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Abstract

Magnetic Resonance Imaging (MRI) is a technique for imaging the soft tissues of the
human body. Research in medical MRI is moving towards the use of ultra-high field
(UHF) MRI scanners since the spatial resolution of MRI increases with the strength of
the magnetic field. However, involuntary movements of the subject create artefacts that
can corrupt MR images. Since high resolution images are more vulnerable to motion,
this effect becomes more relevant at ultra-high field. Motion artefacts can be ameliorated
if the movements of the head during the scans are tracked; this is the basis of motion
correction (MoCo) techniques.

This thesis explores a novel way to approach the motion tracking step of MoCo tech-
niques in a marker-less way. The core idea is to measure the extra-cranial magnetic
field changes produced by changes in head pose, and then to use these measurements
to infer information about head motion. The former was measured using a magnetic
field camera, a fully MRI compatible tool. In a final implementation of the approach,
the field probes were held on the surface of the receiver RF coil of a 7 T scanner using
a hand-made probe holder. Measurements were then acquired in the quiet periods of a
multi-slice echo planar imaging sequence.

Simultaneous measurements of extra cranial magnetic field changes and head motion
parameters were acquired while six collaborative subjects were instructed to perform
several different types of head movement inside the scanner. The Moiré Phase Tracking
System has been considered as the gold standard for evaluating the six head motion
parameters inside the scanner bore.

A spatial filter, based on the use of solid harmonic functions, has been developed
in order to reduce the influence of the field changes due to physiological fluctuations.
Feature selection on magnetic field data has been computed using Principal Component
Analysis. The subgroup of signals were identified by applying Hierarchical Cluster Anal-
ysis to signals projected into the principal component space. Furthermore, field changes
due to physiological fluctuations have been exploited to generate a simple signal that
could be used for respiratory monitoring.

Customised extra-cranial magnetic field simulations were implemented to test the
spatial filtering process and the feasibility of using extra-cranial magnetic field changes
to track head movements. Head motion parameters were predicted from simulated extra
cranial magnetic field changes by using linear and a non-linear regression methods, both
previously trained by supervised learning. The linear method chosen was the Partial
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Least Squares method. The non-linear method chosen was a single hidden layer, recur-
rent and dynamic neural network based on Non-linear AutoRegressive eXogenous model
(NARX). Results obtained using simulated data were confirmed on experimental data
over different subjects, head motion ranges, probe displacements and sessions, using raw
and spatially filtered data. A preliminary study on generalising the regression method
over twenty subjects has also been conducted on simulated data.

Furthermore, extra-cranial magnetic field changes were used to discriminate between
predictable and non-compensable head movements. The former are head movements
well predicted by the head motion tracking (either the one developed in this dissertation
or not). The latter are head movements that cannot be well compensated by applying
MoCo techniques to MRI. Thus, they might lead to the need to repeat the whole MRI
acquisition. The solution suggested in this dissertation is to use information given by
the magnetic field probes to flag the k-space lines that need to be re-acquired due to
motion effects. This could save scanning time and reduce patient discomfort.

A pilot study of an active-magnetic marker based system has been carried out using
customised simulations. This system would rely on the use of the NMR field probes to
detect a local magnetic field generated by small coils (0.5 cm of diameter) fixed on a pair
of plastic glasses. Thanks to the use of an optimisation algorithm, the position of the
coil-based system is resolved. In its future development, this system might substitute
the use of the optical camera as a stand-alone system or for the purpose of the training
of the motion tracking system developed in this dissertation.

Results reported in this thesis represent a step towards the full development of a
marker-less technique for head motion tracking that does not require modification of the
MR image sequence. In its future development, this technique can be used to improve
the outcome of standard MRI procedures.
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Introduction

Numerous motion correction techniques (MoCo) have been devised to prevent or cor-
rect head motion during an MRI scan [1]. As the level of artefacts tends to increase
with the strength of the magnetic field [2], solving head motion problems becomes cru-
cial at Ultra High Field (UHF). Key characteristics of MoCo methods [3] include the
phenomenon used to track motion, the degree of image sequence modification that they
require, the necessary interaction with the patient and the accuracy and precision of
tracking. The main methods that have been developed can be roughly grouped into field
detection, navigator and optical methods. A further classification arises from the type of
marker used to detect the position of the head.

Field detection can be used for prospective motion correction by detecting the fields
produced by the scanner’s gradient coils and adjusting the image geometry based on the
measured position of the head in the scanner. This approach requires multiple probes
to be connected rigidly to the head of the subject in non-colinear positions to evaluate
the position and orientation [4, 5].

Navigator methods use fast MRI data acquisitions to measure the position of the
head. [6, 7]. For example, the Fat Navigator (FatNav) method is based on rapid imag-
ing and co-registration of the fat layer that covers the skull [7]. The advantages of
navigator techniques are that they do not need additional hardware or use of markers
bound to the head. It is therefore a comfortable solution for the patient.

The last method is optical tracking [8, 9, 10]. This includes laser systems, bend-
sensitive optical fibres and optical camera systems, divided into in-bore and out-bore
systems. For the in-bore tracking system, the precision is influenced by the vibrations
of the scanner during the image acquisition. The main advantage of optical systems is
that their operation is independent from the MR sequence timing. An optical in-bore
camera was used in this work to detect the position of the head.

All these methods rely on accurate tracking of the head position inside the scanner.
This dissertation concerns the development of a new, marker-less head motion tracking
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technique for UHF based on the use of NMR field probes fixed inside the scanner bore.

First, the basics of Magnetic Resonance Imaging (MRI) and the physics of the NMR
field probes are explored, and a brief overview of the Nuclear Magnetic Resonance (NMR)
phenomenon is given (Chapter 1). This starts from the Bloch equations that describe the
evolution of the magnetization taking account of the relaxation time constants T1, T2.
The chapter ends with a comparison between low and high magnetic field MRI scanners
and a brief overview of the magnetic field camera system that is used in this thesis. The
camera uses 16 NMR probes, each containing a small liquid droplet. These droplets con-
tains fluorine-19 whose NMR signal evolution is used to measure the local magnetic field.

Chapter 2 summarises motion-related problems in MRI and the motion tracking tech-
niques that have been developed to correct motion-related MR image artefacts. This
chapter discusses the use of external markers and the need to modify the imaging se-
quence when applying some MoCo techniques. Also, a brief discussion on how image
sequences are affected by motion is given. An overview of how motion confounds clinical
MRI at low/medium (≤ 3 T ) field is also set out, since 7T scanners are currently not
widely used for clinical studies.

This thesis reports results on the development of a new contact-less head motion
tracking technique based on the use of a field camera. The idea behind the technique is
that the change in head positions changes the magnetic field pattern around the head,
so by measuring the change in extra-cranial magnetic field it should be possible to infer
the change in head positions.

Chapter 3 describes the experimental set-ups used to perform simultaneous mea-
surements of extra-cranial magnetic field changes (∆B) related to the changes in head
pose (∆M). The set-up consists on a in-bore magnetic field camera, comprising 16 field
probes, and an in-bore optical camera, which tracks an optical marker fixed on a mouth-
piece. Two customised probe-holders have been tested, characterised and compared in
order to perform the best measurements of the extra-cranial magnetic field with and
without simultaneous scanning. One set-up is based on the use of a PVC holder for the
NMR probes [11]. This holder allows even sampling of the field in the space around the
head, but requires removal of the standard receiver head coil array. The second holds
the magnetic field probes in between the standard head transmit and receiver coils [12,
13]. Both the set-ups have been used to perform measurements. The second allowed
measurements to be made during quiet periods of a standard EPI sequence. The Ap-
pendix B reports acquired data.

In order to study the relationship between magnetic field changes (highly subject-
specific), head-probe distances and influences of physiological noise, the experiment has
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been mimicked in a synthetic environment (Chapter 4). Extra-cranial magnetic fields
have been simulated [14] using customised 3D head models (from six subjects), real head
motion parameters and respiration signals. In general, magnetic field changes vary by
subject and by the proximity of the head to the field probes. Thanks to the use of sim-
ulated data, it has been demonstrated that this factors have the strongest influence on
the bijective mathematical relationship between the magnetic field and the head motion
parameters (f(∆B) −→ ∆M). The Appendix B reports simulated data.

Chapter 5 represents the very core of the development of the contact-less head motion
tracking technique. It is shown that head motion can be monitored by using an NMR
field camera to measure the extra-cranial field changes (∆B) produced by changes in
head position (∆M). Experimental data were acquired without simultaneous imaging,
using the different set-ups, and simulated data were also used. In order to infer ∆M
from ∆B with good accuracy, linear and non-linear regression methods (both based on
supervised training)[15] have been tested on predicting ∆M for various head movement
regimes, with ant without filtering of physiological noise from ∆B [16, 17]. The methods
have been tested on simulated data at first and then the best pipeline for the analysis
was validated on real data. Best results were obtained when using the non-linear method
to predict small head movements (≤ 5 mm or ◦)[15]. The accuracy of the results was
mainly limited by the use of the optical camera for the training. The data analysis pro-
cess is thoroughly explored in the Appendix A, predictions are reported in Appendix C
and the code is reported in Appendix D.

Chapter 6 reports pilot studies of modifications to the set-up, that if implemented
would improve the accuracy of the prediction. A method to threshold ∆B data when
head motion is larger than the predictable range has been retrospectively tested[18] along
with idea of using contact-less respiration-like signal measurements to implement respi-
ration gating in an imaging sequence. Simulations of using an active magnetic marker
system[19] to infer measurements of ∆M are also presented. The benefits of this ap-
proach are that problematic line-of-sight access to markers is not required (cf. optical
approaches) and that it could be implemented without modification of the MRI sequence
(cf. navigators). The feasibility of bringing the product to the market has also been dis-
cussed as outcome on presenting this work at ISMRM Junior Challenge 2021. These
pilot studies gave promising results. However, a full implementation was prevented by
the lack of access to the laboratory facilities durimg the COVID-19 pandemic.

he tracking method presented in Chapter 5 and the improvements proposed in Chap-
ter 6 have been tested on ∆B data acquired with simultaneous imaging [12, 13] in
Chapter 7. The probe-holder that fits in between the head transmitter and receiver coils
has been used (Chapter 3). A strategy to acquire ∆B data minimising the influence of
noise due to the scanning sequence is presented. As a result, the running of the imaging
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sequence does not corrupt the data and the prediction of head motion was successful.
Large head movements were identified and respiration-like signals were measured retro-
spectively. The accuracy of the results was comparable with existing techniques. The
method developed has the advantages that it can be implemented without requiring im-
age sequence modification, or rigid coupling of a motion marker to the head. As the
major downside of the technique is the subject specificity of the data, a pilot study on
generalising the predictions using one model over multiple subject has been simulated.
In this case, the f(∆B) −→ ∆M , is no longer a bijective function as the same change in
head position may correspond different set of magnetic field changes. To attempt to re-
store the bijective mathematical relationship, further parameters (such as head volume,
off-centre position and angulation parameters) have been used as input along with mag-
netic field changes (f(∆B, V, . . . ) −→ ∆M). Predictions of movement from a simulated
data sets including data from heads of different sizes, but the same morphology, indicate
that incorporating additional information about head size and position in the scanner
into the prediction process may improve results. A further test has been conducted on
real data over four subjects. Due to the small sample of real data available, predictions
were not accurate. Therefore, motion and magnetic field data over 19 subjects have been
simulated and successfully predicted using the non-linear method using magnetic field
changes, head volumes, off centre and angulation information as input to predict motion
parameters. Customised predictions and generalised predictions were both successful
and might form the basis of a full implemetation of a MoCo technique in the near future.
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Effect of the COVID-19 pandemic
on my PhD project

My PhD project started in February 2018, following on from my Master’s project
[11], and it was funded by the ”Vice-Chancellor’s Scholarship for Research Excellence”.
The pandemic outbreak happened at the beginning of the final year of my three years of
PhD funding. My plans for the final year were heavily disrupted due to the lack of ac-
cess to laboratory facilities, and a personal need to reduce the risk to a minimum for my
partner who is a vulnerable subject. At that time, there were three main parts ongoing
in my project : the development of the motion correction technique (Chapters 3, 6), the
development of the motion detection technique (Chapter 3) and the development of the
active magnetic marker system (Chapter 6).

The plan to fully develop the motion correction technique at 7T was to test the acqui-
sition of magnetic field data with simultaneous scanning, to exploit already written code
used to perform motion correction using data from the optical camera [20] by swapping
the measured motion parameters from the optical camera to the magnetic field camera,
and to write additional code, to be run by the computer controlling the magnetic field
camera, to predict head motion parameters in real time. Then, the system would have
been tested by comparing to results obtained with the previous pipeline. There was no
commercially available solution to hold the NMR probes in the 7T scanner to perform
simultaneous measurements of magnetic field data during scanning using the 32 channel
receiver coil, so I was developing one by myself.

The implementation of the real-time motion detection technique was at an early
stage. The Matlab code to detect motion in real time was under development, while the
code to either send a warning signal to the scanner or to record the moment at which
large head motion occurred was not. Old motion correction data were used to develop
the code, and the real-time detection was tested by moving a phantom only (December
2019). A further issue to overcome was due to the field camera tool for the real-time
control needing internet access to communicate with the scanner. The computer that
drives the field camera was in need of an operating system update to be allowed to con-
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nect to the University’s network after March 2020.

The development of the active magnetic marker system started in Spring 2019. Two,
small copper coils were built to be tested by using a magnetometer and the field camera
(mounted in a foam rings support I designed to fit inside the transmit head coil) in
the 7T scanner. At first, it was necessary to test whether the signal recorded by the
field camera was suitable for performing predictions of the coil system’s position. The
standard dipole equation was used as an objective function and predictions were made
by minimising differences from measured fields for the motion parameters. Due to the
unsatisfactory results, I designed a foam support designed to: (1) hold the NMR field
probes in a hemispherical fashion, (2) hold the coils (mounted in a transparent plastic
block) and 2 holographic markers in a rigid fashion on a movable support, and (3) si-
multaneously measure the position of the holographic markers using the MPT camera.
More reliable measurements (November 2019) and better prediction were obtained by
minimising the objective function by the rotation matrix that describes the movements
of the system, but the way in which the NMR field probes were held was not suitable
for MR imaging.

Furthermore, the use of simulations on two out of three parts was running in parallel
to drive the further test to be conducted in the laboratory.

At the beginning of my final year (February 2020), I was at the stage of selecting
which parts of those projects were worth to be further developed to be included in the
Thesis. My supervisor and I decided to give priority to the motion correction part at
first. Then, the first lockdown happened (March 2020 - May 2020). During the last
laboratory session carried out for the motion correction experiment (February 2020), the
main instrument of my research (field camera) broke and it was not possible to ship it to
the Swiss company for repair until July 2020 when it was promptly repaired within the
month and shipped back to the UK. However, human scanning was not allowed at the Sir
Peter Mansfield Imaging Centre (SPMIC) until mid-August 2020. My project was not
included in the list of Faculty of Science selected priority projects and it recommenced
in October 2020 when I tested the acquisition of magnetic field data with simultane-
ous scanning, but I was not yet at the stage of performing corrections of MR images.
The measurements were carried out by involving the minimum number of people (my
supervisor and myself) to reduce the risk of contagion due to (1) the handling of saliva
to make the custom bite bar (2) the number of people involved to calibrate the optical
camera (usually one scanner operator, one optical camera operator, one subject in the
scanner) and to perform measurements (usually one scanner operator, one optical and
magnetic field camera operator, one subject in the scanner). During the laboratory ses-
sion (November 2020), the cable of the optical camera broke. Then, a second lockdown
happened (November - December 2020). I requested a six-month extension period for my
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funding, but unfortunately, the beginning coincided with the third lockdown (January
2021) that was then slowly eased (June 2021) thanks to the effectiveness of the vaccines.
My funding ran out in July 2021, when I entered the thesis pending period.

During the extension period then, I have heavily focused on implementing and using
simulations to generate useful data for parts one (Chapter 4) and three (Section 6.3.1 of
Chapter 6) mentioned above. I also decided to improve the data analysis pipeline (Sec-
tions 5.1, 5.1.3 of Chapter 3) on pre-pandemic recorded data in order to apply the best
pipeline to newly recorded data (Chapter 5) and to test in post-processing the motion
detection (Section 6.1.1 of Chapter 5). The simulations provided important new insights
and led to the identification of a possible way to generalise the prediction over multiple
subjects (Section 7.2 of Chapter 6).

One of the impacts that lockdown had on researchers is to reduce the possibility to
discuss their work and to network at scientific events, two important aspects of research
that heavily impacted the career development of early stage researchers. To limit the
impact on my career, I did my best to present my work to colleagues (seminar in spring
2020) and at on-line conferences (ISMRM and ESMRMB 2020 and 2021, MoCo work-
shop 2020). Also, as elected Student Observer of the BIC-ISMRM in 2020, I tested
and improved my skills of team leading and networking. Furthermore, I enriched my
knowledge by attending free conferences, online classes and seminars on various topics
related to my research. In particular, attending the ICMNM (International Conference
on Mathematical Neuroscience) and a 10-week Machine learning course helped me im-
prove the data analysis pipeline. I also attended classes held by the Research Academy of
the University of Nottingham on paper writing, presentation and communication skills,
unconscious bias and EDI. I attended IOP workshops on topics related to my research
and how to work safely during the pandemic.
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Chapter 1

Nuclear Magnetic Resonance
(NMR) phenomena

This chapter explores the basics of NMR (Nuclear Magnetic Resonance) and MRI
(Magnetic Resonance Imaging) along with the physics of the NMR field probes. The
Bloch equations and relaxation time constants (T1, T2) are introduced. Then, an MRI
scanner and methods used to obtain MR images from k-space data are reported and
ultra high and low field MRI scanner systems are compared. To conclude, the field
probe camera system and its operation is described.

1.1 Nuclear Magnetic Resonance (NMR) phenom-

ena

Nuclear magnetic resonance is a quantum mechanical phenomenon that can be ex-
plained using classical mechanics for a certain extent [21].

The nuclear magnetic moment results from the unpaired spins of the protons and neu-
trons in the nucleus that we investigate. The overall spin generates a magnetic dipole
along the spin axis. Its magnitude is the nuclear magnetic moment. The effect of many
nuclei in a sample generates a macroscopic magnetization called ~M . It depends on the
number of nuclei present in the sample (N), the type of nuclei (the gyromagnetic ratio
γ, [rad/s T ] is unique for each nucleus), Planck’s constant (~ = h/2π), Boltzmann con-

stant (kB) and the temperature of the sample (T, [K]). ~M is governed by the Boltzmann
Equilibrium Law :

~M = N
γ2s(s+ 1)~

3kBT
~B0 [A/m] (1.1)

where s is the spin quantum number of the nucleus.
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During magnetic resonance (MR), a constant magnetic field (B0) is used to align the

magnetisation ~M . An external stimulus (RF pulse) then perturbs ~M for a short period of

time. The perturbed ~M then precesses around the constant magnetic field direction (in
the laboratory frame). This produces an electromotive force in a nearby coil due to the
time variation of the magnetic flux. In general, the frequency of the angular precession
is described by the Larmor equation:

ω = γB0 [rad s−1] (1.2)

The electromotive force is proportional to the product of ω and the magnetisation. Since
both are proportional to the strength of the B0 field, the sensitivity of the NMR experi-
ment scales as the square of the magnetic field.

1.2 Bloch equations

Figure 1.1: Temporal variation of the Cartesian components of the magnetisation, following application
of a 90 degree RF pulse (T1 = 600 ms, T2 = 100 ms, ∆ω = 10 Hz). The transverse components of
the magnetisation undergo free precession. [22]

The Bloch equations are a set of equations describing the properties and origins of the
NMR signal. As individual nuclei possesses spin angular momentum (~I), the magnetic
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Figure 1.2: Effect of changing parameters on the temporal evolution of the magnetization vectors [22].
(a) Effect of the changing of T1 on longitudinal magnetisation Mz. (b) Effect of the changing of T2

on transverse magnetisation (MX,Y ). (c) Effect of the changing of the offset of resonance frequency
on both longitudinal and transverse magnetisation.

properties of an ensemble of nuclei can be represented by the net magnetization vector
( ~M). ~M is subjected to a torque (~τ) in magnetic field ( ~B):

~τ = ~M ×B

The torque is the temporal derivative of the angular momentum:

d

dt
~I = ~τ

The gyro-magnetic ratio (γ) relates the magnetic moment ( ~M) with the angular momen-

tum (~I):
~M = γ~I
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So, the Bloch equation without relaxation terms is given by:

d

dt
~I = ~τ (1.3)

d

dt

~M

γ
= ~M ×B (1.4)

d

dt
~M = γ ~M × ~B (1.5)

The three components of the ~M rotating vector are described by:

dMx(t)

dt
= γ

(
~M(t)× ~B

)
x

(1.6)

dMy(t)

dt
= γ

(
~M(t)× ~B

)
y

(1.7)

dMz(t)

dt
= γ

(
~M(t)× ~B

)
z

(1.8)

where calculation of the cross product (using the right-hand rule) leads to:

• the direction of ~τ is perpendicular to both ~M and ~B and it causes ~M to precess
around ~B 1.

• If ~M is along ~B, there won’t be any change in ~M in time.

• If ~M is transverse to ~B, there will be a change in ~M in time.

Individual spins that are part of the ensemble can interact with each other (spin-
spin interaction) and the environment (spin-lattice interaction). The result of these

interactions is that ~M relaxes back to the equilibrium state where the magnetisation
is aligned ~B and takes a value of ~M0. This relaxation process releases energy to the
environment.

Introducing the effect of relaxation into the Bloch equation using the relaxation time
constants T1, T2 (assuming that single time constants are sufficient to describe the pro-

1The most common analogy to visualize the phenomenon is a gyroscope. The nuclear spin is
analagous to the angular momentum. The magnetic moment reflects the moment of inertia. The
electromagnetic field replaces the effect of gravity. As soon as the gyroscope is moved away from the
parallel direction to gravity, it starts to precess (it rotates on its own axis and precesses around the
vertical axis).
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cesses) gives:

dMx(t)

dt
= γ

(
~M(t)× ~B

)
x
− Mx(t)

T2

(1.9)

dMy(t)

dt
= γ

(
~M(t)× ~B

)
y
− My(t)

T2

(1.10)

dMz(t)

dt
= γ

(
~M(t)× ~B

)
z
− Mz(t)−M0

T1

(1.11)

Mx, My are called the transverse components of magnetisation whose relaxation is char-
acterised by T2, while T1 describes the relaxation of the longitudinal component of mag-
netisation Mz. The vector representation of Equations 1.9−11 is:

γ
(
~M(t)× ~B

)
x,y,z

= (γMyB0, γMxB0, 0) (1.12)

Figure 1.1 shows the evolution of the different magnetization components following a 90
degree RF pulse. The evolution of the magnetization is shown in the rotating frame,
with a frequency offset ∆ω of 10 Hz. Figure 1.2 shows how this behaviour changes when
different parameters are varied.

1.2.1 BPP theory of relaxation

Figure 1.3: Bloembergen, Purcell and Pound theory of relaxation. The tumbling rate of molecules
(described by the correlation times for rotational motion) vary with the state of aggregation of the
matter. T1 is minimised when the frequency of rotation matches the Larmor frequency (f0). On the
other hand, T2 does not show a minimum and rather decreases as the frequency of rotation decreases.
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Bloembergen, Purcell and Pound [23] described the mechanism of relaxation in terms
of molecular random motion of translations, rotations and vibrations. Rotational ran-
dom motion of molecules is the one that influences T1, T2 relaxation times the most as
translations of molecules and vibrations (happening in the infrared electromagnetic spec-
trum) do not strongly affect the nuclear magnetisation. Molecular rotation modulates
the dipolar fields experienced by the nuclei, driving transitions between energy levels,
hence leading to relaxation. Changes in the rate of molecular rotation, characterised by
the correlation time, have a strong effect on the rate of relaxation. Rotation, and hence
field fluctuation at the Larmor frequency is important for driving T1 and T2 relaxation,
but T2 relaxation is also strongly affected by low frequency motion.

1.2.2 Relaxation times

Figure 1.4: Transverse magnetization (Mxy) and Longitudinal (Mz) magnetization [22] for T2 = 100ms
and T1 = 600 ms.

The relaxation of the magnetisation components is visualized in Figures 1.4 and 1.5
for different values of the relaxation times.

The spin–lattice relaxation time (T1) describes the recovery of thermodynamic equi-
librium, while the spin-spin relaxation time (T2), characterises the irreversible loss of
phase coherence of the spins: the general relation between these parameters is T2 < T1

(Figure 1.3).

T1 and T2 are different for different tissues (Figure 1.5) and this is exploited to
produce different contrast in images produced using different magnetic resonance imaging
techniques.
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Spin-lattice relaxation time (T1) The spin-lattice relaxation time (T1) represents
the interaction between the nuclei and experimental environment, the spin system’s loss
of energy to the lattice is largely driven by field fluctuations occurring at the Larmor
frequency (Figure 1.3). This corresponds to the recovery of the component of ~Mz (Equa-
tion 1.9) along the static field (the recovery of the longitudinal magnetization).

Figure 1.5: (a) Decay of transverse magnetization (Mxy) of different tissues in the brain. Gray Matter
(GM), White Matter (WM), Cerebral Spinal Fluid (CSF). (b) Decay of transverse magnetization
(Mxy) of the same tissue (WM) at different field strengths. In general the higher the field, the shorter
the T2 [22]

Spin-spin relaxation time (T2) The spin-spin relaxation time (T2) characterises the

decay of the component of ~Mxy (Equation 1.9) transverse to the static field (the decay of
the transverse magnetization). Decay is promoted by the loss of coherence in phase be-
tween spins due to intrinsic local magnetic field fluctuations caused by molecular motion
(Figure 1.3). Because of inhomogeneities in the main magnetic field, the observed T2 is
shorter than the one predicted and the resulting values is known as the T ?2 (T ?2 ≤ T2)
relaxation time. It can be written as: 2.

1

T ?2
=

1

T2

+
1

T ′2
(1.13)

2”Twinkle twinkle T two star” song from ”muscle and Magnets” album of Greg Crowther sum up
the phenomena https://www.youtube.com/watch?v=uu7Ph25EhLQ
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where the relaxation time due to the inhomogeneities is approximately given by the in-
verse of the range of precession frequencies due to the magnetic field inhomogeneities
(1/T ′2 = γ∆Bi).

Relaxation times in tissues Biological tissues cannot be modelled as either solid
or liquid due to the complex interaction of macro-molecules and water. However, the
BPP theory can nicely explain the relaxation times of protons in water in tissues when
considering the spread of molecular tumbling frequencies in the tissue. For example, T1 in
CSF (liquid, ’free’ protons tumbling) is long (of the order of a second[24]) because of the
very rapid tumbling of the water molecules leading to a relatively low field fluctuations at
the Larmor frequency. Likewise, T2 is long (order of magnitude of the second[24]) because
of the small contribution to field fluctuations at low frequency. Body tissues where water
molecules are neither ’free’ nor ’bound’, have more efficient spin-lattice interactions (short
T1) as there is a larger contribution to field fluctuations at the Larmor frequency. Spin-
spin interactions T2 in structured materials are weaker than in ’bound’ ones (such as
bones), where the tumbling motion limited by the molecular binding leads to very short
T2. Bound materials are also characterised by long T1 as spin-lattice interaction (that

provides energy for the ~Mz recovery) is not favoured by the binding. Typical range of
values of relaxation times are reported in Table 1.1.

Free protons Structured protons Bound protons
Relaxation times (Body fluids) (Water-based tissues) (Fat-based tissues)

T1 1.50÷ 2.00 s 0.40÷ 1.20 s 0.10÷ 0.15 s
T2(< T1) 0.70÷ 1.20 s 0.04÷ 0.20 s 0.01÷ 0.10 s

Table 1.1: relaxation times. Example of typical relaxation time values for body tissues. Values are
given as approximate ranges as they strongly depend on the field strength [24]

1.3 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI3.) is an imaging technique based on the NMR
phenomenon that can be used to investigate the body of a patient. Research in this field
is now moving towards the investigation of the use of Ultra High-Field scanners. The
achievable spatial resolution of MRI increases with the strength of the magnetic field.
Subject movements which can be tolerated at lower field are not acceptable in high spatial

3”The MRI song” Matt Wall sum up the phenomena https:https://www.youtube.com/watch?v=

zfYINee1VA4
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resolution imaging at ultra high field, since they create artefacts that can invalidate
images. The movements break the correspondence between the spatial position of the
nuclei and their magnetic resonance signal, which is fundamental to the MRI technique.
The artefacts can be corrected when the movements of the head during the scans are
known, this is the idea of Motion Correction.

1.3.1 MRI technique

MRI produces very clear images of the inner parts of the human body. The major
advantage of MRI is that it is non-invasive for the patient because it does not use any
ionising radiation. Moreover, MRI provides better soft tissue contrast than other medical
imaging techniques, such as X-Ray computed tomography.

MRI uses radio frequency irradiation to stimulate the nuclear magnetisation arising
from the nuclear spin of hydrogen nuclei in water molecules in the body 4. In MRI, the
signals originating from this magnetization are measured in the presence of magnetic
field gradients and processed to obtain pictures of the human body.

Magnetic susceptibility (χ). The presence of the patient causes magnetic field vari-
ations that depend on the magnetic susceptibility of the tissue. Typical values [26] are:
χFat = −7.79 · 10−6, χBone = −11 · 10−6, χWater = −9.00 · 10−6. Equation 1.2
becomes: ω = γ(B0 + ∆B), where ∆B u χmB depends on the spatial distribution of χ.
Hence, the frequency of precession depends slightly on the anatomy.

Fields used in MRI. Three different electromagnetic fields are used in MRI:

• Static Magnetic Field (B0): This aligns the magnetic moments of the hydrogen

nuclei to generate a net magnetization vector ( ~M).

• Gradient Magnetic Field: Gradients are used for the spatial localization of the
signal (Gx, Gy, or Gz, depending on the direction of application). The gradient
changes the value of the magnetic field in space. So, the resonant frequencies of
the protons depend on their position in space (~r).

B = (B0 +G · ~r) −→ ω(~r) = γ(B0 +G · ~r) (1.14)

The equation shows that the gradient characterises a linear variation of the z-
component of the field (defined by the direction of B0) with spatial position

470% of the human body is composed of water (H2O). The spins of the hydrogen nuclei are influenced
by applied magnetic fields. For fields from 1 to 23 Tesla, the frequency of precession of hydrogen nuclei
varies from 42 MHz to 1 GHz [25].
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• Radio Frequency (RF): It is usually centred at the proton resonant frequency
(equation 1.2) and it rotates the net magnetization vector away from the direction
of the static magnetic field. The flip angle is changed by varying the duration
or the intensity of the applied RF pulse. After the perturbation, the transverse
magnetisation precesses and the net magnetization vector gradually returns to its
equilibrium state (magnitude of M0, aligned with the static magnetic field). The
time-scale of the relaxation processes depend on the properties of the tissue and is
characterised by T1 and T2.

1.3.2 Overview of an MRI scanner

Figure 1.6: MRI System. [Picture made by Richard Bowtell, MRI class 2018]

• Magnet. MR techniques need a static magnetic field (B0) that must be spatially
homogeneous and time invariant. The strength of the field must be high and is
linked to the resolution of the image. The static magnetic field can be generated
via magnetic material (permanent magnet) or high electrical current flow (resistive
or superconductive magnets). In our system, B0 = 7 T , is aligned along the z axis
(B0 = Bz) and generated by a superconductive magnet.

• Shim coils. Shim coils are necessary to correct spatial variation in the main
magnet field B0. They generate a spatially varying magnetic field parallel to the
static magnetic field (Bz(r)). These fields can also be generated using magnetic
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material or current flow in wires. The field is modelled on the installation of the
scanner and also changed on a per-subject basis during scanning.

• Gradient Coils. MRI techniques exploit magnetic field gradients generated by
three gradient coils, one for each spatial direction (Gx, Gy, Gz). The gradients are
varied in time, depending on the sequence applied.

• Radio Frequency (RF) Coils. RF coils generate a radio frequency field, orthog-
onal to B0, which is linearly or circularly polarised. They are tuned to the NMR
frequency. RF transmitter coils generate an uniform field over a large region and
are used for signal excitation. RF receiver coils produce a localised field and are
used for signal detection.

• Screened Room. Usually the MRI scanner is housed in an RF screened room to
reduce interference between the MRI unit and other electronic devices.

• Electronics. Each element of the scanner has a dedicated cluster of controllers
placed in the equipment room.

1.3.3 Spatial frequency space (k-space)

Figure 1.7: k-space and 2D space. The k-space representation (left) can be used to describe the signal
acquired during MRI scanning. It is processed by Fourier Transformation to obtain the MR image
(right). The spatial resolution of the image is inversely proportional to the gradient amplitude (G)
and the duration (t). Hence, to have a high spatial resolution it needs a large G · t product. [Picture
made by: Bowtell Richard, University of Nottingham, MR classes, 2016].

MR image formation is based the process called spatial encoding that is used to en-
code the spatial information in the NMR signal produced by the nuclear spins of the

18



Figure 1.8: Analysis of the k-space. The Fourier spectrum of a Boolean 2D human-like picture has
been filtered to highlight correspondence between spatial frequencies space (k-space) and the 2D
space representation. Rapid changes with spatial position (head’s edge) are represented by high
spatial frequencies, while flat regions (head) are represented by low spatial frequencies. Band pass
filters have been applied.

Figure 1.9: Trajectory in 2D k-space. (a) Illustrative gradient waveforms, and (b) the concurrent
movements in k-space. Starting from the centre of the k-space (no excitation, yellow) (orange)
Gy > 0 creates a trajectory towards ky > 0, same effect for Gx > 0 (blue) along kx > 0. (green)
Gx > 0 and Gy < 0 lead to encode in a diagonal direction. (purple) As the integral (area) of the
gradient determine the new coordinates in the k-space, and in this case 2AGx = AGy, the end of the
trajectory. (grey) Gx < 0 move backward to ky < 0.

sample.

Considering Figure 1.7, the coordinates of the signal are the frequency and the phase
encoding directions that characterise the 2D k-space. Using varying magnetic fields gra-
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dients allows the signal to be measured at each point of k-space (kx, ky).

The spatial encoding process relies on frequency encoding, phase encoding and selec-
tive excitation. Frequency is used to encode one dimensional information. A magnetic
field gradient produces a linear variation of magnetic field with position, and thus the
frequency also varies linearly with position. The precession frequency (equation 1.2) in
the presence of a field gradient (∆G) added to the B0 field (B = B0 +∆G = B0 +G×x)
becomes: ω = γB = ω0 + γGx [Hz]. Gradients that change the phase of the signal are
used to encode two, three or higher dimensional information.

In 2D space for example (Figure 1.7), the x position can be encoded in frequency and
the y position is encoded in phase. The phase is related to the gradient by: φ = γGyyτ
where Gy and τ are the intensity and the duration of the applied gradient. Furthermore,
for 2D MR imaging it is necessary to select a slice of the sample to scan. The equation
1.2 becomes: ∂ω = γG∂s. Sending a gradient G centred on the frequency ωa = ω

2
selects

the slice ∂s. In 3D space, slice selection involves applying an RF pulse that contains a
finite range of frequencies (∆ω). When this is applied in conjunction with a slice select
gradient it excites magnetisation across a finite range of positions.

Figure 1.8 reports an example of k-space corresponding to a highly simplified human
head image. k-space represents the distribution of spatial frequencies obtained by Fourier
Transform of the image. Low frequencies (centre of the k-space) and high frequencies
(border of the k-space) represent respectively flat regions and rapidly changing regions in
the image space. By the use of spatial filters it is possible to separate those components.
High spatial frequencies are given by weak signals and contain fine details. Most of the
signal is characterised low spatial frequency and contains information on image shape
and contrast.

Changing the order of application of the gradients (or the (kx, ky) points) and the
timing for filling the k-space is the way to generate diverse MR sequences (Figure 1.9).
The most used k-space trajectories can be divided into four main classes: standard non-
EPI rectilinear (where EPI stand for Echo Planar Imaging); EPI; Radial; Spiral. The
main difference is that the centre of the k-space is heavily sampled for radial and spiral
trajectories.

1.3.4 From MR signal to medical imaging

The signal measured is ideally: S(t) = M(t) ·exp(iϕ(t)). It is composed of two parts:
the magnitude (M(t)) and the phase (ϕ(t)).

• Magnitude. The MR image represents the spatial distribution of the magnetiza-
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Figure 1.10: Specific sequence. (a) Timeline of the measurements. (b) k-space trajectory for one slice.
(c) Image volume. (d) Axial slice of the MRI.

tion. The appearance depends on the physical proprieties of the tissue and on the
RF pulse sequence applied.

• Phase. The phase contains information about all the sources of perturbation of
the magnetic field, including the effects of hardware imperfections, field inhomo-
geneity and perturbations due to movements.

The variation of the magnetic field inside the head is correlated with the phase varia-
tion of the signal, but the magnitude signal only is usually used to produce the MR image.

1.3.5 Image artefacts

Image artefacts produce signals and structures in the image which do not correctly
reflect anatomical information. On the clinical side, these tends to be more severe for
paediatric and elderly patients who find it hard to keep still in the scanner. Artefacts in
the image can mimic pathologies and lead to improper diagnosis. On the research side,
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artefacts can still exist even if the subjects are co-operative and able to remain still, and
the spatial resolution may therefore be limited by motion.

Artefacts emerge for different reasons. There are inherent physical artefacts, like
chemical shift artefacts due to the frequency variation of different tissues (e.g. fat and
water) or magnetic susceptibility artefacts due to variations in magnetic proprieties of
the tissue or implants. These artefacts can be reduced by changing the MR sequence.

Even if the whole scanner hardware is optimised not to interfere with the measure-
ments, the interference between the MRI unit and other electronic devices inside the
room can create noise patterns on the image. Furthermore, the imperfections in the
static magnetic field, gradient fields and shimming can create artefacts. The magnetic
field must be uniform to at least a few part per million.

If we assume the absence of hardware noise sources, the movement of the patient is
the only perturbation source. It produces a shift of the region of interest (ROI) of the
scanner. As explained on page 18, if the ROI shifts, the same region could be excited with
different values of gradients and reconstructed at two different locations in the image.
Thus, the movements of the patient introduce encoding errors.

1.4 Low/high field scanners for MRI

Ultra high field MRI scanners (≥ 7 T ) are a leading-edge technology growing fast
in the last decade, that comes with technical challenge and many medical benefits [27].
The benefits include the capability to visualise anatomical details with high resolution,
which may lead to improve planning of treatment to prevent or slow down various disease
developments in the future. Table 1.2 summarises how the main scanning parameters
scale with the field strength. Thus, it is natural to wonder what is the gain compared to
low field MRI scanners (≤ 3 T ):

• The size of the footprint around the scanner, so how the magnetic field decrease
with distance from the scanner bore, mostly depends on the shielding [28]. The
force that an object can feel is proportional to the spatial variation (rate of change
of the magnetic field): F ∝ B0

dB0

dz
[T 2m]. This also increases the risk of the

projectile hazard.

• UHF provides higher Signal to Noise Ratio (SNR) [29]. This improves the resolu-
tion of the image and reduces the scan time. Higher SNR also allows the recording
of signals from other nuclei than protons.
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Scan parameters Mathematical relationship with B0

Signal to Noise Ratio SNR ∝ B0

Spatial Resolution Resolution ∝ SNR1/3 ∝ B
1/3
0 ≈ 47

T1 T1 ↑ B0

T ∗2 T ∗2 ↓ B0

Apparent T2 T2 ↓ B0

Spectral separation ∆ω ∝ B0

Susceptibility effects ∆φ ∝ TE ·B0

Table 1.2: UHF. Summary of the relationship between MRI/MRS/MRSI scan parameters and B0 [2]

• Physiology common temporary side effects on going in to a UHF scanner [30, 28] are
dizziness, vertigo and metallic taste. These effects are mainly induced by motion
of charges (a person that moves into the magnetic field, ion fluid moving in the
vestibular system, blood) in a magnetic field 5. Time-varying MRI gradient fields
induce electric fields in the patient that can become strong enough to stimulate
peripheral nerves (PNS ), muscles, and possibly even the heart. These unwanted
physiological effects significantly limit the performance of modern MRI gradient
systems.

• The Power deposition (Specific Absorbing Rate, SAR) scales with the square of
B0. So, at UHF, the limits for sequence design (in terms of TR, flip angle and
saturation) are reached faster [31].

• The Spin - lattice relaxation time (T1) increases at UHF. For a saturation recovery
or inversion recovery based image, this provides longer label persistence and better
background suppression. However, if you want a similar contrast, you need longer
TR (repetition time) and TI (inversion time) so image scan times become longer.

• The Spin - spin relaxation time (T2) decreases. Shorter TE (Echo time) are needed
to avoid signal attenuation. In the case of spectroscopic images, short T2 has the
effect of broadening the lines of the spectrum.

• Increasing the B0 leads to increased susceptibility effects (magnetization of the tis-
sues, susceptibility effects ∝ B0) and resonance frequencies (equation 1.2). This
lead to larger B0 in-homogeneity and distortion as the local magnetic field changes
at tissue boundaries increase. An example of consequences of this are in fat suppres-
sion in MRI sequences. Most fat suppression methods are built on the frequency
difference between water and fat. So, if field inhomogeneities are too large frequen-
cies will be mixed up and the fat suppression will be poor. High order spherical

5Effects induced by motion of charges in a magnetic field. Motion of charges through a homogeneous
field (Lorentz forces).
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harmonics shimming compensation of the scanner (add field to compensate inho-
mogeneity) reduces the effect.

• The Chemical Shift differences between metabolites increase leading to a bet-
ter peak separation since the resonant frequency increases linearly with the field
strength (e.g. a ∆ = 100 Hz at 3 T results on ∆ = 240 Hz at 7 T). Also, the SNR
increase allows the detection of low concentration metabolites [29].

• B1 inhomogeneity increases. Resonant frequency increases with field strength
(equation 1.2) and so RF field wavelength will be shorter 6

B0 : 1.5 T 3.0 T 7.0 T
frequency [106 Hz] ≈ 60 ≈ 130 ≈ 300

Wavelength [cm] ≈ 50 ≈ 20 ≈ 10

Table 1.3: Wavelength of RF. λ = c
γεr

= c
γB0εr

, γ = 3[108 Hz], hydrogen, c ≈ 3 108[m/s]

If the wavelength is smaller than the head diameter, RF waves will interfere inside
the head. Constructive interference leads to area with high signal (and potentially,
high power deposition), while destructive interference leads to signal losses. This is
reflected in the flip angles perceived by the spins. So the concept of one single flip
angle is no longer valid and this can create regions of poor contrast and shading
artefacts. The severity of the effects depends on many parameters, but mainly head
size, as smaller head are less affected by this problem. A possible solution is the
use of dielectric pads that superimpose a static secondary RF field, or the use of
parallel transmit technology. Parallel transmit system have multiple RF transmit
whose parameters can be adjusted separately (amplitude, pulse, phase).

• Motion Artefacts are not specific to any field strength, but the high resolution
achievable at UHF and the longer scan make them more pronounced. Motion can
also induces frequency fluctuation that gives artefacts in T ∗2 images.

1.5 NMR field probes

NMR probes are active probes developed for measuring the net magnetic field evolu-
tion inside the MR scanner. NMR probes measure the NMR signal using a small volume
of liquid, and allow calculation of the local magnetic field.
The features satisfied by the probes are:

6λ = c
f , λ [m] wavelength, c√

εr
[m/s] speed of light in tissue (dielectric effect), f [m/s] frequency.
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• In each measurement, the probes are excited by RF pulses and the individual
FIDs are measured. The magnitude of the FID signal does not strongly feel the
influence of external gradient fields, otherwise the probes ~M could be dephased.
This is guaranteed if the dimension of the probes is less or equal to roughly the
inverse magnitude of the maximum k-space vector of the measurements. That
leads to having a diameter of less than two pixels in size (< 2 mm).

• The materials surrounding the active probes do not influence their FIDs. The
magnetic susceptibility of materials have to match with those of the probe.

Figure 1.11: Clip-on camera system. The figure shows the Clip-on camera system (left) and a schematic
representation of the field probe capillary (right) described in Section 1.5. The system is comprised
of 16 magnetic field probes. The shape of each probe is ellipsoidal to limit field inhomogeneity due
to the magnetic susceptibility of the container of the probes. The container is closed to prevent the
entering of gas bubbles [32].

The probes are based on an MR-active liquid. The MR-active liquid has to exhibit a high
concentration of nuclei with high gyromagnetic ratio to obtain a sufficient signal to noise
ratio (SNR). The droplet exhibits a spherical shape to maximize the volume to surface
ratio. The small diameter allows the measurement of the magnetic field in the presence
of a large gradient. The droplet is confined by surrounding liquid to prevent movement,
changes in shape and to avoid entry of gas bubbles. It should be chemically inert. The
interfaces between the liquids must not give rise to susceptibility broadening. Hence,
the magnetic susceptibility of the materials must be similar. The container should be a
capillary with a small diameter and a long shape (like a cylinder or an ellipsoid, Figure
1.11), remain chemically stable in time and not react or mix with the droplet. A micro
RF coil is wrapped around the capillary tube (solenoidal detector in Figure 1.11). The
board that carries the whole system is made of a material that matches in susceptibility
the copper wire, is chemically inert and non conductive.

25



In 2008, the prototype of the NMR probes used in this project [33] was based on Cy-
cloexane (C6H12) doped with tris(2,2,6,6-tetramethyl-3,5-heptanedionato) chromium(III)
(Cr(III)(tmhd)3). A spherical droplet of the MR-active solution was confined by a solu-
tion of heavy water (D2O) and Manganese (II) chloride (MnCl2) in a miniature cylinder
of Pyrex (1.3 [mm] diameter and 0.2 [mm] wall thickness). The detector coil was a high-
purity copper wire turn around the cylinder. The whole system was surrounded by a
cylinder made with perfluorinated hydrocarbon and it was controlled remotely using a
Field Programmable Gate Array (FPGA). This probe was developed in order to define
the features of the future probe system and their potential use, is measuring the k-space
trajectory in a EPI (Echo Planar Imaging) sequence.

In 2008, more probes were produced and rearranged in a tetrahedral fashion [34] to
better evaluate the k-space trajectory during EPI, spin-warp and spiral sequences, to
inform image reconstruction. Further considerations on using a system formed by more
than one probe were made, e.g. the best relative positions of the probes. In 2011, NMR
probes were used to measure the entire field evolution [25] in order to correct field im-
perfections in the image during diffusion imaging, EPI scans on phantoms and in vivo
scanning. The spatial variation of the magnetic field was measured up to the third order
solid harmonics using a 16-probe system. In 2015 [35], the actual stand-alone monitor-
ing system was designed and used for the first time to measure MR sequence k-space
trajectories leading to successful image reconstruction. Further analysis of the system
imperfections were made. The commercial monitoring system that was used in my work
is 19F (γ19F = 252 · 10−6 rad

sT
) based rather than 1H based (γ1F = 267 · 10−6 rad

sT
) , which

means that it is relatively insensitive to the 1H RF pulses used for imaging (∆γ ≈ 6%).
Further improvements have been recently made on making frequency-adjustable mag-
netic field probes [36]. The proposed field probes features a second coil that can be used
to change the local resonance frequency (and so to modify the local magnetic field) in
the probe. This allows the probes to be switched on and off, tuning selective excitation
to a frequency that doesn’t interfere with the MR image sequence.

NMR probes [35] are the magnetic field sensors used in this project. The probes that
we use [25] are based on 19F based MR-active liquid. They exploit the free induction
decay (FID) signal of a small droplet of the MR-active liquid. The evolution of the phase
of the signal from a single probe is related to the magnetic field by rewriting equation
1.2 [33]:

γ

∫ t

0

| B(r, τ) | dτ = φ(t) + ωdt =⇒ | B(r, t) |=
(
dφ(t)

dt
+ ωd

)
1

γ
(1.15)

where τ represents time, r represents the position of the probe, ωd denotes the demodu-
lation frequency 7 and φ(t) is the signal phase.

7The demodulation frequency is the frequency of the RF used to demodulated the measured NMR
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The continuous phase time course is extracted from the FIDs by a phase-unwrapping
process 8. The errors due to the unwrapping process are minimized via up-sampling the
raw data and down-sampling the results [33]. The phase measurements can be used to
obtain magnetic field magnitude, k-space trajectories and concurrent gradient evalua-
tions.

Sensitivity of the field probes. The main limiting factor of the probes is the ther-
mal noise. This arises from the solenoidal RF coil and circuits. At the MR frequency
bandwidth (BW), the noise is given by:

ξ = SNR
√
BW (1.16)

The probe’s phase sensitivity can be obtained considering equations 1.15 and 1.16 as:

σφ =

√
BW√
2ξ

=
1√

2SNR
(1.17)

The noise in the field measurement is given by:

σB(t) =

√
2 σφ(t)

γ∆t
=

1

∆t
σφ(t)

√
2

γ
= BW

√
BW√
2 ξ

√
2

γ
=
BW

2
3

γξ
∝ T

− 2
3

obs (1.18)

where, in the absence of noise autocorrelation BW = ∆t−1 = n T−1
obs (∆t represents the

sampling period, n is the number of samples and Tobs the overall sampling duration).

Furthermore, there are minor sources of systematic errors that influence the evolution
of the magnetic field. The chemical shift effect of MR-active liquid and the magnetic
susceptibility of the surrounding materials causes errors of parts per million (ppm) mag-
nitude. A constant offset is due to the magnetic susceptibility effect on the boundary of
the materials. Susceptibility effects of the MR-active liquid can also lead to field inhomo-
geneity. The bias is the order of 10 nT for static measurements, but does not affect MR
applications where relative field changes are relevant . For time-varying measurements,
the influence of changes in probe temperature is evaluated as having a nT/K magnitude.
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Figure 1.12: Example of spherical harmonics decomposition. The picture shows the solid harmonic
decomposition of a general spherical function [37]. It is clear that the complexity of the harmonics
increases with the spatial order.

1.5.1 Solid harmonic functions

Spherical harmonics (Ψm
l (θ, φ)) form a family of functions that can be used to repre-

sent a function as:

f(θ, φ) =
inf∑
l=0

m=l∑
m=−l

almΨm
l (θ, φ)

where θ, φ, l, m, represent angles, degree and orders respectively. A graphical example
is shown in Figure 1.12.

Spherical harmonic equations are written based on the coordinate system chosen.
Table 1.4 reports the equations based on Cartesian coordinates. Spherical harmonics
assume then the name of solid harmonics. These equations are used to evaluate the
spatial variation of the fields measured using an array of NMR probes.

signal.
8Phase wrapping and unwrapping algorithm. The phase is defined as a periodic continuous

function in the range [−π,+π]. If the sampled signal exceeds the range, the phase is digitised as wrapped
phase (signal that contains jumps every 2π). The unwrapping process is applied to make it continuous
and usable for further analysis. The noise level of the original signal can invalidate the unwrapped
phase.
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Basis Nr. Spatial Order Basis functions
0 0 1
1 x
2 1 y
3 z
4 xy
5 zy
6 2 3z2 − (x2 + y2 + z2)
7 xz
8 x2 − y2

9 3yx2 − y3

10 xzy
11 (5z2 − (x2 + y2 + z2)) · y
12 3 5z3 − 3z(x2 + y2 + z2)
13 (5z2 − (x2 + y2 + z2)) · x
14 x2z − y2z
15 x3 − 3xy2

Table 1.4: Solid Harmonics. Solid harmonics basis function in Cartesian coordinates [33].

The magnetic field | B(r, t) | is formed by static and dynamic components. The first
represents the contribution due to the magnetic susceptibility of the parts of the object,
so it is well defined and highly structured in space. It is evaluated during the calibration
of the probes (tcalib). The gradient coils, the main field coil, shim elements and the
perturbation due to the presence of the subject are the sources of the dynamic component.
They are generally distant enough to give a spatially smooth contribution to the field.
Hence, the dynamic component can often be expressed using low-order solid harmonic
functions [34].

| B(r, t) | = Bdynamic(r, t) + Bcalib(r) =

NL−1∑
l=0

cl(t)fl(r) +B(r, tcalib) (1.19)

where NL = 16 represents the total number of basis functions fl(r) (l the number of the
basis), and the dynamic coefficients cl(t). Based on equation 1.15, the phase is evaluated
as:

φ(t) =γ

∫ t

0

| B(r, τ) | dτ = γ

∫ t

0

(
NL−1∑
l=0

cl(t)fl(r) +Bcalib(r)

)
=

=

NL−1∑
l=0

(
γ

∫ t

0

cl(τ)dτ

)
fl(r) + γBcalib(r)

(∫ t

0

dτ

)
=

=

NL−1∑
l=0

kl(t)fl(r) + γωcalib(r)t (1.20)
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where kl(t) represents the coefficients of the dynamic part of the magnetic field during
the MR sequence. The kl(t) coefficients are determined by sampling the phase of the
signal at Np ≥ NL positions over the scanning volume.
Hence, if the Larmor frequency of the probes during the calibration are given by ωcalib =
γPBcalib(rj). Equation 1.20 becomes:

φj(t) =

NL−1∑
l=0

kl(t)fl(rj) + γωcalib,j(rj)t (1.21)

Using the matrix notation:

φP (t) = [φ1(t), . . . , φNP
(t)]T ; ωcalib,P = [ωcalib,1, . . . , ωcalib,NP

]T ;

k(t) = [k0(t), . . . , kNL−1
(t)]T ; P =

 f0(r1) . . . fNL−1
(r1)

...
. . .

...
f0(rNP

) . . . fNL−1
(rNP

)

 ;

This notation describes the structural features of the probes (size, positions) and the
number and choice of the basis functions in the matrix P. For any basis set fl(r), the
phase is given by the linear system:

φP (t) = Pk(t) + ωcalib,P t (1.22)

The coefficients k(t) are estimated in a least-squares fashion as:

k(t) = P+ [φP (t)− ωcalib,P t] (1.23)

where P+ is the Moore-Penrose pseudoinverse of P.

The error on the evaluation of the coefficients is related to the relative positions of
the probes as:

σkl = σφ

√∑
j

(
P+

lj

)2
(1.24)

where σφ is defined as in equation 1.17. In order to minimise the errors on the coefficients,
the probes must be distributed evenly around the object9and the number of probes must
be greater or equal to the number of basis functions.
Considering my work, I used an array of j = 1 . . . 16 probes held by a support at positions

9Columns of P must be orthogonal or nearly linearly independent.
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rj, so Np = NL = 16. Using the spherical harmonics as basis functions, the matrix P
for our probe set is:

P =

 f0(x1, y1, z1) f1(x1, y1, z1) . . . f14(x1, y1, z1) f15(x1, y1, z1)
...

. . . . . . . . .
...

f0(x16, y16, z16) f1(x16, y16, z16) . . . f14(x16, y16, z16) f15(x16, y16, z16)

 =

=

1 x1 . . . x2
1z1 − y2

1z1 x3
1 − 3x1y

2
1

...
. . . . . . . . .

...
1 x16 . . . x2

16z16 − y2
16z16 x3

16 − 3x16y
2
16

 (1.25)

If we define:

0thorder: k0(t) (homogeneous component)

1storder: k(1)(t) = [k1(t),k2(t),k3(t)] (linear component)

2ndorder: k(2)(t) = [k4(t),k5(t),k6(t),k7(t),k8(t),k9(t)] (linear component)

3rdorder: k(3)(t) = [k10(t),k11(t),k12(t),k13(t),k14(t),k15(t)] (linear component)

(1.26)

The the global phase term is represented as a sum of harmonics:

φP (t) = k0(t) + k(1)(t) · r + k(2)(t) · r + k(3)(t) · r (1.27)

The low order harmonics (0th, 1st) represent mainly the field induced by the subject
of the scan. The high order harmonics (2nd, 3rd) of the static magnetic field compo-
nent reflect imperfections of the main magnet and susceptibility effects [25]. High order
field perturbations describe varying sources, such as the concurrent field, eddy currents
(arising from gradient coils, shims and cryostat), thermal noise and subject motion.

