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Abstract

In this thesis, the impact of open loop heat pumps on rivers is investigated.

These heat pumps inject water of a different temperature into the

environment as part of their heating (or cooling) process. In doing so,

thermal plumes are created. The behaviour of these thermal plumes is

studied using thermal imagery from the Matapédia river and a relationship

between the temperature difference between the plume and the downstream

distance from the source of the plume is determined.

The cumulative impact of heat pumps on the ambient environment is

investigated. This is carried out by considering the distance from the

outflow of these heat pumps, or equivalently the sources of the thermal

plumes, to the position where the thermal plumes can be considered to

behave as one larger plume. This distance, the merging height (or merging

distance), is studied as a function of source separation between the plumes,

number of plumes and cross-flow velocity of the ambient environment. The

mathematical models devised to study this show that the merging height

increases linearly with source separation in both stillwater and a cross-flow,

increases with the number of plumes, and decays exponentially with

increasing cross-flow velocities. These findings are confirmed by

experimental data. In conclusion, this work has determined relationships to

explain the cumulative impact of heat pumps on the ambient environment

and makes suggestions for further areas of investigation.
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Chapter 1

Introduction

1.1 Outline of Thesis

This thesis will investigate the environmental impacts of so-called heat

pumps - a renewable and sustainable source of energy. The key impact of

these heat pumps is their tendency to change the temperature of the body of

water in which they are based by discharging water of different temperature

to ambient. In this thesis, we consider the impacts of heat pumps on rivers.

This impact may be particularly problematic when the re-injected water

is warmer than the ambient river as this can lead to thermal barriers and

harm riverine life, as discussed in §1.2.2. Furthermore, there are several sites

of so-called “district heating/cooling” where a number of heat pumps (in

some cases over 100) are used in a single system. Therefore, it is critical

to understand the cumulative impact that heat pumps can have on river

temperature.

Individual plumes are studied in the Matapédia river, Quebec, using

thermal imagery in §2. We track the temperature of these plumes relative

to the Matapédia river and determine how this temperature returns to that

of the ambient river as a function of distance downstream from the plume
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source. The cumulative impact of heat pumps is investigated using

mathematical modelling in §3 and §4 for a stationary environment. We

study the downstream distance from the point of injection where the

multiple plumes will behave as a single plume and the behaviour of this

plume thereafter. This modelling is then validated experimentally in §4.6.

The investigation of plumes is then extended to plumes in a cross-flow in §5

subject to a behaviour known in the existing literature as the “blockage

effect” (discussed in detail in §5.2). Finally, these mathematical models are

validated against flume experiments in §6.

1.2 Environmental Background

1.2.1 Introduction to Heat Pumps

In recent years, investment in renewable sources of energy has increased

dramatically in an attempt to move away from fossil fuels and prevent

catastrophic climate change [1]. The utility of renewable energy is limited

by location; for example solar energy production is greater and more cost

effective near the equator than at higher latitudes, where day length is more

variable. Most common forms of renewable energy (e.g. solar, hydroelectric,

wind, geothermal) are well studied and used in many countries across

the globe. Solar power is used globally, whereas other sources are more

geographically limited such as geothermal energy which is used in countries

that are located on tectonic plates or thermal hotspots, particularly Iceland

and Kenya.

In May 2019, the Committee on Climate Change (CCC) published a report,

[2], to outline the steps taken by the UK to reach “net zero” by 2050. This

refers to the UK having no net carbon emissions by 2050. Reaching net zero

by 2050 is an ambitious goal and a key technology cited in the report by the
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CCC is the use of heat pumps.

Heat pumps are a form of renewable energy which are currently used at

small scales to provide heating to houses, blocks of flats and factories. These

heat pumps utilise heat in the environment to provide energy. They are

particularly useful as they use low-grade (waste or secondary) heat [3, 4],

which can be generated from the thermal by-product of other processes. This

energy would otherwise be wasted. While heat pumps have a higher start-up

cost than non-renewable heating systems, they are more cost-effective in the

longer term [5] because they move energy from one place to another without

having to “create” it. There is also significantly less energy wasted than

non-renewable systems.

A schematic of the inside of a heat pump is given in Figure 1.1. Heat

pumps use a high pressure, gaseous refrigerant that is circulated by a

compressor. Once through the compressor, the hot, high pressure gas warms

the surrounding environment. It is then cooled by the condenser until it

condenses into a high pressure, cool liquid. This liquid passes through

an expansion valve to an evaporator, where the liquid evaporates, thereby

absorbing heat. The refrigerant then enters the compressor and the cycle is

repeated [6].

Heat pumps may be used for either warming or cooling, and in some cases

both. For example, in London, 62% of heat pumps are used for cooling, 36%

for both and only 2% for only heating [7].

The heat pumps themselves are split into three main categories: air source,

water source and ground source, where the source refers to the medium

from which heat is extracted (Figure 1.1). In the UK, due to the relatively

constant river temperature, water source heat pumps are more efficient than

air source heat pumps [9]. Also the heat transfer rate of water is greater,
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FIGURE 1.1: Schematic of the inside of a heat pump. Taken from [8].

FIGURE 1.2: Schematic of a typical open loop system, taken from [5].
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on average, than air or groundwater sources. Typical values for the heat

transfer rate are 10 − 100 W m−2 K−1 in air [10], 50 − 10, 000 W m−2 K−1 in

water [10], and 30 − 60 W m−2 K−1 in the ground [11, 12, 13]. As such, water

source heat pumps are a very feasible and potentially highly efficient heating

source for the UK.

Water source heat pumps may be split further into open (an example of which

is given in Figure 1.2) and closed loop. An open loop uses separate pipes for

extraction and reinjection of water, while a closed loop has one continuous

pipe, as shown in Figure 1.3. Closed loop heat pumps are advantageous due

to their low maintenance and have fewer regulations in place [5]. On the

other hand, open loop heat pumps are more flexible as the abstraction rate

can be varied to meet needs, but in the UK they require abstraction and

discharge permits (unless the volumes being abstracted are less than 20 m3

per day). Furthermore, the positioning of an open loop heat pump is critical

as poor positioning can lead to recirculation, reducing the efficiency of the

heat pump due to so-called “parasitic energy consumption” or “thermal

breakthrough” [5].

FIGURE 1.3: Diagram showing the difference between open and closed
loop heat pumps from [5].

There are several measures of efficiency for heat pumps. These are the

coefficient of performance (CoP) [14], seasonal coefficient of performance

(SCoP) and the seasonal performance factor (SPF) [15]. The CoP and
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SCoP are calculated quantities while the SPF is a measured quantity. The

coefficient of performance is defined as

CoP = useful heat output
electrical power input ,

and is an instantaneous value. The seasonal coefficient of performance is a

long term measure, typically given over a season, month or year. It is given

by

SCoP = total useful heat output
total electrical power input .

The SPF is measured using

SPF = annual heat out
annual electrical power in .

Each of these quantities assumes that the heat pump is used for heating. If

it is used for cooling, analogous quantities are the energy efficiency ratio

(EER) and the seasonal energy efficiency ratio (SEER).

The maximum theoretical CoP is given by

CoPmax = Tout

Tout − Tin

for temperature, T , and the so-called Lorenz efficiency is defined as

ηLorenz = CoP
CoPmax

≤ 1

and is a measure of how well a heat pump is performing compared to an

optimal heat pump. From these definitions, given in [16], we see that the

power input to a heat pump must be reduced to increase its efficiency. This

can be done in several ways, from adapting the rate of abstraction to ensuring

that the source temperature is close to that of the object being heated. The

temperature difference is likely to be more important than the abstraction
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rate since, relative to the volume of water in the river, the amount being

abstracted will be small. Therefore, more attention should be paid to the

positioning of heat pumps and their thermal impacts on the ambient river

temperature.

1.2.2 Impact of Thermal Pollution on Riverine Life

Currently, the legislation regarding the discharge of water from heat pumps

varies depending on location. For example, the Environment Agency (EA) of

England advises that the temperature of water discharged back into the river

must be within ±3 ◦C of the ambient river temperature. These acceptable

temperature ranges are chosen to limit damage to riverine life, particularly

those that are temperature sensitive. The ultimate aim of management is

to keep river temperatures below 21 ◦C, which is critical for salmon, trout

and many other fish species [17, 18, 19]. Most aquatic organisms have a

specific temperature range that they can comfortably inhabit [20, 21, 22].

Therefore, a small increase in temperature could lead to significant changes

in the faunal community, including the loss of key species [23]. However, due

to rising temperatures across the globe, rivers are regularly exceeding this

threshold, including in the UK, without the use of heat pumps [24, 20, 25, 26].

Therefore the impact of additional heating by heat pumps could be significant

in adding to an already significant stressor on aquatic life in rivers. To this

end, more work must be done to ascertain the impact of heat pumps on

ambient river temperatures.

There are several scales of heat pumps used in the UK, which vary from

single, small heat pumps, such as that installed at Hyde Mill, to so-called

“district heating” systems such as that used in Kingston Heights [27, 28].

Hyde Mill uses a single, open loop, heat pump to provide additional heating

and cooling to a farm in Gloucester, while Kingston Heights uses a network

of 39 heat pumps to provide heating to 137 flats and a 142 room hotel
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[28]. Hyde Mill discharges water at a low rate, as such, it is unlikely to

have a significant impact on the temperature of the river. Kingston Heights

abstracts up to 150 litres of water per second (compared to a mean river

flow rate of 65.3 m3 s−1) and discharges water back to the river at no more

than a 3 ◦C temperature difference from ambient.

Despite these examples, there are no large scale trials for heat pumps, nor

even any serious plans to decarbonise heating at all at the time of writing,

[2]. Heat pumps themselves are relatively rare in the UK, with only 1%

and 5% of renewable energy coming from heat pumps in 2017 and 2018

respectively [29, 30], despite the financial incentive provided by the renewable

heat incentive (RHI). This incentive is in place to help the UK reach its goal

of 12% of heating coming from renewable sources by 2020. However, this

scheme was not successful in this goal, and has been extended to 2022. RHI

payments are made quarterly over a span of seven years, and the amount

varies depending on several factors, including tariffs and technology at the

time of installation [31].

Presently, little is known about the impact of multiple heat pumps in

the same area, despite examples such as Kingston Heights. Heat pumps

being placed close together is also more likely as their numbers increase,

particularly in urban areas. Therefore this thesis aims to model and analyse

the behaviour of open loop water source heat pumps in rivers. These models

and analyses aim to determine how the discharged fluid from the system will

behave, how it will affect the ambient river and whether there is a way that

the system may be configured to limit any further environmental effects. To

do this, models of buoyancy-driven plumes must be developed.
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1.3 Mathematical Background

1.3.1 Buoyancy-Driven Plumes

A buoyancy-driven plume is formed when a localised area of fluid experiences

consistent buoyancy. This causes the fluid to rise, creating the typical,

conical-shaped feature that we would expect to find exiting smoke stack

chimneys or erupting volcanoes. These plumes exist on a wide range of

scales, from very small such as above a burning candle, to very large such as

the aforementioned volcanic ash cloud. These plumes will typically be highly

turbulent, with a Reynolds’ number greater than 104 [32]. This turbulence

makes modelling a time dependent plume difficult, and computationally

expensive. Despite this Morton, Taylor and Turner derived a model for time

averaged plumes in their iconic paper [33] (henceforth MTT).

The modelling of MTT simplifies the coupled, non-linear Navier-Stokes’

equations into three coupled ordinary differential equations (ODEs). To do

this, three modelling assumptions are made. The first is to assume that

the flow is Boussinesq, which is that the density differences between the

plume and the environment may be ignored, except in any buoyancy terms.

They also assume that the “rate of entrainment at the edge of the plume

is proportional to a characteristic velocity at the same height”. This will

later become the famous entrainment assumption, first hypothesised by

Zeldovich [34]. Finally, they assume that the “mean vertical velocity and

mean buoyancy force in a horizontal section are of similar form at all heights”

[33]. These assumptions give the significantly simplified system of equations
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(1.1) - (1.3)

dQ
dz = 2αM1/2 (1.1)

dM
dz = FQ

M
(1.2)

dF
dz = −N2Q (1.3)

subject to M(z = 0) = 0, Q(z = 0) = 0, F (z = 0) = F0, where N2 is the

Brunt Väisälä frequency, and Q,M and F are the specific mass, momentum

and buoyancy fluxes respectively. We note that this system of equations

incorporates turbulence via α which is a result of the turbulent entrainment

assumption. These equations are derived in §8.1 as well as in [35].

It is important to note that (1.1) - (1.3) have assumed that the quantities

inside the plume follow a so-called top hat profile. This is a simplified model.

In reality, these quantities are much more likely to follow a Gaussian profile.

The difference is given schematically in Figure 1.4. To demonstrate the

physical difference, we can consider the buoyancy of the system. In a top

hat profile, we would have buoyancy inside the plume and none outside.

However, in a Gaussian profile, the buoyancy would follow a Gaussian curve

and therefore decay to zero as r tends to infinity. For the remainder of this

chapter, we will work with the top hat profiles.

These quantities are expressed in terms of the plume radius, b, vertical

velocity of fluid in the plume, w and the modified gravity of the plume,

g′ = ρ∞ − ρ

ρ
, where ρ denotes the density of fluid inside the plume and ρ∞

denotes the density of fluid in the ambient environment. We define

Q = b2w (1.4)

M = b2w2 (1.5)

F = b2wg′. (1.6)
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FIGURE 1.4: Schematic showing the difference between the profiles of
quantities inside a plume when using top hat and Gaussian profiles.

We note that (1.1) uses the aforementioned entrainment assumption. It is

assumed that the velocity of entrained fluid, ue, is proportional to the mean

centreline vertical velocity of fluid inside the plume at the same height. The

constant of proportionality is α. Explicitly, the entrainment assumption is

given by

ue = αw. (1.7)

Typically, α is given the value 0.1 [36]. This was verified experimentally by

Lee & Chu [37]. Despite this typical value of an entrainment coefficient, there

is a surprising lack of consensus in the literature. This value is typically taken

from the range 0.08 ≤ α ≤ 0.13, but the choice of entrainment coefficient

depends on the author, with α = 0.09 taken in [38, 39], α = 0.13 in [33],

α = 0.12 in [40] and 0.05 ≤ α ≤ 0.12 in [41]. In this work, α is taken to be

0.1 unless experimental data shows otherwise.

The behaviour of a plume is dependent on the environment, specifically if

the environment is stratified or unstratified. An environment is stratified

if the density of the environment varies with height, specifically dρ∞

dz ̸= 0.

This is represented in (1.1) - (1.3) by N2. An environment is unstratified if

N2 = 0. In this case, the plume may rise indefinitely because the fluid inside
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the plume will always be more buoyant than in the ambient environment.

For N2 = 0, dimensional analysis may be used to find a power law solution.

This solution is given, in terms of fluxes by

Q(z) = 6α
5

(
9α
10

)1/3

F
1/3
0 z5/3, M(z) =

(
9α
10

)2/3

F
2/3
0 z4/3, F (z) = F0,

(1.8)

or in terms of the plume quantities

b = 6α
5 z, w = 5

6α

(
9α
10

)1/3

F
1/3
0 z−1/3, g′ = 5

6α

(
10
9α

)1/3

F
2/3
0 z−5/3.

(1.9)

Clearly (1.9) are not well-defined at z = 0 due to the singularity at this

point, but are seen to be physically relevant sufficiently far from the source.

Interestingly, the radius of a time averaged plume, b, grows linearly with

height. Furthermore, the value of the entrainment coefficient, α, may be

found experimentally using this time averaged radius.

For a stratified environment, where N2 ̸= 0, there will be a finite height

where the density of fluid inside the plume is equal to the density of the

ambient environment. At this height, the plume will no longer be able to

rise, and the fluid will then spread horizontally. The height at which a plume

can no longer rise is commonly known as the rise height, or the height of

neutral buoyancy, and was approximated experimentally by Briggs [42]. It

was shown that this approximation is accurate for plumes of all scales, from

table-top laboratory experiments to large oil fires as shown in Figure 1.5.

Thus far, only stillwater environments in which the environment is laminar

have been discussed. An alternative case is turbulent plumes in turbulent but

not flowing environments; for example, in a convecting environment. For a

turbulent plume in a turbulent environment, the turbulence of the plume can

entrain fluid from the environment and the turbulence of the environment
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FIGURE 1.5: Measurements of plume rise in calm stratified surroundings
taken from [42].

can entrain fluid from the plume. This entrainment of the plume by the

environment is often referred to as extrainment. In this case the entrainment

assumption is modified to capture the environment entraining the plume,

and is given by

ue = αw − βV (1.10)

where α and β are the entrainment and extrainment coefficients respectively,

and V is some characteristic velocity. This characteristic velocity, given in

[43, 44], is given by

V = 0.44
[

(ga∆T )4κ2d3

ν

]1/9

(1.11)

where g denotes acceleration due to gravity, a is the coefficient of thermal

expansion, d is the vertical length scale, κ is the thermal diffusivity and

ν is the kinematic viscosity. The modified plume equations are studied in

[45, 43]. To allow direct comparison, the MTT formulation given by (1.1) -
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V = 0

V = 1

FIGURE 1.6: Figure comparing the different behaviour in the radii of
plumes in laminar and turbulent environments taking α = β = 1.

(1.3) are shown side-by-side with the modified equations given in [43]:

dQ
dz = 2αM1/2

dM
dz = QF

M
dF
dz = −N2Q

dQ
dz = 2αM1/2 − 2βV Q

M1/2

dM
dz = QF

M
− 2βVM1/2

dF
dz = −N2Q− 2βV QF

M
.

The right column of equations have no analytic solution, but a numerical

solution is found in [43]. The radii of plumes in laminar and turbulent,

stillwater, environments are compared in Figure 1.6, using α = β = V = 1,

and N2 = 0. The plume radius in the laminar environment, given by b = 6α
5 z,

can theoretically increase infinitely, whereas the plume radius in a turbulent

environment increases to a point, then falls back to zero. This turning point,

where the radius begins to decrease, is the point at which the environment

is now entraining fluid from the plume faster than the plume can entrain.

It is also possible to extend the MTT model to plumes with buoyancy

reversal [46], unsteady plumes [47], non-Boussinesq plumes where the density
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difference between the plume and the environment is not small [48], plumes in

layered, stratified environments [49] and many other applications. However,

to validate these models, experimental data is required.

Plumes created experimentally will often not satisfy the intrinsic assumptions

of the MTT model. There will be a source of finite area, or momentum will

be imparted to the plume at the source. In this case, the MTT model is still

applicable, but must be corrected close to the source using a virtual origin

correction.

1.3.1.1 Virtual Origin Correction

In the MTT models discussed so far, there has been an intrinsic assumption

from the initial conditions of (1.1) - (1.3). It is implicitly assumed that the

source of the plume is a point source of buoyancy, with no momentum or

mass. This is not the case in practice. More realistically, one should take

initial conditions

M(z = 0) = M0, Q(z = 0) = Q0, F (z = 0) = F0. (1.12)

Taking these initial conditions, and considering an unstratified environment,

we non-dimensionalise (1.1) - (1.3) using

Q = Q0q, M = M0m, F = F0 (1.13)

to give

m5/2 − 1 = 5F0Q
2
0

8αM5/2
0

(q2 − 1) = Γ0(q2 − 1) (1.14)

where Γ0 = 5F0Q
2
0

8αM5/2
0

is a source Froude number, and is a measure of the

ratio of buoyancy, mass and momentum fluxes at the plume source. This

parameter, sometimes referred to as a laziness parameter or a modified
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Richardson number, was first derived by Morton [50] and later extended

by Kaye & Hunt [40]. Plumes may be classified into forced, pure and lazy

based on this parameter. If 0 < Γ0 < 1 a plume is said to be forced, as

it has insufficient buoyancy when compared to the momentum. A plume

is pure if Γ0 = 1, i.e. the source quantities are balanced. Finally, Γ0 > 1

gives a lazy plume, where the plume has insufficient momentum compared

to its buoyancy. An analogous quantity, Γ (z) = 5F (z)Q(z)2

8αM(z)5/2 , is the Froude

number away from the source. It was shown, by Hunt & Kaye [51], that

Γ (z) → 1 for any height sufficiently far from the plume source. That is, the

quantities in a plume will tend to balance after a sufficiently large distance.

This suggests that, for any type or shape of source, the plume will tend to

the traditional, conical form. This is indeed seen in nature [52]. The self

regulation of these quantities by the plume is clearly visible in lazy plumes,

where the plume will taper in, or neck, very quickly to compensate for the

lack of momentum at the source. This provides enough “lift” to allow the

plume to rise in the traditional, conical form. Importantly, the analysis

above assumes top hat profiles are used. The above also holds for Gaussian

profiles, except in that case Γ0 = 5F0Q
2
0

4αM5/2
0

.

The addition of these distributed source conditions (i.e. not a point of zero

mass, momentum and non-zero buoyancy) means that (1.8) are no longer

correct in the near field. We note that the governing equations (1.1) - (1.3)

are still valid. In an unstratified environment, buoyancy flux is constant

such that, F = F0, so the idealised source may be seen as a translation, in

the vertical direction, of the more realistic source. The position that a plume

with initial conditions Q(z = z∗) = 0, M(z = z∗) = 0, F (z = z∗) = F0 must

originate from in order to behave asQ(z = 0) = Q0 > 0, M(z = 0) = M0 > 0,

F (z = z∗) = F0 is known as the “virtual origin”, and this correction is often

referred to as the “virtual origin correction” [50, 40, 53]. This is shown

schematically in Figure 1.7. We see that the location of this virtual origin,
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z∗, is given by z∗ → 0.8535b0
6α Γ

−1/5
0 as the plume laziness tends to infinity. A

detailed discussion of this is given in §3.4.3 and [40].

FIGURE 1.7: Schematic of the virtual origin correction for a lazy plume.
The lazy plume has Γ0 = 39500.
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Chapter 2

Fieldwork

2.1 Motivation

The modelling in the subsequent chapters of this thesis will work towards

determining the behaviour of plumes in both stationary and flowing

environments. This is then validated using laboratory experiments.

Laboratory experiments are a necessary simplification of natural complexity,

enabling replication of key fluid behaviour for model validation not possible

in the natural environment. While laboratory experiments give a physical

representation of how fluid behaves, they are not necessarily the best

representation of how fluid will behave in a natural environment due to the

uncontrollable factors in a physical system in nature, specifically in rivers.

