefficient as a function of a for processes

with autocorrelation gi(τ) cosj(aτ/
√

j
)
, for choices of gi(τ) given in

(3.31). Analytical results from McFadden’s equations (3.30) are shown
as black lines and simulation results (averaged over 102 realisations for
each a) as blue circles. Simulations were generated using the iFFM
(Fig. 3.1) with RNG seeds chosen at random for each realisation

power spectra are found in App. A. Now, for any power spectrum S(ω) that decays

to zero as ω→0,

fS(η) =
2
η2 S

(
1
η

)
∼ 2η−2S(0) → 0, (3.38)

as η→∞, and so the power-law decay at large η is the same for both Gaussian and

Poisson processes. This is not the case for the cos-wave (CW) process which has no

randomness in its periodicity density; fS(η) in that case is a delta function (2.60).

In figure 3.8, we see that the periodicity density changes as a increases for Gaussian

processes with power spectra Sij(ω), defined in (3.9)&(3.10). The example of the

random telegraph-wave (TW) which has Poissonian crossings is used to highlight

similarities and differences; its periodicity density is (2.59), and this is plotted for
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Figure 3.8.: Plots of the density function for sample function periodicities as a varies,
where fS(η)=2η−2S

(
η−1), for respective power spectra S(ω). Insets

show behaviour at larger values of η. Orange curves are used for the
TW process with Poissonian crossings; solid black curves are used for
the Gaussian processes ρ1j, and dash-dot blue curves for ρ2j. (a): The
densities for processes g1 and g2 are quite different at small η, but
the inset shows decay at large η is similar to the Poisson case. (b):
The cosine modulation significantly narrows fS(η), particularly for the
smooth process ρ11; the sub-fractal process ρ21 decays similar to that
of the Poisson case. (c): The cosine-squared modulation also narrows
fS(η), but there is a secondary, much larger mode; and in this instance
the decay for both smooth and sub-fractal cases are bounded below by
the Poisson case.

crossing rates R=⟨T⟩−1.

From Fig. 3.8 it is possible to identify the modal periodicities η, which are the time

periods after which sample functions are most likely to exhibit similar behaviour.

For the Poisson case, the mode is zero, in agreement with it being a memoryless

process [3]. For all the Gaussian processes, limη→0 fS(η)=0. Plot (a) shows the

variance is large when a= 0, the density is left-skewed, and the modal periodicity

is approximately
√

2⟨T⟩ for the g1 process, and 2⟨T⟩ for the g2 process. The Sub-

fractality of g2 means the probability of observing similar behaviour in time scales

much less than ⟨T⟩ is greater than that for g1; and smoothness has the opposite

effect around the mode. As η→∞, the curves for g1 and g2 are located either side

of the Poisson case. As a increases, fS(η) becomes more concentrated and sym-

metric around the mode. For the cosine modulation, plot (b), the modal periodicity

is η ≈ 2⟨T⟩, further demonstration of similarity to the cos-wave process. For the
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cosine-squared modulation, plot (c), the periodicity density is bimodal from which

we can identify a slow timescale η1≈
√

2⟨T⟩, and a fast timescale η2≈10
√

2⟨T⟩.

The cos-wave process typifies the crossing behaviour associated with a narrow peri-

odicity density function. For the Gaussian processes, when a is large, since most of

the variation happens at small time scales and the processes are symmetric, there

will be an increased frequency of zero-crossings and turning points at all levels, in

agreement with Rice’s results (3.4)–(3.5), and the wave-like properties in Fig. 3.5.

More formally, given a power spectrum S(ω), stationary points of fS(η) occur

when

d fS

dη
= − 2

η4

(
2ηS|ω=η−1 + S′|ω=η−1

)
= 0

⇒ S|ω=η−1 = − 1
2η

S′|ω=η−1

⇒ S(ω) = −ω

2
dS
dω

. (3.39)

The modal periodicity is then either zero, or η such that fS(η) is maximal and

ω = η−1 satisfies (3.39). Thus, the number of time scales in a stationary process

is determined by the number of maxima in its spectrum.

3.5 summary

This chapter introduced the types of Gaussian processes we study and expected

behaviour given their autocorrelation functions. Simulating processes was shown

to be straightforward and the output reliable; given the three inputs of RNG seed,

distribution, and autocorrelation (or associated power spectrum), the iFFM con-

verges to a unique realisation that minimises correlation error and has the correct

distribution. Existing analytical results further validated simulations, and the plots

produced helped with visualising the influence of the autocorrelation on extremal

properties of the random processes considered. In particular, the type of oscilla-

tory correlation (governed by the periodicity parameter a) led to different sample

function and zero-crossing properties, a recognition that we shall argue is vital to
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any proposed models of crossing behaviour. Increasing periodicity homogenises pro-

cesses towards forms almost independent of their smoothness, and the periodicity

regularises the zero-crossings.

The general form of autocorrelation (3.1) will enable further exploration of the sub-

tleties of the zero-crossing problem, particularly as it applies to dependence in the

crossing sequence. Traditionally, the correlation coefficient (3.29) when close to

zero is interpreted as representing independent behaviour, which here applies to the

crossing intervals, and a Markov chain dependence is sufficient for predicting the

interval variance [48]. The next chapter investigates these interpretations as they

concern the case a=0; subsequent chapters will further interrogate the underlying

assumptions when a > 0 and interval dependence is clear. We will also seek to

establish general results for zero-crossings of Gaussian processes, and continue to

look at the ZCP through the lens of probabilistic or stochastic periodicity.



4
F IN ITE M IXTURE MODELS FOR THE INTERVAL DENS ITY

Simulation results in the preceding chapter showed the evolution of a stationary

Gaussian processes and its zero-crossings as oscillatory correlation is increased. The

zero-crossings are representative of statistical dependence in the process, and mod-

elling associated distributions such as that of crossing intervals remains an important

aspect. Sections 2.2.3.1 and 2.2.3.2 described and critiqued two key methods that

express the interval density as an integral. For stationary Gaussian processes, sim-

ulation estimates for the interval variance are well predicted by those models that

assume a Markov chain dependence amongst the intervals [5, 48]. However, this

assumption does not necessarily carry over to computation of the interval density,

particularly when intervals are strongly correlated (see [5]).

The next two chapters will present an alternative perspective using mixture models,

the focus being less on composite functions of the autocorrelation and more on sam-

ples of the crossing intervals. The goal is to demonstrate that for processes which

fall into a specific category (as determined by their power spectrum), their interval

densities can be modelled using a finite set of basis functions. These estimates pro-

vide explicit formulas with tail behaviour as predicted by existing theory [5, 93]. Our

approach of informed modelling directly from the data speaks to the connection to

other contexts involving point processes and sequences of events, such as reliability

and queueing theory [59]. By definition, finite mixture modelling implicitly assigns

a structure to the data; in practice, this may correspond to a known grouping as

in survival analysis, or an emergent property as in cluster analysis. The latter case

would seem a reasonable perspective on long term behaviour of the crossing interval

69
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sequence of a stationary process given the crossings occur linearly in time.

This chapter focuses on example processes with our general autocorrelation (3.1)

when a = 0. Reflected in plots of the correlation coefficient, Fig. 3.7, such cases

may be treated as having approximately independent intervals, with effect that both

Markov chain and Slepian regression methods produce reasonable estimates for the

interval density, though only so far as existing numerical integration methods allow

for particular autocorrelations. We contend that the intervals can also be modelled

with finite mixtures of two or more density functions, and this is tested using a

range of smooth and sub-fractal processes, most of which have been examined in

the nearly six decades of literature on zero-crossings and studies of certain physical

systems. In the same spirit as [85], this chapter addresses the question of how

similar crossing intervals of Gaussian processes are to inter-event times of a Poisson

point process, a case in which the interval density is a one parameter exponential

function.

4.1 preliminaries

4.1.1 Properties of Class 0 Processes

In Sec. 3.1 the observation was made that based on properties of the power spec-

trum, there are three kinds of stationary Gaussian processes, and we now label these

as classes, the first of which has the following definitional properties.

Proposition 1 (Class 0 Process)

A process with autocorrelation function g(τ) and power spectrum G(ω) such that

(I) g(τ) =
∞

∑
m=0

(
2mam |τ|−1 + bm

) τ2m

(2m)!
, a0=a1 = 0, b0=−b1 = 1;

(II) ∀ω, G(ω) ≤ G(0) , G(0)>0;

(III) Either ω = 0 is the only maximum point of G(ω), or G(ω) is a positive

constant for |ω|<ω∗ and zero for |ω|≥ω∗, for some ω∗>0.
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For a smooth process, am=0, ∀m, and the process is infinitely differentiable [37];

but for a sub-fractal process not all of the am are zero, and the process is m-times

differentiable if and only if am=0, for m∈N [37]. These properties influence the

distribution of the crossing intervals p(T), particularly near the origin [35, 53]:

a2 = 0 ⇒ p(T) ∼ O(T) , p(0) = 0;

a2 ̸= 0 ⇒ p(T) ∼ O(1) ,
a2

6
≤ p(0+) ≤ a2

4
. (4.1)

In the former case, p(T) can be found using the Slepian regression method [2] up

to some T̂>⟨T⟩, the magnitude of which depends heavily on the interval variance

σ2
T. The reliability of the method when a2 ̸=0 was discussed in Sec. 2.2.3.2. The

Laplace inversion method was also shown to have limitations, Sec. 2.2.3.1. To the

author’s knowledge, Wong’s process [35] has the only autocorrelation for which the

interval density has been derived explicitly. The derivation is similar to the Slepian

regression method but it starts from an exact explicit representation of the random

process x(t).

The large T behaviour of the interval density has similarly been predicted [54] for

a process x(t) with autocorrelation ρ(τ), and processes in this chapter all have a

finite persistence exponent Θ, earlier defined in (2.29), and here means

p(T) ∼ e−ΘT, as T → ∞. (4.2)

Slepian’s comparison theorem [93] says that given two processes x(t) , y(t) respec-

tively having autocorrelations ρx(τ) , ρy(τ), if ρx(τ) ≤ ρy(τ) for 0 ≤ τ ≤ T′,

then

1 − Px(T) ≤ 1 − Py(T) , (4.3)

for 0≤T≤T′ where Px(T) , Py(T) are the respective cumulative density functions

(cdfs) of the crossing intervals. Class 0 processes all have mean interval π, so if the

inequality ρx(τ)≤ρy(τ) holds as T′→∞, then the persistence exponent Θ will be

smaller for the process y(t) and the variance of the intervals σ2
T larger, regardless of

the smoothness of the process. Further inequalities relating to the asymptotics of
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p(T) have been derived [53], but for our purposes those listed above are sufficient,

and represented in the finite mixture models we now describe.

4.1.2 A Basis Distribution

The interval density p(T) will be modelled as

p(T) =
K

∑
k=1

αk fk(T; θk) , (4.4)

where K<∞, αk <1, αK = 1−∑K−1
k=1 αk, and θk is a vector of parameters for the k-

th component density function, fk(T; θk). The general aim is to demonstrate using

basis functions that the similarity of class 0 processes is reflected in the interval

density. We define a new distribution family, the ‘generalized exponential product

distribution’, GEXPP(c, d, a, b), with probability density function (pdf)

d
(
ad + bd)c/d

bcΓ(c/d)
((

ad + bd
)c/d − ac

)Tc−1 exp

(
−
(

T
b

)d
)(

1 − exp

(
−
(

T
a

)d
))

,

(4.5)

for (positive) shape parameters c, d, and (nonnegative) scale parameters a, b. The

GEXPP distribution1 allows for all possible polynomial forms at small T, and

exponential decays at large T. It incorporates three well-known exponential-type

distribution families. In the limit a→0, (4.5) becomes

d
bcΓ(c/d)

Tc−1 exp

(
−
(

T
b

)d
)

. (4.6)

When c = d, the Weibull distribution, WEIB(c, b), obtains. It is used widely in

reliability theory (e.g. [94]) for its flexibility and the simplicity of its cdf. The case

d=1 gives the gamma distribution, GAM(c, b), which also has a long tradition in

reliability theory, and in other contexts involving sequences of events. If c= d= 1

the exponential distribution, EXP(b), results, again with broad applications, in

1 This differs from the exponentiated Weibull distribution [95], though the two are equivalent for
certain values of the shape parameters.
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particular as the distribution of intervals between Poisson distributed events [64].

The choice of parameters should respect the asymptotics at the left tail (4.1) and

right tail (4.2), thereby requiring c, d ≥ 1 in (4.5). For sub-fractal processes with

p(0)>0, the mixture model would need at least one EXP distribution. The other

cases when p(0) = 0 could be dealt with using either of the GAM or WEIB

distributions; however the shape parameter would need to be fixed (c= 2) for the

pdf to be O(T) as T → 0, leaving only one unspecified parameter and therefore

less flexibility for the associated density contributions in (4.4). Alternatively, the

GEXPP distribution with c = d = 1 and a, b > 0 gives the ‘exponential product

distribution’, EXPP(a, b), which from (4.5) has pdf

a + b
b2 exp

(
−T

b

) [
1 − exp

(
T
a

)]
. (4.7)

This function is O(T) as T → 0; and as T→∞ the function is essentially exponen-

tial with parameter b.

From (4.1), the interval density is at least once differentiable when p(0)= 0, and

as the mixture components fk(T; θk) each have the form (4.5), we require

ck ≥ 2 if ak = 0, (4.8)

for GAM or WEIB densities. We shall extend this condition to cases where

p(0) > 0, and doing so does not suggest a loss of interpretation. According to

(4.2), the mixture component with the slowest decay should be strictly exponential,

which is achieved by either EXP or EXPP, the latter being necessary if p(0)= 0.

Given the mixture (4.4) with each fk(T; θk) having the form (4.5), the persistence

exponent is estimated as

Θ = max
k

{bk : dk = 1}. (4.9)

With the exception of results concerning the tails of p(T), it is not immediately
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obvious what are suitable parameter values. Specifying only a few parameter con-

straints allow for improvements to the estimation without necessarily increasing K,

the number of mixture components in (4.4).

A summary of the four distributions (EXP, GAM, WEIB, EXPP) is included

in App. B. Note that the EXP distribution is a specific case of the other three

distributions; in particular, EXPP(a, b) approaches EXP(b) as a→ 0. Again, we

emphasise that these should be compared to the random telegraph-wave process in

which intervals are given by one EXP distribution.

4.1.3 Solution Methods

Th goal is to use simulation data to find parameters such that the model (4.4) is

satisfactory according to tail behaviour outlined above and other criteria to follow.

As discussed in Sec. 2.4, parameter estimates are primarily found using maximum

likelihood estimation (MLE). The input data consists of crossing intervals T =

{Tm; m=1, . . . , nT}, the result of 103 realisations of the process x(t), each giving

≈5 × 103 intervals (3.17).

The underlying assumption is that for sufficiently large nT, the mixture model is

identifiable; that is, a unique characterisation of p(T) exists (subject to relabelling

of indices), important because we have proposed a basis distribution GEXPP, (4.5),

for crossing intervals of class 0 processes. When the model’s component densities

fk(T; θk) each have the form (4.6) (i.e. for GAM, WEIB or EXP distributions)

identifiability of the mixture has been established [60]. The EXPP and EXP

distributions only use scale parameters; other than the stretching or shrinking from

parameters prescribing different decay rates, the general shape of their density

functions remain the same for all parameter choices. This would advise against

having too many component densities from either the EXPP or EXP distributions,

both in terms of parameter estimation and what the models say about zero-crossings

of the original process.
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The problem can be stated as follows: to find parameters that maximise the log-

likelihood function [60]

l(T ; α) =
nT

∑
m=1

log(p(Tm; α)) =
nT

∑
m=1

log

(
K

∑
k=1

αk fk(Tm; ck, dk, ak, bk)

)
, (4.10)

and as outlined above, constraints for the parameters are determined by the choice

of fk(T; θk), chosen prior to the optimisation. The form of loglikelihood function

assumes the Tm are independent. Nevertheless, the intervals are dependent, but

for class 0 processes this dependence is sufficiently weak that the above form of

likelihood function is an acceptable approximation. The parameter estimates are

found by minimizing the negated loglikelihood function in MATLAB, primarily using

the implementation of the Nelder-Mead simplex method [73], and imposing that at

inadmissible parameter values l(T ; α)=−∞. The solution process as outlined here

is of a supervised nature. It is advantageous to fit the data with a single density

function that captures the persistence exponent, and then add extra component

densities based on additional characteristics of p(T) such as skewness, inflections

and turning points. Estimates for additional parameters are then found either by

observation or solving moment equations. The mixture parameters αk are such

that p(T) is dominated by one of the component densities, so that with reason-

able estimates of the other parameters the solution procedure will converge. More

importantly, the processes we consider are strongly connected so that estimates for

one process can be used as initial estimates for another process. Given two different

probability models, the one with the smaller error in moments and cdf (as compared

with the data) is selected.

4.2 results

A variety of class 0 processes gi are now explored, where for the index i, odd values

will denote a smooth process, whilst even i will denote a sub-fractal process. A

representative list of parameter estimates is given in App. F for reference. Each

Gaussian process is first described, followed by its interval density. Equations for
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power spectra are provided in App. A. Tables 4.1&4.2 summarise the density mod-

els, and Figs. 4.1–4.4 contain plots of the interval density that compare simulation

results and various models. We restrict the analysis to cases where McFadden’s

variance equations [48] give comparable results to simulation estimates, which in-

variably translates to σ2
T <30 and Gi(0)<20.

4.2.1 Smooth Processes

Class 0 smooth processes are in fact more complicated than their sub-fractal coun-

terparts, indicated by the range of correlation decay and the forms of interval density.

We consider processes with the following autocorrelations:

g1(τ) = exp
(
−τ2/2

)
; (4.11)

g3(τ, γ) =

sin
(√

3τ/
√

γ
)

√
3τ/

√
γ

γ

, γ ∈ N; (4.12)

g5(τ, γ) =

(
1 +

τ2

2γ

)−γ

, γ ∈ R>1/2; (4.13)

g7(τ, γ) = sech
(√

1 + γ2τ

)
cosh(γτ), γ ∈ R; (4.14)

g9(τ) =
3
(

sin
(√

5τ
)
−
√

5τ cos
(√

5τ
))

5
√

5τ3
. (4.15)

4.2.1.1 g1: Squared Exponential

Figure 4.1(a). The prototypical Gaussian process, and the limiting form of certain

smooth and sub-fractal processes, it has the fastest autocorrelation decay possible

for a differentiable process [39]. The crossings intervals have been identified as anti-

bunched, that is, repelled from each other [5, 47], and the Laplace inversion method

gives the persistence exponent as ≈ 0.4009 [5]. Figure 1(a) shows the interval

density, composed of one WEIB and one GAM pdf which capture behaviour near
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Process γ Decay Mixture Persistence

g1 - e−τ2/2 WEIB, GAM, EXPP 0.4256
g3 1 τ−1 WEIB × 3, GAM × 5, EXPP 0.4709

2 τ−2 WEIB × 2, GAM × 3, EXPP 0.4162
3 τ−3 WEIB × 2, GAM, EXPP 0.4389
4 τ−4 WEIB, GAM, EXPP 0.4296

g5 1 τ−2 SAA 0.3281
2 τ−4 SAA 0.3778
3 τ−6 SAA 0.3949
4 τ−8 SAA 0.4019

g7 0 e−τ GAM × 2, EXPP 0.3748
1 e−τ(

√
2−1) SAA 0.2829

2 e−τ(
√

5−2) GAM × 3, EXPP 0.1928
3 e−τ(

√
10−3) GAM × 4, EXPP 0.1442

g9 - τ−2 WEIB × 2, GAM × 2, EXPP 0.4581

Table 4.1.: Summary of class 0 smooth processes, their correlation decay, finite
mixture density models, and estimates of the persistence exponent Θ,
(4.2). SAA means “Same As Above”.

the mode of p(T), and the EXPP pdf describes the left and right tails. The three

mix together to give an inflection point just before the exponential tail takes over.

4.2.1.2 g3: Sinc Type 1

Figures 4.1(b)–(d) and 4.3. This type of process shows the effect of a power

spectrum that is nonzero on an open interval that includes the origin, and zero

otherwise. With reference to Sec. 2.7.3, the periodicity density (2.58) in this case

is bounded below owing to the Heaviside functions (see App. A.2). The γ=1 case is

referred to as low frequency white noise (e.g. [49, 52]), and in signal communication

the range of frequencies for which the power spectrum is nonzero has a physical

interpretation, such as the range of detectable sound frequencies. We note that this

type of oscillatory correlation is different from the class 1 and 2 type because the

power spectra are maximal and centred at the origin. Interval densities of the sinc

type 1 process are complex, as evidenced by the number of mixture components,

and the complexity is caused by the additional time scales given by zeros of the

autocorrelation. From (4.12) these occur at delay times
(√

3/γ/π
)

τ ∈ Z, and
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Figure 4.1.: Plots of the interval density for class 0 smooth processes. Simulation
estimates for p(T) are displayed as black dots and the finite mixture
models as red lines.

these translate into multi-modality in the zero crossings. This complexity reduces

as the parameter γ increases. In fact, if we let γ tend to positive integer infinity

so that g3(τ, γ) is a valid autocorrelation, then

lim
γ→∞

log(g3(τ, γ)) = lim
γ→∞

γ log
(

sinc
(√

3/γτ
))

= lim
γ→∞

γ log
(

1 − τ2γ−1/2
)

= lim
Y→0

log
(
1 − τ2Y/2

)
Y

= lim
Y→0

−τ2/2
1 − τ2Y/2

= −τ2/2, (4.16)

where the Taylor expansion of the ‘sinc’ function was used, followed by L’Hôpital’s

rule [40]; hence the limiting form of g3(τ, γ) is exp
(
−τ2/2

)
= g1(τ). Thus, the

γ= 4 case has the same form of interval density as the g1 process. For the three
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other cases the extra WEIB and GAM pdfs are required to capture the extra

turning/inflection points in p(T) due to zeros of g3(τ, γ).

A plot of the density in the γ=1 case is given in Fig. 4.3 and oscillations in the tail

appear to persist as T →∞. It has been shown [96] that p(T) is bounded above

and below by exponential functions, and so the process still has a finite persistence

exponent. We note that although the power spectrum mimics a uniform distribution

(A.2), the periodicity density (2.58) does not have finite support.

4.2.1.3 g5: Power-law

Figure 4.1(e)&(f). This type of process provides another extension from an invalid

power spectrum since if γ ≤ 1/2, the value at the origin goes to infinity (see

App. A.2); the power spectrum is not positive definite. Here we only consider inte-

ger values of the parameter γ for which the form of the power spectrum simplifies

to a polynomial-exponential product. Like the g3 process, as γ → ∞, the g5 auto-

correlation (4.13) converges to the squared exponential case, and Wilson [5] showed

that for valid values of γ, the g5 process behaves similar to the g1 process. Thus,

the density models use the same mixture form as the g1 process, the component

densities playing similar roles.

Slepian’s comparison theorem [93] applied here means there is always more mem-

ory in such a power-law process compared to the γ=∞ limit. Moreover, since the

autocorrelation function is non-negative, more variability is observed than in a sinc

type 1 process with the same autocorrelation decay. Thus the convergence to the

g1 case is here from a larger interval variance and smaller persistence exponent, in

agreement with (4.3).

4.2.1.4 g7: Sech

Figures 4.1(g)&(h) and 4.4(a). The γ= 0 case for this process maps onto to the

one dimensional ‘diffusion equation’ [97], achieved by transforming time t through

τ = log(t), the delay time in the Gaussian process. Other values of γ serve to

show that the autocorrelation decay for a smooth process can be made arbitrarily
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small; the mean crossing interval remains fixed at π whilst the variance grows. The

impact is that more mixture components are required in the density model, and

exclusively using GAM densities for the small T tempers the decay. Small T must

be understood relative to the variance which when γ=3 is approximately 26.0788.

Rewriting the autocorrelation function as

g7(τ, γ) =
e−
(√

1+γ2−γ
)

τ

1 + e−2
√

1+γ2τ
+

e−
(√

1+γ2+γ
)

τ

1 + e−2
√

1+γ2τ

gives a kind of exponential sum, but prescribing a smooth process, unlike the auto-

correlation g2(τ, γ) below.

