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Abstract

The work in this thesis revolves around the study of dynamical systems arising

from iterating quasiregular maps. Quasiregular maps are a natural generalization of

holomorphic maps in higher (real) dimensions and their dynamics have only recently

started being systematically studied.

We �rst study permutable quasiregular maps, i.e. maps that satisfy f ◦g = g◦f ,
where we show that if the fast escaping sets of those functions are contained in

their respective Julia sets then those two functions must have the same Julia set.

We also obtain the same conclusion about commuting quasimeromorphic functions

with in�nite backward orbit of in�nity. Furthermore we show that permutable

quasiregular functions of the form f and g = φ ◦ f , where φ is a quasiconformal

map, have the same Julia sets. Those results generalize well known theorems of

Bergweiler, Hinkkanen and Baker on permutable entire functions.

Next we study the dynamics of Zorich maps which are among the most important

examples of quasiregular maps and can be thought of as analogues of the exponential

map on the plane. For the exponential family Eκ : z 7→ κez, κ > 0, it has been

shown that when κ > 1/e the Julia set of Eκ is the entire complex plane, essentially

by Misiurewicz. Moreover, when 0 < κ ≤ 1/e Devaney and Krych have shown that

the Julia set of Eκ is an uncountable collection of disjoint curves. Bergweiler and

Nicks have shown that a similar result is also true for Zorich maps.

First we construct a certain "symmetric" family of Zorich maps, and we show

that the Julia set of a Zorich map in this family is the whole of R3 when the value of

the parameter is large enough, thus generalizing Misiurewicz's result. Moreover, we

show that the periodic points of those maps are dense in R3 and that their escaping

set is connected, generalizing a result of Rempe. We also generalize a theorem of

Ghys, Sullivan and Goldberg on the measurable dynamics of the exponential.

On a similar note, we study the set of endpoints of the Julia sets of Zorich

maps in the case that the Julia set is a collection of curves. We show that ∞ is

an explosion point for the set of endpoints by introducing a topological model for

the Julia sets of certain Zorich maps, similar to the so called straight brush of Aarts
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and Oversteegen. Moreover we introduce an object called a hairy surface which is a

compacti�ed version of the Julia set of Zorich maps and we show that those objects

are not uniquely embedded in R3, unlike the corresponding two-dimensional objects

which are all ambiently homeomorphic.

Finally, we study the question of how a connected component of the inverse

image of a domain under a quasiregular map covers the domain. We prove that the

subset of the domain that is not covered can be at most of conformal capacity zero.

This partially generalizes a result due to Heins. We also show that all points in this

omitted set are asymptotic values.
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Chapter 1

Introduction

Complex dynamics is concerned with the study of dynamical systems arising from

iterating holomorphic functions between Riemann surfaces. The two most prominent

classes of such maps being rational and entire transcendental functions which have

been studied extensively in the last 40 years. We refer to [9, 11, 30, 92] for thorough

introductions to the subject and its history.

Complex dynamics has many deep connections with many classical areas in com-

plex analysis such as value distribution theory, geometric function theory and Rie-

mann surfaces to name a few.

This dissertation focuses on how we can generalize the theory of complex dy-

namics to the higher dimensional setting of Rd, d > 2.

Our starting point is geometric function theory. Geometric function theory is

the study of the geometric properties of analytic functions in the complex plane.

Classical theorems that are part of this theory are for example the Riemann mapping

theorem, Schwarz's lemma, the open mapping theorem and the maximum principle.

A natural question to ask now is: Is there something like the above theorems for

a suitable class of maps in higher dimensions?

Since there is no natural notion of holomorphicity in higher dimensions we can

only hope that we can �nd some appropriate class of maps for which the geometric

properties of holomorphic functions still persist. Because holomorphic maps on C
are conformal away from critical points (i.e. maps that locally preserve angles), the

�rst class of maps that seems as a good candidate for such an endeavour is the class

of su�ciently di�erentiable conformal maps in Rd. We remind the reader here that

a di�erentiable map f : Rd → Rd is conformal at x ∈ Rd when

Df(x) = λU,

where λ > 0 and U is a map in the orthogonal group O(d). Here Df(x) denotes the

derivative of f at x. Unfortunately, as Liouville's theorem on conformal maps in-
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forms us, this class of maps contains only higher dimensional Möbius transforma-

tions. In fact even if we relax the assumption on di�erentiability and consider only

weakly di�erentiable conformal maps, Liouville's theorem still holds! We refer to

the book [58] for the exact statement of Liouville's theorem and for a proof of the

theorem for C4 maps. The more general theorem for weakly di�erentiable maps in

some Sobolev space can be found in [66] or [65].

Having said that, the only thing left to attempt is to relax the assumption on

conformality. That proves to be a much more fruitful approach. Indeed there is a

class of maps called quasiregular where the condition of angle preservation is relaxed

to bounded distortion of angles and for which one can try to generalize the geometric

aspects of function theory.

Intuitively quasiregular maps are a generalization of holomorphic maps in the

sense that while holomorphic maps, thanks to the Cauchy-Riemann equations, send

in�nitesimally small circles to circles, quasiregular maps send in�nitesimally small

spheres to ellipsoids of bounded eccentricity. At this point one needs to be careful

about the regularity assumptions imposed on the class that we are interested in

studying. It is important not to restrict oneself to overly smooth maps since that

restricts the class of quasiregular maps to homeomorphisms, see [118, p. 12] and

the references mentioned there for more details. The natural amount of regularity

in order to get a rich class of quasiregular maps is to assume that they belong

to some suitable Sobolev space. To be more precise, if d ≥ 2 and G ⊂ Rd is

a domain, then for 1 ≤ p < ∞ the Sobolev space W 1
p,loc(G) consists of functions

f = (f1, f2, · · · , fd) : G→ Rd for which the �rst order weak partial derivatives ∂ifj

exist and are locally in Lp. A continuous map f ∈ W 1
d,loc(G) is called quasiregular

if there exists a constant KO ≥ 1 such that

|Df(x)|d ≤ KOJf (x) a.e., (1.1)

where Df(x) denotes again the (total) derivative,

|Df(x)| = sup
|h|=1

|Df(x)(h)|

denotes the operator norm of the derivative, and Jf (x) denotes the Jacobian deter-

minant.

Perhaps more well known are planar quasiconformal maps, which are quasiregu-

lar injective maps. Quasiconformal maps were �rst considered by Grötzsch in 1928.

Soon after, their importance in complex analysis became clear and they were stud-

ied extensively by Ahlfors, Teichmuller, Lehto, Virtanen and others (see for example

[76] and references therein).
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The theory of quasiregular and quasiconformal maps in higher dimensions started

being developed in the '60s by people such as Reshetnyak, Gehring, Väisälä and

others. Pioneers in this entire area were the Finnish school of mathematics including

Rickman, Martio, Väisälä, Vuorinen and others.

One of the most celebrated results that came out of this program was Rickman's

proof [116, 117] of the big Picard theorem for quasiregular maps and the subsequent

development of a value distribution theory for quasiregular maps. Today the theory

of quasiregular maps is quite developed and a very active area of research with many

deep connections with other areas of mathematics. We refer to the books [58, 60,

65, 118, 132] and the references therein for more information on quasiregular maps

and their history.

Quasiregular and quasiconformal maps have been also used extensively in the

study of the dynamics of holomorphic (and meromorphic) functions in the complex

plane, ever since Sullivan's proof of the "no wandering domains conjecture" in [128].

Perhaps the most famous such use is in quasiconformal surgery (see for example

[27]) where the theory of quasiconformal and quasiregular maps is used to construct

holomorphic maps with speci�c dynamic behaviour.

However, the dynamics of quasiregular maps themselves had been studied only

in the special case where the iterates of the map all have the same amount of

local distortion. These maps are known in the literature as uniformly quasiregular

maps. The dynamics of general quasiregular maps were much less well studied.

That started to change around 2010 when Bergweiler, Fletcher, Nicks and others

started to systematically develop an iteration theory for quasiregular maps in any

dimension, see for example [16, 17, 20�23, 52, 53, 55, 57, 98, 99, 101].

In their work [17, 23] Bergweiler and Nicks de�ned a Julia set for quasiregular

maps, by using something like the blow-up property that the classical Julia set has

and showed, perhaps surprisingly, that this new Julia set behaves in many ways like

the one for holomorphic maps on the plane. Their work opened up the way for many

new research challenges and directions to follow.

Following this direction, in this thesis we work on three di�erent projects on

quasiregular dynamics. We will brie�y describe below what each project is about.

For more details we refer the reader to the introductions of the corresponding chap-

ters.

Permutable quasiregular maps

Two maps f and g are called permutable if f ◦ g = g ◦ f . In Chapter 3 we study

permutable quasiregular maps in Rd. Inspired by the work of Fatou and Julia [48,
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68] on permutable rational maps many people have worked on trying to classify all

commuting maps, see for example [44, 106, 122, 123]. An important theorem in

this endeavour is the fact that commuting rational maps have the same Julia sets.

In the case of entire transcendental functions now we still do not know if any two

commuting such maps have the same Julia set even though there has been a lot of

research in this direction, see for example [10, 18, 97, 137, 138].

Most of the work in Chapter 3 �rst appeared in [131] and revolves around the

question of whether or not permutable quasiregular maps have the same Julia set.

Inspired by results in the complex plane we prove some theorems in that direction

some of which are even new in the well studied case of holomorphic maps on the

plane.

Dynamics of Zorich maps

In Chapter 4 we study the dynamics of Zorich maps. Zorich maps were �rst de�ned

by Zorich in [141] and are one of the most important classes of quasiregular maps.

They can be thought of as the higher dimensional counterpart to the exponential

map in the complex plane.

The exponential family

Eκ(z) = κez, κ ∈ C \ {0},

is the simplest one-parameter family of transcendental entire functions since it only

has one singular value. The singular values of a function are its asymptotic and

critical values and they play a very important role in the dynamical behaviour of

the function. For this reason the dynamics of exponential maps have been studied

extensively and the literature on them is vast. Without wanting to be exhaustive

we mention [6, 36, 39, 40, 59, 84, 109, 110, 112, 126]. We also refer the interested

reader to the survey [38] on exponential dynamics.

Here we are mainly interested in two results about exponential maps. For 0 <

κ ≤ 1/e, as was proven �rst by Devaney and Krych in [40], the Julia set J (Eκ)

is a so called "Cantor bouquet" which consists of uncountably many disjoint curves

each of which has a �nite endpoint and goes o� to in�nity. On the other hand,

when κ > 1/e Misiurewicz in [94] proved that the Julia set J (Eκ) equals the entire

complex plane C.
In the higher dimensional setting of Zorich maps now, Bergweiler and Nicks in

[16, 23], have managed to generalize the �rst of these results in R3. Our main goal

in Chapter 4 is to obtain a generalization of Misiurewicz's result for Zorich maps in

R3 and various other results along this theme, inspired by classical results for the
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exponential family in the complex plane. Most of this work �rst appeared in [130].

On a similar note, we study the topology of Julia sets of Zorich maps in the case

where the Julia sets are collections of curves. We show that∞ is an explosion point

for the set of endpoints of those curves. This generalizes a result of Mayer [88] for

exponential maps. To prove this we develop a topological model for the Julia sets of

Zorich maps which is inspired by the straight brush model of Aarts and Oversteegen

[1] and we show that there are some di�erences with the two-dimensional case. This

work can be found in [129].

Mapping properties of domains under quasiregular maps

Finally, in Chapter 5 we study a problem on the mapping properties of domains

in Rd under quasiregular maps. To be more precise, suppose that V is an open

and connected set of Rd. Let f be a quasimeromorphic map in Rd. Consider now

any connected component G of f−1(V ). A very interesting and important problem

would then be

Problem: How big can the set V \ f(G) be?

That problem was solved by Heins in 1952 for the case of meromorphic maps

in C. Much later, using di�erent methods, Herring and Bolsch improved Heins'

theorem to a more general class of maps. The answer to the above problem for

meromorphic maps is that V \ f(G) can contain at most two points.

A particular case of interest is when G and V are quasi-Fatou components (the

analogues of Fatou components for holomorphic maps).

In Chapter 5 we are going give some results towards a generalization in higher

dimensions of Heins' theorem.
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Chapter 2

Preliminaries

2.1 Complex dynamics

In this section we will give a brief overview of the iteration of holomorphic functions

on the complex plane. Our focus will be the study of transcendental entire functions,

which in large parts runs in parallel with the more developed theory of iteration of

rational functions. For a more thorough introduction to these subjects we refer to

[11, 30, 92].

The general theory of iteration of holomorphic/rational maps starts from the

seminal work of Fatou [50] and Julia [67]. Fatou and Julia initially developed their

theory for rational functions and later on Fatou [49] also considered iteration of

entire transcendental functions. Both of them de�ned a partition of the complex

plane in two sets. Those two sets today bear their name. They are the Fatou set, F ,
and the Julia set, J . In order to de�ne them, let us consider a holomorphic function

f : C→ C and denote by {fn} the family of iterates of f , namely the family

{f ◦ f · · · ◦ f︸ ︷︷ ︸
n times

: n ∈ N}.

Then the Fatou set F is de�ned as the set of points in a neighbourhood of which

this family is normal with respect to the spherical metric and the Julia set J is

de�ned as its complement.

In what follows we are going to need the notions of forward orbit which is de�ned

as

O+(z) := {fn(z) : n ≥ 0}

and that of backward orbit which is de�ned as

O−(z) := {w ∈ C : fn(w) = z for some n ≥ 0} =
⋃
n≥0

f−n(z).
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Another class of maps for which we are going to need the notion of a Julia set

is the class of transcendental meromorphic functions for which the set O−(∞) is

in�nite. For such maps the Julia set is simply de�ned as J (f) = O−(∞).

We will say that a set S ⊂ C is completely invariant if z ∈ S implies f(z) ∈ S
and conversely. The exceptional set E(f) is de�ned as the set of all points whose

backward orbit is �nite. An easy consequence of Picard's Theorem is that the

exceptional set can contain at most one point.

Also a point z ∈ C is called periodic for f if fn(z) = z, for some n ∈ N.
The following theorem contains some of the important properties of the Fatou

and Julia sets. We also refer to [11] for the proofs and many more properties. In

what follows we denote by |S| the cardinality of a set S.

Theorem 2.1.1. Let f be either a rational function of degree ≥ 2 or a transcendental

entire function. Then

a. J (f) 6= ∅. In fact, card(J (f)) =∞.

b. F(f) is open and J (f) is closed.

c. F(f) = F(fn) and J (f) = J (fn), ∀n ≥ 1.

d. F(f) and J (f) are completely invariant sets.

e. If S is a closed and completely invariant set and card(S) ≥ 3, then J (f) ⊂ S.

f. If U is open and U ∩ J (f) 6= ∅ then C \ E(f) ⊂
⋃
n≥0 f

n(U). In fact the

following stronger result is true.

g. If K is any compact subset of C that does not contain exceptional points and

U is as above then K ⊂ fn(U) for all large enough n.

h. If z ∈ J (f) \ E(f) then J (f) = O−(z).

i. The periodic points of f are dense in J (f).

It is worth mentioning here that the property (f) is the so called blow-up prop-

erty of the Julia set and it will be used later to de�ne the Julia set for quasiregular

maps.

An important thing to note here is that through the Arzela-Ascoli theorem the

Julia set can be viewed as the set of points in the complex plane at which the dy-

namical system produced by the iterates of f has sensitive dependence on initial
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conditions. This means that nearby points in the Julia set will end up far apart

after some number of iterations. In other words the family is not equicontinuous

with respect to the spherical metric. Moreover, as was shown by Fatou and Julia in

the case of rational maps and Baker [4] in the case of transcendental entire maps,

the periodic points of f are dense in the Julia set. Combining those two facts with

the blow up property we obtain that the Julia set is the set where the dynamics are

chaotic, according to the de�nition of chaos by Devaney (see [37]).

Another important set in the theory of iteration of transcendental entire functions

is the escaping set, which was de�ned �rst by Eremenko [43] and is the set

I(f) := {z ∈ C : lim
n→∞

|fn(z)| =∞}.

Eremenko in [43] proved that for transcendental entire functions the escaping set is

non-empty and furthermore

∂I(f) = J (f).

Eremenko also showed that all the connected components of I(f) are unbounded

and he conjectured that the same is true for I(f). That conjecture is one of the

major open problems in complex dynamics.

Eremenko's Conjecture: Every component of I(f) is unbounded.

His conjecture is motivated by examples such as κez for 0 < κ ≤ 1/e where

the escaping set is a collection of disjoint, unbounded curves and thus its connected

components (those curves) are unbounded. In fact it has been shown in [126] that

for all values of the parameter κ ∈ C \ {0} the path-connected components of I(f)

are unbounded.

Although Eremenko's conjecture has been shown to hold for large classes of entire

transcendental maps, see for example [7, 111, 120, 124], the general case is still open.

Finally, let us discuss the fast escaping set. The fast escaping set is an important

subset of the escaping set and was �rst de�ned by Bergweiler and Hinkkanen in [18].

For a transcendental entire function they de�ned it as

A(f) := {z ∈ C : there exists L ∈ N such that |fn(z)| > M(R, fn−L), for n > L}
(2.1)

where M(r, f) = max|z|=r |f(z)|, r > 0 and R > 0 is large. It is obvious that

A(f) ⊂ I(f). Intuitively the fast escaping set is the set of points that escape to

in�nity as fast as possible. In [18] it is also proved that

J (f) = ∂A(f).
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Rippon and Stallard in [121] prove that all components of A(f) are unbounded

which implies that at least one component of I(f) is unbounded. In the last years

the fast escaping set has been studied extensively and it is now a central object in

the study of the dynamics of transcendental entire functions. Besides the de�nition

that we mentioned above Rippon and Stallard, in their papers [120, 121], gave two

other equivalent de�nitions for the fast escaping set which are useful. They showed

that

A(f) = {z ∈ C : there exists L ∈ N such that |fn+L(z)| > Mn(R, f), for n > 0},
(2.2)

where Mn(r, f) denotes the iteration of M(r, f) with respect to the variable r, and

R > 0 is any value such that M(r, f) > r for r ≥ R or, equivalently, such that

Mn(R, f)→∞ as n→∞. Also they proved that

A(f) = {z ∈ C : there exists L ∈ N such that fn+L(z) 6∈ T (fn(D)), for all n ∈ N},
(2.3)

where D is any open disc meeting J (f) and T (X) is the topological hull of the set

X ⊂ C, in other words the union ofX with its bounded complementary components.

For the proof that those de�nitions are equivalent, and many more interesting

properties of the fast escaping set, we refer to [121].

2.2 Finite quotients of a�ne maps

In this section we will brie�y describe a very important class of rational functions

on the complex plane which appear in the study of permutable maps. Using the

terminology introduced by Milnor in [91] we will call those maps �nite quotients of

a�ne maps. Since our study here will not be extensive we refer the interested reader

to [91] for more details.

Let Λ be a lattice on the plane, meaning a discrete additive subgroup of C. Any
lattice, assuming that it is non-trivial, is generated by either one element or two

elements. In what follows we assume that the lattice Λ is non-trivial.

De�nition 2.2.1. A rational map f of degree two or more will be called a �nite

quotient of an a�ne map if there is a lattice Λ on the complex plane, an a�ne map

A(z) = az + b from C/Λ to itself and a �nite to one holomorphic map Θ : C/Λ →
C \ E(f) which make the following diagram commute:

10



C/Λ C/Λ

C C

A

Θ Θ

f

(2.4)

Note that instead of having chosen A to be an a�ne map from C/Λ to itself we could

have demanded A to be an a�ne map on the complex plane with AΛA−1 ⊂ Λ.

The above diagram essentially tells us that f comes as a solution to the functional

equation

f ◦Θ = Θ ◦ A,

which when A is a linear map is the so called Schröder functional equation. That

equation plays a fundamental role, through the Koenigs Linearization Theorem [92,

Chapter 8], when studying the dynamics of a holomorphic map around attracting

�xed points.

Let us now see some examples of �nite quotients of a�ne maps.

Power Maps. The simplest example is that of power maps which are the maps

z 7→ zn, n ∈ N. To obtain the power from the construction we described above take

Λ = 2πiZ, Θ(z) = ez and A(z) = nz. It is easy to see then that the diagram

C/2πiZ C/2πiZ

C C

nz

ez ez

zn

commutes. So power maps are �nite quotients of a�ne maps.

Tchebyche� polynomials. Tchebyche� polynomials, denoted by Tn, are the de-

gree n polynomials that are de�ned as solutions of the equation

Tn(cos z) = cos(nz).

By their very de�nition we can see that Tchebyche� polynomials are indeed �nite

quotients of a�ne maps which make the following diagram commute

C/2πZ C/2πZ

C C .

nz

cos z cos z

Tn

In the above examples note that the lattice Λ has rank one. We will now split

the class of �nite quotients of a�ne maps in two classes. First we assume that the

11



lattice we used in the de�nition has rank one. Then the following Theorem tells us,

in a sense, that in this case the only �nite quotients of a�ne maps are power maps

and Tchebyche� polynomials.

Theorem 2.2.1 (Milnor, [91]). If f is a �nite quotient of an a�ne map and Λ

has rank one, then f is conformally conjugate to a power map or to a Tchebyche�

polynomial, Tn or to −Tn, for some n ∈ N.

Lattès maps. In the case where the lattice Λ has rank two then we call the map

that we obtain from the commutative diagram 2.4 a Lattès map. Lattès maps were

the �rst examples of rational functions whose Julia set is the entire Riemann sphere

and they play an important role in the study of the dynamics of rational functions.

2.3 Background on quasiregular maps

2.3.1 Quasiregular maps

Here we will review some basic notions and de�nitions from the theory of quasireg-

ular maps. For a more detailed treatment of quasiregular maps we refer to [60, 65,

118, 134].

First we recall the de�nition of a quasiregular map. Let G be a domain in Rd. A

continuous map f ∈ W 1
d,loc(G) is called quasiregular (abbreviated qr) if there exists

a constant KO ≥ 1 such that

|Df(x)|d ≤ KOJf (x) a.e., (2.5)

where Df(x) denotes the total derivative,

|Df(x)| = sup
|h|=1

|Df(x)(h)|

denotes the operator norm of the derivative, and Jf (x) denotes the Jacobian deter-

minant. Also let

`(Df(x)) = inf
|h|=1
|Df(x)(h)|.

The condition that (2.5) is satis�ed for some KO ≥ 1 implies that

KI`(Df(x))d ≥ Jf (x), a.e.,

for some KI ≥ 1. The smallest constants KO and KI for which those two conditions

hold are called the outer dilatation and inner dilatation respectively. We call the

maximum of those two numbers the dilatation of f and we denote it by K(f). We

say that f is K-quasiregular if K(f) ≤ K, for some K ≥ 1.

12



The notion of quasiregularity can also be de�ned more generally for maps f :

M → N , where M and N are oriented connected Riemannian n-manifolds. A

particular case of interest here is when N = Rd := Rd ∪ {∞} equipped with the

spherical metric (obtained via the stereographic projection from the unit sphere)

and M is a domain in Rd. In that case, we call a quasiregular map f : M → N

quasimeromorphic (abbreviated qm).

As it turns out if G ⊂ Rd, a non constant and continuous map f : G → Rd is

quasimeromorphic if f−1(∞) is discrete and f is quasiregular in G\(f−1(∞)∪{∞}).

Next we note that if f and g are quasiregular maps, then the composition f ◦ g
(assuming it is well de�ned) is also quasiregular. Moreover, it is true that K(f ◦g) ≤
K(f)K(g).

We say that f is uniformly K-quasiregular (abbreviated uqr) if all the iterates

of f are K-quasiregular.

Quasiregular maps have many of the properties that holomorphic maps have. In

particular, we will often use the fact that non-constant quasiregular maps are open

and discrete.

Theorem 2.3.1 (Reshetnyak,[114, 115]). Non-constant qr mappings are open and

discrete. Moreover quasiregular maps are di�erentiable almost everywhere.

We are also going to need the following theorem. Note that m denotes the

Lebesgue measure and N(y, f, E) = card(f−1(y) ∩ E), y ∈ Rd.

Theorem 2.3.2 ([118] I. Proposition 4.14). Let f : G→ Rd be a qr map. Then the

following hold:

1. let E ⊂ G be such that m(E) = 0 then m(f(E)) = 0 (Lusin's N property).

2. The change of variables formula holds∫
E

(h ◦ f)Jfdm =

∫
f(E)

h(y)N(y, f, E)dy,

for any measurable h : Rd → [0,∞] and all measurable E ⊂ G.

A quasiregular map f : Rd → Rd is said to be of transcendental type if limx→∞ f(x)

does not exist and it is said to be of polynomial type if this limit is ∞.

For a quasiregular map f we de�ne the degree of the map, and we denote it by

deg(f), as

deg(f) := max
x∈Rd

card(f−1(x)).
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Note that f is of polynomial type if and only if deg(f) <∞ or equivalently f is of

transcendental type if and only if deg(f) =∞.

Another important result about quasiregular maps is the quasiregular analogue

of Picard's theorem. That was �rst proven by Rickman in [116] and takes the

following form:

Theorem 2.3.3 (The big Rickman-Picard Theorem). Let f : Rd → Rd be a non-

constant K-quasiregular map, where d ≥ 2 and K ≥ 1. Then there exists a constant

q = q(d,K) such that there are at most q(d,K) points that are taken only �nitely

often by f .

Of particular interest to us here is the corresponding "small" version of the above

result.

Theorem 2.3.4 (The small Rickman-Picard Theorem). For every d ≥ 3 and K ≥ 1

there exists a positive integer q = q(d,K) such that if a1, . . . , aq ∈ Rd are distinct

and f is a K-qr mapping f : Rd → Rd \ {a1, . . . , aq} then f is constant.

Both of the above theorems hold for quasimeromorphic maps as well, we refer to

[118, Chapter IV] for more details. Also the small Rickman-Picard theorem is shown

to be sharp in [41, 117], meaning that for any number q there is a quasiregular map

in Rd omitting q points.

Moreover, it is worth mentioning here that the Rickman-Picard theorem has

been reproven many times and in di�erent contexts by using di�erent methods than

those of Rickman, see for example [26, 45, 64, 65, 78, 108].

The Rickman-Picard theorem now implies that if we de�ne the exceptional set

E(f) for a K-quasiregular map as the points with �nite backward orbit, then

|E(f)| ≤ q(d,K).

Finally, let us give some easy examples of quasiregular maps.

Examples.

1. All holomorphic maps are 1-quasiregular.

2. Let f : R2 → R2 be the map f(x, y) = (kx, y), where k > 1. A simple compu-

tation can show that this map, while not holomorphic, is indeed k-quasiregular.

Of course we can generalize this construction to higher dimensions.

3. Another easy example is provided by winding maps which are maps f : R2 →
R2 given in polar coordinates by (r, θ) 7→ (r,Nθ), where N ∈ N and N ≥ 2.
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Again a simple computation shows that those maps are N -quasiregular and

KI(f) = KO(f) = N . This construction can also be generalized in higher

dimensions.

4. Another interesting class of examples is in a sense a generalization of the

exponential map in the complex plane called the Zorich maps. For simplicity

let us describe its construction on R3. Consider the unit square Q = [0, 1]2,

the hemisphere

S = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}

and any L bi-Lipschitz map h : Q→ S. De�ne now the map Z : Q×R→ R3

as

Z(x, y, z) = ezh(x, y).

This map sends the square beam Q×R to the upper half-space. We can now

extend this map to a map Z de�ned in the whole R3 by repeatedly re�ecting

across the sides of square beams and the xy-plane. We will show that this map

is quasiregular. Moreover its dilatation is bounded in terms of the bi-Lipschitz

constant L.

First notice that since bi-Lipschitz maps are a.e. di�erentiable we will have

that when (x, y, z) ∈ Q× R then

DZ(x, y, z) = ez



∂h1
∂x

(x, y) ∂h1
∂y

(x, y) h1(x, y)

∂h2
∂x

(x, y) ∂h2
∂y

(x, y) h2(x, y)

∂h3
∂x

(x, y) ∂h3
∂y

(x, y) h3(x, y)


.

We now have that

|DZ(x, y, z)|3 = e3z sup
u21+u22+u23=1

|Au1 +Bu2 + Cu3| ≤ e3z(2L+ 1)3,

where A, B and C are the columns of DZ and we have used the triangle

inequality and the fact that h is L-Lipschitz. We can now also show that

JZ ≥ e3z

L2 , see proof of Lemma 4.2.6. Also since the map is de�ned through

re�ections in the rest of R3 the bounds on JZ and |DZ|3 do not change when

(x, y, z) is in other beams. Thus the Zorich map is quasiregular and its outer

dilatation is bounded in terms of the bi-Lipschitz constant. Similarly we can

estimate its inner dilatation.
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Note also that this map is doubly periodic with periods (4, 0, 0) and (0, 4, 0)

while it also omits 0. Of course this construction can be done in any dimen-

sions. It is also worth noting that the de�nition of the Zorich maps is �exible.

For instance we could have chosen a bigger square for our map h. Moreover,

instead of mapping the initial square in a hemisphere we could have mapped

it to a su�ciently "nice" surface (see section 4.6).

For more on Zorich maps see Chapter 4.

5. Another important family of quasiregular maps (in fact uniformly quasiregu-

lar) is the analogues of power, Tchebyche� and Lattés maps. Those were �rst

constructed by Mayer in [89, 90] by using Schröder's equation.

We start again with a discrete subgroup Λ of Rd which is isomorphic to either

Zd or Zd−1, a similarity A(x) = λOx, where O is an orthogonal transformation

and λ > 0, such that AΛA−1 ⊂ Λ and a quasiconformal map Θ : Rd/Λ→ Rd.

The functions f that we are looking for come as solutions to the Schröder

equation.

Theorem 2.3.5 (Theorem 21.4.1, [65]). Let Λ, A and Θ be as above then

there is a solution f to the functional equation

f ◦Θ = Θ ◦ A

and f is a uniformly quasiregular map of Rd.

When the subgroup Λ is isomorphic to Zd−1 then depending on the quasiregular

map Θ, which can be taken to be any of the quasiregular analogues of the

exponential and trigonometric functions, the above theorem gives us the uqr

analogues of power and Tchebyche� maps. When Λ is isomorphic to Zd we

obtain the uqr analogues of Lattés maps. We refer to [65] for more details on

the construction.

It is also worth mentioning here that the above construction can be done in a

more general setting, see [54], but that is not needed for our purposes.

2.3.2 Dynamics of uniformly quasiregular maps

As we already mentioned in the previous section uniformly quasiregular maps are

quasiregular maps whose iterates are all K-quasiregular for the same constant K.

For those kinds of quasiregular maps there is a version of Montel's theorem available

which one can prove using the analogue of Zalcman's lemma (see for example [13])

for quasiregular maps which was proven by Miniowitz [93].

16



Theorem 2.3.6. Let d ≥ 2, K ≥ 1 and G be a domain in Rd. If a1, . . . , aq ∈ Rd

are distinct, where q is as in Theorem 2.3.4 then the family of all K-qr maps f :

G→ Rd \ {a1, . . . , aq} is normal.

