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Abstract 

The paper ‘The third-body approach: a mechanical view of wear’ by Maurice Godet 

(Wear, 100 (1984), pp 437–452) was perhaps the first to articulate clearly the key role 

of the rate of debris expulsion from a fretting contact in controlling the overall rate of 

wear; the framework of the third body approach was further developed by the concept 

of tribology circuit by Berthier. Whilst subsequent research over the past four decades 

has acknowledged this, the role of debris ejection in fretting has been generally 

addressed qualitatively rather than quantitatively. Moreover, calculation of wear rates 

in fretting have continued to employ Archard wear equation (or approaches directly 

derived from it), despite this approach assuming that the rate of wear is controlled by 

the rate of generation of wear debris (as opposed to the rate of its ejection from the 

contact). 

In this thesis, it is proposed that there are a number of processes which need to take 

place for fretting wear to proceed. These can be grouped into (i) debris formation within 

the contact and (ii) debris ejection from the contact. Moreover, it is proposed for the 

first time that wear can only proceed at the rate of the slower of these two processes – 

that process being termed the rate-determining process. Furthermore, a physically 

based relationship between the debris-expulsion limited wear rate and the contact size 

is proposed and demonstrated, namely that the instantaneous rate of wear is inversely 

proportional to a characteristic dimension of the wear scar. This is a key finding of this 

thesis which has significant implications for all fretting research and development, 

whether addressing laboratory testing or service environments. 

A key issue resulting from this is that it is recognised that during fretting of contacts with 

non-conforming geometries (such as cylinder-on-flat or sphere-on-flat) – either in 

service or in a test environment, the wear scar size increases as wear proceeds, and 

thus the instantaneous rate of wear decreases. It has been shown in this work for the 
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first time that the amount of wear in a non-conforming contact geometry can be well 

approximated from the lateral size of the scar through a simple geometric relationship. 

This then laid the foundation for the derivation of wear equations for three commonly 

employed non-conforming pair specimen geometries (cylinder-on-flat, sphere-on-flat 

and crossed-cylinders); those wear equations all take the form 𝑉! = 𝐾𝑅"#$𝐸%" (𝑉! is the 

wear scar volume, 𝑅 is the radius of the non-plane specimen(s) in the pair and 𝐸% is 

the frictional energy dissipated) where 𝑛 varies between 0.67 and 0.8 depending upon 

the geometry and assumptions made regarding the governing equation. One key 

assumption is that debris is ejected from the contact only in the direction of the fretting 

motion, i.e. that side leakage can be ignored. Consideration of experimental data 

related to cylinder-on-flat contacts (generated within this work) and sphere-on-flat 

contacts (from the literature) indicated that the validity of this assumption was strongest 

when the length of the contact was large compared to its width in the fretting direction. 

The long-debated role of slip amplitude in fretting has been investigated in terms of its 

role in debris ejection. Tests were conducted across a range of test durations up to 107 

cycles (such extended test durations are rarely seen in literature), and these extended 

tests provide new insight into the effects of slip amplitude in the evolution of wear scar. 

There were two main observations: (i) the change of the wear scar profile (U-shaped 

or W-shaped) is associated with both the slip amplitude and test duration; (ii) the 

incubation period can be significantly extended when the slip amplitude is small, 

suggesting the necessity of long duration to fully reveal the evolution of wear. 
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Chapter 1 Introduction 

When two solid bodies are brought into contact and slide over each other, wear may 

occur on one or both of the surfaces. This phenomenon of material degradation is 

commonly known as sliding wear. The term fretting is used to describe small amplitude 

oscillatory movement between surfaces in contact with each other [1], and as such, any 

loss of surface material associated with fretting is called fretting wear. Fretting occurs 

in a wide range of service environments where mechanical joints or contacts between 

components exist, and where the loads on the component results in very small amounts 

of relative displacement between the two components in contact. The forces which 

result in fretting in the contact can be excited by a range of system drivers, such as 

rotation or fluid flow. Examples of fretting in contacts include heat-exchanger bundles 

in pressurised water reactors, couplings in pumps, press-fits between wheels and axles 

and splines in aeroengines. Fretting results in damage in terms of fatigue cracking and 

wear (materials removal), with these two modes of damage being interdependent. 

Fretting damage therefore results in loss of function; this results in increased service 

costs due to the need for inspection and repair or replacement, and may lead to 

catastrophic failure of structures with the hazards associated with that (loss of revenue, 

environmental damage, loss of life). 

This thesis will focus on fretting wear and will not address fretting fatigue. Fretting wear 

has been considered as a subset of reciprocal sliding wear in the past since the nature 

of fretting wear is defined by its small scale of displacement amplitude (typically of tens 

of micrometres [2-4]). However, there are serval key differences in terms of the wear 

mechanisms and the resultant rate of wear which distinguish fretting wear from 

reciprocating sliding wear or other forms of wear. These differences all originate from 

a key feature of fretting wear which is that a significant portion of the contact on both of 

the bodies remains covered (i.e. never out of contact) during the fretting process. This 

feature resulted in fretting contacts often being described as closed contacts. 
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Sliding wear is the result of the intentional relative movement between surfaces, whilst 

fretting wear emerges at the place where contacts are designed to be fixed to each 

other but receives an oscillating motion passively, which is often induced by system 

vibrations. Damage from fretting can be found in a variety of industries where 

mechanical joints are subjected to cyclical loading, in particular in the aerospace, power 

generation and automotive industries [3, 5-7]. Given the nature of the contacts, the 

fretting motion can also result in damage in the form of fretting fatigue alongside that of 

fretting wear – and indeed, the development of fretting wear is a significant influence 

on the development of such fatigue damage. One particular example of fretting damage 

occurs in the main-shaft spline coupling of an aeroengine, and as engines are 

developed, the splines typically experience more arduous operating conditions which 

has necessitated the development of new materials. For example, in the current Rolls-

Royce plc Trent series, the torque density carried by the LP shaft is twice that of the 

previous generation of the aero-engine with this being achieved thanks to the 

development of new steels, along with the optimised design of the spline profile [8].The 

manufacture of the steel (known as BS S132, which is the material of interest for this 

thesis) involves a process of a triple vacuum melting to improve its purity (reduced 

inclusion content) and, therefore, its performance against fatigue under conditions of 

higher bulk and contact stresses [8]. 

The damage caused by fretting wear can result in the loss of surface material and the 

loosening of joints, leading to vibration at a greater scale and, as a result, a faster rate 

of surface degradation. On the other hand, the wear debris in fretting take the form of 

oxide for metals that have a larger volume that the metals from which they are formed, 

which may cause seizure of the structure. Whether an increased clearance or seizure 

occurs is dependent upon the degree of entrapment of debris within the contact. In 

addition (and particularly when rates of surface degradation are low), fretting can initiate 

premature fatigue cracks that can lead to the reduction of fatigue strength and the 
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limited life of components, sometimes even catastrophic structure failure [9] (the fatigue 

failure associated with fretting is known as fretting fatigue). However, the scale of the 

displacement amplitude is so small during the fretting process that the relative motion 

is difficult to observe, resulting in damage being detected only after a long period of 

operation. 

It was Eden et al. in 1911 [10] who conducted perhaps the first case of fretting wear 

study (although it was not described as fretting), which was then called fretting 

corrosion as initially suggested by Tomlinson [11] due to the presence of reddish iron 

oxide. This early description highlights the importance of oxidation in fretting of metals; 

indeed, following fretting studies have demonstrated that both the mechanical and 

chemical process are essential to generate wear debris, and that in fact, debris formed 

after the initial stage are predominately oxide [2]. The complex tribo-chemical nature of 

fretting is perhaps the reason why that, even after more than a century of research 

work, a coherent and all-encompassing explanation for fretting wear is still to be 

established. Fretting wear is sensitive to a large number of variables affecting both the 

mechanical and chemical aspects of the process [12]. It was suggested by 

Dombromirski that fretting process may be influenced by more than 50 parameters [13], 

with perhaps the normal load and displacement amplitude being the most important 

mechanical variables. Furthermore, it was shown that protective methods (such as 

coatings, lubrications and change of design etc.) may result in diverse (sometimes even 

negative) effects on the contacting surfaces in fretting depending upon the conditions 

[3, 14]. The complexity of nature of fretting process is also reflected by the diversity of 

predictive models. As outlined by Meng and Ludema [15], whilst numerous models of 

wear have been proposed throughout the history of wear study, very few of them can 

be considered robust enough to predict wear because of the wide variety of test 

configurations and the complexity of the process itself. Hence, a thorough 

understanding of both the mechanical and chemical nature of the contact (and their 
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interrelated influences on each other) is critically important in order to facilitate the 

development of wear models and predict modes of damage. 

There are two widely accepted frameworks to prompt the understanding of the fretting 

process: (i) the Archard wear model [16] along with the energy-wear formulation 

derived from it [17, 18] (grouped together and termed the Archard-type approach); (ii) 

the third body approach introduced by Godet [19]. The Archard wear model was initially 

developed for sliding wear but was nevertheless adopted widely in fretting wear studies. 

The Archard wear model is mainly used for quantitative analysis when determining a 

single parameter to characterise the development of wear, i.e. the wear rate, offering a 

common ground for comparison of experimental results derived under different test 

conditions. The third body approach, on the other hand, articulates the key role of 

debris behaviour within the fretting contact due to its closed nature (i.e. the transport of 

oxygen into the contact to form debris, debris formation, and the transport of debris out 

of the contact, debris ejection), prompting certain subsequent fretting studies to focus 

on the investigation of the different effects of variables on the competing process of the 

formation and ejection of wear debris. There are limitations for both frameworks: the 

derivation of the wear rate via the Archard wear model usually neglects the effect of 

debris ejection from the contact, whilst the use of the third body approach is mainly 

addressed phenomenologically rather than quantitatively; even when quantitative 

analysis is involved for a problem under the framework of the third body approach, the 

core of the modelling is still generally based upon the Archard wear model. 

There has been some significant progress in understanding the role of debris ejection 

in fretting contacts with the third body approach being central to these studies. Recent 

investigations conducted at the University of Nottingham [20-24] focus on examining 

how different parameters, such as the contact geometry, slip amplitude, temperature 

and frequency, can influence the transport of debris out of the fretting contact. As a 

heritage from the previous work at the University of Nottingham, concepts from the third 
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body approach will be a focus of this thesis as the current study seeks to develop a 

model to determine the wear rate (in place of the Archard-type approach) in fretting 

with the emphasis of the role of debris ejection; the inappropriate use of the Archard-

type wear model in fretting will also be discussed. The development of the new model 

was based on the experimental investigation into the fretting wear behaviour of steel 

specimen pairs in cylinder-on-flat configuration with different contact geometries over 

a range of displacement amplitudes and test durations. 
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Chapter 2 Literature review 

2.1 Introduction 

2.1.1 Wear in sliding and fretting 

Fretting wear is intrinsically related to sliding wear. It is well known that for both sliding 

wear and fretting wear, it is important to consider both mechanical and chemical 

process during the development of wear. The mechanical damage to the materials is 

mainly in the form of fracture, fatigue and particle detachment due to the plastic 

deformation, and the chemical aspect of the process involves oxidation of the surfaces 

leading to the generation of reaction products, often influencing the subsequent rate of 

degradation. Moreover, the chemical and mechanical aspects of the process can exert 

influences on each other resulting in complex interactions between them; these can be 

modified further by thermal effects and, more importantly, may even vary with time with 

the development of the worn contact. 

Whilst different definitions of fretting wear have been suggested throughout the history 

of fretting research, it is, in a simplistic sense, thought of as a branch of reciprocating 

sliding wear where the amplitude of the motion is relatively small. The similarities 

observed between fretting wear and sliding wear, together with the fact that sliding wear 

is usually treated as a more general phenomenon, have resulted in concepts and 

methods in the analysis of sliding wear being employed in the study of fretting wear. 

For example, perhaps one of the most fundamental concepts in understanding sliding 

wear is the Archard wear equation as presented by Archard in 1953 [16], which has 

been widely employed in the study of wear due to its virtue of simplicity and 

effectiveness. The starting point of the Archard wear equation is the concept of true 

contact area, which states that the contact between two bodies occurs only over the 

true contact area instead of the apparent contact area. Archard [25] explained later that 



Literature review 

 7 

the true contact area is equal to the sum of micro-contacts, which are produced by the 

mechanical deformation of individual asperities induced by the high local pressure 

under the applied load. As the contacting surfaces slide over each other, the load 

carried by individual asperities causes the continuous destruction and formation of 

micro-contacts and gives rise to detachment of material fragment from the surfaces. 

With the help of several assumptions, the Archard wear equation links the volume of 

wear with the normal load, the sliding distance and the hardness of the softer body in 

the contact pair in the simple linear relationship as follows: 

𝑉! =
𝐾&𝑃𝐷
𝐻

= 𝑘&𝑃𝐷 (2.1) 

where 𝑉! is the amount of wear (wear volume); 𝑃 is the normal load carried by the 

contact; 𝐷 is the sliding distance; 𝐻 is the hardness of the softer of the two contacting 

surfaces; 𝐾& is the dimensionless constant commonly known as the wear coefficient, 

which allows the comparison of the wear behaviours across different systems. However, 

perhaps a quantity defined as '!
(

 (termed as the specific wear rate, with the symbol of 

𝑘&) is more helpful than the dimensionless wear coefficient (𝐾&) and is thus more widely 

employed for engineering applications. The dimensional specific wear rate (𝑘& ) is 

presented as the wear volume per unit sliding distance per unit of normal force borne 

across the contact (with typical units of mm3×m-1×N-1). 

The migration of the Archard wear equation from sliding wear to fretting implies that, 

similar to sliding wear, the degree of damage caused by wear in fretting is expected to 

be only proportional to the normal load and the sliding distance regardless of other 

parameters, such as the contact size, displacement amplitude etc. Other concepts such 

as mild wear and severe wear as identified by Archard and Hirst [26] for sliding wear 

have also been used to explain different stages of fretting (as will be described in 

Section 2.3.1). 
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With the reduction of the amplitude of the sliding motion, the surfaces in contact can 

experience a transition from reciprocating sliding wear to fretting wear (in gross slip 

regime), although the displacement which marks the transition varies widely between 

different researchers [3, 27, 28]. Vingsbo and Söderberg [4] reviewed a large body of 

literature concerning how contact conditions change with the displacement amplitude, 

and recognised that it is difficult to group experimental data from different authors 

derived under different conditions, quoting [4]: “…Therefore literature data can be 

incomplete and difficult to interpret, and often only orders of magnitude are relevant…”. 

Nevertheless, it was suggested that the transition from reciprocating sliding wear to 

fretting wear may occur between amplitudes of 150-300 µm; such a transition is 

illustrated in Figure 2.1 showing the effect of the displacement amplitude on the rate of 

damage (here the rate of damage is characterised by the specific wear rate, 𝑘&). 

 

Figure 2.1: Illustration of the change of specific wear rate with the increase of the 
displacement amplitude in fretting (from [29] after [4]). 

As can be seen, it is proposed that the specific wear rate is independent of the 

displacement amplitude in reciprocating sliding wear as predicted by the Archard wear 

equation. However, Figure 2.1 also indicates that, in gross sliding fretting, the wear rate 

increased by approximately two orders of magnitude as the displacement amplitude 
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increases from about 30 µm to 300 µm before entering the regime of reciprocating 

sliding wear. Although all the numbers in Figure 2.1 are not exact values and they are 

presented as the scale of change only; the observed variation of the wear rate with the 

displacement amplitude in fretting wear implies that fretting is perhaps very different 

from sliding wear, despite the similarities with each other. Perhaps, rather than treating 

fretting wear as reciprocating sliding wear with small displacement amplitude, it is 

recognised that there are fundamental differences between these two modes of wear, 

and hence, simple deployment of the concepts and methods from the analysis of sliding 

wear may not be helpful in developing understanding of fretting wear. Note that stick, 

partial slip regime and gross slip regime are different slip regimes that may occur in 

fretting contacts, and these will be described in detail in Section 2.2.2. 

In both sliding wear and fretting wear, the interactions between the mechanical and 

chemical process can cause the following processes to occur: (i) mechanical 

deformation at asperity level; (ii) debris formation within the area experiencing the 

mechanical deformation, depending on chemical reactions with oxygen, which requires 

the transport of oxygen from the environment to the place where reactions occur; (iii) 

debris ejection out of the contact to allow further wear take place. However, the closed 

nature of the contact caused by the small slip amplitude of fretting makes the interaction 

between the environment and the contact much more difficult than that it is in sliding 

wear, i.e. the transport of oxygen into the contact from the environment and the 

transport of the wear debris out of the contact, which can drastically influence the 

progression of wear. Indeed, the sensitivity of the fretting contact towards the effects of 

different parameters on the process of debris formation and ejection should be 

regarded as the key features which distinguish fretting wear from sliding wear, and a 

separate set of concepts is necessary. As can be seen later in this review, there has 

been some significant progress on the development of a theoretical framework 

specifically for fretting, namely the third body approach and its derivatives, but the 
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Archard wear equation, as developed for sliding wear, is still the major concept used to 

describe fretting. 

2.1.2 The concept of wear rate 

A key aim of much research into wear is the development of an understanding of the 

relationship between the various parameters which describe the exposure to wear (𝐸) 

and the amount of wear (𝑊) that results. There are different ways to define the amount 

of wear and measuring the volume of material loss is the most typical of these. 

Alternative measures are possible such as the mass of material removed, or the depth 

of material removed. 

The description of the exposure to wear (𝐸) can also take many forms. The exposure 

to wear could be as simple as the duration of materials being exposed to the conditions 

leading to wear. More complex measures can be employed to describe both the 

duration and the severity of the exposure. Typical measure of the exposure of wear for 

sliding wear is the sliding distance, whilst for fretting wear, the frictional energy 

dissipated is commonly adopted, although it is recognised that neither of these have 

any time dependency built into them. 

In the case of fretting wear, the parameters which might be used to describe the 

exposure to wear depend upon the nature of that exposure (i.e. whether a time 

dependency is included or not) and may include the normal force across the contact, 

the displacement amplitude, the fretting frequency etc. For applications where the 

occurrence of fretting wear is common, it is important to understand and quantify how 

changes in these variables affect the evolution of the wear volume, so that damage can 

be predicted and its effects on the system controlled. 

In general terms, the evolution of the amount of wear in terms of the exposure to wear 

will depend on the test conditions and the material properties; typical examples of the 
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evolution of wear are illustrated in Figure 2.2. In all the cases as shown in Figure 2.2, 

there is a period where the wear increases in linear proportion to the exposure, but this 

may be preceded by an initial transient period in which the relationship between the 

amount of wear to the exposure might be very different; in other words, the overall wear 

behaviour can proceed in a non-linear fashion [30]. 

  

(a) (b) 

  

(c) (d) 

Figure 2.2: Schematic illustration of the evolution of the wear, namely the amount of wear 
as a function of the exposure to wear with (a) linear relationship; (b) linear relationship 
after the transient period of rapid wear; (c) linear relationship after the transient period 
of wear incubation; (d) linear relationship after the transient period where materials being 
added up to the surface [29]. 

Figure 2.2a illustrates the case where the initial transient period does not exist. Figure 

2.2b shows a period of rapid development of wear at beginning of the exposure 

followed by a period of steady state wear. Figure 2.2c illustrates a case where there is 

an initial incubation period before wear proceeds a steady rate. Finally, Figure 2.2d 

illustrates a period of “negative wear” followed by steady state wear (this latter type is 
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generally observed with wear by hard particles where the wearing agent (e.g. an 

abrasive) can become embedded in the wearing body). 

The development of steady state wear is desired in research when analysing bodies of 

experimental wear data. The linear relationship allows the aggregation of these data 

into a single parameter to represent and characterise the overall wear behaviour of the 

whole body. This single parameter is normally identified as the wear rate, %)
%*

. It has 

been widely recognised that it is essential to derive a constant value of wear rate (also 

termed the steady-state wear rate [30]) to characterise the wear behaviour of different 

materials under a certain set of test conditions. However, as indicated by Figure 2.2b, 

Figure 2.2c and Figure 2.2d, in case where non-linear wear behaviour occurs, the 

average value of %)
%*

 itself can be a function of the exposure to wear (𝐸), i.e. the average 

wear rate varies as wear proceeds; in these cases, care must be taken when 

determining a representative wear rate. 

As described in Section 2.1.1, traditionally, the wear rate for sliding wear is derived 

from Archard’s work [16], and the specific wear rate, 𝑘&, is often employed to describe 

the wear rate which is assumed to be constant in the steady state. The equivalent 

definition of the specific wear rate in fretting was proposed by Fouvry and co-workers 

[31] as shown below: 

𝐷 = 4𝛿∗𝑓(,𝑡 = 	4𝛿∗𝑁	

𝐸% = �̅�𝑃𝐷	

𝑉! = 𝑘-𝐸% (2.2) 

where 𝛿∗  is the slip amplitude for each cycle in fretting; 𝑓(,  is the frequency of 

reciprocal motion; 𝑡 is the time; 𝑁 is the number of cycles; and �̅� is the averaged value 

of coefficient of friction throughout the process. In fretting, the equivalent term for the 

total sliding distance is the sum of the slip amplitude for each cycle, which leads to 𝐷 
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being calculated as 4𝛿∗𝑓(,𝑡 or 4𝛿∗𝑁. The quantity �̅�𝑃𝐷 is thereby the product of the 

tangential force (the product of the applied normal load and the coefficient of friction) 

and the total sliding distance, resulting in the term known as the energy dissipated into 

the contact, 𝐸% . Therefore, the specific wear rate in fretting, 𝑘- , is derived as the 

constant of proportionality relating the wear volume and the dissipated energy. The 

constant wear rate in fretting wear, 𝑘-, is presented as the wear volume per unit of 

frictional energy dissipated (with typical units of mm3×J-1); itself being derived from the 

concept espoused by Archard’s work but which also accounts for variations in the 

coefficient of friction. This wear model based upon the dissipated energy has been 

widely employed in fretting research to characterise the amount of wear [18, 32-36]. In 

this thesis, all those approaches which are derived from the Archard wear equation will 

be grouped together and termed Archard-type approaches. 

It is argued that the Archard-type approach (without considering the transport of debris 

out of the contact) is not able to account for non-linear wear behaviour [30] and for the 

differences in wear rates associated with the debris entrapment in the contact. 

Nevertheless, the use of Archard-type approaches has provided common ground 

amongst researchers for discussion of the effects of individual variables on fretting and 

for comparisons of the behaviour of different materials to be made. 

As noted by Fillot et al. [37], the Archard-type wear rate in fretting literature is merely 

the description of the rate associated with the mechanism to remove material from the 

surfaces. It is essential to recognise that fretting is different from sliding that the scale 

of the relative oscillatory motion between the contacting surfaces is generally much 

smaller than the size of the damaged area, meaning that debris ejection from the 

contact needs to be considered as part of the process of wear [2, 19]. As such, the final 

measured volumes of wear after exposure depend upon the ability of debris to escape 

the contact under those conditions. The wear volume in fretting is, therefore, the 

‘observed’ result combining effects of detachment of the wear particles from the 
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contacting bodies and the subsequent formation and ejection of debris out of the 

contact, rather than only the volume of material removed from the contacting bodies in 

sliding wear. It is important to distinguish the nature of wear rate employed in fretting 

research, i.e. whether the wear rate is referring to the quantity as the observed wear 

volume per unit energy dissipated (termed as observed wear rate) or simply the 

maximum rate of particle detachments it can achieve under certain test conditions, as 

derived from the Archard wear equation. 

Efforts have been made to modify the Archard-type approach to incorporate the role of 

oxidation and the existence of the oxide film in contact. Quinn [38, 39] investigated the 

mild wear in sliding as outlined by Archard and Hirst [26], in which the applied load is 

relatively low and the presence of the oxide film plays an essential role in modifying the 

Archard wear coefficient (𝐾&) to account for oxide formation in addition to the particle 

detachment as presented in the origin work of Archard [16]. It was assumed that the 

oxide film will start to detach and form particles after the oxide film has grown to reach 

a critical thickness, and 𝐾& is dependent upon this process. This modification of the 

Archard wear equation considered the role of oxidation and thus improved the 

performance of the model when temperature is elevated; but is nevertheless limited by 

quantities that cannot be pre-determined when setting up tests (e.g. the local 

temperature increase in contact and the activation energy for oxidation). Similar 

research was conducted by Dréano et al. [40, 41] to expand the ability of Archard-type 

approaches in fretting by examining the effects of tests conditions on the rate of 

oxidation. The Archard wear coefficient was, again, assumed to be proportional to the 

oxide thickness, and was found to be strongly dependent upon the environmental 

temperature. A quantity called sintering parameter was introduced as an indicator of 

the formation of the glaze layer due to the presence of the retained oxide debris in the 

fretting contact. The sintering parameter can influence the wear rate and thereby was 

demonstrated to result in a more accurate description of fretting wear. All these 
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modifications are based upon the Archard-type approaches, which suffer from the 

same limitation that wear is assumed to be equivalent to the process of debris formation. 

It is argued that the Archard-type approach (without considering the transport of debris 

out of the contact) is not able to account for the differences in wear rates associated 

with differences in debris entrapment in the contact. Even though the presence of the 

oxide film is recognised, and its effect has been considered when deriving the wear 

rate, the role of debris escaping out of the contact is still rarely discussed. 

All the cases discussed in this section are guided by a common framework of wear 

analysis which assumes that a representative constant wear rate can be derived which 

describes the steady state. It is, however, possible that the evolution of wear may 

exhibit continuous non-linear behaviour, for which the pursuit of a constant wear rate 

from experimental results can be inappropriate, and an alternative definition of wear 

rate is required to describe the wear behaviour more accurately. In contrast to the 

constant wear rate, the concept of the instantaneous wear rate is introduced [30] 

reflecting the rate of the observed amount of wear at any moment of the exposure. It 

is, in principle, the gradient of the tangent at a certain point during the evolution of wear 

(examples are given as shown in Figure 2.2), or the derivative of the amount of wear 

in terms of the exposure. There is no doubt that instantaneous wear rate will capture 

any non-linear features of the wear process and will be able to account for changes in 

the operative mechanism of wear; however, it does not possess the virtue of simplicity 

offered by the Archard-type wear rate and is not a metric that can be used for 

comparison of different material behaviours under different test conditions. The issue 

of the balance between the use of a constant wear rate to easily characterise the wear 

process and the use of an instantaneous wear rate to model the non-linear behaviour 

remains unaddressed. 
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2.2 Analysis of fretting contact 

2.2.1 Hertzian contact mechanics 

Non-conforming geometries, typically cylinder-on-flat (CF), sphere-on-flat (SF) and 

crossed-cylinders (CC), are commonly employed in laboratory experiments as 

representatives of more geometrically complex components in contact as seen in many 

industrial applications. The analysis for such non-conforming contact under elastic 

deformation was firstly studied by Hertz [42] (known as Hertzian contact mechanics, 

and was later presented in detail by Johnson [43]), and is useful to understand the initial 

distribution of the contact pressure and the stress within the contacting bodies. 

As illustrated in Figure 2.3, when pressing a cylinder (of radius 𝑅$) against another 

cylinder (of radius 𝑅.) with parallel axes and under a normal load (𝑃), surfaces will 

experience elastic deformation, and contact will occur over a rectangular area with the 

length of 𝐿 and the width of 2𝑎; such a contact is termed a line contact. Similarly, if two 

spherical surfaces are pressed against each other (of radii 𝑅$ and 𝑅.) under an applied 

load, the contact area is a circle of diameter 2𝑏, which is termed a point contact. Please 

note that the line contact is more relevant to this thesis and hence the analysis of which 

is the focus for the current section. There are some similarities for the analysis of both 

the line contact and the point contact, and some equations for the point contact are 

also presented here in this section. 
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Figure 2.3: Elastic deformation of a Hertzian line contact between two pressing cylinders 
of radius 𝑹𝟏 and 𝑹𝟐 under the applied load, 𝑷, forming a rectangular contact area with 
the length of 𝑳 and the contact width of 𝟐𝒂. Note that if a Hertzian point contact is 
presented here, 𝑹𝟏 and 𝑹𝟐 will be the radii for two pressing spheres, and the contact area 
will be a circle with the diameter of 𝟐𝒃 [43]. 

As presented by Johnson [43], the half width of the contact for the Hertzian line contact, 

𝑎, can be calculated as shown in Equation 2.3a, and the radius of the contact for the 

Hertzian point contact, 𝑏, is given by Equation 2.3b. 

𝑎 = <
4𝑃𝑅∗

𝜋𝐿𝐸∗>

$
.

(2.3𝑎)	

𝑏 = <
3𝑃𝑅∗

4𝐸∗ >

$
/

(2.3𝑏) 

For both Equation 2.3a and Equation 2.3b, the definition of 𝑅∗ and 𝐸∗ are the same. 𝑅∗ 

is the relative radius of curvature of the contacting bodies, which is defined with respect 

to the radii of the two bodies, 𝑅$ and 𝑅. as shown in Equation 2.4; 𝐸∗ is the relevant 

elastic modulus (also known as the reduced modulus), which is a function of the 

Young’s moduli of the two bodies, 𝐸$ and 𝐸., and their corresponding Poisson’s ratios, 

𝜈$ and 𝜈., as given by Equation 2.5. It should be noted that if one of the contacting 

bodies is in fact a plane, such as the cylinder-on-flat contact geometry applied in this 

thesis, the radius of that body is infinite, resulting in the relative radius of curvature 

being equivalent to the radius of the non-plane body in contact. 

1
𝑅∗ =

1
𝑅$
+
1
𝑅.

(2.4) 
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1
𝐸∗

=
(1 − 𝜈$).

𝐸$
+
(1 − 𝜈.).

𝐸.
(2.5) 

For the line contact, the pressure over the contact, 𝑝, varies with the distance from the 

centre of the contact (denoted as 𝑑) in the direction perpendicular to the axis of the 

cylinder), and hence its distribution as a function of 𝑑 is given by Equation 2.6a; for the 

point contact, the change of the contact pressure is, again, associated with the distance 

from the centre, 𝑟, but in the radial direction (as shown in Equation 2.6b). For the detail 

of the derivation of the pressure distribution and following expressions of sub-surface 

stresses within the contacting bodies, Johnson [43], and Hutchings and Shipway [29] 

provide further detail. 

𝑝(𝑑) =
2𝑃
𝜋𝑎𝐿

G1 −
𝑑.

𝑎. = 𝑝0G1 −
𝑑.

𝑎.
(2.6𝑎)	

𝑝(𝑟) =
3𝑃
2𝜋𝑏.

G1 −
𝑟.

𝑏. = 𝑝0G1 −
𝑟.

𝑏.
(2.6𝑏) 

It can be seen from Equation 2.6 that the contact pressure reaches its maximum at the 

centre of the contact for both cases, i.e. 𝑑 = 0 or 𝑟 = 0; but falls to zero at the edge of 

the contact when 𝑑  = 𝑎  or 𝑟  = 𝑏 . The maximum contact pressure, 𝑝0 , can also be 

expressed in terms of 𝑅∗ and 𝐸∗ (Equation 2.7a for a line contact, and Equation 2.7b 

for a point contact): 

𝑝0 =
2𝑃
𝜋𝑎𝐿

= <
𝑃𝐸∗

𝜋𝐿𝑅∗>

$
.

(2.7𝑎)	

𝑝0 =
3𝑃
2𝜋𝑏.

= J
6𝑃𝐸∗.

𝜋/𝑅∗.
K

$
/

(2.7𝑏) 

The stress within the contacting bodies can be found as function of the maximum 

contact pressure (𝑝0), the distance from the centre of the contact (𝑑 or 𝑟) and the depth 

from the contacting surface (𝑧). However, equations of stress will be presented only for 
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the case of line contact (Equation 2.8). It can be calculated from Equation 2.8c that the 

maximum shear stress on the axis of loading, which is relevant to consider the damage 

of material, is 0.3𝑝0, occurring at the depth of 𝑧 = 0.78𝑎. For the point contact, the form 

of equations is more complex and the stress distribution is associated with the 

Poisson’s ratio (although not particularly sensitive) [29, 43]. 

𝜎1
𝑝0
= −

1
𝑎 N
(𝑎. + 2𝑧.)(𝑎. + 𝑧.)#

$
. − 2𝑧O (2.8𝑎)	

𝜎,
𝑝0
= −𝑎(𝑎. + 𝑧.)#

$
. (2.8𝑏)	

𝜏$
𝑝0
= −

1
𝑎 N𝑧 − 𝑧

.(𝑎. + 𝑧.)#
$
.O (2.8𝑐) 

where 𝜎1  and 𝜎,  are the principal stresses along the x-axis and z-axis, 𝜏$  is the 

correspond principal shear stress. Figure 2.4 shows the distribution of sub-surface 

stresses (𝜎1, 𝜎, and 𝜏$) and contours of the principal shear stress (𝜏$) as presented by 

Johnson [43]. 

 

Figure 2.4: Hertzian line contact: (a) distribution of sub-surface stresses along the axis 
of symmetry; (b) contours of principal shear stress, 𝝉𝟏, showing its maximum value of 
0.3𝒑𝟎 at 𝒛 = 0.78 [43]. 
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It should be noted that the distribution functions outlined in Equation 2.6 and Equation 

2.8 are the descriptions of the pressure and stresses only for the initial contact area 

under loading. However, considering the development of wear for non-conforming 

contact, the size of the contact will expand continuously throughout the process, which 

in turn has significant impact on the pressure and stress distributions. Efforts have been 

made to evaluate the evolution of pressure and stress along the development of wear 

for non-conforming contact; for example, numerical analysis conducted by McColl et al. 

[44] demonstrated that, for a cylinder-on-flat contact (producing a line contact, and the 

radius of the cylindrical specimen is 6 mm), the contact pressure is tending towards a 

uniformed profile as the test duration increases (shown in Figure 2.5). Similar 

investigation was carried out by Fouvry et al. [45]. 

 

Figure 2.5: Distribution of the contact pressure over the width of line contact as the 
evolution of wear [44]. 

2.2.2 Slip regimes 

The Hertzian theory as described in Section 2.2.1 provides an understanding of the 

initial conditions for non-conforming contact due to the applied normal load. The theory 

was expanded by Mindlin [46] and Mindlin and Deresiewicz [47] to consider the case 
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where a cyclic tangential force (𝑄) is also applied to the contact. One important note 

from the previous section is that the contact pressure achieves its maximum at the 

centre of the contact area (in the shape of rectangle for line contact, and circle for point 

contact), and falls to zero at the edge. Methods proposed by Mindlin [46] and Mindlin 

and Deresiewicz [47] (see the derivation of these methods as explained in detail by 

Johnson [43]) state that, for a contact where a cyclic tangential force is superimposed 

over the normal load, some relative displacement may occur between the contacting 

surfaces at the edge of the contact where the contact pressure is below a threshold. 

As a result, the whole contact area can be categorised into two regions separated by a 

boundary denoted as 𝑐, (this boundary is defined as a distance from the centre of the 

contact beyond which slip may occur): (i) the central region where there is no relative 

tangential movement between the contacting bodies within the range of 𝑐, termed as 

the stuck region; (ii) the surrounding regions beyond the boundary 𝑐, in which slip can 

occur between the contacting bodies, termed as the slip region. 

It should be noted that, as the inner stuck region of the contact remains sticking while 

the outer slip region of the contact may experience slip, the size of the boundary to 

separate the stuck region and the slip region (𝑐) can vary with test conditions, in 

particular the normal load, the tangential force and the displacement amplitude. It is 

also intriguing to notice that a fully stuck contact requires infinite tangential force at the 

edge of the contact to satisfy the condition of those equations outlined in Johnson’s 

book [43], unless there is an outer slip region surrounding the stuck region. The 

implication here is that a normally loaded non-conforming contact will always exhibit a 

slip region under any cyclic tangential loading, and that the key concern is not whether 

the slip region exists, but rather how the size of it can be influenced under different 

conditions; note here that the “full stuck” contact in the following contents refers to a 

contact where slip only occurs at the edge. 
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As illustrated in Figure 2.6, considering a point contact that is “fully stuck”, with 

increasing values of the cyclic tangential force, 𝑄, the annular slip region expands, 

starting from the edge; the size of the boundary 𝑐 will shrink and the central stuck region 

will eventually diminish as the slip region further penetrating towards the centre of the 

contact, until slip occurs over the entire contact area when the tangential force reaches 

the static friction limit (the product of the coefficient of friction and the normal load); i.e. 

𝑄 = 𝜇𝑃 (𝜇 is the coefficient of friction). 

 

Figure 2.6: Illustration of (a) the distribution of the contact pressure for a point contact 
under normal loading; (b) – (d) the plan views of the contact showing a diminishing stuck 
region as the increase of the cyclic tangential force until slip occurs over the whole 
contact; the shaded regions presents areas where slip can occur [29]. 

With the identification of the stuck region and the slip region, it is reasonable to argue 

further that there could exist three types of contact, (i) the “fully stuck” contact; (ii) the 

contact where the stuck region and the slip region co-exist; (iii) and the fully slipping 

contact. Indeed, each of these three types of contact can correspond to a fretting 

regime of material behaviour with different damage mechanisms, which will be 

discussed in the next paragraph. 
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Vingsbo and Söderberg [4] investigated the interrelated effects of two primary 

parameters in fretting, namely the normal load (as opposed to the tangential force) and 

the displacement amplitude, on the size of the boundary which separates the slip region 

from the stuck region. The general observation was that, with the normal load being 

fixed, the increase of the amplitude of the cyclic tangential movement is associated with 

an increase in the extent of slip; a similar effect can be seen by reducing the normal 

load while fixing the tangential displacement. They introduced the concept of fretting 

maps in 1988, and three regimes of the fretting process were identified as illustrated in 

Figure 2.7, namely the stick regime, the partial slip regime (or the mixed stick-slip 

regime) and the gross slip regime [4], each with distinctive features of damage. 

Accordingly, the stick regime is associated with the “fully stuck” contact, the partial slip 

regime corresponds to the contact with the co-existence of both the stuck region and 

the slip region, and the gross slip regime is related to the contact where the entire 

contact is taken over by the slip region. 