1.5.2 From raw signal to absolute magnetic field values

Acquiring phase data allows the magnetic field value recorded by the NMR field
probes to be evaluated. First, the data needs to be de-noised by applying a smoothing
function (such as the lowess method of smooth MATLAB built-in function). Considering
the phase signal given by φ = γ

∫ t
0
B(t)dτ , the magnetic field is obtained by:

B =
1

γ

(
dφ

dt

)
(1.28)

where γ = 251.6 106 [rad(sT )−1] of the 19F . The derivative can be approximated as
finite difference:

dφ

dt
=
φt1 − φt0
t1 − t0

(1.29)
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The time difference between two consecutive points can be written as:

t1 − t0 =
∆T

N
=

∆T

∆TBW
=

1

BW
(1.30)

where: ∆T = 10 [ms] is the acquisition duration and BW = 106 Hz is the bandwidth
of the acquisition for phase data, and N is the total number of data points sampled in
the ∆T .

In conclusion:

B =

(
dφ

dt

)
1

γ
= (1.31)

=

(∑104

i=1(φt+1 − φt)i[rad]
10×10−3[s]

(10×10−3[s])×(1×106[1/s])

)
1

251.6× 106[rad/(sT )]
(1.32)

=

∑104

i=1(φt+1−φt)i[rad]

104

10× 10−6[s]

 10−6

251.6× 106[rad/(sT )]
(1.33)

=

∑104

i=1(φt+1 − φt)i
251.6× 104

[T ] (1.34)

1.5.3 Magnetic field camera

The field camera system is formed by the field probes array connected to the T/R
signals and the Acquisition System (booster unit, computer desktop application) and
manage the data T/R and scanner communication (trigger and synchronisation) [39].
Once the field probes are placed on the scanner bed, the system is turned on. Figure 1.13
shows the two mounting systems used in this thesis. The systems hold the probes in place
during the measurements. The former holder (Figure 1.13.a) did not allow measurements
to be performed with simultaneous scanning, so the latter has been developed (Figure
1.13.b). Technical challenges faced in the process were to design the holder using a
material that did not interfere with the measurements, that could fit in between the
receiver and the transmit coil and to reduce the risk of pulling on the cables while the
scanner bed was moving.

Field camera calibration First of all, it is necessary to measure the probe positions.
The accuracy is 0.1 mm and the action to move the bed to place the set-up is sufficient
to detect a shift in probe positions [11]. The field camera calibration is computed at the
beginning of each measurements and it is relevant for the accuracy of phase data, k-space
data, and field data. It consists of the measurements of the off-resonance FIDs values
of the field probes and field probe positions in the scanner frame. The off-resonance
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Figure 1.13: Photo of the customised mounting systems for NMR field probes. (a) Figure shows the
PVC probe-holder [38, 11], placed inside the transmit head coil. On the top of the scanner bore, the
optical camera is visible. The anthropological phantom used for developing the mounting system
was placed inside the mounting system. The set-up has been improved to allow measurements of the
magnetic field with simultaneous scanning. Figure (b) shows the Cloth probe-holder [12, 13], placed
in between the transmit and receiver head coil. The transmit coil has been slightly pulled back for
the purpose of this picture only. To avoid cables pulling while the bed is moved, a PVC plastic tray
has been added to hold the T/R box of the magnetic field camera system on top of the scanner’s
receiver boxes. Neither mounting system was commercially available.

Figure 1.14: Sequence of Skope Calibration. The sequence played out in the scanner involves acquiring
four sets of FIDs from the probes. The first FID is used to estimate the frequency offset at each
probe. During the 2nd to the 4th FID only, the scanner applies an external field gradient on the
X, Y and Z axes with an amplitude of (2.5mT m−1). The positions of the probes are extrapolated
from the field values that the gradients create in each probe and from the known gradient strength.
The TTL signal is an external trigger to manage the field camera acquisitions. The FID is acquired
after a certain time from the beginning of the gradient to avoid the error due to eddy currents or
mechanical gradient vibration. [39]

calibration process compensates static magnetic field inhomogeneity. Calibration of the
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probe positions in the scanner frame is performed by running the sequence described in
Figure 1.14.

Figure 1.15: Stability of B0 field. The PVC probe-holder (Figure 1.15) was shifted in 11 different
positions (empty dots) respect to the isocentre (black cross). As a result, B0 was not stable and
influenced the shape of the gradients used for calibration (Figure 1.14) and led to an incorrect
evaluation of probe positions.

The calibration sequence was used to test the error in probe positions in a cylindrical
shape related to the stability of the B0 scanner field relative to the distance with respect
to the isocentre (Figure 1.15). The PVC probe-holder was placed in the transmit coil
and the bed was shifted to 11 different positions along the foot-head direction (z). So,
it is expected to measure variations along the z axis only. The calibration sequence was
run at each position and compared with the PVC probe-holder position used for Motion
Correction experiments (Figure 3.7).

For a perfect gradient, probe positions (~r = (x, y, z)) could be easily found from

Equation 1.14, ~(r) =
~(B)
~(G)

, where ~(B) is the magnetic field, ~(G) is the gradient. As the

magnetic field far from the isocentre varyies (∆B), the positions at each step are given by:
~r′ = ~r+ ∆B

G
. An estimation of the percentage variation with respect to the experimental

set-up is reported in Table 1.5 for probes 5 and 10 as the former was getting further
from the region of stability and the latter rested within it. The gradients (Figure 1.14)
change shape outside the stability region of the B0 field and lead to a mis-evaluation of
the probe positions; this is particularly evident on the percentage variation of probe 5
along x and y axes.
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Probe 5 Probe 10
∆x[%] ∆y[%] ∆z[%] ∆x[%] ∆y[%] ∆z[%]

Pose 1 −5.296 −0.103 0.394 0.020 0.001 −0.669
Pose 2 −5.117 −0.077 0.301 0.016 −0.002 −0.527
Pose 3 −5.724 −0.054 0.207 0.009 −0.008 −0.387
Pose 4 −5.964 −0.034 0.110 0.000 −0.015 −0.245
Pose 5 −5.719 −0.016 0.010 −0.008 −0.021 −0.101
Pose 6 −5.809 −0.001 −0.092 −0.020 −0.031 0.043
Pose 7 −5.417 0.011 −0.195 −0.034 −0.044 0.188
Pose 8 −5.464 0.011 −0.195 −0.034 −0.044 0.188
Pose 9 −5.464 0.011 −0.195 −0.034 −0.044 0.188

Pose 10 −5.422 0.011 −0.195 −0.033 −0.045 0.188
Pose 11 −209.873 −1.271 −0.790 −0.286 −0.892 −0.044

Table 1.5: Percentage variation of probe positions. Table reports the percentage of variations of probe
positions show in Figure 1.15.

Data acquisition The acquisition data is managed by computer. The software library
is under the MIT licence (LUFA Library. Copyright (C) Dean Camera, 2013.) [39].
The scheme of the acquisition is shown in Figure 1.16. The external trigger signal from
the 7 T scanner indicates the beginning of the measure if the system is set to be driven
by the scanner, otherwise it can be started manually. Then, a RF pulse is generated by
the system to excite the fluorine inside the probes and FID decays are measured with a
minimum of 5 ms delay [39]. The data used to evaluate the magnetic field are taken in
the first 5 ms of the the FID of the probes. The frequency of the signal is sensitive to
the local magnetic field.

Figure 1.16: Time scheme of the parameters for the acquisition. Note that each acquisition is preceded
by an RF pulse for field probe excitation.
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Scan Parameters Description Values
Nr Acquisition (Nr Dynamics × Nr Intervals) 1÷ 10

Aq Duration (Interleave TR × Nr Intervals) 150 [ms]
Nr Dynamic The number of acquired dynamics. 30÷ 4000

Dynamic TR The repetition time between each dynamic. 150 [ms]
Nr Interleave The number of intervals for each Dynamic. 1÷ 24

Interleave TR The repetition time between each Interval. (Varying)
Aq Delay Delay of acquisition start 5÷ 30 [ms]

Table 1.6: Magnetic Field camera Parameters. Scan parameters set for the acquisition of data shown
in this Thesis.

Field camera parameters Parameters to set-up to perform measurements are re-
ported in table 1.6. The so-called Dynamic (Figure 1.16) is defined as being between
two consecutive RF pulses, the Time Repetition (TR) of the camera is the length in
time of a Dynamic. One or more Acquisitions could be acquired for each dynamic. The
Interleave TR is the time between two acquisitions. Interleave TR coincides with TR if
one acquisition is taken for each Dynamic, otherwise needs to be set as a submultiple of
TR. Both the cases have been used to acquire the data shows in this dissertation. TR is
limited as ≥ 100 ms by the NMR probes flip angle (constant).

1.6 Conclusion

UHF MRI scanner solutions allow an increase in image accuracy and resolution of
MR images (Section 1.4). However, their implementation leads to multiple additional
challenges, including B0 homogeneity and motion sensitivity.

The field camera system (Section 1.5) probes the magnetic field inside the scanners
(operating at up to 11 T). These measurements could be used for facing those challenges.
In this dissertation, the field camera system has been used in a brand new approach for
developing motion tracking systems (Chapter 3).
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Chapter 2

Ameliorating the effect of motion in
MRI

Motion-related problems in MRI and MoCo (Motion Correction) techniques already
developed to ameliorate the effect of motion in MRI are summarised in this chapter
(Section 2.2). MoCo techniques include motion prevention, and marker-less and marker-
based motion tracking. Effects of motion on the MR image acquisition process and the
need to modify the MR imaging sequence for better implementation of motion correction
are also discussed.

2.1 Effect of motion in MRI

The MRI technique is a slow (at best ≈ 50 Hz frame rate for two-dimensional imag-
ing) and low resolution (4 MP per two dimensional image) imaging modality compared
to modern optical imaging methods (up to 8 MP and 3 × 104 Hz in optimal light
conditions) [40, 3]. Nevertheless, both techniques suffer from motion artefacts (Figure
2.1). MRI is susceptible to motion due to the long scan times necessary to acquire im-
ages compared to the time-scales of relevant physiological phenomena. For example, the
breathing cycle is repeated approximately every 3 s causing the motion of the chest and
so of the head, but to acquire a MRI image could take several minutes or more. Fur-
thermore, even collaborative subjects struggle to remain still and control motion during
longer scan sessions, while non-collaborative subjects may perform unpredictable motion
even during short scans.

Motion can be involuntary (such as the muscular contraction of the heart and di-
aphragm) or voluntary. In both cases, motion may lead to corruption of the image and
show motion artefacts (e.g. ghosting, blurring) and in the worst case scenario can result
in non-diagnostic images or false quantitative results in clinical and scientific studies.
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Figure 2.1: Example of motion artefacts in co-operative and non co-operative subjects. These pictures
illustrate artefacts due to motion during MRI scans by making an analogy with optical methods.
While images a,c show all the anatomical parts of the subject of the picture, images b and d show
that in the presence of motion, images can show multiple versions of an anatomical structure (two
beaks), not record a structure at all (wings are missing) or resolution loss due to blurring (top of the
head). [Duck pictures made by Federico Venturi, University of Nottingham - The duck was well fed
to assure no complaint about the pictures being taken]

Figure 2.2: Motion Categories [3]. In general, it is relevant to evaluate the spatial resolution in relation
to the amount of motion occurring during a given time period to evaluate the effect of that motion.
The type of motion can be categorised based on the transformation (rigid, if spatial relationships
between points are maintained, or non-rigid if they are not); occurrence (if motion occurs between
acquisitions of volumes, inter-image, between excitation pulses within a volume, inter-scan, or during
a signal acquisition and signal excitation, intra-scan ); timing of the motion (random, quasi-periodic,
periodic). It is called in-plane motion the type of motion that happens within the excited slice plane,
while the motion happens perpendicular to the slice is called through-plane motion motion.
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Reducing scan times by using faster imaging sequence reduces the motion artefacts, but
this approach has limitations in terms of resolution and image quality. Motion is a prac-
tical problem that can lead to incorrect or false diagnosis and the need to repeat the
scan, hence imposing additional costs on health systems (Figure 2.3) [41, 42].

A study in 2015 estimated an increased cost of 600 US dollars per hour of scanning
due to motion. The study involved patients across medical evaluation programmes and
emergency departments. The MR examination was repeated in the 20% of the cases (on
average [41]). This leads to increased stress for the patient and additional challenges
for radiographers, as the duration of the examination becomes longer or it is necessary
to repeat scans in a additional sessions. It also leads to an increase in the cost of the
technique (on the order of magnitude of billions of dollars per year) and to a greater
impact of the technique on the environment.

Figure 2.3: Estimating the increased costs of MRI due to motion-induced image corruption. An
evaluation of the cost increase of the MRI technique in the clinical environment has been found to
be 600 US dollars per hour of scanning, in a study involving both in-patients and patients admitted
to the emergency department that were in need of a diagnosis on neck and head (brain) body parts
(1.5 T scanner)[41]. Images were evaluated by radiographers as diagnostic (blue) or non diagnostic
(orange). In most cases, motion artifacts were not/barely detectable or noticeable and examinations
remained diagnostic in quality, while on average 20% of MR examinations were marginal in diagnostic
quality and were repeated.

A model-based retrospective study (not yet prospectively validated) has been con-
ducted in 2020, with assumptions on the daily use of the scanner and financial costs
to consider. Patient categories of the study were targeted among those considered the
most challenging. The study involved PET/MRI examinations on patients affected by
dementia (76%) and paediatrics patients (24%) and showed that the need for repeating
the scan is common in paediatric patients. The benefits of the use of motion correction
techniques are to reduce the use of anaesthesia and the associated risks of side effects,
and reducing financial costs.
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Motion correction in magnetic resonance imaging is consequently an important re-
search field which has a long history. Few methods for motion correction have entered
clinical routine, but a number of approaches have the potential for broader application
[1].

2.1.1 Limit the effect of motion in MRI.

There are a series of factors to consider in order to reduce the effect of motion in MRI.

Common standard clinical practices aiming for motion prevention have been estab-
lished over the years. Informing the patient on the MRI procedure affects the extent of
motion recorded during the procedure. The effect of reducing motion artefacts by pro-
viding a pamphlet, describing the procedure and visually showing and emphasising the
importance of staying still, has been proven[43]. The practice to provide exhaustive in-
formation on the procedure also reduced anxiety related to the MRI examination and so
reduced motion artefacts [44]. The immediate call of the radiologists would also prevent
to complete study that would need to be repeated [45]. Respiratory or cardiac gating
can provide external triggers to the MR image acquisition and lead to improvements in
the contrast and spatial resolution of the image. Breath-holding and padding the body
part can be used to reduce movements, but in extraordinary cases sedation or anesthesia
may be necessary (this comes with other risks).

The MRI sequence length affects patient comfort. This often leads to increased mo-
tion related artefacts as patient discomfort get worse with time. In general, the longer
the examination is, the harder it is for the patient to hold still (even for co-operative
subjects). A good planning of where the MRI sequence falls in the overall scan time can
then reduce motion artefacts. Reducing the scanning time by using faster scanning se-
quences can also reduce motion artefacts, but may lead to reduced spatial resolution and
signal-to-noise-ratio (SNR). Also, suspending data acquisition during periods of head
motion can help to control motion artefact levels [46]. Tracking the head position al-
lows scanning to be divided over several sessions (up to a total of 7 hours in one case [47]).

Another important factor is to consider the inherent motion sensitivity of the se-
quence, which might depend on phase encode ordering, flow compensation, and the
presence of non-motion related artefacts (e.g. fat/water shift). Motion robust image
acquisition sequences may also be used.

Finally, based on the clinical purpose of the scan, a certain level of motion artefacts
can be tolerated, but other scans may need higher image quality. For example, higher
quality may be required to image small body parts having weak contrast.
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Nevertheless, it may be necessary to to repeat the scan if it is not possible to correct
the motion.

Figure 2.4: High resolution MR image. High resolution MR imaging is achievable with 7T scanners.
Figures show (a) ex-vivo and (b) in vivo anatomical brain images. Isotropic resolution, scanning
sequence and scan time were (a) 100 µm, FLASH (flip angles varying between 15 and 30 degrees in
step of 5 degrees, each steps takes 25 hours) and 100 hours [48] (b) 350 µm, GRE and 2 hours [49]
(total acquisition time 42 mins). In-vivo scans benefit from the use of an optical tracking device that
allows tracking of motion and consequently the correction of motion artefacts [47].

2.1.2 A brief history of MoCo techniques.

Artefacts in MRI due to head motion are still an unsolved problem after 30 years of
brain imaging [50]. The first motion correction technique was developed for abdominal
imaging [51]. It was based on scaling the object by updating the phase encode gradient
strength during a scan. The actual prospective motion correction name was used for the
first time ten years later [52]. The next step was to compensate the acquisition for respi-
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ratory motion during a free-breathing acquisition [53]. Then, an external tracking system
to detect head motion was used for real time correction in brain imaging [54, 55]. This
system was independent from the MR sequence used and it emerged that six-degrees-of-
freedom correction is necessary for brain imaging. A further step was the use of small
RF coils as the basis of a tracking method [56]. Scanner geometry was updated based on
subject motion, identified by locating three RF coils rigidly assembled and coupled with
the skull. The first image-based motion correction technique was developed for brain
image correction during fMRI [57]. In 2002, the 3D spherical navigator echo sequence
was used to correct head motion up to 1 mm translations and 0.2◦ rotations. A prospec-
tive rigid-body motion correction in all six-degrees-of-freedom using an external optical
camera was then successfully implemented [8] in a 3T scanner. The cross-calibration
of the optical system required 30 minutes and achieved an accuracy below 1 mm, 1 ◦.
Head motion up to 10 mm translations and 8◦ rotations, that represented the maximum
range of motion achievable in the restricted space inside the head coil, were successfully
corrected. Prospective motion correction with a motion rejecting threshold of 0.3 mm
and 0.3◦ was also tested. In 2011, an optical marker-less motion correction technique
[58] was successfully used in a Siemens mMR Biograph hybrid PET/MRI scanner (3 T).
In 2014, a brain MR image with isotropic resolution lower than 14 µm was achieved by
weighting the k-space acquisition to enhance the centre of the k-space [59] instead of
implementing a motion correction technique. Between 2015 and 2019, an MR image of
micro-structural anatomy of human brain using 7 T MRI scanner in an ex-vivo study
[48] and in-vivo study [47, 49] was visualized (Figure 2.4). A post-mortem, motion-free
study achieved up to 100µm isotropic resolution as time constraints (up to 100 hours)
and motion are not limiting the data acquisition. In-vivo brain studies necessitate the
use of MoCo techniques to achieve the same order of magnitude of resolution. In 2015,
400 µm [47] resolution was achieved in a non-consecutive 7 hour scan using optical ex-
ternal device-driven PMC. In 2016, a 350 µm resolution has been achieved in 2 hours
scan time (subdivided in 2 sessions)[49] using the fatNav PMC technique. In 2018, a
prospective motion correction technique was applied in a 7T Philips Scanner using an
external tracking device [20] and integrating the B0 map information to perform the
correction. Recently, improvements in NMR field probe design [4] have allowed these
probes to be used as head-mounted markers, specifically by placing three NMR probes
on a pair of plastic glasses [60]. In 2019, the same research group upgraded the method
by using two sets of NMR field probes. The extra set of NMR probes was fixed in the
scanner’s reference frame in order to evaluate the displacement of the marker-probes at-
tached to the head and to reach the full accuracy allowed by this technique (10−30 µm)
in a rest condition (3 mm and 3◦ of translation and rotation). Further and more recent
techniques involve the use of deep learning and machine learning [61, 62]: these will be
described later in this chapter.
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2.2 Motion Correction (MoCo)

Figure 2.5: Motion correction. Diffusion Weighted Image (DWI) brain MR image (a) uncorrected,
(b) corrected only for translations and (c) corrected for both rotation and translation [63] using
Navigator technique during the image acquisition. Diffusion encoding gradient pulses were applied
in the left/right direction (phase encode direction in the sequence used). Navigator phase corrections
were able to remove ghosting artefacts, clearly visible in the non-corrected and partially corrected
MR images. Image (c) results free of bulk motion artefacts.

The idea of Motion Correction is to correct the k-space data based on the pose of
the patient. Pose is measured by evaluating the motion parameters, translation (T ) and
rotation (R) around the 3D axes ([Tx Ty Tz Rx Ry Rz]).

To quantify the rigid body motion of the patient, the body centred coordinate sys-
tem (that moves with the patient) and the scanner frame coordinate system (set by the
read-out, phase encode, slice select gradient directions) are defined [63]. Unit vectors
of the spaces are [X̂, Ŷ , Ẑ] and [x̂, ŷ, ẑ] respectively. At the beginning, the origins of
the reference frames coincide: [X0, Y0, Z0] = [x0, z0, z0]. Any point in the space can be

specified in the two reference frames: ~R = XX̂+Y Ŷ +ZẐ, ~r = xx̂+yŷ+zẑ, related by:
~R = (X0X̂+Y0Ŷ +Z0Ẑ)+~r. The equation in six parameters (translations and rotations
around x, y, z axes) that describes the rigid body motion can be derived by considering
a small displacement in patient position. A change in position of the patient can be

described by a translation (~R0(t)) followed by a rotation ( ~θ(t)) of the body centred co-

ordinate system (~R) with respect to the scanner frame (~r): ~R(t) = ~R0(t) + ~θ(t)×~r. The

initial position is ~R0 = [X0, Y0, Z0] = [x0, z0, z0] as initially the two systems of reference

coincide. The rotation vector ~θ = [θx, θy, θz] rad. Here θx represents rotation around
the anterior/posterior axis, here θy represents rotation around the left/right axis, here
θz represents rotation around the head/feet axis. As the coordinates of the patient are
fixed in the body frame, ~r is time-invariant. The transverse magnetisation (MR signal)
is affected by both translation and rotation as it is recorded in the gradient reference
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frame. Translations produce 0th order phase errors. Rotations produce 1st order phase
errors.

The effects in the k-space of motion in the real space is described by Fourier theo-
rems. The effect of translation is to produce a phase change in k-space. Multiplying
each line in the k-space by an appropriate spatially varying phase corrects the effect of
translation. Rotations produce rotations of k-space lines. To correct them, it is sufficient
to rotate each line in k-space. Figure 2.5 shows a motion-corrupted image (left) and the
progressive reduction of artefacts (ghosting, blurring) when the k-space lines were cor-
rected for translation only (center) and for both rotations and translation (right).

Effects of translation on k-space data. Using the Fourier shift theorem it is possible
to explain the effect of sample translation while the k-space is scanned. The theorem
states that: shifting a object in the real space (f) by amount Tv, produces a multiplication
by eiπ(TvKv) in the k-space (F ). For example, for translations Tx, Ty in 2D xy-plane:

f(x, y)→ F (kx, ky) (2.1)[
Tx
Ty

]
=

[
x− x0

y − y0

]
→ eiπ(Txkx+Tyky)

[
kx
ky

]
(2.2)

Effect of rotational movements on k-space data. Using the Fourier rotation theo-
rem it is possible to explain the effect of sample rotation while the k-space is scanned [64].
The theorem states that: a rotation θ of the object in the real space (f), will produce
a rotation of the same amount in the k-space (F ). For example, for counterclockwise
rotation (RV ) in 2D xy-plane:

f(x, y)→ F (kx, ky) (2.3)

RV =

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
→
[
cosθ −sinθ
sinθ cosθ

] [
kx
ky

]
(2.4)

Considering the situation where the patient rotates their head halfway through an MR
scan of the brain. The pre-rotation and post-rotation parts of the scan data will now not
align. To correct the image, it would be sufficient to re-align the rotated k-space lines
(however this may lead to missed or double sampled k-space lines). The same theorem
can be applied in 3D space.

Tracking data quality: assessment parameters. The quality of tracking data is
defined by three parameters [50]:

1. Precision: The precision describes the level of jitter or the level of noise.
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2. Accuracy: The accuracy describes the discrepancy between the true pose and the
measured pose.

3. Latency: The latency is the delay between the measurement and arrival of the data
on the computer or, in prospective motion correction, on the scanner. Latency is
due to the physical transmission of the data and the analysis data method used to
reconstruct the pose. It depends also on the magnitude of the subject motion.

The required accuracy of the motion monitoring is linked to the resolution of the image.

2.2.1 MoCo techniques

Figure 2.6: Tracking System. On the left, the tracking systems are divided according to the physics
phenomena used and the precision of the measurement, interaction with the patient and the depen-
dence of the MR sequence. On the right, the plot correlates the convenience and comfort of the
marker to the level of brain-skull-marker coupling. The best coupling with the skull corresponds to
the least comfortable solution for the patient and vice versa. [50].

To address specific motion related artefacts, it is necessary to evaluate the motion
during the MRI scan. The motion correction process can be divided into two main
blocks. The first involves detection of the motion. The second involves the correction of
the motion to eliminate artefacts from the images.

Motion measurement techniques for brain imaging in MRI are generally based on
the assumption of rigid body motion - i.e. that the brain moves in coherence with the
skull. This rigid body motion can be described by 6 degrees of freedom (3 rotations and
3 translations). Pulsatile motion of the brain [65, 66] has been discussed as a residual
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source of non-rigid-body motion, but as long as the skull is closed, the incompressibility
of the brain and cerebral spinal fluid (CSF) limits the magnitude of this type of motion.
For example, phase contrast MR methods have been used to determine brain pulsation
to be on the order of 100 µm and even less in the cortex. Hence, assuming rigid body
motion has been a successful strategy in correcting most motion artefacts in MRI of the
brain, where the typical spatial resolution is ≥ 100 µm

Motion detection techniques may require imaging sequence modifications to be made.
This is definitely the case for methods that estimate the motion from MRI measurements
(self-navigation), and can be the case with other external measurements that interact
with the image data acquisition (navigator). Some motion measurement techniques may
require additional hardware that needs to be integrated into the scanner (external sensor
based) or specific software (data-driven estimator).

2.2.2 Prospective MoCo (PMC) and retrospective MoCo (RMC)

Image data correction based on measured head motion can be applied in real time,
to prevent artefacts, or in post-processing, to correct them. These methods are called
prospective motion correction (PMC) and retrospective motion correction (RMC), re-
spectively (Figure 2.7).

PMC involves tracking the subject motion and updating the image volume during
the acquisition based on the motion measurement through adjustment of the gradient
and RF pulses . It adapts the scanner geometry periodically in order that the region of
interest (ROI) of the scan moves in the scanner’s frame of reference in such a way that
its position remains fixed with respect to the subject. Adjusting the imaging geometry
to track the movements of the object produces ’clean’ k-space data that allows standard
image reconstruction. Typical times needed for the update are on the order of magnitude
of tens of milliseconds. Errors in PMC can arise due to inaccuracy of the motion mea-
surements, incorrect calculation of image geometry changes and any significant latency
in the adjustment of the scanner geometry relative to the motion measurement.

RMC Retrospective motion correction involves correcting the raw (k-space informa-
tion) and/or image data after the acquisition. Knowledge of the object position at each
time-point allows the k-space data to be manipulated to account for positional changes
during signal encoding.

PMC or RMC have different pros and cons. PMC provides more flexibility than ret-
rospective motion correction. The most important advantage of the real time correction
is that the image is ready immediately. Disadvantages of PMC include the effect of the
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Figure 2.7: Motion correction techniques. Prospective motion correction techniques aim to prevent
image artefacts due to movement of the head by updating the scanner coordinates during image
acquisition. This approach often requires additional hardware / software. Retrospective techniques
aim to reduce image artefacts due to the movement of the patient, by correcting k-space information
after the acquisition. They do not necessarily require additional equipment, but additional time is
needed for post processing.

motion correction cannot be easily reverse to recover data as it would have been acquired
in the absence of MoCo. Combined solutions have been proposed to improve results in
reducing artefacts.

2.2.3 Marker-based MoCo techniques

External devices have been employed in both research and clinical settings to provide
effective motion compensation strategies. A simple categorisation of the different marker
techniques is shown in Figure 2.6. Their applicability is limited by the comfort of the
patient mainly and by the accuracy of the results that they produce. For example, while a
solution that involves coupling the marker to the skin is generally the most comfortable,
the skin isn’t rigidly coupled with the skull, which makes the marker vulnerable to
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inaccuracies due to changes in position resulting from facial movement.

Attaching markers to spectacles/glasses. A set-up involving attachment of mark-
ers to face glasses has been successfully used in several marker-based methods [67, 4].
Glasses can be worn in the scanner by most subjects and they are quite robust to skin
movement (e.g. changes in facial expression).

Wired marker systems.

• Traditional MR-based marker systems [68, 69] include RF-coil-based systems con-
nected to the MRI scanner via traditional coaxial cables. These can be in the form
of a solenoidal RF coil containing an MR-visible spherical sample (water) [70].
The water sphere is then the point that will be tracked by 3 orthogonal non-slice-
selective RF pulses during the MRI sequence. The use of 3 markers integrated in
a headband allows the 6 degrees of freedom of head motion to be tracked.

• NMR field probes based system. NMR field probes have been used as head-mounted
markers by placing three NMR probes on a pair of plastic glasses [60] and an extra
set of NMR probes was fixed in the scanner reference frame in order to evaluate
the displacement of the marker-probes. The main advantage of using NMR field
probes is to exploit the same phenomena of the MR imaging technique and so
to match the measurement of the position of the head (probes) simultaneously to
the MR sequence. The NMR field probes method works less well than the optical
based tracking method [5], but it is more comfortable.

Wireless marker systems. The aim is to remove all mechanical connections between
the markers and the MRI scanner to improve patient safety, to simplify the use and set-up
for both patient and scanner operator.

• Optical tracking system. External optical tracking methods have been proposed
in many different forms. The necessary components are an optical camera that
detects one or more markers. The main advantage of this approach is that the
motion monitoring method does not directly interfere with the imaging process
and also allows positional updates at high frame rates. However, it is crucial to
rigidly couple the marker(s) to the subject. Examples are external to the bore
system [8], MPT tracking systems [5] and self-encoded markers [71, 72]. The main
disadvantages of these techniques include the requirement for line-of-sight access
from camera to marker, which can be a challenge in the MR scanner environment.

• Gravity based system. VectOrient [73] uses a magnetometer to measure the orien-
tation of the B0 field (pointing out of the scanner) and gravity (pointing vertically
down). Orientation estimation exploits the fact that fields are orthogonal to solve
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the 3 degrees of freedom of the rotations only. Sensors are all encapsulated along
with a micro controller mounted on the patient forehead. Evolution of this marker
has lead to the development of WRAD [74] system that also measures the 3 degrees
of freedom due to translation thanks to a pick-up coils which measure the gradient
field. The device doesn’t need to be individually calibrated for each use and frame
rates up to 1 Hz are achievable.

Detecting the position of the MPT marker. In this dissertation, optical motion
tracking based on a single in-bore camera with the single Moire Phase Tracking (MPT)
marker [47] has been used. The system is based on an interferographic read-out and
thus delivers accurate and fast motion information. This technique applied to brain
imaging relies on a customised mouthpiece that is rigidly fixed to the teeth. This avoids
the problem of head skin-shift due to changes in facial expression, but it needs extra
preparation time involving both the subject and the operator. The marker position is
obtained by integrated software that is applied to the optical image of the marker. The
MPT optical camera has been used in this dissertation. It was fixed to the inside of the
scanner bore and then calibrated using cross-calibration method [1] in order to identify
the geometrical relationship between the frames of reference used by the scanner and the
optical camera. The optical marker is rigidly coupled to the skull via a dental mould.
Custom bite bars were made for each subject using thermal-setting dental plastic. On
the top of dental arcade there is a plane extension to hold the holographic marker. Both
of those operations required extra preparation time.
For solutions with more than 1 marker, the correspondence problem1 need to be solved
[69]. This problem in tackled by acquiring positions of the markers in orthogonal pro-
jections. Motion correction relies on knowing the 6- degrees of freedom transform that is
needed to re-align the positions of markers in two consecutive acquisitions. Considering
markers supported by glasses-like structures [70, 67]. In general, the markers are posi-
tioned in order to maximise the spatial separation along three orthogonal projections in
spatial directions. Orthogonal projections are obtained by modifying the MRI sequence.
In the case of wired markers, peaks that correspond to different markers are easily iden-
tified as each marker is connected to its own dedicated receiver channel. In the case of
wireless markers, it is necessary to incorporate the markers at known relative locations
within the glasses frame in a way that does not allow peaks to overlap or interchange
when the head moves (there is then a limit on the range of movements that can be tol-
erated).
The correspondence problem is not a problem in the case of NMR field probe markers
[60] or in the active magnetic marker system simulated in this dissertation. In the first

1Correspondence problem. Considering an image1 formed by 3 dots. If the image rotates/translates
the 3 dots will lie at new position in the space (image 2). To find which of the 3 dots in the image1
corresponds to the dots in the image 2 is called the correspondence problem.

49



case, the position of the NMR probe-markers is found based on their relative position
compared to a static set of NMR field probes. In the second case, machine learning
techniques and a physical model of the system will lead to the solution, as described in
Chapter 6.

Cross-calibration. Marker-based optical systems for motion monitoring in MRI are
subject to a further challenge, as the position of the marker is in general measured in
the camera’s coordinate system of reference (rc), while the imaging is performed in the
scanner’s coordinate system (rs). The process that aims to find the geometrical trans-
formation needed to convert measurements from the camera’s frame of reference to the
scanner’s frame of reference (Tc→s) is called cross-calibration: rs = Tc→src. Traditionally,
this is done by acquiring concurrent measurements of the positions of the markers and
a high resolution image of a structured phantom to which the marker is attached. The
procedure is repeated until a sufficient number of positions and images are acquired (up
to 10) to solve the system of equations [20].

The process, if performed manually, may take up to 1 hour and needs an investigator
to stay supine in the scanner bore in order to move the phantom. Alternatively, the
use of cross-calibration tools can allow the calibration to be performed in tens of sec-
onds. One example is to use the optical marker and three wireless markers [9] that can
be tracked in both the camera and scanner’s coordinate systems. If the optical marker
and MR markers are concurrently tracked, thousands of measurements are available in
a short time. This allows the transformation matrix for the cross-calibration of the
optical system to be found in 10s of seconds. Substantial improvements in calibrating
the MPT camera system [10] have been achieved through the development of a remote
controlled system that moves both the water-based phantom and the marker in the bore.

2.2.4 Markerless based MoCo techniques

The great advantages of this approach compared to the marker-based techniques are
the increment of the comfort of the patient and that the motion is measured in the
scanner’s frame of reference and so there is no need to calibrate the system.

Examples of this approach include:

• Navigator Echo techniques dynamically track the anatomic motion thanks to addi-
tional RF pulses (usually spin echo - SE - or gradient echo -GRE). It uses a scout
image to describe a ”pencil beam” whose echoes is used to reconstruct the mo-
tion and to trigger the scan acquisition at the same point in time of the breathing
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cycle (as can also be done by the use of respiratory bellows). PROPELLER [75]
(Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction)
2 developed in the nineties as a motion reduction technique. The idea is to ac-
quire small k-space bands (called blades) rotating around the centre of k-space.
From the overlapping centre positions, low resolution images allow estimation of
in-plane motion that can be considered in the reconstruction. However, the effi-
ciency is lower than Cartesian sampling due to the redundant acquisition of many
samples.

• k-space navigator techniques. The relevant motion information can be extracted
from different k-space trajectories (sNAv) or from the un-encoded k-space center
as in the case of FID (water signal)[76]. The sNav (Spherical navigator) [7, 77]
technique measures rigid body motion parameters by sampling a spherical shell in
k-space. Distributed and incoherent sample orders for reconstruction deblurring
using encoding redundancy (DISORDER) [78] extrapolates motion information by
a random sampling of the k-space line. Motion Elimination in Radial acquisition
Leveraging Interleaved Navigators (MERLIN) [79] is a silent, motion insensitive,
MRI technique that uses self-navigated zero echo time (ZTE) [80] imaging to correct
image for rigid body motion.

• Image phase navigators involve repeatedly acquiring low resolution slices or entire
volumes for motion estimation in addition to the main image sequence (water sig-
nal). PROMO [81] exploits three-orthogonal 2D spiral navigator sequences and a
flexible image-based tracking method. Reconstruction is based on the extended
Kalman filter algorithm applied to online motion measurement. Navigator meth-
ods require additional scan time and may interfere with tissue magnetization as
the water signal is used for navigation. Thus, they must be incorporated wisely
into sequences and different solutions are required for different sequence. This is
partially addressed using the fat navigator approach. FatNav uses signal from the
fat layer between the skull and the skin only and exploits this signal to determine
the head position [82, 83]. Combined methods, such as combining PMC (FatNav)
and RMC, have demonstrated that it is possible to correct data for small ranges
of motion (root mean square of the motion: 1.08 mm, 0.34◦) [82].

• Data driven correction algorithms are able to extrapolate motion information from
data based on a given motion model. The algorithm is optimized and given an
image quality metric to estimate the motion model parameters and correct the
image at the same time. This is a high dimensional problem and computationally
very demanding. More recent methods have exploited higher computing power

2Vendors have their own variations of PROPELLER named: Philips (MulitVane), Siemens (BLADE),
GE (PROPELLER), Hitachi (RADAR), and Canon (JET).
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and apply more sophisticated motion model. One of them is presented in this
dissertation.

The pilot-tone [84] technique for 7T scanner has the potential to extrapolate motion
information from the perturbation of a continuous additional RF signal sent in
the scanner bore. It needs to be calibrated by an additional technique (such as
DISORDER [78]).

• Deep learning based methods are based on training the method on data that have
been artificially corrupted. The problem has been approached as an image-to-image
translation problem using a conditional generative adversarial network to predict
artefact-free brain images [85] and a [86] generative adversarial network to improved
image quality compared to the motion-corrupted images. The main problem with
these approach is that the network may create additional anatomical structure or
remove area on the picture if not appropriately trained. The TArgeted Motion
Estimation and Reduction (TAMER) method [87] predicts motion parameters by
retrospective alignment of the 3D MRI volumes.

• Infrared optical-based method. The Tracoline solution (https://tracinnovations.
com/markerless-technology/) is a motion tracker device based on computer vi-
sion technology. A vision probe is installed in the MR head coil to continuously
scan the head of the subject. A cloud of points is identified based on face features
and used to predict motion in real time. This solution does not interfere with the
MR imaging process, and does not interact with the subject [88].

2.2.5 Benefits of applying motion correction techniques in MRI

Motion artefacts (such as blurring and ghosting) in MRI mainly affect techniques with
intrinsically low signal to noise ratio (SNR), while high resolution and long scan times
exacerbate the level of artefacts. Common methods for motion prevention in clinical
environments are positioning the patient in a comfortable position (e.g. using cushions
and padding), instructing and reminding the patient of the importance of remaining still
during the acquisition of the data. Respiratory gating and skip-and-redo strategies [89]
also help to ameliorate the effect of motion on the data. Reducing the MRI acquisition
time can be achieved by using fast imaging techniques and require finding a good balance
between the quality of the image needed (SNR) and scanning time. Non-linear k-space
sampling trajectories may be less affected by motion, but the regridding process can
introduce blurring artefacts. PMC techniques may be used during the acquisition. MR
data pre-processing involves the use of tracking data to re-align k-space data (RMC).
This section reports examples in the literature of issues due to motion affecting several
diferent MR techniques.
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QSM The quantitative susceptibility mapping (QSM) technique allows in-vivo mea-
surement of the magnetic susceptibility of tissues[90, 91] by exploiting the information
in the phase of the MR signal. QSM is also used to identify pathophysiological suscep-
tibility changes in biomarkers (such as iron and calcium) [92, 93]. The main challenge
involved in applying the QSM method is to solve the susceptibility-magnetic field inverse
problem. The convolution between the volume susceptibility distribution (χ) and the
dipole kernel (d) represents the local (position r) induced magnetic field (B) along the
bulk magnetic field (B0): B = (χ

⊗
d). In the frequency domain, convolution is rep-

resented by a point wise multiplication making the inversion appear trivial. However,
the dipole kernel, represents the magnetic field as a local dipole (B ∝ r−3) and so has a
singularity at the origin in the space where the inverse problem is solved purely with al-
gebraic inversion[92]. Several computational methods have been developed to overcome
the singularity such as: Calculation Of Susceptibility through Multiple Orientation Sam-
pling (COSMOS [94]), Morphology Enabled Dipole Inversion (MEDI [95]), Thresholded
K-space Division (TKD [96]). QSM measurements benefit from the application of motion
correction techniques due to the long time needed to acquire phase data. For example,
PMC at 7T was successfully applied to a GRE sequence to achieve 33 µm isotropic res-
olution in QSM images [97].

Figure 2.8: Motion corruption due to discrete/continuous motion regime. The PCASL (Pseudo Con-
tinuous ASL) scanning sequence in a 3T scanner has been used to obtain CBF (Cerebral Fluid)
image in case of continuous motion (top row) and discrete motion (bottom row) [98]. Results using
two different PMC techniques have been compared. Difference images (labelled image minus control
image) in case of no corrections (second column) shows blurring on the front of the brain (where
maximum displacement occurred). Navigator-style corrections (third column) the residual blurring
is due to the lag of ≈ 4 s on updating the scanner geometry. Optical tracking system (last column)
provided motion-free MR images in both motion regimes (lag on updating the geometry ≈ 15 ms).
The Navigator approach was more comfortable for the patient, but the overall longer scan time (due
to the longer latency) would not be optimal in the clinical environment.
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ASL Arterial Spin Labelling (ASL) tracks tissue perfusion by using endogenous blood
water as a tracer. Perfusion measurements are obtained by subtracting a control image
(without the excited endogenous tracer). Bulk motion effects can be reduced by breath-
holding between acquisitions or adding background signal suppression gradients to the
pulse sequence [99]. MR techniques relying on subtraction of successive measurements,
such as Arterial Spin Labelling (ASL), are affected by motion artefacts as MR data cor-
ruption due to motion during the acquisition propagates in the subtraction phase (when
the image and the control images are subtracted). External optical tracking systems[98],
spiral-navigator [81] (Figure 2.8) and a combination of affine transformation [100] have
been proven to ameliorate motion artefacts in ASL images acquired using 3T scanners.

DWI Diffusion Weighted Imaging (DWI) aims to detect molecular motion of water.
The order of magnitude of this motion is 10 microns, so bulk motion of this scale in-
terferes with the measurements. Bulk motion directions and extents are random and
perturb differently each measurement. Motion disrupts the acquisition process as the
repetition time might be up to 10 s (roughly three breathing cycles), but it could be
handled by gating[101]. Most common approaches are to reduce patient motion, to use
less motion sensitive pulse sequences and to post-process the data. For non-complex
motion, examples, Pulsed Gradient Spin Echo (PGSE[102]) sequences can reveal motion
related phase-shifts of the imaging data by subtracting the information in phase of a
control navigator image acquired ahead of the DWI image (Figure 2.5).

fMRI Functional MRI (fMRI) aims to detect neural activity by measuring the change
in the MR signal due to changes in blood oxygenation and blood flow. Motion can
lead to misidentification of activated areas, because of the comparison of two MR im-
ages acquired at different time points, or inducing spatio-temporal structured noise [103].
Scanning sequences that are intrinsically low in SNR (such as BOLD-fMRI [104]) require
long scanning times to achieve a good measurement. Motion artefacts are likely to be
disruptive in long scanning sequences because subjecs tend to become restless. Motion
artefacts in fMRI, usually ≤ 2 mm and ≤ 1◦, can be interpreted as neuronal activation.
PMC over RMC, where motion parameters where measured using an optical device, have
been demonstrated to reduce the false positive outcome [104, 57].

Body motion MR imaging of the body presents additional challenges. The rigid body
motion model is not valid anymore as the internal organs in the abdominal cavity move
independently. Combining multiple approaches (such as respiratory gating, MR image
averaging, fat suppression and spatial pre-saturation [105, 106]) leads to a better sup-
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pression of motion artefacts. The use of drugs to prevent internal organ motility (as for
the digestive system) could be used.

Cardiac MRI (CMR) has been demonstrated to be a fundamental tool for accurate
diagnosis of cardiopathic patients, both for volumetric and functional assessments [107].
Respiratory motion compensation techniques (such as breath-holding and navigator-echo
gated sequences) are widely used[108].

Musculoskeletal (MSK) MRI benefits from the use of motion trackers. Out-of-bore
solutions (such as Digital Single Lens Reflexive camera, DSLR) have been demonstrated
to be a useful tool to capture the instant and the extent of motion [109] at 1.5 T. Recently
cutting edge development of printed-flexible [110], liquid-based [111], wearable [112] coil
designs is providing new solutions since the coil itself will be coupled with the body parts
under investigation and follows its movements.

MRS Magnetic Resonance Spectroscopy (MRS) benefits from the application of PMC
due to the intrinsic low SNR, which leads to a requirement for long acquisition scan
times in a homogenous B0 field. Marker based tracking methods (optical, NMR based
markers) and navigation-sequence method can achieve the submillimetre and sub degree
precision required to ameliorate motion artefacts in MRS experiments in paediatrics and
restless patients [113].

PET/MRI Positron Emission Tomography (PET) aims to map a radioactive tracker
that targets tissues metabolites and highlights their functionality. Anatomical informa-
tion is provided by an additional technique, such as CT or MRI. Ameliorating patient
motion in PET/MRI combined scanners requires the use of devices that are compatible
with both the techniques. PET compatibility requires placing the device out of sight
of the detector. MR compatibility requires that the magnetic field is not affected by
the presence of the non-magnetic device. IR marker-less devices have been successfully
used for PMC in paediatric PET/MRI studies [88] ameliorating translational motion
≤ 20 mm at 3 T (Figure 2.9).

2.3 Conclusion

In MRI, artefacts due to movements (such as ghosting or blurring) may compromise
image quality and lead to misinterpretation. The level of disruption can be related to the
intrinsic SNR of the imaging technique (e.g. fMRI or DWI have low SNR), duration of
the scan, objective of the scan (e.g. visualizing a small region) and strength of the bulk
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Figure 2.9: IR contact-less motion tracking system. 3D Fast low angle shot magnetic resonance imaging
(FLASH) scanning sequence was used to acquire MR image (left) and motion data (right) at rest (no
motion condition) and during repeatable motion pattern (motion condition) in paediatric subject in
3T PET/MRI combined scanner [88]. Motion data were acquired using an IR contact-less tracking
system (https://tracinnovations.com/markerless-technology/). The implementation of PMC
significantly reduces the motion-induced artefacts in MR image.

magnetic field. MRI performed with UHF scanners is more prone to motion artefact
[89]. UHF MRI can achieve submillimetre image resolutions. The cost is an increase in
motion sensitivity, also due to the long scan times required. Image quality is degraded by
the motion-induced voxel displacement. The results can appear similar to partial volume
effects, as voxel signal is partially assigned to a different voxel. As a results, contrast on
the edges (such as brain-skull edges, sinuses-tissue edges, GM-WM edges) is blurred[115].

Metrics for comparison of image quality (such as mean squared error, SNR, structural
similarity index) capture specific aspects and do not necessarily agree well with human
observers. Therefore, these metrics are good to be used to compare similar images with
different artefact levels, but need to be used with caution for image quality assessment of
single images. An absolute reference of image quality without a reference has not been
established yet. Approaches that exploit the use of 3D Convolutional Neural Networks
[116] to assess the level of motion-corruption in data have recently been proposed. Robust
automatic assessment of image quality remains an open issue. Images are usually assessed
by radiologists[45] and a scan would likely be repeated if it is evaluated as being non-
diagnostic. The need to repeat the scan affects the costs of the MRI delivery in the
clinical setting[41, 42].

The extent of head motion has been estimated [89] to be of the order of magnitude of
1 mm at rest condition, while intra-cranial brain pulsation has been evaluated as 0.1 mm
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Figure 2.10: Tracking system techniques. (a) Customised mouth piece rigidly coupled with the teeth
[8]. (b) External to the bore camera system [1]; (c) Infrared contactless (https://tracinnovations.
com) in bore solution; (d) In-bore optical Moiré Phase Tracking (MPT) tracking system [114]; (e)
Sequence based (FatNav) solution [82]; (f) NMR probes marker based tracking system [4]

order of magnitude, as brain-motion induced by the blood in-flow is restricted by the
incompressibility of the brain tissue and CSF (Cerebral Spinal Fluid). Respiration and
cardiac cycle gating can reduce the motion-induced artefacts in brain imaging. Chest
movement at normal breathing (rest) condition has been estimated to be of few cen-
timetres and it is often tracked (e.g. respiratory belt) to gate an MR imaging sequence.
Arterial pulsation and cardiac motion influences brain studies as the first influences the
blood flow and the second the motion [117]. Adjustments that help to limit head motion,
include the use of cushions, straps and giving clear instructions to the patient.

When restless patients are scanned, the aim is often to obtain an image even if it is
not the most accurate achievable with the clinical protocol. Restless patients may need
to be familiarized with the scanner and be reassured on the procedure before starting
the scanning [43]. A compromise between resolution and acquisition time in short image
protocols helps to reduce motion-artefacts by shortening the total acquisition time which
is particularly helpful with restless patients. Instructions on staying still are more effec-
tive when the patient is comfortably positioned in the scanner. The use of padding can
increase the level of comfort. Reminders to remain still during the scanning sequence
also help. Anaesthesia and or sedation is usually considered for difficult cases only.
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Correction of motion relies on an accurate evaluation of the phenomenon that has
corrupted the MR image and when it has occurred and the extent of the movement.
Additional artefacts must not be introduced by the tracking method. Motion could be
estimated from MR data, but a tracking sequence needs to be added to the imaging
sequence and might corrupt the image acquisition. External motion tracking does not
interfere with the imaging process, but might not be well-tolerated by all subjects[6].

Motion effects are reduced by applying the six-parameter (x, y, z axes rotations and
translations) rigid body transformation assuming that motion happens only between en-
tire volumes acquisition and linearly affects the image[118]. Motion might happen also
within the time the volume is acquired and affect slices of the same volume differently.
Motion might affect the image in a non-linear way. Currently, motion tracking and skip-
and-redo strategies are the most commonly used clinical practices. In-bore and out-bore
solutions are both available (Figure 2.10).

Head motion can be tackled in brain MR images by using Motion Corrections tech-
niques based on the rigid body model (considering the brain well coupled with the skull),
while motion of the body can not be considered as that of a rigid body in general. To
image body parts with large intrinsic motion (such as in cardiac, lung or gastro-intestinal
imaging) requires different strategies to freeze the motion (respiration gating, anaesthet-
ics, fast imaging sequence). Small lesions are clinically important, but can be difficult to
visualize[119]. Optimisation of CNR and compromising between image resolution and
scan time helps to detect them. Noise reduction strategies, such as motion correction,
can also usefully be applied. Accelerating imaging sequences using parallel imaging or
compressed sensing allows the scanning time to be decreased, and so reducing the total
scan time, but generally leads to a loss of SNR and may increase the motion sensitivity
of the sequence and lead to more complicated motion artefacts [bib:]. Linear sampling
of the k-space leads to acquisition of k-space lines that might be compromised by motion.
Alternative scanning k-space sampling patterns (such as radial or spiral acquisitions) are
designed to sample the centre of k-space (where most of the signal occurs) in a non-linear
way. Interpolation of the non-linear trajectory in the k-space grid may create blurring
artefacts [75].

Common practice in tracking head motion is to track a marker that it is rigidly cou-
pled with the skull (attached to the patient’s forehead or to a the teeth). One or more
optical camera(s) record the position of the marker and recorded motion parameters are
transformed into the scanner’s frame of reference. Extra hardware is required (marker(s),
camera(s)), and the need for line of sight access to the marker, plus additional software
makes the implementation challenging. Furthermore, extra time is usually required to
set-up the hardware, calibrate the system and instruct the patient. These solutions have
been widely adopted in the clinical setting since they are easy to implement and have a
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low associated cost.

Prospective Motion Correction (PMC) aims to prevent the acquisition of corrupted
k-space lines by adjusting the directions of the gradients (3D k-space grid) applied to
the head during the image acquisition process. There is an intrinsic delay on correcting
the image volume as it is not corrected till the movement is detected [8]. Retrospective
Motion Correction (RMC) techniques aim to retrospectively correct k-space data. RMC
do not correct through-plane motion [120]. RMC do not account for previous scan effects
on data such as magnetic field inhomogeneities and spin history effect[117].

In this thesis, the development of a new marker-less motion tracking technique at 7 T
with no need to modify the image sequence for its implementation is discussed (Chapter
3). This technique has been developed in research environment only by scanning healthy
collaborative subjects. The tracking has not been tested in correcting MR image.

2.3.1 Motion Correction studies

By comparing Motion Correction studies in the literature (such as [121], [5], [122]),
it is clear that a standard has not yet been established on performing MoCo studies
and, in general, the choice of the movements to perform are customised for the aim of
the experiment rather than to be representative of the clinical situation. The goal for
the future is to standardise the experiments in a way that they could be easy to com-
pare and more representative of the clinical environment. Motion paradigms should be
defined then to describe how the volunteer moves in the scanner by detailing the body
part in motion, type of motion, dynamic of motion, motion amplitude, and motion speed.

Types of motion include intentional motion, such as head shaking (left-right rotation,
also called “yaw” describing rotation around the Z-axis), head nodding (top-bottom ro-
tation, also called “pitch” usually describing rotation around physical axis X), figure of
eight (in plane rotation obtained by tracing out a figure of eight with the nose, it is
also called “roll”, usually describing rotation around physical axis Y), head movements
due to the physical movements of another part of the body (such as the wiggle of the
feet), and non-intentional motion (usually rest condition). During clinical practice, the
rest condition is the most common one, but intentional motion may also occur. Motion
Correction studies usually include and use intentional movements to test the motion
correction technique. In presence of unintentional motion, the use of a MoCo technique
does not have to disrupt the MR image.

Intentional and unintentional motion could be performed continuously or stepwise
during the acquisition. The range of the motion is subject-dependent and in general not
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repeatable (same subject in two different sessions may perform a different motion path at
different speed when the task was to repeat the same pattern as done before). To project
a video showing the pattern to follow to the subject may improve the reproducibility of
the motion pattern, in terms of extent and frequency (speed).

In this thesis, the subjects were asked to perform rest, head shaking, head nodding
and wiggling of the feet movements (Section 3.3). Subjects were instructed to move
ahead of the scan and reminded of the movement pattern when simultaneous motion-
magnetic field measurements were taken. The range of movements and frequency have
been retrospectively evaluated to test how they influence the data (Figure 5.16, Table
B.14).
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Chapter 3

Experimental set-up
characterisation

This chapter’s first aim is to describe and characterise the experimental set-ups used
to perform simultaneous measurements of head motion parameters and the extra-cranial
field changes produced by changes in head position as well as physiological signals [11,
20]. Extra-cranial magnetic field changes were evaluated using an MR-safe, in-bore, field
camera comprising a set of 16, NMR field probes. Simultaneous head motion parameters
were evaluated using an MR-safe in-bore optical device. A respiratory belt was used to
monitor respiration.

This procedure was performed on healthy adult subjects able to make controlled head
movements and to hold the mouthpiece necessary for the optical tracking system. Two
different NMR field probe holders have been custom-made (Section 3.1) and characterised
in terms of the influence of the material used to form the support, relative head-probe
positions and Signal to Noise Ratio (SNR). The measurements that were performed are
reported at the end of the chapter.

3.1 Experimental set-ups

The first set-up used for experiments is shown in Figure 3.1. It allows concurrent
measurements of changes in extra-cranial magnetic field and head pose. A schematic
diagram of the connections between the instruments is shown in Figure 3.2.

Sixteen NMR probes [33] were evenly distributed around the head using a custom-
built former in order to sample the extra-cranial magnetic field evenly. The NMR field
probe holder was designed to fit inside the Nova RF transmit head coil used on the 7T
scanner with the receiver RF coil array removed. The 16 probes are mounted in 4 rings,
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Figure 3.1: PVC holder. (a) A set of 16 NMR field probes (Skope Magnetic Resonance Technologies,
Zurich) was held in a set of (I) four coaxial plastic (PVC) rings around the head. The system is
designed to fit inside the Nova RF volume transmit head coil on a 7T Philips scanner with the
receiver coil removed (Figure 1.13). The probes are sited inside the plastic rings to limit sensitivity
to the magnetic field perturbations due to the PVC-air interface. (II) An optical, Moiré Phase
Tracking (MPT, Metria Innovation, USA) system has been used to measure head pose by tracking
an MPT marker attached to a dental mould. (b) In-bore position of the field probes during the
motion correction experiment.

the fifth ring provides structural integrity. Four probes are distributed with an angular
spacing of 90◦ in each ring. The oval-shaped rings are co-axial and connected by rods,
with the probe positions on each ring rotated by an angle of 45◦ with respect to the
neighbours. The internal measures are: minor axes equal to 190 mm and major axes 250
mm. These dimensions were chosen to keep the probes as close as possible to the head.
The distances between the probes and the head depends on the size of the subject’s head
(except close to the crown, where the head rests on the holder) and on the movements
performed.