4.2.1.5 g9: Sinc Type 2

Figure 4.1(i). This process was found by assuming a simple parabolic form of

power spectrum, taking the inverse Fourier transform, and adjusting coefficients

to conform to the class 0 Taylor expansion (Prop. 1). Additionally, it exemplifies

oscillatory correlation with two sinusoidal functions separated by phase alone. The

interval density is similar to those of the sinc type 1 process, and the autocorrelation

function can be generalized by considering faster power-law decay τ−γ, γ>2, with

γ−2 as the power on the sinusoids. This would enable the first turning point of

the autocorrelation function away from the origin to occur above the τ-axis. Unlike

g3(τ, γ), this family of functions cannot converge to the squared exponential as

both sinusoidal functions are required for the power spectrum to be valid. The two

types of sinc processes illustrate the point that oscillatory correlation must create

additional turning points and shifts in the power spectrum in order to observe new

features in the interval density.

4.2.2 Sub-Fractal Processes

The sub-fractal process is ostensibly a convolution of the ‘Ornstein-Uhlenbeck pro-

cess’ (OUP), which has autocorrelation ρ(τ)= e−|τ|. The OUP is the only Markov
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stationary Gaussian process [29], but it is non-differentiable so the mean interval

does not exist. The sub-fractal process is also recognisable from its power spectrum

S(ω): there exists a J > 2 such that for any j> J, the integral
∫ ∞

0 ω jS(ω)dω is

divergent. We consider the following forms of autocorrelation:

g2(τ, γ) =
γ2

γ2 − 1
exp

(
−|τ|

γ

)
− 1

γ2 − 1
exp(−γ |τ|), γ ∈ R>1; (4.17)

g4(τ) = sin
(

π

2
exp

(
−2τ

π

))
; (4.18)

g6(τ, γ) = exp
(
−
√

2γ − 1 |τ|
) γ

∑
j=0

(γ + j)!
(2γ)!

(
γ

j

)(
2
√

2γ − 1 |τ|
)γ−j

, γ ∈ N;

(4.19)

g8(τ) =
√

2 cos
(
|τ|√

2
− π

4

)
exp

(
− |τ|√

2

)
; (4.20)

g10(τ) = sin
( π

14

)
(exp(−γ̄ |τ|)

+2
3

∑
j=1

exp
(
−γ̄ |τ| cos

(
jπ
7

))
cos
(

jπ
7

− γ̄ |τ| sin
(

jπ
7

)))
,

γ̄−2 = −
(

sin
( π

14

)(
1 + 2

3

∑
j=1

cos
(

3jπ
7

)))
. (4.21)

Appendix A contains exact expressions for the corresponding power spectra, except

for the g4 process, though an approximate form is given. These set of processes

are closer to the telegraph-wave (TW) process, which has an exponential autocor-

relation and an exponential interval density—refer to 2.7.1.

4.2.2.1 g2: Exponential Sum

Figure 4.2(a)–(c). At first glance this process would seem the simplest class 0

sub-fractal process. For γ close to 2, the autocorrelation and the density model are

both an exponential sum. The γ=
√

3 case stands unique as the only non-trivial

example of a stationary Gaussian process for which p(T) is known explicitly [35],

given in App. B. A plot of this function, pw(T), is included in Fig. 4.2(b), and the

three parameters for the exponential mixture were found using known properties of
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Process γ Decay Mixture Persistence

g2
(1+

√
3)

2 e−2τ/(1+
√

3) EXP, EXPP 0.3093√
3 e−τ/

√
3 EXP × 2 0.2893

2 e−τ/2 SAA 0.2737
2
√

3 e−τ/(2
√

3) EXP × 3 0.2032
g4 - e−2τ/π EXP × 2 0.3037
g6 1 e−τ EXP, EXPP 0.3193

2 e−
√

3τ GAM, EXPP 0.3804
3 e−

√
5τ SAA 0.3929

4 e−
√

7τ WEIB, GAM, EXP 0.4019
g8 - e−τ/

√
2 WEIB, GAM, EXP 0.3524

g10 - e−0.3725τ WEIB × 2, GAM × 2, EXP 0.5203

Table 4.2.: Summary of class 0 sub-fractal processes, their autocorrelation decay,
finite mixture density models, and estimates of the persistence exponent
Θ, (4.2). SAA means Same As Above.

the density function (B.1): pw(0), µT and σ2
T. The value of the persistence ex-

ponent given in Tab. 4.2 compares well with Wong’s result of
(

2
√

3
)−1

≈0.2887.

Additionally, the third and fourth central moments of the exponential mixture both

have relative errors of order 10−3, and at the discretisation length ∆t = 1/200,

the absolute error in the cdf is∼10−7, the true value found by integrating Wong’s

pdf. These results show that using mixture models is a good choice. As γ → 1

the autocorrelation approaches (1 + τ) e−τ, which is a Matérn process described

below; and for parameters values close to 1 the density model is better estimated

by the EXP-EXPP mixture.

In the opposite direction, similar to the sech process, g7, as γ grows, the interval

density for the g2 autocorrelation necessitates more mixture components since al-

though the mean remains the same, p(0) increases and the persistence exponent

decreases. Miroshin [98] has studied the exponential sum process, and labelled it a

Wong-type. It can be shown that adding additional exponential functions to the au-

tocorrelation, and requiring the standardized Taylor expansion above (Prop. 1) and

non-negativity of power spectrum, leads to a smooth process for which p(T) = 0.

Indeed, the ‘sech’ function can be expanded as an infinite series of exponential

functions ([72], Eq. 1.232.2). Interestingly, Miroshin’s goal was to use the g2 pro-
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Figure 4.2.: Plots of the interval density for class 0 sub-fractal processes. Simulation
estimates for p(T) are displayed as black dots and the finite mixture
models as red lines. Additionally, Wong’s density function (B.1) is
included in (b) as a solid blue line.

cess to show that Rice’s results on crossing moments apply to the OUP, effected

through the transformation τ 7→γτ and taking the limit γ→∞. Wong’s process

which relates to Brownian motion remains a special case, though it is conceivable

that a similar analysis to that of Wong could yield a result. Based on the above

discussion, such a solution is likely to be of greater complexity if γ is not close to

2.

4.2.2.2 g4: Sine Convolution

Figure 4.2(d). As mentioned in the discussion of the TW process, Sec. 2.51, a

Gaussian autocorrelation can be constructed by assuming the accompanying clipped

process (2.14) has the same autocorrelation as a non-Gaussian process with Poisso-

nian crossings. Inverting the arcsine rule (2.16) and substituting for R(τ) the form
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(2.51) leads to (4.18). Figure 4.2(d) shows crossing intervals are well described

by a mixture of two exponential distributions, and unlike in a Poisson process the

intervals are dependent.

4.2.2.3 g6: Matérn

Figure 4.2(d)–(g). Strictly speaking, we investigate the half-integer Matérn pro-

cess; the full form of autocorrelation can be found in [39], which also shows the

Matérn process to be solutions to homogeneous stochastic differential equations

relating to autoregressive processes. The general g6(τ, γ) function which allows

for non-integer values of the parameter has the same form as G5(ω, γ), the power

spectrum for the power-law process. Thus, as the parameter γ tends to infinity, the

Matérn process also converges to the squared exponential case. Moreover, succes-

sive values of γ∈N>1 serve to remove odd terms in the Taylor expansion of the

autocorrelation, and so the process is γ-times differentiable.

Table 4.2 demonstrates the approach of the Matérn process towards smoothness.

Method of moments for an exponential mixture produces negative parameter values

when γ = 1, so we instead model the left tail using an EXP pdf, and the right

tail using a EXPP pdf. As γ increases, the autocorrelation becomes thrice differ-

entiable so that p(0)= 0, reflected in the change in density mixture. By γ= 4, it

has inherited the characteristics of the g1 process, their persistence exponents now

within 2% of each other.

4.2.2.4 g8: Cosine-Exponential Product

Figure 4.2(h). This process arises in ‘linear filter theory’ as the linear oscillator

driven by white noise [37]. Analytically, the process is a soft modification to the

OUP, and this is reflected in the density model. The WEIB and GAM pdfs are

used to incorporate the inflection point near the mean. The EXP pdf describes

the limit at both the origin and the tail, its dominance demonstrated by the value

of the associated mixture parameter, α3 ≈ 0.7233. The process is sub-fractal and

so short intervals occur with high probability. However, this is balanced by the
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oscillatory part of the autocorrelation (4.20). This effect of oscillatory correlation

enforcing bi-modalities and inflection points in the density profile near the origin

will again be encountered in the next chapter. By expanding the cosine in g8(τ) it

is seen to have two sinusoids separated by phase alone; hence the power spectrum

is concentrated at the origin.

4.2.2.5 g10: Butterworth

Figure 4.1(i). The full name of this process is the ’low-pass seventh-order But-

terworth’ process, and it was used by Mimaki [50] in constructing models for the

correlation coefficient when a scale parameter is varied such that the power spec-

trum evolves out of a class 0 classification. The power spectrum is continuous and

decays like ω−14, thereby closely resembling the g3, γ= 1 case, and here too the

interval density has multi-modalities. Note that for the g10 process, the density

mixture in Tab. 4.2 has four less components than that g3 case, and the density

tail does not have persistent oscillations. Both distinctions are a consequence of

the power spectrum being fully, rather than piecewise, continuous. Again, we em-

phasise that oscillatory correlation does not necessarily cause non-class 0 crossing

interval behaviour, and that the prediction depends on the form of power spectrum

near the origin.

4.2.3 Dependence in Class 0 Processes

The finite mixture model assumes the sample data can be partitioned into indepen-

dent sub-populations governed by a single distribution. A physical example would

be a stock of different electrical products, each with different failure rates. The

hyperexponential (mixture of two exponentials) random variable then arises when

a product is selected at random. One could pursue such an interpretation, for ex-

ample: the autocorrelation of a g2 process has two correlation decay scales, one

of which dominates at large delay times, and this duality is reflected in the zero-

crossings. It could also be said that the symmetry of a Gaussian process causes
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Figure 4.3.: Plot illustrating the important roles of the component densities for the
g3 process with γ=1. In order to better resolve the tail of the density
function, 2000 realisations were simulated. The Slepian regression so-
lution was computed using the MATLAB toolbox WAFO [30].

intervals of varying lengths, and then stationarity of the process means some prop-

erty of the interval sequence is preserved so that the distribution is independent of

shifts in time. Given the difficulty of obtaining the analytic interval density, there

is the mathematical convenience of using different distributions to obtain a simple

but capable description in the aggregate. The sinc type 1 process with parameter

one is a perfect example of this, and displayed in Fig. 4.3. The EXPP pdf gives

the foundational structure of the density function, particularly the skewness. The

remaining pdfs cover the turning points of the interval density; the ‘peakedness’ at

those points determine whether a WEIB or GAM pdf is more appropriate. The

figure includes the result from applying the Slepian regression method, Sec. 2.2.3.2,

and so the finite mixture model provides a useful, approximate decomposition of

an integral equation (2.32) with additional elements that must themselves be eval-

uated numerically.
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Dependence in the sequence of crossing intervals modelled using Markov chains

was described in Sec. 2.2.2 and we now test the accompanying Laplace transform

method for class 0 processes. From (2.31)

p(T) = L−1[ p̄(s)] = L−1[h(s) /(1 − h(s))] , (4.22)

where from (2.30), and with R=⟨T⟩−1=π−1,

h(s) =
1
2
+

s
2

∫ ∞

0

ρ′(T) e−sT√
1 − ρ2(T)

dT; (4.23)

ρ(τ) is the autocorrelation. For the g4 process, (suppressing the argument) the

autocorrelation (4.18) satisfies ρ′=−e−2τ/π
√

1 − ρ2, so

h(s) =
1
2
− s

2
L
[
e−2T/π

]
=

1
2
− πs

2(πs + 2)
=

1
πs + 2

⇒ p̄(s) =
1

πs + 1
,

which from App. B.3 is the generating function for the EXP distribution with mean

π.

Another example where the integral (4.23) may be evaluated directly is the g7 pro-

cess with γ=0. This case of the autocorrelation (4.14) satisfies ρ′=−ρ
√

1 − ρ2.

Substitution into (4.23) gives ([99], Eq. 4.9.7)

h(s) =
1
2
− s

2
L[sech(t)] =

1
2

[
1 − sβ

(
s + 1

2

)]
, (4.24)

where

β(z) =
1
2

[
ψ

(
z + 1

2

)
− ψ

( z
2

)]
, z > 0, (4.25)

and ψ(z) = d(log(Γ(z)))/dz is the digamma function. The form that results

upon substitution into (4.22) can be inverted numerically using Talbot inversion as

implemented in MATLAB by McClure [58]. Results for both processes are found

in Fig. 4.4 and compared with the previous finite mixture models. The estimate

from the Laplace inversion is better for the smooth ‘sech’ process. The correlation

coefficients for the g7 case are κ̂1≈−0.0043 and κ1=−0.0053, where the accented
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Figure 4.4.: Plots comparing Laplace inversion (blue curves) and finite mixture
(dashed red curves) methods for the interval densities given autocorre-
lations (a) sech(τ) and (b) sin(π exp(−2 |τ| /π)/2). The g7 case
uses a GAM-GAM-EXPP mixture, and the g4 case an EXP-EXP
mixture.

coefficient is the simulation estimate and the other from the model (3.30). For the

g4 process κ̂1 ≈ 0.0416 and and κ1 = 0.0492. It could be said that in the g7 case

interval dependence is weaker, and therefore the Markov chain assumption is closer

to being true. What we will say is that the Markov chain model, and also the

Slepian regression approach, are more accurate for smooth processes, one reason

being that there are fewer turning points between zero-crossings and therefore less

correlation in the crossing sequence. Also related to this is the correlation decay,

which is e−τ for g7, and e−2τ/π for g4; a slower correlation decay means there is

more memory over a longer range, thereby limiting the Markov chain assumption.

4.3 summary

A variety of class 0 processes have been presented and their interval densities mod-

elled using a small selection of distributions. That such a representation is possible

is supported by the fact that most of the processes are related, the relations ex-

tending across the smooth/sub-fractal divide. Mixture models demonstrate the

changing nature of the interval density for each Gaussian process; the right tail

may be exponential as T → ∞, and the left tail approach a constant or be linear

as T → 0, but many other characteristics may be observed in-between. The two



4.3 summary 89

determining factors from the autocorrelation are magnitude of the autocorrelation’s

third derivative at zero, and the absence/presence of oscillatory correlation. The

selection of processes that have been considered are representative of those encoun-

tered in the long history of the zero-crossing problem, and thus provides information

on expected behaviour.

The next chapter will extend the mixture perspective to cases where crossing inter-

vals are strongly correlated and the power spectral density is no longer concentrated

at small frequencies. The goal is to map from the class 0 case, the underlying prin-

ciple being that knowing the interval density of the class 0 case almost determines

the corresponding classes 1 and 2 forms—advantageous because finding the density

for the former is comparatively simpler.



5
COMPOUND M IXTURE MODELS FOR THE INTERVAL

DENS ITY

In the previous chapter, a basis function was used to construct interval density

models for families of class 0 processes that have a “simple” kind of interval de-

pendence. It is conceivable that finite mixture models also exist for classes 1 and

2 processes; more interesting is whether the relationships between power spectra

as derived in equations (3.9)–(3.10), translate to the interval density. We seek a

connecting mechanism different from Markov Chain models (e.g.[5]), informed by

the discussion of sample function periodicity (Sec. 3.4), and preserving the analyti-

cal flexibility of the previous chapter. To this end, we introduce compound mixture

models, which as described in Sec. 2.3.2 can model the transformation of a param-

eter into a random variable.

Stochastic periodicity was discussed in Sec. 2.7.3, and we stated that level-crossing

intervals T are necessarily bounded above by periodicities η. From this we may

conjecture that a kernel function K(T, η) exists such that the periodicity density

fS(η), (2.58), is related to the interval density p(T) through

p(T) =
∫ ∞

T
K(T, η) fS(η)dη. (5.1)

For the telegraph wave process which has exponentially distributed intervals, we

have from (2.59)

p(T) = Re−RT =
∫ ∞

T
R2e−Rηdη

90
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≡
∫ ∞

T
K(T, η) fS(η)dη =

∫ ∞

T

2RK(T, η)

π2 + R2η2
dη,

⇒ K(T, η) =
1
2

Re−Rη
(

π2 + R2η2
)

, (5.2)

and note the kernel is independent of T. The cos-wave process suggests another

approach: using random variables, since the zero-crossing intervals are all half the

period of the process; that is T=η/2, also indicating the two are dependent. For

a Gaussian process, the choice of kernel or random variable is less obvious. The

models we propose combine the two approaches.

We start by exploring changes in the power spectrum caused by increases to the

periodicity parameter a, and then show they provide critical values for the transition

out of a class 0 process. Thereafter, sample functions and their crossings are used

to illustrate the transformation principle from the class 0 interval density to that

of classes 1 or 2; crossings simulated with the same RNG seed but different power

spectra overlap within certain time scales. This is then formalized by the derivation

of a generalized random variable for crossing intervals, and its distribution found

from its generating function. The model is tested on representative processes for

varying a, and various consequences of the model are discussed—in particular, man-

ifestation of the parameter a as a distribution embedded in zero-crossing intervals.

Our focus shall be on the classes 1 and 2 forms of the smooth process g1, (4.11),

and the sub-fractal process g2 with γ=
√

3, (4.17), the latter providing an example

of how behaviour of the interval density near the origin evolves with a. The power

spectra are given by

Sij(ω; a) =
(j − 1)

2
Gi(ω) +

1
2j

(
Gi

(
ω +

a

π
√

23−j

)
+ Gi

(
ω − a

π
√

23−j

))
,

(5.3)

where

G1(ω) =
√

2π exp
(
−2π2ω2

)
, G2(ω) =

8
√

3
(3 + 4π2ω2)(1 + 12π2ω2)

.

(5.4)
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The density models will again be validated using simulation data, but the preceding

analysis aims to be general in its description, so that the categorisation of classes

0, 1 and 2 readily transfers to other processes encountered in the literature.

5.1 motivation

5.1.1 Power Spectrum Changes

We have said that classes 1 and 2 processes are best distinguished by their power

spectra, and Figs. 5.1(a)&(b) show how the power spectrum S1j(ω; a) changes as

a increases, a visualisation of the analytic results of equations (3.11)–(3.14). In

the class 1 case, only one maxima exists and is at the origin when a ≤ 1; and for

larger a, two maxima form, with the value at the origin going to zero as a→∞. As

was shown in Sec. 3.3.2, increases to a lead to a gradual regularisation in the sense

that sample functions tend towards a sinusoidal wave-form (Fig. 3.5). In the class

2 case, Fig. 5.1(b), the departure from the class 0 profile is much slower owing to

the extra contribution near the origin (5.3). When a=
√

3 there is one maxima at

the origin and two inflection points, and by a=3, these have become minima and

there are two additional maxima. The origin remains the global maximum, and so

the regularisation at extreme a does not lead to approximately sinusoidal sample

functions as in the class 1 case. These observations relate back to the point on

time scales relating to the power spectrum, Sec. 3.4.

The changes to the power spectrum naturally define critical values of a that lead

to significant changes in sample function and zero-crossing behaviours. Consider

the value of the power spectrum at the origin as a function of a. Being an even

function, of particular interest are values of a such that second and higher order

derivatives of Sij(0; a) are equivalently zero. From (5.3), this reduces to finding

zeros of the function

S0(a, k; i, j) = G(k)
i

(
a

π
√

23−j

)
, (5.5)
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Figure 5.1.: Plots demonstrating changes to the power spectra S1j(ω; a). The
legends in plots (a)&(b) represent values of the periodicity parameter
a. Provided in plot (c) are the first few curves resulting from equation
(5.5) when i= j=1.

where the bracketed superscript notation is used for the k-th order derivative.

Specialising now to the squared exponential case, Fig. 5.1 (c) contains plots of

S0(a, k; 1, j) for k = 2, . . . , 5 when j = 1, and since (5.5) is monotone in j, the

curves for j=2 are identical up to a rescaling of the axes. The zeros of S0(a, k; 1, j)

satisfy polynomials in a, and for k≤5 the nonzero solutions are:

k 2 3 4 5

a
√

21−j
√

21−j · 3
√

21−j
(

3 ±
√

6
) √

21−j
(

5 ±
√

10
)

Table 5.1.: Critical values of the periodicity parameter, found by solving
S0(a, k; 1, j)=0, from Eq. (5.5).

In agreement with the plots in Fig. 5.1 (a)&(b), the most important values in terms

of dissimilarity to G1(ω) are

a0 :=
√
(1 + j) /2. (5.6)

Let au denote values of a where S1j(ω) has an undulation point (first and sec-

ond order derivatives equal to zero). When j = 1, au = 1, and for a > au the

origin is a minimum point of the spectrum. When j = 2 the origin is always the

global maximum and au ≈ 1.8580. The spectrum either has two inflection points
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(
√

3/2< a < au) or two additional maxima (a > au). There is therefore an inter-

val I0 containing values of a such that the oscillatory process ρij in fact has the

properties of a class 0 process. The key determiner of class categorisation is not

non-negativity of the autocorrelation, but the number of changes in first and second

order derivatives of the power spectrum Sij(ω). Therefore, we list the following

classification properties, supplementary to Prop. 1, for a stationary process with

power spectrum S(ω):

Proposition 2 (Process Classification)

� Class 0: S(ω) has a maximum at the origin, and either has no additional

stationary/inflection points or is a rectangular function centred at the origin;

� Class 1 process: S(ω) has a minimum at the origin and additional station-

ary/inflection points away from the origin, including at least two maxima;

� Class 2: S(ω) has a maximum at origin and additional stationary/inflection

points away from the origin.

The above analysis to identify significant changes in the power spectrum Sij(ω) can

be repeated for any modified class 0 process provided the derivative of the original

spectrum exists at the origin, meaning roots of Eq. (5.5) exist. One such exception is

the power-law process (4.13) with γ=1 for which Gi(ω) is an exponential function

with a cusp discontinuity at the origin. In this case I0={0}, so ρ5j(τ; γ=1, a>0)

is always a class 1 or 2 process. When the class 0 autocorrelation is already periodic

such as in the g3 case, (4.12), one critical value of a is readily obtained from the

oscillatory part of the autocorrelation, the effect on the process being that there

are competing periodicities either side of that critical value.
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5.1.2 Sample Function Changes

Changes in the power spectrum are reflected in sample functions. Recall that for

the Gaussian process ρij, the mean interval between zero-crossings is

⟨T⟩ = π/
√

1 + a2, (5.7)

and this may be used as a time-scale for tracking sample function changes. If

we generate realisations for different values of a using the same random number

generator (RNG) seed, and then (with time rescaled) overlay their sample function

curves, we obtain plots as in Figs. 5.2(a)&(b). In both we see that the sample

function at the critical values a0 =
√
(1 + j) /2 is almost identical to the a = 0

case; zero-crossings and turning points virtually coincide and so we expect the

interval densities to be similarly related. For values of a above these critical values,

the realisations are less comparable to the a=0 case, and certain of the crossings (in

rescaled time) are either removed or added, in accordance with asymptotic regularity

of the process. Note that the changes are slower (i.e. require larger a) for the ρ12

process which has a larger critical value a0. For a> 3 the differences are far more

than a contraction of time, and the oscillatory correlation starts to dominate. In

Fig. 5.2 (c)&(d) we once again overlay the sample functions but without rescaling

time. Let x0(t) be the realisation when a = 0, and x1j(t) the realisation when

a = 5. We observe that if two adjacent crossings r1, r2 of x0(t) are “matched”

with crossings of x1j(t), between r1 and r2 there is almost always a series of extra

crossings. This suggests a sampling or mixing of a ‘base state’ of crossings due

to gi(τ), and a regulatory or ‘latent state’ due to the periodic modulations in ρij.

Such a mixing idea is better indicated by the plot for the class 1 case; nevertheless,

both plots (c)&(d) of Fig. 5.2 clearly display the extra crossings as highly correlated,

as though belonging to a sub-population. We now formalize our observations into

compound mixture models.
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Figure 5.2.: (a)&(b): Sample function plots for processes ρ11 (a) and ρ12 (b) with
time rescaled by the mean interval length to highlight the similarity in
profiles when a is small and close to the critical values

√
(1 + j) /2.

(c)&(d): Plots comparing sample functions and zero-crossing locations
for the ρ1j process when a=0 (solid black line, with crossings as blue
circles) and when a=5 (dotted red line, with crossings as green circles),
illustrating the mixing idea of zero-crossings when a > 0. In all four
plots, the legend indicates the value of a for each curve.