Uncontrollable factors, such as sediment size, roughness of the riverbed,

temporary structures made by riverine life such as crayfish, and unique and

dynamic channel geometry vary from river-to-river and can have

unexpected consequences on the hydraulic environment, which will also vary

in time in response to precipitation in the catchment. The mixing of water,

and the development of plumes is common in rivers where tributaries hit

the main branch of the river network and have different temperature and
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concentrations of sediment. Thermal plumes have also been identified

downstream of power-plants, areas of groundwater upwelling, wastewater

treatment plants and heat pumps. Since the hydraulic environment is

highly variable both spatially and temporally over a range of scales from

millimetres per second to hundreds of kilometres per millennia, and because

of diurnal, seasonal and inter-annual changes in water temperature, the

behaviour of thermal plumes is likely to be highly time and site specific.

However, we hypothesise that generalisable patterns in plume behaviour are

likely to exist based on laboratory studies and modelling work. Here, we

will use aerial thermal imagery to investigate thermal plume behaviour at

the confluence of tributaries in rivers, and determine whether generalisable

patterns in plume behaviour exist. In particular, the aim of this

investigation is to determine the distance downstream where a plume

returns to the ambient river temperature.

2.2 Methodology

2.2.1 Data Collection

The data used in this chapter was collected at the Matapédia river, Canada at

coordinates (47.971◦ N,−66.941◦ W). Airborne optical and thermal infrared

(TIR) images were acquired during the summers of 2011 and 2012 by Dugdale

et al. [54], who provided the raw imagery for this chapter. Imagery was

obtained from a helicopter, using a custom-designed acquisition system

consisting of a FLIR SC660 uncooled microbolometer TIR camera (640 ×

480 pixels, NETD < 30mK, 7.5-13µm) and Canon EOS 550D digital SLR

camera (5184 × 3456 pixels, standard RGB bands) as outlined in [54].

During the acquisition window, 1637 TIR images and a corresponding 1637

JPEG images were captured. From these images, we determined which
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images contained confluence plumes. This procedure extracted 66 images

containing confluences with thermal plumes for further analysis. Using

Forward Looking Infrared (FLIR), these 66 TIR files were converted to

MAT (Microsoft Access Table) files containing the spatial and temperature

information of the image. From these 66 MAT files, five were chosen for

initial analysis. These small subset were selected based on river geometry

and ratio of confluence width to river channel width. An example of a wide

section of river with a wide confluence, wide river with a narrow confluence,

a straight river with a straight confluence inflow, a straight river with an

angled confluence inflow and an angled confluence inflow in a meandering

river section. These five images were converted from pixel measurements

to real world distances using the known camera resolution - each pixel

corresponds to a square with side length 41.1 cm.

2.2.2 Image Processing

Once converted to real world distances, the image data was processed in order

to determine an accurate trend between the temperature of the confluence

plume and the downstream temperature of the ambient river. A threshold of

5 ◦C was used on the thermal data such that any temperatures greater than

5 ◦C warmer than the ambient river was set to this 5 degree maximum. The

images were then cropped to only include the area nearby the confluence

plume. Examples of the masked image and the masked and cropped image

are given in Figure 2.1.

The confluence plume was always cooler than the ambient river, likely

because the tributary channel is smaller than the main river by definition

and, therefore, represents closer connectivity to the groundwater and shorter

exposure duration to the solar radiation [55]. Therefore, we may determine

the location of the plume by detecting the minimum of temperature in each

row and column of the thermal data. The detected plume, for image 950, is
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FIGURE 2.1: Examples of a masked thermal image from the Matapédia
river (top) and a further cropped image to show only the tributary
confluence plume (bottom). This image was taken at coordinates
(48.15◦ N,−67.15◦ W).
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given in Figure 2.2.

The plume was found using two distinct methods, the first is to scan along

the columns of the thermal image and find the location of the thermal

minimum, which will correspond to the centre of the plume in this column.

Note that rows could be used instead of columns, but in these images there

was insufficient thermal difference along given rows to adequately detect the

plume. The second method used the centreline found in the previous method

as an initial estimate, from which we consider each segment of the line

formed by adjacent points. The normal line to each of these line segments

is computed, the data along the normal line extracted and a single-peaked

Gaussian fitted to this extracted data. The locations of the peaks are

then taken as the updated centreline. This method was iterated until the

centreline had converged. Note that this second method is discussed in detail

in §6. The impact of the confluence plume on the ambient river was tracked

FIGURE 2.2: Plot of the detected plume in the Matapédia river, in image
950 of the sample data set. The white error barred method uses the
Gaussian fitting method outline previously with the size of the error bars
corresponding to one standard deviation of the fitted Gaussian, whereas
the magenta and green line locates the minimum temperature in each
column of pixels in the thermal imagery.

by scanning along this detected plume. Doing so, we see the temperature

of the confluence plume increase as the fluid moves away from the plume
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inflow. This is the thermal recovery of the river. That is, we ascertain

the temperature difference between the plume and the ambient river as a

function of the downstream distance from the plume source. When this

temperature difference returns to a small enough value, the river is said to

have recovered from the impact of the confluence plume, and beyond this

distance, the plume has no further measurable impact on the ambient river.

We must also note that the river is gradually warming as we track upstream

(source) to downstream (mouth), therefore this temperature deviation never

truly returns to zero.

2.2.3 Data Analysis

Using the five selected images, we see that the thermal recovery of the river

is a power decay law as shown in Figure 2.3. This specific example is taken

from image 950 of the data set. By taking a power law of the form

∆T = Ta − T = a1d
a2 (2.1)

where d is the distance downstream of the plume source, Ta is the ambient

temperature of the river and T is the temperature of the plume a distance d

from the plume source, we fit a power law to this temperature data. This

power law for image 950 is shown in Figure 2.3. Note that, as discussed

previously, the ambient temperature of the river increases from source to

mouth. However, over the downstream distance travelled in each of these

images (approximately 200m downstream) the ambient temperature is taken

to be constant, and seen to be approximately constant.

By repeating the process outlined above for the remaining four selected

confluence plumes, we see that these plumes all follow approximately the

same trend. That is, the value of a2 in (2.1) is approximately the same

in each of the five test cases. By non-dimensionalising the temperature
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FIGURE 2.3: Comparison plot of the temperature deviation from the
ambient temperature due to a confluence plume, and the corresponding
power law approximation for data in image 950.
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deviation using

Θ = ∆T
Tambient

= 1 − T

Ta
(2.2)

we plot the non-dimensional temperature deviation found in each plume

image against the distance downstream. This is given in Figure 2.4. We

see that in all cases, the slope is approximately the same which implies the

same power law trend. However, it is important to note that this plot is

still dimensional in the horizontal axis. To fully non-dimensionalise this, a

“natural” length scale with which to rescale the distance is chosen.

FIGURE 2.4: Plot of the thermal recovery of the Matapédia river as a
function of downstream distance in five chosen plume case studies.

When non-dimensionalising height, or in this case downstream distance,

from plume sources there are two natural length scales to take. These are
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the buoyancy length scale

lb
b0

= b0w0g

U3
a

[
Ta − T0

Ta

]
, (2.3)

and the momentum length scale

lm
b0

=
(
w0

Ua

)2

(2.4)

where the parameters in these length scales are given in Table 2.1. Here,

Property Notation Units

River Velocity Ua m s−1

Plume Source Velocity w0 m s−1

Plume Source Radius b0 m

Plume Source Temperature T0
◦C

Ambient River Temperature Ta
◦C

TABLE 2.1: Physical quantities to non-dimensionalise the length of
thermal recovery

a problem was encountered - from the thermal images, the values for river

velocity and plume velocity could not be explicitly measurable. Alone, this

wasn’t a significant problem because quantities can be determined from

gauging stations which record discharges through a section of river through

time. However, at the time of collection, only two gauging stations were

functioning, and neither was particularly close to the chosen plume sites.

Instead, we must determine the required quantities using hydraulic geometry

relationships.

2.2.4 Hydraulic Geometry

The key geometric characteristics of a river, namely depth, width and

velocity, are well described using so-called “hydraulic geometry” equations

[56, 57, 58, 59, 60]. These are power laws which express the above quantities
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in terms of the river discharge. Explicitly we have,

d = aQe, v = bQf , r = cQh (2.5)

where d, v, and r denote the river depth, velocity and width, and Q is the

river discharge. The power laws given by (2.5), while empirical, are very

commonly used in the literature to infer physical quantities of rivers and are

well known as the “industry standard”. It is important to note that this is

not the standard notation used in the literature (typically w is used instead

of r when referring to river width), but will be used for the extent of the

discussion on hydraulic geometry to avoid the clash of notation with the later

sections, where w denotes a plume velocity. The coefficients a, b, c, e, fand h

are all determined quantitatively and vary river-to-river. Using an idealised

model for the shape of a river channel, i.e. a cuboid, so that the river has

a rectangular cross section, the cross-sectional area is given by r × d and

therefore the river discharge is given by

Q = r × d× v. (2.6)

Substituting (2.5) into this expression for discharge gives

Q = abcQe+f+h (2.7)

from which we immediately see that

abc = 1 and e+ f + h = 1. (2.8)

Therefore, it is only necessary to determine the hydraulic geometry

equations for two of the three quantities. In the specific case of the thermal

imagery, we are able to directly measure the width of the river, r, using

pixel measurements and the known conversion between pixels and metres.
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The most troublesome quantity to determine is in fact the river discharge,

Q, without which no progress can be made in determining the river depth

and velocity.

Discharge is known to vary with upstream catchment area as it represents

the volume of water draining that area. Therefore, it is common to

substitute Q for catchment area where discharge measurements are not

available, and where relationships retain the same trends. Leclerc &

Lapointe [61] (henceforth LL) calculated the hydraulic geometry for six

rivers in the Bois-Francs region of Southern Quebec, nearby the Matapédia

river. Therefore, if the width-discharge equation for the Matapédia is

similar, we may simply use the width-discharge equation in LL, and thereby

use their equations for depth and velocity too. Doing as was outlined above,

we see that the width data of the Matapédia river was well approximated

by the following power law:

r = 7.50Q0.52 (2.9)

whereas the width law from LL is given by

r = 15.42Q0.51. (2.10)

These equations have similar powers, but their prefactor is noticeably

different. This is due to several physical phenomena that will differ between

rivers, such as sediment size, type of sediment and river slope. We note that

this prefactor is more variable and less important to discerning river trends

than the power in the power law. Therefore, while these prefactors have

noticeable discrepancy, the behaviour of the Matapédia, at least for an

initial model, may be approximated by the six rivers studied in LL.

Therefore, we take the hydraulic geometry equations of LL but halve the
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prefactor, and apply these directly to the Matapédia river. LL only

determined the equations for width and depth, the latter of which is given

(with the modified prefactor) by

d = 0.56Q0.28 (2.11)

but by using (2.8), we determine the velocity hydraulic geometry equation

from the two that are known. Explicitly, the river velocity is given by

v = 0.23Q0.21. (2.12)

The set of equations formed by (2.10), (2.11) and (2.12) complete the

hydraulic geometry of the Matapédia river. Returning to (2.3) and (2.4), we

are now able to infer the river velocity, Ua, at each of the plume locations

by determining the discharge at these sources in ArcGIS. The last quantity

required to non-dimensionalise the data is the plume velocity, w0.

To determine the initial plume velocity, we use a conservation of flux

argument. By assuming that, at the meeting point between the river and

the confluence plume, the depths of the two bodies of water are

approximately equal such that we may take driver = dplume. These depth

measurements may be taken from (2.11). Furthermore, we measure the

river width and the plume width at the meeting point. From ArcGIS, we

also find the river discharge. By conservation of flux, we argue that the

ratio of discharges must equal the ratio of the cross-sectional areas.

Therefore,

Qriver

Qplume
= d× rriver

d× rplume
= rriver

rplume

⇒ Qplume = rplume

rriver
×Qriver.
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Using (2.6), we deduce that the velocity of the plume at the meeting point,

w0 is given by

w0 = Qplume

d× rplume
.

This gives all the required physical quantities to non-dimensionalise the

x-axis given in Figure 2.4. Performing this non-dimensionalisation, choosing

the momentum length scale as the length scale, we produce Figure 2.5.

We see that by non-dimensionalising, four of the recovery curves are well

approximated by the same power law :

1 − T

Ta
= 4

(
ddownstream

lm

)−1.1

.

However, the data from image 786 does not collapse onto this power law. This

is because the geometry of the confluence at the location of image 786 is vastly

different to the other four case studies. Differences include the curvature

of the confluence path (the other four are more-or-less straight entrances),

shrubbery at the inflow of the confluence plume, and a significantly wider

confluence. These factors lead to this image not being well approximated

by the same power law as the others. We note that the gradient exhibited

by the data from image 786 is approximately the same as that of the other

images, with the data having been shifted down on Figure 2.5. The similar

slopes shown on Figure 2.5 suggest that the trend across river confluences is

broadly similar, with the thermal recovery able to be modelled by

1 − T

Ta
∝
(
ddownstream

lm

)−1.1

. (2.13)

2.3 Discussion

The fieldwork performed in this chapter has been to determine how far

downstream a temperature change associated with an inflow of water is
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FIGURE 2.5: Non-dimensional plot of thermal recovery as a function of
distance
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discernible from the ambient temperature. In doing so, we saw that all five

case studies from the data set acquired by Dugdale et al. [54] exhibit similar

behaviour. Explicitly, the rivers recover from the change in temperature at

a rate proportional to the distance downstream of the source of the change

raised to the power 1.1 - the further from the source of the change, the

smaller the change in temperature experienced by the river. This not only

fits with the intuition one would naturally have but also gives a remarkably

simple formula with which to estimate the thermal impact on a river due

to a change in temperature, in this case from a confluence plume. By

using hydraulic geometry, we found a non-dimensional power law which was

accurate up to a constant of proportionality for all chosen case studies, which

were chosen to give a sample of the expect river and confluence geometries,

as outlined previously.

This non-dimensional power law, given in (2.13), gives a tool with which to

estimate, for any confluence on the Matapédia river, the distance downstream

after which the temperature change caused by the confluence is no longer

measurable. From this, we are able to quickly give an estimate of the

potential regions of where, for example, a thermal barrier may be created.

While this is not something that can be prevented when dealing with

natural confluences such as in the above work, it is critically important when

considering man-made temperature changes, such as from waste water plants,

heat pumps, sewage plants and so on. Note that the method outlined in this

chapter could be directly applied to these scenarios, as each of the above

result in a thermal plume entering a river. The difference between physical

scenarios is expected to be the value of the constant of proportionality in

(2.13). By knowing how far downstream these temperature changes are

no longer “experienced” by the river, we determine the distance between

these features that is required to ensure no combined thermal impact on

the river, which would significantly reduce the change of a thermal barrier
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being created, and lessen the chance of damage to riverine life. While there

are likely to be substantial errors associated with these estimates given the

paucity of data that exists, and the need to interpolate key terms using

existing standard equations, this error is unlikely to change the general trend

in temperature change downstream (i.e. the power law behaviour) and is

more likely to alter the relative position of individual confluence plumes (i.e.

the relative magnitude).

2.4 Conclusions

In this chapter, we have examined the behaviour of the Matapédia river

in response to thermal changes caused by confluence plumes. By tracking

the change in temperature caused by the confluence, we detected a plume

of water cooler than the ambient river. This change in temperature is

then tracked downstream until the river returns to its ambient temperature.

In doing so, we saw that the temperature returned to the ambient levels

following a power law. This power law was seen in multiple confluences

across the Matapédia river, and by non-dimensionalising with the momentum

length scale, most of the data collapses to a single non-dimensional power

law. The only exception to this was when a confluence was unexpectedly

wide which skewed this data away from the other examples. However, in this

case we saw the same trend in the data, and the data followed the expected

power in the power law.

Future work could focus on the influence of channel geometry on plume

extent and geometry as preliminary results in this chapter indicate that this

may have an important effect on the relationship. This could be important in

future to the placement of thermal discharge from power-plants, wastewater

treatment plants or heat pumps because some channel geometries may extend

thermal impacts for longer distances than some other geometries.
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Subsequent results chapters in this thesis extend the preliminary, contextual

findings of this chapter - in particular tracking the behaviour of plumes

downstream of their sources. The fieldwork in this chapter was unable to

vary parameters such as cross-flow velocity, number of plumes and source

separation (when considering multiple plumes), all of which are the focus of

§4, §5 and §6.
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Chapter 3

Coalescence of Non-Interacting

Plumes in a Stationary

Environment

3.1 Introduction

In this chapter, we examine the coalescence of turbulent, axisymmetric

plumes. Individual plumes are well studied and their behaviour is well

known, but the behaviour of multiple plumes is relatively unknown. The

coalescence of two laminar plumes was studied by Moses et al. [62, 63],

whereas two coalescing turbulent plumes was first studied by Kaye & Linden

[38] (henceforth KL04) and Linden [64]. A theoretical, infinite line of plumes

was investigated by Rooney [65]. However, the intermediate cases are not

well understood, and will be investigated here.

We begin by assuming that these plumes do not interact, and can instead

merge together without entraining any fluid from one another. The case for

two non-interacting plumes is given in KL04, and covers the two distinct
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cases where both plumes are of equal strength, and where one plume is

stronger than the other. A similar argument is used to extend this modelling

to an arbitrary number of equal strength plumes. To do this, we revisit the

work of KL04. For consistency, identical notation to that in [38] is used.

In KL04, it was shown that the merging of two turbulent plumes with point

sources at the same height, z, must be described in terms of the buoyancy

fluxes of each plume, denoted F̂1 and F̂2 (by convention F̂1 ≥ F̂2), and the

horizontal separation of the plume origins, χ0 [38]. Therefore, by dimensional

analysis, the height at which these two plumes can be considered to behave

as a single plume, henceforth the merging height zm, must be described by

a function of source separation, χ0, and the ratio of buoyancy fluxes of the

two plumes. Dimensionally, we see that

zm
χ0

= f

 F̂2

F̂1

 (3.1)

for some function f . Therefore, it is expected that the merging height will

increase linearly with the separation distance. Note that this differs from the

laminar case, where the merging height increases with the square root of the

separation distance [62, 63]. It is important to note that the merging height

found using this non-interacting analysis is an upper bound on the merging

height. This analysis does not consider the plume-to-plume interaction which

would cause the plumes to entrain one another and therefore merge sooner

than if they were not to interact.

The following set of notation is introduced to be consistent with the existing

literature. The subscript “m” will be used to denote any quantities at

the merging height, and the superscript “NI” denotes the value for the

non-interacting model. A non-dimensional height, λ, is scaled on the source

separation: λ = z
χ0

. We also introduce a rescaled separation of the plume

axes at any height, χ, where χ(z = 0) = χ0, such that ϕ = χ
χ0

. Finally,
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we introduce a quantity γ, given by γ = b
χ

which is the ratio of plume

radius to the centreline separation between plumes at the same height. We

rescale with χ instead of χ0 to preserve this ratio at any height. Note that

the plume radius, b, is the solution to the steady MTT equations given

in (1.9). Explicitly, for non-interacting plumes, b = 6α
5 z, where α is the

entrainment coefficient as defined in §1.3.1. Finally, the ratio of buoyancy

fluxes is denoted by ψ = F̂2
F̂1

≤ 1. Two plumes will be said to be equal if

ψ = 1, and not equal if ψ < 1. A schematic of the merging plumes is given

in Figure 3.1.

zm

z

w(z)

b(z)

χ(z)

χ0

w(z)

x

FIGURE 3.1: Schematic for the merging of two plumes.
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3.2 Coalescence of Two Plumes

3.2.1 Two Equal Plumes

To replicate the two plume model of KL04, we consider equal plumes,

ψ = 1, which do not interact as they merge. From MTT, we know that

the ensemble average of the buoyancy and velocity of a turbulent plume

are well approximated by a Gaussian, with the peak of buoyancy at the

plume centreline. Therefore, it is reasonable to model the buoyancy of two

turbulent plumes as a two-peaked Gaussian, with the peaks located at the

centreline of each plume. Under these assumptions, we take a buoyancy

profile function, for two plumes of equal strength, separated a distance χ0

at z = 0, of the form

g′(x, z) ∼ g′(0, z)E(x, z) (3.2)

where E is given by

E(x, z) = exp

−

x− χ0

2
b


2
+ exp

−

x+ χ0

2
b


2
 . (3.3)

We plot (3.3) with α = 0.1, χ0 = 1 and −2 ≤ x
χ0

≤ 2 to give Figure 3.2. We

see that E has two local maxima until a height, zm, at which point there is

a single local maxima at x = 0.

Therefore, the merging height is defined, as in KL04, to be the height at

which the value at the centreline first becomes a local maximum. That is,

the height at which there is a turning point in the gradient of E at x = 0.

Mathematically, we find

zm = min
z ∈ R | ∂

2E

∂x2

∣∣∣∣∣
(0,z)

< 0
 (3.4)
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λ increasing

FIGURE 3.2: Contours of (3.3), with α = 0.1 at λ = 1, 4, 5, 5.89, 8. The
contour at the merging height is given in red.

which, using E as in (3.3), gives bm = χ0√
2 . By using bm = 6α

5 zm, this may be

rearranged to give
zm
χ0

= λNIm = 5
6α

√
2
. (3.5)

Taking α = 0.1, we see that two non-interacting plumes of equal strength

will merge 5.89 source separation distances above the sources of the plumes.

We note that this argument is derived under the assumption that the plumes

do not interact.

3.3 An Arbitrary, Finite, Number Of Plumes

The work recapped in §3.2 was completed in KL04, and was exclusively for

a system of two plumes. We extend the existing work from the literature to

an arbitrary, finite, number of non-interacting plumes. We should note that,

although the plumes do not interact, adding another plume to a line of two

will change the merging height. This can be seen by considering Figure 3.4

where the plumes are shown to have non-zero tails in their Gaussian buoyancy
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profile. These non-zero contributions lead to a buoyancy profile where the

newly introduced plume has an impact on the configuration, regardless of

the assumption of no interaction, and therefore changes the merging height.

The plumes will be configured such that the system will always be centred

around x = 0. In doing this, we encounter a problem. The definitions used

in KL04 for equal, non-interacting, plumes to merge relies on there being a

local minimum of buoyancy at x = 0, which will be true for an even number

of plumes. An odd number of plumes, configured as above, will always have

a plume centred at x = 0, which ensures that x = 0 will always be a local

maximum of buoyancy. Therefore, we must treat these two cases separately.