The set-up was later improved (Figure 3.3) by using a custom-built cloth, NMR field
probe holder designed to fit between the NOVA transmit and receiver RF head coils, thus
allowing the 32-channel Nova receiver coil to be used for signal reception. The holder is
comprised of two pieces, which together cover the whole outer surface of the 32-channel
Nova receiver RF coil. The top-front part holds up to 15 probes covering the eyes and
forehead. A further 4 probes can be placed in the top-back support, positioned at the top
of the head at the level of the eyes in the foot-head direction. On the bottom part, up to
12 probes can be placed covering the back of the head. As the overall number of pockets
available is twice the number of available magnetic field probes, this set-up allows the
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Figure 3.2: Scheme of connection. The picture shows how the instruments are connected in the lab to
perform concurrent measurements. The TTL signals from the scanner need to be passed to both the
field camera and the optical camera in order to tag the logfiles for both measurements. The TTL
signal from the field camera is sent to the optical camera for the same purpose. An OR gate coupled
with a pulse-stretcher ensures that the TTL signals are picked up by both devices.

positions of the probes to be adapted based on the particular aim of the measurements.
This set up allows measurements to be made while scanning using the 32-channel

Nova receiver coil, which provides much greater sensitivity than reception using the
transmit birdcage coil. It also allows the magnetic field to be sampled at ad-hoc posi-
tions to better characterise field changes due to physiological fluctuations and changes
due to head movements. The probe holder was made from recycled materials.

For both of the set-ups described above, the MPT optical camera was fixed to the
inside of the scanner bore. It is necessary to perform a cross-calibration sequence [1] in
order to identify the geometrical relationship between the frames of reference used by
the scanner and the optical camera. The optical marker is rigidly coupled to the skull
via a dental mould. Custom bite bars were made for each subject using thermal-setting
dental plastic. On the top of dental arcade there is a planar extension which holds the
holographic MPT marker. We assumed that the system formed by the head and the
bite-bar can be modelled as rigid body.
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Figure 3.3: Cloth holder. (a) The NMR field probes were placed between the Nova transmit and the
receiver RF coils (Figure 1.13). The optical camera (MPT, Kineticor) was attached to the inside of
the magnet bore. The NMR field probes are held in place by elastic bands, while Velcro strips and
elastic bands were used to guide the cables in the holder. The positions of the probes are shown in
(b).

Physiological parameters were simultaneously measured using the scanner’s physio-
logical logging tools: respiratory bellows for respiration and a pulse oximeter worn on
the finger for monitoring the cardiac cycle.

The sampling frequencies varied for each instrument, taking values of 6.7 Hz, 80 Hz,
500 Hz for the magnetic field camera, optical camera and physiological logging tool.
Thus, signals were resampled at a common frequency in post-processing based on the
repetition time (TR) used for the field camera measurements. The extra-cranial magnetic
field was measured by the field camera and sampled every 150 ms (TR) with 1 nT of
accuracy. The head movements were recorded using the optical camera with ±0.001 mm
and 0.001 ◦ of accuracy for translations and rotations [20], respectively.

Probe positions in different set-ups

The probe positions used in the two different set-ups are shown in the same figure in
Figure 3.4. As the PVC support was designed to fit perfectly in between the transmit
and the receiver coil, the radial distance between the probes and the head does not differ
much (≤ 5 cm) except for probes 10, 11, 12, 13 in the PVC holder that were placed in
a smaller rings to follows the natural curve of the top of the head.
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Figure 3.4: Set-ups. The two set-ups shown in Chapter 3 are shown in the same figure to allow them
to be compared. Empty dots represent the probe positions used in the PVC set-up while the filled
dots represent the probe positions used with the cloth probe holder. The PVC rings used to hold
the probes in the PVC support are shown in grey. The shape of the holes at the level of the eyes on
the RF receiver head coil are also shown.

The spatial distribution of the probes differs significantly for the two set-ups. While
the PVC holder aims to sample evenly all around the head from the ears to the top of
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the head, the cloth support mainly samples the field in the area in front of the eyes.
Three probes were placed on the top of the head to sample the signal in the spherical
part of the head (as the top ring in the PVC support), and three probes were placed on
the back to sample the magnetic field changes due to chest movement. Those six probes
in the cloth support are not comparable with the position of the PVC support axially.
Probe 2 on the PVC support results in a similar radial and axial position compared to
the cluster of probes placed in the eyes area using the cloth support.

3.1.1 Colormap palettes for comparing magnetic field probe
positions

In order to practice on the use of neural network approach, a problem with less de-
gree of freedom compare to the regression between extra-cranial magnetic field and head
motion has been solved using neural network approach. A colormap has been created to
visually compare probe positions in different laboratory session. However, to represent
data in this dissertation it has not been used to be consistent with the representation
given by the magnetic field camera app.

The problem to solve is similar to that used to perform regression on motion data as
there are a set of 16 pairs of input (probe positions in x, y, z) and 3 outputs (colours in
RGB scale) whose values vary between 0 and 1. Considering the use fo the P space to
map the positions and the C space for mapping the RGB colors:

P = {(x, y, z)|x, y, z ∈ R ∨ [−0.1; +0.1]m}
C = {(r, g, b)|r, g, b ∈ R ∨ [0; 1]}

(3.1)

The regression involves finding a function that connects these spaces:

R3 × R+3 → f ∈ R3

f(x, y, z) 7−→ (R,G,B)

(3.2)

P = [x, y, z] ∈ R3 → C = [R,G,B] ∈ R3

Training Data set

The training data set was simulated based on real probe positions recorded in past
measurements. A total of 4 measurements of the same configuration (16 × (x, y, z))
has been matched with a specific color associated to each channel (probe) on Skope
software (16 × (R,G,B)). This scheme is used for each of the four probe positions
(4 × 16 = 64). Then, the data were repeated 10 times ([x, y, z]640×3 7−→ [R,G,B]640×3)
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and white Gaussian noise was added to perturb position and colours. White noise was
generated with a normal distribution, average zero and standard deviation of 0.001 (ten
times the accuracy of the measurements).

Neural Network architecture

Figure 3.5: Neural Network structure to predict probe-holder colormap

Figure 3.5 shows the architecture of the network. A two layer feed forward archi-
tecture with three input neurons (3 = [x, y, z]), 15 neurons in the first hidden layer,
12 neurons in the second hidden layer and 3 output neurons (3 = [R,G,B]) has been
chosen. The training data set comprised 1920 data point (640× 3), subdivided into 75%
Training, 15% Validation and 15% Test data using the divideblock() MatLab built-in
function that subdivides the data into consecutive blocks. The activation functions of
the first and second layers were the one step secant and the Levenberg-Marquardt [123]
algorithm was used for training.

Results

The best results from the mapping are shown in Figure 3.6 by assigning the colours
to 720 positions that s evenly span the space. Colours vary smoothly between probe
positions Different architectures of the network were tested. A Neural Network with
1 hidden layer of neurons was not stable and produced very different mappings across
different training runs. For a two hidden-layer network, combinations of different num-
bers of neurons in the first and second hidden layers where tested (12-12, 15-15, 15-12,
15-6, 12-6, 12-9), with no good results. Increasing the number of data used for the
training phase did not lead to improved results. Randomly dividing the data-set (using
dividerand()) also did not improve the results compared to dividing data in subsequent
blocks. The activation function chosen has a strong effect on the results and the one-step
secant function gave the best results. The output has to be 0 ≤ 1 to represents a RGB
triplette.
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Figure 3.6: Network data and results. From the left: original data, test data and results over 720
different positions. The colour of the test data-set matching that of the original data. Colour over
720 positions that span the internal surface of the Nova Head RF coil varying smoothly with positions.

3.2 Field probe supports characterization

Figure 3.7: FID - PVC. FIDs (Free Induction Decays) from NMR probes evaluated (a) with probes
mounted in the PVC support and (b) in a block of light foam using the calibration sequence (Figure
1.14). The proximity to air/PVC interfaces influences the T ?2 relaxation time of the 19F signals from
the probes. Probe 7 (dark purple line) was faulty at the time of the measurements. The other small
differences in magnetization values are due to tolerances in probe manufacture and differences in
position in the bore.
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Figure 3.8: FID - cloth. In order to use the custom probe holder, further testing was carried out. (a)
Free Induction Decays (FIDs) were acquired with the probes in the cloth holder using the calibration
sequence (Figure 1.14). Probe 3 was faulty and its signal has not been reported in the the plot. The
signal decay rates show that the cloth probe holder does not strongly affect the signals, with the all
curves being well fitted (b) by exponential functions, with decay rates similar to those found with
probes mounted in light foam (Figure 3.7).

The NMR field probes acquire raw signals (FIDs) at a fixed bandwidth of 1 MHz [39]
and used a fixed number of data points to perform the fit and to obtain the magnetic
field measurement. The time range (number of data points) used for the B-fit could
be adjusted: a value of 0.005 s was used for all the measurements acquired for this
dissertation. The NMR signal strength and T ∗2 decay define the accuracy of the field
measurements. The positions of the probes in the magnet bore can influence the rate of
signal decay. Probes should be placed in a holder that doesn’t interfere with the rate of
decay of the signal. Interference may arise from the interfaces between the material used
to build the probe holder and the surrounding air. In this section, the effect of different
materials has been characterized. A light foam holder (whose magnetic susceptibility
is similar to air) has been considered as the reference for other materials, PVC (whose
magnetic susceptibility is similar to water) and cotton.

The field camera uses measurements of 19F NMR signals from the probes whose decay
is well described by the expression:

M = M0e
(− t

T∗
2

)
ei(ωt+φ) (3.3)

where M represents the spin magnetization, M0 represents M at t = 0 s, t represents
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the time, ω the angular frequency off set, φ is the time-independent phase offset and T ∗2
represents the transverse relaxation time.

The exponential signal decays were well recorded using a square block of foam, the
PVC support and the cloth holder as a support for the probes. Figures 3.7 and 3.8 show
the absolute value of the complex MR signal measured for the different materials.

Data acquired with different holders were fitted using the exponential model provided
by MATLAB:

y = a · eb·x (3.4)

Comparing equations 3.3 and 3.4, the fit parameters gave the decay parameters values:

M0 = a; T2 = −1

b
(3.5)

The signal from each probe was fitted to Eq. 3.3 and the results (M0 and T ∗2 ) are
reported in Table 3.1.

The FIDs obtained with the probes mounted in the PVC support are not well fit-
ted by an exponential decay. This hypothesis is confirmed by the R2 values of the fits.
The curves are possibly better represented by a sinc() function which would explain the
bump obtained at the time of 0.02 s. However, this should not have greatly influenced
the SNR of the data as typically only the first 0.005 s of the signals are used by the
instrument’s built-in algorithm to calculate the magnetic field value. The investigation
was repeated for the cloth holder. The signal decays and fits are shown in Figure 3.8,
and the fitting parameters are reported in Table 3.1.

To conclude, the FIDs are well characterised by exponential decays in the case of
the cloth holder and the measured decay times are similar to those measured using the
foam holder. This is in contrast to measurements with the PVC holder where decays
are more sinc-like and apparent relaxation times are shorter. The difference results from
the presence of the PVC/air interfaces whose normals are along the field direction in the
PVC holder.

3.2.1 Signal to Noise Ratio (SNR) for different set-ups

The magnetic field camera background noise and signal to noise ratio were charac-
terized using the PVC support in order to sample the magnetic field evenly over the
relevant space. 2000 dynamics (TR = 150 ms) were acquired with the probes placed in
the isocentre of the scanner and the average values for each channel were then subtracted.
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PVC support Foam support Cloth support
M0 T∗2 [ms] R2 M0 T∗2 [ms] R2 M0 T∗2 [ms] R2

B1 0.13 12 0.97 0.13 38 1.00 0.16 36 0.99
B2 0.15 18 0.98 0.16 34 1.00 0.17 41 1.00
B3 0.12 21 0.98 0.15 31 1.00 − − −
B4 0.13 36 1.00 0.15 31 1.00 0.17 33 1.00
B5 0.13 25 0.99 0.15 27 1.00 0.17 34 0.99
B6 0.13 17 0.98 0.14 28 0.98 0.16 28 0.99
B7 − − − − − − 0.16 31 0.99
B8 0.13 11 0.97 0.13 31 1.00 0.16 36 0.99
B9 0.12 20 0.99 0.13 33 0.99 0.16 31 0.99
B10 0.13 14 0.98 0.12 27 1.00 0.15 32 0.99
B11 0.14 15 0.97 0.14 38 1.00 0.16 29 0.99
B12 0.15 23 0.98 0.16 32 1.00 0.17 34 0.99
B13 0.13 27 0.99 0.15 29 1.00 0.17 32 0.99
B14 0.14 12 0.97 0.14 31 0.99 0.17 32 1.00
B15 0.12 17 0.98 0.13 31 1.00 0.15 40 1.00
B16 0.13 19 0.98 0.14 33 0.99 0.17 29 0.99

Table 3.1: Decay parameters obtained by fitting to signals measured with the three different supports.
M0 and T2 are obtained from equation 3.5, R2 represents the goodness coefficient of determination
of the fit, RMSE represents the root mean squared error of the fitted data. Data were acquired on
different days. Probes 7/3 were malfunctioning when signals were measured from the PVC and foam
support/cloth supports.

No volunteer was in the scanner for the evaluation of the background noise. Figure 3.9
shows the Probability Density Function of the data obtained. The PDF characterize the
noise due to the sum of various sources, including electronics of the field camera and
field fluctuations due to the scanner system. The PDF curves have been fitted using
a Gaussian function. As expected, the noise of the NMR field probes is well fitted by
Gaussian distribution. Table 3.2 reports the parameters of the fit (standard deviation
σ and R2) along with the signal to noise ratio (SNR) of the probes. Differences in the
µ and σ are due to the different displacement of the probes in the bore and reflects the
small B0 differences around the isocentre. All the probes shows that the background
white noise should be of the order of magnitude of 10−8 T .

The SNR ratio has been evaluated by acquiring 2000 dynamics of magnetic field
changes when Subject 4 was in the scanner in a resting condition. The ratio between the
Root Mean Squared error (RMS) of the data recorded with, and without, the subject
present represents the SNR. SNR is influenced by the position of the probes relative to
the head and the head size and shape, and so it changes for each subject, and for different
head movements and probe positions. The case chosen here represented the lowest limit
of the SNR expected, as the chosen subject has the largest head-probe distances and
made the smallest head movements. Probes closer to the head (Figure 3.9) showed the
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Figure 3.9: Background noise evaluation. Plots shows the probability density functions (and the
Gaussian fit to them) of the noise recordings from the 16 channels of the magnetic field camera and
the probe position in the scanner. Differences in the peaks are due to the different positions in the
scanner. Statistical parameters are reported in Table 3.2.

highest SNR.

As the experimental data results were coherent over subjects, range of movements,
probe positions and scanner sessions, the evaluation of the noise was not then repeated
for other cases considered in this dissertation.
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PVC Gaussian Fit SNR
σ [µT] R2 SNR

P1 0.010 0.959 6
P2 0.012 0.966 4
P3 0.010 0.965 12
P4 0.011 0.954 10
P5 0.011 0.963 6
P6 0.013 0.933 3
P7 0.022 0.961 3
P8 0.012 0.959 7
P9 0.008 0.962 13
P10 0.021 0.977 12
P11 0.010 0.942 16
P12 0.009 0.971 17
P13 0.008 0.937 10
P14 0.012 0.977 7
P15 0.011 0.960 5
P16 0.010 0.973 5

Table 3.2: Gaussian Fit and SNR values for the NMR field probes shown in Figure 3.9. σ [µT] and R2

values have been rounded to three decimal places. Magnetic field probes changing time series was a
zero-average time series, so all the curves are centred on zero µ = 0 [µT ]. The standard deviation of
different probes results comparable.

The study of the background noise of the optical camera has been conducted in another
project [20] and so is not repeated in this dissertation. The results showed that the
optical measurements are influenced by the scanner vibration, but not on a level that
disrupts the measurements of head movements (≤ 0.001 mm or ◦) and, in the case of
long measurements, could be affected by thermal drift.

3.3 Experimental measurements

During the experiments, subjects performed a range of different head movements,
with and without concurrent imaging, in order to allow characterisation of the field
changes produced under different conditions (Figure 3.10). These are listed in order of
the extent of the movements (order of magnitude of data has been reported in brakets):
breath-holding at rest (∆B ≈ 50 nT, ≤ 1 mm, ≤ 1◦), normal breathing at rest
(∆B ≤ 0.5 µT, ≤ 3 mm, ≤ 3◦), small random movements of the head produced by
’wiggling’ of the feet (feet-wiggling) (∆B ≈ 0.5 µT, ≤ 5 mm, ≤ 5◦), head shaking
(∆B ≈ 1 µT, ≈ 10 mm, ≈ 10◦) and nodding (∆B ≈ 1 µT, ≤ 10 mm, ≤ 10◦) and
freestyle movements that include all the conditions mentioned previously executed in an
order chosen by the subject. Breath-holding and freestyle conditions have not been used
for data analysis.
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Figure 3.10: Concomitant measurements (PVC). The plots show examples of complete data-sets
recorded while Subject 6 undertook a series of different movements inside the 7T MR scanner: head
shaking, head nodding, wiggling the feet to produce small head movements and rest. The plots show
zero-mean data series of field perturbation variation at probe positions, head translation and rotations
time series. The order of magnitude of the magnetic field changes at the probe positions depends
on the extent of the head motion. Plots show that the magnetic field changes are dominated by the
effect of head movements for large head movements, while for small involuntary head movements the
physiological noise dominates the magnetic field signals at the probe positions.

Data are reported in the Appendix B. Experiments with the PVC support involved
Subjects 1,2,3 and 6 while with the cloth support Subjects 1,2,3,4 and 5 were studied
(subject numbers agree with Figure 4.1). The head motion type and number of dynamics
(TR = 150 ms) involved in each experiment are reported in Table 3.3.

Analysis of the pattern of variation of the field changes using PCA (Principal Compo-
nent Analysis) over the different probes, shows that the range of field variation depends
on the probe position and type of movement (Figure 3.11). Also, changes in the magnetic
field at the probe positions due to the chest expansion/contraction have been observed.
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Set-up Number of dynamics Subjects
Rest Head shaking Head nodding Feet-wiggling

PVC 1000 500 500 500 1,2,3,6
Cloth 5000 3000 3000 5000 1,2,3,4,5

Table 3.3: Description of the experiments. Experiments with the two set-ups involved different groups
of subjects (with 3 of them studied using both set-ups). Time (or dynamics) at which the measure-
ments with various head movement conditions were acquired varied between the experiments. As a
reference, 1000 dynamics acquired at 150 ms time repetition corresponds to 2.5 minutes of acquisi-
tion. Data were also acquired during a breath hold condition (100 dynamics), but not considered for
the analysis, as the number of dynamics was not enough to influence the results.

Figure 3.11: PCA. The figure shows sub-clusters of probes that characterise each movement condition
(a,b,c,d) over 50-s of acquisition. Sub-clusters (red and yellow dots) are obtained by performing a
Hierarchical Cluster Analysis in the space formed by the first two principal components obtained by
Principal Component Analysis (PCA) (Section 5.1.1).

3.4 Conclusion

Two NMR probe-holders have been developed, characterised and used: neither solu-
tion was commercially available and one has been fully designed and developed by myself
(Figure 8.1). Both the holder allowed valid measurements to be performed. The PVC-
based one (Figure 3.1) does not easily allow simultaneous imaging, but it samples the
extra cranial magnetic field evenly (Figure 3.10), while the Cloth-based one (Figure 3.3)
allows simultaneous imaging and gives more degrees of freedom for probe positioning.
This solution will be explored further in subsequent chapters. Example data acquired
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with this set-up are given in Figures 7.5 and 7.6.

The typical range of movements (Section 3.3) was limited by the available space be-
tween the head and the PVC support or the head and the helmet receiver coil array.

Each movement condition is characterized by a dominant direction of translation and
axis of rotation. The first two activities, rest and the head movement due to the wiggle of
the feet, represent small periodic or random movements, while periodic large voluntary
head movements produce large displacements transverse or parallel to the B0 field. Data
have been reported in section B.2. The magnitude of the field measured by each probe
was strongly influenced by its position relative to the head. For example, probes placed
on the back of the head are more sensitive to field changes due to chest movement in
respiration (Figure 3.10).

In the following chapter, magnetic field changes have been characterised further. The
use of simulations allows the experiment to be mimicked in a controlled environment by
superimposing sources of magnetic field changes observed (head involuntary/voluntary
movements, chest expansion/contraction, and electronic noise).
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Chapter 4

Mimic the experiment trough
synthetic simulations

This chapter describes the implementation of customised simulations that are used
to mimic the experiments in a controlled environment. Simulations were used to gen-
erate data series showing synthetic magnetic field changes which were used for various
purposes in this thesis. The field simulation approach that was used here is the same
approach that is used in the QSM technique (Subsection 2.2.5).

Simulations of extra-cranial magnetic field have been implemented using a Fourier
Transform based method and customised head models, moved based upon experimen-
tally measured head motion data (Subsection 4.1.1). Simulations allowed the parameters
of the phenomena to be varied in a controlled environment, including investigations of
the influence of physiological noise (Section 4.3), and the effects of variations in head
shape and morphology on the head-probe distances and field changes (Section 4.2).

The second aim of the chapter is to better understand the relationship between head
pose and magnetic field changes. This relationship should be mainly influenced by the
distance between the head (closest source of perturbation of the bulk magnetic field)
and the probes (where the magnetic field is sampled). Replicating the experiments in
a simulated environment allows the evaluation of the influence of other parameters that
effect the magnetic field changes, such as chest expansion. It allows the effects of head
movement to be isolated from other sources of field perturbation and from the effects of
the scanner hardware (such as vibrations due to the cryo-pumps).
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4.1 Voxelated head models

The simulated environment consists of a cube of 3503 voxels, each of 1× 1× 1 mm3

size. The centre of the cube represents the origin of the system of reference of the scanner
(isocentre), while the directions were chosen in agreement with NMR field probes’ system
of reference: AP as y-axis (positively oriented in the posterior direction), RL as x-axis
(positively oriented towards the right side); FH as z-axis (positively oriented towards the
head direction).

Hugo head model. The HUGO model is segmented into several different tissue types
[26]. This allowed us to study the influence of each tissue type separately. One tissue
at a time was given the susceptibility of water, rather than the pre-allocated value. As
expected, the most influential tissues are largely present in the head (e.g. fat, muscle),
or have a magnetic susceptibility that is different to the water one (e.g. fat), or are
superficial and not so far from the probes (e.g. the lens of the eyes). However, these
differences were not significant and so for the subsequent simulations all tissues were
allocated the magnetic susceptibility of water. This makes the development of head
models from MRI data easier, as it suggests that a non-fully segmented head model
would lead to valid (for the aim of this dissertation) simulations of extra-cranial magnetic
field changes.

Custom head models. Custom-voxellated models of the head and neck of 4 sub-
jects were obtained from MRI data acquired at 3 T using an mDixon [124] sequence at
1.0 × 1.6 × 2.8 mm3 resolution, while models of a further two subjects were generated
from MRI data acquired at 7 T using a MPRAGE [125] sequence at 1.0× 1.0×1.0 mm3.
A threshold was applied to extract a binary representation of the head, corresponding
to tissue and air. Then, the binary head models (with no internal cavities) were made
by considering the external surface of the head and setting all voxels within this surface
to have the susceptibility of water (Figure 4.1). Finally, the model was re-sampled at
a resolution of 1 × 1 × 1 mm3. This representation allows voxels to be assigned the
magnetic susceptibility values discriminating between head (χwater = −9ppm) [26] and
non-head (χair = −0 ppm) voxels (see Figure 4.2).

The head volumes can then easily be estimated and related to the mean distance
between the probes and the head (see Section 4.2, and Chapter 5). To evaluate the
extra-cranial magnetic field changes due to head movement, the head model was then
step-by-step rotated and translated based on previously measured head motion param-
eters. A flat region at the base of the head model was classified as water to avoid field
changes being produced by movements of the artificial boundary at the base of the head-
/neck model. In order to study the influence of head-probe distance, morphology and
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Figure 4.1: 3D head models. Picture shows the head models (to scale) used for simulations in this
dissertation. Subjects 1 to 6 are real volunteers while Hugo is a well-segmented head model ([26]).
2D projections of the head model in scale are shown in Figure 7.19.

head movement on the extra-cranial field changes, head models were scaled in size and
then moved using customized motion parameters obtained by smoothing and detrending
motion data acquired using the optical MPT camera from a single subject.

4.1.1 Simulated magnetic field data

Step-by-step simulation of the experiments required rotating and translating the head
model using measured head motion parameters and then evaluating the magnetic field
at the probe positions. The steps to simulate the time series are:

1. The simulation environment is defined. The segmented head model is placed in a
matrix of 350×350×350 [1 mm/px]3 (Figure 4.2, c, e). The exact position depends
on the aim of the simulation. A region at the base of the model was classified as
water in order to avoid field changes being produced by movements of the artificial
boundary at the inferior extreme of the head/neck model (Figure 4.2, d, f).

2. The whole cube is rotated and translated in discrete steps. The range of the
movements depend on the aim of the simulation.
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Figure 4.2: Simulation environment. This figure shows the steps used to build the customized simula-
tion environment from the MR image of Subject 4. (a) Picture shows the central sagittal slice of 7T
image, acquired at a resolution of 1× 1× 1 mm3 for a field of view (FOV) 256× 256× 256 voxels.
(b) Head models were produced by segmenting the MR images into 16 grey levels. Differentiation
between air and ’not-air’ was performed by thresholding signals above and below a level that was
set by analysis of the distribution of signal intensities in the image. (c,e) As bone was also classified
as air, the surface between the skin and air was used to create a water-based head model. The
resolution of the head model was 1× 1× 1 mm3. The isocentre of the MR image corresponds to the
centre of a cube of dimension 350 × 350 × 350 voxel or 35 × 35 × 35 cm3 . Coloured squares show
the probe positions in the 3D environment. (d,f) Simulation of the field perturbation produced in
a central sagittal slice when the head is exposed to a magnetic field of 7T. Coloured circles show
half of the field probe positions projected onto the central sagittal slice when the PVC holder was
used (d) and when probes were mounted in the cloth holder (f). The region under the chin is always
allocated the susceptibility of water to avoid effects of unrealistic movement of the boundary at the
base of the head and neck model.
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Figure 4.3: Head model in 7T magnetic field. (a) A simulation of the field perturbation produced in
a central sagittal slice when the head is exposed to a 7T field. (b) A simple rotation of the head
produces a change in the magnetic field pattern.

3. The magnetic field in the cube is evaluated using a Fourier-based method [126]:

B(k)

B0

=

{
k2
z

k2
x + k2

y + k2
z

− 1

3

}
χ(k) (4.1)

where B0 is the static magnetic field at 7 T, χ(k) is the 3D Fourier Transform
of the simulated three-dimensional susceptibility distribution and kx,y,z are the
coordinates of the simulated k-space.

4. The magnetic field is sampled at the probe positions (Figure 4.2, d, f).

5. Steps 2, 3, 4 are repeated to obtain the simulated time series.

Magnetic field perturbations due to the head models were evaluated for different con-
ditions. The 3-dimensional Fast Fourier Transform (FFT) of the model was used to
evaluate the z-component of the magnetic field in the whole cube by using a Fourier-
based method [126]. The original algorithm implies that the magnetic field rotates, while
here the magnetic field direction is fixed and the model is rotated and translated. The
simulated magnetic field has been sampled at fixed positions to mimic data from a real-
istically positioned array of 16 magnetic field probes. The relative positions of the head
and the NMR probes were approximated by aligning the centre of the head model and
the centre of the simulated environment.

The simulated magnetic field perturbation has a dipole-like shape with anomalies
around the appendices of the head (Figure 4.3). After the head model was moved, field
distortions due to the artificial inferior boundary of the models were successfully flat-
tened by adding a fixed layer of water. Its contribution to the magnetic field was nulled
by considering the difference in magnetic field between two consecutive movements. The
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head pivot was coincident with the isocentre in the 7T scanner, so the movements mea-
sured by the optical system were effectively mimicked. The head orientation and relative
head-probe distances were well approximated by manually placing the probes in the sim-
ulated environment.

Simulations of the field changes produced outside the head by realistic head move-
ments are in sufficient agreement with the measurements made for the purpose of this
study (Figures 4.4 and 4.5) as the main aim was to obtain a data serie of magnetic
field data that changes coherently with the changing in head position. Simulated and
experimental data are reported in detail in Appendix B, Sections B.3 and B.2.

Figure 4.4: Simulated data for Subject 4. Measured and simulated magnetic field data due to head
motion, sampled at probe positions from the cloth holder, for two head motion conditions (a-b-c
head shaking, d-e-f head nodding) are reported. Simulated magnetic field data (b,e) are sufficiently
coherent with measured data (a,d) for the aim of this study as they vary coherently with the change
in head position. Further data are reported in Appendix B (Tables B.11 and B.18).
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Figure 4.5: Simulated data for Subject 4. Simulated magnetic field data due to head motion, sampled
at at probe positions from the cloth holder, for two head motion conditions (a-b-c wiggling of the
feet, d-e-f rest) are reported. Simulated magnetic field data (b,e) are coherent with measured data
(a,d) for the aim of this study as they vary coherently with the change in head position. Differences
between (d) and (e) arise because (d) includes the effect of respiration. Data are reported in Appendix
B (Tables B.11 and B.18).
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4.1.2 Smoothed head motion time series

In order to create a time series of standard head movements, the motion parameters
measured for subject 6 were used. Data were detrended by subtracting off the fit ob-
tained using the built-in MATLAB function polyfit. The function fits the data in a
least-squares approach. The degree of the polynomial chosen was 1. Then, by using the
smooth built-in function, data were fitted. The loess 1 method was used with a sliding
window of the size of 10% of the data in case of large movements and 2% in the case of
small movements.

Figure 4.6: Time series. Simultaneously recorded (a) head motion parameters (translation Tx, Ty, Tz
in mm and rotation Rx, Ry, Rz in radians) and (b) extra-cranial magnetic field changes at the 16
field probe positions (B1-B16) over 10 s of head shaking. Smoothed and detrended motion parameters
over 10 s (c) used to simulate field changes at probe positions (d) from the Subject 1 model (e) and
Hugo model.

An example of simulated data is reported in Figure 4.6. The process took ≈ 6 s
per time step on my personal laptop 2 which is a reasonable time to obtain synthetic
data. The standard deviation of the motion parameters of the original time series and
the processed one are reported in Table 4.1. It can be seen that the processing slightly
reduced the standard deviation of data.

1Local regression using weighted linear least squares and a 2nd degree polynomial model.
2Processor: Intel(R) Core(TM), i7-8550U, CPU 1.80G Hz, RAM 16 Gb
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Measured Smoothed/detrended
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

Tx [mm] 0.108 3.768 0.621 0.129 0.103 3.564 0.540 0.077
Ty [mm] 0.096 0.770 0.665 0.158 0.068 0.499 0.578 0.119
Tz [mm] 0.168 0.453 0.954 0.447 0.102 0.247 0.825 0.378

Rx [◦] 0.266 1.217 3.306 0.204 0.262 0.491 2.907 0.161
Ry [◦] 0.096 0.761 0.372 0.167 0.089 0.617 0.184 0.164
Rz [◦] 0.116 7.871 0.427 0.163 0.113 7.410 0.295 0.100

Table 4.1: The table reports the overall standard deviation of motion parameters (translation and
rotation) in the experimental data and the smoothed/detrended data used for simulations. Values
have been rounded to three decimal places.

4.2 Head-field probe distance influences on ∆B

The bulk magnetic field is perturbed by the presence of the human body in the
scanner, as the body tissue is mainly formed by diamagnetic material. Voluntary and
involuntary movements of the body make the magnetic field perturbation change in
time. Using our experimental set-ups, the bulk magnetic field perturbations are sampled
closed to the head (Figures 3.1 and 3.3) making it the main source of perturbation.
By the use of synthetic data it is possible to show that head-probe distance is the
main parameter influencing the perturbation. This distance changes mainly with the
movement performed rather than with head morphology, both in simulated and real
data. The perturbation due to chest expansion/contraction becomes relevant in the rest
condition, when the head-probe distance does not change significantly over time.

4.2.1 Simulated data

Figure 4.7: Methods to evaluate head volume. Schematic diagrams showing how head volume was
evaluated for (a) head models and (b) real subjects. Table 4.2 reports the volumes.

To relate field changes to head size, we modelled the head as an ellipsoid as shown in
Figure 4.7. Models were characterized based on the height (FH), width (RL) and depth
(AP) of the head. Subjects’ head circumferences were measured: A, circumference in an
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Simulation Real measurements
V olume [10−3 m3] A± 0.01 [m] B ± 0.01 [m] V olume [10−3 m3]

Hugo 3.5 − − −
Subject 1 5.4 0.60 0.66 4.35± 0.06
Subject 2 3.6 0.55 0.60 3.30± 0.05
Subject 3 4.6 0.60 0.64 4.12± 0.06
Subject 4 3.5 0.55 0.58 3.09± 0.05
Subject 5 4.2 0.58 0.64 3.95± 0.06
Subject 6 4.6 0.58 0.62 3.74± 0.06

Table 4.2: The table reports the evaluation of the head volumes as shown in Figure (4.7). Simulated
and real head volumes coincide within the experimental errors. They have been used in Figures 4.8,
and 4.10

Rest Head Shaking Head Nodding Feet-wiggling
std of: T [mm] R [◦] T [mm] R [◦] T [mm] R [◦] T [mm] R [◦]

Smoothed 0.09 0.21 0.48 4.47 0.78 1.94 0.28 0.16
Subject 1 0.05 0.08 0.98 1.74 0.64 1.44 0.18 0.15
Subject 2 0.08 0.09 1.26 2.74 0.94 3.38 0.18 0.08
Subject 3 0.30 0.23 2.15 2.57 1.15 1.99 0.27 0.27
Subject 6 0.13 0.18 2.23 4.62 0.76 1.94 0.28 0.18

Table 4.3: The table reports the overall standard deviation of motion parameters (translation and
rotation) in the experimental data and the smoothed/detrended data used for simulations (Figure
4.8).

axial plane spanning the eyebrows to rear of the head and B, circumference in a coronal
plane from chin to top of the head. We approximated this as:

RL = AP =
A

π
(4.2)

FH = 2

√
B2

2π2
−
(
AP

2

)2

(4.3)

V =
4

3
π
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2

AP

2

RL

2
(4.4)

Simulations were used to evaluate the features that most strongly affect the extra-cranial
field changes produced by typical head movements, including the influence of the head-
probe distances and head morphology. At first, the PVC set-up was considered. In order
to reduce the number of variables considered the heads were moved using an ideal time
series formed by smoothing and detrending one of the motion data series acquired using
the optical MPT camera during MoCo experiments. Figure 4.6b shows examples of the
smoothed/detrended motion parameters and simulated field changes for two different
head models during head shaking.
A further analysis of the effect of the head-probe distances has been conducted (Figure
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Figure 4.8: Effect of the head-probe distances and head morphology on extra-cranial magnetic field
(PVC set-up). Variation of the average over of probes of the standard deviation of the field mea-
surements with simulated head volumes for (a) phantoms (obtained by scaling the Hugo model) and
(b) subject simulations, for different motion conditions. Table 4.3 reports the standard deviation of
motion parameters in the smoothed/detrended data used for simulations (Plots a,b). (c) Variation
of the average over of probes of the standard deviation of the field measurements with measured
head volumes for for experimental data, for different motion conditions.

4.9). The field was sampled at two head poses only to identify the main difference in
probe positions between the two set-ups. The head has been considered at the initial
condition and then rotated about the z-axis by 10 degrees. The sampling on the top of
the head gave similar absolute value of the magnetic field for the two head conditions as
the distance between the head and the probes doesn’t change significantly. By contrast,
the field values on the side of the head were significantly different. To conclude, based
on the relative positions of the probes with respect to the head, I expect to have a higher
change in extra-cranial magnetic field due to movement when using the PVC support
rather than the cloth holder because the distance between the head and probes varies
more significantly over probes and head motion conditions.

PVC set-up

The configuration where probes are evenly distributed around the head was considered at
first. Fifteen different voxellated water-based head models were considered, each having
an isotropic resolution of 1 mm. Four models were based on MR image data acquired
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Figure 4.9: Contour plots of the simulated extra-cranial magnetic field. Plots show the simulated
extra-cranial magnetic field for (a) head and (b) rotated head. Black dots represents where the
magnetic field is sampled (by two magnetic field probes). (a.1) and (b.1) zoom on the area. Values
of the magnetic field are reported and clearly show that the changes in magnetic field at the side of
the head are larger than at the top of the head.

from human subjects, while 11 other models were formed by geometrically scaling the
HUGO head model [26]. The latter are denoted as phantom data here. Movements were
applied to these models using smoothed and de-trended motion parameters recorded
over 150s from one subject in each of the motion conditions. Field changes at the probe
positions were calculated by applying the Fourier method to the head models after trans-
lation and rotation at each time step.

Figure 4.8 shows how the average over probes of the standard deviation of the field
measurements across different motion conditions varies with head volume for phantom
and head simulations, and for experimental data (Figure 4.8). Note that the movements
are the same for all simulations, but in the experimental data motion parameters are
different for different subjects.
Figures 4.6 and 4.8 show that the morphology and size of the head along with the magni-
tude of the movement parameters strongly affect the magnitude of the extra-cranial field
changes. For fixed morphology and similar movements (Figure 4.8, left), the magnetic
field changes scale approximately linearly with the head volume. This behaviour likely
results from the scaling of the overall magnetic dipole moment of the head with volume
and also the scaling of the distance from the probes to features on the head surface
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Rest Head Shaking Head Nodding Feet-wiggling
std of: T [mm] R [◦] T [mm] R [◦] T [mm] R [◦] T [mm] R [◦]

Smoothed 0.09 0.21 0.48 4.47 0.78 1.94 0.28 0.16
Subject 1 0.50 0.16 0.34 0.11 3.64 1.59 3.68 0.80
Subject 2 2.25 0.73 0.81 0.41 11.80 7.58 12.82 4.10
Subject 3 0.52 0.39 0.50 0.13 3.74 1.81 6.72 1.83
Subject 4 1.67 0.52 0.48 0.15 7.88 3.92 7.52 1.59
Subject 5 1.60 0.50 1.48 0.40 5.17 2.11 7.63 1.76

Table 4.4: The table reports the overall standard deviation of motion parameters (translation and
rotation) in the experimental data and the smoothed/detrended data used for simulations (Figure
4.10).

(which form local magnetic dipoles) with the cube-root of the volume, in conjunction
with the inverse cubic dependence of the dipole field on distance. This dependence on
head volume is evident, but less clear in Figure 4.8 (right) where the head morphology
also varies across subjects, but the motion parameters are the same in all cases. In
the real data (Figure 4.8) where the extent of movement varies across subjects (Section
B.3), the dependence on head volume is obscured, as the sensitivity to the extent of head
movement is greater.

Cloth probe holder

Figure 4.10 shows the results of simulations which aimed to demonstrate the complex
cross influence between head volume, morphology, and extent of movement. Plots shows
the standard deviation over the 16 NMR field probes and the whole time series as a
function of the head volume. For fixed head movements, the distance between head
and probes (Figure 4.10.a) and different heads (volume and morphology) (Figure 4.10.b)
influences the linearity of the mathematical relationship between the changes of head
position and magnetic field changes.

Adding a further degree of complexity by simulating the true experimental condition
(Figure 4.10.c) reveals that limits in head motion due to the space available inside the
head coil lead to larger magnetic field changes for smaller heads.
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Figure 4.10: Effect of the head-probe distances and head morphology on smoothed and detrended data
(Cloth probe holder). Variation of the average over probes of the standard deviation of the field
measurements with simulated head volumes for (a) Subject 4 and (b) subjects 1 to 5 simulations,
for different motion conditions. Table 4.4 reports the standard deviation of motion parameters in
the smoothed/detrended data used for simulations. (c) Variation of the average over of probes of
the standard deviation of the field measurements with measured head volumes for true experimental
data, for different motion conditions.

4.2.2 Experimental magnetic field data

Using simulated data (see Section 4.2), it has been shown that the head-probe dis-
tance and relative positions and standard deviation of the magnetic field data (linked
to the range of movements performed) influences the data the most. Here, the analysis
has been repeated using experimental data from Subjects 1,2 and 3 that were involved
in measurements made using both set-ups3.

The standard deviation (STD) of the magnetic field changes measured using the PVC
support was plotted as a function of the head volume in Figure 4.11a. The analysis with
real data confirms the results obtained with simulated data in Section 4.2 for the three
subjects considered. It also clearly shows that for the same subjects and same head
movement conditions, the standard deviation of the data was larger for the PVC sup-
port. This is due to the even sampling of the field in the space around the head and the
extent of motion (the larger the range, the closer the head goes to the probes). However,
as the space and the comfort inside the supports differs (as reported by volunteers), we

3The predictions of head motion parameters data are sensitive to position of the probes relative to
the head, but not to probe position relative to the scanner isocentre

90



Figure 4.11: Influence of the head-probe distance. The influence of the head-probe distance has been
analysed in experimental data for both set-ups (empty markers for the PVC holder, filled markers for
the cloth holder) and for the three subjects that were studies using both set-ups. a) Results derived
from simulations shown in Figures 4.10b and 4.10c have been confirmed here by using experimental
data. b) The standard deviation (STD) of the data has been plotted as a function of the Signal to
Noise Ratio (SNR).

cannot also exclude the possibility that this has influenced the differences in head motion
range for the same volunteers.

The Signal to Noise Ratio was also measured by characterising noise as the Root
Mean Square of the background measurements used to characterize the field camera
(Section 3.2.1). We consider this as a standard background measurement as it has been
computed by considering the magnetic field changes (the different shimming of the scan-
ner influences the absolute values of the magnetic field measured by the probes, but not
the change from the average value). The signals were the RMS of the magnetic field
changes in different head conditions, for different subjects, for different set-ups.

By plotting the standard deviation of the magnetic field changes (which reflects how
close the head was to the probes) as a function of the SNR4, it is clear that: for smaller

4The reason why the STD and SNR are proportional could be explained by considering the equa-

tions for STD, STD =
√

1
N−1

∑N
n=1 |an − µan |2, and SNR, SNR =

RMSSignal

RMSBackground
(where RMS =√

1
N

∑N
n=1 |an|2). an is a generic time series (n = 1, . . . N) and µan = 1

N

∑N
1 an is its average value. As

in our case, the time series is the change in magnetic field from the average value (an = ∆Bn = Bn−µBn
),

the squared terms in the STD equation became |a2
n| as µ∆B = 0. Also, N is always ≈ 103 that making
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distances between the head and the probes, and so a larger range of motion, the SNR
improves due to the larger changes in the magnetic field. This is less visible in data
obtained using the cloth support because the extent of the space over which the field is
sampled is reduced.

4.3 Simulating field changes due to chest expansion

Movements of tissue due to physiological cycles also cause changes in the extra-
cranial magnetic field . Head motion due to pulsatile blood flow across the cardiac cycle
produces some small effects [127], but a more significant effect arises from the periodic
chest motion involved in respiration. The physical movement of the chest produces a
significant magnetic field change at the probe positions. This effect can be modelled [128]
by considering a sphere of air surrounded by water sited at the position of the sternum.
Field changes at the position of the head due to chest movement in respiration can be
modelled by modulating the radius of this sphere across the respiratory cycle. The field
perturbation at position (x, y, z) due to such a sphere centred at the origin is given by

∆B(x, y, z) =
1
3
∆χB0R

3(2z2 − x2 − y2)

(x2 + y2 + z2)
5
2

×∆V (4.5)

where B0 represents the bulk magnetic field (7 T), x, y and z represent the Cartesian
components of the distance vector between the sternum and the magnetic field probes,
which take values of 0, 10, 40 cm, respectively; ∆χ represents the difference of the
magnetic susceptibility between the air and tissue; R represents the radius of the sphere
(8 cm) simulating the effect of the lungs [128]. The term outside the brackets represents
the time series of respiration measurements normalized between 0 and 1 (∆V ). The
difference of the magnetic susceptibility between the gas and the tissue was assumed to
be ∆χ = 9.4 × 10−6 ppm in agreement with the literature [128]. As a result, the order
of magnitude of ∆B is 10 nT , in agreement with experimental data at rest condition
(Figure 3.10).

4.4 Conclusion

The simulations were based on the real experimental set-up and customised head
models. Synthetic data reproduced extra-cranial magnetic field changes produced by
realistic head and chest movements. Overall, there is good agreement between measured
and simulated field variation, with a similar pattern of variation of field change across

the approximation 1
N ≈

1
N−1 valid. So, RMSData ≈ STDData and STD ∝ SNR.
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probes (Figures 4.4 and 4.5). Using the simulated data, we were able to identify the
parameters which had the strongest influence on the magnetic field changes, such as the
positions of the field probes relative to the head, extent of head movements and head
morphology (Figures 4.8 and 4.10).

The next chapter discusses the core of the work presented in this thesis: how to pre-
dict head motion parameters from measurements of extra-cranial magnetic field changes
by using two different supervised learning techniques (Section 5.1.3). The simulated
data will be used to test the effectiveness of a spatial filter developed to reduce the effect
of physiological body motion on magnetic field changes, and the use of a linear method
(Partial Least Square) and a non-linear method (Nonlinear AutoRegressive network with
eXogenous inputs) to infer head motion parameters from magnetic field data.
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Chapter 5

Contact-less head motion tracking
without simultaneous scanning
sequence

This chapter introduces the new motion correction method developed in this thesis.
It is based on using field camera measurements of the pattern of field changes produced
by changes in head position to infer head motion parameters. The experimental and
simulated data have been divided into large and small head movements, where large and
small refer to the upper range of the movements performed. In Chapter 4, simulated
data were used to show that the feature that most strongly influences the field changes
is the head-probe distance. The chest expansion influence on magnetic field changes
(Section 4.3) has been evaluated to be disrupting in the case of small head movements.

Under the assumption that the mathematical relationship between head motion pa-
rameters and magnetic field changes is bijective (the measured change in extra-cranial
field uniquely defines the change in head position), and two different regression meth-
ods to predict head movements from extra-cranial field measurements have been tested.
Section 5.2.2 shows how synthetic magnetic field data have also been used to test the per-
formance of the regression methods chosen in order to select the pipeline for the analysis
of experimental data. The PLS (Partial Least Squares) linear approach gave relatively
poor results, while the NARX (Neural Network based auto regressive method) non-linear
approach gave more promising results, using both simulated and real data. NARX was
tested in more detail and used to predict head motion in various experimental scenarios
for several subjects. This chapter describes its use in predicting head motion parameters
in several subjects.

Data acquired without simultaneous scanning and simulated data have been used in
this chapter. Chapter 7 shows the reproducibility of the results on magnetic field data
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acquired with simultaneous scanning. The method proposed has the advantages of being
a marker-less, non-contact method whose use does not require significant modification
of MRI sequences[60].

5.1 Implementation of the contact-less head motion

tracking

Data processing involves pre-processing in terms of time alignment and denoising
steps. In particular, magnetic field data have been filtered using solid harmonic functions
to reduce the confounding effects of respiration (Subsection 5.1.1). The effectiveness of
this step is further explored using simulated data (Subsection 5.2.2).

5.1.1 Pre-processing of Extra-cranial magnetic field data

Extra-cranial magnetic field data

The pre-processing steps that were used to select the most significant channels are
shown in Figure 5.2. The change in the magnetic field was considered by subtracting
the average over time from each probe time series (zero mean data series). Then, in the
case of analysis of raw data series, the data are normalized, otherwise a spatial filter is
applied before normalization. Normalisation is used to bring all the data into the same
range. The spatial filter combined solid harmonics fitting and feature selection and was
used to reduce the influence of the physiological noise and highlight those variables that
best represent the data, reducing the number of time-series considered in the subsequent
analysis also speed up the processing.

Channel selection. During the acquisition of the data, it is important to identify
whether there are faulty channels for technical reasons (such as the NMR probe or
ADC board connection being damaged) 1, we exclude channels in post-processing only.
Usually, the data from such channels are not taken in account for the data analysis.

Zero mean data series. As we are interested in the relationship between the changes
in magnetic field and head pose, magnetic field data time series were de-meaned, by
subtraction of the average of the time series before further processing. For each channel
(i):

~∆Bi = ~Bi − µBi (5.1)

1Channels may be excluded during the data acquisition process to improve SNR.

95



Figure 5.1: Flowchart. (a) The flowchart shows the steps made from the data acquisition (light red)
to the prediction (light purple) described in Section 5.1. Data acquisitions (light yellow) and pre-
processing (light green) are carried out before data are randomly divided into the training dataset
and the new data subset. The training of the regression methods (either PLS or NARX) is further
described in (b) and (c). The trained method is then applied on new magnetic field data (∆B) to
predict motion data (∆Mp). Predicted motion data are evaluated by comparison with motion data
acquired simultaneously to the new magnetic field data.

the average over the time considered (µBi) has been subtracted from the i − channel

data series ( ~Bi).

Spatial filter, part I: solid harmonics fits. The field values measured at each time
point were fitted to a series of solid harmonics (Table 1.4) using the linsolve() built-in
MATLAB function. The spatial distribution of the probes determines the number and
largest order of solid harmonics that can be used in the fitting [33]. An even distribution

96



Figure 5.2: Pre-processing steps applied to magnetic field data. The figure shows the effect of the
different pre-processing steps on 15 s of head shaking data acquired with probes mounted in the
PVC holder.

of 16 probes over a spherical surface is ideal for the fitting process up to the 3rd order
fits (page 29). The PVC holder (Figure 3.7) provides a favourable distribution of probes,
which in this case are distributed over a cylindrical surface. The cloth holder (Figure
3.3) aims to sample the signal closer to the head as far as the RF head coil allows,
and so the probe positions were not evenly distributed around the head. Therefore, the
fit was performed only up to the second order. The goodness of the fits was checked
by evaluating the condition number using the cond() built-in MATLAB function. 2,
(κ(Matrix) = 10k) which can be used as an indication of the loss in accuracy [129]. As
a rule of thumb, the loss in digits is equal to the order of magnitude k of the condition
number. The condition number for the probes mounted in the PVC support was 5.7×103,
while with the probes mounted in the cloth holder in between the transmit and receiver
RF coils it was 4.7 × 105. While the loss of 3 digits of precision was acceptable for the
former case, 5 digits loss in the latter case were not acceptable. The fit up to the second
order reduced the condition number to 4.8× 101 for the cloth holder and to 3.1 for the
PVC holder.

2The condition number. The condition number measures how small changes in the input (independent
variable) influence values of the output (dependent variable). A problem is well-conditioned if it has a
low condition number. High condition numbers characterize ill-conditioned problems.
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Figure 5.3: Absolute (a) field perturbations at the probe positions acquired using the PVC holder,
(c) head translation and rotations and (e) physiological parameter time series during rest and head
shaking conditions for Subject6 at 7T and the associated frequency spectrum (b, d, f). Peaks show
that field perturbations are influenced by both head motion and respiration.

In both scenarios, the influence of the movement of the chest in respiration on the
magnetic field data decreases with increasing harmonic order, as higher order harmonics
represent signal that varies more rapidly with spatial position than the lower order har-
monics. This relationship has been proven by comparing the frequency spectra of the
signals 5.3. An example of the analysis is shown in Figure 5.4. This shows data acquired
during large head movements and the associated frequency spectrum (Figure 5.4, right).
As expected, the frequencies corresponding to the head movements are clearly visible in
the magnetic field data and in the motion data, while the frequencies due to the respi-
ration are mostly visible in the magnetic field data, but also present in the motion data.
So, setting a threshold to separate the effects of head movements and respiration could
lead to loss of information about head movements related to the chest expansion. As
head and chest movements produce magnetic field changes with different spatial charac-
teristics, we can separate them via solid harmonic analysis. Figure 5.4 (left) shows the
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Figure 5.4: Plots show (Column a) the solid harmonic decomposition of magnetic field measurements
acquired using the PVC holder (Figure 5.3.a) during large head shaking movements and (Column b)
the associated frequency spectrum. The cylindrical configuration of the PVC holder allowed fitting
up to the 3rd harmonic order. Lower/higher order spatial harmonics best represent the effect of
chest/head movements. The influences of head movement and physiological noise can be differenti-
ated based on their different frequencies. The lower solid harmonics (0th, 1st) of the magnetic field
data were filtered out to reduce the influence of physiological noise.

solid harmonic fits and the corresponding frequency spectra. Comparison of the spectra
indicates that the influence of respiration is decreased compared with the influence of
the movements in the higher order solid harmonics. Eliminating the low order harmonics
(0th, 1st) from the field traces consequently reduces the effect of respiration compared
to that of the head movements. Furthermore, the lower harmonics from the fit may be
used to extract the respiration signal (section 4.3).
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In the case of the PVC holder, 2nd and 3rd orders could be considered, while in the
case of the cloth holder only the 2nd order fits could be used. So, only the 2nd order has
been considered for comparison.

Spatial filter, part II: feature selection (PCA and HCA). Feature selection per-

formed on ~∆B aims to select the subset of probes that carries most information about
the head motion. The subset of probes was selected using Principal Component Analysis
(PCA) combined with Hierarchical Cluster Analysis (HCA) [11].

PCA has been performed on normalized magnetic field signals to reduce the num-
ber of channels used for the analysis using the pca() built-in MATLAB function. 16
principal components (PC) were identified. The majority of the variance of the data is
explained by the first three principal components. The characteristics of the principal
components varied depending on the subject, the activity and the probe positions. In
particular, in the case of the cloth holder, the signals from the probes at the back of the
head were manually excluded from the analysis because the residual physiological noise
from chest movement in respiration dominated these signals 3.

The first three principal components (PC) are used to classify the probes using the
dendrogram() built-in MATLAB function. These are used to built a dendrogram (or
hierarchical tree) based on the Euclidean distance between the probe signals represented
in the PC space. So, probe signals that behave similarly in the PC space are closer
and belong to the same cluster. Clusters are then defined by setting a cut-off value
for the Euclidean distance using the cluster() built-in MATLAB function. For the
analysis reported in this dissertation, the cut-off was 70% of the maximum Euclidean
distance. Clusters are then sorted based on the variance of the signal of the probes and
agglomerated to create a final cluster that contains ≥ 6 probes. An example outcome
of the analysis is shown in Figure 5.5 and the code is reported in the Appendix at page
280.

Normalisation. The signal from each channel was normalized by:

~∆Bi =
~Bi − µBi
σB

(5.2)

where µBi is the average of each channel signal and σBi is the overall standard deviation
of the channel’s signal computed using the std() built-in MATLAB function.

3The variance of the few probes on the back of the head dominate the choice of the principal compo-
nents. This leads to a worse representation of the signal of most of the probes (≤ 12). That influences
the next step of the feature selection process.
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Figure 5.5: Example of the outcome of the feature selection. Plots show an example of the results
obtained for real magnetic field data in the rest condition for Subject 5. The cloth holder was used,
so signals from probes 9, 10 and 16 were removed before the analysis. (a) The dendrogram shows
clusters 1,2,3 obtained by representing the probe signals in the principal component space. Clusters
have been numbered based on the variance of the signals (descending order). The cut-off threshold is
highlighted with a dashed gray line. It was equal to 70% of the maximum of the Euclidean distance.
(b) Clusters 1-2 in (a) are then agglomerated to produce final cluster that contains ≥ 6 probes.
Cluster A was then selected by agglomerating Clusters 1 and 2. Probes that belong to Cluster C
were then excluded from the analysis.

5.1.2 Pre-processing of the head motion parameters

The raw data from the optical camera are not directly used, as the motion is recorded
using quaternion algebra and referred to a system of reference centred at the position of
the optical camera. The other internal parameters used for the pre-processing of motion
data are called status (to tag data where the marker was correctly detected: status = 1)
and the time strings (up to milliseconds accuracy HH : MM : SS.sss). The camera
was set to record data at an average frequency of 80 Hz, but the actual time interval
between two consecutive data points depends on the speed of the algorithm used to
predict the marker position and could vary between 6 ms and 18 ms. Once motion data
were calibrated and transformed to the scanner’s frame of reference, concurrent head
parameters measurements were extracted and data were ready to be used.

