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Abstract

Viruses pose a global threat to both humans and other animals. The severity of this im-
pact is often amplified in populations with no prior immunity to the virus. Epidemics
in naïve populations may occur due to novel virus emergence or the emergence of a
known virus in a new geographical region. With climate change and globalisation, the
frequency of the epidemics is likely to increase. Vector-borne viruses, spread by insects,
have been increasingly observed in geographical regions where it was once believed
that climatic conditions would not support the spread of these viruses. Mathematical
models are a useful tool for policy makers to refer to while attempting to control and
prevent epidemics. First, we focus on the Culicoides-borne virus African horse sickness
virus (AHSV), using a systematic search to further the understanding of the dynam-
ics of infection in naïve equines and parameterising a spatio-temporal model for the
emergence of AHSV in naïve equids in Morocco 1998. Secondly, we apply mathemat-
ical and statistical models to study severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) in universities.
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CHAPTER 1

Introduction

1.1 Overview

The aim of this project was initially to improve knowledge of the potential impact of
African horse sickness (AHS) in the UK by building and analysing mathematical mod-
els. AHS, caused by African horse sickness virus (AHSV), is a vector-borne disease
transmitted between equids and Culicoides spp.. As there have not been any previous
outbreaks of AHSV in the UK, data are limited. Therefore, data from AHSV outbreaks
in other regions, other vector-borne viruses and other diseases that affect equids have
been considered. There is also the potential for this advice to extend beyond the UK to
provide guidance across all regions and methods may also be applied to other vector-
borne diseases.

Further knowledge on the behaviour and life cycles of European Culicoides as well as
the effects of temperature on these would improve predictions. This information could
also be used to aid in future forecasting as climate change proceeds. Future work was
intended to include ecological modelling of UK Culicoides in order to inform models.
Training was completed on Culicoides species identification and parity assessments at
The Pirbright Institute. Pilot work trapping was conducted to establish the techniques
for trapping and identifying Culicoides on equine premises (Appendix A). However,
this work could not be concluded due to social-restrictions caused by the 2020 SARS-
CoV-2 pandemic.

The global spread of SARS-CoV-2 resulted in the closure of workplaces, pubs and
restaurants, restricted leisure activities and impacted the education sector. The first
UK nationwide lockdown in March 2020 saw the closure of higher education establish-
ments, such as universities, to most in-person activities. Universities are large commu-
nities of highly connected students and staff that distinguishes them from other types
of workplaces. Despite mitigation strategies to reduce transmission risk, many UK
universities experienced outbreaks of SARS-CoV-2 at the beginning of the 2020/2021
academic year. We used mathematical modelling and statistical techniques to predict
the effect of control measures to reduce the risk of outbreaks within universities, as
well as determine activities/behaviours that increase the risk of SARS-CoV-2 infection
amongst university staff and students.

Mathematical and statistical methods that can quickly determine disease parameters in
order to effectively react with control measures are increasingly being used by policy

1



CHAPTER 1: INTRODUCTION

makers. However, these methods, while they are often effective, have an uncertainty
error that needs to be considered when they are used in decision making processes.

Outline of the work in this thesis

The main body of the thesis is presented as five research papers. The first three research
chapters focus on infectious disease of equids. Chapter 2 is review paper that outlines
the main pathogens that cause encephalitic disease in horses. The paper highlights
management strategies such as surveillance and interventions to minimise transmis-
sion. Chapter 3 consists of a literature search to update knowledge on the key infec-
tious disease parameters for models of AHS and uses them to parameterise an ordinary
differential equation model considering host and vector interactions during an AHS
outbreak. Chapter 4 examines a data set for the emergence of AHS in Morocco in 1989
and fits a spatial-temporal model of transmission between equid premises.

The final two research chapters focus on mathematical models of the spread of SARS-
CoV-2 in university settings. Chapter 5 considers observational data from the first term
of the 2020/2021 academic year and uses this to model control measures that were un-
der consideration for the full return of UK higher education students in January 2021.
Chapter 6 analyses survey results from individuals following an asymptotic PCR test
for SARS-CoV-2 and uses Bayesian statistical analysis to associate the risk of contract-
ing SARS-CoV-2 with different work and social activities. The impact of protective
measures, such as mask wearing and social distancing, are also analysed.

In the remainder of the introduction we include general background material that was
undertaken during the project, some of which is not directly referenced in the main
body of the thesis.

1.2 African horse sickness virus (AHSV)

African horse sickness virus (AHSV) is a double stranded RNA virus of the genus Or-
bivirus of the family Reoviridae. There are nine immunologically distinct serotypes of
AHSV, these are determined by the specificity of neutralising antibodies Fields et al.
[2013]. Immunity from one of these serotypes does not protect against other serotypes
and cross-infection is possible. The World Organisation for Animal Health (OIE) lists
AHSV among its notifiable diseases; requiring member countries to monitor their dis-
ease status to avoid the spread of the virus [Hemida et al., 2017].

AHSV is endemic to sub-Saharan Africa with hosts including horses, mules, donkeys
and zebra [Mellor and Hamblin, 2004]. Zebra, the only equids native to South Africa,
are believed to be the reservoir host although large outbreaks have occurred in other
regions were zebras are not present. The virus is transmitted between hosts by the
vector Culicoides (Diptera: Ceratopogonidae). In Africa C. imicola is usually considered
to be the most important vector species. However, in regions with different climates
alternative species of Culicoides are likely to transmit the virus between hosts.

There are three forms of AHS; acute, subacute and subclinical [Carpenter et al., 2017].
If infected with the acute respiratory form, the host usually dies from severe hypoxia,
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CHAPTER 1: INTRODUCTION

congestive heart failure, or a combination of both. In naïve populations of horses, mor-
tality may exceed 90% [Castillo-Olivares, 2021]. The subacute cardiac form of AHS,
with mortality rate around 50%, causes fever followed by oedema of the supraorbital
fossae. A mixed pulmonary and cardiac form is most commonly seen in most out-
breaks, which causes mortality of around 80% of susceptible equids. The subclinical
form, often referred to as African horse sickness fever, is common in zebra, African
donkeys and partially immune horses [Lu et al., 2020].

Due to the importance of horses in human history and the lethality of AHS, records as
early as the fourteenth century identify this disease [Henning, 1949, Carpenter et al.,
2017]. The first official recorded outbreak of AHS was in 1719 when 1,700 equids died.
Outbreaks of AHS caused great strain on both the military and civilians, with an epi-
demic in Cape of Good Hope in 1854–55 causing the loss of 70,000 horses (approxi-
mately 40% of the local horse population) [Bayley, 1856, Carpenter et al., 2017]. AHSV
was discovered to be a virus in 1900 [Fields et al., 2013]. In 1959–1961, a major epi-
demic spread through the Near East and Arabia as far as Pakistan and India, resulting
in the death of an estimated 300,000 equids [Anwar and Qureshi, 1973, Howell, 1960,
Carpenter et al., 2017]. In July 1987, AHSV-4 was the first serotype apart from AHSV-9
reported outside Africa, in central Spain. When lower temperatures began to restrict
the ability of AHSV to spread in October it was hoped that this would eradicate AHSV
from the region, however the virus successfully overwintered [Lubroth, 1988, Thomp-
son et al., 2012]. In 1989, this epidemic spread to Portugal and Morocco. All three
countries eventually eradicated the virus due to mass vaccination policies, strict move-
ment controls and culling of equids [Portas et al., 1999, Rodriguez et al., 1992, Mellor,
1993, Baylis et al., 1997]. More recent outbreaks include AHSV-2 in Nigeria and Senegal
and AHSV-7 in Senegal in 2007 [Diouf et al., 2013], AHSV-2, AHSV-4, AHSV-6, AHSV-8
and AHSV-9 in Ethiopia [Aklilu et al., 2014] in 2007-2010, and AHSV-1 in Thailand and
Malaysia in 2020 [Castillo-Olivares, 2021, Lu et al., 2020].

1.2.1 Other Culicoides-borne virus

Due to climate change and increased globalisation, risk of Culicoides-borne virus out-
breaks is increasing in some geographical regions such that these viruses now pose a
threat to the UK [Li et al., 2021], with outbreaks of bluetongue virus (BTV) and Schmal-
lenberg virus (SBV) having already occurred [Elbers et al., 2015, Wittmann and Baylis,
2000].

Bluetongue virus (BTV) Bluetongue virus is an Orbivirus, closely related to AHSV,
also transmitted between ruminant hosts by Culicoides. There are twenty-nine serotypes
of BTV [Yang et al., 2021] which causes clinical signs such as fever, swelling of the face,
lips and tongue causing breathing difficulties if the tongue swells, reddening of the
mucosal membranes, sores on the nose, gum and dental pads and lameness, and infec-
tion can be fatal [The Pirbright Institute, 2019]. BTV is teratogenic, sometimes causing
deformities or abortion of calves and lambs by infection in utero.

Also an OIE notifiable disease, Bluetongue (BT) was discovered to be a virus shortly
after AHSV in 1905 [Fields et al., 2013]. The first outbreak of BT outside Africa was
in Cyprus in 1924, followed by another outbreak 1943–1944 with fatality among sheep
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of approximately 70% [Polydorou, 1978]. With outbreaks occurring in the Middle East,
Southeast Asia, Southern Europe and the United States in the 1940s and 1950s, BT came
to be described as an emerging disease [Roy, 2008]. In 2006, cases of the virus where
confirmed further north in Europe than previously observed [Toussaint et al., 2006].
Despite import controls and post import checks of ruminants to minimise the risk of
importing an infected animal, the first UK case of BTV was confirmed on 22nd Septem-
ber 2006 in Suffolk. By the 28th September, the virus was confirmed to be circulating
between ruminants and Culicoides. Mathematical modelling and weather observations
suggested that this emergence in the UK was likely due to Culicoides been blown across
the English Channel [Landeg, 2007].

BTV was estimated to have had a global consequence of three billion US dollars in 1989
[Rushton and Lyons, 2015]. Between 2002 and 2011 the EU funded 92 million Euros
towards control and eradication of BTV. Between 2006 and 2008 in Germany, estimates
for the impact of the BTV-8 epidemic ranged between 157 and million Euros (mean 180
million Euros). Only 27% of this was due to direct costs such as production losses, loss
of trade, animal deaths, and veterinary treatment. The remaining 73% of indirect costs
were mostly for vaccination (49%) but also included insecticide treatment, diagnostic
testing, monitoring and surveillance and administration [Gethmann et al., 2020].

Schmallenberg virus (SBV) Schmallenberg virus (SBV) is spread by the same insects
as AHSV and BTV, however it is in a different genus; Orthobunyavirus of the Bunyaviri-
dae family. It is a negative-sense single-stranded RNA virus with a segmented genome.
SBV emerged as a novel virus in 2011; close to the German/Dutch border. During late
summer and early autumn there were reports of fever, decreased milk production, and
diarrhoea for a few days in German and Dutch dairy cattle. In late autumn 2011, the
first malformed lambs, which had been transplacentally infected with SBV, were born.
This was followed by the birth of deformed calves starting at the beginning of 2012
[Wernike et al., 2014]. SBV spread very rapidly over large parts of Western Europe,
with confirmed cases reported from 27 European countries by September 2013 at the
end epidemic. Vaccines were used as an intervention in 2013, however sales quickly
declined after the epidemic because it was not cost-effective and no DIVA assay was
available [Wernike and Beer, 2020a]. In 2016, SBV re-emerged the UK, Ireland and
Belgium along with other non-European countries [Collins et al., 2019, Wernike et al.,
2014]. SBV continued to circulate in Ireland and the UK in 2017 and has since been
reported in other European countries [Wernike and Beer, 2020b].

1.2.2 Equine encephalitic viruses

Viral encephalitis is one of the most common infections of the central nervous system
(CNS) in horses worldwide [Barba et al., 2019]. Clinical signs can include mild fever,
dullness, sleepiness, listlessness, ataxia, inability to rise, trembling, skin twitching, dif-
ficulty in urination and defecation, facial paralysis, blindness, seizures, coma, and other
non-neurological signs [Long, 2014, Kumar et al., 2018, Barba et al., 2019].

Members of several different virus families cause equine viral encephalitis, the majority
of which are arthropod-borne viruses (arboviruses) with zoonotic potential. The clin-
ical signs caused are rarely pathognomonic; therefore, a clinical diagnosis is usually
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presumptive according to the geographical region. However, recent decades have seen
expansion of the geographical range and emergence in new regions of numerous viral
diseases [Barba et al., 2019]. In Chapter 2 we present an overview of the prevalence and
distribution of the main viral causes of equine encephalitis and discusses their impact
and potential approaches to limit their spread.

1.3 Severe acute respiratory syndrome coronavirus 2

In December 2019, a cluster of patients with pneumonia of unknown cause was iden-
tified in Wuhan, China. This novel coronavirus, SARS-CoV-2, of the genus Betacoron-
avirus in the family Coronaviridae is the seventh member of this family able to infect hu-
mans including MERS-CoV and SARS-CoV) [Zhu et al., 2020]. The first case of SARS-
CoV-2 in the UK was identified on 30 January 2020. The number of confirmed cases
grew to 11,080 before a lockdown began on 24 March [Dropkin, 2020]. Lockdown mea-
sures included the closure of higher education institutes; including universities.

Prior to the return of students to campuses, preliminary modelling studies flagged
universities as settings of potential high risk for SARS-CoV-2 transmission [Hill et al.,
2021, Brooks-Pollock et al., 2021, Task and Finish Group on Higher Education/Further
Education, 2020]. At the beginning of the 2020/2021 academic year, many universi-
ties experienced outbreaks of SARS-CoV-2 [UCU, 2020]. Chapter 5 presents work on
SARS-CoV-2 transmission in UK higher education settings using multiple approaches
to assess the extent of university outbreaks, how much those outbreaks may have led
to spillover in the community, and the expected effects of control measures. This work
was completed collaboratively with the Higher Education working group at the Isaac
Newton Institute. In Chapter 6, we identify setting-specific contact measures and pro-
tective behaviours associated with risk of PCR-confirmed asymptomatic SARS-CoV-2
infection in a sample of university staff and students.

1.4 Epidemiological Models

Mathematical models can be a useful tool in predicting the behaviour of disease out-
breaks; allowing us to understand the factors that drive epidemics [Chubb and Ja-
cobsen, 2010]. They can be used to predict parameters we are unable to attain from
laboratory studies. Daniel Bernoulli was the first scientist to mathematically model
the spread of disease in 1766 in order to defend inoculating against smallpox [Heth-
cote, 2000]. Building models requires a trade-off between accuracy (reproducing ob-
served and predicting future dynamics), flexibility (adapting the model for different
situations/diseases) and transparency (ability of others to understand the model). A
good model will balance all of these factors. However, these models are a simplifi-
cation of reality and random events within disease transmission mean perfect predic-
tion is not possible. All models must make assumptions and have limitations, and
this must be recognised. Certain rare events, such as the introduction or emergence
of variants and secondary introductions, and human behaviours can significantly im-
pact the epidemiology and persistence of these viruses. For example, more recently
discovered serotypes of BTV support vector-free transmission through contact and in
utero Pullinger et al. [2016], this may impact the ability of the virus to over-winter and
persist in the field. Models should be as simple as possible to describe the dynamics
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we are interested in, but no simpler. It is also important, where possible, that we can
parameterise models from the data available. Generally, the more complex a model is
the more difficult it is to parameterise. In Appendix B we demonstrate a method for
accessing the identifiability of models and Appendix C explores the influence of these
parameters on model outputs.

Epidemiological models can be used to investigate the likelihood of virus transmis-
sion within the UK throughout the year to improve the effectiveness of surveillance
and to minimise future risk of disease outbreaks. They can provide epidemiological
forecasts, assess current and future outbreak risk and quantitative assessments of the
effectiveness of intervention strategies. Often epidemiologists are interested in the ba-
sic reproduction number, R0, of a disease. R0 is the expected number of new infectious
cases caused by one individual during their infectious period [Dietz, 1993]. Therefore,
if R0 is larger than one, the number of cases would increase and therefore an outbreak
would be expected to occur, whereas if R0 is less than one we would expect the disease
to die out. In Appendix D we use mathematical models to explore the emergence of
AHSV in a naíve population (Morocco, 1989) and compare the vector capacity and R0
of AHSV, BTV and SBV in the UK.

1.4.1 Temporal models

The host-to-host transmission of a disease within a population can be modelled using
a deterministic SIR model. Here S, I and R represent the number of individuals sus-
ceptible, infectious and recovered from the disease within the population, respectively.
Individuals are considered susceptible if they are not infected or immune to the dis-
ease, therefore they could still become infectious. If these individuals become infected
they move to the infectious stage, and then to the recovered stage when they are no
longer infectious. We then consider the rates at which hosts transition between stages
(infection, recovery, etc.). Here infection would be represented by the transition

S + I −→ 2I,

and recovery would be represented by the transition

I −→ R.

The rate at which these occur is derived using the law of mass action. The law of
mass action was first proposed by Cato Maximilian Guldberg and Peter Waage in 1864
[Guldberg and Waage, 1986]. Today this law is well known and has a wide variety of
applications across many areas of science. In the case of infection, the law would state
that new infectious cases arise at a rate proportional to the number of susceptible and
infectious individuals in the population and recovery occurs at a rate proportional to
the number of infectious individuals. The constant of proportionality is called the rate
constant. The first modern application of this model was by George MacDonald who
modelled the spread of malaria [Macdonald, 1957]. Figure 1.1 shows how individuals
move through the stages.

The rate of transition between stages depend on the epidemiology of the virus. For
example, the rate of recovery depends on the infectious period, and the rate of trans-
mission depends on the infectiousness of the virus. There are methods of reducing
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Figure 1.1: The infection diagrams for the simple SIR and SEIR models. The stages of
infection are given by the boxes. Transition between the stages is repre-
sented by arrows with their rates given above them.

these rates, for example, reducing the infectious period of infectious hosts by isolation
and reducing the transmission rate by reducing host contacts.

These models can be adapted to include more complex dynamics, e.g. hosts not en-
quiring immunity from infection, latently infected hosts or super-spreader hosts, which
have a larger viral road. When adapting these models to include vectors we also need
to consider the dynamics of the vector populations as well as the interactions between
vectors and hosts. In Section 1.6 we discuss climatic influences on the life-cycle of
Culicoides and their ability to spread viruses. Chapter 3 uses data from a systematic
literature search in order to better inform transition rates for a previously published
ordinary differential equation model of AHSV within a premises.

Another popular method of disease modelling, considered in Chapter 5, is network
graphs. Network graphs can also be used to model potential disease spread. Here
nodes represent hosts and edges represent connections between hosts allowing for dis-
ease transmission. At each iteration, the neighbours of an infected node are assigned a
probability of infection and infected nodes have a probability of recovery. These edges
can be weighted allowing for differences in the probability of infection between two
individuals depending on their contact rates. These methods are less popular when
modelling Culicoides-borne viruses due to the large vector population increasing the
computational demand for this algorithm.

1.4.2 Spatio-temporal models

Often we are interested in the spatial dynamics of disease transmission. Although there
are other methods, including partial differential equations, kernel-based methods are
becoming increasingly popular [González et al., 2016a]. Kernel-based models can be
used to assess the risk of disease spread by considering the distance between infected
and uninfected locations. These locations could be individual premises, small areas (for
example post codes) or regions/countries. The distance kernel, K(dij), describes how
the transmissibility of a virus varies in relation to the distance of an infected location (j)
from a naive location (i). The distance between two locations dij, can be described by
the Euclidean distance between them. For between premises models the latitude and
longitude co-ordinates of the premises are used to calculate this distance and for larger-
scale models the distance between the centroids of the areas are often used. Using these
kernels, we calculate the force of infection, λi(t), for location i on day t typically given
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by
λi(t) = βθ(t)N(i)

h ∑
j 6=i

K(dij)N(j)
h Ij(t), (1.1)

where β is the transmission parameter and the variable Ij(t) is 0 or 1 depending on
whether location j is uninfected or infected, respectively, on day t. The parameter Nh
represents the number of hosts at the locations for between premises models and some
larger scale models, however sometimes the number of premises is used here. This
model can be used to compare the susceptibility and infectivity of species, for example
parameterising

λi(t) = βθ(t)(N(i)
h,1 + mN(i)

h,2)∑
j 6=i

K(dij)(N(j)
h,1 + nN(j)

h,2)Ij(t) (1.2)

would give the infectivity and susceptibility, m and n respectively, of the host species 2
(h, 2) compared to host species 1 (h, 1).

When applying kernel-based approaches to agricultural animal disease, such as foot
and mouth disease, detailed information on the location of farm premises and animal
movements is available. Knowledge of the UK equine population demographic and
movements are discussed in Section 1.5. In Chapter 4 we fit a kernel-based model to
data from the 1989 emergence of AHSV in Morocco.

1.5 Equine location and movement

The location and transport of cattle and sheep is well documented, requiring a licence
to keep or move these animals. However, there is no requirement for equine premises
to be registered [Owers and Meldrum, 2013]. Equine movements within the UK could
help aid the spread of an infectious disease during an epidemic. International move-
ments could lead to an import of an equine infectious disease. The outbreaks of AHSV
in Spain in 1987 and Thailand in 2020 were associated with importation of (infected)
zebra from Africa [Grewar et al., 2021].

EU regulations and OIE guidelines state disease freedom can only be reinstated after
a period of two vector free seasons without evidence of virus circulation. Controls on
registered equines (and registered equine product) imports to the EU from any third
country to the EU include pre-export tests, 40 day vector free quarantine before export
and certification stating the animal’s vaccination and test status [Department for En-
vironment and Rural Affairs, 2016]. South African equine imports are approved from
only a small area of the City of Cape Town dependent on surveillance of horses in the
surrounding region. Equines may move from a AHS free area as long as they have
been resident for at least 60 days.

1.5.1 The uncertainty of equine location in the UK

The UK’s National Equine Database (NED) contained information on the equine popu-
lation including: number of equids and distribution of their owners. In June 2010, NED
had records of 1,383,304 equines with passports. Boden et al. [2012] found that of these
only 78% had valid addresses (with equids being excluded for having ’no recorded
address’, ’no fixed abode’, no valid matching postal code, having foreign passports
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and/or foreign addresses). On mainland GB, 1,034,907 equids had owners with a valid
postcode area [Boden et al., 2012]. Although there are likely to be a considerable num-
ber of equids over the age of 30 in the UK (life expectancy 25-30 years [Ensminger,
1990]). Boden et al. [2012] estimated the population of equines in mainland GB which
are most likely to be alive (30 years old or less) and have valid postcodes as 842,653
equids [Boden et al., 2012]. This would correspond to a non-declaration of death of an
animal of 19%. Robin et al. [2013] found during 2005–2010, that of 17,048 passports
checked through local authority inspections, 9.1% were non-compliant, with 5.6% con-
taining inaccurate information and 3.5% classified as missing. Of 1382 owner ques-
tionnaires, 27.5% were obsolete (11.7% being retained for deceased horses and 15.8%
having incorrect ownership details) [Robin et al., 2013].

NED recorded the location of owners rather than equids. This is the main issue with
using this database for spatial analysis of potential equine disease outbreaks. NED
ascribed 7,432 equids (104 per 10 km2) to London addresses, the highest in England.
However, Boden et al. [2012] found that a dataset created using data from equine stake-
holders (based on equine location rather than owner location) ascribed 1,749 equids to
London (25 per 10km2), the lowest density of horses in England. In Wales, although
Cardiff has the largest density of equines in both datasets, this density was also much
lower in the stakeholder dataset (NED: 102 per 10km2, stakeholder: 72 per 10km2).
Whereas in Scotland the equine density was highest in Kircaldy in both datasets, how-
ever the stakeholder dataset predicted that there where more equids in this area (NED:
23 per 10km2, stakeholder: 32 per 10km2) [Boden et al., 2012]. This demonstrates that
owner location cannot always be viewed as a direct substitute for horse location. Robin
et al. [2011] found that 61% of a sample of 1440 equids were kept at the same postcode
as their owners. Overall, the mean ± standard error distance between equines and
their owners addresses was 8.11 ± 1.1km, including kept at the same postcode as their
owner (20.82 ± 2.84km excluding equines kept at the owner address). Only 2.5% of
equines were kept over 50km, while 90% of equines where kept less than 10km from
their owners [Robin et al., 2011]. Another survey study of Great British equine owners
(n=3966) found that 93% kept their equines within 16km of their location, with 6% be-
ing kept between 16 and 80km and 1% being kept and more than 80km away from their
location [Boden et al., 2013].

Robin et al. [2013] evaluated the spatial separation between horses and their owners
and identified relationships between this spatial separation and land use using ques-
tionnaires (1010 samples). Analysis of the data showed that the distribution of the spa-
tial separation between horses and their owners was well described by a power-law
distribution, irrespective of the local values of built-up coverage. Heavy-tailed distri-
butions allow large separations between horses and their owners while allowing most
horses to be located close to their owners (assuming horse premises near the owner’s
location are preferable) [Lo Iacono et al., 2013, Robin et al., 2011, 2013]. Lo Iacono et al.
[2013] estimated the distribution of equids in the UK generated by considering the ur-
ban coverage [Fuller et al., 2002] of the owners address to place equids in ’more likely’
locations. It was shown that mapping owner’s addresses as a proxy for horse location
significantly underestimates the risk of disease transmission. Incorporating this into
models would facilitate a more meaningful distribution derived from NED for mod-
elling the risk of equine disease outbreaks in the UK.
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For economic reasons, Defra controversially ceased their funding (around £200,000/an-
num) of NED in September 2012 [Owers and Meldrum, 2013].

The Lo Iacono et al. [2013] equine distribution estimates the number of equids per 5
km block of the UK. However, nothing is inferred about the number of equids on each
premises. In some locations, equids are likely to be kept together, with multiple owners
keeping equines on the same premises. It would also be expected that equids would
be housed in areas with suitable grazing and therefore equine premises are likely to be
clustered.

1.5.2 UK equine national and international movement

Boden et al. [2013] used an online questionnaire to obtain unique information linking
owner and horse location to characteristics of horse movements within Great Britain
(GB) and internationally. During the year proceeding the survey 59% of respondents
(n=3522) travelled and returned home with their horse within a single day. Of the 42%
of respondents that travelled with their equids for more than one day, 71% were away
1–7 days, 24% were away 8–30 days, 5% were away from the home premises for more
than 30 days. Of 3541 respondents, 6.3% travelled internationally with their equines
and/or imported horses from Belgium, Ireland, Germany, Spain and Poland. Owners
who travelled internationally were three times more likely to have at least one horse
with a foreign passport rather than a British-issued horse passport (unadjusted OR 3.4,
95% CI 2.5–4.5 p-value <0.001).

1.5.3 The uncertainty of and attitudes towards equine location/movement
databases in non-UK countries

France The French equine database (SIRE) records information on equines, including
contact details of the owners [dor]. It also records information on “equine premises”,
where equines are kept, because French regulations require keepers to notify the au-
thorities of the opening and/or closing of such premises (Article R215-14 of the French
Rural Code) [Farchati et al., 2021]. However, as with many countries databases, own-
ers/keepers do not systematically comply with these regulations meaning some of the
information in the database is incorrect. Farchati et al. [2021] carried out surveys of
owners and keepers that had given an email address and agreed to contact; 20.1% of
owners and 19.5% of keepers responded. The rate of non-declaration of an equine’s
death in the survey was 6.2%, therefore the number of equines in France is likely to be
overestimated. Concerning the reference equid, 11% of respondents stated that they no
longer owned this animal and 3.6% reported that they no longer owned any equids.
Of the respondents, 64.7% had the same postcode in the survey and the SIRE database.
The owner survey indicated that 52.6% hosted equids but were not registered as keep-
ers. Overall, the under-declaration of equine deaths and premises would potentially
restrict capability of surveillance and epidemiological investigation.

United States of America The US National Animal Identification System (NAIS) is
an animal tracking database created to identify and record the movement of animals
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in the event of an animal disease outbreak. A survey administered to American As-
sociation of Equine Practitioners (n=139) showed that 55.6% thought that NAIS would
help efficiently stop the spread of a contagious animal disease, however only 19.4%
were “very familiar" with the database [Vanderman et al., 2009]. Another survey was
designed to evaluate equine event official demographics (n=115). Here 24% of show
managers reported being in favor of NAIS, 18% were opposed and 58% were neutral
or unsure, with 53% reporting that NAIS would increase paperwork at events [Swinker
et al., 2009].

Denmark Hartig et al. [2013a] found that 68% of stakeholders (n=698) thought a
national equine health database was important, including equine veterinarians, re-
searchers, representatives from animal welfare organizations, horse owners and oth-
ers. Most stakeholders wanted the database to focus on contributing to improved horse
health and welfare rather than on performance or food safety. Requirements for such
a database included an electronic, simple, and time-efficient data reporting system.
Overall, it was found that there was a positive attitude to the establishment of a health
database in Denmark [Hartig et al., 2013a,b].

1.6 Culicoides

There are forty-eight known Culicoides (Diptera: Ceratopogonidae) species in the UK
[Boorman, 1986]. However, not all species are capable of transmitting viruses. In Africa
the main vector for BTV and AHSV is C. imicola, however other species are capable of
spreading the viruses [Foxi et al., 2016]. In the Americas C. sonorensis and C. insignis are
the main vectors for BTV (depending on the region), and in Europe C. obsoletus [Gerry
and Mullens, 2000].

Culicoides life-cycles include the physiological stages: the egg, four larval instars, the
pupa and adulthood (Figure 1.2). The duration of these stages varies between species
and is dependent on temperature. During the larval and pupal stages moisture is re-
quired, therefore eggs are commonly laid in semi-aquatic habitats [Carpenter et al.,
2013]. In northern Europe Culicoides generally overwinter as fourth instar larvae [Black-
well et al., 1992, Hope, 2013]. Fully-grown Culicoides are approximately 1–3 mm long.
Adult males only feed on nectar, whereas females also feed on blood. Females that are
yet to lay eggs are described as nulliparous. Whereas those that have previously laid
eggs are described as parous, identifiable by a change in pigmentation in their abdom-
inal cuticles and tergites [Gerry and Mullens, 2000].

Relatively small changes in the expected vector lifespan have theoretically been shown
to have an effect on transmission of pathogens [Gerry and Mullens, 2000]. For Culi-
coides-borne viruses, the midge ingests the virus during a blood meal; the virus must
then spread within the insect, involving several rounds of infection and replication in
different tissues before it reaches the salivary glands (or possibly the mouth parts),
causing the midge to become infectious. The extrinsic incubation period (EIP) is the
interval between the acquisition of an infectious agent by a vector and the vector being
able to transmit the agent to susceptible hosts [Dictionary, 2007]. The rate at which
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Figure 1.2: Culicoides life-cycle and gonotrophic cycle.

these viruses replicate is dependent on temperature, therefore as Culicoides are poik-
ilothermic, in temperate regions this imposes geographical and seasonal limits on the
spread of these viruses.

Various studies have tried to quantitatively assess how temperature and other climatic
effects determine the ecology of Culicoides and epidemiology of the viruses they trans-
mit. Here we give an overview of some of the the mathematical models used to explain
these dynamics from a UK perspective.

1.6.1 Extrinsic incubation period

Cooler climates restrict virus replication, and therefore extend the EIR, reducing trans-
mission. Carpenter et al. [2011] developed statistical methodology for estimating the
relationship between temperature and the duration of the EIP [Carpenter et al., 2011].
This method was applied to both published and new data [Paweska et al., 2002, Wittmann
et al., 2002, Carpenter et al., 2011]. Culicoides are fed infected blood in a laboratory and
kept at a constant temperature, groups of Culicoides are then removed at certain time-
points and their infectiousness measured. The model for the temperature dependence
of the EIP completion rate was given by,

υ(T) = max
(
0, α(T − Tmin)

)
, (1.3)

where the rate at which the virus replicates is assumed to increase linearly at rate α
above a threshold temperature, Tmin. Once the cumulative sum of the daily values of υ
reaches 1 the Culicoide is infectious. In other words, 1/α is the number of degree-days
above the threshold temperature required for the vector to complete the EIP. Many of
these studies used colony derived insects and may not be fully representative of field
populations from different regions, or different species.

It was found that there can be differences in how well each Culicoides species can repli-
cate each virus, and how well each virus replicates in each species. They also have a
different probability of becoming infectious from being fed a blood meal. This is often
equated to the probability of Culicoides becoming infectious when biting a host in mod-
els. It was found that the virus replication rate and threshold temperature were similar
for a range of bluetongue virus (BTV) and African horse sickness isolates [Carpenter
et al., 2011]. However, the probability of infection was higher for African horse sickness
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virus (0.52) than any of the BTV strains (0.12–0.16) in C. sonorensis.

It was also been found that the percentage of infected Culicoides varies with level and
duration of viraemia in the blood meal [Mertens et al., 1996], this varies over the course
of infection, with different virus strains and serotypes of virus, and between individual
hosts. The level and duration of viraemia can be reduced by vaccination helping to
prevent onward transmission by individuals that still become infected. The level of
viraemia may be higher for more virulent strains, which could also cause a higher rate
of fatalities. Immune responses from other strains or serotypes may also affect level
and duration of viraemia and death rates within the hosts, by either partial immunity
or antibody-dependent enhancement. These factors may be particularly important in
endemic areas.

1.6.2 Bite rate

The gonotrophic cycle is defined as the time required for host location, blood feeding,
egg maturation and oviposition. This has been observed to be affected by temperature.
The time between blood feeding and oviposition (O), for C. sonorensis, has been inves-
tigated for temperatures 13–34 °C and was found to follow the regression equation:

O(T) = −1.98 + 0.07217T + 2516.65T−2 (1.4)

[Mullens and Holbrook, 1991]. Figure 1.3 shows this regression plotted for -5–35 , these
temperatures would be more realistic in the European climate. This equation increases
without bound as it approaches T = 0. We observe that while this curve may fit the
data well from 13–34 °C it probably does not give an accurate estimate for lower tem-
peratures. However, as Culicoides over-winter as larvae in European climates, this may
not cause unusual model behaviours. The Culicoides used in the study were also kept at
constant temperatures, which is not realistic for field Culicoides [Mullens and Holbrook,
1991]. Mullens et al. [2004] also attempted to fit these data to approximate the ovarian
development rate (σ), defined as 1/time to oviposition. The model suggested was

σ(T) = max
(
0, 0.00019T(T − 3.6966)(41.8699− T)1/2.7056), (1.5)

where T is the temperature. Although this model often predicts slightly shorter times
to oviposition it still exhibits the same unstable behaviour for low temperatures. By
assuming that each midge only bites once in order to complete its gonotrophic cycle
we can equate the length of this cycle to the frequency that Culicoides bite.

1.6.3 Adult lifespan

As the length of the EIP decreases with temperature so does the expected lifespan of
the vector, therefore higher temperatures may not always result in more disease trans-
mission. MacDonald [1952] estimated the probability of an insect surviving the EIP as
p(1/υ), where p is the daily survival probability and 1/υ is the EIP [MacDonald, 1952].
How long the insect will survive after completing the EIP was estimated as pn/− ln(p)
[MacDonald, 1952].

Gerry and Mullens [2000] attempted to quantify how the expected lifespan of a midge
varies according to temperature. Here the lifespan was estimated using the parity rate,
P = number of parous females/total number of females, known as the mean parous rate
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Figure 1.3: The regression equation for oviposition time (Equation 1.4) plotted for tem-
peratures−5 ≤ T ≤ 35 °C. Black dotted lines represent the limits for which
the regression was fitted to data. The regression is also plotted separately
(smaller plot) within this range to highlight the values the original model
predicted. Since this function is infinity at 0 values −1 < T < 1 are not
plotted.

formula [MacDonald, 1952]. The probability of daily survival is estimated as p = P1/u,
where u is the length of the gonotropic cycle (calculated from Equation 1.4). Over the
3-year study, C. sonorensis were captured on a Californian (USA) dairy farm. The am-
plitude of abundance of females varied with year, mean monthly abundance was sig-
nificantly correlated with mean monthly temperature, but host-seeking females were
captured throughout the year. Overall, monthly parity was negatively correlated with
mean monthly temperature and mean monthly female abundance. The length of the
predicted gonotrophic cycle varied from 3–4 days in summer and 14 days in winter
(Equation 1.4). The daily probability of survival varied from 0.53–0.97, and was higher
in colder months. Using these data, the expected lifespan was calculated, decreasing
exponentially with increasing temperature. This was as short as 2 days in summer and
was generally longer than 10 days in winter. However, the region this dairy farm was
in has a relatively high BTV prevalence. The 75km2 region containing 250,000 milking
cows in which most of these dairies have wastewater ponds close to cattle provides
an ideal breed site for Culicoides. This ideal Culicoides environment may however not
be representative of many other habitats, including European farms; therefore this life-
span may be an over-estimate.

Overall, the study predicted the expected lifespan (eLS) to be:

eLS(T) = 111.84exp(−0.1547T), (1.6)

where the mean monthly temperature was used (Figure 1.4a). The original study was
based on mean monthly temperature, whereas the function is often used on daily tem-
peratures (eg. [Gubbins et al., 2014]). We would expect daily temperatures to have
larger extremes and Figure 1.4 shows that this equation exponentially increases as tem-
perature decreases, however no data have been collected for lower temperatures to
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Figure 1.4: Culicoides expected lifespan (eLS) (Equation 1.6). The black dotted lines
represent the region in which data fitted.

clarify this relationship. Mean temperatures in Europe are often outside this range.
Also, the study was conducted on the species C. sonorensis, which may not be an accu-
rate representation of all Culicoides species.

Birley and Boorman [1982] attempted to modify MacDonald’s method to more accu-
rately estimate survival rates. The number of parous females (Q) that bite at time t is
equivalent to the number which that fed one cycle earlier multiplied by the number
which survived that cycle, given as:

Q(t) = SM(t− u), (1.7)

where S is the survival rate per cycle, u is the length of the gonotrophic period, and M
is the total number of females. Thus the survival rate is given as

S =
∑ Q(t)

∑ M(t− u)
. (1.8)

This model assumes: (i) there is no sampling bias between parous and nulliparous sam-
ples; (ii) a constant proportion of the population is sampled; (iii) all deaths are natural;
(iv) only one blood meal is required for each female to complete the gonotrophic cy-
cle; (v) changes in Q are only caused by the number of nulliparous females recruited;
(vi) all females have a similar gonotrophic cycle length during the experimental pe-
riod [O’Connell, 2002]. Equation 1.7 predicts that the time series Q(t) and M(t − u)
are correlated [Birley and Boorman, 1982]. The gonotrophic period (u) was therefore
estimated by deriving a cross-correlation index which maximises cross-correlation (the
similarity as a function of displacement) [Birley and Boorman, 1982]. In reality the
length of this cycle would be expected to vary between individuals. Using this method
Birley and Boorman [1982] estimated that the mean gonotrophic period for C. obsoletus
in southern England varied between 3.5 and 4.5 days between June and October. Mean
daily average temperatures in the region of trapping would be excepted to vary be-
tween 11 and 18 °C this time of year [Met Office]. However, predictions from Equation
1.4 would predict the time between blood meals and ovipositioning to be 7–20 days at
these temperatures. This difference could be due to a number of factors, including the
species of Culicoides and laboratory Culicoides are often kept at a constant temperatures,
which does not accurately reflect the climates field Culicoides are exposed to.
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1.6.4 Seasonal abundance of adult Culicoides

Sanders et al. [2011] explored the seasonal variation in abundance of adult Culicoides
and the influence of meteorological conditions. The season vector activity on day t,
θ(t, M), was found to be,

log(m(t)) ∝ b0 + a1sin(θt) + b1cos(θt) + a2sin(2θt) + b2cos(2θt)

+ ∑
m

cm Mm + σjk + εjk. (1.9)

The trigonometric terms and b0 describe the seasonality with periods of 12 and 6 months
(θ = 2π/366), the summation allows for the influence of meteorological variables (with
parameters cm), σ allows for over-dispersion in the data and ε allows for temporal auto-
correlation between observations. The meteorological variables (M) at sunset included
were temperature, mean wind-speed and whether it was raining [Sanders et al., 2011].
This model is often used without taking meteorological conditions into account. Here
only b0 and the trigonometric terms are used to represent vector abundance. This sim-
plifies the model as fewer data are used and the computational cost is reduced, how-
ever this does not allow for variation between different regions. Although rainfall is an
important factor in transmission of vector-borne diseases, it is very difficult to predict
the time at which it will occur, especially for further into the future. Previous models
have also found precipitation to have a weak effect on model outcomes [Brand and
Keeling, 2017].

