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Abstract

When asphalt becomes cracked it will slowly begin a self-healing process, during which,
the crack is either partially or fully repaired over a period of time. Upon reaching a
certain temperature the bitumen in the asphalt becomes a Newtonian fluid and the rate
of this self-healing is greatly increased. This research discusses ways to model this process
using flow within a porous medium and using the results produced to compare current
popular methods of triggering self-healing in asphalt.

The first step of the research is to create a mathematical model for a gravity and
surface tension driven self-healing process to model the flow of fluid within a porous
medium. This was followed by the use of conformal mapping to discover a small time
asymptotic solution to the movement of the bitumen into the crack. This precluded
the creation of a numerical solution which used boundary integral methods combined
with Green’s functions to provide the equipment needed to allow the calculation of the
crack healing with time. Next the numerical model was verified against the small time
asymptotic solution as well as analytical solutions to ensure its reliability. In addition,
experiments were conducted throughout the research to ensure the validity of the created
model. The results of the numerical solution are then used to calibrate an equation which
can predict the flow of bitumen into a crack in asphalt over time in a computationally
cheap manner.

The next stage of the research uses the equation derived in the chapter previous to it
and calibrates it to the results of experiments which use three point bending to analyse
different healing methods. A set of these experiments are conducted as part of this
research, while many experiments carried out in the literature are also studied. Three-
point bending tests conducted in this research were performed on asphalt containing large
quantities of calcium alginate capsules to aid the self-healing process. These tests showed
consistently better healing in asphalt containing capsules, with the peak performance
occurring in asphalt containing 1% or 1.25% capsules. Comparisons were then made
between the various healing methods studied in the chapter.

The research concludes by creating new models to simulate the healing of different
orientations of cracks in asphalt. The orientations are an inverted vertical crack, a hori-
zontal crack and two vertical cracks in the same piece of asphalt. A numerical solution to
the pressure gradient was found for each class of crack using boundary integral methods
combined with Green’s functions to select an appropriate domain for the calculations.
These calculations were then validated through comparison to multiple series of labora-
tory experiments.
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Chapter 1

Introduction

1.1 Project Background

When asphalt gets cracked it will heal naturally over time [Menozzi et al., 2015]. This
process is known as self-healing and if it can be enhanced greatly improves the lifespan
of a road [Menozzi et al., 2015]. This research will focus on the creation of a gravity
and surface tension driven model to describe the self-healing process as flow within a
porous medium and using this to analyse various common methods used to accelerate
the healing process.

Recently there has been a lot of research done on self-healing asphalt mixtures
e.g. [Magnanimo et al., 2012, Garćıa et al., 2013, Menozzi et al., 2015], however there are
still multiple conflicting viewpoints on which mechanics govern the process e.g. [Agzenai
et al., 2015, Garćıa, 2012]. One of the main potential processes states that the flow of the
bitumen into the crack is primarily being driven by gravity [Garćıa, 2012]. This research
aims to investigate the mechanics behind a primarily gravity driven self-healing process
accompanied by the effects of surface tension.

1.1.1 Varieties of Asphalt

In this research the main material being studied will be asphalt. This section will give
an insight into what asphalt is, what it is composed of and the different types of asphalt
available.

Asphalt is made of two main components, bitumen, also known as binder and ag-
gregates. Bitumen is a long chain hydrocarbon and aggregates are small stones. When
mixed together they form asphalt or tarmac.

As a clarification differences in American English and British English can cause some
confusion with regards to asphalt. In American English the words asphalt and bitumen
are interchangeable and refer to the British English bitumen or binder. Also, asphalt
concrete is used to describe the combined mixture of aggregates and bitumen as opposed
to the British English name of asphalt or tarmac. Here the British English convention
will be used throughout.

Asphalt has two main uses, the most obvious being in roads. In addition, asphalt is
also used to make approximately 94% of pavements worldwide [Agzenai et al., 2015].
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The main types of asphalt used in road manufacture are asphalt concrete, rolled
asphalt, mastic asphalt, porous asphalt, gussaphalt and stone mastic asphalt [Nicholls,
2014]. The differences in these types are caused by the proportions of aggregate and
binder used to produce the asphalt, the sizes of the aggregates involved and the type of
bitumen used.

Asphalt concrete is used in roads predominantly in the US and in Europe [Nicholls,
2014]. It uses a continuously graded aggregate to give it the highest proportion of
aggregate to bitumen of all the varieties of asphalt listed here.

Rolled asphalt is also found in UK roads [Nicholls, 2014]. It is gap graded with no
intermediate sized aggregates included in the mixture. The structure is such that the
larger aggregates generally do not touch but are suspended in the binder. Rolled asphalt
has a high bitumen content and relatively few air voids.

Mastic asphalt sees most of its use in bridges and other localized areas which require
a high impermeability [Nicholls, 2014]. It is made up of only very large and very small
aggregates, with no aggregates of intermediate size. Mastic asphalt has a relatively large
proportion of bitumen to aggregate and a very low air void content.

Gussaphalt is another binder rich mixture which sees most of its use in Germany and
surrounding countries [Nicholls, 2014]. It is similar to mastic asphalt in that it is gap
graded with few intermediate size aggregates and a high proportion of bitumen.

Stone mastic asphalt is used when a more abrasion-resistant style of asphalt is re-
quired than gussphalt. It sees use in continental Europe and is slowly being introduced
to the UK and US [Nicholls, 2014]. Stone mastic asphalt is gap graded and uses a
strong skeleton of large stones as a base of the mixture, with gaps filled by binder and
comparatively small aggregates.

Porous asphalt is seeing increased use due to its unique qualities [Nicholls, 2014] and
is already used extensively in the Netherlands covering 90% of roads in the country [Liu,
2012]. Porous asphalt is open graded and contains mainly large aggregates and only
enough bitumen to coat the asphalt. This means that it has by far the largest air
void content of all the types of asphalt listed here with a minimum of 20% [Liu, 2012].
This type of asphalt has a few unique advantages over others when used in roads [Liu,
2012]. Firstly water can drain through the road meaning that puddles do not collect
on its surface reducing the risk of skidding related accidents. It also reduces the noise
pollution of cars by 3-4 dB compared to standard dense graded asphalt concrete. This
however is contrasted by its decreased durability and vulnerability to ravelling, the loss
of aggregate particles from the road surface [Liu, 2012].

1.1.2 Bitumen

Bitumen is one of the main components of asphalt and as such is worth investigating in
more detail to lay a firm grounding for the topic. This section will cover the uses and
composition of bitumen.

Bitumen has been used in road building as early as 2000 BC in Babylon [Nicholls,
2014]. It is a black tar-like substance which is mainly produced as a by-product of
the fractional distillation of crude oil to produce more valuable materials often used as
fuels. Bitumen is formed from the heavier compounds in crude oil which cannot be
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effectively used as commercial fuel. It is then sold on to companies for use mainly in
roads, pavements and roof tiling.

By elemental composition bitumen is comprised of 80-88 wt.% carbon, 8-12 wt.%
hydrogen, 0-9 wt.% sulphur, 0-2 wt.% oxygen and 0-2 wt.% nitrogen. Some trace met-
als can also found in most varieties [Lesueur, 2009]. In terms of molecular structure,
according to the SARA model bitumen is made up of four main categories: saturates,
asphaltenes, resins and aromatics [Lesueur, 2009].

Asphaltenes are a black powder at 20°C with a density of approximately 1.15 g/cm3.
They are mainly polar particles which are insoluble in n-heptane but soluble in toluene.
In total asphaltenes make up 5-20 wt.% of bitumen and individually have a relatively high
number average-molecular weight going from 800-3,500 g/cm3. They have a solubility
ranging from 17.6-21.7 MPa0.5 [Lesueur, 2009].

Resins constitute 30-45 wt.% of a sample of bitumen. They are polar with an average
molar mass of 1100 g/mol. Resins are a black solid at 20°C with a density of around
1.07 g/cm3. They have a solubility parameter from 18.5-20 MPa0.5 [Lesueur, 2009].

Aromatics usually make up the joint largest proportion of bitumen with resins at
30-45 wt.%. On average they have a relatively low molar mass of 800 g/mol. Aromatics
are yellow to red in colour and are liquids at room temperature. Aromatics have a
solubility parameter ranging from 17-18.5 MPa0.5. At 20°C their density is approximately
1 g/cm3 [Lesueur, 2009].

Saturates are the last of the main components of bitumen. They make up 0-15 wt.%
of the total compound, are a colourless or lightly coloured at 20°C and density is roughly
0.9 g/cm3. They have a solubility parameter of 15-17 MPa0.5 [Lesueur, 2009].

As should be evident from the widely varying make up of bitumen, different samples
can vary in properties but there are some generalisations which we can make. At low
temperatures or high loading frequencies bitumen acts as an elastic solid however at
high temperatures or low loading frequencies it acts as a Newtonian viscous fluid [Garćıa
et al., 2013]. At intermediate temperatures and loading frequencies it demonstrates a
viscoelastic response.

1.1.3 Crack Formation

As this research will go into detail on how cracks in asphalt can be healed it is first worth
examining the types of cracks which can occur in asphalt and how they are formed.

There are many different types of cracks that can form in roads, all with varying
causes. Often they are triggered by the repeated pressure or loading caused by traffic
passing over the surface. Other causes include the road repeatedly shrinking and ex-
panding with changes in temperature as well as degradation in an underlying layer of
asphalt reflecting to the surface layer.

Block cracks are a series of large rectangular cracks [Juang and Amirkhanian, 1992]
typically caused by shrinkage of the asphalt pavement as a result of temperature cycles.
They are usually 30 cm or more.

Fatigue or alligator cracks form a group of blocks with an appearance resembling an
alligator’s skin. These differ from block cracks due to their irregular shape and are usually
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caused by load from traffic. The size of the blocks can range from a few centimetres to
0.914 m [Juang and Amirkhanian, 1992].

Transverse cracks run perpendicular to the centreline of the road while longitudinal
cracks run parallel to the centreline of the road. They are usually found near the wheel
tracks [Juang and Amirkhanian, 1992]. Neither type of crack are related to traffic loading
and instead can be caused by shrinkage of the asphalt layer or cracks reflecting up from
a covered layer of deteriorating asphalt. Edge cracks are a special type of longitudinal
crack which can form at the edge of a road due to lack of support.

Potholes are bowl shaped holes in a layer of asphalt. They are a result of localised
degradation under traffic [Juang and Amirkhanian, 1992].

1.1.4 Healing Mechanisms

After looking in detail on the subject of how cracks form, we now move on to the question
of how these cracks can be repaired. In a generic material the process of healing or fatigue
crack growth delay can be split into five different classifications [Suresh, 1998]. These
range from mechanisms which act as the crack forms to those which act long-term.

The first of these classifications is plasticity induced healing. This is when the tip of
the crack gets plastically deformed as the crack forms. When the pressure which caused
the crack to form is removed some residual stress remains which reduces the initial size
of the crack.

Oxide induced healing occurs when foreign material enters the crack and oxide on
the surface of the crack. Depending on the size of the oxide layer formed this can go
some way to reducing the size of a crack.

Thirdly there can be roughness induced effects. In a crack in a material there can
be irregularities in the surface of said crack. These irregularities generally act counter
to the healing process and can go as far as to prevent the crack from closing completely
during healing.

Transformation induced healing occurs when the pressure change which results from
the crack forming causes the material to undergo a change in phase. This can alter the
propagation of the crack as it first forms.

When a viscous fluid can enter a fatigue crack this leads to viscous fluid induced
healing. This can have two effects. Firstly, during the formation of the crack the fluid
can change the initial propagation. Secondly when the crack begins to fill with fluid this
unsurprisingly reduces the size of the crack.

This research will be looking at the last of these processes, viscous fluid induced
healing. While some of the other types of crack growth delay do have some effect on the
initial formation of a crack in asphalt; once the crack has formed this is the dominant
healing process [Agzenai et al., 2015].

This naturally leads to the question of how the fluid, in this case bitumen, enters the
crack. There are currently two main schools of thought on the driving process behind
the bitumen entering the crack. Firstly, that it spreads from points in the crack which
are in contact. The second possible process is gravity driven. Here bitumen fills the
crack from the bottom upwards.
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The thinking behind the first of these processes is that when part of the two faces
of the crack are in contact molecules will diffuse from one face to the other [Little and
Amit, 2007]. This initial contact of the two surfaces is compounded by van der Waals
forces [Lytton, 2000]. The idea is that this diffusion will continue until the crack has
completely healed [Little and Amit, 2007].

Another possibility is that the flow of bitumen into the crack is driven largely by
gravity [Garćıa, 2012]. In this case bitumen from the surrounding asphalt would flow
into the crack which would fill with bitumen, with the bottom of the crack healing first.
In Fig. 1.1 and Fig. 1.2 it can clearly be seen that the crack begins to heal from the
bottom, indicating the possible validity of this process. Gravity driven healing will be
the main focus of this research.

Figure 1.1: CT-scan images of a crack in asphalt healing. The images are turned 90°,
during the experiment the triangular notch was at the bottom of the beam. Taken
from [Garćıa, 2012].

1.1.5 Methods of Triggering Self-Healing

While the self-healing process does occur naturally the healing is too slow to repair roads
under real conditions unless it can be triggered manually. To do this the viscosity of the
bitumen in the road must be decreased or the crack must be healed by the introduction
of another material. Currently there are three main ways of doing this, the first is
introducing a chemical into the road which heals the crack. The second is to heat the
road for long enough for the crack to heal. Finally something can be introduced to the
road to cause the bitumen around the crack to soften. This section takes a closer look
at exactly how these methods can be carried out.

One way of heating the road is to add steel wool to the asphalt during the mixing
process. An induction heater can then be used to heat the steel wool which in turn heats
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Figure 1.2: CT-scan of a crack healed at 70°C in an experiment done by Garćıa [2012].

the bitumen [Garćıa et al., 2013, Garćıa et al., 2012]. Roads with steel wool incorporated
for this purpose have already been built [Liu, 2012].

Another way to heat the road is to use microwaves [Gallego et al., 2013, Norambuena-
Contreras and Gonzalez-Torre, 2017, González et al., 2018, Norambuena-Contreras and
Garcia, 2016]. These can be used to heat the surface of the road, the heat then diffuses
through to the rest of the road. This process can be sped up by introducing steel wool
into the asphalt to increase the thermal conductivity of the material. Microwaves need
a smaller quantity of steel wool in the road than induction heating to be effective and
the process uses less electricity than induction heating [Gallego et al., 2013].

On the chemical side of things microcapsules filled with a healing agent as well as
catalysts can be mixed into asphalt when it is made [White et al., 2001]. These micro-
capsules then naturally break open when the asphalt around them cracks releasing the
healing agent. When the crack grows large enough for the healing agent to also contact
a catalyst the healing agent becomes polymerized and hardens, healing the crack. This
process can be seen in Fig. 1.3.

One of the methods which will be examined in this research relates to the final
method used to trigger the self-healing process. This method uses a different type of
microcapsule, this time containing oil. When cracks form in the asphalt the capsules
also crack and release oil into the surrounding asphalt. This lowers the viscosity of the
surrounding bitumen and allows the crack to heal efficiently [Al-Mansoori et al., 2017b,
Micaelo et al., 2016, Zhang et al., 2018, Garćıa et al., 2010, Norambuena-Contreras et al.,
2018].
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Figure 1.3: A visual explanation of the healing process assisted by micro-capsules. Sec-
tion a. shows a crack forming. Section b. displays the crack breaking a microcapsule and
the healing agent spreading through the crack. In section c. the healing agent comes into
contact with the catalyst and becomes polymerized. Taken from [White et al., 2001].

1.1.6 Surface Tension, Surface Energy and Surface Free Energy

Now that the main methods of healing asphalt are understood it can be beneficial to
look further into the role of surface tension which acts as one of the drivers in the healing
process.

Surface energy and surface tension are quantities which for a liquid are numerically
equal [Mondal et al., 2015, Hui and Jagota, 2013]. This has led the terms as well as
surface free energy to sometimes be used interchangeably. However, there are differences
between them.

Surface tension is a property of liquids caused by cohesive inter-molecular forces.
These forces act to attract like molecules of the liquid to reduce its surface area. Surface
tension has dimensions of force per unit length or equivalently energy per unit area and
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can be defined in terms of force by the equation [Egon, 1970]

γ =
1

2

F

L
, (1.1)

where γ is the surface tension of the liquid, F the force applied to it and L the length
over which the force is applied.

The Laplace pressure, pγ, is the component of the pressure difference on the surface
of a fluid caused by surface tension. Across the interface of a curved surface with prin-
cipal radii R1 and R2 this is given by the Young Laplace equation [Liu and Cao, 2016,
Shuttleworth, 1950, Hui and Jagota, 2013]

pγ = γ

(
1

R1

+
1

R2

)
(1.2)

or equivalently [Duchesne et al., 2019]

pγ = γκ. (1.3)

Here κ is the curvature of the surface, given by the sum of the principal radii. For a
spherical surface this reduces to [Goldman, 2009, Pellicer et al., 2000]

pγ =
2γ

r
, (1.4)

where r is the radius of the surface.
Surface energy or interfacial free energy is the energy needed to create a unit area of

new surface of a material by the process of division [Mondal et al., 2015].
The definition of surface energy is given by [Ip and Toguri, 1994]

us =
U s

A
, (1.5)

where us is the surface energy of a material, U s is the internal energy of the surface and
A is the area of the interface.

Surface free energy is similar to surface energy but instead of being defined by the
internal energy of the material it is instead defined using the Helmholtz free energy, F s,
given by [Timmes and Swesty, 2000, Ip and Toguri, 1994]

F s = U s − TS, (1.6)

where T is the absolute temperature of the surroundings and S is the entropy of the
system. The surface free energy, f s, is given by [Ip and Toguri, 1994]

f s =
F s

A
. (1.7)

While for a one component system surface free energy and surface tension are nu-
merically equal [Ip and Toguri, 1994], for an isotropic substance or crystal face the
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relationship between surface tension and surface free energy is given by [Shuttleworth,
1950, Egon, 1970]

γ = f s + A

(
df s

dA

)
. (1.8)

Multiple methods can be used to discover the surface energy. Most common are the
contact angle methods including the Wilhelmy plate measurement e.g. [Cheng, 2003,
Elphingstone Jr, 1998, Drelich and Miller, 1994, Drelich et al., 1994, Hefer et al., 2006a]
and sessile drop e.g. [Tan and Guo, 2013, Papirer et al., 1987, Vargha-Butler et al., 1988,
Wei et al., 2014] measurement due to their convenience. In addition other methods can
be used, such as inverse gas chromatography e.g. [Hefer et al., 2006b, Papirer et al., 1985,
Puig et al., 2004], atomic force microscopy e.g. [Pauli et al., 2003] and nuclear magnetic
resonance e.g. [Miknis et al., 2005].

To find the surface energy of a solid using contact angles place a drop of liquid with
known surface energy γl, as well as dispersion γd

l and polar components γp
l . Next measure

the contact angle θ and plot

γ =
1 + cos θ

2

γ1√
γd
l

(1.9)

against √
γp
l

γd
l

. (1.10)

Here the square of the slope and the intercept result in the polar and dispersion compo-
nents of the surface area of the solid respectively [Wei and Zhang, 2010].

1.1.7 Boundary Integral Methods

After looking at the underlying mechanics which impact the healing process thought now
needs to be given to how best to calculate the movement of the interface of the bitumen
with time. This research will use boundary integral methods to construct a numerical
solution to the healing of a crack in asphalt.

Boundary integral methods can be used to compute the movement of an interface
over time and are often applied to problems where the properties of a fluid or material
change abruptly at an interface [Hou et al., 2001]. While it is very common for boundary
integral methods to be applied to two dimensional flow e.g. [Boulton-Stone, 1993, Toose
et al., 1995, Rahimian et al., 2010, Meiron, 1986, Power, 1993] using them to model
three dimensional flow is also an active area of research e.g. [Klaseboer et al., 2009,
Sheng et al., 1998, Cao et al., 1991]. In addition to their common use in fluid mechanics
boundary integral methods also see use in acoustics e.g. [Chandler-Wilde et al., 2012,
Hsiao and Wendland, 2000, Meyer et al., 1978], electromagnetics e.g. [Liu and Jin, 2001,
Collino et al., 2008, Schlemmer et al., 1992] where the technique is usually referred to
as the method of moments as well as fracture mechanics e.g. [Minghao et al., 1994, Mi
and Aliabadi, 1992, Tan and Fenner, 1979] and contact mechanics e.g. [Alessandri and
Mallardo, 1999, Liu and Tan, 1992]. Boundary integral methods are of particular interest
for this research because they offer an efficient method of calculating the movement of an
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interface over time. This lends itself well to the problem of viscous flow with a defined
boundary layer moving through a porous medium.

Other methods which can be used to solve similar problems include: volume of flu-
ids e.g. [Hirt and Nichols, 1981, Welch and Wilson, 2000], immersed interface methods
e.g. [Lee and LeVeque, 2003, Xu and Wang, 2006], level set e.g. [Olsson and Kreiss,
2005, Sussman et al., 1998], front-tracking e.g. [Unverdi and Tryggvason, 1992, Hua
et al., 2008] and finite differences methods e.g. [Narasimhan and Witherspoon, 1976, van
Vossen et al., 2002]. When the restrictions of the method allow boundary integral meth-
ods to be applied to a problem it generally outperforms the others in terms of accuracy
and efficiency [Hou et al., 2001]. This efficiency is due to the fact that using boundary
integral methods requires only the interface to be discretised as opposed to having to
discretise the entire domain as is the case with many of the above methods [Khalid,
2015].

Boundary integral methods usually function by forming an integral equation along
the interface, referred to as a boundary integral equation [Khalid, 2015]. These boundary
integral equations are either formulated using complex variable methods such as those
seen in [Huang et al., 2006, Wang et al., 2003, Schultz and Hong, 1989] or based on
Green’s third identity e.g. [Martin and Rizzo, 1995, Bigoni and Capuani, 2005, Jensen
and Freeze, 1998]. The method used to formulate the equation in this research will take
a Green’s identity approach.

1.1.8 Modelling Porous Media Using a Hele-Shaw Cell

Now that a method of calculating the flow of bitumen has been found there is value
in examining how the conditions which will be modelled can be replicated as closely as
possible in a laboratory setting. For this a Hele-Shaw cell will be used.

The Hele-Shaw cell was developed by Henry Selby Hele-Shaw as a means of showing
the movement of a fluid around an obstacle in a flow using a lantern as a projector and
consists of a viscous fluid in between two parallel plates [Vasil’ev, 2009].

Experimentally a porous medium can be approximated to by using a Hele-Shaw
cell [Oltean et al., 2008]. This is because a Hele-Shaw cell acts as one large pore in a
porous medium but provided the distance between the plates is minimal the fluid will at
all points be close to a stationary surface and so is subject physical constraints similar
to those which would be found in a true porous medium.

For the approximation of a Hele-Shaw cell to a porous medium to hold

h

δ
≪ 1 (1.11)

and
Uh2

νδ
≪ 1 (1.12)

must must be true within the cell [Nield and Bejan, 2006]. Here h is the size of the gap
in between the two plates, δ is the smallest length scale of the motion to be modelled, U
is the fluid’s velocity and ν is the kinematic viscosity of the fluid. The first restriction
is necessary to ensure that there is negligible advection of vorticity, acting to reduce
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the spread of any rotational motion in the fluid. The second enforces rapid diffusion of
vorticity. This makes sure that the intensity of any rotational movement in the fluid will
decrease with time.

In addition, when thermal diffusivity is being studied in a Hele-Shaw cell

Uh2

αfδ
≪ 1 (1.13)

must hold [Nield and Bejan, 2006], where αf is the thermal diffusivity of the liquid.
This restriction ensures that any changes in temperature will quickly diffuse across the
material in the cell.

The Hele-Shaw-cell forms an ideal porous medium and has a permeability, k of [Gupte
and Advani, 1997]

k =
1

12
h2. (1.14)

When the inside of the Hele-Shaw cell is entirely comprised of the fluid being studied
the porosity, ϕ = 1 by definition.

The ability of a Hele-Shaw cell to approximate a porous medium is one which will be
used throughout this research to in order to perform experiments which can be used to
validate the numerical results produced.

1.2 Outline of Thesis Contributions

This research is split into three main sections. The first examines the two dimensional
case of a crack in bitumen healing over time. The second uses the results from the first
section to investigate the behaviour of asphalt being cracked and re-healed in laboratory
conditions. The third section of the research uses similar methods to the first section to
investigate the behaviour of two dimensional cracks in different orientations.