As a result uniformly quasiregular maps usually have better dynamical properties

than general quasiregular maps and their iterative theory resembles more closely

that of holomorphic maps, see for example [63]. However uqr maps is a much more

restricted class of maps. For example it is not known if there exists a transcendental

type uqr map f : Rd → Rd for d ≥ 3.

For more on the dynamics of uniformly quasiregular maps we refer to [15], [65,

Chapter 21] and we also mention here the more recent papers [56, 69, 103, 104].

The Fatou set and the Julia set for a uniformly quasiregular map are de�ned

exactly in the same way they were de�ned for holomorphic maps. Namely the

Fatou set is the set where the iterates form a normal family and the Julia set is

its complement. Theorem 2.1.1 holds almost unchanged for uniformly quasiregular

maps.

Theorem 2.3.7. Let f be a uniformly quasiregular function which is a self map,

with degree ≥ 2, of Rd. Then

a. J (f) 6= ∅. In fact, card(J (f)) =∞;

b. F(f) is open and J (f) is closed;

c. F(f) = F(fn) and J (f) = J (fn), ∀n ≥ 1;

d. F(f) and J (f) are completely invariant sets;

e. If S is a closed and completely invariant set and card(S) ≥ q(d,K) + 1, where

q is Rickman's constant, then J (f) ⊂ S;

f. If U is open and U ∩ J (f) 6= ∅ then Rd \ E(f) ⊂
⋃
n≥0 f

n(U);

g. If z ∈ J (f) \ E(f) then J (f) = O−(z);

Remark. We could also study the dynamics of uniformly quasiregular maps of

transcendental type. However, for d ≥ 3 the existence of such maps is still an open

problem.

17



2.3.3 Quasiregular dynamics

In this section we drop the condition that all iterates of f are K-quasiregular. In [17]

Bergweiler developed a Fatou-Julia theory for quasiregular self-maps of Rd, which

include polynomial type quasiregular maps, and can be thought of as analogues of

rational maps, while in [23] Bergweiler and Nicks did the same but for transcendental

type quasiregular maps.

An important tool that we will need in order to de�ne the Julia set of a quasireg-

ular map is the capacity of a condenser. A condenser in Rd is a pair E = (A,C),

where A is an open set in Rd and C is a compact subset of A. The conformal capacity

or just capacity of the condenser E is de�ned as

capE = inf
u

∫
A

|∇u|ddm,

where the in�mum is taken over all non-negative functions u ∈ C∞0 (A) which satisfy

u|C ≥ 1 and m is the d-dimensional Lebesgue measure. We will call such functions

admissible.

If cap(A,C) = 0 for some bounded open set A containing C, then it is also true that

cap(A′, C) = 0 for every other bounded set A′ containing C;[118, Lemma III.2.2].

In this case we say that C has zero capacity and we write capC = 0; otherwise

we say that C has positive capacity and we write capC > 0. Also for an arbitrary

set C ⊂ Rd, we write capC = 0 when capF = 0 for every compact subset F of

C. If the capacity of a set is zero then this set has Hausdor� dimension zero [118,

Theorem VII.1.15]. Thus a zero capacity set is small in this sense. It is also quite

easy to see that for any two sets S,B with S ⊂ B if capB = 0 then capS = 0.

A useful property of quasiregular maps is that they do not increase too much the

capacity of condensers, namely the following theorem holds, which is known as the

KI inequality, [118, Theorem II.10.10].

Theorem 2.3.8. Let f : G→ Rd be a nonconstant quasiregular map and E = (A,C)

a condenser in G, then

cap f(E) ≤ KI(f) capE.

Following [17, 23], we de�ne the Julia set of f : Rd → Rd, denoted J (f), to be

the set of all those x ∈ Rd such that

cap

(
Rd \

∞⋃
k=1

fk(U)

)
= 0
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for every neighbourhood U of x. We call the complement of J (f) the quasi-Fatou

set, and we denote it by QF (f). We also want to de�ne the Julia set for a quasimero-

morphic map of transcendental type with at least one pole, f : Rd → Rd. This was

done by Warren in [140] where he de�ned

J (f) =
{
x ∈ Rd \O−f (∞) : card

(
Rd \O+

f (Ux)
)
<∞

}
∪O−f (∞),

where Ux is any neighbourhood of x with Ux ⊂ Rd\O−f (∞) andO+
f (Ux) =

⋃∞
n=0 f

n(Ux).

In particular if f has an in�nite backward orbit of in�nity then J (f) = O−f (∞).

Note here that we used something like the blow-up property, that the Julia set

in complex dynamics has, in order to de�ne our Julia set. Also note that we do

not assume anything about the normality of the family of iterates of f in the quasi-

Fatou set. For the motivation behind those de�nitions we refer to [15, 17]. Also

let us mention that the de�nition of the Julia set as given in the section above also

includes uniformly quasiregular maps and the two de�nitions are equivalent in this

case. This is also true in the case of holomorphic maps in the complex plane.

The theorem below summarizes the basic properties of the Julia set. For the proofs

of these facts we refer to [17, 23].

Theorem 2.3.9. Let f : Rd → Rd be a quasiregular map with deg(f) > KI(f).

Then

a. J (f) 6= ∅. In fact, card(J (f)) =∞;

b. The classical de�nition of J (f), for holomorphic f : C → C, using non-

normality agrees with the one we have given;

c. The set J (f) is closed and the set QF (f) is open;

d. The set J (f) and the set QF (f) are completely invariant sets;

If we further assume that capO−f (x) > 0 for all x ∈ Rd \ E(f) then

e. J (f) ⊂ O−f (x) for all x ∈ Rd \ E(f);

f. J (f) = O−f (x) for all x ∈ J (f) \ E(f);

g. J (fp) = J (f), for all p ∈ N;

h. Rd \O+
f (U) ⊂ E(f) for every open set U , with U ∩ J (f) 6= ∅;
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i. J (f) is perfect.

Remark. The condition deg g > K(g) for g a polynomial type quasiregular map

appears naturally in quasiregular dynamics, see for example [15, 17, 55]. It plays

the same role as the condition deg g ≥ 2 in holomorphic dynamics, when g is a

polynomial.

Remark. It has been conjectured in [17, 23] that capO−f (x) > 0, for all x ∈ Rd\E(f)

always holds for quasiregular maps in Rd (assuming deg(f) > KI) and thus that

assumption in the theorem above is not needed.

The escaping set of a quasiregular map can be de�ned in the same way as we

did for entire maps. Namely, if f : Rd → Rd is a quasiregular map

I(f) = {x ∈ Rd : lim
n→∞

|fn(x)| → ∞}.

It was �rst studied in [21, 55] where the authors showed that I(f) 6= ∅ and also

provided an example of a quasiregular map with a bounded connected component

of the escaping set. Thus Eremenko's conjecture does not hold in this setting.

Moreover, in the quasiregular case it is only true that J (f) ⊂ ∂I(f).

Finally let us discuss the fast escaping set of a quasiregular map, which was �rst

described by Bergweiler-Drasin-Fletcher in [20]. It is de�ned in a very similar way

to the complex case, namely

A(f) := {x ∈ Rd : there exists L ∈ N such that fn+L(x) 6∈ T (fn(B(0, R))), for all n ∈ N},
(2.6)

where R > 0 is chosen so large that

T (fn(B(0, R))) ⊃ B(0, rn)

and rn > 0 is a sequence that tends to ∞. Such an R is guaranteed to exist by [21,

Lemma 4.1].

Also Bergweiler-Drasin-Fletcher in [20] gave two other equivalent de�nitions, in the

same spirit as those for the complex case.

A(f) = {x ∈ Rd : there exists L ∈ N such that |fn(x)| > M(R, fn−L), for all n > L}
(2.7)

and

A(f) = {x ∈ Rd : there exists L ∈ N such that |fn+L(x)| > Mn(R, f), for all n > 0}.
(2.8)

Furthermore they proved that
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Theorem 2.3.10. Let f : Rd → Rd be a quasiregular map of transcendental type.

Then A(f) is non-empty and every connected component of A(f) is unbounded.

For more details we refer to [20]. Unfortunately, in the quasiregular case it is still

not known if J (f) = ∂A(f). But let us mention that the above equality is known

to be true if f does not grow too slowly and we always know that J (f) ⊂ ∂A(f).

We refer to [22] for more details on this.
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Chapter 3

Permutable quasiregular maps

3.1 Introduction

Two functions f and g are called permutable or commuting if they satisfy the equa-

tion

f ◦ g = g ◦ f, (3.1)

whenever both sides are de�ned. A very natural question to ask, once you con�ne

your functions to a certain function space, is for which functions does this equation

hold? Is there any sort of classi�cation that can be achieved about permutable

functions in di�erent function spaces? Of course this problem at �rst seems ex-

tremely hard and probably not even solvable in certain function spaces. However if

we con�ne ourselves to the class of rational functions in the complex plane there is

a solution.

The �rst people who managed to make some progress in the problem of classifying

commuting rational functions on the complex plane were Fatou and Julia. The way

they approached the problem was through the then newly-found theory of complex

dynamics. Both Fatou and Julia in [48] and [68] �rst show that commuting rational

functions have the same Julia sets and then use this fact to �nd all commuting

rational functions that do not share an iterate (i.e. fm 6= gn for all n,m ∈ N) and do

not have as their common Julia set the entire complex plane. Much later Eremenko

in [44] developed this method further and managed to classify all commuting rational

functions that do not share an iterate. It is also worth mentioning here that Ritt

had, long before Eremenko, solved the problem of �nding all commuting rational

functions, in [123], and all commuting polynomials in [122]. However Ritt used

completely di�erent methods than those of Fatou and Julia.

In the theorem that follows two rational maps f1 and f2 are called conformally

conjugate if there is a conformal map φ of the Riemann sphere with φ◦f1◦φ−1 = f2.
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Theorem 3.1.1 (Ritt [123] and Eremenko [44]). Let f, g : C→ C be two commuting

rational functions such that fn 6= gm, for allm,n ∈ N. Then f and g are conformally

conjugate to maps that are both either Láttes maps, power maps or Tchebyche�

polynomials.

For transcendental entire functions the problem is much harder and is still open

to this day. It is not even known if permutable transcendental entire functions have

the same Julia set or not. However Bergweiler and Hinkkanen [18] in 1999, by

introducing the fast escaping set A (f), managed to prove the following.

Theorem 3.1.2 (Bergweiler and Hinkkanen [18]). Let f and g be permutable,

transcendental entire functions such that A(f) ⊂ J (f) and A(g) ⊂ J (g) then

J (f)=J (g).

Recently, Benini, Rippon and Stallard in [10] managed to improve the above the-

orem and include some cases where A(f) 6⊂ J (f) and A(g) 6⊂ J (g). In particular

they managed to show that two commuting functions will have the same Julia set

if all their wandering Fatou components are multiply connected (such components

are in the fast escaping set but not the Julia set). However the general case still

remains open.

Passing to higher dimensions now, there are examples of permutable quasiregu-

lar maps. So the natural thing to ask is: Do permutable quasiregular maps have a

similar dynamic behavior? Can we generalize Theorem 3.1.2 to quasiregular maps?

Our �rst result tells us that indeed Theorem 3.1.2 holds in this setting as well.

Theorem 3.1.3. Let f : Rd → Rd and g : Rd → Rd be permutable, quasiregular

maps of transcendental type such that A(f) ⊂ J (f) and A(g) ⊂ J (g), then J (f) =

J (g).

The more general version of this theorem would be the analogous result to that

of Benini-Rippon-Stallard. Unfortunately their proof relies heavily on the properties

of the hyperbolic metric under holomorphic maps. Such an approach does not work

in higher dimensions.

Another interesting question would be whether or not permutable quasiregular

maps of polynomial type must have the same Julia set. Thanks to the result of Fatou

and Julia [48, 68] we would expect that the answer is yes. However this problem

seems much harder in the quasiregular case. On the other hand we can prove the

following:
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Theorem 3.1.4. Let f : Rd → Rd and g : Rd → Rd be permutable, uniformly

quasiregular self maps of Rd of degree ≥ 2. Then J (f) = J (g).

Moreover, we can generalize a result of Baker [5, Lemma 4.5] which deals with a

special case and can be applied to quasiregular maps of polynomial or transcendental

type.

Theorem 3.1.5. Let f : Rd → Rd and g : Rd → Rd be permutable quasiregular

maps. Assume that capJ (f) > 0, capJ (g) > 0 and g = φ ◦ f , where φ : Rd → Rd

is a quasiconformal map. Then J (f) = J (g).

Note here that in the above theorem we assume that the capacity of the Julia

sets of our functions is positive. It is conjectured that this always holds when the

Julia set is in�nite and thus we do not actually need this assumption. However, we

can prove that this condition can be dropped if g has a very speci�c form. Namely

the following holds.

Theorem 3.1.6. Let f : Rd → Rd and g : Rd → Rd be permutable quasiregular

maps of transcendental type. Assume that g = af + c, where a is a positive real

number and c is a constant in Rd. Then J (f) = J (g).

We can also consider the case where f, g are quasimeromorphic (see Chapter 2 for

the de�nition). It is interesting to ask whether something similar with Theorem 3.1.3

holds in this case. For quasimeromorphic maps we say that they are permutable if

f ◦ g = g ◦ f holds for points in Rd where both sides are de�ned.

When studying the dynamics of meromorphic functions we usually divide them

in two classes. The �rst one, and the most general one, is

M := {f : f is transcendental meromorphic and card(O−f (∞)) =∞},

while the other one is

P := {f : f is transcendental meromorphic and card(O−f (∞)) <∞}.

A typical example of a map in class P is ez

z
. The iteration theory and the methods

of proof in those two classes are often quite di�erent with class P being often closer

to the class of transcendental entire functions instead. The situation is similar

for quasimeromorphic maps. For functions in the analogous class M in higher

dimensions we prove the following.

Theorem 3.1.7. Let f : Rd → Rd and g : Rd → Rd be permutable, quasimeromor-

phic maps of transcendental type with card(O−f (∞)) = ∞ = card(O−g (∞)). Then

J (f) = J (g).
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This theorem appears to be new even for meromorphic functions in C. However,
as is often the case, the method used to prove this theorem cannot be used in class

P . Let us also note here that it is highly non trivial to construct higher dimensional

maps in class P and until recently (see [139]) this had not been done.

It is also worth mentioning that Baker in [3, Theorem 1 p. 244] proved that given

an entire function f , which is either transcendental or polynomial of degree at least

two, then there are only countably many entire functions g that are permutable

with f . We will give examples which show that this theorem cannot hold in the

quasiregular case. To be more speci�c, by modifying an example given in [18], we

are able to prove the following result.

Theorem 3.1.8. There exists an entire transcendental map f that is permutable

with uncountably many quasiregular maps g : C→ C.

3.2 The case of uniformly quasiregular maps and

generalizing the theorem of Bergweiler and Hinkka-

nen

In this section we will prove Theorems 3.1.3 and 3.1.4. First we prove Theorem

3.1.4. The proof is similar to that for rational functions (see [5]). We split the proof

in two lemmas.

Lemma 3.2.1. Let f : Rd → Rd and g : Rd → Rd be permutable uniformly quasireg-

ular self maps of Rd of degree at least two. Then g(F(f)) ⊂ F(f).

Proof. Let x0 ∈ F(f) be a point in the Fatou set of f . Then there is neighbourhood

U of that point in which {fn : n ∈ N} is a normal family. Thus for any sequence fnj

there is a locally uniformly converging subsequence and without loss of generality

assume that fnj itself is this subsequence. Now because g is a continuous map on a

compact space it will also be uniformly continuous. Thus the sequence g ◦ fnj also
converges locally uniformly in U . This implies that the family {g ◦ fn : n ∈ N} is
normal in U . Because f and g commute now, we have that the family {fn : n ∈ N}
is normal in g(U). Thus g(x0) ∈ F(f) which means g(F(f)) ⊂ F(f).

Lemma 3.2.2. With the same assumptions as in Lemma 3.2.1 we have that g(J (f)) ⊂
J (f).
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Proof. Take a point x1 ∈ J (f) then from Theorem 2.3.7 we have that J (f) =

O−f (z), for any point z ∈ J (f) \ E(f). Take such a point which also satis�es

z ∈ g−1(J (f) \ E(f)). (3.2)

Such points exist since g(F(f)) ⊂ F(f) implies that g−1(J (f)) ⊂ J (f). Thus

in any neighbourhood V of x1 there is a point w0 such that fn(w0) = z for some

n ∈ N. Take g(x1) and its neighbourhood g(V ) then thanks to the fact that f and

g commute fn(g(w0)) = g(z). Hence g(w0) ∈ O−f (g(z)) and thus g(x1) ∈ O−f (g(z)).

But from (3.2) we know g(z) ∈ J (f) \ E(f) and thus O−f (g(z)) = J (f). Hence

g(x1) ∈ J (f).

Proof of Theorem 3.1.4. It is easy to see that Lemma 3.2.1 implies that g−1(J (f)) ⊂
J (f). Thus by Lemma 3.2.2 the Julia set of f is completely invariant under g.

Since by Theorem 2.3.7 the Julia set of f contains in�nitely many points and since

by the same Theorem the Julia set of g is the smallest such set, we will have that

J (g) ⊂ J (f). If we now reverse the roles of f and g we can prove the other inclusion

too.

In order to prove Theorem 3.1.3 we will need several lemmas. First comes a

general lemma about capacities.

Lemma 3.2.3. Let V ⊂ Rd be a set of zero capacity. If x0 ∈ Rd then the set

V ∪ {x0} is also of zero capacity.

Proof. Let B be an open set containing V ∪ {x0}. Take an admissible function

u ∈ C∞0 (B) for the condenser (B, V ) and an admissible function v ∈ C∞0 (B) for

(B, {x0}). Then u+ v will an admissible C∞0 (B) function for (B, V ∪ {x0}). Since

capV = cap{x0} = 0,

for every ε > 0 we can choose u, v in such a way that∫
B

|∇u|ddm < ε and

∫
B

|∇v|ddm < ε.

Then by using Hölder's inequality we will have∫
B

|∇(u+ v)|ddm =

∫
B

|∇u+∇v|ddm

≤

((∫
B

|∇u|ddm
)1/d

+

(∫
B

|∇v|ddm
)1/d

)d

≤ 2dε.

Since ε is arbitrary this means that cap (V ∪ {x0}) = 0.
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The previous lemma implies that if we add a �nite number of points to a set of

zero capacity then the new set will also be of zero capacity.

Lemma 3.2.4. Let f : Rd → Rd and g : Rd → Rd be permutable quasiregular maps.

Then

g(J (f)) ⊂ J (f) and f(J (g)) ⊂ J (g).

Proof. Take a x0 ∈ J (f) and let U be a neighbourhood of g(x0). Name V the

component of g−1(U) which contains x0. We know, by the de�nition of the Julia

set, that

cap

(
Rd \

∞⋃
n=1

fn(V )

)
= 0. (3.3)

But since f, g are permutable we have that fn(g(x)) = g(fn(x)), for all x ∈ V, which
implies that

fn(x) ∈ g−1(fn(U)), for all x ∈ V.

Hence,

Rd \
∞⋃
n=1

fn(V ) ⊃ Rd \
∞⋃
n=1

g−1(fn(U)).

Thus, by (3.3) and the fact that subsets of zero capacity sets have zero capacity, we

have that

cap

(
Rd \

∞⋃
n=1

g−1(fn(U))

)
= 0.

But since
⋃∞
n=1 g

−1(fn(U)) = g−1 (
⋃∞
n=1 f

n(U)) and g−1(Rd) = Rd this implies that

cap

(
g−1

(
Rd \

∞⋃
n=1

fn(U)

))
= 0.

Hence, by the KI-inequality (Theorem 2.3.8) we will have that

cap

(
g

(
g−1

(
Rd \

∞⋃
n=1

fn(U)

)))
= 0.

Since g is a quasiregular self-map of Rd we know by Rickman's generalization of

Picard's theorem that it omits at most a �nite number of points. Thus

g

(
g−1

(
Rd \

∞⋃
n=1

fn(U)

))
= Rd \

(
∞⋃
n=1

fn(U) ∪ {a1, a2, · · · , am}

)
,

where a1, a2, · · · , am are the omitted values of g. Hence, by using Lemma 3.2.3 we

will have that

cap

(
Rd \

∞⋃
n=1

fn(U)

)
= 0.
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Since U was an arbitrary neighbourhood of g(x0), this implies that g(x0) ∈ J (f).

For the other half of the lemma, the proof is completely analogous to this one

with f and g changing roles.

Lemma 3.2.5. Let f : Rd → Rd and g : Rd → Rd be permutable quasiregular maps

of transcendental type. Then

g−1 (A(f)) ⊂ A(f) and g−1
(
A(f)

)
⊂ A(f).

Also

f−1 (A(g)) ⊂ A(g) and f−1
(
A(g)

)
⊂ A(g).

Proof. Recalling the de�nition of the fast escaping set in 2.6, we take R1 > 0 so

large that

T (fn(B(0, R1))) ⊃ B(0, rn)

for some sequence rn with rn → ∞. Also choose an R > 0 large enough so that

g(B(0, R1)) ⊂ B(0, R) while at the same time R > R1, which implies that

T (fn(B(0, R))) ⊃ B(0, rn).

Pick now an x0 ∈ Rd such that g(x0) ∈ A(f). We will then show that x0 ∈ A(f).

We know from (2.6), in other words the de�nition of the fast escaping set, that there

exists an L ∈ N such that

fn+L(g(x0)) 6∈ T (fn(B(0, R))), for all n ∈ N.

Since fn+L(g(x0)) = g(fn+L(x0)) we will have that

g(fn+L(x0)) 6∈ T (fn(B(0, R))), for all n ∈ N.

This together with the fact that g(B(0, R1)) ⊂ B(0, R) implies that

g(fn+L(x0)) 6∈ T (fn(g(B(0, R1)))

⇒ g(fn+L(x0)) 6∈ T (g(fn(B(0, R1))). (3.4)

Assume now that there is an n ∈ N such that

fn+L(x0) ∈ T (fn(B(0, R1)))

then

g(fn+L(x0)) ∈ g(T (fn(B(0, R1)))).

29



But it is true [20, Proposition 2.4] that g(T (fn(B(0, R1)))) ⊂ T (g(fn(B(0, R1)))).

Thus we would have that g(fn+L(x0)) ∈ T (g(fn(B(0, R1)))) which contradicts (3.4).

Hence it is true that

fn+L(x0) 6∈ T (fn(B(0, R1))), for all n ∈ N

and thus x0 ∈ A(f). Hence g−1(A(f)) ⊂ A(f).

Now for the other part of the theorem, choose any point x ∈ g−1(A(f)), then

g(x) ∈ A(f). Thus there is a sequence yn ∈ A(f) with yn → g(x). If we now take

any open neighbourhood, U of x then g(U) will be an open neighbourhood of g(x),

since g is open, and thus it will contain all yn, for all n > N and some N ∈ N. Thus
U will contain points xn with g(xn) = yn, ∀n > N . And because U can be made

arbitrarily small we will have that xn → x. Hence

x ∈ g−1(A(f)).

This means that

g−1(A(f)) ⊂ g−1(A(f)) ⊂ A(f).

Lastly, for the other half of the theorem we just change the roles of f and g.

The next lemma tells us that the Julia set of a quasiregular map is the smallest

closed set of positive capacity that is completely invariant under f , which is the

analogous to a well known property of the Julia set in the complex plane.

Lemma 3.2.6. Let f : Rd → Rd be a quasiregular map. If K is a closed set with

f(K) ⊂ K and f−1(K) ⊂ K and capK > 0 then J (f) ⊂ K.

Proof. Take any neighbourhood, U , of a point x ∈ J (f), then by the de�nition of

the Julia set

cap

(
Rd \

∞⋃
n=1

fn(U)

)
= 0.

Hence, K ∩
⋃∞
n=1 f

n(U) 6= ∅. This means that there is a x0 ∈ U with fn(x0) ∈ K
for some n ∈ N, and because K is completely invariant under f we will have that

x0 ∈ K. Hence, every neighbourhood, U of a point in J (f) contains a point of K

and because K is a closed set, this implies that J (f) ⊂ K.

Proof of Theorem 3.1.3. First of all, since A(f) ⊂ J (f) and since J (f) is closed

we obtain that A(f) ⊂ J (f). As we have already mentioned, in the end of Chapter

2, by [22] we always know that

J (f) ⊂ ∂A(f) ⊂ A(f).
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Hence we will have that

J (f) = A(f).

Hence by Lemma 3.2.4 we will have that g(J (f)) ⊂ J (f) while from Lemma 3.2.5

we will have that g−1(J (f)) ⊂ J (f). This means that J (f) is completely invariant

under g. Also from Theorem 2.3.10 we know that A(f) contains continua, since

its components are unbounded, and thus it cannot have zero capacity because zero

capacity sets are totally disconnected (see [118, Corollary III.2.5]) namely

capA(f) = capJ (f) > 0.

Hence, we can now apply Lemma 3.2.6 and conclude that J (g) ⊂ J (f).

By a completely analogous argument we can also show that J (f) ⊂ J (g) and

thus J (g) = J (f).

3.3 Improving Baker's Lemma

In this section we will prove Theorems 3.1.5 and 3.1.6. Those theorems can be seen

as generalizations of a theorem of Baker in [5]. We prove here a slightly more general

theorem than that in [5].

Theorem 3.3.1. Let f : C→ C and g : C→ C be permutable transcendental entire

functions. Suppose that g = af + c, where a ∈ C \ {0}. Then J (f) = J (g).

Proof. First we prove that J (f) is completely invariant under g. From the analogue

of Lemma 3.2.4 for entire functions we already know that g(J (f)) ⊂ J (f) so we

only need to prove that g−1(J (f)) ⊂ J (f). This is easily seen to be equivalent to

g(F(f)) ⊂ F(f).

Let x0 ∈ F(f) and U a neighbourhood of x0 with U ⊂ F(f). Assume, towards

a contradiction, that g(x0) ∈ J (f). Then g(U) contains points in J (f) and thus by

the blow up property we know that⋃
n=0

fn(g(U)) = C \ E(f).

Hence by the fact that f and g commute we obtain

a
⋃
n=0

fn+1(U) + c = C \ E(f).

This implies that
⋃
n=1 f

n(U) is the whole complex plane minus at most two points.

This is impossible since U is inside the Fatou set of f and thus
⋃
n=1 f

n(U) must

miss the Julia set which is an in�nite set.
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Proof of Theorem 3.1.5. We recall here that f and g are permutable quasiregu-

lar maps with g = φ ◦ f , where φ is a quasiconformal map. We will prove that

J (f) is completely invariant under g. We already know from Lemma 3.2.4 that

g(J (f)) ⊂ J (f). Hence, it is enough to prove that g−1(J (f)) ⊂ J (f).

Take a point x0 ∈ Rd such that g(x0) = φ(f(x0)) ∈ J (f). Take V to be any

neighbourhood of x0, then U = φ(f(V )) = {φ(f(x)) : x ∈ V } is a neighbourhood of

φ(f(x0)). Hence,

cap

(
Rd \

∞⋃
k=0

fk(U)

)
= 0. (3.5)

But, it is true that f (φ−1(U)) = φ−1 (f(U)), which easily implies that

fn
(
φ−1(U)

)
= φ−1(fn(U)), for all n ∈ N. (3.6)

Indeed, using the fact that f commutes with φ ◦ f ,

f
(
φ−1(U)

)
= f

(
φ−1(φ(f(V )

)
= f(f(V ))

= φ−1(φ(f(f(V ))) = φ−1(f(φ(f(V )))

= φ−1(f(U)).

By using (3.5) and (3.6) now, we conclude that

cap

(
Rd \

∞⋃
k=0

φ
(
fk
(
φ−1(U)

)))
= cap

(
Rd \

∞⋃
k=0

fk(U)

)
= 0.

But it is true that

Rd \
∞⋃
k=0

φ
(
fk
(
φ−1(U)

))
= φ

(
Rd \

∞⋃
k=0

fk
(
φ−1(U)

))
.

Hence, by using the KI-inequality (Theorem 2.3.8), we conclude that

cap

(
Rd \

∞⋃
k=0

fk
(
φ−1(U)

))
= 0.

In other words,

cap

(
Rd \

∞⋃
k=0

fk(f(V ))

)
= 0,

which implies that

cap

(
Rd \

∞⋃
k=0

fk(V )

)
= 0.
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Thus x0 ∈ J (f). By a similar argument we can also prove that J (g) is invariant

under f .

Now, since we know that capJ (f) > 0 and capJ (g) > 0, we can �nish the proof

in the same way we did in the proof of Theorem 3.1.3.

In our proof of Theorem 3.1.6 we will need the notion of a function having the

pits e�ect. This concept was �rst introduced by Littlewood and O�ord in [82] and a

variant of it was used by Bergweiler and Nicks in [23] in their attempt to develop an

iteration theory for quasiregular maps of transcendental type. This variant is what

we will need here as well. In what follows with | · | we denote the usual Euclidean

norm.

De�nition 3.3.1. A quasiregular map f : Rd → Rd of transcendental type is said

to have the pits e�ect if there exists N ∈ N such that, for all α > 1, for all λ > 1

and all ε > 0 there exists R0 such that if R > R0, then

{x ∈ Rd : R ≤ |x| ≤ λR, |f(x)| ≤ Rα}

can be covered by N balls of radius εR.

We must also mention here that in [23] the authors �rst de�ne the pits e�ect

using the condition |f(x)| ≤ 1 instead of |f(x)| ≤ Rα and later prove that those two

are actually the same [23, Theorem 8.1].

Lemma 3.3.2. Let f : Rd → Rd and g : Rd → Rd be permutable quasiregular maps.

Assume that g = f + c, where c 6= 0 is a constant in Rd. Then f does not have the

pits e�ect.

Proof. For any N ∈ N, we will �nd a sequence Rm → ∞ and λ > 1, ε > 0, α > 1

such that

A = {x ∈ Rd : Rm ≤ |x| ≤ λRm, |f(x)| ≤ Rα
m}

cannot be covered by N balls of radius εRm.

First pick a N ∈ N. Choose also a point x0 ∈ Rd that lies in the half-line con-

necting 0 with c. Hence the sequence |x0 + nc|, n ∈ N is an increasing sequence.

Also since the number of omitted values of f is �nite we can assume that this half

line does not contain any omitted values from the point x0 − c onwards. We now

set Rm = |x0 +mc| and we will show that a segment of the half line is contained in
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A and that it is not possible to cover it with N balls. Choose ε = 1/10, then with

N balls of radius Rm/10 we can cover distance at most NRm
5

. Hence, if we take

(λ− 1)Rm >
NRm

5
⇔ λ >

N

5
+ 1,

then we cannot cover the part of the half line that lies between the circles with

radius Rm and λRm with those N balls. Now we only need to show that this part

of the half line also satis�es the other condition; namely that |f(x)| ≤ Rα
m for some

α > 1. Observe that all the points on the half line, after x0, can be written as y+nc

for some y on the line segment from x0− c to x0 and some n ∈ N. Then since those

points are not omitted by f we have that

f(y + nc) = f(y + (n− 1)c+ c) = f(f(wn) + c),

for some wn ∈ Rd with f(wn) = y + (n − 1)c. Thus thanks to the fact that f is

commuting with f + c we obtain that

f(y + nc) = f(f(wn)) + c = f(y + (n− 1)c) + c.