Turner et al. [2019] simplified the model proposed in Equation 1.9 to:

m̂(t) = exp
{

b0 + p1sin(θ(t− φ1)) + p2sin(2θ(t− φ2)) + cT
}

, (1.10)

where T is the temperature and θ = 2π/366. Here b0 is a constant, the first trigonomet-
ric term represents the 6-month period and the second the 12-month period. The only
meteorological condition considered is temperature; reducing the data required this
function produces a seasonal pattern which combined with the bite rate (a) reasonably
represented the pattern of trap catch data [Turner et al., 2019]. It is assumed that the
number of trap catches represents the number of Culicoides per host per night and the
proportion of Culicoides capable of spreading the virus is not considered.

Culicoides abundance has a strong impact on the spread of Culicoides-borne viruses.
Gubbins et al. [2007] found that values of R0 > 1 were associated with larger vec-
tor:host ratios. However, there are other factors to consider. For example, active Culi-
coides have been found at 7.5◦C, however they cannot transmit a virus if the tempera-
ture is not high enough for replication [Nielsen, 1963, Carpenter et al., 2011].

1.7 Summary

”One model fits all” is not applicable to mathematical and statistical methods in epi-
demiology. These methods need to be tailored to the data available and problems they
are attempting to address.

The SARS-CoV-2 pandemic highlighted the benefit of reliable predictive mathemati-
cal models and their use in determining the effect of non-pharmaceutical intervention
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measures and management of medical resources. Outcomes from models can never
be 100% certain, with assumptions and random events influencing model outcomes
and true events, respectively. Having multiple models with different assumptions and
structure, all attempting to tackle the same issue, can aid in consolidating results. It
is important to highlight these assumptions and uncertainties when communicating
results to stakeholders and the public. Much of the work during the SARS-CoV-2 pan-
demic involved tackling issues in real time. This highlights the advantage of working
with mathematical models for ”what if” situations. For example, if a vector-borne dis-
ease were to emerge in the UK the models and interventions used for the air-borne
SARS-CoV-2 virus would be unsuitable, and again work on controlling the outbreak
would be in real time. Having collected knowledge and designed models in order to
have a plan in place before an outbreak occurs may allow stakeholders to get ahead of
the epidemic curve and minimise the probability/magnitude of outbreaks.

Parameters such as the transmission rate are not static and depend on behaviour and
climate, amongst other variables. At the beginning of an outbreak assumptions have to
be made about these parameters, then as the outbreak progresses data can be gathered
to fit these parameters for the given scenario. Similarly, the impact of interventions may
be influenced by these variables. When estimating the effect on an intervention this un-
certainty needs to be considered. Although mathematical models provide useful in-site
to the epidemiological impact of interventions, policy makers also consider economic
impact and politics in their decision making Klein et al. [2007]. The economic impact
of interventions can be accessed from mathematical model results Balike Dieudonné
[2021], Harris et al. [2016].

When considering spatial models different countries/communities have population
aggregation, which will likely effect the transmission of some pathogens. This is also
true for the distribution and transmission of livestock pathogens. Should countries be
faced with the introduction of a foreign equine disease such as AHSV, the current un-
certainty in spatial data is likely to effect the ability to accurately model the pathogens
implications. Proactively gathering more informed data before an outbreak would al-
low the epidemiological and modelling tools available to be applied in in real-time.

Mathematical models can also be of use for understanding vector ecology [Ewing et al.,
2019]. During the Moroccan AHSV outbreak there was no transmission across the Atlas
Mountains. A possible explanation for this is the altitude acted as an effective barrier to
Culicoides movements. Further studies of vector populations at different altitudes could
help improve understanding of this phenomenon. Geographical regions in which vec-
tor species can survive are increasing with climate change [Wittmann and Baylis, 2000].
Also, if a region has not experienced an out break of a virus, often little in known of the
potential of native species to transmit the virus. Laboratory studies of vector compe-
tence, such as those performed by Carpenter et al. [2011], can help inform mathematical
models.
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Abstract: Members of several different virus families cause equine viral encephalitis, the

majority of which are arthropod-borne viruses (arboviruses) with zoonotic potential. The

clinical signs caused are rarely pathognomonic; therefore, a clinical diagnosis is usually

presumptive according to the geographical region. However, recent decades have seen

expansion of the geographical range and emergence in new regions of numerous viral

diseases. In this context, this review presents an overview of the prevalence and distribution

of the main viral causes of equine encephalitis and discusses their impact and potential

approaches to limit their spread.

Keywords: arbovirus, vector, vaccination, mathematical modeling

Introduction
Viral encephalitis is one of the most common infections of the central nervous system

(CNS) in horses worldwide.1 Clinical signs can include mild fever, dullness, sleepiness,

listlessness, ataxia, inability to rise trembling, skin twitching, difficulty in urination and

defecation, facial paralysis, blindness, seizures, coma, and other non-neurological

signs.1,2 The combination, severity, and duration of these clinical signs can vary

depending on the etiological agent and its virulence; infection can be fatal. As clinical

signs are usually very similar among the different diseases, which specific pathogen is

considered depends on geographical areas. This review focuses on themain neurotropic

viruses that cause encephalitis in equids and not viruses that can cause other neurolo-

gical diseases such as equine herpes myeloencephalopathy. Other viruses that cause

encephalitis in horses less frequently or affecting a smaller region are listed in Table 1.

Prevalence and distribution
Alphaviruses
Encephalitic alphaviruses belonging to the family Togaviridae cause neurological

signs in equids and humans on the American continent.3 The most common equine

encephalitic viruses are Eastern equine encephalitis (EEE), Western equine ence-

phalitis (WEE), and Venezuelan equine encephalitis (VEE). Collectively known as

the equine encephalitides, they are transmitted by mosquitoes and wild birds are the

main reservoir host. Horses and humans are considered dead-end hosts for EEE and

WEE viruses because they do not generate enough viremia to infect mosquitoes and

perpetuate the transmission cycle. On the other hand, equids are the key reservoir

host for VEE virus because they develop high titer viremia that can act as source of

infection for subsequent feeding mosquitoes.2,4
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EEE virus
In North America, EEE has been considered endemic for

decades.5 This disease is more prevalent in the Southeastern

region of the United States with a high fatality rate. However,

since 2005, the geographic range of the virus has spread

northwards,6,7 and 8.7% seroprevalence was reported in

horses in southern Quebec in 2012.8 Madariaga virus

(MADV) is the new species designation for the South

American isolates of EEE virus (previously referred to as

EEE lineages II, III, and IV) to reflect the different pathogen-

esis and ecology and genetic divergence fromNorth American

strains.9 In Central and South America, small outbreaks of

MADV with low fatality rate have been reported between

the1930s and 1990s.5 More recently, larger outbreaks of

higher morbidity and mortality have occurred.10–12 In Brazil,

high fatality rate outbreaks were reported between 2008 and

2009 with 229 horses affected.13 In 2010, seroprevalence of

MADV in horses was reported to be 26.3% in Panama and

9.9% in Brazil.11,14

WEE virus
In North America, the WEE virus has traditionally affected

states west of the Mississippi river, with the largest out-

breaks registered in the 1930s and 1940s in Canada and

the United States affecting hundreds of thousands of

equids.2 However, no cases have been reported in North

America since 1998 and the last time the virus was

detected in mosquito pools was in 2008.15

In South and Central America, the last confirmed

equine outbreak was reported in Brazil in 2007 and a

prevalence of 36.4% has been reported in non-vaccinated

horses in the Pantanal region of Brazil in 2010 and 0.4% in

2015.14 The disease is suspected but has not been con-

firmed in other countries such as Bolivia and Costa Rica.

In Uruguay, a fatal human case in 2009 associated with

WEE virus encephalitis in a child led to a seroprevalence

survey in this country, which revealed a low prevalence of

this virus in horses ranging from 3% to 4%.16,17

WEE virus is an example of an apparently declining

equine and human pathogen probably caused by a reduction

in genetic diversity of circulating lineages, which contrasts

with the recent emergence of other arboviruses.15,18

VEE virus

Generally, only the epizootic strains 1-AB and 1-AC of

VEE virus produce encephalomyelitis in horses, with a

fatality rate close to 90%.19,20 Outbreaks of this disease

started in South America and spread northward via CentralT
ab
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America up to Mexico and southern Texas affecting hun-

dreds of thousands of horses.21 In Mexico, a high equine

seroprevalence has been reported ranging from 17% to

80% in different states between 2003 and 2010.22

Flaviviruses
The family Flaviviridae contains the largest number of

viral species that may cause encephalitis in horses. All

are zoonotic and transmitted by mosquitoes or ticks

(Table 1). The most significant are West Nile virus

(WNV) and Japanese encephalitis virus (JEV).1

West Nile virus

West Nile virus is the flavivirus with the widest distribu-

tion, which includes all continents (Table 2). In affected

regions, WNV is maintained in an enzootic cycle between

mosquitoes and birds.23 Horses and humans are considered

dead-end hosts because of the low viremia developed,

which is not sufficient to transmit the virus back to

mosquitoes.3 Experimental studies have demonstrated

that only 10% of the infected horses develop neurological

signs, but they can be lethal.24 WNV was first isolated in

Africa in 1937 and spread to Eurasia and Australia where

sporadic outbreaks occurred.25 Since the 1990s, more fre-

quent outbreaks have occurred in the Mediterranean Basin

and WNV appeared for the first time in North America in

1999, subsequently spreading across the continent.25,26

Since 2008, a re-emergence of WNV in Central and

Southeastern Europe has been observed, with both lineage

1 and lineage 2 WNV involved in outbreaks.27 In

Australia, WNV was named Kunjin virus, which was

endemic in northern Australia but has caused recent out-

breaks of encephalitis in horses in the southeast probably

because of enhanced vector transmission.28,29

Japanese encephalitis virus

Japanese encephalitis virus most commonly circulates

amongst birds and mosquitoes.30 Pigs are referred to as a

virus-amplifying host because they develop high viremia.31

As for EEE virus and WEE virus, horses and humans are

dead-end hosts for JEV.32 The virus is endemic in southern

areas of Asia and some Pacific countries, such as Malaysia,

Indonesia, Singapore, New Guinea and Australia where

sporadic outbreaks are observed.33 Whereas in northern

Asiatic areas such as Korea, Nepal, China, Taiwan, Japan,

northern parts of Vietnam, India or Thailand; seasonal epi-

demics develop.33 In Korea, around half of 989 horses

tested between 2005 and 2007 were antibody positive.34

In India, 10.5% of 637 horses screened between 2006 and

2010 had antibodies against JEV.35

Mononegavirales

Viruses in the order Mononegavirales are large enveloped

viruses with a single-stranded negative-sense RNA gen-

ome. Several families in the order (Rhabdoviridae,

Orthobornaviridae, and Paramyxoviridae) include viruses

that can produce encephalitis in animals and humans.36

Rabies virus

Rabies virus, a neurotropic virus in the genus Lyssavirus

(family Rhabdoviridae), is one of the deadliest zoonoses

worldwide.37 European countries, Iceland, Greenland, New

Zealand, and Australia are considered free of this disease,

but it is present on the American, African, and Asian

continents.38 All mammals are susceptible, but canids and

bats are the major vectors. Transmission is via saliva, mainly

when a rabid animal bites another animal. Rabies infection is

relatively rare in horses; only 23 rabid equids were reported in

the United States in 2016 and 13 in 2017.39 Nevertheless, in

some African countries, large numbers of rabies cases occur in

equids, including donkeys, and there may occasionally be

transmission to people.40

Borna disease virus

Borna disease virus-1 (BoDV-1) is a neurotropic pathogen

in the genus Orthobornavirus (family Bornaviridae) that

causes mononuclear encephalomyelitis in horses.41 This

disease is endemic in certain areas in central Europe includ-

ing Germany, Switzerland, Liechtenstein, and Austria and

is usually fatal. The reservoir host of this virus is the

bicolored white-toothed shrew (Crocidura leucodon), but

natural infection can occur occasionally in equids and other

animals such as sheep, cattle, llamas, cats, dogs, and

ostriches.42 A landscape modeling study conducted in an

endemic area suggested that horses come into contact with

shrews in dry habitats such as grasslands and stables.43 In

Germany, close to the town of Borna, large numbers of

horses died in the late 1800s.42,44 In the 1990s, the inci-

dence was much lower, around 100 horses per year in the

endemic area.45 Recently, a new endemic area in Austria

was reported after confirmation of lethal disease in horses.46

One case has been reported in the United Kingdom in a

horse imported from Germany.47 Antibodies against

Bornaviruses have been detected in equids in non-endemic

areas of Europe, Iceland, Turkey, Israel, Japan, China, Iran,

Australia, and United States.48–53 However, it is not con-

sidered proof of infection due to the cross-reactivity with
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avian Bornaviruses.46 There are sporadic reports of con-

firmed human BoDV-1 infection including a recent fatal

encephalitis case,54 but it is unclear whether these represent

interspecies transmission from horses or other hosts. An

association between BoDV-1 infection and human neurop-

sychiatric disease was first reported in 1985,55 although this

remains controversial.

Hendra and Nipah virus

The name of in the genus Henipavirus (family

Paramyxoviridae) is an amalgamation of Hendra and

Nipah. Both species are emerging zoonotic pathogens for

which flying foxes (bats in the genus Pteropus) are the

reservoir host. Hendra virus (HeV) causes respiratory and

often fatal neurological disease in horses and people. It

emerged in Brisbane in 1994 and is restricted to

Australia.56 Prevalence is low as most cases occur as

spillover events to individual horses. There is a risk of

human transmission during the preclinical stages of the

disease and all infected people had close direct contact

with body fluids from infected horses.57

Nipah virus (NiV), which has circulated in Malaysia

and Singapore since the late 1990s, has spread to Thailand,

India, and Bangladesh.58 It mainly affects domestic pigs

Table 2 Recently published seroprevalence of West Nile virus in some countries

Country Seroprevalence Year Test used Reference

Algeria 17.4%

(26.8% horses, 14.4% donkeys)

2014 ELISA confirmed with WB and VNT 103

Argentina 16.2% 2008 PRNT 104

Australia (KUNV) 4.8% 2011 cELISA confirmed by PRNT 105

Brazil 1.46% 2004–2009 ELISA and VNT 104

Canada 16.5% 2012–2014 ELISA confirmed by PRNT 106

Chad 97% 2003–2004 107

Cote d’Ivoire 28% 2003–2005 107

Croatia 3.43% 2010–2011 ELISA confirmed with VNT and PRNT 108

France 35% 2003 ELISA and VNT 109

Gabon 3% 2004 107

Greece 33% 2010 cELISA 110

Israel 84.6% 2014 cELISA and VNT 111

Italy 39.1% 2008 - 112

Mexico 26%

45%

2006

2007

cELISA 113

Morocco 31% 2011 ELISA and VNT 114

Pakistan 65% 2012–2013 cELISA (anti-pr-E IgG) 115

Palestine 48.6% 2014 cELISA 111

Poland 15.08% 2012–2013 VNT 116

Romania 58.5%

15.2%

2010

2006–2008

cELISA 111

Saudi Arabia 17.3–55.6%

(depending on region)

2013–2015 ELISA and VNT 117

Senegal 92% 2002–2003 ELISA confirmed with PRNT 107

Slovak Republic 6.9% 2013 cELISA and NT 118

Spain 7.1% (CI 95% 5.4–11.2%) 2010 cELISA and VNT 119

Tunisia 28% (95% CI 22–34%) 2009 ELISA and VNT 120

Turkey 4.9–30.6%

(depending on regions)

2011–2013 PRNT 121

Ukraine 13.5% 2010–2011 ELISA and PRNT 122

USA 19% (feral horses)a

7.2% (feral horses)

2008

2009

ELISA confirmed by PRNT 123

Venezuela 4.3% 2004–2006 ELISA confirmed with PRNT 124

Notes: aWidespread vaccination in horses in this country precludes performing seroprevalence studies.

Abbreviations: cELISA, competition ELISA; ELISA, enzyme-linked immunosorbent assay; PRNT, plaque reduction neutralization test; VNT, virus neutralization test.
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and people but can occasionally affect horses producing

encephalitis and meningitis.59

Prevention and control
The majority of equine encephalitic viruses are limited to

specific geographical areas. Spread to disease-free areas of

the world can have catastrophic consequences on equine

welfare and industry including mortality, loss of earnings,

increased costs (due to veterinary treatment and hospitaliza-

tion, and preventivemeasures such as vaccination), as well as

public health consequences. For example, outbreaks of

African horse sickness in the past have caused 300,000

equine deaths in a short time. It was estimated that the

economic cost of such an outbreak in the Netherlands could

be more than 500 million Euros.60 In another recent study, it

was estimated that the cost of a WNV epidemic in Belgium

would be over 30 million euros for equine patients and over

45 million euros for human patients.61

Viral outbreaks are not completely avoidable, but pre-

ventative strategies can help restrict their occurrence.

Management strategies can also be used in an attempt to

eradicate a pathogen from a population or limit its impact.

Particularly due to its zoonotic potential, an outbreak of

HeV led to the re-evaluation of infection control and equine

management practices in Queensland, Australia. Horses can

also be used as epidemiological sentinels for human

surveillance.2 For example, although horses are not

believed to be an amplifying host of EEE virus epidemics,

they tend to be the first to show clinical signs, therefore

providing the first indication that the virus is circulating.4

Thus, illness detection in horses can trigger measures to

prevent associated outbreaks in humans. Viruses can be

spread through many different mechanisms, therefore war-

ranting different control strategies.62 New equine encepha-

litic viruses are still being discovered, for example, HeVand

NiV were both first identified in the 1990s,63 and there are

likely to be more that remain undiscovered. Control of

future emerging virus outbreaks may rely on identifying

appropriate strategies already applied to related known dis-

eases. Mathematical modeling can provide an understand-

ing of mechanisms driving disease outbreaks. However, it is

important to consider how reliable the values assigned to

parameters are (“parameter identifiability”) before mathe-

matical models are used to guide interventions.

Diagnostic techniques
The increasing threat of vector-borne diseases emphasizes

the importance of vector surveillance systems and diagnostic

tests for early detection of pathogens.64 Early identification

of the virus causing equine encephalitis will improve the

effectiveness of many disease control measures. As pre-

viously mentioned, clinical diagnosis of equine encephalitic

viruses is often unreliable due to overlap in the clinical signs

seen; therefore, laboratory testing is usually necessary to

confirm the etiology of the disease. The OIE (World

Organisation for Animal Health) Manual of Diagnostic

Tests and Vaccines for Terrestrial Animals describes inter-

nationally agreed diagnostic tests for each of the virus species

presented in this review with the exception of BoDV-1. The

preferred diagnostic test varies for the different viruses and

the purpose for which it is being performed, which can

include confirmation of a clinical case, surveillance, demon-

strating freedom from infection of an individual animal or

population and monitoring the response to vaccination. Virus

isolation can be time-consuming and for many of the viruses

described requires high levels of laboratory containment, but

the OIE recommends it as a definitive diagnostic of VEE

virus. Polymerase chain reaction (PCR)-based techniques are

widely used for virus detection as they offer the advantages

of being specific and rapid to perform. However, for some

viruses, particularly the flaviviruses, the transient nature of

viremia means that RT-PCR tests frequently return false-

negative results. Therefore, serological confirmation is

necessary. Enzyme-linked immune-sorbent assays (ELISA)

are increasingly popular as a relatively inexpensive and rapid

diagnostic test. However, cross-reactivity between closely

related co-circulating viruses complicates serological testing,

particularly for flaviviruses.6 Therefore, confirmatory testing

using a virus-neutralizing test such as the plaque-reduction

neutralization test is often required. Disease surveillance

often includes random testing of animals in order to observe

whether a pathogen is present within a population,62 which

also requires cost-effective and accurate assays to be

developed.

Vaccination
Vaccines are currently available for many of the viruses that

cause equine encephalitis (Table 3). An equine vaccine for

JEV is notably missing although human vaccines are available

and are sometimes administered to horses (eg, in Japan). In

contrast, although there are equine vaccines against WNV,

there is no human WNV vaccine. Although live-attenuated

and inactivated virus vaccines have successfully prevented

disease for many decades, these vaccines have some limita-

tions. For example, inactivated virus vaccines typically induce

short-lived protective antibody responses and there is a risk of
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reversion to virulence with inactivated virus vaccines. This has

led to the development of second-generation vaccines, such as

the live-vectored andDNAvaccines available forWNV. These

vaccines often enable a “differentiation of infected from vac-

cinated animals” (DIVA) approach to be taken whereby diag-

nostic tests are used that detect antibodies against proteins not

generated in response to the vaccine. This can be critical in

controlling an emerging virus outbreak as it enables authorities

to determine when an outbreak is over by screening for anti-

bodies that only develop in infected animals.

Vaccination coverage is often determined by factors such

as economic and logistic issues in developing countries and

motivational and legislative issues in developed countries.65

Mass vaccination is not likely to be cost-effective; focusing on

high-risk groups would most likely be more appropriate.64

Furthermore, it is not always necessary to vaccinate every

individual for a population to be protected. The basic reproduc-

tion number, R0, is the expected number of new infectious

cases generated from an individual host during their infectious

period. When this value is larger than one (R0>1), we expect

the number of infected individuals to increase, and if R0 is less

than one, we expect the disease to die out of the population.

Considering this, it is possible to approximate the proportion of

a population that require vaccination in order to stop the

pathogen circulating, therefore reducing R0 to below unity.

By vaccinating a proportion (p) of the population, the R0 is

decreased to 1� pð ÞR0. This allows derivation of a condition

for this proportion; as 1� pð ÞR0 must be less than one, we

have

p>1� 1

R0

This shows that it is not necessary to vaccinate the whole

population, as unvaccinated horses will be protected from

the vaccination of others, known as herd immunity.65

Empirical studies have confirmed this theoretical idea.66

Vaccination has led to the global eradication of smallpox

and rinderpest virus. However, herd immunity and disease

eradication are more difficult to achieve for viruses with

reservoir host species or insect vectors.

Control of exposure to viral vectors and

reservoir hosts
Reducing exposure of horses to wildlife that transmit equine

encephalitic viruses can be difficult to achieve. Population

control methods such as vaccination and/or sterilization of

wild or feral canids have been widely employed to reduce

human transmission of rabies.67 However, this approach can

cause ethical debate, for example, where poisoning of bats

has been used to control rabies in South America.

At the equine premises level, exposure to insect vectors

can be reduced by using fly rugs and insect repellents, and

stabling horses during peak vector activity (eg, at dusk).62

Other localized methods of vector control include mass trap-

ping and blocking breeding sites by obstructing water sur-

faces with polystyrene balls.68 Control measures also include

reducing mosquito populations.25 The use of pesticides to

control vector-borne viruses raises environmental and health

concerns and mosquito populations are developing resistance

to conventional control agents. There has been an increased

interest in the development of biopesticides68 and the crea-

tion of genetically modified mosquitoes that cannot transmit

pathogens.69–71 Mathematical modeling has predicted that if

the abundance of mosquitoes could be reduced such that R0

becomes <1then WNV would die out.72 Wonham et al

(2004) predicted that if the initial size of the New York

mosquito population was 40–70% smaller, the outbreak of

WNV in 2000 could have been prevented.73 In contrast,

reducing the bird population increases the chance of an

Table 3 Vaccines licensed for use in horses to protect against viruses that cause encephalitis

Virus Vaccine type

Eastern equine encephalitis Inactivated whole virus

Western equine encephalitis Inactivated whole virus

Venezuelan equine encephalitis

(VEE)

Inactivated whole virus

A conditionally available modified live virus (MLV) VEE vaccine has been released during previous outbreaks

West Nile Inactivated whole virus

Modified live (canarypox vector expressing prM and E proteins)

DNA vaccine

Rabies Inactivated whole virus

Hendra Subunit (recombinant glycoprotein)

Abbreviations: prM, membrane, E, envelope.
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outbreak as it increases the ratio of mosquitoes to birds

making virus transmission more likely, as long as the popula-

tion is not reduced to the extent that the mosquito population

is not maintained. Although mosquitoes are the most com-

mon insect vector of equine encephalitic viruses, ticks (eg,

Powassan virus74 and louping ill virus) and midges (eg,

African horse sickness viruses) can also act as vectors.3

Control of disease spread through

international movement of horses
Increased globalization has led to a greater potential for the

spread of infectious diseases. Most international equine

movements are for competition purposes. The number of

prestigious international competition events has increased

in the last 10–15 years. There has also been an increase in

the number of stallions being transported between the north-

ern and southern hemispheres for breeding; this number rose

from 7 in 1989 to over 100 in 2000.63 In addition, horses may

be transported as a result of change of ownership or slaughter

in the meat industry. Countries often have different strategies

of restricting pathogens from entering, including testing and

quarantine of imported animals. They may also place restric-

tions on importation from specific countries to prevent intro-

duction of certain pathogens. However, this can have an

impact on the equine industry given the frequent interna-

tional movement of some horse populations.62 Quarantine,

disinfection, pathogen screening, and transport restrictions

are useful tools in infection control and biosecurity systems;

however, these require optimization for maximum impact.62

It is not possible to predict when a new virus (either a

newly identified pathogen or a known pathogen in a new

geographical area) will emerge. However, models to

assess the risk of a virus entering a population and

changes in risk over time can be developed. There are

also models for the risk of disease introduction through

host movement.76,77 Countries can be characterized as

high risk (virus circulating), low risk (previous outbreaks

and/or main vector present), and very low risk. If differ-

ent host species or reasons for travel are associated with

different risk levels then these can be further subdivided

into groups. Risk pathways can then be constructed for

the steps required for incursion (Figure 1). From these

pathways, stochastic risk models that quantify the risk

that importation of different groups of animals can be

developed. These methods allow us to assess control

strategies such as quarantine and their effectiveness on

different risk groups.

In the case of vector-borne viruses, seasonal prevalence

and vector abundance in endemic regions and regions at

risk of disease introduction can be taken into account.

Vector-borne diseases are often restricted to temperate

climates due to the range of the insects.62 However, with

climate change, the areas inhabited by virus-transmitting

insects are changing.78,79 The spread of vector-borne

viruses is strongly influenced by temperature.

Temperature has an effect on the life cycle of the insects,

as well as the extrinsic incubation period (the time

between a vector acquiring an infectious agent and becom-

ing infectious). The average global temperature is pre-

dicted to increase between 1°C and 4.6°C during this

century.75 Increased temperatures and altered rainfall pat-

terns are likely to affect the range and behavior of insect

vectors.63 Access to breeding sites also has an effect on the

distribution of mosquitoes; an increased transmission of

EEE virus has been associated with the freshwater hard-

wood swamps in the Atlantic and Gulf Coast states and the

Great Lakes region (USA).4 This is important to consider

in the case of vector-borne diseases, as even if an infected

host enters a naïve population, the virus cannot spread

without the presence of its vector. The main species of

vector, geographical distribution, and zoonotic potential

vary between equine encephalitic viruses.4 Geographic

Information System-based spatial models for predicting

locations with high risk have been developed;68,80–82

these use predictor variables such as temperature, rainfall,

and landscape/vegetation.25

Whereas some regions may be able to support the vector

life cycle throughout the year, viruses may overwinter in

unidentified hosts or be re-introduced (eg, by importation

or migratory birds) in some climates. Some viruses, such as

WNV, are transmitted vertically (from adults to eggs) within

mosquito populations; this provides a mechanism for the

viruses to be maintained within the population.64 Vector-

Figure 1 Pathway of the steps required for the incursion of a virus due to importation of infected host.
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borne diseases can spread when vectors are carried by the

wind. Incursions of JEV into northeastern Queensland are

thought to be most likely due to infected mosquitoes blown

by the wind from Papua New Guinea.63

International horse movements are not only a threat to

naïve populations into which a new pathogen is introduced;

the imported equine is also at risk of acquiring disease. An

example of this occurred in horses imported to Korea from

Ireland, New Zealand, and Australia in 1996 that became

infected with JEV.63,83 This highlights the importance of

vaccinating horses against viruses they may come into con-

tact before they travel, for example, horses that travel from

the United Kingdom may be vaccinated against WNV.63

Conclusion
There is an apparent general increase in viral emergence and

re-emergence, particularly of arboviruses. This trend includes

viruses that cause potentially devastating encephalitic disease

in horses. As a result, there is increasing awareness of the need

to monitor disease trends in equine populations, particularly of

viruses with zoonotic potential, and to formulate approaches to

prevent or control disease outbreaks.
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Abstract
African horse sickness (AHS) is a vector-borne disease transmitted by Culicoides spp.,
endemic to sub-Saharan Africa. There have beenmany examples of historic and recent
outbreaks in the Middle East, Asia and Europe. However, not much is known about
infection dynamics and outbreak potential in these naive populations. In order to bet-
ter informapreviously publishedordinary differential equationmodel,weperformeda
systematic literature search to identify studies documenting experimental infection of
naive (control) equids in vaccination trials. Data on the time until the onset of viraemia,
clinical signs and death after experimental infection of a naive equid and duration of
viraemiawereextracted. The time toviraemiawas4.6days and the time to clinical signs
was 4.9 days, longer than the previously estimated latent period of 3.7 days. The infec-
tious periods of animals that died/were euthanized or survived were found to be 3.9
and 8.7 days, whereas previous estimationswere 4.4 and 6 days, respectively. The case
fatality was also found to be higher than previous estimations. The updated parameter
values (alongwith othermore recently published estimates from literature) resulted in
an increase in the number of host deaths, decrease in the duration of the outbreak and
greater prevalence in vectors.
KEYWORDS
African horse sickness, mathematical model, vector-borne disease

1 INTRODUCTION
African horse sickness (AHS) is caused by African horse sickness virus
(AHSV) of the genusOrbivirus in the family Reoviridae. Endemic to sub-
Saharan Africa, it often emerges when periods of heavy rain follow hot
anddry conditions. This favours its principle vector,Culicoides spp.,with
Culicoides imicola usually considered to be the most important vector
species in Africa (Mellor &Hamblin, 2004). AHSV hosts include horses,
mules, donkeys and zebras. Zebras, the only equids native to South
Africa, are believed to be the reservoir host (Barnard, 1998).

There are nine immunologically distinct serotypes of AHSV defined
on the basis of antigenic reactivity of antibodies to the outer cap-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.
© 2021 The Authors. Transboundary and Emerging Diseases published byWiley-VCHGmbH

sid virus protein VP2 (Bachanek-Bankowska et al., 2014). In endemic
regions, usually only one serotype circulates at a time. Historically,
serotype 9 was responsible for epizootics of AHS outside Africa. Out-
breaks in central and East Africa have occasionally spread to Egypt,
the Middle East and southern Arabia (Mirchamsy & Hazrati, 1973). A
major epidemic in 1959−1961, spread through the Near East and Ara-
bia as far as Pakistan and India, resulted in the death of an estimated
300,000 equids (Anwar &Qureshi, 1973; Howell, 1960). A further epi-
demic of AHSV in northwest Africa (Morocco, Algeria and Tunisia) in
1965−1966 spread briefly to southern Spain but was eliminated by
vaccination and by killing infected equids (Hazrati, 1967). The first
occurrence of an outbreak outsideAfrica not caused by serotype 9was
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in July 1987, when serotype 4 was reported in central Spain (Lubroth,
1988). The virus overwintered and caused further outbreaks in
southern Spain, Portugal and Morocco in subsequent years before
it was eliminated in 1991 (Baylis et al., 1997; Portas et al., 1999;
Rodriguez et al., 1992). In 2007, outbreaks of AHS inWest Africa were
caused by serotype 2 (Nigeria and Senegal) and serotype 7 (Senegal)
(Diouf et al., 2013). Outbreaks of AHS have recently been reported in
Ethiopia (Aklilu et al., 2014), Thailand (Lu et al., 2020) and Malaysia
(Castillo-Olivares, 2021).

AHS presents as acute, subacute or subclinical forms (Carpenter
et al., 2017). In naive populations of horses, case fatality may exceed
90% in epidemics (Castillo-Olivares, 2021). The acute respiratory form
is characterized by a short incubation period (3−5 days), and the ani-
mal usually dies from severe hypoxia, congestive heart failure or a com-
bination of both after around 1 week. The subacute or cardiac form
of AHS has an incubation period of 1−2 weeks with a short fever fol-
lowed by the classical clinical sign of AHS and oedema of the supraor-
bital fossae. The case fatality is around 50% with death usually occur-
ring within 1 week. In most outbreaks, a mixed pulmonary and cardiac
form is most commonly seen, which causes fatality of around 80% of
susceptible equids (Theiler, 1921). The subclinical form, often referred
to as African horse sickness fever, is common in zebras, African don-
keys and horses that are partially immune because they have been vac-
cinated or have recovered from a previous infection (Lu et al., 2020).
The outbreaks of AHSV in Spain in 1987 and Thailand in 2020 were
associated with importation of (infected) zebras from Africa (Grewar
et al., 2021; Rodriguez et al., 1992).

In order to model the risk posed by AHSV if it emerges in coun-
tries where equids have no prior exposure, we need data on various
parameters such as the length of the latent and infectious periods. It is
also important to know whether there is any association between the
serotype causing an outbreak and the values of these parameters. In
the case of AHSV, parameters such as the latent period are not possi-
ble to determine in the field as the exact time of infection is generally
not known. Here, a systematic search and data extraction, focusing on
studies documenting experimental infection of naive equids in vaccina-
tion trials, was performed to inform a model for AHSV previously sug-
gested by Backer andNodelijk (2011). Overall, 26 studies were used to
derive parameters describing the host–virus interactions, compared to
the three studies used in the development of the Backer and Nodelijk
model (J. A. House et al., 1994; Roy et al., 1996; Scanlen et al., 2002).
Parameters derived from the review were the time until the onset of
viraemia, clinical signs anddeath after experimental infection of a naive
equid aswell as the duration of viraemia. It is important to consider the
role of vectors when modelling AHSV. The parameters for the vectors
were updated from literature, similarly to Gubbins et al. (2014); some
of this literature was published after the Backer andNodelijk model.

AHSV is listed as a notifiable disease in disease-free countries by
the World Organisation for Animal Health (OIE) (2021). An outbreak
can have a severe impact on thewelfare of equids and be disruptive for
the equine industry (Allison et al., 2009; Clemmons et al., 2021). Policy
makers with responsibility for deciding the course of action if an out-
break occurs in a previously disease-free country are heavily reliant on

models to predict the likely outcome of outbreaks (Daly et al., 2013;
Grassly & Fraser, 2008).

2 METHODS
2.1 Systematic literature search
A systematic search (limited to the title and abstract) was performed
(by E. L. Fairbanks and J. M. Daly) using PubMed with the search
terms ‘African horse sickness virus’ AND ∼vaccine AND (∼challenge
OR ∼trial)’ and ‘African horse sickness virus’ AND ‘experimental infec-
tion’, where ∼ means terms including and similar too. Eligible studies
included the inoculation of a naive equid with AHSV. The citations and
references of eligible articles found on PubMed were then searched
in order to find further relevant articles. A similar search term was
used to search CAB abstracts; however, no additional research arti-
cles were identified. Supporting Information 1 describes how vector-
related parameters were updated, also by systematic searches.

2.1.1 Data extraction and analysis
Studieswere eligible for data extraction if they gave a value for the time
until onset of viraemia and/or clinical signs and/or death. To determine
whether theseattributeswere significantly differentbetween thevirus
serotypes, a Kruskal–Wallis test was used. This is a non-parametric
method for testing whether samples originate from the same distribu-
tion, that can be used for comparing more than two independent sam-
ples. This analysis was performed using the stats R package version
4.2.0 (R Core Team and contributors worldwide, 2021). Data for the
unidentified serotypes were not included in this analysis. Also, analy-
sis for the time until viraemia was repeated including only serotypes
withmore than one data value.We also performed this statistical anal-
ysis to determinewhether infectionmethod (either intravenous or sub-
cutaneous inoculation) had an impact on these disease characteristics.
A paired and two-sample t-tests were used to determine if there was
a difference between the estimated onset of viraemia between poly-
merase chain reaction (PCR)-based and virus isolation methods in the
equids for which both were compared and all equids for which data for
the onset of viraemia were analyzed (including both PCR and virus iso-
lation for equines with both available), respectively.

2.2 Re-parameterization of a mathematical model
We will consider a deterministic ordinary differential equation (ODE)
model for AHSV suggested by Backer and Nodelijk (2011). In the
Backer and Nodelijk model, the vector population adapts to changes in
the vector:host ratio. Here, we do not include this in the model. This is
due to the assumption that the size of the vector population is depen-
dent on the carrying capacity of midges in the environment surround-
ing thehorses rather than thenumberofhorsespresent. The total num-
ber of vectors therefore does not change. We assume the number of
hosts present is likely to reflect the size of the premises. Figure 1 shows
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F IGURE 1 The infection cycle of African horse sickness virus (AHSV). Blue arrows represent transfers between compartments with their rates
given in orange. Red arrows represent between species transmission

the infection diagram for this system. Details of the model along with
theODEs are given in Supporting Information 2.

Parameters updated included the latent period, infectious period of
both dying and surviving equids and host fatality. The infectious period
of surviving hosts was calculated using data from live virus isolation,
similarly to Backer and Nodelijk (2011). Here, we set a conservative
estimateof the case fatalityof0.84; however, sensitivity analysis allows
us to observe the effect of this value on model outputs (Supporting
Information 3). The latent period and infectious period of dying and
surviving hosts are divided into multiple stages; this allows them to
have a gammadistribution. For example, the total duration of the latent
period follows a gamma distributionwithmean duration ε and variance
ε2/i, where i is the number of stages.

We compare simulation results for this model for the parameters
published in Backer and Nodelijk (2011) and the updated parameters.
ODEs were integrated using the MATLAB function ode45. Sensitivity
analysiswas performedon themodelwith anupdated rangeof possible
parameter values. This was done on the duration of the outbreak, total
number of infected equine hosts during the outbreak and the basic
reproduction number (R0) using the partial rank correlation coefficient
(PRCC)method (Supporting Information 3).

3 RESULTS
3.1 Systematic literature search
A total of 39 articles were found during the PubMed search performed
on 20 May 2020. Of these, 11 were excluded during a first screening

of their titles for being narrative reviews or a non-equid experimen-
tal infection. After reading the full texts of the remaining 28 articles,
a further 12 were excluded for being narrative reviews, in vitro experi-
ments, non-equid infection experiments, not challenging equids or not
using unvaccinated control animals, all of which mean that no naive
equids were experimentally infected. The citations and references of
the eligible 16 articles found on PubMed were then screened in order
to find more relevant articles. A total of 40 additional full-text arti-
cles were then read and 13 were found to be eligible under the same
inclusion criteria. During the screening, six titles were identified that
qualified for a full text read but could not be accessed; these were
not included in the qualitative synthesis. The process of the literature
search is described by the PRISMA flow diagram in Figure 2 (Liberati
et al., 2009).

Altogether, 29 studieswere found recording the experimental infec-
tion of 61 naive equids; 53 horses, five donkeys and three mules
(Alberca et al., 2014; Alexander & Du Toit, 1934; Du Plessis et al.,
1998; Dubourget et al., 1992; El Hasnaoui et al., 1998; Guthrie et al.,
2009; Hassanain, 1992; Hazrati & Ozawa, 1965; C. House et al., 1990;
J. A. House et al., 1992, 1994; Lelli et al., 2013; Lulla et al., 2017;
Martínez-Torrecuadrada et al., 1996, 1997; Minke et al., 2012; Mir-
chamsy & Taslimi, 1964a, 1964b, 1968; Ozawa & Bahrami, 1966;
Ozawa et al., 1965, 1970; Quan et al., 2010; Roy et al., 1996; Scanlen
et al., 2002; Stone-Marschat et al., 1996; van Rijn et al., 2018; von
Teichman et al., 2010; Whitworth, 1930). These included all serotypes
apart from AHSV-7 and two studies where the serotype was uniden-
tified (Figure 3). The article by Sánchez-Matamoros et al. (2016) was
considered, but not included due to uncertainty of the vaccination
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F IGURE 2 PRISMA flow diagram describing the process of the
systematic search

F IGURE 3 Pie chart showing the percentage of qualitative
samples of each serotype from the systematic search (inner circle) and
the percentage of these used in the quantitative analysis after data
extraction (outer circle)

status of the 14 experimentally infected horses. Qualitative synthe-
sis of the information available from papers can be found in Table
S5. El Hasnaoui et al. (1998) was included in the qualitative analy-
sis due to the naive experimental infections; however, the full text
was not accessible so details about values of interest were not
available.

3.1.1 Data extraction and analysis
Of the 29 studies analyzed during the qualitative synthesis, 26 were
eligible for data extraction and analysis (i.e. gave a value for the time
until onset of viraemia and/or clinical signs and/or death).