Firstly, the construction of a model based on gravity and surface tension driven flow
will take place. The model will feature an incompressible fluid flowing through a semi-
infinite porous medium. Here it will be assumed that the flow of bitumen throughout
the system will be characterised as flow within a porous medium including within the
crack.

A novel result presented in this thesis will be the use of conformal mapping to cal-
culate the pressure field of the surroundings of a crack. Multiple cases will be examined
here including that of an infinitesimally thin crack and an idealised triangular crack. In
addition an approximate solution to the pressure profile for a generic crack and the tip
of a crack will be given. The calculations from this will give a small time asymptotic
solution to the initial movement of the bitumen.

After this, the boundary integral method will be applied to provide a numerical
solution to the problem being modelled across multiple different domain types. The
novelty of this is its use to create simulations of a crack evolving in this context.

Next, a series of novel experiments will be discussed. These will examine flow of
bitumen within a Hele-Shaw cell to simulate a porous medium. In this research the
results of these experiments will be used to validate the model.

11



The chapter will conclude with the numerical results being used to calibrate a novel
equation which can predict the healing level of a crack with time. This will result in
a computationally cheap method of predicting the healing of a crack with time. This
equation will also be used when analysing various healing methods in the next chapter.

In the third chapter of the thesis a series of three-point bending tests on asphalt
containing a large quantity of oil capsules will be performed. Here the novelty lies in the
large proportion of oil capsules which make up the asphalt being broken and healed.

The equation for crack healing from chapter 2 will be utilised to generate a novel
equation to calculate the force required to break a partially healed beam using three-
point bending. A large sample of healing results using different healing methods and
different styles of asphalt will be analysed and used to calibrate the equation for crack
healing with time for the appropriate healing method and type of asphalt.

To test the safety of using high quantities of oil capsules in asphalt pendulum tests
have been conducted on the beams. The results from these experiments will show that
asphalt containing high levels of oil capsules meets the frictional requirements for road
surfaces.

The last novel result of the chapter will be derived by extrapolating the healing
profiles of three-point bending experiments in the literature. Here the conclusion is
reached that the lack of apparent healing which occurs in asphalt when samples have
healed to 50% of their original strength is in fact only a temporary plateau caused by
the mechanics of the three-point bending test commonly used to test healing.

To begin the next chapter of the thesis, a mathematical model will be constructed for
three different types of crack to predict the flow of bitumen under the effects of surface
tension and gravity. The flow here will be assumed to be characterised as flow within a
porous medium in all parts of the system including within the crack. This will order to
build a strong framework for the rest of the chapter to draw from. Here the differences
in healing mechanics and initial conditions will be clarified.

Next, the boundary integral method will be applied to the cracks detailed in the
model, providing a numerical solution. This will take place over multiple different domain
types and for three distinct styles of crack. Here the novelty is in the use of the method
to create simulations of cracks healing in this context.

To conclude the chapter another series of experiments, similar in style to those from
the 2nd chapter of this research will be discussed. These experiments provide a novel
way of approximating flow of bitumen into a crack in a porous medium. Here they will
also be used to validate the model produced in the chapter.
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Chapter 2

Slow, Gravity and Surface Tension
Driven Filling of a Crack in a
Porous Medium

2.1 Introduction

The main property of asphalt that is under investigation in this research is its self-
healing ability. When asphalt becomes cracked the bitumen in the asphalt will slowly
flow back into the crack [Tabaković and Schlangen, 2016], a process which, when triggered
manually, can increase the lifetime of roads by up to 31% [Menozzi et al., 2015]. This
process has been looked at from a variety of perspectives from focused discussions of
the chemistry of asphalt e.g. [Pauli, 2014] to more general mathematical models of crack
propagation e.g. [Roper and Lister, 2005, Roux et al., 1998]. Heating the bitumen in the
road causes it to become a Newtonian fluid, decreasing its viscosity and dramatically
increases the speed of the process [Garćıa et al., 2013].

The main approach used in current research on the healing of cracks in asphalt is to
assume that bitumen mainly spreads from points in the crack which are in contact [Mag-
nanimo et al., 2012, Agzenai et al., 2015, Menozzi et al., 2015]. Here when part of the two
faces of the crack are in contact molecules will diffuse from one face to the other [Little
and Amit, 2007]. This initial contact of the two surfaces is compounded by van der
Waals forces [Lytton, 2000]. The idea is that this diffusion will continue until the crack
has completely healed [Little and Amit, 2007].

However research by [Garćıa, 2012] indicates that flow of bitumen into the crack is
driven largely by gravity. In this case bitumen from the surrounding asphalt would flow
into the crack which would heal the bottom of the crack much faster than the top. Here
the effects of gravity and surface tension will both be used to simulate the self healing of
asphalt. This gives a new perspective on the self-healing of asphalt and allows detailed
predictions to be made to describe the rate at which it occurs.

Firstly a model will be constructed based on the flow of bitumen within a driven
by gravity and surface tension. The flow will be characterised as flow within a porous
medium throughout the system, including within the crack. After this the small time
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asymptotic solution using conformal mapping will be examined to give an initial time
step when simulating the movement of bitumen. This will be followed by a numerical
solution using boundary integral methods. Next the numerical solution will be trialled
against real world experiments to validate the reliability of the simulation. Finally the
results of the numerical method will be used to calibrate an equation for the progress of
a crack healing in asphalt. This equation will offer a computationally cheap method of
predicting the progress of the healing of cracks in asphalt with time.

2.2 Theory

This section of the thesis will focus on creating a theoretical framework on which the
research will be based.

This will begin with the creation of a mathematical model which will lay out the base
assumptions of the research and describe the problem being investigated in detail.

Next this will be followed by the calculation of the small time asymptotic solution for
each case. This solution obtained via conformal mapping will allow for the calculation
of the initial movement of the system for each domain being examined.

This will be followed by an explanation of how boundary integral methods can be
used to compute a numerical solution to the movement of the interface of the bitumen
over time.

2.2.1 The Mechanics of Fluid Moving into a Crack in a Porous
Medium

Initially we consider the two dimensional movement of bitumen, a Newtonian fluid in a
semi-infinite domain. We assume that both the width and depth of the system as seen
in Fig. 2.1 is large enough to be considered infinite.

The model assumes that the bitumen is encased in a porous medium and flows into a
thin crack absent of bitumen, filling it over time under the dual influences of gravity and
surface tension. Here movement of bitumen within the crack itself is also characterised
as flow within a porous medium. This assumption of movement within the crack being
considered movement within a porous medium is made because it is not uncommon for
asphalt to have areas between aggregates measuring multiple millimetres. As cracks
in asphalt are in general of negligible distance in comparison to this, any movement
of bitumen within the crack will take place sufficiently close to aggregates for it to be
influenced by them as it would be throughout the rest of the material. For wider cracks
this assumption breaks down and the internals of the crack should be modelled as a void
with the movement of the bitumen inside governed by Stokes flow, however this case is
outside the scope of this research.

The boundary of the fluid at time t lies at y = Y (x, t). At t = 0 this is y = Y0 (x).
The pressure and velocity fields are given by p (x, y, t) and u (x, y, t) respectively. Here
x and y are Cartesian co-ordinates in the horizontal and vertical directions respectively.
Under these conditions the fluid in the porous medium is subject to Darcy’s law [Neuman,
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Permeability, k

Porosity, ϕ

p → −ρg(y − d) as y → −∞

p → −ρg(y − d) as x → ±∞

y

x

p = γκ+ 2µn · e · n
y = Y (x, t)

y = Y0(x)

d

Figure 2.1: A crack of height d formed in asphalt with porosity ϕ and permeability k.
The line y = Y (x)0 gives the initial position of the boundary of the bitumen and the line
y = Y (x, t) gives the position of the boundary of the bitumen at a later time t.

1977, Liu and Ma, 2020, Niessner et al., 2011], which can be written as

u = − k

ϕµ
∇ (p− ρgy) . (2.1)

The fluid is also subject to conservation of mass [Markov, 2007, Whitaker, 1986, Liu and
Ma, 2020, Gresho and Sani, 1987] which for an incompressible fluid is given by

∇ · u = 0 (2.2)

or if you substitute (2.1) into this

k

ϕµ
∇2 (p− ρgy) = 0. (2.3)

In these equations k is the permeability of the porous medium, µ is the kinematic viscosity
of the bitumen, ϕ is the porosity of the asphalt, ρ is the density of the fluid and g is
acceleration due to gravity.

For an incompressible Newtonian fluid the stress tensor, σ, on the interface is given
by [Batchelor, 2000, Duchesne et al., 2019]

σ = −pI+ 2µe, (2.4)
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where I is the identity matrix and e is the rate of strain tensor which is expressed by

e =
1

2

(
∇u+ (∇u)T

)
, (2.5)

with (∇u)T being the transpose of ∇u. At each point on the surface this can be split
into a normal and tangential component.

As the interface of the bitumen is considered to be a free surface the tangential term
vanishes [Batchelor, 2000]. This is expressed by the equation

n ·
(
∇u+ (∇u)⊤

)
· t = 0, (2.6)

where n and t represent the normal and tangential vectors to the surface respectively.
The normal component is given by

p− pµ = pe + pγ. (2.7)

Here pµ, the viscous pressure can be represented by

pµ = 2µn · e · n. (2.8)

In the model it is assumed that external pressures are negligible and so the external
pressure term, pe, is taken to be 0. Finally the Laplacian pressure, pγ, resulting from
surface tension at the free surface is given by the Young-Laplace equation [Liu and Cao,
2016, Shuttleworth, 1950, Hui and Jagota, 2013]

pγ =
γ

r
= γκ. (2.9)

Here γ is surface tension and κ is the curvature of the surface. Given that the surface
here is modelled as 2D the radius of curvature with axis in the x direction is considered
to be infinite meaning that the radius of curvature on the axis parallel to the surface,
r, is the only radius of curvature which needs to be considered. The sign of r is taken
to be positive when the surface is convex and negative when the surface is concave, a
factor which varies depending on the part of the surface being observed. Given these
substitutions (2.7) reduces to

p = γκ+ 2µn · e · n. (2.10)

At the free surface these equations also need to be solved subject to the kinematic
condition [Cruse and Rizzo, 1968], which relates the motion of the free surface to the
fluid velocity at the surface. This is given by

∂Y

∂t
+ u

∂Y

∂x
= v, (2.11)

where u is velocity in the x direction and v is velocity in the y direction.
Now the substitution p̄ = p + ρg (y − d) will be used to create a modified pressure

field p̄ and simplify many of the following equations. Here d is the initial height of the
crack.
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In addition, from this point forwards all quantities will be given in dimensionless
variables with length, pressure, time and velocity being scaled with d, ρgd, ϕµd

ρgk
and ρgk

ϕµ

respectively. Therefore let the new non-dimensionalised variables be given by x̂ = x
d
,

ŷ = y
d
, Ŷ = Y

d
, p̂ = p̄

ρgd
, t̂ = t ρgk

ϕµd
, ê = eϕµd

ρgk
, û = u ϕµ

ρgk
and κ̂ = dκ.

Given this, for t̂ ⩾ 0 and −∞ < x̂ < ∞ the governing equations can be simplified to

û = −∇p̂ (2.12)

as well as
∇2p̂ = 0 (2.13)

when ŷ ⩽ Ŷ
(
x̂, t̂
)
.

On the surface of the fluid the stress jump condition becomes

p̂ =
κ̂

Bo
+ (ŷ − 1) + δn̂ · ê · n̂ (2.14)

and
δn̂ · ê · t̂ = 0 (2.15)

when expressed in the dimensionless variables. Here n̂ and t̂ represent the normal and
tangential vectors in the dimensionless co-ordinate system. The Bond number is given
by the equation

Bo =
ρgd2

γ
, (2.16)

while the dimensionless parameter δ can be expressed as

δ = 2
k

ϕd2
. (2.17)

Examining the expected values of δ here can help justify an approximation which
simplifies the mathematics of the model considerably. In the case of asphalt, the value
of δ can be determined by calculating from experimental values. The asphalt created for
use in the next chapter of this research has a bitumen content of 4.5% and an air void
content of 4.5% so here we can take the porosity as ϕ = 0.09. The height of asphalt
samples used in the next chapter was 60 mm so we can take d = 0.06 as a representative
quantity here. In a study by [Giompalo, 2010] permeability of representative samples
of hot mix asphalt with binder content between 5.2-6.7% with air void content between
3.9-8.5% was found to be between 4× 10−9 − 2.367× 10−6. Here values of permeability
increased rapidly with larger air void contents. This gives a reasonable range of expected
values of δ in asphalt as 2.4× 10−5 − 1.5× 10−2 ms−1.

The other case of relevance to this research is that of a Hele-Shaw cell, in which
experiments can be performed in a manner which simulates a porous medium. Here k
can be found using (1.14) which can be combined with the fact that by definition ϕ = 1
within a Hele-Shaw cell to reduce the relationship to

δ =
h2

6d2
. (2.18)
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Here h is the width of the Hele-Shaw cell. This means that in the situations evaluated
in this research where d ≫ h the condition δ ≪ 1 will hold for the movement of fluid in
a Hele-Shaw cell.

Given these values it will be assumed throughout this research that δ ≪ 1. This
means that at leading order (2.14) reduces to

p̂ =
κ̂

Bo
+ ŷ − 1. (2.19)

When expressed in dimensionless variables the kinematic condition remains as

∂Ŷ

∂t̂
+ û

∂Ŷ

∂x̂
= v̂. (2.20)

Here û and v̂ are the dimensionless velocity components in the x̂ and ŷ directions re-
spectively.

In addition the following boundary conditions apply:

û → 0, p̂ → 0 as ŷ → −∞ (2.21)

as well as
û → 0, p̂ → 0 as x̂ → ±∞ (2.22)

and
û = 0, Ŷ

(
x̂, t̂
)
= Ŷ0 (x̂) when t̂ = 0. (2.23)

Here Ŷ0 (x) is the initial displacement of the free surface.
While a semi-infinite domain is better suited to modelling the reality of a crack in

asphalt being healed, a series of experiments will be conducted throughout this research
which can be better modelled by using a finite domain. When comparing the model to
experiments the system will have boundaries at a known depth and width through which
bitumen cannot pass. Here the velocity of the bitumen on the boundaries will be 0 in
accordance with the no-slip and no-penetration conditions [Richardson, 1973].

2.2.2 Conformal Mapping of an Infinitesimally Thin Crack

The most basic form of this problem is looking at a scenario with an infinitesimally thin
crack at time t̂ = 0 as can be seen in Fig. 2.2. Here we can use conformal mapping to
transform layout the crack into a half plane in the complex plane. This will allow the
pressure across the domain to be calculated which in turn can be used to find the small
time asymptotic solution to the advection of the interface of the crack.

For the infinitesimally thin crack being reviewed here the surface is flat meaning that
the curvature of the interface is 0 when t̂ = 0, with the exception of the corners of the
surface. Hence, the small time asymptotic solution will be valid in the neighbourhood
away from a small area containing the corners of the system. Given this the surface
tension term is 0 on the edges of the interface and the pressure in the crack is taken to
be p̂ = ŷ1−1. Conformal mapping can then be used to obtain the small time asymptotic
solution for the simulation as follows.
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p̂ = 0 p̂ = 0

p̂ = ŷ1 − 1

•
C = (0, 0)

ẑ1 = x̂1 + iŷ1

•
A = (−1, 1)

•
D = (0, 1)

•
B = (1, 1)

p̂ → 0 as ŷ1 → −∞

p̂ → 0 as x̂1 → ±∞

n̂ · ∇p̂ = 0

x̂1

ŷ1

Figure 2.2: A model of an infinitesimally thin crack in a semi-infinite block of bitumen.
The pressure along the crack is p̂ = ŷ1 − 1 and the surface of the crack is given by the
solid black line. Here the letters A−D represent points along the surface of the crack.

By defining the domain of the bitumen to be ẑ1 = x̂1 + iŷ1 in the complex plane,
conformal mapping can be used to transform this problem into a version that is solvable.
By using the co-ordinate transformation

ẑ2 =
(
2iẑ1 − ẑ21

) 1
2 (2.24)

the model takes the form seen in Fig. 2.3. Here the new coordinate system is defined by
the relationship ẑ2 = x̂2 + iŷ2. The pressure on the crack in this new co-ordinate system
is given by

p̂ = −
(
1− ŷ22

) 1
2 . (2.25)
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Here the negative square root is taken to remain consistent with the fact that p̂ ≤ 0
throughout the system.

• D1 = (0,−1)

• D2 = (0, 1)

p̂ = 0

p̂ = 0

p̂ = − (1− ŷ22)
1
2

p̂ = − (1− ŷ22)
1
2

•
C = (0, 0)

n · ∇p̂ = 0

ẑ2 = (−ẑ21 + 2iẑ1)
1
2

• A = (0,−
√
2)

• B = (0,
√
2)

ŷ2

x̂2

Figure 2.3: After all the transformations are completed the pressure acting on the crack

becomes p̂ = − (1− ŷ22)
1
2 . The solid black line represents the surface of the crack in the

new co-ordinate system. Points A− C correspond to the new locations of points A− C
in Fig. 2.2. Point D has been split into D1 and D2 to correspond to the two sides of the
crack opening in the new co-ordinate system.

After this is done a variant of Poisson’s formula for a half plane

p̂(x̂2, ŷ2) =
x̂2

π

∫ ∞

−∞

fp̂ (s1)

x̂2
2 + (ŷ2 − s1)

2ds1 (2.26)

can be used [King et al., 2003] to give the pressure at any point in the system. In
this equation fp̂ (s1) is the pressure on the crack in the final co-ordinate system. Here
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s1 has been used as a dummy variable in place of ŷ2 to prevent confusion with spatial
co-ordinates.

In this particular problem fp̂ (s1) = − (1− s21)
1
2 so

p̂(x̂2, ŷ2) = − x̂2

π

∫ 1

−1

(1− s21)
1
2

x̂2
2 + (ŷ2 − s1)

2ds1 (2.27)

can be used. Here the limits of the integral have been changed to -1 and 1 as the pressure
on the surface is zero for areas outside of the crack and so only the region the crack has
been mapped to contributes in this case. The system is then mapped back to the original
co-ordinates to give the pressure at any point in the original system. This can be done
using the co-ordinate transforms

x̂2 =

(
1

2

(
(ŷ1 − 1)2 − x̂2

1 − 1 +
((

(ŷ1 − 1)2 − x̂2
1 − 1

)2
+ 4x̂2

1 (ŷ1 − 1)2
) 1

2

)) 1
2

(2.28)

and

ŷ2 =
2x̂1 − 2x̂1ŷ1(

2

(
(ŷ1 − 1)2 − x̂2

1 − 1 +
((

(ŷ1 − 1)2 − x̂2
1 − 1

)2
+ 4x̂2

1 (ŷ1 − 1)2
) 1

2

)) 1
2

. (2.29)

When (2.27) is computed it gives the pressure profile in Fig. 2.4 where each line is a
line of constant pressure. This in turn can be used to derive the small time asymptotic
solution to the pressure gradient of the system, represented by the size and direction of
the arrows in Fig. 2.4. This contour plot was created by computing the results of (2.27)
for individual points in a 100×100 grid over the domain -1≤ x̂1 ≤1 and -1≤ ŷ1 ≤1.

The contour plot shows that throughout the porous medium bitumen is consistently
flowing towards the crack with flow being fastest near the tip of the crack. This would
imply that bitumen will flow into the crack with the base of the crack filling the fastest.

The initially unintuitive aspect of the flow is that the bitumen under the lowest point
of the crack is flowing upwards, against the direction of gravity. This can be explained
by the fact that the bitumen at higher levels is weighing down on the bitumen at lower
levels, increasing the pressure more the further below the surface you observe. These
higher pressure levels act in opposition to gravity causing the bitumen under the crack
to flow upwards towards the crack with the bitumen to the top and sides of the porous
medium flowing in to take its place. As such this pushes the bitumen underneath the
crack up, overcoming the opposing force due to gravity.

2.2.3 Approximation of the Pressure Near the Tip of the Crack

To get a better idea of how the system behaves near the tip of the crack at time t̂ =
0, when the effects of surface tension are negligible compared to those of gravity, the
pressure, p̂, in the immediate vicinity can be approximated to a polynomial. This is
done by evaluating (2.27) assuming that the co-ordinates x̂2, ŷ2 ≪ 1.
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x̂1

ŷ1 p̂

Figure 2.4: A contour plot of p̂. Each line in the plot represents a section of constant
pressure with blue lines representing low pressure and red lines representing high pres-
sure, as described by the colour bar. The black line is the infinitesimally small crack.
The arrows show the initial velocity of the fluid.

By making the substitutions s1 = ŷ2s2 and k = x̂2/ŷ2 and splitting the integral into
three different sections, the equation can be written

πp̂

k
= −

∫ ŷ−1
2

ŷ
− 1

2
2

(1− ŷ22s
2
2)

1
2

k2 + (1− s2)
2ds2 −

∫ ŷ
− 1

2
2

−ŷ
− 1

2
2

(1− ŷ22 s̄2
2)

1
2

k2 + (1− s2)
2ds2 −

∫ −ŷ
− 1

2
2

−ŷ−1
2

(1− ŷ22s
2
2)

1
2

k2 + (1− s2)
2ds2.

(2.30)
This splitting of the integral allows the integrals to be calculated separately and then
recombined later in the process. The first of these integrals

I1 =

∫ ŷ−1
2

ŷ
− 1

2
2

(1− ŷ22s
2
2)

1
2

k2 + (1− s2)
2ds2 (2.31)
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can be approximated by setting s2 = ŷ
− 1

2
2 s3 to give

I1 = ŷ
1
2
2

∫ ŷ
− 1

2
2

1

(1− ŷ2s
2
3)

1
2

s23

(
1 +

(1 + k2) ŷ2 − 2ŷ
1
2
2 s3

s23

)−1

ds3. (2.32)

By using x̂2 ≪ 1 and ŷ2 ≪ 1 this can be approximated to

I1 = ŷ
1
2
2

∫ ŷ
− 1

2
2

1

(1− ŷ2s
2
3)

1
2

s23

(
1−

(
(1 + k2) ŷ2 − 2ŷ

1
2
2 s3

s23

)
+

(
(1 + k2) ŷ2 − 2ŷ

1
2
2 s3

s23

)2

−

(
(1 + k2) ŷ2 − 2ŷ

1
2
2 s3

s23

)3

+

(
(1 + k2) ŷ2 − 2ŷ

1
2
2 s3

s23

)4

+O (ŷ2)
5
2

)
ds3

(2.33)

through the use of binomial expansion. In this step it is also assumed that x̂2 and ŷ2 are
of roughly the same magnitude, specifically that k or x̂2/ŷ2 ≫ 1 does not hold. When
the same process is done with the third integral

I3 =

∫ −ŷ
− 1

2
2

−ŷ−1
2

(1− ŷ22s
2
2)

1
2

k2 + (1− s2)
2ds2 (2.34)

and both integrals are evaluated it can be shown that

I1 + I3 = 2

(
ŷ

1
2
2 +

(
1− 1

3
k2

)
ŷ

3
2
2 +

(
1

5
k2 − 5

3
k2

)
ŷ

5
2
2

)
(1− ŷ2)

1
2

−πŷ2 + 2ŷ2 arcsin
(
ŷ

1
2
2

)
+O

(
ŷ32
)
.

(2.35)

Upon Taylor expanding the arcsin
(
ŷ

1
2
2

)
term about ŷ2 = 0 this simplifies to

I1 + I3 = 2ŷ
1
2
2 − πŷ2 +

(
3− 2

3
k2

)
ŷ

3
2
2 +

(
−11

12
− 3k2 +

2

5
k4

)
ŷ

5
2
2 +O

(
ŷ32
)
. (2.36)

The second integral is

I2 =

∫ ŷ
− 1

2
2

−ŷ
− 1

2
2

(1− ŷ22s
2
2)

1
2

k2 + (1− s2)
2ds2. (2.37)

By substituting s2 for 1− k tan s4 this can be rewritten as

I2 = −1

k

∫ arctan
1−ŷ

− 1
2

2
k

− arctan
1−ŷ

− 1
2

2
k

(
1− 1

2
ŷ22 (1− k tan s4)

2 − 1

8
ŷ42 (1− k tan s4)

4 +O
(
ŷ62
))

ds4.

(2.38)
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After solving the integral and then Taylor expanding about ŷ2 = 0 this gives

I2 =
π

k
− 2ŷ

1
2
2 +

(
−3 +

2

3
k2

)
ŷ

3
2
2 +

(
11

12
+ 3k2 − 2

5
k4

)
ŷ

5
2
2 +

(
−1

k
+ k

)
π

2
ŷ22 +O

(
ŷ32
)
.