By repeating this argument n times we obtain that

f(y + nc) = f(y) + nc, for all n ∈ N.

Hence for any point, y+nc, on the half line that lies between the circles with radius

Rm and λRm we have that

|f(y + nc)| = |f(y) + nc| ≤ |f(y)− y|+ |y + nc|

≤ |f(y)− y|+ λRm.

If we now take α = 2 we will have |f(y) − y| + λRm ≤ Rα
m, for all big enough Rm

and thus the second condition will hold for all points on this line segment.

Lemma 3.3.3. Let f : Rd → Rd be a quasiregular map of transcendental type and

L(x) = aUx a linear map where a ∈ R \ {0} and U ∈ SO(d) (SO(d) is the special

orthogonal group). If g = L ◦ f + c, where c ∈ Rd, commutes with f then |a| = 1.

Proof. Without loss of generality let us assume, towards a contradiction, that |a| > 1.

Pick a large positive number r′ > 0. Then there is a yr′ ∈ Rd with |yr′| = r′ such that

M(r′, f) = |f(yr′)|, where M(r′, f) = max|z|=r′{|f(z)|}. Now by Rickman's general-

ization of Picard's theorem, the fact that f is a transcendental quasiregular map and

the fact that L is injective there is a point xr′ ∈ Rd such that yr′ = (L ◦ f)(xr′) + c

and thus

M(r′, f) = |f(yr′)| = |f((L ◦ f)(xr′) + c)|.
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We set r = |f(xr′)|. Note that

r =
∣∣L−1(yr′ − c)

∣∣ ≥ |yr′| ∣∣∣∣L−1

(
yr′

|yr′|

)∣∣∣∣− |L−1(c)| ≥ r′

|a|
− |L−1(c)|.

Thus r →∞ as r′ →∞. Also note that

r′ = |yr′| = |L(f(xr′)) + c| ≥ |a|r − |c|.

Hence, if we take a 1 < λ < |a| then for all large enough r′ we have that r′ ≥ λr.

From the fact that quasiregular maps are open, we can conclude now that they obey

the maximum modulus principle and thus M(r, f) is an increasing function of r.

Hence

M(λr, f)

M(r, f)
≤ M(r′, f)

M(r, f)
=
|f(L(f(xr′)) + c)|

M(r, f)

=
|L(f(f(xr′))) + c|

M(r, f)

≤ |a| |f(f(xr′))|+ |c|
M(r, f)

≤ M(r, f)|a|+ |c|
M(r, f)

.

Hence M(λr,f)
M(r,f)

stays bounded as r → ∞, which is a contradiction since this ratio

tends to in�nity as r →∞ (see [14, Lemma 3.3]). Hence |a| = 1 .

Proof of Theorem 3.1.6. First, from Lemma 3.3.3 we will have that a = 1. From

Lemma 3.3.2 we will have that f does not have the pits e�ect. Hence, from [23,

Corollary 1.1] we have that capJ (f) > 0. Also note here that if f does not have

the pits e�ect then, by the de�nition, f + c also does not. This again implies

that capJ (g) > 0. Now we can apply Theorem 3.1.5 and conclude that J (f) =

J (g).

3.4 The quasimeromorphic case

In this section we prove Theorem 3.1.7.

Proof of Theorem 3.1.7. We will prove �rst that O−f (∞) ⊂ O−g (∞). To that end, let

x0 ∈ Rd be a point in O−f (∞). This means that fn(x0) = ∞ for some n ∈ N. This
in turn implies that fn−1(x0) is a pole of f . Now, note that f and g must have the

same poles since if z0 is a pole of f but not g then g◦f has an essential singularity in

z0 while f ◦g does not, thus f ◦g 6= g◦f on a punctured neighbourhood of z0. Hence,

we will also have that g(fn−1(x0)) =∞. By using the fact that f commutes with g

35



we have that f(g(fn−2(x0))) = ∞ and thus g(fn−2(x0)) is a pole of f which again

implies it is also a pole of g. Using this argument n times yields that gn(x0) = ∞
and thus x0 ∈ O−g (∞).

The other inclusion follows similarly by switching the roles of f and g. Hence we have

that O−f (∞) = O−g (∞) and thus, since O−f (∞) = J (f), we have J (f) = J (g).

3.5 Examples

In this section we will �rst prove Theorem 3.1.8 and then discuss about examples of

commuting transcendental and quasiregular maps.

Proof of Theorem 3.1.8. We want to construct uncountably many quasiregular maps

that commute with a speci�c entire function. In order to do that we will follow the

example given in [18, section 2] where the authors construct uncountably many con-

tinuous functions g that commute with the function f(z) = c(ez
2 − 1), where c is a

large positive number. Note that f has a superattracting �xed point at 0 and there

is a conformal function φ, from the immediate basin of attraction A of f to the unit

disk, that conjugates f with z2. That map φ is in fact quasiconformal on an open

set that contains A and that is due to the fact that f is a polynomial-like mapping

(see [18] and references therein for more details). In order to construct the required

map they �rst de�ne a function G which commutes with z2.

We de�ne G : C → C by G(z) = |z|m−1z for some positive real number m. As

we can easily see G commutes with z 7→ z2. In fact G is well known to be M -

quasiconformal with M = max{m, 1/m}. Also, note that G(z) = z, for |z| = 1.

Because we have uncountably many choices for m we also have uncountably many

such maps G.

Next, by de�ning g(z) = φ−1(G(φ(z))) for z ∈ A we see that

g(f(z)) = φ−1(G(φ(f(z)))) = φ−1(G(φ(z)2)) = f(φ−1(G(φ(z)))) = f(g(z)), z ∈ A.

In order to extend g to the whole plane we argue as follows. If B is a component

of the basin of attraction of the �xed point at 0 then there is a n with fn(B) = A.

Choose n to be the minimal with that property and de�ne g(z) = f−n(g(fn(z))), for

all z ∈ B, with the appropriate branch of f−n. Since G coincides with the identity

map on the unit circle and φ extends continuously and bijectively on ∂A then we

can extend g to ∂A∪∂B by setting g(z) = z there. We can now extend g to the rest

36



of the plane, the complement of the basin of attraction, by setting g(z) = z there.

The functions g : C → C we obtain through this method will be quasiregular and

because our choices for G are uncountably many, so are our functions g.

In the above construction it is not hard to see that the Julia set of the quasicon-

formal function g is empty. That is because if B0 is the basin of attraction of 0 then

g(B0) ⊂ B0 while outside of B0, g is the identity. Thus there are no points having

the blow-up property of the Julia set. It would be desirable to also have an example

of uncountably many maps commuting with a given map f while also having the

same Julia set.

3.5.1 Modifying the above construction

This next example was inspired by a question asked to me by Davoud Cheraghi in

a seminar at the Open University.

In the above construction let us consider the map h = f ◦ g = g ◦ f which is

easy to see that also commutes with f . Note here that by following the natural

extension process used in [18] in order to extend g gives us that inside the basin B0,

g(z) = (f−n ◦ g ◦ fn)(z), for a suitable branch of f−n. Hence, this new map h equals

f outside of the basin of attraction B0 of g and on the inside it is

f(f−n ◦ g ◦ fn(z)) = f−n+1 ◦ g ◦ fn,

for suitable n which might also be 0.

This new map h has a non-empty Julia set, since it is a quasiregular map of tran-

scendental type (see theorem 2.3.9). Also, by [23, Theorem 1.11] we know that

capJ (h) > 0 and it is true that capJ (f) > 0. Hence we can apply Theorem 3.1.5

and conclude that h has the same Julia set with f . We also have uncountably many

such maps since we have uncountably many choices for g.

3.5.2 Other examples

We give here some other examples of permutable quasiregular maps by generalizing

holomorphic examples in the complex plane. First we give examples of holomorphic

functions. We note here that the �rst three classes of examples are all �nite quotients

of a�ne maps and are essentially the only ones possible in the case of rational

functions that do not share a common iterate as Theorem 3.1.1 informs us. The

problem of classi�cation is still open in the case where the functions share an iterate

and a sensible solution does not seem to exist. See [44, 123] for more details.
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Holomorphic examples.

1. Consider the family of power maps fn(z) = zn, n ≥ 2. Obviously

fn ◦ fm = fnm = fm ◦ fn.

We can also easily see that J (fn) = S1, for all n ≥ 2, where S1 denotes the

unit circle. Thus J (fn) = J (fm).

2. Consider the family of Tchebyche� polynomials, that we introduced in Chap-

ter 1 and satisfy Tn(cos z) = cos(nz), n ≥ 2. It is easy to see that Tn ◦ Tm =

Tm ◦ Tn. Also each of the Tchebyche� polynomials has as its Julia set the

interval [−2, 2] (see [30, p.30]), so clearly J (Tn) = J (Tm).

3. The family of Lattès maps provides another example of commuting functions.

As we have said, a rational map, of degree at least two, of the form

f = Θ ◦ L ◦Θ−1

is called Lattès. Here L is an a�ne self map of the torus C/Λ, where Λ ⊂ C is

a lattice of rank two, and Θ is a holomorphic map from the torus to C. One
possible option is to choose L(z) = az for any a ∈ Λ = {x + yi : x, y ∈ Z},
|a| ≥ 2 and Θ = ℘2(z), where ℘(z) is the Weierstrass elliptic function with

periods 1 and i. Then the Lattès maps that we take for the di�erent values

of a are commuting. Also it is well known that the Julia set of Lattès maps is

the entire Riemann sphere.

4. Let f be an entire or a rational function. Consider the family fn = fn, for

all n ≥ 1. Then obviously fn ◦ fm = fm ◦ fn and also it is well known that

J (fn) = J (f), for all n ≥ 1.

5. Consider an entire periodic function P : C → C, with period c ∈ C. Take

f(z) = P (z) + z and g(z) = P (z) + z + kc, where k ∈ Z. Then f, g are

permutable. Using now a result of Baker, Theorem 3.3.1, which we generalized

in Theorems 3.1.5 and 3.1.6, we conclude that J (f) = J (g).

6. Let

f(z) = 2ia cos

(
(4k + 3)π

8a2
iz2

)
and g(z) = 2ia sin

(
(4k + 3)π

8a2
iz2

)
,

where a ∈ C\{0}. A simple calculation shows that f and g commute. In [138]

the authors generalize Baker's Theorem 3.3.1 and show that the functions f

and g satisfy the conditions of their Theorem. Thus J (f) = J (g).
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7. The next example, which I learned from Gustavo Ferreira, is about permutable

meromorphic maps. Suppose that f0 : C → C is an entire function with

f(0) 6= 0. Consider now the maps

f(z) =
f0(zn)

zn−1
and g(z) =

ω

zn−1
f0(zn),

where ω is an n-th root of unity.

It is easy to see now that f and g are meromorphic with a pole at 0 and

commute. Moreover if 0 is not an omitted value of f0 then it is easy to see

that cardO−f (∞) = cardO−g (∞) = ∞ so that Theorem 3.1.7 applies and

J (f) = J (g).

8. Once we have a pair of commuting maps f and g it is quite easy to construct

others. For example f and fn ◦ gm, where n,m ∈ N will also commute.

Quasiregular examples.

1. As we have already mentioned in Chapter 2, Mayer in [89, 90] constructs uni-

formly quasiregular analogues of the power maps, of Tchebyche� polynomials

and of Lattès type maps which can be easily seen, just like in the complex

case, that are permutable. Also those families of maps have the same Julia

sets: the unit sphere, the unit disc and Rd respectively.

2. There is a quasiregular analogue of the exponential map in the complex plane

called the Zorich map which was �rst de�ned by Zorich in [141] and which we

introduced in Chapter 1. For simplicity assume we work on R3 and denote

this map by Z : R3 → R3. This map is periodic, with period 4, in its �rst two

variables. In [98] Nicks and Sixsmith de�ned a quasiregular map g : R3 → R3

of transcendental type such that

g =

{
Z + Id x3 > L

Id x3 < 0
,

where Id the identity map and L > 0 is a constant. By its construction

this map satis�es g(x1 + 4, x2, x3) = g(x1, x2, x3) + (4, 0, 0) for 0 ≤ x3 ≤ L

and hence for all x3 (see [98, section 6] for details). Now de�ne the function

f(x1, x2, x3) = g(x1, x2, x3) + (4, 0, 0). It is quite easy to see that f commutes

with g. Hence, by applying Theorem 3.1.6 we conclude that J (f) = J (g).

3. Another example is provided by [98, section 7] where the authors de�ne the

map

h(x1, x2, x3) = g(x1, x2, x3)− (0, 0, L′),
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where g is the function of the previous example and L′ > 0 is a large constant.

They also prove that A(h) ⊂ J (h) and is quite easy to see that h commutes

with h + (4, 0, 0). Hence, in this example we can apply Theorem 3.1.3 and

conclude that the two functions have the same Julia set.

4. Consider any two permutable holomorphic (or meromorphic) maps f and g on

the complex plane. Then for any quasiconformal map φ : C→ C consider the

maps f ′ = φ−1 ◦f ◦φ and g′ = φ−1 ◦g ◦φ. The maps f ′ and g′ are quasiregular

(or quasimeromorphic), commute and, assuming f and g have the same Julia

set, so do f ′ and g′.

5. Consider the maps f(z) = |z|t1zk1 and g(z) = |z|t2zk2 , where z ∈ C, t1, t2 > 0

and k1, k2 ∈ N. It is easy to see that those two maps are quasiregular and that

they commute for any values of the parameters t1, t2, k1, k2. Also since

KI(f) =
t1 + k1

k1

and KI(g) =
t2 + k2

k2

,

we have that when

ki ≥
ti + ki
ki

⇔ ki >
1 +
√

1 + 4ti
2

or ki <
1−
√

1 + 4ti
2

, i = 1, 2

the Julia sets of f and g are non empty and in fact are the unit circle.

3.6 Open questions

In this section we will discuss some of the open problems in the study of permutable

functions. The �rst and perhaps the most important is

Conjecture 3.6.1 (Fatou). Permutable entire transcendental maps have the same

Julia set.

Of course the same conjecture can be made about permutable quasiregular maps

of transcendental type. However in the quasiregular case it is not even known if

polynomial type permutable maps have the same Julia set.

Question 3.6.2. Do permutable quasiregular maps of polynomial type have the same

Julia set?

Note that in the quasimeromorphic case, for functions in the corresponding class

M, we have already given a positive answer to the above question in Theorem 3.1.7.

Recently Ferreira in [51] also studied commuting meromorphic functions in class

P and proved that there is a corresponding result to that of Bergweiler and Hinkka-

nen in that class.
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It seems quite plausible that such a theorem can also be shown for quasimero-

morphic maps in the corresponding class P . For class P there is a sensible de�nition

of the fast escaping set due to Rippon and Stallard [119]. Generalizing Ferreira's

results would require the study of the fast escaping set for the quasiregular analogue

of class P which has not been done before.

Question 3.6.3. Is there an analogue of Theorem 3.1.3 for permutable maps in the

quasiregular version of class P?

Question 3.6.4. Do permutable maps in class P have the same Julia sets?

It is also quite interesting to study permutable holomorphic maps with two es-

sential singularities which are also omitted values for the map. Without loss of

generality those two points can be taken to be 0 and ∞. We call those maps tran-

scendental self maps of C∗ = C \ {0}. Starting with Radström [107] the dynamics

of those maps have been studied by many people, see for example [12, 24, 73, 75].

All such maps are of the form

zkeg(z)+h( 1
z

), where g, h are entire functions and k ∈ Z.

Of course the �rst thing one should ask is whether or not there can be any

permutable self maps of C∗. Indeed for any entire maps f0 and g0 we can take

f(z) = zeg0(zn)+f0( 1
zn

) and g(z) = ωzeg0(zn)+f0( 1
zn

),

where ω is an n-th root of unity. It is easy to see that those maps commute so we

can ask whether or not they have the same Julia set. Moreover Marti-Pete [85] has

de�ned a fast escaping set of transcendental self maps of C∗ and thus we can ask

Question 3.6.5. Is there an analogue of Theorem 3.1.2 for transcendental self maps

of C∗? Do any two commuting such maps have the same Julia set?

In the quasiregular setting now Nicks and Sixsmith [100] studied the dynamics of

the quasiregular analogues of transcendental self maps of C∗ and they also de�ned

a fast escaping set for such maps. Thus the above question also makes sense in the

higher dimensional setting.

Another interesting question is whether or not we can classify permutable uni-

formly quasiregular self maps of Rd that do not share an iterate. In other words

whether or not we can generalize Theorem 3.1.1 in the setting of uqr maps.

As we have already mentioned Eremenko gave a proof of Theorem 3.1.1 by further

developing the method Fatou and Julia had used in their study of commuting ratio-

nal maps in [48, 68]. The �rst result that this approach requires is that permutable
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maps have the same Julia set. As we have already shown, permutable uqr self maps

of Rd indeed have the same Julia sets. The next important piece of information

that the proof of Theorem 3.1.1 by Eremenko requires is the fact that commuting

rational functions have a common repelling periodic point. We remind the reader

here that a point z ∈ C is called a periodic point of a rational map f : C → C if

fn(z) = z, for some n ∈ N and it is called repelling if
∣∣(fn)′ (z)

∣∣ > 1. That de�nition

of a repelling periodic point does not carry over to the higher dimensional case since

uqr maps might not even be di�erentiable at a point. However there is a way to

de�ne the notion of a repelling periodic point, see [63].

Thus we can ask

Question 3.6.6. Do permutable uniformly quasiregular self maps of Rd have a com-

mon repelling periodic point?
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Chapter 4

Zorich maps

4.1 Introduction

In the study of the dynamics of complex analytic functions one of the most well

studied and important families of functions is the exponential family Eκ : z 7→ κez,

κ ∈ C\{0}. Perhaps the most fundamental fact about this family concerns its Julia

set. For 0 < κ ≤ 1/e, as was proven �rst by Devaney and Krych in [40], the Julia

set J (Eκ) is a so called "Cantor bouquet".

We say that a subset H of C (or Rd) is a hair if there exists a homeomorphism

γ : [0,∞) → H such that γ(t) → ∞ as t → ∞. We call γ(0) the endpoint of the

hair H.

Theorem 4.1.1 (Devaney and Krych, [40]). For 0 < κ ≤ 1/e the Julia set J (Eκ)

of the exponential map Eκ consists of uncountably many disjoint hairs each of which

has a �nite endpoint and tends to in�nity by having their real parts go to in�nity

while their imaginary part remains bounded.

On the other hand, when κ > 1/e Misiurewicz in [94] proved that the Julia set

J (Eκ) equals the entire complex plane C (actually Misiurewicz only proved this for

κ = 1 but his proof can easily be adapted to cover the other cases as well, see [37]).

Theorem 4.1.2 (Misiurewicz, [94]). For κ > 1/e the Julia set J (Eκ) of the expo-

nential map Eκ equals the entire complex plane C.

For a di�erent proof of the same theorem see [127]. For all these facts and much

more we refer to Devaney's survey [38] on exponential dynamics.

As we have already mentioned in the �rst chapter, in the higher dimensional

setting of quasiregular maps there is a whole family of maps that can be considered

analogues of the exponential map called the Zorich maps which were �rst con-

structed by Zorich in [141]. Before we proceed with the construction of Zorich maps
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Figure 4.1: The construction of the exponential map.

let us recall the construction of the exponential map. First we start with the map

y 7→ φ(y) = (cos y, sin y) from [−π
2
, π

2
] to the right half circle. Notice that this map

is bi-Lipschitz. We now de�ne the map E(x, y) = exφ(y) on the strip [−π
2
, π

2
] × R

(see �gure 4.1) which is none other than the usual exponential map. To extend this

map to the rest of C we repeatedly re�ect across the boundary of the strip in the

domain and across the imaginary axis in the codomain.

Following [65] we describe now the construction of the Zorich maps in three

dimensions. Note that the construction can be done in arbitrary dimensions but

we will con�ne ourselves in three dimensions for simplicity. First consider an L

bi-Lipschitz, sense-preserving map h that maps the square

Q :=
{

(x1, x2) ∈ R2 : |x1| ≤ 1, |x2| ≤ 1
}

to the upper hemisphere

{(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1, x3 ≥ 0}.

This is in analogy with what we had in two dimensions, in the case of the exponential

map, where line segments were getting mapped to right half circles. We then de�ne

Z : Q× R→ R3 as

Z(x1, x2, x3) = ex3h(x1, x2).

The map Z maps the square beam Q × R to the upper half-space. By repeatedly

re�ecting now, across the sides of the square beam in the domain and the x1x2 plane
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Z

Figure 4.2: The construction of Zorich maps. The coloured squares are mapped to

the corresponding coloured upper and lower hemispheres.

in the range, we obtain a map Z : R3 → R3 (see also the Figure 4.1). We now make

a few remarks about the map we just de�ned.

� First, note that this map is doubly periodic meaning that Z(x1 + 4, x2, x3) =

Z(x1, x2 + 4, x3) = Z(x1, x2, x3).

� Moreover, this map is not locally injective everywhere. The lines x1 = 2n +

1, x2 = 2m+ 1, n,m ∈ Z belong to the branch set, namely the set

BZ := {x ∈ R3 : Z is not locally homeomorphic at x}.

� It can be shown that this map is quasiregular (see example in subsection

2.3.1) with the dilatation depending on the bi-Lipschitz constant. Also it has

an essential singularity at in�nity and omits 0, just like the exponential map

on the plane does.

We can also introduce a parameter ν > 0 and consider the family Zν = νZ, where

Z is a Zorich map. This family can be considered as an analogue of the exponential

family Eκ in higher dimensions (at least in the case where κ > 0). Hence, it would

be very interesting to know whether or not this family has a similar behaviour with

the exponential in terms of dynamics.

Indeed, Bergweiler in [16] and Bergweiler and Nicks in [23, Section 7] have proven

that for small values of ν this family has as its Julia set uncountably many, pair-

wise disjoint curves. For those curves, Bergweiler in [16] proved a counterpart to

Karpi«ska's paradox (see [70, 71]) for the exponential map, namely the fact that

the endpoints of those curves have Hausdor� dimension 3 while the curves minus

the endpoints have Hausdor� dimension 1. Moreover, Comdühr in [33] proved that
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those curves are smooth generalizing a result of Viana in [133]. See also [19] for other

results concerning the Hausdor� dimension of di�erent subsets of the endpoints.

Having said all that it seems quite reasonable to expect that for large values of ν

the Julia set of the Zorich family would be the whole R3 just like in the exponential

family where the Julia set is the whole complex plane. One of the goals of this

chapter is to study the dynamics of a slightly modi�ed version of this family for big

values of the parameter ν and show that they are chaotic.

Let us now de�ne the modi�ed bi-Lipschitz map we will use and state our main

theorem. The �rst thing that we require is that our map

h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2))

must satisfy h1(x1, x1) = h2(x1, x1) and h1(x1,−x1) = −h2(x1,−x1). This way the

planes x1 = x2 and x1 = −x2 are invariant under the Zorich map we obtain. Note

that this implies that h(0, 0) = (0, 0, 1). Second, we need to scale things by a factor

λ > 1. To be more precise we de�ne the function

h(x1, x2) = λh

(
1

λ
(x1, x2)

)
, (x1, x2) ∈ λQ.

We de�ne now the Zorich maps we obtain by this h, which we denote by Z

Zν(x1, x2, x3) = νex3h(x1, x2), (x1, x2, x3) ∈ λQ× R, ν > 0. (4.1)

Again we extend this map to R3 by re�ecting across the sides of the square beam and

the plane x3 = 0. Another important thing to note here is that during the extension

process of our map Z from the initial square beam to the whole R3 we can also

extend h to a Lipschitz map from R2 to R3 with the same Lipschitz constant L. We

will always assume that this extension has been done and when we talk about h we

will mean the extended one unless otherwise stated. Moreover, let us note here that

this new Zorich map Z is conjugate to x 7→ Z(x1, x2, λx3), where Z is the classic

Zorich map without the scaling.

Remark. Here it is worth elaborating on that last sentence. Instead of studying

the family Zν , de�ned in (4.1), we could have studied the family α ◦ Z, where
α : R3 → R3 is the linear map induced by the matrix

ν 0 0

0 ν 0

0 0 νλ


and Z is the Zorich map that leaves the planes x1 = ±x2 invariant and comes from

using h. It is easy to see that the map α ◦ Z is conjugate with νZ(x1, x2, λx3) and
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thus with Zν . The advantage of this viewpoint is that the Zorich maps we consider

here and the maps considered by Bergweiler in [16] can all be seen as maps in the

space {A ◦Z : A ∈ GL3(R)}, where GL3(R) is the general linear group of degree 3.

Thus GL3(R) \ {0} becomes the parameter space for Zorich maps in analogy with

C \ {0} being the parameter space for the exponential map.

Due to the conjugacy all of the theorems we are going to prove here are also true

for the family α ◦Z. We have chosen to use a di�erent presentation of Zorich maps

than the one described here since that way the de�nition seems more natural and

the connection with the exponential family is more apparent.

For the type of Zorich maps de�ned in (4.1) we will prove

Theorem 4.1.3. Let λ > L5. Then for all ν >
√

2L
λ

the Zorich map Zν we obtain

using this scale factor λ has as its Julia set the whole R3.

Remark. We will actually prove a slightly stronger result. Namely, that if the

assumptions of the above theorem are satis�ed and V is any open set of R3 then⋃
n≥0Znν (V ) covers R3 \ {0}.

The above Theorem implies that the behaviour of the iterates of the Zorich maps,

for those particular choices of the parameters, are chaotic in the whole R3. Along

the way of proving Theorem 4.1.3 we will also prove a Theorem on the measurable

dynamics of Zorich maps which can be seen as the analogous result of a theorem for

exponential maps due to Ghys, Sullivan and Goldberg, see Theorem 4.5.1 below.

Another fact usually associated with chaotic behaviour in a set is the density

of periodic points on that set. In the complex plane it is well known and was �rst

proven by Baker in [4], that periodic points of an entire transcendental map (in fact

even repelling periodic points) are dense in its Julia set. However, it still unknown

whether or not the periodic points of a quasiregular map on R3 are dense in its Julia

set. We are able to prove that this is indeed the case for Zorich maps.

Theorem 4.1.4. Let ν and λ be as in Theorem 4.1.3. The periodic points of Zν
are dense in R3.

Another object of study in transcendental complex dynamics, which we have

already mentioned, and is intimately connected with the Julia set is the escaping

set. As we have mentioned in the introduction it is known that I(f) 6= ∅ and that

∂I(f) = J (f).

Moreover, for the exponential family from [42] it is true that I(f) ⊂ J (f) and

thus I(f) is dense in the Julia set. When the Julia set is a Cantor bouquet, the

escaping set consists of the disjoint curves that make up the Julia set together with
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some of their endpoints. In this case I(f) is disconnected while I(f) ∪ {∞} is con-
nected (see [38]). On the other hand, when the Julia set of a map in the exponential

family is the entire complex plane, the escaping set is dense in the complex plane

and Rempe in [112] has proven that it is also connected (see also [113] for a more

general version of the same result).

The situation is similar for the Zorich maps as well. As we already mentioned,

in [16, 23] it is proven that for some values of the parameter ν the Julia set consists

of disjoint curves together with their endpoints and I(Zν) is again a disconnected

subset of the Julia set. On the other hand we are able to show that

Theorem 4.1.5. For the same choice of ν and λ as in Theorem 4.1.3, we have that

the escaping set I(Zν) is a connected subset of R3.

It is also worth mentioning here that there are other methods of construct-

ing Zorich-like maps where instead of mapping squares to hemispheres through bi-

Lipschitz functions we map squares to surfaces whose boundary lies on the plane

x3 = 0 and the half ray connecting the origin with a point on the surface intersects

the surface only once. If we further impose some bound on the angle between that

ray and the tangent plane to the surface (see section 4.6 for more details) we can

use our methods and prove a Theorem similar to Theorem 4.1.3.

To state the theorem let us denote those Zorich maps with Zgen. In the construc-

tion of those maps we will use a bi-Lipschitz map hgen which will be the rescaled

version, by a factor of λ, of another L bi-Lipschitz map h. Note that we do not

introduce the parameter ν in this case for simplicity.

For those maps we are able to prove the corresponding result to Theorem 4.1.3.

Theorem 4.1.6. For λ > Chgen the Julia set J (Zgen) is the entire R3, where Chgen

a constant depending on hgen.

The proof of this theorem is essentially the same as the one we give for Theo-

rem 4.1.3. We will give a sketch of the proof in section 4.6 where we also �nd an

explicit value for the constant Chgen .

Theorems 4.1.4 and 4.1.5 possibly also hold for those kind of Zorich maps with

very similar proofs although we forgo the e�ort of proving them here.

Let us now return to the case where the values of the parameter ν are small and

without imposing any further restrictions to the bi-Lipschitz map h. We remind

that in this case we denoted Zorich maps by Z and also that the scaling factor λ is
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1 in this case. As we have already mentioned in this case the Julia set is a collection

of curves.

Another amazing fact about exponential maps, proven by Mayer in [88], con-

cerning the endpoints of the curves comprising the Julia set (for small values of κ)

is that the point at ∞ is what is called a dispersion point for the set of endpoints.

In other words if we denote the set of endpoints by E (J (Eκ)) then this set is totally

disconnected while E (J (Eκ)) ∪ {∞} is connected. That this amazing property is

even possible for a planar set is usually exhibited through a set known as Cantor's

leaky tent or Knaster-Kuratowski fan (see for example [83]). In fact something even

stronger is true here, the work of Aarts and Oversteegen in [1] shows that the point

at ∞ is an explosion point. This means that the set E (J (Eκ)) is in fact totally

separated, meaning that for any two of its points, x, y there is a clopen subset

U ⊂ E (J (Eκ)) such that x ∈ U but y 6∈ U . Note that this property implies that

E (J (Eκ)) is totally disconnected and thus any explosion point is also a dispersion

point. We also warn the reader that dispersion points have been sometimes called

explosion points in the literature.

Moreover, it is worth mentioning that explosion and dispersion points for expo-

nential maps have been studied for subsets of all the endpoints in [2, 46] and they

have been studied for more general classes of maps than the exponential family in [2,

47]. Also, in [34] the presence of Cantor bouquets is proved for maps on the complex

plane that are more general than Zorich maps (not necessarily quasiregular) and in

fact those bouquets also have ∞ as an explosion point for their set of endpoints.

In the higher dimensional setting of Zorich maps now, Bergweiler in [16] pointed

out that ∞ might also be an explosion point for the set of endpoints of the hairs of

J (Zν). In this chapter we will show that this is indeed the case.

Theorem 4.1.7 (Bergweiler and Nicks, [16, 23]).

For small enough ν > 0 the Julia set, J (Zν) of the Zorich family consists of un-

countably many disjoint hairs. Each of the hairs tends to ∞ by having their third

coordinate go to ∞ while the other two coordinates remain bounded. Moreover, for

each point x 6∈ J (Zν), Z
n
ν (x) converges to a �xed point.

Remark. In [16, 23] Theorem 4.1.7 is shown to be true for small enough values of ν

without stating an explicit estimate for suitable values of ν. In section 4.7 we make

this more precise by proving that Theorem 4.1.7 holds for 0 < ν < e−(logL+L).

We now state our result on explosion points.
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Theorem 4.1.8. Let 0 < ν < e−(logL+L). Then ∞ is an explosion point for the set

of endpoints of hairs in the Julia set, E(J (Zν)).

