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Abstract

Strong galaxy-scale gravitational lensing provides a powerful means of study-

ing galaxy formation, constraining cosmology and understanding the evolution

of large-scale structure. The presence of a foreground lensing galaxy deflects the

light rays of a background source into multiple images, with their configuration

dependent upon the lens mass distribution. Modelling of this distribution to repro-

duce the lensed images not only aids in measuring the dark matter content of the

foreground galaxy, but allows for the reconstruction of the background source in

order to study high-redshift galaxy populations. Modelling is typically performed

by relatively slow parametric parameter-fitting techniques requiring manual in-

spection. However, upcoming large-scale surveys like the Legacy Survey of Space

and Time (LSST) and Euclid will discover tens of thousands of strong lenses,

with this vast quantity driving the growing use of automated machine learning

for both identifying and modelling such systems extremely quickly. Convolutional

neural networks (CNNs) can extract information from lensed images in order to

predict parameters of the lens mass model, but require large simulated data sets

for training and testing.

In this thesis, I explore the effectiveness of deep learning CNNs for estimating

strong galaxy-scale lens mass model parameters when applied to upcoming wide-

field survey data, investigating the practicalities they face and comparing and

combining them with conventional modelling methods. I construct a CNN and

train it on my own simulated lensing images with the imaging characteristics
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of the Euclid VIS band, LSST r-band, and LSST gri multiband. The CNN

is trained to predict parameters of a smooth singular isothermal ellipsoid (SIE)

projected mass profile that would best fit the observed image. Multiple aspects

of this method are investigated, beginning with a comparison of its accuracy and

reliability when applied to the survey data sets. The impact of multiband imaging

is analysed, as well as the impact of lens light subtraction commonly performed by

conventional modelling techniques. I show that for images including lens galaxy

light, the CNN recovers the lens model parameters with an acceptable accuracy,

with precision improved on average by 34±5 per cent when lens light is subtracted.

Additionally, the inclusion of multiband data improves performance regardless of

lens light subtraction. While similar accuracies and precision are obtained for

single epoch Euclid VIS and LSST r-band data sets, adding g- and i-band images

to the latter increases precision by 24 ± 2 per cent without lens light and by

20 ± 2 per cent with lens light. I also examine the gains in performance through

stacking images, and the impact of lens mass-light alignment. For the latter, when

orientation and ellipticity of the lens light profile are allowed to differ from those of

its mass profile, just as with real galaxies, the network performs most consistently

when trained with a moderate amount of scatter between the two profiles.

I next seek ways of improving the method for application to real images, starting

by implementing an existing technique to create a new Bayesian CNN that can

predict both model parameters and their uncertainties. New data sets are then

simulated for training and testing the network, allowing the network to either pre-

dict parameters of the SIE profile or predict those of the more general elliptical

power law profile. To examine how the CNN performs at fitting these profiles to

more complex mass models, these data sets feature a range of increasingly realis-

tic lensing systems, from smooth parametric mass and light profiles to featuring

real background sources, complex hydrodynamically-generated foreground mass

distributions and line-of-sight structure.
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In order to assess the suitability of the Bayesian CNN as a whole, I compare its per-

formance when tested on these data sets to that of a conventional fitting method:

the semilinear inversion technique PyAutoLens. In addition, I present a method

for combining the network with such inversion methods where the CNN provides

initial priors on the latter’s parameters. Across the test sets, I find that the

CNN achieves errors 19 ± 22 per cent lower than when applying PyAutoLens

blindly. Compared to PyAutoLens alone, the initial centring of its priors on

CNN-predicted parameters instead achieves 27 ± 11 per cent lower errors. If the

prior widths are additionally initialised according to CNN-predicted Bayesian un-

certainties, errors are reduced further to 37 ± 11 per cent as the uncertainties

help it to avoid local minima in parameter space, with errors also 17 ± 21 per

cent lower than the CNN by itself. While the CNN is undoubtedly the fastest

modelling method, the combination of the two increases the speed of conventional

fitting alone by a factor of 1.73 and 1.19 with and without CNN-predicted uncer-

tainties, respectively. This, combined with greatly improved precision, highlights

the benefits obtainable through combining neural networks with conventional tech-

niques in order to achieve an efficient automated modelling approach. I finish off

this thesis by discussing the scientific applications requiring such an approach,

and examining how tightly these methods can constrain cosmological parameters

through the modelling of double source plane lenses to aid in our understanding

of the Universe.
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sources. From top to bottom: Einstein radius, orientation and axis

ratio of the lens mass profile. . . . . . . . . . . . . . . . . . . . . . . 105

4.4 SIE lenses + HUDF sources. Distribution of the differences

between predicted SIE mass model parameters and their true values

for test data sets of 1000 images containing HUDF sources, without

LOS structure. The distributions follow the same format as Figure

4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 SIE lenses + HUDF sources + LOS structure. Distribution

of the differences between predicted SIE mass model parameters

and their true values for test data sets of 1000 images containing

HUDF sources, with LOS structure. The distributions follow the

same format as Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . 110

xxii



4.6 SIE lenses + HUDF sources. Comparison of predicted SIE lens

parameters with the true values for test data sets of 1000 images

containing SIE lenses and HUDF sources, without LOS structure.

From top to bottom: Einstein radius, orientation and axis ratio of

the lens mass profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 SIE lenses + HUDF sources + LOS structure. Comparison

of predicted SIE lens parameters with the true values for test data

sets of 1000 images containing SIE lenses and HUDF sources, with

LOS structure. From top to bottom: Einstein radius, orientation

and axis ratio of the lens mass profile. . . . . . . . . . . . . . . . . . 112

4.8 Power law lenses + HUDF sources. Distribution of the dif-

ferences between predicted power law mass model parameters and

their true values for test data sets of 1000 images containing HUDF

sources, without LOS structure. The distributions follow the same

format as Figure 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9 Power law lenses + HUDF sources + LOS structure. Distri-

bution of the differences between predicted power law mass model

parameters and their true values for test data sets of 1000 images

containing HUDF sources, with LOS structure. The distributions

follow the same format as Figure 4.2. . . . . . . . . . . . . . . . . . 117

4.10 Power law lenses + HUDF sources. Comparison of predicted

power law lens parameters with the true values for test data sets

of 1000 images containing power law lenses and HUDF sources,

without LOS structure. From top to bottom: Einstein radius, ori-

entation and axis ratio of the lens mass profile. . . . . . . . . . . . . 118

xxiii



4.11 Power law lenses + HUDF sources + LOS structure. Com-

parison of predicted power law lens parameters with the true values

for test data sets of 1000 images containing power law lenses and

HUDF sources, with LOS structure. From top to bottom: Einstein

radius, orientation and axis ratio of the lens mass profile. . . . . . . 119

4.12 EAGLE galaxy lenses + HUDF sources. Distribution of the

differences between predicted SIE mass model parameters and their

true values for test data sets of 1000 images containing EAGLE

galaxy lenses with HUDF sources, without LOS structure. The

distributions follow the same format as Figure 4.2. . . . . . . . . . . 124

4.13 EAGLE galaxy lenses + HUDF sources + LOS structure.

Distribution of the differences between predicted SIE mass model

parameters and their true values for test data sets of 1000 images

containing EAGLE galaxy lenses with HUDF sources, with LOS

structure. The distributions follow the same format as Figure 4.2. . 125

4.14 EAGLE galaxy lenses + HUDF sources. Comparison of pre-

dicted SIE lens parameters with the true values for test data sets of

1000 images containing EAGLE galaxy lenses and HUDF sources,

without LOS structure. From top to bottom: Einstein radius, ori-

entation and axis ratio of the lens mass profile. . . . . . . . . . . . . 126

4.15 EAGLE galaxy lenses + HUDF sources + LOS structure.

Comparison of predicted SIE lens parameters with the true values

for test data sets of 1000 images containing EAGLE galaxy lenses

and HUDF sources, with LOS structure. From top to bottom:

Einstein radius, orientation and axis ratio of the lens mass profile. . 127

xxiv



4.16 Distributions of the time taken for PyAutoLens to model each of

the lenses making up a given test set when modelling blindly, with

the CNN predictions as priors, and with the CNN predictions and

uncertainties as priors. As the trained CNN can model lenses by

itself almost instantly, its modelling times are not included here.

From top to bottom: test sets consist of SIE lenses with HUDF

sources, SIE lenses with HUDF sources and LOS structure, and

EAGLE galaxy lenses with HUDF sources and LOS structure. . . . 132

6.1 HST F814W image of the ‘Jackpot’ lens J0946+1006 from SLACS,

indicating the discovery of a third source and unconfirmed other

sources of emission from the Multi-Unit Spectroscopic Explorer

(MUSE) survey (Bacon et al., 2010). (Figure credit: Collett and

Smith, 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Ray diagram for a double source plane lens, in which rays from two

separate sources at different redshifts are distorted by the same lens

to produce two sets of lensed arcs or rings. (Figure credit: Collett

et al., 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Sensitivity of the DSPL ratio β to cosmological parameters θ as

functions of redshift. These parameters are Ωm, wa, and w0 for a

flat wCDM cosmology in which w is allowed to vary with redshift

following Equation 6.4. Here, the sensitivity assumes a 1 per cent

measurement of β. (Figure credit: Sharma and Linder, 2022) . . . . 174

xxv



Chapter 1

Introduction

1.1 General Background

The aims of extragalactic astronomy and cosmology have always been to under-

stand galaxies and the larger scale structures of the Universe, and how they evolve

over their lifetime since the Universe’s inception. Ever since the discovery of ob-

jects beyond the Milky Way, astronomers and cosmologists alike have sought to

delve further and further back through cosmological time to discover the build-

ing blocks of the Universe as it is today. A major step forward in this endeavour

came with the discovery of discrepancies between spiral galaxy rotation curves and

their observed stellar masses (Rubin and Ford Jr, 1970), supporting the existence

of dark matter which plays a key role in the formation of structure on galactic and

cosmological scales. Similarly impactful was the discovery of the accelerated ex-

pansion of the Universe in the 1990s, inferring the presence of dark energy through

observations of Type Ia supernovae as standard candles (Riess et al., 1998).

Decades later, we now have a deeper understanding of galaxy evolution and struc-

ture formation, with density fluctuations in the early Universe leading to the for-

mation of small dark matter haloes and filaments (Lacey and Cole, 1993; Schneider,
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2006; Frenk and White, 2012; Conselice, 2014). The resulting hierarchical growth

of these structures, along with the galaxies primarily within them, produces the

large-scale structure we see today (Liddle and Lyth, 2000; Kraljic et al., 2018) as

well as the dark matter substructures found within the mass density profiles of

galaxies and galaxy clusters (Moore et al., 1999a; Ibarra et al., 2019; Haggar et al.,

2021). However, many questions remain as yet unanswered regarding the exact

mechanisms behind this, which are compounded by our lack of understanding of

dark matter and dark energy.

While many possibilities have been proposed as to the nature of dark matter

(Bertone et al., 2005; Peter, 2012), cold dark matter (CDM) has so far proved to

be the most enduring. Being non-relativistic, these particles quickly coalesce under

gravity into potential wells in which galaxies grow, allowing small-scale structure to

form rapidly in the early Universe (Blumenthal et al., 1984). Weakly interacting

massive particles (WIMPs) are the current primary candidates: non-relativistic

theoretical particles predicted by extensions to the standard model that only in-

teract through gravity (Roszkowski et al., 2018). Meanwhile, the simplest form of

modelling dark energy is through the cosmological constant, Λ, of general relativ-

ity, representing the energy density of space (the ‘vacuum energy’). Together, the

ΛCDM cosmological model successfully predicts a wide array of observations, from

baryon acoustic oscillations (BAOs) and cosmic microwave background (CMB) po-

larisation to large-scale structure and accelerated expansion (Perivolaropoulos and

Skara, 2021).

ΛCDM is also generally supported by simulations of the growth of structure over

cosmic time, such as those produced by N -body simulations that model how N

particles dynamically evolve (Bagla, 2005). While these can involve, for example,

galaxies and gas clouds, many N -body simulations consider only gravity and aim to

simulate the behaviour of dark matter. As such, they have been used to study the

formation and topology of large-scale structure (Gott III et al., 1987; Blake et al.,
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2014), test various models of dark matter in order to compare with observations

(Winther et al., 2019; Schwabe et al., 2020), investigate the clustering and shapes

of dark matter haloes (Poole et al., 2016; Vega-Ferrero et al., 2017), and provide

models of dark matter halo density profiles (Navarro, 1996; Mostoghiu et al.,

2019). For galaxy evolution, hydrodynamical models are often chosen instead

(Vogelsberger et al., 2020). These are based on N -body simulations but take into

account physical processes such as the hydrodynamical motion of baryonic matter

in order to study galaxy properties, such as those between galaxy morphology and

colour (Correa et al., 2017), and compare to observations (Bignone et al., 2020) or

other simulations (Haggar et al., 2021). They run over a large range of dynamical

scales, making them computationally expensive, and so handle any physics below

their resolution (such as star formation and AGN feedback) semi-analytically.

However, while ΛCDM simulations are in agreement with observations regarding

large-scale structure, they still suffer from a number of problems. For example,

CDM simulations used to overpredict the dark matter power spectrum on small

scales, producing too high a number of dark matter subhaloes around galaxies com-

pared to observed dwarf galaxy populations like those of the Milky Way (known

as the ‘missing satellites problem’: see Klypin et al., 1999; Moore et al., 1999b).

However, improved observations and simulations now yield too many observed

subhaloes (‘too many satellites problem’: see Kim et al., 2018; Kelley et al., 2019;

Kim and Peter, 2021), with such simulated satellites being too massive and too

dense (known as the ‘too-big-to-fail problem’: see Boylan-Kolchin et al., 2011,

2012). Likewise, simulated CDM haloes around dwarf, irregular and low surface

brightness galaxies all have more cuspy profiles than their observed flatter density

profiles, especially concerning given these should all be dominated by dark matter

(known as the ‘core-cusp’ or ‘cuspy halo’ problem: see Flores and Primack, 1994;

Moore, 1994). Given these issues, and that experimental searches have yielded

no convincing direct detections of WIMPs, there is now some doubt that these

particles make up the dark matter inferred from observations (Bertone and Tait,
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2018). Instead, some are looking to alternative particles such as axions (Nagano

et al., 2019) or to other possibilities including primordial black holes (Jedamzik,

2020) and theories of modified gravity (Belgacem et al., 2019).

In addition to this, dark energy as the cosmological constant still faces major

outstanding problems. Most notably, current quantum field theories predict a

value of the constant 120 orders of magnitude larger than that needed to explain

the Universe’s observed accelerated expansion. This is known as the ‘cosmolog-

ical constant fine-tuning problem’ (Weinberg, 1989; Del Popolo and Le Delliou,

2017), which could necessitate the need for an additional cosmological parameter

to counteract this imbalance.

In order to constrain the nature of dark matter and dark energy, as well as study

large-scale structure and galaxy evolution, many observational methods have been

developed over the past few decades. For example, anisotropies in the CMB sug-

gest a flat Universe, indicating its mass-energy density should equal the critical

density. As measurements of the CMB angular power spectrum show that matter

can only account for around 30 per cent of this (Ade et al., 2014), the presence of

additional (dark) energy is required to explain these observations. Additionally,

odd and even peaks in the CMB power spectrum correspond to regions of maximal

and minimal density, respectively, and ratios of odd to even peaks provide mea-

sures of the relative densities of baryonic and non-baryonic matter in the Universe

(Tegmark et al., 2004).

Meanwhile, the separations of galaxies highlight a preferred length scale for vari-

ations in the density of large-scale structure, arising from BAOs in the matter

power spectrum (Bassett and Hlozek, 2010). Measurements of these separations

can therefore be used to study dark matter through constraining cosmological

parameters such as the matter density, Ωm (Percival et al., 2007). Additionally,

BAOs provide distance scales that can be used as standard rulers in order to

measure cosmological distances through the expanding Universe. Likewise, the
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fixed absolute magnitudes of Type Ia supernovae allows them to be utilised as

standard candles (Kowal, 1968) for this purpose. Combined with redshift mea-

surements, these methods provide a distance-redshift relation that is used to infer

cosmological models of dark energy (Huterer and Shafer, 2017).

Properties of dark energy can also be investigated through the constraining of

cosmological parameters such as the Hubble constant, itself a measure of the ex-

pansion rate of the Universe. Many techniques have seen use in this area, from

‘Early Universe’ CMB anisotropy measurements (Aghanim et al., 2020) to ‘Late

Universe’ distance ladders calibrated by standard candles to measure the expan-

sion rate of the Universe (Riess et al., 2016). However, there remain significant

discrepancies between measured values: this has become known as the ‘Hubble

tension’, in which early and late time measurements disagree by at least 4σ (e.g.

Knox and Millea, 2020; Di Valentino et al., 2021; Freedman, 2021). Gravitational

lensing has also been used in this area, through the measuring of time delays

between multiple images of distant quasars (see Section 1.1.2).

The properties of different dark matter candidates produce different distributions

of dark matter at various scales (such as due to the low free-streaming length of

CDM) that evolve differently with time. In order to shine a light on the proper-

ties of dark matter and its influence on galaxy and structure formation, the dark

matter power spectrum and its evolution over cosmic time must therefore be well

understood, from the lowest mass subhaloes to the large-scale structures of the

cosmic web. As such, a number of techniques are used to measure and constrain

dark matter, including those already discussed (for reviews of such methods, see

e.g. Sumner, 2002; Pécontal et al., 2009; Baudis, 2018; Tao, 2020). For example,

we have already seen that measurements of spiral galaxy rotation curves indicate

the presence of dark matter haloes, and the same holds true for elliptical galaxy

velocity dispersions. Additionally, x-ray emission from galaxy clusters indicate

the presence of large quantities of hot gas that can only be explained should the
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clusters have a large dark matter component (Allen et al., 2002). Mass density

profiles of galaxy clusters also provide powerful tools when accurately modelled

through gravitational lensing, with measured cosmic shear providing constraints

on the dark matter density and the power spectrum amplitude σ8 (e.g. To et al.,

2021). Additionally, strong gravitational lensing of individual galaxies can con-

strain their two-dimensional projected dark matter profiles, with their halo masses

and substructures informing galaxy evolution models and dark matter simulations

(see Section 1.1.2).

As gravitational lenses can help us understand the influence and properties of both

dark matter and dark energy, we will explore these objects and their usage in more

detail over the following sections.

1.1.1 Overview of Gravitational Lensing

In Einstein’s general theory of relativity, the phenomenon of gravitational lensing

arises as a consequence of the curvature of spacetime deflecting the paths of light

rays. Light rays from a source such as a high-redshift galaxy travel along the

shortest path through spacetime (a null geodesic, equivalent to a path of station-

ary traversal time in Fermat’s principle), while massive objects curve spacetime

around them according to their gravitational field. When such an object is sit-

uated between an observer and the light source, the paths of passing light rays

become curved as they follow their geodesics through a now-curved spacetime.

Each ray in a small circular bundle of light rays follows a slightly different curved

path, distorting the bundle into an ellipse. This can result in the light source ap-

pearing magnified and distorted in shape from the point of view of the observer.

Such distortions are generally similar to those produced by convex lenses in optics,

and so these massive intervening objects are called gravitational lenses.

While the possibility of gravity deflecting light had been proposed prior to Ein-
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stein (e.g. Soldner, 1804), the impact of general relativity led to significantly larger

deflections than had previously been predicted. Such deflections were later con-

firmed by Frank Dyson and Arthur Eddington for stellar light rays passing around

the Sun during a total solar eclipse (Dyson et al., 1920), resulting in a change in

the apparent positions of background stars. This is one example of gravitational

microlensing, in which stars and even planets can act as lenses, changing the ob-

served brightness or positions of background stars as they distort their shapes on

unresolvable scales. Beyond the Solar System, microlensing requires near perfect

alignment between the observer, lens and source, and can only be inferred from

the monitoring of light curves as opposed to direct imaging.

While it was determined that the Sun and similar stars were not massive enough

to produce multiple or distorted images, Zwicky (1937) proposed that galaxies

acting as both lenses and sources would have the mass and spatial separation to

yield an observable effect. On these larger scales, light from background galaxies

can be distorted by foreground galaxies, groups and even galaxy clusters. The

strengths of these distortions depend on the amount and distribution of mass in

the foreground lens, as well as the position of the source and the distances between

the source, lens and observer (see Section 1.2 for more details). Depending on these

quantities, the lensing effect can produce anywhere from minor distortions in the

apparent shapes of background sources to producing multiple images of the same

source. Hence, we call the former weak gravitational lensing, while the latter

provides the definition of strong gravitational lensing.

Weak lensing arises when only minor distortions are made to the apparent shapes

of sources, elongating a circularly symmetric source to no more than would be

observed for the most elliptical unlensed galaxies. The detection of weak lensing

therefore relies on analysing the ellipticities, and hence alignments, of many of

these sources in a statistical manner, with the resulting shear measurements used

to obtain the convergence and hence determine the lens mass distribution (see
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Section 1.2.4). Weak lensing is most commonly utilised when modelling galaxy

clusters (Schrabback et al., 2018; Umetsu, 2020; Hong et al., 2021) and measuring

the cosmic shear due to large-scale structures (Hikage et al., 2019; Heymans et al.,

2021; DES Collaboration et al., 2021), due to their wide mass distributions dis-

torting the shapes of many background galaxies simultaneously, although it has

also been applied to galaxy- and group-scale lenses (e.g. Luo et al., 2018; Chen

et al., 2019b; Schrabback et al., 2021).

This thesis instead focuses on strong gravitational lensing. Here, a galaxy, group

or cluster acts as a lens to greatly magnify the light of a background source galaxy,

resulting in multiple images of the same galaxy. Additionally, the appearance of

these images can be distorted into arcs of light, and when the lens and source

are perfectly aligned along the observer’s line of sight (LOS) the resulting images

can form a ring or four-pointed cross around the lens, known as an Einstein ring

and Einstein cross, respectively. The first gravitational lens of this type was not

discovered until 1979, consisting of two lensed images of a quasar either side of a

foreground galaxy (Walsh et al., 1979). Even then, almost a decade went by before

the first Einstein ring was detected by Hewitt et al. (1988) at radio wavelengths.

In this work, I consider only strong galaxy-scale gravitational lensing, wherein the

foreground lens is a single galaxy, as such systems offer the simplest laboratories

for testing the problems in astrophysics and cosmology presented in the following

section. The theory and equations behind this are detailed in Section 1.2.

1.1.2 Uses of Strong Galaxy-Scale Gravitational Lensing

Strong galaxy-scale lensing has proven itself to be a highly versatile tool for study-

ing various physical properties of the Universe. Measurements of the observed dis-

tortion allow for modelling of the projected mass density profile of the foreground

galaxy, which contains information on the dark matter content and substructure

within the lens (Sonnenfeld et al., 2015; Shu et al., 2017; Küng et al., 2018).
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Advancements have been made towards detecting this substructure (Vegetti and

Koopmans, 2009; Vegetti et al., 2014; Hezaveh et al., 2016; Bayer et al., 2018;

Brehmer et al., 2019; Ritondale et al., 2019), with such properties aiding in galaxy

evolution models (e.g. Bolton et al., 2012) to help shed light on how galaxy mor-

phologies change with time.

Lensing maintains the surface brightness of sources, but the resulting magnified

images allow for the probing of high-redshift source populations, especially if their

original surface brightness distributions can be reconstructed. With the addition

of redshift measurements, this too can provide valuable information on galaxy

evolution, and as such has received a recent surge in interest (e.g. Dye et al., 2018;

Lemon et al., 2018; McGreer et al., 2018; Rubin et al., 2018; Salmon et al., 2018;

Sharda et al., 2018; Shu et al., 2018; Sharon et al., 2019; Collett and Smith, 2020;

Khullar et al., 2020; Inoue et al., 2020). Reconstructing the unlensed morphology

of a source is possible if the mass profile of the lens is well constrained (Warren

and Dye, 2003; Suyu et al., 2006; Nightingale et al., 2018; Powell et al., 2021), and

allows for a more in-depth study of its properties, for example, its rotation curves

(Dye et al., 2015; Geach et al., 2018).

The projected mass profiles of the foreground lenses, when combined with other

methods such as galaxy rotation curves, may be used to obtain approximate 3D

(deprojected) mass density profiles. Such profiles can be of use in testing general

relativity (Collett et al., 2018) and cosmological models (Eales et al., 2015; Kry-

wult et al., 2017; Rana et al., 2017; Davies et al., 2018; Yang et al., 2020; Giani

and Frion, 2020; Birrer et al., 2020; Shajib et al., 2020; Wang et al., 2020; Colaço

et al., 2021; Luo et al., 2021). General relativity informs us that light rays passing

through the potential well of a foreground lens at different positions experience

differing time dilation in addition to following separate curved geodesics. Gravi-

tational time delays and geometric path differences between lensed images, paired

with variable sources such as quasars, hence provide measurable time delays that
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can constrain the value of the Hubble constant (H0) irrespective of the distances

to or between the galaxies (e.g. Suyu et al., 2017; Bonvin et al., 2017; Chen et al.,

2018; Birrer et al., 2019; Liao et al., 2019; Taubenberger et al., 2019; Birrer and

Treu, 2020; Wong et al., 2020; Denzel et al., 2021; Li et al., 2021). Recently,

there has been much work on extending this to gravitationally lensed supernovae,

which may provide far tighter constraints on H0 (Collett et al., 2019; Oguri, 2019;

Foxley-Marrable et al., 2020; Bag et al., 2021; Bayer et al., 2021). This is be-

cause their standardisable absolute brightnesses and well-understood light curves

are less stochastic than quasars, their light curves evolve over weeks rather than

years, and the fading of their light curves allows for easier reconstruction of the

background source (Goldstein et al., 2018). There remains significant tension in

the predicted value of the Hubble constant between techniques focusing on early-

universe and late-universe physics (Freedman, 2017; Mörtsell and Dhawan, 2018;

Bengaly et al., 2020; Pandey et al., 2020; Vagnozzi, 2020), with the uncertainties

in lensing estimates being partially reduced through the modelling of larger strong

lens catalogues.

1.1.3 Upcoming Surveys

Obtaining large catalogues of lenses has proven challenging due to their rarity; the

multiple imaging of strong lensing requires the foreground and background galaxies

to be almost perfectly aligned along an observer’s line of sight. Surveys involved

in identifying strong lenses have to date observed only hundreds, with most lying

at low redshift. These include the Sloan Lens ACS (SLACS) survey (Bolton et al.,

2006), the CFHTLS Strong Lensing Legacy Survey (SL2S; Cabanac et al., 2007),

the Sloan WFC Edge-on Late-type Lens Survey (SWELLS; Treu et al., 2011), the

BOSS Emission-Line Lens Survey (BELLS; Brownstein et al., 2011) and lenses

found in the Dark Energy Survey (Dark Energy Survey Collaboration et al., 2005).

Upcoming surveys are expected to remedy this, producing billions of galaxy images
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containing tens of thousands of strong lensing systems (Collett, 2015). These

include the European Space Agency’s Euclid telescope (Laureijs et al., 2011), and

the Rubin Observatory Legacy Survey of Space and Time (LSST) which will use

the ground-based Vera C. Rubin Observatory (formerly the Large Synoptic Survey

Telescope (Ivezić et al., 2008)). Euclid is due to launch in 2023 with the primary

aim of measuring the acceleration of the Universe up to a redshift of z = 2 to study

dark matter and dark energy. Using its visible-wavelength camera (VIS) and near-

infrared photometer (NISP-P) and spectrograph (NISP-S), Euclid will map the

distribution of up to two billion galaxies as it studies the large-scale structure of

the Universe, covering 15,000 deg2 over its six year mission. Meanwhile, LSST

will begin science operations in 2023, covering around 18,000 deg2 in six bands

(u, g, r, i, z, y) every few nights, and repeatedly doing so over the course of ten

years. Among other goals, this will allow the survey to study dark matter and

dark energy on an unprecedented scale.

Combined, these surveys will generate many tens of petabytes of data only pro-

cessable through automation or crowdsourcing. While the latter may help when it

comes to identification, modelling thousands of lenses in an efficient manner will

undoubtedly require automated modelling methods much faster than conventional

parametric techniques.

1.2 Lensing Theory

Having provided an overview of strong gravitational lenses and a discussion of their

uses in the previous section, the following details their theoretical framework,

including the two-dimensional projected mass profiles used in modelling them.

Derivations in this section primarily follow the work of Narayan and Bartelmann

(1996) and Meneghetti (2006), with further information on gravitational lensing

available from a range of sources (e.g. Schneider, 1992; Schneider et al., 1992;
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Mollerach and Roulet, 2002; Kochanek, 2004; Schneider et al., 2006; Treu, 2010).

1.2.1 Effective Refractive Index

In Minkowski spacetime, the deflection of light rays resulting from gravitational

lensing is very much analogous to deflections in geometric optics as light passes

through a medium with a refractive index n. For a lens whose Newtonian potential

Φ is much smaller than c2 (i.e. Φ/c2 ≪ 1, which is valid for all galaxy-scale lenses),

its effective refractive index is

n = c/c′ =
1

1 + 2
c2

Φ
≈ 1 − 2

c2
Φ (1.1)

where c′ = 1 + 2
c2

Φ is the reduced speed of light through the potential. The angle

of deflection is then defined as the gradient of n perpendicular to the path of the

light ray, integrated along this path,

⃗̂α = −
∫

∇⃗⊥n dl =
2

c2

∫
∇⃗⊥Φ dl. (1.2)

This deflection is a factor of two larger than that expected by Newtonian grav-

ity, as the refractive index is analogous to taking into account the local curvature

of spacetime around the lens. As the deflection angle is small, we can simplify

the above by instead integrating along an unperturbed ray with the same im-

pact parameter, rather than along the deflected ray itself: this is called the Born

approximation.

1.2.2 Thin Lens Approximation

To aid in calculating the deflections, it is important to note that the spatial extent

of a lens along the line of sight is far smaller than the distances between the
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observer, lens and source. The deflections therefore occur over a comparatively

small region, and so the lens can be approximated as a thin mass sheet with its

mass distribution projected onto it along the line of sight. This is known as the

thin lens approximation, with the mass sheet referred to as the lens plane. For a

lens of density ρ, its projected surface density is

Σ(ξ⃗) =

∫
ρ(ξ⃗, z) dz (1.3)

for a two-dimensional lens plane vector ξ⃗, and a distance z along the unperturbed

path from the point of closest approach.

If we consider a lens to be a point source with mass M and a light ray along a

path with impact parameter b, the lens will have a gravitational potential

Φ(b, z) =
GM

(b2 + z2)1/2
, (1.4)

which results in a deflection angle of

α̂ =
2

c2

∫
∇⃗⊥Φ dz =

4GM

c2b
. (1.5)

Likewise, a circularly symmetric lens is found to produce a deflection angle of

α̂(ξ) =
4GM(ξ)

c2ξ
(1.6)

for a light ray at radius ξ, with the total mass contained within this radius given

as

M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′ dξ′. (1.7)

Within this approximation, we can then calculate the deflection angle at a position

ξ⃗ for a more complex lens, by considering the contributions from all the mass
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elements (treated as point sources) at positions ξ⃗′:

⃗̂α(ξ⃗) =
4G

c2

∫
(ξ⃗ − ξ⃗′)Σ(ξ⃗′)

|ξ⃗ − ξ⃗′|2
d2ξ′, (1.8)

having defined b⃗ ≡ ξ⃗ − ξ⃗′ to be the impact parameter of each mass element.

1.2.3 The Lens Equation

When describing the effects of gravitational lensing, it is useful to consider a

graphical representation of the deflection of a light ray such as the one shown in

Figure 1.1. Here, light rays originating from a source pass by a foreground lens

of mass M , whose distortion of spacetime changes their trajectory such that they

reach a distant observer. To this observer, the rays appear as if they originated

from another point in space, at the location of their lensed images. The distances

between the observer and the lens, the observer and the source, and the lens and

the source are given by DL, DS, and DLS, respectively. These are given as angular

diameter distances, noting that DLS ̸= DS−DL in general for a curved spacetime.

In this diagram, the optic axis passes through the centre of the lens, with the

source a distance η⃗ away from the axis on the source plane, and the lensed image

a distance ξ⃗ away from the axis on the lens plane. We use θ⃗ = ξ⃗/DL and β⃗ = η⃗/DS

for the angular positions of the lens and source, respectively, and from geometric

identities we obtain the relation,

θ⃗DS = β⃗DS + ⃗̂αDLS (1.9)

assuming the angles involved are small compared to the distances involved. Intro-

ducing the reduced deflection angle

α⃗(θ⃗) =
DLS

DS

⃗̂α(θ⃗), (1.10)
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Figure 1.1: Ray diagram for gravitational lensing. With respect to the line of
sight of a lensing object of mass M , rays (solid line) from a source at angle β
change direction as they pass close to the lensing object. This results in the rays
appearing to originate from an apparent source at angle θ.

we arrive at the lens equation

β⃗ = θ⃗ − α⃗(θ⃗), (1.11)

which relates the lens and source planes through the deflection arising from Σ(θ⃗),

and whose non-linearity allows for multiple lensed images of the source to form

around the lens.