(2.39)
Now that the three integrals have been solved individually they can be added together

and simplified to give the result

p̂ = −1 + kŷ2 +
(
1− k2

) ŷ22
2

+O
(
ŷ32
)
. (2.40)

Next reversing the earlier substitution k = x̂2/ŷ2 allows this to be written in terms of x̂2

and ŷ2 as

p̂ = −1 + x̂2 +
ŷ22
2

− x̂2
2

2
+O

(
ŷ32
)
+O

(
x̂3
2

)
. (2.41)

This now needs to be transformed into the original co-ordinate system prior to when
conformal mapping took place. This can be done using ẑ2 = x̂2 + iŷ2 to give

p̂ = Re

(
−1 + ẑ2 −

1

2
ẑ22

)
+O

(∣∣ẑ32∣∣) . (2.42)

The original co-ordinate transform (2.24) used in conformal mapping can then be used
to change the co-ordinates to their original system, given by ẑ1 = x̂1 + iŷ1. This gives

p̂ = Re

(
−1 +

√
2iẑ1 − ẑ21 − iẑ1 +

1

2
ẑ21

)
+O

(∣∣ẑ31∣∣) . (2.43)

By re-arranging this into the form

p̂ = −1 + ŷ1 +
1

2

(
x̂2
1 − ŷ21

)
+Re

(√
1 +

1

2
iẑ1
√
2iẑ1

)
+O

(∣∣ẑ31∣∣) (2.44)

the equation can now be approximated by binomial expansion to give

p̂ = −1 + ŷ1 +
1

2

(
x̂2
1 − ŷ21

)
+Re

((
1 +

1

4
iẑ1 +

1

32
ẑ21

)√
2iẑ1

)
+O

(∣∣ẑ31∣∣) . (2.45)

Rather than express the real part of this equation in terms of x̂1 and ŷ1 it is simpler
to convert the equation to polar co-ordinates where r1 =

√
x̂2
1 + ŷ21 and θ1 = tan−1 ŷ1

x̂1
.

When expressed in polar co-ordinates this equation becomes

p̂ = −1 + r
1
2
1

(
cos

(
1

2
θ1

)
− sin

(
1

2
θ1

))
+ r1 sin θ1 −

1

4
r

3
2
1

(
cos

(
3

2
θ1

)
+ sin

(
3

2
θ1

))
+r21

(
1

2
− sin2 θ1

)
+

1

32
r

5
2
1

(
cos

(
5

2
θ1

)
− sin

(
5

2
θ1

))
+O

(
r31
)
.

(2.46)
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This can then be used to find the pressure gradient which by using the association
(2.12) can be used to compute the small time asymptotic velocity of the fluid

−∇p̂ =

[
r
− 1

2
1

2

(
sin

(
1

2
θ1

)
− cos

(
1

2
θ1

))
− sin θ1 +

3

8
r

1
2
1

(
sin

(
3

2
θ1

)
+ cos

(
3

2
θ1

))
+r1

(
−1 + 2 sin2 θ1

)
+

5

64
r

3
2
1

(
sin

(
5

2
θ1

)
− cos

(
5

2
θ1

))]
r̂

+

[
r

1
2
1

2

(
sin

(
1

2
θ1

)
+ cos

(
1

2
θ1

))
− r1 cos θ1 +

3

8
r

3
2
1

(
− sin

(
3

2
θ1

)
+ cos

(
3

2
θ1

))]
n̂

+O
(
r21
)
.

(2.47)

The resulting pressure contour plot for these approximations is given in Fig. 2.5
below. This graph was created by using (2.46) to calculate the pressure at each point in
a 100×100 grid over the domain -0.1≤ x̂1 ≤0.1 and -0.1≤ ŷ1 ≤0.1.

In this graph the contours represent lines of constant pressure, while the arrows repre-
sent the initial velocity of the bitumen, with larger arrows representing faster movement.
The black line gives the location of the tip of the crack.

From this graph it is apparent that the highest pressure gradient in the system occurs
immediately under the tip of the crack, with the pressure gradient decreasing with the
distance away from the tip. This in turn leads to an increased initial velocity of the
fluid nearer to the tip of the crack. Here the movement of the fluid is towards the crack
throughout the domain which complies with the expectation that fluid will flow into the
crack.

As discussed in the previous section there is a movement of fluid upwards against the
flow of gravity in the lower section of the domain. This can be explained by the higher
pressure at lower parts of the system acting against gravity to push the fluid upwards
towards the crack.

The results of this approximation can be compared directly to the results from the
previous section. Fig. 2.6 was created by directly computing (2.12) over individual
points in a 100×100 grid over the same domain used in Fig. 2.5. These two graphs show
a clear agreement which implies that in regions close enough to the tip of the crack the
approximation is valid when the effects of gravity are dominant over those of surface
tension.

2.2.4 Conformal Mapping of an Idealised Crack

Conformal mapping can also be used to find the pressure of a crack of angle 2α for
time t̂ ≪ 1. The system is shown in Fig. 2.7. This can be done by considering the
Schwarz-Christoffel mapping from a lower half plane to a crack of angle 2α.

The function which transforms a lower half plane defined by ẑ2 = x̂2 + iŷ2 into the
form of a crack of angle 2α described by ẑ1 = x̂1 + iŷ1 is given by [Spiegel, 1972]

f (ẑ2) = B + A

∫
(ẑ2 − x̂a)

−βa
π (ẑ2 − x̂b)

−βb
π (ẑ2 − x̂c)

−βc
π dẑ2. (2.48)
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x̂1

ŷ1 p̂

Figure 2.5: A contour plot of the approximate value of p̂ near the tip of the crack under
the approximations listed in this section. Each line in the plot represents a section of
constant pressure. Here the colour bar gives the value of p̂ associated with contours of
that colour. The black line is the infinitesimally thin crack. The arrows show the initial
velocity of the fluid.

Here A and B are constants, βa, βb and βc are the external angles of the crack and x̂a,
x̂b and x̂c are positions of arbitrary points on the surface of the lower half plane. A
and B are constants which determine the shape and position of the surface in the new
co-ordinate system.

Taking x̂a, x̂b and x̂c to be 1, 0 and −1 respectively this can be simplified to

f (ẑ2) = B + A

∫ (
ẑ22

ẑ22 − 1

) 1
2
−α

π

dẑ2. (2.49)

For a known value of α a variant of Poisson’s formula for a half plane [King et al., 2003]

p̂(x̂2, ŷ2) = − ŷ2
π

∫ ∞

−∞

fp̂ (s1)

ŷ22 + (x̂2 − s1)
2ds1 (2.50)
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x̂1

ŷ1 p̂

Figure 2.6: A contour plot of the values of p̂. Each line in the plot represents a section
of constant pressure. Here the colour bar gives the value of p̂ associated with contours of
that colour. The black line is the infinitesimally thin crack. The arrows show the initial
velocity of the fluid.

can be computed to give the pressure of the entire system. Here fp̂ (s1) is the pressure
on the crack in the final co-ordinate system with s1 acting as a dummy variable in place
of x̂2. The values of x̂2 and ŷ2 can be found by computing the real and imaginary parts
of f−1 (x̂1 + iŷ1) respectively at each point being examined. This in turn can be used to
derive the pressure gradient and initial flow of the bitumen at time t̂ = 0. The form of
this equation differs slightly from (2.26) as here the lower half plane is being integrated
over as opposed to the right half plane.

The form of the solution to (2.49) varies greatly with the value of α. As such this is
as far as we can take the general case. As an example of a specific case, when α = π/10
(2.49) reduces to

f (ẑ2) = B + A

∫ (
ẑ22

ẑ22 − 1

) 2
5

dẑ2. (2.51)
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Figure 2.7: A crack of angle 2α and external angles of β1, β2 and β3.

Solving this integral can be shown to yield the solution

f (ẑ2) = B +
5A

9
ẑ

7
5
2 (−ẑ2)

2
5
2F1

(
2

5
,
9

10
;
19

10
; ẑ22

)
, (2.52)

where 2F1 (a, b; c; ẑ2) is the hypergeometric function given by [Nørlund, 1955]

2F1 (a, b; c; ẑ2) =
∞∑
n=0

(a)n (b)n
(c)n

ẑn2
n!

. (2.53)

Here a, b and c are arbitrary constants while (a)n is the rising Pochhammer symbol
which can be expressed as [Sarikaya et al., 2020]

(a)n =

{
1, if n = 0∏n

k=1 (a+ k − 1) , if n > 0.
(2.54)

To calculate A and B we can look at the location of two points before and after being
subject to the mapping. To do this we can substitute ẑ2 for 1 and 0 and evaluate their
positions in the new co-ordinate system. For the tip of the crack to be mapped to the
origin

f (0) = 0 (2.55)
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must be true and for the height of the crack to be one means that f (1) must map to the
corner of the crack so

f (1) = tan
( π

10

)
+ i (2.56)

must hold.
When ẑ2 = 0

f (0) = B, (2.57)

while when ẑ2 = 1

f (1) = B + A
10Γ

(
3
5

)
Γ
(
19
10

)
9
√
π

(
cos

(
2π

5

)
+ i sin

(
2π

5

))
. (2.58)

Here for a constant a, Γ (a) is the Euler gamma function defined by [Sarikaya et al., 2020]

Γ (a) =

∫ ∞

0

sa−1e−sds, (2.59)

where s is a dummy variable to be integrated over. Using the result in (2.57) combined
with (2.55) we see that

B = 0 (2.60)

and taking that result with (2.58) and (2.56) yields

A =
9
√
π

10 sin
(
2π
5

)
Γ
(
3
5

)
Γ
(
19
10

) . (2.61)

Substituting the values of A and B into (2.52) gives the result

f (ẑ2) =

√
π

2 sin
(
2π
5

)
Γ
(
3
5

)
Γ
(
19
10

) ẑ 7
5
2 (−ẑ2)

2
5
2F1

(
2

5
,
9

10
;
19

10
; ẑ22

)
(2.62)

when α = π
10
.

This now provides enough information to compute the pressure at any point in the
domain of the bitumen. A contour plot of the pressure can be seen in Fig. 2.8. To
reduce the computational complexity, rather than computing the values of f (x̂1 + iŷ1)
for an array of pre-defined points in the ẑ1 plane as has been done in previous sections
a 100×100 array of points in the ẑ2 plane was selected over a domain of −2 ≤ x̂2 ≤ 2
and −2 ≤ ŷ2 ≤ 0. The pressure on each point was calculated using (2.50) then the
associated values of x̂1 and ŷ1 were found using the real and imaginary components of
(2.62) respectively. The value of fp̂ (s1) in (2.50) was taken to be f (ŷ1)− 1 with values
of x̂2 substituted for the dummy variable s1 to integrate over.

This pressure field shares some similarities with the ones produced for the case of an
infinitesimally thin crack but also some interesting differences. As would be expected
the pressure shows the same behaviour as previous cases further away from the crack
with larger gaps between contours signalling a smaller pressure gradient further from the
origin and with p̂ tending to 0 as the distance from the origin grows. One of the main
differences between this scenario and the infinitesimally thin crack is the behaviour of the
pressure near to the crack. Here we see very tight contours in the immediate vicinity of
the crack which signals a larger pressure gradient and so more fluid flow in this vicinity.
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x̂1

ŷ1 p̂

Figure 2.8: A contour plot of the approximate value of p̂ for an idealised crack of angle
α = π

10
. Each line in the plot represents a section of constant pressure. Here the colour

bar gives the value of p̂ associated with contours of that colour. The black line represents
the initial surface of the crack.

2.2.5 Approximation of Pressure for a Generic Crack

Considering a generic crack at time t̂ ≪ 0 with sides defined by x̂ = ϵX+(ŷ) and x̂ =
ϵX−(ŷ) where ϵ is a dummy variable satisfying ϵ ≪ 1 and x̂ and ŷ are the Cartesian
co-ordinates. Let the pressure be expressed by

p̂ = p̂0 (x̂, ŷ) + ϵp̂1 (x̂, ŷ) +O
(
ϵ2
)
, (2.63)

where p̂0 (x̂, ŷ) is the leading order approximation to p̂ and is given by (2.27). p̂1 (x̂, ŷ)
is the next largest order term in the perturbation series and O (ϵ2) represents terms of
order ϵ2 or smaller. Next let

p̂ = p̂0 (x̂, ŷ) + p̂L (x̂, ŷ) , (2.64)

where p̂L (x̂, ŷ) is the sum of the perturbation series with the leading order approximation
excluded.
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ŷ
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x̂ = ϵX+ (ŷ)x̂ = ϵX− (ŷ)

Figure 2.9: A generic non-symmetric crack in a sheet of bitumen where the width of the
crack is much smaller than its length.

Hence on the crack

p̂L (ϵX+ (ŷ) , ŷ) = ŷ − 1− 2κ̂ (ϵX+ (ŷ) , ŷ)

Bo
− p̂0 (ϵX+ (ŷ) , ŷ) , (2.65)

where κ̂ (ϵX+ (ŷ) , ŷ) is the curvature of a point on the crack and Bo is the Bond number.
A visual representation of this can be seen in Fig. 2.9. However

p̂0 (ϵX+ (ŷ) , ŷ) = p̂0 (0, ŷ) + ϵX+ (ŷ)
∂p̂0
∂x̂

(0, ŷ) +O
(
ϵ2
)

(2.66)

and

κ̂ (ϵX+ (ŷ) , ŷ) = κ̂ (0, ŷ) + ϵX+ (ŷ)
∂ ˆ̂κ

∂x̂
(0, ŷ) +O

(
ϵ2
)
, (2.67)
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the first term of which is equal to 0 along a flat crack. Hence

p̂L = − 2ϵ

Bo
X+ (ŷ)

∂κ̂

∂x̂
(0, ŷ)− ϵX+ (ŷ)

∂p̂0
∂x̂

(0, ŷ) +O
(
ϵ2
)
. (2.68)

This means that at O (ϵ) the system simplifies to the form shown in Fig. 2.10. and that
the final pressure in the system is given by

p̂ = p̂0(x̂, ŷ)−
2ϵ

Bo
X+ (ŷ)

∂κ̂

∂x̂
(0, ŷ)− ϵX+ (ŷ)

∂p̂0
∂x̂

(0, ŷ) +O
(
ϵ2
)
. (2.69)

This means that an approximation to the pressure in the system can entirely be
derived from the the pressure profile of a simple infinitesimally small crack adjusted
for surface tension effects. Once this has been done the pressure can then be used for
a crack of any given dimension to compute the small time asymptotic solution to the
initial velocity of the interface.

p̂1 = −X+ (ŷ) ∂p̂0
∂x̂

(0+, ŷ)p̂1 = −X− (ŷ) ∂p̂0
∂x̂

(0−, ŷ)

O

Figure 2.10: The O (ϵ) contribution to a generic crack in bitumen.

2.2.6 Numerical Solution

Boundary integral methods can be used to compute the pressure gradient at the surface
of the crack numerically. This in turn can be used to predict the movement of the surface
of the bitumen as it flows into a crack.

To begin we take Green’s second identity, for ϕ1 and ϕ2, any two twice differentiable
fields [Fernández-Guasti et al., 2012]

∇ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) = ϕ1∇2ϕ2 − ϕ2∇2ϕ1. (2.70)

Integrating this relationship over an area Ac assumed to be connected and bounded by
a closed contour or collection of closed contours, C, gives∫ ∫

Ac

∇ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) dAc =

∫ ∫
Ac

ϕ1∇2ϕ2 − ϕ2∇2ϕ1dAc. (2.71)
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Here the assumptions made about Ac will be addressed in more detail on a domain by
domain basis in the next section. By the divergence theorem [Stolze, 1978]∫ ∫

Ac

∇ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) dAc =

∫
C

n̂ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) dC. (2.72)

Here n̂ is the unit normal vector to the boundary C pointing out of the area Ac. This
can be simplified by letting

ϕ1 = p̂ (2.73)

then applying conservation of mass, ∇2p̂ = 0 to (2.71) and (2.72). This gives the result∫ ∫
Ac

p̂∇2ϕ2dAc =

∫
C

p̂ n̂ · ∇ϕ2 − ϕ2n̂ · ∇p̂ dC. (2.74)

Here we can simplify the situation by using a Green’s function, a function which
satisfies the singularity forced Laplace’s equation [Pozrikidis, 2002]

∇2G (x̂, x̂0)− δ2 (x̂− x̂0) = 0, (2.75)

where G (x̂, x̂0) is the Green’s function, x̂ is a varying field point, x̂0 is a constant singular
point and δ2 (x̂− x̂0) is the two dimensional Dirac delta function. This can be used to
simplify the left hand side of (2.74) by making the substitution

ϕ2 = G (x̂, x̂0) , (2.76)

which results in the equation

p̂

∫ ∫
Ac

∇2G (x̂, x̂0) dAc =

∫
C

p̂ n̂ · ∇G (x̂, x̂0)−G (x̂, x̂0) n̂ · ∇p̂ dC. (2.77)

This means that by using the definition of the Green’s function and the Dirac delta func-
tion and looking at the situations where x̂0 is either inside, outside or on the boundary
we have the result ∫ ∫

Ac

∇2G (x̂, x̂0) dAc =


1, if x̂0 ∈ Ac

0, if x̂0 /∈ Ac

1
2
, if x̂0 ∈ C.

(2.78)

Using these results in conjunction with (2.77) we see that when the point x̂0 is inside Ac

but not on the boundary C then the relationship

p̂ =

∫
C

p̂ n̂ · ∇G (x̂, x̂0)−G (x̂, x̂0) n̂ · ∇p̂ dC (2.79)

holds, if x̂0 is outside of the Ac then we get

0 =

∫
C

p̂ n̂ · ∇G (x̂, x̂0)−G (x̂, x̂0) n̂ · ∇p̂ dC (2.80)
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and finally when x̂0 is on the boundary C we have the result

p̂ = 2

∫
C

p̂ n̂ · ∇ G (x̂, x̂0)−G (x̂, x̂0) n̂ · ∇p̂ dC. (2.81)

This last case when x̂0 is on the boundary C is most important to us as it is the assessment
of points on the interface of the crack which allow for the use of boundary integral
methods.

Upon discretisation of the integral equation (2.81) into a summation over N straight
lines or elements each with a centre given by x̂0 this gives the result

p̂ (x̂0) = −2
N∑
i=1

αi

(
∂p̂

∂n

)
i

+ 2
N∑
i=1

βip̂i. (2.82)

Here the influence coefficients α1 and βi are given by

αi =

∫
Si

G (x̂, x̂0) dl (2.83)

and

βi =

∫
Si

n̂ · ∇G (x̂, x̂0) dl. (2.84)

Here Si represents the element being integrated over, parametrised by l (x̂).
At this point the values of the influence coefficients need to be assessed differently

depending on whether or not the evaluation point x̂0 occurs inside or outside of the ith
boundary element.

For the case when the evaluation point occurs outside of the boundary element in
question the influence coefficients are non-singular and can be approximated accurately
using Gauss-Legendre quadrature [Pozrikidis, 2002]. This gives the resulting equations

αi ≈
l

2

NQ∑
k=1

G (x̂ (ξk) , x̂0 (ξk))wk (2.85)

and

βi ≈
l

2

NQ∑
k=1

n̂ · ∇G (x̂ (ξk) , x̂0 (ξk))wk. (2.86)

This method of approximating an integral works by taking the sum ofNQ points parametrised
by ξk all weighted by a factor of wk.

The case when x̂0 is present in the ith boundary element is more complicated. In
this scenario as x̂ approaches x̂0 both (2.83) and (2.84) exhibit singularities. These
singularities can be avoided by subtracting the free-space kernels from the integrals to
remove the singularity then calculating their value separately. For αi this gives

αi =

∫
Si

(
G (x̂, x̂0) +

1

2π
ln |x̂− x̂0|

)
dl + αFS

i , (2.87)
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while for βi this results in

βi =

∫
Si

(
n̂ · ∇G (x̂, x̂0) +

1

2π

n̂ · (x̂− x̂0)

|x̂− x̂0|2

)
dl + βFS

i . (2.88)

Here the free-space forms of the influence coefficients are given by

αFS
i =

∫
Si

− 1

2π
ln |x̂− x̂0| dl (2.89)

and

βFS
i =

∫
Si

− 1

2π

n̂ · (x̂− x̂0)

|x̂− x̂0|2
dl. (2.90)

These free-space kernals were chosen by considering the free space Green’s function given
by [Gaul et al., 2003, Pozrikidis, 2002]

G (x̂, x̂0) = − 1

2π
ln |x̂− x̂0| (2.91)

which equates to the singular component of any chosen Green’s function [Pozrikidis,
2002]. The subtraction of this function was chosen to remove the singularity from αi and
the subtraction of the dot product of n̂ with the grad of the free-space Greens function
was used to remove the singularity from βi. Now that this has been done the first
integrals on the right hand side of (2.87) and (2.88) are non-singular and may be solved
using Gauss-Legendre quadrature in the same way as when analysing the non-singular
elements.

Now it remains to solve the value of the free space forms of the influence coefficients.
αFS
i is weakly singular and so can be integrated directly [Gaul et al., 2003]. Here it helps

to use the substitution |x̂− x̂0| = |l − l0| where x̂0 lies at l0. This gives

αFS
i =

∫ li+1

li

− 1

2π
ln |l − l0| dl, (2.92)

resulting in

αFS
i = − 1

2π
[|li − l0| (ln |li − l0| − 1) + |li+1 − l0| (ln |li+1 − l0| − 1)] , (2.93)

where li and li+1 are the end points of the segments.
For βFS

i as x̂ approaches x̂0, the normal to the surface n̂ becomes orthogonal to the
tangent vector (x̂− x̂0) and as such the numerator vanishes leading to the result

βFS
i = 0. (2.94)

Since the singularities in the integrals have been resolved we can proceed to set up
a linear system of equations. Rewriting (2.82) as a series of equations with varying x̂0

gives
1

2
p̂j = −Ajip̂

′
i +Bjip̂i, (2.95)
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where Aji and Bji correspond to
∑N

i=1 αi (x̂0) and
∑N

i=1 βi (x̂0) respectively. This can be
manipulated to give

Ajip̂
′
i =

(
Bji −

1

2
δji

)
p̂i (2.96)

which can then be written in matrix form

Ap̂′ =

(
B− 1

2
I

)
p̂. (2.97)

Here I is the identity matrix while A and B are the matrix representations of Aji and
Aji respectively while p̂ is the vector form of p̂i This sets up a system of linear equations
which when computed allow p̂′ to be found. p̂′ can then be used in conjunction with
(2.13) to compute the movement of the interface at each point along it. This movement
of the interface can then be directly compared to the movement seen in experiments
carried out later in the chapter.

2.2.7 Alternative Domains for the Numerical Solution

Now that the numerical solution has been examined the next stage is to formalise the
domains in which it will be computed. For this step the Green’s function for each domain
must be found.

The solution to the free space Green’s function was already touched upon in the last
section and can be written as [Gaul et al., 2003, Pozrikidis, 2002]

G = − 1

2π
ln |x̂− x̂0| , (2.98)

where G is the Green’s function, x̂ (x̂, ŷ) is the varying field point and x̂0 (x̂0, ŷ0) is the
constant singular point. This Green’s function will be used when considering a crack
with semi-infinite domain extending infinitely in the ±x̂ and −ŷ directions.

To ensure that the semi-infinite domain meets the assumptions set out in the deriva-
tion of the numerical method it is defined here as being bounded by the free surface of
the bitumen, including the crack over all of which p̂ is defined. In addition the domain
is considered bounded by the lines x̂ = ±b for the limit as b approaches ∞ and the line
ŷ = a for the limit as a approaches −∞. On these three lines the velocity of the fluid is
considered to be zero. Here on the lines where the velocity is equal to zero the pressure
gradient is also equal to zero. This means that the final matrix calculation in (2.97)
reduces to integrating over just the free surface.

Using a semi-infinite domain is a good approximation to real world problems but for
comparison to the experiments performed in this research a measurable finite domain is
more desirable. This can be achieved by changing the Green’s function in the boundary
integral method.

The easiest way to model a domain of finite width is to model a periodically repeating
infinite domain where the velocity of the fluid is zero on the periodically repeating edges
of the domain. Due to this boundary condition the system will act in the same way as
a finite width walled system. For the moment we will still consider a domain of infinite
depth for simplicity but a domain of finite depth will be studied later in the research.
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A Green’s function of

G =
1

π
ln

(
2

∣∣∣∣sin 1

bπ
(x̂− x̂0 + i (ŷ − ŷ0))

∣∣∣∣) (2.99)

can be used to represent a source at (x̂0, ŷ0) for a domain which is periodic in the x̂
direction with period b [Linton, 1999, Moroz, 2006]. Here x̂ and ŷ are the coordinates of
the varying field point, G is the Green’s function appropriate to the domain and b is the
width of the periodically repeating part of the domain.