In the process of proving the above theorem we will need to introduce a topo-

logical model for J (Zν). That model is a generalization, in three dimensions, of a

model that Aarts and Oversteegen introduced in [1] in order to study the topology

of Julia sets. They called their model straight brush and proved that the Julia set of

the exponential map Eκ, 0 < κ ≤ 1/e is homeomorphic to a straight brush. We call

our new three dimensional model a 3-d straight brush (see section 4.7 for details)

and we will prove the following.

Theorem 4.1.9. Let 0 < ν < e−(logL+L). Then there is a 3-d straight brush B and

a homeomorphism of B onto the Julia set J (Zν) of the Zorich map. Moreover, this

homeomorphism extends to a homeomorphism between B ∪ {∞} and J (Zν)∪ {∞}.

Another object that Aarts and Oversteegen introduced in the same paper was

the straight one-sided hairy arc which is compact object living in [0, 1]2. It turns out

that if we suitably embed a straight brush in the square [0, 1]2 and then compactify

we obtain such an object. It also turns out that any two such objects are ambiently

homeomorphic in the complex plane so that there is homeomorphism between them

that also extends to the entire complex plane. Moreover, if we compactify J (Eκ),

0 < κ ≤ 1/e in a certain way then we obtain a space which is homeomorphic to a

straight one-sided hairy arc. Aarts and Oversteegen call the homeomorphic images

of straight one-sided hairy arcs just hairy arcs. Moreover, they show that if we embed

a hairy arc to the plane in a way that it has the extra property of one-sidedness

then it is ambiently homeomorphic, this time the ambient space being the Riemann

sphere, with a straight one-sided hairy arc. As a result the compacti�ed version

of J (Eκ) is a hairy arc which when suitably embedded in the Riemann sphere is

ambiently homeomorphic to a straight one-sided hairy arc.

Such considerations make sense in higher dimensions too. Thus in section 4.10 we

de�ne a straight one-sided hairy square and a hairy surface which are the analogous

objects to straight one-sided hairy arcs and hairy arcs respectively (see section 4.10

for details).

Similarly with the case of exponential maps on the plane we can show

Theorem 4.1.10. Let 0 < ν < e−(logL+L). Then there is a compacti�cation J̃ (Zν)

of J (Zν) which is a hairy surface.

Two other natural questions to ask in this higher dimensional setting would be

whether or not any two straight one-sided hairy squares are ambiently homeomorphic
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(the ambient space being R3) and whether all one-sided hairy surfaces are ambiently

homeomorphic to a straight one-sided hairy square. Both of these are true in the

two-dimensional setting as we have already mentioned.

Although we will not give an answer to the �rst question here, we can show that

in higher dimensions not all one-sided hairy surfaces are ambiently homeomorphic

to a straight one-sided hairy square as the next theorem shows.

Theorem 4.1.11. There exists a straight one-sided hairy square S and a homemo-

rphism

H : S → H(S) ⊂ R3

such that H(S) is one sided and H(S) and S are not ambiently homeomorphic, that

is there is no homeomorphism of R3 that maps S to H(S).

4.2 Julia sets of Zorich maps

4.2.1 Studying the modi�ed Zorich family νZ in the planes

x1 = ±x2
In this subsection we are going to study the modi�ed Zorich maps νZ de�ned in(4.1)

(recall that we introduced a scaling parameter λ in this case) on the planes x1 = ±x2

that are forward invariant under our Zorich maps by construction. Our goal is to

show that the dynamics there are chaotic and the planes belong to the Julia set.

We start with:

Proposition 4.2.1. The x3-axis belongs to J (Zν) for all λ ≥ 1 and ν with λν > 1/e.

Before we prove this proposition let us name a few things �rst. Using the same

notation as in [16], for r = (r1, r2) ∈ Z2 we de�ne

P (r) = P (r1, r2) := {(x1, x2) ∈ R2 : |x1 − 2λr1| < λ, |x2 − 2λr2| < λ}.

For c ∈ R we also de�ne H>c to be the half-space {(x1, x2, x3) ∈ R3 : x3 > c} and we

de�ne H≥c, H<c similarly. We observe here that Zν maps P (r1, r2)×R bijectively to

H>0, when r1 + r2 is even and to H<0 when r1 + r2 is odd. Thus there is an inverse

branch Λ(0,0) : H>0 → P (0, 0) × R. We can now, as in [16], �nd constants M0 ∈ R
and α ∈ (0, 1) such that

|Λ(0,0)(x)− Λ(0,0)(y)| ≤ α|x− y|, for all x, y ∈ H>νλeM0 . (4.2)

The next lemma is similar to [23, Lemma 7.1].
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Lemma 4.2.2. Let M > M0 > 0 be a large positive number and x ∈ Λ(0,0)(H>νλeM ).

Then

Zν(B(x,R) ∩H≥M) ⊃ B(Zν(x), α−1R) ∩H>νλeM , (4.3)

where R > 0 and B(x,R) denotes the ball of centre x and radius R.

Proof. Note that x ∈ Λ(0,0)(H>νλeM ) implies that x ∈ P (0, 0)× (M,∞). Let

y ∈ B(Zν(x), α−1R) ∩H>νλeM .

Then by (4.2) we have that

|x− Λ(0,0)(y)| = |Λ(0,0)(Zν(x))− Λ(0,0)(y)| ≤ α|Zν(x)− y| < R.

Hence, Λ(0,0)(y) ∈ B(x,R) ∩ P (0, 0) and thus y = Zν(Λ(0,0)(y)) ∈ Zν(B(x,R) ∩
H≥M).

Proof of Proposition 4.2.1. Let us �x a point x = (0, 0, x0) on the x3-axis and

consider a neighbourhood U of that point. It is easy to see now that Zkν (x) =

(0, 0, Ek
νλ(x0)), where Ek

νλ denotes the k-th iterate of the map Eνλ(t) = νλet. Since

the x3-axis is invariant under our Zorich map and since νλ > 1/e we have that

Ek
νλ(x) → ∞ and thus we may assume that x ∈ H≥M , for some M > M0. By

repeatedly applying (4.3) we may now obtain a sequence Rk →∞ with

Zkν (U) ⊃ B(Zkν (x), Rk) ∩HEkνλ(M)

and we note that the intersection on the right hand side always contains the upper

half of the ball B(Zkν (x), Rk). Hence, for large enough k, the set

Vk = {(x1, x2) ∈ R2 : |x1| ≤ 2λ, |x2| ≤ 2λ} ×
[
Ek
νλ(x0), Ek

νλ(x0) +Rk/2
]
,

is contained in B(Zkν (x), Rk) ∩ HEkνλ(M). Observe now that Zν maps Vk onto the

shell

Ak = {x ∈ R3 : νλ exp
(
Ek
νλ(x0)

)
≤ |x| ≤ νλ exp

(
Ek
νλ(x0) +Rk/2

)
}.

It is easy to see now that this shell, for large enough k and since Rk →∞, contains

a set of the form

{(x1, x2, x3) ∈ R3 : |x1 − 2λqk,1| ≤ 2λ, |x2 − 2λqk,2| ≤ 2λ, |x3| ≤ tk},

with qk,1, qk,2 ∈ Z and tk →∞. This implies that

{x ∈ R3 : νλe−tk ≤ |x| ≤ νλetk} ⊂ Zν(Ak) ⊂ Zk+2
ν (U).

Hence
⋃∞
k=1Zkν (U) = R3 \ {(0, 0, 0)} which means that x ∈ J (Zν).
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Here we will prove some basic facts about the Zorich family we have constructed.

As we already have mentioned in section 4.1 our Zorich maps send the planes x1 = x2

and x1 = −x2 to themselves. We would like to know the behaviour of Zν restricted
to those planes. With that in mind, we observe that restricted to the plane x1 = x2

our Zorich map is conjugate through φ(x1, x1, x3) = 1
λ
(x3 + i

√
2x1) to the map

g : C→ C given by

g(z) :=


ψ(z̄ + 2

√
2i), Im(z) ∈

[
(4k + 1)

√
2, (4k + 3)

√
2
]

ψ(z), Im(z) ∈
[
(4k − 1)

√
2, (4k + 1)

√
2
]
,

where k ∈ Z and ψ(x + iy) = νeλx
(
h3

(
y√
2
, y√

2

)
+ i
√

2h1

(
y√
2
, y√

2

))
. Similarly the

Zorich map is conjugate to a similar map to g on the plane x2 = −x1 and everything

that follows works in that case as well. For simplicity let us write a(y) and b(y)

instead of h3(y/
√

2, y/
√

2) and
√

2h1(y/
√

2, y/
√

2). Note that a2(y) + b2(y) = 1.

Also let us note here that the function ψ is quasiregular and that g(C) = {Re z > 0}.
Furthermore, g is not a quasiregular map, since it is not sense preserving, and is a

two to one function in the strip {z ∈ C : (4k − 1)
√

2 ≤ Im(z) ≤ (4k + 3)
√

2}.
We would now like to show that the planes x1 = ±x2 belong to the Julia set of

Zν . We already know, from Proposition 4.2.1, that the x3-axis belongs to the Julia

set. With that in mind we will prove that any open set in R3 that intersects those

planes also intersects the x3-axis under iteration by Zν . Now since we know that

Zν is conjugate to g on those planes it is enough to prove that any open set in the

complex plane intersects the real axis under iteration by g.

Theorem 4.2.3. Let ν2λ > 2L and V ⊂ C be a connected set with m(V ) > 0,

where m is the 2 dimensional Lebesgue measure. Then gn(V ) intersects the real axis

for some n ∈ N.

For the proof of this Theorem we will need several lemmas. Note here that since

h is a Lipschitz function it will also be di�erentiable almost everywhere. This implies

that g is di�erentiable almost everywhere.

Lemma 4.2.4. Let g be the function we de�ned above. Then

| det(Dg(z))| ≥ ν2λe2λRe(z)

L
a.e.

Proof. It is enough to �nd a lower bound for Im z ∈
[
(4k − 1)

√
2, (4k + 1)

√
2
]
. This

is true because for other z we have that T (z) = z̄ + 2
√

2i has imaginary part in[
(4k′ − 1)

√
2, (4k′ + 1)

√
2
]
for some k′ ∈ Z and thus for those z we have g(z) =
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g(T (z)) = ψ(T (z)). Then by the chain rule we have that Dg(z) = Dg(T (z))DT (z).

Since DT (z) = −1 this implies that |detDg(z)| = |detDg(T (z))|.
With that in mind, if z = x+ iy we have that Dg(z) is the linear transformation

induced by the matrix
νλeλxa(y) νeλx da

dy
(y)

νλeλxb(y) νeλx db
dy

(y)

 =


νλeλxh3( y√

2
) ν√

2
eλx dh3

dy
( y√

2
)

νλ
√

2eλxh1( y√
2
) νeλx dh1

dy
( y√

2
)

 ,

if y ∈
[
(4k − 1)

√
2, (4k + 1)

√
2
]
.

Thus

| detDg(z)| = ν2λe2λx

∣∣∣∣h3(y)
dh1

dy
(y)− h1(y)

dh3

dy
(y)

∣∣∣∣
= ν2λe2λx

∣∣∣∣∣∣∣∣det


a(y) da

dy
(y)

b(y) db
dy

(y)


∣∣∣∣∣∣∣∣ , for y ∈

[
(4k − 1)

√
2, (4k + 1)

√
2
]
.

We now claim that ∣∣∣∣∣∣∣∣det


a(y) da

dy
(y)

b(y) db
dy

(y)


∣∣∣∣∣∣∣∣ >

1

L
, a.e.

Hence

| detDg(z)| ≥ ν2λe2λx

L
a.e.

Indeed, because a2(y) + b2(y) = 1 we have that the vectors (a(y), b(y)) and (da
dy
, db
dy

)

are orthogonal and thus so is their matrix. This implies that∣∣∣∣∣∣∣∣det


a(y) da

dy
(y)

b(y) db
dy

(y)


∣∣∣∣∣∣∣∣ = |(a(y), b(y))|

∣∣∣∣(dady (y),
db

dy
(y)

)∣∣∣∣ =

∣∣∣∣(dady (y),
db

dy
(y)

)∣∣∣∣ .
Now because h is a locally bi-Lipschitz map almost everywhere we have that∣∣∣∣dhdy

(
y√
2
,
y√
2

)∣∣∣∣ ≥ 1

L
a.e.

Since
∣∣∣(dady (y), db

dy
(y)
)∣∣∣ =

∣∣∣ dhdy ( y√
2
, y√

2

)∣∣∣ we obtain what we wanted.

Lemma 4.2.5. Let ν2λ > 2L where λ ≥ 1, ν > 0 and V ⊂ C be a connected

subset of the complex plane with m(V ) > 0 and such that its iterates under g do

not intersect the real axis. Then m(gn(V )) → ∞ as n → ∞, where m is the 2-

dimensional Lebesgue measure.
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Proof. We can assume that V lies on the right half plane {z : Re(z) > 0} otherwise
just consider g(V ) since g maps C to the right half plane. We know that m(g(V )) =∫
g(V )

dm. Since none of the iterates of V under g intersects the real axis we have

that those iterates also do not intersect any of the pre-images of the real axis,

meaning the lines y = 2
√

2k, k ∈ Z. Thus gn(V ) is always inside strips of the form

{z ∈ C : Im z ∈
(
2
√

2k, 2
√

2(k + 1)
)
}. In each of those strips it is easy to see, by

the de�nition of g, that it is a two-to-one map. By using Lemma 4.2.4 and since

Re z > 0 for all z ∈ V we now have∫
g(V )

dm ≥ 1

2

∫
V

| det(Dg)|dm ≥ ν2λ

2L

∫
V

e2λRe(z)dm ≥ ν2λ

2L
m(V ).

This means that

m(g(V )) ≥ ν2λ

2L
m(V ).

Hence, since ν2λ > 2L if we iterate that inequality we have that m(gn(V ))→∞.

Figure 4.3: The pre-images of the lines Im z = 2kπi, k ∈ Z \ {0} under the expo-

nential map. The curves γm in the proof of Theorem 4.2.3 have a similar structure.

Proof of Theorem 4.2.3. Suppose, towards a contradiction, that there is a connected

set V with m(V ) > 0 whose iterates never intersect the real axis. Then by Lemma

4.2.5 we have that m(gn(V )) → ∞ as n → ∞. Since gn(V ) never intersects the

real axis it also does not intersect its pre-images meaning the lines Im(z) = 2
√

2k,

k ∈ Z. This means that gn(V ) stays always inside strips of the form {z ∈ C :

Im(z) ∈
(
2
√

2k, 2
√

2(k + 1)
)
, k ∈ Z}. If we now take the pre-image of the lines

Im(z) = 2
√

2m, m ∈ Z \ {0}, that lie inside all those strips we obtain curves γm
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which the iterates gn(V ) of our set must not cross. By symmetry we can con�ne

ourselves in the strip

S :=
{
z ∈ C : Im(z) ∈

(
0, 2
√

2
)}

.

From now on let us write hi(y) instead of hi(y, y), i = 1, 2, 3 for simplicity.

We have two cases to consider now. Either S contains the pre-images of the lines

Im(z) = 2
√

2m, m > 0, in which case h1(y) > 0 for y > 0 or S contains the pre-

images of the lines form < 0 in which case h1(y) < 0 for y > 0. We will only consider

the �rst case here. The second one can be dealt similarly. So suppose m > 0. We

claim that the curves γm partition the strip S in sets of uniformly bounded area. In

fact if we name Am the area of the set de�ned by γm and γm+1 and we name A0 the

area inside the strip between the imaginary axis and γ1, then we claim that Am is

an eventually decreasing sequence. Clearly, since m(gn(V )) → ∞ and gn(V ) must

stay inside those sets Am this is impossible.

In order to prove those claims note that the curves γm are given by the equa-

tions νeλxh1

(
y√
2

)
= 2m, when y ∈

(
0,
√

2
]
and νeλxh1

(
2
√

2−y√
2

)
= 2m, when

y ∈
[√

2, 2
√

2
)
. It is also easy to see that those curves do not have self inter-

sections and do not intersect with each other. The area we are looking for will be

given by

Am =

∫ √2

0

1

λ

log
2(m+ 1)

νh1

(
y√
2

) − log
2m

νh1

(
y√
2

)
 dy

+

∫ 2
√

2

√
2

1

λ

log
2(m+ 1)

νh1

(
2
√

2−y√
2

) − log
2m

νh1

(
2
√

2−y√
2

)
 dy.

Thus Am = 2
√

2
λ

log m+1
m

which proves what we wanted. We also need to �nd A0 for

which it is true that

A0 =

∫ √2

0

1

λ
log

2

νh1

(
y√
2

)dy+

∫ 2
√

2

√
2

1

λ
log

2

νh1

(
2
√

2−y√
2

)dy = 2

∫ √2

0

1

λ
log

2

νh1

(
y√
2

)dy,
if νh1

(
y√
2

)
= 2 has no solution. If this equation has solutions then, although we

can �nd the area again we do not need to since A0 will be even smaller in this case

(see �gure 4.4).

Notice that because (h1, h2, h3) is always a point on the unit sphere we have that

h1(x, y)2+h2(x, y)2 = sin2 θ|h(x, y)−h(0, 0)|2 = sin2 θ
(
h1(x, y)2 + h2(x, y)2 + (h3(x, y)− 1)2

)
,

where θ is the angle between the x3-axis and the segment that connects (0, 0, 1) with

(h1, h2, h3). Taking x = y, the fact that h is bi-Lipschitz on [−1, 1]2 and noticing
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Figure 4.4: The curve γ0 for the exponential map for two di�erent values of ν. The

situation is similar with our maps as well.

that θ ≥ π/4 gives us |h1(y)| ≥ |y|√
2L
. Hence because h1(y) > 0 for y ∈ (0, 1) we have

A0 ≤
2

λ

∫ √2

0

log

(
4L

νy

)
dy,

which is �nite.

4.2.2 Proof of Theorem 4.1.3

Having proved Theorem 4.2.3 we are now ready to proceed to our main theorem.

First we prove some lemmas that we will later need. Note here that since we

proved that the planes x1 = ±x2 are in the Julia set of Zν we will also know that all

their inverse images are in the Julia set. Those inverse images are again planes of

the form x1 = ±x2 + 2λk, where k ∈ Z. Those planes partition R3 in square beams.

Name B(0,0) the open rectangular beam that is the union of the two square beams

that touch the x3-axis and are in the half-space x2 ≤ x1. We can partition the space

now in rectangular beams that are translates of this B(0,0). Let us name them

B(i,j) = B(0,0) + i(2λ, 2λ, 0) + j(λ,−λ, 0), i, j ∈ Z.

Note that the map Zν is a homeomorphism in those rectangular beams. The next

lemma is inspired by the one Misiurewicz used in his proof (compare [94, Lemma

1]) and is the main reason that we need the scale factor λ in our de�nition of the

Zorich map. It will be convenient to introduce some notation. Let p : R3 → R2 be

the projection map de�ned by p(x1, x2, x3) = (x1, x2). Also let p3(x), x ∈ R3 denote

the third coordinate of x, in other words p3(x1, x2, x3) = x3.
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Lemma 4.2.6. If λ and L are the numbers we used in the construction of the Zorich

map and ν > 0 then

det (DZnν (x)) ≥
(
λ

L5

)n
1

λ3
|(p ◦ Znν ) (x)|3 a.e.

Proof. First note that |p(Znν (x))| = νep3(Zn−1
ν ) · |(p ◦ h ◦ p ◦ Zn−1

ν )(x)|. Also, using

the fact that h(0) = (0, 0, λ) and h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2)) is a

Lipschitz map we have that

|p(h(x))| = |p (h(x)− h(0))| ≤ |h(x)− h(0)| ≤ L|x|.

Hence

|p(Znν (x))| = νep3(Zn−1
ν )

∣∣(p ◦ h ◦ p ◦ Zn−1
ν

)
(x)
∣∣

≤ Lνep3(Zn−1
ν )

∣∣(p ◦ Zn−1
ν

)
(x)
∣∣ ≤ · · ·

≤ (νL)nep3(Zn−1
ν )ep3(Zn−2

ν ) · · · ex3
√
h2

1

(
x1, x2

)
+ h2

2

(
x1, x2

)
≤ λ(νL)nep3(Zn−1

ν )ep3(Zn−2
ν ) · · · ex3 . (4.4)

From the chain rule we know that

det (DZnν (x)) =
n−1∏
k=0

det
(
DZν

(
Zkν (x)

))
. (4.5)

Now from the de�nition of Zν we have

det(DZν(x)) = ν3e3x3 detH, (4.6)

where

H =



∂h1
∂x1

(p(x)) ∂h1
∂x2

(p(x)) h1(p(x))

∂h2
∂x1

(p(x)) ∂h2
∂x2

(p(x)) h2(p(x))

∂h3
∂x1

(p(x)) ∂h3
∂x2

(p(x)) h3(p(x))


.

We now set

A =



∂h1
∂x1

(p(x))

∂h2
∂x1

(p(x))

∂h3
∂x1

(p(x))


, B =



∂h1
∂x2

(p(x))

∂h2
∂x2

(p(x))

∂h3
∂x2

(p(x))


, C =



h1 (p(x))

h2 (p(x))

h3 (p(x))


.
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Recall now that from linear algebra, the determinant of a matrix equals the scalar

triple product. This means that

detH =
〈
A×B,C

〉
,

where 〈·, ·〉 denotes the Euclidean inner product. Since Zν is sense preserving we

will have that detH > 0 and since A and B are orthogonal to C we will have that

A×B is parallel to C. Remember that |C| = λ so

detH = λ|A×B|

〈
A×B
|A×B|

,
C

|C|

〉
= λ|A×B|. (4.7)

Now because h is a locally bi-Lipschitz map we have that

|h (p(x) + tv)− h (p(x))| ≥ |tv|
L
,

for all small t > 0 where v = (v1, v2) ∈ R2. This implies that

|Dh (p(x)) (v)| ≥ |v|
L

(4.8)

and if we set v =
(
|B|, −〈A,B〉|B|

)
and square both sides we have

∣∣∣∣|B|A− 〈A,B〉|B|
B

∣∣∣∣2 ≥ 1

L2

(
|B|2 +

〈A,B〉2

|B|2

)
≥ |B|

2

L2
.

Simplifying we have

|A|2|B|2 − 〈A,B〉2 ≥ |B|
2

L2
.

Now note that by elementary properties of the cross product |A×B|2 = |A|2|B|2−
〈A,B〉2 and thus

|A×B|2 ≥ |B|
2

L2
≥ 1

L4
,

where the last inequality comes from (4.8) for v = (0, 1). Hence, (4.7) becomes

detH ≥ λ
L2 . Putting everything together in (4.6) we have

det (DZν(x)) ≥ ν3e3x3
λ

L2
, a.e. (4.9)

Hence, by (4.4) and (4.9) we have that

|p(Znν (x))|3 ≤ λ3(Lν)3ne3p3(Zn−1
ν )e3p3(Zn−2

ν ) · · · e3x3

≤ λ3L5n

λn
det
(
DZν

(
Zn−1
ν (x)

))
· · · det(DZν(x)) a.e.

By rearranging and (4.5) now we obtain the desired inequality.
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The next lemma describes the behaviour of points near the x3-axis under itera-

tion.

Lemma 4.2.7. Let νλ > 1
e
.

(a) There are δ > 0 and c > 0 such that if x ∈ Cδ, where Cδ is the cylinder around
the x3-axis with δ radius, then p3(Zν(x)) > p3(x) + c,

(b) For δ as in (a) and for every x ∈ Cδ, with p(x) 6= (0, 0), there is an n ∈ N
such that Znν (x) 6∈ Cδ.

Proof. (a) We have if h(x1, x2) = (h1(x1, x2), h2(x1, x2), h3(x1, x2)) then p3(Zν(x)) =

νex3h3(x1, x2). Now since h(0, 0) = (0, 0, λ) and h is continuous, for all ε > 0 there

is a disk D = D(0, δ) of radius δ > 0 on which we have h3(x1, x2) > λ− ε. Hence if
x = (x1, x2, x3) ∈ Cδ = D × R, then

p3(Zν(x)) = νex3h3(x1, x2) > νep3(x)(λ− ε) ≥ p3(x) + 1 + log (ν(λ− ε)) ,

where the last inequality follows by minimizing νet(λ−ε)− t. Now notice that since

νλ > 1
e
we can �nd a small enough ε > 0 such that ν(λ − ε) > 1

e
, which implies

1 + log(ν(λ− ε)) > 0. Hence, p3(Zν(x)) > p3(x) + c with c = 1 + log(ν(λ− ε)).

(b) For a δ as in (a) and δ < λ now assume that there is a point x ∈ Cδ such

that p(x) 6= 0 and Znν (x) ∈ Cδ for all n ∈ N. Then according to (a) we would have

that p3(Znν (x))→∞ when n→∞. We know that

|(p ◦ Zn+1
ν )(x)| = ep3(Znν )| (p ◦ h ◦ p ◦ Znν ) (x)|. (4.10)

Now its a simple geometric fact that for each y ∈ [−λ, λ]2

| (p ◦ h) (y)| = sin θ |h(y)− h(0)| , (4.11)

where θ is the angle between the line segment joining the point h(y), on the sphere,

with the point (0, 0, λ) and the x3-axis. Moreover, θ ≥ π/4 for all such y. Also by

the fact that h is a bi-Lipschitz function we have that |h(y)− h(0)| ≥ |y|
L
.

Now taking y = p (Znν (x)) and combining this with (4.10) and (4.11) implies that

|(p ◦ Zn+1
ν )(x)| ≥ ep3(Zn(x))

√
2L

|(p ◦ Znν )(x)|.

Thus, since p3(Znν (x))→∞, for all large enough n we can say that

|(p ◦ Zn+1
ν )(x)| ≥ 2|(p ◦ Znν )(x)|.

This of course contradicts the fact that Zn(x) ∈ Cδ for all n ∈ N.
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The next lemmas describe how sets of positive measure behave under iteration by

the Zorich map assuming that their iterates never cross the planes that we already

know belong to the Julia set.

Lemma 4.2.8. Assume that λ > L5. Let V ⊂ R3 be a connected set with m(V ) > 0

and whose iterates under Zν do not intersect any of the planes x1 = ±x2+2λk, where

k ∈ Z. Suppose also that there is sequence of integers nj > 0 with Znjν (V )∩Ca = ∅,
where Ca is a cylinder around the x3-axis of any radius a > 0. Then m(Znjν (V ))→
∞ as nj →∞, where m is the 3 dimensional Lebesgue measure.

Proof. Since Znjν (V ) stays out of the cylinder Ca we have that, for x ∈ V

|(p ◦ Znjν )(x)| > a.

By using Lemma 4.2.6 we will now have that

det (DZnjν ) ≥
(
λ

L5

)nj
· a

3

λ3
a.e. on V.

Since all of the iterates of V do not intersect any of the planes x1 = ±x2 + 2λk,

where k ∈ Z and since the Zorich map is a homeomorphism in the square beams

that remain if we remove those planes we will have that Znν is a homeomorphism in

V . Hence, for all nj we will have that

m(Znjν (V )) =

∫
V

|det (DZnjν )| dm ≥
(
λ

L5

)nj(a3

λ3

)
m(V ),

which tends to in�nity as nj →∞ since λ > L5.

For our next lemma let us assume that our Zorich map sends the beam B(0,0) to

the half space x2 ≤ x1. The other alternative is mapping it to the half space x1 ≤ x2

but the methods work in a very similar way with minor modi�cations.

Consider the inverse image under Zν of the boundary of B(0,0) that lies in the

interior of B(0,0). This inverse image will be some surface which we will call S0.

In Figure 4.5 we have drawn the x1x2 plane and the rectangular beams B(0,0) and

B(0,−1). Take now the planes P1 : x2 = x1−4λ, P2 : x2 = −x1+4λ, P3 : x2 = −x1−4λ

and consider the rectangular beam they de�ne together with the plane x1 = x2. Let

us now take the boundary of this beam, without the part that belongs to x1 = x2,

and name it L1. Consider now the inverse image of L1 that lies inside B(0,0). This

image is a surface, let us call it S1. We can now do the same with the planes

P4 : x2 = x1 − 6λ, P5 : x2 = −x1 + 6λ, P6 : x2 = −x1 − 6λ and get the boundary of

the beam they de�ne, which we call L2 and then the surface we obtain by taking the

inverse image which we call S2. If we continue with this construction we obtain a
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sequence of surfaces, S0, S1, S2, S3, · · · inside B(0,0). Each of those surfaces lies above

its previous starting with S0. We can also construct similar surfaces K0, K1, K2, · · ·
inside the beam B(0,−1) by taking inverse images of the corresponding boundaries

∂B(0,−1), R1, R2, · · · (see Figure 4.5). Moreover, we construct similar surfaces in

all the other rectangular beams B(i,j), that partition the space, depending on which

half-space the beam is mapped to under the Zorich map. Let us denote by S the

union of all those surfaces.

We will show that the space between Sn and Sn+1 (similarly between Kn and

Kn+1) is of �nite volume and is decreasing as n increases.

Figure 4.5: The x1x2 plane. In pink is the initial square we used to de�ne our Zorich

map. In blue the rectangular beams B(0,0) and B(0,−1) while in orange, dark green, green

and red are the sets L1, L2, R1 and R2 respectively.

Lemma 4.2.9. Let In be the volume that the surface Sn encloses together with the

plane x3 = 0 and inside the beam B(0,0). Then In is �nite for all n ∈ N. Furthermore,
if Tn := In+1−In is the volume between Sn and Sn+1 then Tn is a decreasing sequence.

Proof. Let us �rst �nd an implicit equation that describes each of these surfaces.

We work on B(0,0) but the same can be done on all other rectangular beams. Let us

split B(0,0) in three di�erent beams whose cross-sections with the x1x2 plane are the
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sets

Q1 := h−1 ({(x1, x2, x3) ∈ S(0, λ) : 0 ≤ x2 ≤ x1}) ,

Q2 := h−1 ({(x1, x2, x3) ∈ S(0, λ) : x2 ≤ 0, x1 ≥ 0})

and

Q3 := h−1 ({(x1, x2, x3) ∈ S(0, λ) : x2 ≤ x1 ≤ 0}) ,

where S(0, λ) the sphere of centre 0 and radius λ. In the beam corresponding to the

�rst cross section, meaning Q1 × R, the points on the surface Sn satisfy

νex3h1(x1, x2) = −νex3h2(x1, x2) + 2(n+ 1)λ.

On the beam Q2 × R the surface points satisfy

νex3h1(x1, x2) = νex3h2(x1, x2) + 2(n+ 1)λ,

while on the beam Q3×R that corresponds to the last cross section the points satisfy

νex3h1(x1, x2) = −νex3h2(x1, x2)− 2(n+ 1)λ.

Suppose now that the surfaces Sn do not intersect the plane x3 = 0. Hence the

volume that the surface Sn encloses together with the plane x3 = 0 and inside the

beam B(0,0) is given by the integrals

In =

∫ ∫
Q1

log
2(n+ 1)λ

ν (h2(x1, x2) + h1(x1, x2))
dx2dx1

+

∫ ∫
Q2

log
−2(n+ 1)λ

ν (h1(x1, x2)− h2(x1, x2))
dx2dx1

+

∫ ∫
Q3

log
−2(n+ 1)λ

ν (h2(x1, x2) + h1(x1, x2))
dx2dx1.