For a circularly symmetric lens, we can consider a special case where the source

is directly behind the lens (β = 0). Combining Equations 1.6 and 1.11 results in

an angular deflection in the lens plane of θ = θE, where

θE =

√
4GM(θE)

c2
DLS

DSDL

(1.12)

is the angular Einstein radius. In this case, the source is lensed into a ring fully

encircling the lens, with its radius depending on the total mass contained within

the ring as well as all three angular diameter distances. The Einstein radius is

also a useful quantity for general strong lensing, as the magnification of images

typically peaks for images on the ring, and multiple images of a source are often
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separated by around 2θE.

As it can be easier to work in dimensionless coordinates than physical ones, espe-

cially when implementing lensing computationally, we can define a length scale ξ0

on the lens plane (for example, image pixels). Combined with the corresponding

scale η0 = ξ0DS/DL on the source plane, we obtain the dimensionless forms of the

vectors for the lens and source plane, respectively,

x⃗ ≡ ξ⃗

ξ0
, y⃗ ≡ η⃗

η0
. (1.13)

We also define a scaled deflection angle

α⃗(x⃗) =
DLDLS

ξ0DS

⃗̂α(ξ0x⃗) =
1

π

∫
(x⃗− x⃗′)κ(x⃗′)

|x⃗− x⃗′|2
d2x′ (1.14)

where κ(x⃗) = Σ(x⃗)/Σcr is the dimensionless surface density (or convergence), and

Σcr =
c2

4πG

DS

DLDLS

(1.15)

is the critical surface density. A lens which satisfies the condition Σ(x⃗) > Σcr

anywhere indicates that it is capable of producing multiple images, with such a

condition being a requirement for typical strong lenses (but not strictly neces-

sary should they possess certain unusual density profiles: see Subramanian and

Cowling, 1986). Finally, we can hence rewrite the lens equation as

y⃗ = x⃗− α⃗(x⃗) (1.16)

which allows computed deflection angles (see later) to map positions on the lens

plane to those on the source plane. The mapping is performed in this direction as

the non-linear lensing effect allows multiple lens plane positions to correspond to

a single source plane position.
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1.2.4 Magnification and Critical Curves

While lensing changes the size and shape of the source, it conserves its surface

brightness, increasing the total source flux and leading to a magnified, if distorted,

view of the source. The appearance of the lensed source depends on properties of

the lens mass profile, the angular diameter distances involved, and the position of

the source relative to the lens along the line of sight. For the latter, this is because

the level of magnification varies according to the surface mass profile of the lens.

By considering the limit of point sources, the local behaviour of the nonlinear

mapping between source and image positions in Equation 1.11 can be linearised.

As such, the distortion can be described by the Jacobian matrix,

A ≡ ∂β⃗

∂θ⃗
=

(
δij −

∂αi(θ⃗)

∂θj

)
(1.17)

for components (i, j) on the lens plane, where δij is the Kronecker delta function.

The determinant of the Jacobian gives the local solid-angle distortion, and hence

we can quantify the magnification µ by its inverse,

µ =
image area

source area
=
δθ2

δβ2
=

1

detA
=

1

(1 − κ)2 − |γ|2
, (1.18)

which can be described by two quantities: the convergence κ and shear γ. These

respectively dictate the isotropic re-scaling of the source size and the amount

by which the lensed image is stretched (sheared) in a given direction (note that

the observed magnification of extended sources will also depend on their surface

brightness distribution).

From analysing these quantities, we find regions of infinite magnification on the

lens plane, defined by two lines: the tangential and radial critical curves. Images

forming along a tangential or radial critical curve are greatly distorted tangentially

or radially to this line, respectively. Such images are formed when sources lie

along corresponding lines in the source plane, known as tangential and radial
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Figure 1.2: Source and image configurations for a circularly symmetrical non-
singular lens. The left diagram shows the sources located around caustics, while
the right diagram shows the resulting lensed images positioned around critical
curves. Each coloured source produces the corresponding coloured images. (Figure
credit: Schäfer et al., 2020)

caustics. The number of images increases by two each time the source enters

the region of a caustic, although the innermost image is usually too faint to be

observed. Circularly symmetric lenses have point-like tangential caustics, while

those of elliptical lenses take the form of an astroid with four cusps. Examples of

these lines and possible image configurations are shown in Figures 1.2 and 1.3.

As a source approaches a foreground circularly symmetrical lens, it experiences

only minor changes to its magnification and shape (weak lensing) but to an ob-

server appears to remain outside the tangential critical curve. Crossing the outer

(radial) caustic results in two more images of the source; these initially form to-

gether as a single radially-elongated image on the opposite side of the lens at the

radial critical curve before separating. When the source nears the inner (tangen-

tial) caustic, the innermost image demagnifies while the two outer images expe-

rience strong tangential magnification. These eventually form an Einstein ring

along the tangential critical curve once the source is aligned directly behind the

lens.

While much of this remains the same for elliptical lenses, some changes occur

due the elongation of the critical curves and the presence of the cuspy tangential
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Figure 1.3: Source and image configurations for an elliptical lens. Left panel:
source crossing a fold caustic. Right panel: source crossing a cusp caustic. Each
panel contains two diagrams: the left diagram shows the lensed images positioned
around critical curves, while the right diagram shows the sources located around
caustics. Each coloured source produces the corresponding coloured images. (Fig-
ure credit: Narayan and Bartelmann, 1995)

caustic. After the source passes the outer caustic, the positions of the two new

images can vary depending on the source’s angle of approach. As the source reaches

and crosses the inner caustic, a new image appears at the tangential critical curve,

strongly magnified along it before again splitting into two. Once the source aligns

with the lens, the four outer images now form an Einstein cross, with two images

positioned inside the tangential critical curve and two outside.

Clearly, the mass distribution of the lens changes the appearance of the source

images, with parameters like its ellipticity capable of producing different image

configurations. This relationship between mass distributions and observations is

hence something that can be learned by a machine, as we shall explore later in

this thesis.
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1.2.5 Lens Mass Profiles

As we have seen, the magnification and deflection angle depend upon the two-

dimensional mass distribution of the foreground lens. If we assume that matter

within galaxies behaves like an ideal gas in thermal and hydrostatic equilibrium,

a simple solution can be obtained in which the density at a given radius r from

the centre is given by

ρ(r) =
σ2
v

2πGr2
, (1.19)

where σv is the one-dimensional velocity dispersion which is constant across the

galaxy (Narayan and Bartelmann, 1996). This is known as the singular isothermal

sphere (SIS) model, and corresponds to a projected surface density of

Σ(ξ) =
σ2
v

2Gξ
. (1.20)

Such a profile lacks a core radius and instead contains a singularity at its cen-

tre, causing the innermost (demagnified) lensed image to vanish. Despite this

singularity, it is capable of reproducing the flat rotation curves of spiral galaxies

(Keeton, 2001; Meneghetti, 2006) and continues to provide a good fit to the mass

profiles of early-type galaxies that make up the majority of strong galaxy-scale

lenses (e.g. Koopmans et al., 2006, 2009; Auger et al., 2010a). This, combined

with the profile’s simplicity (its lens equation is simply y⃗ = x⃗− x⃗/|x⃗|) makes it a

common choice for modelling such lenses.

As galaxies are frequently non-spherical in shape, a model also popular for strong

galaxy-scale lensing is the singular isothermal ellipsoid (SIE; e.g. Kormann et al.,

1994). This expands on the SIS model by introducing ellipticity, e = 1− q (where

q is the semi-minor to semi-major axis ratio), along a preferred orientation, and

is the model used most extensively in this thesis. I provide here the forms of

isothermal ellipsoid deflection angles presented in Keeton (2001), which have been

separated into horizontal and vertical components (α1, α2) along with positions
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on the lens plane (x1, x2):

α1(x1, x2) =
bnq√
1 − q2

tan−1

√
1 − q2x1
ψ + q2s

, (1.21)

α2(x1, x2) =
bnq√
1 − q2

tanh−1

√
1 − q2x2
ψ + q2s

, (1.22)

where ψ2 = q2(s2 + x21) + x22, and s is the core radius, set to zero for SIE profiles1.

The normalisation factor

bn = 4π
(σv
c

)2 DLS

DS

(1.23)

is equal to the angular Einstein radius in the limit of a singular, spherical model.

For lenses rotated by an angle ϕ, the ellipticity be separated into two components

of complex ellipticity,

e1 =
1 − q2

1 + q2
cos 2ϕ , e2 =

1 − q2

1 + q2
sin 2ϕ . (1.24)

Such deflections were utilised in this thesis to simulate images containing galaxy-

scale lenses. More details on this simulation process are given in Section 2.1.2.

In addition to the SIE model, I also utilise a more generalised form beginning in

Chapter 3: the power law profile. The density distribution of this model follows

ρ ∝ r−n, having introduced an extra lens model parameter, the power law slope

n. This model covers most of the simple, physically interesting density profiles,

with the velocity dispersion now a function of radius. Spherical power law models

produce the deflection angles and convergences

α(θ) = bn

(
θ

bn

)2−n

, κ(θ) =
3 − n

2

(
θ

bn

)1−n

, (1.25)

1A limit of defining such elliptical mass profiles is that if q = 1 then (α1, α2) → ∞. However,

as q → 1, the arctan and arctanh functions aid in preventing the deflections from growing to

infinity, and so in practice, one can set values of q arbitrarily close to 1 while maintaining finite

deflections.
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Figure 1.4: Deflection angles of power law mass profiles as functions of angular
radius on the lens plane (both in units of the normalisation bn), for various power
law slopes n ranging from 1 to 3. Compared to the SIS model, deflections of
more extended profiles (n < 2) fall to zero at the lens centre while those of more
concentrated profiles (n > 2) diverge. (Figure credit: Kochanek, 2004)

where the definition of the normalisation bn depends on the chosen slope (Schneider

et al., 2006). A value of n = 2 corresponds to an SIS model, which approaches a

point mass lens as n→ 3 (and hence κ = 0 with a central singularity). If instead

n → 1, the profile instead becomes similar to the inner region of an NFW model

(Navarro, 1996) commonly used for dark matter haloes, although here κ tends to a

constant unlike the central cusp of the NFW model (for which κ ∝ ln θ). Examples

of how the deflections change with slope are given in Figure 1.4. A variable slope

can allow such profiles to provide better fits to many galaxy lenses; studies have

shown that while close to isothermal, the total mass density profiles of massive

elliptical galaxies tend to have slightly higher power law slopes (Dutton and Treu,

2014; Cappellari et al., 2015; Jee et al., 2015). For example, Auger et al. (2010a)

obtained values of ⟨n⟩ = 2.08± 0.03 and scatter σn = 0.16± 0.02 for 73 early-type

galaxies at z < 0.5.
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Modelling lenses with power law profiles can also aid in galaxy evolution models.

For example, while Koopmans et al. (2009) and Barnabè et al. (2011) found no

significant evolution of slope with redshift up to z = 0.5 and z = 0.3, respectively,

Ruff et al. (2011) analysed 11 early-type galaxy strong lenses and found a mild

negative trend between power law slope and redshift for z = 0.2 − 0.9. This was

supported by Sonnenfeld et al. (2013), who investigated this evolution of power

law slope for tens of massive early-type galaxy lenses at z = 0.2 − 0.8 and found

that for a fixed stellar mass and effective radius the slope became steeper at lower

redshifts. While no evidence for a redshift-dependent slope was found by Cui

et al. (2017) for 118 gravitational lenses combined with other observations, mild

evolutions were once again suggested in work by Holanda et al. (2017) and Chen

et al. (2019a), with the latter studying 161 strong galaxy-scale lenses. These

trends hence suggest that dissipative processes may contribute to the evolution

of early-type galaxies since z = 1, such as through dissipative mergers causing

baryons to cool and fall to the galaxy centre (Ruff et al., 2011).

Using the formalism of Tessore and Metcalf (2015) for the elliptical power law

model used in this thesis, we rewrite the convergence as

κ(R) =
3 − n

2

(
bn
R

)n−1

, (1.26)

where R =
√
q2x21 + x22 is the elliptical radius. We also define the elliptical angle

φ = arctan(qx1, x2) such that the coordinate transformation is

x1 = R/q cosφ , x2 = R sinφ . (1.27)

Following the complex formulation of lensing used in Tessore and Metcalf (2015),

which will not be detailed here, we obtain the complex deflection angle

α(R,φ) =
2bn

1 + q

(
bn
R

)n−2

eiφ2F1

(
1, n−1

2
; 5−n

2
;−1−q

1+q
ei2φ
)
, (1.28)
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Figure 1.5: Critical lines (black) and caustics (grey) for elliptical power law pro-
files. Dotted red ellipses represent the axis ratio, and have semi-minor axes equal
to b which, for the purpose of illustration, decreases as q1/2. Left to right: power
law slope n increasing from 1.25 to 2.75 in steps of 0.5. Top to bottom: axis ratio
decreasing from 0.8 to 0.2 in steps of 0.2. (Figure credit: Tessore and Metcalf,
2015)
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Figure 1.6: Isocontours of the elliptical power law profile’s deflection potential
(black) and surface mass density (grey). The power law slope varies from n = 1.25
(left) to n = 2.75 (right) in steps of 0.5, while the axis ratio varies from q = 0.8
(top) to q = 0.2 (bottom) in steps of 0.2. (Figure credit: Tessore and Metcalf,
2015)
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where 2F1(a, b; c; z) is the Gaussian hypergeometric function, and assign α1 = αreal

and α2 = αimag when simulating the lens. Examples of the resulting critical lines

and caustics for elliptical power law profiles of different axis ratios and slopes are

presented in Figure 1.5, while examples of their corresponding deflection potentials

and surface mass densities are given in Figure 1.6.

A major limitation of this profile is that the hypergeometric function must be

evaluated numerically, and so its presence is the main contributor in slowing the

computations of the deflections. For this reason I revert to using Equations 1.21

and 1.22 when simulating SIE models as opposed to setting n = 2 and using the

above form. Additionally, the slope parameter proves challenging when fitting

profiles to real galaxy-scale lenses, significantly slowing the modelling process for

conventional techniques. We will see in the next section how machine learning has

been applied to this area to help quicken both the identification and modelling of

these lenses.

1.3 Existing Techniques for Lens Detection and

Modelling

With the advent of large scale surveys, vast data sets of images will become avail-

able over the next decade. In order to cope with so much information, multiple

automated methods have been developed over the years for rapidly and accurately

identifying strong gravitational lenses. These have included geometrical quantifi-

cation techniques (Seidel and Bartelmann, 2007; Bom et al., 2017), the analysis

of colour bands (Gavazzi et al., 2014; Maturi et al., 2014), spectroscopic analy-

sis (Baron and Poznanski, 2016; Ostrovski et al., 2017; Talbot et al., 2021), and

the Histogram of Oriented Gradients (HOG) feature extraction method (Avestruz

et al., 2017). Convolutional Neural Networks (CNNs) have seen considerable use
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in this area (Jacobs et al., 2017; Lanusse et al., 2017; Petrillo et al., 2017; Schäfer

et al., 2018; Davies et al., 2019; Jacobs et al., 2019; Metcalf et al., 2019; Canam-

eras et al., 2020; He et al., 2020; Li et al., 2020; Huang et al., 2021; Magro et al.,

2021; Gentile et al., 2022; Jacobs et al., 2022; Morgan et al., 2022; Wilde et al.,

2022), along with other machine learning methods (Cheng et al., 2020), as these

require neither the spectroscopic data nor arbitrary geometric measurements often

employed by the other techniques.

CNNs are a subset of deep neural networks that have in recent years become

popular for handling large amounts of data. They have been extensively used for

rapid feature extraction and classification of images, and have seen a wide range of

applications in astronomy, from discovering exoplanets to classifying gravitational

wave signals to measuring photometric redshifts and the structures of high-redshift

galaxies (e.g. Fluke and Jacobs, 2020; Paillassa et al., 2020; Schuldt et al., 2020;

Tohill et al., 2020; Wu and Peek, 2020). Such networks have been shown to be

very effective at correctly identifying thousands of lenses purely from images, and

are able to do so extremely quickly. However, this first requires the CNN to be

trained on many tens of thousands to hundreds of thousands of images; with so few

real images of gravitational lenses, these training sets must be simulated instead.

While lens detection has also seen the application of citizen science (More et al.,

2015; Sonnenfeld et al., 2020), there may be little overlap between lenses identified

by citizen science and those by machine learning (Knabel et al., 2020), highlighting

the need for multiple approaches in order to obtain the most complete sample.

Following identification of a lens system, mass modelling is typically performed

using parametric techniques. These obtain the lens mass model parameters that

best fit the observed image. Different techniques have been developed for this

purpose, for example those that involve reconstructing sources parametrically or on

pixellated grids (Warren and Dye, 2003; Vegetti and Koopmans, 2009; Nightingale

et al., 2018; Etherington et al., 2022) or the use of shapelets (Birrer et al., 2015;
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Birrer and Amara, 2018). Modelling can often require time-consuming processes

including point spread function estimation, deblending and subtraction of the lens

galaxy light through repeated modelling, and image masking prior to modelling.

For example, Rojas et al. (2021) deblends the lens light from the source based

primarily on their colours, Bolton et al. (2008a) and Shu et al. (2016) fit the

lens light with a smooth radial B-spline model (detailed in Bolton et al., 2006),

and Nightingale et al. (2018) and Birrer and Amara (2018) repeatedly model the

lens light as one or more superpositions of parametric profiles. To circumvent

some of this initial processing, current modelling techniques now simultaneously

fit both the lens galaxy light and mass profile but at the expense of an even slower

modelling speed.

With CNNs successfully used for detecting lenses, they have since been shown to

provide a promising alternative method of lens modelling. Hezaveh et al. (2017)

demonstrated this for the first time, training a combination of networks to predict

lens mass model parameters and applying them to simulated and real Hubble Space

Telescope (HST) images. A method of obtaining uncertainties on these predictions

was presented by Levasseur et al. (2017), using a CNN as an approximate Bayesian

neural network (BNN; see Section 1.4). While the initial training took multiple

days on a GPU machine, when applied to test images they reported an increase

in lens modelling speed of several orders of magnitude compared to parametric

methods, demonstrating the potential application of CNNs for this purpose. This

was later extended for application to interferometric observations (Morningstar

et al., 2018), along with the demonstration of machine learning to additionally

reconstruct the background source from CNN-predicted parameters (Morningstar

et al., 2019).

Since then, CNNs and similar networks have seen much use in lens modelling, in-

cluding source reconstruction (Chianese, 2019; Chianese et al., 2020), redshift and

lens velocity dispersion estimation (Bom et al., 2019) and the detection and mod-

28



1.3. EXISTING TECHNIQUES FOR LENS DETECTION AND MODELLING

elling of dark matter substructure (Brehmer et al., 2019; Alexander et al., 2020;

Lin et al., 2020; Ostdiek et al., 2020; Rivero and Dvorkin, 2020; Varma et al., 2020;

Vernardos et al., 2020; Alexander et al., 2021; Ostdiek et al., 2022a,b). CNNs have

also seen use in general galaxy deblending and segmentation (Burke et al., 2019;

Hausen and Robertson, 2020), which could have application to strong gravita-

tional lenses. Recent work by Maresca et al. (2021) showed how CNNs could

easily identify unphysical source reconstructions outputted by semi-analytic para-

metric modelling methods, allowing for an automated approach to dealing with

incorrect models. With regard to using CNNs to obtain parametric lens mass pro-

file parameters, Schuldt et al. (2021) focused on ground-based imaging, leaving

in foreground lens light and making use of four filters to distinguish sources com-

posed of Hubble Ultra-Deep Field (HUDF; Beckwith et al., 2006) galaxies before

examining how well the CNN-predicted models translated into predicting time de-

lays and image positions. Park et al. (2021) applied an approximate BNN to the

modelling of time-delay lenses consisting of lensed AGN, combining results with

simulated time delays for H0 inference across hundreds of such lenses. Wagner-

Carena et al. (2021) presented a hierarchical inference framework for such BNN

lens modelling to avoid biases introduced by differences between training and test

data sets, while an alternative approach was proposed by Legin et al. (2021) which

used a second network to perform a density estimation technique in order to im-

prove BNN predictions. And Madireddy et al. (2019) presented a pipeline for both

lens detection and modelling, including denoising and deblending (removing lens

light), using multiple different deep neural networks in a modular fashion that

provided informative latent spaces and uncertainties at each stage.

The CNN has become prevalent within the field of gravitational lensing as an

important classification and modelling method, and is the main focus of this thesis.

In the next section we will explore how exactly this form of machine learning works,

and how it has become such an effective tool in an astronomer’s arsenal.
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1.4 Machine Learning

While the theory of artificial neural networks (ANNs) has been around since the

1940s, their popularity has increased dramatically only over the last decade thanks

to advances in deep learning and computing power. With developments to Nvidia’s

graphics processing units (GPUs) in 2009, ANNs could be trained in a fraction of

the time and allowed for deeper, more complex architectures. Soon after, networks

began outperforming traditional methods and paved the way for the ‘deep learn-

ing revolution’. Since then, a range of different network architectures have been

applied to various problems including pattern, image & speech recognition, ob-

ject detection and classification, clustering, time series data analysis and natural

language processing. They have seen use across many fields, from astronomy to

medical imaging to commercial applications like Google Translate. In this section

I will present an overview of neural network architecture and functionality with a

focus on convolutional neural networks, and discuss the mechanisms of how they

can be trained to produce desired results.

1.4.1 Neurons & Neural Networks

The concepts of ANN architecture and learning were first devised by McCulloch

and Pitts (1943) and arise directly from those of the brain, with Hebb (1949)

presenting the idea of pathways in the brain strengthening with each use. Just

as the brain is made up of interconnected neurons, so too are neural networks,

although for the latter these artificial neurons, or nodes, are grouped into layers.

Nodes in a given layer are not connected to each other but are instead connected

between layers, conventionally to those adjacent to that layer. Mathematically,

each of these nodes is a computation whose output y is the dot product of its

inputs x (the outputs of nodes from the previous layer) and the strengths of their

connections to the node w (weights), plus the strength of the node itself b (bias),
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which is then passed through some non-linear ‘activation’ function f :

y = f

(
n∑

i=1

wixi + b

)
(1.29)

This non-linearity allows the network to learn non-linear relationships in parameter

space, present in most real-world data.

Originally these nodes were perceptrons (Rosenblatt, 1958), capable of only a bi-

nary output; networks consisting of one or multiple layers of these nodes were hence

single-layer and multi-layer perceptrons, respectively. As this binary approach was

limited, multiple continuous activation functions have since been developed, suit-

able for a much broader range of applications. The activation function chosen

throughout this work is the Rectified Linear Unit (ReLU; Nair and Hinton, 2010)

function

f(x) = max(0, x) (1.30)

which acts non-linearly on the nodes such that any negative values are set to zero.

This activation function was chosen as it is both computationally efficient and

helpful in avoiding the vanishing gradient problem, which can prevent network

weights from changing during training (details of training are presented in Section

1.4.3), and hence this form is commonly used by deep neural networks in place of

sigmoidal activation functions.

The data for the the network to analyse acts as the input to the first layer (the

‘input layer’). Computations at each node in that layer are performed with the

outputs passed on to the next layer, and this forward pass of information continues

until the final values are outputted in the ‘output layer’. Deep neural networks

are a type of ANN that contain at least one ‘hidden’ layer between the input and

output layers, which allow for more complex relationships to be learned.

The simplest type of layers are fully connected, i.e. each node in the layer is

connected to every node in the preceding layer; if this is the case for all layers then
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the network is itself fully connected. While the simple structure of fully connected

networks makes them applicable to a wide range of problems, they are rarely used

to handle images and other complex data as they can be less effective and more

computationally expensive than other more specialised networks. Instead, deep

neural networks often incorporate other types of layers.

1.4.2 Convolutional Neural Networks

As the main focus of this thesis is on the application of convolutional neural net-

works (CNNs) to strong gravitational lens modelling, these networks are described

in more detail here. CNNs are a subset of neural networks that have become pop-

ular over the past few years for their ability to deal with the large amounts of

information contained in images, such as for edge detection and face recognition.

Inspired by research on the visual cortex by David Hubel and Torsten Wiesel in

the 1950s and 1960s, Fukushima (1980) introduced the precursor ‘neocognitron’

neural network, which would later become the more modern CNN developed by

LeCun et al. (1989).

CNNs contain grid-like convolutional layers that apply convolutional filters (also

known as kernels) to their inputs in order to extract information, in a similar man-

ner to image processing techniques (e.g. Villa et al., 2016). Each kernel consists of

a small grid of weights, with an additional bias term dictating the overall strength

of that kernel. During a convolution, the kernel scans across the image, taking

the dot product of its weights with each section of the image (called the kernel’s

receptive field).

For a given convolutional layer, the number and dimensions of the kernels are set

by hyperparameters, as are the horizontal and vertical strides (the distances in

pixels that a kernel moves per step across the image). When an image is fed into

the layer as an input, each kernel is convolved with it to produce a two-dimensional
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feature map; convolutions take place across the image depth, such that the output

has a depth of one. Hence the output of the layer is a stack of feature maps, with a

depth equal to the number of kernels applied. While all of these kernels share the

same dimensions, their values are individually learned as the network is trained.

CNNs also usually contain other layer types in addition to convolutional layers.

Pooling layers decrease the image size to both speed up computation and allow

later convolutional layers to learn more abstract features from the lower resolu-

tion image. These are often chosen to be max-pooling, outputting the maximum

values of each kernel-sized region of the image, due to such maximal values being

the most informative for spatially-encoded information than, for example, average

values (Chollett, 2017). For this reason, max-pooling layers are used in this work.

Additionally, batch normalisation can be implemented after each convolutional

layer, which normalises their output in order to increase the stability of the net-

work. After feature extraction, a ‘flatten’ layer converts the stacks of images from

the last convolutional layer into a one-dimensional vector. This is then passed to

one or more fully connected layers, where each node in the layer is individually

connected to all nodes in the preceding layer, in order to identify relationships in

the data that the convolutional layers cannot.

1.4.3 Training a Network

In order to use a neural network, it must be trained on data in order to optimise its

weights and biases and reduce its error (loss). In this regard, networks are usually

classified as supervised or unsupervised, the former requiring its training data to

be labelled with the correct values. This helps supervised networks to learn what

to output for a given input, but requires us to have prior knowledge of the details

of the training set. Unsupervised networks do not require this labelling but as a

result are mainly used for clustering and so are not the focus of this work.
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Neural networks are usually used for either classification or regression tasks. Clas-

sification networks output values corresponding to the probability of an input

belonging to a given class or category; these can be binary or a decimal value be-

tween 0 and 1. Such networks have therefore been employed in gravitational lens

finding, classifying for example whether an image contains a lens or not. However,

this thesis focuses on modelling lenses through obtaining values for lens mass pro-

file parameters, and as such uses a regression network where the output contains a

series of numbers that can take any value, each representing one of the parameters.

Networks also contain hyperparameters which are set before training and often

fine-tuned through repeated training attempts, whether by hand or through an

automated process such as Bayesian hyperparameter optimisation. These include

the number and types of layers, the number of training iterations (epochs) and the

step size taken to reduce the loss after each iteration (learning rate). As part of

constructing a network, a suitable cost function must be selected. Cost functions

evaluate the performance of the network during training, which for a supervised

regression network compares the predictions y′ to the true values y in some way. A

suitable cost function must be differentiable with respect to the weights and biases

of a network, can be written as an average, and must not depend on any activation

values besides those of the output layer. In the following chapter, the chosen cost

function is the mean squared error (MSE) calculated for n input images,

MSE =
1

n

n∑
i=1

(yi − y′i)
2

(1.31)

which is reduced as the network trains. As the cost function dictates how the

network learns, changing it inevitably impacts network performance; MSE is com-

monly used as a cost function due to its simple implementation and ability to

heavily penalise outliers leading to more reliable predictions. An optimiser algo-

rithm is also required to inform the network how it should update the weights and

biases after each iteration to reduce its overall loss. In some cases the optimiser
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also updates the learning rate, reducing it from initially large steps that help the

network explore parameter space down to small steps that allow it to converge on

precise values.

Training supervised convolutional neural networks is performed over a number of

epochs, typically requiring tens to hundreds of thousands of training images. For

a given epoch, these images pass through the network in batches (also called mini-

batches), with the loss for each batch calculated via the cost function. This loss is

then used to update the weights and biases of the network using processes known

as mini-batch gradient descent and backpropagation. In gradient descent, the

gradient of the cost function is calculated with respect to the weights and biases.

The weights and biases are then updated by taking small steps (proportional to

the learning rate) in the direction of the negative gradient in order to minimise

the loss. Backpropagation, derived in the 1960s, first saw use in neural networks

by Rumelhart et al. (1986), with its modern form popularised by LeCun et al.

(1989). In backpropagation, gradient descent begins at the output layer with

gradients propagated backwards through the network so that all weights and biases

are updated despite the network’s complexity. How exactly the gradients and

learning rate are used in this manner depend on the choice of optimiser, which can

itself introduce additional hyperparameters. Throughout this thesis, the Nadam

optimiser (Dozat, 2015) is used for this purpose, which is a combination of methods

based on the gradient descent algorithm.

Once all batches of images have passed through the network and a final loss

stored, but before the next epoch begins, a separate validation set of images is

passed through the network to see how well the network has generalised to images

beyond those it has trained on. While the validation loss has no impact on training,

it provides a measure of whether the network is under- or over-fitting to the

training data, in which case a modification to the training set or hyperparameters

is required. Should the training and validation losses be similar and low enough for
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the given task, no further updates or modifications are made, and the now trained

network is then tested on images from a completely separate test set. This acts

as a last check of its generalisation in case the above modifications result in over-

fitting to the validation set, and marks the last step of training. The trained

network is then ready for application to new data.

1.5 Thesis Overview

As discussed earlier in this chapter, gravitational lensing benefits astronomy and

cosmology in many ways. This includes providing a means of studying the prop-

erties of distant galaxies by modelling their mass profiles and reconstructing back-

ground sources. It also aids in our understanding of the evolution of large scale

structure through dark matter measurements and constraining cosmology.

In order to cope with future surveys that are set to discover many thousands of

lenses, automated approaches are required. Additionally, these surveys will revisit

the same lenses multiple times, inevitably leading to the repeated remodelling of

any given lens as the data improves. In preparation for this, machine learning

methods have thus seen use in modelling strong lenses quickly and efficiently,

including the prevalent use of CNNs for this task. However, the functionality

and limitations of such networks have not yet been fully explored, nor has a

comprehensive analysis been performed of their accuracy and efficiency compared

to conventional modelling methods.

In this thesis, I seek to examine the use of deep learning convolutional neural

networks as a competitive strong galaxy-scale gravitational lens modelling method

when applied to upcoming wide-field survey data. In Chapter 2, I construct and

train a CNN in order to investigate the practicalities faced by such networks for

lens modelling, analysing their accuracy and reliability when applied to strong

galaxy-scale lens images with the imaging characteristics of the LSST and Euclid
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surveys. The network architecture is presented along with details of my simulated

data sets used for training and testing. CNN results for images with foreground

lens light subtracted are compared to those with lens light included, testing on

both single band and multiband imaging. I also analyse how network performance

varies with the mass model parameters themselves, the impact of mass-light profile

alignment, as well as the gain in accuracy through stacking images.

In Chapter 3, the theory of Bayesian probability and variational inference are

presented before these are utilised to create a Bayesian neural network capable

of predicting its own uncertainties, for use in the rest of the thesis. After a

hyperparameter fine-tuning process, I provide the architecture and training process

of this Bayesian CNN. This is followed by details of the more realistic simulated

data sets used for its training and testing, with the multiple test sets featuring

increasingly complex lensing systems from smooth mass profiles to those with

hydrodynamically-simulated substructure, line-of-sight structure and real source

galaxies.

In Chapter 4, comparisons are made between the Bayesian CNN and paramet-

ric fitting methods when tested on the above data sets, including both SIE and

elliptical power law profile modelling. The semilinear inversion technique PyAu-

toLens is chosen as the parametric fitting method for this comparison, and I

additionally explore a way of combining these methods together through utilis-

ing CNN predictions as priors for PyAutoLens. An analysis of their modelling

speeds is also presented.

In Chapter 5, a summary and discussion of the work in this thesis are presented,

covering the key findings, limitations and difficulties experienced. Final conclu-

sions are presented, and the chapter finishes with an overview of the potential

future work and applications of both the Bayesian CNN and its combination with

conventional modelling methods.
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In Chapter 6, these applications are discussed in more detail, with a focus on

those requiring large samples of modelled strong lenses. This is followed by an

examination of one such application to constrain cosmological parameters through

the modelling of double source plane lens systems, in which I propagate the results

of the earlier chapters to obtain the precision that can be expected for these

cosmological parameters in light of future surveys.

38



Chapter 2

CNNs for Strong Lens Modelling

With the need for efficient lens modelling techniques to cope with future large-

scale survey data, the next chapter covers the initial work carried out during this

PhD on using machine learning for this purpose, investigating the practicalities

faced when applied to data sets with the imaging characteristics of these surveys.