To avoid the use of complex numbers this can then be simplified to

G =
1

4π
ln

(
2

(
cosh

(
2π (ŷ − ŷ0)

b

)
− cos

(
2π (x̂− x̂0)

b

)))
+

(ŷ − ŷ0)

4b
, (2.100)

where the final term is an addition chosen to ensure that ∂G/∂ŷ tends to 0 as ŷ tends
to −∞.

To formally define the boundaries of the domain they are considered to be the free
surface of the bitumen where p̂ is defined as stated in the modelling section and the lines
x̂ = ±b and the line ŷ = a for the limit as a approaches −∞. For each of these lines the
velocity of the fluid is equal to 0 on the line. As with the previous domain, the condition
that the velocity is equal to zero and by association the pressure gradient in some parts
of the boundary causes (2.97) to collapse to an integral over the boundary.

Using the process described using (2.82)-(2.97) this Green’s function was computed
to create a model describing the movement of the crack over time.

Next we have to introduce a finite depth to the system to accurately model the
experiments where the cracks are large relative to the size of the sample. This can be
achieved by applying the method of images [Li, 1998] to (2.100) which results in the
following as a new Green’s function

G =
1

4π
ln


(
cosh

(
2π(ŷ−ŷ0)

b

)
− cos

(
2π(x̂−x̂0)

b

))
(
cosh

(
2π(ŷ+ŷ0−2a)

b

)
− cos

(
2π(x̂−x̂0)

b

))
− ŷ0 − a

2b
(2.101)

where G is the Green’s function, b is the width of the periodically repeating part of the
domain and a is vertical displacement between the base of the domain and the origin.
Again x̂ and ŷ are the coordinates of the varying point of the surface while x̂0 and ŷ0
the coordinates of the constant singular source.

For this Green’s function the closed domain is bounded by the surface of the crack
where p̂ is known, and the lines x̂ = ±b and ŷ = a on which, the condition that the
velocity of the fluid is zero holds. For the sections of the boundary where the velocity is
equal to zero the pressure gradient is also zero so the boundary integral equation reduces
to one over just the free surface.

Next, the process described using (2.82)-(2.97) was computed to create a model de-
scribing the movement of the crack over time.
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2.2.8 Time-stepping

Now that the numerical method being used to compute the movement of the surface has
been defined we can address the method of time-stepping used to advect the interface. To
perform time-stepping while using the boundary integral solution the Crank-Nicholson
method [Crank and Nicolson, 1947] was used. This is an implicit time-stepping method
which follows the formula

Ŷ n+1 = Ŷ n +
1

2

[
fg

(
t̂n, Ŷ n

)
+ fg(t̂

n+1, Ŷ n+1)
]
∆t̂. (2.102)

Here Ŷ n is the position of the surface before the nth time-step takes place, t̂n is the time

before the nth time-step takes place, ∆t̂ is the size of the time-step and fg

(
t̂n, Ŷ n

)
is

the value of the pressure gradient on the surface. In this method the value of Ŷ n+1 is
derived iteratively.
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2.3 Materials and Methodology

Now that a method of tracking the movement of bitumen over time has been established
the experiments performed and materials used in the experiments will be discussed. This
includes details of the bitumen used in the experiments, the process of the crack flow tests
which were used to validate the model and the tests used to determine the properties of
the bitumen used to allow a proper comparison with numerical results.

2.3.1 Bitumen

Five different types of bitumen were used throughout the chapter to ensure the compar-
isons to the model could be replicated over a variety of surface tensions and viscosities.
The relevant properties of the types of bitumen used can be found in Table 2.1.

Bitumen type Surface tension (Nm−1) Dynamic viscosity (MPl)
Sample 1 0.0324 0.103
Sample 2 0.0374 0.784
Sample 3 0.0318 0.328
Sample 4 0.0300 1.103
Sample 5 0.0391 0.892

Table 2.1: A table with the surface tensions and viscosities of each type of bitumen used
in the chapter.

2.3.2 Crack Flow Test

To validate the accuracy of the model experiments were performed with cracks of two
different sizes allowing a direct comparison of predictions of the model to experimental
results.

I poured heated bitumen into a silicone mould which produced a thin sheet of bitumen
of dimensions 73×23×1 mm. The sheets of bitumen had triangular gaps in the longest
edge to simulate a crack. This allowed the observation of the bitumen flowing into the
gap. The gaps were in two sizes with maximum widths of 10 mm and 20 mm. The height
of the crack was always 10 mm. Next the mould and bitumen were placed in a freezer
at -20°C for a period of at least two hours. This was done to prevent the sample from
deforming during the process of removing it from the mould.

The sheets of bitumen were placed between two glass plates to form a Hele-Shaw cell.
Here the thickness of the sample ensured that it behaved as if in a porous medium [Nield
and Bejan, 2006, Richardson, 1972]. The bottom and sides of the sheet were then sealed
with plasticine to prevent the bitumen from leaving the confines of the plates.

Next the samples were placed in an oven which had been pre-heated to 45°C for 30
mins with pictures taken every 30 minutes to record the movement of the bitumen. The
flow of the bitumen into the crack was quantified using graph paper stuck to the back of
the sample. An example of the experimental set-up can be seen in Fig. 2.11.
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Figure 2.11: The above schema displays the setup of the crack flow test. It comprises of
a 73×23×1 mm sheet of bitumen with a triangular section removed sandwiched between
two glass plates. After being placed in an oven at 45°C the flow of this sheet of bitumen
is monitored over time. This image displays the triangular section taken out of the sheet
of bitumen to have a height of 10 mm and a maximum width of 10 mm. Another set of
experiments were also run using triangles with a height of 10 mm and maximum width
20 mm.

In addition to this the test was also performed underwater. This allows the movement
of the bitumen due to surface tension to be isolated and eliminates the effects of gravity
on the sample. In these experiments the bitumen slides were completely submerged in a
clear container of water pre-heated to 45°C with photos taken every 30 minutes.

2.3.3 Surface Tension Test

First each type of bitumen was heated at 130°C to allow it to be poured over glass
slides. These were then laid to rest for 24 hours while being covered to prevent dust
from contaminating the samples. After the rest period had concluded a goniometer was
used to measure the curvature of a series drop of test liquids placed on each sample. The
test liquids used here were water, ethylene glycol and diiodomethane. Measurements
were taken of six drops of each liquid on each type of bitumen used in the chapter to
ensure reliability. The set-up for these experiments is displayed in Fig. 2.12.

Given that the surface energy of the liquids is known this can be used in conjunction
with

γS = γSL + γL cos θ, (2.103)

where γS is the surface energy of the bitumen, γSL is the solid-liquid interface energy, γL
is the surface energy of the test liquid and θ is the contact angle between the bitumen
and the test liquid, to derive the surface energy of the bitumen.
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Figure 2.12: The experimental set-up for the surface tension tests. The goniometer on
the right shines a light over a drop of liquid on the bitumen sample. This image is
captured by a camera attached to the computer which shows the image and can be used
to process the results.

2.3.4 Viscosity Tests

A Brookfield viscometer was used to measure the viscosity of the bitumen used through-
out this chapter. To measure each sample the heater and spindle of the viscometer were
pre-heated for one hour before the test began. After this 9.5 g of bitumen was placed in
a tube which in turn was put in the heater for another 30 mins to bring it up to temper-
ature. After the heating period was complete the viscometer was used to measure the
viscosity of the sample. Two repeats of each viscosity were taken to ensure the reliability
of the results. A picture of the experimental set-up can be found in Fig. 2.13.
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Figure 2.13: The experimental set-up for the viscosity tests. The Brookfield viscometer
measures the viscosity of the sample of bitumen placed in the heater below it.
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2.4 Results and Discussion

Now that the experimental set-up has been defined, the results of the experiments can
be examined. This section will begin with verifying that the numerical solution performs
as expected against analytical results and checking it against the small time asymptotic
solution. This will be followed by validation against experimental results. Once the
experimental comparison has been concluded the results from the numerical method will
be used to calibrate a computationally cheap equation for how the height of the tip of
the crack varies with time during the self-healing process.

2.4.1 Verification of Numerical Method against Small Time
Asymptotic Solution

To examine the results generated using numerical methods they were compared to the
small time asymptotic solution found using conformal mapping. This was done using a
direct comparison of the value of the pressure gradient on a sample crack when calculated
using the two methods.

During this test the numerical system was run without considering the effect of surface
tension. This allowed for a better comparison of the two as otherwise the small time
asymptotic solution would be invalid at the corners of the system.

Here the value of the small time asymptotic solution is derived using the approxima-
tion for a generic crack from subsection 2.2.5. For the comparison the numerical method
is derived using a domain of infinite width and depth. The crack which was used to
compare the two was a vertical triangular crack with its widest point at the top of the
crack and a width of one fifth of its height at its widest point.

To make this comparison the error was defined as√∑ ((n̂ · ∇p̂)Numerical − (n̂ · ∇p̂)ST)
2

N
, (2.104)

where (n̂ · ∇p̂)Numerical is the differential of the pressure of the system in the direction of
the normal to the surface at a point on the surface as calculated by the numerical model.
(n̂ · ∇p̂)ST is the small time asymptotic solution for the differential of the pressure of the
system in the direction of the normal to the surface at the same point on the surface. N is
the number of points being analysed by the numerical model. This error was calculated
for various values of grid spacing, defined as one divided by the non-dimensionalised
distance between grid points on the surface of the crack.

As can be seen in Fig. 2.14 as the grid spacing of the system tends to zero the error in
the numerical results also tends to zero, which is what would be expected if the numerical
solution matches the small time asymptotic solution.
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Figure 2.14: A comparison of the error on the numerical solution formed from boundary
integral methods to the standard small time asymptotic solution derived from conformal
mapping.

2.4.2 Verification of Numerical Solution against Analytical So-
lutions

Next we verify the accuracy of the numerical solution to Laplace’s equation against
known analytical solutions to gain a measure of confidence in the mathematics behind
the model. Here we compare how the error on the initial value of the pressure gradient
on a test surface varies with the grid spacing used in the simulation.

These comparisons will take the boundary integral calculations and compare them to
an artificial problem which uses a potential p̂ which is chosen to ensure that ∇p̂ = 0 at
the edges of the domain or tends to 0 or as the co-ordinates x̂ and ŷ tend to ±∞ for a
domain which expands infinitely in the relevant direction. The chosen potentials do not
necessarily obey the boundary conditions on the surface. This can be used to show that
in each case as grid spacing tends to zero so does the error on the model.

Firstly the boundary integral method for modelling the self-healing process in a semi-
infinite domain was assessed for accuracy against a known analytical solution. The
surface used here was

ŷ = 1− exp
(
−x̂2

)
(2.105)
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and the potential of the system was defined to be

p̂ =
x̂2 − (ŷ − 1)2(
x̂2 + (ŷ − 1)2

)2 . (2.106)

Here x̂ and ŷ represent the horizontal and vertical co-ordinates of the system respectively
while p̂ is the potential of the system. To remain consistent with the domain choice
∇p̂ → 0 as x̂ → ±∞ and as ŷ → −∞.

Figure 2.15: This looks at the error when comparing the numerical model with a domain
of infinite width and depth with an exact analytical solution. Here the error is plotted
against the grid spacing used in the numerical solution.

The average error on the values of n̂ · ∇p̂ at each point evaluated by the numerical
solution was compared. This error was calculated using√√√√∑(

(n̂ · ∇p̂)Numerical − (n̂ · ∇p̂)Analytical

)2
N

. (2.107)

Here (n̂ · ∇p̂)Numerical is the differential of the pressure of the system in the direction of
the normal to the surface at a point on the surface generated by the numerical solution.
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(n̂ · ∇p̂)Analytical is the analytical solution for the differential of the pressure of the system
in the direction of the normal to the surface at the same point on the surface and N is
the number of points being compared across the solutions.

This was performed with various different spacings between each point used to rep-
resent the surface and keeping a constant domain size of 40. The results of this can be
seen in Fig. 2.15. This clearly shows that as the spacing between the points tends to 0
the error in the calculation of n̂ · ∇p̂ using the numerical solution also tends to 0 which
is what would be expected if the model works.

After this the size of the domain taken into account in the numerical solution was
varied while the spacing between points remained constant. As can be seen in Fig. 2.16
the error decays inversely proportionally to the domain size squared. Again this helps
verify the numerical solution as it is exactly what would be expected according to the
theory if the model works.

Figure 2.16: This looks at the error when comparing the numerical model with a domain
of infinite width and depth with an exact analytical solution. Here the error is plotted
against the width of the domain size which was included in the numerical solution.

The next step was to assess the accuracy of the numerical solution with a domain of
finite width and infinite depth against a known analytical solution, the results of which
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can be seen in Fig. 2.17. For this a surface of

ŷ = 1− exp
(
−x̂2

)
(2.108)

and a potential of

p̂ = − sin2

(
2πx̂

b

)
exp

(
2πŷ

b

)
(2.109)

were used. Here x̂ and ŷ are the horizontal and vertical co-ordinates of the system
respectively, p̂ is the potential of the system and b is the width of the periodically
repeating domain. This potential satisfies the conditions ∇p̂ = 0 at x̂ = ±b/2 and
∇p̂ → 0 as ŷ → 0.

The value of n̂ ·∇p̂ for the finite width domain and infinite depth were then compared
to the exact value produced by the analytical system using (2.107). This is done for
varying spacings of points used to model the surface and as would be expected if the
model works as the spacing tends to 0 so does the error on the numerical solution.

Figure 2.17: This looks at the error when comparing the numerical model with a domain
of infinite depth and infinite periodically repeating sections with an exact analytical
solution. Here the error is plotted against the grid spacing used in the simulation.

After this the accuracy of the finite width and finite depth domain numerical solution
was tested against a known analytical solution, the results of which can be seen in
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Fig. 2.18. Here a surface of
ŷ = 1− exp

(
−x̂2

)
(2.110)

and a potential of

p̂ = − sin2

(
2πx̂

b

)
exp

(
2πŷ

b

)
+ sin2

(
2πx̂

b

)
exp

(
2π (−ŷ + 2a)

b

)
(2.111)

were used. In this case x̂ and ŷ are the horizontal and vertical co-ordinates of the system
respectively, p̂ is the potential of the system, b is the width of the periodically repeating
part of domain and a is its depth. The potential here was chosen so that ∇p̂ = 0 when
x̂ = ±b/2 as well as when ŷ = −a.

The error of the value of n̂ ·∇p̂ produced by the numerical solution is then compared
to the exact value produced by the analytical system using (2.107). This is done for
varying spacings of points used to model the surface and as would be expected if the
model works as the spacing tends to 0 so does the error on the numerical solution.

Figure 2.18: This looks at the error when comparing the numerical model with a domain
of finite depth and infinite periodically repeating sections with an exact analytical solu-
tion. Here the error is plotted against the grid spacing used in the numerical solution.
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2.4.3 Verification of Numerical Values of Surface Tension

To verify the model’s calculation of the pressure due to surface tension the calculation
was compared to the analytical value of the pressure over the surface. To do this the
curvature, κ̂, needs to be defined analytically. This is done using

κ̂ = 1/r = lim
∆θ→0

∆θ

∆s
=

dθ

ds
. (2.112)

Here r is the radius of the curvature, ∆θ is the difference in angle of the tangents to the
surface at two points on the surface, ∆s is the arc length between the same two points
on the surface. From here you can use the fact that

dθ

ds
=

dθ

dx̂

dx̂

ds
(2.113)

and that by definition

tan θ =
dŷ

dx̂
. (2.114)

It follows that
dθ

dx̂
=

d

dx̂
tan−1 dŷ

dx̂
=

d2ŷ
dx̂2

1 +
(
dŷ
dx̂

)2 (2.115)

and
dx̂

ds
=

1(
ds
dx̂

) =
1√

1 +
(
dŷ
dx̂

)2 . (2.116)

Here x̂ and ŷ are the horizontal and vertical co-ordinates in space respectively. This
results in

κ̂ =
dθ

ds
=

d2ŷ
dx̂2[

1 +
(
dŷ
dx̂

)2] 3
2

. (2.117)

Here the sample surface used was ŷ = 1− exp(−x̂2). Using (2.117) This results in an
analytical curvature of

κ̂ =
2 exp (−x̂2)− 4x̂2 exp (−x̂2)

(1 + 4x̂2 exp (−2x̂2))
3
2

. (2.118)

The error on the pressure was determined using the equation√∑ (p̂Numerical − p̂Analytical)
2

N
, (2.119)

where p̂Numerical is the pressure on the boundary due to surface tension determined by
the model, p̂Analytical is the pressure on the boundary due to surface tension analytically
and N is the number of points being analysed by the numerical model.

The results of how the error here changes with grid spacing is shown in Fig. 2.19.
As can be clearly seen the error on the pressure tends to zero as grid spacing on the
numerical model tends to zero. This is as would be expected for a working model.
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Figure 2.19: This looks at the error on the calculation of surface tension when comparing
the numerical model. Here the error is plotted against the grid spacing used in the
simulation.

2.4.4 Modelling The Movement of Cracks

Now that the numerical solution has been verified against analytical results and the small
time asymptotic solution it is beneficial to look at how different classes of crack heal. In
this section a triangular crack with an opening at the top of the system will be evaluated
as well as a thin vertical crack with an opening at the top of the system. In addition the
simulation will be used to isolate the effects of surface tension and look at how that can
drive healing.

Throughout this section a representative Bond number was needed to compute the
solutions. This was chosen by assuming a bitumen density of 1030 kgm−3, a crack height
of 0.01 m, an acceleration due to gravity of 9.81 ms−2 and a surface tension of 0.03 Nm−1.
Using these with (2.16) gives a Bond number of 33.681.

The first class of crack to be analysed by the simulation was the triangular crack.
This, while it doesn’t resemble the style of crack naturally seen in asphalt is the easiest
to compare to experiment to validate the model. Here a crack with width at it’s widest
point equal to its height was modelled. The results of this modelling can be seen in
Fig. 2.20.
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Figure 2.20: This shows the evolution of a triangular crack with time. The dark blue
line shows the initial profile of the crack while the other lines show the progression of
the healing with time. Here the bond number is taken to be 33.681.

To produce this graph (2.98) was the chosen Green’s function with the surface of the
crack extending from x̂ = −10 to x̂ = 10. Here 1001 equally spaced points were used
to represent the surface. A Bond number of Bo = 33.681 used. Time-steps of t̂ = 0.001
were used to move the surface with the lines on the graph corresponding to the evolution
of the surface every 100 time-steps. In this case both gravity and surface tension were
included in the relevant equations.

From the results of the numerical method, for a triangular crack under the effects of
gravity and surface tension it can be seen that the initial movement of the crack is seen
at the tip of the crack and at the corners. This initial movement acts to round out any
sharp corners to the crack with the most movement being at the tip of the crack. This
is logical given the high curvature contributing to driving the initial healing at these
points. Once the corners have been smoothed the progress of the tip of the crack slows
dramatically, with the second set of time steps only showing half the movement of the
tip as was seen in the first step.

As the healing of the crack proceeds the movement of the tip of the crack gets
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progressively slower as time goes on, this is due to a reduced pressure difference across
the crack due to gravity since the surface of the crack is more level and reduced average
curvature of the surface. While the crack is being filled the height of the surfaces next to
the initial crack is being reduced with the distance over which the surface gets impacted
increasing as time goes on. This makes sense as bitumen from the points near the crack
which are highest is flowing with gravity into the crack.

Next a thin vertical crack was analysed. This bears a closer resemblance to the
types of crack naturally seen in asphalt than the previous triangular class of crack. The
progression of the flow of bitumen into the crack is shown in Fig. 2.21.

Figure 2.21: This shows the evolution of a thin vertical crack with time. The dark blue
line shows the initial profile of the crack while the other lines show the progression of
the healing with time. Here the bond number is taken to be 33.681.

To calculate these results (2.98) was selected as the Green’s function with the surface
of the crack extending from x̂ = −10 to x̂ = 10. Here 1001 equally spaced points were
used to represent the surface with a Bond number of Bo = 33.681 being used. Time-steps
of t̂ = 0.001 were used to advect the interface with the lines on the graph corresponding
to the state of the surface every 100 time-steps. Here gravity and surface tension were
included in the relevant equations.
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One interesting point about this crack which was not observed in the behaviours of
other cracks is that the growth of the tip of the crack actually seems to grow faster with
time, at least up to the point where the crack has almost healed. This is likely due to
a combination of reasons. Here we observe that curved corners present in the initial
surface seem to have slowed the sharp initial movement of the crack due to the reduction
in the highest point of curvature. In addition we see that as the crack evolves with time
its shape changes considerably. While it starts out vertical the sides quickly slope to the
point where it soon resembles a slightly smoothed triangular crack. It appears that in
this case gravity dominates at first, filling the bottom edges of the crack and steadily
increasing the curvature at the tip. As this curvature increases the effect of surface
tension increases and combines with the effect of gravity to increase the speed of the
healing later in the process.

Figure 2.22: This shows the evolution of a triangular crack over time with healing driven
solely by surface tension. The dark blue line shows the initial profile of the crack while
the other lines show the progression of the healing with time. Here the bond number is
taken to be 33.681.

Fig. 2.22 shows the healing profile of a crack with the effect of gravity excluded so
that only the surface tension impacts the healing. This allows us to examine the effect
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of surface tension on crack healing when used in isolation.
For these calculations (2.98) the Green’s function used and the surface of the crack

ranged between x̂ = −10 to x̂ = 10. In this case 1001 equally spaced points were used
to represent the surface and a Bond number of Bo = 33.681 was used. Time-steps of
t̂ = 0.001 were used to advect the interface with the lines on the graph corresponding to
the condition of the surface every 100 time-steps. Here only surface tension was used to
drive the surface.

Here it can be seen that the surface tension works to smooth out any corners and
reduce the surface area of the crack. This is most visible in the behaviour of the crack
near its tip and top corners. The most rapid movement is at the tip of the crack, which
fills rapidly. Here the surface tension quickly removes the point then raises the height
of the crack, smoothing out the point with highest curvature. At the top corners of the
crack ridge like formations are created, with some of the bitumen pushed higher than
the initial height of the surface. This is due to the surface tension acting to reduce the
curvature in the corners of the system. This displaced bitumen from the tip of the corners
has to go somewhere causing the interface to initially expand outwards both to the side
of and immediately below the corner, leading to these ridge like formations which reduce
the overall surface area of the system.

2.4.5 Behaviours Exhibited in the Crack Healing Experiments

Following on from the results of the computation of the numerical method we now look
at examples the behaviours seen in the crack healing experiments carried out as part of
this research. These behaviours can then be contrasted with those found from the results
of the numerical method.

Figure 2.23: The movement of bitumen into a 10 mm tall crack initially 10 mm wide at
its highest point. Top left is before heating, top right is after 30 minutes, bottom left is
after 60 minutes and bottom right is after 90 minutes.
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To give an example of the healing process in the experiments Fig. 2.23 shows four
pictures taken at half hour intervals. These images help give an idea of the movement
of the bitumen in the Hele-Shaw cell throughout the general course of the experiments
and show results which are in line with predictions made by the model.

An example of the full healing profile of one of the cracks from the flow test can be
seen in Fig. 2.24. This gives a visual representation of how the cracks healed during the
experiments and also shows general agreement with the predicted healing profile from
the model.

Figure 2.24: This figure shows the healing profile of an example crack from the flow test
experiments over time. The coloured lines represent the interface at the times given in
the legend.

In these results we see some behaviours which correspond with the results of the
numerical method and some which do not. The behaviour seen at the tip of the crack
lies broadly in line with the numerical results. Here we see the initial smoothing out of
the point of the tip of the crack then with the exception of the first 30 mins of movement
a rise of the tip at a decreasing rate. This slower healing than predicted in the first 30
mins of the experiment is likely due to the fact that while the oven had been pre-heated
to 40°C the sample started the experiment at room temperature and so while it was at
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lower temperature the viscosity was higher than the consistent temperature assumed in
the numerical results.

In addition to this we see a distinct lack of movement of bitumen at the top corners
of the crack this contradicts the behaviour of the numerical results where these corners
receded to allow for the flow of bitumen into the crack. This discrepancy is likely due,
at least in part, to the assumption that the Hele-Shaw cell would accurately replicate
all aspects of a ideal 2 dimensional flow. Throughout this set of the experiments once
bitumen was visible at a point on the glass slides it never appeared to recede from that
point. This in conjunction with the facts that bitumen does flow into the crack and no
extra bitumen is being added to the system leads to the conclusion that while bitumen is
flowing away from certain areas a coating of bitumen is left on the glass due to adhesion
when it does so. Unfortunately due to the opacity of the bitumen this flow of bitumen
close to the centre of the plates isn’t possible to measure here.