It is not so hard to prove now that each of these integrals is �nite since each one of

them is an integral of a bounded function except on a neighbourhood of (0, 0) and

the points where h1 ± h2 = 0 which are (0,−2λ), (2λ, 0). So in order to show that

this sum is �nite, it is enough to consider the integrals only in neighbourhoods of

those points. On the other hand, when those surfaces Sn intersect the plane x3 = 0

the volumes are no longer given by the above integrals (the set where we integrate

will change) but again we only have to consider them at a neighbourhood of (0, 0)

as well as (0,−2λ), (2λ, 0) so that is what we do next. In fact, those volumes in

that case are even smaller.

We will only treat here the second integral around an ε-neighbourhood of (0, 0)

and the rest follows similarly. So we are looking at the integral∫ ∫
Q2∩B(0,ε)

log
−2(n+ 1)λ

ν (h2(x1, x2)− h1(x1, x2))
dx2dx1,
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where B(0, ε) is a ball centred at 0 with radius ε. Equivalently, we want to show

that the integral ∫ ∫
Q2∩B(0,ε)

− log (h1(x1, x2)− h2(x1, x2)) dx2dx1 (4.12)

is �nite. Now because h is a bi-Lipschitz map and because h2(x1, x2) ≤ 0 and

h1(x1, x2) ≥ 0 in the set we are integrating we have that

(h1−h2)2 = h2
1 +h2

2 +2h1(−h2) ≥ h2
1 +h2

2 = sin2 θ(h2
1 +h2

2 +(h3−λ)2) ≥ cε
L2

(x2
1 +x2

2),

where θ is the angle between the x3 axis and the segment that connects (0, 0, λ) with

(h1, h2, h3) and cε > 0 a constant that depends only on ε. Hence

|h1(x1, x2)− h2(x1, x2)| ≥
√
cε
L

√
x2

1 + x2
2.

Now since h1 − h2 ≥ 0 in the set we are integrating, we will have that∫ ∫
Q2∩B(0,ε)

log (h1(x1, x2)− h2(x1, x2)) dx2dx1 ≥
∫ ∫

Q2∩B(0,ε)

log

(√
cε
L

√
x2

1 + x2
2

)
dx2dx1.

Now since the last integral is �nite we will have that the integral (4.12) is also �nite.

Finally, let us show that the sequence Tn is a decreasing one. Indeed,

Tn = In+1 − In = λ2 log
n+ 2

n+ 1
+ λ2 log

n+ 2

n+ 1
+ 2λ2 log

n+ 2

n+ 1
= 4λ2 log

n+ 2

n+ 1
,

which can be easily seen to be a decreasing sequence.

Lemma 4.2.10. Assume λ > L5 and let V be a connected subset of R3 with m(V ) >

0 and such that Znν (V ) does not intersect any of the planes x1 = ±x2 + 2λk, where

k ∈ Z for all n ∈ N. Then Znν (V ) visits in�nitely often one of the two rectangular

beams B(0,0), B(0,−1), that have the x3-axis in their boundary.

Proof. Consider the iterates Vi = Z iν(V ) of the set V . The sets Vi stay always inside

one of the rectangular beams by assumption and also they cannot intersect any of

the surfaces in S that are in those beams since if they did on the next iterate they

would intersect the boundary of one of the beams. Suppose now that we can �nd

a N ∈ N such that Vi 6∈ B(0,0) ∪ B(0,−1) for all i > N . Then by Lemma 4.2.8 we

have that m(Vi)→∞. This implies that our sets Vi cannot lie between any two of

the surfaces in S, for all large i since there is �nite volume between them. Thus Vi

stays below the lowest surface in the relevant rectangular beam for all i > N1 > N ,

where N1 ∈ N. This is a contradiction since being below that surface implies that

Vi+1 is in either B(0,0) or B(0,−1).
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The next lemma tells us that when a set remains in B(0,0) under iteration by Zν
then we can �nd points with large x3 coordinate in its iterates.

Lemma 4.2.11. Assume λ > L5, ν > 1
λe

and let V be a connected set of R3 with

m(V ) > 0 and such that Znν (V ) does not intersect any of the planes x1 = ±x2 +2λk,

where k ∈ Z for all n ∈ N. Suppose that there is an N0 ∈ N such that Znν (V ) ⊂ B(0,0),

for all n > N0. Then for all M > 0 and ε > 0 there is some n0 > N0 and a point

x ∈ Zn0
ν (V ) such that p3(x) > M and d(x, x3-axis) < ε, where d is the Euclidean

distance.

Proof. Either an ε0 > 0 exists such that d(Znν (V ), x3-axis) > ε0 for all n > N0

or such an ε0 does not exist. In the �rst case we know from Lemma 4.2.8 that

m(Znν (V )) → ∞. We also know that since Znν (V ) ∈ B(0,0), for all n > N0, Znν (V )

must, by Lemma 4.2.9, lie below the surface S0 . Since m(Znν (V ))→∞ then it must

be true that for allM1 > 0 there is a n0 and a point z0 in Zn0
ν (V ) with p3(z0) < −M1.

The pre-image of that point inside B(0,0) is a point z(1) =
(
z

(1)
1 , z

(1)
2 , z

(1)
3

)
for which

νez
(1)
3 h3

(
z

(1)
1 , z

(1)
2

)
< −M1 and h3

(
z

(1)
1 , z

(1)
2

)
< 0. But since h3 > −λ we have that

ez
(1)
3 >

M1

νλ
⇒ z

(1)
3 > log

M1

νλ
.

If we now take the pre-image in B(0,0) of that point, z(2) =
(
z

(2)
1 , z

(2)
2 , z

(2)
3

)
then

0 < h3

(
z

(2)
1 , z

(2)
2

)
< λ and

νez
(2)
3 h3

(
z

(2)
1 , z

(2)
2

)
= z

(1)
3 > log

M1

νλ
,

which implies then

z
(2)
3 > log

log M1

νλ

νλ
.

Thus we have shown that for any M > 0 there is a point z(2) in Zn0−2
ν (V ) for which

z
(2)
3 > M and also

∣∣∣z(2)
1

∣∣∣ , ∣∣∣z(2)
2

∣∣∣ < λ. This leads to a contradiction. To see why, note

that by our assumptions Znν (V ) is ε0 away from the x3-axis and below the surface S0

and thus all of its points, which are also inside the initial square beam [−λ, λ]2 ×R
(pink in �gure 4.5), have a bounded x3 coordinate. This is true because the surface

S0 together with any cylinder around the x3 axis and the plane x3 = 0 enclose a set

inside [−λ, λ]2 × R and outside of the cylinder whose closure is compact.

For the second case now, where such an ε0 does not exist, then there is a sequence

wk ∈ ∪n>N0Znν (V ) with d(wk, x3-axis) → 0. If p3(wk) → ∞ we are done. If on

the other hand p3(wk) → −∞ then yk := Zν(wk) → (0, 0, 0) and thus Znν (yk) →
Znν (0) = (0, 0, En

νλ(0)), where En
νλ(0)) converges to ∞ and again we are done. The
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remaining case to consider is when there is a subsequence wki converging to some

point (0, 0, a) in the x3-axis. By relabelling we may assume that wk → (0, 0, a). Now

choose an N > 0 such that EN
νλ(a) > M , where Eνλ denotes the map x 7→ νλex. By

continuity of ZNν , for all ε > 0 we may �nd a δ such that if |wk − (0, 0, a)| ≤ δ, then∣∣ZNν (wk)−ZNν (0, 0, a)
∣∣ =

∣∣ZNν (wk)−
(
0, 0, EN

νλ(a)
)∣∣ ≤ ε.

Hence, if we choose ε small enough we have that x3

(
ZNν (wk)

)
> M and ZNν (wk) is

within ε distance from the z-axis, when k is large enough.

Lemma 4.2.12. Let y1, y2 ∈ B(0, r), where r > 0. Then for all n ∈ N it is true

that

|Znν (y1)−Znν (y2)| ≤
(

max{L, λ}
λ

)n
Eνλ(r) · · ·En

νλ(r)|y1 − y2|,

where Eνλ denotes the exponential map x 7→ νλex and L is the bi-Lipschitz constant

we used in the construction of the Zorich maps.

Proof. The Zorich map is absolutely continuous on any line segment since it is locally

Lipschitz. First we show that a version of the Finite Increment Theorem, see [142,

10.4.1, Theorem 1], is true for such functions.

Consider the map g(t) = Zν(ty1 + (1 − t)y2), t ∈ [0, 1], which is going to be

absolutely continuous. By the chain rule we now have that

|g′(t)| = |DZν(ty1 + (1− t)y2)(y1 − y2)| ≤ ess sup
x∈γ

|DZν(x)||y1 − y2|.

Using the fundamental theorem of calculus for the Lebesgue integral and the above

equality now we have that

|Zν(y1)−Zν(y2)| = |g(1)− g(0)| ≤
∫ 1

0

|g′(t)|dt ≤ ess sup
x∈γ

|DZν(x)||y1 − y2|,

where γ is the line segment that connects y1 to y2. Remember that |Df | denotes
the operator norm of the total derivative. Hence, by the chain rule and elementary

properties of linear maps we have that

|DZnν (x)| ≤ |DZν
(
Zn−1
ν (x)

)
| · · · |DZν(x)|.

Hence by the above inequalities and because y1, y2 ∈ B(0, r) we have that

|Znν (y1)−Znν (y2)| ≤ ess sup
x∈γ

|DZν
(
Zn−1
ν (x)

)
| · · · ess sup

x∈γ
|DZν(x)||y1 − y2|

≤ ess sup
x∈B(0,r)

|DZν
(
Zn−1
ν (x)

)
| · · · ess sup

x∈B(0,r)

|DZν(x)||y1 − y2|. (4.13)
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We also know that DZν(x) = ex3DZν(x1, x2, 0). Moreover, we will prove that

|DZν(x1, x2, 0)| ≤ ν max{L, λ}.

Indeed, let v = (v1, v2, v3) ∈ R3 then

|DZν(x1, x2, 0)|2 = sup
|v|=1

|DZν(x1, x2, 0)(v)|2 = ν2 sup
|v|=1

|v1A+ v2B + v3C|2,

where A,B,C are as in the proof of Lemma 4.2.6. Remember now that C is orthog-

onal to A and B and thus the above equation becomes

|DZν(x1, x2, 0)|2 = ν2 sup
|v|=1

(
|v1A+ v2B|2 + |v3C|2

)
= ν2 sup

|v|=1

(
|Dh(x)(v1, v2)|2 + |v3|2|C|2

)
≤ ν2 sup

|v|=1

(
L2|(v1, v2)|2 + λ2|v3|2

)
≤ ν2 max{L2, λ2},

where we have used the fact that h is locally bi-Lipschitz.

Hence, |DZν(x)| ≤ ν max{L, λ}ex3 and (4.13) becomes

|Znν (y1)−Znν (y2)| ≤νn max{L, λ}n sup
x∈B(0,r)

ep3(Zn−1
ν (x)) · · · sup

x∈B(0,r)

ep3(x)|y1 − y2|

=

(
max{L, λ}

λ

)n
Eνλ(r) · · ·En

νλ(r)|y1 − y2|,

where we have used the fact that νλ supx∈B(0,r) e
p3(Znν (x)) = En+1

νλ (r) which can be

easily proved by induction on n.

Proof of Theorem 4.1.3. First, let us note that by assumption ν >
√

2L
λ
> 1

λe
. Let

V be any open and connected set of R3. We want to show that Znν (V ) intersects

one of the planes that belong to the Julia set for some n and thus V itself intersects

the Julia set. Assume that this does not happen. By Lemma 4.2.10 now we can

consider two cases

First Case

Suppose �rst that the sequence of iterates Znν (V ) does not eventually stay inside

the square beam B(0,0) ∪ B(0,−1) but it also visits their complement in�nitely of-

ten. Then we can �nd a subsequence nj such that Znjν (V ) ∈ B(0,0) ∪ B(0,−1) and

Znj+1
ν (V ) ∈ B(k,l) for some (k, l) 6= (0, 0), (0,−1). Without loss of generality we may

assume that Znjν (V ) ∈ B(0,0).
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Consider now the sets

V +
nj

= {x ∈ V : |(p ◦ Znjν )(x)| ≥ λ

2
}

and

V −nj = {x ∈ V : |(p ◦ Znjν )(x)| < λ

2
},

(λ is the scale factor by which we scaled up the initial square). Notice that V =

V +
nj
∪ V −nj . Since Znj+1

ν (V ) is outside of B(0,0) ∪ B(0,−1) we will have that Znjν (V )

lies between two "level surfaces" Sk and Sk+1 but we know, from Lemma 4.2.9, that

those surfaces enclose ≤ M0 volume between them, where M0 is a constant. Thus

m(Znjν (V )) ≤M0, where m denotes the Lebesgue measure. Also by Lemma 4.2.6 it

is true that for almost all points in V +
nj

det (DZnjν ) ≥
(
λ

L5

)nj 1

λ3
|(p ◦ Znjν )(x)|3 ≥

(
λ

L5

)nj 1

8
.

Hence, because Znjν is a homeomorphism in V we have that

M0 ≥ m(Znjν (V +
nj

)) =

∫
V +
nj

| det(DZnjν )|dm ≥
(
λ

L5

)nj 1

8
·m(V +

nj
).

This implies that m(V +
nj

) → 0 as nj → ∞. On the other hand, the set Znjν (V −nj ) is

inside the initial square beam [−λ, λ]2 × R. Thus Znj+1
ν (V −nj ) lies in the half space

x3 > 0 and outside the square beam B(0,0) ∪B(0,−1). This same set also lies between

some level surfaces or below all of them. Moreover, as we proved in Lemma 4.2.9 the

volume enclosed by those successive surfaces and the volume enclosed by the �rst one

and the plane x3 = 0 is smaller than some constantM0. Thus m(Znj+1
ν (V −nj )) ≤M0.

By arguing the same way as before now we have that

M0 ≥ m(Znj+1
ν (V −nj )) =

∫
V −nj

| det(DZnj+1
ν )|dm ≥

(
λ

L5

)nj+1
1

8
·m(V −nj ).

This again implies that m(V −nj ) → 0 as nj → ∞. But this is a contradiction since

m(V ) = m(V −nj ) +m(V +
nj

).

Second Case

Suppose now that Znν (V ) ∈ B(0,0) ∪ B(0,−1), for all n > N0. Observe that either

Zν(B(0,0)) ⊂ {(x1, x2, x3) : x2 ≤ x1} or Zν(B(0,0)) ⊂ {(x1, x2, x3) : x2 ≥ x1}. In

the �rst case Znν (V ) stays in B(0,0) for all large n or it stays in B(0,−1) while in the

second it alternates between B(0,0) and B(0,−1). For simplicity we will assume that

the �rst case holds and thus Znν (V ) ∈ B(0,0), for all n > N0.

Let us now consider the inverse image under Zν of the boundary of B(0,0), that lies

inside B(0,0), namely the surface S0 we had in the proof of Lemma 4.2.9. Remember
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that this surface is de�ned as S0 := {(x1, x2, x3) ∈ B(0,0) : x3 = f(x1, x2)}, where f
is continuous on B(0,0) ∩{x3 = 0} and extends continuously on the boundary of this

set except at the points (0, 0), (2λ, 0), (0,−2λ) where f →∞. Notice then that all

the iterates Znν (V ) stay below the surface S0.

Consider now a plane x3 = c, with c = EN
νλ(0)−λ and N so large that this plane

intersects this surface S0 and also

(c+ λ)log(c+λ)+1ec+λν2λ2e−
νλec

2 ≤ λ. (4.14)

We de�ne now sets A1, A2 and A3 as follows:

� A1 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f(x1, x2) and (x1, x2) in a neighbourhood of (0, 0)}.

� A2 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f(x1, x2) and (x1, x2) in a neighbourhood of (2λ, 0)}.

� A3 := {(x1, x2, x3) ∈ B(0,0) : c < x3 < f(x1, x2) and (x1, x2) in a neighbourhood of (0,−2λ)}.

We now have that:

(i) All those sets lie below (in terms of x3 coordinate) the surface S0. By the

de�nitions and Lemma 4.2.9 it is easy to see that the sets A1, A2 and A3 are

also of �nite Lebesgue measure.

(ii) Zν(A2∪A3) ⊂ {(x1, x2, x3) ∈ R3 : x3 < −νλec

2
} and thus Z2

ν (A2∪A3) ⊂ B(0, δ),

where δ = νλe−
νλec

2 . Note that δ < νλ = Eνλ(0).

(iii) It is easy to show by induction on N and since νλ > 1/e that EN
νλ(0) ≥

Eνλ(N − 1) and thus

Eνλ(N − 1) ≤ c+ λ⇒ N ≤ log(c+ λ) + 2. (4.15)

By Lemma 4.2.12 and since λ > L5 we will now have that for all x ∈ B(0, δ)

|ZNν (x)−ZNν (0)| ≤Eνλ(δ) · · ·EN
νλ(δ)|x|

≤E2
νλ(0) · · ·EN+1

νλ (0)δ

≤(c+ λ)N−1Eνλ(λ+ c)δ

≤(c+ λ)log(c+λ)+1νλeλ+cδ.

Hence, by (4.14) we will have that

|ZNν (x)−ZNν (0)| ≤ λ. (4.16)

Equation (4.16) together with (ii) implies that ZN+2
ν (A2 ∪ A3) ⊂ B(ZNν (0), λ)

and by the choice of c this last ball is contained in {(x1, x2, x3) ∈ R3 : x3 > c}. This
implies that the part of ZN+2

ν (A2 ∪ A3) that lies below S0 is contained in A1.
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Recall that Znν (V ) stays below S0 for n > N0. By Lemma 4.2.11 now we know

that there is a point x0 ∈ Zn0
ν (V ) for some n0 > N0 such that x0 ∈ A1. Take such a

point x0. We now consider the iterates of this point. Let us examine the behaviour

of those iterates more carefully. We can assume that A1 is so close to the x3-axis

that if y ∈ A1 then p3(Zν(y)) > p3(y) by Lemma 4.2.7(a). Hence the points Znν (x0)

go higher and higher up in the x3 direction, while at the same time staying in A1,

until at some point the iterate Zkν (x0), for some k, will lie in either A2 or A3 thanks

to Lemma 4.2.7(b). Without loss of generality assume that x1 := Zkν (x0) ∈ A2 and

take a small ball around x1, B(x1, r) with B(x1, r) ⊂ A2 ∩ Zn0+k
ν (V ). By what we

have said in the previous paragraph now, we will have that ZN+2
ν (B(x1, r)) ⊂ A1.

However, we know what happens in points inside A1 when we iterate, they

eventually leave A1. Thus for some k > N + 2 we will have that Zkν (B(x1, r)) ⊂
A2∪A3 since B(x1, r) is a connected set and the sets A1, A2 and A3 are disjoint. We

can then repeat this whole argument, meaning take the set Zkν (B(x1, r)) which is

now in A2 or A3 and thus will be mapped by Zν to the lower half space x3 < −νλec

2

and by ZN+2
ν inside A1. Now continue as above and then repeat. Eventually we

obtain a sequence nj →∞ with

Znjν (B(x1, r)) ⊂ A2 ∪ A3.

Then by using Lemma 4.2.8 we will have that m(Znjν (B(x1, r))) → ∞ but that is

impossible since m(A2 ∪ A3) is �nite.

4.3 Escaping set of the Zorich maps

In this section we prove that the escaping set is connected for those Zorich maps,

for which Theorem 4.1.3 holds. Note that we assume that λ > L5 and ν >
√

2L
λ
.

The proof of this theorem closely follows Rempe's proof for the connectivity of

the escaping set of the exponential family in [112]. Before we begin with the proof

we need to de�ne a few things. First, in this section, for simplicity and without

loss of generality we will assume that our Zorich map sends B(0,0) in the half space

{(x1, x2, x3) ∈ R3 : x2 ≤ x1}. Let

H0 := {(x1, x2, x3) ∈ R3 : x2 < x1 and x2 > −x1}

and similarly

H1 := {(x1, x2, x3) ∈ R3 : x2 > x1 and x2 > −x1}

H2 := {(x1, x2, x3) ∈ R3 : x2 > x1 and x2 < −x1}
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H3 := {(x1, x2, x3) ∈ R3 : x2 < x1 and x2 < −x1}.

Also, let T0 = T(0,0) := B(0,0) ∩H0 and

T(i,j) = T(0,0) + i(λ, λ, 0) + j(λ,−λ, 0), i, j ∈ Z.

Note that T1 := T(0,−1) = B(0,−1) ∩ H1, T2 := T(−1,−1) = B(0,−1) ∩ H2 and

T3 := T(−1,0) = B(0,0) ∩H3 and thus Ti ⊂ Hi, i = 0, 1, 2, 3. De�ne now Λi : Hi → Ti,
i = 0, 1, 2, 3 to be the inverse branches of Zν in Ti. We can extend those maps to

Hi \ {0} for i = 0, 1, 2, 3 and again those extended maps are injective. We will use

the same symbols, Λi to denote these extended maps.

Now take γ0 := {(0, 0, x3) : x3 < 0} and inductively de�ne

γk := Λ0(γk−1),

for all k ≥ 1. Each of the sets γk, k ≥ 1, is an injective curve inside T0.

We de�ne now the set Γ0 by

Γ0 :=
⋃
k≥0

γk.

Lemma 4.3.1. If U ⊂ R3 is any open set with U ∩ Γ0 6= ∅ then there is a k0 ∈ N
with γk ∩ U 6= ∅ for all k > k0. In particular,

⋃
k≥k0 γk is dense in Γ0.

Proof. Let x0 ∈ Γ0, and U a neighbourhood of this point. We want to show that

γk ∩ U 6= ∅ for all su�ciently large k. We know, from the de�nition of Γ0, that

there is a point x1 ∈ U ∩ Γ0. This implies that Znν (x1) belongs to the x3-axis for all

n ≥ N0, for some N0 ∈ N and in fact we can assume that x2 := ZN0
ν (x1) ∈ H>M ,

where M is any positive number. Now taking M > M0, where M0 is the constant

we used in Lemma 4.2.2 and applying that lemma for a ball B(x2, R) ⊂ ZN0
ν (U) n

times we have

Znν (B(x2, R) ∩H>M) ⊃ B
(
Znν (x2), α−nR

)
∩H>Enνλ(M).

For all large enough n now the ball on the right hand side, B (Znν (x2), α−nR), in-

tersects the line γ1 = {(2λ, 0, t) : t ∈ R}. Hence, for all large enough n, Znν (U)

intersects γ1. Thus for each n large enough there is a point x3 ∈ γ1 whose backward

orbit intersects U itself. This means that U contains a point in γk for all large

enough k as we wanted.

Lemma 4.3.2. The set Γ0 is connected.
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Proof. Suppose U ⊂ R3 is an open set with U ∩ Γ0 6= ∅ and Γ0 ∩ ∂U = ∅. We show

that Γ0 ⊂ U .

By Lemma 4.3.1 we have that γk ∩U 6= ∅, for all k > k0. Since γk is a connected

curve this implies that γk ⊂ U , for all k > k0. Thus

Γ0 ⊂ Γ0 =
⋃
k≥k0

γk ⊂ U.

Hence, since Γ0 ∩ ∂U = ∅, we have that Γ0 ⊂ U .

Similarly now we can de�ne sets Γi, for i = 1, 2, 3 using this time Λi instead of

Λ0 and prove that Γi is also connected. This implies that the union Γ :=
⋃3
i=0 Γi is

a connected set. We de�ne now the set

Y :=
⋃

(k,l)∈Z2

(Γ + k(2λ, 2λ, 0) + l(2λ,−2λ, 0)) ,

which is connected since Γ contains the lines {(±2λ, 0, t) : t ∈ R}, {(0,±2λ, t) : t ∈
R} and is a subset of I(Zν) since the iterates of any point eventually land on the

x3-axis. Next we de�ne, inductively, the sets Yj ⊂ I(Zν) by setting Y0 = Y and

Yj+1 = Z−1
ν (Yj) ∪ Yj.

Lemma 4.3.3. The sets Yj are connected for all j ≥ 0.

Proof. We will prove this by induction on j. Let us de�ne the inverse branches

of Zν . By using the notation we introduced in the �rst paragraphs of this section

de�ne Λk,l : Hp → T(k,l), with p = 0, 1, 2, 3 to be the inverse branches of Zν that

take values on the square beams T(k,l). We also extend those maps to Hp \ {0} and
use the same symbol to denote those extensions. With that notation we have that

Yj+1 =
⋃

(k,l)∈Z2

Λk,l(Yj) ∪ Yj.

By the inductive hypothesis now we know that Yj is connected and because Λk,l is

continuous the set Λk,l(Yj) is also connected. Observe now that the point xn,m =

(2λ, 0, 0) + n(2λ, 0, 0) +m(0, 2λ, 0) is inside Y = Y0 and thus in Yj, for all n,m ∈ Z
and for all j ∈ N. Also note that Zν(xn,m) = (0, 0,−νλ) or (0, 0, νλ) which are

both points in Yj. This means that there are m,n depending on k, l such that

xn,m ∈ Λk,l(Yj). Hence Λk,l(Yj) ∩ Yj 6= ∅. This implies that the set Λk,l(Yj) ∪ Yj is
connected. Hence Yj+1 is connected as a union of connected sets with non-empty

intersections with each other as we wanted.

Proof of Theorem 4.1.5. Consider the set⋃
j≥0

Z−jν ((0, 0,−1)) ⊂
⋃
j≥0

Yj.
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The Zorich map is bounded on {(x1, x2, x3) : x3 < 0} and thus it does not have the

pits e�ect (see section 3.3 and [23]). Hence, by [23, Theorem 1.8] we will have that

the set
⋃
j≥0Z−jν ((0, 0,−1)) is dense in J (Zν), which by Theorem 4.1.3 is R3, and

thus also dense in I(Zν). Thus the set
⋃
j≥0 Yj is a connected dense subset of I(Zν)

which implies that the escaping set itself is connected.

4.4 Density of periodic points

Proof of Theorem 4.1.4. First let U0 = B(x0, r) be a ball centred at x0 ∈ R3 of

radius r > 0. We seek a periodic point of Zν in U0. Without loss of generality we

may assume that U0 does not intersect any of the planes x1 = ±x2 + 2λk, k ∈ Z.
We will follow the method of [57] where the authors prove that periodic points

of a quasiregular version of the sine function are dense on R3. We will do this by

�nding an N ∈ N and a �nite sequence of open sets Uj, j = 0, . . . , N such that

(i) Uj+1 ⊂ Zν(Uj), 0 ≤ j ≤ N − 1.

(ii) Zν is a homeomorphism on each Uj for j ≤ N − 1.

(iii) U0 ⊂ UN .

If these conditions are met then we can de�ne a continuous inverse branch Z−Nν :

UN → U0. Thus by the Brouwer �xed point theorem the map Z−Nν |U0 has a �xed

point in U0.

We will now show how we can construct such a sequence. By Theorem 4.1.3 we

know that Znν (U0) eventually covers R3 \ {0}. We set Uj = Zjν(U0) for all j such

that Zjν(U0) does not intersect the set P :=
⋃
k∈Z{(x1, x2, x3) : x1 = ±x2 + 2kλ}.

Let n0 be the biggest such j, so that we have de�ned U0, . . . , Un0 . Then take a point

y1 in Zn0+1(U0) ∩ P such that y1 6∈ BZν and a ball B(y1, r) ⊂ Zn0+1
ν (U0) \ BZν ,

where we remind here that BZν is the branch set. Set Un0+1 = B(y1, r). We

know that Zν(Un0+1) intersects one of the planes x1 = ±x2 and it is easy to see

that Zν is a homeomorphism on Un0+1. Assume, without loss of generality that it

intersects x1 = x2 and take y2 ∈ (Zν(Un0+1) ∩ {(x1, x2, x3) : x1 = x2}) \ BZν . Set

Un0+2 = B(y2, r2), where r2 > 0 is such that B(y2, r2) ⊂ Zν(Un0+1) \BZν .
Consider the set V0 = Un0+2 ∩ {(x1, x2, x3) : x1 = x2} which is an open set of

the plane x1 = x2 in the subspace topology. We de�ne the sets Vn by induction as

follows. Suppose that Vn has been de�ned and that Vn ∩BZν = ∅. We consider now

two cases:
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1. Zν(Vn) intersects one of the lines {(x1, x2, x3) : x1 = x2 = 2λk}, k ∈ Z which

are the pre-images of the x3 axis on the plane x1 = x2.

2. Zν(Vn) does not intersect any of those lines.

In the �rst case, let y3 be a point in such an intersection. We de�ne Vn+1 to be an

open ball around y3 in the subspace topology of x1 = x2 of radius r3 where r3 is

chosen in such a way that the ball does not contain branch points and such that

Vn+1 ⊂ Zν(Vn).

In the second case, we de�ne Vn+1 := Zν(Vn) ∩H0, where H0 is the whole plane

x1 = x2 in case Zν(Vn) ∩ BZν = ∅ and it is an open half plane on x1 = x2, in any

other case, which is de�ned as follows. Suppose that Zν(Vn) intersects one of the

lines of BZν which we call `1. We set H0 to be the half plane de�ned by this line

and the property

m2(Zν(Vn) ∩H0) ≥ 1

2
m2(Zν(Vn)),

where m2 is the 2 dimensional Lebesgue measure on x1 = x2. Note now that we

have inductively de�ned the sets Vn.

We now claim that case (1) must occur for some n, otherwise notice that by

construction Zν is a homeomorphism on Vn, for all n ∈ N. Hence,

m2(Vn+1) = m2(Zν(Vn) ∩H0) ≥ 1

2
m2(Zν(Vn)). (4.17)

Using the notation of section 4.2.1 we now have that

m2(Zν(Vn)) = m2((φ−1 ◦ g ◦ φ)(Vn)) = Cm2(g(φ(Vn))),

where C = | detDφ−1| which is a constant since φ is linear. Combining with equation

(4.17) this gives

m2(Vn+1) ≥ C

2
m2(g(φ(Vn))).

Thus by Lemma 4.2.5 we have that m2(Vn)→∞, as n→∞. This implies, just like

in the proof of Theorem 4.2.3, that there is an m0 such that Vm0 intersects the x3

axis.

We now set Un0+2+i to be the open set

Un0+2+i :=
⋃
x∈Vi

B(x, rx),

where rx is such that B(x, rx) ⊂ Zν(Un0+1+i) and B(x, rx) ∩ BZν = ∅, for all

1 ≤ i ≤ m0.

Notice that the sets Un0+2+i satisfy the properties (i) and (ii). We have that

Un0+2+m0 intersects the x3 axis, so let

Un0+3+m0 = Zν(Un0+2+m0) ∩B(0,0).
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De�ne also

Q(0,0) = {(x1, x2) : |x1|+ |x2| < 2λ},

and

Q(k,l) = Q(0,0) + k(2λ, 2λ) + l(2λ,−2λ), k, l ∈ Z.