Ameliorating noise in raw motion data. The data where the marker is not cor-
rectly detected (status = 0) are removed from the time series. On average, the percentage
of data removed was << 1%, but this depends on the extent of the movements made
by the subject that may lead to the marker going out of the optical camera’s field of view .
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The software to record data has a bug and records the time string HH : MM : SS.000
as HH : MM : SS,−01 4. All the time strings (ti) where the milliseconds part of
the string assumes negative values were substituted with the average time between the
previous (ti−1) and the subsequent (ti+1) values.

Cross-calibration of the optical camera. The optical camera is not permanently
fixed in the magnet bore, and so it needs to be calibrated before or after each session
assuming that during the session it doesn’t move. The whole process has been devel-
oped and evaluated in a separate project. To summarize, the calibration process lasts
≈ 45 min and requires that a scanner operator lying prone on the scanner bed, manu-
ally moves an asymmetrical water phantom to which the MPT marker is attached [20].
A MRI calibration sequence is then performed providing concurrent measurements of
phantom and marker positions. Data are analysed using a cross-calibration program
that calculates the quaternion set to use for aligning the frames of reference of the scan-
ner and optical camera.

Calibration of new motion data requires projection of the movement data from the
optical camera’s system of reference to the scanner’s system of reference. The scanner’s
system of reference is defined by the MRI sequence used to scan the phantom and this
sequence doesn’t agree with the ones used to define the field camera system’s frame of
reference. Both systems of reference have the same origin (isocentre of the scanner), but
reversed y-axis. They are left and right handed and so there is not a simple geometric
transformation that can be applied to transform one into another. Thus, to make the
head motion parameters measured in agreement with the magnetic field camera sys-
tem of reference, the translations along the y axes are inverted (Ty = −Ty). Rotation
measurements are not affected by the symmetry.

F-vector. As the optical camera records the movements of the marker at the marker lo-
cation 5, it is necessary to apply a further transformation to obtain the actual movements
of the head. So, data are shifted and rotated based on the off-centre and angulation data
recorded during the planning of the MRI scan (survey).

Extracting concurrent data. The sampling frequencies of the optical camera and
magnetic field camera are different, but a common trigger signal sent at the beginning
of each TR period of the field camera is also recorded, allowing the measurements to be
aligned in post-processing [11]. However, once the trigger is sent, the optical camera will
assign the time string to the acquisition once marker position is sorted by the algorithm.

4My interpretation is that the 001 is interpreted as signed string of bit instead of unsigned at low
level data recording in the software.

5The marker is rigidly coupled via a mouthpiece to the skull
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Tags of the trigger and the measurements then match in time with an accuracy of±20ms.

To improve the accuracy of the time alignment, the time strings of the optical camera
data have been considered. Assuming that the first measurement matches between the
magnetic and optical camera, a time string is created based on the TR (∆t, most common
used values were 0.150 ms or 0.100 ms) of the magnetic field camera and the time of the
first time-point (t1, . . . , ti+j∆t) corresponding to the first triggers. The other time steps
have been aligned by using the time string of the optical camera data. A locally weighted
polynomial regression method (smooth() built-in MATLAB function, using the ’lowess’
option) using sliding windows of 7% was used to smooth the motion data and perform
the temporal alignment of the different time series.

5.1.3 Regression methods

In order to perform the prediction of head motion parameters ( ~M = [M1 ... M6] =
[Tx Ty Tz Rx Ry Rz] as defined at section 2.2) from measured changes in the extra-cranial

magnetic field ( ~B = [B1 ... B16]), data were pre-processed to reduce the influence of the
physiological noise, as described on section 5.1, and by performing a featured extrac-
tion [11] (Section 5.1.1) in order to reduce the number of input variables of the method.
The signal formed using the fit to the higher solid harmonics was normalized based
on each channel’s standard deviation and then characterized through Principal Compo-
nent Analysis (PCA) combined with Hierarchical cluster analysis (HCA) to select those
k − channels (k ≥ 6) that contribute the majority of the data variance. The spatial
filter applied is then formed by the combination of the solid harmonic fit, normalization
and PCA.
Head motion parameters were predicted ( ~M ′) from k-magnetic field data ( ~B′ = [B1 ... Bk])

selected: ~M ′ = F ( ~B′), where F is a generic mapping function.

In the case of the linear model, F has been chosen as the Partial Least Square (PLS)
regression model (Appendix A.2.1):

~Mt = F
(
~Bt

)
(5.3)

In the nonlinear model case, F represents a single hidden layer, recurrent and dynamic
neural network (RNN) based on Nonlinear Autoregressive Exogenous model (NARX).
Its architecture was: k−input neurons, 30−hidden neurons, 6−output neurons. At each
time t, once trained, the NARX model predicts the motion parameters ( ~Mt+1) based on

past dOUT predictions and past dIN inputs ( ~B′t, ~B′t−1, . . . , ~B′t−dIN) and exogenous input

( ~Bt+1)):

~Mt+1 = F
(
~Mt, ~Mt−1, . . . , ~Mt−dOUT

, ~B′t+1,
~B′t, ~B′t−1, . . . , ~B′t−dIN

)
(5.4)
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dOUT and dIN are also called delays and for the purpose of this study they have both been
considered as equal to two time steps in the field measurements (0.3 s). The network
chosen will therefore predict two steps ahead.

Training, validation and test subsets of data The regression methods tested were
both linear and non-linear using spatially filtered and unfiltered data. For each data-set:

• The non-linear regression models (NARX) were trained using time series formed
by 85% of each data-set, saving 15% of the data for testing the model. The time
correlation of the data was not considered as the training time series was further
randomly divided in 90%−5%−5% to create training, validation, and test data-sets.
The model that performed best over 10 training runs (where each time a random
selection of subgroups is made) was selected in order to minimize the influence due
to the random initialization of neuron weights and so the error on the prediction.
More detail is provided in Appendix A and the code is detailed in Appendix D.2.2.

• The linear regression models (PLS) were trained using time series formed by 85%
of each data-set, saving 15% of data for testing the model. The time correlation
of the data was not considered as the training time series was further randomly
divided to perform the k-fold cross validation (k = 6) to validate the prediction.
More detail is provided in Section A.2.1, Appendix A (Section A.2.1) and the code
is detailed in Appendix D.2.1.

The results of the regression were quantified using the mean square error (MSE), the
value of R2 and the Pearson coefficient (PC) of the fit.

Data (Table 3.3) have been divided into two subgroups for training the regression
methods on two different ranges of movement; small (rest, feet-wiggling) and large (rest,
feet-wiggling, head shaking, head nodding). Data were partitioned as described in Sec-
tion 5.1.3. Tables 5.1.3, 5.1.3 report the number of data values used for each regression
method, along with the set-up and range of movements.
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PLS (85%− 15%) Training PLS (k − fold, k = 6)
Total Training New 5− folds 1− fold

Small (PVC) 1500 1275 225 1063 213
Large (PVC) 2500 2125 375 1771 354
Small (cloth) 8000 6800 1200 5667 1133
Large (cloth) 12000 10200 1800 8500 1700

Table 5.1: Number of data points. The number of data points used for training, validation and testing
the linear regression methods (PLS) are reported. These numbers have been calculated following the
method described in Section 5.1.3.

NARX (85%− 15%) Training NARX (90%− 5%− 5%)
Total Training New Training V alidation Test

Small (PVC) 1500 1275 225 1148 64 64
Large (PVC) 2500 2125 375 1913 106 106
Small (cloth) 8000 6800 1200 6120 340 340
Large (cloth) 12000 10200 1800 9180 510 510

Table 5.2: Number of data. The number of data points used for training, validation and testing the
non-linear regression methods (NARX) are reported. These numbers have been calculated following
the method described in Section 5.1.3.

The results from the previous chapter using simulated data show that the positions of
the probes relative to the head influence the predictions most significantly and there is
a non-linear relationship between head volume and the magnitude of the field changes
(Figures 4.8 and 4.10), and thus the efficacy of a linear Partial Least Squares (PLS)
method in predicting movement from field changes is limited. The non-linear method
applied to pre-processed data gave the best results (Figure 5.15) and so only this method
has been explored further.

5.1.4 Evaluate the prediction

Predictions were reported as plots (predicted motion data, p, as a function of the
measured motion data, d) and statistical evaluation. In general, numbers have been
rounded to the three decimal places. Plots, that report results over multiple subjects,
have not been fitted, while predictions on single subjects have been. Results over 3 out of
6 subjects are then displayed with both plots and statistical evaluation, while plots that
summarise the results over the subject do not have an associated statistical evaluation.
Only relevant plots have been reported in this Chapter for clarity, Appendix C reports
all the results over subjects, ranges of head motion and regression methods. Results
were evaluated by plotting the predicted motion parameter (x, dependent variable) as a
function of the measured motion parameters (y, independent variables). Ideal results of
prediction will lead on to data lying on a straight line passing through the origin (inter-
cept b = 0) and having slope equal to one (a = 1): y = ax. Data were therefore fitted
using the general linear equation: y = ax+ b. Predictions were considered to be good if
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a → 1,b → 0. The fit was based on nonlinear least-squares fitting procedure (MatLab).
The root mean squared error (R2) of the fit was evaluated. The Standard deviation
(STD) 6 of data and Mean Squared Error (MSE) 7 of the prediction compared to the
fitted line were evaluated: small MSE means good prediction as predicted data are closer
to the measured data. The Pearson Correlation Coefficient (PC) was also evaluated 8.

Predictions were evaluated ”poor” or ”good” based on how many motion parameters
were close to the ideal values:

AND(slope ≥ 0.9, |0− Intercept| ≤ 0.01, R2 ≥ 0.9, MSE ≤ 0.01, PC ≥ 0.9) (5.5)

A prediction has been described as ”good” when 4 or more of the 6 head motion param-
eters satisfied all the above conditions, otherwise ”poor”. The limit of 4 out of 6 head
motion parameters was chosen as, in general, in the rest condition (the hardest head
motion range to predict) the variation of Ry and Rz is smaller than other motion pa-
rameters because these rotations are not favoured by the position of the subject. Tables
5.3 and 5.5 summarise the findings.

How to interpret the fit Fit has been performed on predicted data (x, dependent
variable) as a function of the motion data (y, independent variables). Ideal results on
prediction will lead on having data lying on a line passing through the origin of the
axes (intercept b = 0) and having slope equal to one (a = 1): y = ax. So, data were
fitted using the general line equation: y = ax + b. Prediction was considered good if
a→ 1,b→ 0. Slope (a = ∆y/∆x,b = 0).

• a→ 1, predicted data well approximate motion measurements.

• a > 1, predicted data are in general overestimated compare to motion measure-
ments (∆y > ∆x).

• a < 1, predicted data are in general underestimated compare to motion measure-
ments (∆y < ∆x).

Intercept (a = 1,b).

• b→ 0, predicted data well approximate motion measurements.

• b 6= 0, predicted data shifted compare to motion measurements.

6STD =
√

1
N−1

∑N
n=1 |an − µan |2

7MSE = 1
N

∑N
n=1 (y(n+ 1)− ŷ(n+ 1))

2

81 = correlated; 0 = non correlated; -1 = anti-correlated
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• b > 0, predicted data are in general overestimated compare to motion measure-
ments (∆y > ∆x).

• b < 0, predicted data are in general underestimated compare to motion measure-
ments (∆y < ∆x)

Comparing sparse data with the ideal fit:

• y = x, predicted data well approximate motion measurements.

• y > x, predicted data are in general overestimated compare to motion measure-
ments.

• y < x, predicted data are in general underestimated compare to motion measure-
ments.

5.2 Tests using simulated data

Simulated data components can be combined to approximate the magnetic field
changes measured during an experimental session, or can be paired wisely to mimic
and test the efficacy of data analysis methods before application to real data (Figure
5.6). Simulated data have been used to select the pre-processing pipeline and regression
method (PLS and NARX) that would perform best on real data.

The most significant predictions obtained using simulated data from a single volunteer
are reported in this section. The random extraction used to separate the test and training
data means that there may be small differences in the range of movements considered
in each test, even when the data come from the same volunteer. Results were evaluated
qualitatively in order to select the best workflow to be applied to real data.

5.2.1 Span of simulated data

Simulated data allow exploration of the way that measured magnetic field data are
formed from the sum of different components (Figure 5.3):

∆B = ∆BHead + ∆BChest + ∆BNoise (5.6)

∆BHead represents the change in magnetic field due to the movement of the head. This
component is well approximated by the simulated data (see Section 4.1.1). ∆BChest rep-
resents the change in magnetic field at the probe positions due to the chest expansion
(see Section 4.3). ∆BNoise represents the overall random noise on the measurements and
it has been modelled as white Gaussian noise with std ≈ 10−8 T .
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Figure 5.6: Span of the possible data analyses. The flow charts show the magnetic field data that
can be used in the cases of simulated and real data. For example, simulated data due to head
movements only correspond to pre-processed real data. Once the magnetic field data are chosen, the
prediction could be carried out on data from different volunteers, probe configurations and ranges of
head movements, using two different regression methods..
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Figure 5.6 describes the span of the possible data analyses that can be computed on
simulated data.

By using only the ∆BHead component, the data represents the ideal condition where
only the movements of the head contribute to the changes in magnetic field. This case
is the optimal to test which regression method applied to which range of movements
provides the best predictions.

By using ∆B (all the components), the data are more similar to experimental data.
The spatial filtering and the feature selection (Section 5.1.1) could then be tested. Com-
parison between the predictions made using ∆B and filtered ∆B should give an indication
of the effect of the filtering on the data.

5.2.2 Selecting the best data-analysis pipeline

Simulated data were analysed in order to identify:

• Whether the pre-processing reduces the information content of the data and/or
improves the prediction (Figure 5.14 and Figure 5.15);

• The range of movements to be used in the training set to predict the most common
range of movements in MRI (small head movements at rest). (Figures 5.8, 5.9,
5.10, 5.13);

• Which regression methods perform better over the range of movement previously
identified (Figures 5.10 and 5.13);

Filtering field changes due to chest expansion

The simulated magnetic field changes due to chest movements in respiration have been
superimposed onto simulated magnetic field changes due to head movements (Figure 4.5)
in order to test whether respiratory effects can be filtered out by fitting field changes
to solid harmonics and then selecting the low or high order harmonics. The simulated
signal was fitted at each time point to a series of solid harmonics up to 2nd order. The
influence of chest movements on magnetic field data decreases with harmonic order, as
higher order harmonics represent signal that varies faster with spatial position than is
the case for lower order harmonics. This relation has been proven by comparing the
frequency spectrum of the signals. Thus, 2nd order fitting represents a signal that carries
less perturbation due to chest movements. This method was tested on both simulated
and real data in Chapter 5 as probes were placed ad hoc on the back of the head to better
sample the effects of chest movement. In order to extrapolate respiration-like signal from
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magnetic field data [130], lower harmonic fit signals have been superimposed and filtered
using a band pass filter centred at the respiratory frequency. The band pass width of
the filter (±0.1 [Hz]) was based on the subject’s respiratory frequency (on the average
0.3 [Hz]).

Data used for prediction

An important variable that determines the outcome of the prediction is the amount of
data used for training the regression methods and the head movements range considered.
There were 5000 time points (750 s) in the rest condition, 3000 time points (450 s) for the
feet-wiggling condition, 2000 time points (300 s) for the head shaking and head nodding
conditions. So, for example, the regression method for small head movements regime
(rest, feet-wiggling) uses a total of 8000 time points (1200 s) randomly divided into the
training set (85% of 8000, so 6000 time points) and test set (15% of 8000, so 2000 time
points).

Select the best regression method

First, the linear method (partial least squares, PLS) was tested on simulated mag-
netic field data including the effect of head movement only (∆BHead) where probes were
simulated to be in the cloth holder set-up. This represents the optimal condition for
measurements, since the probe positions allow performance of concomitant MRI acqui-
sition using the 32-channel RF receiver coil and it exploits the regression method that
is easiest to train. At first, the whole set of magnetic field data related to the whole
range of head movements has been used as the training set and the test set spanned the
same range of movements. Results (Figure 5.8) show that in the noiseless condition the
PLS method can successfully predict the whole range of head movements. However, a
closer look at the prediction accuracy for small movements (Figure 5.9) reveals that the
prediction accuracy is poor for this range of movements. In conclusion, using the whole
range of head movements does not train the PLS method well to predict the whole range
of movements with sufficient accuracy.

We consequently evaluated the effect of restricting the range of movements repre-
sented in the training set to small head movements when using the PLS method. Figure
5.10 shows that prediction on small head movements improved significantly, but with
relatively poor prediction accuracy in half of the motion parameters (Tx, Ry, Rz). Us-
ing the same range of head motion for training and test data, the non-linear method
outperforms PLS (Figure 5.13). The explanation may be in the nature of the training
methods. The PLS method based the training on preserving the variance of the data and
for small head movements, variance over probes is small, σ2 ≈ [0.01, 3] for small head
movements and σ2 ≈ [1, 80] for large head movements, and the method is consequently
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Figure 5.7: Effects of physiological motion. Simulated magnetic field data in rest condition (a - only
due to head motion, b - only due to chest expansion, c - the superimposition of a and b) was fitted
using solid harmonics up to the second order (d) zeroth, (e) first, (f) second. Only the first 10 seconds
of data are shown here. Figure (g) shows the prediction of the respiration signals obtained by from
the 0th order fit. (h) shows the head motion parameters.
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harder to train. On the other hand, the NARX method doesn’t rely on the intrinsic
characteristics of the data used for the prediction, but it learns from the examples and,
in the training phase, adjusts the weights of the neurons. In fact, it does fail to predict
large head movements (Figure 5.12) as the adjustment to make between steps is too big.

Following this, the effect of using the non-linear method to predict small head move-
ments was further assessed by considering the magnetic field changes due to the head
motion and the noise sources (∆B). Figure 5.14 shows that the NARX approach is
robust against noise sources as the prediction is not strongly affected by the addition of
a realistic level of noise.

Prediction results obtained using pre-processed simulated data (Figure 5.15) were
comparable to the predictions obtained using noisy simulated data (Figure 5.14) with
the same regression method. Therefore, application of pre-processing to the real data
did not corrupt the information about head motion that is carried by the field changes.

Qualitative evaluation of the prediction obtained with synthetic data

Results (Figures 5.8 to Figures 5.15) were evaluated by plotting the predicted data
(p, dependent variable) as a function of the measured data (d, independent variables).
Ideal results of prediction will lead to the data lying on a line passing through the origin
of the axes (intercept b = 0) and having slope equal to one (a = 1): d = ap. So, data
were fitted using the general line equation: d = ap+ b. Prediction was considered good
if a→ 1,b→ 0.

112



Figure 5.8: Prediction. Simulated magnetic field data (∆Bhead) due to the whole range of head
movements have been used to train the linear regression method (PLS) for Subject 5. Probes were
simulated in the Cloth holder set-up (data are reported in Table B.19). The trained method was
applied to the whole range of head movements (test data). A qualitative analysis of the fit reveals
that the trained method performs well in estimating the movements (p) in the test data (d). As the
PLS method is based on preserving the variance in the data , it better predicts data with similar
variance. However, the small head movements (≤ 3 mm or ◦) seem to be predicted with reduced
accuracy compared to the larger ones. This effect is reported in Figure 5.9.
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Figure 5.9: Prediction. Simulated magnetic field data (∆Bhead) due to the whole range of head
movements have been used to train the linear regression method (PLS) for Subject 5 (Figure 5.8).
Probes were simulated in the Cloth set-up (data are reported in Table B.19). The trained method
was applied to the small range of head movements (test data). A qualitative analysis of the fit (p)
reveals that the trained method perform poorly in estimating the test data (d). Further investigation
is reported in Figure 5.10.
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Figure 5.10: Prediction. Simulated magnetic field data (∆Bhead) due to the small range of head
movements have been used to train the linear regression method (PLS) for Subject 5. Probes were
simulated in the Cloth set-up (data are reported in Table B.19). The trained method was applied
on the small range of head movements (test data). A qualitative analysis of the fit reveals that
the trained method performed poorly on estimating the test data (d), but the prediction (p) was
improved compare to that reported in Figure 5.9.
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Figure 5.11: Prediction. Simulated magnetic field data (∆Bhead) due to the whole range of head
movements have been used to train the non − linear regression method (NARX) for subject 5.
Probes were simulated in the Cloth set-up (data are reported in Table B.19). The trained method
was applied on the whole range of head movements (test data). A qualitative analysis of the trained
method reveals that the fit (p) estimates new data (d) with significant errors. Compared to the PLS
method (Figure 5.8), the small movements are better predicted than the large ones. Changing the
configuration of the probes improves the predictions (Figure 5.12).
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Figure 5.12: Prediction. Simulated magnetic field data (∆Bhead) due to the whole range of head
movements have been used to train the non − linear regression method (NARX) for Subject 5.
Probes were simulated in the PV C set-up (data are reported in Table B.19). The trained method
was applied to the whole range of head movements (test data). A qualitative analysis of the trained
method reveals that the fit estimates new data with significant errors, but with slight improvements
compared to the Cloth probe holder (Figure 5.11).

117



Figure 5.13: Prediction. Simulated magnetic field data (∆Bhead) due to the small range of head
movements have been used to train the non − linear regression method (NARX) for Subject 5.
Probes were simulated in the Cloth set-up (data are reported in Table B.19). The trained method
was applied to the small range of head movements (test data). A qualitative analysis of the trained
method reveal that the fit estimates new data well compared to the linear method (Figure 5.10).
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Figure 5.14: Prediction. Simulated magnetic field data (∆B) due to the small range of head move-
ments and the noise sources have been used to train the non− linear regression method (NARX)
for Subject 5. Training data were not pre − processed to reduce the noise. Probes were simulated
in the Cloth set-up. The trained method was applied to the small range of head movements (test
data). A qualitative analysis of the trained method reveals that the fit estimates new data well
compared to the linear method (Figure 5.10).
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Figure 5.15: Prediction. Simulated magnetic field data (∆B) due to the small range of head move-
ments and the noise sources have been used to train the non− linear regression method (NARX)
for Subject 5. Training data were pre− processed to reduce the noise. Probes were simulated in the
Cloth set-up. The trained method was applied to the small range of head movements (test data).
A qualitative analysis reveals that the pre-processing doesn’t remove the part of the magnetic field
data that represents the head motion, as the prediction results are good and comparable with the
noiseless situation (Figure 5.13).
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5.3 Tests using real data

In Chapter 4, simulated data have been used to identify the best way to predict
head motion parameters from magnetic field changes. The influence of the probe po-
sitions relative to the head, range of movements and noise (from electrical devices and
chest expansion) influences the accuracy of prediction. Both linear (PLS) and non-linear
(NARX) methods (Section 5.1.3) have been applied to simulated data assuming that
the probe distributions followed those used in both the PVC and cloth holders. The
results showed that the most promising prediction pipeline involved using pre-processed
magnetic field data from the cloth probe holder corresponding to a small range of head
movements to train the non-linear method.

Here, the analysis performed on simulated data has been repeated on experimental
measurements from both of the probe-holder set-ups in order to validate the results.
Noiseless simulated data should correspond most closely to pre-processed real data as
they were generated by considering the simulated magnetic field due to head motion
only and pre-processing on real data aims to bring real data closer to this condition by
reducing the influence of respiratory effects (Figure 5.6). Raw magnetic field data mea-
surements correspond to the simulated data that considers all the sources of magnetic
field change (head motion, chest expansion and electrical noise). Further comparison
between predictions obtained with simulated and real data has been reported in Section
5.4.2.

For the benefit of clarity, results obtained over all the subjects (Subjects 1,2,3 and
6 for the PVC set-up and 1,2,3,4 and 5 for the cloth probe holder) are reported in the
Appendix C and summarized in Tables 5.3 and 5.5. Here, results from Subject 3 have
been used as a reference since the data from this subject were available for both set-ups.
These results were compared with those from Subjects 5 and 6 for the two set-ups. The
relevant plots are reported in Section 5.3.4.

Statistical evaluations of the fits are reported for single subjects over all the condi-
tions tested because the fit on results on single subject may differ from the fit on the
overall set of results (for example Figure 5.35 on Subject 3 and Figure C.10 that sum-
marise measurements over all the subjects). This agreed with the fact that each data-set
is unique, as the relative distance between probes and head and the exact movements
are different for each subject.

Small movements refer to rest and the feet-wiggling conditions. Large movements
refer to the whole range of data acquired (rest, feet-wiggling, head shaking and head
nodding). Regression methods were trained and applied to the same range of move-
ments. The numbers of data points available differ significantly for the two set-ups for
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the two ranges of motion (Table 3.3) because the experimental procedure evolved over
time as we moved from using the PVC probe holder to the use of the cloth probe holder.

Small range of head movements (Figure number, evaluation)
Raw Pre-processed

PLS NARX NARX
PVC cloth PVC cloth cloth cloth (Less data)

Subject 1 C.1, poor C.3, poor C.5, poor C.7, good C.10, good C.11, good
Subject 2 C.1, poor C.3, poor C.5, poor C.7, good C.10, good C.11, poor
Subject 3 5.17, good 5.23, poor 5.27, poor 5.31, good 5.35, good C.11, poor
Subject 4 - C.3, poor - C.7, good C.10, good C.11, poor
Subject 5 - 5.24, poor - 5.32, good 5.36, good C.11, good
Subject 6 5.18, poor - 5.28, poor - - -

Table 5.3: Table summarizes the outcome of the predictions reported in the indicated figures based
on the criteria listed in the equation 5.5

Small range of head movements (Table’s number, evaluation)
Raw Pre-processed

PLS NARX NARX
PVC cloth PVC cloth cloth cloth (Less data)

Subject 1 C.1, poor C.12, poor C.21, poor C.29, good C.39, good C.44, good
Subject 2 C.2, poor C.11, poor C.22, poor C.30, good C.40, good C.45, poor
Subject 3 C.3, good C.13, poor C.23, poor C.31, good C.41, good C.46, poor
Subject 4 - C.14, poor - C.32, good C.42, good C.47, poor
Subject 5 - C.15, poor - C.33, good C.43, good C.48, good
Subject 6 C.4, poor - C.24, poor - - -

Table 5.4: Table summarizes the outcome of the predictions reported in the indicated tables based on
the criteria listed in the equation 5.5
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Large range of head movements (Figure number, evaluation)
Raw

PLS NARX
PVC cloth PVC cloth cloth (Less data)

Subject 1 C.2, poor C.4, poor C.6, poor C.8, poor C.9, poor
Subject 2 C.2, poor C.4, poor C.6, poor C.8, poor C.9, poor
Subject 3 5.19, poor 5.25, poor 5.29, poor 5.33, poor C.9, poor

(Fast) 5.21, poor - - -
Subject 4 - C.4, poor - C.8, poor C.9, poor
Subject 5 - 5.26, poor - 5.34, poor C.9, poor
Subject 6 5.20, poor - 5.30, poor - -

(Fast) 5.22, poor - - - -

Table 5.5: Table summarizes the outcome of the predictions reported in the indicated figures based
on the criteria listed in the equation 5.5

Large range of head movements (Table’s number, evaluation)
Raw

PLS NARX
PVC cloth PVC cloth cloth (Less data)

Subject 1 C.5, poor C.16, poor C.25, poor C.34, poor (qualitative)
Subject 2 C.6, poor C.17, poor C.26, poor C.35, poor (qualitative)
Subject 3 C.7, poor C.18, poor C.27, poor 5.33, poor (qualitative)

(Fast) - - - - -
Subject 4 - C.11, poor - C.37, poor (qualitative)
Subject 5 - C.20, poor - C.38, poor (qualitative)
Subject 6 C.8, poor - C.28, poor - -

(Fast) - - - - -

Table 5.6: Table summarizes the outcome of the predictions reported in the indicated tables based on
the criteria listed in the equation 5.5

5.3.1 Predicting head motion using the linear regression method
(raw data)

Raw data acquired using the PVC set-up (Subject 3) were used to test predictions
made using the linear method trained on small and large ranges of movements. Figures
5.17 and 5.19 and Tables C.7, C.3 report results for Subject 3. The analysis was repeated
considering data obtained using the cloth holder set-up (Figures 5.23 and 5.25, Tables
C.13 and C.18).

Overall, the linear method did not perform well on raw real data over for either the
set-ups. Predictions of the whole range of movements were poor for all the subjects
(Figures C.2-PVC, C.4-cloth). Better results were obtained by training the method over
the small range of movements only (Figures 5.17-PVC, 5.23-cloth).
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PVC set-up and PLS method: comparing results between Subjects 3 and
6.
Comparison of the results obtained from Subject 3 and Subject 6 could be made for
the PVC set-up. In the case of prediction (and training) of the linear method on small
head movements, the results on Subject 3 (Figure 5.17, Table C.3) were better than
those obtained from Subject 6 (Figure 5.18, Table C.4). The most likely explanation for
this finding is that the range of movements are slightly larger for Subject 3 and there
is a smaller average distance between the head and the probes (as the head volume of
Subject 3 is larger than that of Subject 6, respectively 4.1 ·10−3 m3 and 3.7 ·10−3 m3 ,see
Table 4.2). Opposite results were obtained for the training on large head movements as
Subject 6 performed a larger range of head movements in the relevant motion conditions
(Figure 5.20, Table C.8).

A second possible explanation of the results relates to the rate of sampling of move-
ments (Figure 5.16, Table B.14). All subjects were asked to perform the same movements
but the rate of movement varied across subjects and experiments on the same subject.
Predictions derived from data measured with ”faster” movements are reported in Figure
5.21 (Subject 3) and Figure 5.22 (Subject 6) and in both cases the results were worse
than the ”normal” speed movements (Figure 5.19, Table C.7 for Subject 3 ; Figure 5.18,
Table C.4 for Subject 6). While performing faster movements, Subject 3 also reduced
the extent of the movement (so reducing the greatest proximity of the head to the probes
and thus the strength of the magnetic field changes, and therefore the accuracy of pre-
diction), while Subject 6 was more consistent in the extent of movement which they
made. Considering that the sampling frequency of the magnetic field camera is constant
( 1

0.150
≈ 6.7 Hz), the faster the movements, the bigger the change in sampled magnetic

field between consecutive measurements and the accuracy of the relationship between
magnetic field change and head position is consequently reduced.

The analysis of the effect of the rate of head movement also highlights the fact that
subjects may perform large head movements at a rate that is close to the respiration
frequency (Table 5.7) and so magnetic field changes from two different sources (head
motion, chest expansion) will happen at the same frequency. This may be an issue to
consider as the pre-processing of magnetic field data aims to reduce the influence of
physiological noise by removing the harmonics that carry magnetic field changes at the
respiration frequency.
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Figure 5.16: Sampling rate of movements. Plots reports the predominant head motion parameters
for head (s.3, s.6) shake and (n.3, n.6) head nod condition (Rz and Rx, orange and green dashed
lines respectively, in the scanner frame) performed at two different frequencies (Fast, Slow, tagged
with green and pink dots respectively) for two subjects (3, 6) along with one respiration cycle
(black). Motion and magnetic field data are reported in Table B.14. Frequency of the motion and
the respiration are reported. (a) reports the frequency spectrum of the predominant head motion
parameter at head shake conditions for Subject 3 (a.3) and 6 (a.6). (b) reports the frequency
spectrum of the predominant head motion parameter at head nod conditions for Subject 3 (b.3) and
6 (b.6). (c) and (d) reports the frequency spectrum of the respiration signal for Subject 3 (c.3, d.3)
and 6 (c.6, d.6) acquired while subjects performed the head movements listed above.

PVC cloth
Rest Shake Nod Rest Shake Nod

Subject 1 0.30 0.43 0.30 0.24 0.49 0.49
Subject 2 0.33 0.49 0.49 0.21 0.54 0.24
Subject 3 0.28 0.32 0.29 0.23 0.72 0.20
Subject 4 − − − 0.28 0.34 0.32
Subject 5 − − − 0.23 0.50 0.76
Subject 6 0.24 0.11 0.16 − − −

Table 5.7: Frequency of head movements. The Values of the frequency of movements for all the
volunteers and head movements performed. Feet-wiggling produces small random movements with
a uniformly distributed frequency spectrum. So, it is not possible to identify a unique frequency to
characterize the activity.
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Cloth probe holder and PLS method: comparing results between Subjects 3
and 5.
Comparison of results from Subject 3 and Subject 5 could be made for the cloth probe
holder set-up. In the case of prediction (and training) of the linear method on small
head movements, results on Subject 3 were worse than those obtained from Subject 5
(Figure 5.24, Table C.15). The reason is that the extent of movements is slightly larger
over the whole head motion parameters and this reduces the distance between the head
and the probes (as head volume of Subject 3 is slightly bigger than that of the Subject
5, see Table 4.2). Predictions of large head movements were poor in both cases. Results
for Subject 5 are reported in Figure 5.26 and Table C.20.

Comparing results on small head movements between the set-ups (Subject
3).
Comparison of results obtained from Subject 3 from the two different probe holders
could be made by considering information in Figure 4.9. Data are reported in Table
B.10. A larger change in magnetic field is found when using the PVC support because
the distance between the head and probes varies more significantly over probes and head
motion conditions. In fact, we see that the prediction obtained using the PLS method
for data acquired using PVC probes holder (Figure 5.17) is better than that obtained
using the cloth holder (Figure 5.23). In conclusion, for a similar range of movements
and similar head-probe distances, we can see that the spatial distribution over which the
field is sampled relative to the head motion plays a role.

5.3.2 Predicting head motion using the non-linear regression
method (raw data)

Raw data acquired using the PVC set-up (Subject 3) were used to test the predic-
tions made using the non− linear method trained on data acquired with small and large
ranges of movements. Figures 5.27 and 5.29 and Tables C.23, C.27 report results for
Subject 3. The analysis was repeated considering data obtained using the cloth probe
holder set-up (Figures 5.31 and 5.33, Tables C.31 and C.36).

Overall, the non − linear method performed similarly to the linear one on raw real
data over both set-ups. Predictions of the whole range of movements were worse (Figures
C.6-PVC, C.8-cloth) than results obtained when training the method over the small range
of movements only (Figures C.5-PVC, C.7-cloth) for all the subjects. Also, results on

126



small head movements are better than those obtained with the linear method for the
same data acquisition conditions.

PVC set-up and NARX method: comparing results between Subjects 3 and
6.
Comparison of results obtained from Subjects 3 and 6 could be made for the PVC
set-ups. In the case of prediction (and training) of the non-linear method on small
head movements, the results from Subject 3 (Figure 5.27, Table C.23) were better than
this obtained from Subject 6 (Figure 5.28, Table C.24), but in both cases, the results
were relatively poor. Predictions of large head movements were poor for both subjects
(Subject 3: Figure 5.29, Table C.27, Subject 6 Figure 5.30, Table C.28).

Cloth probe holder and NARX method: comparing results between Subjects
3 and 5.
Comparison of results obtained from Subjects 3 and 5 could be made for the cloth probe
holder. In the case of prediction (and training) of the linear method on small head
movements, the results on Subject 3 (Figure 5.31, Table C.31) were worse than those
obtained from Subject 5 (Figure 5.32, Table C.33) as for the linear method. A possible
explanation for this finding is that the range of movements was larger for Subject 5 than
for Subject 3. Predictions of large head movements were poor for both subjects (Subject
3: Figure 5.33, Table C.36, Subject 6 Figure 5.34, Table C.38).

Comparing results on small head movements between the set-ups (Subject
3).
A comparison of the results obtained from Subject 3 using the two different probe holder
set-ups could be made considering information in Figure 4.9. The data are also reported
in Table B.10. The smaller change in magnetic field obtained when using the cloth sup-
port occurs because the distance between the head and probes doesn’t vary significantly
for any probes for the motion conditions considered. In fact, comparing Figures 5.27 and
5.31, for similar range of movements and similar head-probe distances, where the field is
sampled relative to the head motion influences the data and so the results.

5.3.3 Predicting head motion using the non-linear regression
method (pre-processed data)

Analysis of head motion predictions derived from real data recorded with small and
large ranges of head movements over the two set-ups and subjects indicate that the non-
linear method in the cloth configuration performs best, in particular for the small head
movements. In this section, this optimal choice of set-up and regression method were
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applied on pre-processed data to test the effect of spatial filtering on real data.

Overall, the non-linear method performed well on pre-processed real data over the
volunteers (Figures C.10, Subject 3 5.35, Subject 5 5.36), but there is not a noticeable
improvement in the accuracy compared to the results obtained on raw data (Figure
C.7, Subject 3 5.31, and Figure 5.32, Subject 5). Further evaluation of the prediction
accuracy was therefore made in terms of the timing necessary for training the network
before obtaining a one time-step prediction. The number of data needed for prediction
and training were also evaluated.

Timing of the prediction process. The time necessary to train a neural network
depends on a few non-independent factors. First, it depends on the architecture chosen:
a simpler architecture should require less time to be trained. In the case of the raw data,
the architecture was always set by the number of neurons in the hidden layer which
was equal to the number of channels of the magnetic field camera (16), the number of
neurons in the hidden layer (arbitrarily chosen as 30, more details Section in Appendix
A) and the number of neurons in the output layer, which was equal to the number of
head motion parameters (6). In the case of pre-processed data, the number of neurons
in the input layer is determined by the outcome of the feature selection (as explained
in Section 5.1.1). The random initialization of the neurons’ weights will also influence
the time necessary for the training. For unfavourable values of the initial weights, the
back-propagation algorithm used to optimize the weights of the neurons may take longer
(e.g. because it meets a local minimum of the best fit function or goes into over-training).
Numerical values of the weights of the trained network will influence the algebraic elab-
oration of the prediction. Last, the number of data points used for the training will
strongly influence the time needed for the training as the number of iterations (to com-
plete an epoch) necessary to train the network increases with the number of data points.
The range of the head movements will also influence the time necessary for the training.

Table 5.8 reports the time (in s) necessary to train the best neural network from the
more than 10 neural networks that were trained (Appendix A) and the average time (in
ms) to calculate one prediction over all the subjects (for the cloth probe holder) and for
raw, pre-processed data and large/small range of head motion. Comparing results for the
small and large ranges of head motion, networks trained on large head movements take
longer to be trained and to produce a prediction and also give less accurate predictions
(Tables 5.5 and 5.3 and Figures C.8 and C.7). This reflects the larger range of field
changes for large head motion (Tables B.8 to B.12) that lead to more time needed for
training and more time to compute the prediction. When comparing small head motion
in the case of raw and pre-processed data, the time needed for training does not differ
significantly, while the time for the prediction is reduced by one order of magnitude.
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Varying the size of the training data-set. Table 5.9 reports the time (in s) nec-
essary to train the best neural network chosen from the more than 10 neural networks
trained (Appendix A) and the average time (in ms) to calculate one prediction over all
the subjects (cloth probe holder) and for raw, pre-processed data and large/small range
of head motion. The number of data points used for the training was significantly re-
duced compared to the number of data points used for the PVC set-up ( compare values
reported in Tables 5.1.3 and 5.1.3). This, other than reducing the time necessary for the
training, would also test whether the network went into over-training (especially for large
head movements as predictions were poor). Predictions on pre-processed data (Figure
C.11) were poor for all the head motion parameters.

Raw Pre-processed
Small Large Small

A T [s] P [ms] T [s] P [ms] A T [s] P [ms]
Subject 1 13− 30− 6 87 0.82 120 0.11 7− 30− 6 100 0.09
Subject 2 13− 30− 6 67 1.47 179 0.08 11− 30− 6 82 0.09
Subject 3 13− 30− 6 57 1.11 182 0.08 10− 30− 6 56 0.08
Subject 4 13− 30− 6 91 1.05 149 0.08 10− 30− 6 53 0.09
Subject 5 13− 30− 6 63 1.25 220 0.08 7− 30− 6 47 0.09

Table 5.8: The table reports the architecture (A) of the networks (number of neurons in the input -
hidden - output layer), time in seconds to train the best network of the 10 networks trained (T [s]),
time in milliseconds to obtain 1 step-ahead prediction (P [ms]) for raw and pre-processed data, over
all the subject, for the cloth probe holder set-up. The number of data points used for training were
as reported in Table 5.1.3.

Raw Pre-processed
Small Large Small

A T [s] P [ms] T [s] P [ms] A T [s] P [ms]
Subject 1 13− 30− 6 11 0.26 24 3.52 7− 30− 6 10 0.25
Subject 2 13− 30− 6 13 0.24 30 2.21 11− 30− 6 10 0.26
Subject 3 13− 30− 6 22 0.12 26 1.53 10− 30− 6 12 0.26
Subject 4 13− 30− 6 10 0.24 35 1.98 10− 30− 6 9 0.25
Subject 5 13− 30− 6 15 0.26 27 0.25 7− 30− 6 12 0.25

Table 5.9: Table reports the architecture (A) of the networks (number of neurons in the input - hidden
- output layer), time in seconds to train the best network from the 10 networks trained (T [s]), time
in milliseconds to obtain 1 step-ahead prediction (P [ms]) for raw and pre-processed data, over all
the subject, for the cloth probe holder. The number of data values used for training were equal to
the number of data values used to train the linear method (Table 5.1.3).
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5.3.4 Plots of predictions shown in section 5.3

PVC set-up and PLS method (Subjects 3 and 6).

Figure 5.17: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for Subject 3, using rawdata for training the linear regression method (Table
5.1.3). Prediction results are good (equation 5.5). Statistical evaluation of the results is reported in
Table C.3.

Figure 5.18: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for Subject 6, using raw data for training the linear regression method (Table
5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is reported in
Table C.4.
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Figure 5.19: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for Subject 3, using raw data for training the linear regression method (Table
5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is reported in
Table C.7.

Figure 5.20: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for Subject 6, using raw data for training the linear regression method (Table
5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is reported in
Table C.8.
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Figure 5.21: The figure shows results obtained for fastlarge head movements, sampled using the PV C
probe-holder set-up for Subject 3, using raw data for training the linear regression method (Table
5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is reported in
Table C.9.

Figure 5.22: The figure shows results obtained for fastlarge head movements, sampled using the PV C
probe-holder set-up for Subject 6, using raw data for training the linear regression method (Table
5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is reported in
Table C.10.
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Cloth probe holder and PLS method (Subject 3 and 5).

Figure 5.23: The figure shows results obtained for small head movements, sampled using the
clothprobe − holder set-up for Subject 3, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.13.

Figure 5.24: The figure shows results obtained for small head movements, sampled using the
clothprobe − holder set-up for Subject 5, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.15.
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Figure 5.25: The figure shows results obtained for large head movements, sampled using the
clothprobe − holder set-up for Subject 3, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.18.

Figure 5.26: The figure shows results obtained for large head movements, sampled using the
clothprobe − holder set-up for Subject 5, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.20.
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PVC set-up and NARX method (Subject 3 and 6).

Figure 5.27: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for Subject 3, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.23.

Figure 5.28: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for Subject 6, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.24.
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Figure 5.29: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for Subject 3, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.27.

Figure 5.30: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for Subject 6, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.28.
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Cloth probe holder and NARX method (Subject 3 and 5).

Figure 5.31: The figure shows results obtained for small head movements, sampled using the
clothprobe − holder set-up for Subject 3, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results
is reported in Table C.31.

Figure 5.32: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 5, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are good (equation 5.5). Statistical evaluation of the results is
reported in Table C.33.
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Figure 5.33: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for Subject 3, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poorequation 5.5). Statistical evaluation of the results is reported
in Table C.36.

Figure 5.34: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for Subject 5, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table C.38.
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Testing the pre-processing.

Figure 5.35: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 3, using pre−processed data for training the non− linear regression
method (Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results
is reported in Table C.41.

Figure 5.36: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 5, using pre−processed data for training the non− linear regression
method (Table 5.1.3). Prediction results are good (equation 5.5). Statistical evaluation of the results
is reported in Table C.43.
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5.4 Conclusion

Experimental magnetic field data acquired using different set-ups have been charac-
terised (Subsection 4.2.2). Predictions of head motion parameters obtained using both
regression methods have been made using data from all of the 6 subjects involved in the
measurements performed without simultaneous scanning (Section 5.3). By comparing
results between subjects, set-ups, and regression methods, the best pipeline to perform
accurate predictions on small range of head motion is to pre-processed magnetic field
data and to train the non-linear regression method. The code is reported in Appendix D.

In the future, the use of simulated data (instead of real data) to train the regression
method might provide a further development of the technique. Improvements on the
simulation program would involve further optimisation (e.g. parallel programming) to
reduce the time necessary to produce a ≈ 1000 data point time series (equal to ≈ 2 hours
with the system used) and a better approximation of the magnitude of the data (e.g. by
acquiring the MR image to obtain the head model and the probe positions in the same
scanning session and frame of reference).

5.4.1 Simulated data

This chapter has reported the analysis of synthetic magnetic field data which have
been shown to be coherent enough with real data to be used to meet the aims of this study
(Section 4.1.1). Changes in extra-cranial magnetic field mainly depend on head-probe
distances and relative positions (Section 4.2). The mathematical relationship between
head motion parameters and extra-cranial magnetic field changes has been studied also
considering the effect of noise sources. Magnetic field changes due to respiration (Section
4.3) can be successfully ameliorated with the proposed spatial filter and the filtered signal
can then be used to predict respiration-like signals in a non-contact fashion (Figure 4.5).
The prediction of head motion parameters can be performed using either the linear or the
non-linear regression method (Section 5.2.2). The use of simulations allows predictions
to be performed using noiseless magnetic field data due to head motion only (Figures 5.8,
5.10, 5.11, 5.12). This has allowed the identification of the non-linear method as the best
method to perform predictions (Figure 5.13). Then, the robustness of the prediction has
been tested by adding (and filtering) noise sources (Figures 5.14, 5.15). Conclusions and
observations on results obtained on simulated data form a starting point for analyses on
real data presented in Chapter 5.
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Simulated Real
Support Range Method Data Figure Data Figure

Cloth Large PLS ∆BHead 5.8 ∆B 5.26
Cloth Small PLS ∆BHead 5.10 ∆B 5.24
Cloth Large NARX ∆BHead 5.11 ∆B 5.34
PVC Large NARX ∆BHead 5.12 − −
Cloth Small NARX ∆BHead 5.13 − −
Cloth Small NARX ∆B 5.14 ∆B 5.32
Cloth Small NARX ∆B (pre-processed) 5.15 ∆B, (pre-processed) 5.36

Table 5.10: The table lists the data analysis that involved data (real or simulated) from Subject 5 for
various set-ups (Support), range of head movements (Range), regression methods (Method), noise
level on the data (Data) in agreement with Figure 5.6. Figures 5.14 and 5.32, Figures 5.15 and 5.36
could be used to test the effectiveness of the results.

5.4.2 Comparison between predictions made using simulated
and real data

The aim of generating synthetic data was not to accurately reproduce real extra-
cranial magnetic field changes, but to obtain a time series that would allow the main
features of the phenomenon to be studied in a controlled environment (Figure 5.6). These
are: changing coherently with head motion (Figures 4.4 and 4.5), head-probe distance
(Figures 4.4 and 4.5), influences of magnetic field changes due to chest expansion (Figure
5.7) and general background noise level.

As all these parameters can be controlled in the simulated environment, simulated
data have been further used as a proof of concept to identify the best way to obtain
good predictions of head motion parameters. The simulated data that were considered
were produced from one data series, one head model (Subject 5), and considering probe
positions in a Cloth-like set-up. PVC-like sampling was used only to further test the
influence of probes displacements in one case.

Table 5.10 lists the analysis made either for simulated or real data. At first, simu-
lated data generated by the simpler simulation model (where magnetic field changes are
due only to head motion) and the linear regression method have been used to compare
predictions for large and small ranges of head movement. These results (Figures 5.8 and
5.10) cannot be compared with similar results obtained with real data (Figures 5.26 and
5.24) because noise sources have not been considered. Similar considerations hold for
Figures 5.11 and 5.34. Subject 5 did not attend a scanner session when the PVC holder
was in use, so Figure 5.12 does not have a real data counterpart. However, this analysis
shows that a more even sampling of the field would lead to better predictions. So, the
position of the probes in the Cloth holder has been slightly modified for the session with
simultaneous scanning.
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Simulated data have been used to establish that a small range of movements and the
use of the non-linear method for prediction, when probes are in the Cloth-like set-up, is
the best combination to obtain accurate predictions, even in the presence of noise sources
(Figure 5.14) as confirmed with real data (Figure 5.32). The pre-processing pipeline and
the spatial filter have then been tested with simulated data (Figure 5.15) and results
have been confirmed with real data (Figure 5.36).
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Chapter 6

Pilot studies on improving the
prediction of the head motion
parameters

In Chapter 5 the core of the work presented in this thesis was discussed in detail,
showing how to predict head motion parameters from measurements of extra-cranial
magnetic field changes using two supervised learning techniques (Subsection 5.1.3). This
chapter reports pilot studies involving future solutions that, if fully implemented, could
improve the motion predictions and the associated corrections of the MR image.

In the work described in Chapter 5, it has been chosen to limit the range of move-
ments predicted ( ≤ 5 mm, ≤ 5◦) in favour of achieving greater accuracy. K-space
lines acquired simultaneously to head movements outside this range cannot be accu-
rately corrected. To solve this issue, a retrospective pilot study (Section 6.1) has been
conducted on magnetic field data. Exaggerated head movements have been identified by
thresholding magnetic field data. Two approaches have been tested. First, the threshold
was unique over the channels of the NMR field camera, then, it was customised for each
channel. The probes act as a sensor that provides a trigger when exaggerated movements
have occurred. In its future implementation, this trigger could be linked to the imaging
acquisition process (skip-and-redo strategy [89]).

In Section 2.1, common standard clinical practices aiming for motion prevention were
listed. Respiratory gating can provide external triggers to the MR image acquisition and
is usually implemented using a respiratory belt. Section 6.2 reports a pilot study on
using the 0th order solid harmonic fit (Subsection 5.1.1) of the magnetic field changes to
form a signal for use in respiratory motion monitoring.

The above solutions only have been further tested on data acquired with simulta-
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neous imaging sequence. Results are reported in Chapter 7 and represents a proof of
concept for future development.

The accuracy of the head motion parameters measurements from the optical camera,
used for the training of the supervised regression method, limits the accuracy of the
prediction and leads to a partially contact-less technique. Alternative methods that
overcome the need for markers [131] or involve the use of the NMR camera only[60]
are valid alternatives to explore in the future. In Subsection 6.3.1, the development
of an active magnetic marker system that would augment the magnetic field changes
due to the head movements is presented. The pilot study has been carried out mainly
by implementing simulations. Simulated data have been used to predict head motion
parameters. As the physics of the phenomena is well known in this case, a least square
regression method as been used for the prediction. The active magnetic marker system
plus the field camera could also be used as standalone marker-based system (like the
MPT camera used in this thesis).

6.1 Flag significant head movements using magnetic

field data

In this section, the possibility of using extra-cranial field measurements to flag up
significant motion has been explored. This represents a first step towards the prediction
of head motion parameters and it would allow the acquisition of an MR scan where the
image is too corrupted from head movements to be useful to be stopped. If the level of
movement is larger than the range of effectiveness of a particular MoCo technique, the
image results will still be corrupted. Under these circumstances, or when no MoCo is
applied, it would be useful to have a system which could indicate when head movement
that is large enough to cause significant image artefact has occurred. This would poten-
tially allow a choice to be made to reacquire all, or part of, the k-space data needed for
image production, so reducing the economic and environmental cost of MR techniques
and discomfort to the patient. The proposed approach allows the detection of significant
head movements without requiring image sequence modification [4] nor rigid coupling of
a motion marker to the volunteer’s head.

Magnetic field probes were positioned evenly around the head in the PVC support
(Figure 3.1), whilst head pose was simultaneously monitored using a Moiré Phase Track-
ing (MPT) system.

The detection of significant motion is based on a comparison of the variance of the
field measurements acquired during a short time interval, to the average value of the
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variance measured with the subject at rest in the scanner.
First of all, for each probe (p), normalization factors (Np) have been evaluated on train-
ing data. Then, thresholds to discriminate each accepted movement have been defined
(Ep). Finally, exaggerated motions were identified by normalising new data representing
large head movements.
Np represents the average value of the variance of magnetic field variation (σ2

( p, i)) eval-

uated over n time intervals (∆t = 1.5 s) each one equivalent to 10 field measurements:

Np =

∑n
i−1 σ

2
p,i

n
(6.1)

Thresholds are defined by taking the maximum value of the time series. Ep values are
obtained by normalizing the variance of each time i− intervals for each probe:

Ep = max

(
σ2
p,i

Np

)
(6.2)

The thresholds are then compared with the normalized signal over j− time intervals for
new data:

Ep ≤
σ2
p,j

Np

(6.3)

Each probe for which the level is exceeded is flagged. Based on the number of probes
indicating significant motion, an informed choice can be made to reacquire all, or part
of, the k − space data needed for MR image production.

6.1.1 Flag significant head movements using magnetic field data

A threshold method that can be applied to measured extra-cranial magnetic field data
to identify large head motion has been described in Section 6.1. Here, I present the results
obtained by varying the set-ups and the reference levels on experimentally acquired data.

This information could be used to make an informed decision on stopping the scan
acquisition early or to flag the k-space lines that are most significantly affected by the
motion and so should be re-acquired. By varying the threshold levels, it would be possible
to adjust the level of movement above which a significant number of probes are classified
as invalid.

Setting a single threshold for all the probe signals The plots in Figure 4.6 show
the extra-cranial changes in magnetic field for different head movements for one subject
where probes were fixed in the PVC support. Larger changes are measured for larger
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Figure 6.1: Detection. Example of the detection of large head movements using different reference
levels defined based on the average variance measured in the resting data. a) represents data acquired
at rest, b) represents data acquired during feet-wiggling, c) represents data during head shaking and
d) represents data acquired during head nodding. The number of probes classified as invalid at
each time-point during 50 s of recordings for different movement conditions is shown for constant
thresholds over all channels of 4, 20 and 100 times the resting state value. The RMS movement
parameters are shown for comparison in red and black lines. As the threshold is increased larger
movements are required to produce a significant number of invalid probes.
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head movements, as expected.

The threshold level was constant over the probes, so a certain number of probes will
signal the exaggerated motion. The variation of the number of probes classified as invalid
with time during the different movement conditions is shown in Figure 6.1 for different
values of the threshold level. The concurrent variation of the RMS displacement and ro-
tation relative to the starting position (measured using the MPT system) is also shown.

These results indicate that by varying the threshold level it is possible to adjust the
level of movement above which a significant number of probes are classified as invalid.
This would identify the level of motion at which a problem with MRI data is flagged to
the operator.

Figure 6.2: Exaggerated head motion detection. Plots show examples of exaggerated head motion
detection of head movements using different reference levels for different probes. The levels were
defined based on the maximum variance over time intervals of 1.5 s at rest. Plot (a) shows that
no probes detected exaggerated motion in the rest condition for new data over 10 s, while for (b)
feet-wiggling, head (c) shaking and (d) nodding a varying number of probes did. As the range of head
movements increases, the histograms show that more probes tag the head movement as exaggerated
at concurrent time intervals.

Set customised thresholds for each probe Figure 6.2 shows the analysis of the
pattern of variation of the number of probes (cloth support) that detect exaggerated head
movements along with the concurrent measurements of head movements with a varying
threshold over the probes. When the threshold is varied over probes, the pattern on
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the numbers of probes signalling the exaggerated motion becomes clearer. For example,
comparing the head shaking condition over 10 seconds in Figure 6.1 and Figure 6.2, the
number of probes showing field changes above threshold is higher and more consistent
in the second case.

6.2 Respiration-like signals derived from magnetic

field data

Figure 6.3: Physiological signal from NMR field probes. (a) Probe positions, 14 were in the PVC holder
and probe 13 and probe 1 were positioned above the chest on a plastic support. The shape of the
field gradient at those distances from the isocentre is not reliable (Figure 1.15), so they were localized
incorrectly and the absolute magnetic field (b) is not a valid measurement. (c) Probes 1, 13 (above
the chest) and 5 (approximately under the head-neck pivot) recorded a signal clearly correlated with
the physiological parameters as confirmed by the peak at the respiration frequency.