Figure 2.25: This figure shows the healing profile of a submerged crack over time with
the lines representing the interface at the times given in the legend.

The effect of submerging a crack in water while it is being healed is to eliminate the
impact of gravity on the healing and just see the effect of the surface tension on the
interface. An example of the healing profile of one of the experiments performed in this
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way can be seen in Fig. 2.25. As would expected this differs from the gravity driven
healing seen in the main experiments due to the decreased flow of bitumen into the lower
section of the crack.

For the surface tension driven healing the immediate result was the heavy smoothing
of the crack over the first 75 mins. After this there was comparatively little movement
from the crack in the remaining 225 mins that it was monitored. This smoothing of the
crack makes intuitive sense given that the driving force here was surface tension which
acts to reduce levels of high curvature. Here the experiment only running for 5 hours and
displaying a small amount if healing in that time limits useful the comparisons which
can be made with the numerical results.

2.4.6 Validation of Healing Rates

Figure 2.26: This figure shows the how the mean vertical displacement of the tip of the
crack changes over time for a 10 mm crack. Each colour shows the average result of five
experiments for each class of crack, given by the circles with error bars referring to the
standard error. The predictions given by the model for each class of bitumen are given
by the lines.

In this section the results of the mean movement of the tip of the crack during the
crack healing experiments will be presented and directly compared to the numerical
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results for the healing of the type of bitumen being used. Here the numerical results
were generated using (2.101) as a Green’s function bounded at x̂ = ±3.65 and ŷ = −1.3.
500 points were used to represent the surface and were spread apart with equal distance
between them. The surface tension and the dynamic viscosity of the bitumen were taken
from Table 2.1 and the density was taken to be 1030 kg/m3. The calculations progressed
in time-steps of t̂ = 0.005.

Fig. 2.26 shows the average movement of the bitumen over the course of the exper-
iments performed with each type of bitumen plotted against the prediction from the
model. Five experiments were implemented for each class of crack for each type of bi-
tumen, the vertical displacement of the tip of the crack was measured every 30 minutes
and the average value for each type of was calculated for each time step. Here the width
of the crack at its highest point was 10 mm.

As can be seen by Fig. 2.26 the experimental results from the flow test for a 10
mm crack show good consistency with the model, especially for the later times. The
lack of consistency between the model and the experimental results at the 30 min mark
was likely due to the time taken for the bitumen to heat to the temperature of the oven
resulting in a slower than expected initial flow due to the higher viscosity of the bitumen.

Figure 2.27: This figure shows the how the vertical displacement of the tip of the crack
changes over time for the 20 mm crack. Each colour shows the average results of five
experiments for each class of bitumen.
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The results of the second set of experiments can be seen in Fig. 2.27. These were
completed using all five types of bitumen and a crack with maximum width of 20 mm.
A total of five experiments were carried out for each of the types of crack and bitumen.
During these the vertical displacement of the tip of the crack was measured and the
mean value was compared to the predicted value of the model every 30 minutes.

Again for the 20 mm crack the experimental results shows agreement with the model,
again with the reliability of results increasing once the bitumen has had time to heat
to the temperature of the oven. These results can be seen in Fig. 2.27. This helps to
validate the model for when it will be used to model cracks in actual asphalt.

2.4.7 Calibrating an Equation to Predict the Height of a Crack
Over Time

The healing rate of asphalt can be directly related to the rate of travel of the tip of the
crack in the model. This is due to the fact that the higher the proportion of the crack
that has filled with bitumen the harder it will be to break again.

To find an equation to describe the height of a crack over time a variety of cracks
were modelled using various surface tensions of bitumen. To begin with the effects of
surface tension were looked at in isolation while negating the effects of gravity. This
allowed for a complete picture of the impact of surface tension to be assessed before a
final equation involving gravity was formed.

Surface Tension (Nm−1) Wide crack Narrow crack
ast bst ast bst

1 1.18 0.492 4.78 0.525
5 4.01 0.493 11.18 0.526
10 5.67 0.494 16.10 0.526
20 7.94 0.493 23.19 0.526
30 9.70 0.493 28.70 0.526
40 11.18 0.493 33.38 0.526
50 12.48 0.493 37.54 0.526
60 13.65 0.493 41.32 0.526
70 14.73 0.493 44.81 0.526
80 15.73 0.493 48.07 0.526
90 16.67 0.493 51.14 0.526
100 17.56 0.493 54.06 0.526

Table 2.2: The values of ast and bst calculated for triangular cracks. The wide crack has
maximum width twice as large as its height while the narrow crack has a width the same
size of its height. Here the model was run for various surface tensions without taking
gravity into effect.

Over the course of months of observing experimental results it was observed that
the height of the tip of a crack varies with time with the ratio of the crack being healed
consistently increases at an exponentially decreasing rate. Hence an equation to describe
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the healing of the crack only under surface tension of the form

h = 1− exp
(
−ast

(
t̂
)bst)

(2.120)

was trialled. Here h is the ratio of the crack which has healed varying between 0 and 1,
h = 1 when the crack is fully healed and h = 0 when the tip of the crack is at it’s lowest
point. t̂ is non-dimensionalised time, ast and bst are values which were determined by an
algorithm which minimised the difference between values of h produced directly by the
model and those from the equation. To do this the value of h for 10000 time steps of the
model was used to generate each result.

The results for two classes of crack were analysed in detail. Firstly a vertical triangular
crack was examined with its maximum width of twice its height and secondly another
thinner vertical triangular crack was looked at however this one had a maximum width
the same size as the height of the crack. The results for both cracks can be found in
Table 2.2. As can clearly be seen in the tables the value of bst was independent of surface
tension for each type of crack with only very minor variations which can be accounted
for by the numerical nature of the model.

Figure 2.28: The relationship between γbst and ast for a triangular crack with maximum
width twice the size of its height only under the effects of surface tension.

Next the relationship between surface tension and ast was assessed. As can be seen in
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Fig. 2.28 and Fig. 2.29 for both classes of crack analysed the value of ast generated varied
linearly with γbst . This implies that for surface tension driven healing the relationship
between the height of the crack over time and the surface tension, γ, takes the form

h = 1− exp
(
−
(
astγt̂

)bst)
, (2.121)

where ast and bst are constants determined only by the morphology of the crack.

Figure 2.29: The relationship between γbst and ast for a triangular crack with maximum
width the same size as its height only under the effects of surface tension.

Once the connection between surface tension and the healing of the crack was securely
established gravity was re-introduced into the model. Again the height of the tip of the
crack with time increased at an exponentially decreasing rate so the results from the
model were compared to

h = 1− exp
(
−a
(
t̂
)b)

, (2.122)

were h is the ratio of the crack which was healed and t̂ is the non-dimensionalised time.
Here a and b are constants which are determined by an algorithm which minimised the
difference between the values of h found using the model and those given by the equation.
To generate these results 10000 time steps were used to find the appropriate values. The
closest values of a and b found for both types of crack are given in Table 2.3.
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Surface Tension (Nm−1) Wide crack Narrow crack
a b a b

1 2.38 0.533 5.50 5.40
5 4.32 0.502 11.57 5.29
10 5.89 0.498 16.35 0.527
20 8.11 0.495 23.45 0.527
30 9.88 0.495 28.78 0.526
40 11.30 0.494 33.46 0.526
50 12.61 0.494 37.61 0.526
60 13.79 0.494 41.38 0.526
70 12.61 0.494 44.87 0.526
80 13.79 0.494 48.13 0.526
90 16.71 0.493 51.20 0.526
100 17.72 0.494 54.11 0.526

Table 2.3: The values of a and b calculated for triangular cracks. Here the wide crack
has maximum width twice the size of its height while the narrow crack has width the
same size of its height. Here the model was run for various surface tensions while taking
into account the effect of gravity.

As can be seen by contrasting the results of Tables 2.2 and 2.3 when the effects
of gravity are included it has minimal effects on the healing rate when surface tension
is high while drastically changing the rate at low surface tensions. Given the precise
variation in the generated values of a and b an equation of the form

h = 1− exp
(
−
(
agt̂
)bg − (astγt̂)bst) (2.123)

would be expected. Here t̂ is the non-dimensionalised time and γ is the surface tension.
Values of ast and bst are constants related to surface tension driven healing while ag
and bg are constants related to gravity driven healing. All of these constants are only
dependent on the morphology of the crack in question.

A comparison between the healing ratios over time generated from both (2.121) com-
bined with Table 2.2 and (2.123) combined with Table 2.3 can be found in Fig. 2.30. As
can clearly be seen the two versions show good agreement.

Once the non-dimensionalisation of time is reversed these results can be used to
produce an equation of the height of the tip of the crack with time for a specified set of
experimental parameters. These parameters include crack shape, viscosity of bitumen
µ, porosity of the porous medium ϕ, permeability of the porous medium k, the surface
tension γ, density of the bitumen ρ and acceleration due to gravity g. The equation
takes the form

h = 1− exp

(
−
(
agρgk

ϕµd
t

)bg

−
(
astγκk

ϕµd3
t

)bst
)
. (2.124)

Here h is the ratio of the crack which has healed, κ is the curvature of the surface, t is
time, d is the height of the crack and ag, ast, bg and bst are constants decided by the
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Figure 2.30: A comparison between values of the healing ratio with time for a variety of
different surface tensions. Here the lines represent results derived from values of a and
b taken from the model results and the crosses show values taken from the results given
by (2.123).

morphology of the crack. This equation gives a method of calculating the healing of a
crack in asphalt in a form which is computationally cheap to calculate.

As an additional note this equation can also be separated into two distinct parts
which isolate the impact of gravity and surface tension on the rate of self-healing. This
means that purely gravity driven healing would act in accordance with

h = 1− exp

(
−
(
agρgk

ϕµd
t

)bg
)

(2.125)
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while purely surface tension driven healing would follow the following formula.

h = 1− exp

(
−
(
astγκk

ϕµd3
t

)bst
)
. (2.126)

64



2.5 Summary and Conclusions

This research has discussed the creation of a model to describe the flow of gravity and sur-
face tension driven bitumen. This was used to create an approximate solution to the flow
of bitumen into a crack in asphalt. In the model the flow of bitumen was characterised as
flow within a porous medium including inside the crack. A small time asymptotic solu-
tion was constructed using conformal mapping and a numerical solution using boundary
integral methods was used to compute the movement of the fluid interface. In addition
laboratory experiments were performed to validate the model experimentally.

Conformal mapping was used to transform a generalised crack into a form which can
be modelled using the results from studying an infinitesimally small crack. This allowed
the analysis of relatively complicated cracks with a full description of the pressure of the
system which in turn was used to compute the small time asymptotic solution to the
system.

A numerical solution using boundary integral methods was then computed and veri-
fied against analytical solutions for a variety of cases. It was found that in each case as
the grid spacing in the simulations tended to zero the error on the pressure gradient also
tended to zero.

Next boundary integral methods were used to simulate the movement of the surface
of bitumen flowing into different classes of crack. This gave a visual representation of
how different types of crack would heal.

In addition a series of experiments which observed the flow of bitumen within a Hele-
Shaw cell were performed to validate the model. The experiments gave results consistent
with the calculations of the numerical method.

Finally the results of the numerical method were used to calibrate an equation which
predicts the gravity and surface tension driven healing level of a crack in asphalt with
time. This equation is dependent on the properties of the asphalt, the morphology of
the crack and the time healing has been taking place for. This equation can then be
taken and used as a computationally cheap method of predicting the healing of a crack
in asphalt with time.

Further research in this area could be implemented by the investigation into a variety
of factors. Firstly future research in this area could look at extending the model to 3D
systems. In addition the field would benefit from looking at the impact of varying the
viscosity of the system either temporally or spatially. One final area which could be built
upon would be the inclusion of fixed stones in the model to better simulate asphalt.
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Chapter 3

Analysis of Three-point Bending
Experiments

3.1 Introduction

The previous chapter focused on calculating and validating a numerical solution which
could be used to predict the self-healing of a crack over time. Throughout this chap-
ter those results will be used in conjunction with the healing of actual asphalt broken
and healed in laboratory experiments to gain further understanding of the self-healing
process.

This chapter will begin by relating the equation calibrated at the end of the previous
chapter to the healing rate of asphalt. After this the relationship between the proportion
of the crack healed and the force required to break a block of asphalt using a three-point
bending test will be analysed. This will later allow comparison between predictions from
the model and experimental results.

After this three-point bending tests will be performed on asphalt containing a large
amount of oil capsules and curve fitting will be used on the results to calibrate a simple
equation to predict healing rates. In addition it will give insight into the impact of large
quantities of oil capsules on asphalt healing.

These samples of asphalt will also be used to conduct a skid test to ensure that
drastically increasing the quantity of oil capsules in asphalt doesn’t make asphalt unsafe
for common use.

Finally the chapter will analyse the results of self-healing experiments performed
in the literature. Here curve fitting will again be used on the results to calibrate a
computationally cheap equation to predict healing over time for that class of self heal-
ing. Throughout this a variety of classes of asphalt and healing methods will be looked
at. The methods to be analysed include induction heating, infra-red heating and pre-
emptively embedding oil capsules in the asphalt during the mixing process to accelerate
healing. This will give further insight into the mechanics of the self-healing process when
accelerated by different factors.
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3.2 Theory

3.2.1 Modelling Assumptions

Throughout this section the previously derived model will be used to make predictions
about the self-healing process in cracks in actual asphalt. Due to research performed
in [Garćıa, 2012] the assumption will be made that gravity is the main driving force in
the self healing process. This assumption is also backed by another CT scan in [Gómez-
Meijide et al., 2016]. Fig. 3.1 clearly shows that while some initial healing takes place
around contact points in the asphalt, over time gravity driven healing plays the dominant
role. Given this, according to work done in the previous chapter

Figure 3.1: A CT scan of a crack being healed conducted by [Gómez-Meijide et al., 2016].

h = 1− exp

(
−
(
agρgk

ϕµd
t

)bg
)

(3.1)

can be used to give an accurate description of how the crack heals over time t. Here ρ
is the density of the bitumen, ϕ is the porosity of the asphalt, µ is the viscosity of the
bitumen, g is acceleration due to gravity, k is the permeability of the asphalt, d is the
height of the crack and ag and bg are constants dependent only on the morphology of
the crack.

For ease of understanding this equation can be simplified to

h = 1− exp
(
− (Agt)

bg
)
, (3.2)

where

Ag =
agρgk

ϕµd
. (3.3)

Doing this simplifies the remaining maths needed to analyse experiments from the liter-
ature.
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3.2.2 Linking Healing Ratio to the Force Required to Break a
Block of Asphalt

Later in this chapter three point bending experiments will be used to break a block of
asphalt which will be left to heal and broken again. To gain more insight into the progress
of healing during the experiments the maximum force required to break a partially healed
block of asphalt must be linked to the height of the tip of the crack at any general point
in the healing process. This is an essential step as it leads to the results of three point
bending experiments being used to calibrate a computationally cheap equation which
can be used to predict the healing of asphalt with time.

This can be done [Garćıa, 2012] using

MF =
FL

4
(3.4)

and [Gere and Goodno, 2012, Barber, 2012, Jolicoeur, 2013]

σ (t) =
MFH

2I (t)
. (3.5)

Here MF is the moment arm, F is the force on the sample, t is the time the beam has
been healing for, L is the distance between the two supports used in the three point
bending test, σ is the maximum tension the beam can withstand at time t, H is the
height of the sample and I (t) is the 2nd moment of area.

After rearranging this leads to the result

F (t) =
8σuI (t)

LH
. (3.6)

Here σu is the ultimate resisting strength of the beam. This relationship can be investi-
gated in more detail by using the definition of the 2nd moment of area [Garćıa, 2012]

I =

∫
A

n2dA. (3.7)

Here n is the perpendicular distance from the axis of the beam to a point in A, the area
of resistance of the beam. For an axis at the centroid of the beam running parallel to
the supports

n =

∣∣∣∣y − H

2

∣∣∣∣ , (3.8)

where y is the vertical co-ordinate. After substituting this into (3.7) and taking out the
effects of the breadth of the beam, b, we have

I = b

∫ Hh

0

(
y − H

2

)2

dy. (3.9)

Here h is the healing ratio of the crack given in (3.1). After solving the integral, the
result

I =
bH3

12

(
4h3 − 6h2 + 3h

)
(3.10)
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is obtained. This can be substituted into (3.6) to give the force required to break the
sample

F =
2bσuH

2 (4h3 − 6h2 + 3h)

3L
. (3.11)

This equation can be used to illustrate how the force required to break a partially healed
block of asphalt is dependent on how much the asphalt has healed. Fig. 3.2 gives a visual
interpretation of the ratio of the original force that is required to break a block for a
given healing ratio. Here we see a plateau in the effect of healing at the mid-point of the
healing and rapid healing at the start and end of the healing process.

This behaviour is due to the fact that the force required to break the beam is pro-
portional to the second moment of area which increases more when healing occurs away
from the centroid of the beam. As the crack is modelled as healing from the bottom up
this means that the healing in the middle of the process which occurs near the centroid
of the beam has far less impact on the force required to break the beam than the healing
which occurs at the start and end of the process which happen furthest away from the
centroid.

Figure 3.2: For a sample of asphalt which is broken then allowed to heal this represents
the proportion of the original force required to break the sample for a second time.

In addition (3.2) can be substituted into (3.11) to directly link the force required to
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break a block of partially healed asphalt to the properties of the asphalt and the time
the block has spent healing. This gives

F =

2bσuH
2

(
4
(
1− exp

(
− (Agt)

bg
))3

− 6
(
1− exp

(
− (Agt)

bg
))2

+ 3
(
1− exp

(
− (Agt)

bg
)))

3L
.

(3.12)
Throughout the rest of this chapter this equation will be used in conjunction with three-
point bending experiments to calibrate values of Ag and bg for various healing methods
and types of asphalt. These values can then be used with (3.2) or (3.12) to predict the
healing behaviour of those types of healing methods and asphalt in a computationally
cheap way.
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3.3 Materials and Methodology

In this section the experiments performed and materials used in the experiments will be
detailed. This includes the three-point bending test which was used to find the healing
rate of the samples. It will also describe in detail how the oil capsules used in the asphalt
were made.

3.3.1 Calcium Alginate Capsules

Oil capsules can be added to asphalt to improve its healing properties. When a capsule
cracks it releases the oil inside the capsule into the asphalt to mix with the bitumen.
This mixing of the bitumen and the oil softens the bitumen and allows it to flow more
easily into cracks in the asphalt. The development of these capsules allows experiments
to be conducted on asphalt self-healing without raising the asphalt to high temperatures.

In order to produce the capsules mix 550 ml of water, 50 ml of sunflower oil and 15 g
sodium alginate to act as an emulsifier. This is mixed for 15 minutes until an emulsion
is formed. Next 600 ml of water and 12 g of calcium carbonate are mixed in a separate
beaker until the calcium carbonate completely dissolves. The emulsion is then placed into
a burette and added to the calcium carbonate solution dropwise. The calcium carbonate
solution is slowly mixed throughout to ensure that the capsules don’t collect on a surface.
When the drops of alginate emulsion meet the solution the calcium carbonate dissolved
in the water reacts with the emulsion to form a hard shell to the capsule while leaving
the emulsion inside the shell unchanged. Once the capsules are removed from the water
they are placed in an oven at 40°C for three days to dry. After that they are frozen at
-20 °C until they are mixed into the asphalt. This freezing prevents the sunflower oil in
the capsules from spoiling.

Once produced and dried these capsules had a mean diameter of 2.82 mm with a
standard deviation of 0.229.

3.3.2 Asphalt used in this Research

The gradation and design properties of the asphalt used in the experiments performed in
this research can be seen in table 3.1. The bitumen used in production was paving grade
40/60 and the aggregate used was Tunstead Limestone. Capsules were also added to
the mixture in varying sizes and quantities as well as a control sample with no capsules.
Capsules were added in quantities of 0.5% 0.75% 1% 1.25% 1.5% with all percentages
being in terms of weight of the total mixture.

The asphalt was mixed at 160°C using the mixer shown in Fig. 3.3 for three minutes
with capsules being added in the last 30 seconds of mixing when required. This tim-
ing was to reduce capsule breakage during the mixing process while ensuring an even
distribution of capsules throughout the asphalt. Prior to this the aggregate had been
pre-heated for ten hours and the bitumen for four hours. The capsules were added at
room temperature. Once the mixing was complete the mixture was pressed into slabs
of dimension 306×306×60 mm using a roller compactor. This process is displayed in
Fig. 3.4.
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Capsule asphalt 1
Binder class 40/60
Aggregate gradation (% passing)
20 mm 100.0
10 mm 81.2
6.3 mm 61.1
4 mm 42.3
2 mm 28.5
0.5 mm 15.0
0.125 mm 9.2
0.063 mm 7.3
Binder content (%wt) 4.5
Bulk density (kg/m3) 2384
Air voids (%) 4.5

Table 3.1: A table to display the gradation and design properties of the capsule asphalt
1.

Finally the slabs were cut to beams of dimension 90×140×60 mm. In addition a
notch of 10×2 mm was cut along the midpoint of each beam on the 90×140 mm face
bisecting the 140 mm length. This was done to introduce a fault to the beam and ensure
that it broke in a consistent position during the three-point bending tests later in the
chapter.

3.3.3 Asphalt used in Induction and Infra-red Heating Tests

For the experiments performed by [Gómez-Meijide et al., 2016], analysed later in this
chapter three distinct styles of asphalt were used. These styles varied in air void content
allowing for the investigation of how the increase of air voids in a sample of asphalt
impacts the healing process across a variety of methods.

The aggregates used in these experiments were a combination of limestone and metal
grit 1 mm in diameter. The volumetric content of metal grit was 4% (11% by weight)
and replaced the same volume of limestone of that fraction. The exact gradation of the
asphalt can be seen in Fig. 3.5. The binder used was 40/60pen and made up 4.7% of the
total mixture.

As previously mentioned what separated the classes of asphalt used here was the air
void content. The first class called dense asphalt from this point forwards has 4.5% air
void content. The semi-dense asphalt had air void content of 13%. The final class of
asphalt used here had 21% air void content and will be referred to as porous asphalt.

All three classes of asphalt were prepared using the same method. First they were
mixed for two minutes at 160°C then compacted using a roller compactor to form slabs
of 310×310×50 mm. These slabs were then cut to form eight beams of 150×70×50 mm.
Again a 2 mm thick and 10 mm deep notch was cut into each block in the 150×70 mm
face, bisecting the 150 mm length of the block.
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Mixer blades
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Figure 3.3: The binder, aggregate and oil capsules about to be mixed.

3.3.4 Asphalt used in Capsule Healing tests from the Literature

Throughout this chapter experiments conducted using multiple varieties of asphalt con-
taining oil capsules will be analysed.

The asphalt used in the first and third set of capsule healing experiments, called
capsule asphalt 2 from this point forwards, was a dense asphalt mixture AC 20 base
(EN 13108-1) made from Tunstead limestone aggregate with density 2.700 g/cm3. The
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Figure 3.4: The slab compression process taking place using a roller compactor. Here
the materials that make up the asphalt are being compressed by the machine to form a
306×306×60 mm slab of asphalt.

gradation of this asphalt can be found in table 3.2. During the mixing process capsules
were added in quantities of 0.1%, 0.25% and 0.5% by weight with control samples with
no capsules also being produced. Sunflower oil was added to the control samples at
0.004% weight of the asphalt during the mixing process to account for the oil released
from capsules breaking during mixing.

The asphalt was mixed at 160°C for two minutes with the aggregate and binder being
pre-heated for twelve hours and four hours respectively. The capsules were added at the
beginning of the mixing process at room temperature. The asphalt was then compacted
into slabs measuring 306×306×60 mm using a roller compactor. These slabs were then
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Figure 3.5: The gradation curves of asphalt used in the induction and infra-red healing
tests analysed here. Results and graphic taken from [Gómez-Meijide et al., 2016].

Capsule asphalt 2
Binder class 40/60
Aggregate gradation (% passing)
20 mm 100.0
10 mm 80.2
6.3 mm 60.3
4 mm 45.3
2 mm 29.7
0.5 mm 15.5
0.125 mm 9.9
0.063 mm 8.0
Binder content (%wt) 4.5
Bulk density (kg/m3) 2384
Air voids (%) 4.5

Table 3.2: A table to display the gradation and design properties of the asphalt used
in [Al-Mansoori et al., 2018a] and [Al-Mansoori et al., 2018b].

cut to 150×100×60 mm with a 5×5 mm notch cut into the centre of the underside of the
beam to facilitate the three-point bending test. This asphalt was used in the experiments
conducted in [Al-Mansoori et al., 2018a] and [Al-Mansoori et al., 2018b].