Specifically, I focus on Euclid and LSST for the simulated images, with the latter

consisting of either one or three bands. To begin, the methodology of this work

is discussed in Section 2.1, including the chosen architecture and training process

for my CNN along with the simulation process used to generate its training and

testing image data sets of lenses. The results of my investigation into multiple

aspects of using such networks for lens modelling are then presented in Section

2.2. First, I compare LSST and Euclid results along with quantifying the benefits

from using LSST multiband imaging, and study how errors vary with the lens

parameters themselves. In addition, I examine how the CNN copes when trained

to model the lens mass profile with and without prior subtraction of foreground

lens light. This is followed by an assessment of the impact of assumed mass and

light alignment during training when lens light is not subtracted. Lastly, the

performance gain from stacking images and improved signal-to-noise is presented.

These results are then followed by a summary of this chapter in Section 2.3, and are
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further discussed in Chapter 5. This chapter features work from my publication

‘The use of convolutional neural networks for modelling large optically-selected

strong galaxy-lens samples’ (Pearson et al., 2019).

2.1 Methodology

In Section 1.3 we saw how convolutional neural networks have been used to speed

up lens modelling by several orders of magnitude once trained, and Section 1.4

detailed their theory, operation and general structure. Now, I begin by describing

the chosen CNN architecture and training process used for the rest of this chapter,

including the mass model parameters it will predict. I follow this by providing

details of the lensed image simulations used to train the network, in preparation

for the investigations presented in the next section.

2.1.1 CNN Architecture

The modelling of gravitational lens mass profiles is a regression task that requires

the use of a supervised CNN; see Sections 1.4.2 and 1.4.3 for details of their ar-

chitecture and operation. To select the network architecture for this work, a grid

search was performed over network hyperparameters, including the number and

ordering of each type of layer, layer widths (i.e. the number of kernels applied in

a given layer), and convolutional kernel dimensions. This was done by training

and testing each architecture on 10,000 and 1000 images, respectively, to obtain

the highest accuracy with minimal overfitting while also seeking to limit train-

ing times (and hence computational cost). The work by Hezaveh et al. (2017)

was also taken into account, which demonstrated that a network with relatively

few layers can perform just as well as far more complex network architectures.

Figure 2.1 shows the chosen network architecture, consisting of six convolutional
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Figure 2.1: Structure of the CNN used in this work, showing the input image and
the output shape of each block of layers. The types of layers in each block are
given underneath, along with the kernel sizes (in pixels) used. In total there are
six convolutional layers, each with batch normalisation, four max-pooling layers
and two fully connected layers. A ‘flatten’ layer is also included to connect the
multidimensional data to the 1D fully connected layer, and ReLU activation is
used throughout. Numbers given above or beside each output are the output
dimensions. Further details can be found at the end of Section 2.1.1.

layers, four pooling layers, and a hidden fully connected layer before the final out-

put layer (which itself is fully connected). Six convolutional layers provided the

best efficiency for this work in terms of accuracy and training time, and batch

normalisation was performed after each one. A kernel stride of one was chosen

and zero-padding was incorporated at the image edges to maintain the image size

through the convolution. The pooling layers were chosen to be max-pooling (see

Section 1.4.2), and ReLU activation functions were used throughout (see Equation

1.30 and Section 1.4.1).

The mass model parameters that we wish to obtain are those of an SIE lens:

the Einstein radius θE, orientation ϕ and ellipticity e of the elliptical projected

mass profile (see Section 1.2). Such profiles therefore range from circular (e = 0)

to highly elliptical (e → 1). However, the network was trained to predict the

Einstein radius and two components of complex ellipticity (see Equation 1.24)

later converted to orientation and ellipticity, as this gave more reliable values

than directly predicting these parameters.

As well as refining hyperparameters, the network’s performance was improved

further by pre-processing the inputs, with images intensity scaled so the counts in

each pixel lay in the range 0-1. The mass model parameters were also scaled to
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the range 0-10 before being passed to the network and later re-scaled back when

determining model performance. Typically, outputs of a neural network are scaled

to the range 0-1, however the range 0-10 achieved higher accuracy and precision

for this work.

In terms of the weights and biases, each layer has the following:

• Convolutional layer: For input height x1, width x2 and depth (number of

bands) D, the input is an (x1, x2, D) matrix, with the input to the first layer

being the original image of depth D = 1, or D = 3 for multiband images.

The output is an (x1, x2, N) matrix, where N is the number of kernels applied

in that layer. The bias and weights of each kernel can change as the network

trains, but remain fixed as the kernel is applied across the image. Each

kernel of size (k1, k2) has a depth equal to that of the input, and has an

associated bias, resulting in a total of k1× k2×D×N weights and N biases

per layer. The kernel sizes used are given in Figure 2.1.

• Batch normalisation layer: When used after a convolutional layer, a batch

normalisation layer normalises across each feature map of the input using

two trainable parameters. Hence for input depth D, this results in 2 × D

trainable weights.

• Max-pooling layer: Pooling uses a 2 × 2 kernel with a stride of two (i.e.

the kernel shifts by 2 pixels between each application as it moves across an

image), hence for input dimensions (x1, x2, D) the output has dimensions

(floor(x1/2), floor(x2/2), D).

• First fully connected layer: The input is a flattened 1152-node array [the

preceding layer has output dimensions (3, 3, 128)], and the output is a 512-

node array, hence there are 1152 × 512 weights and 512 biases.

• Final layer: Input is a 512-node array, output is a 3-node array (one output

per parameter to estimate), hence there are 512 × 3 weights and 3 biases.
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• Total: 1 band = 2,395,267 trainable parameters.

• Total: 3 bands = 2,398,403 trainable parameters. This difference comes from

the first (convolutional) layer having deeper kernels to match the depth of

images with multiple bands (i.e. D = 3 above): see Section 1.4.2.

Multiple versions of the network were trained, using the single-band and multi-

band imaging characteristics of the LSST as well as those of the single-band Euclid

VIS instrument, with and without prior subtraction of foreground lens light. Each

network was trained on 50,000 simulated images over 150 epochs, with identical

architectures and hyperparameters. During training, the mean squared error was

used as the network’s cost function to determine its overall error, and the best

results for network optimisation were obtained using the Nadam optimiser (see

Section 1.4) and a learning rate of 1e-3. The CNN was run on a GPU machine

(featuring an Nvidia GeForce GTX 1080 Ti GPU), allowing for much faster pro-

cessing; for example, training over 150 epochs on 50,000 single-band images takes

less than an hour, and 3-band images in less than 1.5 hours, while testing on such

data sets takes only a few seconds.

2.1.2 Image Data Set Simulation

This work utilises a supervised approach to machine learning, so requires training

the network on a large data set of simulated strongly-lensed images labelled by

their true lens model parameters, as discussed in Section 1.4. The procedures for

generating these images are described in the following section.

To make the training and test sets, I created a strong gravitational lens simula-

tor: an overview of its simulation process is given below. The simulator involved

multiple detection criteria that, if at any point were not met, would restart the

generation process for a given image. A more in-depth description of many aspects

of the simulator, including the detection criteria, are described after this overview:
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1. Set initial hyperparameters:

(a) Select the survey (LSST or Euclid) and set the corresponding tele-

scope properties, including exposure time, number of exposures, tele-

scope gain, image size, image resolution, filter bandwidths, point spread

function (PSF) full width at half maximum (FWHM), readout noise,

dark current, sky background surface brightness, and AB magnitude

zeropoints.

(b) Choose the number of images to simulate, and the amount by which to

temporarily upscale the resolution during the simulation process (the

resolution was doubled in this work, such that one pixel in the final

image was simulated as four pixels).

(c) Define the cosmology, the lens mass model, the lens and source light

profiles, the criteria required for a sufficient strong lens detection, and

whether to sample the lens mass model parameters from uniform or

realistic distributions.

2. Load galaxy spectral energy distributions (SEDs), and define image arrays.

3. For each image:

(a) Define the following parameters: orientations and axis ratios of mass

and light profiles for the lens and source, Sersic indices of light profiles,

the position of the lens in the image, and the ratio of the Einstein radius

to the lens light effective radius.

(b) Select redshifts of the lens and source, and calculate angular diameter

distances and Mpc length scales of the lens and source plane.

(c) For the lens, select the velocity dispersion (if required) and determine

the Einstein radius (and effective radius using the above ratio). Com-

bine with the fundamental plane (Hyde and Bernardi, 2009) to obtain

the r-band absolute magnitude.
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(d) For the source, select the r-band absolute magnitude from its luminosity

function, combine this with the Faber-Jackson relation (Nigoche-Netro

et al., 2010) to obtain velocity dispersion, and use the fundamental

plane to obtain the effective radius.

Detection Criteria: check that image and counter image are resolved

in at least one band, using the Einstein radius, the effective radius

of the source, and the telescope seeing.

(e) Lens flux: begin by selecting an SED for the lens given its redshift. This

now needs to scaled according to the chosen r-band absolute magnitude

in order to obtain apparent magnitudes and flux in each filter:

i. For each filter, integrate over the SED to obtain the relative mag-

nitudes in each band. Repeat for a redshifted version of the SED

and compare to obtain the K-corrections for each filter.

ii. Scale the non-redshifted relative magnitudes according to the r-

band absolute magnitude to obtain absolute magnitudes for each

filter.

iii. Applying the K-corrections, convert absolute magnitudes to ap-

parent magnitudes, and convert these first to photon flux, then to

electron flux, and finally to analogue-to-digital unit (ADU) counts

following Ivezic et al. (2010).

(f) Source flux: select an SED for the source, and repeat the above.

(g) Create the lens plane at the upscaled resolution, and apply the lens

equation using the deflection angles of the chosen mass model to obtain

the corresponding positions on the source plane.

Detection Criteria: select the position for the centre of the source

based on the Einstein radius of the lens, to help ensure multiple

imaging of the source.

(h) Create an (unlensed) source image and a lensed source image using the
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lens and source plane position mapping (at the upscaled resolution) and

the light profile parameters. Downscale these images back to the desired

resolution, scale their intensities according to the counts determined for

each filter, and convolve with the telescope PSF.

Detection Criteria: compare source image and lensed source image

to check that magnification and tangential shearing is sufficient.

(i) Create the lens light profile at the upscaled resolution, downscale to the

chosen resolution, rescale by the expected counts, and convolve with the

PSF.

(j) Noise: apply shot noise to the lens, the lensed source, and the back-

ground sky counts, and add these together into one image. Subtract

the pre-noise lens light profile to leave shot noise residuals, and add

readout noise and dark current.

Detection Criteria: determine the signal-to-noise ratio (see Section

2.2.4) and check it meets the required threshold.

(k) Store parameters in arrays, store the final image in a matrix (for saving

as a batch of images), and optionally save the image individually.

4. Save arrays of stored parameters and matrices containing generated images,

to be loaded later as training and test data.

As the majority of lenses are early-type galaxies, the lens mass profile adopted

was the SIE model (see Section 1.2), commonly used as a good fit for strong lens

profiles. For the same reason a Sérsic profile was used to model the light profile

of the source and lens, with the Sérsic index randomly drawn from a normal

distribution with a mean of 4 (i.e. that of a de Vaucouleurs profile). For sources,

r-band absolute magnitudes were sampled from the double-Schechter luminosity

function of Kelvin et al. (2014), while for lenses these were instead obtained using

the fundamental plane relation from Hyde and Bernardi (2009). Redshifts for
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the lens and source were selected from uniform distributions with upper limits of

zlens = 2 and zsource = 6, based on trial data sets and work by Collett (2015),

and used to obtain r-band apparent magnitudes. Spectral energy distributions

(SEDs) of appropriate ages were then selected uniformly from LSST simulated

object SEDs (Connolly et al., 2014, available from the LSST GitHub repository),

redshifted accordingly, and combined with the r-band magnitudes to obtain the

flux in each band. These SEDs use the Bruzual and Charlot models (Bruzual and

Charlot, 2003) with a Chabrier (2003) initial mass function (IMF), and either an

exponential decline or an instantaneous burst of star formation.

The data sets used for training and testing the CNN contained tens of thousands

of single or multiband images (see Section 2.2 for further details). The multiband

images were generated using three filters of the LSST with RGB=(i, r, g), using

the observatory’s CCD filter response curve (Connolly et al., 2014, available from

the LSST GitHub repository), and likewise the Euclid VIS filter response curve.

These curves are presented in Figure 2.2. I adopted the native pixel scale of

the LSST (0.2 arcsec pixel−1; Ivezić et al., 2008; Abell et al., 2009) and Euclid

(0.1 arcsec pixel−1; Racca et al., 2016), and from inspecting the data sets and

the distribution of known Einstein radii the postage stamp images were fixed at

57 × 57 pixels, as this maintained the visibility of lensed arcs while minimising

both simulation and training times to handle the many data sets used in this work.

Image size was fixed despite differences in resolution between LSST and Euclid

resulting in lensed arcs appearing smaller in the images of the former compared

to the latter, as this ensured that the CNN architecture outlined in the previous

section remained constant between LSST and Euclid images (except for the depth

of multiband LSST images). Even so, the extra space around the lensing system in

the LSST images would not impede a suitably-trained network due to its ability to

focus on regions of interest, except for perhaps longer training and testing times

than strictly necessary. Typical exposures were used for each visit, with LSST

images consisting of two 15s exposures (Abell et al., 2009) and Euclid VIS images
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Figure 2.2: Filter response curves for Euclid VIS and the six (u, g, r, i, z, y) filters
of LSST. For LSST image simulations in this work, I focus on the g, r and i bands,
which together cover approximately the same wavelength range as Euclid VIS.

consisting of a single 565s exposure (Cropper et al., 2018), with AB magnitude

zeropoints of 27.09, 28.58, 28.50, 28.34, 27.95, 27.18 for LSST (Ivezic et al., 2010)

and 25.5 for Euclid (Collett, 2015).

After generating the lensed image of the background source, light from the lens

was added and the image then convolved with a Gaussian point spread function

with a full width at half-maximum of 0.7 and 0.17 arcseconds for LSST and Euclid,

respectively. The sky background was added (Ivezic et al. (2010) for LSST, Niemi

(2015) and Collett (2015) for Euclid VIS) along with shot noise, the expected

read noise (five electrons per readout) and dark current (two electrons per pixel

per second; Radeka et al., 2009). For this work, multiple data sets required the

subtraction of the foreground lens light. This was implemented by subtracting

the true light profile convolved with the point spread function, leaving only shot

noise residuals. It should be noted that this subtraction of the true light profile is

idealistic, and hence worse residuals are expected to be present in real data; this
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Figure 2.3: Example Euclid VIS images demonstrating foreground lens light sub-
traction, produced from the gravitational lens simulator. Top images have their
lens light included, while bottom images are for the same systems once lens light
has been subtracted.

is discussed further in Section 5.4. Examples of lens light subtraction are shown

in Figure 2.3 for simulated Euclid images.

For these postage stamp images the lens centre positions followed a normal distri-

bution about the image centre with a standard deviation of one pixel, and for all

galaxies the offset between centre of the mass and centre of the light was taken to

be zero. To ensure sufficient training across parameter space, the data sets used

for training the network consisted of lenses whose Einstein radii, orientations and

ellipticity were uniformly distributed in the ranges 0.2-3.2 arcseconds, 0-180◦, and

0.0-0.6, respectively.

For both training and test data sets, the ellipticity and orientation of the lens light

profile was scattered relative to the mass profile according to the following distri-

butions measured from real lens samples. Light profile axis ratios were set to those

of the mass profile divided by a factor taken from a normal distribution of mean

1.02 and standard deviation of 0.12 (Bolton et al., 2008b). The mass profile orien-

49



2.1. METHODOLOGY

tation was sampled from a normal distribution centred on the chosen light profile

orientation with standard deviation of 10◦ (Bolton et al., 2008b). The impact of

these mass-light correlations on network performance was also investigated: see

Section 2.2.3.

The data sets used for testing the network were simulated to have distributions

of parameters in line with the expected observations of the LSST and Euclid.

Orientation of the light profiles were uniformly distributed, while mass profile

axis ratios were selected from a normal distribution of mean 0.78 and standard

deviation of 0.12 (Koopmans et al., 2006). Likewise, velocity dispersions were

selected from a normal distribution with mean 250 and standard deviation of 44

km s−1 based on results from SLACS papers (e.g. Shu et al., 2017), and used to

determine lens Einstein radii REin (Equation 1.23). Lens effective radii Re were

then drawn from the observed distribution of the ratio REin/Re from Koopmans

et al. (2006) (a normal distribution of mean 0.52 and standard deviation of 0.17)

truncated to the range 0.1-10, and together with Einstein radii were in agreement

with known distributions (Koopmans et al., 2006; Gavazzi et al., 2007; Bolton

et al., 2008a). For these generated test data sets, the distributions of Einstein

radii, velocity dispersions and redshifts are given in Figures 2.4, 2.5, and 2.6.

The lens and source could be offset from one another to produce arcs rather than

full rings, with all source centroid positions determined randomly from a uniform

distribution within the Einstein radius of the lens in order to ensure a lensed image.

Multiple detection criteria were implemented to ensure strong gravitational lenses

were produced, based on the criteria in Collett (2015):

1. Centre of the source must be multiply-imaged (must lie within the Einstein

radius θE for this work),

2. Image and counter image must be resolved in at least one band (image

centres are separated by ∼ 2θE, so (2θE)2 > (2Re,source)
2 + seeing2),
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Figure 2.4: Distribution of Einstein radii from the gravitational lens simulator
for Euclid and LSST test data sets. Euclid has mean 1.04 and width (standard
deviation) 0.46 arcsec, and the LSST has mean 1.35 and width 0.45 arcsec.
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Figure 2.5: Distribution of velocity dispersions from the gravitational lens simula-
tor for Euclid and LSST test data sets. Euclid has mean 278 and width (standard
deviation) 39 km s−1, and LSST has mean 284 and width 38 km s−1.

0 1 2 3 4 5 6
Redshift, z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
um

be
r 

D
en

si
ty

Euclid (Lens)
Euclid (Source)
LSST (Lens)
LSST (Source)

Figure 2.6: Distribution of lens and source redshifts from the gravitational lens
simulator for Euclid and LSST test data sets. Euclid (lens) has mean 0.74 with
width (standard deviation) 0.29, Euclid (source) has mean 2.04 with width 0.89,
LSST (lens) has mean 0.48 with width 0.21 and LSST (source) has mean 1.71
with width 0.74.
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Figure 2.7: Example images produced from the gravitational lens simulator. From
left to right: simulated Euclid, r-band LSST and colour LSST using RGB=(i, r,
g). Images have a pixel scale of 0.1 arcsec pixel−1 for Euclid and 0.2 arcsec pixel−1

for LSST.

3. Sufficient magnification (µTOT > 3) and tangential shearing (µTOTRe,source >

seeing) in at least one band,

4. Sufficient signal-to-noise ratio (SNR > 20) in at least one band.

Some examples of the outputs of the simulation are shown in Figure 2.7, for Euclid,

single-band LSST and multiband LSST (RGB = i, r, g).

2.2 Investigating the Practicalities of CNN-based

Lens Modelling

Having simulated data sets of lensed images with the imaging characteristics of

the LSST single-band, LSST multi-band and Euclid VIS, the CNN was trained

and tested on each of these separately, using the architecture outlined in Section

2.1.1. CNNs with identical architectures were trained on these data sets. Now, we

examine the performance of these networks when applied to a variety of different

test sets. In the following section, I discuss how network performance varies a)

between subtracting and including lens light in the simulated images, b) with dif-

fering assumptions about how mass follows light in both training and test images,

and c) with signal-to-noise and the stacking of images.
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Throughout this chapter, errors on network-predicted lens model parameters are

computed from the distributions of differences between the true and predicted

parameter values across the test image set. As these distributions can be non-

Gaussian in nature, we quantify these using the 68 per cent confidence interval

either side of the mean and refer to it hereafter as a parameter’s ‘error’.

2.2.1 Investigation I - Subtracting Lens Light

To begin, the CNN was trained and tested on each of the simulated data sets

with foreground lens light subtracted. Lens light subtraction is often performed

by lens modelling software so as to allow for easier modelling of the background

source light (see Section 1.3). The subtraction used for this work, described in

the previous section, makes use of the known lens light profile parameters and so

over-simplifies this process. CNN performance may vary slightly with different

lens subtraction techniques, but testing these is not the focus of this work; I in-

stead assume the case of ideal subtraction leaving only shot noise residuals. The

three data sets had the imaging characteristics of LSST r-band, LSST multiband

(RGB=i, r, g) and Euclid VIS, each consisting of 10,000 images. The network

predicted the Einstein radii and two components of complex ellipticity of the fore-

ground lens mass profiles, with the two components later converted to orientation

and ellipticity.

Tables 2.1 and 2.2 respectively list the resulting CNN errors and median biases for

each of the parameters and data sets, with the distributions of parameter errors

presented in Figures 2.8 and 2.9. The large scatter in ellipticity results in Figure

2.9 compared to the other parameters is expected as ellipticity has a smaller effect

on lensed source images and hence making it harder to predict. From the figure

and Table 2.2, it is clear that there is very little biasing of results towards over-

or under-predicting parameters when lens light is subtracted, with Einstein radius

and ellipticity biases not exceeding 0.6 per cent and 1.6 per cent, respectively.
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Table 2.1: Errors (68 per cent confidence intervals) on CNN-predicted parameters
for the three survey data sets. Results are presented both for images which have
had the foreground lens light subtracted and for images with the lens light present.
Errors are computed from the distributions of differences between true and pre-
dicted parameter values across 10,000 test images (see beginning of Section 2.1).

Euclid LSST LSST
Mass model parameter VIS r-band (gri)
Lens light subtracted
Einstein radius, θE (arcsec) 0.043 0.054 0.042
e1 0.066 0.062 0.047
e2 0.066 0.062 0.048
Ellipticity, e 0.057 0.053 0.041
Orientation, ϕ (radians) 0.164 0.155 0.114
Lens light included
Einstein radius, θE (arcsec) 0.064 0.091 0.071
e1 0.089 0.090 0.072
e2 0.092 0.089 0.072
Ellipticity, e 0.079 0.077 0.064
Orientation, ϕ (radians) 0.225 0.220 0.172

Biases for all parameters are much smaller than the errors presented in Table 2.1,

and do not appear to be affected by the choice of survey.

Single-band LSST and Euclid share similar results for orientation and ellipticity,

but Euclid achieves higher precision for Einstein radii owing to the telescope’s

higher image resolution and narrower point spread function. Taking the mean

average and standard deviation over Einstein radius, orientation and ellipticity,

switching from a single band to three bands reduces parameter errors by 24±2 per

cent, as expected due to the increased information available to the network. This

in turn results in the LSST gri results reaching the lowest errors for all parameters.

To investigate in what areas the network struggles to predict parameters, Figure

2.10 presents how the errors on these parameters vary with the value of each

parameter. The results for Einstein radius θE are given as fractional errors, (i.e.

68 per cent confidence interval of (θpredictedE − θtrueE )/θtrueE ), with the error bars in

the figure corresponding to the standard errors. From the top row we see that

errors increase for smaller Einstein radii, as expected; the limited image resolution
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Figure 2.8: Distribution of the differences between the network’s predicted pa-
rameters and their true values for test data sets of 10,000 images. From top to
bottom: Einstein radius, orientation and ellipticity of the lens mass profile. These
distributions correspond to single-visit Euclid VIS (blue), LSST r-band (green)
and LSST gri data sets (red), both with the lens light included and subtracted
(solid and dashed lines, respectively).
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Figure 2.9: Comparison of network-predicted lens parameters with the true values
for images with lens light subtracted. From left to right: Einstein radius, orien-
tation and ellipticity of the lens mass profile. From top to bottom: Euclid VIS,
LSST r-band and LSST gri.
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Figure 2.10: The variation of network-predicted lens model parameter errors with
each parameter value. The solid and dashed lines correspond to images with lens
light included and subtracted, respectively. The blue diamonds, green triangles,
and red circles correspond to Euclid VIS, LSST r-band and LSST gri images,
respectively. From left to right: Einstein radius, orientation and ellipticity of the
lens mass profile. From top to bottom: Einstein radius, orientation, ellipticity
and REin/Re, the ratio between Einstein radius and effective radius. The error
in Einstein radius is given as the fractional error, and the error bars are the
corresponding standard errors.
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Table 2.2: Biases of CNN-predicted parameters for the three survey data sets,
computed from taking the median average across 10,000 test images of the pre-
dicted parameter values minus their true values. Percentage biases are given next
to the absolute biases for Einstein radius and ellipticity, with negative values in-
dicating under-predictions compared to the true values.

Euclid LSST LSST
Mass model parameter VIS r-band (gri)
Lens light subtracted
Einstein radius, θE (arcsec) 0.005 (0.5%) 0.008 (0.6%) -0.003 (-0.2%)
e1 0.001 0.001 0.004
e2 -0.002 0.005 0.004
Ellipticity, e -0.003 (-1.3%) -0.003 (-1.3%) -0.003 (-1.6%)
Orientation, ϕ (radians) 0.001 -0.003 0.003
Lens light included
Einstein radius, θE (arcsec) 0.010 (1.1%) 0.000 (0.0%) 0.010 (0.6%)
e1 -0.001 -0.002 0.000
e2 0.007 0.003 0.005
Ellipticity, e -0.019 (-9.1%) -0.016 (-7.7%) -0.012 (-5.4%)
Orientation, ϕ (radians) -0.009 -0.010 -0.017

results in the network having reduced information on the shapes of smaller, more

pixellated arcs. However, no correlation is observed between parameter errors and

orientation on the second row, with errors clearly unaffected as the network should

not show a preference for certain orientations.

From the third row, we see that all parameter errors are affected by ellipticity.

More elliptical lenses result in lensed arcs less closely following the shape of the

Einstein ring, producing larger errors in Einstein radius. Yet this makes it easier

to identify the direction of the elongation, reducing orientation error as expected

in the central graph. However, in the third graph we observe that an increased

ellipticity also increases the error on ellipticity predictions. This can be explained

as higher ellipticities result in larger caustics within which the source galaxy can

reside, and hence produce more varied lensed arcs that the network may struggle

to learn. As such, this trend vanishes when presented as the fractional error in

ellipticity.
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2.2.2 Investigation II - Including Lens Light

Having analysed results when training and testing the CNN on images with lens

light subtracted, we now examine how this performance changes when instead

training and testing on images containing lens light. Leaving in lens light may

make it more difficult for lens modelling software to distinguish the source light,

but avoids issues of modelling residuals left behind from unsuccessful lens subtrac-

tion. An alternative to subtraction is masking of lens light, but such masks are

usually applied manually; automatic masking may result in greatly varying results

and is left to other work.

With the presence of lens light in these images, it was necessary to ensure realistic

differences between the light and mass profiles. Motivated by observations (Koop-

mans et al., 2006; Bolton et al., 2008b), the ellipticity and orientation of the mass

profiles were scattered about those of the light profiles with standard deviations

of 0.12 and 10◦, respectively, for both training and testing of the network. This is

investigated in more detail in Section 2.2.3.

The test results, showing how the new CNN errors change with each parameter, are

again shown in Figure 2.10. These closely follow the same trends as images without

lens light, although errors are higher on average. As lens light can interfere with

modelling by overlapping source light, I also investigated how the errors changed

with the ratio between the Einstein radius and the lens light profile’s effective

radius, REin/Re, shown on the bottom row. We observe that the network is mostly

unaffected by this ratio, at least over the range tested, which is an encouraging

indication that lens model parameters can still be reliably estimated even when

lens light begins to dominate the lensed source image.

Test results are again presented in Tables 2.1 and 2.2 and in Figure 2.8, with

predicted parameters against their true values shown in Figure 2.11. Regarding

biases, those for Einstein radius and the complex ellipticity components remain
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Figure 2.11: Comparison of network-predicted lens parameters with the true values
for images including lens light. From left to right: Einstein radius, orientation and
ellipticity of the lens mass profile. From top to bottom: Euclid VIS, LSST r-band
and LSST gri.
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overall similar to those for lens light-subtracted images, while those for orientation

have increased in magnitude. However, the largest change is seen in ellipticity, with

biases now reaching over 9 per cent and values generally under-predicted. This

is because the CNN struggles to model lenses with higher ellipticity so resorts

to following more closely to the lens light, and, due to the upper bound when

randomly selecting ellipticity, highly elliptical simulated galaxies are more likely

to have light profiles with lower ellipticities than their mass profiles. Despite this,

biases for the parameters are still small relative to the errors in Table 2.1 and

continue to show little correlation with the choice of survey.

Just as for images without lens light, the CNN obtains the smallest errors for ori-

entation and ellipticity using the three-band LSST data set. This is to be expected

as the addition of lens light to all three data sets would do little to impact their

relative performance, with these parameter errors reduced by increased available

information. However, the lowest errors for Einstein radius arise from the Euclid

data set, as this parameter is now primarily affected by image resolution due to

the increased difficulty in separating the source and lens light. With the lens light

present the colour information can be used to distinguish between the foreground

lens and background source. Even if the colouration of the two were similar, the

multiple bands still act to improve the signal-to-noise. However, the change from

using a single LSST band to three bands now has a reduced impact compared to

images with lens light subtracted, with errors only decreasing on average by 20±2

per cent likely due to the worse network performance overall.

Comparing the results with those in Section 2.2.1, it is clear that the inclusion

of lens light degrades the results for all data sets, including the multiband LSST

results. Instead, subtracting lens light from three-band LSST images decreases

errors by 41, 36 and 34 per cent for Einstein radius, ellipticity and orientation,

respectively. This is compared to decreases of 34, 28 and 27 per cent for Euclid

VIS and 40, 32 and 30 per cent for LSST r-band, resulting in an average decrease
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of 34 ± 5 per cent across the parameters and data sets. Orientation error changes

the least since this is dominated by the larger errors associated with predicting

orientation for rounder lenses, seen in Figure 2.10.

Training and testing on multiband images containing lens light produces higher

errors than those of single-band images with lens light subtracted. This demon-

strates that successful subtraction of the foreground lens light leads to a more

significant reduction in errors than incorporating multiband data. However, this

lens subtraction is for the ideal case where light profile parameters are known, so

this result may be lessened depending on the choice of subtraction technique.

Overall, the network achieves the greatest performance for LSST gri images in

which lens light has been subtracted, having the lowest errors for all parameters.

Clearly networks trained on images without lens light still benefit significantly

from the use of multiple colour bands, which increases the precision of all predicted

parameters.

2.2.3 Investigation III - Light & Mass Profile Alignment

The presence of lens light in the images used to train and test the network clearly

has a significant influence on its performance. The data sets used to investigate

this in the previous section contained ellipticities and orientations that could differ

between the mass and light profiles. Such a scatter is observed in the real Universe

(e.g. Koopmans et al., 2006; Bolton et al., 2008b), and can offset the positions of

lensed sources (Harvey et al., 2016). In this section, a series of tests are conducted

to assess how well the network performs with varying mismatch between mass-

light alignment in the training and testing images, which was used to inform the

data sets used in the previous section. For each image, the parameters of the mass

profile were first selected (as described in Section 2.1.1), followed by those of the

light profile. For the latter, the ellipticity elight and orientation ϕlight were drawn
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from two normal distributions with means set by the corresponding mass profile

values, and with variable standard deviations in order to control the scatter in

alignment between the profiles, such that

ϕlight = N (µ = ϕSIE, σϕ) , (2.1)

elight = 1 − qlight = 1 − qSIE
N (µ = 1, σe)

, (2.2)

where q = b/a is the axis ratio, N (µ,σ) is a normal distribution of mean µ and

standard deviation σ, and the standard deviations of the orientation offset and

ellipticity offset are σϕ and σe, respectively. Hence, larger values of σe and σϕ

correspond to less correlation between the light and mass profiles.

Three tests were performed, in each case training on 50,000 images and testing

on 10,000 images, with the imaging characteristics of the Euclid telescope. For

the first two tests, the σ for one parameter was varied in the training and test

data while the other was kept at σ = 0 in both data sets. For the third test

both σe and σϕ were varied by the same multiples of their SLACS values (see

Section 2.1.2) in the training and test data. For these tests, we used more highly

magnified sources by restricting source positions to within the lens caustic, rather

than within the Einstein radius as before, to gain a clearer view of the impact of

the mass-light alignments of orientation and ellipticity on CNN performance and

parameter errors.

In Figure 2.12, in most cases the parameter errors remain relatively insensitive to

the offset between mass and light orientation regardless of how the CNN is trained.

For example, the figure indicates how a network trained on a scatter of σϕ = 60◦,

akin to almost no correlation between the profiles, will vary little with the scatter

of the test data set, as it is clearly not associating the two profiles. However, we

observe notable trends for all three parameters when trained on images with no
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Figure 2.12: Error on mass model parameter predictions as a function of the
scatter between light and mass orientation in the test data. For these results,
the ellipticity of the light profile follows that of the mass with zero scatter (i.e.
σe = 0), for both training and test data. From top to bottom: Results for Einstein
radius, orientation and ellipticity. The dashed lines indicate the results for data
sets with lens light subtracted, which hence act as a control. The vertical black
line indicates the standard deviation used elsewhere in this work, σϕ = 10◦, based
on SLACS results.
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offset (given by the blue circles). In this case, the CNN more easily determines

lens parameters when both mass and light profiles in the test set are more closely

oriented.