A total of 27 naive experimental infections where the time until
viraemia had been measured were analyzed (Figure 4a). These varied
from 2 days to 11 days with mean 4.6 days and included serotypes
AHSV-4 (m = 14), AHSV-5 (m = 5), AHSV-6 (m = 1), AHSV-8 (m = 1)
and AHSV-9 (m = 6). The time until the onset of clinical signs was
recorded for 21 of the naive experimental infections for serotypes
AHSV-4 (m= 9), AHSV-5 (m= 4), AHSV-9 (m= 6) and two unidentified
serotypes. The mean was 4.9 days and individuals varied from 3 days
to 10 days (Figure 4b). The mean time until death after experimental
infection was 9.1 days and varied between 5 and 17 days (Figure 4c).
This was recorded for 25 horses for serotypes AHSV-4 (m= 6), AHSV-
5 (m= 5), AHSV9 (m= 13) and an unidentified serotype (m= 1).

Results from the Kruskal–Wallis tests to determine whether the
time to viraemia, onset of clinical signs or death are significantly dif-
ferent between the virus serotypes or inoculationmethods are given in
Table S6. None of these tests gave a significant result (p < .05); there-
fore, we conclude that there is no evidence that the time until viraemia,
the onset of clinical signs or death varies between serotypes or inocu-
lationmethod. A paired t-test showed that therewas no significant dif-
ference between the start of viraemia between PCR and virus isolation
methods in the six equids for which both were compared (t = −1.55,
df = 6, p = .17). A two-sample t-test performed for the 27 equines for
whichdata for the start of viraemiawas analyzedalso showedno statis-
tically significant difference between detection of genetic material by
PCR-basedmethods and detection of infectious virus (t= 0.64, df= 31,
p= .52).

For 11 horses, the time until viraemia and death due to AHSV was
recorded. The total infectious period (difference between onset of
viraemia and death) of these horses varied between 2 and 7 days with
a mean of 3.9 days (Figure 4d). For three horses that survived experi-
mental infection, the time between the start and end of viraemia was
recorded using virus isolation. The total infectious periods of these
horses were 4, 5 and 5 days, giving amean of 4.7 days.

The lag between the start of viraemia and onset of clinical signs was
reported for 18 horses. This varied between−1 (horse showed clinical
signs before viraemia) and 3 days, with amean of 0.8 days (Figure 4e).

Whether the equid diedofAHSV,was euthanized for ethical reasons
or survived was reported for one donkey and 44 horses. The donkey
survived the AHSV-9 experimental infection. Of the 44 horses 31 died,
seven were euthanized and six survived. A further eight horses either
died naturally due to infection or were euthanized, but this was not
specified. If we assumed that the euthanized horses were determined
to be ill enough that they would not survive then a total of six horses
out of 52 survived and the case fatality is calculated to be 0.88. How-
ever, if we do not make this assumption and do not consider the seven
horses thatwere euthanized, six horses out of 37 survived giving a case
fatality of 0.84.

3.2 Re-parameterization of a mathematical model
The model parameters updated from the review are given in Table 1.
As well as these host parameters, some vector parameters were also
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F IGURE 4 Histograms of (a) the time until viraemia, (b) time until clinical signs, (c) time until death, (d) total infectious period of horses that
died and (e) time lag between viraemia and clinical signs for equids experimentally infected with African horse sickness virus (AHSV)

TABLE 1 Updatedmodel parameters. Time periods are given in days. The parameter values used in Backer andNodelijk (2011) are described
in the previous value column and the parameter values used in ourmodel are described in the updated value column

Previous value Updated value
Parameter Symbol Default value 5%−95% range Default value 5%−95% range
Latent period 1/ε 3.7 2.5−4.9 4.6 2−8.5
Number of stages 1 16 5
Infectious period (dying hosts) Tinf1 4.4 2.2−6.6 3.9 2.1−6.9
Number of stages n1 19 11
Infectious period (recovering hosts) Tinf2 6.0 3.0−9.0 4.7 4−5
Number of stages n2 10 13
Host fatality mH 0.7 0.43−0.97 0.84−0.88

CHAPTER 3: RE-PARAMETERISATION OF A MATHEMATICAL MODEL OF AFRICAN

HORSE SICKNESS VIRUS USING DATA FROM A SYSTEMATIC LITERATURE SEARCH

36



6 FAIRBANKS ET AL.

F IGURE 5 Simulations of the Backer andNodelijk (2011) model using the published (a, b) and updated (c, d) parameter values showing the
outcomes for the host (a, c) and vector (b, d) populations over time after the introduction of infection into a population of 66 horses. These
parameter values are given in Table 1 and Table S1

updated from the literature. These were the blood feeding interval
(frequency of biting) (Mullens et al., 2004), extrinsic incubation period
(latent period of midges) (Carpenter et al., 2011), vector life-span
(Gerry & Mullens, 2000) and transmission probability from a host to a
vector during a bite (Carpenter et al., 2011). Details of these and other
unchanged parameters are given in Supporting Information 1.

We fit a gamma distribution to the quantitative data for the time
until viraemia and duration of viraemia to calculate the number of
stages in the latent and infectious periods, respectively. The number of
stages is equal to the gamma parameter. The number of stages for the
latent period and infectious period for dying hosts are 5 (95% CI:3–9)
and 11 (95% CI:5–26), respectively. Due to there not being many data
points for the infectious period of surviving hosts, the number of stages
needed was calculated as 93 (95% CI:19–659). This large value and
confidence interval is due to the limited number of data points avail-
able. Therefore, due to the limited number of samples, the number of
stages for the infectious period of surviving hosts is scaled from the
infectious period of the dying hosts. As the mean infectious period of
surviving hosts is 1.2 times longer than that of dying hosts, the infec-
tious period of surviving hosts is divided into 13 stages (2 more than
the number of stages for the dying horses).

Figure 5 compares the output of the updated parameters and the
original Backer and Nodelijk model parameters detailed in Table 1 and
Table S1. Initially, one horse is assumed to be in the first infectious
stage (Tinf1). The updated parameters suggest the outbreakwould have
a shorter duration, and the total number of host deaths increased from
46 to 55. For both sets of parameters, all hosts on the premises become
infected. The updated parameter values suggest a peak of 13 infec-

tious hosts on day 41 of the outbreak. However, the original parame-
ter values suggest this peak is on day 75with nine infectious hosts. The
peak in the number of infectious vectors comes after this. The updated
parameters suggest that the peak is 439 infectious vectors on day 58of
the outbreak compared to 156 infectious vectors on day 100 using the
original parameters.

Sensitivity analysis (Supporting Information 3) showed the param-
eter that most significantly influences the duration of the outbreak is
the vector:host ratio, with a larger vector population being associated
with shorter outbreaks. Here, the host infectious period (Tinf), vector
life-span (1/μV), host to vector (pH) and vector to host (pV) transmis-
sion rates, and the vector:host ratio are associatedwith outbreaks that
spread more rapidly upon emergence. It is also shown that longer host
latent periods (1/ε), duration between vector bites (1/a) and extrinsic
incubationperiods (1/ν) increase thedurationof theoutbreak. Thehost
case fatality (mH) did not significantly influence R0.

4 DISCUSSION
In order to better inform the host parameters used in the ODE model
developed by Backer and Nodelijk (2011), data were extracted from
26 studies, representing43experimentally infectednaive equids. Since
this analysis, further naive experimental infection studies for AHSV
have been published (van Rijn et al., 2020). These data did not con-
flict with the findings of this study. Overall, the updatedmodel parame-
ters suggest more hosts on the premises would die and the outbreak
on each premises would be shorter than previously predicted. More
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vectors would also become infected, which may increase the probabil-
ity of transmission between premises.

Many of the studies in this systematic search use different volumes
and titres of virus for experimental infection. Experimental infection
through needle injection is not a natural route of infection. How well
this mimics natural infection by midges is not known (Coetzee et al.,
2014; Darpel et al., 2012). It is therefore unclear whether this route of
infection or the titre/volume of virus inoculated affects the time taken
to becomeviraemic or showclinical signs. Bluetongue virus experimen-
tal infections have shown that infection via the intradermal route in
sheep reduced the time until clinical signs and increased their sever-
ity compared to the intravenous route (Umeshappa et al., 2011). It was
also found that subcutaneous inoculation appears tomimic the natural
route of infection more closely than the intravenous inoculation route,
in respect to the dissemination of the virus from the skin to secondary
target organs as has been observed following natural infection (Coet-
zee et al., 2014; Umeshappa et al., 2011). In this review, we found no
difference in the time until viraemia, clinical signs or death between
intravenous and subcutaneous routes of infection.

Variation in VP2 is a mechanism for escape from pre-existing
neutralizing antibodies that block viral attachment to the host cell
(Burrage et al., 1993; Jewell & Mecham, 1994). These variations may
impact the infectivity of the virus for the cells of hosts or vectors, but
viral pathogenicity is typically determined by more than one viral pro-
tein and is therefore not necessarily serotype dependent. For exam-
ple, van Rijn et al. (2018) reported that introducing a deletion in the
NS3/NS3a protein of AHSV renders the virus avirulent. Lulla et al.
(2016) reported that an AHSV-1 isolate was more virulent than an
AHSV-4 isolate in mice, but whether this difference was determined
by VP2 or indeed consistent between different isolates of the respec-
tive serotypes was not addressed by that study. No differences in time
until viraemia, clinical signs or death were found between serotypes
in this study. Studies of bluetongue virus (BTV) (the type species of
the Reoviridae family) indicate that more recently identified serotypes
(BTV-25−27) showadaptations involvingVP2 (aswell as VP1, VP3 and
VP7) that support direct-contact transmission, rather than by vector
insects. These changes also influence the virulence of these serotypes
for different ruminant hosts (Guimerà Busquets et al., 2021; Pullinger
et al., 2016), but there is no evidence for similar variations in AHSV.

Articles analyzed to parameterize this model dated back as far as
1930, that is, before PCR-based techniques were available. In one
study, the reverse transcription-PCR (RT-PCR) assay and virus isola-
tion methods were found to be equally sensitive for detection of virus
in blood samples from horses experimentally infected with AHSV-4.
However, viraemia was detected more consistently by RT-PCR than
by virus isolation from horses infected with AHSV-9 except from one
animal for which virus was detected only by virus isolation (Sailleau
et al., 1997). Other studies have shown that RT-quantitative PCR has
higher sensitivity than virus isolation (Guthrie et al., 2013; Quan et al.,
2010). Three articles,with a total of six experimental infectionsof naive
equids from which data were extracted in this study, compared the
detection of viraemia by PCR and virus isolation methods. Of these,
two studies (involving a total of four equids) (Alberca et al., 2014;

Guthrie et al., 2009) did not find a difference in the first day of detec-
tion of viraemia, whereas one found that viraemia was detected one
day earlier by PCR than by virus isolation in both animals involved
(Lelli et al., 2013). Further analysis showed no significant differences
between virus detection methods and estimated onset of viraema.
However, caution is needed when interpreting RT-PCR results in rela-
tion to the duration of viraemia. For example, in BTV infection, nucleic
acid can be detected in blood of hosts after infectious virus has been
cleared (MacLachlan, 1994;MacLachlan et al., 1994;Mayoet al., 2021).
Consequently, a long duration of viraemia detected by PCR is not a reli-
able guide to infectivity, or the ability of the host to act as a source of
virus to infect feeding insects. The surviving host will have developed
neutralizing antibodies that effectively inhibit detection by virus isola-
tion, even if the virus was still viable (which is uncertain).

Many vector-borne disease models consider daily differences in
temperature and seasonality in the vector population. Here, we do not
consider seasonality; we simulate the model for the time of year at
whichmidge-borne diseases are thought to bemost likely to emerge in
theUnitedKingdom.Themidge species and climates in laboratory/field
experiments used to derive the midge parameters may not be an accu-
rate representation of the most likely vector in all regions where there
is a risk of AHSV. The use of the Gerry and Mullens (2000) value for
midgemortality compared to theWittmann et al. (2002) value reduces
estimates for transmission. A limitation of Wittmann et al. (2002) is
that Culicoideswere examined in the laboratory which may affect their
mortality in comparison to wild Culicoides. However, the parameter
estimated from Gerry and Mullens (2000), based on trap data, also
has its limitations. A recent study found that biting rate per day (per
cow) was expected to be approximately 50% of a 24-h trap collection
(Möhlmannet al., 2021). Another study found that on average2.2 times
more Culicoides were found on a cow than on a Shetland pony (Elbers
&Meiswinkel, 2015). However, this could be variable between species
and sizeof horses/cows. There is a lot of uncertainty around this param-
eter; therefore, the range of values considered during the sensitivity
analysis was large.

Some parameters such as the length of the host and vector latent
periods (1/ε and 1/ν, respectively) and the case fatality (mH) cannot
be influenced by control measures. To reduce the infectious period
of hosts, infected hosts are often euthanized. Analysis of the studies
from the systematic search showed that clinical signs appear a mean
of 0.8 days after onset of viraemia. Euthanasia would only take place
after clinical signs are observed (which is likely to be very variable), a
vet responds, andmakes a diagnosis. Therefore, at the time of euthana-
sia, a proportionof the infectiousperiod is likely tohavealreadypassed.
Results show that the length of the infectious period does not influence
the duration of the outbreak asmuch as the vector:host ratio. This sug-
gests that vector control may be amore efficientmethod of controlling
outbreaks. Vector control reduces the life-span of the midges (1/μV)
and therefore the probability they complete the extrinsic incubation
period and become infectious is also reduced. There are several meth-
ods of reducing the bite rate of vectors (1/a); these include insect repel-
lents, fly rugs, stabling horses during times of high midge activity and
insect-proofing stable areas (Barbaet al., 2019;Meiswinkel et al., 2000;
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Robin et al., 2015). Vaccination to prevent the horse from becoming
infected reduces (to 0 in a perfect vaccine) the transmission probabil-
ity from vector to host (pV). The transmission probability from hosts
to vectors (pH) would also likely be reduced if a partially immune ani-
mal became infected due to lower levels of viraemia (Scanlen et al.,
2002).

Euthanasia of infected horses for ethical reasons affects our abil-
ity to assess the case fatality. However, as mentioned previously, dur-
ing an outbreak it is likely that equids with severe clinical signs that
are unlikely to survivewould be euthanized. Therefore, including these
euthanized hosts when considering those that do not survive would
not be unrealistic in the model. The longer infectious period of surviv-
ing hosts may also be informative for policy makers when deciding if
culling should be used as a control strategy. The rapid onset of death in
AHSV-infected naive horses is itself thought to limit virus spread. The
persistence (long term) of AHSV in the field is thought to be heavily
dependent on the availability and distribution of alternative, possibly
asymptomatic hosts, such as zebras or potentially donkeys or mules.
Therefore, it is important to consider secondary hosts and their ability
to aid spread of AHSV between premises, even if they are not specifi-
cally included in themodel.

Overall, the re-parameterization of the model is more informed
by the literature. Robin et al. (2016) stated that ‘extensive further
research is required if the equine industry is to avoid or effectively
contain an AHS epizootic in disease-free regions’. Here, four key areas
for further research were highlighted. These included improving the
accuracy of disease modelling, which we have aimed to address in this
study. This study also supports the importance of further research on
the vector competence of certain Culicoides species and our knowl-
edge of their distribution due to the lack of robust literature to
parameterize these aspects of the model. Other areas highlighted
included methods of reducing transmission, such as vaccination and
methods of reducing vector bite rates. Sensitivity analysis highlighted
the importance of vector control, supporting the suggestion in Robin
et al. (2016) that developing more effective and practical methods of
preventing Culicoides blood-feeding on horses may be key in AHSV
control.
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Abstract African horse sickness virus (AHSV) is a vector-borne virus spread by midges
(Culicoides spp.). The virus causes African horse sickness (AHS) disease in some species of
equid. AHS is endemic in parts of Africa, previously emerged in Europe and in 2020 caused
outbreaks for the first time in parts of Eastern Asia. Here we analyse a unique historic dataset
from the 1989-1991 emergence of AHS in Morocco in a naïve population of equids. Sequential
Monte Carlo and Markov chain Monte Carlo techniques are used to estimate parameters for
a spatial-temporal model using a transmission kernel. These parameters allow us to observe
how the transmissiblity of AHSV changes according to the distance between premises. We
observe how the spatial specificity of the dataset giving the locations of premises on which
any infected equids were reported affects parameter estimates. Estimations of transmissiblity
were similar at the scales of village (location to the nearest 1.3 km) and region (median area
99 km2), but not province (median area 3000 km2). This data-driven result could help
inform decisions by policy makers on collecting data during future equine disease outbreaks,
as well as policies for AHS control.

Keywords: Vector-borne disease, spatio-temporal model, Bayesian inference

1 Introduction
African horse sickness (AHS) is a disease of equids caused by Afican horse sickness virus
(AHSV) belonging to the Reoviridae family, genus Orbivirus. This vector-borne disease,
spread between equids by biting midges (Culicoides spp.), is endemic in parts of Africa.
Historic outbreaks, caused by serotype-9, have occurred in other (non-endemic) regions of
Africa, the Middle East and Asia and Europe (Spain) [2, 5, 14, 20]. In July 1987, equids
in Spain became infected with AHSV serotype 4, which is believed to have been caused
by importation of sub-clinically infected zebras from Namibia. New infections continued to
arise until October, when lower temperatures restricted the ability of the virus to spread.
Although it was initially hoped that this would eradicate AHSV from the region, the virus
successfully overwintered [18, 31]. The next year, the virus persisted in Spain alone, however
in 1989 it spread to Portugal and Morocco. The outbreak in Portugal only lasted 13 weeks
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due to the introduction of a policy of mass vaccination, strict movement controls and culling
of equids housed at the same premises where infected equids were identified. Overall, 206
Portuguese equids were infected and the total cost was estimated at 2 million US dollars [22].
The next year, Spain eradicated the virus after a monovalent vaccine was administered to
38,000 susceptible equids. During the outbreak in Spain, there were 400 infectious cases and
a further 900 were culled in an attempt to control the spread of AHSV [19, 25]. The virus
was not eradicated from Morocco until 1991 [3]. More recent outbreaks include serotype 2
in Nigeria and Senegal and serotype 7 in Senegal in 2007 [8] and serotypes 2, 4, 6, 8 and 9
in Ethiopia [1] in 2007-2010. Remarkably, in 2020 AHS (serotype 1) occurred for the first
time in Thailand and Malaysia [7, 17], this is the furthest east the disease has emerged. This
demonstrates the threat this disease continues to pose in both Africa and other parts of the
world, including countries historically unaffected by the disease.

In naive populations of horses, mortality due to AHS may exceed 90% in epidemics [7].
There is no specific treatment for animals with AHS but vaccines are available for all nine
serotypes. In endemic regions, a live-attenuated vaccine is used. However, there are concerns
regarding use of live-attenuated AHSV vaccines because of their capacity for reversion to
virulence and transmission by midges, the potential for reassortment between the vaccine
and field strains of virus leading to novel viruses and teratogenic effects [21, 33]. Inactivated
vaccines avoid these potential drawbacks. Previously, they have been used in Iran in the
1960s and in Spain in 1993 [7] but are no longer commercially available,. The emergence of
bluetongue virus (BTV), a closely related virus also transmitted by Culicoides, in Europe in
2006 has raised concerns about the potential of AHSV outbreaks in Europe’s naïve equine
populations [34].

Spatio-temporal models are often used to understand viral outbreaks in livestock species,
including BTV [4, 30]. Previously, models have been used to assess the spatio-temporal risk
of AHSV, but not transmission between premises [10, 16]. A key difference in our ability to
accurately model outbreaks of BTV is the greater quality of data available on distribution
and movement of cattle and other livestock species compared with that available for equids
in many countries. In this study, we used a spatial dispersal kernel model to analyse data
on the emergence of AHSV in Morocco in 1989. Here we know the locations of the premises
on which infected equids were identified (‘infected premises’) but not of the ‘uninfected
premises’. However, data available on the estimated number of equids in each province is
used to approximate their spatial distribution. We estimated parameters given the data at
the province, region and village level for the infected premises. This allowed assessment of
how the quality of spatial data available influences how well we can model the outbreak.

2 Methods

2.1 Data

Data for the Moroccan outbreak from 1989–1991 described by Baylis et al. [3] were obtained
in 1993 by examining case records held at the Ministére de l’Agriculture et de la Réforme
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Agraire, Rabat, to obtain the names and locations of all villages in Morocco where cases of
AHS were reported. The latitudes and longitudes of these villages were obtained by identi-
fying named villages on 1:50,000 Morocco survey maps.

Various datasets were available as estimates for the population number and distribution of
equids. Some gave estimates for individual rural communities based on vaccination records.
However, these did not include all communities in the outbreak area. The dataset documents
were hard copies translated into French close to the time of the outbreak. This caused issues,
with many villages having multiple translations from Arabic to French, which varied across
the datasets. The minimum scale at which all equine population estimates were available
was the province. Shapefiles for Morocco were available from [11] at four levels, two of which
matched the data available. These are referred to here as the provinces (level 2) and regions
(level 4). Due to many of the names of regions differing between the historic records and
modern shapefiles, the co-ordinates for each infected premises were plotted using QGIS and
assigned the region name given in the shapefile these co-ordinates were within. Some cases
in Tanger province were found to be in another province called Fahs (not mentioned in the
French dataset). The province names were updated to those given in the shapefiles.

The data included an estimate of the number of equids in each province. Due to this not
being at the species level, the data of infected animals were simplified so they were not species
specific. Therefore, for infected premises, the data available were: date infected, province (all
premises), region (270/271 premises), latitude and longitude of village (243/271 premises),
number of equids infected and total number of equids on premises. No information was
available for the uninfected premises.

2.2 Spatial distribution

Uninfected premises are assumed to have the same distribution of the total number of equids
on each premises as the infected premises. Therefore, a gamma distribution is fitted to the
total number of equids on infected premises, giving a shape parameter of 1.85 and scale
parameter of 1.24. The total number of equids in each province was divided into premises
such that the total number of equids on uninfected premises followed the same gamma
distribution as the infected premises. As we only know the province of these simulated
uninfected premises they are randomly placed in the shapefile of the province they are in.
Here an additional shapefile was made, using QGIS, combining Tanger and Fahs to match
the historic data. The infected farms are placed randomly in the shapefile of the province or
region they are in for the province or region level of spatial specificity, respectively. As the
latitude and longitude co-ordinates for the village of infected premises are given to the nearest
minute, we randomly place these within a circle of radius 30 seconds from the co-ordinates
of the village. This also avoids multiple premises being assigned the same location.

2.3 Transmission model

The incubation period for AHSV determined from the literature (Fairbanks et al., submit-
ted), varied from 2 days to 11 days with mode 3 days. The latent period varied from 3
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days to 10 days with mode 4. Delays between the onset of clinical signs, their observation,
a veterinarian officially diagnosing and culling taking place has potential to vary depending
on location, day and management of premises. Due to the variability in these factors, two
premises infected on the same day could potentially be reported several days apart. There-
fore we do not consider the latent period between premises in the model.

A kernel is used to describe the spread of AHSV between premises. For each spatial distri-
bution the distance between premises is calculated using the haversine function. We only
calculate the distance between infected premises and all other premises to reduce computa-
tional costs.

The force of infection (λ) on farm i from farms j on day t is calculated as

λi(t) = βN i
∑

j 6=i
K(dij)N

jIj(t), (1)

where N i is the number of equids on premises i, dij is the distance between premises i and
j, K is the kernel-function, and Ij(t) is 1 if premises j is infected on day t and 0 otherwise.
β is the transmission parameter. The likelihood is therefore given as

L =
∏

j∈U

(∏

t

e−λj(t)
)∏

j∈I

(( tinf−1∏

t=t0

e−λj(t)
)(

1− e−λj(tinf )
))

, (2)

where U is the set of premises with no report of infected equids during the outbreak, I is
the set of premises with reported infected equids during the outbreak, t0 is the start of the
outbreak and tinf is the time at which infection is detected on an infected premises. This
method does not require the model to be simulated, therefore reducing computational costs.

To identify the most appropriate kernel model, PubMed was searched using the search terms
(disease OR virus) AND ∼model AND kernel AND ∼transmission’. Eligible studies included
fitting parameters for a distance-based kernel model of disease spread between livestock
premises. Supplementary file 1 describes results from the literature review. The selected
kernel is given as

K = exp(−αdε). (3)

2.4 Parameter estimation

Szmaragd et al. [30] attempted to fit this kernel (Equation 3) to the spread of BTV in
Northern Europe during 2006. Here multiple values of ε were fit to the data with ε = 2
yielding the best fit, therefore we set ε to 2. The sequential Monte Carlo-Markov chain
Monte Carlo (SMC-MCMC) approach was applied as described in Supplementary file 2. As
the likelihood was not numerically stable (converging to 0), the log-likelihood was given as

ln(L) = −
∑

j∈U

(∑

t

λj(t)

)
−
∑

j∈I

(( tinf−1∑

t=t0

λj(t)

)
− ln

(
1− e−λj(tinf )

))
, (4)
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was used.

Initially, to derive our prior, we consider the parameter values fitted by Szmaragd et al. [30]
to explain the spread of BTV-8 in Northern Europe during 2006 for the kernel (Equation 3.
Our kernel is less informed than Szmaragd et al. [30] as it does not include parameters such
as the probability of acquiring infection, which evidence suggests may be different for AHSV
and BTV [6].
Our parameter priors are therefore calculated based on the BTV parameters as:

β = the probability of acquiring infection x
α̂√
π
,

α = α̂2,

where α̂ is thew kernal parameter (α) from Szmaragd et al. [30]. This gives values of
β = 0.0108 and α = 0.0012. To initialise the model, Latin hypercube sampling (LHS) is
used to select parameters from a uniform distribution with minimum of 0.5x and maximum
of 2x the calculated values for β and α. This yields a lower bound of 0.0054 and 0.0006 and
upper bound of 0.0216 and 0.0024 for β and α, respectively.

As the spatial distribution of uninfected premises is estimated, it may affect the parameter
estimation. Therefore, each iteration we generate multiple spatial distributions that each
have a different set of parameters depending on the results of the previous iterations. We
use a modified version of Ripley’s L function (Supplementary file 3) to determine how the
spatial homogeneity of the distribution of randomly distributed uninfected premises varied
around the infected premises across spatial distributions. If the spatial distributions are
similar, this will cause less variation during parameter estimation, therefore fewer iterations
will be needed than if they are very different. As little variability was observed between
spatial distributions, we conclude that a large number of different spatial distributions is not
necessary at each MCMC iteration (Supplementary file 3).

3 Results
It was found that disease outbreaks were widespread across the country, with the greatest
number of reported cases in the northwest (1989–1990). Location data for 1991 were sparse,
but it is possible to observe the increased range of the virus. In 1991, there were significant
numbers of infected equids in Marrakesh province. Despite having a large equine popula-
tion, there were no cases reported west of the Atlas Mountains. During the first year of
the outbreak, 271 infected premises were recorded, resulting in a total of 518 cases and an
additional 106 equids culled. Cases were reported in the provinces of Larache, Tanger and
Tetouan.

Initially during the parameter estimation using the latitude and longitude of villages, we
observe a large deviation from the prior (Supplementary figure S3). The first 100 iterations
are removed as burn-in. After this, parameters appear to follow normal distributions (Table
1). As α appears somewhat skewed, a log-normal distribution was fitted, but this yielded
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Figure 1: Location of AHS cases in Morocco for 1989 (pink dots), 1990 (orange triangles)
and available 1991 (blue squares). QGIS was used to make this figure [23].

the same result.

As the spatial specificity decreases, the variance of accepted parameter values increases (Sup-
plementary figures 3-5). The region data provide parameter estimates much more similar to
the village data than the province data (Table 1).

Another more simple approach to analysing the patterns of transmission involves calculating
the distances between the premises where latitude and longitude of the villages of infected
premises are given and calculating the minimum distance of each premises from a previously
infected premises (Figure 2a). We observe that most of these distances are short (<5 km),
although there were some cases of transmission occurring over larger distances. Comparing
outputs from this and our transmission kernel shows that our kernel also predicts most of
the transmission occurring locally (Figure 2b).

The prior and posterior values for the kernel shape parameter were similar at the province
level (Figure 2b). However, the posterior values for AHSV at the village and region levels
suggest that AHSV transmission during the Moroccan outbreak occurred over shorter dis-
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Spatial specificity Parameter Mean SD

Village β 1.00x10−6 5.64x10−8

α 2.86x10−3 9.42x10−5

Region β 1.23x10−6 2.18x10−7

α 3.45 x10−3 7.09x10−4

Province β 4.01x10−7 1.07x10−7

α 1.09x10−3 3.31x10−4

Table 1: Posterior values of parameter estimates for each spatial specificity. A normal
distribution was fitted to accepted parameter values after burn-in (first 100 iterations). The
mean and standard deviation (SD) of the normal distributions are given.

Figure 2: (a) Histogram of the minimum distance between each premises and a previously
infected premises. (b) The (bluetongue virus) prior (red dashed line) and (African horse
sickness virus) posterior for the village (blue line), region (green line) and province (grey
line) kernel shape parameter.

tances than during the 2001 BTV outbreak in northern Europe, from which the prior values
were derived.
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4 Discussion
In this paper we were able to parameterise a model for the 1989 emergence of AHSV in
Morocco for three different spatial specificities of data on infected equids (village, region
and province). Data-informed models are important for stakeholders with responsibility for
controlling outbreaks in naïve populations, which are increasingly likely with climate change
and globalisation [24]. Previously, a lack of data has prohibited modelling the transmission
of AHS between premises, but this unique dataset allowed a first attempt at this. One of the
biggest challenges encountered was the computational demand of this large individual-scale
model. Missing data were compensated for using multiple random distributions. Here the
Ripley’s L function was used to determine the spatial variation between these random distri-
butions. Observing that there was little variance in spatial homogeneity between premises
near infected premises allowed the number of SMC steps to be reduced each iteration. Pre-
vious research has shown the optimal acceptance rate is 0.234 under quite general conditions
[12]. Further research has indicated that this acceptance rate does seem to perform well for
approximate finite-dimensional situations where the number of parameters jointly estimated
is as few as five. This does not apply when estimating fewer parameters. For example, it
has been found that for one normally distributed parameter the optimal acceptance rate is
approximately 0.44 [26]. Here, we accepted up to 30% of the parameter sets each iteration,
dependent upon their log-likelihood.

The number of equids on ‘uninfected premises’ was assumed to follow the same distribution
of those on premises with a reported infection. Gubbins et al. [13] suggested that the prin-
ciple mechanism behind AHSV transmission is vector dispersal [13]. Analysis of the 1989
Morocco outbreak showed most of the transmission occurred over short distances, consistent
with studies of Culicoides dispersal [15, 27]. However, not all transmission may be due to
the flight of midges. Other factors, for example new importations of infectious vectors or
the movement of animals or reservoir hosts could be responsible. The parameterised ker-
nel shape parameter (α) suggested AHSV transmission during this outbreak occurred over
shorter distances than the 2001 BTV outbreak in northern Europe (used as the prior). This
does not necessarily imply that AHSV lacks BTV’s potential to spread over larger distances.
Rather, this could be caused by equine premises being more clustered compared to cattle
and sheep holdings, and therefore most of the transmission is local.

Tildesley et al. [32] showed that spatial structure can be important for predictions of emer-
gence and population-scale dynamics, however this structure is mostly subsumed in the
parameterisation when considering the effectiveness of control strategies. Here we assume
that the premises stay infected after infected equids are culled as local infected midges will
remain present for a period. However, there is uncertainty regarding midge behaviour at the
time after culling. Elbers and Meiswinkel [9] quantified host preferences of Culicoides during
early summer in the Netherlands. Generally, there was a strong correlation between attack
rate and host size with a cow attracting the greatest proportion (62.4%) of the Culicoides
captured, followed by a Shetland pony (29.2%) and then a sheep (8.4%). However, similar
numbers of C. dewulfi were collected from the cow and the pony and C. obsoletus numbers
where evenly distributed among the three host species. In contrast, Schmidtmann et al. [29]
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captured C. obsoletus in comparable numbers from calves and sheep but significantly smaller
numbers were found on ponies [29]. Therefore, when equids are removed from a premises
by culling, how far the Culicoides may travel to seek alternative hosts may depend on the
species of Culicoides and the distribution and density of other species locally.

One of the most important features of vector-borne diseases not addressed in this model
is climate impacts as climate data from the time of the AHS outbreak were not available
for the region of this study. Climate factors will impact both the abundance of Culicoides
and the dynamics of virus transmission [6, 28]. Although climate data are not available to
inform this model, the within-premises dynamics may help provide information on vector
capacity throughout the outbreak. For example, if more secondary infections are reported
(before culling) for a period within the outbreak, we could assume that the vector capacity
was higher at the time.

In conclusion, although vector capacity is likely to vary between geographical regions this
model may help inform the dynamics of potential outbreaks upon emergence. Overall, we
found that the village and region datasets generated similar parameter estimates, whereas
the province level data did not. Data on the location of equids are often sparse; for example,
reports of equine influenza in 2019 were given for each nomenclature of territorial unit 2
(NUTS2) of the UK. The median area of a NUTS2 region in the UK is 4,788 km2, which
is most comparable to the median province area for the three provinces of Morocco with
infected equids in 1989 (2,653 km2). This suggests that, in the unfortunate circumstance
of an AHSV outbreak in the UK, for example, spatial data would need to be collected at a
finer scale to predict the population-scale spatial dynamics of the virus from a knowledge of
the individual-level dynamics.
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In this paper, we present work on SARS-CoV-2 transmission in
UK higher education settings using multiple approaches to
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that the distribution of outbreaks in universities in late 2020
was consistent with the expected importation of infection
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fromarriving students. Consideringoutbreaks at oneuniversity, larger halls of residence posedhigher risks
for transmission. The dynamics of transmission from university outbreaks to wider communities is
complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any
detectable signal of spillover to the local population. Secondly, we explored proposed control measures
for reopening and keeping open universities. We found the proposal of staggering the return of students
to university residence is of limited value in terms of reducing transmission. We show that student
adherence to testing and self-isolation is likely to be much more important for reducing transmission
during term time. Finally, we explored strategies for testing students in the context of a more
transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.

1. Introduction
The global spread of SARS-CoV-2 has resulted in widespread usage of social distancing measures and
non-pharmaceutical interventions (NPIs) to inhibit the spread of infection. Enactment of nationwide
lockdowns has resulted in the closure of workplaces, pubs and restaurants, restricted leisure activities
and impacted the education sector.

Measures brought in when entering the first nationwide lockdown in the UK in March 2020 included
closure of higher education establishments, such as universities, to most in-person activities. Face-to-face
teaching was mostly suspended, with delivery of the remainder of the 2019/2020 academic year taking
place via online delivery.

Higher education in the UK comprises a large population of students, with over 2.3 million higher
education students enrolled in the 2018/2019 academic year across over 160 higher education
providers [1] (universities, essentially). This results in a sizeable movement of students nationwide at
the beginning and end of academic terms (in addition to international student travel). In the context
of an ongoing disease outbreak, the migration of students can contribute to increased population
mobility, with an associated need for careful management in order to minimize the risk of seeding
outbreaks both in universities and in the wider community.

Ahead of the 2020/2021 academic year, there was significant uncertainty around whether students
would be able to return to face-to-face teaching and what policies would be put in place in order to
mitigate risk. This prompted action to build a foundation of knowledge such that appropriate policies
could be put in place to facilitate students returning safely to universities. From 15 to 17 June 2020,
a Virtual Study Group on ‘Unlocking Higher Education Spaces’ was hosted by the Virtual Forum for
Knowledge Exchange in the Mathematical Sciences (V-KEMS), looking at how mathematical
approaches could inform the reopening of higher education spaces to students while minimizing risk.
A working paper was subsequently released in July 2020 [2].

Building on the discussion that took place at the June 2020 Study Group, two virtual events (taking
place on 28 July 2020 and 4 August 2020, respectively) investigated the application of mathematical tools
and models to various issues linked to the challenges of reopening higher education. These events were
run as part of the Isaac Newton Institute Infectious Dynamics of Pandemics Research Programme [3].
After these events, a working group continued to meet virtually on a weekly basis, consisting of
participants from several institutions.

Mathematical modelling approaches informed by data, have been a valuable tool used to inform
policy decisions linked to the subsequent operation of higher education in the midst of a pandemic. In
order to guide these decisions, in this paper, we have investigated contributing factors to within-
institution spread and how transmission interplays with the wider community. This study starts with
a set of observational analyses based on data from the first term of the 2020/2021 academic year. This
is followed by prospective modelling of control measures that were under consideration for the full
return of UK higher education students in January 2021.

The work presented in this paper is the outcome of bringing together the expertise from these
multiple research groups, and pooling our analyses using both statistical and modelling methods.
Several conclusions emerge from this work both in understanding the observations from Autumn
2020, and also making recommendations for future actions:

(1) The overall distribution of outbreaks in universities in autumn term 2020 were consistent with
expected importations from taking a student intake from the wider community, so that
universities reflect the community disease prevalence at the start of term.

royalsocietypublishing.org/journal/rsos
R.Soc.Open
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(2) Larger halls of residence pose higher risks for larger attack rates, and segmentation into smaller
households within halls is unlikely to be able to mitigate this.

(3) The picture of transmission from universities to their local communities is complex. While spillover
inevitably can occur, sometimes even large outbreaks in universities do not give any corresponding
signal in their wider neighbouring communities.

(4) The proposed strategy of staggering future returns appears to be of somewhat mixed and limited
value. While it could reduce the need for self-isolation on return under low prevalence, these
benefits could be diminished or even reversed in the context of high background prevalence.

(5) While a staggered return could reduce the peak of any outbreak during term, staggering on its own
will not substantially reduce the total attack rate over a whole term: staggering may act mainly to
delay the outbreak to later in the term.

(6) The level of student adherence to testing and isolation is likely to have a far larger effect than any
subtleties between different staggered return regimes.

(7) While it is likely that asymptomatic testing programmes did help to prevent large outbreaks in university
settings in autumn 2020, extremely frequent testing (every 3 days) would be needed to prevent a major
outbreak under plausible parameters for the B.1.1.7 variant (WHO variant label ’Alpha’).

The structure of the remainder of this paper is as follows. In §2, we summarize the understanding and
learning from the observed patterns of SARS-CoV-2 from autumn term 2020, looking at the dynamics of
wider community transmission including the importation of cases to universities at the start of term, and
the spillover of transmissions from universities to the wider community during the course of the term.
This section also looks at the dependence on the infection dynamics within universities of the
structures of halls of residence and student households. In §3, we look at several exploratory models
for the future return of students, in particular looking at the impact of different strategies for
staggering this return, and of asymptomatic testing on return. In §4, we draw some further
conclusions from this work and make some policy recommendations. For a more detailed overview,
see figure 1.

2. Observations from autumn term 2020
Higher education institutions in the UK largely reopened to students for the 2020/2021 academic year.
This led to an influx of students from across the UK and world, brought together in residential, academic
and social settings. In the first term, under the government advice at the time [4], most higher education
establishments offered blended online and face-to-face learning. Prior to the beginning of the academic
year, students resident in housing of multiple occupancy—and in particular students in residential
halls—were identified as being at high risk of transmitting SARS-CoV-2 infection [5,6].

The return of students to universities in the autumn term occurred at a time when SARS-CoV-2 cases
were growing in the UK. Local lockdowns came into force in areas with greatest risk leading to an
increase in restrictions on travel, business openings and between-household socializing. In addition,

§2.1: Can predicted case imports from local prevalences of students' non-term
time addresses estimate the probability of an university outbreak?
§2.2: What factors influence infection risk in student halls of residence?

To what extent do university outbreaks impact nearby communities?
§2.3: analysis of local age groups
§2.4: spatial analysis

Simple models to explore the effects of staggered returns on:
§3.1: the number of students having to isolate upon return
§3.2: the number of students infected over time

§3.3: more complex partly parametrized models exploring the influence of
staggered returns.

Models exploring testing regimes:
§3.4: strategies for testing on return
§3.5: strategies for regular testing throughout the academic term. As well as
further analysis of the potential implications of a SARS-CoV-2 variant with
increased transmissibility.
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Figure 1. Overview of the structure of the article.
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countrywide lockdowns were imposed in Wales from 23 October 2020 to 9 November 2020 and in
England from 5 November 2020 to 2 December 2020. Many universities offered testing regimes in an
attempt to further control outbreaks. In an attempt to segment interactions and reduce transmission
risk within halls, many universities assigned students in residential halls to households based on the
use of shared facilities such as kitchens and bathrooms under government guidance [4]. These
households were intended to function similarly to households in the community; with many
restrictions on socializing beyond these household members, and requirements for the entire
household to isolate for up to 14 days if a member displayed symptoms of COVID-19 or received a
positive SARS-CoV-2 test. Despite the control measures taken, outbreaks of varying sizes were seen in
many UK higher education institutions in the first term, prompting concern about the possibility of
spillover into the community.