3.3.1 An Even Number of Plumes

To preserve the symmetry of the configuration about x = 0, and to maintain

the same plume separation distances at the source, we define an E(x, z) for

n (where n is even) plumes by

E(x, z) =
n/2∑
j=1

exp

−

x+ 2j−1
2 χ0

b

2
+ exp

−

x− 2j−1
2 χ0

b

2

 .
(3.6)

As the system is still symmetric about x = 0, we may directly use (3.4),

which yields

n/2∑
j=1

(2(2j − 1)2χ2
0 − 4b2

)
exp

(
−(2j − 1)2χ2

0
4b2

) = 0. (3.7)

By dividing (3.7) by 4b2, and introducing √
q = χ0

2b which is proportional to

the merging height given in (3.9), (3.7) becomes

n/2∑
j=1

{(
2(2j − 1)2q − 1

)
exp

(
−(2j − 1)2q

)}
= 0 (3.8)
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FIGURE 3.3: Plots of the LHS of (3.8) for n = 2, 4, 6 and 8 plumes. The√
q value where (3.8) is satisfied is shown by the black square.

which may be solved numerically for √
q using the “fzero” function in

MATLAB which uses MINPACK’s hybrd and hybrj algorithms [66].

Solutions to (3.8) are plotted for n = 2, 4, 6, and 8 in Figure 3.3.

Furthermore, by definition, 2√
q = χ0

b
, and from the solutions to the steady

MTT equations, b = 6α
5 z. Hence, we find that z

χ0
= 5

12α√
q
. Therefore, at the

merging height, zNIm , we have

zNIm
χ0

= λNIm = 5
12α√

qm
. (3.9)

We also confirm that, when n = 2, √
qm = 1√

2 , λNIm = 5
6α

√
2 , which is the
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same merging height given in (3.5).

3.3.2 An Odd Number of Plumes

For an odd number of plumes, n, we define E(x, z) with

E(x, z) =
(n−1)/2∑

j=−(n−1)/2
exp

−
(
x− jχ0

b

)2
 (3.10)

which is plotted in Figure 3.4 for α = 0.1, χ0 = 1, and −2 ≤ x
χ0

≤ 2.

However, we can no longer use (3.4), since we see in Figure 3.4 that x = 0 is

now always a local maximum. Instead, we must determine the first height

at which there is no trough in the buoyancy profile. This is given by

zm = min
{
z ∈ R | ∃x ∈ R s.t.∂E

∂x
= ∂2E

∂x2 = 0
}

(3.11)

Explicitly, for three plumes, this gives

ue−u2 + u+ v

2 e−(u+v
2 )2

+ ve−v2 = 0 (3.12)

(2u2 − 1)e−u2 +
(

1
2(u+ v)2 − 1

)
e−(u+v

2 )2

+ (2v2 − 1)e−v2 = 0. (3.13)

where u = x−χ0
b

and v = x+χ0
b

. Rearranging the definitions of u and v gives

γ = b

χ0
= 2
v − u

. (3.14)

Finally, by solving (3.12) - (3.13) numerically using MATLABs “fsolve”

function, we find (um, vm) = (−2.39, 0.520) and therefore γm = 0.686. Recall

that, by definition, b = 6α
5 z. Rearranging for z, we find that

λNIm = zm
χ0

= 5γm
6α (3.15)

and for three plumes, this gives a merging height λNIm = 0.572
α

= 5.72 with
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an entrainment coefficient value α = 0.1.

λ increasing

FIGURE 3.4: Contours of (3.10) with three plumes at λ = 1, 3, 5.72, 7.
The contour at the merging height is given in red.

In order to generalise to n plumes in a line (where n is odd), we note that

x+ kχ0

b
= u

(
1
2 − k

n− 1

)
+ v

(
1
2 + k

n− 1

)
(3.16)

and

γ = b

χ0
= n− 1
v − u

(3.17)

where u =
x− n−1

2 χ0

b
and v =

x+ n−1
2 χ0

b
.
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Condition (3.11) is given by

(n−1)/2∑
j=−(n−1)/2

u [1
2 + j

n− 1

]
+ v

[
1
2 − j

n− 1

]
× exp

−

u [1
2 + j

n− 1

]
+ v

[
1
2 − j

n− 1

]2
 = 0

(3.18)

(n−1)/2∑
j=−(n−1)/2

2
u [1

2 + j

n− 1

]
+ v

[
1
2 − j

n− 1

]2

− 1


× exp

−

u [1
2 + j

n− 1

]
+ v

[
1
2 − j

n− 1

]2
 = 0.

(3.19)

By solving (3.18) - (3.19) numerically for u and v, we determine the

non-dimensional merging height for an odd line of non-interacting plumes :

λNIm = 5
6α

n− 1
vm − um

. (3.20)

By solving (3.8), (3.18) and (3.19), and using (3.9) and (3.20), we find the

non-interacting merging height for 2-15 plumes. These are given in Table

3.1.

An interesting pattern can be seen in Figure 3.5 - the non-interacting merging

heights appear in pairs that are similarly valued. For example we see that

the merging heights for n = 2 and n = 3 are similar, and n = 4 is similar to

n = 5 etc. We also see that the odd numbered plumes in these pairs have a

lower merging height than the corresponding even number. This is because

the central plume in the odd numbered line is always a maximum, and the

trough disappears last at x = ±χ0
2 , whereas in the even numbered lines the

local minimum becomes a local maximum at x = 0.
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No. of Plumes λNIm α

2 0.5892

3 0.5713

4 0.7583

5 0.7460

6 0.8949

7 0.8849

8 1.0127

9 1.0041

10 1.1179

11 1.1102

12 1.2138

13 1.2068

14 1.3025

15 1.2963

TABLE 3.1: Non-dimensional merging
heights of up to 15 plumes in a line.

FIGURE 3.5: Plot of the non-dimensional
merging heights given in Table 3.1.
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3.4 The Merged Plume

This chapter has worked towards finding the height at which a number of

non-interacting plumes in a line merge into a single larger plume. We now

investigate the behaviour of the larger plume, henceforth the merged plume.

This behaviour has been examined for two plumes, by KL04, which will now

be extended to an arbitrary finite number.

3.4.1 Physical Quantities in the Merged Plume

Once the smaller, constituent plumes have merged at z = zm, we have a

single, larger plume, from which a number of quantities can be determined

from the power law solution to the steady MTT equations (1.8) - (1.9).

Recall that the subscript m denotes the value of a quantity at the merging

height. Using the standard notation, we denote the radius of the plume

b, the vertical velocity by w, and the modified gravity by g′. Define mass,

momentum and buoyancy fluxes in terms of these quantities, as given in

(1.8), using the notation of [67, 47, 38, 40, 32].

Recall that Q, M , and F define specific mass, momentum and buoyancy

fluxes, which are given by

Q = b2w, M = b2w2, F = b2wg′. (3.21)

Recall also, that Q, M , and F are known from the power law solutions to

MTT given in (1.8)

Q(z) = 6α
5

(
9α
10

)1/3

F
1/3
0 z5/3, M(z) =

(
9α
10

)2/3

F
2/3
0 z4/3, F (z) = F0

where α is the entrainment coefficient and F0 is the buoyancy flux at z = 0.

Let overbarred quantities denote quantities in the merged plume. To compute
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the fluxes in the merged plume, we assume that all quantities are conserved

from the constituent plumes. That is, for the mass flux for example

Q̄ =
∑

plumes
Qm.

Recall that it is assumed that all plumes are equal, so each Qm is equal, and

similarly for Mm and Fm. Therefore Q̄ = nQm, M̄ = nMm and F̄ = nFm =

nF0. By also substituting z = λχ0, we find that

Q̄ = n× 6α
5

(
9α
10

)1/3

F
1/3
0 z5/3 (3.22)

M̄ = n×
(

9α
10

)2/3

F
2/3
0 z4/3 (3.23)

F̄ = n× F0. (3.24)

From (3.21), we see that the plume radius is given by b = Q√
M

. Using direct

substitution of (3.22) - (3.23), we find the radius of the merged plume

b̄ = 6α
5 n1/2z = 6α

5 n1/2λχ0. (3.25)

Note that this scales with the square root of the number of plumes, not

linearly. Similarly, since w = M
Q

, we see that

w̄ = 5
6α

(
9α
10

)1/3

F
1/3
0 z−1/3 = 5

6α

(
9α
10

)1/3

F
1/3
0 λ−1/3χ

−1/3
0 (3.26)

which is exactly the vertical velocity of a single plume given by (1.9), and is

independent of the number of plumes. By computing g′ = F
Q

, we also arrive

at the same expression for the modified gravity as given by (1.9):

ḡ′ = 5
6α

(
10
9α

)1/3

F
2/3
0 z−5/3 = 5

6α

(
10
9α

)1/3

F
2/3
0 λ−5/3χ

−5/3
0 (3.27)

Therefore, it has been shown that the radius of the merged plume depends
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on the number of constituent plumes, but the modified gravity and vertical

velocity are independent of the number of constituent plumes. It should be

noted that there is an intrinsic assumption built into this analysis - namely

that the merged plume is circular such that it obeys the MTT similarity

solutions. This assumption is reasonable for a small number of plumes, but

for larger n, the merged plume becomes more elliptic and therefore this

assumption is no longer valid.

3.4.2 Laziness of the Merged Plume

In §1.3.1.1, the concept of a source Froude number, or a laziness parameter

was introduced. This was used to classify a plume into one of three categories:

forced, pure or lazy. Recall that the source Froude number is defined as

Γ0 = 5F0Q
2
0

8αM5/2
0

(3.28)

where a subscript zero denotes evaluation of the quantity at z = 0. A plume

is said to be forced if 0 < Γ0 < 1, pure if Γ0 = 1 and lazy if Γ0 > 1. For the

merged plume, we would classify based not on the source Froude number, but

rather using the Froude number at the merging height. This will henceforth

be referred to as the merged Froude number, and is defined by

Γm = 5F̄mQ̄2
m

8αM̄5/2
m

(3.29)

where a subscript m refers to evaluation at z = zm. Direct substitution of

(3.22) - (3.24) into (3.29) gives

Γm = n1/2 (3.30)

which, for any line of plumes (assuming that a line can not be a single

plume), will be greater than one. Therefore, the merged plume will always
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be lazy. This result - that the merged plume is always lazy - suggests that

the merged plume will always have a velocity deficit when compared to its

buoyancy. The merged plume would then exhibit the behaviour shown by

a single lazy plume. The plume would taper in, or neck, to correct for the

velocity deficit, then continue to rise with the expected conical shape.

We also note that this result follows physical intuition since a lazy plume

typically occurs from a distributed, or area, source whereas a pure plume is

assumed to occur from a point source. At the merging height, the merged

plume has non-zero mass, momentum and area from which it follows that

the source is an area source and would be expected to be either lazy or

forced. Using (3.26), we see that the centreline velocity of the plume does

not increase when the plumes merge, but (3.25) shows that the area of the

plume increases. Therefore, a velocity deficit would be expected which leads

to a lazy plume.

3.4.3 Virtual Origin of the Merged Plume

It was discussed in §1.3.1.1 that the MTT power law solutions are not valid

for general initial conditions. The power law assumes that there is a “point

source of buoyancy”, which is represented by non - zero buoyancy flux but

zero momentum and mass fluxes at the origin, z = 0. We see, from (3.22) -

(3.24), that the merged plume will not satisfy this condition. Instead, it will

have a so-called “distributed source”, which has the more general condition

of finite mass, momentum and buoyancy flux at the source. In order to

match the merged plume to a power law solution, we must compute the

virtual origin.

To do this, we note that the merged plume is a single plume which, if we

treat the merging height as its origin, has source conditions Q(z = zm) = Q̄,

M(z = zm) = M̄ and F (z = zm) = F̄ . The virtual origin of a lazy plume
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was studied by Hunt & Kaye [40], and since the merged plume has been

shown, by (3.30), to always be lazy, this work is directly applicable. The

working required to arrive at this asymptotic formula for the virtual origin

is replicated below.

Recall that the rate of change of mass flux of a plume was given by (1.1),

which for convenience we rewrite below:

dQ
dz = 2αM1/2

where α is the entrainment coefficient. We non-dimensionalise (1.1) using

Q = q∗Q̄, M = m∗M̄ , and z = z∗ 5
6α

Q̄
M̄1/2 = z∗ 5

6α b̄m, where b̄m = b̄(z = zm),

to give
3
5

dq∗

dz∗ = m∗
1
2 . (3.31)

Integrating (3.31) gives

z∗ = 3
5

∫ q∗

1

dq̄
m∗

1
2

(3.32)

and recalling from (1.14) that

m∗
5
2 = Γm(q∗2 − 1) + 1 ⇒ m∗

1
2 =

(
Γm(q∗2 − 1) + 1

)1/5
,

We express (3.32) as

z∗ = 3
5

∫ q∗

1
Γ−1/5
m

q̄2 −
(
Γm − 1
Γm

)−1/5

dq̄

= 3
5

∫ q∗

1
Γ−1/5
m

(
q̄2 − ξ

)−1/5
dq̄

= 3
5

∫ q∗

1
Γ−1/5
m (q̄)−2/5 (1 − τ)−1/5 dq̄. (3.33)
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By binomially expanding (1 − τ)−1/5, (3.33) gives

Γ 1/5
m z∗ = 3

5

∫ q∗

1
(q̄)−2/5

{
1 + 1

5τ + 1
5

6
5

1
2!τ

2 + . . .

}
dq̄

= 3
5

∫ q∗

1

{
(q̄)−2/5 + ξ

5(q̄)−12/5 +O
(
(q̄)−17/5

)}
dq̄

= q∗3/5 − (1 − 3
35ξ − 9

425ξ
2 − . . . ) +O

(
q∗−7/5

)
∼ q∗3/5 − (1 − δ) (3.34)

where

δ = 3
35ξ+ 9

425ξ
2+· · · = 3

5

∞∑
k=1

 ξk

5k−1k!(10k − 3)

k∏
j=1

(
1 + 5(j − 1)

) . (3.35)

Rearranging (3.34), we see that

q∗3/5 = Γ 1/5
m z∗ + (1 − δ) = Γ 1/5

m (z∗ + z∗
avs)

⇒ q∗ = Γ 1/3
m (z∗ + z∗

avs)
5/3 (3.36)

where z∗
avs = Γ−1/5

m (1 − δ). In the limit as Γm → ∞, ξ = Γm−1
Γm

→ 1 and

δ → 0.147, and therefore z∗
avs → 0.853Γ−1/5

m . This is the asymptotic limit

for the location of the virtual origin, where z∗
avs is the dimensionless distance

below the source of the merged plume that the virtual origin is located.

That is, the virtual origin is at z∗ = −z∗
avs. Outside of this limit, (3.34) must

be computed directly.

We find the dimensional virtual origin by multiplying by 5
6α

Q̄m

M̄
1/2
m

= n1/2λmχ0.

Explicitly, this gives

zavs = 0.853Γ−1/5
m n1/2λmχ0 (3.37)
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but, since Γm = n1/2, this reduces to

zavs = 0.853n2/5λmχ0. (3.38)

It is important to note that this is the distance below the merging height,

not the distance below the source of the constituent plumes. Explicitly, zavs

is the distance below zm, not z = 0. To find the distance below the sources

of the constituent plumes, we subtract the merging height, λmχ0, from (3.38)

to give

zvirt = (0.853n2/5 − 1)λmχ0. (3.39)

This gives the asymptotic limit for the location of the virtual origin of the

merged plume, as a function of only the number of plumes, the merging

height and the source separation. We note again that this result implicitly

assumes that the cross-section of the merged plume is circular. As discussed

in §3.4.1, this assumption breaks down when the number of plumes is large.

3.4.4 Impact of the Merged Plume on the

Environment

Finally, we investigate the effects of the merged plume on the ambient

environment. Physically, this could be a change in the temperature, salinity,

or causing a flow in the environment. We will limit ourselves to a change in

temperature. Recall that, when deriving the MTT steady plume equations,

the Boussinesq approximation was used. This assumes that density

differences are small, and therefore negligible except in buoyancy terms.

These density differences are captured in the modified gravity, g′.

As we consider the merged plume, we find the distance from the merging

height that the thermal effects are negligible. This is denoted zneg, and the

corresponding modified gravity by g′
neg. We deem the effects to be negligible
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if they fall to ζ% of the value at the source. Mathematically, this is given by

g′
neg = ζ

100g
′
m. (3.40)

Using (3.27) and simplifying, we see that

z−5/3
neg = ζ

100z
−5/3
m

⇒ zneg =
(

100
ζ

)3/5

zm. (3.41)

This is the distance from the merging height, to determine the distance from

the source of the constituent plumes, we subtract zm:

z∗ =
(100

ζ

)3/5

− 1
 zm

which may be non-dimensionalised by dividing through by χ0 to give

λ∗ =
(100

ζ

)3/5

− 1
λm. (3.42)

This is a non-dimensional formula for the vertical distance, from the

constituent plumes, that the buoyancy effects of these plumes has dropped

to ζ% of the ambient value, and is therefore deemed negligible.

We note that this quantity could also be reached using the conservation of

tracer concentration flux. Suppose that we have a tracer of concentration

c(z), which is conserved in the plume. The conservation of tracer may then

be given by
d
dz (b2wc) = 0, (3.43)

which states that there is no tracer outside of the plume. This is identical

to (1.3) in a uniform environment with tracer concentration replaced by

modified gravity, g′. Therefore, from here, the argument follows as above.
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3.5 Arrays of Non-Interacting Plumes

Currently, all existing work on merging plumes has assumed that the plumes

are configured in a line. We extend the work on plumes in a line to plumes

in an n × n grid by generalising the formulation of the buoyancy profile

E. We continue to assume that plumes do not interact, and therefore can

generalise E immediately to another spatial dimension. This generalisation

is demonstrated for a 2 × 2 grid, and will then be used for an arbitrary n×n

grid. As before, we configure the system such that all plumes are separated

by a distance χ0; all plumes are of equal strength, and the configuration is

centred at the origin. This again requires us to treat the odd and even cases

separately.

3.5.1 A 2 × 2 Grid of Plumes

The schematic of a 2 × 2 grid of plumes is given in Figure 3.6.

(
−1

2χ0,−1
2χ0

) (
1
2χ0,−1

2χ0
)

(
1
2χ0,

1
2χ0

)(
−1

2χ0,
1
2χ0

)

FIGURE 3.6: Schematic of the 2 × 2 array of plumes.

As with the non-interacting plumes in a line §3.2, define the buoyancy profile
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by

g′(x, y, z) ∼ g′(0, 0, z)E(x, y, z) (3.44)

where E(x, y, z) is defined by

E(x, y, z) =

exp

−

(x− 1
2χ0)2 + (y − 1

2χ0)2

b2


+ exp

−

(x− 1
2χ0)2 + (y + 1

2χ0)2

b2




+ exp

−

(x+ 1
2χ0)2 + (y − 1

2χ0)2

b2


+ exp

−

(x+ 1
2χ0)2 + (y + 1

2χ0)2

b2


 .

By noting that each row and each column of this grid is a line of two plumes,

they will merge simultaneously at the merging height for two plumes in

a line. Therefore it is reasonable to expect that the entire grid will have

merged at approximately the merging height of two plumes in a line. Using

the same argument as §3.2, we would expect the plumes to have merged

when there is a single peak, and from the symmetry of the system, we see

that the origin is the last place to switch from a minimum to a maximum.

Therefore, we use an analogous merging condition to determine when an

even 2D array has merged. We seek the first height, z, where the origin is no

longer a local minima. This is when the Hessian of E vanishes at the origin:

H := ∂2E

∂x2
∂2E

∂y2 −
(
∂2E

∂x∂y

)2

= 0 at (x, y) = (0, 0). (3.45)

By computing (3.45), we see that bm = χ0√
2 . Using the steady plume radius,

bm = 6α
5 zm, we find that λm = 5

6α
√

2 . We note that this is identical to (3.5),

meaning that a non-interacting 2×2 grid merges at the same height as a line

of two plumes. This is confirmed by evaluating (3.5.1) at various heights,

and plotting the corresponding contours, as shown in Figure 3.7. We see

that the first height at which a single peak appears is indeed given by (3.5).

This method is now generalised to a general n× n grid.
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FIGURE 3.7: Plot of contours of (3.5.1) with χ0 = 1 and α = 0.1 at
λ = 0.1, 2.5, 5 and 5

6α
√

2 . We see the four peaks merging, and have fully
merged in the both right panel.
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3.5.2 An Even Grid of Plumes

We define E(x, y, z) as

E(x, y, z) =
n/2∑
j=1

n/2∑
i=1

exp
−

(x− 2i−1
2 χ0)2 + (y − 2j−1

2 χ0)2

b2


+ exp

−
(x+ 2i−1

2 χ0)2 + (y − 2j−1
2 χ0)2

b2


+ exp

−
(x− 2i−1

2 χ0)2 + (y + 2j−1
2 χ0)2

b2


+ exp

−
(x+ 2i−1

2 χ0)2 + (y + 2j−1
2 χ0)2

b2

 .

(3.46)

where n is the number of plumes. As with the 2 × 2 grid, we expect each

row and column of an n× n grid to merge at the same height as a line of

n. Therefore it is again reasonable to expect the n × n grid to merge at

approximately the merging height for a line of n.

By computing the Hessian of E using (3.45), we find a general condition for

an n× n grid to have merged. Using q = χ2
0

4b2 , this condition is


n/2∑
j=1

n/2∑
i=1

(
2(2j − 1)2q − 1

)
exp

[
−q

(
(2j − 1)2 + (2i− 1)2

)]×


n/2∑
j=1

n/2∑
i=1

(
2(2i− 1)2q − 1

)
exp

[
−q

(
(2j − 1)2 + (2i− 1)2

)] = 0.

(3.47)

Taking n = 2, we find 2b2 − χ2
0 = 0 which leads to λNIm = 5

6α
1√
2 . That is,

we return to the 2 × 2 grid case above. Solving (3.47) numerically shows

that, for any even n× n grid, we arrive very closely to the behaviour of n

plumes in a line. By comparing the merging heights for a line of n plumes

and an n× n grid of plumes, we arrive at the same merging height for up to

500 decimal places, as determined using Maple. A simulation of (3.46) with

n = 4 is given in Figure 3.8, using α = 0.1 and χ0 = 1, we show that the
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plume has merged at the height given in Table 3.1.

FIGURE 3.8: Contour plots of (3.46) with n = 4 is given in using α = 0.1
and χ0 = 1 at λ = 0.1, 2.5, 5 and 0.7583

α
. The final panel is at the merging

height for four plumes in a line. We see the first height at which a single
peak occurs at λ = 7.58 as expected.

3.5.3 An Odd Grid of Plumes

As before, we configure the grid of plumes such that it is centred around the

origin. This gives E of the form

E(x, y, z) =
n−1

2∑
j=− n−1

2

n−1
2∑

k=− n−1
2

exp
(

−(x+ kχ0)2 + (y + jχ0)2

b2

) (3.48)

As with the odd plumes in a line, we will have a plume centred at the origin.