5.2 generalised random variable for crossing intervals

5.2.1 Derivation

Consider an arbitrary interval of length τ with distribution p0(τ) and spanning two

consecutive random crossings r1, r2 of a base random process, as signified by a blue

double arrow in Fig. 5.2(d). Suppose modification of the base process leads to

a new process with “additional” crossings. Let η represent the intervals between
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these extra crossings, as signified in Fig. 5.2(d) by a green double arrow. The

number of intervals of length η after r1 up to and including r2 is 1 + β1(τ/η), for

some β1≥0, and the size of each interval between r1 and r2 is thus approximately

T = τ/(1 + β1(τ/η)). From this construction, if the change to the base process

is small, we expect T ∼ τ, whilst if the change is large we expect T ∼ η. In the

zero-crossing context described above, these two extremes respectively correspond

to small and large values of the periodicity parameter a. We proceed with a more

general form of random variable for crossing intervals of the new process:

T(τ, η) = τ/
(

1 + β1(τ/η)β2
)1/β2

, β1, β2 > 0. (5.8)

Here as in the literature on compound mixtures (e.g. [63]) we refer to η as the

‘latency variable’ having some density f (η). The compound variable T will have

density p(T) which we seek to model via a transformation from the distribution of

the base random variable τ.

From (5.8), τ can be expressed as

τ = T/
(

1 − β1(T/η)β2
)1/β2

, (5.9)

and the maximum length of a crossing interval T of the new process is

TM = max
{

lim
τ→∞

T(τ, η)
}
= β

−1/β2
1 max{η} ≡ β

−1/β2
1 ηM. (5.10)

The generating function of T(τ, η) is then

L[p(T)] =
∫ TM

0
e−sT p(T)dT

≡
∫ ηM

0

∫ ∞

0
e−sT(τ,η)p0(τ) f (η)dτdη, dτ = dT

(
1 − β1(T/η)β2

)−1−1/β2

=

ηM∫
0

β
−1/β2
1 η∫
0

e−sT(
1 − β1(T/η)β2

)1+1/β2
p0

 T(
1 − β1(T/η)β2

)1/β2

 f (η)dTdη
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=

TM∫
0

ηM∫
β

1/β2
1 T

e−sT(
1 − β1(T/η)β2

)1+1/β2
p0

 T(
1 − β1(T/η)β2

)1/β2

 f (η)dηdT,

where we have substituted (5.9) and reversed the order of integration. It follows

from equivalence of definition that

p(T) =

ηM∫
β

1/β2
1 T

1(
1 − β1(T/η)β2

)1+1/β2
p0

 T(
1 − β1(T/η)β2

)1/β2

 f (η)dη.

(5.11)

For zero-crossings of Gaussian processes ρij defined in Sec. 3.1, we have found the

model with β1 = 1, β2 = 2 to be sufficient to capture the principle features of the

interval density function, whereupon (5.11) reduces to

p(T) =

ηM∫
T

( τ

T

)3
p0(τ) f (η)dη, τ = T/

(
1 −(T/η)2

)1/2
. (5.12)

Appendix C details the tail behaviour predicted by the model (5.11), discussed

further below.

5.2.2 The Latency Density

We choose to refer to f (η) as the ‘latency density’, rather than the mixing density,

because even though the latter describes its role, latency better preserves the notion

of embeddedness of the periodicity parameter a. It remains to specify a form for

f (η), and for a first approximation we use the power spectrum. If η were the

length between zero-crossings of a cosine function, 2η would be the period and the

frequency ω=1/(2η). Using this transformation gives

fs(η) = 2 fS(2η) =
1
η2 Sij

(
1

2η
; a
)

, (5.13)
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Figure 5.3.: Plots of the interval density obtained from 1000 realisations (black
circles) of the process ρ1j when (a) a = 0, (b) j = 1, and a = 3 (c)
j = 2, a = 3, with corresponding mixture models shown as solid red
lines. The model in (a) is a finite mixture (4.4), whilst (b) and (c)
contain the compound mixture model (5.12) that uses (5.13) as the
latency density.

a rescaled version of the periodicity density (2.58). The results are shown in Fig. 5.3

(b)&(c) when a=3 for the process ρ1j, and we include p0(τ) for comparison. The

plots demonstrate the transformation principle, particularly for small intervals T

(which follows from expanding (5.12) near the origin) and around the mode. The

power spectrum Sij(ω) has a maximum at ω≈ a/(2π), so that the mode of fs(η)

is η ≈π/a (the asymptotic form of the mean interval length), and we would like

to have T∼η as a→∞. There are other properties required by the mixture model

(5.12) which fs(η) simply does not have, and this is because on its own it does not

exclusively filter out zero-crossing returns (refer to Sec. 2.7.3).

Taking the same approach as the previous chapter, we further specify finite mix-

ture models for the latency density, the choice of which is largely informed by the

different tail behaviours. In particular, Fig. 5.4 (a)&(b) demonstrate the range of

the crossing intervals as a increases. For a class 1 process, increasing a suggests

a truncation of the support of p(T) towards twice the mean interval, and so we

shall use BETA density components in f (η). Conversely, for a class 2 process

the variation relative to the mean interval grows linearly with a, alongside the in-

crease in the rate of crossings. We shall therefore use a combination of BETA and

GEXPP density components for f (η), thereby combining features analogous to
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Figure 5.4.: (a)&(b): Plots illustrating asymptotics of the maximum interval ob-
tained in simulations as a increases for the process ρ1j. (c) Plot of

estimates for p(T=0) as a increases for the process ρ21.

how the power spectrum (5.3) in this case combines classes 0 and 1 behaviours.

The GEXPP density was given in Eq. (4.5), and further details for the BETA

distribution are found in App. B.7. In terms of the construction, a mixture of at

least three distributions is necessary to capture the interval variance, the curvature

of p(T), and other properties described below.

5.2.3 Refinements for Sub-Fractal Processes

As a final note, when the base process is sub-fractal and its interval density is

nonzero at the origin, for the new process, the density p(T) tends to zero at the

origin as a → ∞; that is, periodicity suppresses sub-fractal effects. Here we only

deal with the ρ21 process, and a plot of p(0) as a function of a is included in

Fig. 5.4 (c). A simply way to deal with this property is to change the base density:

p0(τ) 7→ ϵp0(τ) +(1 − ϵ) pϵ(τ) , 0 ≤ ϵ ≤ 1, (5.14)

for some function pϵ(τ) that is zero at the origin; then (5.12) implies p(0)=ϵp0(0).

The continuity condition (C.4) jointly constrains pϵ(τ) and f (η), and so pϵ(τ) is

chosen such that it has mean π and approaches the origin like O(τ). This is

achieved using a mixture density similar to the g1 density model, so that with
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lima→∞ ϵ(a) = 0, it in effect defines a surrogate smooth process approached by a

sub-fractal process as oscillatory correlation increases.

The model (5.12) is now completely specified, and once again we use maximum

likelihood estimation (MLE) to find the parameters. The solution method remains

unchanged if we assume that we need not modify the loglikelihood function to

account for dependence amongst the intervals. Each evaluation of the loglikelihood

function now requires integration at every Tm from the interval data:

l(T ; α, ϵ) =
nT

∑
m=1

log(p(Tm; α, ϵ))

=
nT

∑
m=1

log

 ηM∫
Tm

(τm/Tm)
3 p0(τm; ϵ) f (η; α)dη

,

τm = Tm/
(

1 −(Tm/η)2
)1/2

, (5.15)

where ϵ=0 for a smooth process. The optimisation can be sped up by using fewer

realisations (and therefore, fewer crossing intervals) than in the a=0 case, and also

by making use of mex functions1.

5.3 results

5.3.1 Class 1 Processes

Figure 5.5 compares the interval density obtained from simulations and the com-

pound mixture model (5.12) for the process ρ11. Here the class 0 regime is I0=[0, 1],

and for values of a in this interval, the density is better represented by the finite

mixture model WEIB-GAM-EXPP—the same form as that of the g1 process

(Tab. 4.1), and this similarity supports the time-contraction property (Fig. 5.2).

When a > 1, the right tail of the density is clearly not exponential and resembles

a multinomial (according to f (T)). As a grows, the density becomes more sym-

metric in line with the increased regularity of the crossings. The mode approaches

1 https://uk.mathworks.com/help/matlab/call-mex-file-functions.html.

https://uk.mathworks.com/help/matlab/call-mex-file-functions.html
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the mean interval length, and at either side, inflection points or shoulders develop,

specifically at 1.5 standard deviations from the mean. This agrees with earlier com-

ments on crossings being bounded by the modal periodicity (Sec. 2.7.3), and so the

density profiles are a demonstration of narrow randomness, à la a cos-wave process,

Sec. 2.7.2. At large a (a ≥ 3), the shape of the distribution mirrors the latency

density f (η), here a BETA mixture. More than one beta pdf is needed so as to

capture the symmetry, the peakedness, the tails and the width (⟨T⟩±1.5σT). When

the component density curves intersect an inflection point can present in f (η), de-

pending on the shape parameters. These properties make the BETA mixture a

suitable latency density for the transformation to p(T).

Results for the sub-fractal process ρ21 are given in Fig. 5.6 and similar features to

its class 1 counterpart are observed, though at a much slower rate owing to the

larger interval variance (see Fig. 3.5). Here I0 =[0, 0.3295], and plots (a) and (b)

show both the density model (5.12) and a mixture of two exponentials, the latter

providing a better estimate and having the same form as that of the g2 process

(with γ =
√

3, Tab. 4.2). As mentioned above, increasing a leads to a gradual

suppression of sub-fractal effects, particularly as the “most common” interval goes

from zero, a tangent-type crossing, to the mean interval. To estimate when these

changes occur a second sequence of critical a values may be obtained by considering

terms in the Taylor expansion of ρ21(τ; a), specifically when there are sign changes.

From equations (3.1) and (3.31).

ρ21(τ; a) = 1 −
(
1 + a2)

2
τ2 +

2
√

3
9

|τ|3 +
(
3a4 + 18a2 − 13

)
72

τ4

−
(
3a2 − 1

)
9
√

3
τ5 + . . . . (5.16)

For a smooth process the expansion would contain only even terms, each nonzero

and with alternating sign; therefore when this is resembled by the expansion for

a sub-fractal process it indicates a smoothening of the process. The fifth term

of the expansion (5.16) is zero when a = 1/
√

3, and the corresponding density
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Figure 5.5.: Plots of the interval density for zero-crossings of the process ρ11 for val-
ues of the periodicity parameter a>0. Histogrammed data are shown
as black dots, and density models as solid red lines. In plots (a)&(b) the

solid red lines represent the rescaled density
√

1 + a2p0

(√
1 + a2T

)
for when a is below the critical value, a=1. The density model (5.12)
is displayed as a solid red line in plots (c)–(f). Also included as dashed
green lines are plots of a finite mixture model WEIB-GAM-EXPP
which are similar to the rescaled p0(τ) density.

is shown in plot (c): the profile is largely a more exaggerated version of that in

the plot prior, except the tail is not exponential. The fourth term of the expansion

(5.16) is positive for a>
√√

40/3 − 3, and at this value (shown in plot(d)) p(T) is

approximately equal at the origin and at the mode—sub-fractal effects are balanced

by the periodicity. For still larger values of a, p(T) becomes less distinguishable in

shape from that of the smooth process (compare Fig. 5.6 (i) and Fig. 5.5 (g)), as

captured in the density model that uses the revised base density (5.14). Note: the
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Figure 5.6.: Plots of the interval density for zero-crossing of the process ρ21 for val-
ues of the periodicity parameter a>0. Histogrammed data are shown
as black dots, and density models as solid red lines. In plot (a), the

solid red line represents the rescaled density
√

1 + a2p0

(√
1 + a2T

)
for when a is below the critical value, a≈ 0.3295. The density model
(5.12) is displayed as a solid red line in plots (b)–(f). Also included as
dashed green lines are plots of a finite mixture model EXP-EXP which
in plot (a) is similar to the rescaled p0(τ) density.

third term in (5.16) is independent of a meaning p(0)>0, always. Notwithstanding,

the dominance of the periodicity parameter at large a makes the density increasingly

dissimilar to the a=0 case.
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5.3.2 Class 2 Processes

Figure 5.7 portrays the greater complexity of interval density for the class 2 process

ρ12. The density is approximately exponential at large T, and the mode tends to

⟨T⟩/
√

2 as a → ∞. This symmetry is again a reflection of the strong correlation

in the interval sequence (see Fig. 6.3), very different from the class 1 case. Here

the class 0 regime is I0 =
[
0,
√

3/2
]
and we include the g1 mixture model form

to highlight the similarity in this regime (plots (a)–(c)). For a >
√

3/2, p(T) is

partitioned into two forms at approximately
√

2⟨T⟩, and this is encapsulated in the

form of the latency density, f (η): small intervals (near the mode) are governed by

BETA distributions, and large intervals by GEXPP distributions. In addition, p(T)

develops oscillations with period ∝
√

2⟨T⟩. The oscillations dampen as T → ∞,

and their maximum amplitude increases as a→∞.

We can demonstrate a higher order nonlinearity of the crossings by returning to the

general form of the density model (5.11). If we allow β1 to depend on T, the range

of integration can then expand/contract, thereby allowing for scale changes that

match the simulation estimate of p(T). This is of course no longer a maximum

likelihood problem, but more akin to ‘least squares estimation’. One approach is

to first smooth the density as estimated numerically by a histogram of the data,

giving p̂(T), and then find β1(T) that solves p(T)= p̂(T). Figure 5.8 proves the

added variation in β1 can account for the extra features in the density, and in spite

of our crude approach, β1 is close to 1 for most values of T. Our choice to keep β2

constant at 2 preserves the symmetry to Rice’s result (5.7). This extra nonlinearity

explains why the matching of crossings in Fig. 5.2 (c)&(d)) is less apparent for the

class 2 process.

5.4 latency in classes 1 and 2 processes

How apposite is the label “latency”, and what does the latency density do for us?

The latency density models regularity. Figure 5.9 demonstrates how f (η)
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Figure 5.7.: Plots of the interval density for zero-crossing of the process ρ12
for values of the periodicity parameter a > 0. Histogrammed data
are shown as black dots, and the density model (5.12) as solid red
lines. In plots (a)–(c) the solid red lines represent the rescaled den-

sity
√

1 + a2p0

(√
1 + a2T

)
for when a is below the critical value

a=
√

3/2. The density model (5.11) is displayed as a solid red line in
plots (c)–(f). Also included as dashed green lines are plots of a finite
mixture model WEIB-GAM-EXPP which are similar to the rescaled
p0(τ) density.

changes as a increases for processes ρ1j. Just as the power spectrum reveals how

frequencies (equivalently, periodicities) are distributed in the process x(t), the la-

tency density indicates how periodicity is represented in the zero-crossings of x(t).

For values of a in the class 0 regimes the means and variances of η are large—

strong irregularity—whilst at large a the distribution significantly narrows—strong
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Figure 5.8.: (a) Plot of the interval density for the process ρ12 when a=5, compared
against the model (5.11) when nonlinear dependence is incorporated.
(b) Plot of scale parameter β1(T).

regularity. We may even identify a variable for a since it is analogous to angular

frequency:

ζ = 2πω = 2π(1/2η) = π/η; (5.17)

and above we referred to a symmetry in the crossing variable defined in (5.8) with

respect to Rice’s result: when β1=1, β2=2,

T(τ, η) = T(τ, π/ζ) = τ/
(

1 +(τζ/π)2
)1/2

∼ π/ζ, (5.18)

the last step using the small η (i.e. large ζ) simplification. This is another example

of what we have referred to as ‘stochastic periodicity’, and will be explored further

in the next chapter.

The latency density predicts tail behaviour. Appendix C derives the asymptotic

forms of the general density model (5.11), and the behaviour is

p(T) ∼

p0(T) , if T ≪⟨T⟩ ,
√

T j−1 f (T) , if T ≫⟨T⟩ ,
(5.19)

using the β1=1 form. (Refer to App. G for example parameter values for f (η), and

equation (C.15) for the exact forms.) As a grows, the mean interval length goes to

zero, and the range of “small intervals” significantly shrinks, to the extent that it
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Figure 5.9.: Plots of the latency density as predicted by the model for the ρ11
process (a)–(d) and the ρ12 process (e)–(h). The boxes inset contain
the mean (top) and variance (bottom) of each distribution.

is the second (large intervals) approximation that is key. Plots (a)&(b) of Fig. 5.10

indicate the region of T where (5.19) is valid when a= 10 for processes ρ1j. The

small intervals approximation is valid for both classes, implying such intervals occur

with a similar frequency regardless of the class of process. This is slightly different

for a sub-fractal process since from (5.14) p(T)∼ ϵ(a) p0(T); that is, sub-fractal

effects differ among the classes. Plots (a)&(b) further show that p(T)≈ f (T) near

the modal interval, and we discuss the symmetry in this interval range in Sec. 6.1.

Note that the peak density is smaller by a factor of 10 for the class 2 case.

Turning now to the large T>2⟨T⟩, Fig. 5.10, plot (a) demonstrates the second row

of (5.19) for a class 1 process, and so as T→ηM, the tail is therefore a product of

two multinomials:

p(T) ∼ TvM−1(dM − T)wM−1 , (5.20)

where dM = ηM is the largest range parameter for the BETA mixture, and the

parameters vM, wM are the corresponding shape parameters for the contributing

mixture component. For the class 2 case, plot (b) shows that for large T the density

after the oscillations (refer to Fig. 5.7(g)) is approximately exponential, which is the

oft quoted result in the literature for a nonnegative power-spectrum [97]. Further
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Figure 5.10.: (a)&(b): Plots illustrating tail behaviour of the interval density for
processes ρ1j when a = 10. (c): Plots showing the evolution of the
interval density for the ρ12 process for varying a (values contained in
legend).

comparison of the tail (Fig. 5.10(c)) shows a tail convergence that unlike in the

class 1 case, does not depend on the mean ⟨T⟩. The definition for the persistence

exponent (2.29) allows for the case where the density resembles that of a gamma

distribution with non-unitary shape parameter. Therefore, the result

p(T) ∼ T1/2 exp
(
−θT

(
1 +(θbM)−2/3

)3/2
)

, (5.21)

agrees with the literature; θ is the persistence exponent when a=0, and bM is the

largest secondary scale parameter from the EXPP contributions to the latency den-

sity. Returning to the notion of the power spectrum as a distribution of frequencies

ω in the process x(t), S12(0; a) relates to the maximum periodicity (ω−1→∞ as

ω→0) and for a>2.8614, S12(0; a)≈
√

π/2. This would explain why aside from

scale changes there is little difference in the right tail of p(T) as a increases.
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Latency supports the sampling interpretation. The mixture models presented

herein essentially say that crossings of a Gaussian process are analogous to a cor-

related sampling from a population of crossings, and for classes 1 and 2 processes

there are additional nonlinearities and long range dependence. The Slepian regres-

sion solution method (Sec. 2.2.3.2) has the same perspective of not being concerned

with the sequential propagation of crossings, but rather representing the long term

features. It too involves an integral equation, though of far greater complexity and

with more focus on the process x(t). Ignoring sequential dependence, there is a re-

versibility between crossing intervals and their interval density for class 1 processes.

Consider the random variable (5.8). The crossings of a Gaussian process ρi1 leads to

intervals Tm with distribution p(T). In the opposite direction, uncorrelated variates

τm and ηm from p0(τ) and f (η), respectively, are easily sampled using transformed

uniform variates and/or acceptance-rejection methods (e.g. [100], Ch. 4), and then

each Tm is obtained using (5.8). This reversibility is not as accessible for a class 2

process as a→∞, since β1 in (5.8) depends on T (as seen in Fig. 5.8), highlighting

again the strong, nonlinear dependence in this case.

In terms of the optimisation to find the interval density, a likelihood function that

assumes a joint independence is sufficient for all the examples in this thesis. Fol-

lowing on from comments in Sec. 4.2.3, sequential dependence is not as important

as mixing when computing the density for crossing intervals of a stationary Gaus-

sian process. A Markov-chain model combined with our mixture models could in

principle further demonstrate the correspondence between intervals derived from a

stationary Gaussian process and intervals sampled from a mixture distribution, refer

to [59]. The quality of mixture models that use MLE estimates depends on the

size of sample data used in the optimisation; hence why the density model plots in

Sec. 4.2 provided comparatively better agreement with simulations.
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5.5 summary

The properties of classes 1 and 2 processes have been analysed and used to con-

struct compound density models, the power spectrum providing insights on the

connection between the process x(t) and its crossings. The latency density is pre-

sented as a tool with which to move between classes of process, as proof of the

doubly (or triply) stochastic nature of zero-crossings, and for finding expressions

for the large T behaviour of the interval density. We have concentrated on addi-

tive, shift-type changes in the power spectrum of class 0 processes, but many other

operations are possible, e.g. convolution, composition; and these may conceivably

provide opportunities to use the generalised form of the density model.

Thus far we have been interested in long-term zero-crossing behaviour, studying de-

pendence in the aggregate. The next chapter will investigate sequential dependence

by measuring changes in varying time windows. A number of patterns emerge at

extreme cases of the periodicity parameter a, not least the symmetries already seen

in the interval density. More evidence will be provided for the idea of stochastic

periodicity.



6
PATTERNS AND OTHER PROPERT I ES OF THE CROSS ING

SEQUENCE

The preceding chapters have highlighted some of the intricacies to the zero-crossing

problem, the two types of oscillatory correlation necessitating different density mod-

els. The transformation mixture model offers a mechanism for crossing propagation,

and is obtained as an integral equation. Being an average, it does not directly as-

sign any order to the intervals. Comparing classes 1 and 2 processes hints at the

importance of the arrangement of crossings, given that the mean interval length is

identical for both classes. This chapter demonstrates that the zero-crossing prob-

lem is also a geometrical problem, and accordingly, we use various measures for

temporal and spatial point pattern formation. The analysis will concentrate on

extreme cases of oscillatory correlation, specifically a=0 and a=100; but it should

be understood that the sequential ordering of crossings is non-trivial for all values

of a since crossings of a Gaussian process are dependent [85]. Again, central to

the classification are simulation results which were in fact prefigured by long estab-

lished general results [46, 49, 85]. Two graphical representations of the crossing

interval sequence are introduced, and each are revealing of the notion of stochastic

periodicity.

The limiting values of the power spectrum (3.12)–(3.14) demonstrate analytically

that there is not much difference between processes within each class when a is

large. This is supported empirically by simulated sample functions in Sec. 3.3.2 and

corresponding interval density models in Sec. 5.3.1. Sub-fractality is suppressed

and interval variances are approximately equal for smooth and sub-fractal cases.

112
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Thus, in this chapter simulation plots will primarily be of processes ρ1j and should

be taken as representative of their respective classes. Except where indicated, all

realisations are generated using the same random number generator (RNG) seed,

231−1.

6.1 zero-crossing trace

The Van Vleck arcsine law (2.16) connects memory in the process to memory of

zero-crossing locations, and since the correlation in the former is global, so also is

the correlation in the latter. Consequently, the crossing interval sequence Tm, 1≤

m≤nT, is ordered in time. Using the notation of Sec. 3.2.3, l∆∆
m+1 :=∆t (lm+1 − 1)

gives the time at the end of the crossing interval. The curve formed by the set of

points
(

l∆∆
m+1, Tm

)
is the ‘zero-crossing trace’, denoted as T(t), and plots of T(t)

below will be normalized by the mean interval length ⟨T⟩. For reference, the power

spectrum of the processes under study is

Sij(ω; a) =
(j − 1)

2
Gi(ω) +

1
2j

(
Gi

(
ω +

a

π
√

23−j

)
+ Gi

(
ω − a

π
√

23−j

))
.

(6.1)

6.1.1 Class 0

Beginning with Fig. 6.1, plots (a)&(c) show T(t) for single realisations of the

non-oscillatory processes g1 and g2, (3.31), and plots (b)&(d) show the same but

connected and over a shorter time duration. The zero-crossing traces support the

simplification of the intervals being approximately independent. For the process

g1, the modal interval length is approximately half the mean and this is somewhat

reflected in the lower region of Fig. 6.1(a). The process g2 was assigned a density

model of hyperexponential type, i.e. maximal at zero and monotonic decreasing.