In this section, we use data from the first term of the 2020/2021 academic year to investigate the
factors that may have contributed to the observed outbreaks within higher education institutions and
to examine any evidence of further transmission between higher education institutions and the wider
community. Firstly, we consider the mass migration of students from across the UK at the beginning
of term and how well this may explain the occurrence of outbreaks seen across universities (§2.1). We
then use data available from a particular university and investigate the role of accommodation
structure upon transmission, by considering the relationship of residential hall sizes and household
sizes within halls to attack rates (§2.2). To investigate spillover from higher education to the
community, we investigate case data by age (henceforth ‘age-stratified’) from areas very close to
English universities to determine whether there is any evidence of spillover from student age groups
to other age groups (§2.3). We also consider total case data stratified across a wider spatial scale to
search for signs of spillover from areas with a high concentration of student residents to
geographically nearby areas without high concentrations of students (§2.4).

2.1. Start of term: transmission from the community
Although many universities experienced outbreaks at the beginning of the 2020/2021 academic year,
there was significant variation in the number of confirmed SARS-CoV-2 cases between institutions.
We explore the extent to which the estimated incoming numbers of infected students could explain
the observed distribution of outbreaks in the early weeks of the autumn term across UK universities.

2.1.1. Data and methods

To estimate the number of incoming infected students for each university at the beginning of the 2020/2021
academic year, we combined Office for National Statistics (ONS) infection survey data on the proportion
of the community testing positive (prevalence) via polymerase chain reaction (PCR) to SARS-CoV-2
by region with data from the higher education Statistics Agency (HESA) on home and term-time
postcodes for the 2018/2019 cohort of students [7]. The prevalence (via PCR) on 25 September 2020 was
used to estimate the number of students from each home postcode that were infected at the start of term
(rounded to the nearest integer). It was assumed that international students from countries with high
case numbers would be placed in effective quarantine and were thus discounted for the purpose of this
analysis. Outbreak data were drawn from the University and College Union (UCU) dashboard in
November 2020 [8]. After omitting data with obvious quality issues, data for 72 universities were
available. We defined a large outbreak as 200 or more cumulative cases reported on the UCU
dashboard by 18 or 19 November 2020 (these case numbers obtained relate to various dates in
November since updates were not daily or uniform).

To estimate the probability of a large outbreak, universities were binned by the estimated number of
PCR-positive students in bin widths of 10, and the fraction of universities in each bin that experienced an
outbreak was calculated based on the observed data.

We also considered a simple probabilistic model for the outbreak probability P based only on
incoming PCR-positive students, P ¼ 1� pn, where n corresponds to the initial number of PCR-
positive students, and the extinction probability, p, is the probability that an incoming infection fails to
seed an outbreak. The probabilities of each incoming infection seeding an outbreak are assumed to be
independent of each other. The extinction probability, p, was inferred via maximum likelihood from
the observed outbreak data (see appendix A).

royalsocietypublishing.org/journal/rsos
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2.1.2. Results

The observed fraction of universities experiencing an outbreak appeared to be broadly consistent with
the simple probabilistic model (figure 2), with a fitted extinction probability of p = 0.958 (95%
confidence interval [0.945, 0.972]). Repeating the analysis and fitting the simple model using a more
stringent threshold of 400 cases returned an extinction probability estimate of p = 0.979 (95%
confidence interval [0.971, 0.987]), with the model estimations following the trend of the observed
data. These results lend cautious support to the hypothesis that the observed pattern of outbreaks at
universities was consistent with that expected from importation of infection from the student intake.

This would imply that outbreaks are more likely when case numbers in the incoming student
population are higher (higher n leads to higher outbreak probability P). Similarly, if the extinction
probability, p, i.e. the probability of the chain of infection originating from a single introduction dying
out, were lower then the overall outbreak probability P would be higher. Less effective infection
control measures or a more transmissible variant might lead to a lower p, but this needs to be
investigated further.

2.1.3. Limitations

Factors that we did not take into account in this simple initial analysis and that could be explored further
include: the detailed timeline of importations and onward transmissions, the likelihood that an outbreak
might be the sum of smaller outbreaks caused by independent introductions, the rate of assimilation
of local prevalence in newly arrived students, the impact of heterogeneous university characteristics
(such as the number of commuting students), and the impact of heterogeneity in university infection
control measures.

In addition, we were limited by the availability of data; ideally the analysis should be repeated
with contemporary student numbers and home regions, and with more consistent data on university
case numbers.

In light of these limitations, the precise numerical value of the fitted extinction probability should not
be interpreted literally. However, the fact that the extinction probability appears to be high suggests
that the majority of infection chains die out before sparking an outbreak. This may be partly because
COVID-19 is highly overdispersed [9] so that only a small proportion of infections lead to further
cases, while many people with the disease do not infect anyone else. It may also reflect effective
infection control measures in universities, or that there were fewer incoming infections than assumed
in the model, perhaps because students who were unwell may have delayed their return to university,
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Figure 2. Observed fraction of institutions having an outbreak (*), binned by expected number of incoming cases, and theoretical
outbreak probability P (solid line): for a threshold of 200 cases (a) and 400 cases (b).
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or because estimates of the prevalence via PCR-testing includes people who are in the late stages of
infection and no longer infectious.

2.2. Infection risk in residential student halls
Prior to the resumption of the 2020/2021 academic year there was limited data to relate transmission risk
within halls and their households to that estimated for community households. Here, we examine factors
predicting risk of infection among students in halls of residence at a single university. We refer to the
secondary attack rate (SAR) in a subpopulation (e.g. household, hall of residence) as the probability
that a member of the subpopulation is infected following infection of one subpopulation member.

2.2.1. Data

Data on hall capacity for 19 halls managed by the university, and the assignment of rooms within these
into households of up to 16 members, were collected prior to the start of term. Stock data on room types
for each hall was used to estimate the fraction of students sharing bathroom facilities with at least one
other student for each hall and in each household. During term, students were encouraged to report
confirmed SARS-CoV-2 infection via a web form, including information about their place of residence,
date of test result and subject. Preliminary enrolment data for 2020/2021 by subject and term-time
residence were used to estimate the fraction of students in each hall enrolled in the Medical Faculty
(as a proxy for students who may be at higher risk of infection due to placements). Approximately
half of students reported a room number in addition to identifying their hall of residence, which
enabled these reported infections to be grouped into pre-assigned households of known size.

2.2.2. Methods

We tested for predictors of the SAR in a hall using multivariate logistic regression. We included median
household size, proportion of students in medical courses, hall size and the proportion of students
sharing a bathroom with one or more students as covariates.

We used binomial logistic regression on the binary data indicating the presence of at least one
infection in each household to estimate the probability that infection is reported by household size.
We estimated the binomial probability of secondary infections in a household. We also considered
multivariate logistic regression performed with covariates of household size, time between start of
term and date of first reported test in the household, and proportion in the household sharing a
bathroom. We aggregated household data across halls and only included reports that were associated
with symptomatic SARS-CoV-2 infection, to avoid bias in time between start of term and date of first
reported test in the household from asymptomatic testing programmes.

We repeated each multivariate regression while at least one predictor was not significant, dropping
the predictor with the lowest t-value. We performed the statistical analyses using the general purpose
mathematical programming language Matlab [10] (logistical analysis) or statistical data analysis
software Genstat [11] (binary logistical analysis).

2.2.3. Results

2.2.3.1. Reported confirmed attack rate by hall
While all covariates listed in table 7 were significant in a univariate analysis (appendix B), only hall size
and proportion of students sharing a bathroom were associated with SAR in the final multivariate
regression (table 1). We provide the predicted impact of hall capacity and the proportion sharing
bathrooms in table 2. This indicated that students in halls where they all share a bathroom with at
least one other (shared = 100%) are approximately 50% more likely to become infected than students
in halls with all en-suite rooms (shared = 0%). Increasing the hall capacity from 100 to 400 students
increased each student’s probability of becoming infected by approximately 167%.

Our results—with the caveat that they are subject to any bias in confirming and reporting infection—
suggest that infection risk in large residential settings is difficult to mitigate by segmenting students into
households, and the risk of living in large residential settings is exacerbated by the use of shared
bathrooms. It is possible that our covariates are proxies for other properties of the setting that
influence student mixing (e.g. other types of shared spaces, ventilation, etc.). Furthermore, it is likely
that effect sizes will vary between settings depending on importation of cases, characteristics of the
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local epidemic and local testing facilities, and propensity to adhere to guidance on isolation and mixing
restrictions. However, interpreted at face value, our results suggest that only partially filling student
residential halls could significantly reduce transmission risk, especially if this is coordinated to reduce
shared spaces.

2.2.3.2. Infection risk within hall households
Unsurprisingly, the probability of at least one reported symptomatic infection in a household was
significantly correlated with household size (table 3); the expected probability of importation into a
household of size 16 was 0.68, approximately double the probability for a household of size 8. Thirty-
eight per cent of households reported at least one infection.

Household size does not reach significance in the regressionmodel for household SAR in the univariate
or multivariate analysis, consistent with estimates of community household SAR for households from
population level data [12]. For the multivariate regression we find that SAR was higher for households
with the first reported case earlier in the term (table 3). This has many possible drivers such as changes
in local background prevalence, shifts in contact or reporting behaviour, or the impact of local depletion
of susceptible individuals owing to immunity or students vacating term-time residences. Our analysis of
this dataset does not allow us to distinguish between these possibilities. Multivariate regression also
indicated the SAR was positively correlated with the proportion of shared bathrooms in the household.
The first reported infection in a hall household occurred six days after the start of term. At this stage of
the term our predicted household SAR is 0.09 (95% CI: 0.05–0.16) and 0.21 (95% CI: 0.14–0.30) in
households with all en-suite rooms and all rooms with shared bathrooms, respectively.

Although the vast majority of test results within a household were dated within 14 days of the first
reported positive, and therefore plausibly epidemiologically linked, we did not have any contact tracing
or situational data that could be used to investigate this. We have not estimated overdispersion in the
number of secondary household cases which may be relevant [13]. While our estimates of the SAR
early in the term are broadly consistent with community household SAR (e.g. [12,14]), the binomial
probability of reporting a symptomatic infection given a previously reported symptomatic infection
in a household over the entire term is lower: 0.058 (95% CI: 0.043–0.070) or 0.076 (95% CI: 0.064–
0.090) considering all reported positive tests. However our data on secondary household infections is
incomplete due to missing data on household membership and uncertain propensity to report test
results (including any time and household dependence of this). Follow-up testing of household
members for markers of historic infection in serum samples is probably required to estimate the full
extent of household transmission.

It is highly plausible that not all infections in a household arise from a single imported case. In
appendix B, we consider the role of infection within the hall on the household SAR using a simple
transmission model that allows for infectious contact between household members and between hall

Table 1. Coefficients, and associated p-value and standard error for the final logistic regression models for the hall SAR.

covariate coefficient p-value s.e.

hall size 0.0037 <0.0001 0.00006

proportion shared bathroom 0.4738 <0.0001 0.1166

constant −3.1466 <0.0001 0.2235

Table 2. Expected impact of increasing hall capacity (size) and proportion of students sharing a bathroom (shared) on the hall
SAR (95% CI) from the final multivariate logistic regression in table 1.

size 0% 50% 100%

100 0.06 (0.04–0.08) 0.07 (0.06–0.09) 0.09 (0.07–0.11)

200 0.08 (0.07–0.10) 0.10 (0.09–0.12) 0.13 (0.11–0.14)

400 0.16 (0.13–0.19) 0.19 (0.17–0.22) 0.23 (0.20–0.27)

royalsocietypublishing.org/journal/rsos
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members. Results indicate the extent extra-household contacts in the hall may inflate estimates of the
SAR; in this model the mean probability of infection due to random contact within the hall is 0.047,
whereas the probability of infection from an individual in the same household is 0.091 (see appendix
B). In reality, students will also mix with students in other residential settings and with the wider
community—we explore evidence for the latter in §2.3.

2.3. Transmission to/from the community: comparison with local age groups
Following a series of large outbreaks among the university student population in the 2020/2021
academic year, a question of interest to both policymakers and the general public was the extent to
which these outbreaks affected the wider local communities. This question remains of importance for
any future large-scale returns of students to their campuses, and provides insight into the extent to
which cluster outbreaks impact nearby populations.

In this section, we examine spillover, the impact of outbreaks in student populations on the surrounding
communities, by analysing patterns of cases among the student population and the local community. In
practice, as student populations are interlinked with the wider community, transmission can be in either
direction. In addition to any NPIs in place, and adherence thereto, the existence and strength of any
spillover signal will probably depend on factors such as: the magnitude of the student outbreak, the
levels of newly reported cases (incidence) in the community at the time of the outbreak, and the
proportion of students who originally resided in close geographical proximity to the university.

2.3.1. Data and methods

We used age-stratified positive case data at the lower tier local authority (LTLA) level from a Public
Health England (PHE) line list to describe the trends in student-aged case numbers. Our analysis also
used cumulative incidence data as reported by the respective universities, or via the University and
College Union (UCU) COVID-19 dashboard [8]. Cumulative case counts from both data sources were
used as measures of the outbreak sizes. Calculations of these sizes were limited to 10 days past the
peak in student-aged cases in order to facilitate comparisons across all LTLAs.

The age-stratified line list data for those aged 18–24 was used as a proxy for ‘student cases’, with cases
among all other age groups being classified as ‘community cases’. To facilitate comparison across age
groups, we rescaled all quantities by the known populations of each LTLA using data from ONS [15].

We include a sample of LTLAs with a notable proportion of students in table 4 as an illustration of the
variability across England. For each LTLA, we examined if, following an outbreak in the student
population, (a) there was an appreciable increase in the growth rate of community cases, and (b) if
more community cases than expected were recorded in the subsequent 10 days.

The time-varying growth rate in cases was estimated by taking the derivative of a smoother applied
to the daily case data. This method, while accounting for overdispersion in the data, also estimated a
mean daily incidence (see appendix C for more details).

Upon infection, a host triggers progeny infections following a period termed the generation time.
Changes to the community growth rate (a) were regarded as temporally linked with a student
outbreak if such significant changes occurred within two generation times (approx. 10 days [17]).
Cases in excess of the expected daily incidence were used as a proxy for (b).

Table 3. Coefficients, and associated p-value and standard error for final regression models for the probability of introduction of
SARS-CoV-2 into a household and household SAR.

covariate coefficient p-value s.e.

binary logistic regression: probability of infection in household

household size 0.1623 <0.001 0.0269

constant 1.847 <0.001 0.2510

logistic regression: household SAR

date of first infection −0.1485 <0.0001 0.0298

proportion shared bathroom 0.9500 0.0021 0.3091

constant −1.4028 0.0019 0.4524

royalsocietypublishing.org/journal/rsos
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2.3.2. Results

The degree to which the growth rate of community cases changed following a student-aged outbreak
varied significantly across the studied LTLAs. A selection of the different observed patterns are
included in appendix C.

Figure 3 shows a diverse pattern of spillover, and lack thereof, across different English LTLAs.
Unsurprisingly, some of the universities with the largest outbreaks were situated in LTLAs which
simultaneously had higher levels of incidence in the community.

Larger outbreaks correlate with a greater degree of spillover, although this effect is more strongly seen
when considering cases among 18–24-year-olds in figure 3b compared with using reported student
outbreak sizes in figure 3a. However, there are exceptions to this pattern, and there is not a clear
formal relationship between spillover and outbreak size.

Although we consider two separate data sources to gauge campus outbreaks (self-reported or age-
stratified), the discussion below uses outbreak sizes from figure 3a. At lower levels of community
incidence, we observe two scenarios: in the first, a small outbreak with little apparent impact on the
community. In the second, an outbreak in excess of 1200 cases with the largest observed impact on
the community. In this latter case, the impact was larger in relative terms, but not necessarily in
absolute terms (net increase in community cases).

No clear relationship is apparent between the proportion of local students and excess community cases.
Some large outbreaks (in excess of 1750) took place with relatively low levels of excess community

cases. It is hypothesized that the asymptomatic testing strategy in place at the university in question
may have played a role in this outcome.

2.3.3. Limitations

Student populations are interlinked with the wider community, whereby transmission can occur in either
direction. For a given outbreak then, purely from case data it may not be possible to determine whether
or not a student population caused or exacerbated an outbreak in the community. Our findings on
spillover here are therefore limited to correlations between the growth in positive cases among the
student-aged population and the community.

Particular care should be taken when interpreting the relative timings of increased growth rates as
done in appendix C, as community cases rose in England during the autumn. In general, our results
are limited by the available data, the sample of studied LTLAs, and our chosen indicators of spillover.
While the chosen age groups represent those most likely to be students (ages 18–24) and members of

Table 4. Properties of each of the considered LTLAs. Local students refers to those students domiciled in the same English
region, as obtained from the Higher Education Statistics Agency. The community prevalence was obtained at the regional level
from the ONS [16], looking at the transition from 15 September 2020 to 15 October 2020. Multiple return dates arise from those
LTLAs which host multiple universities.

LTLA region of England local students ONS prevalence (%) return dates

Birmingham West Midlands 52.8% 0.08→ 0.79 21 Sep

Bristol South West 23.3% 0.08→ 0.30 21 Sep & 5 Oct

Durham North East 15.4% 0.34→ 1.24 5 Oct

Exeter South West 32.0% 0.08→ 0.30 14 Sep

Leeds Yorkshire & The Humber 38.7% 0.25→ 1.51 28 Sep

Manchester North West 50.0% 0.44→ 1.83 14 Sep & 21 Sep

Newcastle North East 45.7% 0.34→ 1.24 28 Sep

Nottingham East Midlands 32.1% 0.13→ 0.69 21 Sep

Oxford South East 37.1% 0.09→ 0.43 5 Oct

Salford North West 76.6% 0.44→ 1.83 14 Sep

Sheffield Yorkshire & The Humber 39.3% 0.25→ 1.51 28 Sep

York Yorkshire & The Humber 33.3% 0.25→ 1.51 28 Sep

royalsocietypublishing.org/journal/rsos
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the wider community (ages 0–17 and 25+), these age ranges fail to account for older students and those
aged 18–24 who are not in higher education (HE).

Since the analysis is based on confirmed cases, our findings are predicated on consistent testing
availability and uptake. Significant changes to these over the studied time period may have impacted our
conclusions. The values in figure 3 should not be taken as predictive of the impact a student outbreak will
have on the wider community. Overall, signals of spillover are not consistent in type (growth rate or
excess) or strength across the studied LTLAs. As such, there does not from the data appear to be a simple
set of criteria which can be established to determine the risk to the community from a university outbreak.

While our observations suggest that spillover of cases from the university-aged population to the
wider community probably does occur, this analysis does not consider transmission settings, e.g.
residential, social or educational.

2.4. Transmission to/from the community: spatial patterns
To complement the previous section’s spillover analysis based on age-bands, we investigated
relationships between the number of cases in areas (middle super output areas, or MSOAs, which are
statistical reporting regions in England and Wales typically containing 5000–10 000 people) with a
large concentration of students, and areas that are near or far from those student areas.

2.4.1. Data and methods

To estimate the proportion of the population within any given MSOA composed of HE students, we used
information on the number of people reporting being students in each MSOA from the 2011 UK census
[18], and 2019 mid-year population estimates from the Office for National Statistics [15]. For weekly new
case counts by MSOA, we used the public UK government coronavirus data portal [19]. We derived
MSOA centroids from the Office for National Statistics geographical data [20].

We defined an MSOA as high student concentration if the number of students reported in 2011 was at
least 15% of the 2019 population estimate, and low student concentration if this figure was below 5%. We
classified an MSOA as near a high student concentration MSOA if it was not itself a high student
concentration MSOA but its centroid was within 2 km of the centroid of such an MSOA, and far
otherwise. We plotted time series of test-positive cases per population by week for these categories of
MSOA in several local authorities.

2.4.2. Results

We find a very mixed picture across different local authorities hosting HE providers across England, and
show several examples in figure 4. In particular, we see some signal of spillover in the case of Manchester
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Figure 3. Relative excess of community cases in relation to the reported outbreak sizes across the LTLAs considered in table 4. The
sizes of the plot markers scale with the proportion of students attending a university in the same region as their home address. The
colours of the markers correspond to the community incidence per 1000 people in each LTLA at the time of peak student-aged cases.
These inform the varying levels of community prevalence prior to any student outbreak potentially impacting the community. (a)
Cumulative university student outbreak sizes up to 10 days past peak incidence, reported by the UCU. (b) Cumulative university-aged
outbreak sizes from 14 days prior to 10 days past peak incidence, reported by PHE.
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(figure 4a), where the MSOAs near high-concentration student areas experienced a rise and peak in cases
following a rise and peak in high-concentration student areas that is visibly distinct from the pattern for
areas that are far from student areas. By contrast, in Birmingham (figure 4b) we see a rise and peak in
cases in high-concentration student areas, but no distinction between the visible patterns for MSOAs
near high-concentration student areas or those further away. In the case of Hull (figure 4c), we see no
obvious distinction between any of the categories of MSOA. When we combine our age-stratified
analyses and these geographical-spread analyses we continue to see a mixed picture: some local
authorities have signal of spillover, but some do not. We do not see a consistent pattern across
England, probably due to wide variations both in the course of the coronavirus pandemic and the
nature of university–community interaction in different local authorities. Considerations such as the
severity of imposed NPIs, magnitude of student body, and uptake and efficacy of testing, tracing and
quarantining measures probably all influence the overall results, but their individual contributions are
not identifiable in this analysis. There is agreement between the age-stratified and geographical-spread
analyses of spillover in e.g. Manchester and Birmingham. This supports the robustness of the spillover
signals (where observed), and the utility of both methods.

3. Exploratory modelling for future return
During the autumn term in the 2020/2021 academic year, one of the recurring problems that universities
encountered was the large number of students that needed to isolate in halls of residence. The isolation
was seen as detrimental to the mental health of students, but also the sheer number of isolated students
posed logistical problems to the universities. For instance, making sure that students received adequate
food packages was a problem at the beginning of the term. It was an ongoing discussion how to reduce
the number of students in isolation and to ‘flatten’ spikes in the number of isolated students to help
universities to better deal with these logistical challenges.

The large outbreaks in universities during the first term in the 2020/2021 academic year led to
consideration of methods to safely manage the return of students for the second term of the academic
year in January 2021. Two constituent components of the initial guidance (published on 2 December
2020) were the staggered return of students and increased usage of rapid tests [21]. Universities were
asked to stagger their students returning over a five-week period according to course type. Students in
subjects that most required face-to-face interactions, such as medical and veterinary students, were
identified to be the first ones to return to campuses. Guidance also stipulated that all students should be
offered a SARS-CoV-2 test when they returned to university, helping identify and isolate those who were
asymptomatic. The protocol involved two lateral flow tests (LFTs), 3 days apart. In practice, however,
this staggered return did not occur as planned in January 2021. Following the imposition of a new
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Figure 4. Mean cases (represented as dots) per population in MSOAs categorized as high student concentration (black), near high
student concentration (red), low student concentration (blue), and far from high student concentration (green) in each of (a)
Manchester, (b) Birmingham and (c) Hull. Lines represent the smoothed weekly mean positive cases per population, shaded to
cover the 95% confidence intervals of these estimates (details in appendix C).
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nationwide lockdown on 4 January 2021, there was a prioritization of return of students to face-to-face
teaching enrolled on courses that were most important to be delivered in-person in order to support the
pipeline of future key workers. All other courses were to continue being delivered online [22].

In this section, we bring together insights from multiple independent models assessing the impact of
staggering the return of students to university and mass testing on infection and isolation. The intention
of our modelling work was to focus purely on unpicking the epidemiological consequences of staggering
student return on SARS-CoV-2 transmission and isolation. We acknowledge there are multiple factors
that administrators must consider and there may be operational and/or resource reasons why a
staggered return at higher education institutions is desired. These include ensuring that testing
capacity is sufficient to meet demand, the monetary costs associated with the intervention (e.g. testing
and staffing) and the educational needs of the students. Though the inclusion of these considerations
is beyond the scope of our study, they are important constituents of a multi-faceted decision-making
process and we provide an expanded discussion in the Conclusions section.

We present work from four independent models that implement a staggered student return, with the
view of having multiple approaches (with distinct modelling assumptions) to enhance result robustness
and to determine whether consensus findings emerged. We open with two parsimonious model
frameworks. The first is used to highlight potential surges in the number of students in isolation upon
student return (§3.1). The second presents a transmission model that considers the impact of staggered
student return over time (§3.2). The final two models continue the exploration of the dependency of
epidemiological outcomes on staggered return policies, with both models incorporating heterogeneity
in contact structure and being partly parametrized using data on (different) individual higher
education institutions (§3.3).

With respect to mass testing, we consider insights from two network transmission models, each with
a differing area of focus. In one analysis we vary the return testing strategy, in conjunction with staggered
student return (§3.4). The other considers regular rounds of testing throughout the academic term and
the potential implications of a SARS-CoV-2 variant with increased transmissibility, in light of the
emergence of the B.1.1.7 SARS-CoV-2 lineage that proliferated rapidly in the UK in late 2020 and
early 2021 [23–26] (§3.5).

3.1. Impact of staggering on isolation
To investigate the viability of a staggered return approach, we built a basic discrete event simulation for
the return of students to their halls of residence. This individual-based model was designed to investigate
the necessary capacity that would be required on campus to isolate incoming students and to establish
whether staggering could reduce the overall time that individuals would spend in isolation upon return.
In this section, we purely focus upon isolation as a result of a positive test upon return and do not
consider spread of infection within the university after students return.

3.1.1. Methods

In the model, each student arrives in their household and is tested immediately. If their test is positive,
their household is put into isolation for 10 days. If a particular student is due to arrive in a household that
is already isolating, that student is required to wait until the relevant household comes out of isolation
before they are allowed to return and have their test.

We investigated four different scenarios: (i) all students return on the same day, (ii) each student
returns on a random day in a 14-day interval, (iii) each student returns on a random day in a 28-day
interval, and (iv) the students return in three weekend ‘pulses’. In these pulses, we assume that 10%
of students are in halls already and 40% arrive on the first weekend. The next 30% arrive on the
weekend three weeks later and the final 20% arrive on the weekend after that. For the purposes of
testing, we treat students that are already in halls the same as the first arrival group. In all cases, we
assume that the students that come back at a certain point in time are uniformly distributed over the
different households. So, we do not consider effects that appear when, for instance, student housing is
organized by programme or year. We note that a fully random distribution of returns over a longer
period might be practically infeasible, and assuming that returns are concentrated on, for instance,
weekends, is a more plausible assumption.

We simulated these scenarios for cohorts of 1000 students. We varied the household size and the
probability of receiving a positive test. The results of these simulations are summarized in table 5,
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where we give the total number of days that students need to spend in isolation, need to wait before
arriving in their term-time accommodation, and the peak number of students that were in isolation.

We note that, from an organizational perspective for student accommodation, not only the total days
spent in isolation is relevant, but also the number of students that are isolated at any given time.

3.1.2. Results

To show the impact we have plotted the average numbers for the different simulations in figures 5–7 for
the random return within 14 days, 28 days and the three-pulse return.

We observed that staggering the return of students can have organizational advantages. Under a
regime where the fraction of positive tests in the student population is low and household sizes are
small (figures 5–7, top left panels), spreading out the return of students can reduce the total number
of days that students spend in isolation and also reduce the peak number of students that are isolated
on a given day. These advantages diminish or are even reversed if the proportion of positive tests is
high (figures 5–7, bottom rows); in that case households are repeatedly put in isolation, which leads
to higher peaks and total days in isolation. As can be seen in the case of household sizes of 20
students and positive test probability of 0.05, spreading the return of students over a longer period of
time mainly reduces the peak number of isolations and does not contribute significantly to a
reduction in the total number of days that students are isolated in these scenarios. We note that for
positive test probabilities of p = 0.02 and p = 0.05, one can expect that a significant number of students

Table 5. Summary of the staggering simulations. The table shows the average over 100 runs for each combination of household
size and fraction of positive tests (3WP: three week pulsed return, p: probability of positive test result, W + I: combined total for
either waiting to return or isolating).

household size p arrival isolating waiting W + I peak isolating

10 0.01 3WP 621 99 720 102

at start 931 0 931 170

random14 594 218 812 94

random28 577 129 706 89

0.02 3WP 1183 186 1369 170

at start 1812 0 1812 320

random14 1152 401 1553 178

random28 1171 255 1426 116

0.05 3WP 2908 438 3346 303

at start 4049 0 4049 510

random14 2868 951 3819 307

random28 2793 595 3387 256

20 0.01 3WP 1190 187 1378 184

at start 1806 0 1806 320

random14 1151 435 1586 183

random28 1048 250 1299 167

0.02 3WP 2328 383 2712 279

at start 3224 0 3224 500

random14 2275 815 3090 302

random28 2103 494 2597 228

0.05 3WP 5512 875 6387 520

at start 6352 0 6352 780

random14 5408 1757 7165 552

random28 5198 1214 6412 512
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will be impacted by isolation measures in the first weeks after return. Hence, these results suggest that it
is important to take this lead time into account when planning in-person teaching activities.

3.2. A simple model for the impact of a staggered student return on incidence
We provide an analysis of the impact of a staggered return of students in three stages, on the transmission
dynamics during an academic term.
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Figure 5. Expected number of students in isolation against time for a return spread over 14 days when the probability of a returning
student being infected, p, is 0.01 (top row), 0.02 (middle row) and 0.05 (bottom row) for household sizes of 10 individuals (left
column) and 20 individuals (right column). Waiting (blue), Isolating (orange), W + I: Waiting + Isolating (green). Bands show 95%
interval computed from 100 simulation runs.
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3.2.1. Methods

We implement staggered return of students in a simple compartmental transmission model that
segments hosts into susceptible (S), infectious (I) and recovered (R) classes, and examine the mean
field solutions of this SIR model. We assume that the students return to university in three stages over
three weeks. On return, they mix freely with the existing student body and with each other. At each
return point, we assume that a fixed proportion of the returnees are infected.
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Figure 6. Expected number of students in isolation against time for a return spread over 28 days when the probability of a returning
student being infected, p, is 0.01 (top row), 0.02 (middle row) and 0.05 (bottom row) for household sizes of 10 individuals (left
column) and 20 individuals (right column). Waiting (blue), Isolating (orange), W + I: Waiting + Isolating (green). Bands show 95%
interval computed from 100 simulation runs.
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In our simulation, we took a student body of N students. These returned in groups of N/3 in weeks
one, two and three, so that the respective student populations in the first three weeks were N/3, 2N/3
and N. Once all of the students return they remain at university for a further eight weeks until the
end of an 11-week term.

At each return point, we assume that a fixed proportion, p, of the returnees were infected. In full,
when each group of N/3 students returned they were assumed to contribute p N/3 students to the

600

500

400

300

200

100

0

600

500

400

300

200

100

0

600

500

400

300

200

100

0

0 10 20 30 40 50 0 10 20 30 40 50

day day

N

N

N

status
waiting
isolating
W + I

p = 0.01 | household_size = 10 p = 0.01 | household_size = 20

p = 0.02 | household_size = 10 p = 0.02 | household_size = 20

p = 0.05 | household_size = 10 p = 0.05 | household_size = 20

Figure 7. Expected isolations for a three week pulse return when the probability of a returning student being infected, p, is 0.01
(top row), 0.02 (middle row) and 0.05 (bottom row) for household sizes of 10 individuals (left column) and 20 individuals (right
column). Waiting (blue), Isolating (orange), W + I: Waiting + Isolating (green). Bands show 95% interval computed from 100
simulation runs.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210310

16

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 S

ep
te

m
be

r 
20

21
 

CHAPTER 5: SARS-COV-2 INFECTION IN UK UNIVERSITY STUDENTS: LESSONS FROM

SEPTEMBER-DECEMBER 2020 AND MODELLING INSIGHTS FOR FUTURE STUDENT

RETURN

72



number of infected students, and (1− p)N/3 students to the susceptibles. The resulting SIR model is then
given by the following three-level piece-wise model, where t = [0… 77] was measured in days, i = 1 gave
the infection dynamics in week 1, i = 2 the infection dynamics in week 2, and i = 3 the infection dynamics
in weeks 3–11:

dSi
dt

¼ �b
IS
Ni

,

dIi
dt

¼ b
IS
Ni

� gI

and
dRi

dt
¼ gI:

In each of the three stages, the population values were: N1 =N/3, N2 = 2N/3 and N3 =N.
To simulate the staggered returns, we took the values of S and I at the start of the first, second and

third weeks to be the following, noting that the values of S and I then jump at the start of each week (as
can be seen in the figures):

S1(0) ¼ (1� p)N=3, I1(0) ¼ pN
3

,

S2(7) ¼ S1(7)þ (1� p)N=3, I2(7) ¼ I1(7)þ pN
3

and S3(14) ¼ S2(14)þ (1� p)N=3, I3(14) ¼ I2(14)þ pN
3

:

For simulation examples, we used a population size of N = 1000 and considered three scenarios with
different values of the prevalence (p) and transmissibility (β): (i) p = 0.10, β = 0.18; (ii) p = 0.02, β = 0.18;
(iii) p = 0.02, β = 0.30. In all scenarios, we fixed the recovery rate γ = 0.072. We also compared the
results of the ‘staggering’ model with that of an unstaggered model (with the same parameter values)
in which all of the N students returned at the start of term.

3.2.2. Results

The corresponding reproduction numbers R for the three scenarios are initially: (i) R = 2.5, (ii) R = 2.45
and (iii) R = 4.08.

In the absence of all other controls, and across all three considered scenarios, we observed that
staggering can slightly reduce and slightly delay the size of the infection peak in the short term
(figures 8–10). However, over the course of the 11-week term the reductions in the overall attack rate
were minor, particularly for infections with high transmissibility (figure 10).

While based on relatively simple assumptions, these results are intuitive. In conclusion (i) a staggered
return could delay and reduce the outbreak peak, however, (ii) without other controls, staggering will not
much reduce the overall attack rate over the course of an academic term.

3.3. Structured models assessing the impact of a staggered student return
The formerly presented parsimonious models provide guiding principles on the potential impact of
staggering on infection throughout the course of an academic term and isolation upon return. In this
section, we build on the prior work by investigating the role of staggered student return on
epidemiological outcomes using models incorporating additional layers of complexity. In contrast to
the compartmental model in §3.2, these models are simulated probabilistically to explore the random/
stochastic variation in outcomes. Specifically, we used two models of transmission dynamics for
SARS-CoV-2 in a university setting, each using a different model conceptualization: (i) a stochastic
compartmental model [6] and (ii) a network-based model [27]. Both transmission models assume that
upon exposure hosts enter a period of latent infection during which they are not infectious, then hosts
may remain asymptomatic throughout their infection (asymptomatic cases) or transition through
presymptomatic and symptomatic stages of infection. Mass asymptomatic testing may detect both
presymptomatically infected hosts and asymptomatic cases. Note that both models assumed that
individuals did not ‘compensate’ by replacing contacts that were unable to occur (due to the expected
contact being in isolation or not having yet returned to the university setting).
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3.3.1. Methods

3.3.1.1. Stochastic compartmental model summary
The stochastic compartmental model included realistic mixing patterns for students based on student
responses to the Social Contact Survey conducted in 2010 [28,29]. These contact matrices entailed 160
groups based on school (department) and year of study, with contacts stratified into household, study
and random contacts. We calibrated the disease compartments to estimations made at the start of the
2020/2021 academic year in the absence of controls, returning an R of approximately 3 (for calibration
we assumed asymptomatic cases were 50% less infectious than symptomatic cases). Further model
details, including descriptions of the remaining assumptions underpinning the model, may be found in [6].
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Figure 10. Staggered/unstaggered return temporal profiles. β = 0.3, p = 0.02, initial R = 4.08.
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For our analysis here, we fixed the mean probability of a case being asymptomatic at 75% and the
relative infectiousness of an asymptomatic we varied between 0 and 1. It was assumed that the
university would operate within Public Health England guidelines and therefore that symptomatic
cases would be tested and self-isolate within 48 h. Students in large halls of residence were assumed
to be restricted to households of 24 individuals, reflecting actions taken by universities in the 2020/
2021 academic year. We did not include the impact of contact tracing, social distancing or the use of
face coverings. We used a student population size of 28 000. The number of infected students at the
start of term was estimated using home location and incidence as of July 2020 as described in [6]
using an anonymized extract of student data for a specific university relating to the 2019/2020
academic year. The study complied with the University data protection policy for research studies
[30]. Each scenario was run for a simulated 300 days, with 10 replicates per scenario.

The model is coded in R and C++ and available at https://github.com/ellen-is/unimodel.

3.3.1.2. Network model summary
Our network model framework represents interactions between students within a university population
in different settings (household, study cohort, organized societies and sports clubs, other social). We ran
an epidemic process on this network, for the virus SARS-CoV-2. The model includes isolation and
contact tracing. We adopted a pessimistic approach by assuming a comparable amount of mixing to
pre-pandemic circumstances, and did not include any reduction in the risk of transmission occurring
over contacts due to social distancing and/or the use of face coverings.

Specifically, we assumed students had contact with all household members each day. We sampled the
number of non-household contacts from distributions fit to data informed by student responses to the
Social Contact Survey conducted in 2010 [28,29], with stratification according to the level of study
(undergraduate or postgraduate). For this analysis, we then applied the following two contact pattern
changes to all but the baseline (no intervention) scenario: (i) society contacts did not occur
(transmission risk therefore zero), assuming that all meetings would take place online; (ii) for on-
campus resident students, we assumed no contacts within the broader accommodation unit of the
same floor or block of residence (thus outside the immediate household).

In all simulations, we had an overall student population of 25 000, with 7155 students resident on-
campus and the remainder off-campus. Each simulation run had a duration of 11 weeks, encompassing
both a 10-week academic term and the week prior to its commencement.

We initialized latent, infectious (asymptomatic, presymptomatic and symptomatic) and recovered
individuals using estimates for 2 January 2021 from the University of Warwick SARS-CoV-2 transmission
model [31], based on fits from 29 November 2020 and assuming no change to adherence in NPIs.

For each parameter configuration, we ran 1000 simulations, amalgamating 50 batches of 20 replicates;
each batch of 20 replicates was obtained using a distinct network realization. We performed the model
simulations in Julia v. 1.4–1.5. The data and science surrounding the SARS-CoV-2 infection is fast
moving. This piece of sub-analysis was originally undertaken in December 2020, with our intent being
for this work to provide a record of the state of our modelling at that time. For a full description of
the network model and noted limitations of the methodology, see [27]. We summarize in appendix D
other changes made from the base model to carry out this analysis. Distributions of outcome
measures are visualized using violin plots which capture the smoothed probability density of a set of
numeric values [32].

3.3.1.3. Staggered return strategies
We assessed four strategies for the return of students for the academic term (figure 11) using the stochastic
compartmental model and the network-based model. Note that, across all considered strategies, a
proportion of the student population was considered to be resident in university accommodation
between academic terms.

The four strategies were as follows: (i) no stagger—for students not resident in university
accommodation over the vacation, they return on day 1; all students entered the return test procedure on
day 1 (we acknowledge that in practice there would be logistic difficulties associated with such a
strategy); (ii) 14-day spread—each student is allocated their day to return to university (if applicable) and
they begin the return testing procedure between days 1 and 14 (sampled according to a uniform
distribution); (iii) 28-day spread—similar to the 14-day spread strategy, except the applicable range spans
days 1 to 28; and (iv) three-weekend pulse (by course)—fractions of the student population return on
designated weekends based on level and course of study. In the stochastic compartmental model, for the
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three-weekend pulse, on day 1 of the simulation we assumed that all vital medical, dental and veterinary
students enrolled in courses (as provided by the University of Bristol [33]) were present, as well as 20%
of students in all other schools, giving 31% of students present at university in total. This first group of
students was chosen because they were studying on the courses that were allowed to return when
universities were closed in January 2021 and at this time it was estimated that 20% of students who were
not enrolled on these courses still chose to return. On day 22 of the simulation, all other courses with
important practical elements return to university, giving a total of 51% of students present at university.
On day 29, all remaining students return to university. For the network model, we set the groupings
(and the associated proportion of students returned) for the three-weekend pulse as a variation on the
University of Warwick plan for staggering student return [34].