The second class of asphalt used in capsule healing experiments has gradation found
in table 3.3. This asphalt will be referred to as capsule asphalt 3 from this point forwards.
Here 191.6 g of limestone sand was mixed with 24 g bitumen. Capsules were also added
to half the asphalt in a quantity equal 12.1% of the weight of the bitumen.

The oil capsules used in this asphalt differed slightly in composition compared to
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Capsule asphalt 3
Binder class 40/60
Aggregate gradation (% passing)
2 mm 100.0
0.5 mm 52.2
0.125 mm 33.5
0.063 mm 27.1
Binder content (%wt) 11.1%

Table 3.3: The gradation of the asphalt mastic used in the second set of experiments
analysed in this chapter. From [Al-Mansoori et al., 2017a].

those used across the rest of this research. To produce the initial emulsion required to
make the capsules 200 g oil and 400 g water were mixed with 15 g sodium alginate as
opposed to the 50 g oil, 400 g water and 15 g sodium alginate used to produce the oil
capsules used in this research.

Before the mixing process began the limestone aggregate was pre-heated to 140°C
for ten hours while the binder was pre-heated at 170°C for 2 hours. This was mixed by
hand before adding the oil capsules at 20°C and mixing for a further 20 seconds. This
mixture was then poured into a TeflonTM mould and compacted by hand to produce
several beams measuring 30×30×100 mm. These beams had a small triangular notch
in the underside of the beam to improve the reliability of the three-point bending test.
This asphalt was produced for experiments performed in [Al-Mansoori et al., 2017a].

The next style of asphalt analysed in this research will be a standard dense asphalt
mixture AC-13 which from here onwards will be referred to as capsule asphalt 4. The
main mixture comprised of basalt gravel of density 2.976 g/cm3, limestone filler of density
2.996 g/cm3 and 77.5 pen bitumen. The gradation of the aggregate used here is in table
3.4.

Capsule asphalt 4
Binder pen 77.5
Aggregate gradation (% passing)
16 mm 100.0
13.2 mm 96.2
9.5 mm 75.2
4.75 mm 47.4
2.36 mm 30.8
1.18 mm 23.9
0.6 mm 16.6
0.3 mm 12.3
0.15 mm 9.1
0.075 mm 6.9
Binder content (%wt) 4.7

Table 3.4: The gradation of the asphalt used in [Norambuena-Contreras et al., 2019a].
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Prior to the mixing process the bitumen was pre-heated to 160°C for four hours and
the aggregate also pre-heated to this temperature but for twelve hours. These were mixed
at 160°C with the capsules being added at room temperature in the last 15 seconds of
mixing. This was then compressed into slabs of 306×306×60 mm using a roller compactor
which were cut to form beams of dimensions 150×100×60 mm. Again a notch was cut
into the underside of the beam measuring 5×5 mm bisecting the face. This asphalt was
featured in experiments conducted in [Norambuena-Contreras et al., 2019a].

The final style of asphalt analysed here was a stone mastic asphalt which will be
referred to as capsule asphalt 5. This was made using Tunstead limestone following the
gradation in Fig. 3.6 as well as 40/60 pen bitumen.

Figure 3.6: The gradation curves of asphalt used in the final set of capsule healing
experiments. Experiments and graphic taken from [Norambuena-Contreras et al., 2019b].

To manufacture beams for the three-point bending test the aggregate and binder were
both pre-heated at 160°C, the aggregate for twelve hours and the binder for four hours.
These were mixed for three minutes at 120°C at 120 rpm. The capsules, kept at 20°C for
two hours beforehand, were then added for an additional 20 seconds of mixing to half of
the samples. The mixture was then compressed into a slab of dimensions 306×306×60
mm then cut into individual beams of size 150×100×60 mm. these beams had a 5×5
mm notch on the underside along their midpoint.

3.3.5 Three-point Bending Test

A series of three point bending tests were performed on asphalt over a range of healing
temperatures and containing varying quantities of capsules. This gave a measure for the
progress of the self-healing process in each case.
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First each beam was broken in a three point bending test which measured the load
required to break the beam. Here the beams experienced a loading speed of 2 mm per
minute until they broke. Next the both halves of the beams were placed into a steel
mould with a malleable plastic sheet between them to prevent premature healing and
compressed at a speed of 2 mm per minute for 2 minutes 30 seconds. This ensured that
the capsules would break and release oil into the sample. The plastic sheet was then
removed and the two parts of the beam were re-moulded and given time to heal in a
temperature controlled cabinet at the appropriate temperature. After the beams had
been left to heal the level of healing was assessed by using a three point bending test on
the healed beam, again at a loading speed of 2 mm per minute, and comparing the new
load required to break the sample to the load which was required to make the initial
break.

An image of set-up of the three-point bending test can be seen in Fig. 3.7. As can
be seen in the picture a hydraulic rod compresses the sample. A combination of a 1 mm
notch in the bottom of the sample and a small metal bar placed between the sample and
the rod ensures that the sample breaks roughly along it’s centre line.

Figure 3.7: An image displaying the set-up of the three-point bending test. Here a
hydraulic rod will break the asphalt sample.

3.3.6 Alternative Healing Methods

While the process for breaking the beams in the three-point bending test is consistent
across this research and the literature that was analysed the healing rate of the as-
phalt was accelerated in a variety of ways throughout the experiments performed in the
literature.
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When induction heating was used to heal the samples a 6 kW induction heating
generator was used. The heater ran at a power of 2800 W, a frequency of 248 kHz and a
current of 80 A. The distance between the coil and upper side of the healing beams was
20 mm and the beams were heated for a range of times between 15 s and 240 s.

To heal samples with infra-red light samples were first embedded in white sand leaving
only the upper surface exposed. This was done to reduce radiation leakage from the sides
of the beams. During the process 250 W infra-red lamps were set at heights of 30 cm, 70
cm or 11 cm from the surface of the beams for healing times ranging from five minutes
to four days.

In the case of both induction and infra-red healing the beams were allowed four hours
to cool at room temperature before being frozen at -20°C. They then had the three point
bending test performed on them again.

3.3.7 Pendulum Test

To measure the skid resistance of the asphalt a pendulum or skid test was used. This
comprised of saturating the surface of a sample of asphalt with water and allowing a
pendulum to fall in such a way that the entire width of the rubber slider of the pendulum
was in contact with the surface for 124 mm during its travel. For the test a Transport
Road Laboratories (TRL) slider with rubber hardness of International Rubber Hardness
Degree (IRHD) 55 was used.

The average of five measurements of the maximum height the pendulum reached after
coming into contact with the sample was then taken as the pendulum test value.
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3.4 Results and Discussion

In this section the results of the experiments detailed in the last section will be given.
This will begin with the results of the three point bending tests performed during this
research.

The next task this section will tackle is the calibration of the values of Ag and bg from
(3.12). This will be achieved by curve fitting the equation to results from this research
and the literature.

After this the results of the pendulum tests clarifying the safety of using asphalt with
large amounts of capsules as a road surface will be presented.

This section will conclude with a discussion of insights gained from the previous steps.
It will compare the results from the various methods of healing types, how the type of
asphalt used impacts self healing as well as extrapolating the equation for healing in
order to question the idea of a maximum healing range which is common in literature.

3.4.1 Results and Analysis of Capsule Induced Healing for High
Quantities of Capsules

The results of the three-point bending tests conducted as a part of this research can be
seen in Fig. 3.8. This displays the average result of two sets of runs of the experiment
for each period of healing and each quantity of capsules used to make up the asphalt
being broken.

These results were then used to calibrate the values of Ag and bg which best fit a
healing profile given by (3.12). This was done by running an algorithm to determine the
values of Ag and bg which minimised the error term√∑ (FTheory − FExperimental)

2

N
, (3.13)

where each FExperimental is the force required to break the sample at a point in time and
each FTheory is the predicted force given by the model at the same point in time. N is
the number of points being compared. The results of this analysis can be seen in table
3.5. Throughout the whole of this chapter when values of Ag and bg are calibrated it will
be done using this method.

Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 1 0 20 3.73E-12 0.183
Capsule asphalt 1 0.75 20 0.000396 1.000
Capsule asphalt 1 1 20 0.000170 0.609
Capsule asphalt 1 1.25 20 1.25E-6 0.281
Capsule asphalt 1 1.5 20 6.17E-12 0.126

Table 3.5: The values of Ag and bg for the three-point bending experiments performed
during this research.
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Figure 3.8: The results of the three-point bending tests performed throughout the course
of this research.

3.4.2 Analysis of Capsule Induced Healing Results from Liter-
ature for Varying Temperatures

In order to compare the effects of altering the temperature on asphalt during the healing
process two sets of experiments from the literature were analysed and the healing ratios
produced were used to calibrate the experimental value of Ag and bg given in (3.12).
This was done by finding the values of Ag and bg which produced a curve which best fit
the experimental results over a range of times by minimising (3.13). An example of one
of these curves is given in Fig. 3.9.

The results of the first set of experiments to be analysed were taken from [Al-Mansoori
et al., 2018a]. The experiments consisted of performing the three-point bending test at
temperatures of -5°C, 5°C, 10°C, 15°C, 20°C, 30°C, 40°C and 50°C. This was performed
on both samples with no oil capsules and samples with 0.5 wt.% oil capsule content. The
time periods used in the healing process were 6 hrs, 17 hrs, 24 hrs, 48 hrs, 72 hrs, 96
hrs, 120 hrs, 137 hrs, 144 hrs, 168 hrs, 187 hrs and 192 hrs. The test was performed on
capsule asphalt 2 and the results can be seen in table 3.6.

The second set of experiments to be evaluated used values from [Al-Mansoori et al.,
2017a]. These consisted of performing the three-point bending test at temperatures of
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Time (s)

Force
ratio

Figure 3.9: Here the healing ratio is compared to the amount of time spent heating the
sample. The blue circles represent experimental result while the green curve shows the
general trend given by the model. On the y-axis is the ratio of force required to break
the healed sample compared to that required to break it originally.

5°C, 10°C, 15°C and 20°C. This was performed on both samples with no oil capsules and
samples with 0.5 wt.% oil capsule content. The time periods used in the healing process
were 6 hrs, 17 hrs, 24 hrs, 48 hrs, 72 hrs, 96 hrs, 105 hrs, 120 hrs, 137 hrs, 144 hrs, 150
hrs, 168 hrs, 187 hrs, 192 hrs and 216 hrs. The test was performed on capsule asphalt 2
and the results can be seen in table 3.7.

A visual representation of the results of the first two sets of experiments can be found
in Fig. 3.10. This graph features a log plot of the results of the calibrated values of Ag

for both of the first two sets of experiments plotted against temperature. The gradient
on the lines of best fit vary from 0.96-4.97

3.4.3 Analysis of Capsule Induced Healing Results from Liter-
ature for Varying Quantities of Capsules

Next to examine the impact of altering the amount of capsules contained in the asphalt
during the healing process three further sets of experiments were performed and the
healing ratios produced were again used to calibrate the experimental value of Ag and
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Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 2 0 -5 3.23E-12 0.423
Capsule asphalt 2 0 5 1.16E-7 1.394
Capsule asphalt 2 0 10 1.08E-8 0.691
Capsule asphalt 2 0 15 1.24E-8 0.676
Capsule asphalt 2 0 20 2.68E-9 0.488
Capsule asphalt 2 0 30 9.24E-8 0.602
Capsule asphalt 2 0 40 5.44E-6 0.917
Capsule asphalt 2 0 50 2.00E-5 1.684
Capsule asphalt 2 0.5 -5 4.40E-10 0.471
Capsule asphalt 2 0.5 5 2.16E-7 0.970
Capsule asphalt 2 0.5 10 7.23E-8 0.554
Capsule asphalt 2 0.5 15 1.36E-6 1.141
Capsule asphalt 2 0.5 20 1.73E-6 1.194
Capsule asphalt 2 0.5 30 3.67E-6 0.947
Capsule asphalt 2 0.5 40 1.83E-4 0.231
Capsule asphalt 2 0.5 50 2.10E-5 1.892

Table 3.6: The values of Ag and bg for the first set of experiments, each was calibrated
using the experimental healing ratios at twelve different times ranging from six to 192
hours of healing. The results analysed were taken from [Al-Mansoori et al., 2018a].

Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 3 0 5 1.21E-9 0.310
Capsule asphalt 3 0 10 7.70E-8 0.554
Capsule asphalt 3 0 15 2.88E-7 0.725
Capsule asphalt 3 0 20 1.34E-6 1.067
Capsule asphalt 3 0.5 5 1.53E-6 1.214
Capsule asphalt 3 0.5 10 2.25E-6 1.183
Capsule asphalt 3 0.5 15 4.32E-6 1.172
Capsule asphalt 3 0.5 20 5.58E-6 1.009

Table 3.7: The values of Ag and ag for the second set of experiments, each was calculated
using the experimental healing ratios at fifteen different times ranging from six to 216
hours of healing. The experiments evaluated here can be found in [Al-Mansoori et al.,
2017a].
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Figure 3.10: A comparison of experiments which varied temperature across a range of
values. Here the calculated value of Ag is plotted against the temperature.

bg given in (3.12). This was performed by minimising (3.13) to find the values of Ag and
bg which produced a curve which best fit the experimental results over a range of times.

The first set of experiments which varied capsule quantity were analysed used re-
sults generated in [Al-Mansoori et al., 2018b]. During these experiments the three-point
bending test was performed at a temperature of 20°C. This used both samples with no
oil capsules and samples with 0.1 wt.%, 0.25 wt.% and 0.5 wt.% oil capsule content. The
time periods used in the healing process were 6 hrs, 17 hrs, 24 hrs, 48 hrs, 72 hrs, 96
hrs, 120 hrs, 137 hrs, 144 hrs, 168 hrs, 187 hrs and 192 hrs. The test was performed on
capsule asphalt 1 and the results can be seen in table 3.8.

The second set of experiments relating to capsule quantity used data from [Norambuena-
Contreras et al., 2019a]. Here the three-point bending test at a temperature of 20°C.
This was performed on both samples with no oil capsules and samples with 0.5 wt.%,
0.75 wt.% and 1.0 wt.% oil capsule content. The time periods used in the healing process
were 5 hrs, 24 hrs, 48 hrs, 72 hrs, 96 hrs, 120 hrs, 144 hrs, 168 hrs, 192 hrs and 216 hrs.
The test was performed on capsule asphalt 4 and the results can be seen in table 3.9.

The final set of experiments to be analysed in this section were taken from [Norambuena-
Contreras et al., 2019b]. During these experiments the three-point bending test was used
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Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 2 0 20 2.68E-9 0.488
Capsule asphalt 2 0.1 20 2.33E-8 0.664
Capsule asphalt 2 0.25 20 1.79E-7 0.619
Capsule asphalt 2 0.5 20 1.73E-6 0.488

Table 3.8: The values of Ag and bg for the third set of experiments, each was calibrated
using the experimental healing ratios at twelve different times ranging from six to 192
hours of healing. The values of Ag and bg were generated using experimental results
taken from [Al-Mansoori et al., 2018b].

Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 4 0 20 2.46E-11 0.225
Capsule asphalt 4 0.5 20 7.14E-7 0.695
Capsule asphalt 4 0.75 20 1.58E-6 0.876
Capsule asphalt 4 1 20 1.74E-6 0.769

Table 3.9: The values of Ag and bg for the fourth set of experiments, each was calibrated
using the experimental healing ratios at ten different times ranging from five to 216
hours of healing. The experiments that this set of analysis was performed on are seen
in [Norambuena-Contreras et al., 2019a].

at a temperature of 20°C. This was performed on both samples with no oil capsules and
samples with 0.5 wt.% oil capsule content. The time periods used in the healing process
were 5 hrs, 24 hrs, 48 hrs, 72 hrs, 96 hrs, 120 hrs, 144 hrs, 168 hrs, 192 hrs and 216 hrs.
The test was performed on capsule asphalt 5 and the results can be seen in table 3.10.

Asphalt Type Capsule % Temperature (°C) Ag bg
Capsule asphalt 5 0 20 3.61E-7 0.704
Capsule asphalt 5 0.5 20 2.36E-6 0.553

Table 3.10: The values of Ag and bg for the fifth set of experiments, each was calibrated
using the experimental healing ratios at ten different times ranging from five to 216 hours
of healing. These were found by analysing the results of experiments from [Norambuena-
Contreras et al., 2019b].

A visual representation of the results of the last three sets of experiments can be
found in Fig. 3.11. This graph features a plot of the results of the derived values of Ag

for both of the first two sets of experiments plotted against the amount of capsules in
the samples being healed.

Fig. 3.12 displays a p-p plot of the values of bg across all of the sets of capsule healing
experiments against the normal distribution. bg has a p-value of 0.1772 for the Anderson
Darling test showing no significant deviation from the normal distribution. This fits
with the initial hypothesis of bg being only dependent on the morphology of the crack in
question and not otherwise dependent on the properties of the asphalt being healed.
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Figure 3.11: A comparison of experiments which varied capsule percentage across a range
of values. Here the calibrated value of Ag is plotted against the percentage weight of
capsules the asphalt consisted of. All experiments here were performed at 20°C.

3.4.4 Analysis of Infra-Red Heating Induced Healing Results
from Literature

Here the analysis of the three-point bending tests performed in [Gómez-Meijide et al.,
2016] will be conducted. The values of Ag and bg will be found which best fit the healing
profile for the results by minimising (3.13).

These experiments were conducted on three types of asphalt with various quantities
of air voids. These were dense asphalt, semi-dense asphalt and porous asphalt. During
the experiments samples were heated for a large selection of times ranging from 5 to
5760 minutes. Table 3.11 gives a full list of the values of Ag and bg derived from these
results.

3.4.5 Analysis of Induction Heating Induced Healing Results
from Literature

The final set of experiments to be analysed are those in [Gómez-Meijide et al., 2016]
which feature three-point bending experiments with healing driven by induction heating.
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Figure 3.12: A p-p plot comparing the values of bg to a normal distribution. The dotted
line is a reference line for the normal distribution.

Here tests were performed on dense asphalt, semi-dense asphalt and porous asphalt
beams.

During these experiments heating times ranged from 15 to 180 seconds and the results
were analysed to calibrate the values of Ag and bg which fit best. This was done by fitting
a curve which minimised (3.13). Table 3.12 displays the results of the initial analysis.

Interestingly values of bg found in samples warmed through induction heating are
significantly higher than those found in any of the other experiments, with each class of
asphalt analysed having values of bg higher than 1. This is significant as it implies that
the healing ratio grows exponentially with the time the samples were healed for. While
at first this appears to contradict the hypothesis that bg is solely dependent on crack
morphology on closer examination the results appear to highlight a different flaw in the
model. The assumption that the properties of the asphalt remain constant during the
healing process.

As previously stated

Ag =
agρgk

ϕµd
. (3.14)

This means that Ag is dependent on the viscosity of the bitumen in the asphalt which
in turn is dependent on the temperature of the bitumen. As the heating took place over
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Asphalt Type Height of Infra-red Heater (cm) Ag bg
Dense Asphalt 30 6.56E-4 0.625
Semi-dense Asphalt 30 9.19E-4 0.697
Porous Asphalt 30 1.81E-4 0.671
Dense Asphalt 70 4.42E-6 0.283
Semi-dense Asphalt 70 4.40E-4 0.495
Porous Asphalt 70 1.50E-4 0.436
Dense Asphalt 110 3.57E-5 0.649
Semi-dense Asphalt 110 7.90E-4 1.179
Porous Asphalt 110 7.37E-4 0.891

Table 3.11: The values of Ag and bg found by analysing the results of three point bending
tests performed in [Gómez-Meijide et al., 2016].

Asphalt Type Ag bg
Dense Asphalt 4.29E-4 3.492
Semi-dense Asphalt 4.13E-4 2.407
Porous Asphalt 7.55E-4 3.163

Table 3.12: The Ag and bg calibrated from the three-point bending results found in
[Gómez-Meijide et al., 2016] featuring the use of induction heating.

such a short period of time (between 15 to 180 seconds) the value of Ag would have
increased with the temperature of the sample which, unlike the other healing methods
displayed in this chapter, would not have had time to stabilise during the healing. As
the value of Ag would have increased over the course of the healing this likely artificially
raised the values of bg found for this set of experiments.

Unfortunately without knowing exactly how the temperature of the samples varied
during the course of the healing process and how that in turn impacted the viscosity of
the bitumen in the asphalt it becomes very difficult to analyse these experiments any
further. This is something compounded by the uneven heat distribution caused by the
induction heating, both in the drastic difference in heating of the side of the sample
closer to the induction heater and the increases in heat being centred around the metal
particles in the road.

3.4.6 Pendulum Test Results

The pendulum test was performed on the capsule asphalt 1 samples used in the three-
point bending test both before and after the capsules were broken through further com-
pression of the beams. This was done to check the results fall within safety limits for
commercial production of roads even if a greater number of capsules were used than had
been seen in previous research. The results of this can be seen in Fig. 3.13 where it can
be seen that the Pendulum test values (PTV) fall well above the required PTV of 40
even after compression of the samples, indicating that the surface is safe for use in roads
in this respect.
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Figure 3.13: Results of pendulum tests on capsule asphalt 1. The initial results are shown
in blue and the results after a sample has been broken and compressed are shown in green.
The percentage of capsules in a sample is given on the x-axis while the pendulum test
value is given on the y-axis.

3.4.7 Air Void Impact on Healing

The results of the experiments analysed here show that increased air voids in asphalt in-
crease the healing potential. When considered side by side the Infra-red heating induced
tests are consistent in this. However porous asphalt also required considerably less force
to break initially so caution should be taken with this conclusion. While the more dense
asphalt was slower to recover a proportion of its original strength it generally still took
more force to break than the porous asphalt at any stage of the healing process.

3.4.8 Comparison of Capsule Induced Healing Results

When looking at the results for the capsule induced healing experiments performed as
part of this research it shows that asphalt without oil capsules consistently performs
worse than asphalt containing any level of oil capsules.

The best performing quantities of oil capsules for healing here were at the 1% and
1.25% range which both showed consistent healing across the entire timespan of the
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experiments. Samples with an oil capsule quantity of 1.5% also had some impressive
results however this was inconsistent.

When comparing these results to those from the literature it becomes apparent that
while there is a significant difference between the healing results of samples with and
without capsules this difference is not as significant or consistent as results seen elsewhere
in the literature.

3.4.9 Considerations of a Maximum Healing Range for Capsule
Induced Healing

One point to note is that in the raw data of many of the capsule healing experiments
performed in the literature the healing of samples appears to stop very close to the point
where 50% of the force required to break samples originally is required to break the healed
beams. In fact there was at least one run of experiments in each capsule focused paper
which featured this trend. The only research analysed here regarding capsules where
this barrier was clearly exceeded for certain conditions took place in [Al-Mansoori et al.,
2018a] and [Al-Mansoori et al., 2017a].

In some of the papers [Norambuena-Contreras et al., 2019b, Al-Mansoori et al., 2018a,
Norambuena-Contreras et al., 2019a] this was naturally assumed to be a boundary on
how much the asphalt was capable of healing under these conditions. However (3.12)
would indicate that this is not the case. Due to the difference in 2nd moment of area
healing in the centre of the crack has a far smaller effect on the force required to break
the sample than healing at the top or bottom of the crack. This is due to the centre of
the crack being closer to the centroid of the beam. As such when bg ⩽ 1, which would
be the case for the majority of cracks, a natural plateau would occur in the ratio of force
required to break the sample originally compared to the force required after healing at
the 50% mark. This would be compounded by the tendency of the healing ratio to
increase at an exponentially decreasing rate to give the impression of a maximum ceiling
for healing when none exists.

To demonstrate this phenomenon an example of a healing profile extrapolated from
the results in [Norambuena-Contreras et al., 2019b] can be seen in Fig 3.14 with experi-
mental data points given for reference.

3.4.10 Contrasting Healing Methods

There are several trade offs to consider when deciding between various styles of self
healing. In the results analysed here large increases in temperature produce the most
impressive healing. Induction is of the three methods by far the fastest to produce re-
sults. However asphalt containing capsules heated to 40°C and infra-red healing also
managed to consistently produce healing rates over 50% over the course of the experi-
ments. Unheated asphalt containing oil capsules proved to be the slowest of the healing
methods however still did produce significant results and has the major advantage over
the other methods of not needing any active attention in order to heal.
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Figure 3.14: An extrapolated healing profile for capsule asphalt 4 with 1% capsule con-
tent. The ratio of force required to break the healed sample to force required to break
the sample originally is on the y-axis.

3.5 Summary and Conclusions

Throughout this chapter of the thesis the results of the healing of asphalt broken in
laboratory conditions has been analysed and compared to the previous chapter.