Therefore, we cannot use the same argument as the even array of plumes.

Instead, we use a method analogous to that used in §3.3.2. Explicitly, we
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naturally extend to 3D with the following merging condition:

∂E

∂x
= 0, ∂E

∂y
= 0, H = ∂2E

∂x2
∂2E

∂y2 −
(
∂2E

∂x∂y

)2

= 0 (3.49)

which may be computed directly to give

R∑
j=−R

R∑
k=−R

(u+ kv) exp (−∆) = 0 (3.50)

R∑
j=−R

R∑
k=−R

(w + jv) exp (−∆) = 0 (3.51)

R∑
j=−R

R∑
k=−R

(
(2u+ 2kv)2 − 2

)
exp (−∆)

×
R∑

j=−R

R∑
k=−R

(
(2w + 2jv)2 − 2

)
exp (−∆)

−


R∑

j=−R

R∑
k=−R

(2u+ 2kv)(2w + 2jv) exp (−∆)


2

= 0

(3.52)

where R = n−1
2 , u = x

b
, v = χ0

b
, w = y

b
and ∆ = (u+ kv)2 + (w + jv)2. By

solving (3.50) - (3.52) numerically, we return approximately to the merging

heights found for the odd plumes in a line in §3.3.2. Therefore, we have

shown that, for a non-interacting n× n grid of plumes, the merging height

is close to the merging height of n plumes in a line. This was validated

by direct comparison for up to 500 decimal places, again using Maple. An

example of the merging of 3 × 3 grid of non-interacting plumes is given in

Figure 3.9.

3.5.4 A Non-Interacting Triangle of Plumes

Finally, consider an equilateral triangle of non-interacting plumes, where

each edge has length χ0, as shown in Figure 3.10.
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FIGURE 3.9: Plot of contours of (3.48) with χ0 = 1 and α = 0.1 at
λ = 0.1, 1.5, 3 and 5.715. We see the three peaks merging, and have fully
merged in the both right panel.
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(0, 0) (χ0, 0)

(
1
2χ0,

√
3

2 χ0

)

FIGURE 3.10: Schematic of the equilateral triangular plume configuration.

Again, we assume that these plumes are of equal strength, and therefore

define E(x, y, z) as

E(x, y, z) = exp
(

−x2 + y2

b2

)
+ exp

(
−(x− χ0)2 + y2

b2

)

+ exp

−

(
x− χ0

2

)2
+
(
y −

√
3

2 χ0

)2

b2

 .
(3.53)

In previous cases, we have determined that the plume configuration has

merged when there is a single local maximum. We argue that the last place

to merge would be the centre of the triangular configuration. Here the

centre is defined as the centroid: the location of the centre of mass of the

triangle, and is located at (x, y) =
(
χ0
2 ,

√
3χ0
6

)
. Therefore, the condition for

the configuration to have merged is given by

H := ∂2E

∂x2
∂2E

∂y2 −
(
∂2E

∂x∂y

)2

= 0 at (x, y) =
(
χ0
2 ,

√
3χ0
6

)
(3.54)
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which may be solved analytically to give

(2χ2
0 − 6b2)
b4 exp

(
− χ2

0
3b2

)2

= 0. (3.55)

This gives χ0 = b
√

3 and therefore λNIm = 5
6α

√
3

.

3.6 Summary

In this chapter, we have extended the work of Kaye & Linden [38] from

two non-interacting, turbulent plumes to an arbitrary, finite number of

non-interacting, turbulent, plumes. The dimensional argument of Kaye &

Linden shows that the merging height of a line of plumes increases linearly

with the source separation. We have found an expression for the merging

height of a line of plumes, which is valid assuming that they don’t interact as

they merge. This is a very strong assumption, and will only be approximately

true in practice. Therefore, the work done in this chapter is only able to

find an upper bound on the merging height of a line of plumes. We would

expect the plumes to interact as they merge, so the merging height would

be lower than this non-interacting model predicts.

As well as extending the work of [38], we compute the value of physical

quantities at the merging height, zm, including the plume radius assuming

that the merged plume is circular at the merging height. This approximation

breaks down for large n, but is reasonable for small n. We have shown

that at the merging height, the plume radius, bm, increases with the square

root of the number of plumes, but the modified gravity g′
m and vertical

velocity, wm, are both independent of the number of plumes. A merged

Froude number, which is defined similarly to the source Froude number but

evaluated at the merging height, was determined and, using the values of the

physical quantities at the merging height, shown to always be greater than
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one for a line of plumes. That is, once the plumes have merged, the merged

plume will always be “lazy”. This allowed an asymptotic limit for the virtual

origin to be calculated, by using the theory developed in [40]. We also find

a non-dimensional distance from the source of the plumes after which the

environmental impact is negligible. This is done by arguing that the impact

of a plume on the environment is primarily captured in the buoyancy, and

therefore in the modified gravity. This distance is of particular interest

as it shows how far away from the sources of a line of plumes that this

line of plumes will have an effect on the environment, and is seen to scale

approximately linearly for small n, and approximately like
√
n for large n.

Finally, we investigated the behaviour of non-interacting arrays of plumes.

By extending the model for a non-interacting line of plumes to 2D, we

determine a merging height for a general n × n grid. We saw that the

merging height of an n× n grid is very similar to a line of n plumes. This

is also extended to an equilateral triangle, and a non-dimensional merging

height is found for this triangular configuration. We discovered that the

equilateral triangle had a merging height lower than both two and three

plumes in a line. This suggests that the additional dimension has a notable

effect on the merging height. We note that this additional plume, forming

the triangle from the line, is closer to the merging point - the centroid of the

triangle - than the corners of the n× n grid are to the centre of the square.

This supports that the triangular array should merge lower than these n× n

grids, as was shown in §3.5.4.
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Chapter 4

Coalescence of Interacting

Plumes in a Stationary

Environment

4.1 Introduction

The existing work on the merging of two non-interacting plumes [38, 64, 68]

was extended in §3. This extended the modelling from two non-interacting

plumes to an arbitrary, finite number of plumes; in a line, a grid and a

triangle. There is a significant assumption made in this earlier modelling:

that the plumes can merge together without interacting. This is not the

case in practice, as the plumes would entrain one another, forcing them

to merge closer to their sources than if they do not interact. Therefore,

while the non-interacting model may be used to find an upper bound on

the merging height, any realistic model must account for the interaction

between plumes. Kaye & Linden [38] (KL04) modelled the merging height

of two interacting plumes, which we extend to an arbitrary, finite number of

plumes and to two special cases of arrays of plumes: a 2 × 2 square grid and
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an equilateral triangle. we first recap the interacting model of KL04, who

considered interacting plumes of equal strength.

4.2 Two Interacting Plumes

We again seek to find the merging height of a configuration of plumes. To

determine this merging height for two plumes, we recreate the work of

KL04. Recall that this merging height, denoted zm, is the height at which

a configuration of plumes behave as a single plume. For consistency with

previous work, we introduce the following notation. The subscript m denotes

any quantity evaluated at z = zm. A non-dimensional height, λ = z
χ0

, a

rescaled separation of plume axes at any height, ϕ = χ
χ0

, and a rescaled

plume radius, γ = b
χ
, are also introduced, where χ is the separation of

the plume axes at a height and χ0 = χ(z = 0). Recall that the steady

plume radius, for a single plume, is given by b = 6α
5 z, which was found by

Morton, Taylor and Turner (MTT) [33]. An idealised configuration is given

in Figure 4.1 showing the buoyancy profile at three chosen heights, including

at the merging height.

It has been shown experimentally that the velocity field outside a plume is

approximately horizontal [69]. Gaskin et al. [70] also determined,

experimentally, that the entrainment field from individual plumes may be

added to give an overall entrainment field provided the ambient velocities

are of the same order as the entrainment velocity. Combining these results,

the mean entrainment velocity field of two plumes, separated a distance χ,

over a horizontal plane across the two plumes may be modelled as two

vertical line sinks of strength −m(z) with origins at x = 0 and x = χ.

m(z) is determined by noting that the strength of a line sink is given by

m(z) =
∫ 2π

0
αb(z)w(z) dθ,
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χ0

z = z1

z = z2

z = zm

b(z)
Fleft Fright

χ(z)

FIGURE 4.1: Schematic of two interacting plumes. The dashed blue lines
show the edges of the plume, the solid black lines represent the centreline
of the plumes and solid red lines show the buoyancy profile at the height
shown by the dashed red lines.
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where w is the vertical velocity of fluid inside a plume, α is the entrainment

coefficient, and b is the steady plume radius. This gives m = 2πbαw assuming

that the entrainment coefficient, α is constant, and there is no θ dependence

in b and w.

We determine the entrainment of one plume on the other by modelling the

centreline of each plume as an infinite line sink of strength −m(z), analogous

to an infinite, current carrying wire. In this case, the entrainment felt by the

left plume from the right is given by Fleft = m
2π

1
r′ , where r′(z) is the distance

between the two plumes. That is Fleft = bαw
χ

. By symmetry, the entrainment

felt by the right plume from the left is given by Fright = − bαw
χ

= −Fleft.

Therefore, the velocity of the right plume relative to the left, u, is given by

u = Fright − Fleft = −2bαw
χ

. (4.1)

By assuming that each plume is passively advected by the entrainment field

of the other, the rate of change of axial separation with height is given by

the ratio of vertical to horizontal velocities at the plume axis. This gives

dχ
dz =

dχ
dt
dz
dt

= u

w
= − 1

w

2bαw
χ

. (4.2)

Using χ = χ0ϕ, z = λχ0 and b = 6α
5 λχ0, and noting that ϕ(z = 0) = 1 and

λ(z = 0) = 0, we find

dϕ
dλ = −12α2λ

5ϕ

⇒ ϕ2 − 1 = −12
5 α

2λ2. (4.3)

Recall that γ = b

χ
. By evaluating at the merging height and substituting,

we find that

γm = 6αλmχ0/5
χ0ϕm

.
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That is,

ϕm = 6αλm
5γm

. (4.4)

Evaluating (4.3) at the merging height and substituting (4.4) into (4.3) gives

λmα =
(

36
25γ2

m

+ 12
5

)−1/2

. (4.5)

Finally, recall that γm = 1√
2 from (3.5), and therefore (4.5) becomes

λIm = 1
α

√
25
132 ≈ 0.435

α
. (4.6)

This is the merging height from the KL04 interacting model and was

supported by experiments performed in [38, 68]. Note that the use of

γm = 1√
2 found in §3 is appropriate as the correction for the merging of

these plumes assumes only passive advection [38].

4.3 An Arbitrary, Finite Number of

Interacting Co-Linear Plumes

The existing models for interacting plumes in a stationary environment only

consider two plumes. The existing work is now extended to an arbitrary,

finite number of co-linear plumes. In the modelling by Kaye & Linden, the

fact that there were only two plumes meant that the plumes were both

entrained equally by the other. This is not the case for more than two

plumes. We outline the method for three co-linear plumes using a similar

method, but require a modified model for an arbitrary number of co-linear

plumes.
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4.3.1 Three Interacting Co-Linear Plumes

We consider three co-linear, equispaced, plumes of equal strength. For

convenience, centre the sources of these plumes at x = −χ0, x = 0 and

x = χ0. These plumes are modelled by line sinks of strength −m(z) located

at x = −χ(z), x = 0 and x = χ(z) respectively.

To follow the same method as §4.2, we must find the mean entrainment field.

Recall that the entrainment of one plume on another can be shown to take

the form

F = −m

2π
1
r′ (4.7)

where r′(z) is the distance between the plumes being considered. A

derivation of this formula is given in §8.2. From [70], we are able to add

these contributions. That is, the entrainment felt by one plume from two

plumes would be the sum of each F from (4.7). Therefore, the entrainment

felt by the leftmost plume, denoted Fleft, is given by

Fleft = bαw

(
1
χ

+ 1
2χ

)

where χ and 2χ are the distances from the leftmost plume to the middle

and the rightmost respectively. By symmetry, we also have

Fright = −bαw
(

1
χ

+ 1
2χ

)
= −Fleft

for the rightmost plume. Finally, the central plume is entrained equally, but

in opposite directions, by the leftmost and rightmost plumes. Explicitly,

Fmid = 0.

The central plume is, by definition, at the midpoint between the left and

right plume, and has zero horizontal velocity component. Therefore, we
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expect the centreline of this central plume to be the horizontal position

where this line of plumes will merge. Hence, we do not define u as in the

two plume case, where u was the velocity of the right plume relative to the

left. Instead, we define u to be the velocity of the central plume relative to

the left. That is,

u = Fmid − Fleft,

or by symmetry, the velocity of the central plume relative to the right

u = Fright − Fmid.

In either case, we arrive at

dχ
dz = − 1

w

3bαw
2χ , (4.8)

where χ is the distance between the left and central, or right and central

plumes, or more generally
dχ
dz = u

w
. (4.9)

(4.8) is solved using the same method as §4.2 and we see that

λmα =
(

36
25γ2

m

+ 9
5

)−1/2

. (4.10)

Unlike the two plume case, γm - which is defined by γm = b
χ
|z=zm and is given

by (3.14) - is not known analytically. Recall that, from §3.3, a numerical

solution for γm was found for an odd number of co-linear plumes. For three

plumes, we found that γm = 0.686. Again, using the non-interacting value

of γm is appropriate as we assume only passive advection. Substituting this

into (4.10), we determine a merging height of

λIm ≈ 0.454
α

. (4.11)
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We now generalise this method to n interacting co-linear plumes. As in the

non-interacting case, we consider the odd and even cases separately.

4.3.2 An Interacting Line of an Odd Number Of

Plumes

4.3.2.1 Special Case: Three Plumes

Suppose, as above, that we have three interacting co-linear plumes, configured

with sources

(−χ0, 0), (0, 0), (χ0, 0).

To develop a more general model, for the merging of an arbitrary number of

plumes, we model these plumes using line sinks positioned at

(χ1, z), (χ2, z), (χ3, z)

where χ2 = 0 and χ3 = −χ1.

Using (4.7), we see that the entrainment velocity of plume 1, located at

(χ1, z), is given by

F1 = bαw

(
1

χ3 − χ1
+ 1
χ2 − χ1

)
(4.12)

= bαw

(
1

−2χ1
+ 1

−χ1

)
(4.13)

= bαw

(
− 3

2χ1

)
. (4.14)

Similarly, for plume 2, we see

F2 = bαw

(
1

χ3 − χ2
+ 1
χ1 − χ2

)
(4.15)

= bαw

(
1

−χ1 − χ2
+ 1
χ1 − χ2

)
= bαw

(
1

−χ1
+ 1
χ1

)
= 0 (4.16)
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and by symmetry about x = 0, we take F3 = −F1. For each plume, we

assume that the change in centreline position with height is given by

dχk
dz = Fk

w
. (4.17)

Explicitly, for three plumes, the system of equations are

dχ1

dz = −3bα
2χ1

(4.18)

dχ2

dz = 0 (4.19)

χ3 = −χ1 (4.20)

subject to χ1(0) = −χ0, χ2(0) = 0 and χ3(0) = χ0. Solving (4.18) - (4.20)

analytically, we find that

χ1 =
(
χ2

0 − 9α2

5 z2
) 1

2

(4.21)

χ2 = 0 (4.22)

χ3 = −
(
χ2

0 − 9α2

5 z2
) 1

2

. (4.23)

From this analytic solution, we determine the buoyancy profile, E, defined

by

E(x, z) = exp
−

[
x− χ1

b

]2
+ exp

−
[
x− χ2

b

]2


+ exp
−

[
x− χ3

b

]2
 .

(4.24)

By substituting the analytic solution for χ1, χ2 and χ3, the buoyancy profile
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is given by

E(x, z) = exp

−

x− (χ2
0 − 9α2z

5 )1/2

6αz
5

2
+ exp

−

 x
6αz

5

2


+ exp

−

x+ (χ2
0 − 9α2z

5 )1/2

6αz
5

2
 .

(4.25)

The merging height of this system is found by applying the method outlined

in §3.3.2. We find that λImα = 0.454, which is the same merging height

found in §4.3.1. We may also solve (4.18) - (4.20) numerically. By doing so,

and determining the number of peaks given in (4.24), we further validate

this model by arriving at a merging height of λImα = 0.454, as expected from

the analytic solution.

4.3.2.2 General Case: An Odd Number of Plumes

Suppose that we have n, where n is odd, interacting co-linear plumes,

configured such that the line is centred about x = 0. This requires the

plumes to be centred at

(
−n− 1

2 χ0, 0
)
,

(
−n− 3

2 χ0, 0
)
, . . . , (0, 0), . . . ,

(
n− 1

2 χ0, 0
)
.

This is modelled as a line of n line sinks of strength −m(z) at

(χ1, z) , (χ2, z) , . . . ,
(
χ(n+1)/2, z

)
, . . . , (χn, z) .

These plumes are labelled, left to right, as plume 1,2,...n. For plume 1, we

see that the entrainment velocity is given by

F1 = bαw

(
1

χn − χ1
+ 1
χn−1 − χ1

+ . . .
1

χ2 − χ1

)
(4.26)

= bαw
n∑
j=2

1
χj − χ1

(4.27)
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For an arbitrary plume number, k, where 1 < k ≤ n−1
2 we find that the

entrainment velocity is given by

Fk = bαw

 1
χn − χk

+ · · · + 1
χk+1 − χk

−
[

1
χk − χk−1

+ . . .
1

χk − χ1

]

(4.28)

= bαw


n∑

j=k+1

1
χj − χk︸ ︷︷ ︸

right of kth plume

−
k−1∑
j=1

1
χk − χj︸ ︷︷ ︸

left of kth plume

 (4.29)

= bαw
n∑
j=1
j ̸=k

1
χj − χk

. (4.30)

By the symmetry of the system, we also have χn = −χ1, χn−1 = −χ2 and

in general χn−k+1 = −χk for k ≤ n−1
2 . Finally, χ(n+1)/2 = 0, again by the

symmetry of the configuration. This yields the following system of equations

dχk
dz = Fk

w
for 1 ≤ k ≤ n− 1

2 (4.31)

χk = 0 for k = n+ 1
2 (4.32)

χk = −χn+1−k for n+ 3
2 ≤ k ≤ n (4.33)

subject to χk(0) = −
(
n−(2k−1)

2

)
χ0. The system of equations given by (4.31)

- (4.33) can be solved numerically to give the centreline of each plume as

a function of height. There will not, in general, be an analytic solution for

these centrelines, so the merging height can not be found using the method

outlined in §3.3.2. Instead, the buoyancy profile, E, is computed and the

number of peaks found using MATLAB peak detection which determines all

local maxima by comparison of neighbouring values. Once this number of

peaks has reduced from n to 1, the system of plumes has merged, and the

lowest height for which this is seen is the merging height, zIm. This merging

74



height may then be non-dimensionalised as previously, to give λIm = zI
m

χ0
.

However this model overlooks the physical behaviour of the system. Implicit

in this model is the assumption that the plumes all merge simultaneously, at

the same height. While this is true for n = 3, this isn’t the case in general.

Instead, we see that the outer two plumes merge first (that is, plumes 1 and

2 merge, as do plumes n− 1 and n), then these merged plumes merge with

the adjacent plume and so on until a single plume remains. Furthermore,

the strength of these merged plumes is no longer the same as the plumes

that have yet to merge. Indeed, in §3.4, it was shown that the radius of

the merged plume at the merging height, bm, increases with the number of

plumes that have merged. Explicitly, we showed in (3.25) that bm =
√
nb,

where b is the radius of an “unmerged” plume at the merging height.

Therefore, we initially have n equal co-linear plumes. These n plumes will

merge into n− 2 because plumes 1 and 2 have merged, as have plumes n and

n− 1. Each merged plume is
√

2 times stronger than each of the remaining

n − 2 plumes (see §3.4 or KL04). Hence, we must consider the merging

behaviour of non-equal plumes.

Consider two plumes, with specific buoyancy fluxes F1 and F2, where F1 ≥

F2 ∀z. We define the ratio of fluxes, ψ = F2
F1

≤ 1. It was shown, in KL04,

that the buoyancy profile of two non-equal plumes is given by

E(x, z, ψ) = exp
−

[
x− χ1

b1

]2
+ ψ

2
3 exp

−
[
x− χ2

b2

]2
 (4.34)

where subscripts 1 and 2 refer to the values of these quantities on plumes

1 and 2 respectively. When ψ = 1, we return to the equal plume case as

expected. We note that (4.34) has an inherent lack of symmetry, as is shown

in Figure 4.2, meaning that χ2 ̸= −χ1.

The buoyancy profile given in (4.34) may be readily extended to n non-equal
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FIGURE 4.2: Buoyancy profile given by (4.34), with ψ = 1
2 , α = 0.1 and

b1 =
√

2b2. The buoyancy profile at the merging height (λIm = 3.41) is
given in red, and the centreline locations χ1 and χ2 are given in blue.
The vertical blue lines are x = ±1

2χ0, and are to illustrate the asymmetry
of χ1 and χ2.
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plumes, where k of these plumes have specific buoyancy flux F1, and n− k

have specific buoyancy flux F2, where F2
F1

= ψ ≤ 1. This more general

buoyancy profile is given by

E(x, z, ψ) =
k/2∑
j=1

exp
−

[
x− χj
b1

]2
+ ψ

2
3

n+1− k
2∑

j= k
2 +1

exp
−

[
x− χj
b2

]2


+
n∑

j=n+2− k
2

exp
−

[
x− χj
b1

]2


(4.35)

where b1 =
√

1
ψ
b2. Note that the first sum corresponds to the merged plumes

on the left side of the line of plumes, the third corresponds to the merged

plumes on the right, and the second to the “unmerged” central plumes.

Taking k = 2, we return to the case discussed above (provided that n is

odd). An example will be given for n = 5, and we note that the details may

be extended to an arbitrary odd number of plumes.

To compute the merging height for n = 5, we begin with five equal plumes.