This property is borne out in the trace plot, Fig. 6.1(c). Short sections of T(t)

identify more closely the variation in the interval sequence. Symmetricity about the
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Figure 6.1.: Plots of the normalized zero-crossing trace for Gaussian processes g1
(black crosses) and g2 (blue crosses). Plots (a & c) reflect the skewness
of the interval density (refer back to Figs. 4.1(a) and Figs. 4.2(b)). The
connected traces in (b & d) respectively illustrate small negative and
small positive correlation.

mean is see in Fig. 6.1, plot(b), with alternating groups of long and short interval

sizes, typical of a negative correlation coefficient (simulations give κ̂1 ≈−0.0161)

and anti-bunching [47]. The trace in Fig. 6.1(d) displays clustering of small intervals,

and large shifts in size predominately occur in pairs. This is again captured in the

correlation coefficient (simulations give κ1 ≈ 0.0478) and is symbolic of bunching

behaviour [47].

The process g2 has a larger interval variance and smaller persistence exponent

so that considering the full realisation would show there are on average more large

intervals (relative to the mean) than for the g1 case. The crossing intervals for each

process may permit an independence assumption, but neither has zero correlation.

This suggests the need for a global measure of the zero-crossing trace, one capable

of accounting for minute differences between multiple processes. Hereafter only

simulation plots of ρ1j processes will be discussed.

6.1.2 Class 1 Processes: a = 100

The cos-wave process, Sec. 2.7.2, exemplifies a zero-crossing sequence absent of

variability. The corresponding crossing trace is a horizontal line through the half-
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period of the cosine. If we use a cos-wave process with mean ⟨T⟩, the crossing

trace is then the limiting form a class 1 process approaches. Section 5.3.1 showed

that as a→∞ the interval density closely resembles a delta-function, additionally

with shoulders at 1.5 standard deviations from the mean, Fig. 5.5. The extent to

which class 1 processes resemble a cos-wave process is illustrated in Fig. 6.2(a).

The shoulders of the interval density are represented in the horizontal orange and

yellow lines, and the trace T(t) primarily traverses the narrow gap between these

lines, narrow because the mean and variance are close to zero, with σ2
T ≪ ⟨T⟩.

The power spectrum is also narrow. On occasion, the trace also “jumps” outside

the gap, but these are rare because the dominant frequencies in the process are at

ω∼±a/(2π).

It is especially useful to see the zero-crossing trace alongside the original sample

function in cases of high oscillatory correlation. Figure 6.2(b) provides a closer look

at the trace near a jump from its modal regime, and the corresponding region of

sample function is given in Fig. 6.2(c). Large amplitudinal variation is accompanied

by approximately regular intervals, whilst shorter amplitude changes are what cause

crossing interval jumps outside the µT±1.5σT window. Departures from regular-

ity in the process are thus well accommodated in the zero-crossings, echoing the

previous discussion on the periodicity density, Sec. 3.4.

6.1.3 Class 2: a = 100

Stochastic periodicity need not be as confined as in the class 1 case. Class 2

processes demonstrate most clearly the significance of the zero-crossing ordering,

arising as a result of the two dominant time scales:
√

2⟨T⟩ and
√

2a⟨T⟩∼
√

2π, as

visible in Fig. 3.8(c). The trace T(t) in Fig. 6.3(a) depicts what happens when the

interval mean and variance are of similar order, and crossing intervals are arranged

about the modal interval length,⟨T⟩/
√

2, included as a horizontal black line. Recall

the shape and model of the interval density in this case (Fig. 5.7) and how it reflects

the dual nature of the crossing trace. Intervals falling between zero and twice the
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Figure 6.2.: Normalized zero-crossing trace and sample function for the process
ρ11 when a= 100. Plot (a) gives the full T(t) (blue line) for a single
realisation, and horizontal orange/yellow lines represent plus/minus 1.5
standard deviations from the mean. A shorter region of the trace is
given in (b), and the corresponding section of the sample function in
(c).

mode are described by the BETA distribution contributions to the latency density

f (η). Rare but significantly large gaps in the trace are described by the EXPP

distribution.

A smaller region of the crossing trace, and with marked crossings is shown in

Fig. 6.3(b). The trace T(t) is seen to in fact flip locally between the two branches

disposed about the interval mode. The flipping must restart over sufficiently large
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time scales because the correlation function decays to zero. Once again, a plot of

the sample function is useful here, and this is given in Fig. 6.3(c) for the same time

region as the trace in Fig. 6.3(b). The realisation alternates between oscillating

towards, and then away from the zero-level. This effects patterns in the trace

T(t) caused by zero-crossings occurring near the extrema of the sample function.

The fact that there are more turning points than crossings in any sufficiently large

time window, (3.36), leads to epochs where there are no axis crossings, i.e. large

excursions [86]. One such occurrence is indicated by the red-circles in Fig. 6.3(c).

As seen in Fig. 6.3(a), these departures from the modal regime occur with more

frequency than those seen in the class 1 case. These large excursions result in

intervals that are up to 102 orders of magnitude larger than the mean interval

length shared by both classes, as can be seen in Fig. 6.4.

6.2 lacunarity

The zero-crossing properties for extreme cases of classes 0, 1 and 2 processes

can be investigated further using the lacunarity measure. The concept and various

applications were discussed in Sec. 2.5, and here it will be shown that by quantifying

the concentration of crossings at different time scales, lacunarity distinguishes the

degree of randomness as well as the type of periodic modulation.

Let N(r) be the number of zero-crossings occurring in a time window (or box) of

length r that moves along the time axis of a random process x(t) in a contiguous

fashion. Lacunarity is defined as

Λ(r) =
E
[
N2(r)

]
E2 [N(r)]

= 1 +
Var [N(r)]
E2 [N(r)]

.

Here we focus on the analytical forms of the moments, and for the contiguous boxes

counting method; the next chapter will evaluate estimation of Λ using the gliding

boxes counting method, for which the analytical expressions are usually not known.
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Figure 6.3.: Normalised zero-crossing trace and sample function for the process ρ12
when a = 100. Plot (a) gives the normalized trace (blue line) for
one-fifth of a single realisation, and the trace is symmetric across the
modal interval length (⟨T⟩/

√
2) shown as a solid black line. Crossing

intervals greater than twice the mode are located off-axis. A shorter
region of the trace is given in plot (b) and the corresponding section
of the sample function in plot (c).

As given in Sec. 2.2.1, the mean number of crossings is Rr, where R is the crossing

rate. The variance of crossing counts is (2.11)

Var [N(r)] = Rr + 2R
r∫

0

(r − τ)
(
U(τ)− R

)
dτ. (6.2)
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Figure 6.4.: Normalized zero-crossing trace over a full realisation of the process ρ12
when a = 100, with no restriction to the y-axis limit to emphasize the
rarer and significantly large crossing intervals.

Rice’s conditional density function U(τ), (2.12), tends to R as τ→∞, whence the

variance (6.2) is linear at large box sizes.

The zero-crossing traces exhibit patterns relative to the mean interval length, there-

fore we will plot against log
(

Rr
)
lacunarity in the form

log(Λ − 1) = log(Var [N(r)]) − 2 log
(

Rr
)
, (6.3)

leading to the ‘log-lacunarity slope’

λ(r) =
d log(Λ − 1)

d log(r)
=

r
Var [N(r)]

d Var [N(r)]
dr

− 2

=

r

(
1 + 2

r∫
0

(
U(τ)− R

)
dτ

)

r + 2
r∫

0
(r − τ)

(
U(τ)− R

)
dτ

− 2, (6.4)

the last expression indicating it asymptotes to −1 in the limits r → 0 and r →∞,

the significance of which will be seen below. Logarithms are to base 10. To aid

in the analysis we consider two reference cases, each extremes on the randomness

scale: (i) the Poisson process derived from the random telegraph-wave, Sec. 2.7.1;

(ii) a cosine wave, from Sec. 2.7.2 and without loss of generality we set the phase

to zero.
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6.2.1 Poisson Process

The Poisson process describes a counting process that is zero at time zero, pos-

sesses stationary and independent increments, and has events that follow a Poisson

distribution with rate R. For a strictly Poissonian interval sequence, the number of

crossings in box size r has distribution

PN(N(r) = k) = e−Rr(Rr
)k /k!, (6.5)

and the mean and variance are Rr. From (6.3) and (6.4), it follows that

log(Λ − 1) = − log
(

Rr
)
, λ(r) = −1 (6.6)

For a stationary Gaussian process, the counting process of zero-crossings is both

stationary and dependent [49, 85].

6.2.2 Cosine Wave

Consider the deterministic function xd(t)= cos
(√

1 + a2t
)
. To speak of random-

ness we use the external monitoring scheme [101], under which the number of

crossings does vary with box size. By inspection of a contiguous boxes setup, it

follows that the counting distribution is

PN(N(r) = k) =


c + 1 − Rr, if k = c,

Rr − c, if k = c + 1,

0 otherwise.

(6.7)

where c=⌊Rr⌋; then

E [N(r)] =
c+1

∑
k=0

kPN(N(r) = k) = c
(
c + 1 − Rr

)
+(c + 1)

(
Rr − c

)
= Rr,

(6.8)
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E
[
N2(r)

]
=

c+1

∑
k=0

k2PN(N(r) = k) = c2(c + 1 − Rr
)
+(c + 1)2(Rr − c

)
=Rr(2c + 1)− c(c + 1) ,

Var [N(r)] =
(

Rr − c
)[

1 −
(

Rr − c
)]

≡ h
(

Rr
)(

1 − h
(

Rr
))

, (6.9)

where h(s)= s −⌊s⌋ is a periodic function with period 1, and satisfies 0≤h(s)<1.

The variance is therefore identical within integer multiples of R−1 and bounded

above by 1. In particular, if 0≤Rr<1,

Var [N(r)] = Rr
(
1 − Rr

)
, (6.10)

log(Λ − 1) = log
(
1 − Rr

)
− log Rr. (6.11)

When Rr > 1, the first term in Eq. (6.3) oscillates within integer multiples of Rr,

and the lacunarity slope (6.4) oscillates between ±∞.

6.2.3 Non-Oscillatory Gaussian Processes

Lacunarity curves for processes g1 and g2 are displayed in Fig. 6.5. The Poisson

process is seen to be marginal between sub-fractal and smooth processes, and the

crossing trace plots in Fig. 6.1 can now be distinguished using a statistic, and not

just heuristically. At small box sizes the lacunarity is approximately equal for all

three processes. The small box sizes property in fact holds for all stationary point

processes ([3], Sec. 3.8): if N(r) (with N(0) = 0) is a counting process with

stationary increments,

lim
r→0

Pr{N(r) > 0}
r

= R ⇒ Λ =
1

PN(N(r) = 1)
∼ 1

Rr
as r → 0. (6.12)

We have also seen that the periodicity density decays like η−2 for both Poisson and

stationary Gaussian processes, Fig. 3.8. For box sizes r such that 10−1 < Rr < 1,

the smooth process has fewer than two crossings in a box with high probability and

so the fluctuations are approximately binomially distributed [47], with Λ(r) less
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Figure 6.5.: Lacunarity and log-lacunarity slope for Gaussian processes g1 and g2
and the analogous Poisson process (Poiss.), which divides smooth and
sub-fractal class 0 processes.

than the corresponding Poisson value and λ(r)<−1. The modal interval length

is≈π/2, meaning there is less variation in the crossing number close to this time

scale, and this is evidenced in the lacunarity slope. At larger r the Poisson and

binomial fluctuations become asymptotically similar and the slope returns to −1,

though the value of λ(r) remains less than that for the Poisson process.

By contrast the fluctuations for the sub-fractal process are slightly greater than the

Poisson case in the regime 10−1 < Rr < 1 because clustering enables more than

two crossings to occur within a box with higher probability than the smooth case,

consistent with their being approximately negative-binomially distributed [47]. Con-

sequently, λ(r) exceeds −1, but again the crossing behaviour scales asymptotically

with the Poisson at larger r, now with Λ(r) exceeding the Poisson value.

Describing class 0 processes as having independent intervals would belie the fact

that correlation acts across all time scales. The constant lacunarity slope for the

Poisson case illustrates true independence in the sense of translational invariance.

Notwithstanding, the Markov-chain model is sufficient to obtain the mean and vari-

ance of interval lengths—refer to Fig. 3.6. However, when the arrangement of

crossings become particularly important—e.g. modelling the correlation coefficient

or the interval density—the Markov chain models are less accurate [5].
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6.2.4 Oscillatory Gaussian Processes

Lacunarity curves for class 1 processes ρi1 when a=100 are provided in Fig. 6.6(a).

The main figure displays the peak-to-peak value of Λ(r) for the cosine wave when

Rr>7/2 (the third maximum point after R=1). All curves closely match at small

and intermediate box sizes, which is expected given the sample function plot in

Fig. 6.2(c). The inset in Fig. 6.6(a) better illustrates the oscillatory nature of the

variance and thereby lacunarity signature. For the oscillatory Gaussian processes,

the crossing number variances are small rather than vanish when the box size coin-

cides with multiples of the mean interval length, leading to attenuating periodicities

in Λ(r).

With reference to Fig. 6.2(a), as the box size increases, extreme crossing interval

sizes outside the µT±1.5σT window are included in the counting, and the lacunarity

is larger than that for the (deterministic) cosine wave. The associated lacunarity

slopes are given in Fig. 6.6(c). For the cosine wave, only the peak-to-peak slope

is plotted for Rr > 7/2, which is equivalent to isolating the second term in (6.3),

whereupon λ(r)=−2. Aside from the periodicities, these lacunarity slopes resem-

ble the g1 case in Fig. 6.5(b). Notably, the sub-fractal case ρ21 approaches the

Poisson limit from below just like the smooth ρ11 case. This further proves that

sub-fractal effects can be suppressed by a large periodicity parameter, i.e. strong

oscillatory correlation. In light of the truncation of the maximum interval size, this

extreme of class 1 process is more closer to a binomial description than the smooth

process g1; in a short time window, crossings either do or do not occur, with little

variation in their separation when they do.

Figure 6.6(b) provides an insightful classification of both the “gappiness” observed

in the zero-crossing trace, Fig. 6.3(a), and the expanding and contracting modu-

lation at smaller time scales, Fig. 6.3(b), in the class 2 variation. Also note the

rescaling of box sizes by
√

2. Here it is more appropriate to use the Poisson process

as a reference case. Box sizes close to Rr/
√

2 correspond to the flipping of the

interval sequence about the mode, in essence approaching an asymptotic regularity;
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Figure 6.6.: Lacunarity and log-lacunarity slope for oscillatory Gaussian processes
when a = 100, with results for a deterministic cosine wave (Det.) and
a Poisson process (Poiss.) included for reference.

whence the lacunarity falls below that of the Poisson. There are again vestigial

periodicities, indicated by the inset; but unlike the class 1 case, the oscillations

are less symmetrical relative to multiples of the median crossing interval,≈
√

2⟨T⟩.

The interval variance σT is larger, and the trace T(t) has significant jumps to large

values—refer back to Fig. 6.4. Lacunarity tracks these features, and identifies the

periodicity time scales discussed in Sec. 3.4. At box sizes r less than
√

2⟨T⟩, large

crossing intervals result in many empty boxes that do not contribute to the mo-

ments of the lacunarity measure. Past this first timescale, large intervals begin to

offset the small interval modulations, and the effect is a plateau-like form of lacu-

narity that continues till the second timescale (a
√

2⟨T⟩) is reached. Thereafter,

lacunarity asymptotes to the Poisson limit.

Figure 6.6(d) exemplifies the complexity of the periodic aspects of a class 2 extreme;

rather than a series of equally spaced extrema as in the class 1 case, Λ(r) addi-
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tionally has inflection points not equally spaced, implying there are comparatively

more changes at those time scales. The lacunarity slope is also seen to tend to the

Poisson limit from above, slightly slower for the sub-fractal case. Super-Poisson

behaviour connotes clustering of crossings, which holds true even for the smooth

case given the significant jumps in interval size seen in plots of the crossing trace

(refer back to Fig. 6.4).

In comparing lacunarity for the class 1 variant of the g2 process, Fig. 6.6(a)&(c)

show a reversal in the ordering of curves relative to their smooth counterparts.

Figure 5.6 demonstrated that as a increases, the principal modal interval for the

ρ21 process switches from the origin and asymptotes to the mean. Combined with

the truncation of interval sizes, there is therefore a trio of properties—p(0) ̸= 0,

mode close to mean, and P(T>3⟨T⟩)≈0—that would lead to a larger departure

from the Poisson asymptote than in the smooth case. For the class 2 variants, the

ordering of the class 0 processes is preserved. This agrees with our corresponding

density model which has a support of infinity and an exponential tail, (5.21).

6.3 counting distributions

Lacunarity is patently distinct for the three classes of Gaussian process, in spite of

the shared linearity in the mean number of crossings. It is worth briefly making

the comparison to Poisson and deterministic cases more explicit, and we do this by

computing distributions of the counting process via simulations. The distributions

are estimated from 103 realisations of the ρ1j process. Smith [47] showed that

smooth processes have binomially distributed zero-crossing counts as time r →∞.

The binomial model enforces a maximum crossing count in fixed box sizes, which

can be compared with simulations. For the analytical maximum count we fit the

parameters of the binomial distribution using method of moments given the mean

Rr and variance (6.2). The counting distributions for the reference cases are first of

all given in Fig. 6.7. For a Poisson process the idea of a maximum crossing count

is not applicable because the counting process is independent, whilst for the cosine
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Figure 6.7.: Counting distributions for a Poisson process (a) and a cosine wave (b).

wave the maximum counts in box r is
⌈

Rr
⌉
.

Numerical estimates for the counting distribution PN(N(r)) for processes ρ1j are

supplied in Fig. 6.8, plots (a),(c)&(e). As in the plots of Fig. 6.7, the distributions

for class 0 and class 1 processes have modes at approximately integer multiples of

R−1, and for class 2 processes this is rescaled by
√

2. The distributions in Fig. 6.8(a)

are skewed slightly more than their counterparts in Fig. 6.7(a), resulting in a smaller

variance and therefore the lower lacunarity value for the g1 process. Plot (c) of

Fig. 6.8 again demonstrates the attenuation of periodicity in class 1 processes; the

distributions slowly lose their triangular profile and the interquartile range expands.

The class 2 process has in diverse ways proven a complex embodiment of stochastic

periodicity, and Fig. 6.8(e) reveals the distributions to have a dual nature. We have

seen that the lacunarity has a plateau region, Fig. 6.6(b), owing to the presence

of a large timescale contributed by the power spectrum having a maximum at the

origin. Recall also the bimodality of sample function periodicities, Fig. 3.8(c). For

reference, PN(N(r) = 0)<10−1 when Rr>36. The distribution for positive even

counts could almost be described as triangular as in the class 1 case, but here the

tails are even more non-linear. The modes of the distributions for odd counts are

at half-integer multiples of the rescaled mean, and like in the Poisson and class 0

processes, have less kurtosis.

The plots on the right in Fig. 6.8 provide another look at the counting process by

plotting the average maximum number of crossings within a box. We have not
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Figure 6.8.: Counting distributions and maximum crossing counts from simulations
of the ρ1j processes: (a & b) a = 0; (c & d) j = 1, a = 100; (e & f)
j=2 , a=100. The simulated maximum count is also compared with
that of a binomial distribution, and in a cosine wave.

discussed the distribution of maximum counts, but the plots on the left of Fig. 6.8

would imply the distributions of the maximum are quite narrow, especially in the

class 1 case where the crossing counts are asymptotically bounded above, due to

concentration of the power spectrum at large frequencies. Furthermore, for large

enough box sizes, the correlation between crossing locations is small, meaning the
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crossing counts are approximately independent and the maximum count scales with

Rice’s result (3.4). Figure 6.8(b) shows that a binomial model that uses the an-

alytical mean and variance of the crossing number is not appropriate for the g1

process. In simulations there is a staircase feature, present in the oscillatory cases

also. The cosine wave provides a lower bound for the extreme class 1 process over

all time scales, plot (d). The fit from the binomial model may look better but we

know that this is only approximately so from the plot opposite. For the extreme

class 2 process a binomial fit is not possible because the variance of N(r) is much

greater than the mean. Rather, the mean maximum count alternates either side of

1 +
√

2Rr, which is essentially Rice’s result with a different crossing rate.

Recall that the variance increases with r for Gaussian processes and is asymptoti-

cally parallel to the Poisson case; whence the counting distributions, should become

rescaled Poisson distributions as r increases. A similar presentation could have been

done for sub-fractal processes, and comparisons made with the negative-binomial

distribution [47]. To be clear: these results do not contradict existing characteri-

sations seen in [47]. Our contention is that the binomial model does not work for

the specific form of the crossing number variance provided by Steinberg et al. [46],

and that a characterisation with higher order complexity is required for oscillatory

Gaussian processes when considering all possible time scales.

6.4 zero-crossing orbits

6.4.1 Phase Space Diagrams

We conclude this chapter by addressing dependence as determined by κ1, the cor-

relation coefficient between adjacent intervals. Recall the definition:

κ1 =
⟨TmTm+1⟩ −⟨T⟩2

σ2
T

, (6.13)

the subscript m being dropped for averages involving Tm alone. The product mo-

ment is what determines the sign of κ1, and we have seen that the ordering of
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the intervals is non-trivial. Consider the path traced out by consecutive crossing

interval pairs:

(T1, T2) → (T2, T3) → (T3, T4) → · · · .

Individually they form the terms for the product moment in (6.13), but together

they give what we will term the ‘zero-crossing orbit’. The plots that follow give

the orbits when the intervals are normalized by the mean interval length so that

the “centre” of the resulting phase diagram is located at (1, 1). This leads to four

quadrants: bottom left, Tm, Tm+1 both small; bottom right, Tm large and Tm+1

small, and vice versa for the top left; top right, Tm, Tm+1 both large. This division

of crossing space is of more relevance at large a where the mode and median are

approximately equal.

Plots (a)&(b) of Fig. 6.9, show the zero-crossing orbit when there is no oscillatory

correlation. Plot (a) in fact obtains from a Poisson process, the orbit differing only

slightly from plot (b) which results from a realisation of the g1 process. The interval

variances are large, and the bottom left region of the graphs are dense; hence the

small correlation coefficients.

Moving on to the oscillatory cases, there is a distinctive structure. The orbit for

ρ11 has a bow-tie structure oriented such that it goes through the line Tm+1=Tm,

and therefore κ1 is close to 1. Figure 6.9(d) shows the behaviour closer to the

centre of the orbit, and there is a clear internal structure. Owing to the time dis-

cretisation and the fact that P(T) is small both when T ≪⟨T⟩ and T > 2⟨T⟩,

there is effectively a finite number of vertices the orbit can visit. Thus deterministic

and stochastic periodicity in this case are not that far off. These observations are

reminiscent of periodicity in dynamical systems—refer to Fig. 1.1.

Finally, for the process ρ12, Fig. 6.9, plots (e)&(f) establish the intervals are nega-

tively correlated, and again we see the
√

2 rescaling. In keeping with the dynamical

systems analogy, the orbit does appear chaotic. It primarily moves along the line

Tm+1=
√

2⟨T⟩ − Tm with less but still fairly frequent movement above this diago-

nal, creating a horizontally reflected number four shape near the centre of the orbit.

As indicated by Fig. 6.9(f), there are many contributions to the product moment
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Figure 6.9.: Zero-crossing orbits for crossing intervals. (a) Poisson process. For
Gaussian processes: (b) g1; (c)&(d) ρ11; (e)&(f) ρ12. Plot (c) has a
bow-tie structure like the logistic map in Fig. 1.1, and (d) highlights
the internal structure of the interval sequence. Plot (e) displays more
variability due to the larger interval variance, but there are more returns
to the “correlation line”. Unlike in plot (a), plots(c)&(e) have zones
where interval pairs are hardly ever located. Plot (f) exemplifies the
exponential tail of the interval density (5.21), and evidences the com-
ments that as a consequence of (2.61), large crossing interval pairs of
a stationary Gaussian process are unlikely.
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where one of Tm and Tm+1 is significantly large and the other significantly small.

These are enough to result in a product moment that is close to the mean squared,

resulting in κ1 being negative but close to zero. Filtering out intervals greater than
√

2⟨T⟩ (of which there are 36% for the data in Fig. 6.9(e)&(f)) leads to a corre-

lation coefficient of −0.9357 as opposed to −0.0274. The mean of the remaining

data is the mode of the complete data since the large intervals are rare, and this

can also be inferred from the symmetricity of the crossing trace in Fig. 6.3.