We now set

Un0+2+m0+j = Zν(Un0+1+m0+j) ∩B(0,0),

for all 2 ≤ j ≤ m1, where m1, depending on M > 0, is so large that Un0+2+m0+m1

contains a set of the form Q0× [R,R+M ], where Q0 = Q(0,0) ∩ {(x1, x2) : x1 < x2}
and some R > 0. We know that such an m1 exists because the iterated image, under

the Zorich map, of an open set that intersects the x3-axis eventually contains a ball

of radius as large as we want (see Lemma 4.2.2).

If M is large enough then Zν(Un0+2+m0+m1) will contain a set of the form

Un0+3+m0+m1 := Q(k,l) × [−tM , tM ],

for some k, l ∈ Z and tM →∞, as M →∞. Note that Zν is a homeomorphism on

Un0+2+m0+j for all 2 ≤ j ≤ m1 + 1 and that Zν(Un0+3+m0+m1) will be the set

UN := {x ∈ R3 : νλe−tM < |x| < νλetM} \W,

where W = {(x1, x2, x3) : x1 = ±x2, x3 ≤ 0}. If M is large enough UN will

contain the closure of our initial set U0, since U0 does not intersect any of the planes

x1 = ±x2 + 2λk, k ∈ Z and we are done.

4.5 A theorem on measurable dynamics of Zorich

maps

In this section we assume that ν = 1 and λ as in Theorem 4.1.3. We will make some

remarks on the Lebesgue measure of some sets. First we need to introduce symbolic

dynamics. In order to do that we partition R3 in the rectangular beams

T(i,j) = T(0,0) + 2i(λ, λ, 0) + 2j(λ,−λ, 0),

where i, j ∈ Z and

T(0,0) = B(0,0) ∪B(0,−1) ∪ {(x1, x2, x3) : x1 = x2 − 2λ,−2λ < x1 ≤ 0}

∪ {(x1, x2, x3) : x1 = −x2 + 2λ, 0 ≤ x1 < 2λ}

∪ {(x1, x2, x3) : x1 = x2,−λ < x1 < λ}.

75



Figure 4.6: The squares that the rectangular beams that partition R3 create in

R2 × {0}.

In �gure 4.5 we have drawn the squares that this partition creates in R2 × {0}.
For each point x ∈ R3 we associate a sequence on Z × Z, S(x) := (s1, s2, . . . )

which we call its itinerary and the sk = (sk,1, sk,2) are chosen such that Zk(x) ∈ Tsk .
We denote the space of all sequences by Σ so S is a map from R3 to Σ. This procedure

of course can be done to the exponential map in a similar manner. Consider now

the set of all points with a given itinerary (s1, s2, . . . ). Namely the set

{x ∈ R3 : S(x) = (s1, s2, . . . )}.

Ghys, Sullivan and Goldberg in [59] proved that the analogous set for the exponential

map has Lebesgue measure zero. With a bit more work we can see that in our proof

of Theorem 4.1.3 we have actually proven the same result for the Zorich maps.

Phrasing it in the same way as in [59] we have proven

Theorem 4.5.1. The �bers of the map S have Lebesgue measure zero.

Proof. Let V be a set with m(V ) > 0 and all points in V have the same itinerary s.

Remember that the planes x1 = ±x2 together with their parallel translates form a

forward invariant set so any point in V which lands on one of those planes stays on
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those planes. Those points will have zero Lebesgue measure since the planes have

zero Lebesgue measure and quasiregular maps have Luzin's N property (see [118,

I.Proposition 4.14]). Hence, we can assume that V does not contain such points and

it always stays on the interior of the square beams under iteration. Thus we �nd

ourselves in the same two cases as in the proof of Theorem 4.1.3. Note here that

Lemmas 4.2.8, 4.2.10 require the set V to be connected. However, it is easy to see in

their proofs that this hypothesis can be weakened to all points in V have the same

itinerary which is exactly what we have here.

The �rst case now of Theorem 4.1.3 is exactly the same. Assuming that points

in V have an itinerary in which we can �nd a subsequence snk with snk 6= (0, 0) we

arrive at a contradiction due to the fact that m(V ) > 0.

On the second case we assume that the itinerary of points in V is eventually (0, 0)

and without losing generality in fact equal to ((0, 0), (0, 0), . . . ). We may assume

that all points in V are density points since by Lebesgue's density theorem this is

true for almost all points. Thus if x ∈ V then we know that

m(B(x, ε) ∩ V )

m(B(x, ε))
> 0,

for all ε > 0.

We now claim that m (B(x, ε) ∩ V ) > 0, for all ε > 0 small enough if and only

if m(B(Z(x), ε) ∩ Z(V )) > 0 for all ε > 0 small enough. Indeed, this follows by

Lusin's N property and the fact that the Zorich map is locally invertible in Z(V ).

This implies that all points in Zn(V ) have the property m(B(y, ε)∩Zn(V )) > 0

for all ε > 0 small enough. Hence, by Lemma 4.2.11, we may assume that x lies in

A1 (otherwise just consider an iterate of V and rename that as V ) and �x a small

ε so that

U := B(x, ε) ∩ V ⊂ A1.

We can now repeat the argument in the proof of the second case of Theorem 4.1.3 and

conclude that there is a subsequence nj with Znj(U) ⊂ A2∪A3 butm(Znj(U))→∞
which is a contradiction due to the fact that m(A2 ∪ A3) <∞.

4.6 Generalized Zorich Maps

In this section we discuss a more general construction of Zorich maps. The goal of

this section is to sketch how to prove Theorem 4.1.6 by following the same methods

we used in the proof of Theorem 4.1.3 and highlight the most signi�cant di�erences
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between the two cases.

We start again with the square

Q =
{

(x1, x2) ∈ R2 : |x1| ≤ 1, |x2| ≤ 1
}
.

We suppose that the L bi-Lipschitz function hgen : Q → R3 maps this square to a

surface S which satis�es the following:

1. The surface lies in the half space {(x1, x2, x3) : x3 ≥ 0}.

2. The boundary of S lies on the plane x3 = 0.

3. The ray that connects (0, 0, 0) with hgen(x), x ∈ Q, intersects the surface S
only at hgen(x).

4. There is a θS ∈ (0, π/2) and ε > 0 such that for all points w, z ∈ S such that

|w− z| ≤ ε the acute angle between the lines connecting 0 with z and w with

z is greater than θS . We will call this property the non-tangential position

vector property.

5. minx∈Q |hgen(x)| > 0.

Remark. We make two observations on the non-tangential position vector property

that we are going to need later.

First we note that it implies that for all points x ∈ S for which a tangent plane

to S is de�ned at x (we know that this includes Lebesgue almost all points of S)
the angle between the vector hgen(x) and the plane is at least θS .

Second, consider any straight line segment inside Q, which we can parametrize

by φ(t), t ∈ [0, 1] and φ linear, and consider h(φ([0, 1])) which is a curve in S
that admits a tangent line almost everywhere. The non-tangential position vector

property now implies that the angle between the vector h(φ(t)) and the tangent line

at that point on the surface is again at least θS .

We also note here that a similar condition to the non-tangential position vector

property was used by Nicks and Sixsmith in [98] on the boundary of a domain in

Rd in order to prove an extension theorem on bi-Lipschitz maps between domains.

Again if hgen = (hgen,1, hgen,2, hgen,3) we require that hgen,1(x1, x1) = hgen,2(x1, x1)

and hgen,1(x1,−x1) = −hgen,2(x1,−x1). For simplicity we will also assume that

hgen(0, 0) = (0, 0, 1) and that sup
x∈Q
|hgen(x)| = 1. (4.18)
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Although the last two conditions are not needed for our methods to work, they

make the arguments less arduous and more similar with the arguments we used in

the more classical setting.

We also rescale our map hgen by de�ning

hgen(x1, x2) = λhgen

(
1

λ
(x1, x2)

)
, (x1, x2) ∈ λQ.

We then de�ne

Zgen(x1, x2, x3) = ex3hgen(x1, x2),

on λQ× R and extend this map to the whole R3 through re�ections.

4.6.1 Proof of Theorem 4.1.6

We are ready now to discuss the proof of Theorem 4.1.6.

First we have to show that the x3-axis belongs to the Julia set which is proven

in exactly the same way as for the spherical Zorich maps (see Proposition 4.2.1) so

we omit the proof. Then we have to study our maps in the planes x1 = ±x2. Again

in those planes our map is conjugate through φ(x1, x2, x3) = 1
λ
(x3 + ix1) to the map

ĝ(z) :=


ψ̂ (z̄ + 2i) , Im(z) ∈ [(4k + 1), (4k + 3)]

ψ̂(z) Im(z) ∈ [(4k − 1), (4k + 1)]

,

where z = x + iy ∈ C, k ∈ Z and ψ̂(x + iy) = eλx (hgen,3(y, y) + ihgen,1(y, y)). We

again set a(y) = hgen,3(y, y) and b(y) = hgen,1(y, y).

We can then prove that Theorem 4.2.3 holds in this setting as well.

Lemma 4.6.1. For λ > 2L2

sin θS minx∈Q |hgen(x)| if V is a connected set of the complex

plane with m(V ) > 0 then ĝn(V ) intersects the real axis for some n ∈ N.

This of course implies that the planes x1 = ±x2 and all their parallel translate

planes x1 = ±x2 + 2λk, k ∈ Z are in J (Zgen). Again all those planes partition R3

in square beams whose boundaries are in the Julia set and in which our Zorich map

is a homeomorphism.

We will not give the proof of the above lemma here since it is very similar with

the proof of Theorem 4.2.3. The only signi�cant di�erence in the proof of the above

lemma in this more general setting is in the corresponding Lemma 4.2.4 which we

prove below.
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Lemma 4.6.2.

| det(Dĝ(z))| ≥ sin θS minx∈Q |hgen(x)|λe2λRe(z)

2L
a.e.

Proof. The only di�erence with the proof of Lemma 4.2.4 is in �nding a lower bound

for ∣∣∣∣∣∣∣∣det


a(y) da

dy
(y)

b(y) db
dy

(y)


∣∣∣∣∣∣∣∣ .

This time we know that the absolute value of the determinant equals

|(a(y), b(y))|
∣∣∣∣(dady (y),

db

dy
(y)

)∣∣∣∣ | sin θ(y)|,

where θ(y) is the angle between the vectors (a(y), b(y)) and ( da
dy

(y), db
dy

(y)).

Hence using the non-tangential position vector property and the fact that∣∣∣∣(dady (y),
db

dy
(y)

)∣∣∣∣ ≥ 1√
2L

and |(a(y), b(y))| ≥ minx∈Q |hgen(x)|√
2

we have that ∣∣∣∣∣∣∣∣det


a(y) da

dy
(y)

b(y) db
dy

(y)


∣∣∣∣∣∣∣∣ ≥

sin θS minx∈Q |hgen(x)|
2L

and thus

| detDĝ(z)| ≥ sin θS minx∈Q |hgen(x)|λe2λRe z

2L
a.e.

Next we need the Misiurewicz type Lemma 4.2.6 which in this case becomes

Lemma 4.6.3.

det
(
DZngen(x)

)
≥
(
λminx∈Q |hgen(x)| sin θS

L5

)n
1

λ3

∣∣(p ◦ Zngen) (x)
∣∣3 a.e.

Proof. Again the only di�erence is in obtaining a lower bound for the determinant

detDZgen(x). De�ne

H =



∂hgen,1
∂x1

(p(x)) ∂hgen,1
∂x2

(p(x)) hgen,1(p(x))

∂hgen,2
∂x1

(p(x)) ∂hgen,2
∂x2

(p(x)) hgen,2(p(x))

∂hgen,3
∂x1

(p(x)) ∂hgen,3
∂x2

(p(x)) hgen,3(p(x))


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and set

A =



∂hgen,1
∂x1

(p(x))

∂hgen,2
∂x1

(p(x))

∂hgen,3
∂x1

(p(x))


, B =



∂hgen,1
∂x2

(p(x))

∂hgen,2
∂x2

(p(x))

∂hgen,3
∂x2

(p(x))


, C =



hgen,1 (p(x))

hgen,2 (p(x))

hgen,3 (p(x))


.

Then detH =
〈
A×B, C

〉
= |A×B||C| cosφ, where φ is the angle between A×B

and C. Using now the fact that |C| ≥ λminx∈Q |hgen(x)| and |A × B| ≥ 1
L2 together

with the non-tangential position vector property we can show that

detH ≥ λminx∈Q |hgen(x)| sin θS
L2

.

Hence

detDZgen(x) ≥ e3x3
λminx∈Q |hgen(x)| sin θS

L2

and the rest follows in exactly the same way as in the proof of Lemma 4.2.6.

Versions of Lemmas 4.2.7, 4.2.8, 4.2.9, 4.2.10, 4.2.11, 4.2.12 now follow with only

slight modi�cations on their proofs. Hence, the proof of Theorem 4.1.6 now follows

with the same arguments as the proof of Theorem 4.1.3. Let us brie�y sketch how

all this should work.

Lemma 4.6.4. (a) There are δ > 0 and c > 0 such that for all x ∈ Cδ, where Cδ is
the cylinder around x3-axis with δ radius, we have that p3(Zgen(x)) > p3(x)+c.

(b) For δ as in (a) and for every x ∈ Cδ, with p(x) 6= (0, 0), there is an n ∈ N
such that Zngen(x) 6∈ Cδ.

Proof. The proof of (a) goes word for word as Lemma 4.2.7. For (b) again the proof

is almost the same. The di�erence here is the lower bound for the angle θ used in

the proof of Lemma 4.2.7 where instead of π
4
is now some constant larger than 0.

Lemma 4.6.5. Assume λ > L5

minx∈Q |hgen(x)| sin θS
. Let V ⊂ R3 be a connected set with

m(V ) > 0 and whose iterates do not intersect any of the planes x1 = ±x2 + 2kλ,

k ∈ Z. Suppose also that there is a sequence of integers nj > 0 with Znjgen(V )∩Ca = ∅,
where Ca is a cylinder around x3-axis of any radius a > 0. Then m(Znjgen(V ))→∞
as nj →∞, where m is the 3-dimensional Lebesgue measure.

Proof. The proof is the same as in Lemma 4.2.8 only now we use Lemma 4.6.3 in

place of Lemma 4.2.6.
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In the same way, as for the Zorich map de�ned using spheres, we can de�ne the

surfaces Sn and Kn lying inside the rectangular beams B(0,0) and B(0,−1) respectively.

Again those surfaces, together with the plane x3 = 0 and the boundaries of the

beams, de�ne sets of �nite volume.

The next three lemmas are the corresponding ones to Lemmas 4.2.9, 4.2.10,

4.2.11 respectively. Their proofs almost go word for word with the proofs of the

lemmas we just mentioned and are therefore omitted.

Lemma 4.6.6. Let In be the volume that the surface Sn encloses together with the

plane x3 = 0 and inside the beam B(0,0). Then In is �nite for all n ∈ N. Furthermore,
if Tn := In+1−In is the volume between Sn and Sn+1 then Tn is a decreasing sequence.

Lemma 4.6.7. Assume λ > L5

minx∈Q |hgen(x)| sin θS
. Let V be a connected subset of

R3 with m(V ) > 0 and such that Zngen(V ) does not intersect any of the planes

x1 = ±x2 + 2kλ, k ∈ Z for all n ∈ N. Then Zngen(V ) visits in�nitely often one of

the two rectangular beams B(0,0), B(0,−1), that have the x3-axis in their boundary.

Lemma 4.6.8. Assume λ > L5

minx∈Q |hgen(x)| sin θS
. Let V be a connected set of R3 with

m(V ) > 0 and such that Zngen(V ) does not intersect any of the planes x1 = ±x2+2kλ,

k ∈ Z for all n ∈ N. Suppose that there is an N0 ∈ N such that Zngen(V ) ⊂ B(0,0),

for all n > N0. Then for all M > 0 and ε > 0 there is some n0 > N0 and a point

x ∈ Zn0
gen(V ) such that p3(x) > M and d(x, x3-axis) < ε, where d is the Euclidean

distance.

The next Lemma is the analogue of Lemma 4.2.12 in this new setting.

Lemma 4.6.9. Let y1, y2 ∈ B(0, r), where r > 0. Then for all n ∈ N it is true that

|Zngen(y1)−Zngen(y2)| ≤

(√
L2 + λ2

λ

)n

Eλ(r) · · ·En
λ (r)|y1 − y2|,

where Eλ denotes the exponential map λex.

Proof. The proof almost goes word for word with the proof of Lemma 4.2.12. Note

however that A, B, C are not orthogonal. Still when estimating |DZgen(x1, x2, 0)|
(see proof of Lemma 4.2.12) we can argue as follows

|DZgen(x1, x2, 0)|2 = sup
|v|=1

(
|v1A+ v2B + v3C|2

)
≤ sup
|v|=1

(|v1A+ v2B|+ |v3C|)2

≤ sup
|v|=1

(L|(v1, v2)|+ λ|v3|)2

≤ L2 + λ2
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We also note that to argue here as in the last few lines of the proof of Lemma 4.2.12

we use the two conditions in equation (4.18).

Proof of Theorem 4.1.6. Let V be any open and connected set of R3. Assuming

that

λ > Chgen :=
max{L5, 2L}

minx∈Q |hgen(x)| sin θS
we want to show that Zngen(V ) intersects one of the planes that belong to the Julia

set for some n and thus V itself intersects the Julia set.

The proof now proceeds in the same way as the proof of Theorem 4.1.3. We

consider the same two cases:

(i) The iterates Zngen(V ) do not eventually stay inside the beam B(0,0) ∪ B(0,−1).

In this case the proof is the same almost word for word.

(ii) The iterates Zngen(V ) eventually stay inside B(0,0) ∪ B(0,−1). The idea in this

case will be the same. We leave the details, which will be slightly di�erent, to

the interested reader.

4.6.2 Pyramidic Zorich maps

A case of particular interest in the above discussion is when the surface S is a square

based pyramid. In this case we can be much more explicit and de�ne the function

hpyr : λQ→ R3,

hpyr(x1, x2) := (x1, x2, λ−max{|x1|, |x2|})

which sends the square λQ to a pyramid with base λQ and height λ. We then de�ne

on λQ× R

Zpyr(x1, x2, x3) = ex3hpyr(x1, x2)

and extend this map to all R3 in the same way we did with the classical Zorich map.

Also let us mention that in [98] the authors used those kind of Zorich maps to

construct a quasiregular function in R3 which resembles ez + z.

For those maps we can prove, using the same methods, the corresponding result

to Theorem 4.1.3 where we have a more explicit value for the scale factor. Again we

assume ν = 1 for simplicity.

Theorem 4.6.10. For λ > 2 the Julia set J (Zpyr) is the entire R3.
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We note that if we use the results of the previous subsection the lower bound we

obtain for λ is worse than 2. For this reason we brie�y sketch how the value λ > 2

comes up. To obtain the value 2 as a lower bound for λ we use in a signi�cant way

the special form that the bi-Lipschitz map hpyr has.

Following the same reasoning as in the proofs of Theorems 4.1.6 and 4.1.3 we

�rst study the map Zpyr on the planes x1 = ±x2 where the map is conjugate to

ĝpyr(z) :=


ψ̂ (z̄ + 2i) , Im(z) ∈ [(4k + 1), (4k + 3)]

ψ̂(z), Im(z) ∈ [(4k − 1), (4k + 1)]

,

where z = x+ iy ∈ C, k ∈ Z and ψ̂(x+ iy) = eλx (1− |y − 4k|+ i(y − 4k)).

First we can show directly, without referring to Lemma 4.6.1, the following.

Lemma 4.6.11. For λ > 2 if V is a connected set of the complex plane with m(V ) >

0 then ĝnpyr(V ) intersects the real axis for some n ∈ N.

We note here that the lower bound 2 for λ essentially comes from the analogue

of Lemma 4.2.5 in this case.

Next we need the Misiurewicz type Lemma 4.2.6 which in this case, again without

referring to Lemma 4.6.3, becomes

Lemma 4.6.12.

det
(
DZnpyr(x)

)
≥ λn−3

2
√

2

∣∣(p ◦ Znpyr) (x)
∣∣3 a.e.

Proof. First note that

|p(Znpyr(x))| = ex3(Zn−1
pyr ) · |(p ◦ hpyr ◦ p ◦ Zn−1

pyr )(x)|,

where p is again the projection map. Also, note that if x = (x1, x2) ∈ Q(k,l) then

|p ◦ hpyr(x)| =
∣∣((−1)k(x1 − 2kλ), (−1)l(x2 − 2lλ)

∣∣ ≤ |(x1, x2)|.

Hence

|p ◦ Znpyr(x)| =ex3(Zn−1
pyr )

∣∣(p ◦ hpyr ◦ p ◦ Zn−1
pyr

)
(x)
∣∣

≤ex3(Zn−1
pyr )

∣∣(p ◦ Zn−1
pyr

)
(x)
∣∣ ≤ · · ·

≤ex3(Zn−1
pyr )ex3(Zn−2

pyr ) · · · ex3|p ◦ hpyr|

≤ex3(Zn−1
pyr )ex3(Zn−2

pyr ) · · · ex3
√

2λ. (4.19)

Notice also that

detDZpyr(x) = λe3x3 .
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Hence, by (4.19) we have that

|p(Znpyr(x))|3 ≤ 2
√

2
λ3

λn
det
(
DZpyr(Zn−1

pyr (x))
)
· · · det (DZpyr(x)) .

Which by the chain rule gives us what we wanted.

Again versions of Lemmas 4.2.7, 4.2.8, 4.2.9, 4.2.10, 4.2.11, 4.2.12 now follow

with only slight modi�cations on their proofs.

Lemma 4.6.13. (a) For 0 < δ < λ − 1
e
there exists c > 0 such that for all

x ∈ Cδ, where Cδ is the cylinder around x3-axis with δ radius, we have that

x3(Zpyr(x)) > x3(x) + c.

(b) For δ as in (a) and for every x ∈ Cδ, with p(x) 6= 0, there is an n ∈ N such

that Znpyr(x) 6∈ Cδ.

Proof. (a)Note that when x ∈ Cδ then

x3(Zpyr(x)) = ex3(λ−max{|x1|, |x2|}) ≥ ex3(λ− δ).

The desired inequality follows by minimizing et(λ− δ)− t.

(b)Suppose that Znpyr(x) ∈ Cδ for all large n. Then by (a) we would have that

x3(Znpyr(x))→ ∞ as n→∞. Note that

|(p ◦ Zn+1
pyr )(x)| = ex3(Znpyr)|

(
p ◦ Znpyr

)
(x)|.

Hence, for large enough n,

|(p ◦ Zn+1
pyr )(x)| ≥ 2|

(
p ◦ Znpyr

)
(x)|,

which leads to a contradiction.

Lemma 4.6.14. Assume λ > 1. Let V ⊂ R3 be a connected set with m(V ) > 0 and

whose iterates do not intersect any of the planes x1 = ±x2 + 2kλ, k ∈ Z . Suppose

also that there is a sequence of integers nj > 0 with Znjpyr(V ) ∩ Ca = ∅, where Ca is
a cylinder around x3-axis of any radius a > 0. Then m(Znjpyr(V ))→∞ as nj →∞,

where m is the 3-dimensional Lebesgue measure.

The surfaces Sn and Kn from Lemma 4.2.9 can again be de�ned in the same way.

Lemma 4.6.15. Let In be the volume that the surface Sn encloses together with

the plane x3 = 0 and inside the beam B(0,0). Then In is �nite for all n ∈ N.
Furthermore, if Tn := In+1 − In is the volume between Sn and Sn+1 then Tn is a

decreasing sequence.
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Lemma 4.6.16. Assume λ > 1. Let V be a connected subset of R3 with m(V ) > 0

and such that Znpyr(V ) does not intersect any of the planes x1 = ±x2 + 2kλ, k ∈ Z
for all n ∈ N. Then Znpyr(V ) visits in�nitely often the two rectangular beams B(0,0),

B(0,−1), that have the x3-axis in their boundary.

Lemma 4.6.17. Assume λ > 1. Let V be a connected set of R3 with m(V ) > 0 and

such that Znpyr(V ) does not intersect any of the planes x1 = ±x2 +2kλ, k ∈ Z for all

n ∈ N. Suppose that there is an N0 ∈ N such that Znpyr(V ) ⊂ B(0,0), for all n > N0.

Then for all M > 0 and ε > 0 there is some n0 > N0 and a point x ∈ Zn0
pyr(V ) such

that x3(x) > M and d(x, x3-axis) < ε, where d is the Euclidean distance.

Lemma 4.6.18. Let y1, y2 ∈ B(0, r), where r > 0. Then for all n ∈ N it is true

that

|Znpyr(y1)−Znpyr(y2)| ≤
(√

18λ
)n
Eλ(r) · · ·En

λ (r)|y1 − y2|,

where Eλ denotes the exponential map λex.

Proof. Just like in the proof of Lemma 4.2.12 we can show that∣∣Znpyr(y1)−Znpyr(y2)
∣∣ ≤ ess sup

x∈B(0,r)

∣∣DZpyr (Zn−1
pyr (x)

)∣∣ · · · ess sup
x∈B(0,r)

|DZpyr(x)| |y1 − y2|.

Now note that we now have an explicit formula for DZpyr and we can calculate that

|DZpyr(x)| ≤
√

18λex3 .

Hence,

|Znpyr(y1)−Znpyr(y2)| ≤
(√

18λ
)n

sup
x∈B(0,r)

ex3(Zn−1
pyr (x)) · · · sup

x∈B(0,r)

ex3(x)|y1 − y2|

=
(√

18λ
)n
Eλ(r) · · ·En

λ (r)|y1 − y2|

as we wanted.

Finally the proof of Theorem 4.6.10 follows by combining the above lemmas and

arguing as in Theorems 4.1.3 and 4.1.6.

4.7 Preliminaries and main idea of the proof of The-

orem 4.1.8

The main idea of the proof of Theorem 4.1.8 is to �rst show that the Julia set J (Zν)

is a so called Lelek fan. Let us �rst de�ne Lelek fans before we explain why we need

this.
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De�nition 4.7.1 (Fans). Let X be a non-degenerate continuum (compact and

connected metric space which is not a single point). Then X is a fan with top x0

when the following conditions are satis�ed.

(i) X is hereditarily unicoherent, meaning that K ∩L is connected for every pair

of subcontinua K, L.

(ii) X is arcwise connected. This together with (i) implies that X is uniquely

arcwise connected.

(iii) x0 is the only point that is the common endpoint of at least three di�erent

arcs that are otherwise disjoint.

LetX be a fan and x, y ∈ X. With [x, y] we will denote the unique arc connecting

x and y. Also if a point x ∈ X is an endpoint of every arc in X containing it then

we call this point an endpoint. We will use the same symbol, as in the introduction

of this section, to denote the set of endpoints E(X) of a fan.

De�nition 4.7.2 (Lelek fans). A fan with top x0 is called a Lelek fan if it has the

following two properties.

(i) Smoothness: For any sequence yn ∈ X converging to y ∈ X the arcs [x0, yn]

converge to [x0, y] in the Hausdor� metric.

(ii) Density of endpoints: The endpoints of X are dense in X.

With this terminology we have the following.

Theorem 4.7.1. Let 0 < ν < e−(logL+L). Then J (Zν) ∪ {∞} is a Lelek fan with

top at ∞.

The reason why this theorem is important for what we want to prove is that

Lelek in [77] gave an example of a Lelek fan with top {x0} and showed that x0

is an explosion point for the set of endpoints E(X). Much later Charatonik and

independently Bula and Oversteegen proved the following.

Theorem 4.7.2 (Charatonik, Bula-Oversteegen [28, 31]).

Any two Lelek fans are homeomorphic.

The above theorem combined with Theorem 4.7.1 allows us to prove Theorem

4.1.8.
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Proof of Theorem 4.1.8. Since, by Theorem 4.7.1, J (Zν) ∪ {∞} is a Lelek fan it

follows by Theorem 4.7.2 that it is homeomorphic to the one that Lelek constructed.

Hence, because endpoints get mapped to endpoints and the top gets mapped to the

top we have that E(J (Zν))∪{∞} is connected while E(J (Zν)) is totally separated.

So the only thing left to prove now is Theorem 4.7.1. For that we will need to

construct a topological model for the Julia set for which it will be easier to show

that it is a Lelek fan. For the exponential map a topological model for the Julia

set is given by the so called straight brush which was �rst introduced by Aarts

and Oversteegen in [1]. Following them, we de�ne a three dimensional version of a

straight brush.

De�nition 4.7.3 (3-d Straight Brush).

A 3-d Straight Brush B is a subset of

{(y, a1, a2) ∈ R3 : y ≥ 0, (a1, a2) ∈ (R \Q)2}

with the following properties:

(i) Hairiness: For every (a1, a2) ∈ R2, there is a t(a1,a2) ∈ [0,∞] such that

(t, a1, a2) ∈ B if and only if t ≥ t(a1,a2)

(ii) Density: The set of (a1, a2) with t(a1,a2) < ∞ is dense in (R \Q)2. Also, for

any such (a1, a2) there exist sequences (a1, an,2), (a1, bn,2), (cn,1, a2), (dn,1, a2),

such that an,2 ↑ a2, bn,2 ↓ a2, cn,1 ↑ a1, dn,1 ↓ a1. Moreover it is true that

t(a1,an,2) → t(a1,a2) and similarly for the other sequences.

(iii) Compact Sections: B is a closed subset of R3.

In order to prove Theorem 4.7.1 we will need to prove Theorem 4.1.9 �rst.

Here let us also introduce some notation that we will need later. For (r1, r2) ∈ Z2

we set

P (r1, r2) := {(x1, x2) ∈ R2 : |x1 − 2r1| < 1, |x2 − 2r2| < 1}.

For any c ∈ R we also de�ne the half space

H>c := {(x1, x2, x3) ∈ R3 : x3 > c}.

Note now that Zν maps P (r1, r2) × R bijectively onto H>0 or H<0 depending on

whether r1 + r2 is even or odd. Also we mention here that from Bergweiler's and

Nicks' work in [16, 23] it follows that for the values of ν they consider
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P (r1, r2) belongs to the quasi-Fatou set when r1 + r2 = odd . (4.20)

We will also need the notion of the itinerary of a point x ∈ J (Zν). To each such

point we can associate a sequence

∆(x) = n0n1n2 . . . ,

where nk = (nk,1, nk,2) ∈ Z× Z and nk,1 + nk,2 = even, in such a way that

Zk
ν (x) ∈ P (nk)× R,

for all k ∈ N. That sequence we will call the itinerary of x.

We also continue to de�ne p : R3 → R2, p3 : R3 → R to be the projection maps

de�ned by

p(x1, x2, x3) = (x1, x2) and p3(x1, x2, x3) = x3.

Let us note here again that in [16] it is shown that Theorem 4.1.7 holds for all

su�ciently small values of the parameter ν without an explicit estimate for those

values. In what follows we make this more precise.

Lemma 4.7.3.

νex3

L
≤ ` (DZν(x1, x2, x3)) ≤ |DZν(x1, x2, x3)| ≤ νLex3 a.e. (4.21)

Proof. We assume that (x1, x2) ∈ Q since the other case can be handled similarly.