 

Figure 2.7: Schematic illustration of the concept of fretting map for a point contact with 
stainless steel showing regimes of fretting process; different regimes can be achieved 
by combining different values of the displacement and the normal load (from [29] after 
[4]). 
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The stick regime is featured by limited surface damage. Typically, it is caused by a 

combination of high normal load and low displacement amplitude. The plastic shearing 

between surface asperities is limited by the low displacement amplitude, and the entire 

contacting surface is seized by severe mechanical deformation of surface asperities 

[48, 49], resulting the entire contact region being “fully stuck” as demonstrated in Figure 

2.6b. Hence the contact shows little damage since there is no relative motion. 

The partial slip regime or the mixed stick-slip regime is the case where effects of 

parameters cause the contact to exhibit both the stuck region at the centre and the 

annular slip region as demonstrated in Figure 2.6c. As described above, the shift from 

the stick regime to the partial slip can be achieved by increasing the displacement 

amplitude or reducing the normal load. Damage will occur in the slipping region, with 

more of the load being carried by the stuck region of the contact as wear takes place. 

Similar to the stick regime, limited plastic shearing of asperities can be found within the 

stuck region, but considerable crack formation can be observed at the boundary 

between the stuck region and the slip region, causing fatigue to be the dominate mode 

of damage; limited material removal can also be observed within the slip region. 

The gross slip regime is defined by significant surface degradation of material removal. 

As opposed to the stick regime, the gross slip regime occurs when the normal load is 

low while the displacement amplitude is large, causing the entire contact being covered 

by the slip region as shown in Figure 2.6d. Within this regime, large amounts of material 

removal can be observed at a rate that is sufficient to supress the formation and growth 

of cracks, resulting the dominate mode of damage being wear. The gross slip regime 

is the focus of this thesis, and hence the fretting wear behaviour is investigated within 

this regime. 

If the operative regimes during the fretting process are known to be the same, then 

fretting studies conducted by different researchers may be compared. It is, therefore, 



Literature review 

 25 

useful to map the wear behaviour of different materials under various conditions in 

order to identify the fretting regimes [50]. Indeed, fretting regimes can be strongly 

influenced by different variables, and their combinations; for example, in addition to the 

normal load and the displacement amplitude, influences of the frequency [4, 51-54] and 

material type [4, 53, 54] have also been examined. It should be noted, however, whilst 

the concept of fretting maps is relatively straightforward, the number of experiments it 

requires to determine the regime boundaries can be significant. 

2.2.3 Fretting loops and the coefficient of friction 

The common practice to determine the fretting regime of material behaviour is by 

examining the shape of fretting loop. A fretting loop is a plot of the cyclic tangential 

force against the reciprocating displacement for a single cycle of fretting motion. Please 

note that several terms have been used throughout the literature to describe the 

tangential force and the displacement imposed to the fretting contact; in this thesis, the 

applied tangential force within a single cycle is denoted as 𝑄 and, similarly, the applied 

(far-field) displacement is given by the symbol of Δ. The method of plotting of fretting 

loops was first used by Mindlin and Deresiewicz [47] for their work on analysing the 

fretting contact, and was later expanded in the work by Vingsbo and Söderberg [4] and 

Vingsbo et al. [53] to illustrate the concept of fretting maps. Typical shapes of fretting 

loop in different regimes are presented in Figure 2.8; as the fretting process changes 

from the stick regime to the gross slip regime, the fretting loop is more open and 

changes from a line (elastic-only) to an elliptical shape and finally resembles a 

parallelogram. The change of fretting regime from the stick to the gross slip is similar 

to the transition described in Figure 2.6, namely that a fretting contact changes from 

“fully stuck” (although there is elastic deformation in the direction of fretting motion to 

accommodate the displacement) to a situation where the elastic deformation is 

overcome so that the edge of the contact starts to slip until the entire contact is sliding 

with the tangential force remaining constant across the period of sliding. It should be 
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noted that, under a certain set of test conditions, the fretting regime of the material may 

persist throughout the test but can also change from one regime to another due to 

change of the nature of the contact with the evolution of wear. It is, therefore, useful to 

plot fretting loops as the test evolves. A method to examine the change of fretting 

regime within a test involves stacking of fretting loops for each cycle to acquire a three-

dimensional plot of the tangential force, displacement and number of cycles; this 3D 

plot is also known as fretting log. 

 

Figure 2.8: Schematic illustration of the typical shape of the fretting loop within (a) stick 
regime; (b) partial slip regime; (c) gross slip regime (after [4]). 

As indicated in Figure 2.8, a number of important quantities can be derived from a 

fretting loop, such as the amplitude of the cyclic tangential force (denoted as 𝑄∗), the 

amplitude of the reciprocal displacement (denoted as Δ∗) and the energy dissipated into 

the contact per cycle (defined as the work done by the tangential force during a 

complete cycle; denoted as 𝐸%(𝑖), with (𝑖) indicating 𝑖23 cycle), which can be calculated 

as the area enclosed by the fretting loop (see Section 3.4.2 for the method of 

determining the dissipated energy in this thesis). It should be noted that the analytical 

solution for dissipated energy per cycle is very complicated for contact in partial slip as 

indicated by Johnson [43]. For the contact in gross slip, additional information can also 

be extracted from the fretting loop, namely the stiffness of the system (denoted as 𝑆), 

and the actual slip amplitude (the actual slip of the contact is denoted as 𝛿, with 𝛿∗ 

referring to its amplitude). 
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It is important to acknowledge that the applied far-field displacement is not equivalent 

to the actual slip between the contacting surfaces. As shown in Figure 2.8a, the applied 

displacement can (in certain cases) be fully accommodated by the elastic deformation 

of the contact (also known as system compliance), even though the contacting bodies 

are “fully” stuck to each other. For a contact in the gross slip regime, part of the applied 

displacement is absorbed by the system compliance; it is until the overcoming of the 

elastic deformation that the remainder of the displacement can be used to cause the 

contacting surfaces to slide against each other, hence the actual slip distance will 

always be smaller than the applied displacement. Please note that the slip amplitude 

is not easy to physically measure and is commonly determined from fretting loops after 

the completion of test (see Section 3.4.3 for the description of the method to obtain slip 

amplitude in this thesis). Such a method, however, was not generally available 

especially in earlier research, which may cause misinterpretation of the experimental 

results [24]. To quote Bryggman and Söderberg [52]: “...the bulk [measured] 

displacement may be considerably larger than the actual slip amplitude at the interface. 

The value of the interfacial slip amplitude is difficult to measure experimentally”. There 

are some recent works reporting the inappropriate use of the applied displacement 

amplitude, along with a lack of clarity about the need to distinguish the actual slip from 

the applied displacement; it is suggested that perhaps the issue is still mainly 

associated with technical difficulties regarding the measurement of fretting loops [24]. 

A single characteristic parameter to measure the resistance to the sliding motion, 

known as the coefficient of friction, is often desired in studies of both sliding and fretting 

wear. In fretting, if a contact in gross slip can be approximated by the Coulomb model, 

i.e. the tractional force is only dependent upon the normal load [55, 56], which results 

in the tangential force remaining constant during the sliding period producing a fretting 

loop akin to the typical shape of a parallelogram. Therefore, a common practice to 

determine the coefficient of friction in fretting (CoF, denoted as 𝜇) is by defining the 
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ratio of the amplitude (the maximum value) of the cyclic tangential force to the normal 

applied load, i.e. 4
∗

5
. However, it has been suggested [31, 57-60] that not all cases of 

fretting contact in gross slip can be described by Coulomb frictional behaviour, i.e. the 

tangential force may change significantly during the sliding period. By examining 

fretting loops, it has been identified that there are two common types of non-Coulomb 

behaviour in fretting: (i) the tangential force remains constant through the majority of 

the sliding period but rises to a peak at each end of one stroke [33, 61] as shown in 

Figure 2.9a; (ii) the tangential force increases steadily throughout the sliding period and 

reaches its maximum at the end of the stroke [62, 63], as illustrated in Figure 2.9b. 

  

(a) (b) 

Figure 2.9: Schematic illustration of fretting loop showing (a) a peak of tangential force 
at the end of the stroke; (b) a steadily increasing tangential force throughout the sliding 
(after [64]). 

Several explanations have been proposed to account for the non-Coulomb behaviour. 

As suggested by Fouvry et al. [33], the peak of tangential force is the result of the 

physical interactions of material build-up at the edge of the contact as demonstrated in 

Figure 2.10a termed the ploughing effect. It was suggested that the ploughing effect is 

generally observed in fretting contacts of ductile material and is caused by the material 

within the contact being pushed towards the edge of the contact due to plastic 
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deformation. The transferred material is accumulated at the edge, which creates 

difficulty for the contacting surfaces to slide against each other, unless a larger 

tangential force is exerted. The work of Dick et al. [61] supported this theory by 

constructing an FE model based on the cross-sectional profile of the contact with 

features of transferred material at the edge; the model was able to predict the significant 

increase of the tangential force at the end of the stroke. However, as Mulvihill et al. [62] 

noted later, the increasing tangential force cannot be explained by the ploughing effect; 

points of physical impingement between the contacting surfaces not only exist at the 

contact edge, but are also distributed throughout the entire contact (as illustrated in 

Figure 2.10b). These points of impingement are associated with the formation of local 

pit-peak feature caused by the wear debris modifying the contact profile, acting as the 

source of the continuous increase of the tangential force during the period of sliding. 

 

Figure 2.10: Schematic illustration of the physical interactions between the contacting 
surfaces (a) at the edge of the contact (the ploughing effect); (b) distributed over the 
contact area (after [62]). 

In either case, if a fretting contact in gross slip exhibits non-Coulomb behaviour, the 

classic definition of CoF, as the ratio of the maximum tangential force to the applied 

normal load, is no longer a representative quantity to account for the significant 
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variation of the tangential force; in fact, using the maximum value of the tangential force 

can lead to a significantly overestimated coefficient of friction. An alternative method 

known as the energy coefficient of friction (ECoF, denoted as 𝜇-) was developed by 

Fouvry et al. [33] by defining a ratio of the energy dissipated into the contact (𝐸%) to the 

product of the applied load (𝑃) and the total distance of sliding (4𝛿∗𝑁); i.e. *#
657∗8

 (see 

more details of calculating ECoF in the current study in Section 3.4.4). Please note that 

applying the ECoF on a contact with Coulomb behaviour will produce the same value 

as to the classic CoF. The ECoF was originally proposed to address the problem 

caused by the ploughing effect, but it has been widely accepted in fretting research 

whenever non-Coulomb behaviour is observed and now exists as an ASTM standard 

[65]. As reviewed by Llavori et al. [66], among a group of 96 papers associated with 

studies of fretting in gross slip (published between the year of 2009 to 2019, and the 

methods of determining the coefficient of friction were specified within), 52% used the 

classic definition of coefficient of friction, while the energy coefficient of friction was 

utilised by 35% of those papers. There are other methods to determine the coefficient 

of friction of the fretting contact, such as the mean coefficient of friction (as introduced 

by Wang et al. [67]) and the geometry independent coefficient of friction (GICoF, 

proposed by Jin et al.[64]) which seeks to eliminate the effects of any development of 

the wear scar geometry on the measured tractional forces during a fretting cycle. Llavori 

et al. noted in the same work [66] that GICoF is, by their analysis, the most accurate 

description for non-Coulomb contacts, followed by ECoF while the classic CoF is the 

worst. Considering the GICoF is a relatively new concept which might require further 

work to examine its robustness and modification to data processing scripts, ECoF will 

be used as the method to determine the coefficient of friction in this thesis for the virtue 

of its simplicity and proven robustness. 
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2.3 Evolution of wear in fretting contact 

2.3.1 Fretting stages 

The complete fretting process can be categorised into three sequential stages, namely 

the initial stage, the intermediate stage and the steady state [2]. The current section 

will briefly summarise the underlying mechanisms for each stage of fretting, with an 

emphasis on the fretting process for metallic materials. 

In broad terms, the initial stage of fretting wear is featured by adhesive damage, the 

ploughing effect and resultant material transfer; the intermediate stage is a stage where 

patches of oxide debris start to develop with the steady state being characterised by 

the presence of a compact and stable oxide bed. As can be seen later in the current 

section, the transition from the initial stage to the steady state in fretting is often 

considered as the contact mechanism changing from severe wear (featuring extensive 

metallic contact and adhesion) to mild wear (featuring the existence of the oxide film) 

as outlined by Archard and Hirst for sliding wear [26]. There are similarities in forming 

metallic particles and oxide debris for both fretting and sliding, but the debris behaviour 

within the contact, in particular the debris retention (or debris ejection) is very different. 

This is the key feature which distinguishes fretting wear from sliding wear, and requires 

the fretting process to reach a steady state so that effects test conditions on the debris 

behaviour can be compared and understood. 

The initial stage 

Before being brought into contact, surfaces of the majority of metals are covered by 

thin a oxide layer [68]. This oxidation layer separates the metallic surfaces in contact 

at the beginning of the initial stage in fretting, leading to a relatively low coefficient of 

friction (CoF). However, such oxide films are often very thin and can be easily removed 

due to the plastic deformation and the shear stresses in asperity contacts [3], exposing 
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the metallic surfaces to direct contact with each other. The direct metal-to-metal contact 

will prompt adhesion and material transfer [69] and cause significant roughening of the 

contacting surfaces and a high CoF. Godfrey and Bailey [70, 71] indicated that, in the 

initial stages of fretting wear, significant adhesive damage can be found on the surfaces 

of several materials such as steel, iron and copper. In particular, values of CoF for mild 

steel specimens were measured under a variety of loads and displacement amplitudes. 

In all cases, adhesive wear was observed during the initial stage as indicated by the 

distinctive peak in the CoF [72]. Berthier [73] performed additional measurements with 

more details in order to examine the evolution of CoF with the test duration. Overall, 

the initial stage can be marked as a transition from the interactions of the thin film of 

oxide on surfaces to direct metallic contact and eventually to the intermediate stage. 

The intermediate stage 

In the intermediate stage of fretting wear, the generation of oxide debris becomes 

significant, and patches of oxide debris begin to develop, although the mechanism of 

oxide formation is less generally agreed upon in the literature. The tribo-chemical 

nature of the fretting process has been widely recognised, indicating that both 

mechanical and chemical factors are playing significant roles in the formation of oxide 

debris in fretting [12, 72, 74]. However, arguments revolve around whether metallic 

surfaces are oxidised with the oxide being subsequently removed from the contacting 

surfaces [12, 38, 39, 74] or vice versa (i.e. oxide debris is formed from metallic wear 

particles which were oxidised after being removed from the surface) [70, 71, 75-78]. 

Uhlig [12] proposed that the generation of oxide debris initiates from the metallic 

particles (generated during the initial stage resulting from the effects of adhesion and 

ploughing) and the deformed asperities moving across the contacting surfaces due to 

the fretting motion. This action produces tracks of exposed metallic surfaces which are 

immediately oxidised and then scrapped off from these tracks by the next passing 
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asperity (termed oxidation-scrape-oxidation), completing a cyclic process of material 

detachment and oxidation. The detached particles are converted into fine oxide debris 

by the abrasive motion of particles against both themselves and the contacting surfaces 

[12]. In contrast, the measurement of electrical contact resistance during fretting tests 

by Pendlebury [78] indicates that the occurrence of direct metal-to-metal contact is 

persistent despite the generation and accumulation of oxide debris within the contact. 

This observation suggests that it is adhesion that encourages wear to continue and 

thereby the detachment of metallic particles needs to occur before oxidation. Another 

source of debris formation is considered to be associated with the tribologically 

transformed structure (TTS), which will be described in Section 2.3.2. 

With the formation of oxide debris resulting from the tribo-chemical process in fretting, 

patches of debris can be created, which may prevent direct metallic contact for some 

localised areas on fretting surfaces, and hence reduce the overall severity of adhesive 

wear as seen in the initial stage. Although the reduction of adhesive wear typically 

reduces the extent of direct metal-to-metal contact and hence leads to a lower CoF, 

the change of CoF during the intermediate stage could be unstable as patches of oxide 

debris can experience a continual cycle of breakdown and reforming. Similar to sliding 

wear, the drive of such cycles of behaviour is the competition between exposure of 

fresh metal and the process of oxidation. There is, however, an additional factor that 

needs to be included when considering fretting, namely the physical debris ejection 

from the contact. It should be noted that in this thesis, the former two processes, i.e. 

exposure of fresh material and oxidation are combined and together termed debris 

formation. 

The steady state 

The initial stage and the intermediate stage in fretting focus on the formation of debris 

and can be considered in the same way as a contact in sliding wear changes its 
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mechanism from severe wear to mild wear. However, as the competing effects of debris 

formation and ejection tend towards a balance, more patches of debris can be 

preserved and they emerge into a compact bed of debris, which marks the fretting 

process as entering the steady state. In the steady state, the rate of both the processes 

of debris formation and debris ejection converge [37], so that the thickness of oxide 

debris layer can be maintained [73, 77]. The CoF is stable and typically lower than in 

the previous stages. The steady state can be reached quickly within a few tens of 

thousands of cycles in fretting [28, 50, 79], although the specific duration required for 

achieving steady state varies with different materials under different test conditions. For 

example, in Pearson’s thesis where same material (see Section 3.1) was employed as 

the current study for fretting research, the steady state was identified from experimental 

results as a period with stable CoF; it was found that the steady state can be reached 

approximately from 1´103 cycles to 2.5´104 cycles, depending on test conditions (a 

higher applied load was associated with a shorter period before the steady state was 

reached) [79]. 

It is the nature of fretting that majority of the contacting surfaces stays covered, 

resulting in the ejection of oxide debris being a crucial factor in the fretting process [73]. 

To understand the effects of different parameters in fretting is to investigate their 

influences on the debris behaviour, for which the steady state is the absolute focus for 

the majority of fretting research. The debris layer in a fretting contact is termed the third 

body as proposed by Godet [19], and the relevant framework to emphasise the effects 

of the third body in fretting is referred as the third body theory or the third body approach. 

This framework is significantly opposed to the classical theories of wear, which are 

based on the interactions of surface asperities. Classical wear mechanisms (such as 

adhesion, abrasion and fatigue) are considered only as methods for detaching particles 

from the contacting surfaces, not as the complete processes of wear in fretting. 

According to Godet et al. [19, 80], the fretting contact is defined as two contacting 
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surfaces (first bodies) separated by an interposed layer of oxide debris (third body). It 

is indicated by the third body approach that the progression of wear requires particles 

to be removed from the first-bodies and subsequently expelled from the fretting contact 

[80]; therefore the ability of contact to transport oxide debris out of the contact may 

indeed govern the fretting process [73]. The role of the third body will be discussed in 

detail in Section 2.3.4. 

2.3.2 Tribologically transformed structure in fretting 

An extended framework was first proposed by Zhang et al. [81] to describe the complex 

sub-surface damage commonly observed on contacting bodies after fretting, with 

research by Nurmi et al. [82] presenting perhaps the most comprehensive study of the 

subject. It has been widely agreed upon that the description of the surface/sub-surface 

damage structure following fretting can be characterised by three layers with distinctive 

microstructural features, which are illustrated in Figure 2.11 as presented by Sauger et 

al. [83, 84]. As shown in Figure 2.11: (i) the top layer is composed of compactly 

distributed oxide debris; (ii) the middle layer is a region of sub-surface material 

experiencing severe deformation so that the grains are heavily modified, in particular 

the orientation and size of grains and is generally termed the tribologically transformed 

structure (TTS) [83-85]; (iii) the bottom layer is a region of plastically deformed bulk 

material. 

 

Figure 2.11: Schematic diagram showing the cross-sectional distribution of different 
layers of surface and sub-surface material for a fretting wear scar; each layer is 
characterised by its type of damage [83]. 
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It was reported that the chemical composition of the TTS exhibits no significant 

difference from that of the substrate material [83, 84], although there were some other 

studies showing an elevated oxygen concentration in the TTS [86]. Another commonly 

observed characteristic is that the TTS tends have a highly refined microstructure (with 

grains of the order of tens of nanometres in size), causing the TTS to have significantly 

increased hardness relative to the bulk material (typically two to three times higher) [83, 

84, 87-89]. A critical observation is that the formation of the TTS tends to be associated 

with cases where the rate of the transport of oxygen into the contact is insufficient to 

support debris formation [89-91]. In those situations, the observed amount of wear is 

greatly reduced, although the presence of the TTS generally indicates that significant 

damage has already occurred within the contact. 

With the aid of the concept of the TTS, the mechanisms of forming debris can be 

described as shown in Figure 2.12 [85] by the following steps. First, the high degree of 

plastic deformation induces strain hardening of the sub-surface material, resulting in 

the fast development of the TTS within a short period. As damage proceeds, the TTS 

can no longer accommodate further plasticity and begins to fragment due to its brittle 

nature, hence forming metallic wear particles. Under the fretting motion, these metallic 

particles fracture even further and are oxidised. As a result, oxide debris will 

accumulate within the fretting contact after a relatively long test duration by consuming 

the initially formed TTS. However, it is still not clear that whether the formation and 

degradation of the TTS only occurs at the early stages of a fretting process to initiate 

the debris formation, or it is indeed periodic phenomenon throughout the fretting 

process acting as a continuous source to form oxide debris. The former view is broadly 

in favour and is supported by the concept of energy threshold (will be described in the 

following section, Section 2.3.3), whilst evidence exists to support the latter view; for 

example, a recent study shows that features of the sub-surface damage observed after 

100 cycles can still be found after 3 million cycles [92]. 
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Figure 2.12: Illustration of the formation and the subsequent evolution of oxide debris 
where the tribologically transformed structure (TTS) is considered as the source of the 
third body [85]. 

2.3.3 Threshold of the dissipated energy in fretting 

The concept that there may exist a threshold of dissipated energy has not been widely 

recognised [24]. As suggested by Fouvry et al. [17, 31], it is useful to describe the 

amount of wear (in terms of the net wear volume, 𝑉! ) as a linear function of the 

exposure to wear (in terms of the dissipated energy, 𝐸%), hence the entire evolution of 

wear can be characterised by a single parameter, namely the energy wear rate, 𝑘- (see 

the description of wear rate in Section 2.1.2). Such a derivation of wear rate generally 

assumes a direct proportionality between the wear volume and the dissipated energy, 

i.e. the evolution of wear follows the relationship as shown in Figure 2.2a. This 

assumption has been doubted by some recent work that indicates that an energy 

threshold (𝐸23 ) can be found in some particular cases, below which no wear was 

observed even though damage is being accumulated [83, 93], indicating that the 

evolution of wear in fretting should have an incubation period before the steady state 
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as illustrated in Figure 2.2c. The value of 𝐸23 was estimated to be ~13 J for fretting tests 

conducted with steel–alumina specimen pairs; whereas for TiN–alumina specimen 

pairs, the value of 𝐸23 is ~2.3 J [17]. In both cases, the value of the energy threshold is 

relatively small, which is believed to be associated with the point contact produced by 

the sphere-on-flat contact configuration. Similar wear behaviour was observed by 

Ramalho et al. [93] where steel balls were fretted against coated and uncoated flat steel 

specimens (again, generating a point contact) under conditions of normal laboratory 

atmosphere and in vacuum; an energy threshold can be observed in all cases, with 

values ranging from ~1.0 J to ~3.75 J. It was proposed that the development of the TTS 

and the subsequent formation of wear debris need certain amount of energy to be 

dissipated in to the contact for recrystallising the microstructure of surfaces; such 

requirement of the energy input is believed to be associated with the presence of 

energy threshold [83]. 

Similarly, fretting tests with cylinder-on-flat configurations have been conducted to 

investigate the energy threshold by Heredia and Fouvry [94]. In this work, Ti6Al4V 

specimens were employed and an energy threshold of ~4 kJ was reported, above which 

the wear volume was, again, described as a linear function of the energy dissipated. 

The work by Pearson [24] was in accord with the work by Fouvry et al. [17] that, in 

addition to a single energy-based wear rate, the fretting wear behaviour should also be 

characterised by the threshold energy; an energy threshold of ~1.1 kJ was reported, 

which was calculated from the experimental results conducted on the same material 

used in this thesis. Note that the energy threshold is influenced by the contact 

configuration; the energy thresholds for tests with cylinder-on-flat configuration are 

significantly higher than the tens of Joules typically reported for sphere-on-flat 

configuration. 
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2.3.4 The critical role of the third body in fretting 

The debris formed in fretting of steel specimens under normal atmospheric conditions 

is comprised primarily of iron oxide 𝛼-Fe2O3 with a hematite structure, and relatively 

small amounts of metallic iron [72, 75, 89]. Similarly, other metallic alloys in fretting tend 

to produce wear debris in the form of their oxide if oxidation is allowed to occur. Despite 

the oxide debris being commonly perceived as fine particles, the reported size of oxide 

debris can cover a wide range from 0.01 µm up to tens of microns [3, 63, 66, 72]. As 

proposed by Kirk et al. [89], oxide debris is originally small but can agglomerate into 

debris particles with larger size through the effect of tribo-sintering. 

Up to this point in the current section (Section 2.3), the description of the evolution of 

wear in fretting focuses on the formation of oxide debris. However, the crucial difference 

between fretting wear and sliding wear, namely the transport of species (i.e. the wear 

debris and oxygen) cannot be ignored; in particular, the debris retention in the contact 

or the debris ejection from the contact is a key issue (this concept has already been 

mentioned a number of times in this thesis, and will be reappearing repeatedly 

throughout). Whilst the process of debris ejection was well acknowledged in fretting 

research [2, 3, 76], it was not until the paper of Godet “The third-body approach: a 

mechanical view of wear” [19] that a coherent framework was presented to clearly 

outline its key role, namely the third body approach. This concept was further 

developed and refined by Godet and co-workers [19, 73, 77, 80, 95], and has become 

perhaps the most important framework when analysing fretting wear behaviour. It was 

proposed that a complete definition of a fretting contact should be that of two contacting 

bodies undergoing fretting motion (first bodies) separated by a debris layer (third body). 

Note that the third body can either be natural (i.e. wear debris formed during the 

process) or artificial (e.g. lubricants or external particles deliberately supplied to the 

contact). In this thesis, fretting behaviour is investigated only for dry contacts hence 
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only the natural third body will be considered; the term third body, by definition, is 

equivalent to wear debris for all the following contents. 

It was suggested that wear can be analysed through the understanding of the flow of 

the wear debris during the process, for which Godet applied principles of lubrication 

theory to the third bodies to analyse their role in the evolution of wear in fretting [19]. 

He proposed that the presence of the debris layer can change wear behaviour 

completely: it acts as a film of solid lubricant to separate the contacting bodies (i.e. the 

first bodies), carries the load and accommodates velocity differences between the first 

bodies. Indeed, evidence that oxide debris can provide protection against wear in a 

contact may be found long before the introduction of the third body approach; in the 

work by Halliday and Hirst [72], it was observed that the high CoF at the early stage of 

fretting can be restored by continuously removing the wear debris out of the contact. 

Following on from the third body approach by Godet [19], the role of velocity 

accommodation provided by the third bodies was later examined by Colombie et al. 

and Berthier et al. [73, 77]. They suggested that if a debris layer with sufficient thickness 

can be maintained, then shearing and sliding induced by the fretting motion will be 

mostly accommodated by the debris layer resulting in reduced deformation in the first 

bodies. The experimental work by Colombie et al. [77] was carried out by: (i) 

deliberately removal of oxide debris from the contact; (ii) supply of artificial oxide debris 

into the contact. The observation was similar to that reported in the work by Halliday 

and Hirst [72] that the presence of debris layer can provide protection and limit (or even 

prevent) further surface degradation for the first bodies by forming a compact and 

stable bed of debris at the interface so that direct metallic contact can be prevented. 

As a result, in order for fretting wear to proceed, the removal of surface particles are 

required to form oxide debris and then, most importantly, to be transported out of the 

contact [80]. As Godet noted after introducing the third body approach [80], the classical 

definition of wear as the detachment of particles is only part of the wear process. This 
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view is supported by Berthier et al. [73, 96] who argued that the evolution of wear in 

fretting is controlled by both the formation and ejection of debris, rather than only by 

material removal from the first bodies. With the third body approach, it was argued that 

a complete description of wear in fretting process should not only include debris 

formation (as the traditional definition of wear derived from Archard’s work [16]), but 

also the role of debris in modifying the contact and the flow of debris ejection out of the 

contact. To quote Fillot et al. [37]:  

“…Archard’s law… primarily focuses on the process of particle detachment. Its 

goal is only to measure the matter removed from the rubbing surfaces, without 

taking into account the way this matter protects the materials in contact from 

further degradation by accommodating the sliding velocity. This is why, when 

introducing the concept of the third body to understand wear, the latter is 

redefined as the ejection of the third body outside the contact”. 

The complete description of the fretting wear was further developed by Berthier [96] 

with the concept of tribology circuit being proposed (as illustrated in Figure 2.13). Here, 

the wear process in fretting is considered as a pipeline with debris flowing from a 

“source” to a “sink”: the process starts with particle detachment from the first bodies 

and continues with the formation of oxide debris (the “source”); finally, depending upon 

the accumulation within the contact and other variables that may influence the contact 

conditions, debris is ejected from the contact at a certain rate (the “sink”). Berthier et al. 

[73] suggested that fretting wear is primarily influenced by the ability of debris to escape 

from the contact, and thereby should be understood as a “sink” rather than a ”source” 

problem; i.e. the amount of wear in fretting should be defined as the amount of material 

being transported out of the contact. 
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Figure 2.13: Berthier’s illustration of the tribology circuit (after [96]). 

A key aim of much research in fretting wear is the derivation of a single parameter 

linking the various variables which describe the exposure to wear and the amount of 

wear that results, namely the wear rate. Many parameters can influence the rate of the 

evolution of fretting wear by exerting controls over the competition between the 

formation and ejection of the oxide debris. Although not explicitly stated, the rates of 

debris formation and ejection from the contact must be equal in the steady state [37]. 

If the fretting wear is a “sink” problem as suggested by Berthier et al. [73], i.e. the flow 

of debris out of the contact can determine the observed wear rate, then the effects of 

various tribological system parameters on the wear rate for fretting needs to understood 

from the perspective of their effects on the rate of debris ejection. Indeed, with the 

framework laid out for the concept of the third body approach, a number of recent 

papers from the University of Nottingham [20, 23, 24, 97] have examined the effects of 

various parameters, such as displacement amplitude, temperature, contact geometry 

and oscillation frequency; irrespective of their focus, the conclusions of these studies 

converge on a discussion of how the tribological system parameters influence the 

formation and ejection of debris, and how a change in debris retention or ejection can 

alter the wear behaviour and therefore the wear rate. Perhaps, amongst all other 

parameters, the rate of debris expulsion is most sensitive to the size of the contact [98] 

since this “represents the distance the third body particles must travel [before ejection 
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from the contact]” [99]. Discussing the effect of the contact size on the debris ejection 

will be one of the primarily goals for this thesis. 

2.4 The role of contact geometry in fretting 

2.4.1 Common contact geometries in fretting 

In nearly all of the fretting research, simplified geometries are commonly used to 

investigate the wear behaviour of more geometrically complex components. Those 

simplified contacts can be categorised into two primary categories, namely the 

conforming contact and non-conforming contact. Figure 2.14 illustrates some examples 

of commonly used contacts in fretting research. Conforming contact configurations (e.g. 

the flat-on-flat contact) were heavily used in early research into fretting since they 

represent many contacts experiencing fretting wear. However, it is difficult to align 

conforming surfaces when conducting experiments; moreover, the location of the 

initiation of wear within the conforming contact (presumably the wear starts at the 

location where the local pressure is at the maximum) seems to be random, which raises 

difficulties of predicting (and therefore, controlling) the experimental process [69]. Non-

conforming contact configurations, typically cylinder-on-flat (CF), sphere-on-flat (SF) 

and crossed-cylinders (CC), also replicate contact types seen in many service 

conditions. However, in contrast to the conforming contacts, the issue associated with 

alignment can be greatly reduced when non-conforming contacts are adopted. 

Moreover, the conditions of non-conforming contacts can be theoretically analysed 

when experiencing elastic loading. As discussed in Section 2.2.1, the contact pressure 

at the centre of the contact area (the elastic contact area for the CF contact is a 

rectangle and a circle for the SF contact) is at the maximum but falls to zero at the 

edges, which enables the location where wear initiates to be more predictable. It should 

be noted that, whilst the contact size is constant as the tests evolve when a conforming 

contact configuration is employed (since that the displacements between the two 
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bodies in a fretting contact are generally very much smaller than the size of the contact), 

this is not the case for non-conforming geometries. For non-conforming geometries, 

the contact size increases continuously as wear proceeds (as long as debris can be 

transported out of the contact), which changes the scale and the distribution of the 

contact pressure [69]. 

 

Figure 2.14: Examples of different contact configurations used in common fretting wear 
research and their corresponding resulting contact type (after [100]). 

2.4.2 Changing views about the role of contact geometry in fretting 

It is generally assumed that contact geometry does not directly influence the wear 

behaviour, and relatively little work has investigated its effects. The importance of the 

contact conformity has been overlooked for decades because of the concept of true 

contact area proposed by Archard, based upon which, Greenwood and Williamson [101] 

developed a model stating that the true area of contact that will be linearly proportional 

to the applied load. For example, the size of each micro-contact extends with the 

increase of the normal load but more asperities are brought into contact leading to the 

increment of the number of micro-contacts, thus the mean size of each micro-contact 

remains the same and the true contact area increases linearly. On the other hand, if 

the applied load is kept as constant, changing the contact size can alter the size and 

the number of micro-contacts inversely, resulting the true contact area being constant. 

According to the model developed by Greenwood and Williamson [101], a change of 

conformity would not affect the true contact area, and the wear only occurs over the 
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true contact area; therefore the fretting wear behaviour (normally characterised by the 

wear volume and wear rate) should be independent upon the contact conformity similar 

to sliding wear. A contact with large area should lead to a wide but shallow wear scar, 

whilst a narrow and deep wear scar will result from a contact with small area, but both 

should have the same wear volume, and therefore the same wear rate. This 

relationship is expected to be true for both conforming and non-conforming contacts, 

i.e. regardless of whether the contact size expands throughout the wear process or not, 

the wear behaviour is expected to be independent of the contact size. This theory has 

been applied in fretting research, and is attractive in that it allows direct comparison of 

the wear behaviour between the experimental results acquired from the simplified 

geometries to those contacts in service with more complex geometries, as well as 

between tests with different geometries. 

However, the significance of debris behaviour (i.e. the debris formation and the debris 

ejection) in fretting is very different from that in sliding wear and plays a critical role 

(discussed in Section 2.3.4). As a result, the assumption that the evolution of wear in 

fretting is independent of the contact geometry should be doubted, since the contact 

geometry intrinsically influences the size of the contact area (the apparent contact area) 

and thereby changes the debris formation and ejection in fretting. For example, 

Waterhouse suggested that fretting contacts can be divided into two categories 

depending on the behaviour of oxide debris [3, 69]: a surface with shallow dish-like 

depressions is formed if debris is able to escape from the contact, whilst entrapment of 

debris leads to small but deep holes. It was found by Kuno and Waterhouse [102] that 

even the direction of the fretting motion may influence the debris ejection: they 

conducted fretting test for crossed-cylinders contact configuration with the oscillatory 

motion being applied on the moving upper specimen in two directions, namely the 

applied motion perpendicular to the axis of the stationary lower specimen (Figure 

2.15a), and the applied motion parallel to the axis of the stationary lower specimen 
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(Figure 2.15b). The results indicated that the wear in case (a) is significantly more than 

in case (b), with the difference in the severity of wear by changing the direction of the 

applied motion only being caused by the ease of oxide debris ejection from the contact, 

with the debris being seen to protect the contact from the further damage if retained 

inside the contact. Research work by Iordanoff et al. [103] utilised a rheology law to 

model the debris behaviour in fretting contacts. It was suggested that the shape of the 

contact will influence the debris ejection, with this being more significant in the direction 

of the fretting motion as opposed to perpendicular to it. 

  

(a) (b) 

Figure 2.15: Illustration of the fretting test conducted for crossed-cylinder contact 
configuration with the oscillatory motion being applied in two different directions: (a) the 
motion is perpendicular to the axis of the stationary lower specimen; (b) the motion is 
perpendicular to the axis of the stationary lower specimen [102]. 

When a non-conforming contact geometry is employed in fretting research, the contact 

size increases continuously as the exposure to wear develops, which in turn is perhaps 

expected to influence the balance between debris formation and ejection. Therefore, to 

discuss the role of contact geometry in fretting, in particular for non-conforming contacts, 

is broadly equivalent to examining the effect of contact size. Indeed, recent work which 

investigated the effect of contact geometry (and therefore the contact size) examined 

two aspects of the effect of the contact size, namely its effect on the oxygen supply 

associated with the debris formation and its effect on the debris ejection. 
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2.4.3 The effect of contact size on oxygen supply 

Perhaps the first attempt to address the effect of contact size in fretting was conducted 

by Merhej and Fouvry [36] and Fouvry et al. [18]. It was found that, as the increase of 

the conformity of the contact area, i.e. as the radius of the cylindrical (or spherical) 

specimen, the normalised unified energy wear coefficient (𝛼9XXXX), which is essentially the 

observed wear rate, is reduced. Note that a new term called the normalised unified 

energy wear coefficient was introduced in this work, but its core concept is still the 

Archard-type approach and thus is indeed a normalised wear rate. In another words, 

with the same level of the exposure to wear, the observed wear volume is reduced with 

the increase of the contact size. This is completely contradictory to the concept of the 

true contact area proposed by Archard [25] and its following expansion by Greenwood 

and Williamson [101], since it suggests that the macroscopic size of the contact area 

is a controlling factor in fretting. Moreover, in this early research by Fouvry et al. [18], 

a threshold contact size was proposed as demonstrated in Figure 2.16. It was 

suggested that the wear rate is influenced by the contact size initially but then becomes 

independent of it upon it after reaching a threshold value. However, there remains a 

lack of clarity around whether this threshold contact size truly exists or whether it is an 

unnecessary term which was introduced to interpret the experimental results. Overall, 

the concept of threshold contact size is rarely discussed in later works since Fouvry et 

al. [18]. 
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Figure 2.16: Demonstration of the concept of the threshold contact size in examining the 
effect of contact size upon observed wear rate for cylinder-on-flat contact configuration 
[18]. 

Similar observations of reduced wear rate with an increase of contact conformity were 

reported by Warmuth et al. [20, 23]. A more significant observation was that there is a 

change of fretting wear mechanism from abrasive wear to adhesive wear and metal 

transfer with pit and peaks across the contacting surfaces as the contact size increased. 