6.4.2 Correlation Coefficients

The correlation coefficient we have thus far been using is equivalent to Pearson’s

correlation coefficient, which is ideal for measuring linear dependence in adjacent

intervals with small variations about the regression line. This however makes it

susceptible to outliers. Kendall’s tau coefficient1 for crossing intervals, Tm, m =

1, . . . , N − 1, is given by

κτ =
2

(N − 1)(N − 2)

N−2

∑
m=1

N−1

∑
n=m+1

sign{(Tm − Tn)(Tm+1 − Tn+1)} , (6.14)

and is a more robust measure as all possible pairs of the ‘N − 1’ intervals are

included in the computation. The coefficient κτ can be used to test for monotonic

dependence that is not necessarily linear. Nonlinearity of the class 2 process has

already been identified in the interval density (Fig. 5.8), and was also seen in plots

of the crossing trace (Fig. 6.4). A plot of the Kendall’s tau coefficient is included

in Fig. 6.10 for processes ρij, i=1, 2, j=1, 2, and this measure of serial correlation

compliments the crossing orbit plots in Fig. 6.9(c)&(e). Even in processes with

short-term dependence as defined in Sec. 2.1.2, strong positive correlation in the

zero-crossing sequence is possible when the power spectrum is concentrated at

high frequencies. When a process additionally has power dispersed near the zero

frequency, two sufficiently separated time scales (or periodicities) result, leading to

strong negative correlation in the interval sequence.

1 See https://uk.mathworks.com/help/stats/corr.html and references thereat.

https://uk.mathworks.com/help/stats/corr.html
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Figure 6.10.: Plots of Kendall’s tau coefficient (6.14) for crossing intervals as a
varies for (a) class 1 processes and (b) class 2 processes, computed
using 100 realisations for each value of a. The plot for one class is
almost a reflection in the x-axis of the other.

6.5 summary

The objective of this chapter was to illustrate the geometrical properties of the

zero-crossing problem at extreme cases of oscillatory correlation, properties which

exist, though to a lesser extent, at intermediary values of the periodicity parameter

a. The zero-crossing trace and orbit respectively brought out the regularity in the

crossing sequence for class 1 and class 2 processes, and the heuristic descriptions

were quantified by the lacunarity measure. We also sought to unlock the intricacies

to the lacunarity signatures by investigating the different counting distributions, and

this especially revealed the higher order complexity when the periodicity parameter

a is large. The exploration should also be viewed as an invitation to study dependent

counting processes using level-crossings of correlated sample functions that can be

reliably simulated, App. H. Alongside this, the two previous chapters showed how

to model the inter-event times, and so we proffer dual tools of both simulation and

parametric modelling.

All random processes x(t) studied explicitly in this thesis have the same distribution,

but it is the type of power spectrum that dictates the highly structured and varied

behaviour of processes and sequences derived from x(t). The next chapter will

perform a zero-crossing analysis of real-world data which are approximately Gaussian.
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Lacunarity is picked up again in terms of statistically and computationally efficient

numerical estimation.



7
ZERO -CROSS ING ANALYS I S IN PRACT ICE

This thesis presents three tools for the analysis of zero-crossings of Gaussian pro-

cesses, in additional to simulation procedures: a tripartite classification of the pro-

cess, mixture models for the crossing intervals, and a demonstration that lacunarity

captures the multi-scaling features in the zero-crossing sequence. Here we shall

discuss box counting methods for computing the lacunarity measure, and thereafter

perform a zero-crossing analysis that applies the tools of previous chapters.

7.1 lacunarity: continuous vs gliding box methods

In Ch. 6 patterns in the zero-crossing sequence (obtained from simulations) were

shown to complement analytical results for lacunarity, and this was possible due to

the explicit definitions of the autocorrelation functions for the examples considered,

which enabled substitution into Rice’s conditional density and evaluation of the

variance equation (6.2). When the autocorrelation is not known analytically or

when experimental (as opposed to simulated) data is concerned, lacunarity must

be determined numerically, and two methods for accumulating crossing counts in

box sizes r have been used extensively. The first, the ‘contiguous boxes method’,

involves non-overlapping boxes and is the definition traditionally used to analyse

counting processes [3]. The second method does use overlapping or ‘gliding boxes’

and is particularly popular [32, 33, 102] in spite of various criticisms [34, 77, 103].

134
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7.1.1 Criticisms of Gliding Box Lacunarity

Gliding box lacunarity in two-dimensions is affected by orientation, and this is dealt

with in [77] through a self-referred box counting method that uses circular windows.

Another issue with the gliding box method is the over-sampling of central data, and

under-sampling at the edges. The sampling can be made even by “wrapping around”

the extent of the data to include the opposite end [103], for example: computing

lacunarity additionally using a box containing xnmax−2, xnmax−1, xnmax , x1 if the box

size is r4. Mitigating lacunarity bias has also been tackled by forming two binary

sequences, and using a combined lacunarity measure. If Λ+ is the lacunarity for

the sequence zn, with 1’s at zero-crossing locations, a second lacunarity Λ− can

be obtained from the sequence 1n − zn, where 1n=1, ∀n. In [33], the normalised

harmonic mean of the positive and negative lacunarity is then used for further

analysis:
1

ΛH
=

1
Λ+ +

1
Λ− . (7.1)

Stationary Gaussian processes provide a non-trivial context to compare the two

methods when analytical results are known. To the author’s knowledge, analytical

results for gliding box lacunarity exist primarily in deterministic contexts, some of

which are described in for example [77, 81].

Appendix E contains derivations of formulae for the two lacunarity measures as ap-

plied to one-dimensional datasets. In testing the efficacy of the gliding box method,

the main questions for a zero-crossing analysis are: does gliding box lacunarity

distinguish between classes of Gaussian process?, and, can scale changes be easily

detected and suitably interpreted?. We first consider the Poisson process, the sim-

plest form of randomness as identified by the constant lacunarity slope when using

contiguous boxes, Fig. 6.5. All simulation averages are taken over 103 realisations.
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7.1.2 Comparisons in the Independent Case

From Fig. 7.1(a) one might assume the results are almost identical for all three

methods, but plot (b) reveals the variance using the gliding box method diverges

fairly quickly from the contiguous box case, attaining its maximum value at a box

size close to half the maximum size, beyond which the variance is zero for the

contiguous box method as only one disjoint box remains. Now, the authors of [76]

do not state that the gliding box method should produce an unbiased estimate of the

contiguous box method lacunarity statistic, and they do provide an interpretation

for heterogeneity at all box sizes. However, lacunarity for the Poisson process is no

longer simple. Contributions from gliding boxes are highly correlated, thus there

is an added scale dependence for random data. Both lacunarity curves in plots

(a)&(c) have the range of box sizes restricted to between 10−3 and 103 times the

mean crossing interval length, the upper range corresponding here to approximately

20% of the maximum box-size. Plot (c) suggests we further restrict the range to

10−1 ≤ R̄r≤ 102 so as to ignore the ambiguities outside this range for the gliding

box method. They are ambiguous relative to the analytical log-lacunarity slope for

a Poisson process, which is constant.

On the other hand, the reader will observe that the numerical derivative for the

contiguous box lacunarity becomes quite volatile as the box size increases; the data

from the box counts is noisy. In principle, this could be resolved by interpolating the

lacunarity curve or incorporating more realisations. This would require a large range

of box sizes and more data (i.e. more experiments or more simulation time) which

may not always be practical—therefore an argument in favour of the gliding box

method. Plot (d) is included as additional validation of the simulation procedure,

and similar comments as for the Poisson process apply. Chiefly, the analytical and

gliding-box variance differ. More importantly for any input data, the gliding box

variance always curves back towards zero.
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Figure 7.1.: Plots of numerical estimates for the lacunarity (a), variance (b) and
lacunarity slope (c) for the Poisson process, and the variance (d) for
the squared exponential process, g1. Also included are analytical results
for the contiguous box method. The labelling in the legend of plot (a)
also applies to the other plots.

7.1.3 Comparisons in the Dependent Case

Having commented on why and how to proceed with the gliding box method in

spite of criticisms, we now focus on Gaussian random processes, and the results are

somewhat satisfactory. In Fig. 7.2 the log-lacunarity slope is plotted for the squared

exponential (g1) and Wong (g2, γ=
√

3) processes, and the cos(aτ) and cos2(aτ)

modifications of the g1 process with a=100—refer to Eq. (3.31). For the class 0

case, the Poisson process does divide the sub-fractal and smooth processes, similar

to Fig. 6.5(b), and there is convergence towards the Poisson curve at the very

small/large box sizes. There are also turning points approximately at the median

crossing intervals, but here there is also an additional turning point for the smooth

case.

For classes 1 and 2 processes, Fig. 7.2(b)&(c), there is not much difference here in

comparison to the analytical results in the contiguous box case (Fig. 6.6(c)&(d)),

and plot (d) is included to highlight the oscillations in (b) are smaller and fade
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Figure 7.2.: Lacunarity slope for stationary Gaussian processes (a)–(c) and the co-
sine function (d) as estimated using the gliding box method.

for the Gaussian process. Note we did not need to plot the peak-to-peak values

to see a “contained” lacunarity slope. Gliding box lacunarity appears to be most

ideal when comparing distinctly different objects, which in our context would be

extremes of the periodicity parameter. The user should however be aware that

additional scaling signatures can be introduced, which makes it harder to draw out

distinctive features for similar objects. It is important to have cases (such as the

Poisson process) that are well understood as benchmarks—better still to perform

analyses either alongside a contiguous box approach, or including refinements such

as those mentioned above, Sec. 7.1.1.
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7.2 case study 4: meg signals

To conclude this chapter we briefly describe an application of the tools we recom-

mend for the zero-crossing analysis of stationary Gaussian processes, in a similar

fashion to case study 2, Sec. 1.3.3. The experimental data1 consists of 34 trials

in which measurements of the magnetoencephalography (MEG) signal from the

brain are made over 30 seconds with a sampling frequency of 600Hz. After the

first 15 seconds each participant voluntarily presses a button. For the theoretical

framework, experiment setup and data pre-processing, see [104]. Various experi-

ments have revealed the brain is a network of functional connectivity, and that on

small time scales hierarchical networks regularly form and dissolute in support of

cognitive functions [104]. There is therefore a mixture of a continuous normative

or base state, as well as transient states, and it is now possible to observe brain

activity on millisecond time-scales. In particular, robust testing has demonstrated

that significant changes in MEG signals are time-locked to the voluntary actions

made by trial participants. For the MEG data we analyse, this translates to signals

that are approximately stationary either side of the button press, in fact approxi-

mately Gaussian, as seen in Fig. 7.3. Our analysis seeks to establish a foundation

for automatic detection of button press instants using zero-crossings of MEG sig-

nals. After the data is standardised (i.e. x(t) 7→ (x (t)−⟨x(t)⟩)/
√

Var[x(t)] ),

the zero-crossings are extracted and we find that there are clear differences relative

to the button press.

In Fig. 7.5(a)&(b), we plot the variance to mean-squared ratio and the correlation

coefficient κ1 for zero-crossing intervals of the standardised MEG signals. For ref-

erence, the mean interval lengths respectively before and after the button press are

approximately 0.0222 and 0.0191. Crossings after the button press are more regular,

and go from being negatively correlated to being positively correlated. The linearity

of the mean box counts seen in plot (c) supports the assumption of Gaussianeity as

1 MEG data provided courtesy of George C. O’Neill, formerly at the Sir Peter Mansfield Imaging
Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham,
UK.
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Figure 7.3.: Standardised realisation from one MEG trial partitioned into before and
after the button press.

Rice’s result (3.4) applies to all such processes. The variance and lacunarity curves

in plots (d)&(e) contain prominent and persistent oscillations, possibly attributable

to the quality of the data, but there is still a notable difference in before and after

states. The oscillations thus suggest a class 1 type of process. Proposition 2 is

based on the power spectrum and computing estimates using Eq. (3.21) suggests

a class 1 power spectrum: there are gaps (approximately a minima) at the zero

frequency: Fig. 7.4.

Finally, plotting the interval densities (Fig. 7.5(f)&(g)) reveals a profile character-

istic of a sub-fractal class 1 process (refer to Fig. 5.6), plot (g) even displaying

at least one non-trivial, non-zero mode, in contrast to the simpler density profile

in the before state. The boundedness of the crossing intervals should be expected

as the brain is constantly processing information; but note the observed range of

intervals are similar relative to the respective mean interval lengths for both before

and after MEG signals. In terms of the rapidity of these fluctuations and thus the

significance of what we are saying is different relative to the button press, recall the

highly structured patterns in Figs. 6.2&6.3 where the mean crossing interval has

length ≈π/100. We would argue that this narrowing of crossing intervals near the
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Figure 7.4.: Plots of the power spectrum estimate averaged over the 34 trials, with
x-axes normalised by the peak frequencies. In (a), ωmax ≈ 6.9000; in
(b), ωmax≈7.9333.

mean/median length accompanies those previously seen patterns; indeed Fig. 6.2(a)

is reminiscent of other medical data monitored in time (e.g. an electrocardiogram).

7.3 summary

The objective at this juncture was to connect the ideas of previous chapters and

convey with reasonable confidence what can be inferred given only the autocorrela-

tion or power spectrum of a stationary Gaussian process. This has always been the

goal of the zero-crossing problem, and following on in the tradition of a simulation-

driven approach at a solution, many of the essential features have been extracted

and the espoused ideas repeatedly demonstrated, including in a practical context.

The class subdivision of Gaussian processes is a useful first step in the analysis, in

particular when seeking models for the interval densities.

Numerical estimates of the lacunarity statistic are especially important when consid-

ering real world data as no assumptions should be required about the distribution

of crossing intervals. Results obtained using the gliding box method must be in-

terpreted with caution, and ideally with reference cases for which related analytical

results exist. In the first instance, the contiguous box method should be investi-
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gated, though (as demonstrated in the literature) the gliding box method can still

be suitably employed to compare and contrast heterogeneity [76].
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Figure 7.5.: Numerical results for MEG trials partitioned into before and after the
button press. TOP: Variance to mean-squared ratio and correlation
coefficient of (adjacent) crossing intervals. MIDDLE: Average mean,
variance and lacunarity of box counts using contiguous boxes. The
Poisson case uses the average of the interval means for before and
after crossing intervals. (The legend in (e) also applies to (c)&(d).)
BOTTOM: Interval densities for the crossing intervals. Both models
are composed of two BETA densities.



8
CONCLUS ION

8.1 discussion

Stationarity, Gaussianeity and periodicity. Three simplifying assumptions that can

yet supply a rich diversity of characteristics. If randomness is a continuum with the

Poisson process and deterministic functions as extremes, studying the zero-crossings

of stationary Gaussian processes has provided further insight into manifestations of

correlated randomness between those extremes, both in terms of visual character-

istics and statistical quantities. The message has been that three distinct power

spectra preclude three distinct types of extremal behaviours, the which are encoded

in zero-crossings. This recognition guided modelling approaches, particularly as it

pertained to assignment and derivation of probability distributions.

As seen in the case studies (Sec. 1.3) and throughout this thesis, simulating a di-

verse range of data sets is an effective starting point for time series analysis when

classification categories are few. Zero-crossing applications can benefit from the

twin tools of mixture modelling and lacunarity analysis that extract characteristics

not immediately obvious from power spectrum plots, and therefore form building

blocks for deeper classification-based analysis. Note however that our modelling

has been influenced by established analytical results, and this helps keep in mind

the primary goal which is a causal understanding of zero-crossing formation, beyond

observed associations.

Reflecting on the thesis title, how else could we have explored correlated randomness

144
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and stochastic periodicity? Statistical randomness in count data can be quantified

using measures of ‘variability’ and also of ‘predictability’. The former is concerned

with averaging the random variable of counts, whilst the latter treats an associated

distribution as itself a random variable. Concentrating on variability measures such

as lacunarity [34], the Fano Factor [5] and intermittency [105]—all of which are

directly related by virtue of their definitional equations—enables reliable comparison

with existing analytical results. That being said, the other interpretation of random-

ness appears frequently when searching the literature for related research covering

time series, binary sequences, zero-crossing aided machine learning, and geometries

with stochastic elements. Predictability is often measured using ‘entropy’ and its

generalisations [106], the task being to quantify information or surprise as data

accumulates. The standard expression for (Shannon) entropy of count data is [107]

HN(N(r)) = −∑
n

PN(N(r) = n) log(PN(N(r) = n)). (8.1)

High entropy means a high degree of uncertainty in predicting future randomness,

low entropy means less uncertainty. Entropy measures typically depend heavily on

abundance or diversity in count data; the true value of the richness (maximum count

possible) is usually unknown. It is well known that numerical estimates of entropy

are always biased [108]. The high dependence on PN(N(r)) additionally makes

entropy estimation comparatively more computationally demanding than using la-

cunarity or the Fano factor. (Consult App. E.3 to see how the count distribution is

implicit rather than explicit in these latter box-mass moments.) The use of entropy

is therefore always a trade-off between bias reduction and variance minimisation—

see further [109, 110, 111].

Accumulating additional metrics in the time-domain is beneficial for feature based

time series analysis as discussed in Sec. 1.2. Given zero-crossings and the lacunar-

ity values computed via the contiguous-box method, one may compute a vector

consisting of the mean, variance, and median lacunarity, and lacunarity values at

critical box sizes. This feature vector could then be extended using the Fano factor,
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gliding-box lacunarity, and an entropy measure that limits bias. One such example

is the ‘relative binary entropy’ [111]:

H(rn) =
2

∑
j=1

pjn log2

(
qjn

pjn

)
, (8.2)

where p1n and q1n are respectively proportions of non-empty boxes of size rn in

the target signal and a reference signal with known randomness features (e.g. the

Poisson process), with p2n=1− p1n, q2n=1− q1n. Note that due to stationarity

and the fact that p1n =Pr{N(rn)=0}→ 0 as the box size increases, there is an

r⋆ such that all boxes are non-empty for rn≥ r⋆.

In order to extend a feature extraction schema to nonstationary time series, it

is necessary to account for ‘subsequence features’, patterns that are specific to

particular windows of time. Applied to the MEG signals in Sec. 7.2, this would

help identify instances of the button press a posteriori, which can then be fed into

a machine learning procedure for unsupervised recognition of pre- and post-button

press brain states. Given the realisation xn, its ‘recurrence matrix’ is

Rmn =

1 if ∥xm − xn∥ ≤ cϵ,

0 if ∥xm − xn∥ > cϵ,
(8.3)

for 1 ≤ m, n ≤ nmax, and where cϵ > 0 is the vicinity threshold chosen to detect

meaningful regime transitions [112]. The matrix can be represented visually as a

binary image of black and white dots, and thereby amenable to a lacunarity analysis

of a two-dimensional image. Depending on the value of nmax, computing resources

may require the data be further segmented, and the authors of [112] show that even

with short time series recurrence lacunarity is a powerful detection tool. Alterna-

tively, the analysis could be performed on the much shorter zero-crossing sequence

Tk, 1< k < nT, for which we have already observed patterns in the zero-crossing

orbit 6.4

The language of stochastic periodicity encapsulates the idea that randomness can

be locked in with periodic behaviour. The prevalence of this phenomena is wit-



8.2 chapter summaries 147

nessed in ‘cyclostationary processes’ [113], whereby a random signal is implicitly

modulated because of measurement methods, mechanical aspects such as rotation,

or seasonality. Any signal can be decomposed into a predictable part that embodies

the periodic elements, and a residual part that describes the aperiodic randomness.

Reviewing additional definitions for cyclostationary processes reveals an overlap with

stationary processes that have periodic autocorrelation, though the former usually

applies when first and second-order moments are periodic. This makes cyclostation-

arity an ideal stepping stone from the thesis, and would extend the applicability to

non-stationary processes that contain transient, as opposed to constant, periodic

dependence.

Further directions for continuing research are provided after the chapter summaries

to follow.

8.2 chapter summaries

Chapter 3 introduced the idea that the general stationary Gaussian process can be di-

vided into three classes, a proposition investigated by this thesis using a parametrised

process with an oscillatory autocorrelation function: ρij(τ) = gi(τ) cosj(aτ/
√

j
)
.

The autocorrelation gi(τ) prescribes a class 0 process and determines the smooth-

ness. The periodicity parameter a controls periodic memory in the process and,

owing to critical points a = ac, the switching between classes. Realisations of the

processes were reliably simulated using the iterative Fourier filtering method (iFFM),

and zero-crossing statistics easily computed then compared with existing results on

crossing interval moments. When the periodicity parameter a is zero, the distinc-

tion between smooth and sub-fractal processes is apparent, the latter displaying

greater fluctuation in sample functions, in turn reflected in the greater variability

in crossing interval sizes. As a increases there is a homogenisation in sample func-

tion characteristics; sub-fractality is suppressed and the timescale accompanying

periodic modulation dominates. Two different kinds of regularisation are observed.

For class 1 cases (cos(aτ)), sample functions begin to resemble a sinusoidal wave
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as variability in the extrema almost match that at the zero-level. In the class 2

case (cos2
(

aτ/
√

2
)
), sample function oscillations ostensibly superimpose a slower

varying function of time resulting in long sequences of small crossings and large

epochs where there are no zero-crossings.

Chapter 4 explored added forms of autocorrelation gi(τ), many of which feature

in early literature on the zero-crossing problem, and prescribe processes where the

crossing intervals are approximately independent, as judged by the linear correla-

tion coefficient, κ1. The main goal was to demonstrate the similarity of class 0

processes using finite mixture (FM) models for the interval density function p(T).

A new distribution family was introduced, Eq. (4.5), its probability density function

acting as a basis function for the interval density of class 0 processes, with spe-

cial cases (EXP and EXPP) suited to capture previously predicted tail behaviour.

Maximum likelihood under an independent and identically distributed (IID) inter-

vals assumption was successfully used to estimate mixture parameters, and where

alternative solution methods (Talbot inversion of McFadden’s model, and a Slepian

regression model) were possible, the FM models compared favourably, yielding simi-

lar estimates of the persistence exponent. For processes with oscillatory correlation,

the additional periodicities though mild often led to multi-modalities in the interval

density, necessitating additional density components. More generally, this should

be understood as a consequence of additional effective time scales. For most of

the processes, the FM models consisted of no more than three components. A sim-

ilarity to the Poisson process was most demonstrated in those sub-fractal processes

with interval density modelled as a two component mixture, one being the EXP

density function. The FM model approach provides a measure of crossing interval

dependence; for class 0 processes the long term behaviour of crossing intervals is

analogous to sampling from a fixed number of GEXPP distributions.

Having established the similarity of class 0 processes, we returned in chapter 5 to

the more general autocorrelation ρij(τ) and investigated changes in the interval

density as the periodicity parameter a increases. We used as class 0 input autocor-

relations a squared exponential and an exponential sum, Eq. (3.31). The former
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defines a smooth process and is the limiting form of other smooth and sub-fractal

cases; the latter is a sub-fractal example and the only process for which the interval

density is known explicitly, App. B.8. The power spectrum Sij(ω; a), Eq. (5.3),

was explored in more detail, leading to critical values ac as calculated by turning

points of Sij(0; a) that signify the transition out of class 0. For values of a> ac, the

spectrum prescribes a class 1 process if Sij(ω) has a minimum at the origin, and

maxima occurring away from the origin. The spectrum prescribes a class 2 process

if Sij(ω) has a maximum at the origin and either additional maxima, or inflection

points, away from the origin.

The remainder of chapter 5 advanced a compound mixture (CM) model connect-

ing the interval density p0(τ) of processes gi to the density p(T) of processes

ρij, a transformation different from a correlated Markov chain model [5]. This in-

troduced a latency variable η, interpreted as an additional stochasticity induced

by the periodicity parameter a. For class 1 cases, the model took the form

p(T) =
∫ ηM

T (τ/T)3 p0(τ) f (η)dη, with f (η) a mixture of BETA density func-

tions. These helped capture the inflection properties of the density at large a, and

2⟨T⟩< ηM < ∞, ηM → 0, captured the contraction of the range of interval sizes.

For class 2 cases, the density model was p(T)=
∫ ∞

β1/2
1 T(τ/T)3 p0(τ) f (η)dη, with

f (η) a mixture of BETA and GEXPP density functions, essentially a combination

of the class 1 mixture form and the class 0 basis function; and β1= β1(T)→1 as

T → 0 and T →∞. These functional forms of the interval density enabled deriva-

tion of tail behaviour; for class 1 processes, it is multinomial like a BETA density,

whilst for class 2 processes it is exponential like a GAM density with non-unit shape

parameter.