It has been demonstrated that a set of 16 magnetic field probes is able to record a
valid respiration signal if placed close to the chest [130]. Two plastic extensions were
added to the PVC probe-holder in order to position two field probes close to the chest
(Figure 6.3). This is outside the region of linearity of the scanner’s gradient coils, so the
positions of these probes (numbers 1 and 13) were not identified correctly and the spatial
variation of the measured field from them was not valid, while the frequency analysis
showed a clear correlation with the physiological parameters [11]. However, this set-up
raised safety concerns in terms of the rapidity with which the subject would be able
to exit the scanner in the case of an emergency and this idea was not further tested.
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As probe number 5, located approximately under the head-neck pivot, shows a similar
correlation with the physiological signal, it was concluded that locating more probes
close to this region of the head would provide a valid signal for the analysis.
In Section 4.3, a method to derive respiratory signals from zero order solid harmonic fit of

Figure 6.4: Physiological signals. (a) The prediction of the respiration signal obtained by filtering the
0th order fit plotted along with the concurrent recording from the respiration belt and the signal
directly recorded by one of the NMR probes (Subject 5). The fit has been compared with the
signal from probe number 16. Signals have been normalized between minus one and one for clarity.
(b) The figure shows that the signal derived from the field measurements is robust against different
respiratory regimes, while the respiratory belt may fail if the pillow under the sternum is not squeezed
appropriately (Subject 4).

the magnetic field data has been presented. Here, the method is tested on real data using
the cloth probe-holder set-up (Figure 6.5). The signals from probes sited closer to the
chest along the head-foot direction (probes 10, 9, 16) are most influenced by the effects of
chest movement. Lower-order harmonic fit signals have been superimposed and filtered
using a band-pass filter centred at the respiratory frequency (on average 0.3± 0.1 [Hz])
for Subject 5. Results are shown in Figure 6.4.a. To test the robustness of the method
against different respiration conditions, Subject 4 was instructed to breathe by expanding
the diaphragm or the chest, or to breathe normally. The pillow of the respiratory belt
that is placed on the sternum is squeezed differently in different conditions and so may
not accurately measure the signal, while the respiration signal extrapolated from the
magnetic field change is less affected by these differences (Figure 6.4.b).
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Figure 6.5: Solid harmonic fit (real data) and physiological signals prediction. Magnetic field data
recorded during the rest condition were fitted using solid harmonic functions up to the second order
(a) zeroth, (b) first, (c) second. Only the first 10 seconds are shown here. The frequency spectra
(d,e,f) reveal that harmonics are influenced differently by the head motion (h) and respiration. Figure
(g) shows the prediction of the respiration signal obtained from the 0th order fit.
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6.3 Improve the accuracy of the motion parameters

data used for training the regression method

This chapter reports two pilot studies that link to the main project shown in this
dissertation.

One, presents a simulation of a new head motion tracking system based on the use of
active magnetic markers. The magnetic field of these markers is detected by using the
NMR field probes and used to predict the position of the marker system. This has some
advantages compared to other marker-based motion correction techniques as it doesn’t
require solution of the correspondence problem [69] to find the marker system position,
does not require line of sight access to the marker [8], and could be implemented in a
way that does not interfere with the imaging sequence and the paired system of markers
and NMR probes is fully MRI compatible [35].

6.3.1 Active magnetic marker system for MoCo

The use of a magnetic marker to augment the extra-cranial magnetic field signal has
been explored. Configurations using para-magnetic material increase the magnetic field,
but since this additional field is likely also to extend over the imaging region the head
and is always present, it will likely corrupt the images. A better approach is to use
the additional field from active coils which can be switched on and off. Possible set-ups
include: (1) a single coil solution, (2) a two-coil solution and (3) a multiple coil solution
(with non-symmetrical disposition of the coils). Options (2) and (3) involve arranging
the coils in a known geometry and so add extra information for the prediction of the
movements. We proved that the position of the coils can be determined using a least
square regression function.

To test the feasibility of the idea in the MRI scanner, two small coils were built to
perform a preliminary measurement of the generated magnetic field using a customised
foam-based probe-holder (without simultaneous scanning). Then, the experiment has
been simulated testing a set-up feasible for scanning. Probe positions were simulated as
uniformly displaced on the upper part of the internal surface of the RF transmit coil. The
cross section of the internal volume is elliptical shaped with major axes equal to 28.1 cm
and minor axes equal to 26.0 cm. Probes cover 22.0 cm of the height of the cylinder.
Code to generate the probe positions is reported in the Appendix D.5. Our initial results
show that changes in head pose can be accurately estimated from measurements of the
field at 16 field probe positions due to currents pulsed in a set of small coils attached to
the head.
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6.3.2 Simulated magnetic field of a dipole generated by a single
coil

Figure 6.6: Examples of simulated fields for single dipole. The magnetic field generated by a magnetic
dipole is well defined by equation 6.11. Coil positions (top) and z-component of the magnetic field
[132] on a cylindrical surface (bottom). Probe positions are highlighted using circles (top) or line
crossings (bottom). Field results asymmetric as probes lies on a cylindrical surface. The field has
been evaluated for a dipole aligned along the three different Cartesian axes (a-y, b-z, c-x) positioned
at (x, y, z) = [0.02;−0.08; 0.02]m.

The idea is to use small coil(s) in a fixed fashion rigidly coupled with the skull. The
coil(s) act as active magnetic markers and measurements made using the NMR probes
can then reveal the position of the markers. This idea has been simulated in Figure
6.6. Coils which could feasibly be built and operated inside an MR scanner have been
simulated.

• Number of windings along the axis: 10

• Number of windings along the radius: 10

• Total number of windings: 100

• Radius of the cylindrical support: 2.6 mm

• Copper wire thickness: 0.23 mm
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• Current used to drive the coils: 0.3 A

This leads to a coil which can produce fields of around 10 µT at the proximal NMR
probes.

The magnetic field from a small coil can be modelled as the field from a magnetic
dipole. For a general distance ~r from the dipole:

~B(~r) =
µ0

4π

(
3~r (~m · ~r)

r5
− ~m

r3

)
(6.4)

where ~m represents the magnetic moment of the dipole, which is given by multiplying
the number of turns (N) by the current (I) and the effective area of the coil, multiplied
by a unit vector along the normal to the coil (A · ŝ):

~m = N I A · ŝ (6.5)

If the coil is circular and has radius r : ~A = πr2 · ŝ.

6.3.3 Simulated magnetic field of dipole measured by the NMR
probes

The NMR field probes measure the z-component of the magnetic field ∆BCoil(s).
Figure 6.6 shows the magnetic field generated by a single coil at the internal surface of
the standard image head coil sampled at 16 locations (as would happen with the NMR
field probes in place). The magnetic field measured by a probe is described by:

∆ ~B(~r) = ∆BCoil(s) + ∆BHead + ∆BNoise + . . .

For fixed probe, the equation 6.4 should used to evaluate Bcoil(s) as:

Bz(~r) = ~B(~r) · k̂ =

=
µ0

4π

(
3~r ((N I A · ŝ) · ~r)

r5
− (N I A · ŝ)

r3

)
=

=
µ0

4π
(N I A)

(
3rz(~r · srz)

r5
− (sz~r)

r3

)
(6.6)

Where Bz(~r) is the field component measured by the NMR probes, ~r is the distance
between the coil and the probe. The ~r can be found by inversion of the equation 6.6.
For a single coil, if we consider the distance between the NMR probe and the scanner’s
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Coil 1 Coil 2
Number of windings along the axis 10 9

Number of windings along the radius 10 11
Total number of windings 100 99

Radius of the cylindrical support [mm] 2.66 2.55
Copper wire thickness [mm] 0.23 0.23

Current used to drive the coils [A] 0.30 0.32

Table 6.1: Specifics of the two physical coils. The table reports the specifics of the two twin-physical
coils (Figure 6.7) tested in the 7T scanner (without simultaneous scanning). Discrepancy in the
specifics are due to the manufacturing process.

isocentre is ( ~rP,a) and the distance between the isocentre and the coil centre is (~rC(t)),
~r(t) is given by:

~r(t) = ~rP,a − ~rC(t) =

= rx · î+ ry · ĵ + rz · k̂ =

= (xP,a − xC(t))̂i+ (yP,a − yC(t))ĵ + (zP,a − zC(t))k̂ (6.7)

Where ~rC(t) is the vector that provides information about the position of the head in
the scanner, assuming that the coil is affixed to the head, and so can be used for motion
correction. It can be evaluated by analysis of the measured fields using equations 6.6
and 6.7.
The unit vector is defined by:

ŝ = sx · î+ sy · ĵ + sz · k̂, s2
x + s2

y + s2
z = 1 (6.8)

6.3.4 Testing an active magnetic marker system (two coil solu-
tion)

Two small coils were built to perform a preliminary measurement of the magnetic field
using a customised foam-based probe-holder that evenly sampled the generated magnetic
field (but did not allow simultaneous scanning). Specifics are reported in Table 6.1. The
set-up of the experiment is shown in Figure 6.7.

The set-up shown in Figure 6.7 has been used to acquire preliminary time series data
(Figures 6.7 a,d). The coils were driven separately using alternate currents. Repetition
time of the magnetic field camera was set to 100 ms resulting in the sampling of 10 data
points over the period of the oscillating current. The measured magnetic field was unique
for each coil due to the differences in the relative coil-probe distances. The movable disk
was rotated to 8 further different positions. Thanks to two MPT markers coupled with
the disk, the translations and rotations were estimated. As the aim of the experiment

155



Figure 6.7: Experimental set-up. (a) Positions of the probes in the (b) 3 layer foam probe-holder
(≈ 3 cm thickness), a picture of the middle layer is reported. The transparent PVC support that
holds the probes in a perpendicular fashion is displayed. A total of two MPT markers were placed on
the PVC support and on the disk to measure the position in the optical camera’s frame of reference.
The foam disk is designed to be easily rotated and then to be fixed in the chosen position. (c) The
set-up was placed in the scanner bore maintaining line of sight access to the optical camera.

was not to accurately measure the motion, cross-calibration was not performed ahead
of the experiment, so measurements were in the optical camera’s frame of reference and
translations only have been reported in this thesis. The MPT camera raw data are given
using the quaternion format, each time point is represented by: [Tx Ty Tz qx qy qz qr].
So, for non calibrated data, only translations (Tx, Ty, Tz) are measured in the metric
system. The average value over the poses is shown in Figures 6.8 (c,f) and it is coherent
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Figure 6.8: Experimental data. Plots (a,d) show the magnetic field time series acquired by driving Coil
1 (perpendicular to the main magnetic field) and 2 (parallel to the main magnetic field) respectively
with an AC current oscillating at 1 Hz. The maximum values of the time series have been considered
as measurement at first coil system position over 9 tested in total. Plots (b,e) report the difference
between the maximum magnetic field value for each coil system positions and the initial one. Positions
have been checked using the optical camera. The camera was not calibrated, so only translational
motion parameters have been reported (c,f).

with typical head movements (Subsection 5.1).

The discrepancy of the maximum magnetic field values recorded for each magnetic
field probe with respect to the initial pose (Figures 6.7 a,d) at each pose for each coil has
been evaluated. Results are reported in Figure 6.7 (b,e) and are coherent with results
obtained for a single coil simulation (Section 6.3.2). From Equation 6.6, considering
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µ0 = 4π10−7:

B ∝ NI(πr2)π10−7

(
1

d3

)
(6.9)

and specifics given for Coil 1 (Table 6.1):

B ∝ 100 0.23(π0.002662)π10−7

(
1

d3

)
(6.10)

For a given distance d ≈ 2 cm, B ∝ 10 µT (Figure 6.6, simulated data), while for the
average distance between probes and coil in the experiment (d ≈ 6 cm), B ∝ 0.1 µT
(Figure 6.8).

6.3.5 Simulating real set-up and magnetic field data (two coils
solution)

Figure 6.9: Simulated experimental set-up. The figure shows the simulated experimental set-up. Two
coils are fixed onto the end-pieces of a pair of glasses. Each solenoidal coil was composed of 100 turns
of 0.25 mm diameter wire arranged in 10 layers radially, each formed from 10 turns. The left and
right coils are oriented along the y- and z-axes, respectively. The z-component of the magnetic field
from the coils is monitored using 16 field probes spanning 21 cm axially and 22 cm azimuthally.

The idea behind using two coils is to create a magnetic field pattern whose shape is
non-symmetric and so to add an additional constraint on the regression function as the
geometrical relationship between the coils is fixed and known a priori.
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The simulated set-up is shown in Figure 6.9. Two, small solenoidal coils (100 turns;
internal diameter 5.2 mm; outside diameter 10.2 mm; 2.5 mm length) were positioned
on the end-pieces of a pair of glasses. The coil orientations were chosen to be approxi-
mately along the y- and z-axes in order to create an asymmetrical pattern of magnetic
field variation that would provide greater sensitivity to small head movements. The coil
geometry was selected in order to give fields of 1 − 10 µT order of magnitude at the
probes when the coil was driven with a current of 10−1 A order of magnitude. Also, the
diameter of the coils has to be small enough to be well described as a magnetic dipole
and to fit on the glasses.

The z-component of the magnetic field from the coils is monitored using 16 field probes
distributed over the upper part of the internal surface of the 7T Nova RF transmit coil.
The magnetic fields generated at the fixed probe positions were calculated for each head
position using analytic expressions for the field from solenoidal coils [132] carrying a
current of 0.3 A. The Biot-Savart law has also been used as it is the most physically
correct to describe the magnetic field generated by each infinitesimal element of the wire.

B(r) =
µ0

4π

∫
C

I dl × r

|r|3
=
µ0

4π

∫
C

I dl × r̂

|r̂|2
(6.11)

Figure 6.10 shows the Bz field generated at the probe-surface for one head pose, and
the field-changes resulting from head pose changes produced by translation of the coils
along the x- and y-axes (corresponding to positional changes that might be produced by
head shaking and nodding).

To test the feasibility of tracking head motion using this approach, we simulated a
time-series (0.15 s time-step) of field values produced at the probes (BC(t)) using head
motion parameters measured previously (Table 4.1) with an MPT optical camera during
motion correction experiments (Figure 6.11) [17]. The motion parameter set (M(t))
characterises translations and rotations related to Cartesian axes in the scanner’s frame
of reference. Motion parameters were then estimated from the 16 field-values recorded
at each time point using the analytic field expressions.

We also evaluated the effect of adding white noise (10−9 T or 10−8 T STD) to the
simulated fields. Figure 6.11 shows the temporal variation of the motion parameters and
simulated field values for 10s periods of rest, head-nodding and head-shaking.

6.3.6 Regression method to predict head motion parameters
from field measurements

The prediction was performed using a Matlab function based on the Nelder-Mead
Simplex optimization method [133]. The change in the magnetic field values between
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Figure 6.10: Examples of simulated fields. Coil positions (top) and z-component of the magnetic field
[132] on a cylindrical surface (bottom, BC ) (0.3 A coil current). Probe positions are highlighted
using circles (top) or line crossings (bottom). Field results asymmetric as probes lies on a cylindrical
surface. (a) The field at the initial head-position is shown, along with the field changes produced
by (b) translating the system along x by 0.05 m (c) and translating along y by 0.01 m. Complex
patterns of field change give high sensitivity to differences in head pose.

consecutive time steps was used as the cost function. Given the value of the magnetic
field at step n (BC(tn)), the value of the magnetic field at time tn+1 is estimated by iter-
atively changing the motion parameters used to move the coil system and evaluating the
magnetic field, BP (tn+1). The algorithm converges to the predicted motion parameters
(Mp(tn)) once the difference between the measured and estimated magnetic field changes
reaches a fixed tolerance.

The algorithm needs a starting guess for the motion parameters set (M0(tn)). For the
first time step, M0(tn=1) was randomly extracted from a normal distribution with zero
mean and deviation standard equal to the standard deviation of the motion parameters.
For each subsequent time step, (M0(tn>1)), the guess was formed using a perturbation
extracted in the same way, but scaled by 0.01 that was added to the previous prediction
(Mp(tn−1)).

Details of the algorithm. The magnetic field is evaluated using the known positions
of the probes (~P ) and coils ( ~M), the coil parameters (Area A, n-turns N), driving current
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Figure 6.11: Examples of simulated fields from true head movements. (Top) smoothed 10 seconds time
series (Table 4.1) of previously-measured head motion parameters (translations Tx, Ty and Tz in mm
and rotations Rx, Ry and Rz in radiants) during (a) rest, (b) head-shaking and (c) head-nodding
conditions. (Centre, Bottom) simulated field values (BC) at the 16 field probe positions with 0.3 A
current in the two coils. White noise was simulated with 1 nT (d, e, f) 10 nT STD amplitudes (g,
h, i). The relationship between field and motion parameters is evident. All plots are shown with the
mean values having been subtracted to highlight changes due to motion.

I: B(P,M,A,N, I). As the position of the coils is the only variable that changes over
time based on the motion parameter:

Bt(M(t)) (6.12)

We use the fminsearch() MATLAB built-in algorithm to perform a step-by-step pre-
diction of the motion parameters of the coil system F (B) = MP . The algorithm F
evaluates the value of the cost function that has to be fitted (C) and the initial guess of
the parameters (MG) on which the cost function depends: F (C,MG) = MP . The cost
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SNR (1 nT) SNR (10 nT)
Rest Head shake Head Nod Rest Head shake Head Nod

B1 1.9 2.7 2.7 0.2 0.3 0.3
B2 4.6 5.9 13.3 0.5 0.6 1.3
B3 6.2 6.6 12.4 0.6 0.7 1.2
B4 6.9 12.3 6.9 0.7 1.2 0.7
B5 4.7 18.1 5.3 0.5 1.8 0.5
B6 65.5 81.7 70.5 6.5 8.2 7.1
B7 65.1 78.2 75.0 6.5 7.9 7.5
B8 27.5 47.7 29.3 2.7 4.8 3.0
B9 8.5 8.6 10.9 0.8 0.9 1.1
B10 30.5 42.9 69.9 3.0 4.3 7.0
B11 13.4 30.7 45.1 1.3 3.1 4.5
B12 3.7 11.0 11.3 0.4 1.1 1.1
B13 1.8 10.1 2.6 0.2 1.0 0.3
B14 26.3 30.0 28.2 2.6 3.0 2.8
B15 20.7 27.2 20.9 2.1 2.7 2.1
B16 5.0 10.6 5.2 0.5 1.1 0.5

Table 6.2: Gaussian Fit and SNR values for the NMR field probes. Magnetic field changes are shown
as zero-average time series, so all the curves are centred on zero µ = 0 [µT ].

function is defined as the difference of the magnetic field at two consecutive time steps:

C = Bti+1(Mti+1)−Bti(Mti) ≤ tol (6.13)

and it defines the end of the prediction for a given time step if and only if its value is
less than or equal to a given tolerance (tol = 10−9T ). The accuracy of prediction then
depends on the stopping criteria of the algorithm.

Figure 6.12 describes the critical steps of the prediction process, considering the
prediction of a time series of i = 0, 1, . . . n steps. At t0, the magnetic field B0 is generated
by the coils at the initial position M0. fminsearch() is used to predict M0 from the
magnetic field generated by guessed motion parameters MG. The current estimate of
the motion parameters is updated until the difference between the measured B0 and
estimated BG is less that or equal to tol = 10−9 T . The stopping criteria defines the
goodness of the final prediction. For t0 only, MG was defined such that the barycentre of
the system was randomly perturbed from the isocentre of the scanner by one standard
deviation of typical motion parameter values (in a real scenario, it may be evaluated from
an initial scout magnetic resonance image). For ti > t0, MG is the previous prediction of
the motion parameters Mti−1. This choice leads to a few inaccurate predictions at the
beginning of the time series before the prediction stabilizes around a more reasonable
values (if ∆t = TR = 0.150 ms, predictions are inaccurate for approximately). The code
is reported in Appendix D.
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Figure 6.12: Flow diagrams of the prediction.
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6.3.7 Prediction of head motion parameters

Figure 6.13: Predicted motion parameters. Plots of the predicted motion parameters (p) versus the
actual values (d). From, the top left, plots show translation (T [mm]) and rotation (R [rad]) linked
to the x,y and z axes in the scanner frame. Each plot also shows a linear fit to the data (black
line) and a line of unit slope and zero intercept, corresponding to the ideal prediction (blue dashed
line). Further analysis of the data plots is reported in Table 6.3. With added noise of the order
of magnitude of 1 nT (1 order of magnitude less than the estimated one for the NMR field probes
system, (Figure 3.9), predicted and actual values agreed nicely.

Noise level: 1 nT
Slope Intercept R2 MSE PC

Tx [mm] 0.997 0.013 0.98 0.018 0.99
Ty [mm] 0.898 0.006 0.80 0.011 0.89
Tz [mm] 0.935 0.003 0.94 0.005 0.97
Rx [rad] 0.953 < 0.001 0.95 < 0.001 0.97
Ry [rad] 0.953 < 0.001 0.92 < 0.001 0.96
Rz [rad] 0.990 < 0.001 0.99 < 0.001 1.00

Table 6.3: Predictions. The table shows the results of comparing the estimated and actual motion
parameters on simulated data with added white Gaussian noise (average zero and deviation standard
of 10−9 T ). Values of the slope and intercept of the linear fit are reported along with the values of
R2, the mean squared error (MSE) and Pearson correlation coefficient (PC), for each of the motion
parameters.
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Figure 6.14: Predicted motion parameters. Plots of the predicted motion parameters (p) versus the
actual values (d). From, the top left, plots show translation (T [mm]) and rotation (R [rad]) linked
to the x,y and z axes in the scanner frame. Each plot also shows a linear fit to the data (black line)
and a line of unit slope and zero intercept, corresponding to the ideal prediction (blue dashed line).
Further analysis of the data plots is reported in Table 1. With added noise of the order of magnitude
of 10 nT (equal to the one estimated for the NMR field probes system, Figure 3.9), the agreement
between the predicted and actual values is relatively poor (Table 6.4).

Noise level: 10 nT
Slope Intercept R2 MSE PC

Tx [mm] 0.948 −0.011 0.76 0.298 0.87
Ty [mm] 0.692 −0.087 0.04 0.521 0.21
Tz [mm] 1.569 0.187 0.03 7.705 0.16
Rx [rad] 0.838 0.002 0.24 0.001 0.49
Ry [rad] 1.037 < 0.001 0.72 < 0.001 0.85
Rz [rad] 0.999 < 0.001 0.99 < 0.001 0.99

Table 6.4: Predictions. The table shows the results of comparing the estimated and actual motion
parameters on simulated data with added white Gaussian noise (average zero and deviation standard
of 10−8 T ). Values of the slope and intercept of the linear fit are reported along with the values of
R2, the mean squared error (MSE) and Pearson correlation coefficient (PC), for each of the motion
parameters.
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The prediction of motion parameters from the simulated field changes was performed
step-by-step on 300 data points (spanning 45 s) for each movement condition. The
resulting motion parameter predictions collated from all three conditions are shown in
Figure 6.14 for data with added noise. In future work, the behaviour for different noise
levels and different starting positions should be evaluated.

The predicted values for each motion parameter p are plotted against the actual data
values d: ideal prediction results would follow a straight line with unit slope. Table 6.3
details the results of a linear regression of the predicted motion parameters to the actual
values (slope, intercept, R2, the mean squared error (MSE), and the Pearson coefficient
(PC)). Best predictions were obtained for rotational parameters. Translation along the
y-axis was least accurately estimated. Lower accuracy in prediction of translations along
the y-axis are likely to be due to the relative positions of the probes and coils. Adding
more coils is likely to improve the accuracy of prediction, as it would increase the SNR
and the asymmetry of the field. Also, adding one NMR field probe on the glasses would
improve the prediction, as this would provide a measurement that is sensitive only to
orientation changes since the probe coil distance would be constant.

There is a good agreement between the predicted values for all motion parameters,
indicating that head motion can be tracked using the combination of two coils and 16
field probes. The best results are obtained for rotations while translation in y is least
accurately estimated. The first few predictions are most influenced by the initial random
guess (M0(tn=1)) leading to greater prediction inaccuracy. The accuracy of the prediction
is dictated by the choice of the stopping criteria of the algorithm and by the noise level.
Inclusion of additional coils, which could be pulsed in combination with or, separately
to, the initial coil pair would help to improve the localisation accuracy.

6.4 Conclusion

This chapter reports pilot studies aimed at improving the results of the main project
described in this dissertation (Figure 6.15).

In this chapter, it has been proven that magnetic field data can be used to flag
significant head movements (Section 6.1). Data thresholds that take into account the
variability of the signals gave more stable results and will be further tested retrospectively
in the next chapter. If implemented in clinical practice, this approach would reduce the
need to repeat a full k-space data acquisition by excluding corrupted data a priori and
inform the scanner operator if an early stop of the scan would be necessary.

The NMR field probes can provide a valid respiratory signal without requiring the

166



Figure 6.15: Scheme. The workflow represents a possible future development of the overall results
shown in the thesis. Probe signals may be used to predict head motion and physiological parameters
and to detect exaggerate motion to flag the concomitant k-space line affected by motion that could
not be ameliorated by the MoCo technique.

attachment of any sensor to the patient. The reproducibility of the results will be tested
in the next chapter. If implemented in clinical practice, it would represent a step forward
in improving the comfort of the patient during MR scan.

Simulations of a new head motion tracking system based on the use of active magnetic
markers has been presented. The magnetic field of these markers is detected by using
the NMR field probes and is used to predict the position of the marker system. This
has some advantages compared to other marker-based motion correction techniques as
it doesn’t require solution of the correspondence problem [69] to find the marker system
position, does not require line of sight access to the marker [8], and could be imple-
mented in a way that does not interfere with the imaging sequence. The paired system
of markers and NMR probes is also fully MRI compatible [35].

The methods simulated in this chapter highlight some potential future uses of the
NMR field camera in head MoCo techniques. One, uses the system to record the mag-
netic field produced by two small coils attached to a pair of glasses. Results show that
the SNR needs to be higher to make the method robust. This system may be an alter-
native to the use of a marker based system (such as the MTP optical camera).

Qualitative consideration of the feasibility of bringing the new system to the market
has been carried out in the frame of the ”Shark Tank” Junior Fellow symposium of
ISMRM 2021. The key points analysed are detailed below.

• Comparison with existing MoCo techniques. Major obstacles to translating a sys-
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tem into a clinical product are to make a system easy to be used by the scanner
operator and the patient, it has to be compatible with older scanner devices and
be to meet different safety standards. The marker coil system has the potential to
overcome these obstacle.

• Compatibility with existing MRI scanner. The proposed system requires the use
of wired markers, driven independently from the scanner, so the marker system
would be fully compatible with any MR scanner system that has a field camera
installed. To integrate the system with the magnetic field camera, modifications to
the MATLAB code provided by Skope to communicate with the computer and the
scanner need to be made. The motion parameters measured in this way could be
used in both retrospective and prospective MoCo techniques. The approach allows
the position of the head to be evaluated in the frame of the scanner, so it doesn’t
require calibration or the use of a training phase. In conclusion, neither the MR
sequence nor other existing infrastructure would have to be modified significantly
to utilise the active marker system (assuming that a field camera is available).

• Wearability and patient comfort. The support of the coils could be a pair of glasses
worn by the subject. This configuration has been largely proved [60] to be a robust
solution against marker-movement induced by patient facial expression. In non-co-
operative subjects, it could mimic the use of a well known object and reduce the
risk that the support is removed by the subject during the scan.

• Time and accuracy of the prediction. The computational time of the prediction
depends on the electronic chain used to compute the prediction. It will depend on
the programmable board used to drive the system, how it is connected with the
computer that will calculate the prediction (same for the NMR field probes) and
how this computer then communicates the results to the scanner and how much
time the scanner needs to update the image geometry. The overall time should aim
to be ≤ 15ms to be competitive with other systems (e.g. the MPT camera). Now,
that the accuracy is set to be 10−9T (stopping criteria of the least square method
used) to obtain a prediction takes between 0.5 to 5 s on my personal laptop 1 –
that is not particularly optimized for doing simulations. Accuracy of prediction
then depends on the stopping criteria of the algorithm. Accuracy on knowing the
relative position will also influence the prediction, as this information is used in
the algorithm.

• Physical phenomena that would invalidate prediction. When the coil is energised
with current it experiences a torque which acts to align the coil along the B0 field
(varies with sin of angle between coil axis and the B0-field). The torque moment

1Processor: Intel(R) Core(TM), i7-8550U, CPU 1.80G Hz, RAM 16 Gb
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would not be negligible for certain orientations and driving frequency and could
compromise head-skull coupling. However, torque could possibly be balanced by
pairing coils with opposite magnetization vectors (2 or more coils).
Alternatively, torque may be exploited to measure changes in orientation due to
head movement. e.g. A coil will always try to orient itself with its magnetic
dipole moment along the B0 (z) direction. The torque will produce a rotation of a
pivot sustain/squeeze a cushion next to the coil (as respiration belt works)/ other
physics effect (piezoelectric sensor) whose measure lead on know which movements
has been performed.

• Induced artefacts in MR image. The coil system will be driven to produce the
magnetic fields in the quiet periods of the scanner sequence, so it shouldn’t interfere
with the image processing, but of course this needs to be tested experimentally.
Practical considerations involve image artefacts (wires used to drive the coil(s)
interact with the applied RF). The waveform to drive the coils system would be
fundamental to differentiate the signal from the coils from other field variations.
Possibilities for the waveform are short bursts of sinusoidal current with different
frequencies(numbers of cycles) or pulses of different duration.

• Cost. The magnetic field camera cost is on the order of magnitude of a hundred
thousand pounds, but the costs of the coil system may be an order of magnitude
less (ten thousand pounds), depending on the additional tools needed (e.g. to
drive the coils, a dedicated CPU to the prediction,...). The final costs need to be
established once the system has been tested in the lab. To reduce costs, the field
camera can potentially go down to 8 NMR field probes and still provide a good
fit of the NMR signal of the probes. As the system available on the market is 16
probes, the simulation was based on 16 probes so far.
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Chapter 7

Head motion tracking with
simultaneous imaging and future
development

In Chapter 3 a novel approach to head motion monitoring, which does not require
attachment of markers to the head, line of site access for an optical camera or significant
sequence modification has been presented. Two different experimental set-ups (Figures
3.7 and 3.3) have been tested: only one allows simultaneous scanning with the standard
receiver coil array. The main parameter that influences magnetic field changes has been
shown to be the head-probe distance (Section 4.2). The novel approach has been suc-
cessfully tested with synthetic data (Section 5.2) and with real data (Section 5.3). The
magnetic field data pre-processing involves time alignment and denoising steps (Section
5.1). In particular, magnetic field data have been filtered using solid harmonic functions
to reduce the confounding effects of respiration (Subsection 5.1.1). The regression meth-
ods tested, a linear method (Partial Least Square) and a non-linear method (Nonlinear
AutoRegressive network with eXogenous inputs), can both predict motion parameters
from magnetic field data changes. The best results were obtained on pre-processed mag-
netic field data by using the NARX regression method to predict a small range of head
movements ( ≤ 5 mm, ≤ 5◦). In order to improve the prediction in future implementa-
tions, the use of magnetic field data in flagging significant head motion (Section 6.1) and
to measure a respiration-like signal (Section 6.2) have been retrospectively tested with
real data.
In Section 7.1, previous results have been extended using magnetic field data acquired
during simultaneous scanning. However, the nature of the method developed was subject-
dependant (the head-probe distance is not reproducible over acquisitions) and required
the acquisition of a training dataset for each acquisition. A pilot study on generalising
NARX over more subjects (Section 7.2) is presented.
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The NARX neural network forms a good method for performing predictions of head
motion parameters from extra-cranial field measurements. The mathematical assump-
tion underlying the model is that the relationship between extra-cranial magnetic field
changes and head motion parameters is described by a bijective function. This assump-
tion only holds when we consider field measurements from a single scan session from a
single subject. The aim of this section is to test whether the prediction can be performed
over more subjects by adding further input parameters to the neural network. First, it
is shown that grouping data from different scan sessions using the same choice of input
parameters does not lead to good predictions, as would be expected. Then, by the use
of synthetic data, a model that considers additional input variables has been developed
and applied with promising performance to multi-subject data.

7.1 Head motion tracking with simultaneous scan-

ning

In this section, the previous work on head motion tracking, exaggerated head motion
detection and respiration-like signal generation has been extended. The main differences
with the approach described in earlier chapters is in the acquisition of training data and
new measurements of head movement and extra-cranial field changes. Here, the training
data-set, used for the training of the regression method, is acquired without simultaneous
scanning. New data, on which the trained method is applied, has then been acquired in
quiet periods of a standard multi-slice EPI acquisition. The influence of eddy currents
on the measured data was appropriately reduced by sampling the magnetic field at an
appropriate delay from the beginning of the RF pulse. This represents a step forward in
integrating the marker-less motion correction technique with standard imaging practice.
Data acquisition was carried out on Subject 4 only because the approach has been proven
to be subject-dependant. The cloth holder was used to hold the NMR field probes in
place in between the Nova RF transmit and receiver coils. The probes were in different
positions compared to the previous set-up (Figure 3.3): one additional probe was placed
on the top of the head, two probes were placed on each side of the head and four probes
were sited on the back of the head (Figure 7.1). Signals from the probes on the back
of the head (Probes 10, 11, 15 and 16) were not used to perform head motion tracking.
Results obtained by applying pre-processing, regression methods, flagging exaggerated
head motion and respiration-like signals were repeated using magnetic field data acquired
with simultaneous scanning.
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Figure 7.1: Probe positions in the cloth holder. The NMR field probes were placed between the Nova
transmit and receiver RF coils in a different arrangement compared to that used in the previous
experiments (Figure 3.4). This new arrangement allowed us to sample the extra-cranial field more
evenly. Figures 7.2 and 8.1 report pictures and scheme of the holder.

7.1.1 Reducing the effect of eddy currents on magnetic field
data

First, the usable timing of the acquisition of magnetic field data during the quiet pe-
riod of an EPI scan was found by sampling the magnetic field at different delays (Figures
7.3 and 7.4) the minimum delay at which the probe signals are not significantly affected
by the gradients applied during the image acquisitions signal was found. The delay was
chosen to be 30 ms as the characteristics of the probe signals recorded at this delay time
are similar to those found in the absence of scanning (Figures 7.4 and 7.3). Then, mag-
netic field data were acquired with and without simultaneously applying a multi-slice
EPI sequence (48 slices, 3 mm isotropic resolution, TR = 3.6 s, TE = 20 ms) with a
slice TR of 75 ms. The field camera was triggered to make field measurements 30 ms
after the RF excitation every 150 ms (i.e. in a quiet period of the sequence after every
second slice acquisition as 75× 2 = 150 ms).

7.1.2 Magnetic field data with and without simultaneous EPI

In order to test the feasibility of flagging significant head movements and head mo-
tion tracking during concurrent MRI acquisition, data were acquired without and with
simultaneous EPI scanning for Subject 4. The former provided the training data sets
(further divided into training, validation and test sets), while the latter formed the new
data set on which the methods were applied. Both raw and pre-processed data were
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Figure 7.2: Picture of the final design of the probe cloth holder. (a) Upper part (a.1 top view, a.2
bottom view). (b) Bottom part. Elastic band to hold the probes (32 pockets in total) were positioned
to sample the extra-cranial field evenly. Elastic bands have been also placed to hold the cables. Red
Velcro used to hold the cables close to the probe in order to stabilise probe positions. Dashed red
lines were sewed to be used as reference lines to align the support to the head coil consistently over
different scanner sessions. Plastic strings were added to the bottom part to allow it to be slid it
under the transmit head coil without the need to remove it from the scanner bed.

tested. Notice that here, the spatial filter parameters were set on a training data-set
(acquired without simultaneous EPI scanning) and then applied on both training and
new data sets, while in the previous analysis they were evaluated on the single data-set
that was subsequently divided into training, validation and testing data. A description
of the data sets and the proportion of data that was used for training and prediction
in the small and large head movement ranges are reported in Tables 7.1, 7.1 and 7.1.
Values were evaluated in agreement with the description in Section 5.1.3. The two ranges
of head motion are similar to those reported in Section 5.3. Small movements refer to
the rest and feet-wiggling conditions. Large movements refer to the whole range of data
acquired (rest, feet-wiggling, head shake and head nod).
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Figure 7.3: Variation of field measurements as a function of the delay from the RF pulse of the EPI
acquisition. (a) Average of repeated 20 field measurements from different probes; (b) Standard
deviation of measurements.

Subject 4
Rest Shake Nod Feet-wiggling

Training (without EPI) 5000 2000 2000 2000
New (with EPI) 1000 500 500 500

Table 7.1: Number of data points acquired for each head movement condition, with and without
simultaneous EPI scanning

PLS Training PLS (k − fold)
Total Training New 5-folds 1-fold

Small (cloth) 8500 7000 1500 5833 1167
Large (cloth) 13500 11000 2500 9167 1833

Table 7.2: Number of data points used for training, validation and testing the linear regression methods
are reported. Number have been evaluated in agreement with the description in section 5.1.3.

NARX Training NARX (90%− 5%− 5%)
Total Training New Training Validation Test

Small (cloth) 8500 7000 1500 6300 350 350
Large (cloth) 13500 11000 2500 9900 550 550

Table 7.3: Number of data values used for training, validation and testing the linear regression methods
are reported. These numbers have been evaluated in agreement with the description in section 5.1.3.

Simultaneous measurements of head motion parameters and magnetic field changes were
acquired with and without simultaneous scanning while the subject performed several
types of head movement (rest, head shaking and head nodding). Example measurements
are reported in Figures 7.5 and 7.6. The standard deviation and signal to noise ratio of
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Figure 7.4: Variation of field measurements as a function of delay from the RF pulse of the EPI
acquisition. The field was measured as a function of the delay from the RF pulse of the EPI
acquisition in order to estimate the effect of any eddy currents. Plots show the variation of the
average of 20 repeated field measurements from each probe as a function of the delay. (a) Data
acquired over 15 ms at 30 ms delay; (b) Data acquired over 15 ms at 60 ms delay. A delay time of
30 ms was chosen as a compromise between limiting the level of field perturbation and unnecessarily
extending the TR.

data acquired with and without simultaneous EPI are reported in Tables 7.4 and 7.5.
Measurements acquired in the two conditions have similar STD and SNR values. This
validates further that the time delay chosen (Figures 7.4 and 7.3) eliminated any signif-
icant influence of eddy currents on the field measurement data.

7.1.3 Flag exaggerated head movements using magnetic field
data with simultaneous EPI

In Section 6.1, a threshold method on magnetic field data to identify exaggerated
head motion has been presented and then applied using a constant threshold over all
the probes (Figure 6.1) or with the threshold level varying over the probes (Figure 6.2).
The second option was further tested here by evaluating the threshold on data acquired
at rest acquired without simultaneous EPI and then flagging significant head motion in
post-processing on data acquired with simultaneous EPI scanning.

Results of the detection are shown in Figure 7.7 and validate the previous analysis
by successfully flagging conditions when there was significant head movement.

7.1.4 Deriving respiration-like signal from magnetic field data

In Section 4.3, a method to derive respiratory signal from a zeroth order solid har-
monic fit of the magnetic field data has been presented. Here, the method is tested on
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Figure 7.5: Data training and test - example. The plots show examples of simultaneous measurements
of head motion parameters (a, b) and magnetic field (c and d). Data were recorded in the rest
condition. Measurements were acquired without (a and c) and with (b and d) simultaneous EPI
scanning.

real data acquired during concurrent EPI. Lower harmonic fit signals have been super-
imposed and filtered using a band-pass filter centred at the respiratory frequency (on
average 0.25± 0.10 [Hz]). The results are shown in Figure 7.8. The day of the measure-
ments the respiratory belt failed and so the fit has been compared with the signal from
probe number 16 (that was placed on the back of the head and so is most influenced by
the change in magnetic field due to chest expansion).
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Figure 7.6: Data training and test - example. The plots show examples of simultaneous measurements
of head motion parameters (a, b) and magnetic field (c and d). Data were recorded in the Shake
condition. Measurements were acquired without (a and c) and with (b and d) simultaneous EPI
scanning.

7.1.5 Head motion tracking with simultaneous EPI

In Section 5.3, data have been used to validate the best way to predict head motion
parameters from magnetic field changes. Both linear (PLS) and non-linear (NARX)
methods (Section 5.1.3) have been applied on data acquired using PVC-like and cloth-
like probe distributions. The results show that the most promising pipeline for prediction
involved the cloth probe holder, applied to pre-processed magnetic field data correspond-
ing to small ranges of head movements (considering to flag k-space lines acquired on large
head movements) to train the non-linear method (Figure C.10).

Here, the data analysis has been repeated as the nature of the data used for train-
ing and testing was different. Both regression methods and regimes of movement were
considered, but only data from one subject (Subject 4) were tested. For the benefit of
clarity, results are reported in the next section along with statistical evaluations of the
fit. A summary is reported in Table 7.6.
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Subject 4
Without EPI With EPI

STD Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling
B1[µT] 0.025 0.095 0.013 0.011 0.018 0.096 0.011 0.017
B2[µT] 0.009 0.029 0.010 0.020 0.013 0.034 0.011 0.017
B3[µT] 0.006 0.010 0.022 0.012 0.012 0.016 0.025 0.014
B4[µT] 0.006 0.039 0.011 0.014 0.012 0.033 0.014 0.013
B5[µT] 0.023 0.037 0.018 0.022 0.029 0.019 0.016 0.022
B6[µT] 0.026 0.036 0.022 0.026 0.031 0.026 0.020 0.026
B7[µT] 0.008 0.019 0.010 0.011 0.012 0.018 0.016 0.018
B8[µT] 0.017 0.081 0.025 0.013 0.015 0.089 0.028 0.012
B9[µT] 0.031 0.065 0.023 0.013 0.026 0.079 0.024 0.015
B10[µT] 0.042 0.049 0.051 0.050 0.052 0.042 0.041 0.055
B11[µT] 0.034 0.014 0.030 0.019 0.017 0.017 0.038 0.025
B12[µT] 0.023 0.020 0.020 0.017 0.023 0.040 0.022 0.018
B13[µT] 0.026 0.041 0.018 0.021 0.030 0.061 0.020 0.026
B14[µT] 0.021 0.069 0.023 0.023 0.026 0.062 0.019 0.020
B15[µT] 0.042 0.037 0.048 0.047 0.052 0.038 0.042 0.051
B16[µT] 0.026 0.027 0.031 0.023 0.017 0.022 0.039 0.029
Tx [mm] 0.681 2.662 2.347 0.161 0.138 3.179 2.626 0.153
Ty [mm] 0.762 0.399 2.463 0.386 0.210 0.496 2.752 0.505
Tz [mm] 1.100 1.450 4.329 0.301 0.320 1.717 4.914 0.317
Rx [◦] 0.460 0.313 1.581 0.113 0.128 0.244 1.792 0.112
Ry [◦] 0.114 1.860 0.220 0.031 0.015 1.918 0.206 0.027
Rz [◦] 0.313 0.387 0.185 0.044 0.034 0.260 0.156 0.052

Table 7.4: Data Subject 4. The Values of the the standard deviation (STD) of magnetic field changes
for the cloth probe holder set-up, for four different ranges of head movements (Subject 4) performed
with and without concurrent EPI scanning. The values, which have been rounded to three decimal
places, are similar in the presence or absence of concurrent scanning.

The number of data available for training and test differ significantly (Tables 7.1,
7.1 7.1), but is in agreement with data used in the previous tests using a similar set-up
(Tables 3.3, 5.1.3 5.1.3). The regression methods were trained and applied on the same
range of movements.

The results (Section 7.1.7, Table 7.6) confirm previous results and indicate that mea-
surements of extra-cranial field changes made with a field camera can be used to monitor
head position in a 7T MRI scanner during EPI scan acquisition. Applying the linear
method on raw data gave the worst results over both head movement conditions. The
non-linear method gave the best results over small head movements, however prediction
of rotations around the y and z axes were poor. The reasons for this could be the larger
influence of noise on small magnetic field data changes (corresponding to small head
motion parameters) or numerical, as the regression method performs better on homoge-
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Subject 4
Without EPI With EPI

SNR Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling
B1[µT] 6 22 3 2 4 22 3 4
B2[µT] 2 6 2 4 3 7 2 4
B3[µT] 1 2 5 3 3 4 6 3
B4[µT] 1 8 2 3 2 7 3 3
B5[µT] 5 7 4 4 6 4 3 4
B6[µT] 4 6 4 4 5 4 3 4
B7[µT] 1 2 1 1 1 2 2 2
B8[µT] 3 13 4 2 2 14 4 2
B9[µT] 8 17 6 3 7 20 6 4
B10[µT] 7 8 8 8 8 7 6 9
B11[µT] 7 3 6 4 4 4 8 5
B12[µT] 6 5 5 4 6 10 6 5
B13[µT] 6 10 4 5 7 15 5 6
B14[µT] 4 14 4 5 5 12 4 4
B15[µT] 8 7 9 8 9 7 8 9
B16[µT] 6 6 7 5 4 5 9 7

Table 7.5: Data Subject 4. Values of the signal to noise ratio (SNR) of magnetic field changes for the
cloth probe holder, head ranges of movements (Subject 4) performed with, and without, concurrent
EPI scanning. The values, which have been rounded to three decimal places, are similar in the
presence or absence of concurrent scanning.

Raw
PLS NARX

Small Figure 7.9, Table 7.9, poor Figure 7.11, Table 7.11, good
Large Figure 7.10, Table 7.10, poor Figure 7.12, Table 7.12, poor

Filtered
NARX

Small Figure 7.13, Table 7.13, good
Filtered (less data)

NARX
Small Figure 7.14, Table 7.14, good

Table 7.6: Table summarizes the outcome of the predictions reported in the indicated figure based on
the criteria listed in the equation 5.5

neous data.

Further tests on using filtered data and on reducing the number of data points used
for training were made. The first, will reduce the influences of noise sources on magnetic
field data, while the second will test whether the method went into over-fitting when
predicting rotations around y and z axes. Results on pre-processed data were promising
as the predictions (in particular on rotations around y and z axes) improved. So, for the
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Figure 7.7: Exaggerated head motion detection. Plots show examples of exaggerated head motion
detection of head movements using different reference levels for each magnetic field probe signal.
The threshold levels were defined based on the maximum variance over time intervals of 1.5 s at rest
(without simultaneous EPI). Plot (a) show that no probes detected exaggerated motion during the
rest condition for new data (with simultaneous EPI) over 10 s, while various number of probes did
for (b) feet-wiggling, head (c) shaking and (d) nodding. As the range of head movements increases,
the histograms show that more probes tags the head movement as exaggerated in the same time
intervals.

latest tests, the number of data were reduced and the model under-fitted them.

To conclude, the non-linear method trained on pre-processed trained data, repre-
sented by ≈ 20 minutes of simultaneous measurements (Table 7.4) of head movement
parameters1 and field variation due to small head movements, have successfully predicted
head motion parameters from magnetic field changes measured during the quiet period
of a EPI scan. Results were comparable with results obtained with simulated data and
the previous data-set (Figure C.10 and Table C.42).

1measured with a different approach, here, an optical camera and an MPT marker attached to a
dental mould have been used
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Figure 7.8: Physiological signals. Figure shows the prediction of the respiration signal obtained by
filtering the 0th order fit of field probe signals. Signal from probe 16 (B16) is reported for comparison.
Signals have been normalized between minus one and one for clarity.

7.1.6 Timing of the prediction process

In order to apply the regression method during a MRI scan, it is necessary to have a
clearer idea of the total timing necessary for the training phase that includes acquisition
of data and to train the regression model. The former, has been evaluated as ≈ 20 min-
utes, significantly less data gave a worse prediction, but a further test can be performed
with less data to find the minimum number of data to give good results. The latter
has been evaluated over the training of 10 networks (Table 7.7). Number of data, range
of movement and pre-processing and network architecture influences the timing. As a
result, the optimal solution (based on the accuracy of the prediction) identified in the
previous section is also the one that requires only ≈ 6 minutes to train and select the
best network over 10 networks.

Furthermore, the time necessary to obtain a prediction is crucial to update the scan-
ner geometry in the case of PMC (Prospective Motion Correction). Notice that the
NARX method chosen performs a prediction ahead of the movement, allowing for ad-
justment of the scanner geometry. The times to obtain a step ahead prediction (Table
7.8) with all the network trained was around one micro second, this is well below the
usual timing necessary for the update that is of the order of magnitude of ten milliseconds.
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Raw Pre-processed
Large Small Small Small (less data)

NN1[s] 131 47 28 8
NN2[s] 65 41 61 10
NN3[s] 83 56 32 8
NN4[s] 86 67 19 6
NN5[s] 65 41 22 6
NN6[s] 57 57 24 9
NN7[s] 83 69 20 6
NN8[s] 77 54 19 7
NN9[s] 50 34 34 6
NN10[s] 62 45 97 7

Average [s] 76 51 36 7
Total [s] 759 509 356 72

Total [min] 13 8 6 1

Table 7.7: Table reports examples of values of times necessary to train 10 neural networks (as explained
in section 5.1.3), for each network, the average and the total time (in seconds and minutes) for the
four head movement range presented in this section. Values have been rounded to unit. In order,
the network’s architectures were 11− 30− 6, 11− 30− 6, 7− 30− 6, 9− 30− 6.

Chosen Architecture Training [s] Prediction [ms]
Raw, Small 8 11− 30− 6 54 0.0008
Raw, Large 7 11− 30− 6 83 0.0007

Pre-processed, Small 6 7− 30− 6 24 0.0005
Pre-processed, Small, Less data 9 9− 30− 6 6 0.0007

Table 7.8: Table reports examples of values of times necessary to train the best neural network over 10
(as explained in Section 5.1.3), the chosen one (Table 7.7), their architecture and the time necessary
to predict one set of motion parameters (values have been rounded to four decimal places).
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7.1.7 Plots and Tables of predictions shown in section 7

Figure 7.9: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 4, linear regression method (Table 7.1). Prediction results are poor
(Equation 5.5). Statistical evaluation of the results is reported in Table 7.9.

Slope Intercept R2 PC MSE STD
Tx [mm] −0.979 < 0.001 0.187 0.432 0.155 0.139
Ty [mm] 0.461 < 0.001 0.214 0.463 0.048 0.212
Tz [mm] 0.284 < 0.001 0.087 0.296 0.140 0.322

Rx [◦] 0.116 < 0.001 0.015 0.123 0.028 0.129
Ry [◦] −0.048 < 0.001 < 0.001 0.018 0.002 0.015
Rz [◦] 1.497 < 0.001 0.237 0.487 0.009 0.034

Table 7.9: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.9. Values have been
rounded to three decimal places.
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Figure 7.10: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for Subject 4, linear regression method (Table 7.1). Prediction results are poor
(equation 5.5). Statistical evaluation of the results is reported in Table 7.10.

Slope Intercept R2 PC MSE STD
Tx [mm] −0.053 < 0.001 0.010 0.102 4.535 1.819
Ty [mm] 0.405 < 0.001 0.038 0.196 0.493 0.332
Tz [mm] 0.047 < 0.001 0.001 0.033 3.065 1.016

Rx [◦] 0.397 < 0.001 0.079 0.281 0.067 0.175
Ry [◦] −0.093 < 0.001 0.008 0.090 2.720 1.097
Rz [◦] 0.381 < 0.001 0.020 0.143 0.167 0.151

Table 7.10: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.10. Values have been
rounded to three decimal places.
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Figure 7.11: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 4, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are good (equation 5.5). Statistical evaluation of the results is
reported in Table 7.11.

Slope Intercept R2 PC MSE STD
Tx [mm] 0.952 0.007 0.960 0.980 0.001 0.138
Ty [mm] 1.012 −0.004 0.985 0.993 0.001 0.211
Tz [mm] 0.987 0.003 0.988 0.994 0.001 0.321

Rx [◦] 1.024 −0.004 0.988 0.994 < 0.001 0.129
Ry [◦] 0.536 −0.002 0.404 0.636 < 0.001 0.015
Rz [◦] 0.820 0.003 0.757 0.870 < 0.001 0.034

Table 7.11: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.11. Values have been
rounded to three decimal places.
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Figure 7.12: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for Subject 4, using raw data for training the non − linear regression method
(Table 5.1.3). Prediction results are poor (equation 5.5). Statistical evaluation of the results is
reported in Table 7.12.

Slope Intercept R2 PC MSE STD
Tx [mm] 0.803 0.056 0.778 0.882 0.742 1.821
Ty [mm] 0.785 0.008 0.800 0.894 0.022 0.332
Tz [mm] 0.869 0.028 0.869 0.932 0.136 1.017

Rx [◦] 0.711 −0.016 0.324 0.569 0.035 0.175
Ry [◦] 0.620 0.061 0.634 0.796 0.444 1.098
Rz [◦] 1.313 −0.032 0.403 0.635 0.061 0.151

Table 7.12: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.12. Values have been
rounded to three decimal places.
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Figure 7.13: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for Subject 4, using pre−processed data for training the non− linear regression
method (Table 5.1.3). Prediction results are good (equation 5.5). Statistical evaluation of the results
is reported in Table 7.13.

Slope Intercept R2 PC MSE STD
Tx [mm] 0.979 0.009 0.995 0.998 < 0.001 0.138
Ty [mm] 1.019 −0.003 0.998 0.999 < 0.001 0.211
Tz [mm] 0.996 −0.003 0.994 0.997 0.001 0.321

Rx [◦] 1.008 −0.001 0.998 0.999 < 0.001 0.129
Ry [◦] 0.895 0.003 0.967 0.983 < 0.001 0.015
Rz [◦] 0.882 −0.001 0.979 0.989 < 0.001 0.034

Table 7.13: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.13. Values have been
rounded to three decimal places.
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Figure 7.14: The figure shows results obtained for small head movements (less time point), sam-
pled using the cloth probe-holder set-up for Subject 4, using pre − processed data for training the
non− linear regression method (Table 5.1.3). Prediction results are good (equation 5.5). Statistical
evaluation of the results is reported in Table 7.14.

Slope Intercept R2 PC MSE STD
Tx [mm] 0.995 0.007 0.995 0.998 < 0.001 0.105
Ty [mm] 0.994 −0.006 0.998 0.999 < 0.001 0.160
Tz [mm] 0.959 −0.009 0.991 0.995 0.001 0.256

Rx [◦] 0.940 0.002 0.996 0.998 < 0.001 0.099
Ry [◦] 0.994 < 0.001 0.898 0.948 < 0.001 0.015
Rz [◦] 0.811 0.001 0.875 0.935 < 0.001 0.023

Table 7.14: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.14. Values have been
rounded to three decimal places.
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7.2 Extending the markerless tracking method over

subjects

Figure 7.15: Prediction of motion data of Subject 4 obtained using the PLS method trained on Subject
5. Simulated magnetic field data (∆BHead) due to the whole range of head movements have been
used to train the linear regression method (PLS) for Subject 5. Probes were simulated as in the cloth
probe holder. The prediction results are very poor. This is expected as the relationship between
extra-cranial field changes and head movements is highly subject-dependent (Figure 4.10).

In previous chapters, it has been shown using simulated and experimental data that
head motion (∆M) can be monitored by using an NMR field camera to measure the extra-
cranial field changes (∆B) produced by changes in head position (f(∆B) = ∆M). The
function used to describe the mathematical relationship depends only on ∆B. Although
this provides a marker-less approach to head motion monitoring, the extra-cranial field
changes are highly subject-specific (Figure 4.8), and it is therefore necessary to learn the
relationship between field measurements and head movements for each subject to use the
motion tracking to predict head motion. Figure 7.15 shows that very poor performance
in motion prediction results when using the model learnt from one subject to analogue
data from a different subject. The reason is that when considering data from more than
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one subject, the field-motion relationship cannot be described as a bijective function as
the same change in head position (output variable) may not correspond to the same
change in magnetic field (input variables) because of the change in relative head-probe
distances due to different head morphology. So, to generalise the prediction method over
different heads, further input parameters are needed (f(∆B, I1, I2, ...In) = ∆M).
In this section, various set of additional parameters have been tested. Initially, they were
only dependent on features (such as head volume and dimension), then also scanner pa-
rameters (off-centre2 and angulation3) were taken in account.

7.2.1 Preliminary tests

Figure 7.16: Prediction on head phantoms. Plots show the prediction (dots), the ideal fit (dashed
blue line) and the linear fit (black line) for the 6 motion parameters, obtained by training a NARX
network on simulated data obtained by moving 11 scaled versions of the same head using the
same motion parameters sets (total: ≈ 19300 time steps, corresponding to ≈ 50 minutes of acquisi-
tion).