The formation of oxide debris in fretting process requires a continuous supply of oxygen, 

and depletion of oxygen can occur if the rate of oxygen transport into the interface is 

not sufficient to replenish the consumption of oxygen during the fretting process [104, 

105]. The contact conformity changes the contact size and thereby influences the 

distance over which that oxygen must be transported into contact from the environment. 

It was therefore argued that, as the fretting contact became more conforming, the larger 

contact size limits the oxygen ability to penetrate across the whole contacts, resulting 

a higher tendency of more conforming contacts to form a direct metallic contact, the 

consequence of which is adhesive wear and metal transfer [20, 23]. Such damage does 

often results in low wear volumes (debris not escaping from the contact) which 

therefore causes the reduction in the observed wear rate. However, the relative low 

rate of wear for more-conforming contact does not indicate the low level of damage to 
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the materials in contact, as proposed Warmuth et al. [23], the pit-peak features caused 

by the adhesive wear may be significant in terms of the tendency for fretting fatigue. 

The argument that a larger contact size can limit the transport of oxygen into the 

concept has been further developed more recently. Fouvry et al. [90] and Baydoun et 

al. [106] developed a model to explain the phenomena of the presence of the oxygen-

starved areas at the centre of fretting contacts (termed the adhesive zones) under 

certain conditions; such oxygen-starved areas were also previously observed by 

Warmuth et al. [20, 23] and Fouvry and Merhej [107]. In these adhesive zones, the 

absence of oxide debris was suggested, again, to be associated with the limited ability 

of oxygen transport caused by oxygen being consumed in the outer regions of the scar, 

and thereby the insufficiency of oxygen in the centre of the to support oxide debris 

formation. In some latter works [91, 106], fretting tests were carried out with conforming 

contact (flat-on-flat contact configurations): grooves were machined on one of the 

contacting surfaces paralleling to the direction of fretting motion in order to facilitate the 

oxygen transport into the contact, and it was shown the adhesive wear zones caused 

by the oxygen starvation can be significantly reduced with the presence of grooves. 

2.4.4 The effect of contact size on debris ejection 

In addition to the effect of contact size on limiting the transport of oxygen into the 

contact (and therefore the debris formation), its effect on the transport of debris out of 

the contact is also significant. As discussed in Section 2.3.4, a complete description of 

the fretting wear process should include debris formation, the role of debris in modifying 

the contact and debris ejection from the contact. Research since the work by Godet 

[19] has generally acknowledged the importance of the debris behaviour in fretting (in 

particular the debris ejection) [73, 77, 80, 96]. It has been recognised that the rate of 

debris ejection from the contact is dependent upon the contact size [98] since the 

contact size is the distance for wear debris to travel before being ejected out of the 
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contact [99]; however, the issue is generally addressed qualitatively rather than 

quantitatively. Relatively few investigations have been conducted to specifically 

examine the effect of contact size from the perspective of the debris transport out of 

the contact. In those recent works as discussed above [18, 20, 23, 34, 36, 90, 107], 

although the reduction of the observed wear rate was also interpreted as debris being 

easily entrapped inside the contact, the focus of the arguments is still the oxygen supply 

in to the contact to form the debris. Moreover, a quantitative analysis of the wear rate 

being influenced by the difference in debris ejection resulting from the contact size of 

fretting remains unexamined. 

2.5 The role of slip amplitude in fretting 

As discussed in Section 2.1.1, fretting wear was conventionally defined as the 

reciprocating sliding wear with small amplitude of displacement. After the widely 

recognised work by Vingsbo and Söderberg [4] (shown Figure 2.1), it appears that the 

most common practice to distinguish fretting wear and reciprocating sliding wear from 

each other is using displacement amplitude as the criteria. Moreover, with the 

development of the concept of the fretting map as described in Section 2.2.2, different 

combinations of normal load and displacement amplitude can strongly influence the 

fretting regimes and the corresponding damage mechanisms; when the normal load is 

fixed, the increase of the displacement amplitude can increase the extent of slip across 

the contacting surfaces, leading to a transition from a partial stick regime to gross slip 

regime. The displacement amplitude and its role in fretting is, therefore, intrinsically 

rooted into the core of fretting research. Indeed, many studies have shown that the 

mechanisms (in terms of the debris formation and ejection), and hence the rate, of 

fretting wear can be strongly influenced by the displacement amplitude. It should be 

noted, as outlined in Section 2.2.3, that the amplitude of the applied far-field 

displacement (Δ) is different from the actual slip (𝛿) due to the existence of system 
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compliance [24]. Failing to distinguish between these two terms may lead to a 

misinterpretation of experimental results. In reality, the actual slip amplitude (𝛿∗) is the 

item of interest when researchers discuss the role of displacement amplitude (Δ∗). 

However, the concepts of the displacement amplitude and the slip amplitude are 

sometimes somewhat confused in the literature. This issue, coupled with the wide 

range of test configurations and combinations of different materials, is perhaps one of 

the reasons why there is still uncertainty around the effects of slip amplitude in fretting, 

despite slip amplitude being one of the most fundamental elements in fretting wear, 

which consequently has been studied for a very long time. 

In broad terms, slip amplitude, in a similar way to the contact geometry described in 

Section 2.4.3 and Section 2.4.4, can exert influence on fretting process by influencing 

debris formation and debris ejection. The influence of slip amplitude on debris formation, 

although being less commonly discussed in the literature, is through the change of 

oxygen supply as well as the local temperature caused by the change in rate of energy 

being dissipated into the contact (i.e. the dissipated power) as the slip amplitude 

changes. In addition, the slip amplitude changes the ability of debris to escape from the 

contact, which can disrupt the formation of protective layer of debris and hence 

influence the rate of wear process. 

2.5.1 The effect of slip amplitude on debris formation 

In fretting, the closed nature of contact means that there is a significant portion of the 

contact remains unexposed during the fretting cycle since the amplitude of the motion 

is much smaller than the contact size. As proposed by Fouvry et al. [108], a larger slip 

amplitude can open the contact to the environment and thus reduces the portion of the 

unexposed area, thereby increasing the transport rate of oxygen into the contact (as 

illustrated in Figure 2.17), which encourages the oxidative mechanism and therefore 

enhances the formation of oxide debris. 
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Figure 2.17: Schematic diagram illustrating the portion of the unexposed surface in 
fretting being reduced as the increase of slip amplitude (after [108]). 

However, research by Warmuth et al. [20] demonstrated that perhaps the elevated 

debris formation caused by the larger slip amplitude is not that straightforward. This 

investigation [20], although being set up primarily for the study of the effect of contact 

geometry, included slip amplitude as an additional extra variable. As described in 

Section 2.4.3, the more-conforming contact (with a larger radius of the cylinder 

specimen, which hence generates contacts with larger size) may restrict the oxygen 

supply, leading to a higher tendency for direct metallic contact between the two bodies 

to occur, resulting in pit-peak features and significant sub-surface damage. However, 

it was also observed that whether the more-conforming (larger) contacts will develop 

such features is dependent upon the slip amplitude: for the more-conforming contact, 

larger slip amplitudes are associated with adhesive damage across the contacting 

surfaces (and the corresponding sub-surface microstructural damage) while the same 

contact under smaller slip amplitude exhibits the formation of coherent oxide-based 

debris beds. This observation indicates that, in contrast to the work by Fouvry et al. 

[108], the increase of the slip amplitude may act to limit the transport of oxygen and 

hence facilitate the adhesive mechanism. Or, it might also be explained by the theory 

that the formation of debris bed is restricted when the rate of debris ejection from the 

contact is high due to the increased slip amplitude, which will be explored in the next 

section. 
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These opposite observations associated with the increase of slip amplitude may be 

explained by the fact that the larger slip amplitude can lead to a larger dissipated power 

(dissipated energy per unit time, as indicated by Equation 2.9 based on Equation 2.2): 

𝑑𝐸%
𝑑𝑡 = 4�̅�𝛿∗𝑃𝑓(, (2.9) 

this higher power dissipation results in a rise in local temperature and hence the 

depletion rate of oxygen within the contact is enhanced. As a result, such an increase 

of oxygen consumption rate is competing against the rate of oxygen transport being 

brought increased by the more open contact, causing the wear mechanism to exhibit 

different results under certain test conditions. In the work by Baydoun et al. [91], a 

concept termed the adhesive zone was introduced, which is a central area of a fretting 

contact which is damaged mainly by adhesion and is surrounded by an area where the 

presence of oxide debris is prominent. It was found that the size of adhesive zone is 

independent upon the slip amplitude, suggesting that perhaps two competing factors 

could be balanced out, the result of which is that the change of overall wear behaviour 

may seem to be independent of the slip amplitude. 

2.5.2 The effect of slip amplitude on debris ejection 

The effect of slip amplitude on debris ejection is more well-understood compared to its 

impact on debris formation. As described in the work of Heredia and Fouvry [94], there 

is a threshold of slip amplitude, below which the wear process seems to cease to occur; 

it was postulated that a sufficient slip amplitude is required to initiate the wear process 

in fretting, allowing debris to be ejected from the contact, thereby promoting continuous 

wear. Fouvry et al. [33] also proposed that the larger slip amplitude can enhance the 

rate of debris ejection; they argued that, when a larger slip amplitude is employed, 

debris can be ejected faster and a greater portion of dissipated energy within the 

contact can thus contribute to the debris formation. Please note that this argument is 
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based on the assumption that the rate of forming new debris is dependent on the 

ejection of existing debris. A similar view was proposed by Aldham et al. [109] and 

Warburton [110] who suggested that larger slip amplitude tends to create a rougher 

contacting surface and give wear particles a higher velocity, and hence the oxide debris 

can be transported more efficiently out of the site of generation. 

As observed by Fouvry et al. [108], the shape of the wear scar can also be influenced 

by the slip amplitude. It was found that there seems to exist a transition from W-shaped 

wear scar (the maximum wear occurs near the edge of the scar while the centre 

experiences less wear) to U-shaped (the wear is at its maximum at the centre of scar 

and reduces monotonically towards the edge) with the increase of slip amplitude. The 

nature of the material at the centre of a W-shaped scar has been the subject of debate: 

it could be either a build-up of oxide debris at the centre of a U-shaped metal surface 

[18, 108], or it could be a metallic central region dominated by adhesive damage 

surrounded by a more worn region associated with the formation of oxide debris [90, 

91, 111]. Whilst the nature of W-shaped wear scars is not clear (and indeed may differ 

in different situations), the occurrence of a U-shaped scar is normally associated the 

higher rate of debris ejection. The sufficient oxygen supply is also important in 

determining the type of scar; it was observed by Mi et al.[112] that, under the same set 

of test conditions except whether the test was conducted in air or in water, the contact 

producing a W-shaped wear scar in air would instead generate a U-shaped scar in 

water. It was proposed that the water accelerated the process of debris ejection and 

washed out those debris which would otherwise have been retained inside the contact 

and produced a W-shaped scar. It should be noted that this observation is not 

necessarily strong evidence that a W-shaped wear scar is formed mainly by debris; 

there is possibility that, at the central region where debris is difficult to escape, the rate 

of debris formation also ceases, leading to the wear process being almost stopped and 

the substance at this region is still metal. Moreover, fretting in a water environment is 



Literature review 

 55 

also likely to reduce the rate of oxygen transport into the scar to form oxide debris. 

Nevertheless, the observation by Mi et al. [112] appears to support the increased rate 

of debris ejection associated with the increase of slip amplitude and hence the transition 

from W-shaped and U-shaped can be observed. 

One of the consequences of an increased rate of debris ejection is that the formation 

of protective debris beds is reduced. It has been found that contacts with larger slip 

amplitude exhibit a significantly higher degree adhesive damage than those with 

smaller slip amplitudes [27, 109, 110]. Another piece of evidence was outlined in the 

work by Hayes and Shipway [97]: in this work, the role of temperature in forming stable 

debris beds (i.e. glaze layers where the wear rate drops to almost zero) in fretting was 

investigated. It was found that the temperature at which glaze layer was formed was 

elevated by the increase of slip amplitude; they proposed that the larger slip amplitude 

resulted in a higher rate of debris expulsion, thus reducing the residence time of the 

debris in the contact and thus limiting the tendency of the debris to sinter into a coherent 

debris bed. This view about the disruptive effect of debris ejection on formation of a 

protective debris may be used to explain the observation by Warmuth et al. [20] as 

described in the previous section (Section 2.5.1): here it was postulated that the 

increase of slip amplitude (and thus the increase in dissipated power in the way that 

they had conducted their tests) meant that the oxygen could be transported into the 

contact fast enough, but it is now suggested that the observed effects may be 

associated with an enhanced rate of debris ejection. The issue about the effect (and 

their causes) of slip amplitude on fretting remains unresolved with an understanding 

that the nature of this problem is very complex. 

2.5.3 The effect of slip amplitude on wear rate 

As emphasised a number of times in the current chapter, the final observed wear rate 

should be viewed as the result of both the rate of formation and ejection of oxide debris. 
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The complex nature of the effects of slip amplitude suggests that it is difficult to address 

the issue individually in terms of debris formation and ejection; perhaps viewing its 

influence on the combined result of the rate of debris formation and ejection, i.e. the 

observed wear rate, is more fruitful. Despite the fact that there is a significant variation 

in reports of how the wear rate is dependent upon the slip amplitude, the general 

observation is that, before reaching to the reciprocating sliding wear in which the wear 

rate is independent upon the amplitude of relative motion [16], the wear rate increases 

with slip amplitude (as demonstrated in Figure 2.1) [4, 18, 27, 33, 72, 81, 91, 108, 111, 

113]. The effect of slip amplitude is strong: Vingsbo and Söderberg’s [4] widely 

reproduced figure indicates an increase in wear rate of around two orders of magnitude 

as the slip amplitude is increased by a factor of around twenty (from ~15 µm to ~3000 

µm). It has been widely recognised that the higher slip amplitude can promote the 

transport of debris out of the contact, and hence restricts the formation of protective 

beds of oxide debris and allows the wear process to proceed at a higher rate) [4, 18, 

27, 33, 72, 81, 91, 108, 111, 113]. It has been widely recognised that the higher slip 

amplitude can promote the transport of debris out of the contact, hence restrains the 

formation of protective beds of oxide debris and allows the wear process to proceed at 

a higher rate. 

However, some have questioned the widely –accepted dependence of the wear rate 

upon the slip amplitude [24] and have argued that the wear rate should be independent 

upon the slip amplitude as predicted by Archard wear equation [16]. The experimental 

evidence, conducted over a range of applied displacement amplitude (from Δ∗ = 25 µm 

to Δ∗ = 100 µm, noting the information about the corresponding slip amplitude was not 

given) and applied normal load (from 𝑃  = 250 N to 𝑃  = 650 N), indicates that all 

experimental results can be described by a linear relationship between the dissipated 

energy and wear volume, as shown in Figure 2.18, which can be characterised simply 
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by an energy wear rate and an energy threshold for the onset of wear (described in 

Section 2.3.3), suggesting that the wear rate is thereby independent of slip amplitude. 

 

Figure 2.18: Original representation of the plot showing the wear volume as the function 
of the dissipated energy with tests conducted with various displacement amplitude 
(hence the slip amplitude although the exact values of the slip amplitude is unknown) 
and various normal load (after [24]). 

However, as pointed out by Aldham et al. [109], typical service duration for industrial 

applications is much longer than the number of cycles that has been employed in 

literature, a long test duration is necessary when investigating the corresponding 

effects of different parameters in fretting. The work by Pearson and Shipway [24] 

suffers from the limitation, which is being shared among many other researches in 

literature, that the test duration is relatively short (only 105 cycles); moreover, the 

coupled effect of the normal load makes the claim of the independence of slip amplitude 

upon the wear rate unjustified. 

Overall, whilst the work of Vingsbo and Söderberg [4] is widely accepted, it does seem 

to conflict with the equally widely accepted view that we can use an Archard-type 

analysis for fretting wear, with its focus on wear being proportional to either the total 

distance slid or total energy dissipated. This conflict indicates that a more holistic 

understanding of the role of slip amplitude in debris generation (including oxygen 

transport) and debris ejection is required. 
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2.6 Summary and thesis aims 

Understanding both the mechanical and chemical nature of the contact, and their 

complex interactions, is essential in studies of fretting. The apparent similarities 

between fretting and sliding lead to the definition of fretting wear as a branch of 

reciprocating sliding wear with small amplitude of relative motion. However, there are 

perhaps more differences than similarities when comparing fretting wear and sliding 

wear, the direct migration of many concepts and methods that were originally 

developed for sliding wear to the analysis of fretting may perhaps be inappropriate. 

In general terms, the following processes must occur in both the fretting and sliding of 

metals: (i) mechanical deformation at asperity level; (ii) the formation of oxide before 

debris particles are detached from the surfaces or vice versa; in either case, oxide wear 

debris is formed at the site of deformation; (iii) the transport of debris out of the contact. 

However, in contrast to sliding wear, the closed nature of the contact in fretting means 

that transport processes themselves play a role in and control the rate of the overall 

process of damage and wear. Specifically, the oxide-based debris formation is 

influenced by the transport of oxygen into the contact; with sufficient oxygen supply 

across the contact, the presence of oxide debris helps to prevent severe sub-surface 

microstructural damage in the metal (this is similar to the transition between severe 

wear and mild wear in sliding). Similarly, the transport of debris out of the contact has 

been identified as a key process by a substantial body of fretting research: the presence 

of debris inside the contact can act to moderate or even prevent surfaces from further 

damage. It is therefore argued that fretting wear is the result of both debris formation 

and ejection, and can be considered as a pipeline flowing from the source, which is 

debris formation, to its sink (i.e. debris ejection). Both processes are strongly influenced 

by the distance over which active species (i.e. oxygen or debris) are required to travel, 

resulting in the size of the contact being a critical (but almost always overlooked) factor 

in fretting. Moreover, in many studies, the size of the contact patch changes 
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significantly through the course of a test since a non-conforming geometry (such as 

sphere-on-flat or cylinder-on-flat) is employed, but any effects of this changing size of 

contact have not been discussed in literature where the conventional Archard-type 

approach is still the main method for quantitative analysis. 

There is clearly an issue to be addressed here: despite the wide general 

acknowledgement of the role of debris ejection in fretting as a result of Godet’s work 

on third-body effects in fretting from the 1980s, the issue of contact size in fretting 

(which has a strong influence on that debris ejection) continues to be overlooked. It is 

stressed that this contact size-effect in fretting is universal (regardless of the conformity 

of the contact) and needs to be considered both in service environments and in 

experimental testing. Accordingly, in this thesis, the effects of contact size and 

displacement amplitude on debris ejection from fretting contacts (and thus upon their 

overall gross-slip fretting wear behaviour and rates) will be studied using steel-steel 

specimen pairs in a cylinder-on-flat configuration with cylinders of different radii. The 

non-conforming nature of the contacts means that, as wear proceeds, the contact sizes 

will change, and it is hypothesised that the rate of wear will change in light of that. This 

issue will be explored alongside that of the effect of displacement amplitude on the 

transport of debris out of the developing contacts. 
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Chapter 3 Experimental methodology 

3.1 Materials and specimens 

All of the specimens (both the flat and cylindrical specimens) employed in this thesis 

were made from a high strength alloy steel (BS S132), which is currently used for the 

LP shaft of the Rolls-Royce plc Trent series of aero-engines. Raw specimens were cut 

into blanks with adequate tolerance (~0.5 mm) and then undertaken a heat-treatment 

process. Details about heat treatment can be found in previous work [114]; key steps 

are summarised here: specimens were heated at 940 °C for 45 min, then quenched in 

oil and subsequently tempered at 450 °C for 120 min. Table 3.1 and Table 3.2 [114, 

115] present the chemical composition S132 and its mechanical properties after the 

heat treatment. 

Table 3.1: Chemical composition of the high strength steel used in this work ( / wt. %) 
[114]. 

C Mo V Cr Si 

0.35-0.43 0.8-1.10 0.15-0.25 3.0-3.5 0.1-0.35 

Mn Ni P S Fe 

0.4-0.7 <0.3 <0.007 <0.002 Balance 

 

Table 3.2: Mechanical properties of the high strength steel used in the current study [115]. 

𝜎0 / MPa 𝜎1+ / MPa HV30 𝐸 / GPa 𝑣 

1247 1697 485±10 206.8 0.28 
 

The tolerance material on all the outer surfaces of heat-treated blanks were ground off 

to remove the soft decarburised layer generated during the heat treatment. These 
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specimen blanks were then machined into two categories: (i) flat specimens; (ii) 

cylindrical specimens with various radii (𝑅), namely 6 mm, 15 mm, 80 mm and 160 mm. 

The final dimensions of both the flat and cylindrical specimens are detailed in Appendix 

D. The finished surface was required to exhibit a surface roughness (𝑅𝑎) in the range 

of 0.1 – 0.3 µm for flat specimens and 0.4 – 0.7 µm for cylindrical specimens. For 

individual specimen quality control, Vickers hardness testing with a 30 kgf applied load 

(HV30) was performed on three locations of the top surface of the machined specimens 

to ensure that the required surface hardness (see in Table 3.2) was achieved. 

3.2 Experimental configuration 

In this work, all fretting tests were carried out with a pair of specimens, one flat 

specimen and one cylindrical specimen with specific radius (𝑅), producing a non-

conforming contact. The specimen pair was arranged in a cylinder-on-flat configuration 

as shown in Figure 3.1, creating an initial line contact with the length of 𝐿 = 10 mm, with 

the length of the contact perpendicular to the fretting motion. There are some key 

benefits which support utilisation of the cylinder-on-flat configuration: (i) it replicates 

well service applications with line contact geometry; (ii) it can reduce the difficulty during 

the manufacture of specimens (compared with spherical specimens) and the issue 

associated with specimen alignment in the fretting couple (compared with flat-on-flat 

configurations); (iii) for the same wear volume, it tends to result in a higher wear depth 

than flat-on-flat contacts so that any effects of surface preparation (e.g. surface 

roughness, machining damage) are minimised; (iv), the line contact created by such an 

arrangement typically evolves into a wear scar with uniform shape, and hence helps to 

simplify the analysis into a 2D representation; (iv) it allows direct comparison with 

previous work conducted at the University of Nottingham using the same materials. 

Due to the nature of non-conforming contacts, the contact will increase its width as 

wear in the pair progresses (the contact length, 𝐿, is a constant). The relative motion 
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between the first bodies, i.e. the flat specimen and cylindrical specimen, is induced by 

the reciprocating movement applied to the cylindrical specimen, resulting in a 

displacement between the first bodies (Δ) with amplitude Δ∗ . The load (𝑃) applied 

normal to the contact (as indicated in Figure 3.1) is applied via a dead load and lever 

arrangement (as illustrated in Figure 3.2). 

 

Figure 3.1: Illustration of the cylinder-on-flat configuration employed in fretting tests for 
the current study with 𝑳 = 10 mm and 𝑹 = 6, 15, 80 or 160 mm. 

Care must be taken when machining and aligning the specimen pair as shown in Figure 

3.1 to ensure an evenly distributed load. Deviations from an ideal cylinder-on-flat 

configuration will be quickly compensated once wear starts to take place (the depth of 

wear is generally much greater than machining tolerances). However, misalignment 

during assembly will result in a non-uniform wear scar shape, hence losing the 

simplicity of the geometry by employing the cylinder-on-flat configuration; care is taken 

to maintain alignment and to scrap results from any pairs where the post-test scar 

shape indicated misalignment. 

Figure 3.2 is a diagram showing all the main components of the fretting test rig used in 

this work. The rig was initially designed and manufactured by Pearson [79] to study the 

effects of different parameters in fretting, namely the applied load (𝑃), the displacement 

amplitude (Δ), the temperature (𝑇), the frequency (𝑓(,) and the test duration (𝑁). The 

functionality of each principal component of the test rig can be found in Pearson’s thesis 

[79]. Warmuth further extended the rig’s capacity [116], allowing fretting tests at higher 
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frequency (from 𝑓(, = 20 Hz up to 𝑓(, = 200 Hz) to be carried out (see the details of 

the modification in Warmuth’s work [116]). 

 

Figure 3.2: Diagram of the fretting test rig for the current study with its main components: 
(a) load cell; (b) water cooled spacer; (c) water cooled displacement sensor mount; (d) 
capacitance displacement sensor; (e) lower specimen mounting block (LSMB); (f) upper 
specimen mounting block (USMB); (g) load pin; (h) drive linkage; (i) alignment coupling; 
(j) stinger housing; (k) load bar; (l) linear guide vane assembly (after [116]).  

Note that the sources of the applied displacement and load are not shown in Figure 3.2 

for the clarity of illustration. In practice, the flat and cylindrical specimens are mounted 

on their corresponding mounting blocks, i.e. the flat specimen to the lower specimen 

mounting block (LSMB, component 𝑒 in Figure 3.2) and the cylindrical specimen to the 

upper specimen mounting block (USMB, component 𝑓 ). The orthogonally crossed 

configuration for the flat and cylindrical specimens, as shown in Figure 3.1, can be 

achieved by securing the USMB to the alignment coupling (component 𝑖 ). A 

deadweight is placed at the end of a cantilevered load bar (component 𝑘), producing a 

downward force amplified by five times due to the leverage structure of the load bar. 

The amplified force is transmitted through the load pin (component 𝑔) and applied on 
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top of the USMB, with the intention of creating a uniformly distributed normal force (𝑃) 

on the cylindrical specimen. As described earlier in this section, the relative motion 

between the flat and cylindrical specimens is produced by an oscillating movement 

applied on USMB, and thus the cylindrical specimen, whilst the LSMB is stationary. 

Such displacement on USMB (Δ) is driven by an electromagnetic vibrator (EMV) at a 

designated frequency (𝑓(,) through a flexible drive linkage (component ℎ), which was 

designed specifically [116] to allow a slight degree of misalignment during the specimen 

pair assembly and to be tolerant of the small vertical displacement of the upper 

specimen associated with the development of wear during the course of a test. 

The reciprocating lateral displacement of the USMB (Δ ), and thus the cylindrical 

specimen, is measured by a CS08 Micro-Epsilon capacitance sensor (component 𝑑). 

This displacement information is used to control the force output from the EMV to 

achieve the designated displacement amplitude (Δ∗) throughout the test. Since the 

nature of the contact is evolving (both geometrically and in terms of the nature of the 

materials at the surface), the tangential force (𝑄, with amplitude of 𝑄∗) required from 

the EMV changes accordingly (the maximum force output from the EMV is ~2 kN). The 

tangential force is monitored by a Kistler 9132BA slimline piezoelectric load cell 

(component 𝑎) located on a stationary element of LSMB. The details regarding the 

experimental configuration for mounting both the capacitance sensor and the load cell 

on the LSMB can be found in Figure 3.3 Please note that Figure 3.3 contains some 

additional components (component 𝑚 to component 𝑝) that are not initially presented 

in Figure 3.2; the numbering order in both figures is consistent. 

Both data of the displacement and the tangential force are sampled and recorded in a 

data file (in the file format of TDMS, a file format developed by National Instrumentsä) 

at a rate of 200 measurements for each fretting cycle throughout the test irrespective 

of the fretting frequency. 
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Figure 3.3: Diagram of the lower specimen mounting block (LSMB) in greater detail 
showing the experimental configuration of: (a) load cell; (b) water cooled spacer; (c) 
water cooled displacement sensor mount; (d) capacitance displacement sensor; (e) 
lower specimen mounting block (LSMB); (m) side plate (the side plate on the other side 
is removed in this diagram to reveal the cartridge heater inside); (n) one of the thermal 
barriers; (o) main body of the mounting block to contain specimens; (p) one of the 
cartridge heaters (after [116]). 

3.3 Experimental procedure 

The preparation work on specimen pair (one flat specimen and one cylindrical 

specimen) for each fretting test involves thorough demagnetisation and surface 

degreasing before rinsing with acetone to remove water residue. After this, specimens 

are sprayed with industrial methylated spirit (IMS) to remove acetone and thoroughly 

dried with an air duster. 

After preparing the specimen pair, specimens are attached to mounting blocks, which 

are subsequently assembled in the fretting test rig. To arrange the specimens in a 

cylinder-on-flat configuration, the flat and cylindrical specimens need to be mounted on 

the LSMB and the USMB, respectively. Figure 3.4 is a simplified illustration showing 

the essential components of the fretting test rig. Details about the transmission of the 

applied load (𝑃) and the displacement (Δ) from their sources to the wear contact have 

been described in Section 3.2. Here is a short review: 𝑃 can be applied to the USMB 
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through a leveraged dead weight, while Δ is generated by the EMV and applied to the 

cylindrical specimen. With the successful assembly of specimen pair to the test rig, test 

parameters including the displacement amplitude ( Δ∗ ), the frequency ( 𝑓(, ), the 

temperature (𝑇) and the test duration (𝑁) can be designated using the control software 

developed by Pearson [79]. It should be noted that although normal load (𝑃) can be 

defined in the control system for records and further calculations, physical masses need 

to be placed at the end of the cantilevered load bar. 

 

Figure 3.4: Schematic diagram illustrating the essential components of the fretting test 
rig in this thesis (after [116]). 

Throughout the test, the relative displacement (Δ, with amplitude of Δ∗) between the 

USMB and LSMB is monitored using a capacitance displacement sensor; the tangential 

traction force across the specimen pair contact, 𝑄 (with amplitude of 𝑄∗) is measured 

by a piezoelectric load cell. Both the tangential traction force and the relative 

displacement are sampled and recorded 200 times per fretting cycle. 

With the completion of the fretting test, the upper specimen fixture (including 

components 𝑓 and ℎ in together with the cylindrical sample) is carefully removed by 

disassembly of the coupling (component 𝑖) which allows access to the lower specimen. 

Samples of ejected debris accumulated outside the wear contact are collected in an 

airtight container for further analysis. The damaged area on each sample in the 

specimen pair is swabbed with cotton wool and subsequently rinsed with IMS to remove 
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oxide debris that is loosely attached to the surface of the wear scar, leaving the debris 

that has been firmly adhered to the surface intact. 

3.4 Experimental data processing 

The majority of the raw data in the TDMS data file are three columns of data: the values 

of tangential traction force (𝑄) and the displacement (Δ) and the corresponding cycle 

count. Several quantities of interest need to be determined by processing the raw data, 

with these being essential to understand the wear contact under different test 

conditions, namely the system stiffness, the dissipated energy into the contact, the slip 

amplitude and the coefficient of friction. Please note that these quantities of interest 

can be determined for each cycle of a test. It is, therefore, necessary to distinguish the 

notations representing an individual cycle (with (𝑖)  indicating 𝑖23  cycle) from those 

representing the whole test (without (𝑖)). 

As indicated previously, the 200 measurements of the force and displacement are 

recorded for each cycle, resulting in the size of the raw data file being directly 

proportional to the test duration (𝑁). In this work, the size of the generated data file 

ranged from 2.5 MB (𝑁 = 500 cycles) to 50 GB (𝑁 = 1´107 cycles); in particular, the 

volume of raw data caused significant problems in data processing when the fretting 

test performed over a long test duration. It was found that the data processing script 

developed by Pearson [79] was unable to process data files beyond the size of 5GB 

(when 𝑁  = 1´106 cycles) due to the inefficient use of data structure and memory 

overflow. A new version of the data processing script was developed and a benchmark 

test to process a 500 MB data file was carried out. It was demonstrated that the new 

script outperformed the previous version by a factor of ten (the processing time is 

reduced from ~30 min to ~3 min). Moreover, it can process large data files beyond 5GB 

which cannot be dealt with by the previous version of the data processing script. 
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3.4.1 Description of fretting loop 

A fretting loop can be produced with the measurements of the tangential force (𝑄) and 

displacement (Δ) for each cycle of a test. Within a single fretting cycle, each fretting 

loop displays the values of tangential force as a function of displacement. An idealised 

gross slip fretting loop is shown in Figure 3.5 as the representative of those observed 

in fretting tests. 

 

Figure 3.5: Schematic illustration of an idealistic fretting loop in the gross slip regime. 

The general shape of a fretting loop resembles a parallelogram. The steep vertical 

sides are related to the region of elastic deformation of the contact; thus, a linear 

increase in tangential force (𝑄) can be observed with increased applied displacement 

(Δ). Once the tangential force is above a particular value, the contact begins to slide, 

and the tangential force remains constant until the displacement amplitude (Δ∗ ) is 

reached; the horizontal upper and lower sides of the fretting loop are associated with 

this sliding period. The gradient of the vertical sides is defined as the system stiffness 

(𝑆 ). It should be noted, however, that the system stiffness represents the overall 

compliance of the whole system, which is the stiffness from all the components within 

the system, and is thereby different from the contact stiffness (identified as the cause 

of elastic deformation within the contact [24, 31]). In this thesis, the contact stiffness 

cannot be directly measured, and therefore it is the system stiffness (𝑆) being used for 

further analysis. The value of 𝑆 is determined as 33.3±3 N×µm -1, which is calculated as 
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the average from fretting loops of various experiments across this work. There is loop-

to-loop variation within a test and for illustrations relating to loop shapes, average 

fretting loops can be used. 

3.4.2 Dissipated energy 

The energy dissipated in the contact for each cycle (𝐸%(𝑖)) can be interpreted as the 

area enclosed by the fretting loop at the corresponding cycle, which is defined as: 

𝐸%(𝑖) = ` 𝑄(Δ)	𝑑Δ
:∗

#:∗
(3.1) 

Therefore, the total energy dissipated into the contact throughout the test (𝐸%) can be 

calculated as the summation of the dissipated energy for each cycle: 

𝐸% =a𝐸%(𝑖)
8

;<$

(3.2) 

where 𝑁 is the test duration (i.e. number of cycles). 

The calculation method to obtain the dissipated energy for each cycle of a particular 

test (𝐸%(𝑖) ) from its raw data is described in Pearson’s work [79], and the total 

dissipated energy (𝐸%) for that test is the sum. 

3.4.3 Slip amplitude 

It is essential to recognise that the actual slip within the contact (𝛿 ) should be 

distinguished from the applied displacement (Δ) on the USMB, the difference being 

associated with the elastic displacements due to system (including contact) compliance. 

The slip amplitude (𝛿∗) is always less than the applied displacement amplitude (Δ∗) and 

can be considered as the displacement in the loop when the lateral force is zero (i.e. 

when the elastic displacement is zero). The slip amplitude (𝛿∗ ) cannot be directly 

measured and needs to be calculated from the far-field measurements of the applied 
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displacement amplitude (Δ∗) by processing of the recorded fretting loops (see Figure 

3.5). It remains difficult to calculate the slip amplitude (𝛿∗) on the fly during the test, 

especially at higher test frequencies, and this is done by post-processing. As such, 

displacement control is based upon Δ∗  and not 𝛿∗ . In the current study, the slip 

amplitude for each cycle of a test was calculated from the collection of raw data, the 

method of which can be found in Pearson’s work [79]. It was found that values of 𝛿"∗  

are stable throughout the test, and the deviation is negligible; the relative standard 

deviation (RSD, defined as the ratio of the standard deviation to the mean) is always 

smaller than 5% when the test reaches the steady-state. As a result, the slip amplitude 

to represent the whole test (𝛿∗) can be determined as the average of those values for 

each cycle (𝛿∗(𝑖)): 

𝛿∗ =
1
𝑁
a𝛿∗(𝑖)
8

;<$

(3.3) 

More commonly, the slip amplitude (𝛿∗) can be determined from the fretting loop by 

measuring the distance between the origin and the displacement when the tangential 

force reaches zero (𝑄 = 0). The relationship between displacement amplitude and slip 

amplitude can be formulated as follows: 

𝛿∗ = Δ∗ −
𝑄∗

𝑆
(3.4) 

It is clear that these are not linearly dependent upon each other; changes that affect 𝑄∗ 

(such as applied load and coefficient of friction) will result in a change in 𝛿∗ even if Δ∗ 

is maintained constant. In addition, the validity of the assumption of a constant system 

stiffness, 𝑆, needs to be explored. As indicated by Equation 3.4, a more significant 

proportion of the applied displacement is accommodated by the elastic deformation of 

the contact when larger normal loads are applied, with increases resulting in no slip in 

the contact when 4
∗

=
 reaches Δ∗. 
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3.4.4 Coefficient of friction 

The common definition of the coefficient of friction (CoF) for each cycle (𝜇(𝑖)) is the 

ratio of the maximum tangential force in the cycle (𝑄∗(𝑖)) to the applied normal load (𝑃): 

𝜇(𝑖) =
𝑄∗(𝑖)
𝑃

(3.5) 

As described in Chapter 2, this approach is appropriate if specimens are sliding freely 

against each other without the local pit-peak feature across the contact or the effect of 

ploughing (i.e. subjected to Coulomb’s friction law), hence producing a fretting loop with 

the shape identical to that as shown in Figure 3.5. However, to account for non-

Coulomb friction (i.e. for variation of the tangential force during the part of a fretting 

cycle where gross slip is occurring), an alternative definition of CoF was developed by 

Fouvry et al. [33], which is commonly known as the energy coefficient of friction (ECoF, 

denoted as 𝜇-). The value of ECoF for each cycle (𝜇-(𝑖)) can be calculated as: 

𝜇-(𝑖) =
𝐸%(𝑖)
4𝑃𝛿∗(𝑖)

(3.6) 

which is the ratio of the energy dissipated in a fretting loop and the product of the 

distance slid and the normal force applied to the contact. Values of ECoF for different 

fretting tests were compared with CoF, and it found that ECoF is more representative 

for the current study; hence ECoF is used for the following analysis in this work. As the 

dissipated energy and the slip amplitude for each cycle can be calculated from raw 

data, the ECoF for each cycle can also be determined using Equation 3.6. Similar to 

the slip amplitude, statistical analysis shows that the value of 𝜇-(𝑖) is stable throughout 

the test, with the RSD smaller than 3% when the test reaches the steady-state. The 

averaged value of 𝜇-(𝑖) is used as the representative for individual test: 

𝜇- =
1
𝑁
a𝜇-(𝑖)
8

"<$

(3.7) 
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3.5 Wear damage characterisation 

Following a fretting test, fretting damage was evaluated by conducting profilometric 

scanning on the wear scar, which gives surface topography information. From this, the 

wear scar width and the wear volume can be estimated. The distribution of wear debris 

on the surface was characterised using scanning electron microscopy (SEM). 