When trained with σϕ = 0◦ the network associates the foreground lens light with

the mass profile parameters, relying on the lens light to determine them, and

so its predictions are less reliable when tested with greater scatter in mass-light

orientation. This can clearly lead to large errors, especially for orientation, when

the network is applied to such misaligned systems. Einstein radii are obtained

from studying the lensed arcs of the source, and for elliptical lenses different lens

orientations and ellipticities for the same source position will result in different

arc configurations. Hence, the trend seen in the upper plot of Figure 2.12 is less

pronounced than the other parameters as to obtain the Einstein radius the network

must still rely more on the lensed source light. For ellipticity error as a function

of σϕ, shown in the lower plot of Figure 2.12, the ellipticity of the light and mass

profiles are kept identical, so if the network only learned from the lens light then

it should perform equally well regardless of σϕ. The fact that this is not observed

thus indicates that the network is still learning from the lensed source light to an

extent when predicting mass profile ellipticity.

Errors in parameter predictions are also presented in Figure 2.13, now when vary-

ing the scatter between the light and mass profile ellipticity, σe, in the test set.

When trained with σe = 0, similar trends are again observed for Einstein radius

and ellipticity, whose errors are more affected by this scatter in ellipticity than

the previous scatter in orientation. This is likely because from Figure 2.11 we

know that ellipticity is already generally hard for the CNN to predict, so it may

rely more heavily on that of the light profile which in turn affects the prediction

of Einstein radius: Should the ellipticity expected from the lensed source light

be different to that of the light profile, the CNN would handle this discrepancy

through (incorrectly) changing its prediction of Einstein radius. However, for ori-
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Figure 2.13: Error on mass model parameter predictions as a function of the
scatter between light and mass ellipticity in the test data. For these results,
the orientation of the light profile follows that of the mass with zero scatter (i.e.
σϕ = 0), for both training and test data. From top to bottom: Results for Einstein
radius, orientation and ellipticity. The dashed lines indicate the results for data
sets with lens light subtracted, which hence act as a control. The vertical black
line indicates the standard deviation used elsewhere in this work, σe = 0.12, based
on SLACS results.

66



2.2. INVESTIGATING THE PRACTICALITIES OF CNN-BASED LENS
MODELLING

entation error the σe = 0 trend we observed in Figure 2.12 has disappeared, as the

CNN can just use the lens light to obtain the direction of ellipticity. But what if

the lens light appears circular? As discussed when varying σϕ, the network utilises

the lensed source light to measure ellipticity even with the presence of lens light,

and so can use the direction of this distortion to measure orientation.

It should be noted that in the middle panel of Figure 2.13 the σe = 0 trend for ori-

entation error has not only flattened, but actually reversed somewhat. This would

suggest that a larger scatter between the test set’s light and mass profile elliptici-

ties can result in lower orientation prediction errors. However, this is because the

mass profiles’ axis ratios in the test sets are sampled from a normal distribution

with a mean of 0.78 that is closer to the upper limit of 1 (an ellipticity of zero)

than the lower limit of 0.4 (an ellipticity of 0.6). As a result, the tails of the

distribution are unevenly cut off, biasing the sampling of light profile ellipticities

to slightly higher values on average for larger σe, with these larger values allowing

for more precise orientation predictions, as per Figure 2.10.

Figure 2.14 shows the results of simultaneously scattering both ellipticity and

orientation between the light and mass profiles of the test data. With the inclusion

of lens light, the lowest average error is achieved when training and testing on

lenses with zero scatter between the profiles, with values for {θE(arcsec), ϕ(rad),

e} of {0.015, 0.032, 0.013}. However, this is still an average of 11±8 per cent larger

than that of images without lens light, for which errors of {0.015, 0.027, 0.011}

were obtained by the network. We also observe similar trends to before; training

with no scatter produces high prediction errors when mass does not closely follow

light. Training instead with a moderate amount of scatter, i.e. somewhere between

a (σe, σϕ) of (0.12, 10) and (0.24, 20), gives consistent network performance across

a wide range of mismatch between the mass and light profiles. Across the tests, no

systematic biases in predicted parameter values were identified except if trained

on zero scatter. In this case the network tends to over-estimate the Einstein radius
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Figure 2.14: Error on mass model parameter predictions as a function of the
light-mass scatter of both ellipticity and orientation in the test data. From top to
bottom: Results for Einstein radius, orientation and ellipticity. The dashed lines
indicate the results for data sets with lens light subtracted, which hence act as a
control. The vertical black line indicates the standard deviations used elsewhere
in this work, (σe = 0.12, σϕ = 10◦), based on SLACS results.
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and ellipticity by a small but significant amount of up to 2 per cent, again because

of the previous discussion of biased sampling of light profile ellipticities and the

effect on Einstein radii predictions when such ellipticities are different to those

that would be predicted based on the lensed source light.

From these results, it is clear that despite predicting mass profile parameters the

CNN will attempt to learn from the lens light if it is present in the images. This can

in turn result in poor accuracy should a realistic difference in mass-light alignment

not be taken into account during training. As such, the training and test data

sets used elsewhere in this work contained moderate scatter between the light and

mass profiles, with σe = 0.12 and σϕ = 10◦, to both align with observed SLACS

distributions and to ensure the network did not rely too heavily on the lens light.

2.2.4 Investigation IV - Signal-to-Noise & Image Stacking

So far, we have investigated the performance of the network with regard to lens

parameters, of both the mass and light profiles, as well as the difference between

imaging characteristics of the LSST and Euclid. Another major factor that in-

fluences modelling performance is the signal-to-noise ratio (SNR) of the lensed

images. With these surveys set to repeatedly cover the sky over several years,

many images of gravitational lenses can be stacked over time to improve the sig-

nal. In this section, I show how network performance depends on the SNR of the

images used for training and testing. I limit the discussion here to images with

lens light subtracted since the previous trends and relative errors discussed when

comparing inclusion and subtraction of lens light remain the same here. Two tests

are conducted: the first investigates how CNN errors vary with the SNR for both

LSST and Euclid images. The second puts this into the context of surveys, show-

ing how CNN errors depend on the number of stacked survey visits and how this

changes with the number of stacked survey visits assumed during network train-

ing. For this second test, while only results for Euclid images are presented, we
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investigate stacks of up to 100 visits to estimate the expected relative performance

gain available for LSST.

To begin, the SNR was determined as follows. The 5 × 5 pixel regions in each

corner of the image were used to obtain the mean and standard deviation of the

background noise. The mean background was subtracted from the image, and the

N pixels making up the lensed source were then chosen as those above 3-sigma of

the background noise. Finally, the SNR was defined for the total signal S of the

lensed source as

SNR =
S√

S +Nσ2
(2.3)

where
√
S is the shot noise of the lensed source and σ is the observed standard

deviation of the background noise, encompassing all other sources of noise (sky

background, dark current and readout noise)1. In the first test, I generated a

training set and test set containing 50,000 and 10,000 single-exposure images.

Their mass-light orientation and ellipticity offsets were scattered by σϕ = 10◦ and

σe = 0.12 as discussed in Section 2.2.3, and lens light then subtracted following

the procedure in Section 2.1.2. The randomly drawn lens model parameters give

rise to a distribution in SNR within the training and test data. To assess how

the network performance depends on SNR, I binned the test images by SNR and

measured the errors of predicted lens model parameters in each bin.

Results for Euclid VIS, LSST r-band and LSST gri images are respectively plotted

in the upper, centre and lower panels of Figure 2.15. These errors initially decrease

rapidly with higher signal-to-noise, however there is little decrease in error past

approximately SNR=100. There is also some scatter in the higher signal-to-noise

images due to the network having fewer of these brighter, lower redshift galaxies

to train on. The results quantify how the network performs significantly better

1From testing, the use of
√
Nσ, obtained from the four 5×5 pixel regions, as a measure of the

background noise in Equation 2.3 is found to be accurate to within 2 per cent of that obtained

from combining readout noise with shot noise from the sky background and dark current.
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Figure 2.15: Errors for the CNN’s predicted lens model parameters as functions of
the signal-to-noise ratio (SNR) of the source in the test images. Both training and
test images had their lens light subtracted to leave shot noise residuals. From top
to bottom: simulated images for the Euclid telescope VIS filter, LSST r-band and
LSST gri. Data points lie at the lower SNR bin boundaries, with the last point
encompassing all images with SNR≥400. The blue diamonds, orange pentagons,
green hexagons, red circles and purple squares correspond respectively to Einstein
Radius, the first and second components of complex ellipticity, orientation and
ellipticity of the lens. The values of orientation ϕ are divided by pi to more easily
compare the parameters.
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on higher signal-to-noise images, with prediction errors for SNR≥400 images a

factor of 1.6-2.7 (mean of 2.2 ± 0.3) times smaller compared to that of SNR=20-

30 images. Hence, parameter predictions for higher SNR images are much more

likely to be closer to their true values, with little change in results beyond around

SNR≥100.

For the second test, I analysed how errors vary with the stacking of training

and test images, and investigated how the resulting SNR of the training data set

affects the performance of the CNN. Until now we have only considered single-

visit images when training and testing the CNN, however Euclid is expected to

undertake four exposures of each object (Laureijs et al., 2011; Racca et al., 2016;

Cropper et al., 2018), and likewise LSST will undertake tens to hundreds of visits

of each object (Abell et al., 2009). As such, training sets of 50,000 simulated

Euclid images were produced for different noise levels corresponding to one, four,

10 and 100 visits. The four networks that resulted from training on these data

sets were then applied to four test sets of 10,000 images generated with the same

range of noise characteristics. The test sets all shared the same lens and source

parameters, as did the training sets, in order to avoid the changing background

noise influencing parameter selection that could otherwise bias lower SNR data sets

towards higher magnification images. While ideally dithering would be performed

to accurately replicate observations, to ease image generation no dithering was

performed here as the images contained no artefacts (such as hot pixels, fixed

pattern noise, cosmic rays, or satellite trails) that would necessitate this additional

processing. With each test set containing a different number of stacked visits, each

contained a different distribution of SNR. While these could extend to high SNR

values, the distributions were all skewed towards lower values. For single-visit and

stacked 4-, 10-, and 100-visit data sets, peaks in SNR occurred at 30, 40, 50, and

80, respectively. All combinations of test and training SNR were performed to

investigate the impact of insufficient CNN training.
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Figure 2.16: Errors for the CNN’s predicted lens model parameters as functions
of the number of visits making up each stacked image in the test set. From top
to bottom are the Einstein radius, orientation and ellipticity of the lens mass
profile. In each case, blue squares, green diamonds, orange pentagons and red
circles correspond to where the network was trained on stacked images made up
of 1, 4, 10 and 100 visits, respectively.
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Figure 2.16 shows the errors for the predicted mass model parameters as functions

of the number of visits making up stacked images in the test data set. It is clear

that, over the range tested, network performance always improves when applied

to more deeply stacked test images, as expected. For example, when trained on

single-visit images (blue squares), testing on stacked images of 100 visits rather

than single-visit images results in an average decrease in CNN error of 37 ± 5

per cent across the parameters {θE(arcsec), ϕ(rad), e}, from values of {0.04, 0.16,

0.06} to {0.03, 0.11, 0.04}. Likewise, performing this comparison when training

on images containing 4, 10 and 100 visits results in average decreases in CNN error

of 48 ± 5, 54 ± 5 and 65 ± 1 per cent, respectively. Additionally, when averaged

across the four trained networks, errors are reduced by 31± 8, 41± 9, and 51± 11

per cent compared to testing on single-visit images when instead testing on 4-,

10-, and 100-visit stacked images, respectively.

Furthermore, there is a notable increase in accuracy for deeper stacked test images

when the network is retrained on multi-visit stacks. When testing on stacks of

10 or more visits, a network trained on any number of stacked images will per-

form notably and consistently better than one trained only on single-visit images.

The less noisy training data from even a few stacked visits clearly provide more

information for the CNN to learn from. Compared to training on single-visit im-

ages, training on stacked images of 100 visits reduces average errors by 29± 1 per

cent when both networks are tested on such 100-visit stacks. Conversely, when

presented with fewer visits making up the test stacks, the network generally per-

forms better when trained on fewer-visit stacks, as expected: a network trained on

single-visit images achieves errors that are 23± 3 per cent smaller than a network

trained on 100-visit images when tested on single-visit data sets. However, even

when training and testing on images with the same number of visits the CNN

does not achieve the same errors. Compared to training and testing on single-visit

images, training and testing on 4-, 10-, and 100-visit stacked images decreases

errors on average by 28 ± 2, 40 ± 4, and 55 ± 4 per cent, respectively, with the
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latter resulting in values of {0.02, 0.07, 0.02}.

These results highlight that for sufficient CNN training one must incorporate a

large range of signal-to-noise ratios into the training set, and that there should

be an emphasis on training on images with lower SNRs both in order to reduce

their larger errors presented here, and because images with these ratios will make

up the majority of early data releases. One could train a single CNN on a range

of stacked visits, requiring a much larger training set, or train multiple CNNs

to each handle a set number of stacked images (or even a select range of SNR).

Regardless, there are significant improvements to CNN performance when utilising

the stacking of images obtained by Euclid and LSST, whether that involves a few

visits or hundreds. However, throughout the rest of this thesis I focus on training

and testing on single-visit images; these contain the highest fraction of low SNR

images so provide a lower bound for the CNN’s accuracy and are the first images

to become available from upcoming surveys.

2.3 Summary

In this chapter, I presented my work in investigating the practicalities faced when

using CNNs for lens modelling, with a focus on application to the upcoming LSST

and Euclid surveys. To begin, a convolutional neural network was constructed

to estimate the mass model parameters of lenses from images, detailed in Section

2.1.1. Data sets of images were simulated for network training in Section 2.1.2,

utilising SLACS lens data and SIE mass models, resulting in strong galaxy-galaxy

lens images characteristic of those produced by the Euclid VIS filter and LSST

(for both r-band and multiband gri imaging). The simulations allowed for the

fast generation of guaranteed lenses, and benefited from multiple SEDs for various

galaxy ages and metallicities, along with realistic distributions for parameters such

as axis ratios and mass-light profile scatter. The CNN could then be trained on
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such data sets in order to predict the values of three lens mass model parameters:

Einstein radius, and two components of complex ellipticity later converted to

ellipticity and orientation.

Results of the investigations were presented in Section 2.2. The first involved

training and testing the CNN on images with foreground lens light subtracted,

and again with this lens light included. Results were compared for the different

parameters and surveys, in terms of both overall errors and as functions of the lens

parameters themselves. It was found that the multiple bands of LSST gri images

resulted in the lowest CNN errors, and that the subtraction of lens light decreased

errors by 27-41 per cent (an average of 34 ± 5 per cent) across the data sets and

parameters. All parameter errors increased for smaller Einstein radii, and the

same was seen in all but orientation error for increasing ellipticities. For the case

where lens light is not subtracted, the next investigation found that differences in

the mass and light profile alignment during training and testing greatly impacts

network performance. I then examined how network performance scales with

signal-to-noise ratio of the lensed source, observing that increasing SNR past 100

had little impact on the results. Finally, this was put in the context of future

surveys by studying the improvement gained through stacking images within both

the training and test sets. Together, these investigations can act as a guide for

future training, and highlight the promising use of CNNs for lens modelling and

their potential for further development in this area.
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Chapter 3

From CNN to BNN:

Enhancements and Improvements

We have now seen that convolutional neural networks can be applied effectively

to lens modelling for data sets with the imaging characteristics of the upcoming

Euclid survey and LSST. We have explored how network accuracy varies with lens

mass and light as well as the impact of noise, however one obvious question arises:

how does the network compare to conventional lens modelling methods? Before we

can perform this comparison, it is worth noting that the images used for the above

investigations have remained fairly simple. Additionally, until now the CNN has

only been able to predict single values for the lens parameters, without any notion

of uncertainty on individual predictions. Improvements to both of these areas

would increase the network’s adaptability and functionality, respectively, enabling

it to handle more realistic data whilst producing additional information on its pre-

dictions. Hence, in this chapter I will begin by using the now-established method

of incorporating Bayesian inference into CNNs in order to produce a Bayesian neu-

ral network (BNN) capable of predicting its own uncertainties. This is followed by

details of the new network’s architecture and training and testing process, before

finishing with the enhancements made to the training and testing images in order
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to produce more complex data sets.

This chapter begins with Section 3.1 outlining the current and previous research

performed with regard to Bayesian neural networks, including their initial applica-

tion to strong gravitational lensing. The theoretical description of this probability

framework and the established method of its incorporation into neural networks

is summarised in Section 3.2. As part of the integration into neural networks, a

fine-tuning process is required to balance an introduced hyperparameter and this

is detailed in Section 3.3. Section 3.4 details the Bayesian CNN’s architecture and

training and testing process used for the remainder of this thesis, while the content

of the training sets, including an overview of power law mass models, are given

in Section 3.5. Section 3.6 covers the multiple data sets that will be used to test

lens modelling methods in Chapter 4, followed by a short summary in Section 3.7.

This chapter features work contained in my publication ‘Strong lens modelling:

comparing and combining Bayesian neural networks and parametric profile fitting’

(Pearson et al., 2021).

3.1 Background

Standard CNNs for regression problems such as those of lens modelling can be

trained to predict parameter values, yet there is no way for these networks to

reliably quantify uncertainties on such values. For classification networks, Denker

and LeCun (1990) proposed that Bayesian statistics could be incorporated should

network weights be assigned probability distributions rather than single values.

Hence such networks would output meaningful probability distributions instead

of point estimates, such as through repeated sampling of these weight probabili-

ties; see Section 3.2.1. These Bayesian neural networks were studied further (e.g.

MacKay, 1992; Neal, 1995; Graves, 2011; Hoffman et al., 2013), including the

incorporation of variational inference (Jordan et al., 1999); see Section 3.2. How-
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ever, the methodologies of these works are both challenging to implement and

computationally expensive, especially with the rise of deep learning models.

More recently, we have seen the incorporation of an approximate Bayesian frame-

work that can be applied to both classification and regression networks (Gal and

Ghahramani, 2016a,b; Kendall and Gal, 2017). This is achieved primarily through

the application of dropout (randomly selecting nodes and setting them to zero: see

Srivastava et al., 2014) before each weight layer as a form of variational inference;

this and dropout are detailed in Section 3.2.2. When applied to regression, this

computationally inexpensive approach doubles the number of outputs because the

network now predicts both values and their associated uncertainties. Levasseur

et al. (2017) have since applied this to create an approximate Bayesian CNN

framework for strong lens modelling, and in the following sections I present an

implementation of this framework applied to my own work.

3.2 Bayesian Neural Networks

3.2.1 Bayesian Probability

In a Bayesian framework, uncertainties are quantified through replacing point

estimates with full probability distributions. We first seek to obtain such distri-

butions for the model parameters ω (neural network weights and biases; not to be

confused with mass model parameters) before moving on to output predictions.

These posterior distributions are computed using Bayes’ Theorem,

p(ω|D) =
p(D|ω)p(ω)

p(D)
=

p(D|ω)p(ω)∫
p(D|ω)p(ω)dω

(3.1)

where our initial beliefs about model parameters are contained within the prior

distribution p(ω). Given some (training) data D, this is updated through the like-
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lihood p(D|ω), and normalised using the Bayesian evidence p(D) which involves

marginalising over all possible parameters.

When new (test) data are introduced, we can determine the probability of an

output y given an input x by calculating the posterior predictive distribution,

p(y|x,D) =

∫
p(y|x,ω)p(ω|D)dω. (3.2)

This Bayesian model averaging (BMA) involves taking a weighted average over all

parameters by combining each parameter’s posterior probability (akin to neural

network training) with the probability p(y|x,ω) of an output given that parameter

and the input data (akin to neural network testing with a suitable probabilistic

cost function).

However, both the posterior and the posterior predictive distribution require

marginalising over the entire parameter space, which is computationally expensive

and often intractable due to its complexity. This is especially true for deep neural

networks as they can contain millions of parameters in the form of weights and

biases, and their non-linearity ensures that no analytical solution can exist.

Instead, we seek ways of approximating this marginalising integral. While there

are Markov Chain Monte-Carlo (MCMC) sampling-based methods such as Hamil-

tonian Monte Carlo and the Metropolis-Hastings algorithm, they can prove time-

consuming to run and challenging to implement into neural networks (Charnock

et al., 2022). Hence, for this work we focus on an alternative approach that can

closely approximate a Bayesian framework, that of variational inference.

3.2.2 Variational Inference

Variational methods aim to treat inference as an optimisation problem, producing

an approximation of the otherwise intractable posterior probability distribution for
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the parameters and latent variables. This involves optimising over a set of tractable

variational distributions to select the one closest to the true posterior probability,

then sampling from that distribution to obtain an approximate solution. Such

methods are frequently better suited for stochastic gradient optimisation and usage

with GPU acceleration than standard sampling methods.

With regard to neural networks, we have training data (X,Y ) consisting of in-

put images X and their corresponding true values Y , and the set of unobserved

weights and biases ω, which together produce the posterior p(ω|X,Y ). Hence,

for test data (x,y), the probability distribution of predicted values (the posterior

predictive distribution) is obtained through marginalising over the weights,

p(y|x,X,Y ) =

∫
p(y|x,ω)p(ω|X,Y )dω. (3.3)

We now seek a (tractable) variational distribution q(ω) that closely matches the

posterior, i.e. p(ω|X,Y ) ≈ q(ω). This is achieved through minimising the

Kullback-Leibler (KL) divergence between the two,

DKL(q(ω)||p(ω|X,Y )) =

∫
q(ω) log

q(ω)

p(ω|X,Y )
dω (3.4)

which returns the expectation of the (logarithmic) difference between the distribu-

tions. Identical distributions would produce a value of DKL = 0 while deviations

from one another cause the logarithm term to move away from zero, and weighting

this by q(ω) ensures regions of higher probability are prioritised. Through Bayes’

Theorem, minimising the KL divergence is found to be equivalent to maximising

the log-likelihood of the network’s prediction for a given input, however the theory

and derivations behind this will not be explored further here.

For application to neural networks, a form of q(ω) is chosen such that the set of

variational parameters to be optimised (i.e. weights) in a given layer are multiplied

by a set of Bernoulli-distributed random variables with a given probability. Sam-
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pling from q(ω) is hence equivalent to performing dropout over network weights,

incorporating dropout before each weight layer. Introduced by Srivastava et al.

(2014), dropout is the process of randomly ‘dropping’ nodes (setting them to zero)

temporarily for each forward pass through the network during training. This stops

the network from becoming too reliant on certain pathways in order to prevent it

from overfitting to its training data.

After training, performing inference using the approximated posterior predictive

distribution

p(y|x,X,Y ) ≈
∫
p(y|x,ω)q(ω)dω (3.5)

can be done by approximating this integral with a Monte Carlo (MC) integral,

through repeatedly passing each test image through the network and using dropout

during testing (known as MC dropout) to sample from the approximate parameter

posterior. This sampling thus gives a measure of the epistemic uncertainty, i.e.

how well the network has been trained.

The other type of uncertainty to be obtained is the aleatoric uncertainty, which

describes errors coming from the input data itself such as the noise level of im-

ages. It is found that the earlier minimising of the KL divergence is equivalent to

maximising the log-likelihood of the training set output parameters. Hence, ob-

taining aleatoric uncertainties can be achieved through modifying the network’s

cost function, choosing its form to be the negative of a Gaussian log-likelihood

−L =
∑
k

1

2
∥ypred,k − ytrue,k∥2 exp (−sk) +

1

2
sk. (3.6)

Here, ypred,k and ytrue,k are the predicted and true values of parameter k for a given

training image, and sk = log σ2
k is the log-variance. σk represents the aleatoric

uncertainty of each parameter, and due to its presence in both terms it is optimised

through training and can be outputted for each image fed through the network.

The log-variance is implemented rather than σk itself in order to avoid potential

82



3.3. BNN FINE-TUNING

division by zero and to improve numerical stability.

This computationally inexpensive approach of variational inference produces an

approximate Bayesian neural network whose weights, even after training, can

change according to a probability distribution rather than remaining fixed. Sam-

pling of the resulting posterior is achieved through repeated testing (taking the

standard deviation as the epistemic uncertainty), with the network now out-

putting both predictions of the parameter values and predictions of their asso-

ciated aleatoric uncertainties. The latter are then added in quadrature with the

epistemic uncertainties to give the overall measure of the CNN’s uncertainty for

a given image. The median of the predicted values is taken to be the final result,

with such averaging additionally serving to increase network accuracy over that

of standard CNNs.

3.3 BNN Fine-Tuning

As part of the implementation of variational inference with dropout, we require

the introduction of an additional hyperparameter, the dropout rate (or its reverse,

the dropout keep rate). This gives the fraction of neurons in a given layer that are

dropped, i.e. set to zero, at random during each forward pass through the network.

Like other hyperparameters, the dropout rate must be fine-tuned in order for the

CNN to reliably predict uncertainties, and this was carried out in the form of a

grid search as follows.

To begin, multiple instances of the network were created with dropout applied

throughout, except before the final output layer as this otherwise drastically de-

creased performance. They were each given a different dropout rate between 0.01

and 0.2, hence dropping between 1 and 20 per cent of neurons, but otherwise fea-

tured the same architecture and training process (see Section 3.4). They trained

on 100,000 images, and the fine-tuning process was performed for both SIE and
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Figure 3.1: Coverage probabilities when fine-tuning dropout during CNN training
to ensure appropriately-sized predicted uncertainties. Top and bottom rows show
results for the CNN trained to predict SIE parameters (θE, ϕ, q) and power law
parameters (θE, ϕ, q, n), respectively, indicated by the smaller bars. Mean cover-
age probabilities are given as the wider bars, and for the ideal case would reach
each dashed line representing 68.3, 95.5 and 99.7 per cent coverage. Left: example
results from using incorrect dropout rates (0.2 and 0.01 for SIE and power law,
respectively). Right: results from using fine-tuned dropout rates.

power law lenses (see Section 3.5). The CNNs were then tested on 10,000 images

covering parameter space with the same imaging characteristics as the training

set, and predict parameter values and their associated uncertainties. Fine-tuning

involves determining how accurate these predicted uncertainties are compared to

the true scatter in predicted values across the test set (and hence across parameter

space).

As such, coverage probabilities were obtained for each parameter; these give the

fraction of the test set whose predicted value lies within a given confidence interval

of the true value. These confidence intervals are determined based on the predicted

1σ uncertainties, additionally being scaled up to 2σ and 3σ intervals. Hence, the
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ideal case would show 68.3 per cent of test set predictions lying within the 1σ

confidence interval, and so on. Some example coverage probabilities are given in

Figure 3.1. After training and testing were performed, a dropout rate of 5 per

cent (i.e. a keep rate of 95 per cent) was found to generate the most accurate

uncertainties and so was implemented as the dropout rate for the rest of this

thesis.

It is worth noting that even though the average coverage probabilities matched

their desired confidence intervals, this was not true for each individual parameter,

as shown in Figure 3.1. However, a dropout rate of 5 per cent also minimised the

deviation between such individual parameter coverage probabilities. Nevertheless,

this is an inherent limitation of the approximate Bayesian inference method that

can lead to under- and over-estimated parameter uncertainties: to obtain correct

coverage probabilities for each parameter would require a separate network for

each parameter, which would then require significantly longer training and would

lose out on understanding the complex relationships between parameters. As

such, I continued to pursue a single network approach, with the development of

a more complete Bayesian formalism for neural networks left to other work. The

requirement of fine-tuning the dropout rate also presents a problem in its reliance

on the training set; this is discussed in Section 5.3.

3.4 BNN Improvements

Through the incorporation of an approximate Bayesian formalism, we now have

a Bayesian CNN capable of predicting its own uncertainties as well as parameter

values. In the following section, I provide details of the network used hereafter in

this thesis, in terms of the improvements to its design and operation over those in

Chapter 2. The network architecture is given in Section 3.4.1 while Section 3.4.2

discusses the processes by which this network is trained and tested.
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Figure 3.2: Structure of the neural network used in the remainder of this thesis,
showing the input image and the output of each block of layers, in the same
format as Figure 2.1. The network shares the same ordering of layers as before,
however output dimensions have increased and dropout is now performed after
each convolutional layer. Further details can be found at the end of Section 3.4.1.

3.4.1 Architecture

With the incorporation of Bayesian uncertainties and the increase in data set

image size (see section 3.4.2), the neural network architecture now contains over

4 million trainable weights and biases. As shown in Figure 3.2, it features the six

convolutional layers, four pooling layers and two fully connected layers that were

used in Chapter 2. However, it now includes six dropout layers, with each applied

after a convolutional layer and set to a dropout rate of 5 per cent. Additionally,

following the work in Section 3.2.2, the cost function used in Chapter 2 has been

replaced with a negative log-likelihood function, but otherwise the training process

remains the same.

In order to ensure that the network performs optimally, the code GPyOpt (The

GPyOpt authors, 2016) was used to try and optimise neural network hyperpa-

rameters that would otherwise require manual fine-tuning. These included the

learning rate, convolutional kernel dimensions, layer widths (i.e. the number of

outputs from a given layer), and the number of each type of layer. This avoids

purely trial-and-error optimisation by utilising a Bayesian framework to update

hyperparameters over a series of model iterations. Several of these optimisation

runs were performed, from varying all hyperparameters simultaneously to only a
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few at a time, each run being allowed up to 100 iterations of training and test-

ing to minimise its error. However, none were found to outperform the existing

network architecture following its above changes, and so no further modifications

were deemed necessary.

In Chapter 4, the Bayesian CNN is made to fit lenses with a power law profile (see

Section 3.5) and so the slope parameter n of this profile, along with its associated

uncertainty, is predicted in addition to the existing three parameters. Apart from

these two extra outputs, this power law network features the same architecture

and hyperparameters as those of the regular SIE-trained network.

3.4.2 Training and Testing

To train the network, 100,000 images were fed into the network in batches of 100,

along with a validation set of 10,000 images. These 100×100-pixel ‘postage stamp’

cutouts of lenses featured a range of source types (see Section 3.5) in order for

the network to cope with the wide range of realistic sources. Two Bayesian CNNs

were trained: one to predict parameters for SIE lenses and a second for power

law lenses. In both cases, the same pre-processing of images and true values

were used as those employed in Section 2.1.1, including the predicting of complex

ellipticity. However, to ease interpretations and comparisons of the results with

other methods, going forward I provide orientation values in degrees and use axis

ratios q in place of ellipticities e. For the latter change, the relation between the

two is simply e = 1−q, and so the magnitudes of the results and their uncertainties

remain unchanged.

Running on the same GPU machine as used in Chapter 2, training over 150 epochs

on 100,000 images took less than two hours, while thousands of images were tested

in the order of a few seconds to minutes. During testing, median averages for

the predicted values and predicted uncertainties were obtained through repeated
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testing of each image, following the work in Section 3.2.2. This repeated testing

samples the posterior, resulting in both reliable predicted uncertainties and more

accurate predicted values. Hence the time taken depended on the number of

repeats performed; for the results presented in this work each image was tested

100 times to provide sufficient accuracy in a manageable amount of time.

3.5 Training Data Set Simulation

This section details the gravitational lens image simulations used for training the

Bayesian CNN in the remainder of this thesis. We focus now only on data sets

with the imaging characteristics of the Euclid telescope’s VIS filter to avoid repeat

results, with the image size increased to 100 × 100 pixels to ensure they contain

all light from lensed arcs. As with the previous CNN, the training set contained

parametric lens mass models and parametric source light profiles, with central

positions again following a normal distribution about the image centre with a

standard deviation of one pixel.

As well as training to predict parameters of SIE mass models, I also trained

separately to predict those of the power law ellipsoid (e.g. Tessore and Metcalf,

2015). The density profile

ρ(r) ∝ r−n (3.7)

of this more general model changes with radius r according to an additional pa-

rameter, the power law slope n, that allows for increased flexibility but increases

the complexity of the parameter space when modelling (see Section 1.2 for more

details, including the use of power law deflection angles given by 1.28). As such,

the training set was generated twice, once for each mass model, in order to train

one CNN to predict three SIE parameters and another for the four power law pa-

rameters. The parameters of these training sets were uniformly distributed within

the following ranges: 0.2-3.2 arcsec, 0-180◦, 0.4-1.0, and 1.5-2.5 for Einstein radii,
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Figure 3.3: Examples of the simulated images used to train the Bayesian CNN.
Top and middle rows contain Sérsic and Gaussian profile sources, respectively.
The bottom row contains complex sources made up of multiple Sérsic profiles.
The data set was simulated to have the expected imaging characteristics of the
Euclid telescope’s VIS filter.

orientations, axis ratios and slopes, respectively.