An early attempt to generalise the prediction has been made with ad hoc simulated
and experimental data (Subjects 1, 2, 3 and 6) obtained using the PVC support. In

2off-centre. Position of the image volume with respect the scanner system of reference.
3Angulation. Angulation of the image volume with respect the scanner system of reference.
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Figure 7.17: Prediction on subjects. Plots show the prediction (dots), the ideal fit (dashed blue line)
obtained by training a NARX network on real data over 4 different subjects (total: ≈ 12800 time
steps, corresponding to ≈ 31 minutes of acquisition). The variability problem of head dimensions is
not overcome due to the small numbers of subjects and time steps. However, a good portion of data
lay on the ideal fit line, in particular for larger extents of head motion.

the former case, head models were made by scaling the HUGO head by factors ranging
from 50% to 110%. Also, motion parameters were the same for all of the simulations as
the smoothed/detrended data series was considered. Probes were simulated to be in the
PVC support. These data were in fact the ones used to make Figure 4.8. Predictions
were performed using the non-linear auto regressive exogenous model (NARX) as it eas-
ily allows to add extra parameters to differentiate the subjects.

The additional neural network inputs were the head dimensions and volume (Figure
4.7), which were used in conjunction with a subset of magnetic field measurements from
8 probes selected by performing PCA on the measurements from all 16 probes. The
number of hidden neurons in the model was fixed to 30.

Figures 7.16 and 7.17 show the predicted head motion parameters as a function of
the actual movement parameters used in the simulations to predict the head motion of
the scaled heads (ideal condition) and for the real subjects, respectively. In Figure 7.16,
formed using data from the scaled HUGO model, data points largely fall on lines of unit
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slope and zero intercept indicating good prediction performance, while in Figure 7.17,
formed using experimental data from multiple subjects, only a small portion of data
points coincide with the ideal prediction.

For the real subject data shown in Figure 7.17 many variables have changed com-
pared to the ideal situation tested with the phantom head (Figure 7.16) and this may
explain the fact that results were much worse. In the former case the same scaled head
was used for 11 measurements (large range of head movements), and so the morphology
was constant and only the head-probe distances were varying. In the latter case, the
number of heads was reduced to 4 and all had different morphologies, and the range of
head volumes was smaller. In the former case, all the simulations were made by using the
same motion data series, while in the latter the motion data series were different for each
subject. The results consequently show the influence of head volume and morphology
and extent of movement on the measured fields. Predictions of movement from a sim-
ulated data set including data from heads of different sizes, but the same morphology,
indicate that incorporating additional information about head size and geometry into
the prediction process may improve results.

The reasonably good performance of the NARX method in predicting head move-
ments from simulated and measured extra-cranial field changes when provided informa-
tion about head size as well as field data from a range of scaled models of the head,
provides some motivation for exploring this approach with experimental data. Addi-
tional or alternative information such as head position and angulation in the scanner, or
3D anatomical MRI data could also be provided to further improve the accuracy of es-
timation. These possibilities have been explored using simulated magnetic field changes
due to synthetic head motion data from 19 subjects. These data have been used to test
the feasibility of predicting head motion parameters over different subjects using the
non-linear regression method in close-to-real experimental conditions.

7.2.2 Synthetic head motion data to generate simulated mag-
netic field data

Time series of head motion parameters have been randomly simulated for each sub-
ject, using a superposition of harmonic movements:

R(t)n = Acos(ωt+ φ) (7.1)

T (t)n =
−atan(sind(R(t)n)

cos(R(t)n))
10−1 (7.2)
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where R(t)n is the basic harmonic function for rotational movements, with amplitude A
(in ◦), angular frequency ω (ω = 1πf , with f frequency in rad/s), t time and φ the phase.
T (t)n represents the projection of the rotation on the z-x plane. The translational motion
was scaled down by a factor of 10 in order to make the synthetic movements similar to
those in experimental data.

ω [rad/s] A ([◦]) φ Predominant Movement
Respiration [0.2, 0.4] [0, 5] [0, 1] Rx
Heart beat [0.8, 1.0] [0, 1] [0, 1] (None)

Shake [0.1, 0.9] [0, 15] [0, 1] Rz
Nod [0.1, 0.9] [0, 15] [0, 1] Rx

Table 7.15: Synthetic movements parameters. The values shown in the square brackets are the range
of each variable of the Equation 7.1. Values were randomly chosen in these range.

Involuntary and voluntary movements can be represented by changing A, ω, φ. These
values were randomly selected for each different subject from the range of values experi-
mentally observed (Table 7.15). For the resting condition, the dominant movements are
due to the cardiac cycle and chest expansion. In each cardiac cycle, the heart contraction
(average ω = 0.9 [Hz]) causes a cycling movement of the head [127]. In each breathing
cycle (average ω = 0.3 [Hz]), the chest expansion causes a cyclic movement of the head
(that corresponds to Rx in the scanner frame) [134]. The voluntary movements (e.g.
shake, Rz, or nod (Rx) could be simulated by adding a further harmonic centred on the
frequency of the movement.

Highly symmetric and periodic data simulated using Equation 7.1 do not represent
a real situation and may not help training the neural network on general cases. So, an
additional degree of randomness has been added to break the symmetry of the cosine
function used to simulate the harmonics. A random series of numbers (ri) with 0 average
and 0.1 STD (as in true optical measurements) has been created using the built-in
MATLAB function normrnd. This, has been used as input to evaluate an asymmetric
function (a(ri)) that depends on a non-linear combination of the inputs:

ri = normrnd(0, 0.1, [1 : i]) (7.3)

a(ri) = risin(r2
i ) + r3

i (7.4)

In real MRI scans, the off-centre (in [mm]) and Angulation (in [◦]) parameters reflect
the offset of the centre of the head from the isocentre of the scanner and its orientation
relative to the scanner geometry. These are generally evaluated manually during the
survey performed before the MR sequence. They are taken into account during the
pre-processing of motion data (section 5.1.2). So, they have been simulated too using
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random extraction (normrnd):

Off centre = normrnd(0, 15, [1, 3]) (7.5)

Angulation = normrnd(0, 1, [1, 3]) (7.6)

The resulting head motion time series was similar enough to the real measurement
to justify the use of it to generate synthetic head motion data series to be used in the
simulation of the extra-cranial magnetic field changes (Chapter 4).

Figure 7.18: Example of artificial head movements. The plots show examples of different artificial
head movements: (a) at rest, (b) head shaking and (c) head nodding. Data were simulated based on
statistics reported in Table 7.15.

7.2.3 Customised head models and simulated magnetic field
data

In order to extend the span of data from which the NARX learns the relationship
between the magnetic field and the head movements, 19 custom head models were con-
sidered, using the simulation approach described in Chapter 4. Two dimensional repre-
sentations of the models implemented in the simulation are shown in Figure 7.19.

Head motion parameter time series have been randomly generated as explained in
the previous section (7.2.2). Harmonic movements were generated using (equation 7.1)
(in the rest condition only chest expansion was considered and the symmetry was broken
using equation 7.3) and used in a step-by step simulation of the magnetic field pertur-
bation (see the code in the Appendix D.4). Simulated extra-cranial magnetic fields have
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Figure 7.19: 3D head models. The picture shows a central sagittal slice from each of the 3D head
models used for simulations in this chapter Subjects 1 to 19) and in other parts of this dissertation
(Subjects 1 to 6). Models have been obtained as described in Figure 4.2. Black regions represent
air, white parts correspond to water (χ = −9 ppm). [MRI pictures made through years of research
in the MEG (Magnetoencephalography) lab at Sir Peter Mansfield Imaging Centre (University of
Nottingham). Thanks to the MEG group for providing them for this simulation].
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been processed in the same way as was done for data recorded during simultaneous EPI
(Figure 7.1). Signals from the probes on the back of the head (probes 10, 11, 15 and 16)
were not used to perform head motion tracking done with real data. Neither physiological
noise (Section 4.3) nor electronic noise (white Gaussian noise with STD ≈ 10−8.) were
added this time as previous results (Section 5.2.2) showed that this doesn’t significantly
influence the outcome of the prediction in case of qualitative analysis.

7.2.4 Span of magnetic field data

Figure 7.20: STD of simulated magnetic field data obtained using synthetic head motion data. (a)
Variation of the average over of probes of the standard deviation of the field measurements with
simulated head volumes for subject simulations, for resting head motion conditions (similarly to
Figure 4.8). The magnetic field was sampled in the cloth probe folder set-up that was used to
perform prediction on experimental data acquired with simultaneous EPI scanning (Figure 7.1).
Effects of the head-probe distances due to head morphology is still visible as a large head volume
corresponds to a larger STD. (b) and (c) show the STD of the rotations and translations, respectively,
of the synthetic head motion parameters. These are results comparable with real data reported in
section B.2.

Figure 7.20 shows the range of head volumes, ∆B, ∆R and ∆T simulated. These
and the random simulated off-centre and angulation values represent the additional input
data used to train the NARX. A wider range of combinations has been covered compared
to previous data (Figure 4.8). This will help the training of the NARX over n-subjects
as the span of head volumes and the consequent variation of the field changes (due to
head motion) is better sampled.

In order to avoid to over-fitting the regression model, 1000 simulated time-steps for
each subject were used to train the network (19000 time steps in total). As described
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in Subsection 5.1.3, the non-linear regression models (NARX) were trained using time
series comprised of 85% (16150 time steps) of each data-set, in order to save 15% (2850
time steps) of the data for testing. The time correlation of the data was not considered
as the training time series was further randomly divided into 90%− 5%− 5% to create
training, validation, and test data-sets (1435− 808− 808 time steps respectively).

The model that best performed over 10 training runs (where each time the random
selection of subgroups is done) was selected in order to minimize the influence due to
the random initialization of neuron weights and so the error on the prediction.

7.2.5 Predicting head motion over several subjects using the
non-linear regression method

The best of the 10 trained NARX was used to predict head motion parameters from
the new data (2700 time steps). Figure 7.21 shows that the network trained over several
subjects (using magnetic field data, head volume, head off-centre and angulation param-
eters) is able to predict reasonably well (Table 7.16 ) new data from the same group of
subjects.

Subject 1 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.956 −0.006 0.968 0.984 0.016 0.699
Ty [mm] 0.998 −0.006 0.971 0.986 0.002 0.279
Tz [mm] 0.978 −0.013 0.981 0.990 0.010 0.700

Rx [◦] 0.957 0.024 0.973 0.986 0.014 0.699
Ry [◦] 1.011 0.011 0.936 0.968 0.003 0.210
Rz [◦] 0.970 −0.010 0.980 0.990 0.004 0.419

Table 7.16: Values of the slope and intercept of the linear fit are reported along with the values of R2,
the standard deviation (STD) and the mean squared error (MSE) and Pearson correlation coefficient
(PC), for each of the motion parameters and prediction reported in Figure 7.21. Values have been
rounded to three decimal places.

Testing the robustness of the trained non-linear method. The final goal would
be to train a network on a subgroup of volunteers (using magnetic field changes, head
volumes and the off-centre and angulation information as input variables to predict head
motion) and then apply to new groups of volunteers. The trained neural network was
therefore tested on new data. In order to avoid to over-fitting the regression model, 1000
simulated time-steps for 18 subjects were used to train the network (18000 time steps in
total). Data from Subject 9 were used for the final testing (1000 time steps) of the data
for testing. As described in Subsection 5.1.3, the time correlation of the data was not
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Figure 7.21: The figure shows results obtained for synthetic head movements, sampled using the cloth
probe-holder set-up for simultaneous EPI scanning for subjects number 1 − 19, using 14250 data
for training the non-linear regression method on the whole range of subjects. Prediction results are
good (equation 5.5). Statistical evaluation of the results is reported in Table 7.16.

considered as the training time series was further randomly divided into 90%−5%−5% to
create training, validation, and test data-sets (16200−900−900 time steps respectively).

Data simulated for Subject 9 were used to test the robustness of the network on
predicting motion parameters for a new subject as data of Subject 9 fell in the middle of
the STD∆B(V olume) (Figure 7.20) space sampled. Data were normalised by the scaling
factor used for normalising training data. Results are reported in Figure 7.22.

The effects of the head probe distance on magnetic field data is clear: the NARX can
somewhat apply the mathematical relationship learned as most of the predicted data lie
on a straight line, but the slope of the line is scaled or the intercept is far from zero or
both.

7.3 Conclusion

Experimental magnetic field data acquired using the set-up that allows simultaneous
imaging has been characterised (Subsection 7.1.1). Data acquired with and without si-
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Figure 7.22: The figure shows results obtained for synthetic head movements, sampled using the cloth
probe-holder set-up for simultaneous EPI scanning for Subject 9, using the best network obtained
using data from Subjects number 1-18. Prediction results are poor, but the data follows a linear
behaviour.

multaneous scanning are similar when the field is measured 30 ms after the RF pulse of
the EPI acquisition. Magnetic field data acquired with simultaneous scanning (Subsec-
tion 7) have been further characterised and this successfully confirmed previous results
relating to the efficacy of prediction. Predictions of head motion parameters obtained
using both regression methods have been carried out (Section 7.1.5). The non-linear
regression method has been confirmed to outperform the linear approach (Figure 7.13).

These data have also been used to flag significant head movements (Subsection 7.1.3)
and to measure a respiration-like signal (Subsection 7.1.4) retrospectively. The measured
extra-cranial magnetic field has been demonstrated to be a valid contact-less signal for
discriminating between tolerated and exaggerated head movements and to evaluate the
respiration of the subject also during scanning. Both uses could facilitate a motion pre-
vention technique, as the former could be used as a warning to interrupt the scanning
sequence and the latter could be used as respiratory gating trigger for scan acquisition.
Furthermore, by training a regression method, the signal could be predicted n-steps
ahead and provide information for real-time scanner control.
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In the future, the use of purely simulated data to train the regression method might
provide a further development of the technique. Improvements on the simulation pro-
gram would involve further optimisation (e.g. parallel programming) to reduce the time
necessary to produce a ≈ 1000 data point time series (equal to ≈ 2 hours with the sys-
tem used) and a better approximation of the magnitude of the data (e.g. by acquiring
the MR image to obtain the head model and the probe positions in the same scanning
session and frame of reference).

A tentative way to generalise the results reported in this Chapter over several subjects
has been described in Section 7.2. The results show that by adding parameters that take
into account the head size and position in the scanner, a trained non-linear method may
be able to predict head motion over several subjects without the need for a subject-
dependant supervised learning phase. The generalised neural network over 19 Subjects
produced reasonable results on new data from a subject that belonged to the former
group (Figure 7.21), while not performing as well on predicting head movements from
a subject that was not in the group (Figure 7.22). However, the predictions follow a
linear behaviour that differs from the ideal one with a slope, that is not equal to unity, a
non-zero intercept or both. This suggests that it might be possible to find a proportional
factor to re-calibrate the results of the network for new subjects and to avoid the need to
train different networks for group of subjects that fit given features (e.g. head volume,
Figure 7.20).

7.3.1 Comparison with other tracking systems

The motion tracking and motion detection techniques developed in this thesis com-
pete with existing techniques (Section 2.2, Figure 2.10) in terms of set-up, accuracy and
MR compatibility. The fully in-bore probe-holder set-up used (Figure 3.3) has been de-
veloped to be compatible with a 32-Channel Nova Head coil, but due to its fully flexible
nature, it could be easily adapted to other head coil solutions. Accuracy is limited by
the accuracy of the secondary tools used to record the training dataset (±0.01 mm or ◦),
so in its future development this could be improved by choosing a different tracking sys-
tem (e.g. Figure 3.3.f). The development of a new tracking tool, with higher accuracy
than the MPT camera and based on the NMR field probe system, is presented in the
next Chapter (Subsection 6.3.1). As the length of the training data set acquisition is on
the order of magnitude of 10 minutes (considering the case where training is only done
over a small range of head movements), we expect that the choice of the secondary tool
would suit most of the subjects. The use of a dedicated navigator scanning sequence
would certainly fit most of the cases including pediatric and non-collaborative subjects.
Further improvements in the training phase could be realised by the use of an external
screen to suggest movements to perform.
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To conclude, the technique developed, once the regression method is trained, does
not require the use of a mouthpiece, markers nor line-of-sight access neither the need to
modify the image sequence to localize the head (e.g. Figure 3.3.a,f), nor the acquisition
of extra MR data (e.g. Figure 3.3.a,e). Accuracy limits are ±0.01 mm or ◦, which are
worse compared to other NMR probe based technique[4] (order of magnitude of the nm)
and better than self navigator approaches [82] (order of magnitude of 0.1 mm). The
range of movements has been limited to small head movements to improve the accuracy,
but there is a potential to generalise it to a larger range of movements. Also, it re-
quired to be trained for each acquisition on the specific subject, but the idea for a future
generalisation over several subjects has been presented in this thesis (Section 7.2). Ta-
ble 7.17 reports the comparison of the method developed in this Thesis to other methods.

A further approach, not explored in this thesis, would be to investigate changes in the
trained neural network neurons over a subject to look for mathematical relationships that
would allow the trained network easily to adapt to different subjects. Once generalised,
the technique would be a fully plug-and-play head motion tracking solution, suitable for
PMC and RMC MoCo techniques. It has been evaluated that eight probes would be
sufficient to have a valid magnetic field signal for the technique; use of a reduced number
of probes would reduce the cost of the implementation.

A further development of the tracking technique might lead to its application to body
imaging. The NMR field probes would track the body motion to correct the MR image.
Feasible solutions would require a solid structure to be placed around the body that
records magnetic field changes due to the body motion. The regression method would
be calibrated using MR body images (as is done with the FatNav technique). Another
feasible solution would involve coupling the NMR field probes to the body (similar to
other NMR-probe-based techniques [4]) and to track probe positions during the scanning
sequence.
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Thesis MPT NMR markers Navigator
Method NMR field probes MPT camera NMR field probes Sequence-based
Need for
line of sight
access

No Yes No No

Skull-
coupling

Contact-less
Marker-based
(skin, mouthpiece)

Marker-based
(Plastic glasses)

Contact-less

Range of
movements

Small range only
for better accuracy
(≤ 5 mm,≤ 5◦),
skip-redo strategy
for large range

Any range of move-
ments that are in
the sight of access
area

Any range of move-
ments (up to ≤
50 mm,≤ 10◦)[60]

Any range of move-
ments where the
head remains in the
FOV of the MR im-
age

Accuracy
Limited by the
training method
(MPT)

0.1 mm, 0.1◦ 0.05 mm, 0.03◦ 0.2 mm, 0.3◦

Pre-
scanning
operations

Training the regres-
sion method (up to
20 minutes)

Cross-calibration
(up to 45 minutes)

No No

Delay on
updating
scanner
geometry
(PMC)

Not tested ≈ 15ms Less than 1 s [60]

Depends where the
Nav.sequence hap-
pens in the scan-
ning sequence

Generalising
over image
sequences

As NMR marker
method

It doesn’t interfere
with imaging se-
quence

Optimal Optimal

Comfort Optimal

Poor even over sub-
jects able to toler-
ate the marker sup-
port

Acceptable Optimal

Generalising
over sub-
jects

Good, but it needs
to be trained for
each subject

Good over subjects
able to tolerate the
marker support

Good over subjects
able to tolerate the
marker support

Good

Table 7.17: Comparisons of various in-bore motion tracking techniques. The table reports comparisons
of the tracking method developed in this Thesis with well-known optical (MPT), NMR markers and
Navigator sequence methods [5, 121, 122] (Figure 2.10.d,e,f). The method developed in this thesis
will overcome some issues by combining the best features of the compared methods shown in the
table. It will be contact-less, fully MR and MR sequence compatible and suitable over subjects.
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Chapter 8

Conclusion

In this dissertation, a novel approach to ameliorating motion artefacts in UHF MRI
has been explored. It does not require image sequence modification or use of markers
that are directly coupled to the head for this implementation. The results on predictions
reported here confirm that measurements of extra-cranial field changes made with a field
camera (with probes placed between the receiver array and volume transmit head coil)
can be used to monitor head position in a 7T MRI scanner. The best predictions of the
head motion parameters during EPI scanning were obtained using a non-linear regression
method.

8.0.1 Set-ups to hold field camera in the MRI scanner

The use of two set-ups has been explored. The first, was rigid and made of PVC
(Figure 3.7). It was sited inside the RF transmit head coil, requiring removal of the
standard RF receiver coil array. The second, was flexible and made of cloth and recycled
material (Figure 3.3). It allowed the NMR field probes to be positioned in between
the RF transmit coil and the receiver coil array (in various positions). This allowed
the 32-channel receiver array to be used for signal reception with all the advantages it
offers in terms of sensitivity and parallel imaging capability. This second holder allowed
extra-cranial magnetic field measurements to be made during scanning with standard
MRI sequences (such as EPI).

NMR probe FIDs. The FID signal decays from the NMR probes have been charac-
terized in the different set-ups. The results (Figures 3.7, 3.8) show that the FIDs are
well characterised by exponential decays in the case of cloth holder. The decay times
were similar to those measured using a foam holder which is the optimal arrangement
for signal longevity. This is in contrast to the measurements made with the PVC holder
where the decays are more sinc-like and apparent relaxation times are shorter. However,
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Figure 8.1: Final design of the probe holder. Gray: elastic band to hold the probes (31 pockets in
total). White: elastic band to hold the cables. Red Velcro used to trap the cables. Dashed red lines:
reference lines used to align the support to the head coil. (a) Upper part (a.1 top view, a.2 bottom
view). (b) Bottom part. (c) Scheme of the system mounted.

due to the fact that only the first 5 ms of the measurements are generally used to calcu-
late the magnetic field, the measurements made using the PVC probe holder were not
significantly influenced by these effects (arising from field inhomogeneities produced by
air/PVC boundaries oriented perpendicular to the field).

Probe positions. Comparisons of the effect of different probe positions have been
reported in Figure 3.4 and the main difference was due to the more even sampling of the
extra-cranial space provided by the PVC holder. The probe positioning influences the
standard deviation of the measured data as shown in Figure 4.9 and in data reported
in the Appendix B.2. Based on the results of predicting head movements using the
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different set-ups (Appendix C), the cloth support was adjusted to provide a more sym-
metrical distribution of probe positions and this set-up was used to acquire data during
simultaneous EPI. This has helped to improve the accuracy of the movement parameter
predictions (Figure 7.11). The final version of the cloth probe holder is shown in Figure
8.1.

8.0.2 Magnetic field data

SNR of magnetic field data. The background noise in magnetic field measurements
inside the 7T scanner has been evaluated as the RMS of one set of empty scanner
measurements (Figure 3.9, Section 3.2.1). The results show that the background noise has
the order of magnitude of 10−8 T . In order to evaluate the SNR over all the measurements
(Figure 4.11), it has been assumed that the RMS of the background noise was constant
over different days of measurements and experimental set-ups.

Head-probe relative displacements. The relative position and distance between
the head and the NMR probes of the field camera determines the standard deviation
of the magnetic field changes measured during head movements. Figure 4.9 shows that
to produce large field changes the probes need to be placed close to the head such that
head movement produces large changes in the head-probe separation. The standard
deviation of the magnetic field changes produced by head movement has been further
explored by using simulated data and customized head models. Figures 4.8 and 4.10 also
indicate that the standard deviation of the magnetic field changes are most influenced
by the head-probe distances, showing coherent results over a range of movements and
head shapes.

Measurement of extra-cranial field changes during concurrent EPI. In the
case where extra-cranial magnetic field measurements were made during simultaneous
image acquisition using a multi-slice EPI sequence, it was necessary to evaluate the
time delay needed between the end of the EPI acquisition and the field measurement
to produce field values that were not affected by the applied gradients and associated
eddy currents (section 7.1.1). A delay from the slice selective RF pulse of 30 ms has
been chosen based on analysis of Figures 7.3 and 7.4. Measurements with and without
simultaneous EPI data acquisition (Table 7.4 and Figures 7.5 and 7.6) confirm that this
choice is good as the standard deviation of the field measurements is similar with and
without concurrent EPI.

Spatial filter. As shown in Figure 5.6, different sources contributes to the measured
extra-cranial magnetic fields. These include: movements of the head, chest expansion
and noise (Figures 6.5, 6.5). To perform predictions of head motion parameters, we
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need to separate out the magnetic field changes due to head motion. A spatial filter has
therefore been developed (as described in Section 5.1.1. Code is reported in the Appendix
D) and tested on simulated (Figure 5.15) and real data. The filter’s core steps involve
fitting the magnetic field data using the solid harmonics up to the second order (Figure
5.4), selecting the highest harmonics fits to reduce the influence of physiological noise and
then performing feature selection using the hierarchical cluster analysis representation of
the signal in principal component space. This filtering successfully reduces the influence
of physiological noise on data. However the biggest impact on the prediction is on
significantly reduced the time needed for training when finding the model relating the
extra-cranial magnetic field measurements to head motion parameters.

Alternative method to evaluate respiration signal. Application of a spatial filter
also allows evaluation of the zero order field component, that mainly carries information
about the effect of chest movement due to respiration (Figure 6.5). Filtering this signal
by applying a temporal band-pass filter allows the respiration to monitored (Figure
6.4). In most MR scanners respiration is monitored using a small set of bellows placed
under the sternum and held in place with a respiratory belt that is squeezed in each
cycle of respiration. Measuring respiration using NMR field probes has the advantage
of not requiring attachment of additional measurement apparatus to the patient during
scanning.

8.0.3 Detection of large head movements

The magnitude of the extra-cranial magnetic field changes varies with the extent of
motion (Figure 4.8). It is therefore possible to discriminate the size of head motion
by evaluating the size of the field changes produced. This allows a threshold for field
change/movement to be set (Section 6.1). Once a tolerable level of motion is defined,
it can be used to define the thresholds for each channel. Thresholds over the probes
were first considered constant (Figure 6.1) and then different (Figures 6.2 and 7.7). In
both cases there were a certain number of probes that detected when large head motion
occurs. In the former case, the number of probes varies the most, while in the latter
it was constant over time. Finding the correct criteria to use in deciding when to stop
a scan automatically or to re-scan some k-space data so as to avoid significant motion
artefacts will require further work.

8.1 Head motion tracking

A novel head motion tracking technique for MoCo has been developed through the
use of both simulated and real data. Prediction results of head motion parameters were
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coherent over several approaches and the best one identified was then used to perform
prediction on data acquired during EPI scan.

8.1.1 Simulated magnetic field data

Simulations provided ideal noiseless data that was useful for evaluating the perfor-
mance of different approaches. Customized head models of 6 subjects (Figure 4.1) and a
well-known segmented head model [26] were used. The extra-cranial magnetic field dis-
tribution was evaluated using a FFT method [126] and sampled at probe-like positions.
Step-by step simulations of extra-cranial magnetic field changes were made by using true
head motion parameters measured using an MPT camera. The process took ≈ 6 s per
time step on my personal laptop1 which is a reasonable time for producing long series
of synthetic data. Additional noise sources were also simulated. Magnetic field changes
due to chest expansion (Section 4.3) and Gaussian noise were considered (in agreement
with the measured noise values reported in Section 3.2.1).

Examples of simulating data with the cloth probe holder are reported in Figures 4.4
and 4.5. Simulated data are shown to be comparable to experimental measurements in
terms of order of magnitude and behaviour. Simulated data was then successfully used
to identify the best regression method to perform prediction of head motion parameters
from extra-cranial magnetic field changes for different ranges of movement and probe
set-ups (Figure 5.15).

8.1.2 Set-ups

Both the probe holders were successfully used to acquire valid measurements for
predicting head motion parameters from extra-cranial magnetic field changes. As the
distance between the head and the probes strongly influences the magnitude of the field
changes, the results differ for different set-ups. Thanks to the even sampling of the space
due to the even distribution of probe positions, the PVC set up (Figure 3.7) is more
sensitive to large head motion (Figure 4.9). The cloth probe holder (Figure 3.3) is more
flexible over acquisitions in terms of choosing the position of the probes. To perform
measurements, the probes were mainly clustered at the front of the head, at eye-level.
This choice lead to a reduction in sensitivity to large head motion. Furthermore, the
signals from the three probes placed on the back of the head were mostly influenced by
chest movement in respiration and so were not useful for prediction of head movement.
To perform measurements with simultaneous EPI data acquisition (Figure 7.1), probes
were more evenly spread over the front and sides of the head and the quality of the
predictions improved.

1Processor: Intel(R) Core(TM), i7-8550U, CPU 1.80G Hz, RAM 16 Gb
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8.1.3 Regression methods

Figure 8.2: Prediction of head motion parameters during a EPI scan. Plots overlap worst and best
prediction of head motion parameters shown in Section 7.1.7, using PLS and NARX methods (Figures
7.9 and 7.13 respectively) compared with the ideal prediction. It is clear that the NARX method
outperforms PLS in the case were training data (both magnetic field and head motion parameters)
were acquired without simultaneous EPI and the trained regression method is then used on new data
acquired with simultaneous EPI.

The main goal of this project has been achieved by predicting head motion param-
eters from extra-cranial magnetic field changes (Section 5.1.3). Two different ways to
perform predictions have been tested (Sections 5.1.3, code in the Appendix D.2), both
producing good results on simulated and real data (Section 5.2.2, Tables 5.3, 5.5 and
7.6). The predictions were evaluated based on linear fit of predicted data plotted as
a function of the real data (Appendix 5.1.4). Decisions on how many motion parame-
ters were predicted well out of six was based on the criteria reported in Equation 5.5.
Different choice of criteria may lead to different outcomes. The Partial Least Squares
method predicts poorly compared to the Non-linear AutoRegressive with eXogenous In-
puts (NARX) neural network. The non-linear method should therefore be used for future
work.
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8.1.4 Range of head movements

During the experiment, the subjects performed various different head movements
(rest, feet-wiggling, head shaking or head nodding) in order to sample a variety of head
movements potentially to allow to the regression methods to learn the head motion-
magnetic field changes mathematical relationship. However, the relationship may differ
significantly for different ranges of motion as the magnitude of the magnetic field changes
does not vary linearly with the extent of motion for large movements (Figure 4.8).

This was evident from the results obtained. Data were divided into two subgroups for
training the regression methods on two ranges of movement; small (rest, feet-wiggling)
and large (rest, feet-wiggling, head shaking, head nodding). Both the linear and non-
linear methods can be trained to predict a large range of head movements (Figures 5.8,
5.11, 5.12, and Figures in the Appendix C.2, C.4, C.6 and C.8), but the accuracy of
prediction for small head movements, the most common condition that occurs during a
MRI scan, is then poor (Figure 5.9). To improve prediction of large head movements,
different probe positions in the cloth support may be explored in the future. Predic-
tions on small range of head motion obtained by the non-linear regression method when
trained on data acquired with a small range of head motion gave excellent results (Fig-
ure C.7, C.10). This approach has therefore been further tested on data measured with
simultaneous EPI (Figure 8.2) and analysis of this data confirmed the results obtained
from data acquired without concurrent image acquisition.

8.1.5 Timing of the prediction process

A combination of the marker-less motion tracking method with image acquisition
involves having a training phase (without simultaneous EPI), where simultaneous mea-
surements of head motion parameters and extra-cranial magnetic field changes are ac-
quired, pre-processed and used to train the linear regression method. The method can
be used for new data acquired with simultaneous EPI data acquisition.

The training phase to predict small head motion will last approximately 20 minutes
as approximately 17 minutes (Table 7.1) are necessary to acquire measurements and ap-
proximately 3 minutes are necessary to pre-process data, train 10 Neural Networks and
select the best one (Table 7.8).

This represents an improvement compared to using the tracking method for the whole
duration of the MRI acquisition.
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8.2 Pilot-studies for future works

8.2.1 Active magnetic marker system

A simulation of a new head motion tracking system based on the use of two active
magnetic markers (Figure 6.9) was presented. The markers could be fixed onto a pair
of glasses worn by the subject. The magnetic field of those could be detected by the
NMR field probes and a machine learning technique is used to predict the position of
those in the space from that. Results (Figures 6.13, 6.14) show that the prediction of
head motion parameters was good for a 1nT noise level. In its future implementation,
a higher SNR would help the performance. Since the level of noise in the MRI scanner
cannot be changed, it would be necessary to increase the signal. Options are to increase
the current that is driven the coils, but this was lead to other issues (e.g. the torque of
the small dipoles in the magnet will increase, making the system more unstable) or to
increase the number of magnetic markers on the glasses.

This solution represents an improvement compared to other marker-based motion
correction techniques as it doesn’t require to solve the correspondence problem [69] to
find the marker system position, does not require line of sight access from detector to
marker [8] does not interfere with the imaging sequence and the markers-NMR probe
paired system is fully MRI compatible [35]. Furthermore, the precision of the tracking
could be controlled by the stopping criteria of the algorithm rather then the physical
property.

The position of the markers has been determined using a least square regression
function based method in this simulation, but other options could be explored. For
example, it could be worth to try to train a neural network on synthetic data and then
applied it on real data as the mathematical model that generate the synthetic data is
well defined (Equation 6.4).

8.2.2 Generalized prediction

A pilot study was conducted on simulated data as a proof of concept that training a
neural network on a large subgroup of collaborative subjects2 may lead in the future to
a fully marker-lees technique ready to be used on a large groups of subjects (either col-
laborative or not) without further need for training the network with concurrent optical
measurements.

2Collaborative subjects are subjects able to wear the bite bar necessary to use the optical method to
perform simultaneous measure of magnetic field changes and head position to train the network
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The use of additional geometric parameters helps to restore the bijective mathemat-
ical relationship between magnetic field changes and head motion parameters. For its
future development, additional parameters may be used as inputs. The NMR probe
positions could be used as input, but in general these positions very similar in different
scanning sessions. It might however be useful to input the distances from features on
the head to the probes rather than using the off-centre and angulation information.

A further degree of complexity may be added to the architecture of the network in
order to model more complex mathematical relationships. Changes to the architecture
might involve increasing the number of hidden neurons (equal to 30 in this work) or
adding a further hidden layer (a single hidden layer has been used here). A new balance
between the number of neurons over the layers would then need to be found.

Use of more data for training would help the network to learn the relationship be-
tween extra-cranial field changes and head pose. This could be achieved with the same
number of subjects as used here (19) but using more data-points per subject for training.
Alternatively more subjects could be considered keeping the number of data-points fixed.

Changing the architecture and/or the nature of the data might lead to over-fitting.
To prevent to over-fitting, it may be also useful to train different networks for different
groups of head volumes (e.g. ∈ [2.5, 3.5], ∈ [3.0, 4.0], ∈ [3.5, 4.5], . . . [10−3m3]).
Overlapping the head volumes on those groups will lead to there being at least two
possible models for each head that can help in motion correction.
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Appendix A

Further consideration of the NARX
method

This appendix provides background information about the data analysis techniques
used in the thesis work. In particular, the background to the NARX method is explored.

A.1 Time series

A time series can be described as a vector(y(t)) whose elements depend on time (t)
[135]:

y(t), t = 0, 1, 2, . . . (A.1)

Such a vector can be used to describe a dynamical system sampled at discrete-times.

Prediction (or regression) of a time series involves approximating the continuous
function f that [135]:

y(t), t = 0, 1, 2, . . .

ŷ(t+D) = f (y(t), . . . , y(t− dy, u(t), . . . , u(t− du))
(A.2)

where: u, y, d, f represent inputs (exogenous features), outputs, lags and non-linear
map function respectively. ŷ(t+D) represents the estimation of vector y at time t+D,
where D represents the number of steps ahead (D = 1, 2, . . . ).

Some key points are listed below.

1. Based on the interdependence between time series values [136], it is possible to dis-
criminate non-deterministic and deterministic time series. A deterministic system
whose behaviour is fully predictable from the initial conditions is represented by
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a deterministic time series whose components auto-correlate 1. Otherwise, in the
case where there is no auto correlation between time series components (or their in-
terdependence is minimal), the time series represents a deterministic system whose
behaviour is unpredictable. Time series are then classified as chaotic (or random).
A further classification can be made based on the interdependence of time series
values dividing them into short or long term interdependences. In the case of long
term dependence, past events have effects on future events over the long term, so
the output of a system at time to depends on that state at time tb <<< to and
the process has memory of past events. This behaviour is measurable through the
autocorrelation which decreases over time following a low power function. The
behaviour is persistent in the case of a high positive autocorrelation value, e.g.
if the series increases for a certain period of time, it will carry on increasing. It
is anti-persistent positive autocorrelation, e.g. if the series increase for a certain
period of time, but then becomes stationary (this behaviour usually corresponds
to noisy or self-affine time series).

2. A time series is stationary if its average, variance 2 (and covariance) 3 do not change
in time.

3. Based on the number of variables, a time series can be univariate, bivariate or
multivariate (in case of multidimensional input and output). In particular, multi-
variate analysis is used to analyse observations that have more than one statistical
outcome variable.

The time series analysed in this dissertation are deterministic, with no long term
dependence, stationary and multivariate.

1If there is significant auto-correlation, the output value y(ti) is correlated with the term y(ti + d)
incremented in time by the quantity d

2Variance. The variance of a data-set is a measurement of the spread of the data point respect
their average value. For a continuous variable, it is defined as the square of the standard deviation of
the data.

3nt-moments about the mean. The nt central moment of a random variable is:

µn = E [(X − E[X])n] =

∫ + inf

− inf

(x− µ)nf(x)dx

where: µ = E[X] is the mean, f(x) is the probability density function of the distribution, E is the
expectation operator. µ0 = 1 is the central momentum; µ1 = 0 is the first central momentum, under
certain condition is equal to the mean; µ2 = σ2 represents the variance (σ is the standard deviation);
µ3 is the standardize moment used to define skewness; µ4 is the standardize moment used to define
kurtosis;
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A.1.1 Pre-processing

Input selection should be performed in order to select the input variables that should
be as predictive as possible. Reducing the redundancy of information in the data in
general improves the quality of prediction. There are only a few situations where time
series are used without any pre-processing. The most commonly used pre-processing
methods include those that remove trends and systematic errors. In our case, the data
could be easily pre-processed as the regression was performed retrospectively. In the case
of prospective application, it would be necessary to evaluate pre-processing parameters
on the training data and then apply the same parameters on data used for the prediction.

In the work described in this thesis (Chapter 3), the pre-processing was mainly ap-
plied to the magnetic field data, while the only pre-processing applied to the data from
the MPT camera was to transform the measurements into the frame of reference of the
scanner and then to down-sample the time series to match the sampling frequency of the
field camera.

A.2 Data analysis

Methods. Methods to perform data analysis are in general divided into:

• Unsupervised. These are used to find patterns or hidden structures in unlabelled
data (e.g. finding clusters or correlations between features of the data);

• Supervised. The method is trained on fully labelled data and learns to label
new inputs. The model is modified during the training phase based on the best fit
measure (e.g. minimize the error on the regression)(e.g. Deep neural Network);

• Reinforcement Learning (RL). Reinforcement learning methods work in a dy-
namic environment and can identify the sequence of actions that will generate the
optimal outcome.

Techniques applied in this work are supervised and non parametric, as there is no a
priori knowledge about the process that has generated the signal. The trained methods
are customised for each different subject.
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A.2.1 Partial Least Squares (PLS) Regression

The Partial Least Squares (PLS)4 algorithm is a regression method based on Principal
Component Analysis (PCA) 5 and Least Squares regression .
PLS projects the observable variables and the predicted variables into a new space (the
latent space) and exploits the covariance between the spaces to perform the regression. In

the case explored in this dissertation, the multivariate variables ~M and ~B are projected
into their respective latent spaces in a PCA-like manner:

~M ′ = ~U ~QT + E (A.3)

~B′ = ~T ~P T +H (A.4)

Where E and H represent independent and identically distributed errors6. Once the
score matrices (~Tt×l, ~Ut×l) and the loadings (~Pk×l, ~Q6×l) are estimated during the train-

ing phase, they are used to estimate new responses ( ~Mt×6) from the predictors ( ~Bt×k))
at time t.

Loadings (or weights) characterise the contributions of the different variables to the

PLS model. Score matrices represent the coordinates of ~M and ~B in their respective
latent spaces. As ~Tt×l and ~Ut×l are linearly related, once ~Ut×l is estimated in the training
phase ~Tt×l is also known and used for prediction.

k-fold cross validation. The built-in MATLAB function used to perform the PLS
method is plsregress 7. The function allows a choice of different methods for validating
the prediction. The method chosen was the k-fold cross validation with k equal to 6.
The k-fold method randomly partitioned the training set into k folds (or subgroups of
data). Then, one partition is chosen as a test set and the other k−1 subgroups form the
training set. This operation is repeated k− times and the final result is formed from the
average of the individual results. The method is then robust against the random choice
of folds8.

4https://uk.mathworks.com/help/stats/partial-least-squares.html
5Principal component analysis (PCA) is a multivariate analysis method. It aims to represent the

data in a new space described by less dimensions, but in which the variance of the data is preserved.
https://uk.mathworks.com/help/stats/principal-component-analysis-pca.html

6https://uk.mathworks.com/help/stats/pca.html
7https://uk.mathworks.com/help/stats/plsregress.html
8https://www.youtube.com/watch?v=TIgfjmp-4BA
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A.2.2 Auto Regressive (AR) models

Auto Regressive (AR) models represent random, time-varying processes speci-
fying that the output variables depend linearly on their own previous values and on a
stochastic term. Examples of autoregressive models are ARMA (AutoRegressive-Moving-
Average) 9 and Vector autoregression (VAR) 10 and include the Non-linear AutoRegres-
sive with eXogenous Inputs (NARX) method used for analysis in this dissertation.

A.2.3 Artificial Neural Network (ANN)

An ANN is used to perform time series predictions on non-linear systems. It is a non
parametric method that has been shown to be a universal approximator [136]. ANNs
are black-box modelling tools used to correlate inputs and outputs that are linked by
an unknown mathematical relationship without any limits on space dimension mapping
(m-dimension input and n-dimension output). A priori knowledge about the system is
crucial for choosing the architecture. Limitations include the need to deal with long
duration dependence in time series, number of samples necessary for the training (as
increasing the number of samples over a certain limit doesn’t improve the performance
of the network), and the requirement for a stationary time series.

A.2.4 Recurrent Neural Network (RNN)

The capability to retain information for different amounts of time divides the ANN
into static and dynamic types. Recurrent Neural Networks (RNNs) are dynamic networks
that are able to store information from the past input and use them in combination with
the current input for future prediction. RNNs trained with a gradient descent algorithm
improve performance on time series with short term dependence [137]. RNNs are in
general used to represent non-linear dynamic systems [135].

9The moving-average model specifies that an output variable depends linearly on the current value
and past values of a stochastic term. It is a common approach for modelling univariate time series

10Vector autoregression (VAR) is a stochastic process model used to capture the linear interdepen-
dencies among multiple time series. VAR models generalize the univariate autoregressive model (AR
model) by allowing for more than one evolving variable.
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Appendix B

Data

Position of the probes, the standard deviation of real data, simulated data (only
due to head motion) and simulated noisy data of both magnetic field changes and head
motion parameters are described in this appendix.

B.1 Probe positions

The positions of probes fixed in various experimental set-up are reported. The probe
signals are sensitive to their position in the scanner bore. The positions of the probes are
measured by the NMR field camera during the calibration process with respect to the
isocentre of the scanner. This has been repeated for each measurements as the system
(scanner bed, head coil and probe holder are coupled and moved together) is reseated
each time a new subject is scanned. The deviation of the probes during the different
scans during the same laboratory session has been reported as and example. The average
shift resulted ≤ 2 mm.
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Subject 1
PVC Cloth

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
P1 86.7568 90.0045 −34.4014 66.8213 122.4330 23.4649
P2 −0.1857 136.7108 15.1747 40.1884 124.1966 −27.1726
P3 103.8605 3.3384 21.2683 95.8099 80.0824 114.4159
P4 −103.4851 3.9177 22.7314 −40.2865 135.8074 −3.3182
P5 0.5437 −121.8742 −96.8454 −51.1313 130.4997 −15.1453
P6 1.0286 129.2809 −100.5363 −66.7111 117.5437 −23.7065
P7 98.8610 3.5485 −91.5109 −95.2406 89.6777 107.2047
P8 −99.2621 3.1014 −78.2304 −113.2708 86.9476 4.9440
P9 0.8499 −128.7906 24.8871 −14.7028 −151.7036 −13.7889
P10 −56.3137 −52.7595 76.2798 47.8963 −141.7751 −16.7057
P11 56.8942 −52.9283 77.8694 61.5525 115.2452 −28.0566
P12 57.4974 61.6319 77.6811 50.0300 120.4717 40.6457
P13 −56.9052 60.8597 79.9303 32.8702 129.8081 20.8307
P14 − − − −0.4053 108.6891 111.1136
P15 86.8275 −82.5530 −36.3411 −56.8995 121.9288 −6.4915
P16 −85.8250 −82.9852 −33.0658 −65.4269 −136.1570 −26.3721

Table B.1: Data subject 1. Values of the the probe positions (±0.0001 mm) for the PVC and Cloth
(no EPI) set-ups, for subject 1. Values have been measured to four decimal places.

Subject 2
PVC Cloth

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
P1 85.7798 89.9231 −36.9686 69.0316 117.7142 22.2839
P2 −1.1861 136.7111 12.3813 39.1880 123.9506 −25.3831
P3 103.0430 3.4504 18.8453 94.8268 80.7814 115.1341
P4 −104.5718 3.7041 19.9081 −40.7161 135.6523 −3.5936
P5 −0.0681 −121.6416 −99.4115 −51.3906 130.2805 −15.2444
P6 0.2165 128.5275 −103.3240 −66.9382 117.3351 −23.5860
P7 97.6496 3.4850 −94.0568 −95.8049 89.2665 107.4441
P8 −95.8641 2.7935 −104.1282 −113.7428 86.1246 5.3042
P9 0.0285 −128.8502 22.3955 −14.7307 −151.7210 −13.8264
P10 −57.2744 −52.8948 73.8164 47.8274 −141.7998 −16.9936
P11 56.2064 −52.9819 75.4302 60.8554 115.5224 −26.1347
P12 56.6017 61.8002 75.0710 49.9230 119.6731 38.7385
P13 −58.0220 61.1028 77.3339 32.6190 130.0569 19.5164
P14 − − − −0.9426 109.1421 111.0470
P15 86.0154 −82.4617 −38.7462 −57.1474 121.7660 −6.8840
P16 −86.5308 −83.1802 −35.8164 −65.3981 −136.1868 −26.4225

Table B.2: Data subject 2. Values of the the probe positions (±0.0001 mm) for the PVC and Cloth
(no EPI) set-ups, for subject 2. Values have been measured to four decimal places.
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Subject 3
PVC Cloth

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
P1 85.4393 89.7941 −48.6707 64.4520 125.3529 26.0042
P2 −1.0087 136.8883 2.1484 41.6035 125.5726 −27.5297
P3 103.7136 3.7388 8.2122 96.1636 79.7851 115.0835
P4 −104.2198 3.5919 9.9471 −39.7374 136.1593 −1.3764
P5 0.3693 −119.3963 −109.5257 −50.7739 130.8124 −13.6681
P6 0.0581 126.7170 −113.4125 −66.3606 117.6930 −22.7797
P7 96.1432 3.8925 −103.9974 −94.4784 90.1963 108.0096
P8 −98.0966 2.8610 −90.6388 −112.6012 87.9099 5.6409
P9 0.8967 −128.9827 11.7925 −14.7346 −151.6169 −13.3081
P10 −57.1848 −53.5632 63.9625 47.9073 −141.7031 −16.1656
P11 57.6477 −53.4542 65.2743 62.7212 116.3383 −28.3273
P12 57.7484 62.5828 64.9464 49.4713 121.2712 43.6779
P13 −58.1961 61.6203 67.6431 32.8545 130.0992 23.1222
P14 − − − −0.0640 108.2190 112.5791
P15 86.0569 −81.7143 −49.4886 −56.5268 122.1117 −4.6032
P16 −85.5728 −82.7939 −45.9942 −65.4881 −136.0423 −25.8775

Table B.3: Data subject 3. Values of the the probe positions (±0.0001 mm) for the PVC and Cloth
(no EPI) set-ups, for subject 3. Values have been measured to four decimal places.

Subject 4
Cloth (simultaneous to EPI) Cloth
x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]

P1 117.7364 71.0659 6.0495 60.3410 127.0775 27.0070
P2 105.3161 69.7774 115.0006 41.4696 125.6332 −28.5434
P3 −1.0888 106.5392 108.8131 96.6421 79.6352 114.6062
P4 50.6361 100.7396 111.3973 −39.6568 136.2114 0.2323
P5 −26.9214 139.1045 0.8454 −50.7901 130.7093 −12.6932
P6 −42.1283 132.2753 −18.8072 −66.4634 117.4549 −22.9582
P7 −100.1147 85.4046 108.2787 −94.0879 90.5175 107.7562
P8 −129.1525 64.5467 4.9046 −112.1837 88.5014 5.2463
P9 70.8317 118.6198 19.5755 −14.8402 −151.6908 −12.8170
P10 57.3433 −136.1287 −7.9158 47.9396 −141.7408 −15.5235
P11 115.2406 −81.3538 81.5349 62.4042 116.1893 −29.3340
P12 20.7968 135.4054 14.5597 47.5747 121.0010 45.4449
P13 40.3355 129.4590 −15.7328 30.8555 130.2749 23.3763
P14 −72.3229 119.8504 −7.3401 0.1252 107.1588 112.9469
P15 −41.0143 −145.2305 −7.3843 −56.5766 121.8855 −3.3422
P16 −83.6882 −119.9683 88.5600 −65.6270 −136.1143 −25.3311

Table B.4: Data subject 4. Values of the the probe positions (±0.0001 mm) for the Cloth (EPI) and
Cloth (no EPI) set-ups, for subject 4. Values have been measured to four decimal places.
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Subject 5
Cloth

x [mm] y [mm] z [mm]
P1 62.7410 125.9857 27.5188
P2 41.2882 125.4423 −26.7884
P3 96.2312 79.5818 116.0222
P4 −39.8713 135.9589 0.6924
P5 −50.9262 130.4233 −11.8443
P6 −66.5620 117.1982 −21.4736
P7 −94.0133 90.1537 109.4331
P8 −112.5981 88.1700 7.0779
P9 −14.5922 −151.7421 −14.0133
P10 48.0501 −141.7926 −16.8368
P11 62.3390 116.1160 −27.6068
P12 48.6579 121.1903 45.4480
P13 31.9937 130.0377 24.4604
P14 0.0784 107.3458 113.9515
P15 −56.6977 121.7070 −2.6713
P16 −65.3650 −136.1539 −26.5422

Table B.5: Data subject 5. Values of the the probe positions (±0.0001 mm) for the Cloth ( no EPI)
set-ups, for subject 5. Values have been measured to four decimal places.

Subject 6
PVC

x [mm] y [mm] z [mm]
P1 85.7044 89.7975 −40.2373
P2 −1.0793 136.6883 9.2296
P3 103.2432 3.3752 16.1853
P4 −104.4468 3.6391 18.1903
P5 −0.1454 −121.1125 −102.5015
P6 0.1695 127.9279 −106.5934
P7 97.1689 3.5022 −97.3606
P8 −95.3710 2.8259 −106.9928
P9 0.1690 −128.9603 19.1725
P10 −57.2983 −53.1723 70.8254
P11 56.6436 −53.2567 72.2483
P12 57.0086 61.9392 71.9549
P13 −58.0110 61.2207 74.5956
P14 − − −
P15 85.9383 −82.3602 −42.0283
P16 −86.3434 −83.1056 −38.8455

Table B.6: Data subject 5. Values of the the probe positions (±0.0001 mm) for the Cloth (no EPI)
set-ups, for subject 5. Values have been measured to four decimal places.
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Average shift in probe positions
PVC Cloth

x [mm] y [mm] z [mm] x [mm] y [mm] z [mm]
P1 1.1157 0.1663 7.5574 2.6799 −1.5996 −2.2385
P2 0.9056 −0.0518 7.2549 −0.6989 −0.9531 −0.1114
P3 0.5272 −0.1830 6.8540 −0.1560 0.1365 −0.7956
P4 0.9277 0.2726 6.7162 −0.2910 −0.1881 −2.3069
P5 0.4918 −1.1574 6.9675 −0.1611 −0.0567 −1.7828
P6 0.8806 1.5568 7.2403 −0.1301 0.1234 −1.0071
P7 1.8737 −0.0780 6.9607 −0.6444 −0.3558 −0.9561
P8 −2.8182 0.2746 22.3562 −0.4893 −0.7288 −0.8734
P9 0.4852 0.1405 7.1002 0.0216 −0.0109 −0.2977
P10 0.9388 0.4507 6.7451 −0.0348 −0.0161 −0.3258
P11 0.0616 0.3026 6.8851 −0.5275 −0.7963 −0.2059
P12 0.3779 −0.4755 7.0237 1.1233 −0.3122 −2.6816
P13 1.1712 −0.4549 6.7395 0.7895 −0.3091 −1.7881
P14 − − − −0.2045 0.7227 −1.5175
P15 0.8239 −0.3743 7.0799 −0.1624 0.0613 −2.1163
P16 0.3240 0.0414 7.1529 0.0426 −0.0327 −0.3288

Table B.7: Shift in probe positions. Table reports average shift of the probe positions (±0.0001 mm)
for the PVC and Cloth (no EPI) set-ups. Probe positions of Subject 1 have been considered the
initial ones. Values have been rounded to four decimal places.
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B.2 Real Data

Probes 14 was faulty during the acquisition using the PVC support and so it has not
been considered.