The zero-crossing intervals of stationary Gaussian processes are ’dependent and

identically distributed’, and in chapter 6 this dependence was tracked by analysis of

the crossing sequence and its derived counting process at different time scales. The

contrast arising from strong oscillatory correlation was emphasised through the com-

parison of extreme cases of periodicity (a=0 and a=100). Two ways of viewing the

time-dependent interval sequence were introduced: the crossing trace (effectively a
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plot of T(t)) and the crossing orbit (a plot of adjacent interval pairs contributing to

the product moment⟨T1T2⟩). For a class 0 process the crossing trace displays broad

variability relative to the mean, resembling the visualisation of a non-terminating

random walk, though T(t) is stationary like the original process x(t). For a class

1 process the crossing trace is almost horizontal with intermittent-like departures,

indicative of the contraction property of the interval sizes and asymptotic conver-

gence of sample functions towards a deterministic sinusoid as a → ∞. An even

more intricate structure is seen in the class 2 case; the trace oscillates about the

modal interval, forming a helix of varying width. The crossing orbits provide a visual

critique of the correlation coefficient κ1 when there is strong oscillatory correlation,

and for class 2 processes the Kendal tau coefficient κτ proves a more informative

measure as it is less affected by outliers. We showed that nonnegative periodic

modulation can lead to a correlation coefficient that approaches −1 as a → ∞.

Conversely, when the periodic modulation does assume negative values, κτ →1 as

a → ∞. These facts reflect the attractor-like behaviour played by the diagonals

with positive or negative slope in the zero-crossing orbits, Fig. 6.9.

The lacunarity curve (LC) and lacunarity slope (LS) provided a way to quantify

the heterogeneity displayed in the crossing traces, and enabled further comparison

with the Poisson process and deterministic sinusoid, each extremes of correlated

randomness. In the same way that the hazard function is constant for an expo-

nential distribution [3], the LS is constant for a Poisson process, and for Gaussian

processes it converges to the Poisson case at both the very small and very large time

scales, in agreement with them having the same asymptotic decay in the periodicity

density, Fig. 3.8. For class 0 processes, the LC has no turning points, and the LS

falls either above/below the Poisson case when the interval variance is greater/less

than the interval mean. This invariably translates to sub-fractal/smooth process

having supra-/sub-lacunarity signatures relative to a Poisson process. For class 1

processes, similarity to a deterministic sinusoid was demonstrated by the almost

identical oscillations in the LC at intermediate time scales (within 1 and 102 times

the mean interval). For class 2 processes, the long range and repeating helical

structure of the crossing trace is quantified in the lacunarity curve by the unique
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inflection points and the much slower approach to the Poisson case. Thus, the con-

cept of lacunarity is particularly useful for examining crossing interval dependence

at different time scales.

As described in Sec. 2.5, gliding box lacunarity is used widely and not always along-

side the contiguous box lacunarity. The latter should be the preferred method as

it enables directs comparison with well-established analytical results for counting

processes, and the user can be certain that correlation features are not exaggerated

by the resampling of the gliding box setup. The resampling uses more data to

compute the box moments, thereby yielding lacunarity curves that are smoother

and more amenable to estimating the lacunarity slope. However, there still remain

issues of standardisation relative to a Poisson process—the paradigmatic example

of time independent events—and the strong dependence on sample length. The

user can a priori limit the range of time scales for which the gliding box lacunarity

or lacunarity slope will be used, as practised and carefully revised by some authors

[77, 81], or try to combine multiple lacunarity measures of the same data set [33].

Chapter 7 ended with a real-world test case of the analytical tools of previous chap-

ters. The recorded one-dimensional magnetoencephalography (MEG) data signals

were approximately Gaussian and stationary once segmented into before and after

the change in state. The change was triggered by the participant pressing a button

at the halfway point of each signal data. After the button press the lengths of zero-

crossing intervals varied less and were more correlated. Under the nomenclature we

propose, the signals were deemed to be of class 1 type and sub-fractal. The interval

densities are reliably modelled as a finite mixture of BETA density functions, and

the bimodal density for crossing intervals after the button press were reminiscent

of the change in p(T) for a periodically modulated sub-fractal process as the pe-

riodicity parameter is increased. The next stage in such an analysis would be to

identify unspecified change points of such signal data algorithmically. Finally, we

note that the test case of our zero-crossing analysis approach applied to real-world

data demonstrates that a compound mixture model may not be necessary for non

class 0 processes.
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8.3 future work

8.3.1 Additional Processes

That stationary Gaussian processes belong to one of three classes is true with

respect to the power spectrum only assuming three forms. With the exception of

the sinc type 1 process (G3(ω; γ) in App. A.2), we have not explicitly considered

spectra that have more than one local maxima away from the origin, e.g. [114].

Such multimodal spectra arise in ocean wave analysis (refer to Sec. 2.3 in [30] for

examples with empirical data), and is also achieved by a superposition of power

spectra (see App. B in [30]) and/or by introducing shifts in the frequency domain

to widen the gap between peak frequencies. This is exactly the effect of periodic

modulation of an autocorrelation function (refer to (5.3)); and as for cases with

more than two peak frequencies, the top-hat spectrum (G3(ω, 1)) can be regarded

as a limiting form of either a class 1 or 2 process since there is a whole range

of frequencies (including the origin) for which the spectrum is maximal, and this

is reflected in the interval density shape, Fig. 4.3. Moreover, since as γ → ∞

log
(
cos
(
aτ/

√
γ
))

∼ log
(
1 − a2τ2/(2γ)

)
∼−a2τ2/(2γ), it follows that

lim
γ→∞

gi(τ) cosγ(aτ/
√

γ) = gi(τ) exp
(
−a2τ2/2

)
;

hence periodic modulation of an autocorrelation gi(τ) using cosγ
(
aτ/

√
γ
)
, γ∈N,

converges as γ→∞ to an autocorrelation with faster decay. Thus, there are good

reasons for maintaining our tripartite classification of stationary processes, and

regarding as sufficiently representative the forms of autocorrelation we have consid-

ered.

The iterative Fourier filtering method for generating correlated random processes

can take as input any distribution (see App. H), and so a natural extension is to

simulate non-Gaussian processes and perform zero-crossing analyses using the tools

presented here. This may require switching to level-crossings depending on the

chosen distribution, or incorporating the work on transformation to Gaussianeity of
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non-Gaussian processes (see [115]). We would expect to observe similar behaviour

relative to the median of the process, and verification of results will require evalu-

ating Rice’s general result for the rate of crossings of a level c∈R by a stationary

process x(t) [37]:

R =
∫ ∞

0
z fx(0),x′(0)(c, z)dz,

for almost any c, and if the joint density exists. Evaluating the integral has been

described for gamma [47] and Laplace [116] processes.

A related avenue would be to consider curve crossings of Gaussian processes, i.e.

trend stationary Gaussian processes. The case involving an oscillatory curve [117]

will be an interesting comparator to the oscillatory stationary Gaussian process

studied here. Given a mixed process y(t)= x(t)+cos(at), where x(t) is Gaussian

and has a non-oscillatory autocorrelation, one might expect the level-crossings of

y(t) to admit a mixture model, possibly even a compound model that maps from the

level crossings of x(t). This is a basic example of cyclostationary process discussed

earlier, Sec. 8.1. The relevance of such considerations can be seen in foreign

exchange data, which are non-Gaussian but may exhibit oscillatory correlation as

illustrated in Fig. 8.1.

8.3.2 Count Distributions

We have seen that for processes ρij with strong oscillatory correlation zero-crossings

have strong dependence, particularly at time scales 10−1 < Rr < 102 where lacu-

narity curves show the crossing sequence is more complicated than what a known

standard distribution (i.e. not a mixture) of crossing counts could represent. For

the cos(aτ) or class 1 case (refer to Figs. 6.7–6.8) there is a similarity to a de-

terministic cosine function xd(t), a similarity that vanishes as the time window r

increases. For the cos2
(

aτ/
√

2
)
or class 2 case (refer to Fig. 6.8) there is an addi-

tional dependence on the parity of the counts, but again the crossing distributions

show a slow divergence from those of the process xd(t).

Given that independent of the class of process the limiting value of the lacunarity
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Figure 8.1.: Plots relating to the derived process z(t)= |log(x(t+1) /x(t))|, the
absolute log return of x(t) which represents GBP:USD exchange data
(sampled at 1-minute intervals) for the month of April 2016 [118]. (a):
Original sample data. (b): The distribution of z(t) fitted with a gener-
alised Pareto distribution with shape and scale parameters respectively
equal to 0.1704 and 0.0001 to 4.d.p., found using maximum likelihood.
(c): The sample autocorrelation of z(t) and a class 1 correlation func-

tion ρ51(τ; a, L)=
(

1 +(τ/(2L))2
)−1

cos(aτ), a=11, L = 2500.

slope is that of a Poisson process, a mixture model approach that accounts for

this could prove fruitful. The simpler class 1 case suggests a mixture of the count

distributions for a Poisson process, (6.5), and a cosine wave, (6.7), with a mixing

parameter that depends on r. For the class 2 case, one could pursue a modified

negative binomial model in which the ‘number of failures’ and/or ‘success probabil-

ity’ are themselves random variables, as described in Sec. 8.3 of [62]. In renewal

theory, the following rule links event counts with the inter-event times [3]:

N(r) ≥ k ⇔ T̂k ≤ r,
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where T̂k is the sum of k+1 consecutive inter-event times, from which it follows

that

Pr{N(r) = k} = Pr
{

T̂k ≤ r
}
− P

{
T̂k+1 ≤ r

}
.

Thus to advance a mixture model for the crossing intervals T̂q is to assume that one

also exists for the crossing counts N(r). We have already seen for example that

the compound model connecting intervals of processes gi and ρij also applies to

these higher order intervals (refer to Fig. D.1).The simulated sequence zn, (3.23),

indicates crossing occurrence and is essentially a sequence of correlated Bernoulli

trials. Treated as such, the Connway-Maxwell-binomial distribution [119] which

models sums of Bernoulli trials with positive or negative association, could be ap-

propriate. Whichever model is chosen, it is partly simplified by knowledge of the

mean and variance of N(r) [9, 46]. Further investigation into the counting process

will highlight the possible relevance to other research areas, especially given the

ease of numerical simulation.

8.3.3 Stochastic Periodicity

Finally, the patterning seen in the crossing trace and orbit are examples of stochastic

periodicity—randomness and periodicity that are jointly persistent (in time). This

has already been proven by the lacunarity signatures. In addition, the crossing orbits

are reminiscent of chaos in dynamical systems as seen in the classic logistic map (see

Sec. 10 in [6]); within Fig. 6.9, plots (c)&(e) there is a diagonal that the iterates

(here the crossing sequence) surround, as well as an “unstable centre”. For the class

1 case there is a distinctive bowtie structure, and orbits for both classes 1 and 2 cases

contain periodic encircling of an attractor, though it is more contained in the former.

In [120], well-known circle maps are revisited with the assumption that the iterates

form a Markov-chain. Stochastic periodicity is equivocated to ‘phase-locking’, and

we have already seen that crossing interval sizes can be trapped within a certain

range containing the modal interval, with rare escapes. It will be interesting to

further investigate whether zero-crossings of random processes form true dynamical
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systems and test the applicability of formalisms such as described in [121], the which

considers deterministic systems with Gaussian excitation, employing results on the

up-crossings of Gaussian processes. The logistic map described in Sec. 1 has an

arcsin distribution when in the chaotic regime [122], meaning it has infinite variance.

This differs from a differentiable stationary Gaussian process as the variance of the

crossing trace (Sec. 6.1) is finite. Stochastic periodicity in Gaussian processes is

not chaotic. The connection yet remains due to the mixture models (Sec. 5.3) that

included beta distributions, of which the arcsin distribution is a special case.

We have explored lacunarity of zero-crossings as a measure of dependence, and for

a stationary Gaussian process the zero-crossings are the most important returns.

The dependence analysis may be extended by considering all returns as expressed in

the ‘unwrapped phase’, φu(t)= φ(0) +
∫ t

0 ψ(t′)dt′. The function ψ(t) is known

as the instantaneous frequency and can be evaluated using the analytical signal,

(2.49):

ψ(t) =
d
dt

φ(t) =
1

A2(t)

(
x(t)

d
dt

xq(t)− xq(t)
d
dt

x(t)
)

.

To illustrate the merits of the unwrapped phase, Fig. 8.2 contains plots of φu(t) for

realisations of the process ρ1j when a=100, as well as plots of the sample function

and crossing trace in the same time region. The phase is seen to be approximately

linear at significant jumps in the crossing trace. Most noticeable is that when j=1,

the gradient of the phase has little variation, another indicator of similarity to a

deterministic cosine wave (refer to [123]). Conversely, when j=2, the phase varies

significantly and progresses like a series of step-functions, a structure also present in

the maximum crossing count at box size r (Fig. 6.8(f)). Such complexities therefore

warrant further investigation. Truly, zero-crossings of stationary Gaussian processes

exhibit correlated randomness and stochastic periodicity.
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Figure 8.2.: Plots of the unwrapped phase for stationary Gaussian processes ρ1j (a=
100) with strong oscillatory correlation demonstrating phase related
changes in the crossing trace and sample function. The unwrapped
phase is computed using Fourier transform methods as outlined in [124].
(a)–(c): j=1. (d)–(f): j=2.



A
POWER SPECTRA OF CLASS 0 PROCESSES

a.1 special functions

� Gamma function: Γ(z) =
∫ ∞

0 tz−1e−t dt, R(z) > 0

� Heaviside step function: H(z) = 1 (z > 0) , 0 (z ≤ 0);

� Modified Bessel function of the second kind ([125], Eq. 10.32.9):

Kν(z) =
∫ ∞

0 exp(−z cosh(t)) cosh(νt)dt, |arg z| < π/2.

a.2 smooth processes

G1(ω) =
√

2π exp
(
−2π2ω2

)
;

G3(ω, 1) =
π√

3

(
H

(
|ω|+

√
3

2π

)
− H

(
|ω| −

√
3

2π

))
,

G3(ω, γ ∈ N≥2) =
πγ3/2

2γ−1
√

3
H
(√

3γ

2π
− |ω|

)

×
⌊π
√

γ/3|ω|+γ/2⌋

∑
j=1

(−1)j

(
2π
√

γ/3 |ω|+ γ − 2j
)γ−1

j!(γ − j)!
;

G5(ω, γ ∈ R>1/2) = 2(2γ)γ

√
π

Γ(γ)

(
π |ω|√

2γ

)γ−1/2

Kγ−1/2

(
2π
√

2γ |ω|
)

;

G7(ω, γ ∈ R) =
(2πγ′) cos(πγγ′/2) cosh

(
π2γ′ω

)
2 cosh2(π2γ′ω) + cos(πγγ′)− 1

,
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γ′ = 1/
√

1 + γ2;

G9(ω) =
3π

10
√

5

(
5 − 4π2ω2

)
H

(√
5

2π
− |ω|

)
.

See [99] for G3 (Eq. 1.6.11) and G9 (Eq. 1.3.7). For reference,

G3(ω, 2) =
π

3

(√
6 − 2π |ω|

)
H

(√
6

2π
− |ω|

)
,

G3(ω, 3) =
π

8

(
2
(

3 − 4π2ω2
)

H
(

1
2π

− |ω|
)

+(3 − 2π |ω|)2 H
(
|ω| − 1

2π

)
H
(

3
2π

− |ω|
))

, etc.

G3(ω, γ) is a polynomial of order γ − 1 for |ω|<
√

3γ/(2π), and 0 otherwise.

Likewise, when γ∈N, G5(ω, γ) forms a sequence of functions of polynomial type,

and with exponential decay:

G5(ω, 1) =
√

2π exp
(
−2

√
2π |ω|

)
,

G5(ω, 2) = π(1 + 4π |ω|) exp(−4π |ω|), etc.

a.3 sub-fractal processes

G2(ω, γ ∈ N>1) =
2γ
(
1 + γ2)

(γ2 + 4π2ω2)(1 + 4π2γ2ω2)
;

G4(ω) ≈ 2(π − 1)

(1 + π4ω2)
(

1 +(π − 2)2 π2ω2
) ;

G6(ω, γ ∈ N) =
(Γ(γ + 1))2

Γ(2γ + 1)

(
2
√

2γ − 1
)2γ+1

(2γ − 1 + 4π2ω2)
γ+1 ;

G8(ω) =
2
√

2
1 + 16π4ω4 ;

G10(ω) =
14 sin(π/14)

γ̄(1 + 16384π14ω14/γ̄14)
,
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γ̄−2 = − sin(π/14)

(
1 + 2

3

∑
j=1

cos(3jπ/7)

)
.

For G6(ω, γ) and the corresponding autocorrelation function when γ ̸∈N see [39].

The autocorrelation has the same form as G5(ω, γ) above.



B
PROBAB I L ITY D I STR IBUT IONS

Moments are taken about zero. Abbreviations: PDF (probability density func-

tion), CDF (cumulative density function), MGF (moment generating function).

m̄ is the median of the random variable. erf(z) =
(
2/

√
π
) ∫ z

0 e−t2
dt is the

error function. Γi(z; ν) =
∫ ∞

z tν−1e−t dt is the upper incomplete gamma func-

tion. H(z) = 0{z < 0} , 1{z ≥ 0} is the Heaviside step function. Bi(z; v, w) =∫ z
0 tv−1(1 − t)w−1 dt is the incomplete beta function, its inverse is B−1

i (z; v, w),

and B(v, w)≡Bi(1; v, w) is the beta function. Unless specified below, the support

for all distributions is R≥0. All distribution parameters are nonnegative, except for

µ in NORM
(
µ, σ2) and c, d in UNI(c, d).

b.1 normal distribution, NOR M(b)

Support : (−∞, ∞)

PDF :
1√

2πσ2
exp

(
−(T − µ)2

2σ2

)

CDF :
1
2

(
1 − erf

(
µ − T√

2σ2

))
CentralMoments : σr(1 +(−1)r)(r − 1)!!

MGF : exp
(
−µs + σ2s2/2

)
Mode : µ

Median : µ

161
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b.2 uniform distribution, U N I F(c , d)

Support : (c, d)

PDF : (d − c)−1

CDF : H(T − c) H(d − T)

Moments : (d − c)−1(r + 1)−1
(

dr+1 − cr+1
)

MGF : s−1(d − c)−1
(

e−cs − e−ds
)

Mode : (c, d)

Median : (c + d) /2

b.3 exponential distribution, EX P(b)

PDF :
1
b

exp
(
−T

b

)
CDF : 1 − exp

(
−T

b

)
Moments : r!br

MGF : (1 + bs)−1

Mode : 0

Median : b ln 2

b.4 gamma distribution, G A M(c , b)

PDF :
1

Γ(c) b

(
T
b

)c−1

exp
(
−T

b

)
CDF : 1 − Γi

(
b−1T; c

)
/Γ(c)

Moments : brΓ(r + c) /Γ(c)
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MGF : (1 + bs)−c

Mode : b(c − 1)

Median, m̄ : m̄(c, b)− 1
3
< m̄(c, 1) ≤ m̄(c, b)

b.5 weibull distribution,W E I B(c , b)

PDF :
c
b

(
T
b

)c−1

exp
(
−
(

T
b

)c)
CDF : 1 − exp

(
−
(

T
b

)c)
Moments : brΓ(1 + r/c)

MGF :
∞

∑
r=0

srbrΓ(1 + r/c)

Mode : b
(

c − 1
c

)1/c
H(c − 1)

Median : b(ln 2)1/c

b.6 exponential product distribution, EX PP(a , b)

PDF : b−2(a + b) exp
(
−T

b

)(
1 − exp

(
−T

a

))
CDF : 1 − exp

(
−T

b

)(
1 +

a
b

(
1 − exp

(
−T

a

)))
Moments : r!br−1(a + b)−r

(
(a + b)r+1 − ar+1

)
MGF : (1 + bs)−1

(
1 +

abs
a + b

)−1

Mode : c ln(1 + b/a)

Median m̄ : b ln 2 ≤ m̄(a, b) ≤ b ln(2(1 + a/b))
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b.7 beta distribution, BETA(v , w , d)

Support : (0, d)

PDF :
Tv−1(d − T)w−1

B(v, w) dv+w−1

CDF : Bi

(
d−1T; v, w

)
/B(v, w)

Moments : drB(v + r, w) /B(v, w)

MGF :
1

B(v, w)

∞

∑
r=0

(ds)r B(v + r, w)

Mode : (0, d) , if v=w=1;

d(v − 1)
v + w − 2

, if v, w>1;

(d + 1) H(v − 1) + H(w − 1)− 1, otherwise

Median : dB−1
i (B(v, w) /2; v, w)

b.8 wong’s density function[35]

pw(T) =
√

3
4π

( (
1 − 2r2(T)

)1/2

(1 − r2(t))(1 + 2r2(t))
E(r(t)) +

(
1 − 2r2(t)

)
(3 − 2r2(t))

D(r(t))

+
8
(
1 − 2r2(t)

)3/2

(3 − 2r2(t))2
(1 + 2r2(t))

(
Π
(

3
4
− 1

2
r2(t) , r(t)

)
− K(r(t))

))
,

(B.1)

where

r2(t) =
(

1 − e−T/
√

3
)

/2, (B.2)

and

E(k) =
∫ π/2

0

√
1 − k2 sin2(φ)dφ,
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K(k) =
∫ π/2

0

1√
1 − k2 sin2(φ)

dφ,

D(k) =
∫ π/2

0

sin2(φ)√
1 − k2 sin2 φ

dφ,

Π
(

ν2, k
)
=

∫ π/2

0

1(
1 − ν2 sin2(φ)

)√
1 − k2 sin2(φ)

dφ (B.3)

are complete elliptic integrals (see [125], Eqn. 19.2).



C
TA I L BEHAV IOUR OF THE INTERVAL DENS ITY

For processes with autocorrelation ρij(τ)= gi(τ) cosj
(

aτ/
√

2j−1
)
, where j=1, 2,

and gi(τ) prescribes a class 0 process, the density model for intervals between

zero-crossings is

p(T) =

ηM∫
β

1/β2
1 T

1(
1 − β1(T/η)β2

)1+1/β2
p0

 T(
1 − β1(T/η)β2

)1/β2

 f (η)dη,

(C.1)

where f (η) is the latency density and p0(τ) the interval density of the original class

0 process.

Left tail

Under the substitution τ=T/
(

1 − β1(T/η)β2
)1/β2

,

η =
β

1/β2
1 T(

1 −(T/τ)β2
)1/β2

,
dη

dτ
= −

β
1/β2
1 (T/τ)1+β2(

1 −(T/τ)β2
)1+1/β2

,

and (C.1) becomes

p(T) = β
1/β2
1

∞∫
τM

1(
1 −(T/τ)β2

)1+1/β2
f

 β
1/β2
1 T(

1 −(T/τ)β2
)1/β2

 p0(τ)dτ,

(C.2)
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τM = T/
(

1 − β1(T/ηM)β2
)1/β2

. (C.3)

For small values of T, T≪⟨T⟩, say, (C.1) and (C.2) respectively approximate as

p(T) ≈
ηM∫

β
1/β2
1 T

p0(T) f (η)dη, p(T) ≈ β
1/β2
1

∞∫
τM

f
(

β
1/β2
1 T

)
p0(τ)dτ;

thus the model necessarily has the boundary condition

p(T) ≈ p0(T) ≈ β
1/β2
1 f

(
β

1/β2
1 T

)
as T → 0. (C.4)

Specifically, from (4.1), as T → 0, p0(T) is O(T) for a smooth process, or O(1)

for a sub-fractal process with an autocorrelation gi(τ) such that g′′′(0) ̸=0. These

transfer to p(T) and Eq. (C.4) acts as a continuity condition.

Right tail

The integration range in (C.1) contracts as T increases. Consider T≫⟨T⟩ and let

s=
(

1 − β1(T/η)β2
)1/β2

, giving

η =
β

1/β2
1 T(

1 − sβ2
)1/β2

,
dη

ds
=

sβ2−1β
1/β2
1 T(

1 − sβ2
)1+1/β2

, sM =
(

1 − β1(T/ηM)β2
)1/β2

.

(C.5)

Substitution into (C.1) leads to

p(T) = β
1/β2
1 T

sM∫
0

1

s2
(
1 − sβ2

)1+1/β2
p0

(
T
s

)
f

(
β

1/β2
1 T(

1 − sβ2
)1/β2

)
ds

≈ Aβ
1/β2
1 T

sM∫
0

1

s2
(
1 − sβ2

)1+1/β2
exp

(
−θT

s

)
f

(
β

1/β2
1 T(

1 − sβ2
)1/β2

)
ds,

(C.6)
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where from (4.2) the large T form of p0(T) has been substituted; A is a constant

scale factor and θ the persistence exponent.