In addition to the sources with parametric Sérsic profiles used in Chapter 2, the

training data set contained sources with Gaussian profiles as well as complex

sources made up of multiple Sérsic profiles, in order to cover a wider range of mor-

phologies. These Sérsic or Gaussian profiles were generated with variable Sérsic

indices and variances respectively, each making up 25 per cent of the training set

while the remaining 50 per cent contained multiple Sérsic profiles. Foreground lens

light was once again subtracted after convolving with the point spread function to

leave only shot noise residuals. Examples of the images used to train the Bayesian

CNN are shown in Figure 3.3. With the above changes and improvements, the

simulations otherwise followed the methodology detailed in Section 2.1.2.

3.6 Realistic Image Testing

Having discussed the Bayesian CNN’s training data sets, we now detail those used

to test the network and other modelling methods in the next chapter. These mod-

elling methods were tested on a range of increasingly complex lensing systems,
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beginning with smooth SIE lenses and parametric sources before incorporating

real Hubble Ultra-Deep Field (HUDF; Beckwith et al., 2006) source galaxies and

CosmoDC2 (Korytov et al., 2019) line-of-sight (LOS) structure. Additionally, the

foreground lenses were later replaced with more complex power law mass pro-

files or galaxies from the Evolution and Assembly of Galaxies and their Environ-

ments (EAGLE) cosmological hydrodynamical simulation suite (Crain et al., 2015;

Schaye et al., 2015). As these data sets contained characteristics that differed from

those of the training data, they provided a measure of the network’s adaptability

when applied to unseen data. These data sets are presented in more detail below.

The 1000-image data sets used for testing the lens modelling methods were gener-

ated with the Pipeline for Images of Cosmological Strong Lensing (PICS; Li et al.,

2016a), through private communication with the author as the code has not been

made publicly available. These data sets made use of their selection of HUDF

galaxies for high-resolution, high-redshift sources, although I did not attempt to

deconvolve these sources for this work. These single-band test images had the

same size and imaging characteristics as the training set, but did not contain any

shot noise residuals of the lenses as the errors introduced by lens removal depend

on the technique used and are not the focus of this work. The magnitudes and

angular sizes of the HUDF source galaxies were incorporated into the images, in-

cluding the data set containing parametric (Sérsic and Gaussian) light profiles. As

such, lens and source redshifts had the sole effect of changing the Einstein radii,

so for the purposes of the simulation redshifts were taken to be zlens = 0.5 and

zsource = 2.0, respectively, with Einstein radii set manually.

PICS also allows for the inclusion of LOS structure through full ray-tracing of small

light cones covering lens caustics, with light cones from the semi-analytic model

CosmoDC2 based on the Outer Rim cosmological N -body simulation (Heitmann

et al., 2019). One thousand of these small light cones were selected from within

the field of view of the semi-analytic catalogue, each containing a primary lens

90



3.6. REALISTIC IMAGE TESTING

Figure 3.4: Examples of the simulated images produced from PICS software, used
to test the different mass modelling methods. Top row: examples containing
SIE lenses with parametric source profiles, with four Sérsic sources followed by
four Gaussian sources. Second row: examples containing SIE lenses with HUDF
sources, with the last four containing LOS structure. Third row: examples con-
taining power law lenses with HUDF sources, with the last four containing LOS
structure. Bottom row: examples containing EAGLE galaxy lenses with HUDF
sources, with the last four containing LOS structure. The data sets were simulated
to have the expected imaging characteristics of the Euclid telescope’s VIS filter.

often residing in a galaxy group, with up to a hundred LOS galaxies between the

observer and source. Test data sets were produced for a range of increasingly

complex lensing systems, examples of which are shown in Figure 3.4:

• SIE lenses + parametric sources

• SIE lenses + HUDF sources, with and without LOS structure

• Power law lenses + HUDF sources, with and without LOS structure

• EAGLE galaxy lenses + HUDF sources, with and without LOS structure

For the SIE lens mass profiles, their parameter distributions followed those deter-

mined by PICS to be the main haloes in each CosmoDC2 light cone, with resulting

Einstein radii, orientations and axis ratios distributed within the ranges 1.3-2.6

arcsec, 0-180◦ and 0.4-1.0, respectively. The power law lenses used the same dis-

tribution of lens parameters, with the addition of slope values randomly selected
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from a uniform distribution in the range 1.5-2.5, in line with the neural network

training data. These main halo lenses were on average more massive, and there-

fore produced larger Einstein radii, than the majority of those expected by the

Euclid survey. However, for this work these masses were not changed from the

CosmoDC2 values as, where possible, we wished to maintain the halo masses and

positions along the LOS for realistic ray-tracing through the light cones.

The EAGLE galaxy lenses were selected from the EAGLE galaxy catalogue by

calculating the Einstein radius of each galaxy from their halo mass (assuming

redshifts of zlens = 0.5 and zsource = 2.0) and selecting one thousand of those with

Einstein radii within the range 0.5-5.0 arcsec. This resulted in a sample of galaxies

whose Einstein radii were naturally distributed between 0.5 and 3.2 arcsec. The

parameters used as the true values for the results in Section 4.3.4 therefore followed

different distributions than those of the CosmoDC2 haloes, although orientations

and axis ratios were limited to the same ranges. They were obtained using PICS by

performing a least squares fit to their known convergence maps (computed from the

EAGLE particle data; see later), weighted by the square root of these maps, and

supplying SIE mass profiles as the curve-fitting function. The logarithmic forms of

the convergence maps were used as these eased the fitting process, and the fitting

was performed five times with the median average taken for each parameter. The

maps were also masked such that only pixels within a 3 arcsec radius of the lens

centre were fitted, as masks of this radius provided the closest parametric fit to

the maps with the lowest uncertainties in the fitted parameters. The same process

was also used to obtain parameters for the data sets containing LOS structure,

fitting either an SIE or power law mass profile. A discussion of the limitations of

this fitting process is presented in Section 5.5.2.

To obtain a convergence map for a given EAGLE galaxy, PICS was supplied with

its EAGLE particle data containing the three-dimensional positions and particle

masses of each type of particle (dark matter, stars, and gas). A box size of
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20 × 20 arcsec with a width of 512 pixels was found to be sufficient for this

work, in that higher resolution boxes produced no discernible difference in the

true values obtained from fitting convergence maps, nor in the resulting lensed

images, and instead only led to convergence maps taking significantly longer to

fit. Taking zlens = 0.5, PICS then converted each type of particle data into a

(pixellated) two-dimensional surface density profile. These were added together

and finally converted to a convergence map by dividing by the critical surface

density (Equation 1.15) assuming zsource = 2.0.

While the modelling methods only examine the observed images, the inclusion

of LOS structure increases the observed Einstein radius compared to that of a

solitary foreground lens. To eliminate such biases in the results, rather than using

the Einstein radii of the foreground lenses as the true values, we instead measured

the observed Einstein radii of each lensing system using the same convergence map

fitting process as discussed previously.

3.7 Summary

In this chapter, I began by establishing the need for obtaining neural network

uncertainties and more complex images in order to reliably compare its modelling

to conventional techniques. I described the process by which the CNN in Chapter

2 was replaced by a Bayesian neural network through the implementation of the

approximate Bayesian formalism detailed in Section 3.2 and the dropout fine-

tuning process in Section 3.3. Details of the new network architecture, training

and testing process were given in Section 3.4, while Section 3.5 presented the

improvements made to the neural network’s training set, including a description

of the power law profile that the network will attempt to model. Lastly, Section

3.6 provided descriptions of the multiple new data sets of varying complexity for

the network to be tested on. Summaries of both the training and test data sets
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Table 3.1: Summary of the training and test data sets simulated in this chapter.
Both Sérsic and Gaussian profiles are used for data sets containing parametric
source light profiles.

Lens mass profile Source light profile LOS structure
Training
SIE Parametric None
Elliptical power law Parametric None
Testing
SIE Parametric None
SIE HUDF None
SIE HUDF CosmoDC2
Elliptical power law HUDF None
Elliptical power law HUDF CosmoDC2
EAGLE galaxy HUDF None
EAGLE galaxy HUDF CosmoDC2

are presented in Table 3.1.

With these in mind, we can now train the Bayesian CNN to handle more complex

images, provide uncertainty measurements on its predictions rather than single

values, and test on more realistic data sets. In the next chapter, we will explore

how the Bayesian CNN compares to conventional modelling when applied to such

images to identify the strengths and weaknesses of each, as well as investigating

the potential combination of the two modelling methods.
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Chapter 4

Combining CNNs with

parametric modelling methods

Given the growing prevalence of neural networks both inside and outside of as-

tronomy, it is well established that while trained neural networks are much faster

at modelling, they are limited by the quality of their training data; mismatches

between these and real observations can make neural networks less reliable than

their conventional parameter-fitting counterparts. In this chapter, we seek to an-

swer the following: how well can we expect convolutional neural networks (now

approximate Bayesian neural networks) to obtain lens mass model parameters for

increasingly realistic systems in future large-scale survey images? How do they

compare to conventional parameter-fitting techniques? What benefits arise from a

combination of machine learning and parametric modelling methods and can the

disadvantages of one be counteracted by the other?

To answer these questions, methodologies of the previous chapter are combined

in order to compare the modelling efficiency of approximate Bayesian CNNs (see

Section 3.2) to that of a conventional parametric profile fitting approach, for the

range of increasingly complex lensing systems detailed in Section 3.6. In this work,
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we choose the semi-linear inversion method of the open source code PyAutoLens

(Nightingale et al., 2018) for this conventional fitting approach. In addition, we

explore a new combination of the CNN with PyAutoLens, using the predictions

of the former to inform the prior distributions of the latter. As discussed in Section

3.5, here we focus only on the imaging characteristics of the Euclid telescope

to avoid an excess of results; the performance when applied to LSST imaging

characteristics can be extrapolated following the work in Chapter 2.

This chapter starts by covering the parameter-fitting methods used in this work

before presenting their test results alongside those of the CNN. An overview of

PyAutoLens, along with the details of its configuration used in this work, are

given in Section 4.1, with those of the combination method given in Section 4.2.

Test results for each method are presented in Section 4.3, from application to

images with simple parametric lenses and sources to those with hydrodynamical

EAGLE galaxy lenses with real HUDF sources and line-of-sight structure. These

are followed by an analysis of modelling speeds in Section 4.4, and a summary

of this chapter in Section 4.5. The content of this chapter features work from

my publication ‘Strong lens modelling: comparing and combining Bayesian neural

networks and parametric profile fitting’ (Pearson et al., 2021). The work presented

is mine apart from the parametric modelling using PyAutoLens (see Section 4.1)

which was conducted by Jacob Maresca, who coauthored the paper. In such mod-

elling, I supplied Jacob Maresca with the image test sets (images only; no true

parameter values), along with Bayesian CNN’s predicted values and uncertainties

where necessary (see Section 4.2). He then modelled the images using PyAu-

toLens and returned to me its output predictions, from which I then analysed

the results.
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4.1. PYAUTOLENS

4.1 PyAutoLens

The software PyAutoLens1 (Nightingale et al., 2021) is used for modelling strong

gravitational lenses, employing the semi-linear inversion method initially devel-

oped by Warren and Dye (2003). It simultaneously models the foreground lens

and background source for strongly-lensed systems in a Bayesian framework, and

can do so using a range of configuration options including modelling on a square or

adaptive Voronoi grid, regularisation, and applying different source plane weight-

ings such as weighting by source brightness. An example of PyAutoLens strong

lens modelling is shown in Figure 4.1.

The result of modelling is a χ2 statistic of the differences between the observed

and model images, used to calculate the Bayesian evidence. By repeatedly up-

dating the lens model parameters, this evidence is then maximised over a series

of modelling iterations in an attempt to obtain the set of parameter values that

correspond to the global maximum. For this work, the background source was

reconstructed on a Voronoi grid that adapted to the lens magnification, with gra-

dient regularisation applied uniformly across the source plane and allowed to vary

in strength according to a regularisation prior. The inversion process was ini-

tialised using the input priors on the mass profile (see below), the regularisation

prior, and a prior controlling the number of pixels in the source reconstruction.

Each pixel in the image plane was sub-gridded into 4 sub-pixels for ray tracing

calculations: given the image resolution, further sub-gridding gave no noticeable

improvement and only served to increase modelling time. Images were masked to

increase modelling efficacy; this required fitting an annulus to significant image

pixels in an automated fashion in order to cope with the many large test sets.

To create the masks, minimum cross-entropy thresholding (Li and Lee, 1993) was

applied to each image, producing a thresholded image whose calculated moments

1https://github.com/Jammy2211/PyAutoLens
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4.1. PYAUTOLENS

Figure 4.1: PyAutoLens modelling of a Hubble Space Telescope image contain-
ing the strong lens SLACSJ1430+1405. From left to right: original image, a fit
to the lensed source galaxy, and the corresponding unlensed source reconstructed
on a Voronoi grid. Critical lines and caustics are shown in the middle and right
panels, respectively. (Figure credit: Nightingale et al., 2021)

were used to obtain its centroid. Then centred on this centroid was a circular

annular mask, whose inner and outer radii were selected based on the innermost

and outermost non-zero pixels in the thresholded image, to produce the thinnest

annulus containing all such non-zero pixels. To avoid masking fainter source light,

the width of the annular mask was slightly increased, with these inner and outer

radii scaled by 90 per cent and 110 per cent, respectively. For an optimiser,

PyAutoLens used the (Py)MultiNest Bayesian inference tool (Feroz et al.,

2009; Buchner et al., 2014) for Markov chain Monte Carlo (MCMC) sampling of

parameter space, run in constant efficiency mode with a sampling efficiency of 0.4.

PyAutoLens requires priors for the mass model parameters which are normally

set manually by human inspection of the lensed image. The widths of the bounds

of the priors are set relatively arbitrarily, and modelling can be reinitialised with

modified priors should it converge on a poor fit. However, in this work we sought to

compare PyAutoLens to the CNN though testing on thousands of lensed images,

and so a method of automating PyAutoLens was required. As such, PyAutoLens

was initialised using priors set either blindly or using CNN-predicted values (see

Section 4.2). For the former, before modelling, Einstein radii were approximated

by fitting a circle to image pixels above a 3-sigma threshold, by performing a
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4.2. PYAUTOLENS + CNN

least squares fit2 using uniform weights. The radius of this circle, with uniform

±0.2 arcsec bounds, was then used as the prior for Einstein radius. This eased the

fitting process while still leaving it fully-automated, so remained a fair comparison

to the other automated modelling methods.

4.2 PyAutoLens + CNN

The parametric fitting of PyAutoLens can model the lens and source to a high

degree of accuracy and in such a way that any poor fits are easily identifiable from

their reconstructed images. But to do so requires a large amount of time and

computing power as well as the manual effort of setting priors on the parameters.

These are factors we would like to reduce, as they currently limit its applicability

to the quantity of strong galaxy-galaxy lenses that future surveys will discover.

PyAutoLens can be crudely automated by setting priors to cover a large region of

parameter space (‘blind’ modelling) rather than basing them on human inspection,

however this results in a drop in accuracy and further increased modelling time.

In addition, the widths of the priors can present problems - if the bounds are too

narrow, the software may not converge to the correct solution, while too large

bounds result in many more iterations before a solution is obtained. Even then,

wide bounds on the priors can result in the software converging on parameters

that represent overmagnified or undermagnified solutions rather than recovering

the true parameters (Maresca et al., 2021). While the inversion process can be

initialised using a fit with a parametric source to aid in this endeavour, this can

confuse modelling when presented with images of a complex source.

On the other hand, a trained CNN provides a much faster, computationally inex-

pensive and automated alternative, but requires a sufficiently large and realistic

2This used the skimage.measure.CircleModel function from the open source Python library

scikit-image (van der Walt et al., 2014).
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training set in order to avoid underfitting or overfitting to the data. While the

CNN may not always be able to reach the high accuracy that PyAutoLens can

achieve with human inspection (e.g. 0.1 per cent error on Einstein radius with

negligible bias, for mock lenses modelled by PyAutoLens in Cao et al. (2022);

see Section 4.3.1), compared to the automated blind modelling that would be re-

quired by PyAutoLens to cope with future surveys the CNN can potentially

provide a more efficient and accurate method. Additionally, CNN predictions can

act as priors for PyAutoLens, with such a combination of methods removing the

need for human inspection and allowing for slower, yet still automated, accurate

modelling to deal with more complex lenses.

PyAutoLens initialises lens model parameters by randomly sampling from a

series of user-defined prior distributions which can be uniform or Gaussian. When

setting up, these are typically manually selected based on a visual inspection of the

lensed image. Automation of this process would require either generous uniform

priors to ensure that no parameters are disallowed during fitting, or a means of

making an estimation of a narrower set of priors. Since the CNN can now predict

values for mass model parameters extremely quickly, this opens up the possibility

of using these to inform the priors for PyAutoLens. Not only this, but the

uncertainties that the CNN predicts can be used as the 1σ bounds, now using a

Gaussian prior distribution (centred on the CNN’s predicted parameters) rather

than a uniform one.

Such a combination of CNNs and conventional parametric modelling can help alle-

viate the shortfalls that each method faces individually: CNN accuracy is limited

by the quality of the training set, which ideally would feature non-parametric

source and lens profiles for many hundreds of thousands of images, and without

these the network may struggle with more complex lensing systems. Meanwhile,

conventional parametric modelling does not require training, and hence offers a

more flexible means of modifying the lensing model, such as changing the mass
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profile and the easy addition of components such as external shear. However, this

modelling can take a large number of iterations before converging on a solution,

and may require repeat modelling attempts.

Together, CNNs can vastly simplify the search over parameter space for parametric

modelling methods and can additionally prevent methods using semilinear inver-

sion, like PyAutoLens, from falling into local minima, especially when using

CNN uncertainties to reduce the size of prior parameter space. Hence this com-

bination may lead to a fully automated pipeline that can obtain accurate results

over short time-scales for application to large samples of lenses.

4.3 Modelling Results for Increasingly Complex

Lensing Systems

We now compare the performance of the approximate Bayesian CNN created in

Section 3.4 to that of PyAutoLens modelling blindly (‘PyAL (blind)’ hereafter)

for the range of increasingly complex test cases presented in Section 3.6. These

techniques are also compared to combinations of the two, in which the CNN

predictions are used as priors for PyAutoLens. The first (‘PyAL + CNN’) uses

uniform priors of arbitrary width that are centred on the CNN-predicted model

parameters. The second (‘PyAL + CNN (1σ)’) uses Gaussian priors centred on

these parameters with the CNN-predicted 1-sigma uncertainties acting as the prior

widths; see Section 4.2. We also tried setting the prior widths to twice the 1-sigma

uncertainties reported by the CNN in case the uncertainties were underpredicted

for the more complex test sets. However, overall the results were worse than

passing the unmodified uncertainties, with distributions of errors (e.g. Figure 4.2)

very close to those of PyAL + CNN, and so were not investigated further.

As discussed in Section 3.4.2, orientation values are now presented in degrees
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to ease interpretation, and likewise axis ratios q are used in place of ellipticities

e, following the relation e = 1 − q. The uniform prior distributions of PyAL

(blind) covered parameter space for all parameters except Einstein radius, which

instead used ±0.2 arcsec bounds centred on the Einstein radii estimated by fitting

a circular function directly to the lensed images (see Section 4.1). For the PyAL

+ CNN method, the bounds were ±0.2 arcsec, ±40◦, ±0.1, and ±0.2 for Einstein

radius, orientation, axis ratio and slope, respectively.

The modelling techniques were applied to simulated images containing SIE lenses,

with parametric (Sérsic and Gaussian) and real HUDF sources, the results of

which are presented in Sections 4.3.1 and 4.3.2, respectively. In the case of HUDF

sources, results were compared for lenses with and without LOS structure, and this

was repeated for the case of power law lenses (Section 4.3.3). Section 4.3.4 details

how the techniques were instead applied to simulated images with complex lenses

in the form of galaxies obtained from the EAGLE hydrodynamical simulation,

again with HUDF sources and for those with and without LOS structure. These

results, and the results of the thesis as a whole, are also discussed further in

Chapter 5.

As in Chapter 2, throughout the remainder of this chapter we again quantify the

error on predicted lens model parameters by the 68 per cent confidence interval

computed from the distributions of differences between true and predicted param-

eter values across the test image set. This is separate from the 1σ uncertainty

predicted by the CNN for a given predicted parameter value, obtained using the

methods described in Chapter 3.

4.3.1 SIE Lenses + Parametric Sources

We began by testing for any inherent biases or differences between the modelling

methods. Sets of 1000 images containing SIE lenses and parametric sources, with
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sources evenly split between Sérsic profiles and Gaussian profiles, were modelled

using each method. The results are presented in Figure 4.2 as distributions of

the differences between predicted values and true values for each mass model pa-

rameter. Fractional differences are used for Einstein radius and axis ratio. Tables

4.1 and 4.2 respectively give the errors and median biases for these distributions,

where biases are taken to be the predicted parameter value minus the true value.

Scatter plots of predictions against true values are given in Figure 4.3, includ-

ing the CNN’s predicted 1σ uncertainties. It is clear from these results that the

CNN’s predicted uncertainties are of an appropriate size and accurately reflect

its errors; the large uncertainties in some orientation values are expected as they

occur for round lenses with no well-defined orientation. It is worth noting that

the CNN errors are significantly lower than those presented in Chapter 2; this is

primarily due to doubling the size of the training set, which now also contains a

greater variety of lensing systems. The incorporation of dropout and uncertainty

prediction into the network architecture, along with testing on lenses with gen-

erally larger Einstein radii (and hence more available information), also serve to

increase network performance.

The CNN by itself achieves a smaller error than that of PyAutoLens for axis

ratio, but larger errors for the other parameters. Despite the significantly lower

peaks for Einstein radius and orientation, the CNN has far fewer outliers, as shown

in Figure 4.3, resulting in similar overall errors. This is because the CNN training

prevents the CNN from producing the anomalous results that PyAutoLens can

when it encounters local minima far from the correct model, while that very ability

of PyAutoLens to explore parameter space enables it to provide highly precise

results when it encounters the global minimum. However, for all mass model

parameters the combination of the two methods does significantly better than

PyAutoLens modelling blindly, with PyAL + CNN (1σ) achieving 36-44 per

cent lower errors than PyAL (blind). There is also a notable benefit to including

the CNN’s predicted 1σ uncertainties in the priors of PyAutoLens, with 12-17
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Figure 4.2: SIE lenses + parametric sources. Distribution of the differences
between predicted SIE mass model parameters and their true values for a test data
set of 1000 images containing parametric (Sérsic and Gaussian) sources. From top
to bottom: Einstein radius, orientation and axis ratio of the lens mass profile.
Einstein radius and axis ratio results presented as fractional differences. The dis-
tributions shown are those for the CNN (blue), PyAutoLens modelling blindly
(orange), PyAutoLens using CNN predictions as priors (green) and PyAu-
toLens using CNN predictions and 1-sigma uncertainties as priors (red).
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Figure 4.3: SIE lenses + parametric sources. Comparison of predicted SIE
lens parameters with the true values for test data sets of 1000 images containing
SIE lenses and parametric (Sérsic and Gaussian) sources. From top to bottom:
Einstein radius, orientation and axis ratio of the lens mass profile.
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Table 4.1: SIE lenses + parametric sources. The 68 per cent confidence
intervals on predicted parameters for each modelling method, computed from the
distributions of differences between true and predicted parameter values across
1000 test images.

Method θE (arcsec) ϕ (◦) q
CNN 0.0090 4.92 0.018
PyAL (blind) 0.0089 4.44 0.027
PyAL + CNN 0.0065 2.81 0.021
PyAL + CNN (1σ) 0.0055 2.47 0.017

per cent lower errors for PyAL + CNN (1σ) compared to PyAL + CNN. As we

will see, this benefit from including 1σ uncertainties generally continues for the

other test sets, and arises from replacing the uniform prior of PyAL (blind) with

a Gaussian prior with a suitably estimated centre and width. This prior takes the

place of human inspection through providing better starting points and constraints

on PyAutoLens’ parameter space, allowing it to converge on the correct model

while avoiding local minima that it may otherwise become trapped in.

From Table 4.2, we see that the modelling methods experience little biasing of

results, with no clear distinction between methods when comparing median biases

for all parameters. For example, biases for Einstein radii and axis ratios do not

exceed magnitudes of 0.1 per cent and 0.4 per cent, respectively. All biases are

significantly smaller than the corresponding errors given in Table 4.1, and have

negligible impact on modelling given their magnitudes. These results are to be

expected given the simple parametric profiles used both in this test set and in the

training of the network.

As previously discussed, PyAutoLens is typically initialised using human inspec-

tion of images, rather than the blind modelling performed here. While this would

not be practical for application to future large-scale data sets, it is still worth

considering how the errors of the automated methods presented here compare

to PyAutoLens with human oversight, to gauge the impact of automating the

modelling process. A comparison of this nature was not carried out for the data
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Table 4.2: SIE lenses + parametric sources. The bias in the predicted pa-
rameters for each modelling method, computed from taking the median average
across 1000 test images of the predicted parameter values minus their true values.
Percentage biases are given next to the absolute biases for Einstein radius and
axis ratio, with negative values indicating under-predictions compared to the true
values.

Method θE (arcsec) ϕ (◦) q
CNN 0.0016 (0.1%) -0.18 -0.002 (-0.3%)
PyAL (blind) 0.0015 (0.1%) -0.15 0.001 (0.2%)
PyAL + CNN 0.0013 (0.1%) 0.09 0.002 (0.2%)
PyAL + CNN (1σ) 0.0015 (0.1%) -0.04 0.003 (0.4%)

sets in this thesis, but other works have provided examples of how well PyAu-

toLens can perform with human inspection. For example, Cao et al. (2022)

tested PyAutoLens on 50 mock HST-resolution lenses and recovered power law

model parameters to high accuracy: ±0.1 per cent for Einstein radius with negli-

gible bias, and ±3.4 per cent for slope with 2.5 per cent systematic underpredic-

tion. However, Etherington et al. (2022) fitted power law models to 59 SLACS

and BELLS GALaxy-Lyα EmitteR sYstems (GALLERY) lenses observed by HST

utilising the now fully Bayesian PyAutoLens and from the posterior probability

distribution function calculated a mean 1 per cent measurement precision on its

modelled Einstein radii.

Additionally, Maresca et al. (2022) modelled uv-plane visibilities of Atacama Large

Millimetre/sub-millimetre Array (ALMA) strong gravitational lenses, at an image

resolution akin to that of Euclid. Across four galaxy-galaxy lenses modelled with

an elliptical power law mass model with external shear, PyAutoLens produced

uncertainties of ±0.01 arcsec, ±1-4◦, ±0.01-0.05, and ±0.01-0.04 for Einstein ra-

dius, orientation, axis ratio, and power law slope, respectively. These uncertainties

agree closely with the errors presented in Table 4.1 for SIE parameters, and we

shall see in the next section that the same is true for modelling SIE lenses with

HUDF sources. However, the rest of this chapter will show how introduction of

LOS structure, EAGLE galaxy lenses or power law mass models raise errors of the

automated methods significantly higher than may be produced by PyAutoLens
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with human inspection.

4.3.2 SIE Lenses + HUDF Sources

For the next set of testing, the impact of using real HUDF sources in place of

simple parametric ones was examined, as well as the incorporation of additional

structure along the LOS. Results for images without LOS structure are presented

in Figures 4.4 and 4.6, and those with LOS structure in Figures 4.5 and 4.7. They

follow the same format as before, and their associated errors and biases are given

in Tables 4.3 and 4.4, respectively.

We first examine the results for images without LOS structure. In general, the

accuracies for all modelling have dropped compared to testing on images with

parametric sources, as expected due to the sources’ complex non-parametric mor-

phologies. As with the previous test set containing parametric sources, the CNN

errors are higher for Einstein radius and orientation and lower for axis ratio when

compared to PyAutoLens blind modelling. Likewise, we again see the combi-

nation of the two techniques performing significantly better than either of them

separately, with PyAL + CNN (1σ) errors 31-39 per cent lower than PyAL (blind).

In Figure 4.6, there are a notable number of axis ratio values that PyAL (blind)

significantly underpredicts that the other methods do not. These scattered outliers

generally correspond to the likewise underpredicted Einstein radii, and appear in

later test results as well. They do not correlate to any specific lensing configura-

tions, but are instead likely due to poor initialisations in parameter space, and as

such do not appear for the CNN and CNN-assisted methods.

From Table 4.4, we see that the median biases for Einstein radius and axis ratio

increase somewhat in magnitude compared to the previous test set: Einstein radius

is over-predicted by up to 2 per cent while axis ratio is underpredicted by up to

1.4 per cent. However, these continue to remain notably smaller than the errors in
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Figure 4.4: SIE lenses + HUDF sources. Distribution of the differences be-
tween predicted SIE mass model parameters and their true values for test data
sets of 1000 images containing HUDF sources, without LOS structure. The dis-
tributions follow the same format as Figure 4.2.
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Figure 4.5: SIE lenses + HUDF sources + LOS structure. Distribution of
the differences between predicted SIE mass model parameters and their true values
for test data sets of 1000 images containing HUDF sources, with LOS structure.
The distributions follow the same format as Figure 4.2.
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Figure 4.6: SIE lenses + HUDF sources. Comparison of predicted SIE lens
parameters with the true values for test data sets of 1000 images containing SIE
lenses and HUDF sources, without LOS structure. From top to bottom: Einstein
radius, orientation and axis ratio of the lens mass profile.
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Figure 4.7: SIE lenses + HUDF sources + LOS structure. Comparison
of predicted SIE lens parameters with the true values for test data sets of 1000
images containing SIE lenses and HUDF sources, with LOS structure. From top
to bottom: Einstein radius, orientation and axis ratio of the lens mass profile.
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Table 4.3: SIE lenses + HUDF sources. The 68 per cent confidence intervals on
predicted parameters for each modelling method, computed from the distributions
of differences between true and predicted parameter values across 1000 test images.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.013 6.10 0.029
PyAL (blind) 0.013 4.22 0.038
PyAL + CNN 0.010 3.02 0.030
PyAL + CNN (1σ) 0.009 2.57 0.026
With LOS structure
CNN 0.021 30.7 0.067
PyAL (blind) 0.029 33.8 0.077
PyAL + CNN 0.026 28.0 0.068
PyAL + CNN (1σ) 0.023 27.1 0.065

Table 4.3, and there is little change in orientation biases, as expected. Regarding

these biases, PyAL (blind) and PyAL + CNN perform very similar, while the

CNN achieves the lowest for Einstein radii and axis ratio.

For images with LOS structure, results are similar to those above except for a

general decrease in performance for all results, with errors increasing by factors

of 2.2, 8.2 and 2.3 on average for Einstein radius, orientation and axis ratio,

respectively. This is to be expected as the inclusion of extra mass along the LOS

serves generally to increase the complexity of the lensing system compared to

smooth parametric profiles, making the resulting images more difficult to model.

As detailed in Section 3.6, to obtain the ‘true’ parameters for these images we

fitted an SIE model convergence to the convergence of the combined SIE profile

and LOS structure. It is worth noting however that the CNN was not trained

on images containing HUDF sources or LOS structure, so while the drop in its

accuracy is expected it still performs sufficiently well as an automated modelling

method.

The CNN now achieves the highest accuracy for Einstein radii, with errors 10 per

cent lower than PyAL + CNN (1σ), but the latter method continues to give the

best results for orientation and axis ratio. For these parameters, the differences
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Table 4.4: SIE lenses + HUDF sources. The bias in the predicted parameters
for each modelling method, computed from taking the median average across 1000
test images of the predicted parameter values minus their true values. Percentage
biases are given next to the absolute biases for Einstein radius and axis ratio, with
negative values indicating under-predictions compared to the true values.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.002 (0.1%) 0.10 -0.008 (-0.9%)
PyAL (blind) 0.003 (0.2%) -0.07 -0.011 (-1.4%)
PyAL + CNN 0.003 (0.2%) 0.09 -0.011 (-1.3%)
PyAL + CNN (1σ) 0.003 (0.2%) 0.04 -0.009 (-1.0%)
With LOS structure
CNN -0.003 (-0.2%) -0.50 -0.001 (-0.1%)
PyAL (blind) -0.004 (-0.2%) 0.43 -0.013 (-1.6%)
PyAL + CNN -0.002 (-0.1%) -0.14 -0.010 (-1.3%)
PyAL + CNN (1σ) -0.003 (-0.2%) 0.20 -0.003 (-0.5%)

between the distributions are reduced compared to the results for images without

LOS structure. As such, compared to PyAL (blind) the errors are reduced by

9-28 per cent, 11-17 per cent, and 16-21 per cent for the CNN, PyAL + CNN, and

PyAL + CNN (1σ), respectively. For the latter method, incorporating the CNN’s

predicted 1σ uncertainties in the priors of PyAutoLens now reduces errors by

3-10 per cent over PyAL + CNN, compared with 13-15 per cent for images without

LOS structure. For both images with and without LOS structure, CNN-predicted

uncertainties seen in Figures 4.6 and 4.7 continue to accurately reflect the CNN’s

errors for the vast majority of lenses, but for those containing LOS structure there

are significantly more with greatly underpredicted uncertainties, due to not being

represented in the CNN’s training set.