Labelling the centrelines of these plumes χ1, χ2, . . . , χ5 where χ3 = 0, χ4 =

−χ2 and χ5 = −χ1 by symmetry. First, we consider the change in the

centreline of the first plume. Using (4.30) and (4.31) with k = 2, we see that

dχ1

dz = bα

[
1

χ5 − χ1
+ 1
χ4 − χ1

+ 1
χ3 − χ1

+ 1
χ2 − χ1

]
. (4.36)

By applying the symmetry conditions: χ3 = 0, χ4 = −χ2 and χ5 = −χ1,

(4.36) reduces to

dχ1

dz = bα

[
1

−χ1 − χ1
+ 1

−χ2 − χ1
+ 1

−χ1
+ 1
χ2 − χ1

]
(4.37)

= bα

[
− 3

2χ1
− 1
χ2 + χ1

+ 1
χ2 − χ1

]
(4.38)
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subject to χ1(0) = −2χ0. Similarly, for the second plume, we see that

dχ2

dz = bα

[
1

χ5 − χ2
+ 1
χ4 − χ2

+ 1
χ3 − χ2

+ 1
χ1 − χ2

]
(4.39)

= bα

[
1

−χ1 − χ2
+ 1

−χ2 − χ2
+ 1

−χ2
+ 1
χ1 − χ2

]
(4.40)

= bα

[
− 3

2χ2
− 1
χ2 + χ1

− 1
χ2 − χ1

]
(4.41)

subject to χ2(0) = −χ0. With five plumes, the system of equations describing

the location of the centrelines, χj for j = 1, 2, . . . 5 are given by

dχ1

dz = bα

[
− 3

2χ1
− 1
χ2 + χ1

+ 1
χ2 − χ1

]
(4.42)

dχ2

dz = bα

[
− 3

2χ2
− 1
χ2 + χ1

− 1
χ2 − χ1

]
(4.43)

χ3 = 0 (4.44)

χ4 = −χ2 (4.45)

χ5 = −χ1 (4.46)

subject to χk(0) = −n−(2k−1)
2 χ0. This system of equations is solved using a

forward Euler spatial stepping, and the buoyancy profile

E(x, z) =
5∑
j=1

exp
−

[
x− χj
b

]2
 (4.47)

computed until (4.47) has three peaks, instead of five. Suppose that this

first occurs at z = z1. We now have three plumes of non-equal strength

which we label 1, 2, 3 and their centrelines χ̄1, χ̄2, χ̄3 respectively. As plume

1 now contains two of the initial plumes (the previous plumes 1 and 2), and

similarly plume 3, these new plumes have twice the buoyancy flux of the
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new plume 2. The ODE describing the location of χ̄1 is given by

dχ̄1

dz = b3α

χ̄3 − χ̄1
+ b2α

χ̄2 − χ̄1
(4.48)

= b1α

−2χ̄1
+ b2α

−χ̄1
(4.49)

subject to χ̄1(z1) = 1
2 (χ1 + χ2) |z=z1 and b1 =

√
2b2. We also apply χ̄2 = 0

and χ̄3 = −χ̄1. For this intermediate line of plumes, the buoyancy profile is

given by

E(x, z) = exp
−

[
x− χ̄1

b1

]2
+

(
1
2

) 2
3

exp
−

[
x

b2

]2
+exp

−
[
x− χ̄3

b1

]2
 .

(4.50)

Iteratively solving for χ̄1, applying the symmetry conditions for χ̄2 and χ̄3,

we determine (4.50) for each z. The merging height of the line of five plumes

is then given by the first height z for which (4.50) has a single peak. This

single peak is found using MATLAB peak detection. We find that, for n = 5,

the merging height is given by λImα = 0.55. Taking α = 0.1 and χ0 = 1, we

produce Figure 4.3.

4.3.3 An Interacting Line of An Even Number of

Plumes

The interacting case for a line of an even number of plumes is also configured

such that the line of plumes is centred about x = 0. This is done by centring

the plumes at

(x, z) =
(

−n− 1
2 χ0, 0

)
, . . . ,

(
−n− (2k − 1)

2 χ0, 0
)
, . . . ,

(
n− 1

2 χ0, 0
)
.

Therefore, we model this as line sinks placed at

x = χ1, . . . , χk, . . . , χn.
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FIGURE 4.3: Plot of the buoyancy profiles computed for the merging of
five equal strength plumes. The centrelines are given in blue, buoyancy
profiles in black and the buoyancy profiles at the height of five peaks
merging to three, and three to one are given in red.
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However, we note that this configuration does not have a plume source located

at x = 0. That is, the midpoint of the configuration is not necessarily a

maximum, and won’t be until the line of plumes has merged. Instead of the

intial system of equations given by (4.31) - (4.33), the initial system is given

by

dχk
dz = Fk

w
for 1 ≤ k ≤ n

2 (4.51)

χk = −χn−k+1 for n2 + 1 ≤ k ≤ n (4.52)

where Fk is given by (4.29). From here, the method is identical to the odd

case. Computing this model for n = 2, 3, . . . , 15, we tabulate the merging

heights of the line of n equal strength plumes, which are given in Table 4.1.

The behaviour of four interacting co-linear plumes is given in Figure 4.4,

using α = 0.1, and χ0 = 1.

The merging heights for up to 15 plumes using the non-interacting model

derived in §3 as well as the aforementioned co-linear plumes are given in

Figure 4.5.

4.4 Arrays of Interacting Plumes

As in §3, we extend the model of a line of interacting plumes to account for

an array of plumes. We consider two specific cases: an equilateral triangle

and a 2 × 2 square grid. As before, we assume that the entrainment of one

plume on another is given by (4.7), where r′ is the distance between the

plumes. As the arrays are two-dimensional, r′ is the Euclidean distance

between the interacting plumes.
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Number of plumes αλIm

2 0.435

3 0.454

4 0.558

5 0.588

6 0.612

7 0.720

8 0.764

9 0.818

10 0.973

11 1.074

12 1.116

13 1.116

14 1.193

15 1.203

TABLE 4.1: Non-dimensional interacting merging heights for up to 15
plumes.
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FIGURE 4.4: plot of the buoyancy profiles computed for the merging of
four equal strength plumes. The centrelines are given in blue, buoyancy
profiles in black, and the profiles at the height where four peaks merges
into two, and two to one are given in red.
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FIGURE 4.5: Comparison plot of the merging heights for co-linear plumes
found using the non-interacting model from §3.3 and the interacting
model derived in §4.3.
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4.4.1 An Equilateral Triangle of Interacting Plumes

We consider an equilateral triangle of interacting plumes where each plume

has the same strength. This configuration is given in Figure 4.6. From this

schematic, we see that each plume is entrained by two others. We extend

the method outlined in §4.3 as follows: denote the location of the centreline

of the kth plume by χk = (χk,i, χk,j). We then assume that the merging in

each direction is independent, i.e. that the merging in the x direction is

independent of that in the y. We then formulate ODEs for each component

of each centreline as outlined in section §4.3.2.

Consider a triangular array with sources located at
(
−1

2χ0, 0
)
,
(

1
2χ0, 0

)
and(

0,
√

3
2 χ0

)
. Labelling the plumes located at the above positions as χ1, χ2

and χ3 respectively, we generate the following system of equations

d
dz
(
χ1,i

)
= bα

[
1

χ3,i − χ1,i
+ 1
χ2,i − χ1,i

]
(4.53)

d
dz
(
χ1,j

)
= bα

[
1

χ3,j − χ1,j

]
(4.54)

χ2,i = −χ1,i due to symmetry about x = 0 (4.55)

χ2,j = χ1,j as these centrelines are in the same vertical plane (4.56)

χ3,i = 0 by symmetry about x = 0 (4.57)
d
dz
(
χ3,j

)
= bα

[
2

χ1,j − χ3,j

]
(4.58)

subject to
(
χ1,i, χ1,j

)
|z=0 =

(
−1

2χ0, 0
)
,
(
χ2,i, χ2,j

)
|z=0 =

(
1
2χ0, 0

)
and(

χ3,i, χ3,j
)

|z=0 =
(

0,
√

3
2 χ0

)
. This is given in Figure 4.6.

By solving the above system of equations, we capture the behaviour of each

centreline in both x and y directions. We then define a buoyancy function,

extended to an additional spatial dimension, given by
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(−1
2χ0, 0) (1

2χ0, 0)

(
0,

√
3

2 χ0

)

1 2

3

FIGURE 4.6: Schematic of the equilateral triangular plume configuration.

E(x, y, z) =
3∑

k=1
exp

−
[

(x− χk,i)2 + (y − χk,j)2

b(z)2

] . (4.59)

As in section §4.3.2, we seek the first height at which equation has a single

peak. For a 2D array, the surface given by (4.59) is plotted, and the number

of peaks of this surface are determined using MATLAB peak detection. (4.59)

is plotted iteratively until the first height of a single peak is determined.

This is the merging height, λIm, of the triangular array of plumes and is

found to be λIm = 0.318
α

.

4.4.2 A 2 × 2 Grid of Interacting Plumes

Finally, we consider a 2 × 2 grid of plumes, where the sides of the grid are

χ0 and therefore the diagonal distance between corners is
√

2χ0. Labelling

the corners of the square, starting in the bottom left, anti-clockwise as 1,2,3

and 4, the plume sources are given by
(
χ1,i, χ1,j

)
|z=0 =

(
−1

2χ0,−
1
2χ0

)
,

(
χ2,i, χ2,j

)
|z=0 =

(
1
2χ0,−

1
2χ0

)
,

(
χ3,i, χ3,j

)
|z=0 =

(
1
2χ0,

1
2χ0

)
and

(
χ4,i, χ4,j

)
|z=0 =

(
−1

2χ0,
1
2χ0

)
.
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As in section §4.4.1, we formulate a system of equations to describe the

centrelines of the plumes in this grid, given by

d
dz
(
χ1,i

)
= bα

[
1

χ3,i − χ1,i
+ 1
χ2,i − χ1,i

]
(4.60)

d
dz
(
χ1,j

)
= bα

[
1

χ4,j − χ1,j
+ 1
χ3,j − χ1,j

]
(4.61)

χ2,i = −χ1,i (4.62)

χ2,j = χ1,j (4.63)

χ3,i = χ2,i (4.64)

χ3,j = −χ1,j (4.65)

χ4,i = χ1,i (4.66)

χ4,j = χ3,j (4.67)

subject to the above initial conditions, shown in Figure 4.7. The buoyancy

(
−1

2χ0,−1
2χ0

)1 (
1
2χ0,−1

2χ0
)2

(
1
2χ0,

1
2χ0

)
3

(
−1

2χ0,
1
2χ0

)
4

FIGURE 4.7: Schematic of the 2 × 2 array of plumes.

profile is then given by

E(x, y, z) =
4∑

k=1
exp

−
[

(x− χk,i)2 + (y − χk,j)2

b(z)2

] . (4.68)
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By determining the first height at which equation has a single peak, we find

the merging height λIm = 0.361
α

.

4.5 Experimental Data

The modelling work of §3 and §4 aimed to find a non-dimensional height

at which a line, or array, of plumes will behave as as single, larger plume.

This height is defined as the merging height or height of coalescence. We

experimentally find this merging height, and compare to the values predicted

by the interacting and non-interacting models in §3.3 and §4.3. The notation

of KL04 is used to allow for direct comparison. We denote the experimental

merging height by zme, and the corresponding experimental, non-dimensional

merging height by λme. Recall also that the non-dimensional merging heights

from the non-interacting and interacting models are given by λNIm and λIm

respectively.

4.5.1 Experimental Set Up

Experiments were performed in a perspex tank with dimenions 750 mm

× 650 mm × 650 mm. This tank was filled with freshwater of density

ρ = 1000 kg m−3, which was measured by a sodium chloride refractometer.

The plumes were created using a saline solution of density ρ = 1033 kg m−3,

again measured with a sodium chloride refractometer. This solution was

created using 20 litres of freshwater mixed thoroughly with 1.03 kg of sodium

chloride. The plumes were visualised using 3 grams of E151 brilliant black

dye and 0.3 grams of yellow tartrazine dye.

The footage was collected at 30 frames per second using a camera with a

25 mm lens. To ensure constant lighting, a uniform intensity light sheet

was placed behind the perspex tank. All other light sources were removed

from the laboratory. This was done to remove “noise” from the data. The
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experimental set up is given schematically in Figure 4.8.

FIGURE 4.8: Schematic of the experimental set up used for the merging
plumes in a stationary environment experiments.

To ensure that the plumes created were fully turbulent, a set of four custom

plume nozzles were created following the design by Dr Paul Cooper,

Department of Mechanical Engineering, University of Wollongong, NSW,

Australia shown in Figure 4.9.

Due to the number of plume nozzles available, we performed experiments

with a single plume and lines of two, three and four plumes. Each of these

plumes has the same strength, and all lines of plumes are configured such

that each plume is separated by the same distance from its nearest neighbour.

4.5.2 Experimental Technique

Single plume experiments were performed to determine the entrainment

coefficient of each nozzle. We then performed experiments focused on merging

heights. The method for these experiments is given as follows:

1. Set the nozzle separation (skip this step for an experiment using only
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FIGURE 4.9: Design of the nozzle used to create a turbulent plume. This
is Figure 10 of KL04.

one nozzle).

2. Fill the perspex tank to 700 mm with freshwater. Ensure that the

tank has no internal flow before continuing. This is achieved, based

on preliminary experimentation, by waiting approximately 45 minutes

between the end of filling and the start of the experiment.

3. By very carefully running a long thin sponge along the front glass panel,

so as not to introduce an internal flow, remove any bubbles from the

front of the perspex tank. If currents were present, the experimental

was delayed until they ceased.

4. Record 300 frames of background footage. This was used later to

remove background noise from plume imagery (explained later in

§4.5.4).

5. Turn on all nozzles being used and allow to run for 30 seconds. This

allows the plume(s) to establish.
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6. Begin recording the experiment. Record for 45 seconds.

7. Stop recording, turn off nozzles and drain the water from the perspex

tank.

8. Increase the nozzle separation by 5 mm. Repeat method until the

configuration no longer merges before reaching the bottom of the tank.

4.5.3 The Entrainment Coefficient

To compare experimental data to predictions from the modelling in §3.3 -

§4.3, we must find the entrainment coefficient. Recall that the derivation of

the plume ODE model (1.1) - (1.3) assumes that the velocity of entrained

fluid is proportional to the mean centreline vertical velocity inside the plume

at the same height. That is, ue ∝ w. The constant of proportionality is the

entrainment coefficient, denoted α. For a steady plume, we may determine

α by measuring the plume radius, b. Recall that b = 6α
5 z. Therefore, by

computing the plume radius of a single plume from the experimental footage,

we may determine α. Doing so, we found that the average entrainment

coefficient of plumes generated from each nozzle is α = 0.086. Importantly,

this is close to the value used by Lai [71] (α = 0.085) and slightly lower than

the value used in KL04 (α = 0.09). The experiments were performed using

a nozzle radius (b0) of 2.5 mm, an initial velocity (w0) of 0.088 m s−1 and a

modified gravity (g′
0) of 0.392 m s−2. This resulted in a source Froude number

Γ0 = 0.921 (i.e. a forced plume) and therefore a virtual origin correction

of 2.10 cm was used in the experiments in this chapter. The source Froude

number was computed using (3.28), and the virtual origin correction was

found using the method given in §3.4.3.
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4.5.4 Processing Experimental Data

The footage captured in these plume experiments must be processed to

determine the merging height. We first performed the dye attenuation

technique, outlined in [68], in Digiflow (documentation found at http://www.

dampt.cam.ac.uk/lab/digiflow/). The background image is subtracted

from each frame of the recorded footage. We then time-average these frames

to give the processed, time-averaged, plume configuration behaviour in a

single image. An example of this technique is given in Figure 4.10. This

is done because the modelling in §3 and §4 only considers steady plumes.

An example of instantaneous behaviour is given in Figure 4.11, and the

time-averaged behaviour is given in Figure 4.12.

The merging height may be determined using the time-averaged image.

Recall, from §3.2, that the buoyancy profile of a plume is well approximated

by a Gaussian, centred at the midline of the plume. Furthermore, it was

shown, by [72], that the buoyancy profile of a line of plumes may be

approximated by a superposition of these Gaussians. Using this, we outline

finding the merging height of two plumes, and note that it can be extended

to an arbitrary line by adding more Gaussians, as shown in (4.70).

For each row of pixels of the time-averaged two-plume image, we fit a function

of the form

G = a1

a2
√

2π
exp

(
−(x− a3)2

2a2
2

)
+ a4

a5
√

2π
exp

(
−(x− a6)2

2a2
5

)
(4.69)

where a3 and a6 are the positions of maximum buoyancy, i.e. the centre of

each plume. For n plumes, G would take the form

G =
n∑
k=1

a3k−2

a3k−1
√

2π
exp

−(x− a3k)2

2a2
3k−1

 . (4.70)
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(a) Background image for dye
attenuation.

(b) Raw plume image for dye
attenuation.

(c) Plume image with background
subtracted.

(d) Time-average of all “subtracted”
plume images.

FIGURE 4.10: Schematic of the dye attenuation technique. Figure 4.10b
- Figure 4.10a gives Figure 4.10c, a so-called “subtracted image”.
Time-averaging all subtracted images gives Figure 4.10d.
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FIGURE 4.11: An instantaneous snapshot of the behaviour of two, three
and four co-linear plumes 21.3 seconds after filming started. The plumes
are configured such that each plume is separated from the adjacent plumes
by χ0 = 25 mm.
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FIGURE 4.12: Time-averaged behaviour of two, three and four co-linear
plumes. The plumes are configured such that each plume is separated
from the adjacent plumes by χ0 =25 mm, and the data is formed from
the frames of the 45 second video.
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(a) Light intensity profile at the
source of the plumes

(b) Light intensity profile at 35%
of the merging height.

(c) Light intensity profile at 72%
of the merging height.

(d) Light intensity profile at the
merging height.

FIGURE 4.13: Light intensity data from stillwater experiments for two
plumes, separated 43mm, at various distances from the source.

By fitting (4.69) to each row of pixels, we find the two peaked Gaussian

that best fits the experimental data. This is repeated for each row of

pixels until (4.69) has a single maximum. This gives the vertical pixel at

which the plumes have merged. This can then be converted to a real-world

distance using the “edit coordinates” function in Digiflow. This converts

pixel measurements to real-world measurements, based on known distances,

using a least squares mapping. The real-world distance is the merging height

of the system.
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(a) Light intensity profile at the
source of the plumes

(b) Light intensity profile at 40%
of the merging height.

(c) Light intensity profile at 70%
of the merging height.

(d) Light intensity profile at the
merging height.

FIGURE 4.14: Light intensity data from stillwater experiments for three
plumes, separated 43mm, at various distances from the source.
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(a) Light intensity profile at the
source of the plumes

(b) Light intensity profile at 40%
of the merging height.

(c) Light intensity profile at 70%
of the merging height.

(d) Light intensity profile at the
merging height.

FIGURE 4.15: Light intensity data from stillwater experiments for four
plumes, separated 43mm, at various distances from the source.
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4.6 Results

4.6.1 Extracting λme

Following the procedure outlined in §4.5.2 and §4.5.4, the merging heights

of each plume configuration was determined as shown in Figure 4.13 -

Figure 4.15. By fitting a line of the form zme = λmeχ0 to the merging heights,

we found the non-dimensional merging height for each configuration. The

values for each configuration are given in Table 4.2. The merging heights

for each configuration, as a function of separation, are plotted in Figure

4.16 - 4.20. The error bars shown in the aforementioned plots are computed

by splitting each video into thirds and determining the merging height for

each of these thirds. The standard deviation of these merging heights is the

magnitude of the error bars. These error bars are given, as a percentage, in

table 4.3, in accordance with the following correction for the array imagery

data. Furthermore, the magnitude of these error bars falls well within the

variation expected from simulating a turbulent system such as this.

Configuration λme λIm

Line of two 5.09 5.08

Line of three 5.32 5.30

Line of four 6.30 6.48

Equilateral triangle 2.01 3.70

2×2 square grid 1.81 4.20

TABLE 4.2: Non-dimensional merging heights of all experimental
configurations and corresponding model merging heights with the
uncorrected array data.

Note that the imagery collected for the triangular and 2 × 2 grid array of

plumes was only visualised by one camera, meaning it appeared as three

or four co-linear plumes respectively. This led to an experimental merging

height significantly lower than expected by the models in §4.4.1 and §4.4.2.
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To correct for this, we simulated the array models for each experiment, and

obtained the “true” merging height (the merging height of the array) and the

“observed” merging height (the merging height obtained from the viewpoint

in my experiments). A linear mapping was found between the observed

and true merging heights for these arrays. By applying this mapping to

the experimental data (and the error bars) for the arrays of plumes, the

visualisation error in these experiments was corrected. The experimental

data, including the corrected data is shown in Figure 4.19 and Figure 4.20.

We see that by using the above correction, the experimental data is now in

good agreement with the modelling outlined in §4.4.1 and §4.4.2, as shown

in Table 4.3.

Configuration λme λIm

Line of two 5.09 ± 5.57% 5.08

Line of three 5.32 ± 8.03% 5.30

Line of four 6.30 ± 9.86% 6.48

Equilateral triangle 3.69 ± 3.25% 3.70

2×2 square grid 3.89 ± 7.45% 4.20

TABLE 4.3: Non-dimensional merging heights of all experimental
configurations and corresponding model merging heights with the
corrected array data.

4.6.2 Discussion & Comparison to Models

We found that the experimental merging height of the two and three plume

configurations were very well approximated by the interacting models (4.6)

and (4.11). This is shown in Figure 4.16 - Figure 4.17. This strongly

supports the modelling of two interacting plumes by Kaye & Linden [38]

and the extension derived in §4.3.1. Note that all experimental data plotted

in this chapter are non-dimensionalised with respect to the nozzle radius,

b0 = 2.5 mm.

In each of the three remaining cases, we found that the experimental merging
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FIGURE 4.16: Experimental data for the merging height of two plumes.
This data has a goodness of fit r2 = 0.880 with the straight line through
the origin.

height is lower than that predicted by the modelling in §4.3 - §4.4. The

experimental data for four co-linear plumes are given in Figure 4.18, and

the arrays of plumes are given in Figure 4.19 - Figure 4.20. All merging

height data are also plotted on the same axis in Figure 4.21. Note that the

data given for the array experiments here are the corrected values, not the

original.

We also see that the uncorrected experimental data from the arrays is in

poor agreement with the modelling in §4.4.1 and §4.4.2. However, once the

correction is made, we see that the data is now in good agreement with the

aforementioned models.
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FIGURE 4.17: Experimental data for the merging height of three co-linear
plumes. This data has a goodness of fit r2 = 0.895 with the straight line
through the origin.

FIGURE 4.18: Experimental data for the merging height of four co-linear
plumes. This data has a goodness of fit r2 = 0.937 with the straight line
through the origin.
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FIGURE 4.19: Experimental data for the merging height of equilateral
triangle of plumes. This data has a goodness of fit r2 = 0.903 with the
straight line through the origin.