Additional examinations on cross-sectioned cylindrical specimens were carried out to 

identify the nature of damage beneath the surface of the wear scar. 

3.5.1 Surface topography 

Two types of profilometers, namely Bruker Contour GT-I and Alicona G5, were used 

for this thesis to scan the damaged area on both the flat and cylindrical specimens; the 

scanning areas for both the flat and cylindrical specimens are demonstrated in Figure 

3.6. The length of the scanning area is 10.5 mm for flat specimens and 13 mm for 

cylindrical specimens, while the width of the scanning varies according to the width of 

the wear scar. It has been observed that the wear scar width in the current study ranges 

from ~0.3 mm to ~9 mm; therefore, a wide range of the width of the scanning area is 

required. The extra space on the scanning area allows a slight misalignment during the 

measurement and is essential to calculate the reference surface. 

 

Figure 3.6: Illustration of the scanning area for both the flat and cylindrical specimens. 
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3.5.2 Estimation of wear volume and wear scar width 

A reference surface must be determined to represent the surface before the test to 

estimate the wear volume. The reference surface is defined as the best-fit plane of all 

surface profiles outside the wear scar for both the flat and cylindrical specimens. The 

calculation method to determine the reference surface needs the information collected 

from the extra space of the scanning area; the detail of the calculation method can be 

found in Pearson’s work [79]. It is suggested by Elleuch et al. [32] that the transferred 

material is defined as the material above the reference surface, with volume 𝑉> , 

composed of the transferred volume on the flat (𝑉?>) and the cylindrical specimen (𝑉@>). 

in contrast, the material below the reference surface is regarded as lost material with 

volume 𝑉#, as the summation of the lost volume on the flat (𝑉?#) and the cylindrical 

specimen (𝑉@# ). The definition of the material transferred, and the material lost is 

illustrated in Figure 3.7. The overall net wear volume (𝑉!) is defined in Equation 3.8. 

 

Figure 3.7: Schematic diagram to illustrate the assessment of material transferred and 
material loss with respect to the reference surfaces [32]. 

𝑉> = 𝑉?> + 𝑉@> (3.8𝑎)	

𝑉# = 𝑉?# + 𝑉@# (3.8𝑏)	

𝑉! = −(𝑉> + 𝑉#) (3.8𝑐) 

As described in Section 3.2, the cylinder-on-flat configuration employed in the current 

study produces a line contact for specimens. Such a line contact typically develops into 
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a uniform wear scar as the progress of wear. It is, therefore, feasible to use a single 

average profile to represent the whole damaged area on specimens. This 

representative profile across the damaged area can be generated by taking the 

average of individual profiles across the wear scar width. As illustrated in Figure 3.8a 

(schematically) and Figure 3.8b (using example data from a 𝑅160  specimen pair 

following 𝑁 = 5×106 cycles), the wear scar width (𝑥) was determined from the average 

profile of the wear scar on the flat specimen and defined as the width of the central 

portion of the wear scar that lay below the reference surface. 

 

 

(a) (b) 

Figure 3.8: (a) Illustration of the assessment of material lost and material transferred with 
respect to the reference surface and the definition of wear scar width; (b) example of the 
determination of wear scar width from the average surface profile for a 𝑹𝟏𝟔𝟎 test at 𝑵 = 
5×106 cycles. 

3.5.3 Precision and accuracy of measurements 

The surface topography of specimen pairs was initially measured with the Bruker 

Contour GT-I at the beginning of this PhD programme, but the machine was no longer 

available after the first year, which lead to the switch of profilometer to the Alicona G5. 

Therefore, the Alicona G5 was used to measure the majority of experimental results in 

this work, and the difference between the data acquired by those two profilometers was 
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compared. It was found that the measurements for surface topography on tested 

specimens from both the Bruker Contour GT-I and the Alicona G5 are almost identical, 

with differences of less than 4%. Several duplicated measurements were taken to 

examine the repeatability (as defined by the relative standard deviation, RSD) of 

estimating the wear volume and the wear scar width. It found that the RSD is always 

smaller than 5% for both the estimated wear volume and wear scar width obtained from 

Bruker Contour GT-I and Alicona G5 measurements, indicating a high repeatability of 

measurements. 

However, the difference between repeatability (in another word, precision) and 

accuracy needs to be distinguished. While repeatability concerns the closeness of the 

measurements to each other, accuracy describes the closeness of the measurements 

to the actual value. One of the critical contributions from this work is the observation of 

the geometric relationships of wear volume (𝑉!) and wear scar width (𝑥) for cylinder-

on-flat specimen pairs for a non-conforming contact in fretting. This observation 

requires an accurate estimation of wear volume and wear scar width to assert its validity. 

To investigate the accuracy of the estimated wear volume and wear scar width, two 

cylindrical specimens (one with a radius of 6 mm and the other with a radius of 160 

mm) were taken for dummy tests. Materials on top of the specimens were ground off 

to a random depth leaving a flat surface with a length of 𝐿 and width of 𝑥, as shown in 

Figure 3.9. This operation on cylinders ensures that the material removal can be 

characterised precisely by the minor segment of the cylinder as indicated by Equation 

4.2, which is stated here that: 

𝑉! = 𝐿 d𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛 d
𝑥
2𝑅f −

𝑥
4
g4𝑅. − 𝑥.f (3.9) 

The volume of material removal from the top of dummy specimens and the 

corresponding wear scar width were estimated using the set of methods described in 



Experimental methodology 

 76 

Section 3.5.2 for the measurements from both the Bruker Contour GT-I and Alicona G5 

profilometers. 

 

Figure 3.9: Illustration of the material removal from the top of specimens to evaluate the 
accuracy of estimations of wear volume and wear scar width. 

Figure 3.10 compares the idealised wear volume (Equation 3.9) against their measured 

values for the measurements from both the Bruker Contour GT-I and Alicona G5 

profilometers. The negligible difference between the data acquired from both the 

profilometers is demonstrated again, which is smaller than 2% for dummy specimens. 

The error between the predicted data and the actual value for dummy tests is generally 

slight, but the error is better for the 𝑅6 cylindrical specimen than for the 𝑅160, 1.6% 

versus 8.5%, suggesting that there could exist a systematic error when estimating wear 

volume and wear scar width, especially for 𝑅160 tests. 

 

Figure 3.10: Plot of the wear scar width against wear volume for dummy tests conducted 
with 𝑹𝟔  and 𝑹𝟏𝟔𝟎  cylindrical specimens to demonstrate the accuracy of the set of 
methods to estimate wear volume and wear scar width used in this work. 
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3.5.4 Nature of wear scar and debris 

SEM was used to characterise the wear scar and the distribution of the oxide debris 

with a Philips XL3 microscope; either secondary electron (SE) or backscattered 

electron (BSE) imaging techniques were applied based on the type of features being 

examined. Images were taken at a working distance of 10 mm with an accelerating 

voltage of ~20 kV. Using the SE detector enables the acquisition of high-resolution 

optical images to examine topographical features but provides little information about 

the composition of the material being scanned. In contrast, BSE imaging is beneficial 

since it allows oxide debris (with its lower average atomic number) to be readily 

distinguished from the metallic substrates due to its lower imaging brightness. 

Cross-sectioning was performed on several cylindrical specimens to allow the 

characterisation of substrates beneath the surfaces of wear scars. Sectioned samples 

were obtained with the help of a high-speed slitting wheel, followed by mounting in 

conductive phenolic resin. A progressive grinding procedure was carried out to polish 

the surface with silicon carbide papers at increasingly fine grades and finished by 

polishing with a 1 µm diamond paste. The surface was etched with 5% nital (a solution 

containing nitric acid and alcohol) to reveal the material’s microstructure before being 

examined via SEM. 
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Chapter 4 The dependence of wear rate on wear 
scar size in fretting 

4.1 Introduction and chapter outline 

Classically, wear is considered to be a process of particle detachment from the surfaces 

in contact. This is the central concept of Archard’s wear model (initially derived for 

sliding wear and not for fretting wear) [16], which relates the amount of wear (the 

material removal from the surface, i.e. the wear volume) with the exposure to wear (a 

combination of the sliding distance and the applied load). As noted by Fillot et al. [37], 

concepts and terms used in the fretting literature, such as wear rate and wear 

mechanism, were inherited from the classical Archard approach, where the wear rate 

describes the rate of material removal from the surfaces. However, in fretting, this 

debris is easily trapped in the contact region due to the small displacement amplitude 

(typically tens of micrometres) [2], with the removal of this debris being required for 

further wear to take place. Therefore, it is argued that the Archard-type approach 

(without considering the transport of debris out of the contact) is not able to account for 

the differences in wear rates associated with differences in debris entrapment in the 

contact. 

The concept of the third-body in fretting was introduced by Godet in 1984 [19], who 

argued that the wear process and rate are the result of the competition between debris 

formation and ejection. In his early work, Hurricks [2] proposed that the wear particles 

are first detached from the surface and then oxidised and ground into fine debris, finally 

forming a debris layer. This layer was referred to as the ‘third body’ by Godet [19], who 

suggested the third bodies can act to accommodate velocity and carry load (the 

concept of which was borrowed from principles of lubrication theory). To some extent, 

debris provides protection against wear by the formation of stable beds of debris within 

the contact of fretting. Therefore, in order for wear to occur, debris needs to be 
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detached from the first bodies and then ejected from the contact, with the rate of wear 

thereby being controlled by the rheology of the third bodies [73, 80]. 

The commonly used term wear rate simply refers to the ratio linking the amount of wear 

(in terms of the observed wear volume) with the exposure to wear defined by 

tribological system parameters (in terms of the energy dissipated). Since fretting wear 

itself represents the consequences of both debris formation and ejection, it should be 

noted that the measured wear volume contains the information related to the complete 

wear process. Berthier and co-workers [37, 96] therefore suggested that it is not 

appropriate to interpret wear rate as the rate of particles detachment since the 

elimination of wear debris from the contact is vital for the development of wear; they 

illustrated this concept via a tribology circuit as shown in Figure 4.1(a). It is argued that 

the wear rate is controlled by balancing the competition between the corresponding 

debris formation and ejection rates. Figure 4.1(b) indicates that the system will tend 

towards an equilibrium between the formation and ejection of debris [37]; any change 

in contact would trigger an increase or decrease in the corresponding rate of debris 

formation or ejection, altering the equilibrium state and influencing the observed wear 

rate. 

  

(a) (b) 

Figure 4.1: (a) Berthier’s illustration of the tribology circuit [96]; (b): illustration of the 
competition between debris formation and debris ejection [37] for a fretting contact. 



The dependence of wear rate on wear scar size in fretting 

 80 

Waterhouse suggested that fretting contacts can be divided into two categories 

depending on the behaviour of oxide debris [3]. A surface with shallow dish-like 

depressions is formed if debris is able to escape from the contact, whilst entrapment of 

debris leads to small but deep holes. More recent work [20, 23, 24, 97] has examined 

the various tribological system parameters in fretting, such as displacement amplitude, 

temperature and oscillation frequency, to understand their influence on the formation 

and ejection of debris and the corresponding wear rate. However, relatively little work 

has investigated the effect of contact geometry, despite the fact that a large variety of 

contact geometries have been employed in experimental research. In general, these 

contact geometries can be divided into two primary categories, namely non-conforming 

contacts and conforming contacts. The use of non-conforming contacts (e.g. cylinder-

on-flat and sphere-on-flat) is widespread because it replicates contact types seen in 

many service conditions but even when this is not the case, it aids reproducible 

laboratory experimentation in that it reduces problems associated with specimen 

alignment. As observed by Fouvry and co-workers [18, 36] and Warmuth et al. [20, 23], 

the observed wear rate was significantly reduced with increasing contact conformity 

(i.e. as the radius of curvature of the non-plane body increased). They argued that such 

reduction in wear rate is associated with the change of fretting wear mechanism (from 

abrasive wear to adhesive wear) and the increased entrapment of wear debris, noting 

that both can occur as contact conformity is increased. These investigations of the 

effect of contact geometry focussed on the role of the third body, which are in line with 

the work of Godet [19] and Berthier et al. [37, 73, 96]. The third-body approach, together 

with more recent work on the effect of contact geometry in fretting, point to the critical 

roles of debris kinematics and contact geometry in the fretting wear process. 

It is recognised that when a non-conforming geometry is employed in fretting research, 

the contact size increases continuously as wear occurs, which in turn is expected to 

influence the balance between debris formation and ejection. It is suggested that the 
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observed wear rate is the lesser of (i) the rate of removal from the wearing surfaces to 

form debris and (ii) the rate of removal of that debris from the contact; a schematic 

diagram illustrating this hypothesis is presented in Figure 4.2 where the lines represent 

the maximum rates of both debris formation and debris ejection that the contact may 

sustain under certain conditions as a function of wear scar width. In cases where debris 

ejection is the rate-determining step, the contact size will thus exert an influence on the 

wear rate. In such cases, the observed wear rate is thus a function of the amount of 

wear (as opposed to being assumed to be constant). It is noted that although the 

contact size can also influence debris formation by changing the transport of oxygen 

into the contact, this aspect of the effect of contact size is not the subject of this thesis. 

To be more specific, the debris formation in Figure 4.2 is only associated with the 

process of particle detachment from first bodies as outlined in Archard-type approaches. 

 

Figure 4.2: Schematic diagram illustrating the dependence of rates of wear and debris 
ejection on wear scar width, with regions where debris formation and debris ejection are 
the rate-determining processes (i.e. the process with the lower of the two rates at any 
scar width). 

In the current chapter, a cylinder-on-flat configuration was employed (as shown in 

Figure 3.1), and the evolving contact was characterised by the wear scar width. A wide 

range of test durations (from 𝑁 = 5×102 cycles to 𝑁 = 5×106 cycles) and two different 

initial geometries (cylindrical specimens with 6 mm and 160 mm radii, denoted as 𝑅6 
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and 𝑅160, respectively) were employed to obtain different wear scar widths and rates 

of scar width development. It is argued that changing wear scar width should alter the 

rate of debris ejection from the contact and thus control the observed wear rate when 

debris ejection is rate-determining. An analytical wear model is presented, which 

describes the dependence of the wear rate on wear scar width for a cylinder-on-flat 

contact across a range of wear scar widths, which are associated with both different 

initial geometries and different amounts of wear. 

Details about the specimens, the test rig and the experimental procedures employed 

in the current chapter are described in Chapter 3. This thesis is focussed upon the 

debris ejection behaviour in the gross slip regime, and hence the combination of 

experimental parameters must serve this purpose to ensure that the contact will remain 

in gross slip regime throughout the test. To minimise undesirable effects associated 

with large changes in the tractional load (such as the EMV response and changes in 

system elastic deformations), a constant normal load was selected, with this being 𝑃 = 

450 N to allow direct comparison with experimental data from the previous bodies of 

work conducted upon this test apparatus. A constant displacement amplitude of Δ∗ = 

50 µm was employed since, again, under this combination of load and applied 

displacement, gross-slip could be assured irrespective of small changes in the 

coefficient of friction. The radii of the cylindrical specimens (𝑅6 and 𝑅160) were chosen 

to maximise the dissimilarity of the resultant contact size development whilst ensuring 

that specimens could be readily and reproducibly manufactured. Furthermore, previous 

work on the effect of contact geometry by Warmuth [116] laid the foundation for this 

thesis, hence the same specimen geometry was chosen for the consistency of the 

research. Test conditions for this chapter are detailed in Table 4.1 as below: 
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Table 4.1: Summary of the fretting test conditions for Chapter 4. 

Normal load (𝑃) / N 450 

Displacement amplitude (Δ∗) / µm 50 

Cylindrical specimen radius (𝑅) / 
mm 6, 160 

Test duration (𝑁) / ´103 cycles 
0.5, 5, 20, 100, 500, 

1000, 2000, 3500, 5000 

Frequency (𝑓#$) / Hz 20 

Temperature (𝑇) / °C Ambient temperature 

4.2 Experimental results 

Figure 4.3 shows 𝑉! as a function of 𝐸% for both the 𝑅6 pairs and the 𝑅160	pairs. It can 

be seen that, for equivalent dissipated energies, wear volumes are higher for the 𝑅6 

pairs than for the 𝑅160 pairs. Moreover, for both pair types, it can be seen that the wear 

rate (adopting the traditional concept of observed wear rate, which is defined as wear 

volume per unit energy dissipated) decreases with increasing energy dissipated. Figure 

4.3b illustrates that whilst the wear volume increases with dissipated energy from the 

outset for 𝑅6 pairs, there is an incubation period for the 𝑅160 pairs of at least ~5 kJ 

before a measurable wear volume was observed. It should be noted that several (up to 

six) replicated tests were carried out to investigate repeatability. It was found that the 

repeatability (as defined by the relative standard deviation, RSD) of both dissipated 

energy and net wear volume was always less than 10%, and in some cases, much less. 

Values of RSD for dissipated energy of all repeated tests were found to be smaller than 

3%. 
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(a) (b) 

Figure 4.3: Net wear volume as a function of dissipated energy for fretting tests 
conducted with 𝑹𝟔	pairs and 𝑹𝟏𝟔𝟎  pairs: (a) data from all tests conducted for this 
chapter; (b) detailed view for tests where the dissipated energy was less than 100 kJ, 
giving a clearer view of the initiation behaviour; error bars are displayed. 

Figure 4.4 presents the 3D profilometric representations of the wear scars on the flat 

specimens for selected tests with both 𝑅6 pairs (left column) and 𝑅160 pairs (right 

column) as a function of test duration. Each scanning area is fixed as 10.5 mm in length 

and 11 mm in width (as described in Section 3.5.1). It has been noticed that the size of 

the wear scar changes dramatically. The width of the scanning area is fixed at 11 mm 

to allow direct comparison across different radii and test durations. Please note that the 

magnification normal to the plane is 40 times greater than that within the plane. 
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 (a) (b) 

Figure 4.4: Surface topography images of wear scar on flat specimens for selected 
fretting tests conducted over a range of test durations, from 𝑵 = 5×103 cycles to 𝑵 = 5×106 
cycles: (a) 𝑹𝟔 pairs; (b) 𝑹𝟏𝟔𝟎 pairs. The magnification in all images is 40 times in the 𝒛-
direction (to provide scale, the height of the peak in the 𝑹𝟏𝟔𝟎 pair after 𝑵 = 5×103 cycles 
is ~150 µm); images are acquired from Alicona G5. 

As shown in Figure 4.4, for the 𝑅6 pairs, the wear scars are seen to be of uniform width 

for all examined test durations, and they grow in both width and depth as the cycle 

count increases. However, as observed previously [20], the more-conforming 𝑅160 

pairs exhibit the formation of localised pit-peak features in the early stages of the wear 

scar development (from 𝑁 = 5×103 to 𝑁 = 1×105 cycles); these features result from a 

metallic transfer between the specimens. It is notable that these features have largely 
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been eliminated after 𝑁 = 1×106 cycles, following which a wide but relatively uniform 

wear scar is observed. 

Figure 4.5 shows the average profiles of wear scars on flat specimens (derived from 

the data of the type presented in Figure 4.4) for fretting tests conducted with 𝑅6 and 

𝑅160 pairs. Figure 4.5a indicates that a U-shaped wear profile for 𝑅6 pairs is formed 

as early as after 𝑁 = 5×103 cycles, and this then develops in depth and width as the 

test duration increases. In contrast, for 𝑅160 pairs, tests with up to 𝑁 = 1×105 cycles (a 

common set-up for the value of test duration in previous studies at the University of 

Nottingham [79, 116, 117]) show no significant material removal from the flat specimen; 

however, the development of a U-shaped wear scar is clearly observed after 𝑁 = 1×106 

cycles, growing in both depth and width as the cycle count increases. 

  

(a) (b) 

Figure 4.5: Averaged profiles of fretting wear scar on flat specimens for selected fretting 
tests conducted over a range of test durations, from 𝑵 = 5×103 cycles to 𝑵 = 5×106 cycles; 
(a) 𝑹𝟔 pairs; (b) 𝑹𝟏𝟔𝟎 pairs; profilometry data acquired from Alicona G5. 

Figure 4.6 shows BSE-SEM images of the wear scars on the flat specimens for the 𝑅6 

(left column) and 𝑅160 (right column) specimen pairs as a function of test duration. In 

this imaging mode, oxide debris has lower contrast than metallic debris in the fretting 
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scars due to its lower average atomic number. For the 𝑅6 pairs, it can be seen that the 

fretting scar is only sparsely covered in oxide after 𝑁 = 5×103 cycles, but that an oxide 

debris bed has fully covered the scar following 𝑁 = 1×105 cycles. This oxide bed is seen 

to be non-uniform, with evidence at 𝑁 = 5×106 cycles that the oxide delaminates locally 

and thus exposes the underlying metallic material to wear further. In contrast, in the 

𝑅160 pairs, the pit-peak features observed in the early stages (𝑁 = 5×103 cycles) are 

seen to have a predominantly metallic character, indicating that they are formed by 

metallic transfer between the specimens. After 𝑁 = 1×105 cycles, the surface is covered 

mainly by an oxide debris bed, although patches where there is no oxide coverage exist. 

This situation remains after 𝑁 = 1×106 cycles, and it is only after 𝑁 = 5×106 cycles that 

the oxide coverage in the fretting scar is largely uniform. Indeed, after 𝑁 = 5×106 cycles, 

there are no significant differences in the oxide coverage in the wear scar between the 

𝑅6 and the 𝑅160 pairs. 
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Figure 4.6: BSE images of the top view of the fretting wear scar on flat specimens for 
fretting tests conducted over a range of test durations, from 𝑵 = 5×103 cycles to 𝑵 = 5×106 
cycles with (a) 𝑹𝟔 specimen pairs; (b) 𝑹𝟏𝟔𝟎 specimen pairs. 

4.3 Development of the model 

4.3.1 Link between wear scar width and wear volume in a cylinder-on-flat 
contact. 

To facilitate the development of a model which allows the dependence of the fretting 

wear rate upon the scar width to be developed (see Section 4.3.2), a mathematical 

relationship between the wear scar width and volume is required; such a relationship 

is proposed, based upon the assumptions espoused in Figure 4.7. Since the wear scar 

width is large compared with the slip amplitude, it is assumed that the wear scar on the 

flat and cylindrical specimens have the same width and indeed share the same profile. 

It is also assumed that any ploughed material is small and does not result in significant 

errors in measurement of the wear scar width. 
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(a) 

 

(b) 

 

Figure 4.7: (a) A typical contact of high strength steel after fretting test with a small 
amount of transferred material at the edge, illustrating the assumption (b) that the 
combined wear on the two specimens result in a total worn volume equivalent to the 
minor segment of the cylinder. 

With these assumptions, then it can be seen that the total wear volume (i.e. the 

combined material lost from the cylindrical and the flat specimens) is simply the volume 

of the minor cylindrical segment of intersection between the flat and cylindrical 

specimens (Figure 4.7b). Hence, Equation 3.8c, 𝑉! = −(𝑉> + 𝑉#) , can be 

approximated as: 

𝑉! ≈ −𝑉# = −(𝑉@# + 𝑉?#) (4.1) 

Therefore, the relationship between wear scar width (𝑥) and the volume (𝑉!) can be 

described as follows: 

𝑉! = 𝐿 d𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛 d
𝑥
2𝑅f −

𝑥
4
g4𝑅. − 𝑥.f (4.2) 
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It is noted that in the following derivation, 𝑥 ≥ 0. Moreover, in the current experimental 

configuration, the value of wear scar width, 𝑥, cannot exceed 10 mm since this is the 

width of the cylindrical specimen as indicated in Figure 3.1; in addition, 𝐿 = 10 mm in 

the experimental configuration employed. 

Figure 4.8 shows the measured wear volumes plotted against the measured wear scar 

widths, with the geometrical relationship indicated by Equation 4.2. It should be noted 

that the data in Figure 4.8 contain additional experimental results for the 𝑅6 pairs 

outside of the tests reported in this chapter (the additional tests were conducted with 

the same specimen configuration and material and at the same load and fretting 

frequency (i.e. 𝑃 = 450 N and 𝑓(, = 20 Hz, but with Δ∗ between 10 and 25 µm and Δ∗ = 

100 µm). The data presented relate to wear scars where the scar is broadly uniform in 

width across the scar; as can be seen in Figure 4.4, a uniform scar was formed in the 

𝑅6 pairs following test durations as low as 𝑁 = 5×103 cycles, whereas for the 𝑅160 

pairs, much longer test durations were required (𝑁 = 1×105 cycles) before a sensible 

and representative estimate of a scar width could be made. As such, the data for the 

𝑅160 pairs do not exist at the lower values of width and volume due to the wear scar 

not being fully formed in these cases. 
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Figure 4.8: Plot of the wear scar width against net wear volume for fretting tests 
conducted with 𝑹𝟔 and 𝑹𝟏𝟔𝟎 pairs at varying displacement amplitude from 𝚫∗ = 10 µm to 
𝚫∗ = 100 µm with 𝑷 = 450 N; error bars are displayed. 

Figure 4.8 illustrates that for the fully formed wear scars, the measured data fit well with 

the idealised geometrical relationship, but the fit is better for the 𝑅6 pairs than for the 

𝑅160 pairs. The average difference between the predicted and measured volumes for 

a given scar width were 14±8% and 22±7% for the 𝑅6 and 𝑅160 pairs respectively 

(with the uncertainty representing the standard deviation of the difference). It is notable 

that the measured wear volume for a given scar width is always less than predicted 

value, as would be expected given the assumptions made; in addition, there is no clear 

trend in the fractional difference in wear scar width across the range examined. 

However, the accuracy of the estimation of wear volume and wear scar width should 

be taken into consideration. The accuracy investigation described in Section 3.5.3 

indicated that there is a systematic bias between the predicted and measured volumes 

with the set of methods employed in this work, especially for 𝑅160 tests. The existence 

of such systematic error suggests that the fit for 𝑅160 tests as shown in Figure 4.8 

might be improved by a reasonable amount. 
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4.3.2 Modelling the effect of wear scar size on the wear rate 

In the literature addressing the third-body approach in fretting, it is suggested that in 

certain circumstances, the rate of wear in a fretting contact is limited by the rate of 

debris ejection from the contact (as opposed to the rate of material removal from the 

opposing surfaces). A schematic diagram suggesting how this may relate to the size of 

the wear scar was presented earlier in Figure 4.2. It is proposed that the debris flow 

will be parallel to the slip direction with a velocity (displacement of debris particle per 

cycle) which is a function of many of the experimental parameters (such as slip 

amplitude, applied load, temperature, etc.); however, given that none of these were 

changed during the experiment, it is assumed that any changes in the debris flow during 

these tests will be associated only with changes in the width of the wear scar as the 

test proceeds. The physics of the dependence of the debris flow on the wear scar width 

is not fully understood; however, two proposals are offered, both of which lead to the 

same dependence of wear rate upon the scar width: 

• It may be assumed that the debris flow velocity is independent of the wear scar 

width, which means that the residence time of any debris particle within the 

contact increases with the wear scar width. If it is assumed that, for wear to 

proceed, debris must be continually eliminated from the contact, and that the 

rate of debris elimination controls the rate of wear, then it is proposed that the 

wear rate will be proportional to the inverse of the debris residence time, i.e. $
1
. 

• Alternatively, it may be assumed that the flow of particles is proportional to the 

gradient of their concentration between where they are formed (in the contact) 

and where they are eliminated (the edge of the contact). If it is assumed that 

their concentrations at the point of formation and elimination are fixed, then the 

gradient is simply controlled by the wear scar width, again leading to the 

hypothesis that the wear rate will be proportional to $
1
. 
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As such, for situations where debris ejection from the contact is the rate determining 

step (i.e. the region to the right of the vertical line in Figure 4.2), 

𝑑𝑉!
𝑑𝐸%

=
𝑘
𝑥

(4.3) 

where 𝑘 is a parameter describing the scar width-dependent wear rate of the contacting 

pair, which itself can be dependent upon other fretting parameters such as normal load 

and slip amplitude. 

So far, relationships between the wear volume and the wear scar width (Equation 4.2), 

and the wear scar width and the wear rate (Equation 4.3) have been determined. 

Finding the derivative of 𝑉!  in terms of 𝑥 from Equation 4.2 results in the following 

equation (see Appendix A for details): 

𝑑𝑉!
𝑑𝑥 =

𝑥.𝐿
2√4𝑅. − 𝑥.

(4.4) 

Substituting Equation 4.4 into Equation 4.3 gives: 

𝑑𝐸%
𝑑𝑥 =

𝑥/𝐿
2𝑘√4𝑅. − 𝑥.

(4.5	) 

which can be integrated to yield the following expression which describes the 

relationship between 𝐸%  and 𝑥  only when 𝐸% ≥ 𝐸23  (see Appendix A for details of 

derivation): 

𝐸% = 𝑚𝐿 <16	𝑅/ −g4𝑅. − 𝑥.(8𝑅. + 𝑥.)> +	𝐸23 (4.6) 

where 𝑚 = $
AB

 and 𝐸23 is the energy dissipated when wear first occurs (i.e. when 𝑥 first 

becomes a positive number). 𝐸23 is often referred to as the threshold energy for onset 

of wear [24, 83]. 
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Although a derivation of an equation describing the direct relationship between 𝐸% and 

𝑉! is not trivial (see Appendix A for that derivation), a set of parametric equations based 

on wear scar width was established: 

𝑉! = 𝐿 d𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛 d
𝑥
2𝑅f −

𝑥
4
g4𝑅. − 𝑥.f (4.7𝑎)	

𝐸% = 𝑚𝐿 <16𝑅/ −g4𝑅. − 𝑥.(8𝑅. + 𝑥.)> + 𝐸23 (4.7𝑏) 

That is, both 𝐸% (Equation 4.7a) and 𝑉! (Equation 4.7b) can be evaluated at a certain 

value of 𝑥 to form (𝐸% , 𝑉!) as a point on the trajectory describing the curve of 𝑉! as a 

function of 𝐸%. Equation 4.7b is transformed into a linear function in the form of 𝐸% =

𝑎𝑋 + 𝐸23  by assigning d16𝑅/ − √4𝑅. − 𝑥.(8𝑅. + 𝑥.)f to 𝑋 and 𝑚𝐿 to 𝑎 (as shown in 

Equation 4.8). As such, constants 𝑚 and 𝐸23  were determined by solving the linear 

equation by using the transformed experimental results for both the 𝑅6 and 𝑅160 tests. 

𝐸* = 𝑚𝐿 @16𝑅2 − D4𝑅/ − 𝑥/(8𝑅/ + 𝑥/)J + 𝐸+, 

↓ 
𝐸% = 𝑎𝑋 + 𝐸23 (4.8) 

Although these two specimen pair geometries (𝑅6 and 𝑅160) appear to exhibit very 

different wear rates overall, i.e. the traditional concept of observed wear rate, defined 

as wear volume per unit energy dissipated, (and those rates change with the cycle 

count), constants 𝑚 and 𝐸23 evaluated for these two geometries are rather similar. The 

values of 𝑚  are as follows (with subscripts indicating the radius of the cylindrical 

specimen in the pair): 𝑚A = 2.29 kJ×mm-4 and 𝑚$A0 = 2.67 kJ×mm-4, a difference of less 

than 15%; the corresponding values of 𝐸23 for these two sets of data are: 𝐸23_A = 0.418 

kJ and 𝐸23_$A0 = 0.702 kJ (a difference of less than 50%). To demonstrate that this 

methodology is appropriate and that it robustly describes these two sets of data and 

their evolutions with the test duration, two curves were calculated based on the 
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parametric equations defined by Equation 4.7a and Equation 4.7b for 𝑅6 and 𝑅160 

tests with common values of 𝑚 and 𝐸23, i.e. the only different value used during the 

calculation is the radius of cylindrical specimen; specifically, the mean values of 𝑚 and 

𝐸23 were employed, namely 𝑚 = 2.48 kJ×mm-4 and 𝐸23 = 0.560 kJ. Figure 4.9 shows 

the experimental data plotted against the calculated values for both 𝑅6 and 𝑅160 pairs; 

the validity of the methodology and hypothesis is clear from the correlation between 

the data and the predictions. 

 

Figure 4.9: A comparison between the experimental data and the calculated values based 
on the parametric equations defined by Equation 4.7a and Equation 4.7b showing the 
wear volume as a function of dissipated energy for fretting tests conducted with 𝑹𝟔 pairs 
and 𝑹𝟏𝟔𝟎 pairs; error bars are displayed. 

4.4 Discussion 

4.4.1 Wear scar characteristics 

In previous research that has examined the effects of specimen geometry on the 

fretting wear behaviour of non-conforming contact pairs [18, 20, 23, 36], it can been 

seen that more conforming contacts result in lower wear rates (as has been seen in 
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this chapter). In the study conducted by Warmuth et al. which used the same steel as 

in the current study [20, 23], it was observed that 𝑅6 geometries resulted in U-shaped 

wear scars, whereas 𝑅160 geometries resulted in large pits and peaks on the wear 

surfaces which were associated with metallic transfer between the specimens. 

However, in these papers, the fretting tests were conducted only for a relatively short 

test durations (𝑁 = 1×105 cycles). It was proposed by Warmuth et al. [23] that these pit-

peak features were formed when the rate of oxygen ingress into the contact was too 

low to result in oxidation of the nascent metal surfaces formed as part of the wear 

process before metal-to-metal transfer could occur, and that more conforming contacts 

restricted this oxygen ingress due to the larger widths of the fretting contacts. 

In the current study, it can be seen that these pit-peak features were never observed 

for tests with the 𝑅6 geometry (additional tests with test durations as low as 𝑁 = 500 

cycles were conducted, but U-shaped scars were always observed), and it is proposed 

that this is due to the ease of oxygen ingress into these contacts. However, whilst the 

pit-peak features were observed for tests with small numbers of cycles (𝑁 < 1×105 

cycles) with the 𝑅160 pairs, they were eliminated at higher numbers of cycles (𝑁 > 

1×106 cycles), despite the fact that the scar widths were getting larger as the wear 

proceeded (which presumably further restricts oxygen ingress into the scar). It is 

proposed that whilst oxygen ingress into the scar will become more limited by increases 

in the wear scar width associated with wear, the corresponding increase in the 

restriction of wear debris expulsion from the contact (and the associated reduction in 

wear rate) is the dominant effect; hence, as the scars grow at higher numbers of cycles, 

the oxygen ingress ceases to be a rate-determining process, RDP, (and thereby a 

mechanism-determining process), with the debris expulsion from the scar taking this 

role. Please note here that, when considering the evolution of the wear contact for 𝑅160 

pairs, the adhesive wear observed at the early stage is not necessarily due to the 

depletion of oxygen being transported into the contact, and could be in fact initial 
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transient adhesion before the steady state is established where debris ejection is the 

RDP throughout the test (as illustrated in Figure 2.2c). Nevertheless, the main 

argument here remains intact that, for the test conditions employed in the current study, 

the transport of oxide debris out of the contact is dominating the fretting process. 

It should also be noted that the pit-peak features exhibited at the early stage of tests 

with 𝑅160 pairs (i.e. where 𝑁 < 1×105 cycles) are generally circular in shape as shown 

in Figure 4.4 and Figure 4.6 rather than forming uniformly in a rectangular shape as 

might be expected for a line contact. Similar observations can be found on previous 

works conducted in the University of Nottingham utilising the same testing rig [116, 

117]. As discussed in Chapter 3, specimen surface tolerance and imperfect alignment 

mean that there will be variations in the initial pressure distribution on the contact. 

Under normal conditions of wear, any such variations are rapidly eliminated since the 

highest pressures also result in the highest rates of surface recession. However, where 

adhesive (metal-to-metal contact without sufficient oxidation) occurs, material can be 

laterally transported to form a metallic peak which this carries a higher proportion of the 

load, thus exacerbating further damage in this region and growth of the pit-peak feature. 

These observations also indicate the need to examine the mechanisms of fretting wear 

across a wide range of durations; it was proposed in earlier work [23] that the pit-peak 

features may be significant in terms of the tendency for fretting fatigue. However, for 

many components in service, the numbers of fretting cycles are much larger than those 

typically employed in laboratory tests; given the changes in mechanism observed here, 

it is argued that misleading conclusions may be drawn if the test conditions do not 

replicate those seen in service or can be demonstrated to have reached a steady-state. 

4.4.2 Wear rate dependence on contact width in fretting 

Whilst the general concept of the competition between debris-formation and debris-

expulsion to control the wear mechanisms and rates of wear has been well accepted 
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since the publications of Godet and co-workers [19], a physically-based quantitative 

model is initially outlined in this study which proposes that in situations where the rate 

of wear in fretting is limited by debris expulsion from the contact, the wear rate is 

inversely proportional to the width of the scar. The model is dependent upon the 

observation that the total wear volume of the fretting pair is very close to that of a minor 

segment of the cylinder defined by the wear scar width. The model is in good agreement 

with the experimental data and is able to predict the evolution of wear volumes with 

fretting duration for two very different contact geometries in which the wear volumes 

are clearly seen to be very dependent upon these geometrical differences. 

It is not clear where the transition from the debris-formation controlled regime and the 

debris-expulsion controlled regime occurs (see Figure 4.2), but given the correlation 

between the experimental data and the predictions based upon the hypothesis, it may 

be assumed that this transition occurs at relatively small wear scar widths (i.e. the wear 

rate is debris-expulsion controlled from an early stage). The exceedingly high rates of 

wear that the model predicts as the scar width tends towards zero are not observed for 

two reasons; (i) the minimum scar widths (at the beginning of the test) are finite due to 

elastic deformation; the initial Hertzian contact widths (full width) under the test 

conditions are 111 µm and 572 µm for the 𝑅6 and 𝑅160 pairs respectively; (ii) at small 

scar widths, debris expulsion ceases to be the rate-determining mechanism, with the 

rate of debris formation itself taking that role instead. 

4.4.3 Consideration of debris expulsion effects in research programmes 

As discussed, the role of debris expulsion from a fretting contact is more significant 

than it is in sliding wear in controlling both the rates and mechanisms of wear. However, 

much fretting research (particularly that which seeks to develop new fretting resistant 

materials or compares the behaviour of different materials) simply considers the wear 

rates without considering whether the effects observed are associated with changes in 
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the rate of debris formation or with changes in the rate of debris ejection from the 

contact. 