With the addition of LOS structure, biases in orientation increase in magnitude

for all modelling methods, reflecting the increased errors shown in Table 4.3. In

addition, Einstein radii are now underpredicted, but their magnitudes, like those

for axis ratio, do not appear to be affected. PyAL (blind) now experiences the

largest biases for Einstein radius and axis ratio, respectively reaching magnitudes

of 0.2 per cent and 1.6 per cent, but once again the biases of all methods remain

significantly smaller than the errors in Table 4.3. Axis ratios are repeatedly under-
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predicted on average, due to the distortions to the lensed arcs brought about by

the HUDF sources and LOS structure causing the lenses to appear more elliptical

(lower axis ratios) than they actually are. Additionally, in part due to overpredict-

ing the ellipticity, the modelling also generally predicts the aforementioned smaller

Einstein radii to compensate for the observed distorted lensed images, with more

elliptical lenses experiencing greater underpredictions of Einstein radii.

4.3.3 Power Law Lenses + HUDF Sources

Next, the same tests as Section 4.3.2 were repeated for power law lenses. For

this, the same CNN architecture and training process was used but now training

and testing on images containing lenses with power law mass profiles instead of

SIE profiles. As such, the power law slope parameter n (see Equation 3.7) was

also predicted by the network along with its associated 1σ uncertainty, but oth-

erwise the training and testing was identical to that of Section 4.3.2. Figures 4.8

and 4.10 present results for images without LOS structure, while Figures 4.9 and

4.11 present those containing LOS structure, following the same format as before.

Likewise, their associated errors and biases are respectively given in Tables 4.5

and 4.6.

For power law mass profiles without LOS structure, Einstein radius continues

to be overpredicted while axis ratio is underpredicted, yet orientation appears

unaffected in both the magnitude and direction of its biasing compared to those

of SIE modelling. Biases for both Einstein radius and axis ratio increase compared

to those of SIE modelling, now respectively reaching magnitudes of 0.8 per cent

and 4.1 per cent. This is due to the difficulty in modelling power law slopes,

discussed below, with all modelling methods significantly overpredicting values on

average by up to 6.9 per cent.

The difficulty of predicting slope values is highlighted in Figures 4.10 and 4.11,
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Figure 4.8: Power law lenses + HUDF sources. Distribution of the differences
between predicted power law mass model parameters and their true values for test
data sets of 1000 images containing HUDF sources, without LOS structure. The
distributions follow the same format as Figure 4.2.
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Figure 4.9: Power law lenses + HUDF sources + LOS structure. Distri-
bution of the differences between predicted power law mass model parameters and
their true values for test data sets of 1000 images containing HUDF sources, with
LOS structure. The distributions follow the same format as Figure 4.2.
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Figure 4.10: Power law lenses + HUDF sources. Comparison of predicted
power law lens parameters with the true values for test data sets of 1000 images
containing power law lenses and HUDF sources, without LOS structure. From top
to bottom: Einstein radius, orientation and axis ratio of the lens mass profile.
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Figure 4.11: Power law lenses + HUDF sources + LOS structure. Com-
parison of predicted power law lens parameters with the true values for test data
sets of 1000 images containing power law lenses and HUDF sources, with LOS
structure. From top to bottom: Einstein radius, orientation and axis ratio of the
lens mass profile.
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with the highest accuracy achieved using PyAL + CNN (1σ) despite significant

scatter remaining in both plots of slope values. Because of this complication, the

results for other parameters are generally worse than for images containing SIE

lenses, with errors increasing by factors of 1.2-2.9 and 1.1-4.2 for test sets with

and without LOS structure, respectively. Einstein radii and axis ratios are pre-

dominantly affected, especially when modelling with PyAL (blind) whose results

contain many more greatly underpredicted axis ratios regardless of the presence

of LOS structure. This is a reflection of the overall degeneracy observed between

slope and axis ratio (which in turn affects Einstein radius predictions); for in-

creasing true slope values, predicted slopes in general go from overpredicted to

underpredicted, while the opposite occurs for axis ratio predictions. These trends

are reversed for increasing true axis ratios (rounder lenses). As such, the degener-

acy is due to how deflection potentials seen in Figure 1.6 produced from increasing

a lens’ ellipticity (moving downwards in the figure) can appear similar to those

produced by a lens with both lower ellipticity and power law slope (instead mov-

ing left or left and up in the figure), even if the surface mass density appears

significantly different. Hence, both cases produce more elongated critical curves

and caustics as shown in Figure 1.5, even if they differ in shape.

While the scatter in power law results is larger than that of SIE lenses, the un-

certainties predicted by the CNN remain in general an accurate reflection of its

errors for both lenses with and without LOS structure. These uncertainties appear

to be slightly underpredicted for axis ratios, primarily for the large scatter seen

at lower axis ratio values, and generally underpredicted for slope values. These

underpredictions are due to the above difficulty in modelling slope leading to insuf-

ficient CNN training for more elliptical lenses, and would require further training

in this area to cope with the wider variety of lensed image configurations caused

by varying the power law slope.

For the test set without LOS structure, comparisons between modelling methods
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Table 4.5: Power law lenses + HUDF sources. The 68 per cent confidence
intervals on predicted parameters for each modelling method, computed from the
distributions of differences between true and predicted parameter values across
1000 test images. The final column contains the confidence intervals for the power
law slope parameter.

Method θE (arcsec) ϕ (◦) q n
Without LOS structure
CNN 0.050 7.37 0.083 0.27
PyAL (blind) 0.065 6.53 0.106 0.29
PyAL + CNN 0.049 2.63 0.080 0.25
PyAL + CNN (1σ) 0.029 2.50 0.062 0.20
With LOS structure
CNN 0.070 32.2 0.093 0.19
PyAL (blind) 0.091 44.1 0.143 0.26
PyAL + CNN 0.068 34.1 0.096 0.19
PyAL + CNN (1σ) 0.060 32.1 0.091 0.18

remain similar to before, with errors of PyAL + CNN (1σ) 5-39 per cent lower

than those of PyAL + CNN, and 32-62 per cent lower than those of PyAL (blind).

Meanwhile, the CNN by itself achieves errors comparable to PyAL (blind), from

19 per cent lower to 13 per cent larger, due to the increasingly complex parameter

space making it difficult for PyAL (blind) to avoid local minima. With regard to

the orientation results seen in Figure 4.8, the CNN predictions are generally more

scattered compared to PyAL (blind). However, while the results of the latter

are for the most part centrally concentrated close to the true values, some are

clearly offset by around ±90◦ due to the modelling falling into local minima in

parameter space where perpendicular lenses can produce similar, if offset, lensed

image configurations. For PyAL + CNN and PyAL + CNN (1σ) some of the

outlying predictions remain, but these combinations of methods shift the majority

of them back towards the true values, decreasing overall errors.

With LOS structure, the CNN and PyAL + CNN (1σ) methods respectively

reduce errors by 23-35 per cent and 27-36 per cent compared to PyAL (blind).

Similar to the test set containing SIE lenses and LOS structure, the difference

between the CNN and PyAL + CNN (1σ) methods is smaller than for images

without LOS structure, with the latter method obtaining only 0.3-14 per cent

121



4.3. MODELLING RESULTS FOR INCREASINGLY COMPLEX LENSING
SYSTEMS

Table 4.6: Power law lenses + HUDF sources. The bias in the predicted
parameters for each modelling method, computed from taking the median average
across 1000 test images of the predicted parameter values minus their true values.
Percentage biases are given next to the absolute biases for Einstein radius, axis
ratio and power law slope, with negative values indicating under-predictions com-
pared to the true values.

Method θE (arcsec) ϕ (◦) q n
Without LOS structure
CNN 0.012 (0.8%) -0.04 -0.020 (-2.2%) 0.13 (6.9%)
PyAL (blind) 0.004 (0.3%) 0.02 -0.036 (-4.1%) 0.10 (5.1%)
PyAL + CNN 0.011 (0.7%) 0.00 -0.030 (-3.5%) 0.10 (5.1%)
PyAL + CNN (1σ) 0.008 (0.5%) -0.05 -0.025 (-2.8%) 0.08 (4.2%)
With LOS structure
CNN -0.001 (-0.0%) 0.64 0.000 (0.0%) 0.03 (1.8%)
PyAL (blind) -0.014 (-0.8%) 1.02 -0.034 (-4.0%) 0.04 (1.9%)
PyAL + CNN -0.005 (-0.3%) 0.44 -0.005 (-0.6%) 0.01 (0.8%)
PyAL + CNN (1σ) -0.005 (-0.3%) 0.04 -0.006 (-0.7%) 0.01 (0.7%)

lower errors over the former compared to the 28-66 per cent improvement obtained

for images without LOS structure. Likewise, the incorporation of 1σ uncertainties

now only reduces errors by 5-12 per cent over modelling with PyAL + CNN. The

differences in results for images with LOS structure compared to those without

are less prominent than those for SIE lenses due to larger errors overall: now,

errors increase by factors of 1.6, 9.2, and 1.3 for Einstein radius, orientation and

axis ratio, respectively, while errors in the slope actually decrease by 18 per cent.

The modelling methods appear to generally overpredict slope values (i.e. more

point-like lenses) in Figure 4.10, so the addition of LOS structure away from the

central lens may allow the modelling to predict sufficiently lower slope values so

as to slightly decrease the overall error in these results. The overpredicting of

slope values is unlikely to have arisen from differences in their training and testing

distributions as both were uniform and sampled between the same bounds.

Similar to the SIE results, the addition of LOS structure to the power law data set

causes biases in Einstein radius to become underpredicted on average and increase

the magnitude of orientation biases. However, the magnitudes of biases for Ein-

stein radius, axis ratio, and power law slope are all reduced on average across the
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modelling methods, with more accurate predictions of the slope discussed above

allowing for better modelling overall. For this data set, PyAL (blind) produces

the largest median biases, likely due to the increased difficulty of parameter space

causing it to converge on local minima.

4.3.4 EAGLE Lenses + HUDF Sources

The next stage involved testing on simulated images that contained more complex

lenses, i.e. those that do not follow an analytical profile. A set of 1000 test images

was simulated containing lensing galaxies taken from the EAGLE hydrodynamical

simulations along with HUDF source galaxies (see Section 3.6). An identical test

set was also simulated with the addition of LOS structure as applied previously

for the parametric lenses. The known convergence maps of these lenses were fitted

with SIE mass profiles in order to obtain the best-fit ‘true’ parameter values,

before modelling the lensed images with an SIE mass profile using the previous

methods. Figures 4.12 and 4.13 show the resulting accuracies of the different

modelling methods, with corresponding scatter plots in Figures 4.14 and 4.15.

Errors and biases are respectively presented in Tables 4.7 and 4.8, in the same

format as previous results.

It should be noted that the EAGLE galaxy lenses modelled in this section have

smaller Einstein radii on average than in previous sections (see Section 3.6), pro-

ducing more pixelated arcs. The modelling methods are therefore expected to

produce higher errors for all parameters as a result, on top of the difficulty in

modelling more complex mass profiles; for example; for example, CNN error as a

function of Einstein radius was shown in Figure 2.10. However, examining the re-

sults for lenses with Einstein radii above 1.3 arcsec, in line with previous test sets,

such lenses continue to exhibit much larger errors than those seen in Section 4.3.2,

more similar in magnitude to the rest of the EAGLE galaxy data set. As such,

it appears the dominant source of error in these results arises from the complex
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Figure 4.12: EAGLE galaxy lenses + HUDF sources. Distribution of the
differences between predicted SIE mass model parameters and their true values for
test data sets of 1000 images containing EAGLE galaxy lenses with HUDF sources,
without LOS structure. The distributions follow the same format as Figure 4.2.
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Figure 4.13: EAGLE galaxy lenses + HUDF sources + LOS structure.
Distribution of the differences between predicted SIE mass model parameters and
their true values for test data sets of 1000 images containing EAGLE galaxy lenses
with HUDF sources, with LOS structure. The distributions follow the same format
as Figure 4.2.
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Figure 4.14: EAGLE galaxy lenses + HUDF sources. Comparison of pre-
dicted SIE lens parameters with the true values for test data sets of 1000 im-
ages containing EAGLE galaxy lenses and HUDF sources, without LOS structure.
From top to bottom: Einstein radius, orientation and axis ratio of the lens mass
profile.
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Figure 4.15: EAGLE galaxy lenses + HUDF sources + LOS structure.
Comparison of predicted SIE lens parameters with the true values for test data
sets of 1000 images containing EAGLE galaxy lenses and HUDF sources, with
LOS structure. From top to bottom: Einstein radius, orientation and axis ratio
of the lens mass profile.
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Table 4.7: EAGLE galaxy lenses + HUDF sources. The 68 per cent con-
fidence intervals on predicted parameters for each modelling method, computed
from the distributions of differences between true and predicted parameter values
across 1000 test images.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.035 8.70 0.108
PyAL (blind) 0.064 19.56 0.170
PyAL + CNN 0.044 9.12 0.116
PyAL + CNN (1σ) 0.034 8.12 0.119
With LOS structure
CNN 0.046 12.6 0.114
PyAL (blind) 0.070 23.8 0.157
PyAL + CNN 0.060 15.4 0.121
PyAL + CNN (1σ) 0.043 12.4 0.114

foreground galaxies rather than the smaller Einstein radii.

Without LOS structure, the CNN achieves 36-55 per cent lower errors than PyAL

(blind) despite the complex lenses in this test set, due to the complexity of pa-

rameter space causing the randomised automated initialisations of PyAL (blind)

to frequently result in it converging on local minima. Providing more accurate

priors enables PyAutoLens to converge on the correct parameters, and hence

the PyAL + CNN (1σ) method gives similar results to the CNN, with 30-58 per

cent lower errors than PyAL (blind). However, this method no longer outperforms

the other CNN methods for all parameters: For Einstein radius and orientation,

PyAL + CNN (1σ) achieves 11-22 per cent and 2-7 per cent lower errors compared

to PyAL + CNN and the CNN, respectively, but for axis ratio the PyAL + CNN

and CNN methods instead achieve 2.7 and 9.6 per cent lower errors than PyAL +

CNN (1σ). However, this may simply be due to the large scatter observed in Fig-

ure 4.14, especially for axis ratio which is often underpredicted by the modelling

methods. This is likely caused by two factors: a) the complex foreground galaxies

produce fewer smooth, well-defined arcs than those trained on by the CNN, and

b) the axis ratios of these galaxies can change as a function of radius, with the

modelling methods only given final lensed images and hence probe only a part
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Table 4.8: EAGLE galaxy lenses + HUDF sources. The bias in the predicted
parameters for each modelling method, computed from taking the median average
across 1000 test images of the predicted parameter values minus their true values.
Percentage biases are given next to the absolute biases for Einstein radius and
axis ratio, with negative values indicating under-predictions compared to the true
values.

Method θE (arcsec) ϕ (◦) q
Without LOS structure
CNN 0.008 (1.1%) 0.13 -0.042 (-5.6%)
PyAL (blind) 0.004 (0.5%) 0.89 -0.077 (-10.1%)
PyAL + CNN 0.006 (0.8%) 0.28 -0.057 (-7.2%)
PyAL + CNN (1σ) 0.009 (1.2%) 0.15 -0.056 (-7.4%)
With LOS structure
CNN -0.014 (-1.8%) -0.29 -0.050 (-6.9%)
PyAL (blind) -0.022 (-2.6%) 0.29 -0.065 (-8.9%)
PyAL + CNN -0.019 (-2.3%) -0.02 -0.057 (-7.3%)
PyAL + CNN (1σ) -0.015 (-1.8%) -0.03 -0.054 (-7.4%)

of the whole convergence map used by the separate fitting method to obtain the

‘true’ values. Regardless of the presence of LOS structure, both Figures 4.14 and

4.15 show that for these complex EAGLE galaxy lenses the CNN underpredicts its

uncertainties for all three parameters, with uncertainties barely visible for Einstein

radii and clearly not representing the full scatter of the results. As such, were the

network to be trained on similarly complex images, perhaps requiring a deeper

architecture to do so effectively, not only would the CNN’s predicted parameters

become more accurate, but it would produce uncertainties that better represent

the true uncertainty and hence allow PyAL + CNN and PyAL + CNN (1σ) to

also achieve higher accuracies.

From Table 4.8, we see that replacing parametric mass profiles with those of EA-

GLE galaxies (without LOS structure) increases the relative biases of Einstein

radii, now up to 1.2 per cent, increases magnitudes of orientation biases to values

similar to those of images containing LOS structure, and significantly increases

the axis ratio biases compared to those of SIE lenses to magnitudes reaching 10.1

per cent. These biases would have a major impact on such things as the deter-

mination of the Hubble constant, and so future work should be done to ensure
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they are reduced. It is possible that the biases here arise in part due to the fit-

ting procedure used to obtain the true values, the difficulty of which is discussed

in Section 5.5.2. For this data set, PyAL (blind) produces the largest bias for

axis ratio but the smallest for Einstein radius, while the reverse is true for the

CNN. When LOS structure is added to the images, as before the Einstein radii

become under-predicted with magnitudes increasing up to 2.6 per cent. Mean-

while, biases for orientation and axis ratio remain relatively unchanged across the

modelling methods, with biases larger than those for SIE or power law lenses with

LOS structure as expected. The CNN now produces the smallest biases for both

Einstein radius and axis ratio, and PyAL (blind) produces the largest biases.

Finally, for the test set containing LOS structure, PyAL + CNN (1σ) achieves

the lowest errors for all parameters, but there is again little difference between

its and the CNN’s results, with PyAL + CNN (1σ) errors only 0.4-7 per cent

lower than the CNN. As such their improvements over PyAL (blind) are almost

identical, with PyAL + CNN (1σ) and CNN errors 28-48 per cent and 28-47

lower than PyAL (blind), respectively. There is still a benefit to incorporating

the CNN’s predicted 1σ uncertainties, which reduce errors by 6-28 per cent over

those of PyAL + CNN. Due to the large amount of scatter in these results caused

by modelling the EAGLE galaxy lenses, the presence of LOS structure has only a

minor impact on the results, with errors that are factors of 1.3, 1.5 and 1.0 larger

than for images without LOS structure for Einstein radius, orientation and axis

ratio, respectively. With LOS structure, errors for the EAGLE galaxy lenses are

factors of 2.2, 0.5 and 1.8 larger than those of SIE lenses with LOS structure for

Einstein radius, orientation and axis ratio, respectively, compared to factors of

3.9, 3.1, and 4.2 when both test sets do not contain this extra structure.
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4.4 Modelling Speeds

So far we have concerned ourselves with examining and comparing the overall

accuracy and precision of each modelling method. However, if these methods are

to cope with the vast quantities of lenses to be discovered by upcoming surveys

then the time taken to model such lenses is also of significant importance. As

such, we now consider the speed by which the different modelling methods can

obtain the lens parameters seen in the previous results. Distributions of the time

taken to model individual lenses using each modelling method are shown in Figure

4.16, for three of the test data sets: SIE lenses with HUDF sources, SIE lenses

with HUDF sources and LOS structure, and EAGLE galaxy lenses with HUDF

sources and LOS structure. Distributions for the CNN by itself are not shown as

for a single lens the time taken is almost instant.

It is clear from the figure that the incorporation of the CNN helps quicken PyAu-

toLens’ modelling for all three test data sets, although nowhere near as fast as

the CNN by itself. Compared to PyAL (blind), PyAL + CNN increases modelling

speeds by mean factors of 1.34, 1.08, and 1.14 for the three test data sets (1.19 on

average), while PyAL + CNN (1σ) increases modelling speeds by mean factors of

1.56, 1.37 and 2.25 (1.73 on average). A significant improvement is obtained by

incorporating the CNN’s predicted uncertainties, especially for the EAGLE galaxy

lenses; while all methods show some cases of lenses taking a long time to model,

PyAL + CNN (1σ) has far fewer of these outliers, which themselves are generally

much shorter than those of the other methods. This improvement arises from

applying better priors on parameter space which allow PyAutoLens to converge

faster and prevents it from falling into local minima that would give inaccurate

parameter values. The use of (Py)MultiNest by PyAutoLens means that

the closer it gets to the correct solution, the greater the number of samples that

reach its acceptance threshold. This in turn quickens the Markov chain Monte

Carlo (MCMC) sampling of (Py)MultiNest, further increasing the speed at

131



4.4. MODELLING SPEEDS

0 20 40 60 80 100 120
Modelling time (minutes)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Nu
m

be
r D

en
sit

y

PyAL (blind)
PyAL + CNN
PyAL + CNN (1 )

0 20 40 60 80 100 120
Modelling time (minutes)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Nu
m

be
r D

en
sit

y

PyAL (blind)
PyAL + CNN
PyAL + CNN (1 )

0 20 40 60 80 100 120
Modelling time (minutes)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Nu
m

be
r D

en
sit

y

PyAL (blind)
PyAL + CNN
PyAL + CNN (1 )

Figure 4.16: Distributions of the time taken for PyAutoLens to model each
of the lenses making up a given test set when modelling blindly, with the CNN
predictions as priors, and with the CNN predictions and uncertainties as priors.
As the trained CNN can model lenses by itself almost instantly, its modelling times
are not included here. From top to bottom: test sets consist of SIE lenses with
HUDF sources, SIE lenses with HUDF sources and LOS structure, and EAGLE
galaxy lenses with HUDF sources and LOS structure.
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which PyAutoLens can reach the solution. Hence, starting in more optimal

regions of parameter space can greatly quicken modelling. It is worth noting

that the CNN-predicted uncertainties for the EAGLE galaxy lenses were gener-

ally underpredicted; while such priors for PyAutoLens may quicken modelling

when centred on local or global minima, they are more likely to result in incorrect

predictions. Additionally, those not centred on minima would greatly slow the

modelling process, and so should more suitable priors be obtained for the EAGLE

galaxy lenses, both the accuracy and modelling speed of PyAL + CNN (1σ) may

be increased.

For the automated approach used in this work, only a single run of PyAutoLens

is performed for each image, whereas conventionally not only would each image

be inspected by eye beforehand, but some modelling may converge on incorrect

values and hence require re-initialising with modified priors, further increasing

modelling time and the need for human inspection. The CNN alone provides a

much more rapid automated modelling than PyAutoLens or the combination

method, making it the most suitable to handle upcoming large data sets extremely

quickly. However, the fully automated PyAL + CNN (1σ) approach is still signif-

icantly faster and more accurate than PyAutoLens, so is well-suited to model

lenses for which large uncertainties are predicted by the CNN.

4.5 Summary

With upcoming surveys like Euclid and LSST set to identify tens of thousands

of gravitational lenses, conventional parametric parameter-fitting techniques like

PyAutoLens will struggle to cope due to their relatively slow modelling speed

and the need for manual inspection. Instead, faster automated approaches are

required to either replace or enhance existing techniques.

In this chapter, we built upon the earlier work in this thesis by training an approx-
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imate Bayesian CNN to predict strong gravitational lens mass model parameters

and comparing its performance to that of an automated version of the PyAu-

toLens semilinear inversion technique. These were applied to the range of in-

creasingly complex lensing systems detailed in Chapter 3, including parametric

SIE and power law lens mass profiles, EAGLE galaxy lenses, and LOS structure.

In addition, we also explored the combination of these modelling methods, with

CNN predicted values and uncertainties acting as priors for PyAutoLens.

Regarding the biases exhibited across the data sets in Section 4.3, axis ratios

are generally underpredicted throughout due to distortions to the lensed arcs as

previously discussed. While all modelling methods could exceed a 1 per cent

median bias in Einstein radius, this was only seen for the EAGLE galaxy lenses:

generally, more complex images result in larger average biases for all parameters,

with magnitudes of those for Einstein radius spanning anywhere from zero up

to 2.6 per cent. Without LOS structure, Einstein radii are over-predicted on

average, and instead become under-predicted for images with LOS structure. This

additional structure otherwise has little effect on the biases, except for increasing

the magnitude of those for EAGLE galaxy lens Einstein radii. Over all the test

data sets, PyAL (blind) is the only method that ever produced median orientation

biases larger than 1◦, or larger than 7.5 per cent for axis ratio (to a maximum of

10.1 per cent). Despite this, given the variety of biases exhibited by the modelling

methods across the parameters and test sets, no one method appears to perform

significantly better or worse in this regard. The biases observed in the CNN

results also highlight how a single CNN can be biased even with the incorporation

of dropout; this biasing could be reduced through combining the predictions of

multiple networks each trained on a different sample of images.

Across the data sets and lens parameters in Section 4.3, the CNN errors are 19

± 22 per cent lower than PyAL (blind) on average3. Hence, for the majority

3The impact of the relative performances of the modelling methods is also discussed further
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of cases, the CNN results are on par with or exceed those of PyAutoLens,

whose modelling is not typically automated, instead requiring manual inspection

of images to obtain suitable priors. The combination of these two methods when

using just CNN predicted values as priors, PyAL + CNN, improves upon PyAL

(blind), achieving 27 ± 11 per cent lower errors across the parameters. However,

it is frequently matched or exceeded by the CNN, with average errors only 4 ± 23

per cent lower than the network. In Section 4.4 it was found that while the CNN is

by far the quickest modelling approach, this combination enhances the modelling

speed of PyAutoLens, increasing it by a factor of 1.19 over PyAL (blind).

A substantial improvement is obtained when the CNN-predicted uncertainties are

also incorporated into PyAutoLens’ priors, PyAL + CNN (1σ). These uncer-

tainties act to better constrain the prior distributions which help PyAutoLens

to avoid local minima and converge faster on the correct solution. With these

included, this combination of the two methods produces significantly lower errors

than either one separately: PyAL + CNN (1σ) reduces errors on average by 37 ±

11 per cent across the parameters compared to PyAL (blind), 17 ± 21 per cent

compared to the CNN, and 13 ± 9 per cent compared to PyAL + CNN. Addi-

tionally, PyAL + CNN (1σ) outperforms PyAL (blind) in all tests, as well as the

CNN in the majority of cases. It also gives the highest PyAutoLens modelling

speeds, increasing upon PyAL (blind) by a factor of 1.73 on average across the

test sets. It should be noted that for the more complex lensing systems these un-

certainties are often underpredicted, so should these be corrected an even greater

improvement may be achieved.

We have seen in this chapter how CNNs can vastly simplify the search over pa-

rameter space for parametric modelling methods and how they can prevent meth-

ods using semi-linear inversion, like PyAutoLens, from falling into local min-

in Chapter 6, in which the errors are propagated to examine how well the methods can constrain

cosmological parameters.
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ima (the overmagnified and undermagnified solutions). Likewise, the combination

method allows PyAutoLens to further refine CNN predictions in an automated

fashion. While the CNN is undoubtedly the fastest modelling method, it suffers

from a number of limitations. These, along with analyses of the results presented

throughout this thesis, are discussed in the next chapter.
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Chapter 5

Discussion & Conclusions

5.1 Overview

Strong galaxy-scale gravitational lensing is the deflection of the paths of light

rays from a background source galaxy due to the presence of a foreground lensing

galaxy, resulting in multiple images of the source that are often magnified and dis-

torted. Such lensing provides a powerful tool for astronomy, seeing usage in a range

of applications from studying galaxy evolution to constraining cosmological mod-

els. The complicated process of strong lens modelling has previously necessitated

the use of techniques such as the parametric parameter-fitting of PyAutoLens,

which are often relatively slow and require manual inspection. With the advent

of large-scale surveys like LSST and Euclid soon to discover tens of thousands of

strong lenses, automated techniques will be required to model these lenses quickly

and efficiently. This has driven the use of machine learning in this area, with

convolutional neural networks trained to recover lens mass model parameters ex-

tremely quickly. These networks apply convolutional kernels to images of lenses

in order to extract information, but their training process requires a large data

set of simulated images.
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In this thesis, I have sought to investigate the use of convolutional neural networks

in strong galaxy-scale lens modelling, examining the practicalities they face for this

task, their accuracy and reliability when applied to upcoming surveys, how these

compare to those of conventional modelling, and how CNNs and conventional

modelling can be combined to gain the benefits of both. This work necessitated

constructing a CNN and simulating my own data sets for training and testing.

For later comparisons, these simulations contained various complexities, including

HUDF source galaxies, power law and EAGLE galaxy lensing galaxies, and line-

of-sight structure. The CNN was also redeveloped over the course of this thesis,

through the creation and fine-tuning of a Bayesian CNN capable of predicting its

own uncertainties.

5.2 Investigating Lens Modelling CNNs

In Chapter 2, I developed a CNN for strong gravitational lens modelling. To

examine if such a technique would be applicable to images with the imaging char-

acteristics of both LSST and the Euclid survey, I simulated data sets with such

properties to both train and test the network on. These included both r-band and

multiband gri imaging for LSST, and details of the CNN and simulations were pre-

sented in Section 2.1. Training on 50,000 ‘postage stamp’ images of lenses allowed

the CNN to predict parameters of the SIE mass model: Einstein radius, orien-

tation, and ellipticity. Investigations into its application as a suitable modelling

method were presented in Section 2.2. They included examining how accuracy

varies between parameters and as functions of the parameter values themselves,

as well as providing comparisons between Euclid and LSST, and single-band and

multiband data. Additionally, the impacts of foreground lens light subtraction,

lens mass-light alignment, and increasing signal-to-noise were assessed. Together,

these investigations have enabled a means of evaluating the performance of the
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network when applied to upcoming wide-field surveys, and can act as a guide for

future training.

For this work, the lens population consisted of isolated elliptical galaxies, ade-

quately described by an SIE mass density profile without external shear. Addi-

tionally, the lens light centroid was assumed to be exactly aligned with the centre

of mass (although the lens need not have been exactly centred in each image).

However, in reality, lenses are rarely completely isolated, instead being subjected

to perturbative effects from environmental structures, substructure in the lens it-

self and mass along the line of sight. In the test data sets, the velocity dispersions

of the foreground lens population seen in Figure 2.5 may also be higher on average

compared to the distribution of real lenses (Collett, 2015). This would correspond

to the real population containing fewer lenses with large Einstein radii, resulting

in a slight increase in overall CNN error, as per the top row of Figure 2.10. These

simplifications enabled a more efficient investigation of the practicalities of using

CNNs for lens modelling, but further work was required to analyse how the per-

formance of the network would change when applied to more realistic data, as was

explored in the later chapters.

5.2.1 Analysis of Results

For the inclusion of foreground lens light, the CNN is found to produce relatively

large errors in its predictions of mass model parameters compared to those typ-

ically obtained by modelling methods (e.g. Maresca et al., 2022, and the results

in Chapter 4 of this thesis), with such errors equal to or below 0.09 arcsec, 0.23

radians (13◦) and 0.08 for Einstein radius, orientation and ellipticity, respectively.

However, when trained and tested on images with prior lens light subtraction these

errors are decreased by an average of 34 ± 5 per cent across the predicted param-

eters and data sets, with the greatest improvements seen for Einstein radius and

LSST gri images. These results therefore support the use of lens light subtraction
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during image pre-processing for CNN lens modelling, as typically performed by

conventional fitting methods. Significant improvements to the performance of the

network are obtained when using multiple bands, with the use of three bands re-

ducing parameter errors by 24±2 per cent and 20±2 per cent for images with and

without lens light subtraction. However, the inclusion of colour information does

not appear to be as effective as lens light subtraction, although such removal was

for an idealised case so in practice these two may result in similar improvements.

Overall, their combination proves most successful; training and testing on LSST

gri images with lens light subtracted produces the lowest errors for all parameters.

This is because any residual shot noise from the lens light will likely contrast with

the background source light for colour images, and even if such noise is negligible

the use of multiple bands can in essence raise the signal-to-noise of the input.

Analysing how parameter errors change with the parameter values themselves,

we observe that all errors increase as fractional Einstein radius decreases, due to

fewer lensed source pixels reducing the available information. Inclusion of lens

light has little effect on the shape of the trends other than changing the absolute

error values; parameter errors are unaffected by the ratio of Einstein radius to lens

light effective radius, indicating that network performance is not impacted by the

size of the lens light profile compared to that of the source. Orientation is found

to have no effect on predictions, with a sufficient training set ensuring a rotation-

invariant network as required for application to astronomical images. However,

increasing ellipticity affects all three parameter errors, with those of ellipticity and

fractional Einstein radius increasing while those of orientation decreasing. More

elliptical lenses make determining orientation easier but also produce more varied

and non-circular lensed sources, making it harder to predict the other parameters.

For data sets containing foreground lens light, differences between the light and

mass profile ellipticity and orientation have a significant impact on the perfor-

mance of the network. This is especially true when the network is trained on data
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sets with no or little difference between the two, due to the network being more

influenced by the lens light as opposed to the lensed source light. In addition,

even when trained and tested on images with zero scatter between light and mass

profiles, errors are an average of 11 per cent larger than those for images with their

lens light subtracted. No systematic biases are observed if the network is trained

with some degree of mass-light scatter, providing reassurance that, notwithstand-

ing environmental effects, measurements of H0 from gravitational time delays can

be improved simply through increasing the sample size of time-delay lenses. As

a general rule, it is better to train a network assuming a moderate amount of

scatter in the mass-light orientation and ellipticity offset than to train assuming

that mass closely follows light. These results were also used to set the mass-light

scatter in the data sets used throughout the rest of this work.