FIGURE 4.20: Experimental data for the merging height of 2 × 2 grid of
plumes. This data has a goodness of fit r2 = 0.908 with the straight line
through the origin.
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FIGURE 4.21: All plume coalescence merging heights plotted on the same
axis.

4.7 Comparison to an Existing Model

A coupled ODE model to describe the dynamic interaction of a system of

interacting jets was derived in [71]. A brief introduction of this model is

given below. For a detailed derivation of this model, see [71].

Consider a group of buoyant jets with initial velocity u0, source density ρ0

discharged into a still ambient with uniform density ρa and depth H. Each

jet discharges at an inclined vertical angle to the horizontal plane ϕ0 and

horizontal angle θ0 to the x axis. To compare to the work of this chapter,

we take ϕ0 = π
2 and θ0 = 0. Each individual jet behaves like a free jet

initially, entraining the surrounding fluid and inducing an irrotational flow

field. The pressure in the space between the jets tends to draw the jets

together, changing their trajectories. This in turn induces a new flow field

and pressure field causing a feedback loop. This process continues until a
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FIGURE 4.22: Schematic of an inclined buoyant jet. This is Figure 1(a)
of [71].

steady state is reached.

The irrotational flow field can be modelled by a line sink with prescribed

strength [73, 38]. The buoyant jet is considered as a series of jet elements of

thickness ∆s. Each element may be expressed as a 3D point sink of strength

mi = −dQ
ds , where Q is the specific volume flux of the plume at the ith

point sink and s is the curvilinear coordinate defined by (4.82), at a position

ri = (xi, yi, zi). The velocity potential of this jet element is

ϕi = mi

4π|r − ri|
∆s, (4.71)

where r = (x, y, z). The induced radial velocity at an arbitrary point r is

given by the negative gradient of the velocity potential:

ur = mi

4π|r − ri|2
∆s, (4.72)

where |r − ri|2 = (x− xi)2 + (y − yi)2 + (z − zi)2.

For multiple buoyant jet discharges, the Nj jets consist of N point sinks.
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For a given point rp = (xp, yp, zp), the induced velocity due to each point

sink is given by

(ux)ij = mi

4π
(xp − xij)
|r − ri|3

∆s, (uy)ij = mi

4π
(yp − yij)
|r − ri|3

∆s, (uz)ij = mi

4π
(zp − zij)
|r − ri|3

∆s,

(4.73)

where i = 1, ..., N and j = 1, ..., Nj are the point sink index and the jet index

respectively. The external flow field induced by the jets is the superposition

of all external flows induced by all point sinks and is therefore given by

ux =
Nj∑
j=1

N∑
i=1

(ux)ij, uy =
Nj∑
j=1

N∑
i=1

(uy)ij, uz =
Nj∑
j=1

N∑
i=1

(uz)ij. (4.74)

For the irrotational flow u = (ux, uy, uz) outside of the jets, the pressure is

related to velocity by Bernoulli’s equation

P = −1
2ρ|u|2 (4.75)

where |u|2 = u2
x + u2

y + u2
z. Note that in [71], u is denoted q.

4.7.1 The Coupled System for Dynamic Pressure

Consider a buoyant jet as defined in Figure 4.22 in a local natural coordinate

system (s, ns) where s is the streamwise coordinate along the jet centreline

and ns is a normal to s. The velocity u(s, ns) and density deficit ∆ρ =

ρa − ρ(s, ns) are self-similar and Gaussian i.e.

u(s, ns) = uc(s)e−n2
s/b

2
g , ∆ρ(s, ns) = ∆ρc(s)e−n2

s/λ
2b2

g (4.76)

where uc and ∆ρc are the centreline velocity and density deficit, and bg is the

characteristic plume radius. We express the volume flux, Q =
∫
u dA, specific

momentum flux, M =
∫
u2 dA and specific buoyancy flux, F =

∫
ug′ dA
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using

dQ
ds = 2πbg(αuc) (4.77)

dMz

ds =
πλ2b2

g(ρa − ρc)g
ρa

(4.78)

dMx

ds = − sinϕ
[∮

nx
P

ρ
dS +

∮
qx(n · q) dS

]
(4.79)

dMy

ds = − sinϕ
[∮

ny
P

ρ
dS +

∮
qy(n · q) dS

]
(4.80)

dF
ds = 0 (4.81)
dx
ds = cosϕ cos θ, dy

ds = cosϕ sin θ, dz
ds = sinϕ, (4.82)

where M =
(
M2

x +M2
y +M2

z

)1/2
. The centreline variables uc and ρc are

related to fluxes using

Q = πucb
2
g, M = π

2u
2
cb

2
g, F = λ2

1 + λ2πucb
2
g

(ρa − ρc)
ρa

g. (4.83)

The entrainment coefficient, α, is expressed as a function of the local jet

Froude number

FrL
= uc√

gbg
(
∆ρc/ρa

)
and the local vertical jet orientation ϕ:

α = αj + (αp − αj)
(
Frp

FrL

)2

sinϕ

with αj = 0.057, αp = 0.085 and Frp =
√

5λ2

4αp
. The dynamic interaction

between plumes is captured by the integral term of (4.79) and (4.80). This

integral is calculated on each spatial interval over a closed control volume,

which was chosen as a square, of side length 1
2 , centred at (x, y). It was

shown, by Lai [71], that the value of this integral is independent of the

chosen control volume. This system of equations must be solved on each

discrete interval, for each plume. We take λ = 1.2, as found by Fischer et
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al. [74].

By expressing (4.77) - (4.82) in terms of fluxes (Q,Mx,My,Mz, F ), this

system of equations may be solved numerically using MATLAB’s stiff solver

‘ode15s’ subject to initial conditions (Q0,Mx0,My0,Mz0, F0, x0, y0, z0) and

the equation of state for pressure, given by (4.75).

4.7.2 Merging Height from the ODE Model

By solving (4.77) - (4.82), we find the centrelines of each plume. Furthermore,

using (4.76), we compute the the buoyancy profile of the configuration at

each s. Finally, using MATLAB peak detection, we are able to determine

the height, z, where the N plumes have a single combined peak. This is

the merging height of the numerical model. Example outputs for 2, 3 and 4

equi-spaced, equal strength co-linear plumes are shown in Figure 4.23.

The merging heights found from the Lai ODE model (4.77) - (4.82) are

compared to the merging heights found with the model derived in §4.3.2 -

§4.3.3 and the experimental results from §4.6 in Table 4.4. Note that the

values in Table 4.4 are given as non-dimensional merging heights. To convert

to dimensional units, these values must be multiplied by the separation

distance, χ0.

Configuration Lai Interacting Model Experiments

Line of two 4.71 5.08 5.09 ± 5.57%

Line of three 4.95 5.30 5.32 ± 8.03%

Line of four 6.71 6.48 6.30 ± 9.86%

TABLE 4.4: Comparison of merging heights for co-linear plumes found
using the Lai ODE model, the model derived in §4.3.2 - §4.3.3 and
experimental results from §4.6.

We see that the merging heights given in Table 4.4 are in close agreement,

giving strong validation to the model derived in this chapter. We also
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FIGURE 4.23: Example outputs of the non-interacting (left), interacting
(middle) and Lai ODE models (right) for two, three and four plumes. For
the non-interacting and Lai models, the black curves show the centreline
location of the plumes, the blue curves show the location of the edges
of the plumes, and the red (solid) line gives the buoyancy profile at the
height shown by the red (dashed) line. For the interacting model, the
plume curves show the centreline of the plumes and the black show the
buoyancy profile. The red curves show, for two and three plumes the
buoyancy profile at the merging height. For four plumes there are two
red curves - the first (at the lower height) shows buoyancy profile at the
height where four plumes merge to two. The second shows this where
two plumes merge into one, i.e the merging height.
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compare the merging heights found from the Lai model to both the

non-interacting and interacting models derived previously. This is shown in

Figure 4.5.

FIGURE 4.24: Plot comparing the non-interacting merging height (given
in table 3.1) and the interacting merging height (given in table 4.1) to
the merging heights computed using the Lai model given by (4.77) -
(4.82). Note that the Lai merging heights are multiplied by the plume
entrainment coefficient used in the Lai model (αp = 0.085) and not the
entrainment coefficient used previously (α = 0.1).

Furthermore, we are able to determine the merging height of arrays of plumes.

In particular, we find the merging heights for an equilateral triangle of plumes,

and 2 × 2 square grid of plumes. These non-dimensional merging heights

are λm = 3.86 and λm = 4.13 for the triangle and the grid respectively. The

surfaces at these heights are given in Figure 4.25 and Figure 4.26 respectively.

We see that these values are close to the model results from an array of

plumes in §4.4 and the experimental results from §4.6 as shown in Table 4.5.
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FIGURE 4.25: Buoyancy surface at λ = λm = 3.86 for an equilateral
triangle array of equal strength plumes. The black dashed lines show the
path of the centreline of each plume following Lai’s model.

FIGURE 4.26: Buoyancy surface at λ = λm = 4.13 for an 2 × 2 square
array of equal strength plumes. The black dashed lines show the path of
the centreline of each plume following Lai’s model.

Configuration Lai Interacting Model Experiments

Equilateral Triangle 3.86 3.70 3.69 ± 3.25%

2 × 2 Grid 4.13 4.20 3.89 ± 7.45%

TABLE 4.5: Comparison of merging heights for plumes in an array found
using the Lai ODE model, the model derived in §4.3.2 - §4.3.3 and
experimental results from §4.6.
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4.8 Summary

This chapter has extended the work of §3, which sought to find the height at

which a line of plumes would behave as a single, larger plume if interaction

between plumes was ignored. An interacting model was devised, based on the

assumption that the strength of plume interaction is inversely proportional

to the distance between the plumes. For two plumes, this model collapses

to the interacting model of Kaye & Linden [38].

This model was further generalised to an arbitrary, finite number of

interacting co-linear plumes by considering the entrainment experienced by

a plume due to its neighbours. Doing so led to the model given in §4.3.2 -

§4.3.3. This model was extended to two arrays of interacting plumes - an

equilateral triangle and a 2 × 2 grid.

The interacting models from §4.3 and §4.4 were then compared to data

collected from experiments for five configurations. The method of data

collection and extraction of the merging height from the experimental data

was outlined. The models were compared to the experimental data in Figures

4.16 - 4.20. We saw that these interacting models were in good agreement

with the experimental data.

The predictions from the models derived in this chapter were also compared

to those from the ODE model for dynamic interacting jets given by (4.77)

- (4.82). We find that the model predictions are in good agreement for

co-linear plumes and in an array. These models are in further agreement

with the experimental data for co-linear plumes and the arrays.
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Chapter 5

Plumes in a Cross-Flow:

Theory

5.1 Motivation

The work presented in §3 - §4 has considered the simplified case of plumes

in a stationary environment. These models allowed a closed form solution

for the merging height of a line of plumes, but are severely limited in their

physical applications. Namely, these models cannot be applied to rivers

because there is always a flow in a river. In this chapter the model is

developed so that it captures the behaviour of plumes in a cross-flow - from

thermal plumes in rivers to chimney stacks in wind.

An additional layer of complexity is introduced due to the inherent turbulence

present in the ambient environment. For example, rivers are always turbulent,

typically with Reynolds numbers of the order 10,000 [75]. Time-averaged or

steady state models will be used to model both the turbulence of the plume,

and the turbulence of the river. An interesting phenomenon also exhibited

by plumes in a cross-flow, known as the blockage effect, is introduced in §5.2,

which adds further difficulty in modelling the behaviour of these plumes.
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In §5.3 we examine several existing models for the behaviour of plumes

in a cross-flow, but note that most of these are not able to be extended

to multiple plumes due to the inability to capture the so-called “blockage

effect”[76] (this is known as the blockage effect in this thesis). These existing

models are instead particularly useful for capturing the behaviour of a single

plume in various physical scenarios where a general model wouldn’t suffice.

From these existing models, we develop the one most readily extended to

multiple plumes, and implement a model of the blockage effect. Finally, this

extended model is validated against laboratory experiments conducted in a

5 m flume in §6.

5.2 The Blockage Effect

The blockage effect is the name given to a phenomenon observed when plumes

in a line are exposed to a cross-flow. It can be seen that the upstream plumes

are significantly more bent-over by the flow than the downstream plumes.

This can be thought of as the upstream plumes shielding the downstream

plumes from the flow. This can be thought of analogously to large vehicles

in the left hand lane of the motorway shielding smaller ones in the right

hand lanes from a prevailing wind, perpendicular to the direction of travel,

on a motorway. Furthermore, these plumes bend significantly once they rise

beyond the upstream plumes since they are no longer shielded. This can

also be thought of using the motorway analogy, since the smaller vehicle will

feel a crosswind when it passes the larger vehicle.

This behaviour was first modelled by Wooler et al. [76] to explain the

behaviour of air flowing over the wing of a jet. While this behaviour was

only noted for two plumes in [76], it was later observed for four and eight

jets in the work of Yu et al. [77] as seen in Figure 5.1. Seeing this behaviour

exhibited for two, four and eight jets suggests it will be shown for any number
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of jets and, by extension, plumes. Indeed, this was will be shown in three

plumes as seen in §6.4. Therefore, this behaviour must be captured to give

an accurate model of a line of plumes in a cross-flow.

5.3 Existing Cross-flow Models

5.3.1 Hoult et al.

The majority of models for a single plume in a cross-flow are based on,

or extensions of, the work of Hoult & Weil [78] which uses theoretical

observations given in [79]. It is important to note that these models are

developed for round-source, not line-source plumes. These observations

readily lend themselves to a two parameter model of entrainment, one

parameter for the tangential component of entrainment and the other for

the normal component. We introduce the following notation as used in [78]:

let (s, θ) denote the curvilinear coordinate system where s is the distance

along the curved centreline of the plume and θ be the anti-clockwise angle

from the horizontal to the centreline of the plume at s. We define b and w

as the plume radius and centreline velocity at a position s. These quantities

are shown in Figure 5.2. As in §3, define Q,M and F as the specific mass,

momentum and buoyancy fluxes given by

Q = b2w, M = b2w2, F = b2wg′ = b2wg

(
ρa − ρ

ρa

)

where g is the acceleration due to gravity, ρa the ambient density and ρ the

density at the plume centreline.
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FIGURE 5.1: Figure 5 from [77] showing concentration contours and
the blockage effect seen in four and eight jets in a line. For the four
plume experiment, the ratio of source velocity and cross-flow is given by
U0
Ua

= 9.9. For eight, U0
Ua

= 4.2. This data is non-dimensionalised with the
jet diameter, D.
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FIGURE 5.2: A visual representation of the quantities of a plume in a
cross-flow.
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The model for a single plume in a cross-flow is then given by:

ue = α|w − Ua cos θ| + β|Ua sin θ| (5.1)
dQ
ds = 2 Q√

M
ue (5.2)

dM
ds = Ua cos θdQ

ds + FQ

M
sin θ (5.3)

dθ
ds = −Ua sin θ

M

dQ
ds + FQ

M2 cos θ (5.4)
dF
ds = 0 (5.5)
dx
ds = cos θ (5.6)
dz
ds = sin θ (5.7)

where α and β denote tangential and normal entrainment parameters

respectively, and Ua is the horizontal component of the velocity of the

ambient fluid i.e. the cross-flow. This model reduces immediately to the

single plume model of Morton, Taylor and Turner [33] when θ = π
2 and

Ua = 0, i.e for a vertical plume in a stationary environment.

This model can be non-dimensionalised using

Q = Q0Q
∗, M = M0M

∗, F = F0F
∗

s = b0s
∗, w = w0w

∗, Ua = w0U
∗
a

(5.8)
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to give (with stars removed)

ue = α|w − Ua cos θ| + β|Ua sin θ| (5.9)
dQ
ds = 2 Q√

M
ue (5.10)

dM
ds = Ua cos θdQ

ds + Γ
FQ

M
sin θ (5.11)

dθ
ds = −Ua sin θ

M

dQ
ds + Γ

FQ

M2 cos θ (5.12)
dF
ds = 0 (5.13)
dx
ds = cos θ (5.14)
dz
ds = sin θ (5.15)

where Γ = F0Q
2
0

M
5/2
0

and is analogous to the source Froude number defined in

(3.28).

There is no general analytic solution for this cross-flow model. However,

a solution for the plume trajectory for small deviations from the vertical

was found by Hoult et al. [79] showing that a buoyant plume radius grows

linearly with height when far from the source. Explicitly, it was shown that

b = βz. By solving this model using ode15s in MATLAB for various values

of Ua, we generate Figure 5.3. This shows that, when compared to w0 = 1,

the plume trajectories are progressively more bent-over as the horizontal

component of the cross-flow velocity is increased.

This model can immediately be extended to an arbitrary number of

non-interacting plumes simply by superimposing plumes with different

origin conditions (x0, z0). However, there is no natural way to include

interaction between plumes in this model. Therefore, it is not

straightforward to extend to include the plume-to-plume interaction. A

model that is more readily extended to account for interaction is given in

Lai [71].
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FIGURE 5.3: Sample solutions to the Hoult plume in a cross-flow model
with initial conditions (Q0,M0, F0) = (1, 1, 1) and entrainment parameters
α = 0.09 and β = 0.9.
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5.3.2 Lai

The modelling work by Lai was primarily for plumes in a stillwater

environment, as was discussed in §4.7. This model can be extended to

model a plume in a cross-flow by including the ambient velocity in the

external flow field given by (4.73). For a horizontal cross-flow with velocity

Ua, the uy and uz terms in (4.73) remain the same, while the ux term

becomes

ux = Ua +
Nj∑
j=1

N∑
i=1

(ux)ij

as discussed in [71]. In (5.3.2), the summation term describes the induced

horizontal velocity from plume-to-plume interaction, as discussed in §4.7.

the addition of Ua includes the horizontal cross-flow in the horizontal velocity

component of the plumes. By including this cross-flow in the model given

by (4.77)-(4.82) an approximation for the behaviour of a single plume in a

cross-flow is obtained. However, the Lai model can also be generalised to an

arbitrary number of interacting plumes in a cross-flow as the interaction is

accounted for in (4.79)-(4.80). Two plumes in a cross-flow were simulated

using the parameter values given in Table 5.1. The trajectories for this

simulation are given in Figure 5.4.

Parameter Symbol Value

Number of plumes Nj 2

Number of discretisation intervals Ni 1000

Plume entrainment coefficient αp 0.085

Jet entrainment coefficient αj 0.057

Ambient density ρa 1000 kg m−3

Source density ρ0 966 kg m−3

Cross-flow velocity Ua 0.044 m s−1

Source velocity w0 0.33 m s−1

TABLE 5.1: Inputs to the Lai model for plumes in a cross-flow
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FIGURE 5.4: Example plume trajectories from the Lai model using
parameters given in Table 5.1.
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It is more straightforward to implement the blockage effect in [71] (this will

be done in §5.4) but this model does not capture the nature of a single

plume in a cross-flow, and therefore, even with the addition of the blockage

effect, this model is unsuitable. There is no buoyancy dominated region near

the source of the plumes since the plumes in Figure 5.4 do not rise vertically

before being forced along a curved path by the cross-flow. This buoyancy

dominated flow can be seen for low z/D in the experimental photos in

Figure 5.1. Since this behaviour has been observed experimentally, it must

be included in the modelling. The final existing model to be discussed in

this chapter is JETLAG [37]. It will be shown that JETLAG exhibits the

required behaviour, and can be extended to include an implementation of

the blockage effect.

5.3.3 JETLAG

JETLAG is a Lagrangian model, derived in [80], which predicts the mixing of

buoyant jets and plumes with three-dimensional trajectories. The unknown

trajectory is modelled as a series of plume elements which increase in mass

with distance from the source. This mass increase is caused by two physical

factors - the shear-induced entrainment due to plume discharge and vortex

entrainment due to the cross-flow. A full discussion of the work from which

the JETLAG model is derived is given in [81, 82]. Here we introduce the

notation of [37].

By modelling the kth plume element, located at (xk, yk, zk) as a cylinder

with radius bk and “height” (or long axis) as hk. The velocity components

of the plume element in the x, y and z directions are denoted uk, vk and wk

respectively, while Vk =
√
u2
k + v2

k + w2
k gives the speed of the plume element

which is assumed constant through the plume element. The temperature,

salinity and density of this kth element are given by Tk, Sk and ρk respectively,

where ρk is a function of Tk and Sk. That is, density is a function of both
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salinity and temperature. Then the mass of this plume element is given by

Mk = ρkπb
2
khk. The model depends on two angles, ϕk and θk, which are the

angle between the plume and the horizontal plane, and the azimuthal angle.

The changes in plume elements are examined over discrete time steps ∆t. A

typical cylindrical element is given schematically in Figure 5.5

FIGURE 5.5: Schematic of a typical JETLAG plume showing the
cylindrical element. This is Figure 10.7 in [37].

First consider the shear and vortex entrainment, which are required to find

the change in mass due to turbulent entrainment, ∆Mk.

The shear entrainment, ∆Ms, at the kth plume element is found with

∆Ms = 2αsbkhk∆U∆t (5.16)

αs =
√

2
(
c1 + c2

sinϕk
F 2
l

)(
2Vk

∆U + Vk

)
where (5.17)

∆U = |Vk − Ua cos θk cosϕk| and (5.18)

Fl = ∆U√
g
(
ρa−ρk

ρa

)
bk

(5.19)

where c1 = 0.057 and c2 = 0.554 as given in [80, 37].
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In the above system of equations, ∆U is the change in velocity of the

plume due to entrainment in the direction of the centreline, αs is the (local)

entrainment coefficient and Fl is the local densimetric Froude number.

The vortex entrainment (or entrainment due to vorticity), ∆Mf , relies

on a so-called “Projected Area Entrainment (PAE)” hypothesis found in

[81, 80, 82]. The PAE hypothesis has three contributing terms: the projected

area term (Ap), the increase in area due to plume growth (Aw) and the

correction due to curvature (Ac). The PAE hypothesis is given by the sum

of these three terms. The vortex entrainment is given by the following

expression:

∆Mf = ρaUa

[
2bkhk

√
1 − cos2 θk cos2 ϕk + πbk∆bk cosϕk cos θk

+ πb2
k

2 ∆(cos θk cosϕk)
]

∆t

= ρaUa∆t(Ap + Aw + Ac)

(5.20)

and initial iteration of which is given by

∆Mf = ρaUabkhk

[
2
√

1 − cos2 θk cos2 ϕk

+ π
∆bk
∆sk

cosϕk cos θk

+ πbk
2

(cos θk cosϕk − cos θk−1 cosϕk−1)
∆sk

]
∆t.