3.3.1.4. Testing protocols
We also included a testing protocol that adherent students engaged with upon return to university. In the
stochastic compartmental model, we considered two scenarios: (i) no testing on student return, and (ii)
testing of all non-symptomatics. We assumed the tests detect half of true positives (50% sensitivity) and
do not generate false-positive results (100% specificity).

In the networkmodel, we assumed adherent students underwent two LFTs, 3 days apart, with isolation
between tests (for details on test sensitivity and specificity, see appendix D). For each strategy for student
return, we sampled the proportion of students that were adherent to isolation from zero compliance
(value 0) to full compliance (value 1) in increments of 0.1. We assumed an identical adherence to
isolation restrictions independent of the cause (presence of symptoms, household member displaying
symptoms, or identified as a close contact of an infected by contact tracing). Additionally, we assumed
those that would engage with isolation measures would also engage with contact tracing.

3.3.2. Results

3.3.2.1. Stochastic compartmental model results
We first present our findings from simulations carried out with the stochastic compartmental model. The
collection of simulations that we present here give an indication of what the impact of staggering and
testing might have been at the start of the 2020/2021 academic year, if this had taken place. The
model parameters do not change based on events that have happened since this time, including
vacation periods, and consequently the results are to be interpreted qualitatively if used to make
predictions about future scenarios.
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Figure 11. Staggered return temporal profiles. We considered four student return patterns: no stagger (blue solid line); return
spread over 14 days (orange dashed line); return spread over 28 days (yellow dotted line); three-weekend pulsed return (by
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network model (green dot-dash line, cross markers). For this depiction, we present proportion returned with respect to time
when assuming 10% of all students were resident in their university accommodation between academic terms.
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We observed a similar overall case burden across all considered staggering strategies. Given high
adherence to control, similar temporal trends were observed regardless of the testing strategy used
(figure 12). Relative to an unstaggered return, there was lower prevalence in the early phase paired
with higher prevalence in the late phase for the 14-day and 28-day strategies, with these relationships
being consistent across the collection of test upon student return protocols (figure 13).

3.3.2.2. Network model results
For the independent analysis performed using the network model, on account of the inherent uncertainty
in several parameters of the model and assumptions made regarding contact patterns, we once more
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Figure 13. Epidemiological outcomes among a student population given differing staggered return strategies to university compared
with a strategy where staggering is not used, using a stochastic compartmental model. Outputs are summarized from 10
simulations, with the continuous lines representing the median number of symptomatic and asymptomatic students and the
dashed lines corresponding to the 2.5th and 97.5th percentiles. We display distributions corresponding to: (a) no testing of
asymptomatics upon student return, (b) all asymptomatics are tested.
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Figure 12. Epidemiological outcomes among a student population given differing staggered return strategies to university using a
stochastic compartmental model. Outputs are summarized from 10 simulations, with the lines representing the median number of
symptomatic and asymptomatic students and the shaded areas showing the 2.5th and 97.5th percentiles. We display distributions
corresponding to: (a) no testing of asymptomatics upon student return, (b) all asymptomatics are tested.
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focus on qualitative comparisons across the simulated scenarios (as done with the stochastic
compartmental model). We first note that, compared with the baseline scenario, the scenario with
reductions in contacts via organized societies and dynamic on-campus accommodation contacts
(represented by adherence probability 0.0 in figure 14) produced a shift downwards in the obtained
distributions of relative attack rate (medians of 0.93–0.96 across the four staggering strategies).

Comparing attack rate across staggering strategies for a fixed adherence level, in concordance with the
stochastic compartment model we found a minimal impact on the attack rate over the course of the
academic term. Furthermore, we determined adherence to isolation guidance and following test and
trace procedures as crucial in reducing the overall case burden within the student population (figure 14a).

Assessing the potential impact of staggered return strategies on the amount of time students may be
required to isolate, for a fixed adherence level there were no substantial differences between the strategies
we considered (figure 14b,c). Inspecting a measure of time spent in isolation for any given student, we
observe an initial increase with adherence level, peaking when roughly 70–80% of students are
adherent, before declining as it approaches all students being adherent (figure 14b). A collective
response (high adherence) reduced the time each adherent student was estimated to spend in
isolation, compared with a scenario of moderate adherence among the student population (figure 14c).

In the absence of other interventions, staggering slightly reduces and delays the size of the peak,
though the long-term impact is minimal (figure 15a). For strong adherence to interventions, temporal
trends were found to be broadly similar regardless of the staggering strategy used (figure 15b), in
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Figure 14. Epidemiological outcomes among a student population given differing staggered return strategies to university. Outputs
summarized from 1000 simulations (with 20 runs per network, for 50 network realizations) for various levels of adherence to NPIs.
We considered four strategies: no stagger (blue violin plots); return spread over 14 days (orange violin plots); return spread over 28
days (yellow violin plots); three-weekend pulsed return ( purple violin plots). We assumed 100% of adherents engage with return
testing. We display distributions corresponding to: (a) relative attack rate, compared with the baseline scenario; (b) time spent in
isolation per student; (c) time spent in isolation per adherent student. The white markers denote medians and solid black lines span
the 25th to 75th percentiles.
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agreement with the temporal trends observed from the stochastic compartmental model projections
(figure 12).

3.4. Testing on return
Using the network model described in §3.3, we modelled implementation of a testing protocol that
students would be advised to complete before attending face-to-face teaching.

3.4.1. Methods

To investigate the sensitivity of staggered returns to alternative test-on-return strategies, using a fixed
high level of adherence (90%), we investigated four protocols (table 6). Test protocol A: two LFTs,
3 days apart, with isolation between tests (the default assumption); test protocol B: single LFT; test
protocol C: two LFTs, 3 days apart, with no isolation between tests; test protocol D: single PCR with
isolation until test result received (2-day delay), leaving isolation upon a negative test result.

3.4.2. Results

Given high adherence to interventions and engagement with rapid testing, the inclusion of a second LFT
and isolation between the LFTs gives minor reductions in attack rate (comparing A–D in figure 16). We
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Figure 15. Temporal profiles of epidemiological measures over the academic term under differing return patterns. Outputs produced
from 1000 simulations (with 20 runs per network, for 50 network realizations) for four return patterns: no stagger (blue); return
spread over 14 days (orange); return spread over 28 days (yellow); three-weekend pulsed return (purple). Solid lines depict the
median profile and shaded regions the 95% prediction interval. Panels from left to right display infection prevalence,
cumulative proportion of initial susceptibles infected, and 7-day averaged R, respectively. (a) No return testing; (b) return
testing with all adherents participating.
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found comparable attack rate distributions across our four (previously introduced) staggering strategies
for student return to university (comparing between colours in figure 16).

3.5. Testing during term
To build on our investigation of testing on arrival, we simulated the impact of an asymptomatic testing
system in use throughout the term, assuming the presence of a more transmissible SARS-CoV-2 variant.
This scenario was considered in response to the emergence of the B.1.1.7 variant in the UK, which began
to become widespread from November 2020.

3.5.1. Methods

We used a layered network model of contact between 15 000 simulated students, with one layer of
household contacts and one of other-group contacts intended to simulate all out-of-household
contact. Individuals could be infected by either household or non-household contacts. Infected
individuals progressed through disease states via a stochastic compartmental model including a latent
period, various infectious states (presymptomatic, asymptomatic or symptomatic) and recovery resulting
in immunity (which we assumed did not wane).

We investigated five during-term asymptomatic testing scenarios, in which individuals were tested at
random with probability 1/3, 1/7, 1/10 or 1/14 per day (to simulate testing every 3, 7, 10 or 14 days,
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Figure 16. Relative attack rate distributions under different test before return to study procedures, in combination with strategies for
staggered student return. Assumed 90% adhere to isolation, test and trace guidance. For test strategies using two LFTs, the two
tests were spaced 3 days apart. We considered four student return patterns: no stagger (blue violin plots); return spread over 14 days
(orange violin plots); return spread over 28 days (yellow violin plots); three-weekend pulsed return ( purple violin plots). The white
markers denote medians and solid black lines span the 25th to 75th percentiles.

Table 6. Overview of the return test protocols. Cells containing an ‘X’ denote the element being a part of the return test
protocol. LFT 1 and LFT 2 correspond to a first and second LFT respectively. Conditioned on the plan including individuals
undergoing two LFTs, ‘isolate between tests’ reflects whether isolation should occur between the two LFTs.

testing strategy LFT 1 LFT 2 isolate between tests

A X X X

B X

C X X

D single PCR test
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respectively), or not at all. In all scenarios, symptomatic individuals are assumed to be tested
immediately upon developing symptoms. Upon a positive test, the entire household isolates for 14
days. Simplifying assumptions included perfect and rapid testing and perfect adherence to testing and
isolation. We assumed 50% of non-household contacts to be traced and isolated.

We first ran these scenarios with a lower-transmissibility variant intended to plausibly simulate the
variant of SARS-CoV-2 circulating in universities in the UK in autumn 2020. We then considered a 1.5
times more transmissible variant, intended to simulate a potentially more transmissible variant such
as B.1.1.7.

We initialized each simulation with 100 infectious individuals, and ran the model for 100 timesteps
(notionally days). For each scenario, we performed 100 replicates, each run on a newly generated
network. Importantly, we chose the particular parameters for this model for a combination of
plausibility and simplicity, and some are not well-founded in any particular dataset. Details of the
model, parameter choices and limitations are available in appendix E.

3.5.2. Results

We plot the number of cumulative cases as a time series under the differing testing scenarios for the
two variants in figure 17. In general, more frequent asymptomatic screening better controls cases,
with the scenario with no asymptomatic screening seeing the largest number of cases. While cases
were contained to a mean of fewer than 1200 in all scenarios with asymptomatic screening in the less
transmissible setting, this was only achieved by the most frequent testing scenario in the more
transmissible setting.

3.5.3. Limitations

This model has many simplifying assumptions and the absolute numbers it produces should not be
considered in isolation or as an absolute prediction. Some of these limitations include: perfect
adherence to testing and isolation, no vaccination nor prior immunity, no reactive interventions during
the course of the simulation, and a speculative network contact structure that has not been trained from
data but is instead simply a plausible simple structure. In addition, the model did not include a
reduction in the risk of transmission occurring over contacts due to face covering use or social
distancing; however, other work [35] suggests that if such measures are in place in a university setting
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Figure 17. Temporal profiles of cumulative case counts for a simulated population of 15 000 students under differing during-term
asymptomatic screening scenarios. We present two scenarios for variant transmissibility: (a) lower-transmissibility variant; (b) higher-
transmissibility variant (1.5 times more transmissible than the lower-transmissibility variant). Output produced from 100 runs of
each scenario, with a new network generated for each replicate; envelopes show 95% of model runs and solid lines show
mean values. Asymptomatic screening scenarios considered are: no asymptomatic testing (red), each person randomly tested
with probability 1/14 (yellow), 1/10 ( purple), 1/7 (blue), or 1/3 (green) per day, to simulate testing approximately every 14,
10, 7 or 3 days, respectively. Note that this model has many limitations and should be interpreted mainly qualitatively. See main
text for a listing of some limitations.
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and/or if there are moderate levels of immunity, the impact of testing is less prominent, highlighting the
importance of considering testing in the context of other measures.

4. Conclusion
The mass migration of students at the beginning and end of academic terms, their unique living
arrangements during term time and unique patterns of social mixing, make them an important
population for the spread of infectious respiratory illnesses. Despite this, prior to the COVID-19
pandemic, there was little data collected on outbreaks of infectious disease at universities (although
one such dataset collected between October 2007 and mid-February 2008 has now been analysed in
2021 [36]) and university students were an understudied population. Therefore, at the start of the
pandemic, there was a limited evidence base to support policy decisions around universities. Our
study brings together expertise from multiple research groups and presents results from multiple
statistical and modelling analyses and provides new understanding on infectious disease outbreaks at
universities and how these could be mitigated.

An important finding of our study is that adherence to NPIs is likely to have more impact than
staggering the return of students to university. Survey data suggest that in the autumn term of 2020,
students generally did have high adherence to NPIs; an Office for National Statistics (ONS) survey
found high adherence (90%) to social distancing across multiple universities [37]. In addition, a survey
of University of Bristol students found that 99% of students self-isolated after testing positive for
COVID-19 and the majority of survey participants reported low contact numbers [38]. However, there
was heterogeneity in adherence, with some students reporting many contacts and with only 61% of
students with cardinal COVID-19 symptoms self-isolating [38]. In future, it will be important that
students maintain their high levels of adherence and to ensure they have sufficient resources to allow
them to do so.

Several of the scenarios presented here have considered the frequency of asymptomatic screening at
universities. This has been explored in other modelling studies, for example [39] found that monthly
screening can reduce cumulative incidence by 59% and weekly screening by 87%. We found that
increasing the frequency of asymptomatic screening is likely to be important in the presence of a more
transmissible SARS-CoV-2 variant, with cases only being able to be maintained below 1200 (mean
cumulative over 100 days) when testing occurs every 3 days (in a population of 25 000). This finding
corroborates a study that used an agent-based model to simulate COVID-19 transmission at the
University of California San Diego, where larger outbreaks resulted in a maximum outbreak size of
158 when asymptomatic screening occurred monthly and 7 when it occurred twice weekly [40], but
with a much lower impact seen on the average outbreak size when increasing from monthly to twice
weekly testing, ranging from 1.9 to 1.1, respectively. Brooks Pollock et al. [6] also found that mass
testing was more effective for higher values of the reproduction number. This highlights the
importance of reassessing control measures under different variants.

We have focused here on COVID-19 risks and mitigation strategies for when students return to
university and during the university term itself; however, we have covered little on the risk of
transmission from infected students to private homes at the end of term. Previous modelling work
suggests that in an unvaccinated population, an infectious student would on average generate just less
than one secondary within-household infection, but this is dependent on the prevalence in the student
population at the time of departure [41]. Although it is expected that vaccination will reduce the
impact of students returning to private homes at the end of term, the UK vaccination programme is
ongoing, and there are particular spatial areas and demographic groups where low uptake is expected
[42], suggesting that this still may be an important question to consider in future.

Our analyses and discussions have highlighted several areas that we recommend for further attention.
These include building a better understanding of determinants of adherence, including attributes that
may place subpopulations at higher risk (e.g. students in part-time employment). Given the need for
rapid turnaround of our analyses, a persistent challenge is the ability to access data in a timely
manner and ensuring any barriers to data access have a purpose and are necessary. One mechanism
for addressing this data availability issue may be a centralized nationwide student testing data
resource, which could serve as a hub for anonymized student testing data that documents institution
and attributes such as type of accommodation.

We recognize there are prominent factors that we have not addressed here, as we have focused directly
on transmission dynamics, yet should be considered while viewing our results in a broader context. One
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important future research direction is to consider the non-COVID impact of intervention measures. The
majority of work to date on COVID-19 has focused upon developing intervention policies that seek to
minimize the overall number of cases, hospital admissions or deaths. However, it is important to
acknowledge that any control policy that may reduce transmission also has an impact in terms of
monetary cost, non-COVID health, mental health and well-being. An extension to this work could focus
upon assessing the direct monetary cost of intervention policies as well as the logistical and operational
constraints associated with such policies [43,44]. For example, to sustain a regular testing regime at
universities under financial, logistical, or structural constraints, mathematical modelling suggests that
pooling RT-qPCR testing may be a cost-effective method, although this may come with additional
caveats resulting from the associated reduction in sensitivity (when cases are not detected) and
specificity (when students self-isolate but are not infected) [45]. Additionally, in higher educational
settings, it is important to consider any impact on teaching and examination schedules as well as mental
health and well-being of students. The models considered here allow for an estimate of the different
resources used by the different control strategies. In order to determine an optimal intervention, it is
crucial to establish the objective of any control policy, noting that the objective may not be generalizable
across all higher education establishments. Once an objective is appropriately defined, any modelling
can be specifically tailored to maximize the robustness of any advice offered.

Furthermore, a growing picture is just beginning to emerge on the prevalence of, and risk factors for,
‘long COVID’ symptoms and health complications following coronavirus (COVID-19) infection. An
initial set of early experimental results collected by the ONS indicates around one in five respondents
testing positive for COVID-19 exhibit symptoms for a period of five weeks or longer, and around one in
10 respondents testing positive for COVID-19 exhibit symptoms for a period of 12 weeks or more [46,47].
We recognize that the current university closures may have significant impact upon student mental
health and well-being—across multiple surveys collecting information on how the COVID-19 pandemic
has affected the mental health of students, a consistent outcome was above 50% of respondents
expressing that their well-being and mental health had become worse [48]. In addition, we hope that the
ongoing vaccine roll-out will provide a level of protection for those most vulnerable to severe outcomes,
which in turn may alleviate risks associated with possible student to community spread.

In conclusion, our findings are comprised of three overarching points. Firstly, we observed evidence
of spillover transmission between higher education populations and the wider community in some, but
not all, settings. Secondly, we would expect reductions in adherence to NPIs (including case and
household isolation) to have more impact than any marginal benefits generated from a staggered
return of students to university. Thirdly, the emergence of more transmissible new variants results in
impaired effectiveness of mass asymptomatic testing. Ultimately, we hope that the work presented
here can be used by universities and policymakers to assist in the long-term strategy of ensuring that
students can return safely to their studies at universities in the UK. And while we have focused on
the national picture in the UK, we also hope our results can offer insights relevant to higher education
in other countries.
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Appendix A. A simple outbreak model for university COVID-19 outbreaks
We postulate in §2.1 that the probability, P, that a university experiences a SARS-CoV-2 outbreak is
given by

P ¼ 1� pn, (A 1)

where n is the number of imported cases and p is the probability that an imported case fails to seed an
outbreak.

We tested this hypothesis by using estimates for the number of imported student cases [7] and
COVID-19 case number data for a number of universities for which cumulative case number data was
available on the UCU COVID dashboard [8].

For a university i with cumulative case number ci, we defined an outbreak if ci > Tu, where Tu is a
threshold number of cases. We set xi = 1 if a university had experienced an outbreak, and xi = 0 if not.

The probability mass function for the distribution of outbreaks is given by

f(xjp) ¼ pn(1�x)(1� pn)x:

Thus, the likelihood of the data for all N universities, given p, is

L(p) ¼
YN
i¼1

pni(1�xi)(1� pni )xi

and the log likelihood is

LL(p) ¼
XN
i¼1

{ni(1� xi) log pþ xi log (1� pni )}:

Maximizing the log likelihood gives the maximum-likelihood estimate p̂ for p. The 100(1� a)%
confidence interval for p is given by

p̂+ z(a=2)
1ffiffiffiffiffiffiffiffiffiffiffi
NI(p̂)

p
" #

,

where z(α/2) is defined by P(Z > z(α/2)) = α/2 for Z∼N(0, 1) and

I(p) ¼ �E
d2

d p2
LL(p)

� �
(A 2)

¼ E
XN
i¼1

ni
p2(1� pni )2

{(1� pni )2 � xi(1� pni )þ xinipni }

 !
(A 3)

¼
XN
i¼1

n2i p
ni

p2(1� pni )
, (A 4)

using E(xi) ¼ 1� pni .
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Appendix B. Additional analyses for student hall infection data

B.1. Additional regression results

Univariate and intermediate multivariate regression results for the household and hall SAR (§2.2) are
summarized in tables 7 and 8.

B.2. Stochastic transmission model for hall and household infection

An alternative method for exploring the role of household and hall size, discussed briefly in §2.2, is to fit
a stochastic transmission model that allows for infection between hall members in addition to household
members.

B.2.1. Methods
We first calculated the household size distribution for each hall. We ignore the temporal dynamics
(setting the infectious period to unity) and simulated the final size of the outbreak using the Sellke
construction [49] in a population with two levels of mixing, defined by the household infectious
contact rate, λH, and the global (or hall) infectious contact rate, λG. Motivated by the lack of
dependence of household SAR on household size (table 1), we assumed density-dependent mixing in
households. Contacts at each level were assumed to be made at the points of a homogeneous Poisson
process. We calculated the probability of a student being infected given a single introduction in the
hall. Inference was performed for each hall using the approximate Bayesian computation tutorial in
Kypraios et al. [50], assuming Exp(1) priors for λH and λG.

B.2.2. Results
In figure 18a, we plot the probability that a student was infected by another within their hall including
their household (phall ¼ 1� e�lGAR) (where AR is the hall attack rate, in this case the number of reported

Table 7. Coefficients, and associated p-value and standard error, for the univariate and intermediate multivariate logistic
regression models for hall SAR.

covariate coefficient p-value s.e.

univariate logistic regression: SAR

hall size 0.0037 <0.0001 0.00006

constant −2.8388 0.0001 0.1722

median household size −0.0539 0.0029 0.0181

constant −1.3218 <0.0001 0.01590

proportion shared bathroom 0.3541 0.0017 0.1097

constant −1.9836 <0.0001 0.0822

proportion medical faculty 0.3511 0.0004 1.7973

constant −2.5257 <0.0001 0.2238

multivariate logistic regression: SAR

hall size 0.0030 <0.0001 0.0007

median household size 0.0300 0.2458 0.0258

proportion shared bathroom 0.4141 0.0010 0.1253

proportion medical faculty 4.0628 0.0712 2.2521

constant −3.6647 <0.0001 0.4690

hall size 0.0030 <0.0001 0.0007

proportion shared bathroom 0.3977 0.0013 0.1233

proportion medical faculty 2.7342 0.1588 1.9402

constant −3.2354 <0.0001 0.2795
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confirmed infections with known household). The additional probability of infection from within their
household is shown as phousehold ¼ 1� e�lH in figure 18b. In figure 18c, we plot the probability of
infection (ptotal) accounting for both household and global infectious contacts within an infected
household. This is compared with the binomial probability of reporting an infection given a

100 150 200 250 300 350 400

p ha
ll

0.4

0.3

0.2

0.1

0

100 150 200 250 300 350 400

p ho
us

eh
ol

d

0.4

0.3

0.2

0.1

0

hall capacity

hall capacity
100 150 200 250 300 350 400

p to
ta

l

0.8

0.6

0.4

0.2

0

hall capacity

household size

pr
ob

ab
ili

ty
 o

f 
at

 le
as

t
on

e 
in

fe
ct

io
n

5 10 15

0.4

0.3

0.2

0.1

0

(b)(a)

(c) (d )

Figure 18. Results of fitting the model with two levels of mixing to each hall individually, plotted against hall capacity. Circles
indicate expected mean and lines 95% confidence intervals. (a) Probability of infection due to global infectious contact. (b)
Probability of infection due to household infectious contact. (c) Comparison of the total probability of infection after
introduction accounting for household and global infectious contacts compared with the estimated binomial probability of
infection given introduction into a household (black dashed line). (d ) Comparison of the probability of infection in a household
by household size for each hall (blue lines) and the output from the binary regression analysis (black line).

Table 8. Coefficients, and associated p-value and standard error, for the univariate and intermediate multivariate logistic
regression models for household SAR.

covariate coefficient p-value s.e.

univariate logistic regression: SAR

household size −0.0543 0.1442 0.0372

constant −2.2885 <0.0001 0.3679

date of first infection −0.1354 <0.0001 0.0291

constant −0.8816 0.0272 0.3996

proportion shared bathroom 0.7472 0.0151 0.3074

constant −3.3660 <0.0001 0.2730

multivariate logistic regression: SAR

household size −0.0743 0.0558 0.0388

date of first infection −0.1547 <0.0001 0.0305

proportion shared bathroom 0.9911 0.0015 0.3115

constant −0.6350 0.2966 0.6084

royalsocietypublishing.org/journal/rsos
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previously reported infection in a household (which does not distinguish between halls). Figure 18d
compares the estimated probability of a household reporting an infection for each hall to the
estimation from the binomial logistic analysis (table 3). There is some indication that global infectious
contacts may play a relatively greater role in overall infection risk in the largest halls. However,
choices for distributing missing household data, which is ignored for here, will probably influence the
relative size of phall and phousehold, as will choices about scaling of mixing intensity with household size.

The maximum hall size in this data is approximately 400 students and findings may not generalize to
other hall settings or future periods of student return. Other limitations of this approach are the lack of
differentiation between symptomatic and asymptomatic infections, pre-existing immunity, or the impact
of isolation, so that parameters are interpreted as averages across students in a hall in addition to the
caveats arising from the missing data. Furthermore, we assume a single introduction and a closed
system of fixed occupancy, so that any imported cases are attributed to infection within the hall.
Dedicated household-based studies in student residential halls would be valuable for untangling the
role of mixing within households, halls and with the community on infection risk in these settings.

Appendix C. Additional information on age-stratified observations

C.1. Additional observations: age-stratified analysis

C.1.1. Methodological details
The numerical interpolation method, and the subsequent calculation of the growth rate of positive cases,
is applied to the positive case counts in each LTLA, rescaled by the number of people (falling within the
considered age range) estimated to live there. This quantity, c(t), shows a consistent day-of-week effect
due to e.g. varying test availability and test seeking behaviour. To account for overdispersion in the
data, we assume a quasi-Poisson distribution in the fitting.

A smoother ϱ(t) is applied using thin-plate splines, such that c(t)/ e@(t)þvi , where vi 8 i [ [1, 7] is
used to apply a fixed effect for each day of the week. The instantaneous growth rate of the cases is
simply given by ϱ0(t). This was implemented using a general additive model from the R package
mgcv with a canonical link [51]. Past examples of this method can be found in [52] (see figure 19).

C.1.2. Growth rates
Despite the clear spikes in cases among 18–24-year-olds across all LTLAs in figure 20, the growth rates for
community cases are qualitatively very different. In figure 20c, the community growth rate mirrors the
national trend. In figure 20a, the growth rate of community cases is higher, and appears to lag after
the growth in student-aged cases.

In figure 20d, a qualitatively different scenario emerges, with a marked rise in the growth of
community cases following an outbreak among the student-aged population. Finally, in figure 20b, the
outbreak among 18–24-year-olds has no perceptible impact on the growth rate of community cases.

C.1.3. Limitations
The estimated growth rates of confirmed cases, and the estimated excess community cases following a
large student-aged outbreak, are sensitive to the choice of the spline in the smoother. Changing the
spline does not qualitatively alter our conclusions.
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Figure 19. Growth rate among the student-aged (grey) and community populations (red) across England. University outbreaks are
observed on the national scale, with the higher incidence per population among those aged 18–24. The community growth rate in
cases increased from late September 2020. However, there was not a statistically significant subsequent increase following the peak
in student-aged outbreaks. The shaded regions are the 95% confidence intervals for the relevant quantity.
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Figure 20. Examples of the different types of growth rate patterns observed among student-aged (grey) and community cases
(red). The shaded regions are the 95% confidence intervals for the relevant quantity. (a) Bristol, (b) Durham, (c) Leeds and
(d ) Salford.
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Appendix D. Additional information on the network-based structured
model

D.1. Test sensitivity

The probability of testing positive is probably a function of viral load; while symptomatic and
asymptomatic individuals have similar average peak viral loads and proliferation stage durations,
their average duration of clearance stages has been observed to differ [53,54]. Therefore, we used
distinct test sensitivity profiles for symptomatic and asymptomatic cases (figure 21). However, we
highlight that this is an area of considerable uncertainty. Future studies detailing the testing
probability of asymptomatic individuals, and the specific relationship between viral load and testing
probability, would be a valuable contribution to this area.

For symptomatic cases, we used posterior median profiles reported by Hellewell et al. [55] of the
probability of detecting infection against time since infection, with separate estimates for PCR and
lateral flow tests (LFTs). The analysis used cycle threshold (Ct) data from repeat PCR testing of
healthcare workers in the SAFER study [56], with infections confirmed by paired serology. The
probability of detection by LFT was estimated given an assumption that an LFT would detect
infections with a Ct≤ 27.

For asymptomatic cases, we assumed that the probability of asymptomatic individuals testing
positive is equal to that of symptomatic individuals until the peak of infection, but then decays more
rapidly, such that the probability of an asymptomatic individual testing positive at 6.7 days after the
peak should equal the probability of a symptomatic individual testing positive at 10.5 days after the
peak (corresponding with findings from Kissler et al. [53] who estimated an average duration of
clearance of 10.5 days in symptomatic cases versus 6.7 days in asymptomatic cases) (figure 21).

The sensitivity of PCR tests when conditioned on having received a positive LFT result may differ
from the sensitivity estimates of an independent PCR test. We assumed that individuals receiving a
positive LFT result would be certain to return a positive result from the confirmatory PCR test.

D.2. Test specificity

We assumed the specificity of PCR tests to be 100%, in line with the ONS UK COVID-19 Infection Survey
indicating the specificity of the used PCR tests being in excess of 99.9% [57,58]). We assumed LFT
specificity to be 99.68% [59]. Using LFTs to test entire year groups, false positives would be expected
to occur relatively frequently.

D.3. Model change log

We detail here notable parameter changes and additions to the previously presented network model [27].
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Figure 21. Probabilities of testing positive through time for symptomatic and asymptomatic individuals. We assumed that the
probability of positive test results being returned in symptomatic and asymptomatic individuals were equal during the
proliferation stage of the virus, but that the probability of asymptomatic individuals testing positive decayed faster in the
clearance stage, owing to a shorter mean clearance duration of 6.7 days [53] (a) PCR test; (b) LFT.
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D.3.1. Isolation length
From 14 December 2020, the guidance from the UK government on the period of isolation for contacts of
confirmed cases was reduced from 14 days to 10 days. The corresponding periods of isolation have been
revised in the model.

D.3.2. Infection risk for students awaiting return to university
For susceptibles not yet returned to the university, we computed a daily probability of infection to give a
background prevalence of between 0.5% and 2% (with an infection duration of 16 days, across latent and
infectious periods). We sampled the background prevalence in each simulation replicate from a Uniform
(0.005, 0.02) distribution.

D.3.3. Proportion of individuals who stayed in university accommodation between terms
Student surveys indicated that of the order of 10% of students intended to stay in their university
accommodation after the end of the first academic term [48].

In each simulation replicate, we sampled the proportion independently for on-campus and off-
campus residents from a Uniform (0.05,0.15) distribution, thus ensuring we included uncertainty
associated with this quantity across our collection of simulations.

D.3.4. Contact patterns
We applied the following two contact pattern changes to all but the baseline (no intervention) scenario:
(i) society contacts did not occur (transmission risk therefore zero), with it assumed that all meetings
would take place online; (ii) for on-campus resident students, we set a zero probability of a contact
being made with an individual within the broader accommodation unit of the same floor or block of
residence (thus outside the immediate household).

D.3.5. Fraction of previous infecteds with PCR positive test result in the previous 90 days
In each simulation replicate, we sampled the fraction of previous infecteds who had returned a PCR
positive test result in the previous 90 days from a uniform distribution, Uniform(0.02,0.05).

Individuals set as being present in accommodation prior to the start of the simulation entered the
return testing procedure in an equivalent way to individuals with later arrival dates, with entry time
determined by the relevant staggered student return strategy. For individuals from this group that
became symptomatic and received a positive test result in the gap before their envisaged time to
begin the return test process, they satisfied the condition of having had a positive PCR result within
the previous 90 days and, as a consequence, no longer underwent the return test process.

D.3.6. Assumptions for scenarios related to isolation status under staggered return and leaving return testing

process
Returning students that have symptoms are by definition non-adherent to guidance. In this situation, for
the household the returning student is joining, other adhering household members may enter household
isolation. We assumed any such individuals entered isolation for the full 10-day period, irrespective of
the date of symptom onset of the symptomatic individual.

In the scenario of a student completing the return testing procedure with negative results, and who
would be entering a household that had household members in isolation due to the presence of a recently
confirmed case, the student leaving the return test process would immediately enter household isolation.

Appendix E. Additional information on the asymptomatic screening model
For this analysis, we used a layered network model of contacts between 15 000 simulated students, with
one layer of household contacts and one of other-group contacts intended to simulate all out-of-
household contact. We start the simulation with 100 infectious individuals, and run the model for 100
timesteps (notionally days). For each scenario, we plot the results of 100 replicates, each run on a
newly generated network. Importantly: the particular parameters for this model have been chosen for
a combination of plausibility and simplicity, and some are not well-founded in any particular dataset
(we attempt to highlight these).

royalsocietypublishing.org/journal/rsos
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Half of the households were of 10 people, and half of 5 people (to simulate a cluster-flat arrangement
in large halls, e.g. [60]). Other-group contacts are added in 3000 groups, with 5% of groups of size 40,
30% of size 10, 50% of size 5 and 15% of size 3—these values were chosen to simulate a range of
activities, but are not well-founded in data. Results are not sensitive to small perturbations in these
group sizes, but are sensitive to large changes in the overall amount of group contact. Within either
household or other groups all individuals are assumed to have pairwise contact at all timesteps when
the individuals are not isolating.

Disease progression and isolation are governed by a stochastic rate-based compartmental model in
which individuals can be susceptible, exposed but not yet infectious, presymptomatically infectious,
asymptotically infectious, symptomatically infectious, or recovered (and presumed immune). They can
also be in these various states and self-isolating with their household. Individuals become exposed
when one of their network contacts infects them—here household contacts have a 2.5% day−1

probability of infecting each of their susceptible household members (note that this is independent of
household size), and non-household contacts transmit with 1/10th this probability. These probabilities
are increased by a factor of 1.5 when simulating a more-transmissible variant. These transmission
figures have been chosen for simplicity and to plausibly reflect reasonable within-household attack
rates. Where no other citation is given, rates of progression between disease states are round-number
versions of the fitted parameters from [61]. Exposed individuals become presymptomatically or
asymptomatically infectious at a rate of 0.33 day−1 to give a mean 3-day latent period.
Presymptomatically infectious individuals become symptomatic at a rate of 0.5 day−1 to give a mean
2-day presymptomatic period. Symptomatically infectious people recover at a rate of 0.1 day−1 to give
a mean symptomatic infectious period of 10 days, a round-number version of the 9.5 days reported in
[62]. We do not include hospitalization or death, as these events are very rare in the young-adult
population. Half of infected individuals are assumed to develop symptoms, and half to remain
asymptomatic (or non-test-seeking for some other reason). Asymptomatic individuals are infectious
for the same mean total period of time as symptomatic individuals, and are equally infectious—
predictably the effectiveness of asymptomatic screening is sensitive to this assumption.

Both symptomatic and asymptomatic testing are assumed to be perfect and rapid, returning results
on the day of testing and giving neither false positives nor false negatives. Symptomatic individuals are
assumed to immediately seek testing on the day symptoms develop. When an individual receives a
positive test, they and their entire household are assumed to isolate perfectly from all non-household
contacts, but continue to interact with household contacts as before. Non-household contacts of
test-positives are traced and isolated with probability 0.5.

This model is an adaptation of a model originally written to model COVID-19 in Caribbean
communities, available at https://github.com/SaraJakubiak/covid19-caribbean-educational-model—
the majority of features within that model (including dynamically changing network, age-structure,
etc.) are not used here. The adaptation of this code to the HE setting used to produce these results can be
found at: https://github.com/magicicada/covid19-caribbean-educational-model/tree/manuscript-INI-
HE-group.
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Abstract

Background: The risk of SARS-CoV-2 infection during university activities is poorly
understood.
Methods: We survey 62 users of a university asymptomatic SARS-CoV-2 testing ser-
vice on details of their activities and contacts in the 7 days prior to receiving a positive
or negative SARS-CoV-2 PCR test result. After classifying activities into settings,
Bayesian logistic regression is used to model test outcome based on a set of setting-
specific contact measures for a variety of contact definitions. For each contact measure,
support intervals based on Bayes factors are computed to identify settings for which
a contact definition is associated with test outcome. Posterior model probabilities are
estimated to compare the performance of models adopting different contact definitions.
Associations between protective behaviours, participant characteristics and setting are
explored at the level of individual activities using multiple correspondence analysis and
Fisher’s exact tests.
Results: Participation in air travel or non-university work activities was associated
with a positive asymptomatic SARS-CoV-2 PCR test whereas participation in research
or teaching settings was associated with a negative result. Overall, hand washing, so-
cial distancing and mask wearing were associated with negative tests but patterns of
behaviour varied between settings. Research and teaching settings were associated with
mask wearing and hand washing, but not with always being able to socially distance.
Interactions during non-university work were not associated with any of the protective
behaviours and often occurred in reportedly unventilated spaces. Mask wearing, social
distancing and hand washing was less likely to occur during air travel activities.
Conclusions: Research and teaching activities likely presented lower infection risk
than other activities undertaken by participating staff and students. University mem-
bers who travel or work in other settings may pose risk for introducing SARS-CoV-2
infections into a university during term time, particularly during periods where there
are restrictions on socialising outside of the household.

CHAPTER 6: INFLUENCE OF SETTING-DEPENDENT CONTACTS AND PROTECTIVE

BEHAVIOURS ON ASYMPTOMATIC SARS-COV-2 INFECTION AMONGST MEMBERS OF A

UK UNIVERSITY

95



Key words: SARS-CoV-2, asymptomatic infection, universities, contact patterns, trans-
mission risk, protective behaviours, mask wearing, social distancing, hand washing

Highlights
• We link asymptomatic PCR SARS-CoV-2 testing to behaviour for members of a UK

university.

• Protective behaviours were more often adopted in teaching and research settings.

• During the study non-university work and travel were associated with infection.

• Setting type may be more important than contact numbers when modelling infection
risk.

• Infection control in universities is complicated by connections with the community.
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1 Introduction
In the 2020/2021 academic year 37% of 18-year-olds in the UK were offered a higher edu-
cation place [3] and altogether approximately 2.5 million students are registered in higher
education in the UK across over 160 providers [14]. Universities provide much of this ed-
ucation; many comprising of order tens of thousands students and staff [14] with highly
connected communities through teaching, research, leisure and residential networks. Prior
to the emergence of SARS-CoV-2, there was limited data available on the contact networks
of university members, nonetheless preliminary modelling studies flagged universities as set-
tings of potential high risk for SARS-CoV-2 transmission [4, 15] Despite mitigations to reduce
transmission risk, many universities in the UK [34] experienced outbreaks of SARS-CoV-2
at the beginning of the 2020/2021 academic year [34], some of which may have amplified
infection rates in their local community [28]. Students in halls of residence were noted to
be at higher risk of experiencing SARS-CoV-2 infection [5], however insight into the risk
associated with other activities undertaken by university members is limited.

We interrogate the risk of interactions in settings visited by university members via linking
asymptomatic SARS-CoV-2 testing data with quantitative data on social interactions while
on and off campus in the week preceding an asymptomatic SARS-CoV-2 PCR test result.
For a pathogen with potential for aerosolised and fomite transmission, such as SARS-CoV-2
[20], contacts need not be close or conversational contacts, as typically measured in many
contact surveys [e.g. 22]. Furthermore, contact networks may be modified by the adoption
of protective behaviours such as mask wearing, social distancing and hand washing. It is
thus of interest to examine the role of protective behaviours in concert with a broad defini-
tion of contact when surveying the potential transmission risk of a particular activity. We
first explore the ability of different individual contact definitions, that variably account for
the duration, number of contacts, and presence of extra-household members in each set-
ting to predict asymptomatic SARS-CoV-2 test outcome amongst participating staff and
students. We then pool activities across individuals and consider correlations between pro-
tective behaviours, setting type and participant characteristics, to examine why interactions
in particular settings may present enhanced infection risk.

2 Methods

2.1 Data collection and curation

Participant enrollment was based on a convenience sample of university staff and students
returning SARS-CoV-2 positive saliva samples via the Nottingham Asymptomatic Testing
(NATS) service. We select a sample of participants testing negative to have a similar distri-
bution of University roles (staff or student), age and gender as the sample of positive partic-
ipants. Ethical approval was obtained via the University of Nottingham Faculty of Medicine
and Health Sciences ethics board (FMHS 96-0920). Participants provided informed consent.
A copy of the survey is available upon request.
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We divide participants into three groups; those who tested positive (positive), tested nega-
tive and had never had a positive test (negative) and those who tested negative but when
surveyed had previously tested positive (previous). Unless stated otherwise the analysis is
performed on the individuals in the groups positive and negative, minimising any bias due to
the impact of SARS-CoV-2 immunity or assumed immunity on susceptibility and behaviour.