Errors for predicted parameters decrease approximately exponentially with in-

creasing test image SNR up to SNR=100 after which there is little improvement.

This indicates that the modelling of any detected lensed image measured to have

SNR≥100 will gain no benefit from further stacking, even if more observations

of that system become available from surveys such as LSST. In general, testing

on more deeply stacked images results in higher CNN accuracy, with networks

trained on stacked images performing the best in this case. Hence, to deal with

a large range of signal-to-noise ratios and stacked images a larger training set en-

compassing these ranges is required, with a focus on low SNR images, either used

to train a single CNN or separate CNNs for different noise bands.

5.3 BNN Architecture

The next work in this thesis involved generating more complex training and testing

data sets, and updating the neural network to better handle the resulting wider

array of lensing images. In Chapter 3, I constructed my own Bayesian neural
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network for use in the remainder of this thesis, as such networks can both pre-

dict uncertainty measurements on their parameters and increase network accuracy

through repeat testing. The method utilises dropout in both training and testing,

requiring a fine-tuning process of the dropout rate to ensure uncertainties are cor-

rectly predicted. This process was performed in Section 3.3, with a dropout rate

of 5 per cent resulting in the most accurate predictions of uncertainties. However,

this dropout rate was selected from testing on simulated images and hence, as with

general CNN training, the resulting uncertainties may not proves as accurate when

applied to real data. If so, these uncertainties would likely be underpredicted, as

observed when LOS structure and EAGLE galaxy lenses are introduced in Section

4.5. For real data, this reinforces the need for a comprehensive training set that

covers all ranges of parameter space, noise levels, and image artefacts, in addition

to the complex mass models presented in this work.

It is worth noting that the architectures of the neural networks in this thesis (see

Figures 2.1 and 3.2) consisted of relatively few layers compared to other CNNs.

For example, the method used by Hezaveh et al. (2017) to predict mass model pa-

rameters involved training a combination of four networks: Inception-v4 (Szegedy

et al., 2017), AlexNet (Krizhevsky et al., 2012), Overfeat (Sermanet et al., 2013)

and their own network. The larger number of layers used in these networks was

required to train on higher resolution images which incorporated more complex

features such as hot pixels, cosmic rays, pixel masking and occasional background

objects. The images used in this thesis have a lower resolution and do not con-

tain these features, hence the simpler network architecture does not appear to

be detrimental, with the accuracy instead limited by image resolution. Simpler

architectures contain far fewer neurons (and hence weights and biases), helping

to quicken training and prevent overfitting to the training data set, but too few

neurons results in insufficient training and poor accuracy. This tuning of network

architectures is a well known issue, and as there are no standardised ways of build-

ing a network due to the variety of their applications, there is a degeneracy in that
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multiple network architectures can potentially achieve the same accuracy. I chose

my architecture following a hyperparameter grid search while trying to minimise

its complexity (see Section 2.1.1) and later checking its suitability with a Bayesian

hyperparameter optimisation method (Section 3.4.1).

5.4 Realistic Data Sets

Following a description of the Bayesian CNN’s architecture and training and test-

ing processes, Section 3.5 detailed the updated simulations used for its training.

Now focusing only on simulated Euclid images to avoid repeat results, the net-

work was applied to larger cutouts featuring multiple source types enabling it to

handle more realistic lensed images. Two data sets were created, doubled in size

compared to previous training, so that the network could be trained to predict

parameters for either the SIE model or the more challenging power law ellipsoid

model. Additionally, a series of increasingly complex data sets of images were

generated for use in testing both the network and the conventional fitting method

PyAutoLens, as well as testing combinations of the two. Section 3.6 described

these test sets, which ranged from simple parametric lenses and sources to EAGLE

galaxy lenses with both real HUDF sources and CosmoDC2 line-of-sight structure.

As discussed in Section 3.6, the simulated lenses used in Sections 4.3.1 to 4.3.3

have a higher average Einstein radius than that expected from lenses detected by

Euclid. The impact on CNN performance for smaller Einstein radii was observed

in Figure 2.10, with less available information increasing errors for all parameters.

From examining the results in the test sets as functions of Einstein radii we found

no significant deviation in the relative accuracies between the modelling methods.

Additionally, in Section 4.3.4 the increase in error for the EAGLE galaxy lenses

was found to be dominated by these complex foreground galaxies rather than the

smaller average Einstein radii. Hence, parametric lens mass profiles with smaller
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image separations are expected to produce slightly higher errors than for the data

sets in Sections 4.3.1 to 4.3.3, but the relative errors between modelling methods

would remain consistent.

It is also worth considering here the source-lens alignment, i.e. the distribution

of doubles and non-doubles (quads, rings) within the data sets. While doubles

are expected to dominate the catalogues of future surveys, such images are in

general more difficult to model. In this work, a lower limit on magnification was

used to ensure lensed images were being generated; this focused on sources in

higher regions of magnification, resulting in only around 30 to 40 per cent of

test images containing doubles. As such, we examined how the performance of

the modelling methods in Chapter 4 varied by analysing 100 doubles and 100 non-

doubles in the test set containing SIE lenses and HUDF sources. On average across

the modelling methods, errors in Einstein radii and axis ratios for doubles were

factors of 2.1 and 1.9 times larger than non-doubles (1.5 and 1.3 times larger than

the combined 200-image data set), respectively. Meanwhile, orientation errors for

doubles were on average a factor of 0.8 times that of non-doubles (and were almost

unchanged compare to the combined data set), most likely because the set of non-

doubles contained near-complete Einstein rings. However, while the modelling

errors differed between doubles and non-doubles, the relative accuracies between

the modelling methods remained broadly similar.

One simplification made in this work is with regard to the subtraction of lens

light. In this thesis, the test images assumed an idealised light subtraction for

all but the background source galaxy, in which the true parameters of the lens

light profile were known. In reality, this would not necessarily be the case and the

profile may also deviate somewhat from a smooth parametric profile. The point

spread function (PSF) of a telescope is also never perfectly known, and so this can

further increase residuals. Nevertheless, our subtraction of lens light does leave

behind realistic shot noise residuals that, having been trained on, may alleviate
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some of the difficulty in testing the network on images with more realistic lens

light subtraction.

Additionally, when dealing with real images, masks are often applied to cover resid-

ual light for all but the lensed source. This process can be automated through

various means, but can often require human inspection. The performance of mod-

elling methods may be impacted by how well light is masked or subtracted from

the lens and companions in the field of view, which would require future work; for

example, machine learning methods of denoising and deblending lens and source

light have been developed by Madireddy et al. (2019). While PyAutoLens has

been designed to accommodate masked images, it may struggle to fit the source

light profile if residuals were present from incorrect masking or subtraction. Addi-

tionally, while fitting annular rings to the lensed sources greatly quickened PyAu-

toLens’ modelling process for dealing with many thousands of images, it has been

shown that such rings have the potential to bias the modelling (Nightingale et al.,

2018). This may have contributed to the lower performance of PyAL (blind) in

Chapter 4, however biasing from masking was not investigated in this thesis. No

masks were applied to the simulated images in this work, and so the current CNN

would also greatly struggle if not trained appropriately. In this way, much of the

impact of masking on CNN performance would be remedied should such training

also include examples where masks have been applied incorrectly. As such, it is

likely that the conclusions presented here would remain approximately unchanged

in the presence of masked lenses.

In addition to idealised lens light subtraction, it is worth acknowledging that the

simulated data sets used in this thesis also lacked a number of features present in

real astronomical images of strong lenses, limiting the current CNN’s performance

when applied to real images. Transient image artefacts such as hot pixels, satellite

trails and cosmic rays were not included, as these were assumed to be adequately

removed during image pre-processing. Additionally, bright stars and non-lensing
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galaxies were not included in the training or testing images, and so these would

need to be taken into account during future CNN training should they not be

removed during image pre-processing; the latter objects could prove challenging

in this regard due to many strong lenses lying in galaxy groups. The PSF applied

was identical across all images in a given data set, whereas the PSFs of telescopes

can vary between observations. Such variations could lead to further distortion to

the lensed source images, leading to incorrect modelling predictions. For ground-

based telescopes like LSST this arises primarily due to atmospheric turbulence,

and so the impact of this may be reduced somewhat through the use of adaptive

optics. Despite these limitations, should they be accounted for during image pre-

processing or feature in the network’s training, the relative performance between

the CNN and other modelling methods would likely remain the same given that

these methods would also be affected. Adequate training would also allow CNN

predicted uncertainties to highlight any difficulties in modelling potentially arising

from such objects and artefacts. Transfer learning could also be applied in this

area, involving the simulation-trained CNN being further trained on real lenses as

they are discovered. However, while transfer learning would likely be effective for

lens detection, such lenses would first need to be accurately modelled before they

can be added to a training set for lens modelling.

Despite the limitations discussed with regard to the training set, it is worth noting

that in addition to the testing of the modelling methods in Chapter 4, PyAL

(blind) and the Bayesian CNN were also later tested on a real submillimetre galaxy

lens, with PyAutoLens now able to predict its own uncertainties. Originally

detected by the Herschel Space Observatory (Pilbratt et al., 2010), the chosen lens

was one of the candidates produced by Nayyeri et al. (2016) from the extension

to the Herschel Multi-tiered Extragalactic Survey (HerMES; Oliver et al., 2012),

the HerMES Large Mode Survey (HeLMS; Asboth et al., 2016), with the lens

known as HELMS5 (or HeLMS J234051.5-041938). Subsequent ALMA follow-

up observations of this lens and others, described in Amvrosiadis et al. (2018),

146



5.4. REALISTIC DATA SETS

have allowed for uv-plane modelling of this lens using an elliptical power law mass

profile with external shear by Maresca et al. (2022), with both papers providing

images and further details of the lens, and the latter paper providing details of

the lens light subtraction procedure. For the testing of PyAL (blind) and the

Bayesian CNN, the 873 µm image was created from this ALMA data to have the

same image size and resolution as the Euclid data set used in Chapter 4, with

modelling performed identically to that chapter using an SIE mass profile. In

doing so, PyAL (blind) predicted an Einstein radius, orientation, and axis ratio of

0.53±0.01 arcsec, 128±2◦, and 0.88±0.01, respectively, while the Bayesian CNN

predicted these as 0.52±0.01 arcsec, 118±20◦, and 0.87±0.06, respectively. As

can be seen, the two methods agreed very closely with one another for this real

lens: all predictions matched to within their predicted uncertainties, except for

the 10◦ difference in the orientation predictions which, while within the CNN’s

uncertainty, was notably beyond that of PyAL (blind). While only for a single

test case, these results are a promising sign that the Bayesian CNN can produce

suitable predicted parameters and uncertainties when applied to real lenses.

While the image data sets used throughout this work have contained only lensing

systems, future real data sets may inadvertently contain non-lenses if the image

classification process is not perfected. The expectation is that attempting to model

non-lenses with PyAutoLens will produce poor evidence values which would

indicate a problem with the modelling. However, the uncertainties predicted by

the CNN may be of little use in this regard; while it is possible that they may

increase for non-lenses due to a lack of a preferred lensing model, the CNN was

not trained on such images and so their impact remains unknown without further

testing. This, along with re-training the CNN on both lenses and non-lenses to

ensure appropriate predicted uncertainties, is beyond the scope of this work and

instead left for future investigation.
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5.5 Bayesian CNN and Parametric Methods

Chapter 4 began by introducing the semilinear inversion technique PyAutoLens,

chosen as the conventional parametric parameter-fitting modelling method to

which the Bayesian CNN would be compared. Additionally, in Section 4.2 I pre-

sented a promising way to combine both methods through incorporating CNN-

predicted parameter values and uncertainties into the priors of PyAutoLens

(‘PyAL + CNN’ and ‘PyAL + CNN (1σ)’, respectively). This was done in order

to create an automated method both faster and more accurate than PyAutoLens

by itself when applied in an automated manner (‘PyAL (blind)’). Following the

work of the previous chapter, these four modelling methods were then tested on

data sets of increasing complexity. The results were presented in Section 4.3, along

with an analysis of their modelling speeds in Section 4.4.

5.5.1 Parametric Density Profiles

All methods reach very high accuracies when presented with images containing

only SIE lenses and parametric sources, and this remains the case when the sources

are replaced by HUDF galaxies. Errors are consistently below 0.014 arcsec, 7◦ and

0.04 for Einstein radius, orientation and axis ratio, respectively, with the CNN and

PyAL (blind) achieving comparable errors on average for both of these data sets.

The modelling of power law profiles (without LOS structure) results in an expected

decrease in performance compared to the SIE profiles. All modelling methods

experience a large scatter in their predictions of power law slope, however the CNN

continues to do well at modelling these lenses despite their difficulty. Additionally,

for these data sets, the combination of methods leads to significantly lower errors:

PyAL + CNN (1σ) errors are 31-44 per cent lower than PyAL (blind) across the

two SIE data sets, with this incorporation of uncertainties improving upon PyAL

+ CNN by 12-17 per cent. For the power law data set, these error reductions
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become 32-62 per cent and 5-39 per cent, respectively.

Compared to SIE profiles, all modelling methods struggle with power law pro-

files due to the inherent difficulty in accurately measuring slope values, leading

to slight biasing towards overpredicting Einstein radii and underpredicting axis

ratios. Results are mostly unbiased for SIE mass profiles, however for a significant

number of lenses PyAL (blind) underpredicts Einstein radii and axis ratios, which

generally correlate with one another, leading to a large scatter of outliers. These

outliers are not present for the other modelling methods, suggesting that the CNN

is more reliable in its predictions, which when incorporated into PyAutoLens

help it initialise closer to the correct solution in parameter space.

5.5.2 Impact of Complex Mass Structures

The CNN was not trained on images containing LOS structure, nor to predict ex-

ternal convergence or shear, and hence the introduction of significant LOS struc-

ture increases modelling difficulty. Across the SIE and power law data sets, the

differences between PyAL + CNN (1σ) and the CNN are greatly reduced, however

both methods continue to significantly improve upon PyAL (blind), reaching 16-

36 per cent and 9-35 per cent lower errors, respectively. A similar result is found

when the methods are presented with complex EAGLE galaxy lenses (without

LOS structure), with PyAL + CNN (1σ) and the CNN now respectively achieving

30-58 per cent and 36-55 per cent lower errors compared to PyAL (blind). With

LOS structure, these improvements become almost identical: 28-48 per cent and

28-47 per cent, respectively. As such, methods involving the CNN continue to give

significantly better results than PyAL (blind), despite the CNN not training on

such complex lenses or LOS structure.

In general, more complex images result in larger average biases for all parameters:

such values only exceed 1 per cent for Einstein radii and 5 per cent for axis

149



5.5. BAYESIAN CNN AND PARAMETRIC METHODS

ratio when presented with EAGLE galaxy lenses. The biases increased for all

modelling methods, with no one method generally outperforming another. The

introduction of LOS structure increased the magnitudes of biases for EAGLE

galaxy lens Einstein radii, and resulted in Einstein radii being underpredicted on

average for all test sets as discussed in Section 4.3, but otherwise had little effect

on modelling biases.

For both SIE and power law mass profiles, the incorporation of significant LOS

structure makes modelling challenging, which for this work is equivalent to that

of a lens often residing within a galaxy group with many tens of galaxies along

the LOS. Replacing the parametric profiles of the lenses with hydrodynamical

EAGLE galaxies also serves to increase difficulty, with these complex lenses pro-

ducing fewer smooth, well-defined arcs than those trained on by the CNN, which

can increase the degeneracy between axis ratio and orientation when modelling

(Mukherjee et al., 2018). These lenses also in general have smaller Einstein radii

than the parametric lenses, corresponding to more pixelated arcs and reduced in-

formation available for modelling. Additionally, the large errors seen in axis ratios

for the EAGLE galaxy lenses can be attributed to how these values often change as

a function of radius. This, along with many lenses containing significant substruc-

ture in their convergence maps, especially when combined with LOS structure,

prove difficult to reliably fit in order to obtain the parameter values used as ‘true’

values for this work.

The EAGLE convergence maps were fully utilised in the sense that their resulting

deflections produced the final lensed images to which the lens modelling methods

were applied. However, the fitting procedure described in Section 3.6 attempted

to fit a smooth parametric profile to the convergence maps. Were lensed images

to be created using these fitted parametric profiles, the resulting lensed arcs may

differ to those produced using the complex mass profiles. Hence, while the fitted

parametric profiles provide the best approximation of the convergence maps, their
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parameters may not accurately reflect those that would be obtained by modelling

of the lensed source light. One alternative to this would be to generate the lensed

images using deflection angles derived from the fitted parametric profile, rather

than directly from the convergence map. The fitted profile parameters would there-

fore be accurate to the final lensed image, and hence would ensure more agreement

with parameters derived from modelling of the lensed source light. However, this

approach would simply produce lensed images from parametric profiles like those

of the earlier test sets, with the only difference being in the distributions of pa-

rameters. As such, it would make little use of the EAGLE convergence maps and

would not produce the range of possible complexities found in images of realistic

lensing systems.

Another alternative approach would be to first produce the image data set con-

taining EAGLE galaxy lenses used in this work, then fit these images rather than

the convergence map. The fitting function would take distances, the source posi-

tion, and the source image as its input, select parameters for the parametric profile

deflection angles, and apply these deflections to the source image to output the

best-fit lensed image. While this approach models the lensed source light similar

to the modelling methods used in this work, it has the advantage of knowing the

true distances, source position, and source appearance. However, such a fitting

function would be significantly more complex and hence would likely take much

longer to converge on the best-fit lens parameters.

While the CNN was not trained on images containing LOS structure or EA-

GLE galaxies, such images actually result in the highest improvements over PyAL

(blind). This could be because the iterative method that PyAutoLens employs

to navigate parameter space is more sensitive to the inclusion of these complex

structures than the CNN’s instantaneous approach when applied in an automated

fashion. Additionally, the introduction of these structures leads to a decrease in

the difference between PyAL + CNN (1σ) and the CNN. However, due to a lack
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of sufficient training in these areas, the CNN-predicted uncertainties also appear

to be increasingly underpredicted for axis ratios and slopes. Hence, were these to

be corrected through further training or otherwise, for example through the in-

corporation of the unbiased hierarchical inference of Wagner-Carena et al. (2021),

PyAL + CNN (1σ) could produce a more pronounced increase in accuracy over

the CNN for these complex lenses.

5.5.3 Modelling Speed

In addition to an increase in accuracy, the combination of methods results in faster

modelling times than PyAutoLens by itself. Compared to PyAL (blind), mod-

elling speeds are increased on average by factors of 1.19 and 1.73 using PyAL +

CNN and PyAL + CNN (1σ), respectively. The priors used in the latter help

to reduce the number of outlier lenses that would otherwise take much longer to

model, providing a more consistent modelling time. It should be noted that for

automation, PyAutoLens is only performing a single run for each image; con-

ventionally, human inspection would be used to set these priors, which if incorrect

would lead to PyAutoLens falling into local minima and require re-initialising

the modelling, further slowing the process. Incorporating CNN predictions there-

fore takes the place of human inspection, automating the modelling process to

deal with upcoming survey data.

PyAutoLens has a range of configuration options, but while these can lead to

obtaining precise fits it can also be time-consuming to choose the best options.

In addition, PyAutoLens requires a high-end PC to run at the speeds shown

here. Meanwhile, the CNN need only run on a GPU machine for training, taking

less than two hours for 100,000 training images, and while testing the CNN using

a GPU machine will speed up modelling, it is not required. While the neural

network alone can be rapidly trained and applied to images, its combination with

PyAutoLens provides a slower yet fully automated method of obtaining more
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accurate results, suitable for applications to lenses that the CNN alone may strug-

gle to model. As such, the CNN would be suitable to handle large samples of

upcoming lenses, but should large uncertainties be predicted by the network, the

modelling may be passed to PyAL + CNN (1σ) to refine the predictions.

5.6 Conclusions

The CNN’s modelling speed makes it well-suited for large catalogues of lenses,

and given the many thousands of upcoming strong lens observations such a net-

work can very quickly predict accurate values and uncertainties for the majority

of cases. When applied to smooth mass profiles, optimal performance is obtained

for LSST gri multiband images with lens light subtracted, and while prediction

accuracies for all parameters vary with both ellipticity and Einstein radius they

can be improved through the stacking of images acquired over the course of fu-

ture surveys. The incorporation of a fine-tuned Bayesian framework allows the

network to predict its own uncertainties, and can additionally improve accuracy

and reliability through repeated testing with MC dropout.

While its accuracy in this work can rival that of the combination method PyAL

+ CNN (1σ) for some lenses, the CNN is limited by the complications and arte-

facts encountered in real data, with performance heavily dependent on the size

and quality of its training set. Until the CNN can be trained on vast quantities of

sufficiently realistic survey data, the PyAL + CNN (1σ) combination provides a

promising alternative automated modelling method. Lenses that are challenging

for the CNN to model produce larger CNN uncertainties, which can then be passed

to PyAutoLens (or another parametric modelling technique) to verify and refine

predictions. Alternatively, any lenses that produce notably small CNN uncertain-

ties could be passed to PyAutoLens for even further model refinement, while

those producing large uncertainties (or whose predictions differ greatly between
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the CNN and PyAL + CNN (1σ)) are sent for human inspection.

Additionally, when automated alone, semi-linear inversion modelling methods like

PyAutoLens struggle if their priors are not correctly constrained. CNN predic-

tions can vastly simplify the search over parameter space for these methods, re-

sulting in faster convergences and preventing them from falling into local minima.

This combination of methods acts as a fully automated pipeline for application

to large samples of lenses, and can achieve accurate results far quicker than con-

ventional modelling. Rather than keeping them separate, this work highlights the

importance of considering the combination of machine learning with conventional

approaches in order to gain the benefits of both.

5.7 Future Work

Following the work presented in this thesis, there are a number of aspects that

could see further development. The major limitation of a neural network is of

course its training set, and within the strong lensing community there is currently

a major need for a comprehensive realistic strong lensing simulation suite for both

training and testing purposes. As such, training this network on an even larger

data set containing hydrodynamical lensing galaxies and LOS structure would

be a priority, with images containing other realistic features such as background

galaxies, non-uniform point spread functions, and image artefacts. Multiple net-

works could also be used, trained on different samples of the training set, with

their predictions combined in order to reduce any biases that a single network

might produce. Additional lens model parameters could also be predicted by

the CNN, including lens centre position, external shear and total magnification,

however modelling these parameters has been explored in other works. While

this work used the approximate Bayesian formalism of Levasseur et al. (2017),

an updated form has since been developed by Wagner-Carena et al. (2021) that
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accounts for biases in the posteriors arising from differences between the training

and test sets. This could therefore be incorporated into this network before it is

ultimately applied to real data once upcoming surveys commence. With enough

real data, any necessary modifications to the training set can be carried out and

the network retrained. Such a network could also see use in probing the nature of

dark matter through detecting LOS structure and substructure, either through en-

hanced training on these features or through the indication of their presence: they

would produce large predicted uncertainties and increased mismatches between

the CNN’s predictions and those of the PyAutoLens methods. These detections

could then be extracted from the data set for more detailed modelling in order

to probe low mass scales and hence constrain dark matter’s free-streaming length

(see Section 1.1, and e.g. Despali et al., 2018; Gilman et al., 2019; Şengül et al.,

2020).

While neural networks have seen much work in the realm of lens modelling and

dark matter sub-halo measurements (e.g. Alexander et al., 2020; Lin et al., 2020),

such work has generally been limited to isolated galaxy lenses. In reality, most

galaxies lie in groups and little work has been done in improving the efficiency

of modelling strong lenses where multiple foreground galaxies act as the lens, i.e.

double lens plane systems and strong group-scale lensing. Machine learning meth-

ods like those in this thesis may provide aid in this endeavour, helping to generalise

the application of neural networks to a wider range of lensing configurations. Such

images could be tested on by multiple networks, each trained to predict a different

number of mass profiles, with the best fit corresponding to the network predicting

the lowest uncertainties. While many overlapping profiles may best fit the data,

the required increase in network outputs would make training more challenging

and hence fits with fewer profiles would be preferentially selected. To aid with

this, an initial network could be trained to simply predict the number of profiles

(and uncertainty in that number) needed to best fit the data, in turn determin-

ing which of the above networks would be applied. Alternatively, the feasibility
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of networks to predict convergence maps from lensed images could be explored,

with application to both group-scale lenses and those with significant substruc-

ture. These maps could then be modelled more easily than lensed images, and

used with time delays for potentially more accurate H0 determination than from

using fitted smooth mass profiles. However, in practice this may not be the case

due to the light travel time varying so rapidly with position in regions of high

magnification: the viability of predicting convergence maps in such a way remains

to be investigated.

In general, neural networks require training on tens to hundreds of thousands of

images. However, only a couple of thousand real lens candidates have been dis-

covered, and of these only a few hundred are of Grade A standard (i.e. definite,

clear examples of lensing systems). This therefore necessitates the use of simu-

lations to obtain lensed images. For current neural networks, these simulations

are often the bottleneck when it comes to achieving accurate results when applied

to real images. Dia et al. (2019) used a generative adversarial network (GAN)

to simulate galaxy images, trained on images provided by the Galaxy Zoo citizen

science project, however these images are limited to low-redshift galaxies. Neu-

ral networks could provide a means of generating large data sets of high-redshift

galaxy images, including mergers, quasars and galaxies containing Type Ia super-

novae, for use as realistic sources in gravitational lensing simulations. To do so

would likely require training a GAN using images generated by cosmological hy-

drodynamical simulations, such as the EAGLE simulation, along with real HUDF

galaxies. Such networks, or other methods, may also have the potential to simu-

late dark matter profiles (in the form of convergence maps) for foreground lenses,

enabling rapid generation of large training sets rather than having to solely rely

on hydrodynamical simulations for realistic lenses.

While this thesis has been concerned with purely machine learning approaches, as

have many other recent lens modelling methods, there is still much to be gained
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from the use of citizen science in this area. With regard to lens detection, Kn-

abel et al. (2020) presented how spectroscopic, machine learning, and citizen sci-

ence methods compared, and found little overlap in the three sets of identified

lenses. While machine learning appeared to be the most efficient, a combination

of methods would result in a more complete sample of recovered lenses, to take

full advantage of the vast amounts of data generated over the next decade. Such

a combination could be used to identify complex lensing systems for careful mod-

elling, distinguishing them from those that would be easily modelled by neural

networks. Similarly, we have seen in this thesis that the combination of neural

networks with conventional fitting offers the highest overall accuracy, and so it is

also worth exploring how machine learning and citizen science could best make

use of one another for strong galaxy-scale lens modelling. For example, Küng

et al. (2018) developed a form of lens modelling for use in citizen science, how-

ever this required training a select group of volunteers as opposed to being open

to the general public. If the form of modelling presented in this thesis could be

made accessable to a larger group, machine learning could be of potential ben-

efit, from providing prior modelling attempts to aid volunteers, to refining their

models, to using any major discrepancies between neural network and citizen sci-

ence modelling as a means of identifying complex lensing systems. Alternatively,

after modelling by a neural network, volunteers could be asked to examine recon-

structed high-redshift sources to identify unusual shapes indicative of poor models

or complex galaxy morphologies. Regardless, it is clear that the use of multiple

techniques involving machine learning for both lens detection and lens modelling

will be of great benefit over the coming decade.
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Chapter 6

A New Era in Gravitational

Lensing

In this chapter, I will expand upon the work in this thesis with regard to its

potential applications, discussing the astrophysical context of the work with an

emphasis on methods that employ statistical analyses of the many lensing systems

made possible by future surveys like Euclid and Rubin LSST. First discussed in

Section 1.1, a review of the scientific motivations for strong galaxy-scale lensing

is continued in Section 6.1 with a focus on the above applications to specific

science goals. In Section 6.2, I explore quantitatively how the results of this thesis

can be applied to one of the discussed science goals by investigating how well the

modelling methods can be used to constrain cosmological parameters when applied

to double source plane lenses. This is followed by a discussion of the results and

the conclusions of this chapter in Section 6.3.
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6.1 Strong Galaxy-Galaxy Lensing Motivations

In Section 1.1.2, an overview was presented of the uses of strong galaxy-scale lenses,

from detecting dark matter substructure and reconstructing high-redshift sources

for aiding our understanding of galaxy evolution, to testing cosmological models

through constraining parameters like the Hubble constant from gravitational time

delays. This was followed in Section 1.1.3 by a description of the upcoming surveys

set to discover on the order of up to 100,000 strong lenses, increasing the number

of known lenses by two orders of magnitude. As such, these surveys will enable

a new era in gravitational lensing whereby multiple science goals can be explored

in a statistical sense rather than through the study of individual lenses. In this

section, I present multiple examples of these science goals and discuss how the

modelling of large samples of lenses provides a means of achieving them.

6.1.1 Dark Matter Properties from Lens Substructure

To begin, accurate lens modelling can be used to detect substructures within a

lens’ mass profile. In theory, CDM particles have non-relativistic velocities that

allow the to form into low-mass substructures, while in comparison, warm dark

matter (WDM) would suppress the number density of these substructures down

to a lower mass limit dictated by its free-streaming length (e.g. Lovell et al., 2012)

within the range 106 − 109M⊙ (He et al., 2022a). This mass scale is therefore an

important probe of the properties of dark matter, as it is currently unclear as to

if the mass function of the CDM model holds at such low halo masses.

As such, much work has been done on developing the theory (Amorisco et al.,

2022) and methods for detecting low-mass substructures within galaxies through

gravitational lensing (Vegetti and Koopmans, 2009; Vegetti et al., 2014; Bayer

et al., 2018; He et al., 2022b). While few lenses have been studied for low-mass

haloes in this way (e.g. Ritondale et al., 2019; Hsueh et al., 2020), with detections
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below 1010M⊙ fewer still (Vegetti et al., 2010, 2012; Hezaveh et al., 2016), ap-

proximately 50-100 lenses with measured substructure should be able to set limits

on WDM mass, if not rule out CDM should no sufficient haloes be detected (Li

et al., 2016b; Gilman et al., 2019; Simon et al., 2019). With the wealth of lenses

expected from future surveys, automated techniques for detecting substructure

have seen development over the past few years, from simulation-based inference

(Brehmer et al., 2019; Wagner-Carena et al., 2022) to the use of CNNs (Alexander

et al., 2020; Lin et al., 2020; Varma et al., 2020; Ostdiek et al., 2022a), in order

to achieve these constraints on the properties of dark matter.

6.1.2 Galaxy Evolution from the Stellar-to-Halo Mass Re-

lation

Strong gravitational lens modelling can often provide useful information for under-

standing and constraining galaxy formation and evolution, for example through

the evolution of the stellar-to-halo mass relation (SHMR). In a CDM universe,

galaxies form in the centres of dark matter haloes (or sub-haloes) as the infalling

gas cools and condenses within their potential wells, with the well depth dictated

by the halo mass. Hence, the halo mass should follow a tight correlation with

properties of the galaxy within it, including the stellar mass (Girelli et al., 2020).

However, the details of the mechanisms behind galaxy evolution (e.g. gravitational

collapse, merging of dark-matter clumps, cooling via radiative processes) are not

fully understood. The SHMR can aid in measuring the stellar initial mass function

(Sonnenfeld et al., 2018) and help constrain how gas cools within galaxies, envi-

ronmental effects such as ram pressure stripping, and feedback processes at play:

AGN feedback limits star formation at high masses, while feedback from massive

stars may eject or prevent the accumulation of gas at low masses (Wechsler and

Tinker, 2018).
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Large-scale hydrodynamical simulations like Illustris (Vogelsberger et al., 2014)

and EAGLE (Schaye et al., 2015) can be used to model the physics governing

galaxy evolution, but are limited in accuracy by poorly understood processes such

as star formation and feedback (Naab and Ostriker, 2017). Many other approaches

have been developed to examine how galaxy properties relate to the dark matter

halo (see Wechsler and Tinker, 2018, for a review), including satellite galaxy kine-

matics (More et al., 2011; Li et al., 2012), weak lensing (Leauthaud et al., 2011;

Velander et al., 2014), and X-ray observations of galaxy clusters (Kravtsov et al.,

2018). Strong lensing provides a method of accurately measuring the total mass

of a galaxy and its dark matter halo in order to compare with the stellar mass

obtained from, e.g., mass-to-light ratio estimates or stellar population synthesis

(Auger et al., 2010b; Küng et al., 2018; Sonnenfeld et al., 2015, 2018), and through

modelling of large samples of lenses in future surveys the SHMR, and hence the

physics of galaxy evolution, can be more tightly constrained.