For processes ρi1, f (η) is modelled as a BETA mixture and T < ηM <∞, where-

upon the integration range in (C.6) is contained in [0, 1). Then as T→ η−
M, from

(C.5), sM →0+, and the approximation (C.6) further reduces to

p(T) ≈ Aβ
1/β2
1 T

sM∫
0

1
s2 exp

(
−θT

s

)
f
(

β
1/β2
1 T

)
ds

=
Aβ

1/β2
1
θ

exp
(
− θT

sM

)
f
(

β
1/β2
1 T

)
≈ A1TvM−1

(
ηM − β

1/β2
1 T

)wM−1
, (C.7)

substituting the beta mixture component of f (T) with range parameter ηM. Since

exp(−θT/sM)≪ 1, the exponential term and the remaining constant prefactors

may be absorbed into a single constant A1.

For processes ρi2, f (T) is modelled as a mixture of two BETA’s and two GEXPP’s,

so that ηM =∞. Consider T larger than the range parameter for the BETA density

components. The asymptotic form of f (T) is then given by the GEXPP component

with the slowest decay, i.e. f (T)≈αMTcM−1 exp
(
−b−1

M T
)
. From (C.5), sM =1,

and (C.6) becomes

p(T) ≈ AαMβ
cM/β2
1 TcM

1∫
0

1

s2
(
1 − sβ2

)1+cM/β2
exp

(
−θT

s
−

b−1
M β

1/β2
1 T(

1 − sβ2
)1/β2

)
ds

≡ AαMβ
cM/β2
1 TcM

∫ 1

0
ψ(s) exp

(
β

1/β2
1 Tϕ(s)

)
ds. (C.8)

The integral may be evaluated using Laplace’s method [126]. First, replace ϕ(s)

with a Taylor series approximation ϕ(s0) +(s − s0)
2 ϕ′′(s0) /2, where s0∈(0, 1) is

the maximum point of ϕ(s); then for some ϵ≪1, as T→∞

∫ 1

0
ψ(s) exp

(
β

1/β2
1 Tϕ(s)

)
ds

≈ ψ(s0)
∫ s0+ϵ

s0−ϵ
exp

(
β

1/β2
1 T

(
ϕ(s0) +(s − s0)

2 ϕ′′(s0) /2
))

ds
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≈ ψ(s0) exp
(

β
1/β2
1 Tϕ(s0)

) ∫ ∞

−∞
exp

(
β

1/β2
1 T (s − s0)

2 ϕ′′(s0) /2
)

ds

=

√
2πψ(s0)√

−β
1/β2
1 Tϕ′′(s0)

exp
(

β
1/β2
1 Tϕ(s0)

)
,

provided ϕ′′(s0)<0. From (C.8),

ϕ(s) = − θ

β
1/β2
1 s

−
b−1

M(
1 − sβ2

)1/β2
< 0; (C.9)

ϕ′(s) =
θ

β
1/β2
1 s2

−
b−1

M sβ2−1(
1 − sβ2

)1+1/β2
; (C.10)

ϕ′′(s) = − 2θ

β
1/β2
1 s3

−
b−1

M sβ2−2(β2 − 1)(
1 − sβ2

)1+1/β2
−

b−1
M s2(β2−1)(1 + β2)(

1 − sβ2
)2+1/β2

< 0, (C.11)

the last inequality being true for all s∈(0, 1) if β2≥1. It follows that

p(T) ≈ A2TcM−1/2 exp
(
−β

1/β2
1 T |ϕ(s0)|

)
, (C.12)

once again absorbing the constant prefactors into the constant A2. Note: the

GEXPP distribution goes like O(TcM) as T → 0, and thus the condition (C.4)

means only cM ≥ 1 is admissible. In Sec. 5.3.2 the optimisation gives, cM = 1 for

the processes considered. When β1 =1, β2 =2, equations (C.10)&(C.11) imply s0

exists, and

ϕ′(s0) = 0 ⇒ (θbM)2
(

1 − s2
0

)3
= s6

0.

This is a cubic equation for x= s2
0 and simplifies to

x3 + λ
(
−3x2 + 3x − 1

)
= 0, λ =

(θbM)2

1 +(θbM)2 < 1. (C.13)

The substitution x=y+λ leads to the reduced cubic equation

y3 +Py + Q = 0, P= 3λ(1 − λ) , Q = λ(1 − λ)(2λ − 1) .
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According to Cardano’s method ([127], Sec. 2.1) the determinant is

∆ = Q2 +
4P3

27
= λ2(1 − λ)2 > 0,

which implies there is one real solution given by

x = y + λ =

(
1
2

(
−Q+

√
∆
))1/3

+

(
1
2

(
−Q−

√
∆
))1/3

+ λ

= λ2/3(λ − 1)1/3 + λ1/3(λ − 1)2/3 + λ

= λ1/3
(

λ1/3(λ − 1)1/3 +(λ − 1)2/3 + λ2/3
)

=
λ1/3

λ1/3 −(λ − 1)1/3 using
a3 − b3

a − b
≡ a2 + ab + b2

=
1

1 −(1 − λ−1)
1/3 ;

and substituting for λ from (C.13)

s0 =
√

x =
(

1 +(θbM)−2/3
)−1/2

< 1, (C.14)

which may then be substituted into (C.11). Note: for the density model shown in

Fig. 5.10(b), s0=0.6838....

In summary, as T→∞, the interval density model for processes ρij decays as

p(T) ∼


Tv−1(ηM − T)w−1 , if j = 1,

T1/2 exp
(
−θT

(
1 +(θb)2/3

)3/2
)

, if j = 2,
(C.15)

for constants v, w, b determined by the latency density, f (η). In the j = 1 case

ηM is retained to emphasize the connection between the supports of the latency

density, f (η), and the compound density, p(T). In the j = 2 case the exponent

remains dependent on θ, the persistence exponent of the base density, p0(τ).



D
H IGHER ORDER D I STR IBUT IONS

The mixture paradigm we advocate transfers to distributions of sums of consecutive

intervals, constructed as

T̂q =
q

∑
m=0

Tm; (D.1)

so, T̂0 ≡ T is the variable for adjacent crossing intervals; T̂1 applies to the time

between crossings where the sample function derivative has the same sign; and so on.

Note: the variable T̂q is formed by contiguous intervals, as opposed to overlapping

groupings of adjacent intervals. This latter grouping is used in computing the

correlation coefficients κm,m+j, given in (2.26).

Known results

Taking the expectation of (D.1) gives a rescaling of Rice’s result:
〈

T̂q
〉
=(q + 1)⟨T⟩.

From [53], the density pq
(
T̂q
)
is always O(1) as T → 0 for a sub-fractal process

that is only once differentiable. (Intuitively, there is no difference between one and

arbitrarily many tangent crossings occurring in an instant.) However, for a smooth

process,

pq
(
T̂q
)
= O

(
T̂1+q(q+5)/2

q

)
, (D.2)

as T̂q → 0. The results provided by [53] are not as easily summarised when the

process is sub-fractal and at least twice differentiable; each case of differentiability

must be pursued separately.
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By definition, T̂q ≥ T̂q−1 ≥ · · · ≥ T̂0, whence Pr
{

T′≥ T̂q
}
≥ Pr

{
T′≥ T̂q−1

}
,

∀q ≥ 1; therefore the asymptotic decay at large T̂q is slower for each successive

density function pq(T), q ≥ 0. Recall also that the processes under consideration

have short-range dependence, and that according to Sec. 3.4, variation in T̂q is

constrained by the sample function periodicities. Therefore, an increase in central

tendency is expected.

Preliminary models

Given a class 0 process, as a first modelling step, GAM densities can be used to

probe the forms of pq
(
T̂
)
without making further assumptions about tail behaviour.

In figure D.1, plots (a)&(b) show p1
(
T̂
)
and p2

(
T̂
)
for the squared exponential

process (4.11). We observe that the densities become less skewed, and the intervals

T̂q are less dispersed as q increases.

Turning to classes 1 and 2 extensions of the process gi, the transform principle can

again be employed using a modified compound mixture model. Equation (5.11)

becomes

pq
(
T̂q
)

=

ηM∫
β

1/β2
1 T̂q

1(
1 − β1

(
T̂q/η

)β2
)1+1/β2

p0, q

 T̂q(
1 − β1

(
T̂q/η

)β2
)1/β2

 fq(η)dη.

(D.3)

where p0, q
(
T̂
)
gives the density of summed intervals for the original class 0 process.

The latency density also changes with the value of q, but the basis distributions

should remain the same since the variation is constrained by the modal periodicities.

Provided only linear exponentials are used in the mixture models for p0, q(T), and

fq(η) in class 2 cases, the derivation of tail behaviours for (D.3) when q ≥ 1 will

resemble App. C. Whence, the right tail is expected to have either multinomial

(class 1) or exponential (class 2) decay, similar to the forms in (C.15).
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Figure D.1.: Plots of the distribution of crossing intervals T̂q when q = 1 for the

process with autocorrelation ρ11(τ)= exp
(
−τ2/2

)
cos(aτ). Plots

(a)&(b) result from mixture models of three GAM distributions.
These are reused as base distributions for the compound mixture model
(D.3), alongside BETA tri-mixtures for the latency densities, leading
to plots (c)&(d). As in Sec. 5.3, fixing β1=1 and β2=2 is sufficient
for class 1 processes.

Figures D.1(c)&(d) show the first two additional densities for the process ρ11 when

a=5. In comparison to Fig. 5.5(f), the“shoulder” of the distribution begins to

disappear as q increases, and it is conceivable that for sufficiently large q the latency

density may have only one component.

The mixture models plotted in Fig. D.1 are presented without a detailed analysis

of tail behaviour as in App. C. The message here is that mixture models coupled

with maximum likelihood estimation can be used to recover (or discover) previously

known (or unknown) analytical behaviours in the interval density. For reference,

the parameter estimates corresponding to the density plots in Fig. D.1 are provided

below (to 4 decimal places). Refer back to App. B for the role of each parameter.

g1:

Mixture model is three GAM distributions, with parameters

[α1, c1, b1, α2, c2, b2, c3, b3].
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p1(T): [0.3968, 4.4168, 1.8507, 0.1475, 10.2368, 0.3329, 5.8410, 0.9530]

p2(T): [0.3545, 7.2041, 1.6986, 0.4798, 9.5403, 0.9101, 13.4067, 0.4142]

ρ11, a=5:

Mixture model for η is three BETA distributions, with parameters

[α1, v1, w1, d1, α2, v2, w2, d2, v3, w3, d3].

p1(T): [0.0166, 6.2352, 1090.5217, 174.1114, 0.7544, 12.8003, 126.1411,

14.3807, 68.6538, 95.2248, 2.8967].

p2(T): [3.5227e−05, 2.8443, 618.1227, 323.3428, 0.5415, 17.1531, 40.4280,

7.0458, 29.6971, 106.4313, 7.8482].



E
FORMULAE FOR CONT IGUOUS AND GL ID ING BOX COUNT

METHODS

The notation used here is from Sec. 3.2. For the realisation xn, with n=1, ..., nmax,

the vector zn equals one if there is a crossing in the time interval [tn−1, tn], and let

Nn represent the counting process for crossings up to and including time tn. The

box size r can be discretised as

rn =(n − 1)∆t, n = 1, .., nmax, rnmax ≡ tmax. (E.1)

The numerical lacunarity estimate Λ(rn) measures the variation in box mass M j(rn)

of crossing counts, and is defined by

Λ(rn) = 1 +
Var
[
M j(rn)

](
E
[
M j(rn)

])2 . (E.2)

e.1 contiguous boxes

When the contiguous boxes method is applied the box masses accumulate dis-

jointly:

M j(rn) =

Nn, j = 1,

N j(n−1)+1 − N(j−1)(n−1)+1, 2 ≤ j ≤ jmax,
(E.3)
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jmax =

nmax, n = 1,

⌊(nmax − 1) /(n − 1)⌋, 2 ≤ n ≤ nmax.
(E.4)

For n>1, this leads to

E
[
M j(rn)

]
=

1
jmax

jmax

∑
j=1

M j(rn) =
1

jmax

(
jmax

∑
j=1

N j(n−1)+1 −
jmax−1

∑
j=1

N j(n−1)+1

)

=
1

jmax
N jmax(n−1)+1,

Var
[
M j(rn)

]
=

1
jmax − 1

jmax

∑
j=1

M2
j (rn) +

1
jmax

(
jmax

∑
j=1

M j(rn)

)2


=
2

jmax − 1

jmax

∑
j=1

N j(n−1)+1

(
N j(n−1)+1 − N(j+1)(n−1)+1

)
− jmax + 1

jmax(jmax − 1)
N2

j(n−1)+1. (E.5)

Note: the simplification of the first moment virtually guarantees it is an unbiased

estimate of the mean box mass since the index jmax(n − 1)+1 >nmax/2 for n ̸=1.

By the stationarity property, this means that at least half of the total number of

crossing events are included. The variance of box counts is not so easily simplified,

though for n>nmax/2 there is only one disjoint box of size rn meaning the variance

is zero.

e.2 gliding boxes

In the gliding box method the boxes slide through the discretisation one point at a

time, and the box masses are

M j(rn) =

Nn, j = 1,

N j+n−1 − N j−1, 2 ≤ j ≤ nmax − k + 1.
(E.6)



E.2 gliding boxes 177

Further define the first and second order cumulants S(1)
i =∑i

j=1 N j, S(2)
i =∑i

j=1 N2
j .

Then for n>1 the mean and variance are

E
[
M j(rn)

]
=

1
nmax − n + 1

nmax−n+1

∑
j=1

M j(rn) =
ϕ1(rn)

nmax − n + 1
,

Var
[
M j(rn)

]
=

1
nmax − n

(
nmax−n+1

∑
j=1

M2
j (rn)

+
1

nmax − n + 1

(
nmax−n+1

∑
j=1

M j(rn)

)2


=
1

nmax − n

(
ϕ2(rn)− 2ϕ3(rn)−

ϕ2
1(rn)

nmax − n + 1

)
, (E.7)

where

ϕ1(rn) = S(1)
nmax − S(1)

nmax−n − S(1)
n−1,

ϕ1(rn) = S(1)
nmax − S(1)

nmax−n − S(1)
n−1,

ϕ3(rn) =
nmax−n

∑
j=1

N jN j+n. (E.8)

Calculating ϕ3 directly from the expression above is computationally costly, and

so like other practitioners (see [102]) we seek an accurate and efficient estimate.

Suppose the first crossing occurs at time tK; then Nn<K = 0, NK = 1, and for

0≤ c≤K,

ϕ3(rnmax−K+c) =
K−c

∑
j=1

N jN j+nmax−n+c

= N1Nnmax−K+c+1 + · · ·+ NK−cNnmax

= δ0cNnmax .

The numerical autocorrelation is

ρ̂(rn) =
1

nmaxσ̂2

nmax−n

∑
j=1

(
N j − µ̂

)(
N j+n − µ̂

)
,
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µ̂ =
1

nmax
S(1)

nmax , σ̂2 =
1

n2
max

(
nmaxS(2)

nmax −
(

S(1)
nmax

)2
)

, (E.9)

and for n<nmax −K this can be rearranged to give a sufficiently accurate estimate

of ϕ3 (relative error of at most 10−7):

ϕ3(rn) ≈ (nmax + 1) σ̂2ρ̂(rn) + µ̂
(

S(1)
nmax−n − S(1)n

)
+ nµ̂2. (E.10)

The lacunarity value at box size r1 is identical for both box counting methods and

depends entirely on the discretisation of the process. The mean crossing count is

Nnmax/nmax, and the variance is Nnmax(1−Nnmax/nmax) /nmax. Therefore,

Λ(r1) =
nmax

Nnmax

≈ 628.32, (E.11)

substituting Nnmax ≈5×103 and nmax=3.1416 × 106.

The lacunarity slope may be computed as

λ(rn) = rn
dVar

[
M j(rn)

]
drn

Var
[
M j(rn)

]
− 2, (E.12)

where the derivative is evaluated using finite differences. In the text we use the

four-point centred estimate, which for a continuous function f (t) gives the first

derivative as

f ′(tk) ≈
fk−2 − 8 fk−1 + 8 fk+1 − fk−2

12h
, (E.13)

where fk = f (tk) and h= tk+1 − tk >0 is the discretisation length ∆t.

e.3 relation to counting distributions

For each sequence of crossings, and its box masses M j(rn), j = 1, . . . , b(rn), the

raw moments for the counting process N(rn) are

⟨Nq(rn)⟩ ≈
1

b(rn)

b(rn)

∑
j=1

M j(rn)
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=
1

b(rn)

b(rn)

∑
j=1

mmax

∑
m=0

mqδ̂m
(

M j(rn)
)

=
1

b(rn)

mmax

∑
m=0

mq
b(rn)

∑
j=1

δ̂m
(

M j(rn)
)

=
mmax

∑
m=0

mq B(m, rn)

b(rn)
≈

∞

∑
m=0

mqPN(N(rn) = m), (E.14)

where B(m, rn) is the total number of boxes of size rn with m counts, so that

B(m, rn) /b(rn) is an estimate for the distribution of counts given a particular

box-counting method.



F
PARAMETER VALUES AND ADD IT IONAL STAT I ST ICS :

C LASS 0 DENS IT I E S

The parameter values here are representative of the processes in Tables 4.1&4.2.

The expressions of probability density functions given in App. B show the role

of each parameter, and for convenience only the letters c and b are used below.

Each density model’s mixture parameters is represented as a vector, with the final

mixture parameter (given by αK = 1 − ∑K−1
k=1 ) omitted. For example, for the g1

process the density model is
[
WEIB{1}, GAM{2}, EXPP{3}

]
, which translates to

[α1, c1, b1, α2, c2, b2, c3, b3]. Decimals are given to 4 decimal places.

g1:
[
WEIB{1}, GAM{2}, EXPP{3}

]
[0.1836, 2.6859, 1.7875, 0.1086, 5.5100, 0.5214, 2.6105, 2.3498]

g2, γ=
√

3:
[

EXP{1,2}

]
[0.1095, 0.5845, 3.4562]

g3, γ=1:
[
WEIB{1,2,3}, GAM{4,5,6,7,8}, EXPP{9}

]
[0.4901, 3.6845, 2.5536, 0.0626, 7.3623, 5.8556, 0.0437, 6.7198, 2.4578, 0.0064,

162.8764, 0.0567, 0.0009, 407.4457, 0.0316, 0.0002, 497.5011, 0.0329, 4.4901e−05,

559.4911, 0.0354, 1.2010e−05, 568.9751, 0.0412, 7.3180, 2.1234]

g4:
[

EXP{1,2}

]
[0.9498, 0.7158, 3.2876]

g5:
[
WEIB{1}, GAM{2}, EXPP{3}

]
[0.0522, 2.1821, 2.6106, 0.1148, 3.4437, 0.3296, 0.4903, 3.0478]
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g6, γ=1:
[

EXP{1}, EXPP{2}

]
[0.2973, 0.8387, 1.4868, 3.1323]

g6, γ=2:
[

GAM{1}, EXPP{2}

]
[0.0198, 2.3087, 0.2008, 0.7256, 2.6289]

g7, γ=0:
[

GAM{1,2}, EXPP{3}

]
[0.0806, 3.4844, 0.3334, 0.0150, 4.0573, 0.5477, 0.8862, 2.6678]

g7, γ=3:
[

GAM{1,2,3,4}, EXPP{5}

]
[0.3204, 2.5212, 0.1612, 0.1746, 2.0176, 1.1080, 0.1482, 3.7264, 0.2847, 0.0016,

27.9454, 0.0090, 0.0132, 6.9335]

g8:
[
WEIB{1}, GAM{2}, EXP{3}

]
[0.0679, 2.0024, 6.4976, 0.2116, 4.4366, 0.7736, 2.8287]

g9:
[
WEIB{1,2}, GAM{3,4}, EXPP{5}

]
[0.3988, 3.5135, 2.2916, 0.0616, 5.6863, 4.9436, 0.0054, 152.5598, 0.0508, 0.0005,

473.0579, 0.0224, 5.0806, 2.1940]

g10:
[
WEIB{1,2}, GAM{3,4}, EXPP{5}

]
[0.3764, 3.2198, 2.4159, 0.0710, 4.4883, 5.3533, 0.1155, 19.5102, 0.1286, 0.0040,

73.8112, 0.1166, 109.2310, 1.9272]
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Process γ σ̂2
T σ2

T κ̂1 κ1 κτ p-value

g1 - 5.8200 5.8201 −0.0148 −0.0153 −0.0221 1.0000

g3

1 4.4048 4.6404 −0.0071 0.0069 −0.0444 0.9995

2 5.5943 7.3468 −0.0261 0.0961 −0.0414 0.9995

3 5.5138 7.5715 −0.0155 0.1420 −0.0246 0.9992

4 5.6105 7.9221 −0.0170 0.1533 −0.0262 0.9989

g5

1 8.6339 9.1108 −0.0266 −0.0451 −0.0253 0.9980$

2 7.1002 7.1296 −0.0124 −0.0129 −0.0160 0.9999

3 6.6375 6.6403 −0.0105 −0.0110 −0.0154 0.9964

4 6.4079 6.4159 −0.0116 −0.0113 −0.0166 0.9965

g7

0 7.2453 7.2509$ −0.0057 −0.0053 −0.0085 0.9982

1 10.8532 10.8970 −0.0135 −0.0141 −0.0304 0.9999

2 18.0317 18.1129 −0.0149 −0.0154 −0.0278 0.9954

3 26.0804 26.1570 −0.0135 −0.0122 −0.0304 0.9998

g9 - 4.9671 5.0380 −0.0169 −0.0136 −0.0343 0.9993

Table F.1.: Moments of smooth class 0 processes considered in Sec. 4.2.1. σ̂2
T and

κ̂1 are respectively the variance and correlation coefficient obtained from

simulations, while σ2
T and κ1 are corresponding quantities as predicted

by McFadden’s equations (3.26) and (3.30). Additionally, the last two

columns include Kendall’s tau correlation coefficient (from simulations),

as well as the maximum p-value of the Kolmogorov-Smirnov test assum-

ing the mixture model is the true distribution for the interval data from

each realisation (out of 1000).
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Process γ σ̂2
T σ2

T κ̂1 κ1 κτ p-value

g2

1+
√

3
2 10.5560 10.8338 0.0497 0.0576 0.0795 0.9963

√
3 11.4906

11.7807

11.4783
0.0476 0.0552 0.0800 0.9971

2 12.3576 12.6321 0.0463 0.0532 0.0811 0.9984

2
√

3 17.9075 18.1875 0.0362 0.0425 0.0814 0.9884

g4 - 10.6098 10.8901 0.0415 0.0492 0.0692 0.9984

g6

1 10.1047 10.3930 0.0503 0.0587 0.0785 0.9991

2 7.2730 7.2872 0.0045 0.0046 0.0069 0.9995

3 6.6848 6.6892 −0.0046 −0.0047 −0.0061 0.9995

4 6.4247 6.4369 −0.0085 −0.0083 −0.0117 0.9994

g8 - 7.4769 7.7363 0.0562 0.0656 0.0746 0.9963

g10 - 4.457 4.5083 −0.0200 −0.0183 −0.0422 0.9991

Table F.2.: Moments of sub-fractal class 0 processes considered in Sec. 4.2.2. σ̂2
T

and κ̂1 are respectively the variance and correlation coefficient obtained

from simulations, while σ2
T and κ1 are corresponding quantities as pre-

dicted by McFadden’s equations (3.26) and (3.30). Additionally, the

last two columns include Kendall’s tau correlation coefficient (from sim-

ulations), as well as the maximum p-value of the Kolmogorov-Smirnov

test assuming the mixture model is the true distribution for the inter-

val data from each realisation (out of 1000). For the process g2 with

γ =
√

3, the second tabulated value for σ2
T is the variance computed

using Wong”s pdf App. B.8.
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PARAMETER VALUES : CLASSES 1 AND 2 DENS IT I E S

This appendix uses the same notation for representing mixtures as in App. F. I0

denotes the class 0 regime as described in Sec. 5.1.1. For the sub-fractal process

ρ21, ϵ = 2α1/(c1p0(0)), p0(0) = 37/
(

48
√

3
)
. Refer back to App. B for the

BETA (B.7), EXP (B.3), and EXPP (B.6) distributions. The GEXPP density is

defined in Eq. (4.5). Decimals are given to 4 decimal places.