Participants were asked to recall information about social interactions and protective be-
haviours in each activity outside their home undertaken 7 days preceding the receipt of an
asymptomatic PCR SARS-CoV-2 test result using a structured interview, offered in per-
son or online. This interview was developed by two psychologists (KV HK) and piloted
prior to use. If prompting was needed, participants are encouraged to check their calendars
or social media feed. Protective behaviours include whether the participant wore a mask,
socially distanced (over 2m away from possible contacts) and cleaned (washed or hand sani-
tised) their hands before and/or after each activity. Activities are assigned one of twelve
settings. These are; abroad/aeroplane, campus other, exercise, hospitality, non-university
work, non-private travel, other, research, retail, social, teaching and testing (Supplementary
file 1). Survey questions were motivated to capture adherence to pre-July 2021 guidelines
for COVID-secure workplaces [7].

Participants are prompted to recall each transition to a new activity and estimate the num-
ber of people present (0, 2-5, 5-10, 10-20, 20-50, 50-100, 100+) and duration of the activity.
Note that we use the term contact in the broad sense of others present in the same setting,
unlike many social contact surveys that assume contacts involve touch or conversation [e.g.
22]. To capture social contact behaviour that could plausibly result in transmission via
combinations of droplets, aerosol and/or fomites, we consider seven contact definitions when
constructing setting-specific contact measures over the 7 day survey period: participation
in the setting, the number of distinct activities, total contacts (the sum of the mid-points
of estimated contacts during each activity), total duration of activities, and person-contact-
hours (PCH) calculated as the summed product of the midpoint of the estimated contacts
and the duration (in hours) of each activity, the total contacts not including the participant’s
household members and PCH not including the participant’s household members. We con-
servatively set a maximum contact number of 100 for the 100+ option when computing
contact measures. We assume that the number of possible household contacts is equivalent
to the participant’s household size. Therefore, if the number of household contacts is not
given for an activity we calculate the non-household contacts and PCH as the difference
between the maximum possible household contacts and reported contacts, providing a lower
limit on the non-household contacts.

2.2 Setting-specific contact measures predictive of asymptomatic
SARS-CoV-2 PCR test result

We use a logistic regression model to regress asymptomatic SARS-CoV-2 test result on
contact measures. Due to separation issues in the data (all participants who visited the
aeroplane/abroad or non-university work setting tested positive) a Bayesian logistic regres-
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sion is performed in Stan [30] with a logit link function. As recommended by Gelman et al.
[12] priors for the logistic regression coefficients are assumed to follow independent Cauchy
distributions centred at 0 and with scale parameter 10 for the constant term and 2.5 for
all other coefficients [12]. Prior to fitting the data the binary input (whether a setting was
visited) was transformed to have mean 0 and the numeric inputs (all others) are scaled to
have mean 0 and standard deviation 0.5 [12].

We assess the significance of regression covariates using Bayes factors. Since the model pre-
dictions are sensitive to the prior a support interval (SI) is computed for the coefficient for
each setting-specific contact measure [39]. SIs provide information regarding the change in
the credibility of values from the prior to the posterior indicating which values of a parame-
ter gain support. Here we present values receiving ‘moderate support’, with a Bayes factor
larger than 3, using the bayestestR package [21]. A leave-one-out error analysis is performed
on the bounds of the SIs (Supplementary file 3).

We estimate the marginal likelihoods and posterior model probabilities (PMPs) for the logis-
tical model for each set of setting-specific contact measures generated by a contact definition
using the bridgesampling package [13]. The PMPs are rescaled to sum to 1 across models
considered. To examine the support for each contact definition we compute PMPs, averaging
over 10 repetitions of the bridge sampling procedure to obtain an empirical estimate of the
estimation uncertainty. For the model associated the largest PMP we present posterior pre-
dictive checks for the positive and negative groups, and generate an out of sample prediction
for test outcome in the previous group.

2.3 Protective behaviours

To examine whether protective behaviours performed during an activity are influenced by
the setting or environment we consider the relationship between these behaviours and the
university role, gender, age and SARS-CoV-2 test result. As protective behaviours vary
between activities even for individuals in the same setting, we pool individual data for this
analysis. Each activity is described by nine properties; (i) age of the participant, (ii) gender
of the participant, (iii) role (UG, PG, or employed), (iv) test result, (v) setting, (vi) environ-
ment (outdoors, ventilated indoors or unventilated indoors), (vii) did the participant wear
a mask, (viii) did the participant socially distance at all times and (ix) did the participant
use hand sanitiser or wash their hands before and/or after? To assess room ventilation par-
ticipants were given the example of a room with doors and/or windows open being ventilated.

We perform a multiple correspondence analysis (MCA) in Rstudio [27] using the FactoMineR
package [18] to examine the relationship between these properties. Since responses were not
given for all activity properties, the missMDA package was used to estimate the number
of dimensions for the MCA by leave-one-out cross-validation and impute missing values by
cross-validation. Age is denoted a quantitative supplementary variable and gender, role, test
result and setting as qualitative supplementary variables. The MCA is performed on the re-
maining ‘active’ variables (environment, mask wearing, social distancing and hand washing).
Coordinates for the supplementary variables are predicted using the information from this
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MCA. The dimdesc function is used to determine which categorical variables best describe
each dimension and whether age (the continuous variable) is correlated to each dimension.
For the quantitative variable, age, correlation coefficients are calculated. For the categorical
variables, a univariate anova model is performed for each variable and dimension. An F-test
examines whether each variable influences the dimension.

Fisher’s exact test is performed on each pair of variables to determine whether they are signifi-
cantly linked, with p-values corrected for multiple comparisons using the Benjamini–Hochberg
method [1]. Results are compared to the Bayesian logistic regression and used to verify con-
sistency of the MCA analysis.

3 Results
Participants are predominantly students between 18 and 30, however staff up to 60 years
old are represented. The majority of participants completed the survey online (50, 23 pos-
itive and 27 negative), the remaining 12 (9 positive, 3 negative) completed the interviews
in person. In all we have data on 447 distinct activities from the 62 participants. There
were 20 participants in the positive group, 29 participants in the negative group and 13 in
the previous group. The test result dates of the positive group are skewed toward the early
period of NATS operation, reflecting the epidemic of self-reported PCR-confirmed SARS-
CoV-2 infection within the University [34] (Figure S1a).

The mean and standard deviation of each setting-specific contact measure is provided in
Table S1. Retail settings were visited by the largest proportion of participants and had the
highest mean non-household contacts, with exercise the most frequently reported activity.
Research settings had the highest mean activity duration and mean non-household PCH,
with teaching the highest mean PCH. Figure 2 shows the proportion of individuals who
participated, mean number of activities, mean total contacts, mean total duration, mean
total PCH, mean non-household contacts and mean- non-household PCH for each setting by
test result. Of interest, the mean number of contacts across all activities was highest in the
negative group, but mean PCH and non-household PCH was higher in the positive group.
A Kruskal-Wallis test showed no significant differences between the positive, negative and
previous groups for total distinct types of activity (χ2 = 0.17, df = 2, p = 0.92), number of
activities (χ2= 4.93, df = 2, p = 0.08), number of contacts (χ2= 0.76, df = 2, p = 0.69),
duration of activities (χ2 = 1.91, df = 2, p = 0.38) or PCH (χ2 = 0.44, df = 2, p = 0.80).
There was however a significant difference between the non-household contacts (χ2 = 9.71, df
= 2, p = 0.008) and non-household PCH (χ2 = 6.78, df = 2, p = 0.03). The mean household
size of participants who tested positive was 2.9 (sd = 2.6), whereas the mean household size
of participants who tested negative was 3.1 (sd = 2.0).

Protective behaviours reportedly practiced in activities by setting are summarised in Table 1.
The percentage of participants who provided answers for whether they wore a mask or socially
distanced was the same for all activities except teaching. In teaching settings the participant
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Figure 1: Delays from test result to survey completion by test outcome. Breakdown of test
and survey dates by participant age and result is provided in the Supplementary Information

.

was only asked about socially distancing. However, for 78% of teaching activities students
stated that they wore a mask in the “additional comments” free text field. At the time of
this study mask wearing was compulsory (unless exempt) during teaching activities at the
university.

3.1 Contact measures predictive of asymptomatic SARS-CoV-2 PCR
test result

Table S2 shows the median, minimum and maximum marginal likelihood estimates PMP for
each contact definition. The narrow range of the marginal likelihood estimates indicates that
the estimation uncertainty is small. The model adopting participation as a contact defini-
tion had the most support (PMP = 0.39), followed number of activities (PMP = 0.20) and
the non-household PCH (PMP = 0.18). The duration of activities and PCH received less
support (0.09 and 0.08, respectively). The models with the least support were the number
of contacts and non-household contacts in each setting (PMP = 0.03).

Table 2 gives the coefficient ranges that received moderate support, with a Bayes factor
larger than 3, for each co-variate and predictor. We observe that the model with the most
support, whether participants entered each setting, has coefficients with moderate evidence
which are all positive for the covariates abroad/aeroplane and non-university work and only
negative for the covariates research and teaching. Household size, campus other, exercise,
hospitality, non-private travel, other, retail, social and testing have support for coefficients
with both positive and negative signs.
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Figure 2: The means of the number of contacts, PCH, duration, non-household contacts and
non-household PCH in each setting by test result.

Some coefficients have support intervals (SIs) with the same sign for contact measures other
than whether participants entered each setting, however many of these are for models with
low support. The model adopting the number of activities as a predictor yields only negative
results for exercise, and this also holds when PCH is used as a predictor. When observing
coefficients in the support interval for exercise with whether the participants entered each
setting we notice this distribution is skewed towards negative values. Other covariates which
had SIs with a single sign were non-private travel (negative for PCH and non-household
contacts), other (negative for contacts) and social (positive for PCH and negative for non-
household contacts), however models with these contact measures as predictors received
small PMPs. The model with the largest PMP (based on the participation contact defi-
nition) displayed stable SIs across the leave-one-out deletions, but models with low PMPs
have large standard deviations in the bounds for the SIs, and signs of the SI bounds are not
always consistent with those obtained in the full analysis (Supplementary file 3).

Figure 3 shows the predicted probability of positive asymptomatic PCR SARS-CoV-2 test
for the positive, negative and previously positive groups using the logistic regression with
predictors indicating participation in an activity in each setting. The means (medians) for
the positive, negative and previous groups where 0.60 (1), 0.04 (0) and 0.23 (0) (Table S3).
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Respiratory protection Hand cleaning

Setting Mask SD Ans. No Before After Both Ans.

Aeroplane/abroad
(10)

0 0 70 90 10 10 10 100

Campus other
(19)

74 74 100 6 94 94 94 95

Exercise (72) 41 79 99 9 57 91 57 97

Hospitality (12) 17 25 100 17 75 58 50 100

Non-private
travel (26)

96 31 100 54 46 46 46 100

Non-university
work (7)

100 14 100 100 100 100 100 100

Other (29) 52 72 100 17 62 79 59 100

Research (63) 89 62 97 2 89 98 80 98

Retail (51) 95 39 86 2 63 94 59 100

Social (23) 5 45 87 26 57 74 57 100

Teaching (27) - 54 96 0 100 96 96 96

Testing (19) 82 82 89 5 89 95 89 100

Table 1: The percentage of activities in each setting where a protective behaviour was
performed. Data given are percentage who wore a mask, socially distanced (SD) at all times
and when they washed their hands and the percentage of activities which these questions
were answered (Ans.). Here individuals who washed their hands both are included in the
percentage of people who washed their hands before and after.

Note that a greater proportion of the previous group were students (11/13) compared to the
negative group (21/29), however a Fisher’s exact test indicated this was not a significant
difference at the 5% level.

The Fisher’s test analysis is consistent with the results from the logistic regression, with a
positive correlation between a positive test result and abroad/aeroplane and non-university
work settings and a negative correlation between a positive test result and research and
teaching. The Fisher’s tests also show a positive correlation between a positive test result
and hospitality that was not upheld in the regression analysis, likely due to adjustment for
participant interactions in other settings.
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Figure 3: Predicted probabilities of positive asymptomatic PCR SARS-CoV-2 test calculated
using the logistic regression with participation in any activity in each setting as the predictive
contact measure for each group of participants. Medians are given as a black dot and means
are given as a green dot.
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Covariate Participated Activities Contacts Duration PCH Contacts∗ PCH∗

Constant [-8.12 4.63] [-8.38 4.51] [-8.03 4.81] [-8.54 4.68] [-8.58 4.68] [-8.39 4.76] [-6.87 3.87]

HH size [-0.85 0.35] [-0.90 0.30] [-0.70 0.46] [-0.92 0.31] [-0.65 0.51] [-0.71 0.45] [-0.65 0.52]

Abroad/aeroplane [1.91 3.19]† - - - - - -

Campus other [-0.68 0.57] [-0.35 0.83] [-0.27 0.92] [-0.27 0.91] [-0.11 1.09] [-0.21 0.98] [-0.12 1.08]

Exercise [-1.22 0.04] [-2.00 -0.51]† [-0.29 1.00] [-1.61 -0.25]† [-0.95 0.31] [-0.23 1.05] [-0.74 0.42]

Hospitality [-0.92 0.26] [-0.28 0.81] - [-0.03 1.25] - - -

Non-university work [2.14 5.38]† [0.77 2.45]† [-0.02 1.18] [0.21 1.50]† [0.20 1.04]† [-0.03 1.18] [0.25 1.13]†

Non-private travel [-1.26 0.01] [-1.25 0.10] [-1.20 0.06] [-1.06 0.25] [-1.10 -0.24]† [-1.13 0.04] [-1.09 -0.23]†

Other [-0.54 0.74] [-0.89 0.32] [-1.29 -0.05]† [-1.15 0.16] - [-1.10 0.08] -

Research [-1.80 -0.32]† [-1.37 0.03] [-1.28 -0.05]† [-1.31 -0.05]† [-1.32 -0.06]† [-1.18 0.03] [-1.25 -0.00]†

Retail [-0.37 0.94] [-1.18 0.04] [-0.89 0.25] [-0.89 0.30] [-0.74 0.46] [-1.07 0.19] [-0.66 0.48]

Social [-0.35 0.91] [-0.04 1.29] [-0.91 0.25] [-0.05 1.31] [0.24 1.17]† [-1.05 -0.01]† -

Teaching [-2.45 -0.78]† [-1.70 -0.33]† [-1.35 0.02] [-1.38 -0.04]† [-1.34 0.06] [-1.22 0.03] [-1.41 -0.41]†

Testing [-0.96 0.36] [-0.64 0.67] [-0.53 0.71] [-0.82 0.43] [-0.72 0.51] [-0.33 0.87] [-0.61 0.61]

Table 2: Support intervals (SIs) of the constant and co-variate coefficients for each predictor. SIs give ranges of parameters with
a Bayes factor larger than or equal to 3, interpreted as moderate support. ∗ = predictors include only external non-household
contacts. † = SIs where all supported values have the same sign. Results are given to 2 decimal places.
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3.2 Protective behaviours

Altogether, four dimensions are required to explain 70.9% of the variance in the MCA anal-
ysis (Figure S2). Figure 4 shows how the active and qualitative variables relate to the first
two dimensions of the MCA, and provides evidence that patterns of protective behaviour
differ between settings. Significant components for the first four dimensions are provided
and results from the Fisher’s exact tests are provided in Supplementary file 4.

Figure 4: Graph visualising the coordinates of each variable categories in dimensions 1 and
2. The distance between any points gives a measure of their similarity. Supplementary
variables are shown in green and active variables are shown in red.

Fisher’s tests showed positive test results were positively correlated with no hand washing
and females, and were negatively correlated with mask wearing, washing hands after and
maintaining social distancing at all times.

Of the activities on campus, teaching and retail are associated with wearing a mask and
washing hands both before and after. PGs activities are positively correlated with indoor
unventilated environments. They are also more likely to socially distance and wash their
hands. Being classified as staff is negatively correlated with hand washing.

Outside of campus-based activities we find that retail was associated with mask wearing and
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washing hands before and after an activity. Masks are unlikely to be worn in social settings
and outdoors. The MCA analysis shows an association between the abroad/aeroplane set-
ting and not cleaning hands before or after travel. The Fisher’s analysis indicates a negative
correlation of air travel with wearing a mask and social distancing. Participants in the study
that were staff were more likely to participate in travel activities.

In our sample only the abroad/aeroplane setting was solely visited by females, which likely
contributed to the significance of females receiving a positive result. Females (who make up
61% of our total sample) were also more likely to be in an UG role (75% of UGs female)
than PG (50% of PGs) or employed (53% of staff)). This may explain the negative correla-
tion between research setting and females (which participating in, according to the logistic
regression, reduced the probability of positive asymptomatic SARS-CoV-2 PCR test). It is
therefore plausible that female and positive test result are positively correlated due to their
role at the university and the relatively small sample size.

4 Discussion
We have presented linked asymptomatic SARS-CoV-2 testing and social contact data for a
UK university collected from October 2020 to March 2021, after the initial surge in infections
at the beginning of the 2020/2021 academic year [34]. Restrictions on mixing outside of your
household/bubble and educational activities were in place throughout the study period, with
particularly stringent rules about social contact with those outside of your household in place
during tier 3 restrictions (30 October 2020–5 November 2020), and the second (5 Novem-
ber 2020–2 December 2020) and third (6 January 2021–8 March 2021) national lockdowns
[35, 36]. Strict social distancing measures were in place on campus throughout the study
period. Teaching was undertaken in a hybrid (online/in-person) manner to accommodate
social distancing. During the third national lockdown only students on a limited selection
of courses (Medicine Dentistry, Health Social Care including Nursing Midwifery, Physio-
therapy and Veterinary Science, Education, and Social Work) were permitted to travel to
campus without exemption. Research staff were asked to work from home whenever possible
[37].

Within the cohort studied, participating in air travel (and holiday activities) and non-
university work increase the probability of an asymptomatic SARS-CoV-2 PCR test result.
This is consistent with evidence that workers with public facing roles are at higher risk of
infection (see [25] and references therein, [32]). Students or staff in part-time work in other
settings could mediate spillover between the University and community. Encouraging vacci-
nation of these groups could be particularly important for mitigating the risk of university
outbreaks in periods of restrictions.
Participating in research and teaching activities at the university was associated with a lower
risk of a positive asymptomatic SARS-CoV-2 PCR test result, however no association was
found with participation in other activities on campus. Although our data does not permit
estimate of the risk attributable to any activity or setting, our results are consistent with
teaching and research activities having lower infection risk than other activities noted by
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participants. Participation in a setting was the best-performing contact measure, followed
by counts of the number of activities in each setting and the non-household PCH (each for 7
days preceding test result). Out of sample model predictions for the group previously testing
positive yielded expected test positivity between that for the negative and positive groups
across all contact definitions.

Indications that non-household PCH and duration of activities provide a better predictor of
SARS-CoV-2 PCR test status than contacts or PCH provides tentative evidence for the role
of contact duration in infection risk, also reported by Thompson et al. [33]. There are several
potential reasons for the difference in model performance between contact definitions, and in
particular the superior performance of participation in a setting rather than the definitions
capturing contact numbers. Infected people can remain PCR positive for up to 3 weeks
following exposure [29] depending on the sensitivity of the saliva assay [31] and therefore we
can not guarantee we have surveyed participant behaviour during the period of exposure.
Additionally, contacts in each activity were assumed to extend for the duration of an activity.
We have not collected data on repeated contacts, and it is plausible that the participation
contact definition is preferred because of this. Predictors that capture the nature and du-
ration of every contact in each activity may perform better. While collecting more detailed
contact data was considered prohibitive from a recall perspective in our retrospective survey,
similar contact diary studies have been piloted [2], and it would be of interest to link these
to repeated asymptomatic test outcome data for SARS-CoV-2 or other respiratory viruses
in larger studies.

We adjusted for participant household size in our regression, but did not find a significant
effect. Other studies examining the risk associated with household size have been mixed,
with an analysis of setting-dependent transmission risk not identifying household size as sig-
nificant [33], but recent SARS-CoV-2 prevalence higher in larger households [24]. Analysis
of contact patterns in another UK university suggested that extra-household contacts were
higher amongst those living in smaller households [23], and it is plausible that such an effect
could offset the enhanced risk of importation into a larger student households. Outbreaks in
halls of residence may have been more strongly influenced by hall than household size [28]
and it is possible that there are other risks associated with residential contacts in this setting
that we are not capturing.

Positive asymptomatic SARS-CoV-2 PCR test results were negatively associated with mask
wearing, social distancing and hand washing, as reported in another case-control study of
asymptomatically infected contacts of SARS-CoV-2 cases [8]. Our MCA highlighted differen-
tial adoption of protective measures between settings and suggests that protective behaviours
can be different in university and non-university activities. Teaching and research setting
may be lower risk (despite similar or larger mean contact measures across contact defini-
tions) as they were associated with mask wearing and hand washing. Although mask wear-
ing and hand washing was practiced uniformly in non-University work settings, this was less
likely to be in a ventilated space with complete adherence to social distancing than other
settings. Other studies suggest that adoption of protective behaviours is also determined
by psychological factors [10, 40, 41], which could explain some of the variability between
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participant behaviour. Measuring the prevalence of micro-distancing behaviour as well as
macro-distancing behaviour now widely captured by mobility patterns has shown utility in
estimating the effective reproduction number in low-prevalence settings (see, e.g., [9]) and
may also aid in parameterising agent-based simulation of transmission [19].

Our results come with a number of caveats. Our sample was chosen based on consenting
positive cases and may not be representative of all users of the NATS or the wider Univer-
sity population. A greater proportion of positive cases in our study were from periods with
lower levels of restriction which could generate time-varying confounding in our analysis. A
larger sample would likely allow for adjustment for this and other potential confounders, and
potentially provide statistical power to include setting-specific protective behaviours in the
regression model. As discussed elsewhere [26], the opportunities for contact and transmission
depend on community prevalence and the social restrictions in place. Data for this study
was collected over a period during which there were strong (albeit changing) restrictions on
permitted social and travel activities, which may partly explain the absence of a significant
effect of social interactions on risk of obtaining a positive test result as reported in other
studies [17]. Similarly, occupancy on campus was low during the study with much teaching
online, and we expect the relative risk of activities in different settings will change depend-
ing on how university and national policies, and the behavioural response to these, evolve.
Furthermore, participants were surveyed at a time when the circulating SARS-CoV-2 strain
was either phenotypically akin to the original Wuhan strain, or the alpha variant of concern,
and it is plausible that different patterns of risk would be observed for delta or other variants
with different infectiousness profiles.

Although the structured interview adopted aims to optimise recall of social contact be-
haviour, the limitations of recalling such details accurately are well documented [e.g. 11].
Participants who received positive test results could be experiencing stress/anxiety that
may influence their ability to recall events [11]. Others have suggested that recall bias could
act in the opposite direction, with SARS-CoV-2 positive participants more likely to recall
possible contact events [6]. The significant delays between test result and survey (Figure S1a)
may also influence recall ability [16]. Our findings relate to a highly educated population,
a characteristic that has been associated with adopting protective behaviours [38]. Despite
likely ready access to PPE and other resources enabling protective behaviour, protective
behaviours were not uniformly reported amongst participants. In future work we plan to
analyse free text responses noting the challenges in adhering to social distancing guidelines
in university and other community settings, and explore patterns of contact and protective
behaviour leading to decisions to undertake voluntary asymptomatic testing.
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APPENDIX A

Surveillance of UK vector species

A.1 Methods

Vector collection and morphological identification Vectors were caught in two BG-
Sentinel Traps (Biogents AG, Regensburg, Germany) with green LED lights near the
entrance [González et al., 2016b] at host premises during the summer of 2020. Trap-
ping was carried out at both an equine and human premises located on The Wirral
Peninsula, Merseyside, UK. Traps were emptied daily at between 5 hours after sunrise
and 5 hours before sunset [Viennet et al., 2012]. Insects were then frozen for at least 4
hours before larger insects (including mosquitoes) were frozen and smaller insects (in-
cluding Culicoides were stored in 70% ethanol for further analysis. Mosquitoes [Snow,
1990] and Culicoides [Campbell and Pelham-Clinton, 1960] were classified morphologi-
cally to species level. The insects were then sexed [Snow, 1990] and parity of Culicoides
was assessed (Section 1.6).

Molecular identification of vectors For suspected vector samples that were not iden-
tifiable by morphology, DNA was extracted using a DNeasy Blood and Tissue Kit (Qi-
agen, Hilden, Germany). Molecular analyses of insects were made using the primers
C1-J-1718 and C1-N-2191 (Table A.1), which amplify 450 bp of the COI gene. One insect
was identified as a member of the Culicoides Obsoletus group, but disfigurement pre-
vented a full species identification. Molecular analysis for this insect was made using
the dew-COI-fwd and obs-COI-fwd forward primers paired with C1-N-2191. A poly-
merase chain reaction (PCR) of 50 µL was made, containing 1 µL of each primer, 25 µL
MyFi Reaction Buffer (Bioline, London, UK), 2 µL of the DNA template and 21 µL of
nuclease-free water. The PCR consisted of an initial heating phase at 95°C for 1 min,
followed by 30 cycles of denaturation (95°C for 30s), annealing (50°C for 30s), elonga-
tion (72°C for 30s), and a final elongation step (72°C for 1 min). Positive and negative
controls were used with every PCR. Amplifications were confirmed by loading the PCR
products were loaded onto a 2% w/v agarose in TAE buffer gel stained with Nancy-520
(Sigma-Aldrich, St. Louis, Missouri, United States) and then scanned to confirm ampli-
fications. The unidentifiable sample from the Culicoides Obselotus group was identified
by the location of the positive band. PCR products displaying positive bands on the
gel were purified using a QIAquick PCR Purification Kit (Qiagen, Hilden, Germany)
and submitted to Source Bioscience, Nottingham UK for Sanger sequencing using the
C1-N-2191 primer. Successful matches for the sequences were obtained using the stan-
dard nucleotide Basic Local Alignment Search Tool (BLAST) available on the National
Center for Biotechnology Information (NCBI) website.
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Primer 5’-3’ sequence Ref.

C1-J-1718 (F) GGAGGATTTGGAAATTGATTAGTTCC [Simon et al., 1994]

C1-N-2191 (R) CCCGGTAAAATTAAAATATAAACTTC [Simon et al., 1994]

dew-COI-fwd (F) CGCCCGACATAGCATTCCCT [Lehmann et al., 2012]

obs-COI-fwd (F) CAGGAGCTTCTGTAGATTTGGCT [Lehmann et al., 2012]

Table A.1: Primer sequences used in the molecular analysis for vector species identi-
fication. Parentheses after the primer name indicate forward (F) or reverse
(R) direction.

Culicoides species Nuliparus Blood-fed Gravid Parus

C. dewulfi 0 4 2 3

C. halophilus 1 0 0 0

C. impunctatus 2 0 0 5

C. pulicaris 0 0 0 2

C. obsoletus 0 0 0 1

C. nubeculosus 1 0 0 0

Table A.2: Parity of caught Culicoides by species.

A.2 Results

Overall six species of Culicoides and two species of mosquitoes were caught. Culex
pipiens were caught in both equine and human premises, whereas all other species
were only caught at the equine premises. A summary of the Culicoides and Mosquitoes
caught it shown in Figure A.1.

Culicoides The Culicoides species included C. dewulfi (9), C. halophilus (1), C. impunc-
tatus (7), C. pulicaris (2), C. obsoletus (1) and C. nubeculosus (1). The parity by species
is given in Table A.2. C. obsoletus, C. pulicaris and C. nubeculosus are confirmed and
C. dewulfi is a suspected vector of BTV [Carpenter et al., 2006, Meiswinkel et al., 2007,
Mellor, 1990]. The C.obsoletus group and C. pulicaris have also been implicated in the
transmission of AHSV [Mellor et al., 1990]. C. obsoletus, C. dewulfi, C. pulicaris and C.
nubeculosus have been implicated in SBV [De Regge et al., 2012, Balenghien et al., 2014].

Mosquitoes The mosquito species included Culex pipiens, vector of West Nile virus
and Japanese encephalitis virus [Chapman et al., 2020], and Aedes aegypti, vector of
dengue, Zika, chikungunya and yellow fever viruses. Although Aedes aegypti is offi-
cially absent from this region [Centre for Disease Prevention and Control] there has
been a male previously caught in the region [Dallimore et al., 2017]. Culex pipiens in-
cluded 19 females (of which only one was caught at the human premises) and 4 males
(of which 2 were caught at both the equine and human premises).
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APPENDIX B

Assessing parameter identifiability

B.1 Introduction

Mathematical models are increasingly used to guide policy makers in decisions re-
garding interventions. However, in order for this to be successful, we need to be able
to reliably estimate model parameters and their uncertainty. In some models, multi-
ple sets of parameters can yield similar simulation results; these are non-identifiable.
Non-identifiability can be caused by the data-set (number of observations, observation
error, spatial-temporal resolution), known as practical identifiability, or the structure of
the model, known as structural identifiability.

We used a parametric bootstrap approach described in Roosa and Chowell [2019] to
assess the identifiability of parameters. Using known parameters, the models were
simulated to quantify the uncertainty and identifiability of the parameters. First we re-
peated the analysis of the basic SEIR model, given as performed by Roosa and Chowell
[2019] on the 1918 influenza pandemic in San Francisco (California), to demonstrate
the methods used. We then adapted this method to consider a common issue within
disease data; under-reporting, and observed how this affects the outcomes.

B.2 A parametric bootstrap method

To assess parameter identifiability of a model, we first fit the deterministic solution
time series data (F) using the lsqcurvefit function in Matlab to find the best fit using
nonlinear least squares estimation. The parameters used to obtain F are used as the
prior. Then S data-sets are created from F with Poisson error structure for the daily
incidences (Ċ(t)). Here for each time-point a new incidence value is generated using
a Poisson random variable with mean Ċ(t). Then we select S parameter sets within a
realistic parameter space using Latin hypercube sampling (LHS) and use these as our
priors for the parameter estimation. This differs from the original method described
by Roosa and Chowell [2019], where the priors of the parameters varied according to
a uniform distribution in the range of ±0.1 around the true value, as LHS allows us to
explore the whole parameter space. Each of these S parameter sets is then fitted to one
S data-set using nonlinear least squares approximation i.e. searching for the parameter
set that minimises the sum of squared differences between the Poisson error structured
data-set and the model solution. We begin by estimating each parameter individually,
while the rest of the parameters are fixed, and then increase the number of parameters
being jointly estimated. This allows us to observe which parameters can be estimated
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together with a reasonable degree of accuracy and construct confidence intervals for
each estimated parameter. We also calculate R0 for each estimated parameter set and
observe its identifiability.

If a parameter is identifiable from the available data its confidence interval lies in a
finite range of values. Here we calculate the 5–95% confidence interval for parameters.
The smaller the confidence interval the more identifiable the parameter is. For each of
the S repeats the mean squared error (MSE) is calculated for each parameter and R0
given by

MSE =
1
S

S

∑
i=1

(θ − θ̂i)
2, (B.1)

where θ represents the true parameter value and θ̂i represents the estimated parame-
ter from the ith prior and data-set. A smaller MSE would suggest a more identifiable
parameter.

SEIR model (Human influenza)

As an example, we will demonstrate this method on a SEIR model of human influenza
that consists of four parameters (transmission rate, length of the latent period, length
of the infectious period and the population size) and 4four compartments (susceptible,
latently infected, infectious and recovered). The population size, N, is considered to
be constant (N = S + E + I + R = 500, 000) and natural or disease-caused death is not
considered. The system of ordinary differential equations (ODEs) is therefore:

dS
dt

= − β

N
SI,

dE
dt

=
β

N
SI − κE,

dI
dt

= κE− γI, (B.2)

dR
dt

= γI,

dC
dt

= κE,

where β = 0.56 is the transmission rate, 1/κ = 1.9 is the latent period, 1/γ = 4.1
is the infectious period and the variable C tracks the cumulative number of infectious
individuals since the start of the outbreak. Therefore the daily incidence curve is given
by Ċ. Some basic analysis gives R0 = β/γ = 2.3 for this model. Since the whole
realistic parameter space is not given for β, γ and κ we will use a uniform distribution
of ±0.1, similarly to the original study.

Under-reporting

Under-reporting of cases will add noise to the data, which may effect the identifiability
of the parameters. Under-reporting may occur when a disease does not have many
visible clinical signs and therefore goes undetected, for example, Schmallenberg virus
(SBV) and West Nile virus (WNV). Here we initially generated data-sets using the true
parameter values and no under-reporting; the time-points for the S Poisson distributed
parameter sets are now generated as the product of a Poisson random variable with
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mean Ċ(t) and 1-r, where r is the fraction of cases not reported.

Under-reporting may be incorporated into the model by modifying the ODE for the
cumulative number of cases (C) in Equations B.2 to be

dC
dt

= r̂kE, (B.3)

where r̂ is the fraction of cases not reported. However our prior for r̂ may influence the
output of the model. The number of parameters that need to be jointly estimated also
increases.

Vector-borne disease model (African horse sickness virus)

We also use this method to examine the parameter identifiablity of the AHSV ODE
model from Chapter 3.

B.3 Results

B.3.1 SEIR model (human influenza)

Figure B.1: Mean squared error (MSE) of the parameter estimates for each estimated
parameter set (S=200) for the SEIR model.

In the model of human influenza, all parameters are identifiable when only identifying
one parameter as they all have MSEs < 10−6 and small confidence intervals (Figures
B.1 and B.2). However, when trying to jointly identify two parameters β and γ are not
jointly identifiable, with MSEs > 10−1 and large confidence intervals spanning out of
the original assumed distributions. The medians of β and κ do give a more accurate
estimation than the means. The distribution appears to be skewed with most of the
parameters close to the true value but also some very poor estimates. Whereas, β and
κ and κ and γ can be jointly identified with similar confidence intervals and MSEs as
when only one parameter was identified. When attempting to jointly identify β, κ and
γ, large MSEs are observed, similar to when jointly identifying β and γ, however the
confidence intervals are small and close to the true value. This suggests that the model
fits quite well in most circumstances.
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Figure B.2: Results from the bootstrap method for assessing identifiability for the sim-
ple SEIR model. The parameter estimates 5 − 95% confidence intervals
(black vertical lines), mean (black x) and median (green x) for (a) β, (b)
1/γ, (c) 1/κ, and (d) R0, for each estimated parameter set (S=200). The
true parameter value is represented by the filled red horizontal line and
the dashed red horizontal lines represent the upper and lower limits of
the parameters used as priors.

B.3.2 Effects of under-reporting

Figure B.3 shows how the identifiability of parameters changes as the fraction of cases
not reported, r, increases between 0 to 0.5. We observe that as r increases the MSE
increases for all estimates. Also, the sets of jointly estimated parameters that gave the
largest MSE values and confidence intervals in Section B.3.1 ({β, 1/γ} and {β, 1/γ, 1/κ})
produce unsmooth lines, whereas the other parameter sets produce smooth lines. From
now on the sets of jointly estimated parameters which produce smooth line will be re-
ferred to as the stable parameter sets. We observe that these stable parameter sets tend
to increasingly underestimate the latent period (1/γ), the infectious period (1/κ) and
the basic reproduction number (R0). The transmission rate (β) is also underestimated
for stable parameter sets, however to a lesser extent than the other parameters. For
low levels of under-reporting parameter estimates are still fairly accurate, however as
r increases the accuracy of estimations quickly decreases.

130



APPENDIX B: ASSESSING PARAMETER IDENTIFIABILITY

B.3.3 Vector-borne disease model (African horse sickness virus)

Figure B.4 shows results for the parameter estimates for the AHSV ODE model (Chap-
ter 3) when one parameter is estimated and all other parameters are fixed for each
parameter. There are no results for the proportion of hosts that die (mH) as this param-
eter could not be estimated using the lsqcurvefit function. We observe that we obtain
reasonable distributions for the host latent period (1/ε), infectious period (T1

in f ), vector
life-span (1/µV), transmission probability from vector to host (pV) and the initial num-
ber of hosts (NH). The initial number of hosts is likely to be known when modelling
the spread of disease at an equine premises. However, if a vector-borne disease had a
reservoir host then this value may not be known. An example of this is WNV since the
exact number of birds, which are the reservoir hosts, may not be known. We observe a
uniform distribution for the vector to host ratio (ρ); this is uninformative and suggests
that we are not able to estimate this parameter. The distributions for the blood feed-
ing interval (1/a), EIP (1/υ) and transmission probability from host to vector (pH) are
bi-modal. This suggests that the model is not structurally identifiable for these param-
eters. One of the peaks is at the true value; therefore, if the other peak is unrealistic,
restricting the upper and lower limits of estimates such that the unrealistic peak is out-
side these limits could improve results. However, this may not always be the case. We
observe that the mean squared error is largest for ρ, which is not identifiable, however
it does not reflect the non-identifiablity of 1/a, 1/υ or pH.
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Sensitivity Analysis Methods

C.1 Introduction

Simple models can be solved analytically, however as models increase in complexity
numerical analysis is needed to understand their behaviour. These techniques include
uncertainty and sensitivity analysis. As we increase the number of parameters jointly
estimated the uncertainty of our estimations increases. Uncertainty analysis may there-
fore be used to explore variability of outcome variables due to the uncertainty of input
parameters. Sensitivity analysis quantifies the influence input parameters have on the
output variables, and therefore highlights which parameters are the most important. If
a model is extremely sensitive to a small change in a parameter that is imprecise it may
bias the prediction for the transmissibility of the disease and/or the impact of control
measures [Okaïs et al., 2010].

The key qualities of a sensitivity analysis method can be considered to be:

• The ability use on stochastic models - so all models can be analysed using the
same technique, allowing for comparison between model types.

• The ability to measure the variation in sensitivity over time - to access the appro-
priate timing of control measures and the influence of parameters on the dura-
tion/peak incidence of the outbreak.

• Shows the direction of sensitivity - to access the appropriate timing of control
measures and the influence of parameters on the duration/peak incidence of the
outbreak.

A challenge in sensitivity analysis is how parameters are sampled; different methods
of sampling come with different computational costs. Parameters could be sampled
using a full factorial sampling design, which uses all possible values of each parame-
ter and each possible combination of parameters. An advantage of this method is that
the whole parameter space is explored, however it is very time consuming for com-
plex models. Another method could be to just vary one parameter at a time over a
specified range. However, although it is a lot faster, this only allows us to explore a
small amount of the possible parameter space and the precision of the other parame-
ters could affect the results. A more sophisticated statistical analysis technique is Latin
Hypercube Sampling (LHS), which allows us to vary all input parameters simultane-
ously [McKay et al., 1979]. This method therefore allows us to explore a large volume
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of the parameter space while only using each value of each parameter once, making it
very efficient. By calculating the partial rank correlation coefficients (PRCC) for each
input parameter and each outcome variable we can perform a sensitivity analysis us-
ing the LHS scheme [Blower and Dowlatabadi, 1994].

There are multiple possible ways of performing a sensitivity analysis. One of the sim-
plest ways to visually examine the effect a parameter has on the model output as a
scatter plot. If the model output is sensitive to the parameter we would expect to see a
correlation between the parameter and output. Parameters are usually sampled using
a Monte Carlo method. A disadvantage of this method is that we can only test the
sensitivity of one parameter at a time [Saltelli et al., 2008, Wu et al., 2013]. The Sobol’
method is able to attribute the variance of a model output to each parameter and show
the interaction effects on sensitivity between parameters, which the Morris and LHS-
PRCC methods cannot. However, it has a very high computation cost and cannot show
the sensitivity over time or show the direction of sensitivity [Sobol’, 1990, 2001]. As the
Morris and LHS-PRCC methods are able to do these, it was decided they would be
more suitable. Of these methods, the Morris method is the easiest to implement; the
LHS-PRCC and Sobol’ methods are equally complex and difficult to implement [Wu
et al., 2013].

Recently, new graphical techniques have been developed: the sensitivity heat map
(SHM) method and the parameter sensitivity spectrum (PSS) [Rand, 2008]. The PSS
shows the sensitivity of a single parameter to multiple output variables, whereas the
SHM shows the effects of multiple parameters on a single output variable. Heat maps
are generated such that we can assess how the sensitivity of parameters change over
a time course. This could provide useful information on the most appropriate timing
for control strategies. These methods are relatively computationally efficient, although
they do not show the direction of sensitivity. Although the concept behind the two
methods is complicated, they are fairly easily executed using the SASSY Matlab pack-
age [sassyMATLAB Toolbox]. This also introduces limitations as the toolbox only al-
lows scalar or rate rules and is limited to ordinary differential equation (ODE) models.
This raises concerns as to how well this method will cope with temperature being in-
corporated into a model.

Which of the desirably qualities of a sensitivity analysis each method satisfies is sum-
marised in Table C.1.