The first outcome of this chapter was the development of an equation derived from
the gravity driven model for the force required to break a beam with time spent healing.
The equation is dependent on the physical properties of the system and the morphology
of the crack being healed. This gives a better insight into the asphalt self-healing pro-
cess. Variables in this equation were calibrated for various types of asphalt and healing
methods by comparing to results from the literature.

A set of healing experiments were performed on asphalt containing a large number
of capsules. While these didn’t quite reach the same level of healing results seen by
oil capsules used in the literature there was still significantly more healing in asphalt
containing oil capsules than in those without. The highest levels of consistent healing
were seen by samples comprised of 1% and 1.25% capsules.

A pendulum test was also performed on asphalt containing a large number of capsules
to allay fears that the increase in oil capsules would make surfaces constructed from this
material unsafe to drive on. These tests confirmed that roads constructed from this
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material would provide enough friction to fall within safety limits.
In addition a series of experiments studying the healing rates of asphalt have been

analysed and show definite positive correlation between the healing rate and temperature
as well as between the healing rate and the amount of oil capsules which were contained
in the broken samples.

The results of the healing profiles generated here also call into question the assumption
that asphalt containing capsules have a maximum healing range. Instead they suggest
that this is merely a temporary delay in the increase of the force required to break a
beam due to the underlying mechanics of the three-point bending test.

A future possibility for research in this area would be running healing tests on capsule
enhanced asphalt for longer periods of time than those previously to test the hypothe-
sis that the perceived maximum healing limit is only a minor delay in the self-healing
process. Running tests with a greater variety of capsule quantities to fully explore the
effect they have on the self healing process would also be beneficial to our understanding.
Finally it would be useful to examine the effects of a non-constant temperature on the
healing rate during the self-healing process.
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Chapter 4

Slow Gravity and Surface Tension
Driven Healing of a Variety of
Orientations of Cracks in Asphalt

4.1 Introduction

The focus of the next chapter of the thesis will be on studying the effect of the orientation
of cracks in asphalt on the healing rate.

The chapter will begin with outlining the different classes of crack which will be
studied over it’s course as well as clarifying the differences to the base assumptions of
the model which will be required to study different orientations of crack. As with chapter
2 the model will assume that the bitumen flow is driven by surface tension and gravity
and the entire domain can be considered to be a porous medium.

After this the chapter will take a look at the exact alterations to the numerical
methods used to produce the simulation of a self-healing crack when the orientation of
the system is changed. This will ensure a working simulation of a variety of different
orientations of crack can be produced.

Finally I will focus on validating the results of the numerical solution for all orien-
tations through a long-running series of experiments. These experiments will measure
the flow of bitumen into a series of different cracks with the bitumen contained in a
Hele-Shaw cell in order to simulate a porous medium. The comparison of the results of
these experiments to the predictions made using the numerical solution will be used to
validate the model.
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4.2 Theory

Throughout this section the theory behind self-healing in cracks in different orientations
will be examined. Firstly the scenario of an inverted vertical crack originating at the
base of the asphalt will be studied. Next the situation of a horizontal crack will be looked
at and finally the occurrence of multiple vertical cracks in the same piece of asphalt with
one appearing at the bottom of the sample and the other stemming from the top will be
subject to examination.

To begin with a full mathematical framework will be presented to allow for the
intuitive understanding of each of these systems. This framework will establish a model
which assumes the movement of bitumen is driven by surface tension and gravity and can
be characterised as movement within a porous medium throughout the system including
within the cracks. This will allow a solid basis for the rest of the theory examined in the
remainder of the chapter.

After this boundary integral methods will be used to give a numerical solution to
the pressure gradient at each point on the interface of the system. This information can
then be used to compute the movement of the crack over time.

4.2.1 Common Modelling Assumptions

Throughout the chapter a common set of conditions will be used in the modelling of
all three classes of crack. The width of all the cracks studied are assumed to be thin
relative to the height of the cracks and dimensions of the asphalt as a whole. The
asphalt is considered to be a porous medium and as discussed in the second chapter
of this research it will be assumed that the fluid flow will still be characterised as flow
within a porous medium while the bitumen moves in the area defined by the initial crack.

The domain of the bitumen will vary with the type of crack being examined but
will be defined by the Cartesian co-ordinates x and y and will have a velocity field of
u (x, y, t) and pressure field of p = (x, y, t). Here t represents time.

The substitution p̄ = p + ρg (y − h) will be used to make a modified pressure field
p̄ and simplify a large quantity of the following equations. Here p is the pressure at a
point in the system, h is the initial vertical distance between the top of the asphalt and
the origin, ρ is the density of the bitumen and g is acceleration due to gravity.

In addition, to simplify the mathematics involved the same non-dimensional scaling
as the second chapter will be used with length, pressure, time and velocity being scaled
with d, ρgd, ϕµd

ρgk
and ρgk

ϕµ
respectively. Here d is the height of the crack, ϕ is the porosity

of the medium, k is the permeability of the asphalt and µ is the kinematic viscosity of
the bitumen. The dimensionless variables which come from this non-dimensionalisation
are x̂ = x

d
, ŷ = y

d
, p̂ = p̄

ρgd
, t̂ = t ρgk

ϕµd
, û = u ϕµ

ρgk
and κ̂ = dκ. Here κ is the curvature of

the surface.
Given this, for t̂ ⩾ 0 and in the domain of the bitumen Darcy’s law applies to the

bitumen and can be expressed as [Prada and Civan, 1999, Shikhmurzaev and Sprittles,
2012]

û = −∇p̂. (4.1)
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The conservation of mass condition also applies and is given by [Valdés-Parada et al.,
2013, Kaasschieter, 1999]

∆p̂ = 0. (4.2)

On the surface of the fluid the stress jump condition [Minale, 2014, Duchesne et al.,
2019] can be written in terms of the normal part

p̂ =
κ̂

Bo
+ (ŷ − 1) + δn̂ · ê · n̂ (4.3)

and the tangential part
δn̂ · ê · t̂ = 0 (4.4)

when expressed in the dimensionless variables. Here n̂ and t̂ are respectively the normal
and tangential vectors to the surface of the bitumen while ê is the rate of strain tensor
which is expressed by

ê =
1

2

(
∇û+ (∇û)T

)
. (4.5)

The Bond number, Bo, is given by the equation

Bo =
ρgd2

γ
, (4.6)

where γ is the surface tension of the bitumen. The dimensionless parameter δ can be
expressed as

δ =
k

ϕd2
. (4.7)

As discussed in the second chapter of this research it is assumed that δ ≪ 1 meaning
that at leading order (4.3) reduces to

p̂ =
κ̂

Bo
+ ŷ − 1. (4.8)

From this point on the boundary conditions for each class of crack diverge and so
will be investigated separately in the following sections.

4.2.2 Modelling an Inverted Crack

The inverted crack will be the first class of crack to be investigated. In this situation
a thin vertical crack of height d has formed at the bottom of a piece of asphalt at a
depth h from the surface. A schema of this style of crack with the original variables is
in Fig. 4.1. In the figure the original values of variables are used as opposed to their
non-dimensionalised variants to give a clearer view of the physical system being modelled.

Two different domains of this crack will be analysed in this chapter. Firstly the semi-
infinite case will be looked at for a better representation of healing in asphalt. Here h
will be assumed infinite and the model extends infinitely in the ±x̂ directions.

In this case the boundary conditions are

û → 0, p̂ → 0, as ŷ → ∞, (4.9)

95



O

Permeability, k

Porosity, ϕ

p → −ρg(y − h) as x → ±∞

y

x

y = Y (x, t)

y = Y0(x)

d

h

Figure 4.1: An inverted crack of height d formed in asphalt at a depth h away from the
surface of the sample. The line y = Y0(x) gives the initial position of the interface of the
bitumen while the line y = Y (x, t) gives its position at a later time t.

û → 0, p̂ → 0, as x̂ → ±∞ (4.10)

and
û = 0, Ŷ

(
x̂, t̂
)
= Ŷ0 (x̂) , when t̂ = 0. (4.11)

In addition the no-slip and no-penetration conditions are imposed at y = −d or equiv-
alently in non-dimensionalised form ŷ = −1. Here û is velocity of the bitumen, p̂ the
pressure, x̂ and ŷ are the Cartesian co-ordinates, Ŷ0 is the initial profile of the boundary
and Ŷ

(
x̂, t̂
)
is the profile of the interface at time t̂.

Secondly the finite case will be examined allowing easier comparison to experiment.
Here h will be finite and boundaries on the domain will exist at ±x̂(max). This results in
the boundary conditions

û → 0 at the domain boundaries ŷ = −1 and x = ±x̂max (4.12)

as well as
û = 0, Ŷ

(
x̂, t̂
)
= Ŷ0 (x̂) , when t̂ = 0. (4.13)

In addition, the kinematic condition at the free surface [Cruse and Rizzo, 1968] is
given by

∂Ŷ

∂t̂
+ û

∂Ŷ

∂x̂
= v̂ (4.14)
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holds for both the semi-infinite and finite domains. Here û and v̂ are the velocity in the
x̂ and ŷ direction respectively.

4.2.3 Modelling a Horizontal Crack

The second class of crack to be looked at in this research will be the horizontal crack.
This is a crack of height d in asphalt stemming from the side of a sample with the initial
height of the tip a depth of h below the surface at time t̂ = 0. A visual representation
of this crack using the original variables is in Fig. 4.2.

O

Permeability, k

Porosity, ϕ

p → −ρg(y − h) as y → −∞

x

y

x = X(y, t)

x = X0(y)

d

h

Figure 4.2: A horizontal crack of height d formed in asphalt. The distance between the
tip of the crack and the surface of the asphalt at time t = 0 is h. The line x = X0(y)
gives the initial position of the interface of the bitumen while the line x = X(y, t) gives
its position at a later time t.

Again a domain better suited to modelling asphalt and one more comparable to
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experiments performed in this chapter will be reviewed here. To begin the semi-infinite
case will be analysed to represent healing in asphalt. Here h will be assumed infinite and
the model extends infinitely in the ±ŷ directions with boundaries at x = ±d or x̂ = ±1
when expressed in non-dimensionalised units. Here the boundary conditions are

û → 0, p̂ → 0, as ŷ → ±∞ (4.15)

and
û = 0, X̂

(
ŷ, t̂
)
= X̂0 (ŷ) , when t̂ = 0. (4.16)

In addition the no-slip and no-penetration conditions are imposed at x̂ = ±1. Here û is
velocity of the bitumen, p̂ the pressure, x̂ and ŷ are the Cartesian co-ordinates, X̂

(
ŷ, t̂
)

represents the free surface and X̂0 (ŷ) is its initial position.
As well as this the finite case will be looked at to allow a valid comparison to exper-

iment. Here h will be finite as well as boundaries on the domain which exist at x̂ ± 1.
This results in the boundary conditions

û → 0 at the domain boundaries x̂ = ±1 and ŷ = −h

d
(4.17)

as well as
û = 0, X̂

(
ŷ, t̂
)
= X̂0 (ŷ) , when t̂ = 0. (4.18)

As well as these conditions, at the free surface

∂X̂

∂t̂
+ v̂

∂X̂

∂ŷ
= û (4.19)

is applicable [Cruse and Rizzo, 1968] for both the semi-infinite and finite domains. Here
û and v̂ are the velocity in the x̂ and ŷ direction respectively.

4.2.4 Modelling two Simultaneous Vertical Cracks

The final class of crack to be examined in this chapter will be the case where there are
two vertical cracks in the same piece of asphalt, one stemming from the top of the piece
and another from the bottom. In this case the crack stemming from the top of the
asphalt to the origin of the system will have height d1 = h, the crack at the bottom of
the system will have height d2 and the vertical distance be height of the two cracks will
be taken to be d3. Fig. 4.3 shows a visual display of the crack in the original variables.

The semi-infinite case will be reviewed first to model healing in asphalt. The model
extends infinitely in the ±x̂ directions with boundary at y = − (d2 + d3) or when pre-
sented in non-dimensionalised variables when length is scaled with d1, ŷ = − (d2 + d3) /d1.
The boundary conditions are

û → 0, p̂ → 0, as ± x̂ → ∞ (4.20)

and
û = 0, Ŷa

(
ŷ, t̂
)
= Ŷa0 (x̂) , Ŷb

(
ŷ, t̂
)
= Ŷb0 (x̂) , when t̂ = 0. (4.21)
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p → −ρg(y − d1) as x → ±∞

y

x

y = Yb(x, t)

y = Yb0(x)

d2

d3

y = Ya(x, t)

y = Ya0(x)

d1

Figure 4.3: Two vertical cracks of height d1 and d2 formed in asphalt. There is a distance
of d3 between the initial tips of the two cracks at time t = 0. The lines y = Ya0(x) and
y = Yb0(x) give the initial positions of the interface of the bitumen while the lines
y = Ya(x, t) and y = Yb(x, t) give their positions at a later time t.

The no-slip and no-penetration conditions are also imposed at ŷ = − (d2 + d3) /d1. Here
û is velocity of the bitumen, p̂ the pressure, x̂ and ŷ are the Cartesian co-ordinates,
Ŷa

(
ŷ, t̂
)
and Ŷb

(
ŷ, t̂
)
are the positions of the upper and lower cracks respectively while

Ŷa0 (x̂) and Ŷb0 (x̂) are their respective initial positions.
Finally the finite case will be analysed to give a valid comparison to experiment. Here

boundaries on the domain will exist at ±x̂max and ŷ = − (d2 + d3) /d1. This results in
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the boundary conditions

û → 0 at the domain boundaries x̂ = ±x̂max and ŷ = −(d2 + d3)

d1
(4.22)

as well as

û = 0, Ŷa

(
ŷ, t̂
)
= Ŷa0 (x̂) , Ŷb

(
ŷ, t̂
)
= Ŷb0 (x̂) , when t̂ = 0. (4.23)

Finally, at the free surfaces [Cruse and Rizzo, 1968]

∂Ŷa

∂t̂
+ û

∂Ŷa

∂x̂
= v̂ (4.24)

and
∂Ŷb

∂t̂
+ û

∂Ŷb

∂x̂
= v̂ (4.25)

both apply for the semi-infinite and finite domains. Here û and v̂ are the velocity in the
x̂ and ŷ direction.

4.2.5 Numerical Solution

Here boundary integral methods will be used in conjunction with Green’s functions to
find a numerical solution to the pressure gradient on the surface of the various cracks
being analysed. This in turn will allow for the computation of the movement of the
boundary with time.

Here the relationships [Fernández-Guasti et al., 2012]

∇ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) = ϕ1∇2ϕ2 − ϕ2∇2ϕ1 (4.26)

and [Stolze, 1978]∫ ∫
Ac

∇ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) dAc =

∫
S

n̂ · (ϕ1∇ϕ2 − ϕ2∇ϕ1) dC (4.27)

are used where n̂ is the normal vector to the boundary C which surrounds area Ac, with
n̂ pointing outwards. The relationship holds for any two twice differentiable fields ϕ1

and ϕ2.
Here ϕ1 is substituted for the pressure on the boundary, p̂ and ϕ2 is substituted for

the Green’s function appropriate to the domain of the model. As per the derivation in
chapter 3 this leads to the result

Ap̂′ = (B− πI) p̂. (4.28)

Here p̂′ is the pressure gradient on the surface of the crack, I is the identity matrix
and A and B are matrices which have values dependent on the relationship between
the pressures at various points on the boundary, their distance apart and the Green’s
function defining the domain.

This gives a value of the pressure gradient at the boundary which in turn can be used
to compute the movement of the surface of the crack over time.
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4.2.6 Domains for the Numerical Solution

The domain of the simulation is decided by the Green’s function used and substituted for
ϕ2 in (4.26) and (4.27). The Green’s function used to define the domain of the simulation
varies depending on the crack being modelled.

In the cases of the inverted vertical crack and modelling two simultaneous verti-
cal cracks in asphalt a domain of infinite length in the ±x̂ directions is used with a
finite depth coinciding with the crack’s base, a. To do this the method of images is
used [Pozrikidis, 2002], giving a Green’s function of

G =
1

4π
ln

(
(x̂− x̂0)

2 + (ŷ + ŷ0 − 2a)2

(x̂− x̂0)
2 + (ŷ − ŷ0)

2

)
. (4.29)

Here G is the Green’s function, x̂ and ŷ are the coordinates of the varying point on the
surface while x̂0 and ŷ0 the coordinates of the constant singular source.

Here the closed surface over which the integration in the boundary integral method
will take place is defined as the free surface of the bitumen, including the crack over all
of which p̂ is defined. The domain is also considered bounded by the lines x̂ = ±b for
the limit as b approaches ∞ and the line ŷ = a. On these three lines the velocity of the
fluid is considered to be zero.

A horizontal crack in asphalt however, can be better modelled by using a domain
infinite in the ±ŷ directions however bounded in the ±x̂ directions. This can be accom-
plished by using

G =
1

4π
ln

(
2

(
cosh

(
2π (ŷ − ŷ0)

b

)
− cos

(
2π (x̂− x̂0)

b

)))
+

(ŷ − ŷ0)

4b
. (4.30)

This is a variation on the Green’s function, G found in [Linton, 1999, Moroz, 2006]. Here
b is the width of the domain in the x̂ direction, x̂ and ŷ are the coordinates of the varying
point on the surface. x̂0 and ŷ0 give the coordinates of the constant singular source. This
Green’s function treats the domain infinitely repeating with no flow between adjacent
sections.

The domain for this Green’s function is defined formally by considering a surface
bound by the free surface where p̂ is defined and on the lines ŷ = ±a in the limit as a
tends to ∞ and x̂ = ±b on which the velocity of the fluid will be zero. Here on lines
where the velocity of fluid is equal to zero the integral over the boundary collapses to an
integral over the free surface as the condition that the pressure gradient is also equal to
zero on those lines.

For all classes of crack when comparing results of the simulations to those of the crack
flow experiments the boundaries of the experiments must be observed. This requires the
use of the method of images [Li, 1998] combined with (4.30) to produce

G =
1

4π
ln


(
cosh

(
2π(ŷ−ŷ0)

b

)
− cos

(
2π(x̂−x̂0)

b

))
(
cosh

(
2π(ŷ+ŷ0−2a)

b

)
− cos

(
2π(x̂−x̂0)

b

))
− ŷ0 − a

2b
(4.31)

as a Green’s function G. Here the domain repeats periodically in the ±x̂ directions and
uses the method of images to enforce a boundary on the bottom of the domain at ŷ = a.
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Once again x̂ and ŷ are the coordinates of the varying point on the surface while x̂0 and
ŷ0 give the coordinates of the constant singular source. Once again for the sections of
the boundary on which the velocity is equal to zero the equation (4.28) reduces to an
integral over just the free surface.

In this case the closed domain is bounded by the free surface or surfaces depending
on the crack where p̂ is known. In addition it is bounded by the lines x̂ = ±b and ŷ = a
on which, the condition that the velocity of the fluid is zero holds. As with the previous
domains the boundary integral equation here collapses to just an integral over the free
surface.

4.2.7 Time-stepping

The time-stepping for the simulation of all three classes of crack studied here was con-
ducted using the Crank Nicholson method. This is an implicit time-stepping method
which can be expressed by [Crank and Nicolson, 1947]

Ŷ n+1 = Ŷ n +
1

2

[
fg

(
t̂n, Ŷ n

)
+ fg(t̂

n+1, Ŷ n+1)
]
∆t̂. (4.32)

Here Ŷ n is the position of the surface before the nth time-step takes place, t̂n is the time
before the nth time-step takes place, ∆t̂ is the size of the time-step and fg

(
t̂n, ûn

)
is the

value of the pressure gradient on the surface. In the method the value of Ŷ n+1 is derived
iteratively.
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4.3 Materials and Methods

In this section the experiments performed for this section of the research will be explained
in full. In addition the materials used in said experiments will be clarified. In this case
the experiments performed were a variation of the crack flow test performed in the first
chapter of this thesis however here they were performed in a variety of orientations to
judge the effect of this on the healing of cracks.

4.3.1 Bitumen

Throughout the chapter five different types of bitumen were used to ensure the compar-
isons to the model could be replicated over a variety of surface tensions and viscosities.
The relevant properties of each of the styles of bitumen used can be found in Table 4.1.

Bitumen type Surface tension (Nm−1) Dynamic viscosity (MPl)
Sample 1 0.0324 0.103
Sample 2 0.0374 0.784
Sample 3 0.0318 0.328
Sample 4 0.0300 1.103
Sample 5 0.0391 0.892

Table 4.1: A table with the surface tensions and viscosities of each type of bitumen used
in the chapter.

4.3.2 Crack Flow Test

To further validate the accuracy of the model experiments were performed with cracks
of two different sizes. Here the experiment was performed under multiple different ori-
entations.

First a sheet of bitumen of dimensions 73×23×1 mm was produced by pouring heated
bitumen into a moulds. The sheets of bitumen had triangular gaps in them to simulate
a crack, allowing for the observation of the bitumen flowing into the gap. The gaps were
in two sizes with maximum widths of 10 mm and 20 mm. The height of the crack was
always 10 mm. After the bitumen was placed in the mould it was frozen for a period of
at least two hours at -20°C to allow removal without deformation of the sheet.

The sheets of bitumen were placed between two glass plates to form a Hele-Shaw cell.
Here the thickness of the sample ensured that it behaved as if in a porous medium [Nield
and Bejan, 2006, Richardson, 1972]. All sides of the sheet were then sealed with plasticine
to create a barrier and prevent the bitumen from leaking out the sides of the plates.

Finally the samples were placed in an oven which had been pre-heated to 45°C for
at least 30 mins. Pictures were taken every 30 minutes to record the movement of the
bitumen. An example of the experimental set-up of each orientation of crack can be seen
in Fig. 4.4, Fig. 4.5 and Fig. 4.6. Here at least four repeats of each experiment were
performed to ensure the reliability of the results.
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Figure 4.4: The above schema displays the set-up of the crack flow test. It comprises of
a 73×23×1 mm sheet of bitumen with a triangular section removed sandwiched between
two glass plates. After being placed in an oven at 45°C the flow of this sheet of bitumen
is monitored over time. This image displays the triangular section taken out of the sheet
of bitumen to have a height of 10mm and a maximum width of 10 mm. Another set of
experiments were also run using triangles with a height of 10 mm and maximum width
20 mm.
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Figure 4.5: The above schema displays the set-up of the crack flow test. It comprises of
a 73×23×1 mm sheet of bitumen with a triangular section removed sandwiched between
two glass plates. After being placed in an oven at 45°C the flow of this sheet of bitumen
is monitored over time. This image displays the triangular section taken out of the sheet
of bitumen to have a height of 10mm and a maximum width of 10 mm. Another set of
experiments were also run using triangles with a height of 10 mm and maximum width
20 mm.

4.3.3 Surface Tension Test

To prepare samples of bitumen for testing each type of bitumen was heated at 130°C and
then poured over a glass slide. These were then laid to rest for 24 hours and covered to
prevent dust from contaminating the samples. After the rest period a goniometer was
used to measure the curvature of a series of drops of test liquids resting on the bitumen
samples. In these tests water, ethylene glycol and diiodomethane were used as the test
liquids.

As the surface energy of the test liquids is known this can be used with the equation

γS = γSL + γL cos θ, (4.33)

where γS is the surface energy of the bitumen, γSL is the solid-liquid interface energy, γL
is the surface energy of the test liquid and θ is the contact angle between the bitumen
and the test liquid. This allows the surface energy of the bitumen to be calculated.

4.3.4 Viscosity Tests

To measure the viscosity of the bitumen a Brookfield viscometer was used. Prior to
any measurements taking place the heater and spindle of the viscometer were both pre-
heated for one hour. After this 9.5 g of bitumen was placed in a tube and placed in
the heater for a further 30 mins to bring it up to the temperature. After this heating
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Figure 4.6: The above schema displays the set-up of the crack flow test. It comprises
of a 73×23×1 mm sheet of bitumen with two triangular sections removed sandwiched
between two glass plates. After being placed in an oven at 45°C the flow of this sheet of
bitumen is monitored over time. This image displays the triangular sections taken out
of the sheet of bitumen to have a height of 10 mm and a maximum width of 10 mm.
Another set of experiments were also run using triangles with a height of 10 mm and
maximum width 20 mm.

had taken place the viscometer was used to measure the viscosity of each of the bitumen
samples. Two repeats of each measurement were made to ensure no significant deviation
in measurements occurred.
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4.4 Results and Discussion

In this section the results of computing the numerical method will be presented and
compared to the results of the laboratory experiments laid out in the previous section.
This will begin with looking at the case of an inverted crack, then move on to horizontal
cracks before concluding by examining the results pertaining to two simultaneous vertical
cracks. While no extra verification of the numerics is presented in this section the results
of the verification performed in 2.4.2 and 2.4.3 are applicable to the code used here.