Subject 1

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.015 0.329 0.055 0.026 0.024 0.043 0.029 0.012
B2[µT] 0.017 0.030 0.107 0.027 0.041 0.065 0.137 0.018
B3[µT] 0.023 0.246 0.052 0.044 0.014 0.029 0.012 0.011
B4[µT] 0.025 0.352 0.163 0.071 0.031 0.026 0.062 0.012
B5[µT] 0.036 0.033 0.091 0.046 0.034 0.031 0.067 0.013
B6[µT] 0.035 0.160 0.121 0.046 0.036 0.062 0.079 0.016
B7[µT] 0.036 0.240 0.097 0.065 0.010 0.035 0.009 0.007
B8[µT] 0.044 0.444 0.164 0.080 0.018 0.058 0.016 0.012
B9[µT] 0.018 0.052 0.232 0.053 0.017 0.023 0.020 0.020
B10[µT] 0.030 0.501 0.157 0.040 0.018 0.030 0.021 0.022
B11[µT] 0.015 0.147 0.237 0.037 0.037 0.061 0.071 0.019
B12[µT] 0.016 0.630 0.119 0.051 0.021 0.030 0.018 0.012
B13[µT] 0.025 0.533 0.173 0.050 0.029 0.051 0.064 0.012
B14[µT] − − − − 0.012 0.019 0.017 0.009
B15[µT] 0.028 0.087 0.031 0.055 0.028 0.049 0.051 0.013
B16[µT] 0.039 0.212 0.088 0.038 0.019 0.026 0.018 0.021
Tx [mm] 0.047 1.631 0.830 0.108 0.355 2.845 4.329 0.310
Ty [mm] 0.038 0.397 0.720 0.071 0.729 5.347 4.638 0.465
Tz [mm] 0.067 0.217 0.119 0.285 0.290 1.751 0.638 0.182
Rx [◦] 0.082 0.493 2.429 0.140 0.253 1.785 1.382 0.155
Ry [◦] 0.081 0.291 0.326 0.144 0.089 0.786 0.057 0.046
Rz [◦] 0.073 2.955 0.433 0.161 0.072 1.951 0.122 0.083

Table B.8: Data Subject 1. Values of the the standard deviation (STD) of magnetic field changes and
head motion parameters for the two set-ups, four head range of movements (Subject 1). Values have
been rounded to three decimal places.
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Subject 2

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.010 0.089 0.100 0.018 0.051 0.070 0.048 0.025
B2[µT] 0.009 0.028 0.082 0.024 0.019 0.021 0.069 0.037
B3[µT] 0.013 0.344 0.113 0.058 0.029 0.047 0.028 0.021
B4[µT] 0.013 0.293 0.213 0.039 0.018 0.047 0.082 0.020
B5[µT] 0.083 0.080 0.344 0.066 0.012 0.048 0.061 0.022
B6[µT] 0.014 0.023 0.301 0.019 0.010 0.065 0.048 0.024
B7[µT] 0.025 0.117 0.170 0.030 0.010 0.043 0.037 0.011
B8[µT] 0.035 0.142 0.341 0.030 0.023 0.107 0.044 0.009
B9[µT] 0.019 0.114 0.138 0.035 0.043 0.034 0.086 0.026
B10[µT] 0.029 0.396 0.159 0.060 0.045 0.030 0.073 0.030
B11[µT] 0.021 0.452 0.155 0.024 0.014 0.050 0.052 0.038
B12[µT] 0.012 0.270 0.088 0.018 0.057 0.072 0.046 0.023
B13[µT] 0.014 0.262 0.155 0.018 0.044 0.055 0.070 0.022
B14[µT] − − − − 0.013 0.009 0.051 0.016
B15[µT] 0.033 0.115 0.116 0.053 0.016 0.079 0.097 0.020
B16[µT] 0.032 0.230 0.085 0.071 0.033 0.049 0.081 0.026
Tx [mm] 0.059 2.082 0.912 0.076 2.446 8.793 12.629 0.600
Ty [mm] 0.097 0.169 0.897 0.092 2.972 22.573 19.348 1.174
Tz [mm] 0.073 0.656 1.000 0.280 0.621 2.878 3.768 0.492
Rx [◦] 0.114 0.472 5.785 0.100 1.146 10.646 6.846 0.523
Ry [◦] 0.080 1.386 0.466 0.096 0.054 1.191 0.800 0.102
Rz [◦] 0.049 4.515 0.777 0.051 0.513 11.497 3.424 0.481

Table B.9: Data Subject 2. Values of the the standard deviation (STD) of magnetic field changes and
head motion parameters for the two set-ups, four head range of movements (Subject 2). Values have
been rounded to three decimal places.
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Subject 3

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.022 0.093 0.165 0.024 0.030 0.060 0.064 0.022
B2[µT] 0.026 0.024 0.268 0.043 0.027 0.047 0.031 0.023
B3[µT] 0.085 0.577 0.081 0.050 0.013 0.024 0.013 0.015
B4[µT] 0.039 0.739 0.136 0.022 0.023 0.035 0.194 0.016
B5[µT] 0.073 0.038 0.098 0.035 0.025 0.030 0.151 0.014
B6[µT] 0.057 0.066 0.281 0.039 0.032 0.032 0.125 0.014
B7[µT] 0.033 0.138 0.090 0.028 0.014 0.028 0.019 0.011
B8[µT] 0.058 0.165 0.065 0.035 0.021 0.062 0.088 0.012
B9[µT] 0.048 0.049 0.150 0.021 0.043 0.069 0.033 0.017
B10[µT] 0.048 0.546 0.199 0.026 0.044 0.060 0.033 0.025
B11[µT] 0.049 0.468 0.112 0.039 0.025 0.047 0.029 0.018
B12[µT] 0.047 0.688 0.124 0.037 0.039 0.040 0.039 0.028
B13[µT] 0.090 0.685 0.122 0.024 0.037 0.063 0.128 0.019
B14[µT] − − − − 0.013 0.020 0.023 0.010
B15[µT] 0.043 0.136 0.140 0.025 0.030 0.045 0.234 0.023
B16[µT] 0.087 0.233 0.099 0.042 0.052 0.076 0.043 0.012
Tx [mm] 0.395 3.637 1.074 0.409 0.530 3.072 6.635 0.626
Ty [mm] 0.107 0.685 1.529 0.188 0.665 5.409 9.348 0.579
Tz [mm] 0.333 0.399 0.697 0.098 0.308 1.838 2.089 0.171
Rx [◦] 0.191 0.400 3.414 0.461 0.309 1.962 3.061 0.192
Ry [◦] 0.061 1.382 0.320 0.051 0.088 0.837 0.101 0.042
Rz [◦] 0.341 4.225 0.409 0.078 0.595 2.288 0.821 0.090

Table B.10: Data Subject 3. Values of the the standard deviation (STD) of magnetic field changes
and head motion parameters for the two set-ups, four head range of movements (Subject 3). Values
have been rounded to three decimal places.
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Subject 4

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.051 0.084 0.082 0.026
B2[µT] − − − − 0.048 0.133 0.066 0.031
B3[µT] − − − − 0.023 0.076 0.018 0.009
B4[µT] − − − − 0.046 0.115 0.024 0.011
B5[µT] − − − − 0.045 0.139 0.019 0.008
B6[µT] − − − − 0.050 0.175 0.033 0.015
B7[µT] − − − − 0.023 0.082 0.010 0.010
B8[µT] − − − − 0.047 0.180 0.048 0.015
B9[µT] − − − − 0.090 0.030 0.061 0.033
B10[µT] − − − − 0.086 0.051 0.054 0.035
B11[µT] − − − − 0.052 0.188 0.050 0.030
B12[µT] − − − − 0.056 0.028 0.129 0.042
B13[µT] − − − − 0.060 0.072 0.112 0.035
B14[µT] − − − − 0.028 0.017 0.044 0.007
B15[µT] − − − − 0.049 0.209 0.025 0.011
B16[µT] − − − − 0.100 0.039 0.044 0.035
Tx [mm] − − − − 1.334 10.023 7.237 0.687
Ty [mm] − − − − 2.057 8.894 9.777 0.354
Tz [mm] − − − − 1.550 2.607 4.669 0.282
Rx [◦] − − − − 0.799 4.014 2.604 0.183
Ry [◦] − − − − 0.250 2.688 0.453 0.036
Rz [◦] − − − − 0.336 4.782 0.752 0.171

Table B.11: Data Subject 4. Values of the the standard deviation (STD) of magnetic field changes
and head motion parameters for the two set-ups, four head range of movements (Subject 4). Values
have been rounded to three decimal places.
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Subject 5

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.016 0.025 0.040 0.027
B2[µT] − − − − 0.043 0.046 0.217 0.047
B3[µT] − − − − 0.010 0.043 0.008 0.013
B4[µT] − − − − 0.041 0.038 0.149 0.040
B5[µT] − − − − 0.047 0.037 0.166 0.043
B6[µT] − − − − 0.053 0.037 0.180 0.047
B7[µT] − − − − 0.009 0.031 0.009 0.011
B8[µT] − − − − 0.024 0.025 0.034 0.028
B9[µT] − − − − 0.022 0.039 0.083 0.020
B10[µT] − − − − 0.022 0.040 0.083 0.018
B11[µT] − − − − 0.036 0.036 0.172 0.040
B12[µT] − − − − 0.017 0.029 0.023 0.026
B13[µT] − − − − 0.025 0.033 0.077 0.034
B14[µT] − − − − 0.010 0.011 0.017 0.011
B15[µT] − − − − 0.045 0.039 0.153 0.042
B16[µT] − − − − 0.024 0.047 0.080 0.017
Tx [mm] − − − − 1.356 3.606 9.131 1.418
Ty [mm] − − − − 2.375 7.752 9.518 2.110
Tz [mm] − − − − 0.519 2.684 0.937 0.320
Rx [◦] − − − − 0.817 2.291 3.015 0.661
Ry [◦] − − − − 0.180 1.133 0.187 0.041
Rz [◦] − − − − 0.236 2.623 0.338 0.187

Table B.12: Data Subject 5. Values of the the standard deviation (STD) of magnetic field changes
and head motion parameters for the two set-ups, four head range of movements (Subject 5). Values
have been rounded to three decimal places.
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Subject 6

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.014 0.229 0.088 0.029 − − − −
B2[µT] 0.018 0.134 0.168 0.024 − − − −
B3[µT] 0.024 0.808 0.120 0.045 − − − −
B4[µT] 0.023 0.813 0.119 0.041 − − − −
B5[µT] 0.063 0.109 0.186 0.089 − − − −
B6[µT] 0.040 0.126 0.256 0.045 − − − −
B7[µT] 0.042 0.282 0.101 0.085 − − − −
B8[µT] 0.035 0.237 0.115 0.080 − − − −
B9[µT] 0.026 0.058 0.152 0.036 − − − −
B10[µT] 0.132 0.373 0.330 0.265 − − − −
B11[µT] 0.135 0.373 0.654 0.240 − − − −
B12[µT] 0.050 1.105 0.236 0.073 − − − −
B13[µT] 0.046 1.735 0.088 0.087 − − − −
B14[µT] − − − − − − − −
B15[µT] 0.039 0.199 0.085 0.077 − − − −
B16[µT] 0.034 0.243 0.048 0.082 − − − −
Tx [mm] 0.108 3.768 0.621 0.129 − − − −
Ty [mm] 0.096 0.770 0.665 0.158 − − − −
Tz [mm] 0.168 0.453 0.954 0.447 − − − −
Rx [◦] 0.266 1.217 3.306 0.204 − − − −
Ry [◦] 0.096 0.761 0.372 0.167 − − − −
Rz [◦] 0.116 7.871 0.427 0.163 − − − −

Table B.13: Data Subject 6. Values of the the standard deviation (STD) of magnetic field changes
and head motion parameters for the two set-ups, four head range of movements (Subject 6). Values
have been rounded to three decimal places.
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Slow and Fast movements

Subject 3 Subject 6
Shaking S.Fast Nodding N.Fast Shaking S.Fast Nodding N.Fast

B1[µT] 0.093 0.077 0.165 0.107 0.229 0.168 0.088 0.085
B2[µT] 0.024 0.044 0.268 0.189 0.134 0.036 0.168 0.229
B3[µT] 0.577 0.282 0.081 0.088 0.808 0.556 0.120 0.157
B4[µT] 0.739 0.391 0.136 0.157 0.813 0.556 0.119 0.163
B5[µT] 0.038 0.059 0.098 0.098 0.109 0.068 0.186 0.270
B6[µT] 0.066 0.082 0.281 0.188 0.126 0.058 0.256 0.368
B7[µT] 0.138 0.105 0.090 0.091 0.282 0.210 0.101 0.151
B8[µT] 0.165 0.125 0.065 0.085 0.237 0.152 0.115 0.121
B9[µT] 0.049 0.115 0.150 0.123 0.058 0.054 0.152 0.167
B10[µT] 0.546 0.356 0.199 0.217 0.373 0.423 0.330 0.260
B11[µT] 0.468 0.334 0.112 0.067 0.373 0.745 0.654 0.591
B12[µT] 0.688 0.354 0.124 0.120 1.105 0.714 0.236 0.265
B13[µT] 0.685 0.339 0.122 0.135 1.735 1.341 0.088 0.110
B14[µT] − − − − − − − −
B15[µT] 0.136 0.193 0.140 0.095 0.199 0.116 0.085 0.115
B16[µT] 0.233 0.200 0.099 0.099 0.243 0.172 0.048 0.137
Tx [mm] 3.637 2.018 1.074 0.794 3.768 2.592 0.621 1.380
Ty [mm] 0.685 0.266 1.529 1.344 0.770 0.400 0.665 1.066
Tz [mm] 0.399 0.610 0.697 0.608 0.453 0.487 0.954 1.189
Rx [◦] 0.400 0.602 3.414 2.576 1.217 0.417 3.306 4.538
Ry [◦] 1.382 0.610 0.320 0.498 0.761 0.629 0.372 0.610
Rz [◦] 4.225 1.773 0.409 0.605 7.871 5.023 0.427 0.496

Table B.14: Large head movements, slow and fast. Values of the the standard deviation (STD)
of magnetic field changes and head motion parameters for the PVC set-ups, two head range of
movements (Subject 3 and 6). Values have been rounded to three decimal places.
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B.3 Simulated data from real head movements

Data represent only the magnetic field changes due to the head movements. Stan-
dard deviation of head motion parameters were reported in the previous section. Head
movements and probe positions are coherent with the measurements.

Subject 1

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.015 0.222 0.166 0.034 0.038 0.180 0.085 0.030
B2[µT] 0.040 0.037 0.078 0.050 0.050 0.336 0.136 0.030
B3[µT] 0.081 0.080 0.073 0.081 0.032 0.144 0.080 0.016
B4[µT] 0.029 0.109 0.053 0.067 0.034 0.331 0.233 0.027
B5[µT] 0.044 0.071 0.064 0.044 0.036 0.389 0.246 0.027
B6[µT] 0.091 0.168 0.283 0.050 0.041 0.456 0.274 0.029
B7[µT] 0.065 0.258 0.137 0.105 0.021 0.400 0.157 0.021
B8[µT] 0.045 0.217 0.114 0.061 0.047 0.380 0.318 0.036
B9[µT] 0.022 0.048 0.265 0.032 0.065 0.111 0.127 0.044
B10[µT] 0.038 0.039 0.045 0.036 0.073 0.152 0.314 0.041
B11[µT] 0.082 0.158 0.526 0.097 0.042 0.288 0.096 0.027
B12[µT] 0.044 0.272 0.195 0.041 0.070 0.242 0.223 0.046
B13[µT] 0.051 0.352 0.394 0.067 0.048 0.328 0.191 0.040
B14[µT] 0.022 0.243 0.068 0.037 0.073 0.887 0.439 0.064
B15[µT] 0.118 0.120 0.281 0.110 0.047 0.451 0.329 0.036
B16[µT] 0.026 0.046 0.190 0.015 0.052 0.122 0.078 0.030

Table B.15: Simulated data Subject 1. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 1).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.8.
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Subject 2

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.029 0.038 0.206 0.039 0.055 1.028 0.716 0.043
B2[µT] 0.011 0.044 0.102 0.020 0.092 1.977 1.593 0.047
B3[µT] 0.124 0.297 0.276 0.123 0.027 0.674 0.226 0.018
B4[µT] 0.020 0.088 0.048 0.064 0.087 2.837 2.087 0.028
B5[µT] 0.069 0.077 0.789 0.029 0.115 2.454 4.845 0.038
B6[µT] 0.014 0.062 0.539 0.019 0.149 1.996 2.867 0.050
B7[µT] 0.088 0.295 0.245 0.061 0.074 0.748 1.139 0.021
B8[µT] 0.031 0.149 0.074 0.031 0.172 1.146 1.640 0.060
B9[µT] 0.085 0.130 0.217 0.092 0.255 2.271 1.133 0.119
B10[µT] 0.036 0.390 0.131 0.066 0.298 6.240 1.367 0.135
B11[µT] 0.053 1.274 2.268 0.194 0.080 1.519 1.071 0.044
B12[µT] 0.045 0.112 0.836 0.028 0.072 1.019 0.868 0.050
B13[µT] 0.025 0.054 0.596 0.023 0.050 0.898 0.920 0.034
B14[µT] 0.013 0.029 0.120 0.024 0.132 1.932 2.000 0.047
B15[µT] 0.053 0.489 0.541 0.204 0.151 4.509 4.478 0.052
B16[µT] 0.031 0.114 0.061 0.042 0.148 0.953 0.659 0.104

Table B.16: Simulated data Subject 2. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 2).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.9.

Subject 3

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.012 0.014 0.054 0.019 0.014 0.088 0.134 0.014
B2[µT] 0.036 0.067 0.174 0.026 0.017 0.182 0.297 0.019
B3[µT] 0.067 0.161 0.284 0.066 0.016 0.114 0.079 0.017
B4[µT] 0.082 0.064 0.121 0.055 0.022 0.204 0.995 0.022
B5[µT] 0.039 0.055 0.354 0.052 0.033 0.300 1.426 0.031
B6[µT] 0.065 0.191 0.105 0.051 0.046 0.388 1.287 0.043
B7[µT] 0.118 0.380 0.231 0.038 0.026 0.289 0.592 0.028
B8[µT] 0.058 0.103 0.380 0.026 0.040 0.289 0.839 0.040
B9[µT] 0.099 0.069 0.160 0.051 0.088 0.398 0.656 0.081
B10[µT] 0.082 0.819 0.140 0.092 0.066 0.382 0.707 0.071
B11[µT] 0.047 1.159 1.007 0.167 0.017 0.151 0.208 0.018
B12[µT] 0.033 0.154 0.162 0.050 0.021 0.130 0.271 0.019
B13[µT] 0.054 0.120 0.689 0.063 0.013 0.084 0.251 0.011
B14[µT] 0.037 0.074 0.145 0.035 0.034 0.402 0.736 0.035
B15[µT] 0.063 0.717 0.212 0.041 0.039 0.326 1.385 0.038
B16[µT] 0.083 0.399 0.552 0.068 0.050 0.243 0.299 0.047

Table B.17: Simulated data Subject 3. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 3).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.10. 245



Subject 4

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.093 0.139 0.292 0.023
B2[µT] − − − − 0.082 0.277 0.290 0.020
B3[µT] − − − − 0.046 0.168 0.129 0.026
B4[µT] − − − − 0.107 0.889 0.502 0.031
B5[µT] − − − − 0.098 1.137 0.499 0.031
B6[µT] − − − − 0.100 1.648 0.542 0.035
B7[µT] − − − − 0.019 0.785 0.102 0.018
B8[µT] − − − − 0.138 1.421 0.674 0.044
B9[µT] − − − − 0.205 0.442 0.865 0.048
B10[µT] − − − − 0.225 0.729 1.095 0.051
B11[µT] − − − − 0.072 0.142 0.237 0.020
B12[µT] − − − − 0.153 0.245 0.500 0.033
B13[µT] − − − − 0.129 0.360 0.471 0.026
B14[µT] − − − − 0.115 0.864 0.585 0.031
B15[µT] − − − − 0.146 1.224 0.709 0.043
B16[µT] − − − − 0.133 0.214 0.463 0.035

Table B.18: Simulated data Subject 4. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 4).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.11.

Subject 5

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.071 0.124 0.068 0.047
B2[µT] − − − − 0.209 0.522 0.489 0.148
B3[µT] − − − − 0.010 0.205 0.022 0.011
B4[µT] − − − − 0.226 0.537 0.655 0.170
B5[µT] − − − − 0.273 0.735 0.836 0.208
B6[µT] − − − − 0.297 0.861 0.969 0.233
B7[µT] − − − − 0.055 0.392 0.266 0.053
B8[µT] − − − − 0.191 0.547 0.750 0.166
B9[µT] − − − − 0.161 0.257 0.749 0.138
B10[µT] − − − − 0.203 0.603 1.191 0.195
B11[µT] − − − − 0.164 0.401 0.354 0.113
B12[µT] − − − − 0.084 0.136 0.134 0.065
B13[µT] − − − − 0.103 0.211 0.180 0.076
B14[µT] − − − − 0.178 0.722 0.591 0.151
B15[µT] − − − − 0.294 0.770 0.939 0.230
B16[µT] − − − − 0.107 0.120 0.316 0.081

Table B.19: Simulated data Subject 5. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 5).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
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Subject 6

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.027 0.200 0.061 0.034 − − − −
B2[µT] 0.045 0.088 0.124 0.048 − − − −
B3[µT] 0.106 0.213 0.296 0.071 − − − −
B4[µT] 0.079 0.130 0.086 0.074 − − − −
B5[µT] 0.063 0.325 0.822 0.054 − − − −
B6[µT] 0.036 0.090 0.340 0.057 − − − −
B7[µT] 0.081 0.449 0.176 0.088 − − − −
B8[µT] 0.072 0.229 0.157 0.063 − − − −
B9[µT] 0.120 0.178 0.364 0.070 − − − −
B10[µT] 0.184 1.420 0.221 0.260 − − − −
B11[µT] 0.232 1.170 0.229 0.330 − − − −
B12[µT] 0.062 0.958 0.303 0.109 − − − −
B13[µT] 0.096 0.708 0.537 0.062 − − − −
B14[µT] 0.074 0.151 0.420 0.020 − − − −
B15[µT] 0.078 0.120 0.173 0.106 − − − −
B16[µT] 0.064 0.241 0.457 0.086 − − − −

Table B.20: Simulated data Subject 6. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 6).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.13.
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B.4 Simulated Data due to head motion and noise

sources

Subject 1

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.038 0.224 0.164 0.046 0.043 0.181 0.088 0.032
B2[µT] 0.054 0.045 0.085 0.055 0.056 0.337 0.138 0.033
B3[µT] 0.100 0.091 0.091 0.090 0.039 0.144 0.084 0.022
B4[µT] 0.063 0.120 0.077 0.078 0.041 0.331 0.236 0.030
B5[µT] 0.177 0.187 0.209 0.163 0.044 0.389 0.248 0.030
B6[µT] 0.100 0.170 0.288 0.057 0.049 0.456 0.276 0.033
B7[µT] 0.092 0.269 0.152 0.122 0.027 0.400 0.156 0.024
B8[µT] 0.076 0.224 0.139 0.083 0.055 0.381 0.320 0.040
B9[µT] 0.093 0.098 0.292 0.084 0.101 0.117 0.128 0.067
B10[µT] 0.065 0.062 0.076 0.060 0.102 0.155 0.309 0.063
B11[µT] 0.102 0.167 0.536 0.104 0.050 0.289 0.099 0.030
B12[µT] 0.047 0.274 0.194 0.051 0.073 0.243 0.225 0.048
B13[µT] 0.057 0.354 0.391 0.074 0.052 0.329 0.193 0.042
B14[µT] 0.048 0.245 0.087 0.051 0.074 0.886 0.437 0.064
B15[µT] 0.151 0.147 0.281 0.137 0.054 0.451 0.332 0.039
B16[µT] 0.099 0.101 0.228 0.082 0.093 0.128 0.085 0.057

Table B.21: Simulated data Subject 1. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 1).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.8.
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Subject 2

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.046 0.050 0.215 0.049 0.059 1.027 0.716 0.050
B2[µT] 0.026 0.049 0.100 0.033 0.094 1.975 1.592 0.053
B3[µT] 0.128 0.297 0.272 0.136 0.033 0.675 0.229 0.031
B4[µT] 0.050 0.097 0.072 0.080 0.090 2.834 2.086 0.037
B5[µT] 0.192 0.216 0.764 0.199 0.116 2.453 4.844 0.045
B6[µT] 0.029 0.066 0.545 0.034 0.151 1.994 2.866 0.057
B7[µT] 0.110 0.304 0.241 0.101 0.077 0.751 1.141 0.033
B8[µT] 0.076 0.173 0.086 0.084 0.173 1.145 1.639 0.066
B9[µT] 0.120 0.152 0.214 0.125 0.266 2.276 1.138 0.157
B10[µT] 0.064 0.390 0.147 0.091 0.307 6.237 1.373 0.167
B11[µT] 0.071 1.277 2.281 0.201 0.083 1.517 1.071 0.052
B12[µT] 0.055 0.119 0.829 0.049 0.075 1.017 0.867 0.056
B13[µT] 0.043 0.067 0.589 0.044 0.053 0.896 0.919 0.042
B14[µT] 0.030 0.038 0.130 0.038 0.133 1.934 2.001 0.053
B15[µT] 0.112 0.496 0.524 0.251 0.152 4.506 4.477 0.057
B16[µT] 0.095 0.152 0.115 0.113 0.166 0.968 0.669 0.144

Table B.22: Simulated data Subject 2. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 2).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.9.

Subject 3

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.037 0.035 0.046 0.030 0.095 0.140 0.294 0.029
B2[µT] 0.046 0.072 0.163 0.032 0.083 0.279 0.292 0.027
B3[µT] 0.084 0.167 0.263 0.070 0.049 0.171 0.131 0.033
B4[µT] 0.097 0.077 0.124 0.061 0.108 0.891 0.502 0.037
B5[µT] 0.203 0.197 0.288 0.140 0.100 1.139 0.500 0.037
B6[µT] 0.070 0.191 0.103 0.054 0.102 1.651 0.543 0.041
B7[µT] 0.140 0.393 0.209 0.065 0.024 0.784 0.104 0.025
B8[µT] 0.089 0.124 0.413 0.052 0.140 1.423 0.675 0.050
B9[µT] 0.137 0.102 0.134 0.077 0.211 0.441 0.864 0.089
B10[µT] 0.097 0.815 0.131 0.097 0.230 0.723 1.093 0.087
B11[µT] 0.074 1.165 1.033 0.171 0.074 0.145 0.239 0.028
B12[µT] 0.049 0.154 0.148 0.054 0.154 0.246 0.502 0.038
B13[µT] 0.063 0.125 0.675 0.070 0.130 0.362 0.472 0.032
B14[µT] 0.053 0.078 0.163 0.042 0.116 0.862 0.585 0.036
B15[µT] 0.116 0.717 0.182 0.076 0.147 1.226 0.710 0.048
B16[µT] 0.128 0.419 0.601 0.096 0.142 0.223 0.465 0.080

Table B.23: Simulated data Subject 3. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 3).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.10.
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Subject 4

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.024 0.090 0.130 0.021
B2[µT] − − − − 0.027 0.184 0.293 0.025
B3[µT] − − − − 0.024 0.116 0.076 0.023
B4[µT] − − − − 0.029 0.205 0.991 0.028
B5[µT] − − − − 0.038 0.302 1.422 0.036
B6[µT] − − − − 0.050 0.389 1.282 0.046
B7[µT] − − − − 0.032 0.289 0.597 0.032
B8[µT] − − − − 0.046 0.290 0.834 0.045
B9[µT] − − − − 0.110 0.409 0.681 0.100
B10[µT] − − − − 0.094 0.392 0.732 0.091
B11[µT] − − − − 0.027 0.153 0.203 0.025
B12[µT] − − − − 0.030 0.132 0.267 0.025
B13[µT] − − − − 0.024 0.087 0.246 0.020
B14[µT] − − − − 0.037 0.403 0.740 0.037
B15[µT] − − − − 0.044 0.327 1.380 0.042
B16[µT] − − − − 0.081 0.258 0.326 0.073

Table B.24: Simulated data Subject 4. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 4).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.11.

Subject 5

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] − − − − 0.072 0.125 0.069 0.049
B2[µT] − − − − 0.209 0.523 0.489 0.149
B3[µT] − − − − 0.020 0.205 0.026 0.016
B4[µT] − − − − 0.227 0.538 0.655 0.170
B5[µT] − − − − 0.273 0.735 0.836 0.209
B6[µT] − − − − 0.298 0.860 0.969 0.233
B7[µT] − − − − 0.058 0.392 0.266 0.054
B8[µT] − − − − 0.192 0.547 0.750 0.167
B9[µT] − − − − 0.172 0.262 0.751 0.142
B10[µT] − − − − 0.211 0.606 1.193 0.198
B11[µT] − − − − 0.165 0.401 0.354 0.114
B12[µT] − − − − 0.085 0.137 0.134 0.067
B13[µT] − − − − 0.104 0.212 0.180 0.077
B14[µT] − − − − 0.179 0.722 0.591 0.151
B15[µT] − − − − 0.294 0.770 0.938 0.231
B16[µT] − − − − 0.122 0.132 0.320 0.088

Table B.25: Simulated data Subject 5. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 5).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.12. 250



Subject 6

PVC Cloth
Rest Shaking Nodding Feet-wiggling Rest Shaking Nodding Feet-wiggling

B1[µT] 0.039 0.204 0.070 0.048 − − − −
B2[µT] 0.051 0.091 0.128 0.052 − − − −
B3[µT] 0.111 0.231 0.301 0.085 − − − −
B4[µT] 0.091 0.131 0.097 0.084 − − − −
B5[µT] 0.166 0.396 0.844 0.184 − − − −
B6[µT] 0.042 0.097 0.340 0.063 − − − −
B7[µT] 0.101 0.453 0.188 0.114 − − − −
B8[µT] 0.091 0.257 0.180 0.092 − − − −
B9[µT] 0.144 0.215 0.374 0.105 − − − −
B10[µT] 0.188 1.422 0.230 0.266 − − − −
B11[µT] 0.234 1.166 0.233 0.331 − − − −
B12[µT] 0.069 0.958 0.306 0.110 − − − −
B13[µT] 0.100 0.711 0.539 0.069 − − − −
B14[µT] 0.079 0.154 0.421 0.036 − − − −
B15[µT] 0.113 0.175 0.200 0.145 − − − −
B16[µT] 0.102 0.265 0.468 0.131 − − − −

Table B.26: Simulated data Subject 6. Values of the the standard deviation (STD) of magnetic field
changes and head motion parameters for the two set-ups, four head range of movements (Subject 6).
Values have been rounded to three decimal places. Head motion parameters are reported in Table
B.13.
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Appendix C

Predictions

This appendix reports all the prediction described in Chapter 5, section 5.3. Predic-
tions were reported as plots (predicted motion data, p, as a function of the measured
motion data, d) and statistical evaluation. Each one has been called by the ”Set-up,
Regression Method, Data, Range of head motion, Subject number” to help to navigate
the chapter. In general, numbers have been rounded to the three decimal places. Plots,
that report results over multiple subjects, have not been fitted, while predictions on
single subjects were. Results over 3 out of 6 subjects are then displayed with both plots
and statistical evaluation, while plots that summarise the results over the subject do not
have an associated the statistical evaluation.
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C.0.1 PVC, PLS, Raw, Small

Figure C.1: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for all the subjects, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are good for translations/rotations except for translation along y
axis.

Subject 1 (PVC, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.567 −0.001 0.551 0.742 0.002 0.072
Ty [mm] −0.005 0.004 0.005 0.070 0.212 0.457
Tz [mm] 0.037 0.014 0.024 0.154 0.275 0.529

Rx [◦] 0.787 0.001 0.790 0.889 0.002 0.103
Ry [◦] 0.917 −0.004 0.945 0.972 0.001 0.109
Rz [◦] 0.958 0.001 0.950 0.975 0.001 0.104

Table C.1: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.1. Values have been rounded to three decimal places.
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Subject 2 (PVC, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.645 −0.004 0.631 0.794 0.002 0.065
Ty [mm] 0.536 −0.014 0.286 0.535 0.010 0.098
Tz [mm] 0.618 −0.019 0.566 0.752 0.014 0.178

Rx [◦] 0.738 0.003 0.755 0.869 0.003 0.116
Ry [◦] 0.814 −0.003 0.845 0.919 0.001 0.085
Rz [◦] 0.652 0.001 0.668 0.818 0.001 0.048

Table C.2: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.1. Values have been rounded to three decimal places.

Subject 3 (PVC, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.991 −0.002 0.993 0.996 0.001 0.391
Ty [mm] 0.860 < 0.001 0.909 0.953 0.002 0.145
Tz [mm] 0.939 0.002 0.956 0.978 0.004 0.283

Rx [◦] 0.961 < 0.001 0.974 0.987 0.002 0.283
Ry [◦] 0.904 −0.001 0.902 0.950 < 0.001 0.057
Rz [◦] 0.990 0.003 0.993 0.996 0.001 0.284

Table C.3: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.17. Values have been rounded to three decimal places.

Subject 6 (PVC, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.871 0.002 0.830 0.911 0.002 0.117
Ty [mm] 0.643 −0.007 0.633 0.796 0.006 0.126
Tz [mm] 0.625 −0.017 0.655 0.809 0.032 0.301

Rx [◦] 0.903 −0.002 0.886 0.941 0.006 0.236
Ry [◦] 0.890 −0.004 0.926 0.962 0.001 0.131
Rz [◦] 0.947 −0.003 0.930 0.965 0.001 0.143

Table C.4: Subject 6. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.18. Values have been rounded to three decimal places.
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C.0.2 PVC, PLS, Raw, Large

Figure C.2: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for all the subjects, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor for all the motion parameters.

Subject 1 (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.545 0.026 0.523 0.723 0.320 0.819
Ty [mm] 0.227 0.014 0.225 0.474 0.194 0.501
Tz [mm] 0.107 0.009 0.151 0.389 0.158 0.429

Rx [◦] 0.519 −0.014 0.521 0.722 0.571 1.093
Ry [◦] 0.737 0.008 0.767 0.876 0.012 0.227
Rz [◦] 0.495 0.052 0.451 0.672 0.953 1.314

Table C.5: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.2. Values have been rounded to three decimal places.
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Subject 2 (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.464 −0.032 0.466 0.683 0.499 0.967
Ty [mm] 0.083 −0.010 0.093 0.304 0.702 0.880
Tz [mm] 0.394 0.000 0.439 0.663 0.245 0.658

Rx [◦] 0.309 0.065 0.318 0.564 4.496 2.569
Ry [◦] 0.516 −0.017 0.502 0.709 0.183 0.607
Rz [◦] 0.479 −0.044 0.478 0.692 1.902 1.911

Table C.6: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.2. Values have been rounded to three decimal places.

Subject 3 (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.730 −0.039 0.740 0.860 0.712 1.654
Ty [mm] 0.577 0.002 0.538 0.733 0.259 0.747
Tz [mm] 0.820 −0.003 0.747 0.864 0.040 0.394

Rx [◦] 0.555 0.012 0.511 0.715 1.189 1.554
Ry [◦] 0.775 −0.015 0.732 0.856 0.090 0.578
Rz [◦] 0.730 −0.043 0.725 0.852 0.896 1.805

Table C.7: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.19. Values have been rounded to three decimal places.

Subject 6 (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.966 0.011 0.970 0.985 0.096 1.791
Ty [mm] 0.890 0.003 0.899 0.948 0.025 0.497
Tz [mm] 0.792 −0.020 0.785 0.886 0.062 0.537

Rx [◦] 0.842 0.007 0.856 0.925 0.378 1.624
Ry [◦] 0.896 0.002 0.900 0.949 0.014 0.372
Rz [◦] 0.950 0.025 0.966 0.983 0.454 3.642

Table C.8: Subject 6. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.20. Values have been rounded to three decimal places.
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Subject 3 (Fast) (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.350 −0.008 0.373 0.611 0.534 0.923
Ty [mm] 0.179 0.007 0.114 0.338 0.319 0.589
Tz [mm] 0.680 0.001 0.738 0.859 0.053 0.447

Rx [◦] 0.205 −0.026 0.111 0.333 1.167 1.099
Ry [◦] 0.352 −0.008 0.431 0.656 0.079 0.367
Rz [◦] 0.413 −0.026 0.430 0.656 0.354 0.787

Table C.9: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.21. Values have been rounded to three decimal places.

Subject 6 (Fast) (PVC, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.675 −0.002 0.683 0.827 0.535 1.302
Ty [mm] 0.392 −0.002 0.385 0.620 0.162 0.513
Tz [mm] 0.549 0.008 0.568 0.754 0.163 0.616

Rx [◦] 0.369 −0.017 0.342 0.585 2.576 1.977
Ry [◦] 0.545 −0.011 0.541 0.736 0.071 0.392
Rz [◦] 0.811 −0.024 0.811 0.901 0.943 2.238

Table C.10: Subject 6. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.22. Values have been rounded to three decimal places.
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C.0.3 Cloth, PLS, Raw, Small

Figure C.3: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for all the subjects, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor for all the head motion parameters.

Subject 1 (Cloth, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.969 −0.008 0.971 0.985 0.118 2.016
Ty [mm] 0.957 −0.007 0.957 0.978 0.274 2.521
Tz [mm] 0.953 −0.003 0.943 0.971 0.020 0.589

Rx [◦] 0.964 0.000 0.964 0.982 0.035 0.986
Ry [◦] 0.716 −0.001 0.714 0.845 0.002 0.077
Rz [◦] 0.910 −0.004 0.909 0.954 0.024 0.514

Table C.11: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.3. Values have been rounded to three decimal places.
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Subject 2 (Cloth, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.732 −0.008 0.716 0.846 0.033 0.338
Ty [mm] 0.666 −0.022 0.645 0.803 0.154 0.657
Tz [mm] 0.853 0.006 0.855 0.924 0.009 0.255

Rx [◦] 0.715 0.008 0.697 0.835 0.015 0.224
Ry [◦] 0.761 0.002 0.773 0.879 0.001 0.076
Rz [◦] 0.502 0.001 0.548 0.740 0.003 0.082

Table C.12: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.3. Values have been rounded to three decimal places.

Subject 3 (Cloth, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.854 0.006 0.859 0.927 0.046 0.575
Ty [mm] 0.712 0.007 0.722 0.849 0.116 0.646
Tz [mm] 0.618 −0.002 0.609 0.780 0.027 0.262

Rx [◦] 0.809 −0.002 0.811 0.900 0.014 0.272
Ry [◦] 0.542 < 0.001 0.518 0.720 0.002 0.072
Rz [◦] 0.956 −0.001 0.957 0.978 0.010 0.478

Table C.13: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.23. Values have been rounded to three decimal places.

Subject 4 (Cloth, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.940 0.006 0.939 0.969 0.081 1.151
Ty [mm] 0.944 0.006 0.951 0.975 0.138 1.673
Tz [mm] 0.964 0.000 0.966 0.983 0.053 1.258

Rx [◦] 0.959 −0.003 0.965 0.982 0.015 0.654
Ry [◦] 0.933 −0.001 0.936 0.967 0.003 0.202
Rz [◦] 0.941 −0.001 0.949 0.974 0.004 0.293

Table C.14: Subject 4. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.3. Values have been rounded to three decimal places.
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Subject 5 (Cloth, PLS, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.970 0.009 0.964 0.982 0.065 1.348
Ty [mm] 0.982 0.011 0.974 0.987 0.127 2.216
Tz [mm] 0.975 0.001 0.975 0.987 0.005 0.444

Rx [◦] 0.986 −0.003 0.979 0.989 0.012 0.740
Ry [◦] 0.933 0.001 0.938 0.968 0.001 0.141
Rz [◦] 0.910 −0.002 0.897 0.947 0.005 0.212

Table C.15: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.24. Values have been rounded to three decimal places.

C.0.4 Cloth, PLS, Raw, Large

Figure C.4: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for all the subjects, using raw data for training the linear regression method
(Table 5.1.3). Prediction results are poor for all the head motion parameters.
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Subject 1 (Cloth, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.310 −0.044 0.300 0.548 3.336 2.181
Ty [mm] 0.284 −0.051 0.277 0.526 6.266 2.941
Tz [mm] 0.343 0.007 0.322 0.568 0.427 0.793

Rx [◦] 0.292 0.017 0.288 0.537 0.628 0.939
Ry [◦] 0.318 0.000 0.293 0.541 0.074 0.323
Rz [◦] 0.378 0.003 0.371 0.609 0.393 0.790

Table C.16: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.4. Values have been rounded to three decimal places.

Subject 2 (Cloth, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.846 −0.044 0.847 0.920 6.436 6.480
Ty [mm] 0.849 −0.018 0.857 0.926 22.262 12.482
Tz [mm] 0.685 0.046 0.665 0.816 1.269 1.941

Rx [◦] 0.846 0.021 0.857 0.926 4.050 5.323
Ry [◦] 0.780 0.011 0.779 0.883 0.075 0.580
Rz [◦] 0.843 0.026 0.861 0.928 3.547 5.050

Table C.17: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.4. Values have been rounded to three decimal places.

Subject 3 (Cloth, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.708 0.050 0.711 0.843 2.804 3.113
Ty [mm] 0.695 0.065 0.703 0.839 6.246 4.588
Tz [mm] 0.778 −0.002 0.790 0.889 0.304 1.204

Rx [◦] 0.699 −0.021 0.711 0.843 0.695 1.550
Ry [◦] 0.666 0.004 0.681 0.825 0.043 0.365
Rz [◦] 0.685 −0.010 0.712 0.844 0.342 1.087

Table C.18: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.25. Values have been rounded to three decimal places.
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Subject 4 (Cloth, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.593 0.065 0.590 0.768 10.178 4.982
Ty [mm] 0.567 0.104 0.562 0.749 12.905 5.421
Tz [mm] 0.646 −0.064 0.637 0.798 2.011 2.352

Rx [◦] 0.619 −0.030 0.611 0.782 1.494 1.959
Ry [◦] 0.681 −0.008 0.696 0.834 0.358 1.084
Rz [◦] 0.627 0.004 0.629 0.793 1.364 1.918

Table C.19: Subject 4. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.4. Values have been rounded to three decimal places.

Subject 5 (Cloth, PLS, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.819 0.026 0.831 0.912 3.230 4.368
Ty [mm] 0.712 0.027 0.724 0.851 8.511 5.553
Tz [mm] 0.515 0.010 0.520 0.721 0.753 1.252

Rx [◦] 0.729 −0.006 0.741 0.861 0.776 1.729
Ry [◦] 0.474 0.004 0.480 0.693 0.129 0.498
Rz [◦] 0.413 −0.002 0.420 0.648 0.726 1.119

Table C.20: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.26. Values have been rounded to three decimal places.
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C.0.5 PVC, NARX, Raw, Small

Figure C.5: The figure shows results obtained for small head movements, sampled using the PV C
probe-holder set-up for all the subjects, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are good for translation along x axis and rotation around z
axis.

Subject 1 (PVC, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.845 0.008 0.909 0.953 0.001 0.078
Ty [mm] 0.545 0.001 0.598 0.773 0.001 0.051
Tz [mm] 0.658 0.000 0.542 0.736 0.012 0.161

Rx [◦] 0.984 0.000 0.907 0.953 0.001 0.089
Ry [◦] 0.969 −0.004 0.975 0.988 0.000 0.106
Rz [◦] 0.980 0.004 0.959 0.979 0.000 0.107

Table C.21: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.5. Values have been rounded to three decimal places.
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Subject 2 (PVC, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.814 0.000 0.871 0.933 0.001 0.069
Ty [mm] 0.713 −0.002 0.723 0.850 0.003 0.099
Tz [mm] 0.785 0.002 0.683 0.827 0.009 0.165

Rx [◦] 0.921 −0.009 0.907 0.952 0.001 0.104
Ry [◦] 0.901 0.001 0.885 0.941 0.001 0.084
Rz [◦] 0.911 −0.002 0.857 0.926 0.000 0.045

Table C.22: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.5. Values have been rounded to three decimal places.

Subject 3 (PVC, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.945 −0.008 0.956 0.978 0.007 0.387
Ty [mm] 0.953 0.001 0.947 0.973 0.001 0.132
Tz [mm] 0.901 −0.006 0.888 0.942 0.009 0.278

Rx [◦] 0.908 0.003 0.865 0.930 0.013 0.307
Ry [◦] 0.814 −0.001 0.838 0.915 0.001 0.061
Rz [◦] 0.994 −0.002 0.989 0.994 0.001 0.275

Table C.23: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.27. Values have been rounded to three decimal places.

Subject 6 (PVC, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.894 0.001 0.891 0.944 0.001 0.113
Ty [mm] 0.831 0.008 0.808 0.899 0.003 0.116
Tz [mm] 0.746 0.021 0.715 0.845 0.025 0.292

Rx [◦] 0.921 −0.009 0.936 0.967 0.004 0.247
Ry [◦] 0.873 −0.002 0.922 0.960 0.001 0.133
Rz [◦] 0.940 −0.003 0.963 0.981 0.001 0.148

Table C.24: Subject 6. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.28. Values have been rounded to three decimal places.
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C.0.6 PVC, NARX, Raw, Large

Figure C.6: The figure shows results obtained for large head movements, sampled using the PV C
probe-holder set-up for all the subjects, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are poor for all the motion parameters.

Subject 1 (PVC, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.886 −0.023 0.826 0.909 0.133 0.866
Ty [mm] 0.929 0.005 0.862 0.928 0.016 0.338
Tz [mm] 0.598 0.009 0.711 0.843 0.012 0.195

Rx [◦] 1.019 −0.017 0.897 0.947 0.101 0.920
Ry [◦] 0.948 0.003 0.940 0.970 0.003 0.213
Rz [◦] 0.857 −0.040 0.829 0.910 0.352 1.431

Table C.25: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.6. Values have been rounded to three decimal places.
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Subject 2 (PVC, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.806 −0.013 0.723 0.850 0.268 0.969
Ty [mm] 0.750 −0.009 0.680 0.825 0.058 0.424
Tz [mm] 0.824 −0.034 0.769 0.877 0.081 0.586

Rx [◦] 0.843 0.015 0.780 0.883 1.730 2.780
Ry [◦] 0.810 −0.017 0.782 0.884 0.096 0.661
Rz [◦] 0.808 −0.125 0.725 0.852 0.996 1.852

Table C.26: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.6. Values have been rounded to three decimal places.

Subject 3 (PVC, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.885 0.139 0.812 0.901 0.467 1.523
Ty [mm] 0.905 0.020 0.850 0.922 0.095 0.785
Tz [mm] 0.976 0.012 0.926 0.962 0.016 0.458

Rx [◦] 0.943 −0.013 0.865 0.930 0.387 1.652
Ry [◦] 0.863 0.049 0.850 0.922 0.060 0.626
Rz [◦] 0.892 0.145 0.803 0.896 0.560 1.622

Table C.27: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.29. Values have been rounded to three decimal places.

Subject 6 (PVC, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.916 −0.010 0.937 0.968 0.178 1.677
Ty [mm] 0.814 0.012 0.840 0.917 0.047 0.543
Tz [mm] 0.840 −0.038 0.792 0.890 0.076 0.598

Rx [◦] 0.931 0.128 0.863 0.929 0.469 1.792
Ry [◦] 0.764 0.012 0.683 0.826 0.045 0.371
Rz [◦] 0.822 −0.005 0.884 0.940 1.329 3.316

Table C.28: Subject 6. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.30. Values have been rounded to three decimal places.
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C.0.7 Cloth, NARX, Raw, Small

Figure C.7: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for all the subjects, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are good for all the motion parameters.

Subject 1 (Cloth, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.981 −0.002 0.984 0.992 0.002 0.322
Ty [mm] 0.969 −0.009 0.989 0.994 0.004 0.609
Tz [mm] 0.997 0.000 0.992 0.996 0.001 0.253

Rx [◦] 0.971 0.003 0.986 0.993 0.001 0.212
Ry [◦] 0.980 −0.001 0.977 0.988 0.000 0.075
Rz [◦] 0.957 −0.002 0.945 0.972 0.000 0.075

Table C.29: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.7. Values have been rounded to three decimal places.
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Subject 2 (Cloth, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.981 0.003 0.998 0.999 0.008 1.868
Ty [mm] 0.988 −0.003 0.998 0.999 0.010 2.346
Tz [mm] 0.994 0.002 0.999 0.999 0.000 0.564

Rx [◦] 0.985 0.000 0.998 0.999 0.002 0.924
Ry [◦] 0.967 0.001 0.978 0.989 0.000 0.078
Rz [◦] 0.976 −0.003 0.993 0.997 0.002 0.495

Table C.30: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.7. Values have been rounded to three decimal places.

Subject 3 (Cloth, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.950 −0.001 0.939 0.969 0.016 0.516
Ty [mm] 0.981 −0.004 0.960 0.980 0.014 0.590
Tz [mm] 0.951 0.009 0.965 0.982 0.002 0.257

Rx [◦] 0.969 0.004 0.976 0.988 0.002 0.253
Ry [◦] 0.959 0.003 0.940 0.970 < 0.001 0.070
Rz [◦] 0.972 0.001 0.993 0.996 0.002 0.459

Table C.31: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.31. Values have been rounded to three decimal places.

Subject 4 (Cloth, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.912 0.001 0.867 0.931 0.176 1.140
Ty [mm] 0.998 0.002 0.991 0.996 0.024 1.664
Tz [mm] 0.992 −0.005 0.995 0.997 0.008 1.276

Rx [◦] 0.985 −0.005 0.987 0.994 0.006 0.658
Ry [◦] 0.977 −0.003 0.979 0.990 0.001 0.207
Rz [◦] 0.955 −0.003 0.954 0.977 0.004 0.296

Table C.32: Subject 4. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.7. Values have been rounded to three decimal places.
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Subject 5 (Cloth, NARX, Raw, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.994 −0.003 0.996 0.998 0.007 1.319
Ty [mm] 0.998 0.002 0.999 0.999 0.007 2.199
Tz [mm] 0.990 −0.002 0.995 0.998 0.001 0.444

Rx [◦] 0.996 −0.001 0.998 0.999 0.001 0.734
Ry [◦] 0.993 −0.002 0.995 0.997 < 0.001 0.141
Rz [◦] 0.982 < 0.001 0.989 0.994 0.001 0.215

Table C.33: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.32. Values have been rounded to three decimal places.

C.0.8 Cloth, NARX, Raw, Large

Figure C.8: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for all the subjects, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are poor for all the head motion parameters.
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Subject 1 (Cloth, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.897 −0.001 0.801 0.895 1.024 2.207
Ty [mm] 0.883 0.057 0.780 0.883 2.191 3.066
Tz [mm] 0.888 0.016 0.757 0.870 0.177 0.817

Rx [◦] 0.884 −0.021 0.782 0.885 0.222 0.981
Ry [◦] 0.891 0.007 0.752 0.867 0.033 0.346
Rz [◦] 0.884 −0.031 0.778 0.882 0.174 0.856

Table C.34: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.8. Values have been rounded to three decimal places.

Subject 2 (Cloth, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.896 −0.187 0.879 0.937 5.408 6.642
Ty [mm] 0.910 −0.405 0.878 0.937 18.928 12.326
Tz [mm] 0.873 0.038 0.821 0.906 0.703 1.965

Rx [◦] 0.896 0.175 0.872 0.934 3.532 5.215
Ry [◦] 0.872 0.006 0.862 0.928 0.044 0.565
Rz [◦] 0.872 0.143 0.862 0.928 3.270 4.844

Table C.35: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.8. Values have been rounded to three decimal places.

Subject 3 (Cloth, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.735 −0.067 0.808 0.899 1.844 3.040
Ty [mm] 0.788 −0.115 0.831 0.912 3.323 4.399
Tz [mm] 0.813 0.008 0.883 0.940 0.172 1.186

Rx [◦] 0.795 0.033 0.831 0.912 0.376 1.485
Ry [◦] 0.821 −0.004 0.818 0.904 0.026 0.377
Rz [◦] 0.874 0.004 0.801 0.895 0.225 1.046

Table C.36: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.33. Values have been rounded to three decimal places.
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Subject 4 (Cloth, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.860 0.006 0.847 0.921 3.948 5.086
Ty [mm] 0.876 −0.031 0.855 0.925 4.316 5.452
Tz [mm] 0.874 −0.029 0.884 0.940 0.638 2.344

Rx [◦] 0.867 −0.005 0.854 0.924 0.590 2.011
Ry [◦] 0.907 −0.020 0.868 0.932 0.168 1.119
Rz [◦] 0.903 0.032 0.861 0.928 0.547 1.971

Table C.37: Subject 4. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.8. Values have been rounded to three decimal places.

Subject 5 (Cloth, NARX, Raw, Large)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.827 0.004 0.873 0.935 2.267 4.191
Ty [mm] 0.831 −0.029 0.833 0.912 4.911 5.418
Tz [mm] 0.923 −0.051 0.790 0.889 0.367 1.253

Rx [◦] 0.821 −0.002 0.835 0.914 0.469 1.685
Ry [◦] 0.919 −0.018 0.772 0.879 0.064 0.500
Rz [◦] 0.855 0.009 0.746 0.864 0.333 1.112

Table C.38: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.34. Values have been rounded to three decimal places.
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C.0.9 Cloth, NARX, Pre-processed, Large (Less dynamics)

Figure C.9: The figure shows results obtained for large head movements, sampled using the cloth
probe-holder set-up for all the subjects, using raw data for training the non − linear regression
method (Table 5.1.3). Prediction results are poor for all the head motion parameters.
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C.0.10 Cloth, NARX, Pre-processed, Small

Figure C.10: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for all the subjects, using pre − processed data for training the non − linear
regression method (Table 5.1.3). Prediction results are good for the most of the head motion param-
eters.

Subject 1 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.996 −0.005 0.981 0.991 0.002 0.328
Ty [mm] 1.000 −0.008 0.992 0.996 0.003 0.630
Tz [mm] 0.997 0.000 0.997 0.998 0.000 0.259

Rx [◦] 0.998 0.002 0.991 0.995 0.000 0.219
Ry [◦] 0.993 −0.001 0.996 0.998 0.000 0.076
Rz [◦] 0.941 0.000 0.969 0.984 0.000 0.075

Table C.39: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.10. Values have been rounded to three decimal places.
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Subject 2 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.997 −0.008 0.998 0.999 0.011 2.080
Ty [mm] 0.994 −0.007 0.998 0.999 0.016 2.577
Tz [mm] 0.993 0.003 0.996 0.998 0.001 0.586

Rx [◦] 0.993 0.003 0.997 0.998 0.003 1.003
Ry [◦] 0.992 0.001 0.982 0.991 0.000 0.072
Rz [◦] 0.987 0.000 0.994 0.997 0.001 0.505

Table C.40: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.10. Values have been rounded to three decimal places.

Subject 3 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.949 0.001 0.901 0.949 0.030 0.542
Ty [mm] 0.967 −0.011 0.941 0.970 0.023 0.615
Tz [mm] 0.981 0.009 0.983 0.991 0.001 0.270

Rx [◦] 0.990 < 0.001 0.967 0.983 0.002 0.265
Ry [◦] 0.980 0.004 0.942 0.970 < 0.001 0.078
Rz [◦] 0.993 −0.003 0.995 0.997 0.001 0.468

Table C.41: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.35. Values have been rounded to three decimal places.

Subject 4 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.896 −0.012 0.857 0.926 0.188 1.137
Ty [mm] 0.997 −0.018 0.988 0.994 0.034 1.646
Tz [mm] 1.003 0.004 0.994 0.997 0.009 1.247

Rx [◦] 0.998 0.006 0.987 0.994 0.005 0.645
Ry [◦] 1.024 0.002 0.982 0.991 0.001 0.201
Rz [◦] 1.005 0.003 0.974 0.987 0.002 0.287

Table C.42: Subject 4. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.10. Values have been rounded to three decimal places.
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Subject 5 (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 1.000 −0.007 0.997 0.998 0.006 1.359
Ty [mm] 0.998 −0.005 0.999 0.999 0.006 2.278
Tz [mm] 0.995 0.001 0.993 0.997 0.001 0.458

Rx [◦] 1.000 −0.001 0.998 0.999 0.001 0.762
Ry [◦] 0.982 −0.002 0.984 0.992 < 0.001 0.146
Rz [◦] 0.976 0.001 0.976 0.988 0.001 0.222

Table C.43: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
5.36. Values have been rounded to three decimal places.

C.0.11 Cloth, NARX, Pre-processed, Small (Less dynamics)

Figure C.11: The figure shows results obtained for small head movements, sampled using the cloth
probe-holder set-up for all the subjects, using pre − processed data for training the non − linear
regression method (Table 5.1.3). Prediction results are close to ideal/good for translations/rotations
around x/y/z axes.
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Subject 1 (Less dynamics) (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.955 0.005 0.923 0.961 0.001 0.122
Ty [mm] 0.984 −0.002 0.980 0.990 0.001 0.216
Tz [mm] 0.961 0.005 0.985 0.992 0.000 0.109

Rx [◦] 0.962 0.005 0.967 0.983 0.000 0.070
Ry [◦] 1.051 −0.003 0.982 0.991 0.000 0.050
Rz [◦] 0.941 0.002 0.807 0.899 0.000 0.032

Table C.44: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.11. Values have been rounded to three decimal places.

Subject 2 (Less dynamics) (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.921 −0.044 0.990 0.995 0.027 1.296
Ty [mm] 0.955 −0.030 0.991 0.996 0.023 1.489
Tz [mm] 1.021 0.006 0.973 0.986 0.002 0.258

Rx [◦] 0.949 0.004 0.988 0.994 0.004 0.528
Ry [◦] 1.229 −0.009 0.641 0.800 0.003 0.056
Rz [◦] 0.929 0.028 0.949 0.974 0.004 0.256

Table C.45: Subject 2. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.11. Values have been rounded to three decimal places.

Subject 3 (Less dynamics) (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.910 0.018 0.626 0.791 0.027 0.232
Ty [mm] 0.966 0.014 0.865 0.930 0.018 0.353
Tz [mm] 0.842 0.003 0.686 0.828 0.006 0.136

Rx [◦] 0.964 −0.005 0.903 0.950 0.002 0.150
Ry [◦] 0.883 0.000 0.804 0.897 0.000 0.036
Rz [◦] 0.989 −0.001 0.976 0.988 0.001 0.166

Table C.46: Subject 3. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.11. Values have been rounded to three decimal places.
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Subject 4 (Less dynamics) (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.910 0.018 0.626 0.791 0.027 0.232
Ty [mm] 0.966 0.014 0.865 0.930 0.018 0.353
Tz [mm] 0.842 0.003 0.686 0.828 0.006 0.136

Rx [◦] 0.964 −0.005 0.903 0.950 0.002 0.150
Ry [◦] 0.883 0.000 0.804 0.897 0.000 0.036
Rz [◦] 0.989 −0.001 0.976 0.988 0.001 0.166

Table C.47: Subject 1. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.11. Values have been rounded to three decimal places.