Method Stochastic models Variation over time Direction of sensitivity

Morris yes yes no

LHS-PRCC yes no yes

SHM no yes no

Scatter plots yes no yes

Sobol’ yes no no

Table C.1: Desired qualities of sensitivity analysis possessed by the methods consid-
ered [Wu et al., 2013].
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C.2 Methods considered

The Morris method (elementary effects method) The Morris method considers the
ratio of the change in an output variable, yj ∈ Y, to the change in a parameter, xi ∈
X, where X and Y are the model input parameters and outputs, respectively [Morris,
1991]. The parameter spaces, for each of the k input parameters, are divided into p
sections which the parameters are sampled from using repeated random sampling.
The elementary effect of xi on yj can be expressed as

EEi(X) =
yj(x1, x2, . . . , xi + ∆, xi+1, . . . , xk)− yj(X)

∆
, (C.1)

where the K input parameters are given as a scaled vector X ∈ [0, 1]k and ∆ is a value
in the set {1/(p− 1), . . . , 1− 1/(p− 1)}. This is repeated for all the selected parameter
samples, giving a distribution, denoted Fi. The mean of Fi and |Fi|, denoted µ and µ∗,
respectively, as well as the standard deviation of Fi, σ are the sensitivity measures used
[Campolongo et al., 2007, Wu et al., 2013]. If the value of µ is large it is a sign that the
model output is sensitive to this parameter. If σ is large it suggests that there is a non-
linear relationship between the parameter and output or that this parameter interacts
with other parameters [Saltelli et al., 2004, Wu et al., 2013]. The absolute elementary
effect, µ∗ is used to check that a small µ is not produced due to Fi containing both pos-
itive and negative values. In this case elementary effects may cancel each other out,
producing a small µ even though the input parameter is sensitive.

Partial rank correlation coefficient method (LHS-PRCC method) The LHS-PRCC
technique requires us to first define probability distribution functions for each of the
parameters we wish to explore using existing knowledge. We can then use the method
described in Blower and Dowlatabadi [1994]. We start by generating a matrix of N val-
ues for each of the K parameters we wish to test the sensitivity of sampled using Latin
hypercube sampling (LHS), giving a N by K matrix. The lower limit for the number of
samples, N, is K + 1; since the LHS design uses sampling without replacement if only
K draws are made the Kth draw would be predetermined. This value is also affected by
the significance level we desire for the PRCC.

We then calculate the Q output variables for each of these N parameter sets, giving a N
by Q matrix. For each of the input parameters (k ∈ K) and the output parameters (q ∈
Q) we rank the magnitude of all the samples (1 corresponds to the smallest sample and
N to the largest sample) defined as the set (r1,i, r2,i, . . . , rK,i, R1,i, R2,i, . . . , RQ,i) where i is
the run number, and r and R correspond to the ranks of the parameters and outputs,
respectively. The average rank is therefore given by µ = (N + 1)/2. It is now possible
to define a K + Q by K + Q matrix C with elements calculated as:

ci,j =
∑N

n=1(rin − µ)(rjn − µ)√
∑N

m=1(rim − µ)2 ∑N
n=1(rjn − µ)2

, i, j = 1, 2, . . . , K, (C.2)

and

ci,K+q =
∑N

n=1(rin − µ)(Rq,i − µ)√
∑N

m=1(rim − µ)2 ∑N
n=1(Rq,i − µ)2

, i, q = 1, 2, . . . , Q, . (C.3)
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The leading diagonal of C should therefore all be ones. The matrix B, with elements bij,
is defined as the inverse of C [Kendall and Stewart, 1979]. The PRCC between the ith

input parameters and the yth output variable is given by

γiy =
−bi,K+1√
biibK+1,K+1

. (C.4)

A Student’s T test with N− 2 + ζ − 1 degrees of freedom, where ζ is the number of pa-
rameters jointly sampled using LHS, can be used to test the significance of any nonzero
γiy values, with t-values calculated as

tiy = γiy

√
N − 2
1− γiy

. (C.5)

If the PRCC is close to 0 the parameter is weakly (or not at all) correlated with the
output parameter. As the PRCC approaches 1 or -1 it represents a positive or negative
correlation, respectively, with 1 and -1 reflecting a perfect correlation.

Sensitivity heat maps The SHM and PSS methods consider systems of n ODEs with
k input parameters given as:

dY
dt

= f (t, Y0, X), (C.6)

where t is time, yj ∈ Y are the vector state variables, Y0 are the initial values of these
state variables and xi ∈ X are the parameters in the model. There will be a single or set
of solutions Y = g(t, X) for 0 ≤ t ≤ T. A change in parameters (δX) yields a change in
the solution (δg) given as δg = MδX +O(||δX||2), where M is the linear transformation
from parameter space R2 to a Hilbert space H [Domijan and Rand, 2010]. Then values
U, W and {σi}, which express sensitivity, can be derived through singular value decom-
position of a time normalised matrix composed of the partial derivatives δgi/δxi at each
simulation time point [Rand, 2008]. Rand [2008] showed that the PSS for a parameter
and SHM for a state variable (gi(t)) can the be expressed by δg(t)/δk j = ΣiσiWijUi(t)
and σi(maxj|Wij)Ui(t), respectively.

C.3 Application of new method

In order to develop a method which shows each of the key qualities desired (Table C.1)
we propose that the LHS-PRCC is used with each simulation time-step as an output.
This would allow all three of these characteristics to be shown and could produce heat
maps for models that are not based on ODEs. Although this method will be more com-
putationally expensive than the original method, for the number of time-steps in most
epidemic models it is still reasonable.

We perform the original LHS-PRCC method on R0, where R0 = β/µ, and the heatmap
LHS-PRCC method on the case incidence for the simple SEIR model given as:

dS
dt

= −βSI,
dE
dt

= βSI − σE,
dI
dt

= σE− µI,
dR
dt

= µI. (C.7)

This methods is also used in a vector-borne disease model (Chapter 3).We perform the
calculation of the PRCC described in Section C.2 100 times for 100 sets of parameters
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each time, the median PRCC and its variation are examined using a box-plot. For the
heat map method the PRCC is calculated only once per time-step and is performed on
100 time for 100 parameters sets; the number value plotted is the mean PRCC of the
outputs. The heat maps will vary from white to red for 0 to 1 and from white to blue
from 0 to −1. Therefore the more positively correlated a parameter is the more red it
will be, and the more negatively correlated a parameter is the more blue it will be. If
a result was not found to be significant through the Student’s t-test (p > 0.05) it was
coloured white. Matlab was used for calculations and to produce figures, LHS was
performed using the lhsdesign function. The parameters were all selected for a uniform
distribution (upper and lower bounds shown in Table C.2). These bounds were calcu-
lated as ±0.1 on the rates β, σ and µ, similarly to [Roosa and Chowell, 2019].

Para. Description True value Lower bound Upper bound

β Transmission rate (per day) 0.56 0.46 0.66

1/σ Mean latent period (days) 1.9 1.59 2.33

1/µ Mean infectious period (days) 4.1 2.94 7.14

Table C.2: Lower and upper bounds used in LHS for each parameter (para) in the
simple SEIR model [Roosa and Chowell, 2019].

Figure C.1: Results from sensitivity analysis of the simple SEIR model. Left: PRCC
of parameters and R0. A Student’s t-test was performed and σ was not
found to significantly influence R0 (p > 0.05). Right: The mean PRCC of
parameters on the time-series of incidences.

The original PRCC method with R0 as the output (Figure C.1) shows that β is posi-
tively correlated with R0 (mean = 0.95), this means that as β increases we would expect
R0 to increase. Since µ is negatively correlated with R0 (median = -0.99) the larger µ
is, the smaller we would expect R0 to be. Since the infectious period is given by 1/µ,
longer infectious periods give a larger R0. Since σ is not significant (p = 0.92) the la-
tent period (1/σ) is not significant, this is expected because σ is not used to calculate R0.

The heat map PRCC (Figure C.1) shows that β is positively correlated with incidences
until t ' 70 then it becomes negatively correlated. This is because increasing β short-
ens the duration of the outbreak, therefore more cases are occurring earlier. However,
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overall there are more cases when β is increased. This is not clearly visible from this
heat map result. Since µ is negatively correlated at the beginning of the time-course
and positively correlated at the end we conclude that a longer infectious period also
shortens the duration of the outbreak. Again, we cannot see that the lengthened infec-
tious period also increases the total number infected. We also see that the incubation
rate (σ) also affects daily incidence in a similar way to β. Therefore, a longer latent
period causes the outbreak to occur later. This is not observable using the R0 PRCC
method. However, since the red/blue on the heat map is not as bright for σ we observe
this influence is weaker than for the other parameters.

As the heat map cannot show the influence parameters have on the total number of
infected hosts we also recorded this for each parameter set. The PRCC could then be
calculated for each parameter based on the 100 parameter sets; this does not greatly
influence the computational time. The PRCC for the total number infected was calcu-
lated as 0.98, -0.004 and 0.86 for β, σ and µ, respectively. Here, increasing β and/or
µ significantly increases the total number infected (p < 1x10−5), whereas σ does not
(p = 0.96). None of the parameters were found to significantly influence the duration
of the outbreak.
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Other epidemiological model results

D.1 Growth rate model for African horse sickness virus (Mo-
rocco, 1989)

D.1.1 Introduction

Growth rate models are based on the deterministic SIR model and aim to predict the ba-
sic reproduction number, R0, from the early dynamics of an outbreak. They assume that
the time spent in the infectious stage follows an exponential distribution with mean in-
fectious period:

D = 1/µ, (D.1)

where µ is the recovery rate for the disease. It is also assumed that the population is
closed, therefore the population size (N) will not change during the initial stages of the
outbreak (N′(t) = 0).

These models attempt to approximate the growth rate r. R0 can be derived from the
growth rate. In the case where the latent period is short compared to the infectious
period and the infectious period is assumed to follow an exponential distribution:

R0 = 1 + rD, (D.2)

where D is the average infectious period. However if the latent period is not sufficiently
short compared to the infectious period and we assume both the latent and infectious
periods follow an exponential distribution

R0 = (1 + rD)(1 + rD′), (D.3)

where D′ and D are the average length of the latent and infectious periods, respectively.
If the latent and infectious periods are unknown but assumed to follow an exponential
distribution and the serial interval is known

R0 = 1 + rTs, (D.4)

where Ts is the serial interval. Given the case where R0 = 1 + rD it can be shown that

R0 = 1 +
log(2)

Td
D, (D.5)
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where Td is the doubling time.

Using the growth rate model approach we attempted to estimate the growth rate for
African horse sickness virus (AHSV) during the initial stages of this outbreak. From
this we estimated the basic reproduction number R0.

D.1.2 Methods

Multiple methods have been suggested for calculating the growth rate. We will con-
sider the exponential growth model, generalised growth model, Richards model and
generalised Richards model.

Exponential growth model The simplest form of growth model is the exponential
growth model. During the early stages of an outbreak it is assumed that

I(t) ≈ I(0)ert, (D.6)

where I(t) is the number of infectious individuals at time t and r is the growth rate of
the epidemic. Taking the logarithm of both sides of Equation D.6 yields:

log(I(t)) = log(I(0)) + rt. (D.7)

Therefore, we can model this using a linear regression commonly denoted as y =
mx + c, where y = ln(I(t)), x = t, m = r and c = ln(I(0)).

Generalised growth model There are some issues with the exponential growth model,
for example it does not consider under-reporting or reporting delays and biases. We
may also not observe exponential growth. Factors such as spatial heterogeneity and be-
havioural changes mean that epidemic growth could be sub-exponential (slower than
exponential). This can be described by the generalised growth model [Viboud et al.,
2016]. This model is given by:

dC(t)
dt

= C′(t) = rC(t)p, (D.8)

where C(t) is the cumulative number of cases, rC(t)p is the incidence curve, r is the
growth rate and p ∈ [0, 1] is the growth scaling parameter. This growth scaling param-
eter allows us to determine whether the growth is exponential (p = 1), sub-exponential
(0 < p < 1) or whether there is constant incidence over time (p = 0) [Chowell, 2017].

Richard’s model Richard’s model has been fitted to a range of logistic-type epidemic
curves; including outbreaks of vector-borne diseases [Richards, 1959, Dinh et al., 2016].
The model for the number of new infected cases at time t is given by the differential
equation

dC(t)
dt

= rC(t)
(

1−
(

C(t)
K

)a)
, (D.9)

where r is the growth rate, K is the size of the epidemic and a measures the extent of
derivation from the S-shaped dynamics commonly observed in epidemiological mod-
els. During the early stages of an outbreak when C(t) is significantly smaller than K,
the Richard’s model assumes the growth to be exponential. This growth then dampens
over time.
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Figure D.1: Time-series of reported AHSV cases in Morocco in 1989 by species. Data
before the black dashed line was used to estimate the growth rate.

Generalised Richard’s model We can adapt the Richard’s model, similarly to the ex-
ponential growth model, to account for sub-exponential growth dynamics by incorpo-
rating a growth scaling parameter p. This gives a model for the number of new infected
cases at time t given as

dC(t)
dt

= rC(t)p
(

1−
(

C(t)
K

)a)
, (D.10)

where r, K and a are the same parameters as those used in the Richard’s model. Sim-
ilarly to the generalised growth model the growth scaling parameter allows us to de-
termine whether the growth is exponential (p = 1), sub-exponential (0 < p < 1) or
whether there is constant incidence over time (p = 0) [Chowell, 2017].

The parameter identifiability of the models was checked using the parametric boot-
strap method described in Appendix B. Here S = 200 parameter estimates were per-
formed were all parameters in the model where jointly estimated. The initial guesses
for parameters r, a and K where sampled using Latin hypercube sampling (LHS) from
a uniform distribution with minimum 0 and maximum of double the true estimated
value (Table D.1). The initial guesses for the parameter p were also sampled using LHS
from a uniform distribution with minimum 0, however the maximum was set to 1 as
this is the maximum value that p can take.

Sensitivity analysis was performed using the heat map LHS-PRCC method described
in Appendix C. Here 100 parameters are sampled using LHS from a uniform distri-
bution with minimum and maximum values equal to the minimum and maximum
estimates from the S = 200 parameter estimates generated during the parameter iden-
tifiability analysis. This analysis was completed 100 times and the mean is shown.
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D.1.3 Results

Figure D.1 shows the incidence per day. We observe an initial increase in cases, fol-
lowed by a decrease in incidence and then another increase. We consider the early
stages of the outbreak the first 15 days; shown by the dashed line on the graph.

The exponential growth model (EGM), generalised growth model (GGM), Richards
model (RM) and generalised Richards model (GRM) were fitted to the data; the esti-
mated parameters for each model are shown in Table D.1. We observe that all models
estimated the growth rate, r to be 0.1935. Whenever the model included a growth scal-
ing parameter, p, it was estimated to be 1. From this we can therefore conclude that
the growth during the initial stages of the outbreak was not sub-exponential. The es-
timates for a and K were different for the Richard’s and generalised Richards models.
However, as p was estimated to be 1 these models are the same, therefore we would
expect all of the other parameters to be estimated the same.

The mean, median and 5–95% confidence intervals of parameter estimates derived
from the parameter identifiability analysis are shown in Table D.1. For all four mod-
els the median estimate from the parameter identifiability analysis was closer to the
original estimate from the data than mean estimate. We also observe larger confidence
intervals for models with more parameters. The large confidence intervals for the RM
and GRM offer an explanation to why the estimates of a and K were different for these
two models: unidentifiable parameters.
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Model Estimate r p a K

EGM True 0.1935 - - -

Mean 0.1910 - - -

Median 0.1940 - - -

5- 95% CI (0.16,0.22) - - -

GGM True 0.1935 1 - -

Mean 0.2488 0.8745 - -

Median 0.2094 1 - -

5- 95% CI (0.17,0.40) (0.45,1) - -

RM True 0.1935 - 10.04 99.65

Mean 0.3872 - 17.82 113.39

Median 0.2036 - 13.11 103.09

5- 95% CI (0.16,1.28) - (0.04,56) (14,273)

GRM True 0.1935 1 16.89 748.24

Mean 0.2458 0.8754 19.36 789.15

Median 0.2105 1 18.76 772.54

5- 95% CI (0.18,0.42) (0.48,1) (6.13,32.82) (20,1479)

Table D.1: The parameter estimates and confidence intervals (CIs) from the parame-
ter identifiability analysis for the exponential growth model (EGM), gen-
eralised growth model (GGM), Richard’s model (RM) and generalised
Richard’s model (GRM) for African sickness virus during the early stages
of the 1989–1991 outbreak in Morocco. The True value represents the orig-
inal estimate to the data.

Results from the sensitivity analysis are shown in Figure D.2. Neither a or K were found
to significantly influence the number of incidences at any of the time-points used to fit
the models. Both r and p were strongly correlated with incidences for every time-point
after t = 2. The differential equations for the RM and GRM (Equations D.9 and D.10,
respectively) both contain the multiplying term 1 − (C(t)/K)a. Therefore, as K gets
large the value of this term will approach one and the value of a will have less impact
on the final result. Therefore, this could cause structural identifiability issues for large
values of K. As there are identifiability issues for a and K in the RM and GRM, we
discard these models for this data set and conclude that the EGM is most suitable.

Using the EGM, the growth curve was fitted to the initial stages of the outbreak (Figure
D.3a). The residuals between the best fit curve and the data are shown in Figure D.3b.
Initially there are five positive residuals; these are caused by the gap between the first
and second cases. After the second case on day 6 these residuals are distributed ran-
domly. Results from the parameter identifiability analysis are shown in Figures D.3 c
and d. We observe again here that the median estimate (green line) is closer to the true
estimate (red line) than the mean estimate (black line). All the data points are within
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Figure D.2: Results from the LHS-PRCC heatmap sensitivity analysis method applied
to the generalised growth model for the early stages (first 15 days) of the
African horse sickness virus Morocco 1989–1991 outbreak. A Student’s t-
test was performed and a and K were not found to significantly influence
the number of new cases at any time-point (p>0.05).

the 0.025 and 0.975 quantiles of the estimated epidemic curves. These curves are used
along with the their corresponding parameter estimates to forecast the number of daily
incidences for the following 7 days (Figure D.3e). We observe that most of the data
points follow these trajectories, however many are near the edges of our predictions,
perhaps indicating an underestimation of the potential for this disease to spread.

Using our calculated growth rate, r = 0.1973(0.16− 0.22CI) we can estimate R0 given
the mean infectious period, D. Previously (Chapter 3), this has been estimated as 3.9
(95% CI: 2.1-6.9) days for hosts that die and 8.7 (95% CI: 5-11) days for hosts that sur-
vive. As the latent period was estimated as 4.6 (95% CI: 2-8.3) days this is not suffi-
ciently short compared to the infectious period (especially for dying hosts) so this is
included in our estimation of R− = 0. Therefore, R0 is calculated using Equation D.3
yielding 3.38 and 5.18 for hosts that die or survive, respectively.
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Figure D.3: Results from fitting the exponential growth model (EGM) for the early
stages of the 1989-1991 African horse sickness outbreak in Morocco. (a)
The model fitted to the data for the first 14 days of the outbreak. (b)
Residuals from the curve to the data. (c) Histogram of the S = 200 es-
timated values of r from the parameter identifiability analysis. The hor-
izontal red line represents the 5-95% confidence intervals. The dashed
vertical red, black and green lines represent the true, mean and median
estimates, respectively. (d) The S = 200 curves generated during the pa-
rameter identifiability analysis. the blue dots represent the data. The full
red line represents the median of the S = 200 curves and the red dashed
lines represent the 0.975 and 0.025 quantiles. (e) Forecast 7 days beyond
the data for the S = 200 curves generated during the parameter identi-
fiability analysis. The black dashed line represents where the forecasting
begins and all other lines are as in (d).
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D.2 Comparing the vector capacity and basic reproduction num-
ber of African horse sickness, bluetongue and Schmallen-
berg viruses in the UK

D.2.1 Introduction

A mechanistic model examines the individual parts of a complex system in order to
better understand it. Parameters represent biological processes which can be coupled
together to make predictions. Typically, these are used in epidemiology to forecast
the risk of disease spread by calculating R0. They can therefore be used to create risk
maps considering the climate and landscape. Brand and Keeling [2017] suggested a
novel model for the impacts of temperature variation on transmission dynamics of
BTV. We applied the method described by Brand and Keeling [2017] to compare the
replication rates, C and R0 for bluetongue virus (BTV), Schmallenberg virus (SBV) and
African horse sickness virus (AHSV). Here R0 and the vector competence, defined as
the contribution to R0 from one day of biting, are estimated.

D.2.2 Methods

The mean daily temperatures were taken from the Hadley Centre Central England
Temperature (HadCET) dataset [Parker et al., 1992], which are representative of a trian-
gular region of the UK enclosed by Lancashire, London and Bristol. The data-sets for
the years 2014–2018 were extracted. The temperature-dependent bite rate (a(T)), vec-
tor mortality rate (λV(T)) and extrinsic incubation period (EIP) completion rate (υ(T))
are calculated for each day. Parameters for the bite rate and vector mortality rate are
the same for all viruses, as they are spread by the same insects. The same seasonal
variation (θ(t)) in abundance of vectors is also used (Equation 1.9).

The Carpenter et al. [2011] parameters and model (Equation 1.3) for the EIP for BTV
and AHSV were used, as well as the probability of transmission from host to vector
(pH). The AHSV parameters where α = 0.017, Tmin = 12.7, pH = 0.52 and k = 14.4.
Carpenter et al. [2011] calculated parameters from data from five BTV studies. Our
parameters were calculated as the average of the three C. sonorensis experiments giving
α = 0.019, Tmin = 12.63 and pH = 0.13, as this was the species used to obtain the result
for AHSV. For BTV the shape parameter (k) for the EIP varied across a large range
(7.7–116.2) for the different strains. BTV-9 had a similar shape parameter to AHSV-4,
which was the only strain of AHSV tested. Gubbins et al. [2014] attempted to calculate
the EIP for Schmallenberg virus (SBV) using outbreak data and approximate Bayesian
computation. It was predicted that α = 0.03, Tmin = 12.35 and pH = 0.14. There is
currently no estimated value available for k for SBV. Therefore, it was decided to only
include the Markovian and deterministic solutions. The intermediate model is likely to
give an intermediate result, as shown in Brand and Keeling [2017] and is dependent on
the uncertain parameter k, whereas the Markovian and deterministic models are not
dependent on k and are likely to give an upper and lower bound, respectively. The
parameters ’probability of transmission from vector to host’ (pV) and ’recovery rate’
(1/µ) for each virus and host species are given in Table D.2.
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Virus Host species pV 1/µ Ref.

BTV cattle 0.9 20.6 [Jones et al., 2019, Gubbins et al., 2007]

BTV sheep 0.9 16.4 [Jones et al., 2019, Gubbins et al., 2007]

AHSV horse 0.77 4.4 [Backer and Nodelijk, 2011]

SBV cattle 0.76 3.04 [Gubbins et al., 2014]

SBV sheep 0.76 4.37 [Gubbins et al., 2014]

Table D.2: The parameters for the transmission probability from vector to host and
recovery rate for bluetongue virus (BTV), African horse sickness virus
(AHSV) and Schmallenberg virus (SBV) and their host species.

D.2.3 Results

The temperature data and the corresponding EIP completion rate for each virus is
shown in Figure D.4. We observe that when temperatures are higher, the EIP for all
viruses is shorter. During some colder days the EIP completion rate is 0 for all viruses.
SBV appears to have a larger EIP completion rate than AHSV and BTV most days, with
AHSV and BTV having similar EIP completion rates.

We observe (Figure D.4) that the Markovian model produces the largest estimations for
the vector competence and R0 for all viruses. AHSV had a larger vector competence
than BTV for all models, this is due to the larger probability of host to vector transmis-
sion. AHSV and BTV have similar estimations of R0 for both models, with estimations
for BTV consistently being slightly larger. This is because BTV has a longer infectious
period. Despite the vector competence for SBV being between AHSV and BTV for the
deterministic model and similar to BTV for the Markovian model, the estimates for R0
are lower than AHSV and BTV for all models. This is because SBV parameters included
a shorter infectious period than BTV and less probability of transmission from host to
vector than SBV. R0 exceeds 1 for AHSV and BTV in the deterministic and Markovian
models and SBV in the Markovian model.

D.2.4 Discussion

Results suggest that AHSV could have the same R0 as BTV in the UK, however this
is likely to be dependent on host availability. Previous outbreaks of BTV in the UK
indicate that AHSV would therefore be a threat in this region. Values of R0 for SBV
were rarely above 1. These results could therefore be an underestimation. However, as
SBV was parameterised differently to AHSV and BTV (without experimental data) this
could be causing this difference.

Updating the estimations for the infectious periods of hosts with AHSV to values iden-
tified in Chapter 3 could improve estimates.
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Figure D.4: (Top left) The average daily temperature extracted from the Hadley Centre
Central England Temperature (HadCET) dataset for the years 2014–2018
(dotted lines) and their mean (solid line). (Top right) The mean daily EIP
completion rate for bluetongue virus (BTV), Schmallenberg virus (SBV)
and African horse sickness virus (AHSV). Comparison of the vector com-
petence (middle) and basic reproduction number (bottom) for BTV, SBV
and AHSV in the UK using the deterministic (left) and Markovian (right)
methods of the mechanistic model described by Brand and Keeling [2017].
Coloured lines represent the mean of the estimations between 2014 and
2018 and the dashed black line represents R0 = 1.
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Supplementary file 1: Updated model parameters
Table S1 details the vector parameters previously used by Backer & Nodelijk (2011) and the
modified values from the literature. Unchanged parameters are also given in this table.

The temperature-dependent rates are calculated for 18°C; to represent the average temper-
ature of equine dense areas in the UK in August. Such areas with large horse populations
and a seasonal increased abundance of midges at this time are when an African horse sick-
ness virus outbreak is likely to cause the most impact. When considering an outbreak in a
different climate these parameters may need to be adjusted.

There are limited data available for the temperature dependent parameters affecting the
transmission of AHSV. For example, an initial search of PubMed using the terms ’African
horse sickness’ AND ’extrinsic incubation periods’ yielded only five results. Of these, two
were studies on different viruses (bluetongue virus and equine encephalosis virus (Van Der Saag
et al., 2017; Venter et al., 1999)). Carpenter et al. (2011), published shortly after Backer and
Nodelijk published their model in 2011, reanalysed data from Wittmann et al. (2002) (which
was also found in the search) using novel statistical methodology. The fifth search result
(Sánchez-Matamoros et al., 2016) was a mathematical modelling study that referenced Car-
penter et al. (2011). Carpenter et al. (2011) derived the Extrinsic incubation period (EIP)
and probability of transmission from host to vector from AHSV-4 infection experiments in
Culicoides sonorensis.

In an attempt to find additional articles quantifying the probability of transmission from host
to vector, the search terms ’African horse sickness’ AND (’vector competence’ OR suscepti-
bility’) were used to search PubMed. After screening the titles and abstracts, apart from the
original Wittmann et al. (2002) article and the Carpenter et al. (2011) article reanalysing
the data, four other articles were found (Venter et al., 2000, 2009, 2010; Venter & Paweska,
2007). These articles all compare the susceptibility of African Culicoides species to AHSV.
Findings from these studies are highly variable between species (Venter et al., 2000, 2009;
Venter & Paweska, 2007), populations (Venter et al., 2009), serotypes (Venter et al., 2009,
2010), isolates (Venter et al., 2009, 2010; Venter & Paweska, 2007) and seasons (Venter et al.,
2009). The species of Culicoides with the estimated largest probability of being infectious
within 10 days at 23.5°C of a viraemic blood meal and this probability in these studies by
serotype are given in Table S2. In this study, we use the parameter suggested by Carpenter
et al. (2011) (0.52) as it was parameterised with the EIP used in the model and for the
same species as other parameters used in the model. The model is also simulated for a tem-
perature of 18°C, which is within the span of temperatures examined in the study (15–30°C).

This trend of limited data availability for the dynamics of AHSV and Culicoides continued
in the search for other parameters. Other Culicoides-borne disease models parameterised the
blood feeding interval, assumed to be the time between blood feeding and oviposition, func-
tion derived by Mullens et al. (2004) for C. sonorensis (Gubbins et al., 2008, 2014; Haider
et al., 2019). The updated vector lifespan used was derived by Gerry & Mullens (2000) who
attempted to quantify how the expected lifespan of a C. sonorensis varies according to tem-
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Table S1: Updated model parameters from other literature. The temperature-dependent
rates are calculated for 18°C

Parameter Symbol Previous value Updated value*

Default
value

5-95%
range

Default
value

5-95%
range

Blood feeding interval 1/a 7.5 4.7-17.7 6.31

EIP 1/υ 16 9.2-48 10.92

No. stages k 10

Vector life-span 1/µV 22 16-31 11.93

Transmission probability host
to vector

pH 0.04 0.01-0.1 0.522 0.45 −
0.592

Transmission probability vec-
tor to host

pV 0.77 0.5-0.95

Vector:host ratio ρ 226 1-4219

Initial number of hosts NH 66 32-100

. Time periods are given in days. The parameter values used in Backer & Nodelijk (2011)
are described in the previous value column and the parameter values used in our model are

described by the updated value column. Where the updated column is blank no new
information on these parameters was found. * 1 = updated using Mullens et al. (2004), 2 =

updated using Carpenter et al. (2011), 3 = updated using Gerry & Mullens (2000).

Table S2: Species of Culicoides with the largest probability of being infected within 10 days
at 23.5 °C of a viraemic blood meal.

Serotype Culicoides species Probability Reference
AHSV-1 C. leucostictus 0.08 Venter et al. (2010)
AHSV-2 C. leucostictus 0.38 Venter et al. (2010)
AHSV-3 C. bolitinos 0.17 Venter et al. (2009)
AHSV-4 C. imicola 0.05 Venter et al. (2010)
AHSV-5 C. bolitinos 0.21 Venter et al. (2000)
AHSV-6 C. imicola 0.41 Venter et al. (2009)
AHSV-7 C. imicola 0.33 Venter et al. (2009)
AHSV-8 C. imicola 0.27 Venter et al. (2000)
AHSV-9 C. zulluensis 0.20 Venter et al. (2009)
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perature using data from a dairy farm in California, USA. The Backer and Nodelijk paper
(2011) mentioned this study but suggested that the mortality for midges in the field was
significantly higher than that seen in lab experiments by Wittmann et al. (2002), the value
they used in their model. This leads to reduced transmission when the Gerry & Mullens
(2000) parameters are used However, the midge mortality rate may be higher in the field due
to environmental effects. The PubMed search ’Culicoides’ AND (’survival’ OR ’mortality’)
did not identify any other studies of interest.
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Supplementary file 2: Mathematical model description
Let SH(t), EH(t), IH(t), RH(t) and DH(t) denote the number of susceptible, latent, infec-
tious, recovered and dead horses at time t. We also denote the total number of alive horses
as NH . All latently infected horses transition to infectious stage I1H when they become infec-
tious. From here they can either transition to DH (dying hosts) or transition to infectious
stage I2H followed by RH (recovering hosts). The recovered class is not considered in vector
populations; this is because of their short lifespans; therefore we denote SV (t), EV (t) and
IV (t) as the number of susceptible, latent and infectious vectors. In the model, vector mor-
tality and birth also occur at an equal rate, µV , which is dependent on temperature; this
allows us to consider the total number of vectors as a constant, denoted NV , determined by
the vector:host ratio. We will assume that all vectors are born susceptible.

The rate at which new infections occur depends on the bite rate of midges, the transmission
probabilities and the number of individuals in the SH , IH , SV and IV classes. The bite
rate (1/ε) depends on temperature. The transmission probabilities from host-to-vector and
vector-to-host, pH and pV , respectively, is the probability that an infectious bite results in
a susceptible individual becoming infected. The infection rates for susceptible hosts and
vectors are therefore given by

pHε
NV

NH

IV
NV

= pHε
IV
NH

, (1)

and
pV ε

IH
NH

, (2)

where NV /NH is the vector to host ratio (ρ), IH/NH is the proportion of hosts infected and
IV /NV is the proportion of vectors infected.

The rate latent midges become infected is dependent on temperature and given by the ex-
trinsic incubation period (EIP): 1/υ. The simplest way to introduce recovery is to assume
the infected host recovers at a constant rate γ, which is the inverse of their infectious period.

The adapted deterministic ODE system is given by:
dSH

dt
= apV

IvSH

NH

, (3)

dEH,1

dt
= apV

IV SH

NH

− lεEH,1, (4)

dEH,i

dt
= lεEH,i−1 − lεEH,i, for 2 ≤ i ≤ l, (5)

dI1H,1

dt
= lεEH,l − n1γ1I1H,1, (6)

dI1H,i

dt
= n1γ1I1H,i−1 − n1γ1IH,i, for 2 ≤ i ≤ n1, (7)

dI2H,1

dt
= (1−mH)n

1γ1I1H,n1 − n2γ2I1H,1, (8)
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dI2H,i

dt
= n2γ2I2H,i−1 − n2γ2I2H,i, for 2 ≤ i ≤ N2, (9)

dDH

dt
= mHn

1γ1I1H,n1 , (10)

dRH

dt
= n2γ2I2H,n2 , (11)

dSV

dt
= µVNv − apH

SV (I
1
H + I2H)

NH

− µV SV , (12)

dEV,1

dt
= apH

SV (I
1
H + I2H)

NH

− (kυ + µV )Ev,1, (13)

dEV,i

dt
= kυEV,i − (kυ + µV )EV,i, for 2 ≤ i ≤ k, (14)

dIV
dt

= kυEV,k − µV IV , (15)

where the nature of the parameters are described in Tables 5 and S1. The overall recovery
rate from the first and second infectious classes are calculated as

γ1 =
1

T 1
inf

and γ2 =
1

T 2
inf − T 1

inf

, (16)

respectively.

The latent period of hosts, infectious period of hosts, and EIP of vectors are divided into
multiple stages; this allows them to have a gamma distribution (Lloyd, 2001). Here, for
example the latent stage (EH) is subdivided into i stages; each with mean transition rate
ε/i, where ε is the transition rate from stage EH to stage I1H . Using this method, EH(t) is
replaced by a series of i stages E1

H,1(t), E1
H,2(t), . . . ,E1

H,i(t). When individuals first transition
from the previous stage, the individuals will enter the first stage E1

H,1(t). Then, once each
stage is completed, they will continue to pass through all stages successively until they
complete the E1

H,i(t) stage.
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Supplementary file 3: Sensitivity analysis
The Latin hypercube sampling partial rank correlation coefficient method (LHS-PRCC
method) was used for the sensitivity analysis. This method was described in Blower &
Dowlatabadi (1994). If the PRCC is close to 0, the parameter is weakly (or not at all) corre-
lated with the output parameter. As the PRCC approaches 1 or -1 it represents a positive or
negative correlation, respectively, with 1 and -1 reflecting a perfect correlation. This method
can also be applied to each time-step in order to see the sensitivity of the parameters over
the time-course; here we refer to this as the heat map method.

We perform the calculation of the PRCC 100 times for 100 sets of parameters each time.
The median PRCC and its variation are examined using a box-plot. The duration of the
outbreak is considered to be when it is < 10−3 from its final steady state. This is due to
the numerical methods resulting in minute changes in the populations as the steady state is
approached. For the heat map method, the PRCC is calculated only once per time-step and
is performed 100 times for 100 parameters sets; the value plotted is the mean PRCC of the
outputs. The heat maps will vary from white to red for 0 to 1 and from white to blue from 0
to −1. Therefore the more positively correlated a parameter is the more red it will be, and
the more negatively correlated a parameter is the more blue it will be. If a result was not
found to be significant through the Student’s t-test (p > 0.05) it was coloured white. Matlab
was used for calculations and to produce figures, LHS was performed using the lhsdesign
function. Here the ODE solver ode23s was used, alternatively to ode45, to resolve stiffness
issues for some sampled parameter sets.

Parameters were all selected for a uniform distribution (upper and lower bounds shown in
Table S3). The upper and lower bounds for the latent and infectious periods of hosts were
set to the maximum and minimum values found in the systematic review. However, this
caused numerical issues when the length of the infectious period selected for dying hosts
was longer than that of surviving hosts. Therefore, the infectious period of surviving hosts
was set to the infectious period of the dying hosts multiplied by 1.2, as the mean infectious
period of surviving hosts found in the systematic review was 1.2 times longer than that of
dying hosts. The transmission probability from host to vector was set to the 5–95% range
found in Carpenter et al. (2011). As the parameters for the transmission probability from
vector to host, vector to host ratio and the initial number of hosts were not updated, the
5–95% range from Backer and Nodelijk (2011) were used. In Backer and Nodelijk (2011)
the host case fatality 5–95% range varied -/+0.27 from the default value. This variance
was also applied to the updated case fatality with a maximum of 1. No confidence intervals
were given for the blood feeding interval and vector life-span therefore the upper and lower
bounds were set to +/-25% of the updated default values. The extrinsic incubation period
is calculated using two parameters estimated in Carpenter at al. (2011) where the 5–95%
confidence intervals are given. In order to find the lower and upper bound for the sensitivity
analysis the extrinsic incubation period was calculated for 10000 random values between
the 5–95% confidence intervals for these parameters. The upper and lower bounds are then
taken from 5% and 95% of these 10000 values, respectively.
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Figure S1: Box and whisker plots of PRCC between the model parameters and the (a)
proportion of hosts infected, (b) outbreak duration and (c) R0. On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the + symbol.
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Table S3: The upper and lower bounds of parameters used for the sensitivity analysis. Time
periods are given in days. To avoid numerical errors T 2

inf = 1.2T 1
inf .

Parameter Lower bound Upper bound

1/ε 2 11

T 1
inf 2 7

mH 0.57 1

1/a 4.7 7.9

1/υ 8.6 13.5

1/µV 8.9 14.9

pH 0.45 0.59

pV 0.5 0.95

ρ 1 4219

NH 32 100

The PRCC method is applied to the duration of the outbreak, total equine infections over
the duration of the outbreak and R0 (Figure S1). Here R0 is calculated using the equation
suggested by Backer & Nodelijk (2011); given as

R0 =

√
a2pHpV ρ

(
mHT 1

inf + (1−mH)T 2
inf

)( kυ

kυ + µV

)k
1

µV

. (17)

The heat map PRCC method on the case incidences in each time-step are shown in Figure
S2. Table S4 also shows the median PRCC values and significance for the PRCC on the
duration of the outbreak, total number of equines infected and R0. Here two-tailed Student’s
t-tests were used to determine the p-values.

We observe from Figure S1 and Table S4 that none of the parameters significantly affect the
proportion of equids infected. Despite the uncertainty in many parameters, most simulations
in the sensitivity analysis resulted in all the equids on a premises becoming infected. The
duration of the latent period (1/ε) and number of horses on the premises (NH) are not used
in the calculation of R0, therefore they do not significantly influence its value. The host
case fatality (mH) did not significantly influence R0, suggesting that culling may not be an
effective control strategy. The parameter which most significantly influences the duration
of the outbreak is the vector:host ratio. This is associated with shorter outbreaks. This
can also be observed in the heat map (Figure S2). The heat map shows that longer host
latent periods (1/ε), duration between vector bites (1/a) and extrinsic incubation periods
(1/υ) increase the duration of the outbreak (negatively associated with case incidence during
the early stages). However, the host infectious period (Tinf ), vector life-span (1/µV ), host
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Figure S2: Heatmap of the PRCC of case incidence each timestep.

Table S4: Results from the sensitivity analysis ; the PRCC values and t-values of parameters
on the proportion of equines infected, duration of the outbreak and R0. The PRCC values
are given to 3 decimal places. The t-values are given to 2 decimal places. P-values where
calculated using a two-tailed students t-test with 89 degrees of freedom. * p ≤ 0.05, **
p ≤ 0.01 and *** p ≤ 0.001.

PRCC of: Proportion infected Outbreak duration R0

Parameter Mean t value Mean t value Mean t value

1/ε -0.000 -0.00 -0.778 -5.78∗∗∗ -0.022 -0.22

T 1
inf 0.007 0.07 0.180 1.97 0.609 9.64∗∗∗

mH -0.001 -0.01 -0.053 -0.51 -0.121 -1.13

1/a -0.021 -0.21 -0.429 -3.55∗∗∗ -0.558 -4.43∗∗∗

1/υ -0.010 -0.10 -0.565 -4.47∗∗∗ -0.810 -5.96∗∗∗

1/µV 0.027 0.27 0.188 2.07∗ 0.892 26.91∗∗∗

pH -0.000 -0.00 0.124 1.31 0.184 2.01∗

pV -0.010 -0.10 0.270 3.12∗∗ 0.377 4.73∗∗∗

ρ -0.020 -0.19 0.817 18.88∗∗∗ 0.875 24.53∗∗∗

NH -0.010 -0.10 -0.461 -3.78∗∗∗ -0.001 -0.01
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to vector (pH) and vector to host (pV ) transmission rates, and the vector:host ratio are
associated with outbreaks that spread more rapidly upon emergence (positively associated
with case incidence for up to approximately the first 40 days).
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Supplementary table S5

Table S5: Qualitative synthesis of the studies found reporting AHSV experimental infection in a naive equid. If reported the
time until viraemia, onset of clinical signs and death of the equid is given. Where possible the duration of viraemia and clinical
signs is also given. *n/a = survived; †= died; ‡= euthanised; †/‡= died or euthanised. = data unavailable.