Although this chapter has focussed on the influence of the wear scar size (both initial 

size and evolved size in a non-conforming contact due to the wear process itself) on 

the rates of wear (controlled by debris expulsion), it is recognised that many other 

factors also control debris expulsion from the scar, including initial geometry (e.g. flat-

on-flat, sphere-on-flat) and contact size, fretting stroke, fretting frequency, temperature, 

hardness of the contacting materials etc [21, 22, 97, 118, 119]. As such, it is argued 

that consideration of debris expulsion from a contact (in particular, via SEM analysis of 

the wear scars) is a critical part of research in the field of fretting, and that caution needs 

to be exercised when comparing wear rates in situations in which an analysis of the 

debris expulsion from the contact has not been considered. 

4.5 Conclusions 

In fretting, the wear rate can be either controlled by the rate of debris formation within 

the contact or by the rate of debris ejection from the contact. In the current chapter, the 

concept of the rate-determining process (RDP) is suggested to analyse the wear 

behaviour in fretting, which proposes that both the debris formation and ejection will 

have a maximum rate at which they can be sustained under certain conditions, and the 

observed wear rate is determined by the process with the smallest of these maximum 

rates. It was observed in this chapter that, in fretting wear of contacts with a cylinder-

on-flat geometry (where contact size increases continuously with the exposure to wear), 

the observed wear rate is controlled by the process of debris being transported out of 

the contact, which is dependent upon the evolving size of the wearing contact (and 

thereby being the RDP). In contrast to the constant wear rate that is widely adopted in 

fretting research, the instantaneous wear rate is used in the current chapter, which has 

been shown to be inversely proportional to the wear scar width, meaning that changes 
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in wear rate with initial contact geometry and the duration of fretting can be 

quantitatively explained. The validity of the model is demonstrated by its ability to 

account for significant differences in measured wear rate (with either geometry of test 

duration). The model thus indicates that fretting wear is contact size-dependent and 

cannot be described adequately by an Archard-type formulation. It is noted that this 

conclusion relates only to a cylinder-on-flat configuration, and that for other contact 

geometries (e.g. annular ring contact or sphere-on-flat contact), the dependence of the 

rate of debris expulsion from the contact on the contact size will be different. 

For the geometry employed in this work, the development of the relationship between 

wear scar width and wear rate required a relationship between the wear scar volume 

and width. A simple geometrical relationship was proposed and validated by the 

agreement between the measured data and predicted values. 

Finally, it is noted that for the 𝑅160 contact pairs, the wear mechanism changed with 

the test duration. At low cycles (up to 𝑁 = 1×105 cycles), the rate of oxygen ingress to 

the wearing surfaces in the contact was not high enough to facilitate the development 

of an oxide debris bed between the first bodies, and this resulted in pit-peak features 

on the contact surfaces which were associated with metallic transfer between the 

specimens. As the test duration was extended (above up to 𝑁 = 1×106 cycles), the rate 

at which debris was expelled from the contact reduced the overall wear rate sufficiently, 

so that the rate of oxygen ingress was high enough to facilitate the formation of an 

oxide debris bed, and a U-shaped wear scar was formed (as was always observed for 

the less conforming 𝑅6 pairs). This observation indicates that care must be taken in 

fretting testing to ensure that the duration is long enough to ensure that steady-state 

wear mechanisms are operative. 
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Chapter 5 The development of alternative wear 
equations for commonly employed non-conforming 
contact 

5.1 Introduction and chapter outline 

Fretting wear differs from sliding wear in a variety of ways, the most significant being 

that in fretting, the magnitude of the relative displacement between the bodies is 

generally much smaller than the size of the contact between those bodies, meaning 

that debris ejection from the contact needs to be considered as part of the process of 

continual wear [2, 19]; more specifically, the concept of the “tribology circuit” proposes 

that in fretting, wear debris elimination from the contact is required for wear to proceed 

[96]. It is recognised that the rate of debris ejection from the contact will depend upon 

the size of the contact itself [98] since this is the representative of the travelling distance 

of debris before being transported out of the contact [99]. 

As discussed in Chapter 4, fretting wear of metals under conditions where debris 

predominantly consists of metal oxides, there are two key processes, either of which 

may be the factor that controls the observed rate of wear: 

• the rate of formation of the oxide debris (itself dependent amongst other things 

upon the rate of oxygen ingress into the contact [23, 91, 106]); 

• the rate of debris ejection from the contact (itself dependent amongst other 

things upon the contact size and the rheology of the bed [99] and the tendency 

for the oxide debris particles to agglomerate and potentially sinter [21, 97, 120]). 

At the start of a test, there will be a transient period where (amongst other things [121]) 

the debris bed in the contact is building towards a steady state thickness [99]. Once 

steady state is reached, the rate of debris formation and the rate of its ejection from the 

contact must be equal [37]. 
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There has been significant recent research progress in considering the effect of 

transport processes in fretting, both in terms of transport of key species into the contact 

(in particular oxygen) [106] and in terms of transport of debris out of the contact (as 

discussed in Chapter 4). Which of these processes is rate-determining will depend 

upon the conditions under which the fretting is taking place; in particular, it is noted that 

both transport of oxygen into the contact and transport of debris out of the contact 

depend upon the physical size of the wear scar. The work considered in the current 

thesis only addresses situations where debris ejection is rate determining (i.e. it does 

not address situations where transport of oxygen into the contact is rate-determining). 

The recent work by Baydoun et al. [106] indicates that transport of oxygen into the 

contact will tend to become the rate-determining as the contact size increases and as 

the time-based rate of wear (i.e. volume lost per unit time) increases. 

In concluding that the wear rate may (under certain circumstances) be dependent upon 

the size of the contact means that under those circumstances, descriptions of wear rate 

using Archard-type approaches are no longer adequate. Although not explicitly stated, 

it is implicitly assumed in the Archard-type approaches that the wear rate is governed 

by the rate of debris formation alone, with this being independent of any transport of 

species either in or out of the contact. 

The influence of contact size on the rate of fretting may be less of an issue in test 

programmes where comparisons between different materials or different test conditions 

are the primary aim of the research, as long as the tests are all conducted with a contact 

of the same size and with a geometry where the contact size does not change during 

the course of the test. However, for a variety of reasons, laboratory fretting testing is 

very often conducted using non-conforming specimen pair configurations where the 

size of the contact changes as the test proceeds; common geometries of this type are 

(i) cylinder-on-flat (CF); (ii) sphere-on-flat (SF); (iii) crossed-cylinders (CC). In such 

configurations, the influence of the radii of the non-plane bodies on the wear rate is well 
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known [18, 20, 23, 90, 107]. In such cases, the wear scar increases in size (in a manner 

dependent upon the geometry of the two first bodies) as wear proceeds [18], and this 

will result in a change in the rate of debris flow from the contact as the test proceeds. 

Fillot et al.[37] noted that in the steady state, the rate of formation of debris and the rate 

of debris flow from the contact must be equal. This idea was developed in the previous 

chapter where the concept of the rate-determining process was outlined; in this, rates 

of the two processes (debris formation and debris ejection from the contact) are 

considered separately, with the process with the lower of the two rates at any point in 

a test being termed the rate-determining process. The two rates as a function of wear 

scar width are illustrated schematically in Figure 5.11 which indicates that for a non-

conforming specimen pair configuration (where the wear scar grows as a test proceeds), 

a change in the rate-determining process may occur during a test as the wear scar 

grows in size due to continued material removal. It is therefore argued that a nominal 

measure of the wear scar size (related perhaps to the initial contact size or to the final 

size [18, 90, 107]) is not sufficient in analysis of the evolution of fretting, and that the 

evolution of the scar size throughout a test needs to be considered and understood. 

 

Figure 5.1: Schematic diagram illustrating the dependence of rates of debris formation 
and debris ejection on wear scar width, with regions where debris formation and debris 
ejection are the rate-determining processes (i.e. the process with the lower of the two 
rates at any scar width) being identified. 

 
1 Please note that Figure 5.1 is simply a re-presentation of Figure 4.2 and is reproduced here simply to aid 
the flow of this chapter 
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In the previous chapter where the concept of the rate-determining process was 

proposed, it was demonstrated that for cylinder-on-flat fretting of a high strength steel 

(with the fretting motion perpendicular to the axis of the cylinder as shown in Figure 

5.22), the instantaneous wear rate was inversely proportional to the wear scar width, 𝑥 

(the scar width being as indicated in Figure 5.2), indicating that the wear rate was being 

controlled by debris ejection from the contact for almost the entire duration of each of 

these tests (i.e. that the period where debris formation was the rate determining 

process as indicated in Figure 5.1 could be neglected). This dependence of wear rate 

on the contact size invalidates the concept of a constant wear rate in configurations 

with non-conforming pairs in situations where debris ejection is the rate-determining 

process and means that Archard-type approaches (with the total amount of wear being 

proportional to some measure of the exposure to wear) are not appropriate in the 

analysis of the evolution of wear in such situations. 

(a) 

 

(b) 

 

Figure 5.2: (a) Schematic diagram of distribution of wear across two specimens in a 
cylinder-on-flat fretting pair (with a small amount of transferred material at the edge), 
illustrating the assumption (b) that the combined wear on the two specimens result in a 
total net wear volume equivalent to the minor segment of the cylinder. 

 
2 Please note that Figure 5.2 is a re-presentation of Figure 4.7 and, similar to Figure 5.1, is reproduced 
here simply to aid the flow of this chapter 
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In the previous chapter, data were presented relating to the evolution of wear volume 

(𝑉! ) with frictional energy dissipated (𝐸% ) in fretting for two different geometries of 

cylinder-on-flat contact, specifically with a cylinder radius, 𝑅, of both 6 mm and 160 mm; 

these were termed 𝑅6 and 𝑅160 pairs respectively. As can be seen, the evolution of 

wear volume with energy dissipated was very different for the two different geometries, 

and previously, it had been suggested that the Archard-type wear rate was therefore a 

function of contact geometry [18, 20, 23, 90, 107]. However, it was demonstrated in the 

previous chapter that these two data sets could be reconciled via the concept of the 

instantaneous wear rate being proportional to the instantaneous wear scar width; the 

lines predicting the evolution of wear volume with energy dissipated shown in Figure 

4.9 were both derived from the formulation: 

𝑑𝑉!
𝑑𝐸%

=
𝑘$
𝑥

(5.1) 

where: 

𝑘$ = 𝑓(𝑃, 𝛿∗, 𝑇, 𝑓(,⋯) 

indicating that 𝑘$ is a function of a number of important parameters in the fretting wear 

test including the normal load carried by the contact (𝑃), the slip amplitude (𝛿∗), the 

temperature (𝑇), the fretting frequency (𝑓(,) along with the material properties of the 

two bodies. However, in Chapter 4 and also in the current chapter, 𝑘$ is considered to 

be a constant since the experimental test parameters upon which 𝑘$ is dependent are 

held constant in the tests from which the experimental results were derived. 

As suggested in the previous chapter, the physical rationale behind the form of 

Equation 5.1 was based upon either the distance which debris particles need to travel 

before leaving the contact or upon the concentration gradient down which the debris 

flow occurs. In the cylinder-on-flat fretting configuration, it was assumed that debris flow 

was primarily in the direction of the fretting displacement, with this being promoted not 
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only by the action of the displacement itself, but also by the fact that the dimension of 

the approximately rectangular wear scar parallel to the fretting displacement was small 

compared to its dimension perpendicular to the fretting direction. 

Despite the comments made in the previous chapter, it is also recognised here that the 

form of the Equation 5.1 could also be rationalised in terms of the flow rate of debris 

out of the contact being inversely proportional to the area of the contact (𝐴 = 𝑥𝐿) since 

𝐿 is a constant in a line contact such as the one employed in this thesis. From this, it 

might be inferred that the flow rate of debris out of the contact is in fact proportional to 

the pressure in the contact (namely 5
&
), although it is also recognised that the shape of 

the contact (i.e. the aspect ratio in the case of a rectangular wear scar) is also expected 

to affect debris flow. The possibility of this being a contact pressure effect is highlighted 

here since, whilst these two different physical underpinnings are indistinguishable for a 

line contact, they would lead to different outcomes for an initially point contact (such as 

sphere-on-flat or crossed-cylinders) which is to be addressed in this chapter. 

A key issue in the previous chapter where this concept was first proposed for a cylinder-

on-flat fretting contact was that Equation 5.1 could not be readily transformed into a 

relationship directly describing the dependence of the wear volume (𝑉! ) upon the 

energy dissipated (𝐸% ). Instead, both 𝑉!  and 𝐸%  were described individually as a 

function of the wear scar width (𝑥) and cylinder radius (𝑅) (amongst other things), 

yielding a set of parametric equations as follows (originally presented as Equation 4.7): 

𝑉! = 𝐿 d𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛 d
𝑥
2𝑅f −

𝑥
4
g4𝑅. − 𝑥.f (5.2𝑎)	

𝐸% − 𝐸23 = 𝑚$𝐿 <16𝑅/ − g4𝑅. − 𝑥.(8𝑅. + 𝑥.)> (5.2𝑏) 

where 𝐸23 is the energy dissipated when wear first begins to occur (often referred to as 

the threshold energy for onset of wear [24, 83]) and 𝑚$ is a constant related to 𝑘$ from 
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Equation 5.1, such that 𝑚$ =
$
AB$

. As such, the way that the wear scar volume evolved 

with energy dissipated for two very different geometries was rationalised for the first 

time. Curves were generated from Equation 4.7 (or Equation 5.2) for both 𝑅6 and 𝑅160 

pairs using the same values of 𝑚$ (i.e. with the same values of 𝑘$) and the same values 

of 𝐸23 for the two cases; these curves were plotted against the experimental data and 

are shown in Figure 4.9. It can be seen that this approach describes these data well, 

thus validating the hypotheses that underpin Equation 5.1. 

It is noted that the term (𝐸% − 𝐸23) represents the frictional energy dissipated above the 

threshold energy for wear to commence. This will be termed 𝐸%D2 in the current chapter 

(the subscript “dat” being an acronym for “dissipated above threshold”) such that 𝐸%D2 =

𝐸% − 𝐸23. 

Despite the success of this formulation in rationalising the data presented in Figure 4.9, 

it is recognised that it fails to provide a direct description of the relationship between 

the wear volume (𝑉!), the cylinder radius (𝑅) and the energy dissipated (𝐸%) which is 

needed to support an understanding of the dependence of the wear volume upon the 

latter two parameters. Moreover, the formulation of Equation 5.2 was only derived for 

a cylinder-on-flat contact and given that other configurations with non-conforming 

specimen pairs are commonly used in fretting research, there is a need to derive similar 

equations for those configurations, and in doing so, consider the two plausible forms of 

the governing equation, namely that the instantaneous wear rate is inversely 

proportional to a characteristic linear dimension of the scar or that it is proportional to 

the contact pressure (and thus inversely proportional to the area of the contact). As 

such, this current chapter seeks to develop an equation (which will be termed the wear 

equation) for situations where a non-conforming specimen pair configuration is 

employed and where the wear rate is controlled by debris-ejection from the contact; for 

each of the non-conforming specimen pair configurations commonly employed in 
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fretting research (namely cylinder-on-flat (CF), sphere-on-flat (SF) and crossed-

cylinder (CC) geometries), wear equations will be derived which directly describe the 

relationship between the wear volume (𝑉!), the energy dissipated (𝐸%), the relevant 

geometrical parameters and the initial proposed governing equations. 

Additional fretting tests were conducted in exactly the same way as those presented in 

the previous chapter but with different cylinder radii in the contact pair, namely 15 mm 

(𝑅15) and 80 mm (𝑅80). Again, details about the specimens, the test rig and the 

experimental procedures employed in the current chapter are described in Chapter 3; 

test conditions for this chapter are detailed in Table 5.1 as below: 

Table 5.1: Summary of the fretting test conditions for the additional tests for which data 
are presented in Chapter 5. 

Normal load (𝑃) / N 450 

Displacement amplitude (Δ∗) / µm 50 

Cylindrical specimen radius (𝑅) / 
mm 15, 80 

Test duration (𝑁) / 106 cycles 1, 2, 5 

Frequency (𝑓#$) / Hz 20 

Temperature (𝑇) / °C Ambient temperature 

5.2 Derivation of a wear equation for cylinder-on-flat fretting 
configuration 

In the previous chapter, a parametric relationship between wear scar width and wear 

volume was derived for the cylinder-on-flat configuration (re-presented in this chapter 

as Equation 5.2) based upon the governing equation (re-presented in this chapter as 

Equation 5.1) which is valid in describing both of the proposals under consideration, 

namely (i) that the instantaneous wear rate is inversely proportional to a characteristic 

linear dimension of the scar or (ii) that the instantaneous wear rate is proportional to 
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the contact pressure (and thus inversely proportional to the area of the contact). The 

geometric relationship that the wear volume can be determined via wear scar width as 

outlined in Equation 5.2 is fundamental for the concept of instantaneous wear rate. This 

geometric relationship is further validated with additional experimental results on 𝑅15 

and 𝑅80 specimen pairs as shown in Figure 5.3. Similar to Figure 4.8, a good fit 

between the measured data and the idealised geometrical relationship can be 

observed for all specimen pairs, however, the fit is reduced slightly as the contact 

conformity increases, i.e. from 𝑅6  to 𝑅160 . The average difference between the 

predicted and measured volumes for a given scar width were 14±8%, 13±7%, 17±4%, 

and 22±7% for the 𝑅6, 𝑅15, 𝑅80 and 𝑅160 pairs respectively (with the uncertainty 

representing the standard deviation of the difference). 

 

Figure 5.3: Plot of the wear scar width against net wear volume for fretting tests 
conducted with 𝑹𝟔, 𝑹𝟏𝟓, 𝑹𝟖𝟎 and 𝑹𝟏𝟔𝟎 pairs at varying displacement amplitude from 𝚫∗ 
= 10 µm to 𝚫∗ = 100 µm with 𝑷 = 450 N; error bars are displayed. 
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To simplify the development of a wear equation, the wear scar angle, 𝜃, is now selected 

as the measure of the progress of wear for a specimen pair (as opposed to the wear 

scar width, 𝑥 as was previously selected). 

As previously demonstrated, the total wear volume across the two samples of a 

cylinder-on-flat specimen pair is well described by the minor segment of a cylinder 

defined by the chord of intersection between the cylinder and plane specimens (see 

Figure 5.2). The extent of wear is thus described by the angle 𝜃 as illustrated in Figure 

5.4, where the wear scar width, 𝑥, is equal to 2𝑅sin(𝜃). 

 

Figure 5.4: Illustration of the relationship between the wear volume (the minor segment 
of the cylinder) and its corresponding wear scar angle for the cylinder-on-flat fretting 
geometry. 𝟎 ≤ 𝜽 ≤ 𝝅

𝟐
. 

Using the wear scar angle, 𝜃 (0 ≤ 𝜃 ≤ E
.
), allows the parametric equations (Equations 

5.2a and 5.2b) to be rewritten as follows (see Appendix B, Section B1): 

𝑉! = 𝐿𝑅.(𝜃 − sin(𝜃) cos(𝜃))	 (5.3𝑎)	

𝐸%D2 = 𝑚$𝐿𝑅/(cos(3𝜃) − 9cos(𝜃) + 8)	 (5.3𝑏) 

Conducting Taylor series expansions for both Equation 5.3a and Equation 5.3b and 

taking their first non-constant polynomial terms (since these are the dominating terms), 
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approximations for the wear volume and the energy dissipated above the threshold 

(denoted as 𝑉!′ and 𝐸%D2′ respectively) can be written as follows: 

𝑉!′ =
2
3
𝐿𝑅.𝜃/ (5.4𝑎)	

𝐸%D2′ = 3𝑚$𝐿𝑅/𝜃6 (5.4𝑏) 

As can be seen in the next section (Section 5.2.1), the error associated with the 

approximations for a cylinder-on-flat contact is relatively low. As such, it is reasonable 

to assume that 𝑉! ≈ 𝑉!′ when 𝐸%D2 = 𝐸%D2′ for all 𝜃, with the approximation being better 

for smaller values of 𝜃 . The formulation of a direct relationship between the wear 

volume (𝑉!) and the energy dissipated above the threshold (𝐸%D2) is now simply derived 

by eliminating the wear scar angle, 𝜃, from the approximated equations 5.4a and 5.4b, 

yielding the following relationship: 

𝑉! = 2<
1
3>

$.GH
J
𝐿
𝑚$
/K

0..H

𝑅#0..H𝐸%D20.GH	

= 𝐾$𝑅#0..H𝐸%D20.GH (5.5) 

In the previous chapter, the threshold energy (𝐸23 ) for the system in question was 

derived as 0.560 kJ, meaning that 𝐸23 was therefore comparatively small in the context 

of the maximum values of energy being dissipated in those tests of around 300 kJ (see 

Figure 4.9). In situations like this (i.e. tests where the maximum duration is much 

greater than the duration at which wear is first observed to commence), it seems 

reasonable therefore to neglect this threshold energy to enable further simplification of 

the function to take place. This assumption that 𝐸23 ≈ 0 allows a further simplification 

of Equation 5.5 to yield: 

𝑉! = 𝐾$𝑅#0..H𝐸%0.GH (5.6) 
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It is recognised that if there is an obvious threshold energy at which wear is first 

observed in a fretting test dataset, then Equation 5.5 could readily be employed in 

preference to Equation 5.6. However, Equation 5.6 allows data to be processed where 

the threshold energy, 𝐸23, cannot be readily identified from the dataset available. 

5.2.1 Errors associated with the approximation 

The parametric equations given by Equation 5.3 have been shown to be able to 

describe well the dependence of wear volume on both the energy dissipated and the 

geometry of the system for the data presented in Figure 4.9. The approximations of 

these equations to the forms presented in Equation 5.4 have then allowed the 

derivation of the wear equations as presented in Equations 5.5 and 5.6. However, the 

error in moving between the exact equations (Equation 5.3) to the approximate 

equations (Equation 5.4) needs to be understood since the validity (or otherwise) of 

Equations 5.5 and 5.6 are dependent upon this. 

Figure 5.5 shows the relationships between the normalised energy dissipated above 

the threshold energy (𝑒%D2 =
*#%&
I$J@'

) and the normalised wear volume (𝑣! =
K(
J@)

) for the 

exact equations (Equation 5.3) alongside the equivalent for the approximated 

equations (Equation 5.4); from the exact form, Equation 5.3 indicates that the allowable 

range of 𝑒%D2 is between 0 and 8 and that the allowable range of 𝑣! is between 0 and 

E
.
 when 𝜃 is within the range that 0 ≤ 𝜃 ≤ E

.
. It should be noted that in Figure 5.5, the 

axes are normalised to the maximum values, max(𝑒%D2) and max(𝑣!), respectively 

(max(𝑒%D2) = 8 , max(𝑣!) =
E
.

). It can be seen that the wear volume given by 

approximated equations is always less than that given by the exact equations for the 

same value of normalised energy. The error in the wear volume (𝜀K) associated with 

the approximated form when 𝑒%D2 = 𝑒%D2′ is given by: 
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𝜀K =
𝑣!L − 𝑣!
𝑣!

(5.7) 

 

Figure 5.5: Plot of normalised energy dissipated above the threshold against normalised 
wear volume for both the exact (Equation 5.3) and approximate equations (Equation 5.4) 
for a cylinder-on-flat contact across the full range of allowable values of 𝒆𝒅𝒂𝒕 along with 
the fractional error in the wear volume across the same range. 

Figure 5.5 shows that the fractional difference between the normalised wear volume 

given by the exact and the approximated equations (𝜀K) increases as 𝑒%D2 increases, 

but with the magnitude of the error never being greater than 12%. In the previous 

chapter, the maximum value of 𝜃 observed in the test programme (which included 

fretting test durations of up to 5×106 cycles) was 0.32 rad which leads to a fractional 

error, 𝜀K, of only ~0.5%. As such, it can be concluded that the errors in making the 

approximations of the Taylor series expansions for cylinder-on-flat fretting 

configurations are small compared to other sources of error, such as in the 

measurement of experimental data. As such, the wear equation (Equation 5.6) is 

considered a valid equation, with the errors associated with the approximations 

required for its derivation being of an acceptable magnitude for any amount of wear. 
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5.2.2 Experimental verification of the proposed relationship 

The wear data from a cylinder-on-flat fretting contact previously presented in Figure 4.9 

are replotted in the form indicated by Equation 5.6 (i.e. now using the term 𝑅#0..H𝐸%0.GH 

as the abscissa) and presented in Figure 5.6. Please note that data additional to those 

presented in Figure 4.9 are also included in Figure 5.6; these data relate to tests 

conducted in exactly the same way as those presented in the previous chapter but with 

different cylinder radii in the contact pair (𝑅15  and 𝑅80). It can be seen that the 

experimental data generated with the four different geometrical configurations are well 

described across the range of test durations by the function presented in Equation 5.6. 

The dashed lines in Figure 5.6 represent the region of 95% confidence intervals for the 

overall fitting line. 

 

Figure 5.6: Wear volumes from cylinder-on-flat fretting tests of a high strength steel 
plotted as a function of 𝑹)𝟎.𝟐𝟓𝑬𝒅𝟎.𝟕𝟓. The data relating to tests with cylinders with radii of 
6 mm and 160 mm (𝑹𝟔 and 𝑹𝟏𝟔𝟎 respectively) are from Figure 4.9; data related to tests 
with cylinders with radii of 15 mm and 80 mm (𝑹𝟏𝟓 and 𝑹𝟖𝟎 respectively) are additional 
data which relate to experiments with identical materials conducted under the same 
fretting conditions, but simply with different cylinder radii; error bars are displayed. 
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5.3 Derivation of wear equations for sphere-on-flat and 
crossed-cylinders fretting configurations 

The concept that the instantaneous wear rate may be inversely proportional to a 

characteristic linear dimension of the scar or that it may be proportional to the contact 

pressure (and thus inversely proportional to the area of the contact) lead to two different 

potential governing equations in the case of initially point contacts (i.e. sphere-on-flat 

and crossed-cylinders geometries). Wear equations based upon the governing 

equation which states that the instantaneous wear rate is inversely proportional to a 

characteristic linear dimension of the scar will be derived for the SF and CC contact 

configurations; however, due to the complexities of the analysis, the wear equation 

based upon the governing equation which states that the instantaneous wear rate is 

proportional to the contact pressure (and thus inversely proportional to the area of the 

contact) will be derived only for the SF contact configuration. 

5.3.1 Characteristic wear scar width for sphere-on-flat and crossed-cylinders 
fretting configurations 

The work on the cylinder-on-flat contact configuration presented in Section 5.2 is simply 

an extension of the work in the previous chapter where Equation 5.1 was first proposed. 

In those cylinder-on-flat fretting tests where the fretting motion is perpendicular to the 

axis of the cylinder and the wear scar dimension perpendicular to the fretting direction 

are generally much larger than its dimension parallel to the fretting motion, it was 

assumed that the debris flow velocity out of the contact was parallel to the direction of 

the fretting motion; moreover, at any point in the evolution of the wear scar, it was 

assumed the wear scar width, 𝑥, was the same across the length of the contact and 

could therefore be readily defined. 

As for the cylinder-on-flat (CF) case, it is assumed that the total wear volume across 

the two components of a SF specimen pair can be described by the spherical cap of 

intersection of the sphere with the plane. Similarly, it is again assumed that the total 
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wear volume across the two components of a CC specimen pair can be described by 

the volume of intersection of two crossed cylinders. The extent of wear for both cases 

is defined by the wear scar angle 𝜃 as illustrated in Figure 5.7. 

  

(a) (b) 

Figure 5.7: Illustration of the relationship between the wear volume (defined by a 
spherical cap) and its corresponding wear scar angle for (a) the sphere-on-flat; (b) the 
crossed-cylinders geometry. 𝟎 ≤ 𝜽 ≤ 𝝅

𝟐
. The wear volume for the sphere-on-flat 

configuration is defined by a spherical cap, while the wear volume for the crossed-
cylinders is the intersection of two crossed cylinders. 

As can be seen from Figure 5.7, there is no geometrically straightforward measure 

(akin to the uniform wear scar width 𝑥 which was used to characterise the wear scar 

for the CF geometry) by which the wear scar can be characterised for either the SF or 

the CC fretting configurations. In both cases, the wear scar shape will be equiaxed 

(assuming that the slip amplitude is small compared to the width of the wear scar); in 

the case of the SF configuration, the shape of the wear scar projection will be a circle, 

whereas for the CC geometry, whilst the projection of the wear scar remains equiaxed 

as wear progresses, its shape changes from circle in the early stages towards a square 

as wear progresses as illustrated in Figure 5.8. 
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Figure 5.8: Illustration of the shape change of the projection of the wear scar for the 
crossed-cylinders configuration as wear progresses. 

Whilst the fretting displacement will tend to promote debris flow parallel to it, the 

equiaxed nature of the scars (on sphere-on-flat and crossed-cylinders configurations) 

will mean that some (perhaps a significant fraction) of the debris will escape the scar 

from the sides of the contact (termed side-leakage [103]) which means that such debris 

will have a component of its velocity perpendicular to the fretting direction. As such, 

there is no intuitively obvious definition of the wear scar width in the direction of the 

fretting motion over which the debris needs to travel to exit the wear scar. 

Despite this complexity, a simple proposal is made at this stage, namely that a 

characteristic wear scar width can still be defined both for the sphere-on-flat (SF) and 

the crossed-cylinders (CC) configurations, with this being the largest value of the scar 

width parallel to the direction of fretting since it is argued this will be rate-controlling in 

terms of the debris flow of out of the scar. As such, the characteristic wear scar width 

for the SF contact is the diameter of the circular wear scar as illustrated in Figure 5.7a 

(termed as 2𝑟), which is equal to 2𝑅sin(𝜃); similarly, the characteristic wear scar for the 

CC contact is the maximum of wear scar width as shown in Figure 5.7b (termed as 𝑤), 

which is also equal to 2𝑅sin(𝜃). 
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5.3.2 Wear equations based upon a characteristic linear dimension of the wear 
scar for the sphere-on-flat and crossed-cylinders contact configurations 

With the definition of the characteristic wear scar width for both the SF and CC 

configurations as described in the previous section (Section 5.3.1), the same 

assumption that the instantaneous wear rate is inversely proportional to the 

characteristic wear scar width is adopted in each case (Equation 5.8a is the governing 

equation for the SF while Equation 5.8b is for the CC): 

𝑑𝑉)
𝑑𝐸%

=
𝑘.
2𝑟

(5.8𝑎)	

𝑑𝑉!
𝑑𝐸%

=
𝑘/
𝑤

(5.8𝑏) 

where: 

𝑘. = 𝑔(𝑃, 𝛿∗, 𝑇, 𝑓(,⋯)	

𝑘/ = ℎ(𝑃, 𝛿∗, 𝑇, 𝑓(,⋯) 

indicating that 𝑘. and 𝑘/ are functions of various test parameters as previously defined. 

Please note that, similar to 𝑘$, 𝑘. and 𝑘/ are treated as constants in the current chapter. 

Using same methodology as outlined for the CF contact configuration (as outlined in 

Section 5.2), parametric equations for the wear volume and the energy dissipated 

above the threshold energy functions of the wear scar angle 𝜃 can be derived for both 

the SF (Equation 5.9a and Equation 5.9b) and CC (Equation 5.10a and Equation 5.10b) 

as follows (with details of their derivation being presented in Appendix B, Section B2 

and Section B4): 

𝑉! =
𝜋𝑅/

12
(cos(3𝜃) − 9 cos(𝜃) + 8) (5.9𝑎)	

𝐸%D2 = 𝑚.𝜋𝑅6(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) (5.9𝑏) 
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𝑉! =
𝜋𝑅/

16
(cos(3𝜃) + 2cos(2𝜃) − 17 cos(𝜃) + 14) (5.10𝑎)	

𝐸%D2 = 𝑚/𝜋𝑅6(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) (5.10𝑏) 

By performing Taylor series expansions for both Equations 5.9 and 5.10 and again 

taking their first non-constant polynomial terms, the wear volume and the energy 

dissipated above the threshold can be approximated for both the SF (Equation 5.11a 

and Equation 5.11b) and CC (Equation 5.12a and Equation 5.12b) configurations: 

𝑉!′ =
𝜋𝑅/𝜃6

4
(5.11𝑎)	

𝐸%′ =
32
5
𝑚.𝜋𝑅6𝜃H (5.11𝑏) 

𝑉!′ =
𝜋𝑅/𝜃6

4
(5.12𝑎)	

𝐸%D2′ =
384
5
𝑚/𝜋𝑅6𝜃H (5.12𝑏) 

Again, as shown in a following section concerning error analysis for both the sphere-

on-flat and crossed-cylinders contact (Section 5.3.4), the error associated with the 

approximation is relatively low, which leads to the conclusion that 𝑉! 	≈ 𝑉!′  when 

𝐸%D2 = 𝐸%D2′ for all 𝜃, with the approximation being better for smaller values of 𝜃. The 

formulations of a direct relationship between the wear volume (𝑉!) and the energy 

dissipated above the threshold (𝐸%D2) for the SF and CC configurations are now simply 

derived by eliminating the wear scar angle, 𝜃 , from the approximated equations 

presented in Equations 5.11 and 5.12, yielding the following relationship in the case of 

SF (Equation 5.13) and CC (Equation 5.14) configurations respectively: 

𝑉! =
1
4<

5
32>

0.M

J
𝜋
𝑚.
6K

0..

𝑅#0..𝐸%D20.M 	

= 𝐾.𝑅#0..𝐸%D20.M (5.13) 
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𝑉! =
1
4<

5
384>

0.M

J
𝜋
𝑚/
6K

0..

𝑅#0..𝐸%D20.M 	

= 𝐾/𝑅#0..𝐸%D20.M (5.14) 

Using the aforementioned assumption that 𝐸23 ≈ 0 as discussed for the cylinder-on-flat 

contact, further simplification of both Equation 5.13 and Equation 5.14 can be carried 

out to yield simplified wear equations for the SF (Equation 5.15) and CC (Equation 5.16) 

configurations in fretting: 

𝑉! = 𝐾.𝑅#0..𝐸%0.M (5.15) 

𝑉! = 𝐾/𝑅#0..𝐸%0.M (5.16) 

It is worth noting that the forms of the wear equations for both SF and CC configurations 

are identical, i.e. both take the form the 𝑉! ∝ 𝑅#0..𝐸%0.M as indicated in Equation 5.15 

and Equation 5.16. As shown in Figure 5.8, the shape of wear scar for CC contact is 

close to a circle when 𝜃  is small, which is very similar to that of the SF contact. 

Furthermore, the method outlined in this chapter involves the Taylor expansion of the 

parametric equations of 𝑉! and 𝐸%D2 at the point of 𝜃 = 0, followed by elimination of the 

internal variable 𝜃. The implication is that the approximation can capture the exact 

behaviour of the functions when 𝜃 = 0, with the performance of the approximation being 

gradually reduced with the increase of 𝜃. As such, the similarity between Equation 5.15 

and Equation 5.16 is associated with the similarity of the contacts when 𝜃 is small and 

the nature of the Taylor expansion. 

5.3.3 Wear equations based upon a characteristic area of the wear scar for the 
sphere-on-flat contact configuration 

Further to the assumptions made in the derivation of the wear equations in Section 

5.3.2, a second proposal of the governing equation for the instantaneous wear rate is 

considered here for both the sphere-on-flat and the crossed-cylinder contact, namely 
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that the instantaneous wear rate is inversely proportional to the area of the wear scar3. 

It should be noted that the relationship between the area (𝐴) and angle (𝜃) of the wear 

scar for the SF configuration can be readily described as 𝐴 = 𝜋𝑅. sin.(𝜃) where the 

radius of the circular wear scar is equal to 𝑅sin(𝜃) as illustrated in Figure 5.7. However, 

an equivalent relationship is difficult to formulate for the CC configuration; as shown in 

Figure 5.8, the evolution of the wear scar shape for the CC is complex and requires 

further analysis which is beyond the scope of this thesis. As a result, the derivation of 

the wear equation based upon the second form of the governing equation related to 

the area of the contact (Equation 5.17) will be carried out only for the SF contact: 

𝑑𝑉!
𝑑𝐸%

=
𝑘.L

𝐴
(5.17) 

where: 

𝑘.L = 𝑔(𝑃, 𝛿, 𝑇, 𝑓(, …) 

suggesting that 𝑘/3  is a function of various test parameters as previously defined but, 

again, is treated as a constant for the derivation of the wear equation. 

Using the assumption above, and the same methodology as outlined in the previous 

sections (Section 5.2 and Section 5.3.2): the derivation of the parametric equations of 

wear volume and dissipated energy in terms of wear scar angle, followed by Taylor 

expansion of the parametric equations and the elimination of the variable 𝜃 , an 

equivalent wear equation can be derived. The details of the methodology are presented 

in Appendix B, Section B3. 

Parametric equations can be derived as follows: 

 
3 For the CF configuration, the hypotheses that the wear rate is inversely proportional to 𝑥 or that it is 
inversely proportional to 𝐴 lead to the same equation (since 𝐴	 = 	𝑥	𝐿 where 𝐿 is a constant). As such, it is 
not considered further here.  
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𝑉! =
𝜋𝑅/

12
(cos(3𝜃) − 9 cos(𝜃) + 8) (5.18𝑎)	

𝐸%D2 = 𝑚.
L 𝜋.𝑅H(−3cos(5𝜃) + 25cos(3𝜃) − 150 cos(𝜃) + 128) (5.18𝑏) 

Performing Taylor expansions on Equation 5.18 to approximate the wear volume and 

the energy dissipated above the threshold gives: 

𝑉!′ =
𝜋𝑅/𝜃6

4
(5.19𝑎)	

𝐸%D2′ = 40𝑚.
L 𝜋.𝑅H𝜃A (5.19𝑏) 

Given that the error associated with the approximation is relatively low (Section 5.3.4), 

eliminating the internal variable 𝜃 yields the following relationship: 

𝑉! =
1
4 <

1
40>

0.AG
J

1
𝜋𝑚.