We note that

DZν(x) = ex3DZν(x1, x2, 0). (4.22)

Then DZν(x1, x2, 0) is the linear map induced by the matrix

ν



∂h1
∂x1

(p(x)) ∂h1
∂x2

(p(x)) h1(p(x))

∂h2
∂x1

(p(x)) ∂h2
∂x2

(p(x)) h2(p(x))

∂h3
∂x1

(p(x)) ∂h3
∂x2

(p(x)) h3(p(x))


,

where h = (h1, h2, h3) is the bi-Lipschitz map we used in the construction of the

Zorich map.

We now set

A =



∂h1
∂x1

(p(x))

∂h2
∂x1

(p(x))

∂h3
∂x1

(p(x))


, B =



∂h1
∂x2

(p(x))

∂h2
∂x2

(p(x))

∂h3
∂x2

(p(x))


, C =



h1 (p(x))

h2 (p(x))

h3 (p(x))


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and v = (v1, v2, v3) ∈ R3. Then by using (4.22)

` (DZν(x))2 = inf
|v|=1
|DZν(x)(v)|2 = e2x3ν2 inf

|v|=1
|v1A+ v2B + v3C|2.

Notice now that C is orthogonal to A and B and thus the above equation becomes

` (DZν(x))2 =e2x3ν2 inf
|v|=1

(
|v1A+ v2B|2 + |v3C|2

)
=e2x3ν2 inf

|v|=1

(
|Dh(p(x))(v1, v2)|2 + |v3|2|C|2

)
≥e2x3ν2 inf

|v|=1

(
1

L2
|(v1, v2)|2 + |v3|2

)
≥e2x3

ν2

L2
a.e.

Similarly we can show that |DZν(x1, x2, x3)|2 ≤ ν2L2e2x3 so that (4.21) readily

follows.

Lemma 4.7.4. For all 0 < ν < e−(logL+L) Theorem 4.1.7 is true.

Proof. First we note that in [16, 23] a di�erent parametrization for the Zorich family

is used, namely Zκ(x) = Z(x) + (0, 0, κ), κ ∈ R. Moreover, Theorem 4.1.7 is shown

to hold for all

κ ≤M2 − eM1 ,

where M1 := M1(α) > 0 is such that x3 ≥ M1 implies ` (DZ(x1, x2, x3)) ≥ 1
α
,

M2 := M2(α) is such that x3 ≤ M2 implies that |DZ(x1, x2, x3)| ≤ α and α is any

number in (0, 1) (see [16, (1.4), (1.5)]). It is easy to see now using Lemma 4.7.3, for

ν = 1, that we can take

M1 = log
L

α
and M2 = log

α

L
.

Of course the two parametrizations are conjugate with κ = log ν. Converting

the facts of the above paragraph in our setting we obtain that Theorem 4.1.7 holds

for

0 < ν ≤ eM2−eM1 = elog(αL)−Lα .

Taking α→ 1 we obtain that Theorem 4.1.7 is true for all 0 < ν < e−(logL+L).

Later we will also need the fact that the Zorich maps are expansive in a suitable

upper half space. This is analogous to the fact that the exponential map is expansive

in a right half plane. The next lemma makes this precise.

Lemma 4.7.5. For any 0 < ν < e−(logL+L) there is an 0 < α < 1 such that if

M = log L
να

and Λ : H≥M → P (r1, r2), for some (r1, r2) ∈ Z2, is an inverse branch

of the Zorich map Zν de�ned in H≥M , then Zν(H≤M) ⊂ H<M and for all x, y ∈ H≥M

|Λ(x)− Λ(y)| ≤ α|x− y|. (4.23)
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Proof. First note that

DΛ(x) = DZν(Λ(x))−1.

Using the �nite increment theorem (see [142, 10.4.1, Theorem 1] and the proof of

Lemma 4.2.12) for Λ we can now show that if γ is the segment that connects x and

y then

|Λ(x)− Λ(y)| ≤ ess sup
z∈γ

|DΛ(z)||x− y|. (4.24)

It is true that

ess sup
z∈γ

|DΛ(z)| ≤ 1

ess infz∈γ ` (DZν(Λ(z)))
. (4.25)

By Lemma 4.7.3 we have that

` (DZν(Λ(x))) ≥ ep3(Λ(x))ν

L
a.e. (4.26)

Hence for any 0 < α < 1 and for all x such that

p3(Λ(x)) ≥ log
L

να
(4.27)

we have `(DZν(Λ(x))) ≥ 1/α.

We now claim that for M = log L
να

we have that for all x ∈ H≥M equation (4.27)

holds. Indeed if x = (x1, x2, x3) ∈ H≤M we have that

p3 (Zν(x)) = p3 (νex3h(x1, x2)) ≤ ν
L

να
=
L

α
. (4.28)

Notice now that by continuity we can choose 0 < α < 1 so that

ν < e−(logL+L) =
e−L

L
≤ e−

L
αL

α
,

which after rearranging and using (4.28) implies that

p3 (Zν(x)) < log
L

να
.

Hence Zν(H≤M) ⊂ H<M as we wanted. Moreover, this implies that whenever x ∈
H≥M we have that Λ(x) ∈ H≥M so that (4.27) is true.

Putting everything together we have that for x ∈ H≥M

|DΛ(x)| ≤ 1

`(DZν(Λ(x)))
≤ α a.e.

Combined with (4.24) and (4.25) this gives us what we wanted.

The next lemma introduces a number pν which is going to play an important

role in the subsequent sections.
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Lemma 4.7.6. Let 0 < ν < e−(logL+L) and α, M be as in Lemma 4.7.5. Then

there is a number pν > 1 such that (4.23) holds for all x, y ∈ H≥pν and such that all

planes x3 = c, where c > pν + 1, intersect the Julia set J (Zν).

Proof. From Lemma 4.7.5 we know that Zν(H≤M) ⊂ H<M so that H≤M is in the

quasi-Fatou set. Moreover, Theorem 4.1.7 implies that there is a minimum number

J such that for all c ≥ J the plane {(x1, x2, x3) : x3 = c} intersects the Julia set

J (Zν) and thus J ≥ M . Also all the points in H<J are in the quasi-Fatou set and

converge to a �xed point.

We set

pν = max{J − 1,M}.

Also notice that

pν ≥M = log
L

να
≥ log

L

e−(logL+L)α
≥ 2 logL+ L− logα > 1,

where in the last inequality we used the fact that L > 1 and 0 < α < 1.

4.8 Proving Theorem 4.1.9

Our proof will closely follow that of the corresponding result for the exponential

map which is due to Aarts and Oversteegen (see [1, Theorem 1.4]).

4.8.1 Construction of the 3-d straight brush

First we will need to de�ne a correspondence between the set (R \Q)2 and
∏∞

i=0 Z×
Z. This can be done in many ways but let us mention here a method used by Devaney

based on Farey trees. In [38, Section 5.3] Devaney �nds for every irrational number

ζ a sequence of integers n0n1n2 . . . by doing the following. We break the real line

into intervals Ik = (k, k + 1) for each k ∈ Z. Then we further subdivide each Ik in

intervals Ikl, l ∈ Z in a certain way and so on. Speci�cally, assuming that In0n1...nk

has been de�ned we de�ne In0...nkj as follows. Let

In0n1...nk =
(a
b
,
c

d

)
and p0

q0
= a+c

b+d
. We then de�ne pn

qn
= pn−1+c

qn−1+d
and p−n

q−n
= p−n+1+a

q−n+1+b
, for all n ∈ N. Finally,

de�ne

In0...nkj =

(
pj
qj
,
pj+1

qj+1

)
.

We refer to [38] for more details but the whole construction implies that the

intervals we obtain satisfy the following.
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1. In0n1...nk+1
⊂ In0n1...nk .

2. The endpoints of each interval In0n1...nk are rational.

3. {ζ} =
⋂∞
k=1 In0n1...nk and every irrational can be obtained this way.

In our case for any pair of irrational numbers (a1, a2) we can apply this method

twice and obtain a pair of sequences {(nk,1, nk,2)}k∈N ∈
∏∞

i=0 Z× Z. We also equip∏∞
i=0 Z×Z with the product topology of the spaces Z×Z equipped with the discrete

topology. The correspondence between (R \Q)2 and
∏∞

i=0 Z × Z can be shown to

be a homeomorphism.

Let now x ∈ [0,∞) and (s1, s2) ∈ Z2 with s1 + s2 = even. We de�ne the cubes

S(x, s1, s2) := {(x1, x2, x3) ∈ R3 : x ≤ x3 ≤ x+ 1, (x1, x2) ∈ P (s1, s2)}.

Note that because the Zorich map is doubly periodic with periods (4, 0, 0), (0, 4, 0)

and because Z ◦ R = Z, where R is a half-turn around the lines x1 = 2n + 1, x2 =

2m+ 1, n,m ∈ Z the Julia set will be periodic and invariant under R as well. Also

note that by (4.20) the Julia set lies in the square beams P (s1, s2)×R with s1 +s2 =

even and thus when s1 + s2 is even

S(x, s1, s2) ∩ J (Zν) 6= ∅, for all x ≥ pν , (4.29)

where pν was de�ned in Lemma 4.7.6.

Let us now construct the 3-d Straight Brush B of Theorem 4.1.9 which will be

homeomorphic to our Julia set. We will suitably modify the construction done in [1].

Let x ≥ pν and (a1, a2) ∈ (R \Q)2 with the corresponding sequence {(nk,1, nk,2)}k∈N∪{0}.
Set x0 = x and R0(x, a1, a2) = S(x, n0,1, n0,2). By induction on k now we de�ne

Rk = Rk(x, a1, a2) and xk. We consider now two cases:

(i) Rk 6= ∅ and there is a ξ with

S(ξ, nk+1,1, nk+1,2) ⊂ Zν (Rk) . (4.30)

Let ξ′ = min{ξ : ξ satis�es (4.30)}. If ξ′ ≥ pν , we set xk+1 = ξ′ and

Rk+1 = S(ξ′, nk+1,1, nk+1,2).

If ξ′ < pν , we set xk+1 = xk and Rk+1 = ∅.

(ii) If the case (i) does not apply, we set xk+1 = xk and Rk+1 = ∅.
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For each k ∈ N now we set

Bk = Bk(x) := {y ∈ R0 : Zj
ν(y) ∈ Rj, for 1 ≤ j ≤ k}.

The 3-d straight brush is then de�ned as

B := {(x, a1, a2) : Rk 6= ∅, for all k ∈ N}.

The proof that this construction de�nes a 3-d straight brush and that this is

homeomorphic to the Julia set will be now split in several lemmas. First we need

to show that the set B we de�ned is indeed a 3-d straight brush.

Lemma 4.8.1. B is a 3-d straight brush.

Proof. First we prove hairiness.

Hairiness.

Let (x, a1, a2) ∈ B with {(nk,1, nk,2)}k∈N the corresponding sequence of (a1, a2).

Suppose that x < y then (y, a1, a2) ∈ B. Indeed, by induction xk < yk and

Rk(y, a1, a2) 6= ∅ for all k ∈ N. Hence (y, a1, a2) ∈ B. Suppose now that (z, a1, a2) 6∈
B. Consider the smallest k with Rk(z, a1, a2) 6= ∅ but Rk+1(z, a1, a2) = ∅. Then

either there is no ξ with

S(ξ, nk+1,1, nk+1,2) ⊂ Zν(Rk(z, a1, a2))

or there is such a ξ but for the minimal ξm we have that ξm < pν . In both cases the

same holds for all y slightly larger than z.

Combining now what we have proven we see that the set {t : (t, a1, a2) ∈ B} is
of the form [t(a1,a2),∞).

Secondly, we prove that B is closed.

Compact Sections.

Let (x, a1, a2) ∈ B{. We will show that B{ is an open set by constructing an open

box S such that (x, a1, a2) ∈ S ⊂ R3 \ B. The case where (a1, a2) 6∈ (R \Q)2 is the

hardest one and the one we will prove here.

Without loss of generality suppose that a1 ∈ Q. Consider the minimal k ∈ N
such that

(a1, a2) 6∈
⋃
i,j∈N

In0...nk−1i × Jm0...mk−1j,

where In0...nk and Jm0...mk are the intervals we obtain using the method we described

at the start of this section. There is a nk such that for all m ∈ Z, if we denote
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by ζ and ζ ′ the irrationals that correspond to the sequences (n0, . . . , nk,m, . . . ) and

(n0, . . . , nk + 1,m, . . . ) respectively then

ζ < a1 < ζ ′. (4.31)

We can now choose N large enough so that no point (x, γ1, γ2) belongs to B, where

γ1 satis�es

(n0, . . . , nk, N, . . . ) < γ1 < (n0, . . . , nk + 1,−N, . . . ), (4.32)

γ2 ∈ R and we have abused the notation in the obvious way. The reason we can

do this is because for such (γ1, γ2) we have that Rk+1(x, γ1, γ2) = ∅. Notice that by
(4.31) we have that a1 satis�es (4.32). It follows that there is a δ > 0 such that for

all y with |y−x| < δ we have that Rk+1(y, γ1, γ2) = ∅, for all γ1 satisfying equations

(4.32) and γ2 ∈ R.
Finally we prove density.

Density.

We want to show that

A := {(a1, a2) : ta1,a2 <∞}

is dense in (R \Q)2. It is enough to show that the corresponding sequences in∏∞
i=0 Z2 of such points are dense in the space of all sequences. We know that the

periodic sequences, meaning sequences with (nk,1, nk,2) = (nk+N,1, nk+N,2), for some

N ∈ N and all k ∈ N, are dense in the space of all sequences. Hence, it is enough to

prove that periodic sequences correspond to points in A. Indeed, for any periodic

sequence it not hard to see that when x is large enough the sequence xk is increasing

and Rk(x, a1, a2) 6= ∅ for k ≤ N + 1 and as a result, since the sequence (nk,1, nk,2) is

periodic, for all k ∈ N. This implies that t(a1,a2) <∞ for that (a1, a2).

Suppose now that (x, a1, a2) ∈ B and (a1, a2) has a corresponding sequence

{(nk,1, nk,2)}k∈N. Choose yi with x < yi < x + 1
i
, for all i ∈ N. Then for all i

the inner radius of the shell Zν(Rk−1(yi, a1, a2)) will be much larger than the inner

radius of Zν(Rk−1(x, a1, a2)), for k large enough. It follows that (yi, a1, ai,2) ∈ B

where (a1, ai,2) is chosen so that it has a corresponding sequence

(n0,1, n0,2), . . . (ni,1, ni,2 − 1), (ni+1,1, ni+1,2), (ni+2,1, ni+2,2), . . .

and thus ai,2 is an increasing sequence. Hence, yi → x while ai,2 ↑ a2 as i → ∞.

Note that closedness of B implies now that t(a1,an,2) → t(a1,a2).

Similarly we will have that (yi, a1, bi,2), (yi, ci,1, a2), (yi, di,1, a2)∈ B, where (a1, bi,2),

(ci,1, a2), (di,1, a2) have corresponding sequences

(n0,1, n0,2), . . . (ni,1, ni,2 + 1), (ni+1,1, ni+1,2), (ni+2,1, ni+2,2), . . . ,
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(n0,1, n0,2), . . . (ni,1 − 1, ni,2), (ni+1,1, ni+1,2), (ni+2,1, ni+2,2), . . . ,

(n0,1, n0,2), . . . (ni,1 + 1, ni,2), (ni+1,1, ni+1,2), (ni+2,1, ni+2,2), . . .

respectively and bi,2 is decreasing, ci,1 is increasing and di,1 is decreasing.

Next comes the construction of a suitable homemorphism ϕ from B to the Julia

set J (Zν).

4.8.2 Proving that B is homeomorphic to J (Zν)

For each (x, a1, a2) ∈ B we de�ne

ϕ(x, a1, a2) :=
∞⋂
k=0

Bk.

Note that Bk ⊂ · · · ⊂ B0, for all k ∈ N and also that diam(Bk)→ 0 since all boxes

Rk(x, a1, a2) are inside the half space {(x1, x2, x3) : x3 ≥ pν} on which, by Lemma

4.7.5 and by Lemma 4.7.6, the Zorich map is expanding. Thus

diam(Bk) = sup
z,y∈Rk(x,a1,a2)

∣∣Λk(z)− Λk(y)
∣∣ ≤ αk diam(Rk(x, a1, a2)).

Lemma 4.8.2. ϕ is an injective continuous map from B into the Julia set J (Zν).

Proof. Let us �rst show that ϕ is injective. Let (x, a1, a2), (y, b1, b2) be two di�er-

ent points of B and let {(nk,1, nk,2)}k∈N and {(mk,1,mk,2)}k∈N their corresponding

sequences. Now either x 6= y or x = y and (a1, a2) 6= (b1, b2). In the �rst case we

may assume x < y and thus xk < yk for all k ∈ N. We can easily see by the map-

ping properties of the Zorich map that in fact yk − xk → ∞ for k → ∞. Thus for

large enough k we can �nd cubes Rk(x, a1, a2)∩Rk(y, b1, b2) = ∅, which implies that

ϕ(x, a1, a2) 6= ϕ(y, b1, b2). In the second case, we have that (nk,1, nk,2) 6= (mk,1,mk,2)

for some k ∈ N and thus Rk(x, a1, a2) ∩Rk(y, b1, b2) = ∅.
Now for the continuity of ϕ let (x, a1, a2) and (y, b1, b2) be two points in B that

are "close" meaning that their corresponding sequences satisfy nk,i = mk,i, i = 1, 2,

for k = 0, . . . , N where N ∈ N and |x − y| < δ for some small δ > 0. If δ is small

enough this implies that

Rk(x, a1, a2) ∩Rk(y, b1, b2) 6= ∅, for all k ≤ N.

Hence, Bk(x) ∩Bk(y) 6= ∅ for all k ≤ N . This implies that

|ϕ(x, a1, a2)− ϕ(y, b1, b2)| ≤ diamBN(x) + diamBN(y)
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and because those diameters tend to zero we have that when N is large enough

ϕ(x, a1, a2) and ϕ(y, b1, b2) are close.

Finally, we want to show that ϕ(x, a1, a2) ∈ J (Zν). If {(nk,1, nk,2)}k∈N is the

corresponding sequence of (a1, a2) then, by construction and (4.29), we will have

that

Rk(x, a1, a2) ∩ J (Zν) 6= ∅, for all k ∈ N.

This implies that d (ϕ(x, a1, a2),J (Zν)) = 0 and because J (Zν) is closed we have

that ϕ(x, a1, a2) ∈ J (Zν).

Next we need to �nd the inverse of ϕ and show that it is continuous. Let us �rst

de�ne this function and then show that indeed it is the inverse of ϕ.

Let w = (w1, w2, w3) ∈ J (Zν). Remember now that with each w in the Julia set

we can associate its itinerary ∆(w) = n0n1n2 . . . and Z
k
ν (w) ∈ P (nk)× R. For any

k ∈ N de�ne the boxes Tj(k), j ∈ N as follows. First we set Tk(k) = S(u, nk,1, nk,2),

where u is minimal with respect to the properties u ≥ pν and Zk
ν (w) ∈ Tk(k). We

now de�ne Tj(k) for j = 0, . . . , k− 1 inductively as follows. Suppose that Tj(k) has

been de�ned, let Tj−1(k) = S(v, nj−1,1, nj−1,2), where v is maximal with respect to

the property

Tj(k) ⊂ Zν(Tj−1(k)). (4.33)

Note that a v for which (4.33) holds exists since u ≥ pν > 1. Moreover, (4.33)

thanks to the continuity of Zν , implies that the box Tj(k) hits the inner radius of

the half-shell Zν(Tj−1(k)) in exactly one point. Also it implies that the lowest (in

terms of x3 coordinate) side of the box Tj−1(k) has a third coordinate at least pν

for all j. This can be shown by �rst noting that it is true for Tk−1(k) and then we

can use induction on j to prove it for all j. To see why it is true for Tk−1(k) note

that if that was not the case and pν = J − 1 (see Lemma 4.7.6) then Tk−1(k) would

not contain any points in the Julia set and since Tk(k) does (by Lemma 4.7.6) we

obtain a contradiction by (4.33) and the invariance of the Julia set. If on the other

hand pν = M then the lowest side of the box Tk−1(k) would be below M and since

Zν(H≤M) ⊂ H<M we obtain a contradiction by the maximality condition on (4.33).

Thus in any case the lowest (in terms of x3 coordinate) side of the box Tk−1(k) has

a third coordinate at least pν .

We now de�ne zk by the condition T0(k) = S(zk, n0,1, n0,2) and note that w ∈
T0(k). This implies that

w3 − 1 ≤ z0 ≤ zk ≤ w3, (4.34)

for all k ∈ N. We can also prove that

zk ≤ zk+1. (4.35)

97



This follows by the fact that Tk(k+1) is higher than Tk(k) (in terms of x3 coordinate)

and thus by the inductive construction (4.35) holds.

Finally, we set z∞ := limk→∞ zk and de�ne ψ by

ψ(w) = (z∞, a1, a2) ,

where (a1, a2) is the pair of irrationals associated with the pair of sequences ∆(w).

The next lemma concludes the proof of Theorem 4.1.9.

Lemma 4.8.3. The map ψ is the inverse of ϕ and ϕ is a homeomorphism. More-

over, ϕ extends to a homeomorphism between B ∪ {∞} and J (Zν) ∪ {∞}.

Proof. We will �rst show that

ϕ ◦ ψ = idJ (Zν). (4.36)

Let w ∈ J (Zν) and we continue using notation as above. We de�ne T0(∞) =

S(z∞, n0,1, n0,2) and note that T0(∞) = limk→∞ T0(k) in the Hausdor� metric. De-

�ne also Tj(∞) := limk→∞ Tj(k), where the limit is again in the Hausdor� metric.

Notice that by construction the box Tj(∞) hits the inner radius of the half-shell

Zν(Tj−1(∞)) in exactly one point and that point has a third coordinate at least pν .

Applying now the construction of ϕ to the point ψ(w) = (z∞, a1, a2), where (a1, a2)

is the pair of irrationals associated with the pair of sequences ∆(w) and using the

notation of the construction of B we have that x0 = z∞ and

Rk(x, a1, a2) = Tk(∞),

for all k ∈ N. Hence, ψ(w) ∈ B and

ϕ(ψ(w)) = ϕ(z∞, a1, a2) =
⋂
k∈N

Z−kν (Tk(∞)),

where Z−kν is the composition of inverse branches of Zν to appropriate square beams

(see construction of ϕ). Now note that by equation (4.34) taking limits we have that

w ∈ T0(∞). We can prove similar equations with (4.34), (4.35) for all boxes Tj(k).

Hence, we will also have that Zk
ν (w) ∈ Tk(∞). This implies that

w ∈
⋂
k∈N

Z−kν (Tk(∞))

and since that intersection contains only one point we have that ϕ(ψ(w)) = w.

Equation (4.36) implies now that ϕ is onto the Julia set and thus a bijection.

Since we have already proven that ϕ is continuous we can now extend ϕ to a con-

tinuous map ϕ̂, from B ∪ {∞} to the one point compacti�cation J (Zν) ∪ {∞} of
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J (Zν), with the spherical metric by setting ϕ̂(∞) =∞, since ϕ(b)→∞ as b→∞,

b ∈ B. We can now use a well known lemma (see for example [125, Theorem 4.17])

and immediately conclude that in fact ϕ̂ is a homeomorphism (with the spherical

metric) and ψ̂, de�ned as the extension of ψ on J (Zν)∪{∞} by setting ψ̂(∞) =∞,

is its inverse. This implies that ψ is continuous with the Euclidean metric.

4.9 Proving Theorem 4.7.1

First we will show that the model of the Julia set, namely the 3-d straight brush, is

a Lelek fan.

Lemma 4.9.1. The one point compacti�cation B ∪ {∞} of a 3-d straight brush B

is a Lelek fan with top at ∞.

Proof. Any subcontinuum of B ∪ {∞} is a collection of segments of straight lines

together with ∞ or a segment of one such line. Obviously the intersection of any

two such subcontinua is again of that form and thus connected. Properties (ii) and

(iii) of the de�nition of a fan are obviously satis�ed for B ∪ {∞}. Smoothness is

also quite easy to prove since arcs [yn,∞] in B ∪ {∞} are straight lines and thus

converge to a straight line [y,∞] in the Hausdor� metric, when yn → y.

Finally, we prove that the set of endpoints E(B) is dense in B. Choose a point

(x, b1, b2) ∈ B. We will show that there are hairs with

(tb1,n,b2,n , b1,n, b2,n)→ (x, b1, b2), (4.37)

as n→∞. In other words their endpoints converge to (x, b1, b2) and this obviously

gives us the density of endpoints.

Consider the length function L : (R \Q)2 → [0,∞) which measures the spherical

length of the hair at (a1, a2). It is easy to see that thanks to the closedness of B, L
is upper semi-continuous. Let

M := sup{L(a1, a2) : (a1, a2) ∈ (R \Q)2}.

Take now any c ∈ (0,M) and consider the set

V := {(a1, a2) ∈ (R \Q)2 : L(a1, a2) > c}.

Fix now a point (b1, b2) in V and consider the set

W := {(b1, a2) ∈ V : |a2| ≤ t,L(b1, a2) > c},

where t > 0 a constant.
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From the upper semi-continuity of L we conclude that the set

{(a1, a2) ∈ (R \Q)2 : L(a1, a2) ≥ c}

is closed and thus contains W .

The set W is compact and lies on a line. By property (ii) of the de�nition of a

3-d straight brush now we will have that it is also perfect. Moreover, it is a totally

disconnected set, since it is a subset of a totally disconnected set. Hence, by the

characterization of the Cantor set (see for example [29, Theorem 6.17] or the more

general [72, Theorem 7.4]) we have that W is a Cantor set (i.e. homeomorphic

to the standard ternary Cantor set C). In fact, the sets W and C are ambiently

homeomorphic (meaning here that the homeomorphism extends to the line on which

W lies). This implies that the obvious order in the sets is either preserved or reversed

under the homeomorphism. This in turn implies, that a point (b1, a2) ∈ W for which

L(b1, a2) > c cannot get mapped to an endpoint of the Cantor set since, thanks to

property (ii) of a 3-d straight brush, it can be approximated from both sides by

other points of W (unless of course a2 = ±t but those are just two points). Hence,

only points with L(b1, a2) = c get mapped to endpoints and since endpoints are

dense in the Cantor set so are points with L(b1, a2) = c dense in W .

Since this argument works for any (b1, b2) ∈ V we have that points with L(a1, a2) =

c are dense in V .

Take now any point (x, b1, b2) ∈ B, which is not an endpoint, and let c be the

spherical length of the hair segment {(t, b1, b2) : t ≥ x}. This implies that L(b1, b2) >

c. As we have shown then there is a sequence of hairs (tb1,n,b2,n , b1,n, b2,n) of length c

for which (b1,n, b2,n)→ (b1, b2) and thus the endpoints of the hairs (tb1,n,b2,n , b1,n, b2,n)

converge to (x, b1, b2) as we wanted.

Proof of Theorem 4.7.1. From Theorem 4.1.9 we know that there a homeomorphism

ϕ̂ : B ∪ {∞} → J (Zν) ∪ {∞}.

By Lemma 4.9.1 we know that B ∪ {∞} is a Lelek fan. It is quite easy to see that

all the properties of a Lelek fan are preserved under a homeomorphism and thus

J (Zν) will also be a Lelek fan with top at ∞.

4.10 Hairy squares and hairy surfaces

In this section we generalize the notion of a hairy arc that Aarts and Oversteegen

�rst introduced in [1]. Our exposition closely follows theirs but as we shall see some

things are di�erent in three dimensions.
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First we will introduce the notion of a straight one-sided hairy square (abbrevi-

ated soshs) which will be a generalization of straight one-sided hairy arcs (abbrevi-

ated sosha) on the plane (see [1] for that de�nition). Let I = [0, 1].

De�nition 4.10.1 (Straight one-sided hairy square). A straight one-sided hairy

square X is a compact subset of I3 satisfying the following properties. There is a

function ` : I2 → I, called the length function, such that

(i) For all (x, y, z) ∈ I3 we have (x, y, z) ∈ X if and only if 0 ≤ z ≤ `(x, y).

(ii) The sets

{(x, y) ∈ I2 : `(x, y) > 0}, {x ∈ I : `(x, y) = 0, ∀y ∈ I}

and {y ∈ I : `(x, y) = 0,∀x ∈ I}

are dense in I2, I and I respectively and `(0, t) = `(1, t) = `(t, 0) = `(t, 1) = 0

for all t ∈ [0, 1].

(iii) For each (x, y) ∈ I2 with `(x, y) > 0 there exist sequences an, bn, cn, dn such

that an ↑ y, bn ↓ y, cn ↑ x, dn ↓ x. Moreover it is true that ` (x, an)→ `(x, y)

and similarly for the other sequences.

For each (x, y) ∈ I2, the set {(x, y, z) : 0 ≤ z ≤ `(x, y)} will be called the hair

at (x, y) while the set I2 × {0} will be called the base.

The usefulness of the above object lies in the fact that when we suitably embed a

3-d straight brush to I3 with the usual topology and then compactify that embedding

we obtain a soshs.

Indeed, let H : R3 → I3 be de�ned as

H(x, y, z) =

(
arctan y

π
+

1

2
,
arctan z

π
+

1

2
,
L ([x,∞)× {(y, z)})

π

)
(4.38)

where L is once again the spherical length of the half line [x,∞)×{(y, z)}. We note

here that we are viewing R3 as the sphere of centre (0, 0, 1/2) and radius 1/2 so the

spherical length of any straight line is less or equal than π.

It is easy to see now that H is an embedding of R3 to I3 and that if B is a 3-d

straight brush then the compacti�cation of H(B) in I3, with usual topology is a

soshs.

After they de�ned straight one-sided hairy arcs, Aarts and Oversteegen went on

to de�ne the notions of a hairy arc and a one-sided hairy arc which are a homeo-

morphic image of a sosha and a homeomorphic image of a sosha on the plane with

101



all of the hairs attached on the same side respectively. The importance of those

objects becomes apparent when we notice that compacti�ed versions of Julia sets

of many entire transcendental functions are one-sided hairy arcs. Initially, Aarts

and Oversteegen showed this for some functions in the exponential family and some

functions in the sine and cosine families. That was extended to much larger classes

of transcendental entire maps by Baranski, Jarque and Rempe in [8].

Generalizing in R3 we de�ne the notions of a hairy surface and a one-sided hairy

surface.

De�nition 4.10.2 (Hairy Surface). A hairy surface is any homeomorphic image

of a soshs. The base of the hairy surface is the image of I2 × {0} under that

homeomorphism and the hairs are the images of the hairs of the soshs. A one-sided

hairy surface is an embedding ϕ of a hairy surface X, with base D, in R3 such that

all hairs are attached to the same side of the base ϕ(D).

The notion of same sidedness is intuitively clear. Rigorously we can de�ne it as

follows. There is a surface S which contains ϕ(D) and all of the hairs are contained

in the same bounded complementary component of S.
Next we prove that when we suitably compactify the Julia sets of some Zorich

maps we do get hairy surfaces.

Proof of Theorem 4.1.10. We know from section 4.2.1 that there is a homeomor-

phism ψ : J (Zν) → B, where B is a 3-d straight brush. Consider now the embed-

ding f : J (Zν)→ I3, with f = H◦ψ, where H : B → I3 was de�ned in (4.38). The

compacti�cation we are looking for is the one induced by the embedding f (see for

example [96, Chapter 5.3]). Also, by construction, f extends to a homeomorphism

f̃ between the compacti�cation of J (Zν), J̃ (Zν) and H(B) the closure of H(B) in

the usual topology of I3. Hence, J̃ (Zν) is a hairy surface.