Days to: Duration of:
Reference Inoculation

route
Viraemia
detection
method

Serotype Equid sp. Viraemia Clinical
signs

Death* Viraemia Clinical
signs

Lelli et al. (2013) Intravenous PCR/isolation AHSV-9 Horse 11/12 10 n/a 4 5
Horse 7/8 8 n/a 5 3

Lulla et al. (2017) Intravenous PCR AHSV-4 Horse 4 6 10‡ 6 4
Alberca et al.
(2014)

Intravenous PCR/isolation AHSV-9 Horse 3/3 3 5† 2 2

Horse 3/3 3 6† 3 3
Horse 3/3 3 6† 3 3

von Teichman et al.
(2010)

Intravenous Isolation AHSV-5 Horse 3 ‡

AHSV-6 Horse 5 ‡
AHSV-8 Horse 5 ‡
AHSV-9 Horse 5 ‡

Guthrie et al.
(2009)

Intravenous PCR/isolation AHSV-4 Horse 8/8 n/a

Scanlen et al.
(2002)

Subcutaneous Isolation AHSV-5 Horse 3 4 7† 4 3

Horse 4 4 8† 4 4
Du Plessis et al.
(1998)

Subcutaneous n/a AHSV-5 Horse 7‡

Roy et al. (1996) Isolation AHSV-4 Horse 6 6 10† 4 4
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Martínez-
Torrecuadrada
et al. (1996)

Intravenous Isolation AHSV-4 Horse 6 †

Stone-Marschat et
al. (1996)

Intravenous Isolation AHSV-4 Horse 3 4 †/‡

Horse 3 4 †/‡
Horse 3 4 †/‡
Horse 3 4 †/‡

J. House et al.
(1994)

Intravenous Isolation AHSV-4 Horse 3 5 7† 4 2

Horse 4 6 8† 4 2
Hassanain (1992) n/a AHSV-9 Horse 13†
Mirchamsy &
Taslimi (1968)

Intravenous n/a AHSV-9 Horse 17†

Ozawa & Bahrami
(1966)

Intravenous n/a AHSV-9 Horse 8 9†

C. House et al.
(1990)

Subcutaneous n/a AHSV-1 Horse †/‡

AHSV-2 Horse †/‡
AHSV-3 Horse †/‡
AHSV-4 Horse †/‡

El Hasnaoui et al.
(1998)

Subcutaneous n/a AHSV-4 Donkey

Donkey
Donkey
Donkey
Mule
Mule
Mule

van Rijn et al.
(2018)

Intravenous PCR AHSV-5 Horse 2 3 6† 4 3

Horse 3 4 8† 5 4
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Minke et al. (2012) Intravenous PCR AHSV-4 Horse 8 n/a
Martínez-
Torrecuadrada
et al. (1997)

Intravenous n/a AHSV-4 Horse 9†

Horse 16†
Horse n/a

Alexander &
Du Toit (1934)

Intravenous n/a Horse 3 6† 3

Dubourget et al.
(1992)

Subcutaneous Isolation AHSV-4 Horse 2 9† 7

Horse 6 n/a 5
Mirchamsy &
Taslimi (1964b)

Intravenous n/a AHSV-9 Horse 12†

J. House et al.
(1992)

Intravenous n/a AHSV-9 Horse 7†

Horse 7†
Horse 7†

Hazrati & Ozawa
(1965)

Intravenous n/a ASHV-9 Horse 14†

Horse n/a
Donkey n/a

Whitworth (1930) n/a Horse 3 5 ‡ 2
Quan et al. (2010) Intravenous PCR AHSV-4 Horse 7
Mirchamsy &
Taslimi (1964a)

Intravenous n/a AHSV-9 Horse †

Horse †
Horse †
Horse †

Ozawa et al. (1970) n/a AHSV-9 Horse 9†
Ozawa et al. (1965) Intravenous n/a AHSV-9 Horse 14†
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Supplementary table S6
Results from the Kruskal-Wallis test to determine differences between the time until viraemia,
onset of clinical signs and death of different serotypes of African horse sickness virus and the
method used for their inoculation.

Table S6: The chi-squared value, degrees of freedom and p-values are given. † Serotypes
with only one data value are not included.

Time until: χ2 df p-value

Serotype

Viraemia 4.58 4 0.33

Viraemia † 3.68 2 0.16

Clinical signs 2.09 2 0.35

Death 2.68 2 0.26

Inoculation method

Viraemia 0.55 1 0.46

Clinical signs 0.08 1 0.78

Death 0 1 1
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Supplementary file 1: Kernel selection
A PubMed search conducted on 31 July 2020 using the search terms (disease OR virus) AND
∼model AND kernel AND ∼transmission’ found 88 articles. Of these, 47 were excluded
during a first screening of their titles for not involving modelling livestock or the type of
model used and one study was repeated within the search. After reading the remaining
41 articles, a further 29 were excluded using the same criteria or for not estimating kernel
parameters leaving 12 eligible articles (Table S1). The process of the systematic search is
described by the PRISMA flow diagram in Figure S1.

Figure S1: PRISMA flow diagram describing the process of the systematic review [10].

ID Function Virus Studies Ref
K1 1

1+(d/d0)α
Foot and mouth Hayama et al. (2013) [9]

Schnell et al. (2019) [14]
Bluetongue Boender et al. (2014) [2]
Avian influenza Bonney et al. (2018) [4]

Boender et al. (2007)a [3]
Boender et al. (2007)b [1]
Dorigatti et al. (2010) [7]

Swine fever Gamado et al. (2017) [5]
K2 1− exp(−(d/d0)−α) Foot and mouth Hayama et al. (2013) [9]

Avian influenza Bonney et al. (2018) [4]
Swine fever Gamado et al. (2017) [5]

K3 exp(−(d/d0)α) Foot and mouth Hayama et al. (2013) [9]
Avian influenza Bonney et al. (2018) [4]

K4 (1 + d/d0)
−α Foot and mouth Hayama et al. (2013) [9]

Avian influenza Bonney et al. (2018) [4]
Swine fever Gamado et al. (2017) [5]

K5 αexp(−αd) Bluetongue Szmaragd et al. (2009) [15]
Swine fever Gamado et al. (2017) [5]

K6 α
π
exp(−α2d2) Bluetongue Szmaragd et al. (2009) [15]

K7 α
4
exp(−α1/2d1/2) Bluetongue Szmaragd et al. (2009) [15]
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K8 (d/d0)
−α Foot and mouth Tildesley at al. (2012)* [16]

Avian influenza Rorres at al. (2011)a [12]
Rorres at al. (2011)b [13]

K9

{
(1− (d/d0)

2)2, if d ≤ d0.

0, otherwise.
Avian influenza Boender et al. (2007)a [3]

K10





1
2
(1 + ε), if d ≤ d0

3
.

1
2
, if d0

3
< d ≤ 2d0

3
.

1
2
− 1

10
ε, if 2d0

3
< d ≤ d0.

0, otherwise.

Avian influenza Boender et al. (2007)a [3]

K11 exp(−(d/d0 − x)2) Avian influenza Boender et al. (2007)a [3]
K12 1

1+rα
Avian influenza Boender et al. (2007)b [1]

Table S1: Qualitative synthesis of the studies found fitting parameters for a distance-based
kernel model of disease spread between livestock premises. * In Tildesley et al. [16] α is set
to −1 [16].

Kernel K1 was the most commonly used kernel. During initial attempts to fit data to this
kernel parameter estimates did not converge or yield reproducible results. Therefore, we
considered kernels K5–K7 as these were used to model bluetongue virus, spread by the same
insects as AHSV. Szmaragd et al. [15] found that the kernel K6 performed better while
attempting to model the spread of BTV-8 in Northern Europe during 2006, therefore we
attempted to fit this kernel. These kernels could all be written with the same formula as

K = exp(−αdε),

where α is the coefficient multiplied by d in the index of the exponential and the coefficient
multiplied by the exponential is accounted for by the parameter β in the force of infection
(Equation 1). Szmaragd et al. (2009) found that K6, when ε was set to 2, provided the best
fit for the data.
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Supplementary file 2: Parameter estimation

2.1 Sequential Monte Carlo-Markov chain Monte Carlo (SMC-MCMC)

As results in supplementary file 3 show there was little variability in spatial homogene-
ity across the randomly generated spatial distributions we perform 10 SMC iterations each
MCMC iteration. Each SMC iteration we generate a new parameter set and spatial distri-
bution. After the initial iteration of LHS parameters, the parameter sets that generated the
three highest log-likelihoods (30%) were accepted. We then create two new variables; qu
denoting the lowest log-likelihood accepted and bestloglik denoting the largest log-likelihood
for all the parameter sets. In future iterations, parameter sets that produce log-likelihoods
larger than qu are accepted. For the 1000 main MCMC iterations we then have three pos-
sible cases: no parameter sets are accepted, one parameter set is accepted and two or three
parameters sets are accepted.

Case 1: Two or three parameter sets accepted.
If the largest log-likelihood is larger than bestloglik then: bestparams is set to the parameter
set which generated this log-likelihood and bestloglik is set to this likelihood. qu is then up-
dated to the lowest log-likelihood accepted in the current iteration. σ is set to the standard
deviation between the parameters accepted the current iteration and σmax is set to 3σ.

Case 2: One parameter set accepted.
If the accepted log-likelihood is larger the bestloglik then: bestparams is set to the parameter
set which generated this log-likelihood and bestloglik is set to this likelihood. qu is not up-
dated. σ is updated to the minimum of 1.1σ from the previous iteration and σmax.

Case 3: No parameter sets accepted
qu is not updated. σ is updated to the minimum of 1.1σ from the previous iteration and σmax.

Parameters from the next iteration are then drawn from a normal distribution with mean
bestparams and standard deviation 1.1σ with a random noise between ±10% of bestparams.

2.2 Reducing computational cost of the likelihood function

In order to reduce the computational cost of calculating the log-likelihood, the contribu-
tion for each time-step (LogLikt) was calculated individually. Initially, this was set to 0
for each time-step. The days were sorted into four cases: the first day, days where there
was an infection the previous day, days where there was an infection the current day but
not the previous and days where there was no infection on either the previous or current day.

Case 1: The first day.
The first infection is considered to have occurred on day 0. Therefore, to calculate LogLik1
we consider the force of infection (Equation 1) on all premises not infected on day 0 by those
infected on day 0. LogLik1 is then calculated as the summation of ln(1− e−λ) for premises
infected on day 1 and −λ for uninfected premises.
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Case 2: Days where there was an infection the previous day.
The force of infection for each premises can be calculated as

λt = λt−1 + λfrom premises infected on day t−1.

LogLikt is then calculated as the summation of ln(1 − e−λt) for premises infected on day t
and −λt for uninfected premises.

Case 3: Days with a new infection where there was no new infection the previous day.
LogLikt = LogLikt−1 for uninfected premises. For premises infected on day t the force of
infection (λ) remains the same and

LogLikt =LogLikt−1 − probability premises was not infected
+ probability premises was infected,

=LogLikt−1 − ln(1− e−λ) +−λ.

Case 4: Days where there was no infection of the previous or current day.
There is no change in the force of infection and therefore LogLikt = LogLikt−1.

The total log-likelihood is the summation of the contributions of each time-step.
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Supplementary file 3: Homogeneity of spatial distributions

3.1 Methods

A homogeneous spatial distribution is where in any circle in a given area you will find ap-
proximately the same number of points. If a spatial distribution is not homogeneous it may
be clustered to a certain spatial scale. Here we use Ripley’s L function to detect deviations
from spatial homogeneity and compare these between generated spatial distributions for each
spatial specificity.

In order to calculate Ripley’s L function we first need to calculate Ripley’s K function defined
as

K(t) =
A

N

∑

i 6=j

I(dij < t)

N
,

where A is the area of the plane containing all points, N is the number of points, dij is the
Euclidean distance between the ith and jth point, t is the search radius and I is a Boolean
function which is 1 when its operand is and 0 otherwise [6]. The points are approximately
homogeneous when K ≈ πt2. From here we can calculate Ripley’s L function (the variance
stabilised Ripley’s K function) defined as

L(t) =

(
K(t)

π

)1/2

,

which for spatial homogeneous data has expected value t with constant variance.

We use Ripley’s L function to analyse the difference in spatial distributions for the three
spatial specificities used in this study (village, region, province). For each spatial specificity,
we calculate Ripley’s L function for 50 random spatial distributions for t = [0 60]. Calculating
Ripley’s K and L function for a data-set this size would be computationally expensive.
Therefore, we suggest a modified version of the Ripley’s K function given as

K̂(t) =
A

Nj

∑

i 6=j

I(dij < t)

Ni

where j is the set of all premises, i is a subset of j containing infected premises. Nj and Ni

are the total number of premises and the number of infected premises, respectively.

To calculate the area of the shapefiles the Matlab function deg2utm was used to convert
latitude and longitude co-ordinates given in the shapefiles into Universal Transverse Mercator
(UTM) coordinates [11]. UTM co-ordinates give a zone number and easting-northing pair.
As the points are in the same UTM zone we assume the Euclidean distance between them
can be approximated as

√
(e1− e2)2 + (n1− n2)2,
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for a given easting-northing pair (e1,n1) and (e2,n2). The area of the polygon was then
calculated using the Matlab function polyarea.

The distance between premises was calculated using the haversine function for the great-
circle distance (the shortest distance between the points). Here for two sets of co-ordinates
(lat1, log1) and (lat2, lon2) we first convert to radians giving

φ1 =
lat1π

180
,

φ2 =
lat2π

180
,

λ1 =
lon1π

180
and

λ2 =
lon2π

180
.

Then:
a = sin2(

φ2 − φ1

2
) + cos(φ1)cos(φ2)sin

2(
λ2 − λ1

2,
)

and
2atan2(

√
a,
√
1− a).

Using this we can calculate the distance between two points in km as

d = Rc,

where R is the radius of the earth (6371 km).

2.2 Results

We find that the spatial distributions are approximately spatially homogeneous for shorter
distances from infected premises (<15km). For distances larger than approximately 15km,
Ripley’s L function increases implying a homogeneous population. However, for each spatial
specificity and iteration this is consistent with little variability (Figure S2).

A reason for this deviation from spatial homogeneity for larger distances could be ’the edge
problem’ in the Ripley’s K algorithm. The algorithm assumes an infinitely continuous planar
space, which when applied to geographical data sets is not a reality. Here, the borders of
the shapefile (for example coasts) will affect the output value. Various approaches have been
suggested to correct for these boundary issues [8, 17]. However, here we are more concerned
with the consistency between iterations, and little variability is observed. Therefore, we con-
clude that a large number of different spatial distributions is not necessary at each MCMC
iteration.
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Figure S2: Ripley’s L function for the three spatial specificities. (a) The number of premises
each iteration for 50 random spatial distributions generated from the latitude and longitude
data. (b),(c) and (d) 50 iterations of Ripley’s L function generated from the latitude and
longitude (village), region, and province data, respectively.
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Supplementary figure S3

Figure S3: Results from the parameter estimation using the latitude and longitude village
data. (a) The trace of the parameters which generated the largest log-likelihood over all
previous simulations(lines) and the accepted values (dots). (b) The correlation between
accepted parameters once the burn-in (first 100 iterations) is removed. (c) and (d) show
histograms and the probability density of a normal distribution fitted to accepted values
(once burn-in removed) of β and α, respectively.
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Supplementary figure S4

Figure S4: Results from the parameter estimation using the region data. (a) The trace of
the parameters which generated the largest log-likelihood over all previous simulations(lines)
and the accepted values (dots). (b) The correlation between accepted parameters once the
burn-in (first 150 iterations) is removed. (c) and (d) show histograms and the probability
density of a normal distribution fitted to accepted values (once burn-in removed) of β and
α, respectively.
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Supplementary figure S5

Figure S5: Results from the parameter estimation using the province data. (a) The trace of
the parameters which generated the largest log-likelihood over all previous simulations(lines)
and the accepted values (dots). (b) The correlation between accepted parameters once the
burn-in (first 200 iterations) is removed. (c) and (d) show histograms and the probability
density of a normal distribution fitted to accepted values (once burn-in removed) of β and
α, respectively.
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Supplementary file 1: Data collection and curation
A summary of participant test and survey dates by test outcome and participant age is given
in Figure S1.

a b

Figure S1: (a) Date of receipt of SARS-CoV-2 PCR test result versus date of survey com-
pletion. (b) Age and asymptomatic SARS-CoV-2 PCR test result of participants.

Activities involving laboratory work — including those undertaken by postgraduate students
— and the activities of laboratory technicians, were classed as occurring in the research set-
ting. Postgraduates activities indicating use of an office or activities involving one-to-one
laboratory training were also classified as research. Activities were classed as occurring in
a teaching setting if they involved students or postgraduate students/staff members teach-
ing/supporting the session. Activities in this category included practicals, lectures and
placements. All other activities on campus were categorised as occurring in the “Campus
other" setting. Notable amongst these was one participant working in a role involving stu-
dent interactions and two participants who accessed the library. Often participants would
provide information in the “additional comments” field that enabled their activities to be
classified by setting. However, motivation for this appeared to reduce over the course of
the survey. Therefore, if an individual described their university work as qualifying for the
research setting at any point in the questionnaire it was assumed that all their work fell
into that setting category. In some cases participants did not offer any additional details
and therefore activities could not be assigned to the research or teaching setting. These
participant’s campus activities were categorised as occurring in “Campus other".

The setting non-private travel was used to describe all travel which was not a personal car or
air-travel, these included public transport and taxis. The setting abroad/aeroplane is used
to describe settings which include both travel by aeroplane and holiday activities. Notable
here in an individual whose activities included skiing in Italy and spa activities. Initial
analysis showed that including these activities in other relevant settings (for example skiing
in exercise) heavily influenced outputs. Some participants many have been abroad and but
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their activities or additional comments did not flag this.

Exercise may have been in a fitness centre or outdoors and included walking. Retail included
essential and non-essential retail, which may have been click and collect-like or drive-through
services. Non-university work describes activities should as working in a pub, supermarket
and as a carer. In our sample these activities were only undertaken by students. The social
setting captures activities which were not performed in another setting (such as at another
household or recreation ground). Testing describes the participant taking a SARS-CoV-2
test. All other activities were classified as “other”.

For one activity, in the “Campus other” setting, a participant stated that they visited the
library for 360 minutes and had 360 contacts. The university regulations did not permit this
large number of individuals in library spaces at this time. Therefore, we assume this was a
mistake while filling out the questionnaire. We set the number of contacts for this activity
to 3, consistent with other activities reported in this setting.

Supplementary table S2: Summary statistics for setting-
specific contact measures
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Co-variate Measure Participated #activities Contacts Duration PCH Contacts∗ PCH∗

HH size mean 3.02
sd 2.23

Abroad/ mean 0.06 0.20 6.87 0.34 3.34 6.52 2.62
aeroplane sd 0.24 1.15 27.51 2.37 23.39 25.92 18.32
Campus other mean 0.14 0.39 2.40 2.09 15.141 2.40 15.14

sd 0.35 1.04 9.77 6.31 73.95 9.77 73.95
Exercise mean 0.51 1.47 4.88 1.87 8.22 3.71 6.59

sd 0.51 2.31 15.29 3.67 27.71 14.08 26.31
Hospitality mean 0.12 0.24 4.33 0.32 8.69 3.96 8.19

sd 0.33 0.85 19.36 1.12 34.45 17.70 32.53
Non-university mean 0.06 0.14 4.44 0.71 41.89 4.38 41.15
work sd 0.24 0.74 20.07 2.92 203.96 19.78 199.72
Non-private mean 0.18 0.53 9.04 0.30 6.70 8.10 6.26
travel sd 0.39 1.56 37.54 0.81 26.87 34.12 25.17
Other mean 0.29 0.59 3.88 0.53 3.18 2.51 2.09

sd 0.46 1.50 12.62 1.57 12.73 9.88 11.11
Research mean 0.24 1.29 6.38 4.79 26.26 5.95 24.92

sd 0.43 2.62 16.95 10.55 75.20 16.83 75.04
Retail mean 0.59 1.04 41.33 0.49 22.69 39.90 21.95

sd 0.50 1.38 56.47 0.85 36.14 54.27 34.12
Social mean 0.31 0.47 1.61 0.67 3.13 0.98 2.36

sd 0.47 0.87 4.21 1.78 12.07 4.00 11.84
Teaching mean 0.22 0.55 9.08 1.57 28.33 6.38 19.50

sd 0.42 1.60 27.10 5.93 102.74 18.65 69.10
Testing mean 0.33 0.39 1.52 0.12 0.29 1.36 0.22

sd 0.47 0.64 3.06 0.34 0.62 2.94 0.50

Table S1: The mean and standard deviation between participants of the binary measure of whether the participant participated
in an activity, the number of distinct activities, total contacts , total duration of activities, PCH, the total non-household
contacts and non-household PCH in each setting.

APPENDIX G: INFLUENCE OF SETTING-DEPENDENT CONTACTS AND PROTECTIVE

BEHAVIOURS ON ASYMPTOMATIC SARS-COV-2 INFECTION AMONGST MEMBERS OF A

UK UNIVERSITY: SUPPLEMENTARY MATERIAL

189



Supplementary file 2: Comparison of model performance
for setting-specific contact measures based on different
contact definitions

Predictor Median Minimum Maximum PMP

Participated -126.7505 -126.76 -126.74 0.39

Activities -127.44 -127.45 -127.43 0.20

Contacts -129.20 -129.20 -129.19 0.03

Duration -128.25 -128.26 -128.24 0.09

PCH -128.26 -128.27 -128.26 0.08

Contacts∗ -129.36 -129.37 -129.35 0.03

PCH∗ -127.54 -127.55 -127.51 0.18

Table S2: The median, minimum and maximum of the marginal log-likelihood estimates for
the multi-variate logistic model for each predictor, as well as the mean posterior model prob-
abilities (PMPs). ∗ = predictors were only non-household contacts are considered. Results
are given to 2 decimal places.

Household size, campus other, hospitality, retail and testing do not have supported coefficient
values all with the same sign for any of the predictors. Non-university work has only pos-
itive coefficients for all contact measure definitions apart from contacts and non-household
contacts, which were the models which received the smallest PMP values. These contact
definitions also supported non-negative values of coefficients for the teaching covariate, addi-
tional to PCH (which received the smallest PMP after contacts and non-household contacts).
Research did not have all-negative supported coefficients with the predictors number of ac-
tivities and non-household contacts. However, in all these cases the distribution is heavily
skewed favouring values with the sign supported in all other models.
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Mean/median (standard deviation)
Contact defini-
tion

Positive Negative Previous

Participated 0.60/1.00 (0.49) 0.04/0.00 (0.18) 0.23/0.00 (0.42)
Activities 0.70/1.00 (0.46) 0.00/0.00 (0.01) 0.46/0.00 (0.50)
PCH* 0.05/0.00 (0.22) 0.00/0.00 (0.03) 0.16/0.00 (0.36)
Duration 0.50/0.40 (0.50) 0.07/0.00 (0.07) 0.31/0.00 (0.46)
PCH 0.31/0.00 (0.46) 0.00/0.00 (0.01) 0.23/0.00 (0.42)
Contacts 0.00/0.40 (0.49) 0.00/0.03 (0.17) 0.00/0.08 (0.27)
Contacts∗ 0.42/0.00 (0.49) 0.03/0.00 (0.18) 0.08/0.03 (0.27)

Table S3: Predicted test outcomes for logistic regression based on different sets of contact
measures.

Supplemntary file 3: Validation of Bayesian logistic re-
gression
The median bounds of SIs from the leave-one-out deletions have the same sign as the analysis
including all participants for all contact definitions and settings, apart from the support
intervals (SIs) for the coefficient of non-household contacts in the social setting those for
PCH in the teaching setting. These exceptions correspond to model contact definitions with
low PMPs (0.03 and 0.08 respectively). Furthermore, the variation in SIs when performing
the leave-one-out deletion model fits is consistent with the conclusions drawn from the full
analysis. In the full analysis, non-household contact is the only contact definition to have
only negative values in the SI for the social setting. Similarly, the leave-one-out deletion
yields median SI bounds for the PCH contact definition that are consistent with models
with larger PMPs (with all values in the SI being negative). In some cases analysis on all
participants did not yield an SI, however the leave-one-out deletion analysis did.

Lower bound Upper bound
Contact descrip-
tion

Value∗ Median sd Value∗ Median sd

Constant
Participated -8.12 -8.12 0.86 4.63 4.67 0.58
Activities -8.38 -8.53 0.20 4.51 4.72 0.20
Contacts -8.03 -8.39 0.49 4.81 4.68 1.75
Duration -8.54 -8.44 0.51 4.68 4.66 0.47
PCH -8.58 -8.49 1.04 4.68 4.69 0.69
Contacts∗ -8.39 -8.39 1.22 4.76 4.70 0.48
PCH∗ -6.87 -8.62 0.56 3.87 4.73 0.59

HH size
Participated -0.85 -0.87 0.08 0.35 0.35 0.08
Activities -0.90 -0.89 0.07 0.30 0.33 0.07

APPENDIX G: INFLUENCE OF SETTING-DEPENDENT CONTACTS AND PROTECTIVE

BEHAVIOURS ON ASYMPTOMATIC SARS-COV-2 INFECTION AMONGST MEMBERS OF A

UK UNIVERSITY: SUPPLEMENTARY MATERIAL

191



Contacts -0.70 -0.78 0.07 0.46 0.45 0.06
Duration -0.92 -0.91 0.08 0.31 0.32 0.07
PCH -0.65 -0.67 0.07 0.51 0.51 0.07
Contacts∗ -0.71 -0.78 0.07 0.45 0.45 0.06
PCH∗ -0.65 -0.64 0.067 0.52 0.53 0.07

Holiday/aeroplane
Participated 1.91 1.95 0.22 3.19 3.04 0.31
Activities - 1.09 1.46 - 2.22 1.45
Contacts - 0.56 1.95 - 1.11 2.54
Duration - 1.26 0.00 - 1.39 0.00
PCH - 3.68 0.29 - 4.94 1.65
Contacts∗ - 0.49 1.78 - 1.03 4.04
PCH∗ - 6.02 1.36 - 16.46 17.22

Campus other
Participated -0.68 -0.68 0.13 0.57 0.58 0.13
Activities -0.35 -0.41 0.10 0.83 0.83 0.08
Contacts -0.27 -0.26 0.08 0.92 0.93 0.09
Duration -0.27 -0.26 0.08 0.91 0.91 0.08
PCH -0.11 -0.11 0.06 1.09 1.10 0.08
Contacts∗ -0.21 -0.20 0.09 0.98 0.99 0.09
PCH∗ -0.12 -0.11 0.07 1.08 1.13 0.09

Exercise
Participated -1.22 -1.23 0.07 0.04 0.06 0.07
Activities -2.00 -2.10 0.12 -0.51 -0.51 0.07
Contacts -0.29 -0.28 0.14 1.00 1.02 0.16
Duration -1.61 -1.66 0.07 -0.25 -0.24 0.03
PCH -0.95 -0.96 0.10 0.31 0.25 0.11
Contacts∗ -0.23 -0.25 0.12 1.05 1.04 0.14
PCH∗ -0.74 -0.76 0.22 0.42 0.41 0.12

Hospitality
Participated -0.92 -0.91 0.18 0.26 0.27 0.13
Activities -0.28 -0.29 0.06 0.81 0.81 0.06
Contacts - - - - - -
Duration -0.03 -0.02 0.08 1.25 1.24 0.10
PCH - - - - - -
Contacts∗ - - - - - -
PCH∗ - -13.49 3.28 - -5.78 0.16

Non-university work
Participated 2.14 2.12 0.10 5.38 5.32 0.31
Activities 0.77 0.78 0.10 2.45 2.39 0.18
Contacts -0.02 -0.02 0.07 1.18 1.23 0.11
Duration 0.21 0.21 0.05 1.50 1.52 0.06
PCH 0.20 0.11 0.60 1.04 1.10 0.95
Contacts∗ -0.03 -0.01 0.05 1.18 1.26 0.11
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PCH∗ 0.25 0.24 0.66 1.13 1.10 2.66
Non-private travel

Participated -1.26 -1.27 0.13 0.01 0.02 0.09
Activities -1.25 -1.17 0.09 0.10 0.10 0.06
Contacts -1.20 -1.11 0.09 0.06 0.06 0.05
Duration -1.06 -1.07 0.11 0.25 0.26 0.09
PCH -1.10 -1.13 0.10 -0.24 -0.24 0.07
Contacts∗ -1.13 0.04 -1.13 0.07 0.04 0.03
PCH∗ -1.09 -1.10 0.09 -0.23 -0.21 0.07

Other
Participated -0.54 -0.48 0.09 0.74 0.74 0.09
Activities -0.89 -0.89 0.09 0.32 0.32 0.07
Contacts -1.29 -1.32 0.07 -0.05 -0.04 0.05
Duration -1.15 -1.12 0.16 0.16 0.16 0.07
PCH - -0.81 0.00 - 0.44 0.00
Contacts∗ -1.10 -1.07 0.05 0.08 0.09 0.03
PCH∗ - -20.21 26.72 - 1.83 11.32

Research
Participated -1.80 -1.82 0.10 -0.32 -0.32 0.08
Activities -1.37 -1.34 0.08 0.03 0.04 0.07
Contacts -1.28 -1.35 0.06 -0.05 -0.04 0.03
Duration -1.31 -1.32 0.06 -0.05 -0.04 0.04
PCH -1.32 -1.34 0.04 -0.06 -0.06 0.02
Contacts∗ -1.19 -1.20 0.05 0.03 0.02 0.04
PCH∗ -1.25 -1.21 0.05 -0.00 -0.00 0.03

Retail
Participated -0.37 -0.35 0.06 0.94 0.94 0.07
Activities -1.18 -1.23 0.07 0.04 0.05 0.05
Contacts -0.89 -0.91 0.06 0.25 0.26 0.06
Duration -0.89 -0.89 0.09 0.30 0.30 0.09
PCH -0.74 -0.73 0.07 0.46 0.46 0.07
Contacts∗ -1.07 -1.04 0.07 0.19 0.19 0.05
PCH∗ -0.66 -0.71 0.07 0.48 0.49 0.06

Social
Participated -0.35 -0.36 0.05 0.91 0.92 0.06
Activities -0.04 -0.06 0.07 1.29 1.30 0.07
Contacts -0.91 -0.92 0.11 0.25 0.18 0.08
Duration -0.05 0.02† 0.10 1.31 1.36 0.11
PCH 0.24 0.24 0.32 1.17 1.25 0.34
Contacts∗ -1.05 -1.03 0.09 -0.01 0.03† 0.08
PCH∗ - 0.79 1.21 - 1.28 2.62

Teaching
Participated -2.45 -2.46 0.10 -0.78 -0.78 0.05
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Activities -1.70 -1.71 0.11 -0.33 -0.29 0.06
Contacts -1.35 -1.34 0.04 0.02 0.01 0.04
Duration -1.38 -1.25 0.08 -0.04 -0.11 0.06
PCH -1.34 -1.33 0.10 0.06 -0.03† 0.06
Contacts∗ -1.22 -1.24 0.06 0.03 0.02 0.04
PCH∗ -1.41 -1.51 0.32 -0.41 -0.52 0.31

Testing
Participated -0.96 -0.96 0.11 0.36 0.36 0.09
Activities -0.64 -0.59 0.09 0.67 0.68 0.08
Contacts -0.53 -0.51 0.07 0.71 0.72 0.07
Duration -0.82 -0.82 0.05 0.43 0.43 0.06
PCH -0.72 -0.69 0.08 0.51 0.50 0.07
Contacts∗ -0.33 -0.36 0.06 0.87 0.87 0.08
PCH∗ -0.61 -0.59 0.08 0.61 0.56 0.08

Table S4: Median and standard deviation of results from leave-one-out deletion for the upper
and lower bounds of SIs for contact measures. ∗ Value corresponds to the bound of the SI
when all data is included in the analysis, as in Table 2. † Sign of result different to when all
data is included in the analysis.
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Supplementary file 4: Protective behaviours

Figure S2: Variance described by each dimension in the MCA analysis.
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Variable Dim 1 (22.5%) Dim 2 (20.0%) Dim 3 (14.9%) Dim 4 (13.5%)

Quantitative Correl. p Correl. p Correl. p Correl. p

Age∗ 0.14 7.2e-3 0.13 9.9e-3

Qualitative R2 p R2 p R2 p R2 p

Gender∗ 0.02 1.5e-2

Role∗ 0.04 1.0e-3

Result∗ 0.04 1.1e-4 0.04 6.4e-5

Setting∗ 0.46 9.8e-41 0.34 4.7e-26 0.17 7.1e-10 0.15 5.6e-8

Environment 0.42 4.5e41 0.36 1.6e-34 0.11 6.2e-09 0.56 1.9e-62

Mask 0.51 2.1e-55 0.04 8.4e-4 0.03 3.2e-3

SD 0.09 1.3e-7 0.57 3.3e-66

Hands 0.58 7.6e-65 0.46 1.3e-45 0.93 1.7e-
197

0.36 8.2e-33

Table S5: MCA results. * supplementary variables (not included in dimension calculation).
Function used to calculate = r dimdesc. 4 dimensions describe 70% of variance - each
dimension is given in the brackets.

For the Fisher’s tests categorical properties were converted into Boolean measures, coded 1
or 0 if property was true or false respectively, for each activity. The true options for the
Boolean measures were whether an activity was associated with a female, UG, PG, staff,
positive test result, each setting (1 variable for each), indoors, ventilated (either outdoors or
ventilated indoors), mask worn, socially distanced at all times, washed hands before, washed
hands after and washed hands both before and after. Some properties could have more
than two answers (role, setting, environment and hand washing) and are split into multiple
Boolean measures.

Correlated variables OR 95% OR CI p value
Female UG 6.472795 3.493324 12.71164 4.36E-10
Female Staff 0.337524 0.21185 0.533905 1.13E-05
Female Positive 2.664691 1.599047 4.529741 0.000469
Female Abroad/aeroplane Inf 1.530765 Inf 0.02225
Staff Abroad/aeroplane 12.2377 1.664423 540.6127 0.011299
Positive Abroad/aeroplane Inf 4.976757 Inf 8.71E-05
PG Campus other 0 0 0.573969 0.018168
Staff Campus other 3.870203 1.280474 14.05116 0.025649
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Positive Hospitality 11.24038 2.337989 107.3193 0.001599
Positive Non-university

work
Inf 3.120526 Inf 0.001599

Staff Other 3.758366 1.543411 10.11401 0.005749
Female Research 0.30956 0.16708 0.562325 0.000254
UG Research 0 0 0.107677 6.22E-10
PG Research 7.039633 3.786352 13.33705 1.09E-09
Positive Research 0.214044 0.079453 0.493209 0.000217
UG Teaching 12.43208 4.413549 43.29909 2.76E-07
Staff Teaching 0.043895 0.001063 0.273694 2.85E-05
Positive Teaching 0.152793 0.017266 0.63121 0.009242
PG Ventilated 0.4818 0.282386 0.822384 0.018302
Exercise Ventilated 51.47862 8.662316 2073.156 8.39E-12
Hospitality Ventilated 0.156996 0.026785 0.646021 0.01201
Non-university
work

Ventilated 0.080149 0.001728 0.673413 0.021085

Research Ventilated 0.304279 0.164898 0.555779 0.000301
Retail Ventilated 0.380887 0.19778 0.729087 0.00783
Social Ventilated 5.696474 1.351154 51.01485 0.029157
PG Indoors 2.038997 1.161187 3.674717 0.029157
Exercise Indoors 0.034354 0.0126 0.079868 5.81E-23
Hospitality Indoors Inf 1.781015 Inf 0.015058
Research Indoors Inf 13.94208 Inf 2.23E-13
Retail Indoors 2.238987 1.091414 4.906826 0.049792
Social Indoors 0.113769 0.027468 0.354014 7.98E-05
Teaching Indoors 8.225179 1.983399 72.93845 0.002343
Positive Mask 0.513287 0.309268 0.85161 0.021085
Abroad/aeroplane Mask 0 0 0.336928 0.001918
Exercise Mask 0.232761 0.128445 0.415815 2.77E-06
Hospitality Mask 0.093413 0.009776 0.449727 0.002052
Travel Mask 14.02407 2.232678 582 0.001612
Research Mask 4.802925 2.073896 12.98889 0.000186
Retail Mask 12.77424 3.211127 111.1286 1.91E-05
Social Mask 0.022366 0.000536 0.144744 1.15E-07
Teaching Mask Inf 2.823971 Inf 0.000961
Indoors Mask 4.082006 2.441941 6.89965 2.22E-07
PG SD 2.000447 1.164936 3.501119 0.025873
Positive SD 0.441388 0.269018 0.720046 0.00265
Abroad/aeroplane SD 0 0 0.504648 0.009137
Exercise SD 3.504704 1.844847 7.01555 0.000202
Travel SD 0.304539 0.111036 0.763133 0.021085
Retail SD 0.420856 0.205431 0.841077 0.026294
Ventilated SD 2.606503 1.577373 4.337191 0.000592
Indoors SD 0.54059 0.327 0.885405 0.029403
PG No hands 0.052152 0.001277 0.315869 7.70E-05
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Staff No hands 3.081542 1.539377 6.415828 0.002903
Positive No hands 3.916108 1.976742 7.937215 0.000232
Abroad/aeroplane No hands 72.79709 9.626162 3206.739 8.78E-07
Travel No hands 10.62188 4.1694 27.59858 2.77E-06
Research No hands 0.089935 0.002189 0.550464 0.005749
Retail No hands 0.114598 0.002779 0.706546 0.021145
Indoors No hands 0.345876 0.156526 0.741046 0.01201
Mask No hands 0.261738 0.126618 0.527625 0.00037
SD No hands 0.108521 0.039392 0.25783 5.02E-08
PG Hands before 2.127534 1.170659 4.027228 0.025873
Abroad/aeroplane Hands before 0.044193 0.001001 0.326248 0.000633
Campus other Hands before 7.733918 1.180849 326.9385 0.04522
Exercise Hands before 0.490605 0.275869 0.877285 0.03556
Travel Hands before 0.336782 0.136612 0.817318 0.035196
Research Hands before 4.038419 1.746327 10.90549 0.001122
Teaching Hands before Inf 3.061419 Inf 0.000469
Indoors Hands before 3.1059 1.852618 5.249085 5.98E-05
Mask Hands before 3.538563 2.097997 6.011858 6.70E-06
Female Hands after 0.437693 0.205932 0.877194 0.039494
PG Hands after 7.117743 2.206516 36.59253 0.000446
Staff Hands after 0.373618 0.191725 0.709843 0.005749
Positive Hands after 0.252148 0.13008 0.479725 8.72E-05
Abroad/aeroplane Hands after 0.016663 0.000378 0.125221 2.77E-06
Travel Hands after 0.117277 0.045819 0.294809 1.67E-05
Research Hands after 13.22285 2.173833 541.5632 0.001557
Mask Hands after 3.494713 1.816303 6.835463 0.000465
SD Hands after 8.446876 3.855998 20.55385 1.16E-08
PG Hands both 2.028788 1.137624 3.74398 0.037134
Abroad/aeroplane Hands both 0.04874 0.001104 0.359476 0.00107
Campus other Hands both 8.507178 1.300038 359.4156 0.044095
Travel Hands both 0.373344 0.151746 0.904635 0.044095
Research Hands both 4.48648 1.943084 12.10406 0.000455
Teaching Hands both 12.97079 2.067061 538.1547 0.002903
Indoors Hands both 2.697677 1.629032 4.493621 0.000341
Mask Hands both 3.53807 2.114156 5.964829 5.62E-06
SD Hands both 1.887969 1.154352 3.099289 0.026142

Table S6: Significant Fisher’s test results - Benjamini-Hochberg adjusted p-values. PG =
Postgraduate, UG = undergraduate, Positive = positive test result, Mask = face covering
worn, SD = socially distanced, No hands = no hand washing, Hands before/after/both =
hands washed before/after/both.
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