L .K
0.//

𝑅#0.//𝐸%D20.AG	

= 𝐾.L𝑅#0.//𝐸%D20.AG (5.20) 

Equation 5.20 is further simplified by assuming 𝐸23 ≈ 0  to give the wear equation 

derived from the area based governing equation for the SF contact: 

𝑉! = 𝐾.L𝑅#0.//𝐸%0.AG (5.21) 

5.3.4 Errors associated with the approximation 

In previous sections (Section 5.3.2 and Section 5.3.3), the approximated parametric 

equations have allowed wear equations for the sphere-on-flat and the crossed-

cylinders configurations to be derived for all three cases, i.e. (a) the wear equation for 

the SF contact from the linear basis of the governing equation; (b) the wear equation 

for the CC contact from the linear basis of the governing equation; (c) the wear equation 

for the SF contact from the area basis of the governing equation. However, as 

discussed in Section 5.2.1, the errors associated with moving from the exact parametric 

equations (Equation 5.9, Equation 5.10 and Equation 5.18) to the approximated 
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parametric equations (Equation 5.11, Equation 5.12 and Equation 5.19) by performing 

Taylor expansion need to be understood in order that the validity of the approximation 

can be assessed. 

The method by which the errors associated with the approximation are as described in 

Section 5.2.1 and will not be described again in detail, with simply the outputs being 

presented. Figure 5.9 shows the relationship between the normalised energy 

dissipated above the threshold energy and the normalised wear volume across the full 

range of allowable wear scar angles 𝜃 (0 ≤ 𝜃 ≤ E
.
) for the exact equations. Alongside 

is plotted the equivalent relationship for the approximated equations across the same 

range. It should be noted that in Figure 5.9, the axes are normalised to the maximum 

values, max(𝑒%D2) and max(𝑣!) respectively. It can be seen from Figure 5.9 that across 

the full range of allowable wear scar angles, the magnitude of the fractional error in the 

wear volume associated with the approximations (𝜀K defined in Equation 5.7) is never 

greater than 11% for case (a); 13% for case (b); and 19% for case (c). As such, it is 

suggested that wear equations (Equation 5.15, Equation 5.16 and Equation 5.21) 

(which have been derived from the Taylor series expansions and the additional 

assumption that 𝐸23 ≈ 0 ) are valid equations for all three cases, with the errors 

associated with the approximations required for derivations being of an acceptable 

magnitude for any amount of wear. 
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(a) (b) 

 

 

(c)  

Figure 5.9: Plot of normalised energy dissipated above the threshold against normalised 
wear volume for both the exact and approximate across the full range of allowable values 
of 𝒆𝒅𝒂𝒕 along with the fractional error in the wear volume across the same range for all 
three cases: (a) SF contact with linear-based governing equation; (b) CC contact with 
linear-based governing equation; (c) SF contact with area-based governing equation. 

The normalised expressions of the energy dissipated above the threshold and the wear 

volume for all three cases in the current section (Section 5.3) are summarised in Table 

5.2 as bellow. In addition, Table 5.2 presents the maximum values of 𝑒%D2 and 𝑣! for 

all three cases as well as their corresponding values of maximum error as indicated in 

Figure 5.9. 
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Table 5.2: Summary of the normalised expressions, the maximum values and the 
maximum error when analysing the errors associated with the approximations for all 
three cases. 

contact 
configurations 

normalised 
expressions maximum values maximum 

error 

SF (linear) 
𝑒*-+ =

𝐸*-+
𝑚/𝜋𝑅4

	

𝑣) =
𝑉)
𝜋𝑅2 

max(𝑒*-+) = 6𝜋	

max(𝑣)) =
2
3 11% 

CC (linear) 
𝑒*-+ =

𝐸*-+
𝑚2𝜋𝑅4

	

𝑣) =
𝑉)
𝜋𝑅2 

max(𝑒*-+) = 102𝜋
− 64	

max(𝑣)) =
3
4 

13% 

SF (area) 
𝑒*-+ =

𝐸*-+
𝑚/
3 𝜋/𝑅5	

𝑣) =
𝑉)
𝜋𝑅2 

max(𝑒*-+) = 128	

max(𝑣)) =
2
3 19% 

 

5.3.5 Experimental verification of the proposed relationships for wear scars 
with equiaxed shapes 

Experimental data are available in the literature [107] against which the two wear 

equations (Equations 5.15 and Equation 5.21) for the sphere-on-flat contact 

configuration can be tested. The data relate to fretting wear of a 52100 steel pair with 

a sphere-on-flat geometry, with a constant slip amplitude of 72 µm. Three sphere radii 

were examined, namely 9.525 mm, 25.4 mm and 50 mm; it should be noted that 

different loads were employed for tests with the three different radii to ensure that the 

initial Hertzian contact pressure was the same across all three geometries. The wear 

data are presented in Figure 5.10 in the form of wear volume as a function of energy 

dissipated for the three different geometries along with the lines of best fit as proposed 

in the original paper; it can be seen that the evolution of the wear scar volume with 

energy is strongly influenced by the geometry of the contacting pairs, with the gradient 

of the regression lines (previously termed the wear rate) decreasing as the radius of 
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the spherical body was increased. These data are now replotted in the forms indicated 

by Equation 5.15 (using the term 𝑅#0..𝐸%0.M  as the abscissa) and by Equation 5.21 

(using the term 𝑅#0.//𝐸%0.AG as the abscissa) and are presented in Figure 5.11a and 

Figure 5.11b respectively. It can be seen (Figure 5.11) that the experimental data 

generated with the different geometrical configurations and test durations are 

reasonably described by either the function presented in Equation 5.15 (Figure 5.11a) 

or the function presented in Equation 5.21 (Figure 5.11b), although it is recognised that 

the data for the three different sphere radii do still form distinct populations in both 

cases, indicating that the assumptions made in the derivation of either equation are not 

entirely valid. 

 

Figure 5.10: Plot of experimental data from the literature [107] showing the wear volume 
as a function of dissipated energy for fretting of a high-strength steel conducted with a 
sphere-on-flat arrangement with three different sphere radii (namely 𝑹𝟗. 𝟓𝟐𝟓 pairs, 𝑹𝟐𝟓. 𝟒 
pairs and 𝑹𝟓𝟎 pairs). 
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(a) (b) 

Figure 5.11: Replot of data from Figure 5.10 showing the wear volumes from sphere-on-
flat fretting tests of a high strength steel [107] plotted as a function of (a) 𝑹)𝟎.𝟐𝑬𝒅𝟎.𝟖; (b) 
𝑹)𝟎.𝟑𝟑𝑬𝒅𝟎.𝟔𝟕. The data relate to tests with different sphere radii of 9.525 mm, 25.4 mm and 
50 mm. 

5.4 Discussion 

5.4.1 Testing of the wear equations against experimental data 

The third body approach [19] and the concept of the tribology circuit [96] both highlight 

the importance of debris ejection from the contact as a critical part of the ongoing 

process of wear, with the concept of the rate-determining process (RDP) as discussed 

in the previous chapter (either debris formation or debris ejection from the contact) 

being based upon these. It was shown that the rate of debris ejection from the contact 

was inversely proportional to the wear scar width for a cylinder-on-flat fretting 

configuration, and the parametric equations derived from it demonstrated that the 

evolution of the wear scar volume with the energy dissipated in the test was non-linear 

(i.e. Archard-type approaches are not appropriate descriptions of behaviour for fretting 

in contacts where debris ejection is the RDP). However, in the work of the previous 

chapter, the governing formulation was presented in the form of parametric equations 

which obscured the relationship desired of a wear equation, namely the direct 
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relationship between the wear volume and a measure of the exposure to wear (in this 

case, the frictional energy dissipated). In the current chapter, a wear equation has been 

derived for the cylinder-on-flat (non-conforming) contact geometry which is based upon 

the same assumptions as employed in the derivation of the parametric equations, 

namely that the rate of wear is always controlled by debris ejection from the contact (as 

opposed to debris formation within the contact) and that the threshold energy dissipated 

(below which there is no wear) is negligible. The wear equation derived is presented in 

a summary table (Table 5.3). 

Table 5.3: Summary of the wear equations for the three different non-conforming contact 
configurations considered in this work, namely cylinder-on-flat, sphere-on-flat and 
crossed-cylinders with both the linear and area bases of the governing equation as 
indicated. 

Contact configurations Wear equation 

Cylinder-on-flat (linear or 
area) 

𝑉) = 𝐾6𝑅(7./5𝐸*7.95 

Sphere-on-flat (linear) 𝑉) = 𝐾/𝑅(7./𝐸*7.: 

Crossed-cylinders (linear) 𝑉) = 𝐾2𝑅(7./𝐸*7.: 

Sphere-on-flat (area) 𝑉) = 𝐾/3𝑅(7.22𝐸*7.;9 
 

The success in providing a coherent framework to understand the differences in 

development of wear volume in a cylinder-on-flat fretting test as a function of the 

contact geometry (as can be seen by comparison of Figure 4.9 and Figure 5.6) gives 

support to the underlying assumptions upon which the model development was based, 

primarily that of wear rate being inversely proportional to either the width or area of the 

wear scar (these two being equivalent here). 

The assumption that the instantaneous wear rate is inversely proportional to the width 

of the wear scar was employed for the derivation of the equivalent equations for the 

sphere-on-flat and crossed-cylinders specimen pair configurations (also shown in the 
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summary Table 5.3). In both of these cases, it is recognised that these begin as point 

contacts and that the wear scars remain largely equiaxed as they grow. The 

assumption is still made in the derivation of the equations that the debris flow out of the 

contact which occurs in the direction of fretting motion flow controls the wear rate and 

that the rate is therefore controlled by the largest dimension of the wear scar in that 

direction; as such, whilst side-leakage of debris from the contact may occur, it is 

assumed to have no significant influence on the wear rate. Whilst this was a very 

reasonable assumption for the cylinder-on-flat contact (where the dimension of the 

wear scar perpendicular to the direction of displacement was relatively large and 

therefore side-leakage was likely to be a small fraction of the overall debris ejection 

from the contact), it is clearly less so for these equiaxed contact geometries where side-

leakage [19] is a reasonable expectation [77, 96] and may be significant. The equation 

for development of wear volume for a sphere-on-flat fretting contact based upon the 

assumption that instantaneous wear rate is inversely proportional to the wear scar 

radius has been tested against experimental data (Figure 5.11a) for tests conducted 

with spheres of different radii. In Figure 5.11a, the populations associated with the three 

sphere radii are still distinct (this is in contrast to the equivalent situation for the cylinder-

on-flat configuration as presented in Figure 5.6) and this demonstrates that this wear 

equation derived is less well able to account for the effect of sphere radius; it is 

suggested that this indicates that the assumption that side-leakage of debris can be 

neglected when considering the (rate-determining) rate of debris ejection from the 

contact is less valid for the sphere-on flat geometry than it is for the cylinder-on-flat 

geometry. Despite this, the fit of data to the derived form of the wear equation indicated 

in Figure 5.11a is still reasonable, indicating the concept of the wear rate being 

dependent upon the size of the wear scar has clear validity here. 

The assumption in the model that debris is removed from the contact in the direction of 

the fretting motion and that side-leakage can be ignored has been demonstrated to be 
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wanting via the analysis of the sphere-on-flat experimental data where the wearing 

contact remains equiaxed throughout the process. More broadly, it is therefore 

concluded that the significance of side leakage (and therefore the validity of the 

assumptions made in the derivation of the new wear equations) might depend upon the 

aspect ratio of the contact or whether the shape of wear scar can be characterised by 

a 2D representation (i.e. with a uniform wear scar shape, such as CF contact) or a 3D 

representation (i.e. geometries such as SF and CC contacts) as illustrated 

schematically in Figure 5.12. In this regard, it is noted that for the CF contact, the aspect 

ratio of the contact patch changes as wear occurs, with the influence of side-leakage 

increasing as wear proceeds; this increasing influence of side leakage results in a 

decrease in the validity of the assumptions upon which the new wear equations are 

based. Moreover, it is noted that the initial geometrical arrangement will influence how 

the aspect ratio changes throughout a test. For example, CF contacts with the same 

applied load but a different line length would be expected to perform very differently as 

a result of differences in the way that the aspect ratio would vary with wear volume. 

Similarly, a contact with uneven shape of wear scar may suffer from the stronger effect 

of side-leakage, which might require further refinement of the model presented in this 

work. 

   

(a) (b) (c) 

Figure 5.12: Illustration of the effect of aspect ratio or the shape of a fretting contact on 
side-leakage (a) high aspect ratio; (b) low aspect ratio; (c) ununiform shape. 
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It is noted that the form of Equation 5.1 used for the broadly rectangular wear scar 

formed in the cylinder-on-flat contact configuration was also consistent with the 

assumption that the instantaneous wear rate is inversely proportional to the contact 

area, a position which would accord with the work in this area which likens the particle 

bed to a fluid which either flows or is squeezed out of the contact [99, 103] This second 

assumption was tested for the case of the sphere-on-flat contact resulting in a wear 

equation with a slightly different form (Equation 5.21) which is again included in the 

summary table (Table 5.3). Comparison of Figure 5.11a and Figure 5.11b indicates that, 

whilst the data are fully in accord with the concept of the instantaneous wear rate being 

related to the size of the contact, the area-derived form of the wear equation is not 

better in accord with the experimental data than the linear-derived form. When the 

assumptions and the fit to the data for the sphere-on-flat configuration are compared 

with those for the cylinder-on-flat configuration, it is suggested that the essentially two-

dimensional situation of the cylinder-on-flat configuration is preferred: in this case, the 

debris flow is predominantly parallel to the direction of fretting, driven both by the 

fretting motion itself and by the fact that the scar dimension in the fretting direction is 

small compared to its dimension perpendicular to the fretting motion (with this short 

distance driving the flow as indicated in the governing equations). 

It is noted that no suitable experimental data has been found in the literature against 

which the form of the wear equation for the crossed-cylinders contact geometry can be 

tested. However, given the similarity of the developing contact shape between the 

sphere-on-flat geometry and the crossed-cylinders geometry, especially at the early 

stage of a wear test where the projection of the wear scar is still approximately a circle, 

it is reasonable to conclude that the wear equation for the latter geometry has similar 

validity to that of the former geometry. 
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5.4.2 Dependence of wear on contact geometry and energy dissipated 

The equations for the different contact geometries and assumptions regarding the 

governing equation are presented in summary in Table 5.3. In all four cases, the 

equations take the form (when threshold energy is assumed to be negligible compared 

to the total dissipated energy into the contact): 

𝑉! = 𝐾𝑅"#$𝐸%" (5.22) 

It can be shown that 𝐾 is directly proportional to the parameter in governing equation, 

𝑘 , by the relationship of 𝐾 = 𝜆𝑘" , where 𝜆  is the constant generated during the 

derivation and is independent of any fretting parameters. Please note that, unlike 𝑘 

which has the unit of mm4×kJ-1, 𝐾 will have units which depend upon the pair geometry 

and assumptions regarding the governing equation; also, it is noted that (in contrast to 

the units of the constant in Archard-type formulations), 𝐾 will not have units which have 

a clearly recognisable physical meaning and this fact will make the approach being 

proposed intrinsically less attractive than the traditional approach to the those engaged 

in research and development in this area. However, it is also recognised that the 

general form of wear equation for fretting developed in the current work (as indicated 

by Equation 5.22) is generated as the result of mathematical approximations of those 

parametric equations based upon a simple, yet reasonable assumption underpinned 

by the physical phenomenon for fretting wear. Although the final form of the equation 

may seem similar to those power law equations with empirical exponents generated by 

data-fitting of experimental results, the method outlined in the current study is 

fundamentally different from them. The derivations of those wear equations as 

described in Appendix B give no indication that the radius exponent can be related to 

the exponent of the dissipated energy,𝑛 , by 𝑛 − 1 ; yet the wear equations (as 

summarised in Table 5.3) derived in this work demonstrate the existence of such 

relationship between exponents of radius and dissipated energy at least for all four 
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cases presented in the current chapter. Dimensional analysis as presented in Appendix 

C indicates that the appearance of such relationship between the exponents in 

Equation 5.22 is not entirely by coincidence. 

It was the apparent differences in the fretting wear rates observed as a function the 

radius of the non-plane members when using both cylinder-on-flat and sphere-on-flat 

geometries [18, 20, 23, 90, 107] that prompted the research in this area (both in the 

previous chapter and in the work reported herein), with its focus on the effect of the 

developing contact size on the rate of wear. The equations presented in Table 5.3 allow 

the dependence of the development of wear volume on the details of the selected test 

specimen pair geometry to be accounted for; it has been shown that for all three 

geometrical configurations examined and with the assumptions of both the linear and 

area dependencies of the instantaneous wear rate, the radius exponent 𝑛 − 1 is within 

the range of −0.33 ≤ 𝑛 − 1 ≤ −0.2, which indicates that for a given energy dissipated, 

the wear volume will decrease with increasing radius of the non-plane specimen in 

each case. This is a direct result of the fact that as the specimen radius increases, the 

scar size will be larger for a given worn volume, with that larger wear scar size then 

reducing the flow rate of the debris from the contact (Equation 5.1, Equation 5.8a, 

Equation 5.8b and Equation 5.17) and thus reducing the observed rate of wear. 

However, it is recognised that the dependence on the specimen geometry is relatively 

weak; for example, for the cylinder-on-flat contact geometry, an increase in the cylinder 

radius by a factor of ~27 (as in the experiments reported in Figure 4.9 and Figure 5.6) 

is predicted to result in a reduction in the wear volume (all other things being equal) by 

a factor of only ~2.3. Notwithstanding, for the first time, these equations have provided 

a means of incorporating characteristics of the specimen test geometry into the wear 

equation with the success of this approach being demonstrated most strongly for the 

cylinder-on-flat test configuration (Figure 5.6) but also for the sphere-on-flat test 
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configuration (Figure 5.11) to a lesser extent (the difference being associated with the 

effects of side-leakage of debris as previously discussed). 

Perhaps more significant is the proposed dependence of the wear volume on the 

energy dissipated. Archard’s wear equation [16] was derived for sliding wear, and 

describes the rate of debris generation in a sliding contact. It has been argued 

previously (an argument which is reinforced here) that simply applying this equation (or 

those of other Archard-type approaches) to fretting contacts where debris elimination 

from the contact is the rate-determining process is not appropriate [37]. The equations 

(Table 5.3) derived in this chapter do (for the first time) take account of the size of the 

wear scars for the three contact geometries considered with two hypotheses regarding 

the governing equations, but also give an indication as to why Archard-type equations 

have been employed so widely in analysis of fretting data. The dependence of wear 

volume on dissipated energy takes the form as indicated in Equation 5.22, where 

across the three geometries examined and with the assumptions of both the linear and 

area dependencies of the instantaneous wear rate, 0.67 ≤ 𝑛 ≤ 0.8. The fact that these 

exponents are not far removed from unity (this being the exponent associated with the 

Archard-type equations) means that the fitting of experimental data to an equation of 

the form 𝑉! = 𝑘-𝐸% + 𝑐 (where 𝑘- is considered to be the wear rate and 𝑐 is a constant 

representing an initial transient in wear associated with bedding-in [30]) is often 

apparently quite successful. It is noted that 𝑐 is often set to zero, with this being a 

necessary assumption in the many cases reported in the literature where the wear rate 

𝑘- is derived from tests conducted with a single value of energy dissipated, 𝐸%. 

To illustrate this, a dataset was formed of 1001 equally-spaced points in 𝐸% and values 

of wear volume calculated for each of those points according to the relationship as 

indicated by Equation 5.22 (i.e. the form 𝑉! = 𝜂𝐸%0.GH associated with a cylinder-on-flat 

contact configuration, where 𝜂 = 𝐾$𝑅#0..H, which is a constant when treating 𝐾$ and 𝑅 

are constants). Linear regressions of the form 𝑉! = 𝑘-𝐸% and 𝑉! = 𝑘-𝐸% + 𝑐 were then 
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applied to this dataset. The regression lines to these data are shown in Figure 5.13:, 

where the solid line represents the data of the form 𝑉! = 𝜂𝐸%0.GH and the dashed lines 

represent the two different forms of linear regression to these data; it can be seen that 

it is apparently not unreasonable to apply a linear relationship of either of these types 

to such a dataset (in both cases, the coefficient of determination,R., is greater than 

0.99). Moreover, with the natural errors associated with experimental data, the 

apparent appropriateness of a linear fit to a set of experimental data of this form is even 

more understandable. 

  

(a) (b) 

Figure 5.13: Schematic diagram showing data distributed in the form 𝑽𝒘 = 𝜼𝑬𝒅𝟎.𝟕𝟓 (solid 
line) along with linear regressions to those data; (a) linear fit in the form 𝑽𝒘 = 𝒌𝒆𝑬𝒅 (long 
dashes) and 𝑽𝒘 = 𝒌𝒆𝑬𝒅 + 𝒄 (short dashes); (b) linear regression in the form 𝑽𝒘 = 𝒌𝒆𝑬𝒅 + 𝒄 
to data from tests of five different durations; the test with the longest duration (in terms 
of 𝑬𝒅 is labelled 100%) with the four shorter tests having a maximum dissipated energy 
of 1%, 10%, 25% and 50% of that of the longest test. The linear regressions to the datasets 
from the tests with the five different durations are as indicated by the dashed lines. 

If it is (incorrectly) assumed is that the relationship between wear volume (𝑉!) and 

energy dissipated (𝐸%) (or any similar measure of the exposure to wear) is in fact linear 

(of the general form 𝑉! = 𝑘-𝐸% + 𝑐), then given that enough data have been gathered 

to identify the value of the initial transient (𝑐) and to ensure that steady-state conditions 

have been established, the duration of the test (in terms of the total energy dissipated) 
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should not affect the value of the wear rate derived.(It is noted that in previous work, it 

is not clear that the tests lengths were always adequately long, especially for more-

conforming contact geometries, to allow steady state conditions to be established as 

can be seen by a comparison of the data in references [23] and in the previous chapter). 

However, if it is instead assumed (as is argued here) that the data actually take the 

form 𝑉! = 𝜂𝐸%0.GH, the gradient of any linear regressions to such data will depend upon 

the duration of the test (i.e. the maximum value of 𝐸%  in the dataset). This is 

schematically illustrated in Figure 5.13b; here five tests are simulated with the only 

difference between those tests being their duration (in terms of 𝐸%). The four shorter 

tests have durations of 1%, 10%, 25% and 50% of that of the longest test. Linear 

regressions (of the type 𝑉! = 𝑘-𝐸% + 𝑐) are applied over the data from the five test 

durations (labelled 100% for the test with the longest duration and then 1%, 10%, 25% 

and 50% for those of the shorter durations). It is notable again that in each of these 

cases, the coefficient of determination, R., is greater than 0.99. It can be thus seen that 

the 𝑘-  (traditionally assumed to be the wear rate) is strongly dependent upon the 

duration of the test, with this gradient decreasing as the duration of the test, 𝐸%, is 

increased. To give some measure of the significance of these changes, the variation in 

𝑘 with the test duration (represented by 𝐸%) is presented in Figure 5.14. The implication 

of this is that when employing a non-conforming geometry for a fretting test programme, 

if two otherwise identical tests are conducted with different test durations, then the 

gradient, 𝑘- (of the general form 𝑉! = 𝑘-𝐸% + 𝑐), of the linear regression to the resulting 

data is dependent upon the ratio of the test durations. For example, whichever form 

(either 𝑉! = 𝑘-𝐸% + 𝑐 or 𝑉! = 𝑘-𝐸%) is assumed, increasing the test duration by a factor 

of 10 leads to a reduction of 𝑘- (the Archard-type wear rate) to 56% of its former value. 

In fact, the linear regression line is close to the tangent line of the data distribution; the 

gradient of the linear regression can be approximated as the derivative of Equation 
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5.22, i.e. it can be shown that as 𝐸% increases by a factor of 𝛼, the derivative of 𝑉! with 

respect to 𝐸% 	changes by a factor of 𝛼"#$: 

𝐸% → 𝛼𝐸% 	

𝑑𝑉!
𝑑𝐸%

(𝛼𝐸%) = 𝛼"#$
𝑑𝑉!
𝑑𝐸%

(𝐸%) (5.23) 

(with 𝑛 being defined as in Equation 5.22) and thus the change of 𝑘- (the Archard-type 

wear rate) follows a similar pattern. 

 

Figure 5.14: Normalised values of the gradients (𝒌𝒆) of linear regressions to data of the 
form 𝑽𝒘 = 𝜼𝑬𝒅𝟎.𝟕𝟓  with for data of a range of durations, 𝑬𝒅 , compared to that of the 
duration of the longest dataset. Linear regressions both of the form 𝑽𝒘 = 𝒌𝒆𝑬𝒅 and 𝑽𝒘 =
𝒌𝒆𝑬𝒅 + 𝒄 are shown. The values of 𝒌𝒆 have been normalised to that resulting from the 
regression of the form 𝑽𝒘 = 𝒌𝒆𝑬𝒅 + 𝒄 to the longest dataset. 

To further illustrate this, linear regression (to the general form 𝑉! = 𝑘-𝐸% + 𝑐) was 

applied to the experimental data presented in Figure 4.9 for the 6 mm radius cylinders 

for different maximum test durations; in each case all the data available both at and 

below the defined test duration were employed for the linear regression. The gradient 

of the linear regression (𝑘-) to the experimental data is plotted against the test duration 
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as shown in Figure 5.15; it can be seen that 𝑘- falls as the test duration was increased, 

but that in all cases, the coefficient of determination remained high, giving (false) 

confidence that the experimental data were well described by the form of the equation 

𝑉! = 𝑘-𝐸% + 𝑐. The ratio of dissipated energy between the test with the largest and 

smallest duration here is ~50. The ratio 𝛼"#$ (as shown in Equation 5.23, with 𝛼 = 50 

and 𝑛 = 0.75) indicates that the gradient of the linear regression (𝑘-) should be ~2.65 

times larger at the smallest duration than at the largest, with the data in Figure 5.15 

demonstrating an equivalent ratio of 2.26. The accord between observations and 

predictions here adds further weight to this approach. 

 

Figure 5.15: Plot of gradients, 𝒌𝒆, (of the form 𝑽𝒘 = 𝒌𝒆𝑬𝒅 + 𝒄) along with the associated 
coefficients of determination from linear regression of the data for the 6 mm radius 
cylinders presented in Figure 4.9 as a function of the maximum energy included in the 
linear regression. 

As such, it has been shown that for fretting conditions where debris ejection from the 

contact is the rate-determining process, linear regression to the general form 𝑉! =

𝑘-𝐸% + 𝑐 generally produces a good fit to the data, but that the high quality of the fit 

unfortunately provides misplaced assurance that the gradient of such a regression can 
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be regarded as the wear rate. The proposed form of the relationship when debris 

transport is the RDP (𝑉! = 𝐾𝑅"#$𝐸%"), which is more appropriate than those based 

upon an Archard-type approach, indicates the dependence upon both the geometrical 

make-up of the contact (𝑅) and the duration of the test (𝐸%) since both of these affect 

the development of the size of the contact. It is recognised that 𝐾 itself (similar to the 

constant 𝑘 in the governing equation as highlighted in Equation 5.1 and Equation 5.8 

from where it was derived) is likely to be a function of many other parameters which 

are regarded as variable in the fretting test such as applied load, slip amplitude, 

environmental temperature, fretting frequency etc. However, this constant 𝐾  is 

independent of test durations and contact geometry, and thereby will facilitate 

understanding of the development of wear in fretting, both in service and in laboratory 

testing. Whilst these equations have been derived for specific test geometries, the need 

to consider debris ejection from the contact as a potential rate-determining process is 

general to all situations where fretting occurs; moreover, it is argued that in any situation 

where debris ejection is seen to be rate-determining (irrespective of geometry), the 

instantaneous wear rate will be inversely proportional to a characteristic dimension of 

the size of the wear scar related either to the distance over which debris have to migrate 

before they can be ejected or to the area of the contact. For laboratory tests where a 

non-conforming specimen pair geometry is employed, it is recognised that it is helpful 

to have data across a wide range of values of dissipated energy, or to have data with 

the specimen pairs having non-plane specimens over a range of radii, and to plot those 

data via the appropriate form of wear equation 𝑉! = 𝐾𝑅"#$𝐸%". 

5.5 Conclusions 

It has been shown that under certain circumstances, the instantaneous wear rate in 

fretting is either inversely proportional to a characteristic dimension of the wear scar 

(the maximum size of the scar parallel to the direction of fretting) or is inversely 
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proportional to the wear scar area. This means that when non-conforming specimen 

pair geometries are employed in fretting testing (where the scar size grows as wear 

proceeds), then the instantaneous wear rate changes as the test proceeds. One 

outcome of this assertion is that the traditional concept of wear rate for such a test is 

meaningless since it is constantly changing. 

Wear equations have been generated for three commonly employed non-conforming 

specimen pair geometries with the assumptions of both linear and area dependencies 

of the instantaneous wear rate which describe the evolution of wear volume with test 

duration (which is here described by the frictional energy dissipated). The basis of these 

equations is that of debris-flow out of the contact, and it is shown that the simple 

assumption that the debris flow rate is inversely proportional to the maximum size of 

the scar parallel to the direction of fretting is most reasonable when that dimension of 

the scar is small compared to the size of the scar in other directions. As such, the 

validity of the equations developed is much higher for cylinder-on-flat test 

configurations than it is for sphere-on-flat or crossed-cylinders test configurations. 

Examination of the form of the wear equations developed provides an understanding 

of how Archard-type approaches have been inappropriately employed for so long in 

fretting research, despite the wide consensus regarding the validity of Godet’s third 

body approach and Berthier’s tribology circuit which highlight the key role of debris 

ejection from the contact; moreover, it also provides an indication as to how the test 

duration will affect the traditional measure of the wear rate derived from inappropriate 

application of an Archard-type equation to such data. 
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Chapter 6 The dependence of wear rate on slip 
amplitude 

6.1 Introduction and chapter outline 

There is a substantial body of research that indicates that there is a threshold of slip 

amplitude in fretting below which the wear process can no longer take place [9, 24, 27, 

81, 94, 122-124]. It is believed that, with the closed nature of fretting contact, a sufficient 

slip amplitude is necessary to initiate the process of debris ejection out of the contact 

to allow the progression of wear. However, the reported values for such a threshold 

vary widely: the critical slip amplitude was found up to 70 µm in some early reports [27, 

81], while more recent works indicated that the critical value should be around 10 µm 

[24, 94]. It was argued by Pearson and Shipway [24] that these differences could be 

explained by the fact that the concepts of displacement amplitude (Δ∗ ) and slip 

amplitude ( 𝛿∗ ) are often confused, where the former incorporates the system 

compliance and is thereby always larger than the latter; these two quantities are related 

to each other by the equation of 𝛿∗ = Δ∗ − 4
=
 as shown in Equation 3.4 (Section 3.4.3) 

where terms are as previously defined. It was suggested [24] that the lack of necessary 

techniques in early investigations resulted in the so-called “slip amplitude” referred in 

those literatures are in fact the applied displacement amplitude, and the actual slip 

amplitude of these compliant systems could be small. 

We should note here that the definition of the threshold slip amplitude, although without 

being explicitly defined, is based on the observation from experimental results that the 

wear volume becomes negligible below the threshold. With the fact that small slip 

amplitude are often closely associated with a small dissipated energy, and there also 

exists a threshold of energy in fretting below which wear ceases (described in Section 

2.3.3), Pearson and Shipway argued [24] that it is still not clear whether the negligible 

wear volume is caused by the small slip amplitude or instead that the total dissipated 
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energy required to initiate damage has not been reached; it seems the latter argument 

is favoured by them from the discussion presented in their work. Small slip amplitude 

is also associated with partial slip regime in fretting (described in Section 2.2.2), in 

which a portion of the contact area does not slip under the imposed fretting conditions. 

The contact in partial slip regime exhibits a stuck region at the centre with limited 

abrasive damage near the edge, which could be used as an explanation for the almost 

zero wear volume observed induced by small slip amplitude. 

Nevertheless, despite the difference in the value of threshold slip amplitude, it is 

generally agreed upon that, with a fixed test duration and normal load, the wear volume 

increases rapidly with the increase of slip amplitude, once the threshold has been 

overcome. Within the framework of an Archard-type approach, such observation often 

leads to the conclusion that the wear rate increases monotonically with slip amplitude 

until the transition to reciprocating sliding wear, upon which the wear rate will be 

independent of the slip amplitude as predicted by Archard wear equation [16]. Indeed, 

this dependence of wear rate upon slip amplitude in fretting has been reported by many 

researchers [4, 18, 27, 33, 72, 81, 91, 108, 111, 113], among which the work by Vingsbo 

and Söderberg [4] is the most renowned and widely recognised (as shown in Figure 

2.1). However, the source of data upon which Vingsbo and Söderberg’s work was built 

[4] was conducted under different test configurations and materials. As demonstrated 

by Knudsen and Massih [125] by reproducing Vingsbo and Söderberg’s work with 

original data which was used in constructing Figure 2.1, it is likely that the simple 

relationship indicated between wear rate and slip amplitude is an over-simplification. 

With the understanding of the existence of an energy threshold in fretting and the 

realisation that the concepts of displacement amplitude and slip amplitude were not 

explicitly distinguished at the time of Vingsbo and Söderberg, Pearson and Shipway 

[24] presented a formula to calibrate the wear rate (as the energy wear rate 𝑘-) derived 

from experimental results which had not considered these two issues. They proposed 
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that the true wear rate (𝑘-L ) was related to the 𝑘- by the equation of B*
B*+
= 1 − N∗

=:∗
− *&,

6:∗4∗8
, 

and concluded that the true wear rate is in fact independent upon the slip amplitude. 

However, it is suggested here that the work of Pearson and Shipway [24] has presented 

unjustified conclusions based upon a paucity of data, specifically that their use of a 

fixed (and small – only 105) number of fretting cycles meant that the effects of slip 

amplitude and total energy dissipated were confused. 

Please note that nearly all the arguments about the role of slip amplitude in the current 

section are based on experimental results which are conducted in a relatively short test 

duration [109], compared with the service time of engineering components in 

applications. Hence it is not clear whether the conclusions drawn by those observations 

can adequately characterise the wear process given that steady state may not always 

have been achieved (even if the researchers suggest that it has). More importantly, as 

emphasised many times in the current thesis, a fretting wear process should focus on 

both debris formation and debris ejection indicated by the third body approach [19] and 

the concept of tribology circuit [96], rather than considering material removal only 

suggested by the Archard wear equation [16]. However, when discussing the effect on 

slip amplitude (and many other fretting parameters) on the wear rate, it is the Archard-

type wear rate that most researchers employ as the basis, which this thesis argues is 

not normally appropriate. 

To fully understand the role of slip amplitude in fretting, its effects on the debris 

formation and ejection must be discussed individually, which requires studies to 

understand the underlying mechanisms and RDPs so that a coherent physical model 

can be established. It has been generally accepted that an increased slip amplitude 

can enhance the rate of debris ejection [33, 109]. However, care needs to be taken in 

studies involving non-conforming contact geometries where a larger slip amplitude can 
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produce a larger contact over a fixed number of cycles which may then result in 

reduction in wear rate associated with the increased contact size. 

In Chapter 4, a governing equation was proposed linking the instantaneous wear rate 

with the wear scar width, which provides a method to address the effect of contact size 

in modelling the evolution of wear (the equation is restated here in the current chapter 

as Equation 6.1): 

𝑑𝑉!
𝑑𝐸%

=
𝑘
𝑥

(6.1) 

Unlike the traditional Archard-type wear rate, which is assumed to be a constant 

regardless of the exposure of wear, the implication of Equation 6.1 is that (with a non-

conforming contact geometry) the wear rate falls continuously with the development of 

wear. The parameter 𝑘 in Equation 6.1 acts as single parameter characterising the 

instantaneous wear rate for tests under certain conditions, which presumably is a 

function of various fretting parameters such as the normal load and slip amplitude, but, 

importantly, is independent upon the contact geometry and the test duration. This 

governing equation was solved analytically by assuming a geometric relationship 

between the wear volume and the wear scar width, generating a set of parametric 

equations. The concept was developed further in Chapter 5 to a produce a general 

form of wear equation which states that, for non-conforming configuration (CF, SF or 

CC contact), the wear volume can be calculated as shown in Equation 5.22 (which is 

restated here as Equation 6.2), whose validity was tested with extra data from literature 

as demonstrated in Chapter 5. 

𝑉! = 𝐾𝑅"#$𝐸%" (6.2) 

In light of this, the question to be addressed in the current chapter is clear: assuming 

that debris ejection is still the RDP, what is the dependency of 𝑘 upon the slip amplitude? 

(i.e. is the ability of the contact to expel debris influenced by the slip amplitude?) Details 
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about the specimens, the test rig and the experimental procedures employed in the 

current chapter are described in Chapter 3; test conditions for this chapter are detailed 

in Table 6.1 as below: 

Table 6.1: Summary of the fretting test conditions for the additional tests for which data 
are presented in Chapter 6. 

Normal load (𝑃) / N 450 

Displacement amplitude (Δ∗) / µm 10, 15, 20, 25, 50, 100 

Cylindrical specimen radius (𝑅) / 
mm 6 

Test duration (𝑁) / ´106 cycles 1, 5, 10 

Frequency (𝑓#$) / Hz 20 

Temperature (𝑇) / °C Ambient temperature 

6.2 Experimental results 

Examination of experimental data shows that in the early stages of the test, fretting 

loops were unsteady, but steady state was quickly achieved with the loops remaining 

stable throughout the rest of test. Averaged fretting loops over the last 10% of the test 

were calculated and examples such loops from tests with durations of 𝑁 = 5×106 cycles 

and with a range of displacement amplitudes from Δ∗  = 10 µm to Δ∗  = 50 µm are 

presented in Figure 6.1a. Figure 6.1b compares the averaged fretting loops from the 

first 10%, the mid 10% and the last 10% of one example test after reaching its steady-

state; the example test was conducted with Δ∗  = 25 µm and 𝑁  = 5×106 cycles, 

demonstrating that those loops in Figure 6.1a are indeed characteristic of their 

corresponding tests. Within each loop, it can be seen that after the period of elastic 

deformation induced by the stiffness of system, the tangential force (𝑄) within contact 

increases during the relative motion between first bodies. The system stiffness 𝑆 (i.e. 

the gradient of the elastic part of the fretting loops) was calculated to be 33 ± 3 N×µm-1. 
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It should be noted that the maximum tangential forces exhibited in tests conducted with 

Δ∗ = 10 µm and Δ∗ = 15 µm are similar to each other, but significantly lower than those 

observed in the tests conducted with larger displacement amplitudes. Experimental 

data from tests conducted with Δ∗ = 100 µm are used in the current study, but the 

maximum duration of these tests was 𝑁 = 1×106 cycles; it is noted here that their 

fretting loops exhibit a system stiffness within the range identified for the loops 

presented in Figure 6.1 along with a similar maximum tangential force (𝑄∗ ). A 

characteristic tangential force for the loop is often presented in the form of 𝜇-, and the 

dependence of 𝜇- with Δ∗ (and therefore with 𝛿∗) will be presented later (Figure 6.3). 