(5.21)

Note that the term under the square root in (5.21) is equivalent to, but of

a different form to that used in [80, 37]. The form chosen in [80, 37] was

to minimise round off error. Finally, the change in mass due to turbulent

entrainment, or the total entrainment is given by

∆M = max(∆Ms,∆Mf ). (5.22)
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Alternatively, one may use

∆M = ∆Ms + ∆Mf (5.23)

however the former was seen to be in better agreement with experimental

data [37].

Having determined the change in mass, the JETLAG model in terms of

known equations is:

• Mass:

Mk+1 = Mk + (∆M)k (5.24)

• Temperature, salinity and density:

Sk+1 = MkSk + (∆M)kSa
Mk+1

(5.25)

Tk+1 = MkTk + (∆M)kTa
Mk+1

(5.26)

ρk+1 = ρ(Sk+1, Tk+1) (5.27)

• Horizontal momentum:

u0 = V0 cosϕ0 cos θ0 (5.28)

v0 = V0 cosϕ0 sin θ0 (5.29)

uk+1 = Mkuk + (∆M)kUa
Mk+1

(5.30)

vk+1 = Mkvk
Mk+1

(5.31)
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• Vertical momentum:

wk+1 =
Mkwk +Mk+1

(
∆ρ
ρ

)
k+1

g∆t
Mk+1

(5.32)

Uk+1 =
(
u2
k+1 + v2

k+1

) 1
2 (5.33)

Vk+1 =
(
u2
k+1 + v2

k+1 + w2
k+1

) 1
2 (5.34)

• Cylinder dimensions:

h0 = b0 (5.35)

hk+1 = Vk+1

Vk
hk (5.36)

bk+1 =
(

Mk+1

ρk+1πhk+1

) 1
2

(5.37)

• Plume orientation:

sinϕk+1 = wk+1

Vk+1
(5.38)

cosϕk+1 = Uk+1

Vk+1
(5.39)

sin θk+1 = vk+1

Uk+1
(5.40)

cos θk+1 = uk+1

Uk+1
(5.41)

• Trajectories:

∆t = h0

V0
(5.42)

xk+1 = xk + uk+1∆t (5.43)

yk+1 = yk + vk+1∆t (5.44)

zk+1 = zk + wk+1∆t (5.45)

(∆s)k+1 = Vk+1∆t (5.46)
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To obtain the trajectories from the JETLAG model, a first iteration is

performed using (5.16) and (5.21), and updating (5.24) - (5.46) for each

point on the plume. These values are then stored and the next iteration

takes (5.20), and repeats the same process. The iterative process is stopped

when the following convergence criterion:

{
(x− xprev)2 + (z − zprev)2

}1/2
≤ ϵ (5.47)

is satisfied. The subscript “prev” denotes the value from the previous

iteration, and the lack of subscript denotes the value from the current

iteration. Note that y is not considered in (5.47) as the model is restricted

to 2D. If 3D trajectories were desired, additional y dependence in (5.47)

would be required. Taking ϵ = 10−4, it was stated in [37] that the JETLAG

model should converge in approximately two iterations. This is seen when

replicating their model. By taking ϵ = 10−14, convergence is obtained in six

iterations. The rate of iterative convergence is linear, as shown in Figure 5.6.

The system of equations given above for the JETLAG model is only

immediately applicable to non-interacting plumes; the effects of interaction

and the blockage effect have yet to be included. Figure 5.7 shows a

simulation of two plumes in cross-flow using the JETLAG model. Near the

source (for small z), the plume rises near vertically, whereas far from the

source the cross-flow begins to bend the plume. This agrees with what is

seen experimentally, with a buoyancy dominant region near the source

where the plume rises near vertically, and a momentum dominant region in

the far field where the cross-flow forces the plume to significantly bend.

Adding plume-to-plume interaction into the JETLAG model required

determining how to model the blockage effect.
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FIGURE 5.6: Semilog plot of the error between successive iterations of
the JETLAG model, given by the LHS of (5.47).
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FIGURE 5.7: Sample trajectories from the JETLAG cross-flow model
without interaction.
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5.4 Implementing the Blockage Effect for

Two Plumes

As discussed in §5.2, the blockage effect is seen in a line of plumes in a

cross-flow. The effect itself is that the upstream plumes are significantly

more bent-over than the downstream plumes. This suggests shielding by the

upstream plumes to reduce the cross-flow felt by the downstream plumes.

To capture the blockage effect, we model this reduced cross-flow.

We begin by considering the specific case of two plumes in a cross-flow. To

leading order, the reduction in flow felt by a point on the downstream plume

will be caused by the point closest to it on the upstream plume.

For a fixed point on the downstream plume, denoted (xk, zk), the closest

point on the upstream plume is denoted (xc, zc) and is defined as

(xc, zc) =
{

(x∗, z∗) on first plume
∣∣∣√(x∗ − xk)2 + (z∗ − zk)2 is minimised

}
(5.48)

and the minimal distance is denoted χc. Recall from §4 that the entrainment

of one plume on another is given, in the notation of JETLAG, by

F = −m

2π
1
r

= −αbV

χ

where b, V and χ are evaluated on the upstream plume. Then, by assuming

that all shielding experienced by the downstream plume at (xk, zk) is due

to the entrainment experienced due to the upstream plume at (xc, zc), the

amount of shielding - or the reduction in flow, experienced at (xk, zk) is

given by

Fk = −αbcVc
χc

(5.49)

where bc, Vc denote the radius and centreline velocity on the point (xc, zc) and
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α denotes the entrainment coefficient. The reduced cross-flow experienced

at (xk, zk) is then given by

U r
k = Ua + Fk. (5.50)

Note that, in the limit of Ua → 0, i.e. no cross-flow, the entrainment

experienced by one plume from the other returns to the definition given in

§4, and in turn this model will return to the previously discussed stillwater

interacting model.

x

z Ua U r
k

b(s)

ue

θ(s)

(x∗, z∗) (xk, zk)* *

FIGURE 5.8: Schematic of two plumes in a cross-flow where the reduced
cross-flow at point (xk, zk) is given by U r

k ≤ Ua.

By repeating this method for all points on the second plume, we obtain a

reduced velocity for each point. The value of U r
k replaces Ua in (5.16), (5.20)

and (5.21) the next iteration of JETLAG. We then iterate the method to

convergence as outlined in §5.3.3 and generate Figure 5.9. We see that the

left plumes are identical between figures, but the right plume is significantly

less bent-over in the second image which fits well with the experimental

imagery of Yu in Figure 5.1. It is important to note that Figure 5.9 shows

that the plumes pass through one-another, which is not physically true.

Indeed, the plumes would be expected to merge instead of passing through

each other. This is discussed in §5.4.2.
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FIGURE 5.9: Figure showing the comparison between outputs from
JETLAG. Left is the output with uniform cross-flow (no blockage effect)
and right is with the blockage effect.

Figure 5.10 shows the errors between successive iterations in the same way as

outlined previously, in §5.2. Also shown is that JETLAG converges linearly

when including the blockage effect in the system of equations.

5.4.1 A General Blockage Effect

The modelling of the blockage effect can be generalised to an arbitrary

number of plumes in a line. The flow reduction experienced by a point on a

downstream plume can be approximated by the sum of the reductions from

the closest point on each of the upstream plumes. Let Np and Ns denote the

number of plumes and spatial steps respectively. Define also np and ns to be

the current plume number and current spatial step number. Finally, define

Rns,np to be the reduction in flow at point ns on plume np. The method for

computing the reduced flow is given as follows:

1. Set ns = 1 and np = 2.

2. Extract the point (xns , zns) from plume np. Set Rns,np = 0.
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FIGURE 5.10: Plot of the convergence of the JETLAG model with and
without the blockage effect.
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3. For each plume upstream of the current one (i.e. for k = 1 : np − 1):

• Extract the trajectory of plume k, defined as (xk, zk).

• Compute the shortest distance, χc, between plume k and the

point (xns , zns), and the corresponding point (xc, zc). Denote any

quantities at (xc, zc) by a subscript c.

• update Rns,np = Rns,np + αbcVc
χc

4. Compute the reduced cross-flow U r
ns,np

= Ua −Rns,np .

5. If ns < Ns, update ns = ns + 1. Else np = np + 1, ns = 1.

6. Continue until ns = Ns and np = Np. This computes the reduced

cross-flow for each of the relevant plumes in each location on the

discretised centreline.

Figure 5.11 and Figure 5.12 show the results of using this algorithm for 4

and 8 plumes in a cross-flow using parameters and boundary conditions

given in Table 5.2. The plume trajectories exhibit the behaviour shown

experimentally by Yu et al. [77], giving preliminary validation to this model.

Further experimental validation will be given in §6.

5.4.2 Modification of JETLAG: Merging

A key difference between the outputs from the JETLAG modelling discussed

previously, and the experimental data given by Yu et al. [77] is seen in

Figure 5.11. We see that the plume trajectories found by JETLAG pass

through one another whereas in practice the plumes combine and remain

so. The modelling extension is outlined for two plumes, and outlined for n

co-linear plumes.

For two plumes, we expect the plumes to interact and merge into a single
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Parameter Value

Angle to the vertical, ϕ0
π
2

Angle to the horizontal, θ0 0

Centreline separation, χ0 0.01 m

Plume radius, b0 10−3 m

Source temperature, T0 19 ◦C

Ambient temperature, Ta 21 ◦C

Source Salinity, S0 0 ppt

Ambient Salinity, Sa 0 ppt

Source tracer concentration, c0 0 kg m−3

Ambient tracer concentration, ca 0 kg m−3

Source density, ρ0 966 kg m−3

Ambient density, ρa 1000 kg m−3

Centreline speed, V0 0.33 m s−1

Ambient cross-flow velocity, Ua 0.014 m s−1

TABLE 5.2: Table containing the parameters used in JETLAG to generate
Figure 5.11 and Figure 5.12.
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FIGURE 5.11: Simulation results for four plumes in a cross-flow with the
blockage effect. Model inputs are given in Table 5.2.
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FIGURE 5.12: Simulation results for eight plumes in a cross-flow with
the blockage effect. Model inputs are given in Table 5.2.
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plume at some location (xm, ym, zm). At this merging point, the merged

plume will also have quantities as given in Table 5.2. Each of these quantities

is calculable, but can not be determined without finding the merging point.

To determine the merging point, the method of §4 is extended to a cross-flow.

That is, the trajectories of the two distinct plumes are simulated, and their

buoyancy profile determined using

E(x, y, z) =
nPlumes∑
j=1

exp
−(x− xj)2 + (y − yj)2 + (z − zj)2

b2
j

 (5.51)

where xj, yj, zj, bj are the coordinates and radii of each plume. Using

MATLAB peak detecting, we find the peaks of (5.51) along the normal to

the line segment connecting consecutive points on the centreline of the most

downstream plume. When there is a single peak instead of two, the plumes

have merged. This gives the merging point. For further detailed discussion

of the merging point, see §6.

Specifically for two plumes, let subscripts m1 and m2 denote the quantity

on plumes 1 and 2 at the merging point respectively. The coordinates of the

new, merged, plume source is then given by the mean of the locations of the

merging coordinates. i.e.

(x0, y0, z0) = 1
2 (xm1 + xm2 , ym1 + ym2 , zm1 + zm2) . (5.52)

To ensure continuity of the velocity scale we approximate the merged radius

as

b0 =
(
b2
m1 + b2

m2

)1/2
. (5.53)

Note that if bm1 = bm2 = bm then the merged radius is given by b0 =
√

2bm

which is preciously the result seen in (3.25) in §3.4.1.

To compute the merged velocities, we assume that at the point of merging,
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the plumes behave as though an inelastic (or plastic) collision had occurred.

That is, the plume elements “stick together”. In this case, the merged

velocities are given by

(um, vm, wm) =(
Mm1um1 +Mm2um2

Mm1 +Mm2

,
Mm1vm1 +Mm2vm2

Mm1 +Mm2

,
Mm1wm1 +Mm2wm2

Mm1 +Mm2

) (5.54)

where M denotes the mass of the plume element. Similarly, we may define

Um and Vm as

Um =
√
u2
m + v2

m (5.55)

Vm =
√
u2
m + v2

m + w2
m (5.56)

from which we also obtain

ϕm = sin−1
(
wm
Um

)
. (5.57)

Furthermore, we define θm = 0 to ensure that the plumes remain restricted

to the original 2D plane. Finally, the merged density, ρm, is computed using

ρm = Mm1 +Mm2

πb2
m1hm1 + πb2

m2hm2

(5.58)

where h is the height of the cylindrical plume element as outlined in §5.3.3.

Using these new “source” conditions, the merged plume is simulated for a

further 103 spatial steps to produce Figure 5.13 which shows the different

behaviour captured by this modification to the JETLAG model.

By using this modification to the JETLAG model, we are also able to extend

this idea to N co-linear plumes. This extension uses the argument that, for

N co-linear plumes, the two most upstream will merge, then this merged

plume will merge with the next plume and so on, until only one plume,
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containing each of the original plumes, remains.

FIGURE 5.13: Figure comparing the trajectories and radii of two plumes
subject to the blockage effect. If the plumes are allowed to follow the
original model, the left plot is produced. The right plot is produced when
the plumes are forced to remain merged once they’ve sufficiently merged
to be thought of as behaving like a single plume.

5.5 Conclusion

In this chapter, we have developed a model for plumes in a cross-flow

including, in particular, the phenomenon known as the blockage effect -

where the upstream plumes shield the downstream plumes. Three existing

models for plumes in a cross-flow, the model devised by Hoult et al. [79], the

model devised by Lai, and JETLAG were investigated. The JETLAG model

captured the behaviour of a plume in a cross-flow and could naturally be

extended to implement the blockage effect. Therefore, the existing JETLAG

model was extended to include my own model of the blockage effect. By

simulating this extended model, the physical behaviour was captured in

simulations of 2, 4 and 8 plumes in a cross-flow. The model outputs for 2

plumes will be compared to experimental data in §6.
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Chapter 6

Plumes in a Cross-Flow:

Experiments

6.1 Introduction

The modelling presented in §5 captured the behaviour of co-linear plumes

in a cross-flow. This was done using a modification of the JETLAG model

[37]. In this chapter, the model is validated experimentally. Specifically,

experimental data is acquired to describe the trajectories of these plumes

in a cross-flow. These trajectories are then compared to those predicted by

the modelling in §5. Furthermore, from these trajectories, the experimental

merging distance is found and again compared to the merging distance

predicted by the previous modelling.

6.2 Methodology

6.2.1 Experimental Setup

The experiments to generate plumes in a cross-flow were set up according

to Figure 6.1. A 5 m × 0.60 m × 0.60 m flume, in a laboratory at 21 ◦C, was
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filled with freshwater of density ρ = 1000 kg m−3. This freshwater was the

ambient environment. The fluid used to create the plumes was a saline

solution of density ρ = 1033 kg m−3. Both of these densities were measured

using a sodium chloride refractometer. The saline solution was created using

20 litres of freshwater thoroughly mixed with 1.03 kg of sodium chloride.

The plumes were visualised using 3 grams of E151 brilliant black dye mixed

with 0.3 grams of yellow tartrazine dye.

The footage was collected at 30 frames per second using a manta camera

with a 25 mm lens. A uniform light sheet was placed to backlight the region

where the plumes would enter the flume. All windows were covered and any

other artificial light sources were removed from the laboratory to minimise

the noise introduced into the data. As discussed in §4.5.1, custom plume

nozzles were used to ensure that each plume was fully turbulent. The design

of these nozzles is given in Figure 4.9, based on the design of Dr Paul Cooper,

Department of Mechanical Engineering, University of Wollongong, NSW,

Australia.

We performed experiments using one, two and three plumes in a line at

various source separations and cross-flow rates. Each plume had the same

strength and all plumes were separated by the same distance from their

nearest neighbour(s). To ensure that the cross-flow was constant, the flume

was turned on and set to the desired cross-flow velocity and left to run for

30 minutes before the experiment. This was done to minimise any bursts of

turbulence from air bubbles inside the engine that drove the water through

the flume. We also ensured that the cross-flow was uniform by measuring

the velocity in 3D using a vectorino, a velocity meter which measures in 3

dimensions, whenever the cross-flow velocity was changed. The experiment

would only be performed if the vectorino found the cross-flow to be horizontal

(parallel to the long edge of the flume) and uniform.
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Constant Head Tank

Pipes

Uniform Light Sheet

Camera

Plumes

Flume with Horizontal Cross-flow

Direction of Cross-flow

FIGURE 6.1: Experimental schematic of the cross-flow experiments, now
with flow allowed.
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6.2.2 Experimental Technique

The experiments in this chapter were conducted similarly to those in §4.5.2.

The method is as follows:

1. Set the nozzle separation (for two or more nozzles).

2. Fill the flume with 0.6 m of freshwater and turn on the engine of the

flume to create the desired cross-flow velocity. To ensure that the

velocity is constant, based on preliminary experiments, the flume was

allowed to run for 30 minutes before experiments were started.

3. Record 300 frames of background footage. This was used to remove the

background from the plume imagery in the dye attenuation technique

(given in Figure 4.10 and Figure 6.2).

4. Turn on all nozzles being used for this experiment and allow to run

for 30 seconds. This allows the plume(s) to establish.

5. Begin recording the experiment and record for 90 seconds.

6. Stop recording, turn off all nozzles and drain the water from the flume.

7. Repeat steps 2 - 6 until five independent runs of the experiment are

recorded at the current separation.

8. Increase the nozzle separation by 5 mm. Repeat this method until the

configuration no longer merges in the region of the flume illuminated

by the uniform light sheet.

Note that there are several key differences between this method and the

method given in §4.5.2. The first is that we do not remove bubbles from the

flume. This is because the fluid flows through the flume sufficiently quickly

that bubbles were slow to form. Any bubbles that did form were washed
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downstream in the flume and therefore did not contaminate the experimental

images. We were also able to record footage for significantly longer than

in §4.5.2 because we did not encounter the “filling box problem”. In the

stillwater experiments, the dyed saline plumes would reach the bottom of

the perspex tank and then cause a layer of dye to rise from the bottom of

the tank which began to obscure the plume. As the flume had a flow and

was removing the dyed fluid, this problem was not encountered. The above

method was used for two and three plumes in a line with source separations

ranging from 35 mm to 100 mm in a cross-flow of 0.014 m s−1. For a chosen

separation, 60 mm, the cross-flow was also increased to 0.044 m s−1 and

0.084 m s−1.

6.3 Data Analysis

The aim of the experiments, outlined in §6.2.2, was to determine the

behaviour of plumes in a cross-flow. In §5, we consider the behaviour of

steady plumes in a cross-flow, therefore, we extract a time-average of each

experiment using the dye attenuation technique as shown in Figure 4.10

and Figure 6.3. Once this steady plume image has been extracted, there are

two quantities of particular interest - the centreline trajectories of the

plumes, and the so-called merging distance. The merging distance is

analogous to the merging height from §3 - §4. It is the curved distance from

the source of the plumes to the point at which they merge and can be

thought of as behaving like a single plume. Before attempting to compute

the merging point, and thereby the merging distance, we must first find the

centreline trajectories of the plumes.
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(a) Single frame from one nozzle
cross-flow experiment.

(b) Time-averaged data from one
nozzle cross-flow experiment.

(c) Single frame from two nozzle
cross-flow experiment.

(d) Time-averaged data from two
nozzle cross-flow experiment.

(e) Single frame from three nozzle
cross-flow experiment.

(f) Time-averaged data from three
nozzle cross-flow experiment.

FIGURE 6.3: Sample outputs from the cross-flow experiments, after
the background has been subtracted and the time-average taken (where
relevant). Axes are the same as in Figure 6.2.
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6.3.1 Extracting Plume Trajectories

To extract the trajectories of the plumes found experimentally, a two

dimensional peak search was used. For an initial iteration, we began by

scanning top to bottom along the experimental image, and extracted the

pixel intensity from each row of pixels in the image and fit an N -peaked

Gaussian to this data, where N is the number of plume nozzles used. This

method breaks down when the plumes are sufficiently far from vertical.

Once the cross-flow has advected the plumes off-vertical, we repeat the

same method but scanning left to right, and extracting columns of pixels

instead of rows. This method now breaks down when the plumes are

sufficiently off horizontal. A linear interpolant is used in the region where

neither of the above searches are valid, thereby completing the initial

iteration. Using MATLAB’s “findpeaks” function, we determine the number

of peaks in each of these fitted Gaussians. The locations of these peaks are

used to approximate the plume trajectory. In the top-to-bottom search, we

find the buoyancy dominated trajectories of the plumes and in the

left-to-right search, we find the momentum dominated trajectories. Note

that there is an intermediate region where these scans do not detect the

correct number of peaks as we haven’t extracted an angled plane of pixels,

instead only rows or columns. In order to complete the initial iteration, we

linearly interpolate this intermediate region, using the partial trajectories as

a guide. Once complete, we have the initial plume trajectories.

For subsequent iterations, the following method was used:

1. Set k = 1, where k is the index of the current position on the plume

trajectory, and extract the kth entries in the previous trajectories. This

will return N points.

2. Compute the best fitting linear interpolant through these N points
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3. Extract the pixel data along this line. Note that this line extends to

infinity, but we restrict this to only the image region. That is, the line

is restricted to the region that overlaps the image.

4. Fit an N -peaked Gaussian to this extracted data and find the peaks.

5. Add the locations of these peaks to the current trajectory.

6. Update k to k + 1.

7. Iterate until k equals the number of points in the previous trajectory.

This algorithm is given schematically in Figure 6.4 where the circular points

denote example points on the centreline of the plume, the orange line denotes

the line segment between consecutive centreline points, the green curves are

the Gaussians fitted to the light intensity extracted along the line normal

to the orange line segment. The peaks of these Gaussians are those added

to the trajectory as given in step 5 of the algorithm. This method is then

iterated until the two-norm between successive trajectories is sufficiently

small. That is,

√
(xcurrent − xprevious)2 + (zcurrent − zprevious)2 < ϵ (6.1)

for some tolerance, ϵ. Once this measure is less than ϵ, we say that we have

iteratively converged to the experimental trajectories of the plumes. An

example of these converged trajectories is given in Figure 6.5. The cyan

trajectory is the midpoint of the white and black, which are the trajectories

of the two plumes. Note that the white and cyan trajectories disappear under

the black, which shows that after this point, there is only one identifiable

peak in the two-peaked Gaussian which suggests that the two plumes have

merged into one plume - which will have the trajectory given by the black

centreline. Once the trajectories have been extracted, we are able to use
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them to determine the merging point.

z = 0

(x1, z1)

(x2, z2)

(xk, zk)

(xk+1, zk+1)

FIGURE 6.4: Schematic of the algorithm to extract plume trajectories.
The blue line shows individual line segments connecting consecutive points
(shown by blue squares) on the dashed, midline curve. The normal to
these line segments are given in red. Pixel data is extracted along the
red line, and a Gaussian fitted to this pixel data. This Gaussian is shown
in green.