4.11 Wild one-sided hairy surfaces

When studying embeddings of a subset X of Rd in Rd an important notion is that

of tameness of X. In other words, whether or not there is a homeomorphism h :

Rd → Rd sending X to H(X), where H : X → Rd is a homeomorphism onto its

image. We also say that X and H(X) are then ambiently homeomorphic.

Aarts and Oversteegen in [1] showed that all one-sided hairy arcs are tame. In

other words any embedding ϕ : X → R2 of a sosha X for which the hairs of ϕ(X)

are all on the same side extends to a homeomorphism of the whole plane. This is

reminiscent of the tameness of the Cantor set and the arc in the plane. Once we
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move however to higher dimensions the situation is di�erent. It is well known that

in R3, for example, there are wild arcs, wild Cantor sets and wild spheres meaning

sets that are homeomorphic images of [0, 1], the standard ternary Cantor set and the

unit sphere respectively and yet they are not ambiently homeomorphic to those sets.

Classical examples of such sets are the wild arc, Antoine's necklace and Alexander's

horned sphere (see for example [95] and references therein).

The situation is similar for soshs' and one-sided hairy surfaces as Theorem 4.1.11

shows. Before we proceed with the proof of that theorem we will give a brief descrip-

tion of how a wild arc is constructed since we are going to use them in the proof. We

start with an arc A in R3, i.e. a homeomorphic image of the unit interval, which is

knotted as in �gure 4.7. Consider now the sequence of arcs 2−nA for n ∈ N and stack

each term of the sequence on top of the previous while also "gluing" the bottom

of each term of this sequence with the top of the previous arc. The object W we

obtain will be another arc with endpoints a0 and a1 with a0 being also an endpoint

of A. Now take a line segment L and glue it on top of W , see �gure 4.7. The �nal

object we obtain is a wild arc, see [95, Chapter 19, Theorem 4] for the proof.

Figure 4.7: A knotted arc and a wild arc

In order to prove our theorem we will �rst construct a soshs S and then a

homeomorphism which takes that soshs to a wild one-sided hairy surface.

4.11.1 Constructing a soshs

For convenience we will construct our soshs as a subset of I2× [0, 3/2] instead of I3.

Our soshs will be constructed as an intersection of subsets Tn of I
2× [0, 3/2] each

of which comprises of a square base I2 and a set of cuboids R(n, i, j). The cuboids
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will have a square base on I2 and will have their sides parallel with the axis x, y and

z. The construction proceeds inductively. Set T0 = T1 = I2 × [0, 3/2] and partition

I2 in 9 equal squares Q(2, i, j), i, j = 1, 2, 3 which will be the base of our cuboids

R(2, i, j). On each of those squares we erect a cuboid of height as in Figure 4.8. The

bottom left corner square is Q(2, 1, 1) and the top right one is Q(2, 3, 3).

1/2 1/2 1/2

1/2 3/2 1/2

1/2 1/2 1/2

Figure 4.8: The squares Q(2, i, j) and the heights of the corresponding cuboids

We now name T2 =
⋃
i,j∈{1,2,3}R(2, i, j). Suppose now that we have constructed

Tn and it is a �nite union of cuboids R(n, i, j) with bases Q(n, i, j). Take each

square base Q(n, i, j) and partition it in (2n+ 1)2 equal squares, which we will now

call Q(n, i, j, k, l). After we de�ne Tn+1 we relabel those squares as Q(n + 1, i, j).

Notice that we have used the same indices i, j although they take di�erent values

for di�erent values of n. Also, let us denote by h(n, i, j) the height of the cuboid

R(n, i, j).

We now erect cuboids R(n, i, j, k, l) with bases Q(n, i, j, k, l) with heights

h(n, i, j, k, l) =



1
n+1

h(n, i, j), if l = 1 or l = 2n+ 1 or k = 1 or k = 2n+ 1

h(n, i, j), if Q(n, i, j, k, l) is the central square of Q(n, i, j)

n
n+1

h(n, i, j), otherwise.

Then we de�ne Tn+1 =
⋃
i,j,k,lR(n, i, j, k, l).
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1/2 1/2 1/2 1/2 1/2

1/2 1 1 1 1/2

1/2 1 3/2 1 1/2

1/2 1 1 1 1/2

1/2 1/2 1/2 1/2 1/2

Figure 4.9: The squares Q(2, 2, 2, k, l) and the heights h(2, 2, 2, k, l) of the corre-

sponding cuboids

Our soshs will then be de�ned as S =
⋂∞
n=0 Tn. Since every Tn is a continuum

and Tn+1 ⊂ Tn, S will also be a continuum and it is easy to see that it will satisfy

all of the properties of a soshs. We will only prove here that property (iii) of the

de�nition of a soshs is satis�ed.

Indeed, for any hair δ : [0, 1]→ S of S at the base point (x, y) it will be true that

there is a sequence of cuboids R(n, in, jn) with R(k+ 1, ik+1, jk+1) ⊂ R(k, ik, jk), for

all k ∈ N and ⋂
n

R(n, in, jn) = δ ([0, 1]) .

It is true now that there is a subsequence nk such that R(nk, ink , jnk) is the

central square of R(nk− 1, ink−1, jnk−1) since otherwise there would not be a hair at

(x, y).

We now �nd a sequence of hairs δk, k = 1, 2, . . . with base points (xk, y) such

that xk ↑ x and `(xk, y)→ `(x, y). We choose the hair δk as the one de�ned by the

sequence of cuboids

R(1, i1, j1), . . . , R(nk − 1, ink−1, jnk−1), R(nk, ink − 1, jnk),

R(nk + 1,m1,k, jk+1), R(nk + 2,m2,k, jnk+2), . . . ,

where mi,k, i ∈ N is a sequence of integers such that the sequence of squares

Q(nk + 1,m1,k, jk+1), Q(nk + 2,m2,k, jnk+2), . . .

is the sequence of squares

Q(nk + 1, ink+1, jk+1), Q(nk + 2, ink+2, jnk+2), . . .

translated to the left by the length of a side of a square at the nk level.
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It is now easy to see that δk has its base point at (xk, y) with xk ↑ x. Also the

hairs δk have length

`(xk, y) =
nk

nk + 1
`(x, y)

so that `(xk, y)→ `(x, y) as k →∞.

Similarly we can construct the other sequences of points from property (iii) of

the de�nition of a soshs.

4.11.2 Proof of Theorem 4.1.11

Before we proceed with the proof of Theorem 4.1.11 let us �rst introduce some

standard terminology taken from [95].

Let V = {u0, u1, . . . , un} be a set of n + 1 points in Rd which are a�nely inde-

pendent, meaning u1 − u0, u2 − u0, . . . , un − u0 are linearly independent. Then the

n-simplex is de�ned as the convex hull of V . We will denote the n-simplex de�ned

by those points by σn. The convex hull τ of a non empty subset W of V will be

called a face of σn. A (Euclidean) complex is a collection K of simplexes in Rd such

that

1. K contains all faces of all elements of K.

2. If σ, τ ∈ K are simplexes and σ ∩ τ 6= ∅ then σ ∩ τ is a face of both σ and τ .

3. Every σ in K lies in an open set U which intersects only a �nite number of

members of K.

If K is a complex then with |K| we denote the union of the elements of K. Such
a set is called a polyhedron. Note that a polyhedron can be seen as a manifold with

boundary with the subspace topology induced from the standard topology of Rd. An

n-cell is a space homeomorphic to an n-simplex. A polyhedral n-cell is a polyhedron

homeomorphic to an n-simplex.

Let M be a manifold with boundary. Then by BdM and IntM we denote its

boundary and its interior respectively.

Lemma 4.11.1. [95, Theorem 1, Chapter 19] Let A be a polyhedral 1-cell in R3 with

endpoints P and Q. Then there is a polyhedral 3-cell C such that (1) IntA ⊂ IntC,

(2) P,Q ∈ BdC, and (3) there is a homeomorphism φ : C → σ2 × [0, 1], such that

A 7→ R× [0, 1], for some R ∈ Intσ2.

If A and C satisfy the conditions of the above lemma, then we say that A is

unknotted in C.
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Figure 4.10: The polyhedral 1-cells An (left) and the polyhedral 3-cells Cn (right)

used in the Proof of Theorem 4.1.11.

Proof of Theorem 4.1.11. Consider the soshs S we constructed in the previous sub-

section. We will construct a homeomorphism by de�ning it on the sets R(n, i, j) for

all n. Consider now cuboids Bk, k ∈ N with sides parallel to the x, y and z axis

which are constructed as follows:

� B1 has a square base I2 × {0} and height h1 = 1/2.

� B2 has as base Q(2, 2, 2)× {1/2} and height h2 = 1
4
.

...

� Bn has as base Q(n, in, jn)×{
∑n−1

k=1 hk}, where Q(n, in, jn) is the central square

of Q(n− 1, in−1, jn−1) and height hn = 1
2n
.

...

Consider now the polyhedral 1-cells An inside Bn that are overhand knotted (see

Figure 4.10) with their endpoints at (1
2
, 1

2
, hn−1) and (1

2
, 1

2
, hn). From Lemma 4.11.1

now, for each of those 1-cells, we can �nd a polyhedral 3-cell Cn, inside Bn, in which

An is unknotted and BdCn contains the bottom and the top square bases of Bn.

Lemma 4.11.1 also gives us that there are homeomorphisms φn : Cn → σ2× [0, 1].

Since σ2× [0, 1] is homeomorphic to Bn this implies that there are homeomorphisms

ϕn : Bn → Cn which can also be arranged so that they �x the square bases of Bn.

De�ne now the map H : S → R3 as

H(x) :=

ϕn(x), for x ∈ Bn,

x, otherwise.
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It is easy to see, by our construction, that this map is a homeomorphism of S

onto H(S).

Suppose now that there exists a homeomorphism h : R3 → R3 such that h(S) =

H(S). Any homeomorphism that sends S to H(S) will map the base of S, I2×{0}
to the base of H(S) and the hairs of S to the hairs of H(S). Let γ(t), t ∈ [0, 1] be a

parametrization of the longest hair of S attached at (1/2, 1/2, 0). By [95, Theorem

4, Chapter 19] and our construction we have that H(γ(t)) will be a wild arc and

since it is a hair of H(S) it will be the image of a hair of S under h. However this is a

contradiction since a wild arc cannot be the image of an arc under a homeomorphism

of R3 such as h.

4.12 Open questions

As we have already seen, the Zorich maps resemble in a lot of ways the exponential

family. The literature on exponential dynamics is vast and there are many striking

phenomena. It is expected that Zorich maps, given the higher dimensional setting

and the greater �exibility, should have an even more intricate nature. In this section

we will mention some problems that require further study.

4.12.1 Dynamics for di�erent values of λ

We saw in Theorem 4.1.3 that when λ is large enough then the Julia set of the

Zorich map is the entire R3 assuming that ν is large enough. It is interesting to ask

what happens in the case when the scale factor λ is not large. In that case we do

not have enough expansion in the sense of Lemma 4.2.6 in order for our argument

to work. Nonetheless, it seems that the dynamics in this case are also chaotic. So

we ask

Question 4.12.1. Let λ > 0. Does there always exist a constant cλ depending on

λ such that for all ν > cλ the Julia set J (Zν) is the whole R3?

We can even ask this question in the complex plane. If we rescale the complex

exponential family we obtain the maps

fν(x+ iy) = νλex
(

cos
(y
λ

)
+ i sin

(y
λ

))
,

for λ > 0 and ν ∈ R. Note that for λ = 1 we obtain the exponential family. Of

course those maps are no longer holomorphic but they are quasiregular and we can

de�ne their Julia set. A similar approach to that used for the Zorich maps should

give us that the Julia set of those maps for λ large enough and ν > c′λ is the entire

complex plane, where c′λ constant depending on λ. But we can ask
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Question 4.12.2. Let λ > 0. Assuming that ν > c′λ is J (fν) the whole complex

plane?

Closely related to the above question and worth mentioning here is the paper

[34] where the authors study families of functions such as fν in the complex plane.

The functions they study are not necessarily quasiregular. However their results

show that if we choose a λ > 0 then for small values of ν the Julia set of fν is a

"Cantor bouquet".

4.12.2 Measurable dynamics of Zorich maps

Another quite interesting question is that of the typical behaviour of an orbit of the

exponential map. Lyubich in [84] proved that for Lebesgue almost all points of the

complex plane the limit set of their orbit En(z) is the orbit of 0, {En(0)}n∈N plus∞.

Thus a typical point will follow closely the orbit of 0 for some time and then "break

o�" for some iterates until it goes back to following the orbit of 0 for more iterates

this time. Hence, almost all points in the complex plane belong to the bungee set

of the exponential map (see [105]), namely the set of points that neither escape to

in�nity nor remain bounded under iteration. The bungee set can be also de�ned for

quasiregular maps (see [101]). So we ask

Question 4.12.3. What is the typical behaviour of an orbit of a point x ∈ R3 under

the Zorich maps of Theorem 4.1.3?

Question 4.12.4. For the same Zorich maps, do almost all points of R3 belong to

the bungee set?

It is also known that the escaping set of the exponential map Eκ, for any value

of the parameter κ ∈ C \ {0}, has zero Lebesgue measure (see [42, Theorem 7]).

Question 4.12.5. Is the Lebesgue measure of the escaping set of any Zorich map

equal to zero?

Another interesting question that was answered by Lyubich is that of ergodicity

of the exponential. Ergodicity here means that there is no partition of the plane in

two invariant sets of positive Lebesgue measure. We have that

Theorem 4.12.6 (Lyubich [84]). E(z) is not ergodic.

In the same sense we can ask

Question 4.12.7. Is the Zorich map Z ergodic?
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4.12.3 Indecomposable continua in Zorich maps

Another fascinating and well-studied phenomenon in exponential dynamics is the

presence of indecomposable continua in the dynamic plane. A non empty metric

space is called a continuum if it is compact and connected. A continuum X is

called decomposable if there exist two subcontinua A 6= X and B 6= X such that

X = A ∪ B. A continuum which is not decomposable is called indecomposable.

Indecomposable continua have a long history and appear quite often in the study of

dynamical systems, see for example [74].

It was Devaney in [36] who �rst studied such sets in the context of exponential

dynamics. The way to construct them in the complex plane is as follows. Consider

the strip

S = {z ∈ C : 0 ≤ Im z ≤ π}.

Now take any κ > 1/e and consider the set

Λ := {z ∈ C : En
κ (z) ∈ S for all n ∈ N}.

By suitably compacti�ng this set then Devaney shows that we obtain a curve that

accumulates everywhere on itself but does not separate the plane. Then by apply-

ing a theorem of Curry, [35, Theorem 8] he concludes that this curve must be an

indecomposable continuum.

Assuming that ν = 1, we can try and construct a similar set in the case of Zorich

maps. The role of the strip S is played now by the rectangular beam B(0,0). Thus

we can consider the set

ΛZ := {x ∈ R3 : Zn(x) ∈ B(0,0), for all n ∈ N}.

We can also, just like Devaney, suitably compactify this set and obtain a surface, let

us call it Γ, that accumulates everywhere on itself. However the criterion of Curry

is no longer available in this higher dimensional setting so Devaney's argument does

not work here.

Question 4.12.8. Is Γ an indecomposable continuum?

If the answer to the above question is yes we can then consider the same continua

for di�erent values of ν. Let us call those continua Γν1 and Γν2 , with ν1, ν2 ≥ 1.

Question 4.12.9. If ν1 6= ν2 are Γν1 and Γν2 homeomorphic?
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Let us also remark here that the points in the set ΛZ all have the same itinerary

so by the results of section 4.5 we have that the three dimensional Lebesgue measure

of this set is zero.

Finally, let us mention [39] where the authors prove the existence of many more

indecomposable continua in the dynamical plane of the exponential map and ask

many more questions. Such considerations also make sense for Zorich maps.

4.12.4 Explosion points for subsets of the endpoints

As we have already mentioned explosion points have also been studied for subsets

of the set of endpoints E(J (Eκ)). Speci�cally in [2, Theorem 1.3] it is shown that

the escaping endpoints, namely the set E(J (Eκ)) ∩ I(Eκ), has ∞ as an explosion

point assuming that the parameter κ is chosen appropriately. That result includes

the case when κ ∈ (0, 1/e). We can ask the same question about Zorich maps.

Question 4.12.10. Does the set of escaping endpoints, E(J (Zν)) ∩ I(Zν) have

in�nity as an explosion point for 0 < ν < e−(logL+L)?

Moreover, in [46] the authors show that for the same values of the parameter κ

the set of endpoints that do not escape, namely E(J (Eκ))∩I(Eκ)
c, does not have∞

as an explosion point and in fact E(J (Eκ))∩I(Eκ)
c∪{∞} is totally separated. They

also show that even the set of endpoints that do not escape fast, E(J (Eκ))∩A(Eκ)
c

have the property that E(J (Eκ)) ∩ A(Eκ)
c ∪ {∞} is totally separated. All those

results make sense for Zorich maps as well.

Question 4.12.11. For 0 < ν < e−(logL+L), is E(J (Zν)) ∩ I(Zν)
c ∪ {∞} totally

separated?

Question 4.12.12. Is E(J (Zν)) ∩ A(Zν)
c ∪ {∞} totally separated?

Finally, let us mention the papers [79�81] where the author studies various topo-

logical questions about the Julia sets of exponential maps. For example in [81,

Corollary 9] it is shown that the sets E(J (Eκ))∩A(Eκ)
c, E(J (Eκ))∩A(Eκ)

c∪{∞}
are both homeomorphic to the set of irrationals. Many of those results again make

sense in the higher dimensional setting of Zorich maps.

Question 4.12.13. Are E(J (Zν))∩A(Zν)
c, E(J (Zν))∩A(Zν)

c∪{∞} homeomor-
phic to (R \Q)2?
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Chapter 5

Mapping properties of domains in Rd

under quasiregular maps

5.1 Introduction

Suppose that we are given a domain V and a meromorphic function f in the complex

plane. Let U now be a connected component of f−1(V ). A simple and important

question to ask then would be how does the image of U cover the set V ? In other

words how large can the set V \ f(U) be and how many preimages of each point in

V are there in U? This question has been answered by Heins in [61]. In particular

Heins showed that

Theorem 5.1.1 (Heins). Let f : C → C be a meromorphic function, where C =

C ∪ {∞}, V a domain in C and U a connected component of f−1(V ) then either

1. V \ f(U) = ∅ and all points in V have the same �nite number of preimages in

U (counting multiplicities) or

2. the number of points in V with a �nite number of preimages in U is at most

two in which case V \ f(U) contains at most two points.

The above theorem has been generalized to a wider class of maps by Bolsch in

[25]. It would also be quite useful to have such a theorem for quasiregular maps.

The main goal of this chapter is to prove such a theorem.

Theorem 5.1.2. Let f : Rd → Rd be a K-quasimeromorphic map. If V is a domain

in Rd and U is a connected component of f−1(V ) then either

1. V \ f(U) = ∅ and every point in V has the same �nite number of preimages

in U or
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2. the set of points in V with a �nite number of preimages in U has conformal

capacity zero. In this case V \ f(U) is of conformal capacity zero.

In fact in the second case of the above theorem we can prove something more.

Recall here that a point x ∈ Rd is called an asymptotic value for f if there is a path

γ : (0, 1)→ Rd with γ(t)→∞ as t→ 1 such that f(γ(t))→ x as t→ 1.

Theorem 5.1.3. Let f , U and V be as in Theorem 5.1.2 and suppose that some

point in V has in�nitely many preimages in U . Then all the points in V with �nitely

many preimages in U are asymptotic values of f .

Theorem 5.1.1 is of signi�cant importance in the �eld of complex dynamics since

it answers the following important question. Let f : C → C be a meromorphic

function and let U1 be a Fatou component. Then since the Fatou set is invariant,

f(U1) must be inside another or possibly the same Fatou component U2.

Question: How big can U2 \ f(U1) be?

Using Theorem 5.1.1 we can answer that question. Either U2\f(U1) will be empty or

it will contain at most two points. For rational functions it is quite easy to see that

the former case holds. Indeed, suppose that f(U1) ( U2 and let x ∈ ∂f(U1) ∩ U2.

Notice that ∂f(U1) ⊂ f(∂U1) due to the openness of f . Since every point in C has

a non empty inverse image under a rational map, there will be a point y ∈ ∂U1

such that f(y) = x. Take a su�ciently small neighbourhood N around y so that

f(N) ⊂ U2. Hence N ⊂ f−1(U2) which is clearly impossible since U1 is a connected

component of f−1(U2) and N intersects that component and its complement.

However for the general case of meromorphic functions the latter case will hold.

Although Heins' result completely answers our question about Fatou components, it

is also worth mentioning here that the same question has been studied by Herring,

[62] who used di�erent methods than those of Heins to obtain the same conclusion.

Moreover, those methods were used by Bolsch in [25] to obtain a version of Theorem

5.1.1 for a more general class of maps which quite often in the literature is called

Bolsch class (see [25] for more details).

In the higher dimensional setting of quasiregular maps now, as we have already

mentioned, there is a sensible way to de�ne the Julia and quasi-Fatou set of a func-

tion (see Chapter 2 for more details). Again the quasi-Fatou set is an open and

completely invariant set (see Theorem 2.3.9). Hence the same question makes sense

in this setting as well: If U1, U2 are quasi-Fatou components with f(U1) ⊂ U2 then

114



how big can U2 \ f(U1) be?

Applied in the setting of quasi-Fatou components the two theorems that we will

prove immediately yield

Corollary 5.1.4. Let f : Rd → Rd be a quasimeromorphic map and U1, U2 be

quasi-Fatou components of f such that f(U1) ⊂ U2. Then U2 \ f(U1) can be at most

of conformal capacity zero and all of its points are asymptotic values of f .

5.2 Preliminaries

First we need to introduce the notions of the cluster set and the boundary cluster

set which play an important role in the study of boundary behaviour of analytic

maps. We refer to the books [32, 102] for an introduction to these concepts and

their relation with geometric function theory.

Let G be an arbitrary domain in Rd and ∂G its boundary on Rd. We will always

consider boundaries with regard to Rd unless otherwise stated. Let also f be a

quasimeromorphic map on G and x0 be a non-isolated point of ∂G. Then we de�ne

the cluster set at x0 as

C(f,G, x0) := {a ∈ Rd : ∃xn ∈ G, xn → x0, f(xn)→ a}.

The boundary cluster set at x0 with respect to F ⊂ ∂G is de�ned as

CF (f, x0) : = {a ∈ Rd : there is ζn ∈ F and wn ∈ C(f,G, ζn) such that ζn → x0 and wn → a}

=
⋂
r>0

⋃
x∈F∩Dr

C(f,G, x),

where Dr is a ball of centre x0 and radius r > 0 in the spherical distance.

Next we have some preliminary theorems related to cluster sets and boundary

cluster sets. The �rst one is a well known result of Iversen and Tsuji generalized

for quasiregular maps by Martio and Rickman [86, Theorem 3.10]. There is an even

more general version of that theorem, which we will not need here, due to Vuorinen

[135].

Theorem 5.2.1 (Martio-Rickman, [86]). Let f : G → Rd be a quasimeromorphic

mapping. Let E ⊂ ∂G be a compact set of capacity zero and let y ∈ E∩∂G \ E then

∂C(f,G, y) ⊂ ∂C∂G\E(f, y).
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The next theorem generalizes a result of Tsuji for analytic maps on the plane,

see [102, II.�4 Theorem 5].

Theorem 5.2.2 (Vuorinen, [136]). Let f : G→ Rd be a quasimeromorphic function

and let E ⊂ ∂G be a compact set of conformal capacity zero. Suppose that x0 ∈
E ∩ ∂G \ E. If

K := C(f,G, x0) \ C∂G\E(f, x0)

is not empty then every point in K is assumed by f an in�nite number of times in

a neighbourhood of x0, except possibly a set of conformal capacity zero.

To prove Theorem 5.1.3 we are going to need the notion of maximal path lifts.

Let G be a domain and f : G→ Rd be a quasimeromorphic map. Let β : [a, b)→ Rd

be a path and let x0 ∈ G be such that f(x0) = β(a). A path γ : [a, c) → G is said

to be a maximal f -lifting of β starting at x0 if

1. γ(a) = x0.

2. f ◦ γ = β|[a,c).

3. If c < c′ ≤ b, then there does not exist a path γ′ : [a, c′) → G such that

γ = γ′|[a,c) and f ◦ γ′ = β|[a,c′).

Let x1, . . . , xk be k di�erent points of f
−1(β(a)) and let m =

∑k
i=1 i(xi, f), where

i(x, f) denotes the local topological index, i.e.

i(x, f) = inf
N

sup
y∈Rd

card(f−1(y) ∩N)

and the inf is taken over all neighbourhoods N of x. We say that the sequence

of paths γ1, . . . γm is a maximal sequence of f -liftings of β starting at the points

x1, . . . , xk if

(i) each γj is a maximal f -lifting of β,

(ii) card{j : γj(a) = xi} = i(xi, f), 1 ≤ i ≤ k,

(iii) card{j : γj(t) = x} ≤ i(x, f) for all x ∈ G and all t.

We also say that the paths γ1, . . . γm are essentially separate if (iii) is satis�ed.

If β : [a, b) → Rd is a path and C ⊂ Rd, we say that β(t) → C as t → b if the

spherical distance between β(t) and C goes to zero as t→ b.

For a thorough discussion on path lifts we refer to Rickman's monograph [118].

Here we will need the following lemma which is a combination of [118, II.3 Theorem

3.2] and [87, Lemma 3.12]:
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Lemma 5.2.3. Suppose that f : G → Rd is a discrete, open and sense-preserving

map and that xi ∈ G, i = 1, . . . k. Let β : [a, b) → Rd be a path such that f(xi) =

β(a) for all i = 1, . . . , k and such that either limt→b β(t) exists or β(t)→ ∂f(G) as

t → b. Then β has a maximal sequence of f -liftings γj : [a, cj) → G, j = 1, . . .m

starting at x1, . . . xk. If γj(t) → yj ∈ G as t → cj then cj = b and f(yj) =

limt→b β(t). Otherwise γj(t)→ ∂G as t→ cj.

5.3 Proof of Theorems 5.1.2, 5.1.3

The proof of Theorem 5.1.2 is a combination of the following two lemmas and The-

orem 5.2.2. In this section, using the notation of Theorem 5.2.2, we take E = {∞},
G = U and x0 =∞ so that K = C(f, U,∞) \ C∂U\{∞}(f,∞).

Lemma 5.3.1. Let f , V and U be as in Theorem 5.1.2. If ∞ ∈ ∂U and K 6= ∅
then V ⊂ K.

Proof. Since U is a connected component of f−1(V ) we have that

C(f, U,∞) ⊂ f(U) ⊂ V . (5.1)

Moreover, for the same reason, we have that

f(∂U \ {∞}) ∩ V = ∅.

Also, since f is de�ned on ∂U \ {∞} we have that for y ∈ ∂U \ {∞} we have

C(f, U, y) = {f(y)}. Hence

C∂U\{∞}(f,∞) ⊂ f(∂U) ⊂ ∂V. (5.2)

Note now that since K is open and by Theorem 5.2.1

∂K = K \ K ⊂ C(f, U,∞) \ K ⊂ C∂U\{∞}(f,∞). (5.3)

Equations (5.1) and (5.2) now imply K ⊂ V and by using again the fact that K
is open we obtain that K ∩ V 6= ∅.

This implies that V ⊂ K. Indeed if not then there would be a point x ∈ V

such that x ∈ ∂K, but (5.2) and (5.3) would then imply that x ∈ ∂V which is a

contradiction.

Before we state our next lemma let us introduce some terminology. We are going

to need the notion of a normal domain. Let G ⊂ Rd be a domain and f : G→ Rd be

a quasimeromorphic map. A domain U with U ⊂ G is said to be a normal domain
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of f if f(∂U) = ∂f(U). If a domain is normal then every point in f(U) has the same

number of preimages in U counting multiplicities. For a comprehensive discussion

on this we refer to [118, section I.4].

Lemma 5.3.2. Let f , V and U be as in Theorem 5.1.2. If U is compact subset

of Rd then f(U) = V , U is a normal domain and every point in V has the same

number of preimages in U .

Proof. This is basically [118, I.4 Lemma 4.7] and [118, I.4 Proposition 4.10].

Proof of Theorem 5.1.2. Either the set U is compact in Rd or it is not. In the �rst

case Lemma 5.3.2 gives us that assertion 1 of the theorem holds. In the second case

Lemma 5.3.1 together with Theorem 5.2.2 give us that assertion 2 holds in the case

that K is not empty.

If U is not compact and K is empty then this implies that for any sequence

zn ∈ U with zn → ∞ we have that f(zn) → ∂V . This implies that f : U → V is a

proper map and thus for any point y ∈ V and any compact set B ⊂ V containing

y have that f−1(B) ⊂ U is a compact set. Hence, using [118, I.4 Lemma 4.7] and

[118, I.4 Proposition 4.10], for any open neighbourhood N ⊂ N ⊂ V of y we have

that any connected component of f−1(N) is a normal domain and all points in that

neighbourhood have the same number of preimages in U . Since this is true for any

neighbourhood we have that all points have the same �nite number of preimages.

Proof of Theorem 5.1.3. Let z0 be a point in V with a �nite number of preimages

{x1, . . . , xk} in U . Since we know by Theorem 5.1.2 that the set of points with �nite

preimage is of capacity zero, we can �nd a non-constant path β : [0, 1] → V inside

V that avoids all those points other than z0 and also β(1) = z0.

Let m =
∑k

i=1 i(xi, f). Choose now m+1 preimages of β(0) (we know that there

are in�nitely many), {y1, . . . , ym+1} so that f(yj) = β(0), j = 1, . . . ,m + 1. By

Lemma 5.2.3 we will now have that there arem+1 maximal liftings, γj : [aj, cj)→ V

of β. By the same Lemma we also know that the endpoints of the paths will either

be in the set {x1, . . . , xk} or γj(t) → ∂U as t → cj. From (iii) of the de�nition of

maximal sequences of paths we now have that there are at most m f -liftings ending

on points of the set {x1, . . . , xk}. Since we have more liftings than m we will have

that there is a path γj, for some j ∈ {1, . . . ,m + 1} with γj(t) → ∂U . But from

Lemma 5.3.1 we know that for all points x 6=∞ in ∂U we have that f(x) ∈ ∂V and

thus f(γj(cj)) ∈ ∂V which is impossible since f(γj(t)) = β(t) and β(t) ∈ V for all

t.
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Finally let us �nish by noting that the second case in Theorem 5.1.2 could be

upgraded to V \f(U) being at most a �nite set if we could generalize Theorem 5.2.2.

We write this as a question.

Question 5.3.3. If Ω is any connected component of the set K from Theorem 5.2.2

is it true that every point of Ω, except �nitely many, is assumed by f an in�nite

number of times in any neighbourhood of x0?

Such a theorem, if true, would be the higher dimensional counterpart to a theo-

rem due to Noshiro, see [102, II.�4 Theorem 6].
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