6.1.3 Galaxy Evolution from the Lens Inner Profile Slope

An alternative approach to studying galaxy evolution is through their internal

properties, such as how mass is distributed with radius, in order to answer ques-

tions about whether the internal structure and dynamics of isolated early-type

galaxies evolve over time, and if their mass density profiles are accurately produced

from numerical simulations. Of course, to study how these properties change with

time requires modelling the mass density profiles of large samples of galaxies at a

range of redshifts: strong lensing provides a suitable method for this (e.g. Bolton

et al., 2012; Sonnenfeld et al., 2015; Sonnenfeld and Cautun, 2021), capable of

accurate and precise modelling out to cosmological distances. As discussed in

Section 1.2.5, power law mass profiles expand on SIE profiles by introducing a

slope parameter, as while many strong lenses can be adequately fit with a simple

SIE, having the slope as a free parameter can often lead to better fits overall.
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Slope values may even evolve with redshift: while some previous studies found no

trend (e.g. Barnabè et al., 2011; Cui et al., 2017), more recent work found mild

negative trends such that the slope increases towards more recent times (Holanda

et al., 2017; Chen et al., 2019a), suggesting dissipative processes may play a role

in early-type galaxy evolution since z = 1 (Ruff et al., 2011).

Additionally, CDM simulations suggest dark matter haloes can be described by a

Navarro–Frenk–White (NFW) profile in which the slope depends on radius (e.g.

Navarro, 1996; Sonnenfeld et al., 2015). These have a ’cuspy’ central slope in

which the inner density scales as ρ ∝ r−1, with this slope affected by baryonic

processes such as a contraction in the dark matter distribution due to the cooling

and infalling of gas, or an expansion due to gas outflows caused by stellar, super-

novae, or AGN feedback (Shajib et al., 2021). For example, while shallower slopes

have been observed for some galaxies (e.g. Oh et al., 2011), Oldham and Auger

(2018) found that most of their lenses had haloes centrally steeper than an NFW

profile which suggested an early contraction of the haloes due to the initial infall

of baryons. Meanwhile, Shajib et al. (2021) found that their haloes for massive

ellipticals at z ∼ 0.2 were well described by a standard NFW profile that was con-

sistent with AGN feedback counteracting such a contraction. Accurate modelling

of the inner profile slope of strong lenses, through NFW profiles or otherwise, can

hence aid our understanding of these baryonic processes (e.g. Oldham and Auger,

2018; Sonnenfeld and Cautun, 2021).

6.1.4 Expansion History from Time-Delay Lenses

In addition to galaxy formation and evolution, strong lensing can also be used

in the constraining of cosmological models. As mentioned in Section 1.1.2, for

variable sources, time delays can exist between lensed images due to both geomet-

ric path differences of light rays on their way to an observer and the gravitational

time delays from passing through different regions of the lens potential (Kochanek,
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2004; Treu, 2010). Modelling of lensed quasars (e.g. Suyu et al., 2017; Bonvin et al.,

2017; Chen et al., 2018; Birrer et al., 2019; Liao et al., 2019; Taubenberger et al.,

2019; Birrer and Treu, 2020; Shajib et al., 2020; Wong et al., 2020; Denzel et al.,

2021; Li et al., 2021) or even supernovae (Collett et al., 2019; Oguri, 2019; Foxley-

Marrable et al., 2020; Bag et al., 2021; Bayer et al., 2021) can be combined with

measurements of these observed time delays to measure the expansion history of

the Universe through predicting a value for the Hubble constant H0. From mod-

elling large samples of time-delay strong lenses, the uncertainties on H0 can be re-

duced to help resolve the tension between early-universe (CMB) and late-universe

(e.g. lensing, supernovae, Cepheids, tip of the red-giant branch) measurements

(Freedman, 2017; Mörtsell and Dhawan, 2018; Bengaly et al., 2020; Pandey et al.,

2020; Vagnozzi, 2020; Riess et al., 2021). For example, the latest Planck measure-

ments from the CMB provide a value of H0 = 67.4 ± 0.5 km s−1 Mpc−1 (Aghanim

et al., 2020), while recent late-universe measurements are typically around 72-75:

supernovae and Cepheid measurements of Riess et al. (2021) produced a value of

73.04 ± 1.04 km s−1 Mpc−1, after quasar strong lenses of Birrer et al. (2020) gave

74.5+5.6
−6.1 km s−1 Mpc−1.

To rule out systematic effects, recent work has been done to help identify and

alleviate limitations in the measuring of H0 from strong lens modelling, including

the choice of mass profile (Cao et al., 2022), effects of substructure (Gilman et al.,

2020) and line-of-sight structure (Fleury et al., 2021), and a degeneracy known

as the mass sheet transformation (MST, Falco et al., 1985, a special case of the

more general source-position transformation) which can bias H0 while leaving

imaging observables invariant (Chen et al., 2021). To determine H0 with a 1 per

cent uncertainty using a single lens would require sub-1 per cent uncertainties

in measuring the time delays and in modelling the lens, while using a sample

of N lenses would require these to each have uncertainties of roughly (
√
N/2)

per cent (Treu, 2010). Should modelling be combined with stellar kinematics

to help break the MST and aid in measuring the distance to the lens, Shajib
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et al. (2018) concluded that a sample of roughly 40 accurately-modelled lenses at

HST resolution could be enough to reach such a 1 per cent overall uncertainty.

As future surveys should provide a larger sample of time-delay lenses, Park et al.

(2021) applied a BNN modelling method to 200 simulated lenses at HST resolution

and found that they could achieve a 9.3 per cent median precision per lens on their

inferred H0, decreasing to an unbiased 0.7 per cent (0.5 km s−1 Mpc−1) from the

combination of the full data set.

6.1.5 Expansion History from Double Source Plane Lenses

While time delays can provide accurate measures of the Hubble constant, often

through assuming a ΛCDM cosmology, modelling of double source plane lenses

(DSPL) offers a means of constraining other cosmological parameters indepen-

dent of H0 (Linder, 2004; Collett et al., 2012; Linder, 2016; Sharma and Linder,

2022). These systems feature a single lens that distorts the light of two separate

background sources at different redshifts, resulting in two sets of lensed images

and hence two measurable Einstein radii. An example of such a lens, known as the

‘Jackpot’ lens due to it actually containing three separate source planes, is shown

in Figure 6.1. The ratio of the Einstein radii can be used to measure the matter

density Ωm when assuming a flat ΛCDM cosmology, or allows for a constraint on

the dark energy equation of state parameter w when assuming a wCDM cosmology

(see Section 6.2 for more details).

For example, the first and most well-studied DSPL is the aforementioned ‘Jackpot’

lens J0946+1006 initially discovered by Gavazzi et al. (2008). This was later

used by Collett and Auger (2014) to derive Ωm = 0.33+0.33
−0.26 when assuming a flat

ΛCDM cosmology, and for wCDM gave w = -1.17±0.20 based solely on this system

combined with a prior from CMB measurements. Collett and Smith (2020) then

reported the discovery of this system’s third source, making it the only triple-

source-plane lens to date, and Smith and Collett (2021) combined measurements
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Figure 6.1: HST F814W image of the ‘Jackpot’ lens J0946+1006 from SLACS, in-
dicating the discovery of a third source and unconfirmed other sources of emission
from the Multi-Unit Spectroscopic Explorer (MUSE) survey (Bacon et al., 2010).
(Figure credit: Collett and Smith, 2020)

with updated CMB priors and spectroscopic redshifts to obtain w = -1.04±0.20,

which, along with their constraints on Ωm, was consistent with flat ΛCDM. While

a few other DSPLs have been observed (Tu et al., 2009; Tanaka et al., 2016;

Schuldt et al., 2019), they lack the optimal combinations of redshifts possessed by

the Jackpot lens and have not been used to constrain cosmological parameters.

However, only several DSPLs may be needed to achieve competitive precision on

cosmological parameters (Collett et al., 2012), with a sample of 50 expected to

constrain Ωm and w to within 10 per cent (Gavazzi et al., 2008). With Gavazzi

et al. (2008) suggesting that one in 40-80 strong lenses are DSPLs, this would

imply approximately 1250-2500 DSPLs being observed in future surveys, with

300 of the highest quality from the best seeing exposures (Linder, 2016).

It is worth noting that all of these applications of strong lens modelling benefit

greatly from a statistical analysis of many lens systems in order to reduce statistical

uncertainty and obtain more accurate results. With future surveys like Euclid and
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Rubin LSST, such an analysis will soon be achievable, provided sufficiently fast

and accurate automated methods are employed such as the neural networks in

this thesis. As these applications are performed in a statistical way, a modelling

method’s performance depends more on its accuracy than its precision. In Chapter

4, we have seen how the modelling methods in this work all share similar biases

in general, with magnitudes increasing from small values for smooth parametric

profiles (such as 0.1 per cent for Einstein radius) up to significant biases for EAGLE

galaxy lenses containing substructure and LOS structure (such as 2.6 per cent and

10.1 per cent for Einstein radius and axis ratio). Hence, the level of biasing depends

on the data set, although this effect should be reduced for the methods involving

the CNN should the CNN be trained on such complex lenses.

6.2 Constraining Cosmological Parameters with

Double Source Plane Lensing

In this section, I will investigate how the CNN’s performance in Chapter 4 transfers

to providing tighter constraints on cosmological parameters when applied to double

source plane lenses (see Section 6.1.5), under the assumption that it models such

systems with the same accuracy, precision and speed. This begins with an overview

of the theory behind this technique in Section 6.2.1, followed by the analysis of

the modelling methods’ applicability in Section 6.2.2.

6.2.1 Theory

The expansion rate of the Universe is described by the Hubble parameter H(z),

itself a function of redshift z and cosmological parameters, with its normalised
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form given as

E(z) ≡ H(z)/H0 =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + Ωdef(z) (6.1)

for matter density Ωm, spatial curvature density Ωk, and dark energy density

Ωde. The function f(z) depends on the chosen dark energy model: in order to

explain the accelerated expansion of the Universe, a negative pressure in the form

of dark energy is required. While ΛCDM models this as a cosmological constant

(Ωdef(z) = ΩΛ), other cosmologies exist such as wCDM where dark energy is

modelled as a fluid or scalar field with pressure p and energy density ρ. This leads

to the dark energy equation of state parameter w = p/ρ that can be treated as a

constant or as a function of time. A constant w produces

f(z) = (1 + z)3(1+w) (6.2)

while for a time-varying w this becomes

ln f(z) = 3

∫ z

0

1 + w(z′)

(1 + z′)
dz′, (6.3)

where the dark energy equation of state parameter is parameterised as

w(z) = w0 + wa(1 − a(z)) = w0 + wa

(
z

1 + z

)
(6.4)

for its value today w0 and time variation wa, with scale factor a(z) = 1/(1 + z)

(Chevallier and Polarski, 2001; Linder, 2003; Collett et al., 2012; Tripathi et al.,

2016). While w < −1/3 is required for accelerated expansion, a value of around

-1 is typically observed (e.g. Aghanim et al., 2020) that appears to be consistent

with the cosmological constant of ΛCDM. Results from Collett and Auger (2014)

also greatly suggest a flat Universe (ΩΛ = 0, with Ωm + Ωde = 1), in which case

E(z) is purely a function of redshift and Ωm.
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Figure 6.2: Ray diagram for a double source plane lens, in which rays from two
separate sources at different redshifts are distorted by the same lens to produce
two sets of lensed arcs or rings. (Figure credit: Collett et al., 2012)

From equation 1.12 in Section 1.2.3 we see that the Einstein radius of a strong

gravitational lens depends on the projected mass contained within that radius

and the angular diameter distances of the system. In the limit of a singular

isothermal profile, this becomes Equation 1.23 which depends on the constant

velocity dispersion of the lens and the ratio of the angular diameter distances

between the lens and source DLS(z, zs) and between the observer and the source

DS(zs), themselves functions of the lens and source redshifts, z and zs respectively.

In the limit of a flat universe, the angular diameter distance from point i to point

j is defined as

Di,j =
c/H0

(1 + zj)

∫ zj

zi

dz

E(z)
(6.5)

and is hence a function of the cosmological parameters H0, Ωm, and w(z).

While the majority of strong galaxy-scale lenses consist of a lens and a single

source, some systems contain a second source at a different redshift to the first,

with the resulting double source plane lens system producing two sets of lensed

arcs or rings as shown schematically in Figure 6.2. As the velocity dispersion of

a singular isothermal profile is independent of radius, the ratio of these Einstein

radii becomes

β(z, z1, z2) =
θE,1

θE,2

=
DLS(z, z1)

DS(z1)

DS(z2)

DLS(z, z2)
(6.6)
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where z is the redshift of the lens, and z1 and z2 are the redshifts of the two sources

(Linder, 2004; Collett et al., 2012; Linder, 2016; Sharma and Linder, 2022). While

these angular diameter distances depend upon the value of the Hubble constant,

within a flat wCDM cosmology the H0 terms within β cancel to leave the ratio

β(z, z1, z2) independent of H0 and hence only dependent on z, Ωm and w(z).

6.2.2 Application to the Modelling Methods

In Chapter 4, I presented errors and biases in the predictions of mass model

parameters for four modelling methods: a Bayesian CNN, PyAL (blind), PyAL

+ CNN, and PyAL + CNN (1σ). For double source plane lenses, we now seek to

propagate the errors and biases of the Einstein radius to those of the cosmological

parameters, under the assumption that these methods model such systems with

the same accuracy, precision and speed, for example through appropriate masking

of each lensed source as required.

First, we examine propagating the errors to the ratio of Einstein radii, β. Begin-

ning with the error (precision) in Einstein radius δθE, simple propagation of errors

yields

δβ

β
=

√
δθE,1

θE,1

2

+
δθE,2

θE,2

2

. (6.7)

From Figure 2.10 in Section 2.2.1, we see that for Euclid images with lens light

subtracted (dashed blue line), fractional errors in Einstein radii vary little in mag-

nitude for true Einstein radii beyond 1 arcsec. As the majority of the lenses used

in the test sets of Chapter 4 lie in this region, and because larger Einstein radii

would generally provide the best seeing exposures and hence the highest qual-

ity measurements, for the analysis performed here I take the fractional errors in

Einstein radii to be constant with respect to the Einstein radii values themselves
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Table 6.1: The errors (68 per cent confidence intervals) on predicted Einstein
radii, presented as percentage errors, for each modelling method and test set used
in Chapter 4, computed from the distributions of differences between true and
predicted parameter values across each set of 1000 test images. The first test
set contained parametric source profiles while the rest contained HUDF galaxies
as sources. Mass profiles used were SIE, elliptical power law (EPL), or EAGLE
galaxies, with some containing line-of-sight structure (LOSS).

Test Set CNN PyAL (blind) PyAL + CNN PyAL + CNN (1σ)
SIE (parametric) 0.2% 0.2% 0.2% 0.2%
SIE 0.8% 0.8% 0.7% 0.5%
SIE + LOSS 1.2% 1.7% 1.5% 1.3%
EPL 3.1% 3.8% 3.0% 1.8%
EPL + LOSS 4.0% 5.1% 4.0% 3.4%
EAGLE 4.5% 7.9% 5.0% 4.4%
EAGLE + LOSS 5.3% 7.6% 6.3% 4.9%

(δθE/θE = constant). Hence, the fractional error in β becomes

δβ

β
=

√
δθE
θE

2

+
δθE
θE

2

=
√

2
δθE
θE

. (6.8)

Of course, the fractional error still depends on the modelling method and data

set, with percentage errors (i.e. 100 × δθE/θE) for these shown in Table 6.1.

It should be noted that if one instead allows the fractional error to vary with the

value of the Einstein radius, with one fractional error X times larger than the

other (i.e. (δθE,2/θE,2) = X(δθE,1/θE,1)), Equation 6.8 instead becomes (δβ/β) =
√
X2 + 1 (δθE,1/θE,1). From Figure 2.4 in Section 2.1.2, the distribution of Einstein

radii for Euclid lenses peaked around a value of 1 arcsec with a standard deviation

of roughly 0.5 arcsec. Hence, it is safe to assume that one of the two sources in a

DSPL system would have θE ∼ 1 arcsec. As discussed, a second source with θE ∼

1.5 arcsec would have a similar fractional error, but if the second source instead

had θE ∼ 0.5 arcsec then Figure 2.10 shows that this would increase its fractional

error by a factor of approximately 1.5, resulting in δβ/β =
√

1.52 + 1 δθE/θE =
√

3.25 δθE/θE. However, for the analysis here I will keep to Equation 6.8 for the

reasons already discussed.
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Having propagated precision errors to β, I now turn to propagating the biases in

predicted values of Einstein radii. For predicted values θE,p, true values θE, and

fractional biases B(θE) ≡ (θE,p − θE)/θE, we have

βmeasured =
θE,1,p

θE,2,p

=
θE,1 +B1(θE,1)θE,1

θE,2 +B2(θE,2)θE,2

=
1 +B1(θE,1)

1 +B2(θE,2)
βtrue (6.9)

where βtrue = (θE,1/θE,2). As an example, if the biases were 10 per cent and

1 per cent such that B1(θE,1) = 0.1 and B2(θE,2) = 0.01, this would result in

βmeasured = (1.1/1.01)βtrue ≃ 1.09βtrue, hence resulting in a 9 per cent bias on the

ratio. This would then need propagating through to the cosmological parameters

computationally for a given set of redshifts, marginalising over each parameter

in turn to determine that parameter’s bias. However, for the biases presented in

Chapter 4, I found negligible variation in their percentage values with increasing

Einstein radius regardless of the test set or modelling method. As such, while the

two Einstein radii of a DSPL system may differ in absolute bias, their fractional

biases will be the same on average. In this case, following Equation 6.9 but now

for the ratio of the Einstein radii where each has the same fractional bias B,

βmeasured =
1 +B1(θE,1)

1 +B2(θE,2)
βtrue =

1 +B

1 +B
βtrue = βtrue (6.10)

and so the biases will cancel due to the use of such a ratio. Hence, biases in β

only emerge if B(θE) changes as a function of θE, and as this was not the case

for the results in Chapter 4, no propagation of biases was required for the work

presented here.

As discussed in Section 6.1.5, approximately 1250-2500 DSPL systems are ex-

pected to be observed by future surveys, with around 300 of the highest quality.

Fast, automated modelling through the use of the methods presented in this the-

sis would allow for a rapid determination of β for each system and hence tighter

constraints on Ωm and w(z) than from a single system alone. While such a combi-
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Table 6.2: The expected percentage precision errors for β (see Equation 6.8),
for each modelling method applied to the SIE test set containing HUDF sources
(without LOS structure), and for the worst cases (EAGLE + LOSS test set, except
for PyAL (blind) whose worst precision was for the EAGLE test set without LOS
structure). Errors are given for a single DSPL, as well as for combinations of 50
or 300 of such systems (NDSPL = 1, 50, or 300, respectively).

SIE Worst Case
Method \ NDSPL 1 50 300 1 50 300

CNN 1.13% 0.16% 0.07% 7.50% 1.06% 0.43%
PyAL (blind) 1.13% 0.16% 0.07% 11.17% 1.58% 0.65%

PyAL + CNN 0.99% 0.14% 0.06% 8.91% 1.26% 0.51%
PyAL + CNN (1σ) 0.71% 0.10% 0.04% 6.93% 0.98% 0.40%

nation of measurements would not improve their accuracy, it is expected that the

precision would be improved by a factor of
√
N for N modelled DSPL systems.

For example, the errors for the first test set in Table 6.1 containing SIE mass

profiles and parametric sources would result in a precision for β of 0.28 per cent

for a single lens, regardless of the modelling method. This would then be expected

to decrease to 0.04 per cent and 0.02 per cent when combining 50 or 300 DSPL

systems, respectively. Such results are for the simplest test set however: those for

the more realistic second SIE test set and the worst case precision errors are given

in Table 6.2. As can be seen, for the SIE test set, a single lens would give β a

precision of around 1 per cent, improving to less than 0.1 per cent for 300 DSPLs.

In the worst cases, while the precision errors are large for a single lens, even these

decrease to 0.65 per cent or less for 300 DSPLs.

We now seek to propagate these errors to those of the cosmological parameters Ωm

and w(z), assuming negligible error on redshift measurements. Due to degeneracies

between the parameters, this would require propagating the errors computation-

ally and marginalising over each parameter in turn. Fortunately, recent work by

Sharma and Linder (2022) has explored the sensitivity of β to these parameters

out to high redshifts, which will be used as a baseline here and is discussed below.

In Sharma and Linder (2022), they define the sensitivity of β to the parameters
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θ = {Ωm, w0, wa} through partial derivatives, as a fractional change relative to a

given absolute measurement precision σ(β), i.e. as (∂β/∂θ)/σ(β). The magnitude

of this sensitivity is hence equal to the reciprocal of the absolute precision on a

cosmological parameter σ(θ):

σ(θ) =

∣∣∣∣∂β∂θ
∣∣∣∣−1

σ(β) =

∣∣∣∣(∂β/∂θ)σ(β)

∣∣∣∣−1

. (6.11)

As we have so far used relative errors, the above can be re-written to obtain σ(θ)

from the fractional error in β instead, σf (β) ≡ σ(β)/β, using ∂ ln β = ∂β/β from

propagation of errors:

σ(θ) =

∣∣∣∣(∂ ln β/∂θ)β

σ(β)

∣∣∣∣−1

=

∣∣∣∣(∂ ln β/∂θ)

σf (β)

∣∣∣∣−1

. (6.12)

This re-written version of the sensitivity of β was then determined by Sharma and

Linder (2022) for each cosmological parameter as a function of redshift, shown

here in Figure 6.3, with values scaled according to a measurement precision in β

of 1 per cent (i.e. σf (β) = 0.01). As discussed, the reciprocal of the magnitude

of the y-axis values gives the absolute precision for a cosmological parameter, and

the values were determined assuming a ΛCDM cosmology with fiducial values

Ωm = 0.3, w0 = −1, and wa = 0, as well as z1/z = 2 and z2/z1 = 1.5 (following

Equation 6.6). These redshift ratios were chosen by Sharma and Linder (2022)

motivated by the work in that paper and in Linder (2016), which argued that the

ratios should correspond to the most commonly detected DSPL systems. Figure

6.3 shows that the greatest sensitivity magnitude, and hence smallest precision

error, is generally found for Ωm, followed by w0 and finally wa. As an example,

a 1 per cent measurement precision of β produces a sensitivity to Ωm of roughly

-5.0 at z = 1.5, hence giving an absolute precision in Ωm of σ(Ωm) = 1/5 = 0.2.

Using the values from Table 6.2 as values of σf (β), I now use Figure 6.3 to ob-

tain the expected absolute precision errors for the cosmological parameters. For
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Figure 6.3: Sensitivity of the DSPL ratio β to cosmological parameters θ as func-
tions of redshift. These parameters are Ωm, wa, and w0 for a flat wCDM cosmology
in which w is allowed to vary with redshift following Equation 6.4. Here, the sensi-
tivity assumes a 1 per cent measurement of β. (Figure credit: Sharma and Linder,
2022)

this analysis, I use the maximum magnitudes of the sensitivity for each parameter

(i.e. the troughs in the figure) and assume negligible errors on redshift measure-

ments, indicating the optimal possible precision errors. For Ωm, wa, and w0, these

sensitivities are approximately -5.1, -2.1, and -0.7, respectively, corresponding to

absolute precision errors of σ(Ωm) = 0.196, σ(w0) = 0.476, and σ(wa) = 1.429 for

a 1 per cent measurement precision in β. Scaling these by the values in Table 6.2,

the resulting absolute precision errors for the cosmological parameters are given

in Table 6.3.

As can be seen, given that the magnitude of each of the three parameters is

typically of order unity or less, all modelling methods produce large precision

errors when modelling a single DSPL system, even for the simpler SIE test set.
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Table 6.3: The expected absolute precision errors for the cosmological parameters
Ωm, wa, and w0, for each modelling method applied to the SIE test set containing
HUDF sources (without LOS structure), and for the worst cases (EAGLE + LOSS
test set, except for PyAL (blind) whose worst precision was for the EAGLE test
set without LOS structure). Errors are given for a single DSPL, as well as for
combinations of 50 or 300 of such systems (NDSPL = 1, 50, or 300, respectively).
SIE results for Ωm with NDSPL=300 are given to three decimal places to better
highlight their relative accuracies.

SIE Worst Case
Method \ NDSPL 1 50 300 1 50 300

Ωm

CNN 0.22 0.03 0.013 1.47 0.21 0.08
PyAL (blind) 0.22 0.03 0.013 2.19 0.31 0.13

PyAL + CNN 0.19 0.03 0.011 1.75 0.25 0.10
PyAL + CNN (1σ) 0.14 0.02 0.008 1.36 0.19 0.08
w0

CNN 0.54 0.08 0.03 3.57 0.50 0.20
PyAL (blind) 0.54 0.08 0.03 5.32 0.75 0.31

PyAL + CNN 0.47 0.07 0.03 4.24 0.60 0.24
PyAL + CNN (1σ) 0.34 0.05 0.02 3.30 0.47 0.19
wa

CNN 1.61 0.23 0.10 10.72 1.51 0.61
PyAL (blind) 1.61 0.23 0.10 15.96 2.26 0.93

PyAL + CNN 1.41 0.20 0.09 12.73 1.80 0.73
PyAL + CNN (1σ) 1.01 0.14 0.06 9.90 1.40 0.57

This is especially true for wa, whose worst case absolute values reach almost 16.

Due to the scaling performed to obtain these values, the relative performance of

the modelling methods remains the same as their errors in Chapter 4, with PyAL

+ CNN (1σ) providing the tightest constraints on the cosmological parameters,

followed by the CNN. The combination of values from 50 DSPL systems greatly

reduces errors, with those of Ωm and w0 10 per cent or less of their expected values

(Ωm = 0.3, w0 = -1) for the SIE test set, although for the worst cases they remain

too large to be of use in constraining the parameters.

For the combined values of 300 DSPL systems, the reduction in precision errors

leads to precise constraints on Ωm and w0 that rival those of the final Planck data

release (Ωm = 0.315± 0.007 and w0 = −1.03± 0.03, Aghanim et al., 2020), which

for the SIE test set reach values of 4 per cent or less compared to their expected
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values1. Yet, even for so many lenses, the error in wa is still 2 or more times larger

than those of w0 due to its large degeneracy with the parameters2. For the worst

cases, it is clear that 300 DSPL systems modelled by these methods would not

be enough to reliably constrain the dark energy equation of state parameters, and

even the best modelling methods would not be able to constrain precision errors

of Ωm below 0.08 (approximately 27 per cent of the expected value). However,

the likelihood of these ‘worst case’ lenses being used for such an analysis is low, as

they contain both significant LOS structures and substructures that would need

to be accounted for, and to obtain β using Equation 6.6 requires the lens to have

a singular isothermal profile. Hence, these systems would likely be filtered out of

the data set before passing it to the modelling methods.

In terms of comparing the relative performance of the modelling methods, it can

be shown that the CNN, PyAL (blind), and PyAL + CNN would respectively

require 2.32, 2.33, and 1.51 times as many DSPL systems as PyAL + CNN (1σ)

in order to reach the latter’s precision for the parameters in the SIE test set.

For example, to reach the precision of 300 DSPL systems modelled by PyAL +

CNN (1σ) would require the other methods to model 695, 698, and 452 systems,

respectively. For the worst cases, they would instead require 1.19, 2.43 and 1.70

times as many DSPL systems, equivalent to 357, 729, and 511 systems following

the above example. From Figure 4.16 in Section 4.4, the mean average modelling

times for the SIE test set are 31 minutes, 23 minutes, and 20 minutes for PyAL

(blind), PyAL + CNN, and PyAL + CNN (1σ), respectively. Hence modelling of

300 DSPL systems would be expected to take on average 155 hours, 115 hours,

and 100 hours, respectively, with all performed as automated processes without

the need for human oversight. Applications to large numbers of lenses such as

1Following the numbers of expected DSPL systems discussed in Section 6.1.5, for 1250 com-

bined systems these values would be roughly half of their stated values, or roughly a third for

2500 systems.
2This degeneracy is discussed further in Linder (2004), Linder (2016), and Sharma and Linder

(2022).
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this highlight the importance of seeking fast and automated modelling methods,

with PyAL + CNN (1σ) greatly improving the modelling times compared to PyAL

(blind), let alone PyAutoLens with human oversight, while the CNN alone would

be capable of modelling all 300 DSPL systems almost instantaneously.

6.3 Discussion and Conclusions

The values presented in the previous section were propagated from the errors

presented in Chapter 4, and so are also subject to the limitations discussed in

Chapter 5. In addition to these, there are a number of limitations to consider

regarding the use of DSPL modelling for constraining cosmological parameters.

These limitations are discussed below along with suggestions for mitigating them

by adjusting the observing strategy of future surveys, followed by the conclusions

of this chapter.

For the analysis here, I assumed that all of the modelled DSPL systems were at a

redshift corresponding to the maximum magnitude sensitivities of β to each cos-

mological parameter, and hence the smallest precision errors. This is of course an

idealised assumption: a more realistic approach would require sampling redshifts

from an expected distribution of DSPL systems and read off the sensitivities of

each parameter from Figure 6.3 for each one, which is beyond the scope of this

work. This would most likely increase the precision errors presented in Table 6.3,

although with 1250-2500 expected DSPL systems it may be possible to alleviate

this somewhat by selecting the 300 systems that would achieve the optimal sen-

sitivities. Modelling DSPL systems for the range of lens redshifts expected by

future surveys would also be of benefit, as this would aid in breaking the degen-

eracy between parameters (see Sharma and Linder, 2022). Additionally, while

other cosmological probes such as CMB measurements are more sensitive to the

matter density than the dark energy equation of state parameters, the reverse is
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true for the DSPL approach at low redshifts (Sharma and Linder, 2022). There

is therefore a complimentarity between DSPLs and other probes for use in com-

bining results, with Collett and Auger (2014) incorporating CMB priors in their

inference of cosmological parameters using the Jackpot lens, improving upon the

CMB precision by 30 per cent.

For this work, I also assumed accurate redshifts for the lens and sources, whereas

initially only photometric redshifts would be rapidly available from future sur-

veys. Early inference would hence have poorer and potentially biased constraints

on the cosmological parameters: Smith and Collett (2021) found that replacing

the photometric redshift of the second source in the Jackpot system with a spec-

troscopic redshift modified their predictions of a constant w from −1.17± 0.20 to

−1.04 ± 0.20. However, the promising results shown in this work and others en-

ables a suitable science justification for rapidly obtaining spectroscopic redshifts in

future surveys for each DSPL system in order to increase the reliability of inferred

constraints.

For constraining parameters via DSPL systems, the foreground lens is modelled

as having a singular isothermal mass profile. In reality this may not always be the

case, as systems can contain lens substructure or LOS structure, with the latter

estimated by Collett and Auger (2014) to result in a roughly 1 per cent system-

atic uncertainty on β and a 25 per cent larger precision error in w. However, as

mentioned, such complex systems could be filtered out of the pipeline, at least be-

fore passing them to cosmological parameter inference, perhaps using automated

approaches such as another CNN: this is left for future work. Further complica-

tions arise from needing to account for any potential lensing of the further source

by the nearer one, also left to future work, and overcoming the MST degeneracy

(mentioned in Section 6.1.4) through incorporating dynamical information such as

the lens velocity dispersion, although for a true mass sheet the MST degeneracy

is largely broken given the use of the ratio β rather than individual Einstein radii
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(Collett and Auger, 2014).

The results in this chapter have shown how an optimal combination of hundreds of

double source plane lenses have the potential to place tight constraints on the cos-

mological parameters Ωm, w0 and wa, that could rival those of other cosmological

probes while remaining independent of H0 (and hence avoid the so-called Hubble

tension problem). This technique is made possible through the large samples of

lenses expected by future surveys like Rubin LSST and Euclid, as well as the fast

automated methods required to reliably model these systems, such as through the

use of a Bayesian CNN or its combination with conventional parametric parame-

ter fitting methods. While the methodology behind the DSPL technique has its

limitations, these may be mitigated through a suitable observing strategy making

use of the suggestions presented in this section:

1. As part of lens detection programs, there should be a focus on detecting

DSPL systems and automatically classifying them according to their suit-

ability for this technique. This classification would be based on the need for

such lenses to contain little substructure or LOS structure to ensure their

mass profiles approximate a singular isothermal profile, as well as seeking to

select those at suitable lens redshifts to optimise the sensitivity, including

sampling a range of redshifts to aid in breaking parameter degeneracies.

2. Rapid acquisition of spectroscopic redshifts should be ensured for these sys-

tems, which may also be used to inform the above suitability as well as aid

in velocity dispersion measurements to break any MST degeneracies.

3. The sample of hundreds of systems should be modelled using fast automated

techniques like the ones presented in this thesis. The modelling results of

all the systems can then be combined together, along with priors from other

probes (such as the latest Planck results), to tightly constrain cosmological

parameters.
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It is worth remembering that while the focus of this chapter has been on double

source plane lenses, there are also a number of other applications requiring large

samples of lenses, as discussed in Section 6.1. Hence, through strategies like

those above, automated strong galaxy-scale gravitational lens modelling methods

involving the use of neural networks promise to deeply enhance our knowledge of

the Universe over the coming decade.
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L., and Hsieh, B. (2020). Photometric Redshift Estimation with a Convolu-

tional Neural Network: NetZ. arXiv preprint arXiv:2011.12312.

Schuldt, S., Suyu, S., Meinhardt, T., Leal-Taixé, L., Cañameras, R., Tauben-
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