ρ11: I0=[0, 1]

[
WEIB{1}, GAM{2}, EXP{3}

]
:

a=1/10: [0.1598, 2.7220, 1.7923, 0.1276, 4.4661, 0.6011, 2.4373, 2.3518].

a=1/
√

3: [0.0184, 3.9743, 3.9372, 0.2300, 6.1972, 0.2696, 2.0075, 2.0107].[
BETA{1,2,3}

]
:

a=1: [0.8282, 2.0000, 16.3109, 112.6334, 0.1677, 3.1761, 1.5475, 2.3621,

19.3086, 8.4426, 5.9194].[
BETA{1,2,3,4}

]
:

a=
√

3: [0.4839, 2.0000, 24.5646, 51.3375, 0.2459, 7.7256, 3.9441, 2.1629,

0.0251, 25.3048, 2.0651, 3.5718, 2.3014, 6.4738, 8.3416].

a=3: [0.2036, 2.0000, 6.3377, 6.3000, 0.5119, 16.7196, 17.3312, 2.0810, 0.1328,

5.4058, 16.0876, 3.7981, 11.7310, 11.3219, 3.6630].

a=10: [0.0121, 2.0000, 4.3504, 0.9238, 0.3184, 30.2040, 122.5852, 1.6241,

0.6490, 197.4417, 518.0396, 1.1473, 12.4905, 4.0968, 0.7108].
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[
BETA{1,2,3,4,5}

]
:

a=30: [0.0005, 2.0000, 2.0833, 0.0740, 0.7898, 695.0213, 535.5000, 0.1856,

0.1877, 96.5437, 118.4701, 0.2347, 0.0012, 19.3160, 2.5205, 0.2130, 14.1546,

53.6417, 0.5242].

ρ21: I0=[0, 0.3295]

[
EXP{1,2}

]
:

a=1/10: [0.9168, 0.5195, 3.3846].[
BETA{1,2,3,4}

]
:

a=0.3295: [2.3318e−13, 1.000, 2.0000, 1.1972e−12, 2.7282e−09, 2.0000,

2.7708, 0.0010, 0.7410, 3.8512, 13.3109, 233.8229, 7.7730, 26.0805, 50.2527].

a=1/
√

3: [8.0500e−11, 1.000, 2.0000, 5.5769e−10, 0.0105, 2.0000, 20.2268

3.0827, 0.6134, 5.1974, 15.4439, 85.1955, 5.6789, 15.1076, 29.1582].

a=
√√

40/3 − 3: [3.0401e−11, 1.000, 2.0000, 2.6085e−10, 0.0068, 2.0000,

21.0639, 2.5186, 0.5876, 3.6778, 9.5951, 42.8109, 6.9841, 17.1156, 17.2611].

a=
√

3: [5.9300e−12, 1.000, 2.0000, 1.2325e−10, 7.6607e−06, 2.0000, 2.0002,

0.0647, 0.3944, 5.0353, 25.3551, 20.9023, 16.4132, 51.8368, 8.2977].

a=3: [2.9743e−12, 1.000, 2.0000, 1.5349e−10, 1.7576e−09, 2.0000, 2.3758,

0.0287, 0.2984, 6.1891, 36.9340, 10.7180, 30.5124, 68.6987, 3.5759].[
BETA{1,2,3,4,5}

]
:

a=10: [1.5792e−14, 1.000, 2.0000, 5.5357e−12, 1.5651e−11, 2.0000, 2.1532,

0.0289, 0.0682, 9.1491, 68.5631, 3.2836, 0.3462, 43.2735, 55.5014, 0.7382,

173.1249, 140.1934, 0.5715].

For a ≥ 0.3295..., the surrogate density is a WEIB-GAM-EXPP mixture, with

parameters [1.7090e−05, 3.1263, 1.3539, 0.0859, 5.5880, 0.6097, 2.0573, 2.0819].

Its mean and variance are respectively π and 5.1257. The parameters were found

by performing the optimisation for both the τ and η variables when a=0.3295....
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ρ12: I0=
[
0,
√

3/2
]

[
WEIB{1}, GAM{2}, EXP{3}

]
:

a=1/10: [0.1199, 2.9781, 1.8293, 0.1592, 3.6277, 0.6632, 2.3775, 2.3525].

a=1/
√

3: [0.1373, 2.9586, 1.6026, 0.1526, 3.7878, 0.5803, 2.1189, 2.0425].[
BETA{1,2}, GEXPP{3}, EXPP{4}

]
:

GEXPP with d=1.

a=
√

3/2: [0.1456, 4.0657, 2.8826, 2.2463, 0.0269, 27.0776, 161.3178, 11.2652

, 0.0144, 2.1553, 0.6598, 0.3272, 1.0000, 0.3940, 7.7765].

a=
√

3: [0.2623, 3.1449, 2.2987, 1.8541, 0.0553, 11.4677, 20.0336, 3.2867, 0.0463,

1.4271, 0.4796, 2.4207, 1.0000, 0.2910, 4.7660].

a=3: [0.4585, 5.1081, 6.2059, 1.6493, 0.0665, 13.3476, 16.2025, 1.6961, 0.1012,

2.0537, 68.5985, 0.1739, 1.0000, 0.0964, 3.3482].

a=10: [0.7721, 5.4956, 6.7980, 0.5149, 0.0245, 24.1277, 16.0693, 0.3800, 0.1312,

1.5472, 1.4929, 0.0550, 1.0000, 2.0393, 1.9335].



H
MATLAB CODE FOR S IMULAT ING A CORRELATED

RANDOM PROCESS

function simdat=randprocsim(n,dti,pd,pdT,lc,powcor,sim,rep...

seed,gen,SI,s)

% randprocsim Simulates a random process using the iterative

% Fourier Filtering Method (iFFM) and computes

% level-crossing statistics.

%

% FORMAT:

% simdat=randprocsim(n,dti,sim,powcor,rep,seed,gen,SI,s,rel)

%

% INPUTS:

% n length of realisation (should be even)

% dti dti=1/dt, dt is the discretisation length

% pd probability distribution object (create with ’makedist’)

% pdT distribution transformation function ([] or @(u)f(U))

% lc level (to find crossings of)

% powcor power spectrum or normalised autocorelation function

% sim 1 (for power sepctrum), 2 (for autocorrelation)

% rep number of repeats for iterative step

% seed for random number generator (’shuffle’ for random seed)

% gen generator algorithm

% SI true if generator supports substreams, false otherwise

% s number of simulations to run
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%-----------------------------------------------------------------

% Example power spectrum (sim=1): @(w)sqrt(2*pi)*exp(-2*(pi*w).^2)

% Example autocorrelation(sim=2): @(t)exp(-(t/2).^2);

% Example transformation: Uniform ---> Laplace

% pd=makedist(’uniform’,’lower’,-1/2,’upper’,1/2);

% mu0=1/sqrt(2); mu1=0;

% pdT=@(U)mu1-mu0*sign(U).*log(1-2*abs(U));

% Example values for other inputs:

% n=3.1416e6; dti=200; lc=0; rep=30; seed=0; gen=’mt19937ar’;

% SI=false; s=1;

%-----------------------------------------------------------------

% OUTPUTS: all inputs and...

% For first simulation only:

% simdat.

% N1 crossing count

% taub1 crossing intervals

% betas1 crossing locations

% x1 realisation

% zetas1 crossing indicator

% For all simulations:

% simdat.

% seedz random number generator seeds

% BETAZ location of first-crossings

% TAUZ crossing intervals

% Nci crossing interval counts

% MTAU (non-discretised) interval means

% VARTAU (non-discretised) interval variances

% KAPPA1 linear correlation coefficient

% KTAU rank correlation coefficient

% TAUB12 interval product moments

%

% Requires ’Statistics and Machine Learning Toolbox’.

%-----------------------------------------------------------------
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if SI==false && s>1

seed=’shuffle’; % Necessary for non-uniform/non-Gaussian cases

end

%-----------------------------------------------------------------

if isempty(pdT) % Check if transformation function is empty.

pdT=@(U)U; % Define as identity function.

end

%-----------------------------------------------------------------

% Store inputs.

simdat.n=n; simdat.dti=dti; simdat.pd=pd;

simdat.pdT=pdT; simdat.lc=lc; simdat.powcor=powcor;

simdat.sim=sim; simdat.rep=rep; simdat.seed=seed;

simdat.gen=gen; simdat.SI=SI; simdat.s=s;

%-----------------------------------------------------------------

% Predefine the seeds, first-crossing locations, and interval

% sequence, counts and averages.

seedz=zeros(s,1); BETAZ=zeros(s,1); TAUZ=zeros(4800*s,1);

Nci=zeros(s,1); MTAU=zeros(s,1); M2TAU=zeros(s,1);

TAUB12=zeros(s,1); KTAU=zeros(s,1);

%-----------------------------------------------------------------

nci=0; % for counting total crossing intervals

%-----------------------------------------------------------------

% FOURIER FILTERING

%-----------------------------------------------------------------

% 1. Compute filter...

if sim==1 % ...using power spectrum.

omega=(dti*(0:(n/2))/n)’; % frequencies

sm=zeros(n,1);

sm(1:n/2+1)=powcor(omega);

sm(n/2+2:n)=flip(sm(2:n/2));

Wm=sqrt(dti*sm); % filter

elseif sim==2 % ...using the autocorrelation function.

% Zero-padding is used to improve Fourier transform output.
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zpad=2*(ceil(n*1e-3/4));

T=2*(ceil(n/2))-zpad;

tau=abs(-T/2:T/2)’/dti; % delay times

rho=powcor(tau);

rhop=[rho;zeros(zpad-1,1)];

Wm=sqrt(abs(fft(rhop) ) ); % filter

end

%-----------------------------------------------------------------

% SIMULATIONS

%-----------------------------------------------------------------

% Run first simulation.

[N,sumz,taub,betas,x,zetas,seedz(1)]=randsimk(n,pd,pdT,lc,Wm,...

rep,seed,gen,SI,s,1);

%-----------------------------------------------------------------

if min(x)>lc || max(x)<lc

error(’level must lie between minimum and maximum of process’);

end

%-----------------------------------------------------------------

% Store crossing count, intervals and locations, and the

% realisation and its crossing indicator.

simdat.N1=N; simdat.taub1=taub; simdat.betas1=betas;

simdat.x1=x+lc; simdat.zetas1=zetas;

%-----------------------------------------------------------------

% Compute Kendall’s rank correlation coefficient.

ktau=corr([taub(1:N-2),taub(2:N-1)],’type’,’Kendall’);

KTAU(1)=ktau(1,2);

%-----------------------------------------------------------------

BETAZ(1)=betas(1); TAUZ(nci+1:nci+N-1)=taub; Nci(1)=N-1;

MTAU(1)=sumz(1); M2TAU(1)=sumz(2); TAUB12(1)=sumz(3);

nci=nci+N-1;

%-----------------------------------------------------------------

if s>1 % Run remaining simulations.

for k=2:s



matlab code for simulating a correlated random process 191

[N,sumz,taub,betas,~,~,seedz(k)]=randsimk(n,pd,pdT,lc,Wm,...

rep,seed,gen,SI,s,k);

%-----------------------------------------------------------------

% Store crossing interval data and moment sums:

BETAZ(k)=betas(1); TAUZ(nci+1:nci+N-1)=taub;

Nci(k)=N-1; nci=nci+N-1;

MTAU(k)=sumz(1); M2TAU(k)=sumz(2); TAUB12(k)=sumz(3);

%-----------------------------------------------------------------

% Compute and store Kendall’s rank correlation coefficient.

ktau=corr([taub(1:N-2),taub(2:N-1)],’type’,’Kendall’);

KTAU(k)=ktau(1,2);

%-----------------------------------------------------------------

clc; fprintf(’Simulation %d complete\n\n’,k);

%-----------------------------------------------------------------

end

end

%-----------------------------------------------------------------

% AVERAGES

%-----------------------------------------------------------------

% Compute (non-discretised) averages of the mean and variance, and

% the linear correlation coefficient.

VARTAU=(M2TAU-MTAU.^2./Nci)./(Nci-1);

KAPPA1=(TAUB12./(Nci-1)-MTAU.^2./Nci.^2)./VARTAU;

MTAU=MTAU./Nci; TAUB12=TAUB12./(Nci-1);

%-----------------------------------------------------------------

TAUZ=TAUZ(1:nci); % (redefinition in case of extra zero entries)

%-----------------------------------------------------------------

% FINAL STORAGE

%-----------------------------------------------------------------

% Store all first-crossing locations, (non-discretised) crossing

% intervals, means, variances, product moment, correlation

% coefficients and generator seeds:

simdat.BETAZ=BETAZ; simdat.TAUZ=TAUZ; simdat.Nci=Nci;
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simdat.MTAU=MTAU; simdat.VARTAU=VARTAU;

simdat.TAUB12=TAUB12; simdat.KAPPA1=KAPPA1; simdat.KTAU=KTAU;

simdat.seedz=seedz;

%-----------------------------------------------------------------

fprintf(...

’[mean,var,kappa1,kappatau] = [%.4f,%.4f,%.4f,%.4f]\n\n’,...

[mean(TAUZ)/dti,mean(VARTAU)/dti^2,mean(KAPPA1),mean(KTAU)]);

%-----------------------------------------------------------------

%-----------------------------------------------------------------

function [N,sumz,taub,betas,y,zeta,seed]=randsimk(n,pd,pdT,...

lc,Wm,rep,seed,gen,SI,s,k)

%-----------------------------------------------------------------

% FOURIER FILTERING (continued)

%-----------------------------------------------------------------

% 2. Generate uncorrelated sequence of random numbers, and apply

% distribution transformation, pdT:

if SI % (multiple independent streams)

strm=RandStream.create(gen,’NumStreams’,s,...

’StreamIndices’,k,’Seed’,seed);

seed=strm.Seed;

y=pdT(randn(strm,n,1)); % uncomment for standard normals

%y=pdT(rand(strm,n,1)); % uncomment for uniform variates

else % (variates from MATLAB supported distributions)

sd=rng(seed,gen);

seed=sd.Seed;

y=pdT(random(pd,n,1));

end

%-----------------------------------------------------------------

for jj=1:rep+1

ym=fft(y);

%-----------------------------------------------------------------

% 3. Enforce the original power spectrum on y:

zm=Wm.*ym./abs(ym); z=ifft(zm);
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%-----------------------------------------------------------------

% 4. Rank replace z with y:

[~,Iz]=sort(z,’descend’); [~,Iy]=sort(y,’descend’);

z(Iz)=y(Iy);

y=z;

%-----------------------------------------------------------------

end

%-----------------------------------------------------------------

y=real(y)-lc; % subract level (for crossings)

%-----------------------------------------------------------------

% ZERO CROSSINGS

%-----------------------------------------------------------------

% 1. Identify zero crossings (value 1 entries of zeta below):

zeta=[0;(1- ( sign(y(1:n-1)).*sign(y(2:n)) ) )/2];

N=sum(zeta); % Total number of crossings:

% 2. Find crossing locations:

betas=find(zeta);

% 3. Determine (non-discretised) intervals between crossings:

taub=betas(2:N)-betas(1:N-1);

% 4. Calculate sums for the first, second and product moments:

sumz=[sum(taub),dot(taub,taub),dot(taub(1:N-2),taub(2:N-1))];

end

%-----------------------------------------------------------------

%-----------------------------------------------------------------

end



I
MATLAB CODE FOR COMPUT ING LACUNAR ITY

function simlac=lacunarityCG(zetas,dt,CG)

%lacunarityCG Computes the lacunarity measure of a

% one-dimensional objectgiven a zero-crossing indicator vector

%

% INPUTS:

% zetas zero-crossing indicator vector

% CG box counting method: 1 (contiguous), 2 (gliding)

% dt discretisation length

% OUTPUTS: (at time-scales r_[m]=(m-1)*dt)

% simlac.

% L Lacunarity

% mN1 Mean crossing counts

% varN2 Variance of crossing counts

% r time scales

% dL Lacunarity slope

% rd time scales dL is computed at (r_[3] to r_[n-2])

%

% Requires Econometrics Toolbox

%-----------------------------------------------------------------

n=numel(zetas);

%-----------------------------------------------------------------

Ni=cumsum(zetas);

%-----------------------------------------------------------------
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if CG==1

%-----------------------------------------------------------------

% CONTIGUOUS BOX LACUNARITY

%-----------------------------------------------------------------

mN2=zeros(n,1); varN2=zeros(n,1); L=zeros(n,1);

maxjs=[n;floor((n-1)./(1:n-1)’)];

%-----------------------------------------------------------------

mN2(1)=Ni(n);

nn=ceil(n/2);

for jj=2:nn

maxj=maxjs(jj);

jz=(jj-1)*(2:maxj)+1;

Nicj=[Ni(jj);Ni(jz) - Ni(jz-jj+1)];

mN2(jj)=sum(Nicj.^2);

end

%-----------------------------------------------------------------

mN1=[Ni(n);Ni( ((2:n)’-1).*maxjs(2:n)+1 )];

mN2(nn+1:end)=Ni(nn+1:end).^2;

%-----------------------------------------------------------------

varN2(1)=Ni(n)*(1-Ni(n)/n)/n;

varN2(2:nn)=(mN2(2:nn)-mN1(2:nn).^2./maxjs(2:nn))./...

(maxjs(2:nn)-1);

L(1:nn)=varN2(1:nn)./mN1(1:nn).^2.*maxjs(1:nn).^2;

L=L+1;

mN1=mN1./maxjs;

%-----------------------------------------------------------------

elseif CG==2

%-----------------------------------------------------------------

% GLIDING BOX LACUNARITY

%-----------------------------------------------------------------

riz=(1:n-1)’;

%-----------------------------------------------------------------

Si1=cumsum(Ni); Si2=cumsum(Ni.^2);
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%-----------------------------------------------------------------

phi1=Si1(n) - Si1(n-riz) - Si1(riz) + Ni(riz);

phi2=Si2(n) + Si2(n-riz) - Si2(riz) + Ni(riz).^2;

%-----------------------------------------------------------------

rho=autocorr(Ni,n-1); rho=[rho(2:end);0];

mu=Si1(n)/n; sig2=(n*Si2(n)-Si1(n)^2)/n^2;

c1=find(Ni>0,1);

phi3=n*sig2*rho(riz) +mu*( Si1(n-riz) - Si1(riz) ) +mu^2*riz;

phi3(n-c1)=Ni(end);

phi3(n-c1+1:n-1)=0;

%-----------------------------------------------------------------

mN1=phi1./(n+1-riz);

varN2=( phi2 - 2*phi3(1:n-1) - phi1.^2./(n+1-riz) )./(n-riz);

L=1+varN2./mN1.^2;

%-----------------------------------------------------------------

L=[L;1]; mN1=[mN1;Ni(n)]; varN2=[varN2;0];

end

%-----------------------------------------------------------------

simlac.L=L; simlac.mN1=mN1; simlac.varN2=varN2;

rz=dt*linspace(0,n-1,n)’;

%-----------------------------------------------------------------

% LACUNARITY SLOPE

%-----------------------------------------------------------------

dL=rz(3:n-2).*deriv1(log10(varN2./mN1.^2),dt);

%-----------------------------------------------------------------

simlac.dL=dL; simlac.r=rz; simlac.rd=rz(3:n-2);

%-----------------------------------------------------------------

%-----------------------------------------------------------------

function df=deriv1(f,h) % Fourth-order centred derivative

% estimate

N=length(f);

f2m=f(1:N-4); f1m=f(2:N-3);

f1=f(4:N-1); f2=f(5:N);
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df=(f2m - 8*f1m + 8*f1 -f2)./(12*h);

end

%-----------------------------------------------------------------

%-----------------------------------------------------------------

end



J
MATLAB CODE FOR COMPUT ING THE INTERVAL DENS ITY

AND CROSS ING COUNT D I STR IBUT IONS

function [pb,Tb]=rebinpdff(TAUZ,dti,bin)

% rebinpdf Estimates the interval density using frequency

% binning.

%

%INPUTS:

% TAUZ = non-discretised intervals

% dti = reciprocal of discretisation length

% bin = desired grouping of adjacent interval sizes

%

% OUTPUTS:

% pb = estimate of interval density

% Tb = crossing interval values associated with pb

%-----------------------------------------------------------------

[p,np]=simpdff(TAUZ); m=ceil(np/bin); pb=zeros(m,1);

%-----------------------------------------------------------------

for jj=1:m-1

pb(jj)=sum(p(bin*(jj-1)+1:bin*jj));

end

pb(m)=sum(p(bin*(m-1)+1:np));

%-----------------------------------------------------------------

pb=dti*pb/sum(pb)/bin;

Tb=(bin/2:bin:bin*(m-1/2))’/dti;

198
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%-----------------------------------------------------------------

function [p,np]=simpdff(x)

% simpdff Finds the frequencies for the values (positive

% integers) in the vector x, from 1 to max(x).

np=max(x); p=zeros(np,1); nx=numel(x);

for i=1:nx

j=x(i);

p(j)=p(j)+1;

end

end

end

function PN=boxmassdistCGrN(r,zetas,CG)

% boxmassdistCGrN Computes box mass distribution for fixed r.

%

% INPUTS:

% r non-discretised box size

% zetas zero-crossing indicator vector

% CG box counting method: 1 (contiguous), 2 (gliding)

%-----------------------------------------------------------------

n=numel(zetas);

%-----------------------------------------------------------------

% Define counting process.

Nic=cumsum(zetas);

%-----------------------------------------------------------------

% Calculate box counts.

%-----------------------------------------------------------------

if r==1

Nc=sum(zetas);

PN=[n-Nc,Nc];

else
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if CG==1 %-------------------CONTIGUOUS BOXES-----------------

nn=ceil(n/2);

if r<=nn

maxj=floor((n-1)/r);

jz=(r-1)*(2:maxj)+1;

Nicj=[Nic(r);Nic(jz) - Nic(jz-r+1)];

elseif r>nn

Nicj=Nic(r);

end

elseif CG==2 %------------------GLIDING BOXES-----------------

Nicj=[Nic(r);Nic(1+r:n)-Nic(1:n-r)];

end

%-----------------------------------------------------------------

% Calculate count frequencies.

PN=prbmf(Nicj);

end

%-----------------------------------------------------------------

%-----------------------------------------------------------------

function p=prbmf(x) % Bins frequencies of values in x,

% from 0 to max(x).

p=zeros(max(x)+1,1);

mx=length(x);

for i=1:mx

j=x(i);

p(j+1)=p(j+1)+1;

end

end

%-----------------------------------------------------------------

%-----------------------------------------------------------------

end

function PN=boxmassdistCGNr(N,maxr,zetas,CG)
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% boxmassdistCGNr Computes box mass distribution for fixed N.

%

% INPUTS:

% N counts

% maxr maximum non-discretised box-size for calculation

% zetas zero-crossing indicator vector

% CG box counting method: 1 (contiguous), 2 (gliding)

%

%Assumes N < maxr

%-----------------------------------------------------------------

n=numel(zetas); PN=zeros(maxr,1);

%-----------------------------------------------------------------

% Define counting process.

Nic=cumsum(zetas);

%-----------------------------------------------------------------

PN(1)=sum(zetas==N); % Calculate counts at size 1.

%-----------------------------------------------------------------

if CG==1 %-------------------CONTIGUOUS BOXES---------------------

maxjs=[n;floor((n-1)./(1:n-1)’)]; % number of boxes

nn=ceil(n/2); cmaxr=min(nn,maxr);

%-----------------------------------------------------------------

% Calculate box counts.

for r=2:cmaxr

maxj=maxjs(r);

jz=(r-1)*(2:maxj)+1;

Nicj=[Nic(r);Nic(jz) - Nic(jz-r+1)];

PN(r)=sum(Nicj==N);

end

if maxr>nn

PN(cmaxr+1:maxr)=Nic(cmaxr+1:maxr);

end

% Normalise by number of boxes.

PN=PN./maxjs(1:maxr);
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elseif CG==2 %------------------GLIDING BOXES---------------------

for r=2:maxr

%-----------------------------------------------------------------

% Calculate box counts.

Nicj=[Nic(r);Nic(1+r:n)-Nic(1:n-r)];

%-----------------------------------------------------------------

% Calculate count frequencies.

PN(r)=sum(Nicj==N);

%-----------------------------------------------------------------

end

% Normalise by number of boxes.

rz=(1:maxr)’;

PN=PN./(n+1-rz);

end

%-----------------------------------------------------------------

end
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