6.3.2 Finding the Merging Point

In order to determine the merging point, we require the midpoint trajectory

- an example of which is given in cyan in Figure 6.5. The trajectory is

discrete, and contains K points. Beginning from the source (k = 1), we

compute the normal to the line connecting the kth and (k + 1)th points on

the trajectory. The pixel data along this normal line is extracted, and an
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FIGURE 6.5: Figure showing the experimentally determined trajectories
of two plumes, separated by a distance 35 mm, in a cross-flow with velocity
0.014 m s−1.
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N -peaked Gaussian is fitted to this data. The merging point is defined as

the first point along the midpoint trajectory where there is a single peak

in the N -peaked Gaussian. An example of the merging point is given in

Figure 6.6 for two plumes, with a source separation of 35 mm, and in a

0.014 m s−1 cross-flow. The black square denotes the first point, scanning

from the source down (approximately top to left in Figure 6.6) at which we

find one peak instead of two.

We performed this method on each independent experiment, and on the

ensemble average of each separation distance (i.e. the ensemble average

of the accumulated data from the five experiments performed at 35 mm

separation). Doing so, we determined the merging point of each experiment.

This was done for both the two and three plume experiments. Finally, we use

this merging point to determine the merging distance for each experiment.

6.3.2.1 Finding the Merging Distance

The merging distance is analogous to the merging height from §3 - §4.

We define it as the distance from the source of the midpoint trajectory

to the merging point, found in Figure 6.3.2. To determine this distance,

we computed the Euclidean distance between each successive pixel on the

midpoint trajectory, and sum these. This gives an approximation to the

merging distance using piecewise Euclidean distance. Explicitly, we have

sm =
k=Km−1∑
k=1

√
(xk − xk+1)2 + (zk − zk+1)2 (6.2)

where Km is the index of the merging point and sm denotes the merging

distance. Performing this method for each experiment and the ensemble

average, we are able to determine the merging distance for two and three

plumes in a given cross-flow as a function of the source separation.
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FIGURE 6.6: Figure showing the experimental midpoint centreline (white)
and the merging point (black).
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6.4 Results

By performing the analysis outlined in §6.3.2.1, we produce Figure 6.7 to

show the merging distance of two plumes in a cross-flow of 0.014 m s−1, as a

function of source separation. As in §4.6, this data is compared to a straight

line through the origin, sm = λmχ0, where λm denotes the non-dimensional

merging distance and χ0 the source separation between the plumes. Fitting

this model to the experimental data using MATLAB’s “fitnlm” function,

which uses an iterative, non-linear least squares estimation, gives the solid

line in Figure 6.7. The error bars are computed by taking the standard

deviation of the merging distances found in the independent experiments,

whereas the value shown by the squares is the merging distance found using

the ensemble average of these experiments.

FIGURE 6.7: Plot of the merging distance, sm, of two plumes in a
cross-flow of 0.014 m s−1, as a function of source separation (left) and the
same merging distance non-dimensionalised by the source radius of the
plume nozzle, 2.5 mm.

Using an r2 correlation coefficient, we see that the experimental data for two

plumes in a cross-flow is well approximated by the straight line through the

origin. Direct comparison between model and experiments gives r2 = 0.84,

implying strong correlation between model estimates and experimental data.
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However, when repeating this method for three plumes in the same cross-flow,

we obtain a noticeably poorer fit as shown in Figure 6.8, resulting in an

r2 of 0.59. Note that there is significantly less data for the three plume

experiments due to the length of the uniform light sheet. That is, the plumes

were advected outside of the range of the light sheet after separation distances

of 70 mm. This r2 value still suggests a strong positive correlation between

experimental data and the straight line through the origin, but not to the

extent of the two plume experimental data. There are numerous ways to

account for this difference in the three plume case. The most likely reason is

that the third plume adds an additional layer of plume-to-plume interaction

which, when combined with the interaction between the cross-flow and the

plumes themselves, causes the merging distance of the line of plumes to

deviate from the predicted linear relationship.

FIGURE 6.8: Plot of the merging distance, sm, of three plumes in a
cross-flow of 0.014 m s−1, as a function of source separation (left) and the
same merging distance non-dimensionalised by the source radius of the
plume nozzle, 2.5 mm. Note that the 40 mm separation experiment has
been removed from the data set as it was determined to be an outlier.

Using an identical method of analysis, we determine the merging distance for

lines of plumes with a source separation of 60 mm as a function of cross-flow

velocity. Due to experimental limitations - namely the minimum flow rate

of the flume and the maximum flow rate before the plumes were entirely
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FIGURE 6.9: Plot of the merging distance of two and three plumes in a
cross-flow of 0.014 m s−1, as a function of source separation (left) and the
same merging distance non-dimensionalised by the source radius of the
plume nozzle, 2.5 mm.

sheared off by the flow - we were only able to complete this experiment

for three flow rates. These were 0.014 m s−1, 0.044 m s−1 and 0.084 m s−1.

Taking flows slower than this would cause the engine of the flume to stall

and create a non-constant and non-uniform flow in the flume. Any faster

flows would cause the plumes to be sheared off before they could sufficiently

form, and certainly before any chance of merging. This data is shown in

Figure 6.10 and Figure 6.11. We note that the merging distance, sm, is

non-dimensionalised by the nozzle radius b0 = 2.5 mm, and the cross-flow

velocity, Ua, is non-dimensionalised by the source velocity w0 = 0.33 m s−1.

6.5 Comparison to Modified JETLAG

6.5.1 Comparison of Trajectories

In this section, we compare the plume trajectories predicted by JETLAG to

the plume trajectories found experimentally. We also compare the merging

distances found experimentally with those extracted from the JETLAG

model. The parameters used in the JETLAG model are the same as the
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FIGURE 6.10: Plot showing the merging distance of two plumes in
cross-flows of 0.014 m s−1, 0.044 m s−1 and 0.084 m s−1.
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FIGURE 6.11: Plot showing the merging distance of three plumes in
cross-flows of 0.014 m s−1, 0.044 m s−1 and 0.084 m s−1.
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experimental quantities used in §6.4 and are given in Table 6.1. It is

important to note that the values of ρ0 and ρa are chosen such that ∆ρ

is the same as in the experiments performed in this chapter because the

experiments are upside down compared to the corresponding JETLAG

simulations.

Parameter Value

Ua 0.014 m s−1

V0 0.088 m s−1

ρ0 967 kg m−3

ρa 1000 kg m−3

b0 2.5 × 10−3 m

TABLE 6.1: Table of initial conditions used to compare trajectories found
experimentally and with the JETLAG model.

We compare trajectories between experiments with source separation

distances of χ0 = 50 mm and 70 mm. The trajectories in question are

plotted in Figures 6.12 and 6.13. In these figures, if the experimental

centrelines were indistinguishable, i.e. the plumes had fully merged, only

the red trajectory, for the rightmost plume, will be present as the lines are

plotted over one-another. This is especially prominent in Figure 6.12. By

examining these figures one-by-one, we encounter several differences

between the model trajectories and the experimental.

For the smallest separation in the sample images, specifically 50 mm, we see

that the near-source region is well approximated, but the far field is a poor

match to the experimental data. Experimentally, we see that the plume

centrelines meet approximately two source separations from the midpoint

of their origins, and are then indistinguishable by the algorithm given in

§6.3.1. However, in the JETLAG model approximations, the centrelines

cross approximately 2.5 source separations from the midpoint of their origins

and then separate again. These trajectories are then a poor approximation
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for the experimental, merged centreline. This so-called separating behaviour

can be explained by referring back to §5.4 and noting that the blockage effect

is applied to only one plume. That is, the blockage effect model assumes that

only the right plume (red) is shielded, and is so for the entire experiment.

Whereas in practice, after the plume centrelines cross, the left plume (blue)

is now experiencing the blockage effect - not the right plume - and therefore

is undergoing behaviour not approximated in the JETLAG model. This

behaviour is seen for greater source separations as well, but does not lead to

as severe of a deviation from the experimental data. Furthermore, we note

that the JETLAG model used for comparison assumes that there are two

plumes, and is not expected to be valid for the merged trajectory/

At 70 mm separation, we find that the near-source region is again well

approximated by the JETLAG model, albeit with some deviation in the

experimental centreline caused by turbulence in the cross-flow. We also

encounter the so-called separating behaviour mentioned previously, but for

this source separation the left plume approximately follows the merged

experimental centreline. As before, the rightmost plume from the model is

considerably different from the merged centreline. This is explained by the

same argument as the 50 mm separation.

6.5.2 Comparison of Merging Distances

Recall that, along with the trajectories of the plumes, there is particular

interest in finding how far from their sources that they merge. This is

the merging height in stillwater, and the merging distance in a cross-flow.

In §6.3.2, a method for how to find the merging distance for plumes in a

cross-flow from experimental data was given. This is now compared to the

merging distance found from the modelling given in §5, using a nominally

identical method.
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FIGURE 6.12: Comparison of trajectories found experimentally (solid)
and with the JETLAG model (dashed) for 50mm source separation.

162



FIGURE 6.13: Comparison of trajectories found experimentally (solid)
and with the JETLAG model (dashed) for 70mm source separation.
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We first examine the behaviour of two plumes in the lowest flow used

experimentally - 0.014 m s−1. By simulating the JETLAG model with the

blockage effect, as outlined in §5, the plume trajectories are obtained for

each experiment performed at this flow rate. By extracting the merging

point and finding the merging distance, similarly to the method in §6.3.2,

the data shown in Figure 6.14 is found. The data given in this figure show

that the model and experimental merging distances exhibit the same trend,

namely that they increase with the source separation. For small source

separation distances, the model data and experimental data are in good

agreement. However, for larger source separation distances (in this case

60 mm or greater), the model merging distance is significantly greater than

the experimental merging distance. This discrepancy suggests that the

blockage effect is underestimated for larger source separations.

To complete the comparison with the two plume experimental data, the

merging distance from the modelling data is obtained at all flow rates used

experimentally (0.044 m s−1 and 0.084 m s−1). These are compared to the

corresponding experimental merging distances in Figure 6.15. Here, it can

be seen that for higher cross-flow velocities, the model and experimental

data are in good agreement. However, for the lowest cross-flow, there is a

significant difference between the model and experiments. This is consistent

with the observation that the blockage effect is underestimated for larger

source separations at a flow velocity of 0.014 m s−1. For greater velocities,

the blockage effect appears to be well approximated by the modelling of §5.

Similarly, the merging distances for three plumes at the source separations

that correspond to the experimental data from this chapter are computed.

The three plume modelling is seen to be in poorer agreement with

experimental data, consistently underestimates the merging distances for

the separation distances chosen. However, as the separation distance

increases, the experimental merging distance is seen to be a noticeably
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FIGURE 6.14: Plot showing the experimental and model merging heights
for two plumes in a cross-flow of 0.014 m s−1.
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FIGURE 6.15: Plot showing the model merging distances of two plumes
in cross-flows of 0.014 m s−1, 0.044 m s−1 and 0.084 m s−1 compared to the
corresponding experimental data.
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better fit to the model data. Indeed, it is seen in Figure 6.16 that the model

data does not increase linearly with source separation, instead being

proportional to the square of source separation.

FIGURE 6.16: Plot showing the experimental and model merging heights
for three plumes in a cross-flow of 0.014 m s−1.

6.6 Conclusion

This chapter has concentrated on determining the experimental merging

distance for plumes in a cross-flow. The experimental data required to do so

was obtained using flume experiments as outlined in §6.2. The trajectories of

these experimental plumes were extracted and compared to model trajectories

obtained in §5.
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These experimental plume trajectories were seen to be in good agreement

with those obtained from the mathematical model, and noticeably improved

as the separation distance increased. This is because the mathematical model

used was adapted from a model intended for non-interacting plumes, and

the greater the separation distance between these plumes, the closer their

behaviour is to that of independent, non-interacting plumes. From these

experimental trajectories, the merging distance - the distance downstream

from the plume sources that the plumes can be considered to behave as

a single, large plume - was determined and compared to the experimental

merging distance.

Comparing the experimental merging distances to those predicted by the

modelling work, it is apparent that the model consistently underestimates

the importance of the blockage effect, as the plumes are seen to merge lower

than predicted by the modelling. This is also seen in the experimental

trajectories - particularly for smaller separations. In both the experiments

and the model, we saw that the merging distance increased with source

separation distance, number of co-linear plumes and decreased rapidly as

the cross-flow velocity increased. This work could be extended to determine

the trajectories and merging distances of arrays of plumes in a cross-flow,

and comparing to the corresponding modelling, both of which were beyond

the scope of this thesis.
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Chapter 7

Discussion and Conclusion

Heat pumps are a renewable source of thermal energy which are becoming

more common as countries move from fossil fuels to renewable, sustainable

energy. These heat pumps can be used to provide both heating and cooling,

and have been successfully used for cooling in Central London [7]. This

thesis has considered only open-loop heat pumps in rivers, which discharge

water of a different temperature than the ambient river (cooler if the heat

pump is used for heating, warmer if for cooling) back into the ambient river.

In doing so, the heat pump creates a thermal plume in the river. As these

heat pumps are commonly part of a larger system of pumps, known as a

district heating (or cooling) system, the interaction between these plumes is

particularly important. This interaction can lead to reduced efficiency for

downstream systems, known as thermal breakthrough or parasitic energy,

and also give a combined thermal impact on the ambient environment, which

affects the riverine life found in the nearby environment.

The behaviour of these thermal plumes has been investigated using field

data, as well as being modelled in two types of ambient environment - a still

environment and a cross-flow. The field data, collected by Dugdale et al. [54],

showed a thermal power law between the temperature difference caused by
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the plume, and the distance downstream from the source of this plume. A

similar power law was observed in several sites along the Matapédia river

within this study. From this sample of data from the Matapédia river, the

obtained power law appeared scale independent.

The mathematical modelling of plumes in a stillwater environment

presented here considered two cases for plume behaviour - non-interacting

and interacting. Currently in the literature there is a model for two plumes

in stillwater [38] and for an infinite line of interacting plumes [65]. The

merging height was not considered for the latter, instead the merging height

of two plumes was validated. However, the intermediate cases of 3 ≤ n < ∞

had not been studied. These are studied in this work. In both interacting

and non-interacting cases, the merging height - the vertical distance from

the sources of the plumes at which the plumes could be considered a single,

larger plume - was determined.

In the non-interacting case, the merging height of n co-linear plumes was

seen to scale linearly for small n and like
√
n for large n. Sources distributed

as square grids and an equilateral triangle were also considered. The n× n

square grid was seen, in the mathematical model, to have an identical

merging height to the corresponding n co-linear plumes. Finally, the merged

plume - the larger far-field plume that a line of n plumes can be considered

to behave like - was investigated, and shown to always behave like a lazy

plume and exhibit radial growth which scales with
√
n.

A model to determine the merging height of interacting plumes was also

developed based on the assumption that the strength of plume-to-plume

interaction is inversely proportional to the distance between the plumes.

This model considered an arbitrary, finite, number of interacting co-linear

plumes, thereby addressing the gap in the current literature which considers

this for two plumes. This work also considered an equilateral triangle and a
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2 × 2 square grid. These models were validated with experimental data. In

all cases, these interacting models showed agreement with the experimental

data. The findings from these models showed that the merging height of

co-linear plumes scales linearly with source separation between the plumes,

and approximately linearly with the number of plumes.

Next, plumes in a cross-flow were investigated, and a model was devised

based on the existing JETLAG model. This modelling described the

behaviour of plumes in a cross-flow which also exhibited the blockage effect

- where upstream plumes were seen to shield the downstream plumes from

the cross-flow - which had not previously been implemented in JETLAG.

This model was able to capture the behaviour of n co-linear plumes and

validated against experimental data for two and three co-linear plumes. the

experimental trajectories were in good agreement with the trajectories

modelled by the adjusted JETLAG model. It was also seen that the

merging distance - the cross-flow analogy to the merging height - grew

proportionally with the source separation, decreased rapidly with cross-flow

velocity (this appeared to decay exponentially, but further data is required,

as only three different flow rates were investigated) and increased with the

number of plumes.

Further work to extend the research presented includes conducting a field

study across a number of rivers of various sizes. The modelling for plumes

in stillwater could also be extended to an arbitrary n × n grid of plumes,

not just a 2 × 2 grid, and to an arbitrary array shape, both of which could

be included in future work. Finally, the adjusted JETLAG model could

be extended to incorporate arrays of plumes, whereas in this thesis only

co-linear plumes were considered. These arrays would then be validated

experimentally using a similar method to this thesis. It is important to note

that, while it is possible to configure JETLAG in such a way that complex
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topologies can be considered, JETLAG does not simulate the turbulent

behaviour of a cross-flow. Therefore, for scenarios where complex topologies

are important, it may be more worthwhile to consider using CFD in order

to capture both the turbulence and the topology. Indeed, this is typically

how more sophisticated scenarios are currently simulated.

In 2020, the UK prime minister announced plans for the UK to install 600,000

heat pumps per year to help the UK reach net-zero by 2050. This PhD has

provided a basis for assessing the potential thermal impacts of such heat

pump schemes and could be used to inform their placement. It is reasonable

to expect that many of these newly installed heat pumps will be placed in

bodies of water (particularly rivers) where other heat pumps are already

in use, not least because they will be clustered in areas of high population

density. Therefore, insight into thermal impacts, particularly on the ambient

environment, are critically important both for ensuring the ecological regime

remains unharmed and for the efficiency and effectiveness of the heat pumps

themselves. Of particular importance is the shielding of plumes by nearby,

upstream plumes, altering their merging behaviour. This has significant

implications for the interaction of heat pumps that are likely to be closely

spaced in urban rivers due to the government’s plans. Furthermore, this

shielding - known in this work as the “blockage effect” - has been observed,

both experimentally and from real-world data, to significantly alter the

dynamics of the plumes. The most upstream plume has been observed to be

much more curved, or deflected, than those downstream, which are shielded

from the flow of the river, and therefore remain relatively straighter.
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Chapter 8

Appendices

8.1 Derivation of the Plume Equations

Consider a cylindrical control volume of height ∆z and radius b(z). The

control volume is subject to an entrainment velocity ue and a vertical

velocity w(z). Outside of this control volume, the environment has reference

density ρ∞ whereas inside the density is ρ. Finally, the source density is

given by ρ0. The system of equations given by (1.1) - (1.3) considers

conservation of mass, momentum and buoyancy, and will be derived in

order. We first consider the conservation of mass.

By applying a mass balance to the cylindrical control volume, we note that

the mass entering the bottom and sides of the cylinder are equal to the mass

exiting the top. Therefore

πb2w|z+∆z = πb2w|z + 2πbue∆z (8.1)

⇒ b2w|z+∆z − b2w|z
∆z = 2αue. (8.2)

Applying the entrainment assumption, ue = αw, and taking the limit as
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∆z
ue

b(z)

w(z)

w(z + ∆z)

b(z + ∆z)

ρ∞

ρ0

ρ

FIGURE 8.1: A schematic of the cylindrical control volume used in the
derivation of the plume equations (1.1) - (1.3).
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∆z → 0, we see that
d
dz
(
b2w

)
= 2αbw (8.3)

Finally, by applying the definitions Q = b2w and M = b2w2, we arrive at

dQ
dz = 2αM 1

2 (8.4)

which is (1.1), as required.

Next, we consider the conservation of momentum. We assume that the

momentum exiting the top of the cylindrical control volume is balanced by

the momentum entering the base, the sides and the upward buoyancy force.

By assumption, zero momentum enters through the sides of the control

volume. The upward buoyancy force is calculated as

Fb = πρ∞b
2g∆z − πb2ρg∆z

= πb2g∆z(ρ0 − ρ).

The momentum balance is then given by

πρb2w2|z+∆z = πρ1b
2w2|z + Fb (8.5)

⇒ ρb2w2|z+∆z − πρb2w2|z = b2g∆z(ρ∞ − ρ) (8.6)
d
dz (ρb2w2) = b2g(ρ∞ − ρ). (8.7)

By applying the Boussinesq approximation to (8.7) and dividing by the

constant reference density, ρ∞, we see that

d
dz (b2w2) = b2g

ρ∞ − ρ

ρ∞
= b2g′.

We define the buoyancy flux, F = b2wg′ and apply the definitions of Q and
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M to arrive at (1.2)
dM
dz = FQ

M
.

Finally, we consider the conservation of density deficit. By balancing the

density deficit, we see that

πb2w(ρ0 − ρ)|z+∆z = πb2w(ρ0 − ρ)|z + 2πbue∆z(ρ0 − ρ∞)

⇒ d
dz (b2w[ρ0 − ρ]) = 2αbw(ρ0 − ρ∞) (8.8)

⇒ d
dz (Qg(ρ0 − ρ+ ρ∞ − ρ∞)) = (ρ0 − ρ∞)gdQ

dz (8.9)

⇒ d
dz

[
Qg(ρ0 − ρ∞)

ρ0
+ Qg(ρ∞ − ρ)

ρ0

]
= d

dz

[
Qg(ρ0 − ρ∞)

ρ0

]
− gQ

ρ0

d
dz (ρ0 − ρ∞)

(8.10)

⇒ d
dz (Qg′) = gQ

ρ0

dρ∞

dz (8.11)

⇒ dF
dz = −N2Q (8.12)

8.2 Deriving the Strength of Plume

Entrainment

Consider an incompressible, radial flow which is independent of angle. Then

the velocity u = ur(r)r̂ satisfies

∇ · u = 1
r

d
dr

(
r

dur
dr

)
= 0 (8.13)

and the velocity is therefore given by

u = K

r
r̂ (8.14)

where K is a constant. The flow is radial, and K < 0 for a sink. The

strength of this line sink, m(z) is equal to the flux through a circle of radius
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r = R and is given by

m(z) =
∫
r=R

u · n dS =
∫ 2π

0

(
K

R

)
×R dθ = 2πK. (8.15)

Finally, set K = −A, where A > 0 (note that this step wouldn’t be necessary

if line sources were considered). Hence, the radial component of u is given

by

u · r̂ = ur = −A

r
= −m

2π
1
r
. (8.16)

This is the flow due to a line sink of strength −m(z) as given in (4.7) with

the prime omitted.
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