Subject 5 (Less dynamics) (Cloth, NARX, Pre-processed, Small)
Slope Intercept R2 PC MSE STD

Tx [mm] 0.964 0.004 0.929 0.964 0.006 0.287
Ty [mm] 0.947 0.005 0.954 0.977 0.004 0.300
Tz [mm] 0.966 0.001 0.970 0.985 0.001 0.144

Rx [◦] 0.925 −0.001 0.914 0.956 0.001 0.093
Ry [◦] 0.973 0.002 0.924 0.961 0.000 0.040
Rz [◦] 0.922 0.000 0.845 0.919 0.001 0.056

Table C.48: Subject 5. Values of the slope and intercept of the linear fit are reported along with
the values of R2, the standard deviation (STD) and the mean squared error (MSE) and Pearson
correlation coefficient (PC), for each of the motion parameters and prediction reported in Figure
C.11. Values have been rounded to three decimal places.
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Appendix D

MATLAB code

D.1 Pre-processing of magnetic field data:

Magnetic field data from the magnetic field camera are extracted using a given MAT-
LAB function made by the Skope company AcqSys.

Function I made are reported below.

D.1.1 Unfiltered data

1 B(channels,:); % Raw magnetic field data of Channels that were not ...
faulty.

2 % size of B : 16 rows, N−columns (time steps or dynamics)
3 DB = bsxfun(@minus, B, mean (B,2)); % Magnetic field changes as ...

zero−mean data series

D.1.2 Filtered data

1 B(channels,:); % Raw magnetic field data of Channels that were not ...
faulty.

2 % size of B : 16 rows, N−columns (time steps or dynamics)
3 P; % Probe positions
4 DB = bsxfun(@minus, B, mean (B,2)); % Magnetic field changes as ...

zero−mean data series
5 B fit = sphfit(DB, P); % Function I made to compute the fit
6 DB = B fit.Second; % Second harmonics order fit of DB
7 [DB,¬] = mapstd(DB); % Map DB by rows to have zero mean and unit ...

standard deviation time series
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8 [¬,indexes,¬] = ClustersPCA(DB, [1:size(DB,2)]); % Function that I ...
made during my Master Thesis. It computes the feature selection ...
using PCA and the HCA.

9 DB = DB(indexes,:); % Select the channels
10 STD = std(DB,[],'all'); % Normalisation factor
11 DB = DB./STD; % Same normalisation factor for all the rows

D.1.3 Custom functions

Solid Harmonics fit

1 function B fit = sphfit(DB,P)
2 % Perform the solid harmonic fit
3 %%
4 hh = sphfun(position); % Calculate spherical harmonics using the ...

positions of the probes
5 for i = 1:size(DB,2)
6 % 1) Evaluate the Coeff over the whole positions
7 Coeff(:,i) = linsolve(hh,DB(:,i)); % fit at each time point ...

(note order)
8 % 2) Evaluate the fit on the hormonics only
9 B fit.Zero(:,i) = hh(:,1)*Coeff(1,i);

10 B fit.First(:,i) = hh(:,2:4)*Coeff(2:4,i);
11 B fit.Second(:,i) = hh(:,5:9)*Coeff(5:9,i);
12 end
13 % Nested function
14 function SPH = sphfun(P)
15 % Definitions of solid harmonics
16 %%
17 for n = 1:size(P,1) %n = probe's number
18 x = P(n,1)./0.1;
19 y = P(n,2)./0.1;
20 z = P(n,3)./0.1;
21 % First order
22 SPH(n,1) = 1;
23 SPH(n,2) = x;
24 SPH(n,3) = y;
25 SPH(n,4) = z;
26 % Second Order
27 SPH(n,5) = x*y;
28 SPH(n,6) = z*y;
29 SPH(n,7) = 3*zˆ2−(xˆ2 + yˆ2 + zˆ2);
30 SPH(n,8) = x*z;
31 SPH(n,9) = xˆ2 − yˆ2;
32 % Third order − not used
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33 % SPH(n,10) = 3*y*xˆ2 − yˆ3;
34 % SPH(n,11) = x*y*z;
35 % SPH(n,12) = (5*zˆ2−(xˆ2+yˆ2+zˆ2))*y;
36 % SPH(n,13) = 5*zˆ3 −3*z*(xˆ2+yˆ2+zˆ2);
37 % SPH(n,14) = (5*zˆ2−(xˆ2+yˆ2+zˆ2))*x;
38 % SPH(n,15) = xˆ2 *z − yˆ2 * z;
39 % SPH(n,16) = xˆ3 − 3*x*yˆ2;
40 end

PCA and HCA

1 function [C,indexes,In]= ClustersPCA(DB, Channels)
2 % Function to perform the feature selection
3 %%
4 DB = DB(Channels,:);
5 % 1) Clusters (C) of the channels selected by PCA and HCA
6 [¬,¬,¬,C] = Dendro(DB, Channels); % First column of C represents ...

the channel number; second column of C represents the ...
cluster number whose the channel belong to

7 % 2) Select the final subgroup of probes identify the cluster ...
that correspond to the probes that carries the most of the ...
variance. It is necessary to have a subgroup with more than ...
6 channels as motion data have 6 degrees of freedom.

8 [¬,Index] = sort(var(bfield,0,2),'descend'); % Sort the channels ...
based on the variance of DB. First row will report the ...
channels with the bigger variance.

9 indexes = []; % Initialisation of the variable
10 w = 0; % While loop test variable
11 while size(indexes,1)<6
12 w = w+1;
13 Clusters = C(Index(w,1),2); % Cluster's number (C's column) ...

of the probes (Index's row) that reports the bigger variance
14 c = ismember(C(:,2),Clusters); % Select the other channels ...

that belong to the same cluster. ismember(a,b) gives ...
"true" if the element in "a" is a member of "b".So, it ...
stores this information in a Boolean vector

15 indexes = [indexes ; C(c,1)]; % To store the indexes of the ...
channel's numbers (C's first column)

16 indexes = unique(indexes); % Eliminate repetitions
17 end
18 indexes = sort(indexes,'ascend'); % Sort the channels
19 end
20 % Nested function
21 function [¬,¬,¬,C] = Dendro(DB, Channels)
22 %%
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23 DB = transpose(DB); % Bring DB in the correct format for pca() ...
(time steps−row times variables−columns)

24 coeff = pca(DB); % Perform principal component analysis to ...
obtain the principal component coefficients (eigenvalue of ...
the principal components)

25 % Hierarchical Cluster Analysis (HCA)
26 tree = linkage(coeff(:,1:3),'ward'); % Create a hierarchical ...

binary cluster tree using linkage.
27 cutoff = 0.7*max(tree(:,3)); % Cut−off the linkage at the 70% of ...

the maximum distance
28 C(:,2) = cluster(tree,'Cutoff',cutoff,'Criterion','distance'); % ...

Construct agglomerative clusters from linkages
29 C(:,1) = Channels; % Name of the channel

D.1.4 Pre-processing of Motion data

Motion data are given from the camera as quaternion (x, y, z, qx, qy, qz, qr). A func-
tion [20] is used to convert those in the scanner reference frame by using the information
obtained from the calibration. Then, data are refer to the isocentre (F-vector) using the
MRI image acquired during the survey. Lately, as explained in my master thesis [11],
data are down sampled to match the acquisition frequency of the camera. In the code
below, I assume that these steps were already made and the time series represents the
translation and rotation around the x,y,z axes of the head, referred to the scanner system
of reference.

1 M; % Motion data .
2 % size of M : 6 rows(Tx, Ty, Tz, Rx, Ry, Rz in mm or degrees), ...

N−columns (time steps or dynamics)
3 DM = bsxfun(@minus, M, mean (M,2)); % Magnetic field changes as ...

zero−mean data series

Motion data do no require to be normalised as they are already in the range ≈ 101

that is optimal for perform regression. By subtracting the average to both DB and DM

we assuming that at ”zero” head movement correspond ”zero” magnetic field changes
and so if the head doesn’t move, the magnetic field doesn’t’ change. This is not entirely
true as there are other factors that influences the changing in in magnetic field, those
are mostly removed by the spatial filter.

D.2 Regression methods

Once the pre-processing (with or without the filter) is done, we have one input data
series (called DB) and one output data series (called DM) ready to be used for the training
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of the regression method.

D.2.1 Linear method: PLS

1 rng('seed'); % Randomisation of the starting point for the ...
subsequent random extraction and inisialization of regression ...
method weights

2 Input = DB; Output = DM; % Variables to train the regression method
3 [trainInd,¬,testInd] = dividerand(size(Output,2),0.75,0,0.15); % ...

Random extraction of indexes to select the training (trainInd) ...
and new data (testInd) to test the trained method.

4 [¬,¬,¬,¬,BETAfit,¬,MSE,¬] = ...
plsregress(Input(:,trainInd).',Output(:,trainInd).',size(Input,1),'CV',6); ...
% Partial Least Regression Method using the k−fold ...
cross−validation (k = 6) to validate it.

5 % MSE is the mean squared error of the fit (it could be used to ...
evaluate over fitting)

6 % BETAfit is the matrix of coefficients uses to perform new ...
predictions

7 OutputFit = [ones(size(Input(:,testInd).',1),1) ...
Input(:,testInd).']*BETAfit; % Prediction on new data. The ...
matrix in the square brackets is in the format request by the ...
function

D.2.2 Non-Linear Method: NARX

The code has been developed by the information founded on MATLAB website (
https://uk.mathworks.com/help/deeplearning/gs/neural-network-time-series-prediction-and-modeling.

html, https://uk.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.
html, https://uk.mathworks.com/help/deeplearning/modeling-and-prediction-with-narx-and-time-delay-networks.
html)

1 rng('seed'); % Randomisation of the starting point for the ...
subsequent random extraction and inisialization of regression ...
method weights

2 Input = DB; Output = DM; % Variables to train the regression method
3 % 10 NARX have been trained. The one that best performs on new data ...

has been seved.
4 for n = 1:10
5 [trainInd,¬,testInd] = dividerand(size(Output,2),0.75,0,0.15); % ...

Random extraction of indexes to select the training ...
(trainInd) and new data (testInd) to test the trained method.

6 tic
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7 [nets] = NARX(Input(:,trainInd),Output(:,trainInd),30); % ...
Function that I made to train the NARX Neural Network

8 toc
9 [¬,¬,performance,¬] = ...

ApplyNARX(nets,Input(:,testInd),Output(testInd)); % Function ...
that I made to apply the network

10 NNPerf(n,:) = [n performance]; % Store the performance of the ...
networks

11 end
12 [BEST,¬] = find(NNPerf(:,2) == min(NNPerf(:,2))); % Find the network ...

that perform the best:

Custom function
See Chapter A to further explanation on the main parameters to set to built a NARX.
For the sake of clarity, options to visualize the network (viev(net)) or to visualize built-
in analysis (nntraintool) have been removed in the code above.

This function trains a NARX with 1 hidden layer. DB_train represents the Input
(magnetic field changes measured witht the magnetic field camera), DM_train represents
the output (head position measured with the optical camera), hn represents the number
of hidden neuron. The version of the function reported uses a fixed number of hidden
neuron. An older version was made to automatically found the best number of the neu-
ron in the single hidden layer method, but results over hundreds of run reports that there
were not a privileged number of neurons (Figure ??).

1 function nets = NARX(DB train,DM train,hn)
2 % This function trains a
3 % DB train = Input, magnetic field changes
4 % DM train = Output, head positions
5 % hn = number of hidden neuron
6 %%
7 rng('shuffle');
8 % Convert Input and Output data to standard neural network cell ...

array form
9 X = tonndata(DB train,true,false);

10 T = tonndata(DM train,true,false);
11 % Set the parameters of the Network:
12 trainFcn = 'trainlm'; % Choose a Training Function − 'trainlm' ...

corresponds to Levenberg−Marquardt backpropagation algorithm
13 inputDelays = 1:2; % Delayed Input
14 feedbackDelays = 1:2; % Feedback input
15 hiddenLayerSize = hn;
16 % Create the open−loop network used for the training
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17 net = ...
narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);

18 % Further preprocessing/postprocessing
19 net.inputs{1}.processFcns = {'removeconstantrows'};
20 net.inputs{2}.processFcns = {'removeconstantrows'};
21 [x,xi,ai,t] = preparets(net,X,{},T); % Prepare the Data for Training
22 % Setup Division of Data for Training, Validation, Testing
23 net.divideFcn = 'dividerand'; % Divide data randomly
24 net.divideMode = 'time'; % Divide up every sample
25 net.divideParam.trainRatio = 90/100;
26 net.divideParam.valRatio = 5/100;
27 net.divideParam.testRatio = 5/100;
28 net.performFcn = 'mse'; % Choose a Performance Function
29 [net,tr] = train(net,x,t,xi,ai); % Train the Network
30 % Test the Network
31 y = net(x,xi,ai);
32 e = gsubtract(t,y);
33 performance = perform(net,t,y);
34 % Convert the network into a Step−Ahead Prediction Network ...

(outputs are shifted one timestep)
35 nets = removedelay(net);
36 nets.name = [net.name ' − Predict One Step Ahead'];
37 [xs,xis,ais,ts] = preparets(nets,X,{},T);
38 ys = nets(xs,xis,ais);
39 stepAheadPerformance = perform(nets,ts,ys);
40 end

The function applies the trained network using new input data (Input) and new output
data (Target).

1 function [Pred,Target,performance,Rmse] = ApplyNARX(nets,Input,Target)
2 % Convert Input and Output data to standard neural network cell ...

array form
3 IN = tonndata(Input,true,false);
4 TA = tonndata(Target,true,false);
5 % Prepare the data for the NARX network
6 [x,xi,ai,t] = preparets(nets,IN,{},TA);
7 y = nets(x,xi,ai); % Predicted data
8 e = gsubtract(t,y); % residuals
9 % Evaluates the performance of the network

10 performance = perform(nets,t,y);
11 % Shift the predicted and target data
12 Pred = cell2mat(y); Pred = Pred(:,3:end−1);
13 Target = cell2mat(t); Target = Target(:,3:end−1);
14 % Evaluate the error in the prediction (non built−in function)
15 Rmse = ErrEval(Target.', Pred.', 'rmse');
16 end
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D.3 Analysis of the results

Errors
This function calculate various statistical measurements for errors: Residual Sum of
Squares (RSS) otherwise called Sum of Square due to Error (SSE); Total Sum of square
(TSS); Coefficient of determination (R2); Mean squared error (MSE); Root Mean Square
Deviation (RMSD) otherwise Root Mean Square Error (RMSE); Normalized root-mean-
square deviation (NRMSD, Normalizing the RMSD facilitates the comparison between
data-sets or models with different scales.);

1 function Err = ErrEval(Data,Prediction,Type)
2 residuals = Data − Prediction;
3 if strcmpi(Type,'rss') % Residual Sum of Squares
4 rss = sum(residuals.ˆ2,1);
5 RSS = transpose(rss);
6 Err = RSS;
7 elseif strcmpi(Type,'tss') % Total Sum of square
8 rss = sum(residuals.ˆ2,1);
9 tss = sum((Data − mean(Data,1)).ˆ2,1);

10 rsquare = rss./tss;
11 RSquared = transpose(rsquare);
12 Err = RSquared;
13 elseif ...

strcmpi(Type,'mse') | | strcmpi(Type,'rmse') | | strcmpi(Type,'nrmsd')
14 mse = mean(residuals.ˆ2,1);
15 if strcmpi(Type,'mse') % Mean squared error (MSE)
16 MSE = transpose(mse);
17 Err = MSE;
18 return
19 end
20 rmse = sqrt(mse);
21 if strcmpi(Type,'rmse') % RMSE or RMSD(Root Mean Square ...

Deviation)
22 RMSE = transpose(rmse);
23 Err = RMSE;
24 return
25 end
26 if strcmpi(Type,'nrmsd') % Normalized root−mean−square ...

deviation (NRMSD)
27 NRMSD = rmse./(max(Data)−min(Data)); % ...

[Smallest,Largest] = bounds(M,2);
28 NRMSD = transpose(NRMSD);
29 Err = NRMSD*100;
30 return
31 end
32 end
33 end
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Linear Fit
Code to fit the predicted data as function of the measured data. Both the time series
were motion data (6 rows, n-time-steps of columns). One head motion parameter (1 row,
n-time-steps of columns) per time was analysed.

1 function [Results]= FitPredictions(Pred, Target)
2 % Pred = predicted data
3 % Targ = measured data (not used to train the regression method)
4 % Results = Table to summarise the results
5 %%
6 % Initialisation of variables
7 New = []; Predict = []; FitLine = []; Coeff = []; R2 = []; RMSE ...

= []; PC = [];
8 for m = 1:6
9 % Select the motion parameters to analyse

10 New = Target(m,:);
11 Predict = Pred(m,:);
12 % Perform the linear fit
13 [fitresult, gof] = LinearFit(New, Predict); % See nested ...

function
14 Coeff(m,:) = coeffvalues(fitresult); % Extract the ...

coefficients of the linear fit
15 FitLine = Coeff(m,1).*New + Coeff(m,2); % Fitted line
16 R2(m,1) = gof.rsquare; % R−squared (coefficient of ...

determination) of the fit
17 RMSE(m,1) = gof.rmse; % Root mean squared error (standard error)
18 PearsCorr = corrcoef(FitLine,Predict); % Pearson coefficient
19 PC(m,1) = PearsCorr(1,2);
20 MSE(m,1) = ErrEval(New.',Predict.','MSE'); % Mean squared ...

error of the prediction
21 STD(m,1) = std(New,[],2); % Standard deviation
22 end
23 % Summarise the results in a table
24 Results = table(Coeff,R2,STD,MSE,PC,'RowNames', {'Tx [mm]','Ty ...

[mm]','Tz [mm]','Rx [deg]','Ry [deg]','Rz [deg]'});
25 Results.Properties.VariableDescriptions ={...
26 'Slope and Intercept coefficients of the linear regression: y = ...

ax + b (ideal condition: a−>1, b−>0)',...
27 'Rˆ2 of the fit (how well the data are fitted by a line)',...
28 'Standard deviation of the movements',...
29 'Mean Squared Error of the prediction compared to the fit ()',...
30 'Pearson Coefficient. 1 = correlate; 0 = non correlate; −1 = ...

anti−correlate;'};
31 end
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32 % Nested function that compute the linear fit
33 function [fitresult, gof] = LinearFit(NewData, Prediction)
34 [xData, yData] = prepareCurveData( NewData, Prediction );
35 ft = fittype( {'x', '1'}, 'independent', 'x', 'dependent', 'y', ...

'coefficients', {'a', 'b'} ); % Set up fittype and options.
36 [fitresult, gof] = fit( xData, yData, ft ); % Fit model to data.
37 end

D.4 Simulation of the extra-cranial magnetic field

Assuming that a head model is available, head motion parameters (Tx, Ty, Tz, Rx, Ry, Rz)
and respiration signal (RESP) and distance between the probes and the stern (ProbesStern)
have been measured.

1 % Code to simulate the magnetic field changes due to motion
2 Head; % Head model
3 Head = Victor(Head); % Non built−in function, see next ...

subsection. Return a binary representation of the volume
4 Head = Head.*−9; % Assign Magnetic susceptibility of water to ...

the pixels classify as head tissue and cavity (1)
5

6 % Rotate the Head model:
7 Head = HeadMov(Head, Tx, Ty, Tz, Rx, Ry, Rz, varargin)
8

9 % Evaluate the magnetic field [T]
10 Field 0 = FieldFFT(Head); % Non built−in function, see next session.
11

12 % Once the field has been evaluated, it is sampled at the ...
coordinates that correspond to the probe positions. This ...
part has not been reported as it depends on the ...
configuration chosen.

13

14 DB p = Field 0(X coordinates, Y coordinates, Z coordinates); % ...
Magnetic field sampled at probe position

15

16 % Mangetic field changing due to respiration [T]
17 DB r = NoiseRESP(RESP, ProbesStern);
18

19 % White noise [T] due to the electronics and other sources ...
evaluated experimentally

20 rng('shuffle');
21 White = random('Normal',0,1,size(B,1),size(B,2)).*1e−8;
22

23 % The components can be then superimposed:
24 % DB = DB p; % Magnetic field due to only the head movements
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25 % DB = DB p + DB r + White; % Approximation of real measurements

D.4.1 Non built-in function

Create a binary 3D model of the head. From the head model obtained from the
segmentation of the MR images, a head model where pixels representing air are classified
as 0 and pixels that represents head (wothout no cavity) are classified as 1 is created.

1 function Victor = Victor(ntest)
2 % ntest = head model obtained from the segmentation of the MR images
3 % Victor = head model where pixels representing air are classified ...

as 0 and pixels that represents head (wothout no cavity) are ...
classified as 1

4 %%
5 Victor = zeros(size(ntest)); % Pre−allocate memory
6 % 2) Find the external faces
7 for z = 1: size(ntest,3)
8 for x = 1: size(ntest,1)
9 Anterior = find(ntest(x,:,z),1,'first'); % 'first', ...

which finds the first n indices corresponding to nonzero
10 Posterior = find(ntest(x,:,z),1,'last'); % 'last', finds ...

the last n indices corresponding to nonzero
11 Victor(x,Anterior:Posterior,z) = 1;
12 end
13 end
14 end

Homogeneous transformation for 3D head rotation

1 function Head = HeadMov(Volume, Tx, Ty, Tz, Rx, Ry, Rz, varargin)
2 % Function to rotate the head model.
3 alpha = Rx; beta = Ry; gamma = Rz;% Assign head motion ...

parameters to angles
4 % Rotation matrix:
5 R x = [1 0 0 ;0 cosd(alpha) −sind(alpha); 0 sind(alpha) ...

cosd(alpha)];
6 R y = [cosd(beta) 0 sind(beta); 0 1 0; −sind(beta) 0 ...

cosd(beta)];
7 R z = [cosd(gamma) −sind(gamma) 0; sind(gamma) cosd(gamma) ...

0; 0 0 1];
8 R head = R z*R y*R x; %Simulation Frame
9 % Trasformation matrix (Matlab format)

10 t(1:3,1:3) = transpose(R head);
11 t(4,1:3) = transpose([Tx Ty Tz]);
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12 t(1:4,4)=[0 0 0 1];
13 tform = affine3d(t); % Compute the affine 3D rotation
14 Rin = imref3d(size(Volume)); % Reference the volume to World ...

coordinate
15 if nargin > 7
16 if strcmpi(varargin{1,1},'Centre') % performing rotation by ...

the centre of the volume
17 Rin.XWorldLimits = Rin.XWorldLimits−mean(Rin.XWorldLimits);
18 Rin.YWorldLimits = Rin.YWorldLimits−mean(Rin.YWorldLimits);
19 Rin.ZWorldLimits = Rin.ZWorldLimits−mean(Rin.ZWorldLimits);
20 end
21 Head = imwarp(Volume,Rin,tform,'OutputView',Rin); % Apply ...

the geometric transformation
22 else
23 Head = imwarp(Volume,tform);
24 end
25 end

Physiological Noise

1 function DB = NoiseRESP(RESP, ProbesStern)
2 % Code to simulate the Physiological Noise from paper (Raj D et all, ...

September 2000)
3 % RESP = respiration signal recorded using the belt
4 % ProbesStern = 3D coordinates [m] of the distance between the ...

probes and the stern
5 %%
6 Dchi = 9.4*10ˆ−6; % Magnetic susceptibility of the air (20% ...

Oxigen mixture)
7 %
8 % Numerator:
9 B0 = 7; %[T]

10 R = 0.08; % [m], 8 cm radius of the sphere
11 x = ProbesStern(:,1); y = ProbesStern(:,2); z = ProbesStern(:,3);
12 num = (Dchi*B0*Rˆ3*(2*z.ˆ2−x.ˆ2−y.ˆ2))/3; % minmax() = 0.0005 ...

0.0012 T
13 num = num.*RESP;
14 % Denominatore
15 den = sqrt(sum(ProbesStern.ˆ2,2)).ˆ5;
16 % Results:
17 DB = num./den;
18 end

FFT method
It requires square 3D volume that represents the head.
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1 % Code to simulate the magnetic field changes
2 function Field = FieldFFT(Head)
3 % This function i based on the paper (Marques, Bowtell 2008)
4 % Head = Head model
5 %%
6 %
7 u0 = 4*pi*1e−7; % Permeability of the vacum. Bo = u0(H+M)
8 EMkz = fftn(Head)*B0/u0; % 3D FFT of the data set
9 % Make 3D arrays of k x, k y and k z allowing for the FFTshift ...

organisation
10 % of data
11 dims = size(Head);
12 kx = fftshift((−dims(1)/2):(dims(1)/2−1));
13 ky = fftshift((−dims(2)/2):(dims(2)/2−1));
14 kz = fftshift((−dims(3)/2):(dims(3)/2−1));
15 kxmat = repmat(reshape(kx,[dims(1) 1 1]),[1 dims(2) dims(3)]);
16 kymat = repmat(reshape(kx,[1 dims(2) 1]),[dims(1) 1 dims(3)]);
17 kzmat = repmat(reshape(kx,[1 1 dims(3)]),[dims(1) dims(2) 1]);
18 % Original formula from the paper:
19 % DipFieldk = ...

−u0/3*(3*(kzmat*cos(theta)−kymat*sin(theta)).ˆ2./(kxmat.ˆ2+kymat.ˆ2+kzmat.ˆ2)−1).*EMkz;
20 % Has been simplified as head model is imputed already rotated ...

(theta = 0)
21 DipFieldk = −u0/3*(3*(kzmat).ˆ2./(kxmat.ˆ2+kymat.ˆ2+kzmat.ˆ2)−1).*EMkz;
22 DipFieldk(1,1,1)=0;
23 DipField = real(ifftn(DipFieldk)); % inverse 3D FFT to get dta in ...

real space
24 % The field is usually simulated in Tesla:
25 Field = 10ˆ−6 *DipField; %[T]
26 % but it could be simulated in Hz by: Field = 42.57 *DipField; %[Hz]
27 %
28 end

D.5 Coils

D.5.1 Simulate the magnetic field generated by the coil system

This code assume that the movements of the probes are defined (Mov), translations
are expressed in meters and rotations are expressed in radiants.

1 % Define the coils origins and orientations:
2 sa = [0; −1; 0] ; % first dipole direction, (direction: anterior)
3 rca = [0.02;−0.08;0.02]; % [m] first dipole position
4 sb = [0; 0; 1] ; % second dipole direction, (direction: feet head)
5 rcb = [−0.02;−0.08;−0.02];% [m] second dipole position
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6

7 % Define the probe positions
8 [Probes,¬]= Elly('np',100,'nr',50);
9 % To select only the upper part of the ellipses, only the probes ...

with negative coordinate along the y (AP) axes are selected
10 Probes = Probes(find(Probes(:,2)≤0),:);
11 % % Create the grid coordinate:
12 X = Probes(:,1); X = reshape(X,[50,50]);
13 Y = Probes(:,2); Y = reshape(Y,[50,50]);
14 Z = Probes(:,3); Z = reshape(Z,[50,50]);
15

16 % − % This part need to be repeated for each time−steps to simulate
17 for t = 1:size(M,2)
18 % Displacement (milli meters):
19 dx = Mov(1,t); dy = Mov(2,t);dz = Mov(3,t); % Tx,Ty,Tz [mm]
20 % Define rotations (degrees):
21 pitch = Mov(4,t); roll = Mov(5,t); yaw = Mov(6,t); % Rx, Ry, Rz ...

[rad]
22 Tr = HomoExtr(dx,dy, dz, pitch, roll, yaw,'Rad'); % Apply the ...

homogeneous transformation, see below for the code
23 % New position and orientations of the coils at t:
24 rca 1 = Tr * [rca ; 1];
25 rcb 1 = Tr * [rcb ; 1];
26 rca 1 = rca 1(1:3);
27 rcb 1 = rcb 1(1:3);
28

29 Ts = HomoExtr2(0, 0, 0, pitch, roll, yaw, 'Rad'); % Coil ...
orientation after the transformation

30 R = Ts(1:3,1:3);
31 sa 1 = R*sa;
32 sb 1 = R*sb;
33 % To check if the norm of the vector is still 1 (otherwise it ...

doesn't represents orientation): norm(san) = 1; norm(sbn) = 1;
34 % Calculate the Bz fields for t:
35 % Coil A
36 [x,y,z] = ProbesCoilDist(X,Y,Z,rca 1);
37 Bzsa = fincoilmultiturn LB2(sa 1,x,y,z);
38 clear x y z;
39 % Coil B
40 [x,y,z] = ProbesCoilDist(X,Y,Z,rcb 1);
41 Bzsb = fincoilmultiturn LB2(sb 1,x,y,z);
42 % White Gaussian noise to model NMR probes noise
43 White = random('Normal',0,1).*W.*1e−8;
44 % Resulted field:
45 Bzs(:,t) = Bzsa + Bzsb + White;
46 end
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D.5.2 Prediction

Once data have been simulated (Bzs), they can be used for the prediction. This code
assumes that the magnetic momentum of the dipole (M), and probe positions coordinates
(X,Y,Z) are defined. Also, the standard deviation of the movements (STD) has been
evaluated previously ( 10−4 m or deg).

1 % M = magnetic momentum of the dipole
2 % X = probe positions coordinate
3 % Y = probe positions coordinate
4 % Z = probe positions coordinate
5 % STD = standard deviation of the motion parameters
6

7 for t = 2:size(Bzs,2)
8 % Evaluate the changing in magnetic field
9 Bzdifftest = Bze(:,t)−Bzs(:,1);

10

11 % Set the options for fminsearch function
12 options = ...

optimset('MaxFunEvals',1000000,'TolX',1e−14,'TolFun',1e−14); ...
%'PlotFcns',@optimplotfval,'Display','final',

13

14 if t == 2 % First guess of the prediction
15 dxg = random('Normal',0,STD(1,1));%.*f;
16 dyg = random('Normal',0,STD(2,1));%.*f;
17 dzg = random('Normal',0,STD(3,1));%.*f;
18 pitchg = random('Normal',0,STD(4,1));%.*f;
19 rollg = random('Normal',0,STD(5,1));%.*f;
20 yawg = random('Normal',0,STD(6,1));%.*f;
21 else
22 % P(:,t−1) is the predicted value at the previous time step
23 dxg = P(1,1) + random('Normal',0,STD(1,1)).*f;
24 dyg = P(2,1) + random('Normal',0,STD(2,1)).*f;
25 dzg = P(3,1) + random('Normal',0,STD(3,1)).*f;
26 pitchg = P(4,1) + random('Normal',0,STD(4,1)).*f;
27 rollg = P(5,1) + random('Normal',0,STD(5,1)).*f;
28 yawg = P(6,1) + random('Normal',0,STD(6,1)).*f;
29 clear P
30 end
31

32 P0 = [dxg dyg dzg pitchg rollg yawg];
33 [P,fval,exitflag,output,Time] = ...
34 PredictionCoils('P0', P0, 'options', options, 'M', M, 'sa', ...

sa, 'sb', sb, 'rca', rca,...
35 'rcb',rcb, 'X', X, 'Y', Y, 'Z', Z, 'Bzs', Bzs, ...

'Bzdifftest', Bzdifftest);
36 % Store the prediction: P(:,t)
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37 end

D.5.3 Custom functions

Coils parameters
Coils parameters have been stored in a mock function to be recalled in each code that
have been used.

1 function [N, I, A] = Coil m(varargin)
2 nwz = 10; %number of windings along the axis
3 nwr = 10; %number of windings along the radius
4 wt = 0.23*1e−3; %0.25 mm *1e−3 = [m], wire thickness
5 rc = mean([2.69,2.52])*1e−3; % 2.6 *1e−3 = [m], internal radius
6 % internal diameter = 5 mm
7 R = 12;%[Ohm]
8 V = 3.6;%[V]
9 % Parameters:

10 N = nwz*nwr; % Turns of the copper wire in the coil
11 I = Current(R,V); %[A] % Current (¬100 mA) current to pilot the coil
12 A = AvAreaDip(rc,wt,nwr); % Average area over different radii
13 end
14

15 %% Nested functions
16 function A = AvAreaDip(rc,wt,nwr)
17 % A = pi*rˆ2 , area of the circumference
18 % To evaluate the average area over different radius
19 A = 0;
20 for ir = 1:nwr
21 r = rc+(ir−0.5)*wt;
22 A = A+pi*rˆ2;
23 end
24 A = A/nwr;
25 end
26 %
27 function I = Current(R,V)
28 % If V = R*I [Volt]
29 I = V/R; %[Ampere]
30 end

Define the coordinates of the grid of probes
This function has been used to define a uniformly distributed points to sample the
simulated magnetic field in a transmit-head coil shape
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1 function [Probes, NameE] = Elly(varargin)
2 % Considering the Oval ring
3 % 'np' number of point
4 % 'nr' number of rings
5 % 'Proj' = Project actual position of probes on ellipses surface
6 % 'Cy' = Cylinder,
7 % rM=Rm
8 % 'Minor' = [mm] value of the minor axes
9 % rm = mean([abs(Probes1(3,1)−Probes1(4,1)), ...

abs(Probes1(7,1)−Probes1(8,1))],2);
10 % 'Major' = [mm] value of the major axes
11 % rM = mean([abs(Probes1(5,2)−Probes1(6,2)), ...

abs(Probes1(2,2)−Probes1(9,2))],2);
12 % 'Res' = resolution of the simulation mm/px and proportional constant
13 % Res = 0.5 [mm/px]
14 % 'Iso' = Centre of coordinate, defoult = [0 0 0]
15 % Simulation: Iso = [350 350 350]
16 % 'Shift' = shift the probes position to adjust the projection [m]
17

18 % 'Limits' = Coordinate z of the first and last ring to simulate
19 % [min(Probes1(:,3)),max(Probes1(:,3)];
20 %'Prop' = Proportional factor to scale the ellipses given
21 %%
22 %% Check varargin
23 if exist('varargin') %LineWidth, RM, Conf options
24 for a = 1:size(varargin,2)
25 if strcmpi(varargin{1,a},'nr') % 'nr' number of rings
26 nr = varargin{1,a+1};
27 end
28 if strcmpi(varargin{1,a},'np') % 'np' number of point
29 np = varargin{1,a+1};
30 end
31 if strcmpi(varargin{1,a},'Proj') % Project actual position ...

of probes on ellipses surface
32 Probes = varargin{1,a+1};
33 Proj = true;
34 end
35 if strcmpi(varargin{1,a},'Cy') % 'Cy' = Cylinder,
36 rM = varargin{1,a+1};
37 Rm = varargin{1,a+1};
38 end
39 if strcmpi(varargin{1,a},'Minor') % Minor axes of the ellipses
40 Rm = varargin{1,a+1};
41 end
42 if strcmpi(varargin{1,a},'Major') % Major axes of the ellipses
43 rM = varargin{1,a+1};
44 end
45

46 if strcmpi(varargin{1,a},'Res') % Unit of measure
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47 res = varargin{1,a+1};
48 end
49 if strcmpi(varargin{1,a},'Iso') % Isocentre
50 Iso = varargin{1,a+1};
51 end
52 if strcmpi(varargin{1,a},'Shift') % To do not centre the ...

system compare to the isocentre
53 Shift = varargin{1,a+1};
54 end
55 if strcmpi(varargin{1,a},'Limits') % Edges on head feet ...

direction
56 Limits = varargin{1,a+1};
57 end
58 if strcmpi(varargin{1,a},'Prop') % Factor to scale the ellipses
59 Prop = varargin{1,a+1};
60 end
61 end
62 end
63 clear a;
64 % If you give just one axes, the other is evaluated in proportion: ...

rM:Rm = major:minor
65 if or(exist('Rm'),exist('rM'))
66 if not(exist('Rm')) % minor:
67 Rm = 260*rM/281;
68 elseif not(exist('rM')) % major:
69 rM = 281*Rm/260;
70 end
71 end
72

73 % Check wich variables have been created and define the default values
74 if not(exist('Proj','var'))
75 Proj = false;
76 end
77 if not(exist('Rm','var')) % minor:
78 %[m] Default value minor axes of ellipses
79 Rm = (190+(260−190)/2)*10ˆ−3; % [m]
80 end
81 if not(exist('rM','var'))% major:
82 %[m] Default value major axes of ellipses
83 rM = (250+(281−250)/2)*10ˆ−3;
84 end
85 if not(exist('res','var'))
86 res = 1; %[mm/px] Default resolution
87 end
88 if not(exist('Iso','var'))
89 Iso = [0 0 0]; %[mm] Default resolution
90 end
91 if not(exist('Shift','var'))
92 Shift = [0 0 0]; %[mm] Do not shift
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93 end
94 if not(exist('Prop','var'))% Change the diameter of the ellipses
95 Prop = 1; %Default proportional constant
96 end
97 if not(exist('Limits','var'))% Change the diameter of the ellipses
98 % Limits = [−(225)/2, +(225)/2]; %Default dimension of the head coil
99 Limits = [−(225)/2.*10ˆ−3, +(225)/2.*10ˆ−3]; %Default dimension of ...

the head coil
100 end
101 %%
102 if Proj == false %Proj == false
103 % Define a series of angles: 360/ number of probes
104 theta = linspace(0,2*pi,np);
105 for t = 1:np
106 % % Prop changes the diameter of the ellipses
107 Y(1,t) = ((Prop*rM)/2)*cos(theta(1,t));
108 X(1,t) = ((Prop*Rm)/2)*sin(theta(1,t));
109 end
110 %
111 % Generate the coordinate z (HF direction) of the rings dividing ...

Limits/number of rings
112 av = linspace(Limits(1,1), Limits(1,2),nr);
113 % create a new probes positions
114 p = 1;
115 for r =1:nr %number of rings
116 for n = 1:np % coordinate
117 Probes(p,:) = [X(1,n),Y(1,n),av(1,r)];
118 NameE{p,:} = sprintf(['P%d' ' ' '%d'],r,n);
119 p = p+1;
120 end
121 end
122 clear r n p
123

124 elseif Proj==true
125 % Name associated with the Position
126 NameE = cell(size(Probes,1),1);
127 for p = 1:size(Probes,1) % coordinate
128 NameE{p,:} = sprintf(['P%d'],p);
129 end
130 clear p
131

132 % Projecting given position on the ellipse surface
133 a = Rm/2; % [m]
134 b = rM/2; % [m]
135

136 for p = 1:size(Probes,1)
137 if Probes(p,2)<0
138 Probes(p,2) = ...

−realsqrt(abs((1−((Probes(p,1)ˆ2)/(aˆ2)))*bˆ2));
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139 else
140 % Probes on the back are closer to the head
141 Probes(p,2) = ...

+realsqrt(abs((1−((Probes(p,1)ˆ2)/(aˆ2)))*bˆ2));
142 end
143 end
144

145 end
146 % Shift the ellipses to stay closer to the head [m]
147 if size(Shift,1)<size(Probes,1)
148 Probes = Probes + repmat(Shift,size(Probes,1),1);
149 elseif size(Shift,1)== size(Probes,1)
150 Probes = Probes + Shift;
151 end
152 % Change the frame
153 if res ==1
154 Probes = (Probes./res) + repmat(Iso,size(Probes,1),1); % [m]
155 else
156 Probes = round((Probes./res) + repmat(Iso,size(Probes,1),1)); % px
157 %round((Probes./0.0005)+350));
158 end

Probe-coils distances
This function has been used to evaluate the difference between the position of each probes
and coils:

1 function [x,y,z] = ProbesCoilDist(X,Y,Z,rc)
2 % rc = coil position [x y z];
3 % X grid on x plane
4 % Y grid on y plane
5 % Z grid on z plane
6 %%
7 x = X−rc(1);
8 y = Y−rc(2);
9 z = Z−rc(3);

10 end

Evaluate the Bz field

1 function [Bz] = fincoilmultiturn(s,x,y,z)
2 % See ...

http://nbviewer.jupyter.org/github/tiggerntatie/emagnet−py/blob/...
3 master/offaxis/off axis loop.ipynb for fully code explanation
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4 % s = orientation [rad]
5 % x,y,z = position [m]
6 %%
7 % Define coil parameters:
8 I = 0.3; % Current [Ampere]
9 NR = 10; % number of turns in radial direction

10 NZ = 10; % number of turns in z−direction
11 wt = 0.23e−3; % wire diameter [mm]
12 Rin = 2.6e−3; % radius of bobbin on which coil is wound [m]
13 %
14

15 Bz = zeros(size(x)); % assume x,y,z measured to coil centre
16

17 for ir = 1:NR
18 a = Rin+(2*ir−1)/2*wt; % radius of this coil loop
19 for iz = 1:NZ
20 zoff = (iz−(NZ+1)/2)*wt; % z−offset from coil centre of this ...

loop
21 zt = z+zoff;
22 zs = s(1)*x+s(2)*y+s(3)*zt; % component of field point to ...

coil distance vector that is parallel to coil axis
23 rhosx = x−zs*s(1); % find component that is perpendicular to ...

coil axis ie radial wrt to coil
24 rhosy = y−zs*s(2);
25 rhosz = zt−zs*s(3);
26 rhos = sqrt(rhosx.ˆ2+rhosy.ˆ2+rhosz.ˆ2); % length of radial ...

part
27 unirhosz = rhosz./rhos; % tells about angle vector makes in ...

coil plane
28 unirhosz(isnan(unirhosz)) = 0;
29 unirhosz(isinf(unirhosz)) = 0;
30

31 alpha = rhos./a;
32 beta = zs./a;
33 gamma = zs./rhos;
34 Q = (1+alpha).ˆ2+beta.*beta;
35 M = (4*alpha./Q);
36 B 0 = I*2*pi*1.0e−7/a;
37 [K,E] = ellipke(M); % elliptical integrals
38

39 Bzp = ...
B 0/pi./sqrt(Q).*(E.*(1−alpha.*alpha−beta.*beta)./(Q−4.*alpha)+K); ...

% axial field
40 Brp = ...

B 0*gamma./pi./sqrt(Q).*(E.*(1+alpha.*alpha+beta.*beta)./(Q−4.*alpha)−K); ...
% radial field

41 Bz = Bz+Bzp*s(3)+Brp.*unirhosz;
42 end
43 end
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44

45 end

Homogeneous transformation

1 function Tr = HomoExtr(dx, dy, dz,pitch, roll, yaw)
2 Tr = zeros(4); % Transformation matrix
3 Tr(1:3,1:3) = RotationRad(pitch, roll, yaw); % Rotation matrix ...

for extrinsic rotation % Rotation
4 Tr(1:3,4) = [dx; dy; dz]; % displacement along the axes
5 Tr(4,4) = 1; % scaling factor
6 %
7 % Nested function
8 function R = RotationRad(pitch, roll, yaw)
9 % Extrinsic rotation: https://en.wikipedia.org/wiki/Rotation matrix

10 % Body rotation referred to external system of reference.
11 %%
12 alpha = yaw; beta = pitch; gamma = roll;
13 Rx = [1 0 0;0 cos(alpha) −sin(alpha);0 sin(alpha) cos(alpha)];
14 Ry = [cos(beta) 0 −sin(beta); 0 1 0; sin(beta) 0 cos(beta)];
15 Rz = [cos(gamma) −sin(gamma) 0; sin(gamma) cos(gamma) 0; 0 0 1];
16 R = Rz*Ry*Rx; %Rotation matrix for extrinsic rotation
17 end
18 end

Prediction

1 function varargout = PredictionCoils(varargin)
2 % ...

https://uk.mathworks.com/help/matlab/math/parameterizing−functions.html
3 % https://uk.mathworks.com/help/optim/ug/passing−extra−parameters.html
4 % Arg In
5 tic
6 for n = 1: nargin−1
7 if strcmpi(varargin{1,n},'P0')
8 P0 = varargin{1,n+1};
9 elseif strcmpi(varargin{1,n},'Options')

10 options = varargin{1,n+1};
11 elseif strcmpi(varargin{1,n},'sa')
12 sa = varargin{1,n+1};
13 elseif strcmpi(varargin{1,n},'sb')
14 sb = varargin{1,n+1};
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15 elseif strcmpi(varargin{1,n},'rca')
16 rca = varargin{1,n+1};
17 elseif strcmpi(varargin{1,n},'rcb')
18 rcb = varargin{1,n+1};
19 elseif strcmpi(varargin{1,n},'M')
20 M = varargin{1,n+1};
21 elseif strcmpi(varargin{1,n},'X')
22 X = varargin{1,n+1};
23 elseif strcmpi(varargin{1,n},'Y')
24 Y = varargin{1,n+1};
25 elseif strcmpi(varargin{1,n},'Z')
26 Z = varargin{1,n+1};
27 elseif strcmpi(varargin{1,n},'Bzs')
28 Bzs = varargin{1,n+1};
29 elseif strcmpi(varargin{1,n},'Bzdifftest')
30 Bzdifftest = varargin{1,n+1};
31 end
32 end
33

34 [P,fval,exitflag,output] = ...
Regression(P0,options,M,sa,sb,rca,rcb,X,Y,Z,Bzs,Bzdifftest);

35

36 varargout{1,1} = P;
37 varargout{1,2} = fval;
38 varargout{1,3} = exitflag;
39 varargout{1,4} = output;
40 varargout{1,5} = toc;
41

42 %%
43 % Nested functions
44 function [P,fval,exitflag,output] = ...

Regression(P0,options,M,sa,sb,rca,rcb,X,Y,Z,Bzs,Bzdifftest)
45 % To trick the nested function and to give the input as a paired ...

list of name and variable
46 [P,fval,exitflag,output] = fminsearch(@costfn Ex Mult,P0,options);
47 end
48 %
49 function [F] = costfn Ex Mult(P0)
50 % Cost function is equal to the simulation code
51 dx = P0(1);
52 dy = P0(2);
53 dz = P0(3);
54 pitch = P0(4);
55 roll = P0(5);
56 yaw = P0(6);
57

58 Tr = HomoExtr(dx, dy, dz, pitch, roll, yaw, 'Rad');
59

60 % New position vector:
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61 rca 1 = Tr * [rca ; 1];
62 rcb 1 = Tr * [rcb ; 1];
63 rcan = rca 1(1:3);
64 rcbn = rcb 1(1:3);
65 clear rca 1 rcb 1 Tr;
66 % % Do rotation and translation:
67 % rcan = R*rca; %rca new
68 % rcbn = R*rcb; %rcb new
69 % %coil position after a rotation
70 % rcan = rcan + T;
71 % rcbn = rcbn + T;
72

73 % Coil orientation after a rotation and translation
74 Ts = HomoExtr2(0, 0, 0, pitch, roll, yaw, 'Rad');
75 R = Ts(1:3,1:3); clear Ts;
76 san = R*sa;
77 sbn = R*sb;
78

79 % Difference in position of each probe point and coil
80 [x,y,z] = ProbesCoilDist(X,Y,Z,rcan);
81 Bzea = fincoilmultiturn LB2(san,x,y,z);
82 [x,y,z] = ProbesCoilDist(X,Y,Z,rcbn);
83 Bzeb = fincoilmultiturn LB2(sbn,x,y,z);
84 Bze = Bzea+Bzeb;
85

86 % Changing
87 Bzdiff = Bze−Bzs;
88

89 difference = Bzdiff−Bzdifftest;
90 F = norm(difference);
91 end
92

93 end

D.6 Synthetic head movements

1 function [Mov] = ArtHeadMov(varargin)
2 %'Time',t
3 % Resp =[0,1] −> f resp within [0.20 − 0.40]
4 % PPU =[0,1] −> f ppu within [0.80 − 1.00]
5 % Nod =[0,1] −> f nod within [0.10 − 0.9]
6 % Shake =[0,1] −> f shake within [0.01 − 0.05]
7 % Modulation =[0,1] −> f mod within [0.01 − 0.05]
8

9 % Example to call the function:
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10 % input arguments equal to 1 indicated components of the movement ...
that will be simulated

11 % ...
ArtHeadMov('Time',linspace(0,0.15*1000,1000),'Resp',1,'Ppu',0,'Nod',0,'Shake',0,'Modulation',1)

12 %%
13 for v = 1: nargin
14 if strcmpi(varargin{1,v},'Time')
15 t = varargin{1,v+1};
16 % % Time vector. Skope repetition time: 0.150 ms.
17 % % Example: take 1000 Dynamic, TR = 150 ms −> 1000*150 = 150 s
18 % t = linspace(0,0.15*1000,1000);
19 %
20 elseif strcmpi(varargin{1,v},'Resp')
21 % Respiration
22 % Resp = varargin{1,v+1};
23 if varargin{1,v+1} %if Resp is not 0
24 f resp = Rand(0.2,0.4);
25 a resp = Rand(0,5);
26 Resp = MOV(f resp, a resp,t,'Resp');
27 Resp = mapminmax(Resp);
28 Resp = repmat([1e0; 4*1e−1; 1e0; 1e0; 3*1e−1; ...

6*1e−1;],[1,size(Resp,2)]).*Resp;
29 Mov.Resp.Frequency = f resp;
30 Mov.Resp.Amplitude = a resp;
31 Mov.Resp.Mov = Resp;
32 else
33 Resp = zeros(6,size(t,2));
34 Mov.Resp.Frequency = 0;
35 Mov.Resp.Amplitude = 0;
36 Mov.Resp.Mov = Resp;
37 end
38

39 elseif strcmpi(varargin{1,v},'Ppu')
40 % Peripheral pulse
41 if varargin{1,v+1} %if Resp is not 0
42 f ppu = Rand(0.8,1.0);
43 a ppu = Rand(0,1);
44 Ppu = MOV(f ppu, a ppu,t,'Ppu');
45 Mov.Ppu.Frequency = f ppu;
46 Mov.Ppu.Amplitude = a ppu;
47 Mov.Ppu.Mov = Ppu;
48 else
49 Ppu = zeros(6,size(t,2));
50 Mov.Ppu.Frequency = 0;
51 Mov.Ppu.Amplitude = 0;
52 Mov.Ppu.Mov = Ppu;
53 end
54

55 elseif strcmpi(varargin{1,v},'Nod')
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56 % Head nodding movement
57 if varargin{1,v+1} %if Resp is not 0
58 f nod = Rand(0.1,0.9);
59 a nod = Rand(0,15);
60 Nod = MOV(f nod, a nod,t,'Nod');
61 Mov.Nod.Frequency = f nod;
62 Mov.Nod.Amplitude = a nod;
63 Mov.Nod.Mov = Nod;
64 else
65 Nod = zeros(6,size(t,2));
66 Mov.Nod.Frequency = 0;
67 Mov.Nod.Amplitude = 0;
68 Mov.Nod.Mov = Nod;
69 end
70

71 elseif strcmpi(varargin{1,v},'Shake')
72 % Head shaking movement
73 if varargin{1,v+1} %if Resp is not 0
74 f shake = Rand(0.1,0.9);
75 a shake = Rand(0, 15);
76 Shake = MOV(f shake, a shake,t,'Shake');
77 Mov.Shake.Frequency = f shake;
78 Mov.Shake.Amplitude = a shake;
79 Mov.Shake.Mov = Shake;
80 else
81 Shake = zeros(6,size(t,2));
82 Mov.Shake.Frequency = 0;
83 Mov.Shake.Amplitude = 0;
84 Mov.Shake.Mov = Shake;
85 end
86

87 elseif strcmpi(varargin{1,v},'Modulation')
88 if varargin{1,v+1} %if Resp is not 0
89 Mod r = zeros(6,size(t,2));
90 % % Random component
91 for r = 1:6
92 x = normrnd(0,0.1,[1,size(t,2)]);
93 Mod(r,:) = x.*sin(x.ˆ2)+x.ˆ3;
94 Mod(r,:) = mapminmax(Mod(r,:));
95 end
96 Mod = repmat([1e0; 4*1e−1; 1e0; 1e0; 3*1e−1; ...

6*1e−1;],[1,size(Mod,2)]).*Mod;
97 Mov.Mod.Mov = Mod;
98 else
99 Mod = zeros(6,size(t,2));

100 Mov.Mod.Frequency = 0;
101 Mov.Mod.Amplitude = 0;
102 Mov.Mod.Mov = Mod;
103 end
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104

105 end
106 end
107

108 Mov.Mov = Resp + Ppu + Nod + Shake + Mod;
109 Mov.Time = t;
110

111 % Offcentre
112 Mov.OffCentre = sort(normrnd(0,15,[1 3])).';
113 % Angulations
114 Mov.Angulation = sort(normrnd(0,1,[1 3])).';
115

116 end
117

118 %% %Local functions
119

120 function r = Rand(min,max)
121 %% Frequency in a given range
122 % ...

https://uk.mathworks.com/help/matlab/math/floating−point−numbers−within−specific−range.html
123 r = (max−min).*rand(1,1) + min;
124 end
125 %%
126

127 %%
128 function m = MOV(f,a,t,mov)
129 % frequency
130 % Amplitude
131 % Which movement
132 %% Amplitutdes of each contribute
133 %r = normrnd(mu,sigma,sz) generates an array of normal random ...

numbers, where vector sz specifies size(r).
134 A = sort(normrnd(0,a,[1 3])); % Amplitude of [Rx, Ry, Rz]
135

136 if strcmpi(mov,'Resp')
137 A = [A(1,3); A(1,1); A(1,2)]; % Most of the contribuition on Rx
138 elseif strcmpi(mov,'Ppu')
139 A = [A(1,3); A(1,1); A(1,3)]; % Most of the contribuition ...

on Rx, Rz
140 elseif strcmpi(mov,'Nod')
141 A = [A(1,3); 0; 0]; % Most of the contribuition on Rx
142 elseif strcmpi(mov,'Shake')
143 A = [0; 0; A(1,3)]; % Most of the contribuition on Rx
144 elseif strcmpi(mov,'Modulation')
145 A = [A(1,2); A(1,1); A(1,2)]; % Most of the contribuition on ...

Rx, Rz
146 end
147

148 % Wave equation: S(t) = A cos( omega t + phy)
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149 % Rotation simulated as as superimposition of waves
150 R = A.* cos(2*pi*f.*t + rand());
151

152 % Translation as projection of rotation
153 T = −atan(sind(R)./cosd(R)).*1e−1;
154

155 % Movements
156 m = [T;R];
157 end

D.7 List of built-in Matlab functions used

• bsxfun - https://uk.mathworks.com/help/matlab/ref/bsxfun.html

• mapstd - https://uk.mathworks.com/help/deeplearning/ref/mapstd.html

• std - https://uk.mathworks.com/help/matlab/ref/std.html

• pca - https://uk.mathworks.com/help/stats/pca.html

• linkage - https://uk.mathworks.com/help/stats/linkage.html

• max - https://uk.mathworks.com/help/matlab/ref/max.html

• cluster - https://uk.mathworks.com/help/stats/cluster.html

• sort - https://uk.mathworks.com/help/matlab/ref/sort.html

• var - https://uk.mathworks.com/help/matlab/ref/var.html

• ismember - https://uk.mathworks.com/help/matlab/ref/double.ismember.html

• unique - https://uk.mathworks.com/help/matlab/ref/double.unique.html

• rng - https://uk.mathworks.com/help/matlab/ref/rng.html

• dividerand - https://uk.mathworks.com/help/deeplearning/ref/dividerand.html

• plsregress - https://uk.mathworks.com/help/stats/plsregress.html

• tonndata - https://uk.mathworks.com/help/deeplearning/ref/tonndata.html

• narxnet - https://uk.mathworks.com/help/deeplearning/ref/narxnet.html

• preparets - https://uk.mathworks.com/help/deeplearning/ref/preparets.html

• openloop - https://uk.mathworks.com/help/deeplearning/ref/openloop.html

• closeloop - https://uk.mathworks.com/help/deeplearning/ref/closeloop.html

• trainlm - https://uk.mathworks.com/help/deeplearning/ref/trainlm.html

• sum - https://uk.mathworks.com/help/matlab/ref/sum.html

• transpose - https://uk.mathworks.com/help/matlab/ref/transpose.html

• mean - https://uk.mathworks.com/help/matlab/ref/mean.html

• sqrt - https://uk.mathworks.com/help/matlab/ref/sqrt.html
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• preparecurvedata - https://uk.mathworks.com/help/curvefit/preparecurvedata.html

• fit - https://uk.mathworks.com/help/curvefit/fit.html

• coeffvalues - https://uk.mathworks.com/help/curvefit/cfit.coeffvalues.html

• corrcoef - https://uk.mathworks.com/help/matlab/ref/corrcoef.html

• find - https://uk.mathworks.com/support/search.html

• affine3d - https://uk.mathworks.com/help/images/ref/affine3d.html

• imref3d - https://uk.mathworks.com/help/images/ref/imref3d.html

• imwarp - https://uk.mathworks.com/help/images/ref/imwarp.html

• fminsearch - https://uk.mathworks.com/help/matlab/ref/fminsearch.html
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