  

(a) (b) 

Figure 6.1: Plot of averaged fretting loops for tests: (a) with varying displacement 
amplitudes from 𝚫∗ = 10 to 50 µm, and 𝑷 = 450 N; experiments were conducted with 𝑵 = 
5×106 cycles and the loops shown are the average over the last 10% of the test; (b) from 
the first 10%, the mid 10% and the last 10% of the test conducted with 𝚫∗ = 25 µm and 𝑵 
= 5×106 cycles, demonstrating the characteristic nature of fretting loops in Figure 6.1a. 

As discussed in Chapter 2, distinguishing slip amplitude (𝛿∗ ) from displacement 

amplitude (Δ∗) is important as the former represents the actual slip occurring between 

first bodies, and it can be calculated from the fretting loops by removing the elastic 

displacements from the loop. The method to calculate 𝛿∗(𝑖) (slip amplitude for each 

cycle of a test) has been described in Section 3.4.3, and from this a single quantity to 
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characterise the slip amplitude for the whole test (𝛿∗) can be determined as the average 

of 𝛿∗(𝑖). However, it is also a common practice to estimate 𝛿∗ from fretting loops to 

have a board understanding of how 𝛿∗  deviates from Δ∗ ; for instance, as shown in 

Figure 6.1, the slip amplitude of the test conducted with Δ∗ = 50 µm for 𝑁 = 5×106 cycles 

is 41 µm. In the current study, for tests with different displacement amplitudes, varying 

from Δ∗ = 10 µm to Δ∗ = 100 µm, their corresponding slip amplitudes across different 

test durations are steady. The statistical analysis of slip amplitudes shows that 

variations of 𝛿∗  for each Δ∗  at different number of cycles are small, with the RSD 

(relative standard deviation, defined as the ratio of one standard deviation to the mean) 

from the minimum of 0.5% for Δ∗ = 20 µm to the maximum of 20.9% for Δ∗ = 10 µm. 

The average values and variation of 𝛿∗ across different test durations for each Δ∗ are 

presented in Table 6.2 located at the end of this section (those values of 𝛿∗ for each 

individual test were calculated as the average of 𝛿∗(𝑖)). The following analysis to 

understand the dependence of wear rate upon displacement amplitude (therefore, the 

slip amplitude) will be based on the average value of 𝛿∗. 

Figure 6.2 is a plot of evolution of ECoF (𝜇-(𝑖)) over a test of duration of 𝑁 = 5×106 

cycles for two displacement amplitudes, namely Δ∗ = 10 µm and Δ∗ = 50 µm. As it can 

be seen, the change of 𝜇-(𝑖) throughout the test follows a similar fashion for both 

displacement amplitudes. The increase of 𝜇-(𝑖) is rapid at the beginning of the test, 

followed by a quick fall-back to a relatively steady value. which is characterised by small 

fluctuations around that steady value. This pattern of the change of 𝜇- is in line with 

those results reported in literature [66, 111, 117, 120, 126] and is observed for all the 

tests conducted in the current study. Therefore, similar to the analysis of fretting loops 

in Figure 6.1, the averaged value of ECoF over the last 10% of the test duration was 

calculated to represent 𝜇- for each individual test. 
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Figure 6.2: Plot of evolution of ECoF (𝝁𝒆(𝒊)) over a test of 𝑵 = 5×106 cycles for two 
displacement amplitudes, namely 𝚫∗ = 10 and 𝚫∗ = 50 µm. 

The average values of ECoF (𝜇-) calculated from each test in the current study is 

plotted against the corresponding slip amplitude (𝛿∗) in Figure 6.3; the error bar on the 

graph marks the standard deviation range of 𝜇- for each test. As it can be seen, values 

of 𝜇- across different test durations for each slip amplitude are reasonably stable. The 

overall trend is that 𝜇- increases rapidly from a value around 0.6 to around 0.8 as the 

slip amplitude is increased from ~5 µm to ~15 µm and then remains stable at around 

0.8 as the slip amplitude is further increased. Averaged ECoF across different test 

durations can be determined, the values of which are summarised in Table 6.2. 
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Figure 6.3: Plot of averaged ECoF against slip amplitude for tests of varying duration (𝑵 
= 1x106 cycles, 5x106 cycles and 1x107 cycles); values of ECoF were taken as the average 
of the last 10% of test duration. 

Figure 6.4 shows the averaged profile of wear scars on flat specimens for tests 

conducted with varying displacement amplitude, from Δ∗ = 10 µm to Δ∗ = 50 µm for 𝑁 

= 1×106 cycles and for 𝑁 = 5×106 cycles. Figure 6.4 illustrates that all wear scars 

develop as expected in both depth and width as the increase of test duration, except 

for tests conducted with Δ∗ = 10 µm. For Δ∗ = 10 µm, it appears that no clear evidence 

of the evolution of wear scar in terms depth or width is observed at least until 𝑁 = 5×106 

cycles. 

A U-shaped wear profile is clearly developed for tests with Δ∗  = 50 µm. As 

demonstrated in the results reported in the Chapter 4, such shape of wear scar is 

formed early in the test (it is observed as early as 𝑁 = 5×103 cycles). In contrast, for 

the tests conducted with displacement amplitudes within the range from Δ∗ = 15 µm to 

Δ∗ = 25 µm, the wear scar starts to show the early sign of forming a W-shape by 𝑁 = 

1×106 cycles, with a W-shape wear scar being fully developed by 𝑁 = 5×106 cycles. 
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For example, the wear scar of the test conducted at Δ∗ = 25 µm seems to be at the 

edge of the transition from U-shape to W-shape after 𝑁 = 1×106 cycles, and appears 

to exhibit features from both shapes; however, when the test duration reaches 𝑁 = 

5×106 cycles, the W-shape of the wear scar has more fully developed. 

  

(a) (b) 

Figure 6.4: Averaged profiles of fretting wear scar on flat specimens for fretting tests at 
varying displacement amplitudes, from Δ* = 10 µm to Δ* = 50 µm. Experiments were 
conducted with (a) 1×106 cycles (b) 5×106 cycles; profilometry data acquired from Alicona 
G5. 

To further investigate the development of W-shaped scars, some further extended tests 

with 𝑁 = 1×107 cycles were carried out, and the average profiles of their corresponding 

wear scars are presented in Figure 6.5. As can be seen, for tests conducted with Δ∗ = 

25 µm, the wear scar at 𝑁 = 1×107 cycles clearly demonstrate a properly formed W-

shape. The fully developed W-shaped wear scar for tests with Δ∗ = 15 µm at 𝑁 = 5×106 

cycles is more developed for higher test durations. The wear scar of Δ∗ = 10 µm test 

exhibits the most dramatic change during the process when the test duration is 

elongated to 𝑁 = 1×107 cycles: the wear scar appears to very little worn after 𝑁 = 5×106 

cycles but forms a clear W-shape after 𝑁 = 1×107 cycles. 
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(a) (b) 

 

 

(c)  

Figure 6.5: Evolution of averaged profiles of fretting wear scar on flat specimens as a 
function of test duration (1, 5 and 10×106 cycles) for three different applied displacement 
amplitudes; (a) 𝚫∗ = 10 µm; (b) 𝚫∗ = 15 µm; (c) 𝚫∗ = 25 µm; profilometry data acquired from 
Alicona G5. 

Figure 6.6 provides the top view BSE microscopy images of the tests conducted for the 

current study. A relationship between the displacement amplitude (thus the slip 

amplitude) and the debris retention within the contact can be observed. It clearly shows 

that as the increase of displacement amplitude, wear scar size is increased but the 

oxide debris is more sparsely distributed across the wear scar leaving the underlying 

metallic material more exposed. For tests conducted at Δ∗ = 10 µm, the existence of a 
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compact oxide bed across the wear scar can be observed. Such an oxide bed is still 

developed for the test with Δ∗ = 15 µm, except that it only exists at the centre of wear 

scar, while the metallic surface is more prominent towards the edge of wear scar. This 

trend of the oxide bed being unevenly distributed across the wear scar is continued and 

amplified for the rest of tests in the current study. The BSE images of the wear scar of 

Δ∗ = 50 µm also indicate the possibility that a coherent oxide bed may form within the 

wear scar which then delaminates due to the relative motion between first bodies. 
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 (a) 𝑁 = 1×106 cycles (b) 𝑁 = 5×106 cycles 

Figure 6.6: BSE images at low magnification ×100 of the wear scar on flat specimens for 
fretting tests conducted with 𝑹𝟔 at varying displacement amplitudes, from 𝚫∗ = 10 µm to 
𝚫∗ = 50 µm, with 𝑷 = 450 N at (a) 1×106 cycles; (b) 5×106 cycles from the top view. 

The previous chapter (Chapter 5) indicates that the traditional concept of wear rate 

(Archard-type) fails to give accurate description of fretting wear test when a non-

conforming contact geometry is employed, because the wear scar size is constantly 

changing. A more realistic form of wear equation for the cylinder-on-flat configuration 

based on the assumption that the debris flow rate should be inversely proportional to 

the characteristic dimension of wear scar (outlined in Equation 6.2, with 𝑛 = 0.75). 

As all the specimens in the current study have the same radius (𝑅), the radius in the 

equation above can be considered as a constant, and therefore Equation 6.2 can be 

reduced into a more general form as shown in Equation 6.3a: 

𝑉! = 𝜂𝐸%0.GH (6.3𝑎)	

𝜂 = 𝐾𝑅#0..H (6.3𝑏)	

𝐾 = 𝜆𝑘0.GH (6.3𝑐)	
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𝑉! = 𝜆𝑘0.GH𝑅#0..H𝐸%0.GH (6.3𝑑) 

where 𝜂  is the quantity as the product of 𝐾  and 𝑅#0..H  (Equation 6.3b), and as 

described in Chapter 5, 𝐾 is related to the parameter in the governing equation, 𝑘, by 

Equation 6.3c. 

Employing Equation 6.3a allows Figure 6.7 to be developed as below. In this figure, the 

ability of Equation 6.3a (therefore, Equation 5.22, with 𝑛 = 0.75 for cylinder-on-flat 

fretting contact) to describe wear volume as a sub-linear function of dissipated energy 

is further demonstrated. Similar to Figure 5.6, linear functions can be used to well 

describe the relationship between the wear volume (𝑉!) and the transformed dissipated 

energy (using the term 𝐸%0.GH as the abscissa) for different groups of Δ∗. The coefficient 

of determination, R., is generally high ranging from R. = 0.93 to R. = 0.99. It should be 

noted that, whilst a R.  above 0.9 suggests a good accordance between the 

experimental data and the values predicted by the model, the goodness of fit improves 

slightly with the increase of Δ∗: when compared with the test results carried out with 

other values of Δ∗, the goodness of fit is reduced for tests conducted with Δ∗ = 10 µm 

and Δ∗ = 15 µm as indicated by Figure 6.7. In this figure, tests conducted in the current 

chapter can be easily distinguished by their corresponding displacement amplitude. 

The values of 𝜂 (and hence 𝐾) can, therefore, be determined from Figure 6.7 as the 

gradient for each group of Δ∗. 
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Figure 6.7: Plot of wear volume against 𝑬𝒅𝟎.𝟕𝟓 as suggested by Equation 6.3a for tests 
conducted with varying displacement amplitude and number of cycles. It can be seen 
that 𝜼 in Equation 6.3a (indicated by the gradient of the line) is strongly dependent upon 
displacement amplitude; error bars are displayed. 

With the determination of 𝜂 and 𝐾, values of 𝑘 can be calculated through Equation 6.3b 

and Equation 6.3c, which are plotted against their corresponding slip amplitude and 

presented in Figure 6.8 and summarised in Table 6.2; the error bar in the graph 

represents the 95% confidence range of those values. Please note that, although 𝜂 and 

𝐾 can be easily calculated after transforming the values of dissipated energy to their 

power of 0.75 (i.e. 𝐸%0.GH), it is recognised that the unit of 𝐾 depends on the choice of 

contact geometry and the assumption for the governing equation (indicated by 

Equation 5.22), and hence lacks a readily apparent physical meaning. In contrast, the 

parameter 𝑘 in the governing equation (Equation 6.1), although has not been assigned 

with a physical quantity, is easier to explain and understand; thus, further discussions 

will be focused on 𝑘. As it can be seen, the change of 𝑘 is dramatic when displacement 

amplitude is within the range from Δ∗ = 10 µm to Δ∗ = 25 µm, then its rate of change 

slows down as slip amplitude increases further. It should be noted that one key 
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observation from experimental results in this section is that there seems to exist a 

correspondence of the changes in 𝜇-, the wear scar shape and 𝑘 as the displacement 

amplitude increases; these data are presented together in Table 6.2. 

 

Figure 6.8: Plot of 𝒌  (as indicated in Equation 6.1 as the parameter describing the 
instantaneous wear rate) as function of slip amplitude. 

Table 6.2: Summary of the change of 𝜹∗ with the corresponding evolution of 𝝁𝒆 and 𝒌 as 
𝚫∗ increases. 

Δ∗ / µm 𝛿∗ / µm 𝜇" 𝑘 / mm4×kJ-1 

10 5.36	± 1.12 0.61 ± 0.01 0.0004 

15 8.12 ±	0.27 0.67 ± 0.04 0.0034 

20 11.54 ± 0.06 0.78 ± 0.01 0.0123 

25 15.91 ± 1.85 0.80 ± 0.02 0.0248 

50 41.14 ± 0.46 0.79 ± 0.01  0.0375 

100 82.08 ± 0.58 0.79 ± 0.01 0.0521 
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6.3 Discussion 

6.3.1 Wear scar characteristics 

A small slip amplitude is generally associated with small wear volume if other 

parameters are fixed, and indeed this is demonstrated by the experimental results 

presented in this chapter. However, it is widely acknowledged that, when the slip 

amplitude is below a critical value, the process of wear would cease to occur [24, 27, 

81, 94] since the debris is unable to be ejected with small slip amplitude, regardless 

the change of other parameters. Whilst the value for such threshold of slip amplitude 

in early reports in literature may suffer from failing to distinguish the slip amplitude from 

displacement amplitude and hence may not be quoted directly, the general 

understanding is that the critical line is drawn when the slip amplitude (𝛿∗) is around 10 

µm. As summarised in Table 6.2, with the test configuration employed in this thesis, 

there are three displacement amplitudes whose equivalent slip amplitude is below or 

close to 10 µm; namely the cases where Δ∗ = 10 µm, Δ∗ = 15 µm and Δ∗ = 20 µm, with 

corresponding slip amplitudes of 𝛿∗ = 5 µm, 𝛿∗ = 8 µm and 𝛿∗ = 11 µm. 

As pointed out by Aldham et al. [109], very long test durations are necessary in fretting 

to avoid the generation of unrepresentative measurements, and thereby the 

misinterpretation of data. The threshold slip amplitude is often derived from the 

measurement of where wear volume is negligible, and hence the identification of a 

threshold may be influenced by the test duration; indeed, this concern is reflected on 

Figure 6.4 and Figure 6.5. As shown in Figure 6.4 and Figure 6.5, the slip amplitude 

beyond the threshold of ~10 µm leads to the monotonic increase of both the width and 

depth of wear scars with the increase of slip amplitude. However, it is observed in 

Figure 6.4a that, as early as 𝑁 = 1×106 cycles, the wear scar for Δ∗ = 20 µm (𝛿∗ = 11 

µm) has already developed a wear scar with a wear volume of ~0.34 mm3 (exhibiting 

the mixed feature of W-shaped and U-shaped); in contrast, the wear scar for Δ∗ = 15 
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µm (𝛿∗ = 8 µm) is much less developed but still visible (𝑉! = 0.06 mm3), and the wear 

scar for Δ∗ = 10 µm (𝛿∗ = 5 µm) is almost zero. However, as the test duration continues 

to increase to 𝑁 = 5×106 cycles (shown in Figure 6.4b), the development of wear scar 

conduced with these values of slip amplitude demonstrates a different picture than that 

at 𝑁  = 1×106 cycles: the already developed wear scar for 𝛿∗  = 11 µm grows 

continuously (𝑉!  = 1.17 mm3), and the wear scar for 𝛿∗ = 8 µm starts to show the 

feature of W-shaped wear scar with the wear volume of 0.22 mm3 while it is still difficult 

to observe the progress of wear for 𝛿∗ = 5 µm. Further increase of test duration to 𝑁 = 

1×107 cycles (rarely seen in literature) as shown in Figure 6.5 demonstrates that the 

wear scar for 𝛿∗ = 8 µm evolves further with its volume reached to 0.57 mm3; but more 

importantly, the unexpected development of wear scar for the case of 𝛿∗ = 5 µm can 

finally be observed (𝑉! = 0.09 mm3). Please note that perhaps more repeated tests at 

the long test duration for 𝛿∗ = 5 µm, 𝛿∗ = 8 µm and 𝛿∗ = 11 µm are required to reduce 

uncertainties (the source of uncertainties being the stability of testing rig and the error 

in measurements); it is nevertheless argued here that the evolution of the wear scars 

for 𝛿∗ = 5 µm, 𝛿∗ = 8 µm and 𝛿∗ = 11 µm under different test durations challenge the 

view about threshold slip amplitude. 

In literature, the low wear volume associated with the small slip amplitude may also be 

explained by the contact being in partial slip regime, which may be supported by the 

fretting loops of the type presented in Figure 6.1 and the ECoF data presented in Figure 

6.2 and Figure 6.3. It seems from these figures that the fretting loops are not fully 

developed for the cases of Δ∗ = 10 µm and Δ∗ = 15 µm (𝛿∗ = 5 µm and 𝛿∗ = 8 µm 

respectively), and their ECoF are lower than others by ~25%. However, microscopic 

examinations on the surfaces of these wear scars (Figure 6.6) suggest that there is no 

evidence of a stuck region on the wear surfaces for both the case of Δ∗ = 10 µm and Δ∗ 

= 15 µm, either after 𝑁 = 1×106 cycles nor after 𝑁 = 5×106 cycles. In fact, compact 

debris beds can be identified to cover those surfaces, and the coverage of the oxide 
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debris is more sparsely distributed across the wear scar for the increased slip amplitude. 

It is suggested that the low ECoF and the non-fully developed fretting loop for the case 

of Δ∗ = 10 µm and Δ∗ = 15 µm are not caused by the change of regime as suggested 

by the work of Pearson and Shipway [24]; instead, the variation of debris distribution 

suggests that it was the presence of the debris bed acting to separate the first bodies 

that caused the reduction in ECoF and the change of shape in fretting loops. 

As indicated by Equation 2.9, a higher slip amplitude suggests a higher power being 

dissipated into the contact (if fretting frequency is held constant), which is often 

considered to cause a rise of surface temperature and thereby a higher tendency of 

debris to sinter together. If the surface temperature rise caused the increase of slip 

amplitude is the dominating factor, then a more compact debris bed is expected on the 

contact with larger slip amplitude and a sparser debris bed should be found when the 

slip amplitude is small. However, this expectation is in contrast to the observations as 

shown in Figure 6.6, which is in accord with the observations in literature [27, 109, 110]. 

It is therefore suggested that the effects of any temperature rise caused by the increase 

of slip amplitude is not a dominating factor. It is recognised that further cross-sectional 

investigation would be useful to identify any changes in the sub-surface damage as a 

function of slip amplitude. 

With the evidence presented in this chapter, it is proposed that, when there is no 

change of fretting regime and that debris ejection remains the RDP. The evolution of 

wear in fretting follows a similar pattern of development; namely that, similar to the 

observations in Chapter 4, there is an incubation period for the fretting contact to 

develop into the steady-state, beyond which the evolution of wear will subsequently 

exhibits a non-linear behaviour as indicated by Equation 6.2. This incubation period is 

normally characterised by test duration as well as by the threshold energy, and, as 

already demonstrated by the results in this work, their values are strongly influenced 

by the test conditions and contact geometries. For example, the test with Δ∗ = 10 µm 
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(𝛿∗ = 5 µm) requires a very long test duration to reach the steady-state, which is longer 

than 𝑁 = 5×106 cycles (with 𝐸% = ~20 kJ) and shorter than 𝑁 = 1×107 cycles (with 𝐸% = 

~45 kJ). The requirement of the incubation period for the case of Δ∗ = 15 µm (𝛿∗ = 8 

µm) is arguably around 𝑁 = 1×106 cycles (𝐸% = ~10 kJ) where wear can be observed 

even though its amount is relatively small; for the case of Δ∗ = 20 µm (𝛿∗ = 11 µm) and 

beyond, the incubation period is much shorter; for example, as demonstrated in 

Chapter 4, for 𝛿∗ = 41 µm, i.e. Δ∗ = 50 µm, the wear scar has already been established 

by the time when 𝑁 = 5×103 cycles, with 𝐸% = 0.02 kJ. The variation of the incubation 

period for different slip amplitude emphasises the argument that perhaps the attempt 

to use a unified threshold of test duration or dissipated energy below which the wear 

will not occur to characterise the wear process is not appropriate, each test with 

different conditions may report a different value of threshold; the same argument can 

also challenge the concept of the threshold of slip amplitude. 

It is suggested here, rather than creating concepts of threshold to artificially distinguish 

the mechanisms of fretting wear, perhaps viewing the wear behaviour under different 

conditions as different members from the same family can provide a better foundation 

in developing a more thorough understanding of fretting wear. To accomplish this goal, 

as argued many times in this thesis already, a long enough test duration is required to 

ensure that steady state has been reached. To demonstrate the necessity of applying 

long test durations, Figure 6.7 has been reproduced (shown in Figure 6.9) with data 

associated with two sets of different test durations, each set characterised by a dashed 

line. It can be seen from Figure 6.9 that experimental results conducted under the same 

test duration can be in fact fitted with a straight line. Such interpretation of data is 

commonly seen across a large body of literatures [24, 27, 81], which can lead to false 

assurance to the concept of threshold. For example, if the investigation was carried out 

at 𝑁 = 1×106 cycles, then an energy threshold of 𝐸% = ~10 kJ may be reported; but a 

different value of energy threshold can be found if the test duration is elongated to 𝑁 = 



The dependence of wear rate on slip amplitude 

 161 

5×106 cycles. Moreover, as the test duration increases, the so-called “threshold of slip 

amplitude” will reduce its value continuously, until the slip amplitude is so small that the 

contact falls into the partial slip regime. 

 

Figure 6.9: Illustration of the common practice to fit experimental data with straight lines 
where test durations are fixed by reproducing Figure 6.7 with original data displayed with 
a higher transparency; 𝑬𝒅𝟎.𝟕𝟓 is used as the exposure to wear for the purpose of 
demonstration. 

6.3.2 Wear rate dependence on slip amplitude in fretting 

A demonstrably sufficiently long test duration is suggested as essential when 

conducting fretting studies. The complete definition of wear incorporates both the 

process of debris formation and ejection as postulated by the third body approach [19] 

and the concept of tribology circuit [96]. In this work, it is suggested that, if the debris 

ejection is the RDP (as argued in the previous section), the instantaneous wear rate is 

inversely proportional to the contact size by a parameter 𝑘 (as indicated in Equation 

6.1), and relationship between the wear volume and the dissipated energy can be 

described by a non-linear equation as outlined in Equation 6.2. Whilst it is believed that 
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the larger slip amplitude can enhance the debris ejection [33, 109, 110], such 

enhancement is competing against the opposite effect brought by the larger contact 

size due to the large slip amplitude. To separate the role of slip amplitude from the 

contact size on debris ejection, the values of 𝐾  for each slip amplitude can be 

determined from Figure 6.7, which is used to calculate their corresponding values of 𝑘 

as presented in Figure 6.8. As suggested in Chapter 4, the value of 𝑘 can be interpreted 

as the ability of the contact to eject oxide debris, and is found to be strongly dependent 

upon the slip amplitude as indicated by Figure 6.8. It is recognised that the physical 

meaning of 𝑘 (although a physical quantity has not been assigned to it) is very different 

from the Archard-type wear rate. Nevertheless, the evolution of 𝑘 with the increased 

slip amplitude exhibits a similar pattern which has been observed by those 

investigations about the dependence of Archard-type wear rate upon the slip amplitude 

as by many studies in literature [4, 18, 27, 33, 72, 81, 91, 108, 111, 113]. 

Figure 6.8 indicates that the increase of the slip amplitude can indeed cause the rise of 

the debris ejection. The reduced debris ejection rate associated with small slip 

amplitude suggests a longer residence time of debris being retained inside the contact, 

and a higher likelihood of debris agglomeration / sintering to form a compact debris bed. 

Even though increasing the slip amplitude can enhance the debris ejection, the debris 

at the centre of wear scar is still more difficult to be removed, which may cause the 

compact debris bed being formed mainly at the centre if not being able to cover the 

whole contact (as shown in Figure 6.6); such change in the distribution of oxide debris 

is reflected by the change of 𝑘. The development of 𝑘 also implies that the ability of the 

contact to remove debris may approach towards a plateau since the rate of change of 

𝑘 falls with increasing slip amplitude. If it is assumed that (in the same vein as the 

proposal of Vingsbo and Söderberg [4] as shown in Figure 2.1) 𝑘 may reach a plateau 

value (above which it is independent of slip amplitude), then such a plateau value has 

not been reached at least by 𝛿∗ = 82 µm. More tests with larger slip amplitudes are 
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required to reveal the evolution of 𝑘  after 𝛿∗  = 82 µm; equally importantly, more 

investigations of the dependence of 𝑘  at higher slip amplitudes are required to 

understand the underlying physical mechanisms of wear. 

The main observation from Figure 6.4 and Figure 6.5 is that shape of wear scar is 

influenced by the slip amplitude: with the fixed test durations, a W-shaped wear scar is 

associated with smaller slip amplitudes and U-shaped wear scar can be found when 

slip amplitude is larger, which is in accord with observations in literature [90, 91, 108, 

111]. It is demonstrated in Figure 6.5c that, as the increase of test duration (as well as 

the energy) from 𝑁 = 1×106 cycles to 𝑁 = 5×106 cycles, the shape wear scar for 𝛿∗ = 

16 µm (Δ∗ = 25 µm) changes from U-shaped to W-shaped and it is recognised that this 

may be influenced by the commensurate increase in the wear scar width. It is proposed 

here that, whilst the increase of the slip amplitude can reinforce the debris ejection, its 

enhancing effect is compensated by the growing contact size. As such, the difficulty of 

the debris expulsion from the centre of the wear scar is increased since the distance 

from the centre to the edge is the largest for debris to travel across the contact, the 

result of which is the W-shaped wear scar. Although the nature of those W-shaped and 

U-shaped wear scar requires further cross-sectional investigations, the implication from 

Figure 6.5c is that, with the ability to transport debris out the contact defined by a certain 

slip amplitude, all wear scars (in tests with non-conforming geometries) may eventually 

develop into a W-shaped wear scars as contact size increases; the contact size at 

which the transition to a W-shaped scar occurs will increase with increasing slip 

amplitude. The test duration required for such transition to occur is influenced by the 

debris ejection associated with different slip amplitude; more investigations are clearly 

needed in this area. 
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6.4 Conclusions 

With the evidence presented in this work, reducing the slip amplitude leads to the 

formation of a more compact debris bed across the contact, which is associated with 

reduced debris ejection and hence the increased residence time for debris inside the 

contact. As such, reduced ECoF and less developed fretting loops are observed for 

test conducted with small amplitude. In tests with non-conforming contacts, the 

enhancement of debris ejection by the increase of slip amplitude is competing against 

the opposite effect associated with increases in the contact size; the wear equation 

generated in Chapter 4 (the governing equation for the instantaneous wear rate) and 

Chapter 5 (general wear equation in a non-linear form) can help to separate the effect 

of the slip amplitude from the effect of the contact size. However, the standard of “long 

test duration” to reveal the development of wear is influenced by the test conditions. In 

this chapter, it was found that the test duration required for wear to occur is increased 

by the reduction of slip amplitude; in particular, test duration in the order of tens of 

millions of cycles is needed for tests with 𝛿∗ = 5 µm cycles. 

The value of 𝑘 , the parameter describing the instantaneous wear rate, which is 

independent of the contact size, can be determined from the transformed experimental 

data by plotting the wear volume against the quantity of 𝐸%" (where 𝑛 = 0.75 if cylinder-

on-flat configuration is employed). The parameter 𝑘 , which was found to be 

independent of the contact geometry (as demonstrated in Chapter 4), has been shown 

to be strongly dependent upon the slip amplitude. Whilst the methods outlined in thesis 

provide a first attempt to understand the dependence of wear rate on slip amplitude 

without the effect of contact size, the nature of the change of 𝑘 in terms of slip amplitude 

requires further investigation. 
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Chapter 7 Conclusions 

The influence of debris ejection from fretting contacts on their wear behaviour has been 

qualitatively understood since the work of Godet in the 1980s, but in analysis of wear 

data, this influence continues to be overlooked. The key objective of this thesis was to 

address this issue qualitatively for the first time, with this involving an analysis of how 

debris ejection from the contact is dependent upon physical dimensions of the contact 

patch. Fretting wear experiments employing a cylinder-on-flat sample configuration 

were conducted which allowed the change in instantaneous wear rate throughout a test 

(as the size of the wearing contact increased) to be monitored. An analytical model to 

determine the wear rate based on the contact geometry and the role of debris flow was 

developed. The model is able to account for differences in Archard-type wear rates 

observed in tests conducted with the apparently different (and evolving) contact 

geometries over a range of durations. 

The model developed is based upon a physical understanding of the process of fretting 

wear of metals, where it is proposed that the progression of wear requires the formation 

of oxide debris and the subsequent transport of debris out of the contact due to the 

closed nature of the contact. This concept has been extended in this thesis by 

proposing that both the process of debris formation and ejection will have a maximum 

possible rate under a given set of conditions, and the observed wear rate is governed 

by the process with the least of these maximum rates; the limiting process has been 

termed the rate-determining process (RDP). As highlighted in this thesis, identification 

of the RDP is critical in improving understanding of the rates of wear in fretting. 

The model that has been developed states that, when debris ejection is the RDP, the 

contact size exerts its influence on the overall wear rate by controlling the rate of debris 

ejection, with it being demonstrated that the rate of debris ejection is inversely 
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proportional to a characteristic dimension of the contact characterised by a single 

parameter 𝑘 where: 

𝑑𝑉!
𝑑𝐸%

=
𝑘
𝑥

 

It is proposed that this contact size-effect is universal for fretting analysis. If the contact 

size remains unchanged as wear proceeds (such as when conforming contacts are 

employed), then the rate of debris ejection (hence the observed wear rate) will be 

constant, although it is noted that this constant is dependent upon the contact size 

selected. One important implication of this is that, when comparing wear rates from 

different research reports, quoting the observed Archard-type wear rate without the 

information related contact size is of little value. In such case, the single parameter 𝑘, 

which is irrelevant to the change of contact size, can be used for the characterisation 

of experimental results. 

Solutions of the governing equation of the model were targeted for three commonly-

used non-conforming contact geometries in fretting research (namely cylinder-on-flat, 

sphere-on-flat and crossed-cylinders). Key for this derivation is the assertion that the 

wear volume in fretting can be calculated from the contact size via a simple geometrical 

relationship, along with the logically-argued assertion that the recession rate of the 

surfaces is the same at any point within the contact. By making suitable approximations, 

equations were derived for the three geometry-types which were observed to have the 

non-linear form as: 𝑉! = 𝐾𝑅"#$𝐸%". 

The error associated with approximations during the derivation of these wear equations 

were generally small (typically less than ~0.5% in the cases considered in this thesis). 

This alternative model to the Archard-type approach was applied to experimental 

fretting wear data from tests conducted with cylinder-on-flat and sphere-on flat contact 

geometries. The model is less successful in predicting the results from equiaxed 
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contact patches (sphere-on-flat contact) than from a contact where the contact size 

perpendicular to the fretting direction is large (cylinder-on-flat). It is concluded that the 

performance of the model falls as effect of side-leakage increases. Despite the success 

of the model presented in this thesis for two-dimensional contacts, its boundary and 

the scope of applicability should be further investigated. Moreover, the model requires 

extension so that the role of side-leakage of debris from fretting contacts can be 

understood and quantified. 

The new wear equation for fretting of non-conforming contacts was applied to improve 

the understanding of the effect of slip amplitude. It was demonstrated using two-

dimensional contacts that the value of 𝑘  increases monotonically with fretting slip 

amplitude but its value seems to approach a plateau at high values of slip amplitude 

(around 82 μm) showing a similar pattern described in the seminal work of Vingsbo and 

Söderberg. It was proposed that the small value of 𝑘  associated with smaller slip 

ampltiudes is caused by the restricted debris ejection rate (i.e. per unit time), which 

provides sufficient residence time for debris to form compact debris beds which resist 

debris expulsion from the contact; in contrast, the enhanced debris ejection caused by 

larger slip amplitudes disrupts the formation of such a protective layer and promotes 

debris expulsion. However, further investigation is required to provide a physically-

based understanding of the underlying mechanisms by which 𝑘 is dependent upon slip 

amplitude and the associated change of wear scar profile (U-shaped or W-shaped). 
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Chapter 8 Future work 

As discussed, an assumption has been made throughout this thesis that debris is 

expelled from the contact with its velocity being parallel to the direction of fretting, which 

means that side leakage of debris is assumed to be negligible. However, it was 

suggested that the poorer fit to experimental data in cases where the contact is 

equiaxed indicates that side-leakage should not be ignored, and work needs to be 

conducted which addresses the role of side leakage (and identifies when it can be 

ignored). It is noted that when stronger side-leakage occurs, the transport of debris out 

of the contact may cease to be the RDP, since the size of contact itself (in the direction 

of fretting motion) may no longer limit the debris ejection, causing the debris formation 

to take the determinant role (similar to sliding wear). Perhaps the most efficient way to 

address this is to employ conforming contacts with different aspect ratios. Overall, more 

experimental investigations are required to reveal the long-term behaviour of contact 

with different shapes and aspect ratio. All these efforts will be critical to understand the 

boundary and the scope of the applicability of the simple model presented in this work. 

In addition to the debris formation and ejection being the potential RDP in fretting, the 

transport of oxygen into the contact may be a third potential RDP. While a model based 

on debris ejection has been proposed in this thesis and models for debris formation 

have been outlined in Archard-type approach, models considering the effects of fretting 

parameters on oxygen transport are required. Moreover, since the change of contact 

conditions may trigger the change of RDP and hence the instantaneous wear rate 

during a test, an attempt to provide a coherent framework incorporating all the potential 

RDPs would be significant to prompt the understanding of fretting. 

One of the most important contribution of this thesis is the proposal of the instantaneous 

wear rate being inversely proportional to the contact size when debris ejection is the 

RDP. Whilst experimental results (either generated in this thesis or extracted from 
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external source in literature) were used to verify the governing equations for CF and 

SF contact configurations, as well as the general wear equations that were 

subsequently derived from them, the data for CC contact is missing. In addition, the 

general wear equation for CC contact may take a different form if considering different 

radii of cylinders (assumed to the same in this thesis) or different crossing angle 

between two cylinders (assumes to be perpendicular to each other); either of these 

extra considerations are commonly seen in industry. Perhaps more significantly, there 

is a need to extend the findings and conclusions of this work to work with conforming 

contacts. As part of this, there is a need to consider whether steady—state wear can 

always be achieved in conforming contacts of any size (i.e. will wear naturally stifle 

itself as it does in partial-slip) and whether the proposal that the maximum debris 

ejection rate is proportional to the inverse of the contact size continues to hold as the 

contact size increases. 

The success employment of the proposed governing equation suggests that the roles 

of fretting parameters can be understood regardless the contact size. It is noted that 

the instantaneous wear rate is characterised by a single parameter 𝑘 , which is 

proposed to be a function of different parameters. There are many directions can be 

taken in future to refine the governing equation by understanding the relationship of 𝑘 

as functions of parameters on interest; for example, the relationship between 𝑘 and the 

slip amplitude can be further investigated so that an equation of 𝑘 in terms of slip 

amplitude could be derived; tests with larger slip amplitude (larger than 82 µm) should 

be conducted to reveal the further evolution of 𝑘. Moreover, the governing equation 

opens endless possibility to understand how other parameters such as normal load, 

frequency and temperature can influence the value of 𝑘, with the aim being to identify 

their exact equations; the proposed instantaneous wear rate may also be applied to 

different materials and conforming contacts in the future. With the understanding of the 

roles of fretting parameters on the value of 𝑘, their effects could be compared with 
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those investigations where the traditional measure of wear rate were applied; finding 

out both the similarity and difference between these two methods would be of 

significant value. 
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Appendix A 

Derivation of the function of dissipated energy in terms of wear 
scar width 

The volume of a minor segment of a cylinder (parallel to the cylinder axis) is given by 

the following equation: 

𝑉! = 𝐿 d𝑅. 𝑎𝑟𝑐𝑠𝑖𝑛 d
𝑥
2𝑅f −

𝑥
4
g4𝑅. − 𝑥.f (𝐴. 1) 

where terms are as previously defined. In the current study, it is proposed that the 

instantaneous wear rate %K(
%*#

 is dependent upon the scar width (𝑥) as follows: 

𝑑𝑉!
𝑑𝐸%

=
𝑘
𝑥

 

which can be rewritten as follows: 

𝑑𝑉!
𝑑𝑥

𝑑𝑥
𝑑𝐸%

=
𝑘
𝑥

(𝐴. 2) 

%K(
%*#

 can be calculated by differentiating Equation A.1 with respect to 𝑥, which gives: 

𝑑𝑉!
𝑑𝑥

= 𝐿𝑅.
𝑑
𝑑𝑥
d𝑎𝑟𝑐𝑠𝑖𝑛 d

𝑥
2𝑅
ff −

𝐿
4
𝑑
𝑑𝑥
d𝑥g4𝑅. − 𝑥.f	

= 𝐿𝑅.
1

√4𝑅. − 𝑥.
−
𝐿
4
4𝑅. − 2𝑥.

√4𝑅. − 𝑥.
	