Throughout this section a representative Bond number was needed to compute the
solutions. This was chosen by assuming a bitumen density of 1030 kgm−3, a crack height
of 0.01 m, an acceleration due to gravity of 9.81 ms−2 and a surface tension of 0.03 Nm−1.
Using these with (2.16) gives a Bond number of 33.681. This Bond number will be used
for calculations that are not directly compared to experiments which use bitumen with
a known value of surface tension.

4.4.1 Inverted Crack Results

Figure 4.7: The evolution of an inverted crack with time under the effects of gravity
and surface tension. The blue line represents the initial crack and the other lines the
evolution of the surface. Here the Bond number was taken to be Bo = 33.681.
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The first style of crack to be simulated was a vertical one originating at the bottom
of a piece of asphalt. Here you can see the predicted healing profile of a triangular crack
with width equal to twice its height at its base in Fig. 4.7.

To compute the numerical solution for this figure (4.29) was used as a Green’s function
with the base of the domain defined as ŷ = −1. Here 151 equally spaced points were used
to represent the surface with a Bond number of Bo = 33.681 used. The advections to
the surface were made in steps of t̂ = 0.00001 with the lines on the graph corresponding
to the evolution of the surface every 50 time-steps. Here surface tension and gravity are
both included as driving forces for the movement of the crack.

There are a few behaviours of note in in this graph. Firstly we see that the flow
of bitumen into the crack is concentrated both at the tip of the crack and to a greater
extent at its base. This is likely due to the increased pressure lower down in the domain.

Some of the features of this graph make more sense when contrasted against the
numerical solution of a crack healed only by gravity. In Fig. 4.8 the healing of the same
crack is examined with the effects of surface tension removed.

Figure 4.8: The evolution of an inverted crack with time under just the effect of gravity.
The blue line represents the initial crack and the other lines the evolution of the surface.
Here the Bond number was taken to be Bo = 33.681.
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To produce this graph (4.29) was the chosen Green’s function with the base of the
domain defined as ŷ = −1. Again 101 equally spaced points were used to represent the
surface with a Bond number of Bo = 33.681 used. Time-steps of t̂ = 0.00005 were used
to move the surface with the lines on the graph corresponding to the evolution of the
surface every 20 time-steps. In this case only gravity is used to drive the movement of
the crack.

Here we see a lot of similarities to the behaviours seen in Fig. 4.7, but also a few key
differences. Firstly the flow of bitumen into the tip of the crack is nearly absent when
the surface tension is removed. This indicates that the flow into that area was mainly
driven by surface tension due to the high curvature at the tip of the crack and not by
the effects of gravity.

The next big difference between the two figures is the behaviour of the bitumen at
the base of the domain. In Fig. 4.8 the bitumen flows freely into the base of the crack,
driven by gravity and the comparatively higher pressure lower down in the crack. In
Fig. 4.7 however, the effects of gravity and surface tension act in opposition slowing the
movement. Here we also see instabilities form. It appears that rather than act to stop
the instabilities as would be expected in reality here the surface tension slows the base
of the front of bitumen moving into the crack causing overextension in the top part of
the front which leads to the instabilities seen here.

Figure 4.9: The movement of bitumen into a 10 mm tall crack initially 20 mm wide at
its widest point. Top left is before heating, top right is after 60 minutes, bottom left is
after 120 minutes and bottom right is after 180 minutes.

An illustrative example of the experimental results of the crack healing test for the
inverted vertical crack can be seen in Fig. 4.9. Here the top left image shows the initial
state of the crack, the top right gives its condition after 60 mins, the bottom left after
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120 mins and bottom right after 180 mins.
As can be clearly seen the flow of bitumen is mainly concentrated at the bottom

of the crack. The tip of the crack on the other hand fills slightly in the first 60 mins
but remains stationary thereafter. These general behaviours do correspond with the
behaviours predicted in the numerical results, however the surface of the crack does not
experience any of the instabilities seen there. While this initially seems to represent the
gravity driven healing most closely it is worth noting that the steepness of the fronts of
bitumen moving into the base of the crack exceeds that of the gravity driven healing and
more closely corresponds to the healing seen when gravity and surface tension are both
applied before instabilities occur.

The apparent movement of the tip of the crack throughout this set of experiments is
displayed in Fig. 4.10 and Fig. 4.11. Due to instabilities the numerical results were not
stable enough to run to simulate the 150 min duration of the experiment and so could
not be included here.

Figure 4.10: The experimental results for the movement of the tip of the 10 mm wide
inverted vertical crack with time.

Here with the exception of sample 3, which proved an outlier in both cases we see
only very small movement of the tip of the crack. The results for the narrower crack
show considerably more healing here which fits with the concept of the movement of the
tip of the crack in this case being driven mainly by surface tension. For the narrower
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Figure 4.11: The experimental results for the movement of the tip of the 20 mm wide
inverted vertical cracks with time.

crack the curvature at the tip will be much higher so the increased flow lies in line with
intuition.

4.4.2 Horizontal Crack Results

The second class of crack to be analysed was the horizontal crack. The predicted healing
profile of a crack with width twice its length at its widest point is displayed in Fig. 4.12.

To produce this graph (4.30) was the chosen Green’s function, bounded by x̂ = ±3.65.
Here 101 equally spaced points were used to represent the surface. A Bond number of
Bo = 33.681 used. Time-steps of t̂ = 0.0001 were used to move the surface with the lines
on the graph corresponding to the evolution of the surface every 20 time-steps. In this
case both gravity and surface tension were included in the relevant equations.

In the initial time-steps the majority of the flow of bitumen into this crack occurs at
the tip. This is likely due to surface tension and a response to the high levels of curvature
at the tip of the crack. Once the tip of the crack has been smoothed out the flow into
the tip slows and it appears that the whole crack appears to flow upwards.

A example of the healing of a crack during the crack healing experiments carried out
can be seen in Fig. 4.13. In these pictures the top left image shows the initial state of
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Figure 4.12: The predicted evolution of a horizontal crack with time. The blue line
represents the initial crack and the other lines the evolution of the surface. Here the
Bond number was taken to be Bo = 33.681.

the crack, the top right gives its condition after 60 mins, the bottom left after 120 mins
and bottom right after 180 mins.

The greatest initial movement of the crack in the first 60 mins of healing is present
near the tip although there is also a narrowing of the width of the crack at its widest
point by roughly 1 mm in each direction while this happens. For the next two hours the
top surface of the crack remains steady while the bottom surface rises and the tip of the
crack moves further to the right.

Comparing the results of the numerical method and the laboratory experiment some
behaviours are shared such as the initial movement of bitumen into the tip of the crack
and the movement of the bottom of the crack upwards during the healing process. One
behaviour which was not shared however was the movement of the top side of the crack.
Both the initial downwards movement of the top of the interface and its lack of movement
in the later stages of the experiment might be explained by adhesion of the bitumen to the
glass. It is possible that here the bitumen being attached to the glass plate shortly before
the experiment began led to it adhering to the surface of the glass and spreading slightly
during the beginning of the experiment. This same adhesion to the glass could act to
prevent the movement of the bitumen away from the glass throughout the experiment.
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Figure 4.13: The movement of bitumen into a 10 mm tall crack initially 10 mm wide at
its widest point. Top left is before heating, top right is after 60 minutes, bottom left is
after 120 minutes and bottom right is after 180 minutes.

This is a possibility that the two dimensional model didn’t account for.
The results of the horizontal movement of the tip of the crack in both the simulation

and the experiment can be found in Fig. 4.14 and Fig. 4.15.
Here we see that the movement of the crack is much greater for the narrower crack.

This would be expected because the curvature of the crack is greater the narrower it
is and so the flow due to surface tension would be faster. the results of the numerical
method for the wider crack show good agreement with the experimental results, with only
the results for sample 1 showing significant deviation. However for the narrower crack
while the numerical results follow the same general trend as the experimental results
they show closer grouping than the experimental results and aren’t reliable in predicting
the movement of the tip of the crack with accuracy.
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Figure 4.14: The predicted movement of the tip of a 10 mm wide horizontal crack with
time compared to experimental results. The predictions are given by the solid line.
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Figure 4.15: The predicted movement of the tip of a 20 mm wide horizontal crack with
time compared to experimental results. The predictions are given by the solid line.

4.4.3 Multiple Vertical Cracks Results

The final class of damaged asphalt to be analysed here is one which has two vertical
cracks in it. One stemming from the bottom of the asphalt and one from the top.
The results of the simulation of these cracks when they have height equal to half their
maximum width is in Fig. 4.16.

To produce this graph (4.31) was the chosen Green’s function with the base of the
domain defined as ŷ = −1 and also being bounded by x̂ = ±3.65. Here 101 equally
spaced points were used to represent the bottom surface while 301 points were used
to represent the top surface. A Bond number of Bo = 33.681 used. Time-steps of
t̂ = 0.00002 were used to move the surface with the lines on the graph corresponding
to the evolution of the surface every 4 time-steps. In this case both gravity and surface
tension were included in the relevant equations.

Here the movement of bitumen into the crack is almost entirely centred at the base
of the bottom crack. This is logical given the relatively high pressure at the bottom
of the domain. In this case the healing follows broadly the same pattern as was seen
when looking at the inverted crack independently. This pattern also includes similar
instabilities in the base of the bottom crack after large time periods.
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Figure 4.16: The predicted evolution of a horizontal crack with time. The blue line
represents the initial cracks and the other lines the evolution of the surface. Here the
Bond number was taken to be Bo = 33.681.

The experiments show that the healing of each crack takes place largely similarly to
how each class of crack would heal on its own. An example of the healing of a sample
crack can be found in Fig. 4.17. Here the top left image shows the crack at the beginning
of the experiment, the top right image presents the crack after 60 mins, the bottom left
after 120 mins and the bottom right after 180 mins.

Comparing the results of these experiments to the behaviours of the interface in the
numerical results provides some similarities. Firstly the movement of bitumen is largely
focused at the base of the bottom crack in both cases. Here the top crack sees little
movement compared to the flow of the two fronts into the bottom crack. As with the
case of the inverted crack the instabilities in the later stages of the movement of the
bottom crack were not replicated in experiment.

The average progress of the tip of the cracks throughout these experiments can be
seen in Fig. 4.18 and Fig. 4.19. These give the results of the healing of both cracks
separately with the positive values representing the healing of the top crack and the
negative values representing the downwards progression of the tip of the bottom crack.
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Figure 4.17: The movement of bitumen into two 10 mm tall cracks initially 20 mm wide
at their widest point. Top left is before heating, top right is after 60 minutes, bottom
left is after 120 minutes and bottom right is after 180 minutes.

Due to instabilities the numerical results were not stable enough to run to simulate the
150 min duration of the experiment and so could not be included here.

The results from the movement of the tip of the crack over time for this experiment
are hard to categorise neatly. Disregarding the movement of sample 3 for the narrow
crack as an outlier the movement of the tips of the top and bottom crack are relatively
even. This would imply that the main impact of the gravity driven healing was to fill the
base of the bottom crack while surface tension being roughly equal between the cracks
was more impactful on the movement of the tips of the crack.
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Figure 4.18: The experimental results for the movement of the tip of the two 10 mm wide
vertical cracks with time. Negative results display the movement of the bottom crack
downwards while positive results display the movement of the higher crack upwards.
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Figure 4.19: The experimental results for the movement of the tip of the two 20mm wide
vertical cracks with time. Negative results display the movement of the bottom crack
downwards while positive results display the movement of the higher crack upwards.
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4.5 Summary and Conclusions

During this chapter a method of simulating the healing of cracks within asphalt of dif-
ferent orientations was formulated. This was then verified through a series laboratory
experiments for each orientation.

To begin with models for the movement of asphalt into three different orientations of
cracks in asphalt were constructed. This included an inverted vertical crack, a horizontal
crack and two vertical cracks in the same piece of asphalt. These models assumed that
flow within the domain was characterised as flow within a porous medium, including
within the crack and that the flow was driven by surface tension and gravity. This was
used to provide a framework to work around for the rest of the chapter

After this was completed I constructed a numerical method using boundary integral
methods to create a simulation which can predict the movement of the various different
classes of crack. This was done by selecting Green’s functions to control the appropriate
domain of the simulation.

Next a run of laboratory experiments were conducted which were directly compared
to results from the model. Here the similarities and differences between the numerical
and experimental results were analysed.

An avenue of future research highlighted here which would be of benefit to the field
would include the progression to a three dimensional model. This would especially benefit
the case of the inverted crack where the method of release of the air inside the crack
would be of great interest.
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Chapter 5

Summary and Conclusions

5.0.1 Research Summary

This research has focused on generating an increased understanding of the self-healing
process in asphalt. This was performed by creating a series of models to simulate the
movement of a variety of classes of cracks and using these models to provide direct
comparison between different established healing methods for asphalt self-healing.

It began with an overview of the topic in the form of a literature review. This was
done to establish a foundation for the research to take place, as well as giving an insight
into the current state of the literature.

Over the course of the second chapter a model was created to describe the flow of
bitumen into a crack in a porous medium under the influence of gravity and surface
tension. The model assumed that flow throughout the system, including within the
crack, could be classified as flow within a porous medium. A method to simulate the
process was constructed using boundary integral methods which was then verified by a
series of laboratory experiments.

After the model was defined the pressure fields surrounding different types of crack
were found using conformal mapping. Exact solutions to an infinitesimally thin crack
and a triangular crack were given as well as approximations to the pressure field at the tip
of an infinitesimally thin crack and a generic crack. This step allowed for the calculation
of the small time asymptotic solution to the initial movement of the interface.

This was followed by a numerical solution which was used to compute the healing of a
crack with time over a number of different domains. This solution was constructed using
boundary integral methods combined with selecting an appropriate Green’s function for
the domain in question.

The accuracy of the numerical solutions for each domain were then compared to the
analytical solutions. The two solutions showed strong similarities to each other, helping
to verify the numerical solution.

Next a series of novel experiments were conducted observing the flow of bitumen in
a Hele-Shaw cell. The agreement between the simulations and the experimental results
was used to further validate the results of the simulations.

As the final part of the chapter the results of the numerical method were used to
calibrate an equation which measures the progress of the healing of a crack over time in
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asphalt. This equation offers a computationally cheap method of predicting the healing
of a crack with time.

The third chapter focused on the comparison of different methods of triggering the
self-healing process in asphalt. Firstly a method to extract a healing profile from the
results of three-point bending tests was established, then this was used to evaluate the
effectiveness of experiments performed as part of this research as well as those from the
literature. This equation was then calibrated by comparison to results from experiments
performed as part of this research and those from the literature.

The chapter started by using the gravity driven healing equation found in the previous
chapter to construct a novel equation for the force required to break a partially healed
beam of asphalt during three-point bending. This created an equation which was used
to produce a healing profile for different forms of asphalt self-healing.

The next part of the research was the analysis of three-point bending experiments
using asphalt with a high capsule content. Here the asphalt containing capsules consis-
tently outperformed the control samples with asphalt containing 1% and 1.25% capsules
by mass performing consistently well. However, the results weren’t as consistent as
those found elsewhere in the literature, possibly due to the larger number of capsules
used relative to other sources.

A large number of three-point bending experiments were analysed, both those con-
ducted as part of this research and from the literature. These experiments showed clear
advantages to larger quantities of calcium alginate capsules being contained in asphalt
as well as higher temperatures being used in the healing process.

Induction heating induced healing was the next part of the literature for which anal-
ysis was attempted. However, this exposed a vulnerability in the model. Namely that
it wasn’t designed to cope with the asphalt properties changing throughout the healing
process as is seen here, especially the rapid rise in temperature which was present in
these experiments.

As part of the analysis of the viability of using oil capsules as a method to promote
self-healing in asphalt a pendulum test was performed on the asphalt containing a large
quantity of capsules. This was done to ensure that incorporating a large quantity of
oil capsules in a road did not reduce the friction of the road enough to stop it from
being safe to drive on. The asphalt with oil capsules in was well within driving safety
standards, with the lowest performing sample scoring a PTV of 65 compared to the PTV
of 40 required for use in roads.

In the literature it was generally acknowledged that capsule induced healing had a
maximum limit. However, the healing profiles generated in this chapter suggest that this
is in fact only a temporary reduction in the increase of force required to break a healing
beam using three-point bending with time as opposed to a limit of the amount the beam
can heal with time. This implies that the maximum limit of healing identified in other
research could be just a temporary plateau which can be overcome with enough time
spent healing.

The fourth chapter of this research was dedicated to the modelling of an inverted
vertical crack, a horizontal crack and two simultaneous vertical cracks in asphalt as
they went through the self healing process. This featured the calculation of a numerical
method using boundary integral methods and the verification of said numerical method
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through laboratory experiment.
To begin this section of the research a series of models were constructed to provide

a mathematical framework for the calculations to follow. Here each class of crack was
studied and the underlying mechanics of the flow of bitumen into the crack was set out.
These models assumed that the flow was characterised as flow within a porous medium
including within the cracks and was driven primarily by surface tension and gravity.

This was followed by the derivation of numerical solutions to the pressure gradient
at the free surfaces of the models. These solutions were generated for each of the three
crack types and over multiple different domains. The solutions were generated by using
boundary integral methods combined with carefully selected Green’s functions to provide
the appropriate domains for the calculations. These solutions were then used to create
simulations of the self-healing process for cracks in different orientations.

Experiments were then performed to validate these calculations. While there were
many shared characteristics between the numerical and experimental results the similar-
ities were weaker than those seen in the second chapter.

5.0.2 Future Avenues of Research

There are a wide range of potential avenues for further research in this area.
Firstly, the ability to vary the properties of the bitumen in the asphalt with time

would provide value to the field. An example of when this could prove useful would be in
the understanding of the healing of asphalt through induction heating. In this case the
rapid healing results in the temperature of the bitumen changing quickly and unevenly
throughout the healing period.

Another possibility for future research would be the implementation of a three di-
mensional model. In particular this would give a better idea of the escape route of the
air in an inverted vertical crack. The knowledge of how much the asphalt is weakened
by the movement of the air, if at all, would be of interest in the study of that class of
crack.

One more idea for potential research projects would be the testing of long term
oil capsule induced healing experiments. These could be used to test the hypothesis
generated here that the perceived maximum healing limit is just a by-product of using
a three-point bending test to measure the healing of asphalt.

Other research avenues include the introduction of large aggregates for the bitumen
to flow around. In addition the analysis of different healing methods could give a more
complete view of the topic. Finally an analysis of healing in different types of asphalt
could also prove valuable.
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Á. Garćıa. Self-healing of open cracks in asphalt mastic. Fuel, 93:264 – 272, 2012.
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A. González, J. Norambuena-Contreras, L. Storey, and E. Schlangen. Effect of rap and
fibers addition on asphalt mixtures with self-healing properties gained by microwave
radiation heating. Construction and Building Materials, 159:164–174, 2018.

P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incompressible
navier-stokes equations. International Journal for Numerical Methods in Fluids, 7(10):
1111–1145, 1987.

S. Gupte and S. Advani. Flow near the permeable boundary of a porous medium: An
experimental investigation using lda. Experiments in Fluids, 22:408 – 422, 1997.

A. W. Hefer, A. Bhasin, and D. N. Little. Bitumen surface energy characterization using
a contact angle approach. Journal of Materials in Civil Engineering, 18(6):759–767,
2006a.

A. W. Hefer, D. N. Little, and B. E. Herbert. Bitumen surface energy characterization
by qa inverse gas chromatography. Journal of Testing and Evaluation, 35(3):233–239,
2006b.

C. W. Hirt and B. D. Nichols. Volume of fluid (vof) method for the dynamics of free
boundaries. Journal of computational physics, 39(1):201–225, 1981.

T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Boundary integral methods for multi-
component fluids and multiphase materials. Journal of Computational Physics, 169
(2):302–362, 2001.

G. C. Hsiao and W. L. Wendland. Boundary integral methods in low frequency acoustics.
Journal of the Chinese institute of Engineers, 23(3):369–375, 2000.

126



J. Hua, J. F. Stene, and P. Lin. Numerical simulation of 3d bubbles rising in viscous
liquids using a front tracking method. Journal of Computational Physics, 227(6):
3358–3382, 2008.

Y. Huang, S. G. Mogilevskaya, and S. L. Crouch. Complex variable boundary integral
method for linear viscoelasticity: Part i—basic formulations. Engineering analysis
with boundary elements, 30(12):1049–1056, 2006.

C. Y. Hui and A. Jagota. Surface tension, surface energy, and chemical potential due to
their difference. Langmuir, 29(36):11310–11316, 2013.

S. W. Ip and J. M. Toguri. The equivalency of surface tension, surface energy and surface
free energy. Journal of materials science, 29(3):688–692, 1994.

M. A. Jensen and J. D. Freeze. A recursive green’s function method for boundary integral
analysis of inhomogeneous domains. IEEE Transactions on Antennas and Propagation,
46(12):1810–1816, 1998.

C. Jolicoeur. The New Cider Maker’s Handbook: A Comprehensive Guide for Craft
Producers. Chelsea Green Publishing, 2013.

C. H. Juang and S. N. Amirkhanian. Unified pavement distress index for managing
flexible pavements. Journal of Transportation Engineering, 118(5):686–699, 1992.

E. F. Kaasschieter. Solving the buckley–leverett equation with gravity in a heterogeneous
porous medium. Computational Geosciences, 3(1):23–48, 1999.

A. H. Khalid. Free boundary problems in a Hele-Shaw cell. PhD thesis, UCL (University
College London), 2015.

A. C. King, J. Billingham, and S. R. Otto. Differential Equations: Linear, Nonlinear,
Ordinary, Partial. Cambridge University Press, 2003.

E. Klaseboer, C. R. Fernandez, and B. C. Khoo. A note on true desingularisation
of boundary integral methods for three-dimensional potential problems. Engineering
analysis with boundary elements, 33(6):796–801, 2009.

L. Lee and R. J. LeVeque. An immersed interface method for incompressible navier–
stokes equations. SIAM Journal on Scientific Computing, 25(3):832–856, 2003.

D. Lesueur. The colloidal structure of bitumen: Consequences on the rheology and on
the mechanisms of bitumen modification. Advances in Colloid and Interface Science,
145(1–2):42 – 82, 2009.

K. Li. Fast computation technique of green’s function and its boundary integrals for
multilayered medium structures by using fourier series expansion and method of im-
ages. International Journal of RF and Microwave Computer-Aided Engineering, 8(6):
474–483, 1998.

127



C. M. Linton. Rapidly convergent representations for green’ functions for laplace’ equa-
tion. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 455(1985):1767–1797, 1999.

D. N. Little and B. Amit. Exploring Mechanism of Healing in Asphalt Mixtures and
Quantifying its Impact, pages 205–218. Springer Netherlands, 2007.

H. Liu and G. Cao. Effectiveness of the young-laplace equation at nanoscale. Scientific
Reports, 6(1):23936, 2016.

J. Liu and J. Jin. A novel hybridization of higher order finite element and boundary
integral methods for electromagnetic scattering and radiation problems. IEEE Trans-
actions on antennas and propagation, 49(12):1794–1806, 2001.

N. Liu and L. Ma. Regularized tomographic piv for incompressible flows based on con-
servation of mass. Applied optics, 59(6):1667–1677, 2020.

Q. Liu. Induction Healing of Porous Asphalt Concrete. PhD thesis, Delft University of
Technology, 2012.

S Bo Liu and Choon-Lai Tan. Two-dimensional boundary element contact mechanics
analysis of angled crack problems. Engineering Fracture Mechanics, 42(2):273–288,
1992.

R. Lytton. Characterizing asphalt pavements for performance. Transportation Research
Record: Journal of the Transportation Research Board, 1723:5–16, 2000.

V. Magnanimo, H. L. ter Huerne, and S. Luding. Asphalt durability and self-healing
modelling with discrete particles approach. In A. Scarpas, N. Kringos, I. Al-Qadi, and
A. Loizos, editors, Proceedings of the 7th RILEM conference on cracking in pavements,
20-22 June 2012, Delft, the Netherlands, volume 4 of RILEM bookseries, pages 1103
– 1114. Springer, 2012.

M. G. Markov. Effect of interfacial slip on the kinematic and dynamic parameters of
elastic waves in a fluid-saturated porous medium. Acoustical Physics, 53(2):213–216,
2007.

P. A. Martin and F. J. Rizzo. Partitioning, boundary integral equations, and exact
green’s functions. International journal for numerical methods in engineering, 38(20):
3483–3495, 1995.

D. I. Meiron. Boundary integral formulation of the two-dimensional symmetric model of
dendritic growth. Physica D: Nonlinear Phenomena, 23(1-3):329–339, 1986.
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