=
𝑥.𝐿

2√4𝑅. − 𝑥.
(𝐴. 3) 

Substituting Equation A.3 into Equation A.2 gives: 

𝑑𝐸% =
𝑥/𝐿

2𝑘√4𝑅. − 𝑥.
𝑑𝑥 (𝐴. 4) 
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which can be integrated as follows: 

𝐸% =
𝐿
2𝑘
`

𝑥/

√4𝑅. − 𝑥.
𝑑𝑥 

Defining that: 

𝑓(𝑥) =
𝑥/

√4𝑅. − 𝑥.
 

𝑢 = 𝑥. 

then: 

𝐸% =
𝐿
2𝑘
`𝑓(𝑥)𝑑𝑥 

𝑑𝑢 = 2𝑥	𝑑𝑥 

This returns: 

`𝑓(𝑥)𝑑𝑥 = `
𝑢𝑥

√4𝑅. − 𝑢
𝑑𝑢
2𝑥

=
1
2
`

𝑢
√4𝑅. − 𝑢

𝑑𝑢 

Defining: 

𝑣 = 4𝑅. − 𝑢 

then: 

𝑑𝑣 = 	−𝑑𝑢 

Combining 𝑢(𝑥) , 𝑣(𝑢)  and their corresponding differentiation into ∫𝑓(𝑥)  and 

rearranging the equation yields: 

`𝑓(𝑥)𝑑𝑥 =
−1
2
`
4𝑅. − 𝑣
√𝑣

𝑑𝑣 =
1
2
`√𝑣 𝑑𝑣 − 2𝑅.`

1
√𝑣

𝑑𝑣 
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And thus: 

`𝑓(𝑥)𝑑𝑥 =
1
3
𝑣
/
. − 4𝑅.𝑣

$
. + 𝑐$ 

By substituting the expressions for 𝑣(𝑢) and 𝑢(𝑥): 

`𝑓(𝑥)𝑑𝑥 =
1
3
(4𝑅. − 𝑢)

/
. − 4𝑅.(4𝑅. − 𝑢)

$
. + 𝑐$	

=
1
3
(4𝑅. − 𝑥.)

/
. − 4𝑅.(4𝑅. − 𝑥.)

$
. + 𝑐$	

= g4𝑅. − 𝑥. <
1
3
(4𝑅. − 𝑥.) − 4𝑅.> + 𝑐$	

= −
1
3
g4𝑅. − 𝑥.(8𝑅. + 𝑥.) + 𝑐$ 

Therefore: 

𝐸% =
𝐿
2𝑘
J−

1
3
g4𝑅. − 𝑥.(8𝑅. + 𝑥.)K +

𝐿
2𝑘
𝑐$ 

Simplifying the terms here yields: 

𝐸% = −𝑚𝐿 <g4𝑅. − 𝑥.(8𝑅. + 𝑥.)> + 𝐶 (𝐴. 5) 

where 𝐶 = $
.B
𝑐$ and 𝑚 = $

AB
. 

To evaluate the integration constant, 𝐶, it is noted that in a fretting contact, there is a 

threshold of energy dissipated, 𝐸23, below which 𝑥 = 0 (i.e. there is no wear) [24, 83]; 

in this region, Equation A.5 does not describe the relationship between 𝐸%  and 𝑥 . 

However, once 𝐸% has exceeded 𝐸23, then wear occurs (and thus 𝑥 > 0). Evaluating 

Equation A.5 when 𝐸% = 𝐸23 and 𝑥 = 0 yields the following: 

𝐸23 = −𝑚𝐿(16	𝑅/) + 𝐶 
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and thus: 

𝐶 = 𝐸23 + 16𝑚𝐿𝑅/ 

The final equation for 𝐸% in terms of 𝑥 is therefore as follows: 

𝐸% = 𝑚𝐿 <16	𝑅/ −g4𝑅. − 𝑥.(8𝑅. + 𝑥.)> +	𝐸23 (𝐴. 6)



 

182 

Appendix B 

Details of the methodology for the derivation of the wear 
equations for all three contact configurations 

The steps to determine the relationship between wear volume (𝑉! ) and dissipated 

energy (𝐸%) for all three configurations (cylinder-on-flat, sphere-on-flat and crossed-

cylinders) are identical, and can be categorised as follows:  

(i) derive an expression for 𝑉! in terms of radius (𝑅) and wear scar angle (𝜃); 

(ii) differentiate the expression to yield %K(
%O

; 

(iii) determine the derivative of 𝐸% with respect to 𝜃, %*#
%O

, based on the assumption 

that the wear rate is inversely proportional to the wear scar width or on the 

assumptions that wear rate is inversely proportional to the wear scar area; 

(iv) integrate %*#
%O

 to find an expression for 𝐸% (and 𝐸%D2) in terms of 𝜃; 

(v) express 𝑉! and 𝐸%D2 as an infinite sum of polynomial terms (Taylor series) and 

approximate their expressions by taking their first non-constant polynomial 

terms; 

(vi) express 𝑉! as a function of 𝐸%D2. 

B1 Cylinder-on-flat configuration assuming either wear scar 
width or wear scar area dependence of instantaneous wear rate 

Find 𝑽𝒘. As shown in Chapter 4, finding 𝑉! can be simplified as a geometric problem, 

i.e. 𝑉!  can be written as a function in terms of 𝑅  and 𝜃 . For the cylinder-on-flat 

configuration, 𝑉! can be approximated as the volume of a minor segment of a cylinder. 

Therefore, it can be shown that: 

𝑉! = 𝐿𝑅.(𝜃 − sin(𝜃) cos(𝜃)) (𝐵1.1) 
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where terms are as previously defined.  

Calculate 𝒅𝑽𝒘
𝒅𝜽

. The derivative of 𝑉!  with respect to 𝜃  can be shown to be:	

𝑑𝑉!
𝑑𝜃 = 𝐿𝑅.(1 − cos(2𝜃)) (𝐵1.2)	 

Determine 𝒅𝑬𝒅
𝒅𝜽

. It was proposed in Chapter 4 that wear rate d%K(
%*#

f is dependent upon 

the scar width (𝑥) in the following relationship: 

𝑑𝑉!
𝑑𝐸%

=
𝑘$
𝑥

(𝐵1.3) 

For the cylinder-on-flat configuration, wear scar width is roughly uniform throughout the 

damaged area. Therefore, 𝑥 can be approximated as the chord length of the minor 

segment, which is: 

𝑥 = 2𝑅sin(𝜃) 

Therefore, the wear rate expression can be rewritten as: 

𝑑𝑉!
𝑑𝜃

𝑑𝜃
𝑑𝐸%

	=
𝑘$

2𝑅sin(𝜃)
(𝐵1.4) 

Substituting Equation B1.2 into Equation B1.4 yields:  

𝐿𝑅.(1 − cos(2𝜃))
𝑑𝜃
𝑑𝐸%

=
𝑘$

2𝑅sin(𝜃)
 

which can be rearranged as follows: 

𝑑𝐸%
𝑑𝜃

=
2𝐿𝑅/(1 − cos(2𝜃))sin(𝜃)

𝑘$
(𝐵1.5) 

Integrate 𝒅𝑬𝒅
𝒅𝜽

. 𝐸%  can be calculated by taking the integral of both sides of Equation 

B.1.5 with respect to 𝜃: 
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𝐸% =
2𝐿𝑅/

𝑘$
`(1 − cos(2𝜃))sin(𝜃)	𝑑𝜃	 

By use of trigonometric identities, this can be integrated as follows: 

`(1 − cos	(2𝜃))sin	(𝜃)	𝑑𝜃 ≡
1
2
`3sin(𝜃) − sin(3𝜃)	𝑑𝜃	

=
1
2 <
1
3
cos(3𝜃) − 3cos(𝜃)> + 𝑐$	 

where 𝑐$ is a constant of integration. 

Substituting the integral of (1 − cos(2𝜃))sin(𝜃) into the expression for 𝐸% gives: 

𝐸% =
𝐿𝑅/

3𝑘$
(cos(3𝜃) − 9cos(𝜃)) +

2𝐿𝑅/

𝑘$
𝑐$ 

which can be rewritten as: 

𝐸% = 𝑚$𝐿𝑅/(cos(3𝜃) − 9 cos(𝜃)) + 𝐶$ (𝐵1.6) 

where 𝑚$ =
$
/B$

 and 𝐶$ =
.J@'

B$
𝑐$. 

To evaluate the constant, 𝐶$, it is noted that in a fretting contact, there is a threshold of 

energy dissipated, 𝐸23 , below which 𝜃 = 0  (i.e. there is no wear); in this region, 

Equation B1.6 does not describe the relationship between 𝐸% and 𝜃. However, once 𝐸% 

has exceeded 𝐸23, then wear occurs (and thus 𝜃 > 0). Evaluating Equation B1.6 when 

𝐸% =	𝐸23 and 𝜃 = 0 yields the following: 

𝐸23 = −8𝑚$𝐿𝑅/ + 𝐶$ 

and thus: 

𝐶$ = 𝐸23 + 8𝑚$𝐿𝑅/ 

Substituting the expression of 𝐶$ into Equation B1.6, the final equation for 𝐸% is: 
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𝐸% = 𝑚$𝐿𝑅/(cos(3𝜃) − 9cos(𝜃) + 8) + 𝐸23 (𝐵1.7) 

A new term (𝐸%D2) can be defined, which represents the frictional energy dissipated 

above the threshold energy for wear to commence so that 𝐸%D2 = 𝐸% − 𝐸23  (the 

subscript “dat” being an acronym for “dissipated above threshold”). 

In summary, a parametric function of 𝑉! and 𝐸%D2 in terms of 𝜃 for the cylinder-on-flat 

configuration has been obtained: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� = �

𝐿𝑅.(𝜃 − sin(𝜃) cos(𝜃))
		

𝑚$𝐿𝑅/(cos(3𝜃) − 9cos(𝜃) + 8)
� (𝐵1.8) 

Express 𝑽𝒘  and 𝑬𝒅𝒂𝒕  as an infinite polynomial sum (Taylor series). With the 

parametric function, 𝑉! and 𝐸% can both be represented as a Taylor series. 

The definition of a Taylor series expansion of a function 𝑓(𝑥) at a point 𝑥 = 𝑎 is as 

follows: 

𝑓(𝑥) = a
𝑓(")(𝑎)
𝑛!

(𝑥 − 𝑎)"
Y

"<0

 

where 𝑓(")(𝑎) = the 𝑛23 derivative of 𝑓(𝑥) with respect to 𝑥 evaluated at 𝑥 = 𝑎. 

Finding the Taylor series for 𝑉!  and 𝐸%D2  at the point 𝜃 = 0 (the Taylor series of a 

function at 0 is also known as a Maclaurin series), then 𝑉! and 𝐸%D2 can be written as: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� =

⎝

⎜⎜
⎜
⎛
a

𝑉!
(")(0)
𝑛!

𝜃"
Y

"<0 		

a
𝐸%D2
(I)(0)
𝑘!

𝜃I
Y

I<0 ⎠

⎟⎟
⎟
⎞

 

Express 𝑽𝒘 as a function of 𝑬𝒅𝒂𝒕. The first-degree polynomial term of each Taylor 

series for both 𝑉! and 𝐸%D2 were taken as approximations as follows: 
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�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� ≈ �

2
3𝐿𝑅

.𝜃/
		

3𝑚$𝐿𝑅/𝜃6
� (𝐵1.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation B1.9 yields: 

𝑉! =
2

3$.GH J
𝐿
𝑚$
/K

0..H

𝑅#0..H𝐸%D20.GH (𝐵1.10) 

B2 Sphere-on-flat configuration assuming wear scar width 
dependence of instantaneous wear rate 

Find 𝑽𝒘. For the sphere-on-flat configuration, 𝑉! can be approximated as the volume 

of a spherical cap, which is given by the following equation: 

𝑉! =
𝜋𝑅/

3
(cos/(𝜃) − 3 cos(𝜃) + 2) (𝐵2.1) 

where terms are as previously defined.  

Calculate 𝒅𝑽𝒘
𝒅𝜽

. Using trigonometric identities, it can be shown that: 

cos/(𝜃) − 3cos(𝜃) + 2 ≡
cos(3𝜃) − 9cos(𝜃) + 8

4
 

Accordingly, the expression for 𝑉! for the sphere-on-flat configuration (Equation B2.1) 

can be written as follows: 

𝑉! =
𝜋𝑅/

12
(cos(3𝜃) − 9cos(𝜃) + 8) 

The derivative of 𝑉! with respect to 𝜃 for the sphere-on-flat configuration can thus be 

written as follows: 

𝑑𝑉!
𝑑𝜃 = 𝜋𝑅/ sin/(𝜃) (𝐵2.2) 
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Determine 𝒅𝑬𝒅
𝒅𝜽

. As has been shown for the cylinder-on-flat contact geometry, it is again 

proposed that wear rate (%K(
%*#

) is dependent upon the width of the wear scar. In this case, 

the shape of the wear scar approximates to that of a circle, and therefore (in contrast 

to the cylinder-on-flat geometry), the wear scar width in the direction of fretting 

displacement is not uniform. As such, it is assumed that the instantaneous wear rate is 

inversely proportional to a characteristic wear scar width which is defined as the 

maximum width of the wear scar (i.e. the wear scar diameter, 2𝑟) as follows: 

𝑑𝑉!
𝑑𝐸%

=
𝑘.
2𝑟

(𝐵2.3) 

Using the geometrical relationship: 

	𝑟 = 𝑅sin(𝜃) 

the expression for the wear rate can be rewritten as follows: 

𝑑𝑉!
𝑑𝜃

𝑑𝜃
𝑑𝐸%

=
𝑘.

2𝑅sin(𝜃)
(𝐵2.4) 

Substituting Equation B2.2 into Equation B2.4 and rearranging yields:  

𝑑𝐸%
𝑑𝜃

=
2𝜋𝑅6 sin6(𝜃)

𝑘.
(𝐵2.5) 

Integrate 𝒅𝑬𝒅
𝒅𝜽

. 𝐸% can be calculated by taking the integral of Equation B2.5 with respect 

to 𝜃: 

𝐸% =
2𝜋𝑅6

𝑘.
`sin6(𝜃) 	𝑑𝜃 

By use of trigonometric identities, this can be integrated as follows: 

`sin6(𝜃) 𝑑𝜃 ≡
1
8
`cos(4𝜃) − 4cos(2𝜃) + 3	𝑑𝜃 =

1
32
(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) + 𝑐. 
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where 𝑐. is a constant of integration. 

Substituting the integral of sin6(𝜃) into the expression for 𝐸% yields: 

𝐸% =
𝜋𝑅6

16𝑘.
(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) +

2𝜋𝑅6

𝑘.
𝑐. 

which can be rewritten as: 

𝐸% = 𝑚.𝜋𝑅6(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) + 𝐶. (𝐵2.6) 

where 𝑚. =
$

$AB)
 and 𝐶. =

.E@/

B)
𝑐.. 

As previously, it can be seen that the constant 𝐶. can be evaluated as follows: 

𝐶. = 𝐸23 

A final equation for 𝐸%D2 can therefore be written as follows: 

𝐸%D2 = 𝑚.𝜋𝑅6(sin(4𝜃) − 8sin(2𝜃) + 12𝜃) (𝐵2.7) 

In summary, a parametric function of 𝑉! and 𝐸%D2 in terms of 𝜃 for the sphere-on-flat 

configuration assuming wear scar width dependence of instantaneous wear rate has 

been obtained: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� = �

𝜋𝑅/

12
(cos(3𝜃) − 9cos(𝜃) + 8)

		
𝑚.𝜋𝑅6(sin(4𝜃) − 8sin(2𝜃) + 12𝜃)

� (𝐵2.8) 

Express 𝑽𝒘  and 𝑬𝒅𝒂𝒕  as an infinite polynomial sum (Taylor series). With the 

establishment of the parametric function, the Taylor series for 𝑉!  and 𝐸% 	can be 

expressed as follows: 
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�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� =

⎝

⎜⎜
⎜
⎛
a

𝑉!
(")(0)
𝑛!

𝜃"
Y

"<0 		

a
𝐸%D2
(I)(0)
𝑘!

𝜃I
Y

I<0 ⎠

⎟⎟
⎟
⎞

 

Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for 

both 𝑉! and 𝐸%D2 were taken as approximations as follows: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� ≈

⎝

⎜
⎛

𝜋𝑅/𝜃6

4		
32
5
𝑚.𝜋𝑅6𝜃H⎠

⎟
⎞

(𝐵2.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation B2.9 yields: 

𝑉! =
1
4<

5
32>

0.M

J
𝜋
𝑚.
6K

0..

𝑅#0..𝐸%D20.M (𝐵2.10) 

B3 Sphere-on-flat configuration assuming wear scar area 
dependence of instantaneous wear rate 

Find 𝑽𝒘. The expression of 𝑉! as a function of 𝑅 and 𝜃 remains the same as Equation 

B2.1: 

𝑉! =
𝜋𝑅/

3
(cos/(𝜃) − 3 cos(𝜃) + 2) (𝐵3.1) 

where terms are as previously defined.  

Calculate 𝒅𝑽𝒘
𝒅𝜽

. Direct use of Equation B2.2: 

𝑑𝑉!
𝑑𝜃 = 𝜋𝑅/ sin/(𝜃) (𝐵3.2) 
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Determine 𝒅𝑬𝒅
𝒅𝜽

. The assumption here is that the wear rate (%K(
%*#

) is dependent upon the 

area of the wear scar (𝐴): 

𝑑𝑉!
𝑑𝐸%

=
𝑘.L

𝐴
(𝐵3.3) 

In this case, the shape of the wear scar approximates to that of a circle, and therefore, 

using the geometrical relationship: 

	𝐴 = 𝜋𝑟. = 𝜋𝑅. sin.(𝜃) 

the expression for the wear rate can be rewritten as follows: 

𝑑𝑉!
𝑑𝜃

𝑑𝜃
𝑑𝐸%

=
𝑘.L

𝜋𝑅. sin.(𝜃)
(𝐵3.4) 

Substituting Equation B3.2 into Equation B3.4 and rearranging yields:  

𝑑𝐸%
𝑑𝜃

=
𝜋.𝑅H sinH(𝜃)

𝑘.L
(𝐵3.5) 

Integrate 𝒅𝑬𝒅
𝒅𝜽

. 𝐸% can be calculated by taking the integral of Equation B3.5 with respect 

to 𝜃: 

𝐸% =
𝜋.𝑅H

𝑘.L
`sinH(𝜃) 	𝑑𝜃 

By use of trigonometric identities, this can be integrated as follows: 

`sinH(𝜃) 𝑑𝜃 ≡
1
16
`sin(5𝜃) − 5 sin(3𝜃) + 10 sin(𝜃) 𝑑𝜃	

=
1
240

(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃)) + 𝑐.L 	

where 𝑐.L  is a constant of integration. 

Substituting the integral of sinH(𝜃) into the expression for 𝐸% yields: 
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𝐸% =
𝜋.𝑅H

240𝑘.L
(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃)) +

𝜋.𝑅6

𝑘.L
𝑐.L  

which can be rewritten as: 

𝐸% = 𝑚.
L 𝜋.𝑅H(−3cos(5𝜃) + 25cos(3𝜃) − 150 cos(𝜃)) + 𝐶.L (𝐵3.6) 

where 𝑚.
L = $

.60B)+
 and 𝐶.L =

E)@0

B)+
𝑐.L . 

As previously, it can be seen that the constant 𝐶.′ can be evaluated as follows: 

𝐶.L =	𝐸23 + 128𝑚.
L 𝜋.𝑅H 

A final equation for 𝐸%D2 can therefore be written as follows: 

𝐸%D2 = 𝑚.
L 𝜋.𝑅H(−3cos(5𝜃) + 25cos(3𝜃) − 150cos(𝜃) + 128) (𝐵3.7) 

In summary, a parametric function of 𝑉! and 𝐸%D2 in terms of 𝜃 for the sphere-on-flat 

configuration assuming wear scar area dependence of instantaneous wear rate has 

been obtained: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� = �

𝜋𝑅/

12
(cos(3𝜃) − 9cos(𝜃) + 8)

		
𝑚.
L 𝜋.𝑅H(−3cos(5𝜃) + 25cos(3𝜃) − 150 cos(𝜃) + 128)

� (𝐵3.8) 

Express 𝑽𝒘  and 𝑬𝒅𝒂𝒕  as an infinite polynomial sum (Taylor series). With the 

establishment of the parametric function, the Taylor series for 𝑉!  and 𝐸% 	can be 

expressed as follows: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� =

⎝

⎜⎜
⎜
⎛
a

𝑉!
(")(0)
𝑛!

𝜃"
Y

"<0 		

a
𝐸%D2
(I)(0)
𝑘!

𝜃I
Y

I<0 ⎠

⎟⎟
⎟
⎞
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Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for 

both 𝑉! and 𝐸%D2 were taken as approximations as follows: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� ≈ �

𝜋𝑅/𝜃6

4		
40𝑚.

L 𝜋.𝑅H𝜃A
� (𝐵3.9) 

Eliminating the parameter 𝜃 from the parametric equations in Equation B3.9 yields: 

𝑉! =
1
4 <

1
40>

0.AG
J

1
𝜋𝑚.

L.K
0.//

𝑅#0.//𝐸%D20.AG (𝐵3.10) 

B4 Crossed-cylinder configuration assuming wear scar width 
dependence of instantaneous wear rate 

Find 𝑽𝒘. For the crossed-cylinder configuration, defining the shape of the intersection 

between two orthogonally crossed cylinders is not straightforward, and therefore the 

derivation of 𝑉! is similarly not straightforward.  

We define the system as two orthogonally crossed cylinders with the same radius (𝑅) 

in Cartesian coordinates. The shortest distance between the central axes of these two 

cylinders, 2𝑑, is defined as follows:  

2𝑑 = 𝑅 + 𝑅cos(𝜃) 

The axis of one cylinder (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟	𝑎) has its axis parallel to the 𝑥-axis and crosses the 

𝑧-axis at 𝑧 = 𝑑, whilst the axis of the other cylinder (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟	𝑏) is parallel to the 𝑦-axis 

and crosses the 𝑧-axis at 𝑧 = −𝑑. This geometry is illustrated in Figure B.1. 
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Figure B.1: Illustration of two orthogonally crossed cylinders with identical radius (𝑹) in 
cartesian coordinates. The distance between their central axes is 𝑫. 

For 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟	𝑎, all the points inside satisfy the inequality that:  

𝑦. + (𝑧 − 𝑑). ≤ 𝑅. 

For 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟	𝑏, all the points inside satisfy the inequality that:  

𝑥. + (𝑧 + 𝑑). ≤ 𝑅. 

Rearranging these two inequalities gives the boundary of the intersection on 𝑥-axis and 

𝑦-axis: 

|𝑦| ≤ g𝑅. − (𝑧 − 𝑑). 

|𝑥| ≤ g𝑅. − (𝑧 + 𝑑).	 

The limits on the 𝑧-axis are determined by the requirement that the arguments of both 

the square roots in the above inequalities are not negative: 

−𝑅 ≤ 𝑧 − 𝑑	

𝑧 + 𝑑 ≤ 𝑅 

Therefore: 
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𝑑 − 𝑅 ≤ 𝑧 ≤ 𝑅 − 𝑑 

As shown in Figure B.2, every cross-section parallel to the 𝑥 − 𝑦 plane is a rectangle 

with sides of length 𝑙$  and 𝑙. . Therefore, the volume of the intersection can be 

described as: 

𝑉! = lim
"→Y

a𝑙$(𝑧[)𝑙.(𝑧[)∆𝑧
"

[<$

 

where: 

∆𝑧 =
2𝑅 − 2𝑑

𝑛
 

𝑧[ = (𝑑 − 𝑅) + ∆𝑧 ∙ 𝑗 

 

Figure B.2: Illustration of the intersection volume being calculated by integration of each 
slice parallel to the 𝒙 − 𝒚 plane within the boundary. 

As 𝑛 → +∞, the volume of the intersection can be written as an integral: 

𝑉! = ` 𝑙$(𝑧)𝑙.(𝑧)	𝑑𝑧
@#%

%#@
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Since 𝑙$ is a line segment defined by the boundary of the intersection on 𝑥-axis, and 𝑙. 

is defined by the boundary on 𝑦-axis, the following equations can be derived as: 

𝑙$ = 2g𝑅. − (𝑧 + 𝑑).	

𝑙. = 2g𝑅. − (𝑧 − 𝑑). 

Therefore, 𝑉! can be expressed as: 

𝑉! = ` 4
@#%

%#@
g(𝑅. − (𝑧 + 𝑑).)(𝑅. − (𝑧 − 𝑑).)	𝑑𝑧	

= 8` g(𝑅. − (𝑧 + 𝑑).)(𝑅. − (𝑧 − 𝑑).)	𝑑𝑧
@#%

0
	 

Rearranging this equation yields: 

𝑉! = 8` g((𝑅 − 𝑑). − 𝑧.)((𝑅 + 𝑑). − 𝑧.)	𝑑𝑧
@#%

0
 

Let: 

𝑧 = (𝑅 − 𝑑)sin(𝜃) 

Then: 

𝑑𝑧 = (𝑅 − 𝑑)cos(𝜃)	𝑑𝜃 

Changing the variable of the integration gives: 

𝑉! = 8` g(𝑅 − 𝑑). cos.(𝜃)g(𝑅 + 𝑑). − (𝑅 − 𝑑). sin.(𝜃)	(𝑅 − 𝑑)cos(𝜃)	𝑑𝜃
E
.

0
 

Rearranging this equation yields: 

𝑉! = 8(𝑅 − 𝑑).(𝑅 + 𝑑)` cos.(𝜃)G1 − <
𝑅 − 𝑑
𝑅 + 𝑑>

.

sin.(𝜃) 	𝑑𝜃
E
.

0
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To solve this integral, a standard formula [127] (Chapter 3.67 - “Square roots of 

expressions containing trigonometric functions”) is applied: 

` sin\(𝑥) cos](𝑥)g1 − 𝑘. sin.(𝑥) 	𝑑𝑥
E
.

0
	

=
1
2
B<
𝛼 + 1
2

,
𝛽 + 1
2 >F <

𝛼 + 1
2

,−
1
2
;
𝛼 + 𝛽 + 2

2
; 𝑘.> 

for 

𝛼 > −1; 	𝛽 > −1;	|𝑘| < 1 

In the expression of 𝑉!, it can be found that: 

𝛼 = 0; 	𝛽 = 2; 	𝑘 =
𝑅 − 𝑑
𝑅 + 𝑑

 

Therefore, an expression for 𝑉! can be written as follows: 

𝑉! = 8(𝑅 − 𝑑).(𝑅 + 𝑑) ∙
1
2
B <
1
2
,
3
2>
FJ
1
2
,−
1
2
; 2; <

𝑅 − 𝑑
𝑅 + 𝑑>

.

K (𝐵4.1) 

This can be solved to yield:  

𝑉! =
𝜋𝑅/

4
(cos/(𝜃) + cos.(𝜃) − 5cos(𝜃) + 3) (𝐵4.2) 

where terms are previously defined. For the detailed derivation of Equation B4.2 from 

Equation B4.1, see the next section, Section B5.  

Using trigonometric identities, it can be shown that: 

cos/(𝜃) + cos.(𝜃) − 5cos(𝜃) + 3 ≡
1
4
(cos(3𝜃) + 2cos(2𝜃) − 17cos(𝜃) + 14) 

which leads to: 
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𝑉! =
𝜋𝑅/

16
(cos(3𝜃) + 2cos(2𝜃) − 17 cos(𝜃) + 14) (𝐵4.3) 

Calculate 𝒅K(
𝒅𝜽

. The derivative of 𝑉! with respect to 𝜃 can be shown to be: 

𝑑𝑉!
𝑑𝜃 =

𝜋𝑅/

4 sin(𝜃)(−3 cos.(𝜃) − 2cos(𝜃) + 5) (𝐵4.4) 

Determine 𝒅𝑬𝒅
𝒅𝜽

. It is proposed that wear rate (%K(
%*#

) is also dependent upon the scar 

width (𝑤) for the crossed-cylinder configuration: 

𝑑𝑉!
𝑑𝐸%

=
𝑘/
𝑤

  

However, the wear scar width in the direction of fretting movement is not uniform across 

the damaged area for the crossed-cylinders configuration. A characteristic wear scar 

width is defined as the maximum width of the wear scar, which is given by the following: 

𝑤 = 2𝑅sin(𝜃) 

Therefore, the wear rate expression can be rewritten as: 

𝑑𝑉!
𝑑𝜃

𝑑𝜃
𝑑𝐸%

=
𝑘/

2𝑅sin(𝜃)
(𝐵4.5) 

Substituting Equation B4.4 into Equation B4.5 gives:  

𝜋𝑅/

4
sin(𝜃)(−3 cos.(𝜃) − 2cos(𝜃) + 5)

𝑑𝜃
𝑑𝐸%

=
𝑘/

2𝑅sin(𝜃)
 

which can be rearranged to yield: 

𝑑𝐸%
𝑑𝜃

=
𝜋𝑅6 sin.(𝜃) (−3 cos.(𝜃) − 2cos(θ) + 5)

2𝑘/
(𝐵4.6) 
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Integrate 𝒅𝑬𝒅
𝒅𝜽

. 𝐸% can be calculated by taking the integral of Equation B4.6 with respect 

to 𝜃: 

𝐸% =
𝜋𝑅6

2𝑘/
`sin.(𝜃) (−3 cos.(𝜃) − 2cos(θ) + 5)	𝑑𝜃 

By use of well-known trigonometric identities, this can be integrated as follows: 

`sin.(𝜃) (−3 cos.(𝜃) − 2cos(θ) + 5)	𝑑𝜃	

≡
1
8
`3cos(4𝜃) + 4cos(3𝜃) − 20cos(2𝜃) − 4cos(𝜃) + 17	𝑑𝜃	

=
1
96
(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) + 𝑐/ 

where 𝑐/ is a constant of integration. 

Substituting the integral of sin.(𝜃) (−3 cos.(𝜃) − 2cos(θ) + 5) into the expression for 

𝐸% yields: 

𝐸% =
𝜋𝑅6

192𝑘/
(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) +

𝜋𝑅6

192𝑘/
𝑐/ 

which can be rewritten as: 

𝐸% = 𝑚/𝜋𝑅6(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) + 𝐶/ (𝐴4.4.7) 

where 𝑚/ =
$

$^.B'
 and 𝐶/ =

E@/

$^.B'
𝑐. 

As previously, it can be seen that the constant 𝐶/ can be evaluated as follows: 

𝐶/ = 𝐸23 

A final equation for 𝐸%D2 can therefore be written as follows: 

𝐸%D2 = 𝑚/𝜋𝑅6(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃) (𝐵4.8) 
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Therefore, a set of parametric function of 𝑉!  and 𝐸%  in terms of 𝜃 for the crossed-

cylinders configuration has been obtained: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� = �

𝜋𝑅/

16
(cos(3𝜃) + 2cos(2𝜃) − 17 cos(𝜃) + 14)

		
𝑚/𝜋𝑅6(9sin(4𝜃) + 16sin(3𝜃) − 120sin(2𝜃) − 48sin(𝜃) + 204𝜃)

� (𝐵4.9) 

Expand 𝑽𝒘  and 𝑬𝒅𝒂𝒕  as an infinite polynomial sum (Taylor series). With the 

establishment of the parametric function, the Taylor series for 𝑉!  and 𝐸% 	can be 

expressed as follows: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� =

⎝

⎜⎜
⎜
⎛
a

𝑉!
(")(0)
𝑛!

𝜃"
Y

"<0 		

a
𝐸%D2
(I)(0)
𝑘!

𝜃I
Y

I<0 ⎠

⎟⎟
⎟
⎞

 

Express 𝑽𝒘 as a function of 𝑬𝒅. The first non-constant term of each Taylor series for 

both 𝑉! and 𝐸%D2 were taken as approximations as follows: 

�
𝑉!(𝜃)
		

𝐸%D2(𝜃)
� ≈

⎝

⎜
⎛

𝜋𝑅/𝜃6

4		
384
5
𝑚/𝜋𝑅6𝜃H⎠

⎟
⎞

(𝐵4.10) 

Eliminating the parameter 𝜃 from the parametric equations in Equation B4.10 yields: 

𝑉! =
1
4 <

5
384>

0.M

J
𝜋
𝑚/
6K

0..

𝑅#0..𝐸%D20.M (𝐵4.11) 

B5 The beta function, gamma function and hypergeometric 
function 

In the previous section (Section B4), an expression for 𝑉!  for a crossed-cylinders 

contact was written in the form of Equation B4.1. The right side of the equation involves 
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the use of the Beta function, Β , the Gamma function, Γ , and the Hypergeometric 

function, F. 

The definition of the Beta function is given by: 

B(𝑥, 𝑦) = ` 𝑡1#$(1 − 𝑡)_#$	𝑑𝑡
$

0
, Re(𝑥) > 0; Re(𝑦) > 0 

The Gamma function is an extension of the factorial function from positive integers to 

complex numbers, and its definition is: 

Γ(𝑧) = ` 𝑡,#$𝑒#2	𝑑𝑡
Y

0
, Re(𝑧) > 0 

There is an important relationship between Beta function and Gamma function (for a 

proof, see Chapter 2 of Artin's book “The Gamma Function” [128]): 

Β(𝑥, 𝑦) =
Γ(𝑥)Γ(𝑦)
Γ(𝑥 + 𝑦)

 

As such, the Beta function in Equation B4.1 is equal to: 

Β <
1
2
,
3
2>

=
Γ d12f Γ d

3
2f

Γ(2)
(𝐵5.1) 

With the definition of Γ, it can be shown that: 

Γ(𝑧 + 1) = ` 𝑡,𝑒#2	𝑑𝑡
Y

0
 

Let: 

𝑑𝑢
𝑑𝑡

= 𝑒#2	

𝑣 = 𝑡, 
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which yields: 

𝑢 = −𝑒#2	

𝑑𝑣
𝑑𝑡

= 𝑧𝑡,#$ 

Thus: 

Γ(𝑧 + 1) = −𝑡,𝑒#2 §∞0 +` 𝑧𝑡,#$𝑒#2	𝑑𝑡
Y

0
	

= lim
2→Y

(−𝑡,𝑒#2) − (0𝑒0) + ` 𝑧𝑡,#$𝑒#2	𝑑𝑡
Y

0
 

As 𝑡 → +∞, −𝑡,𝑒#2 → 0, which means that Γ(𝑧 + 1) can be written as: 

Γ(𝑧 + 1) = 𝑧` 𝑡,#$𝑒#2	𝑑𝑡
Y

0
	

= 𝑧Γ(𝑧) 

Equation B5.1 can therefore be simplified as follows: 

Β<
1
2
,
3
2>

=
Γ d12f Γ d

1
2 + 1f

Γ(1 + 1)
	

=
1
2
Γ d12f

.

Γ(1)
(𝐵5.2) 

The gamma functions Γ d$
.
f and Γ(1) can be evaluated as follows: 

Γ <
1
2>

= ` 𝑡#
$
.𝑒#2	𝑑𝑡

Y

0
	

Γ(1) = ` 𝑒#2	𝑑𝑡
Y

0
	

For Γ d$
.
f, let: 

𝑡 = 𝑢. 
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then: 

𝑑𝑡 = 2𝑢	𝑑𝑢 

which leads to: 

Γ <
1
2>

= 2` 𝑒#9) 	𝑑𝑢
Y

0
 

Recognizing that the right-hand side of the equation for Γ d$
.
f is the Gaussian integral, 

which is evaluated as follows: 

2` 𝑒#9) 	𝑑𝑢
Y

0
= ` 𝑒#1) 	𝑑𝑥 = √𝜋

Y

#Y
 

therefore: 

Γ <
1
2> = √𝜋 (𝐵5.3) 

The value of Γ(1) can be readily evaluated as: 

Γ(1) = ` 𝑒#2	𝑑𝑡
Y

0
	

= lim
2→Y

(−𝑒#2) − (−𝑒0)	

= 1 (𝐵5.4) 

Substituting Equation B5.3 and Equation B5.4 into the Beta function in Equation B5.1 

yields: 

Β <
1
2
,
3
2>

=
1
2
Γ d12f

.

Γ(1)
	

=
1
2
¨√𝜋©

.

1
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=
𝜋
2

(𝐵5.5) 

In addition to Beta function and gamma function, Equation B4.1 requires the knowledge 

of Hypergeometric function, F, which is defined by the Gaussian series: 

F(𝑎, 𝑏; 𝑐; 𝑧) = a
(𝑎)"(𝑏)"
(𝑐)"

Y

"<0

𝑧"

𝑛!
	

= 1 +
𝑎𝑏
𝑐
𝑧 +

𝑎(𝑎 + 1)𝑏(𝑏 + 1)
𝑐(𝑐 + 1)

𝑧.

2!
+ ⋯ 

Therefore, by substituting the values 𝑎 = $
.

, 𝑏 = /
.

, 𝑐 = 2  and 𝑧 = 	 d@#%
@>%

f
.

, the 

Hypergeometric function in Equation B4.1 can be written as follows: 

FJ
1
2
,−
1
2
; 2; <

𝑅 − 𝑑
𝑅 + 𝑑>

.

K = 1 −
1
8 <
𝑅 − 𝑑
𝑅 + 𝑑>

.

−
1
64 <

𝑅 − 𝑑
𝑅 + 𝑑>

6

+⋯ (𝐵5.6) 

It is noted that from the second term of the Gaussian series for F <$. , −
$
.
; 2; d@#%

@>%
f
.
>, the 

absolute coefficient has dropped to $
M
 or even less, meaning it is reasonable to take only 

the first term as the approximation of the whole series. Therefore, we can simplify the 

Hypergeometric function in Equation B4.1 as follows: 

FJ
1
2
,−
1
2
; 2; <

𝑅 − 𝑑
𝑅 + 𝑑>

.

K ≈ 1 (𝐵5.7) 

With the knowledge of the Beta function, Β d$
.
, /
.
f, and the Hypergeometric function, 

F <$. , −
$
.
; 2; d@#%

@>%
f
.
>, Equation B4.1 can be evaluated as follows: 

𝑉! = 8(𝑅 − 𝑑).(𝑅 + 𝑑) ∙
1
2
B <
1
2
,
3
2>
F J
1
2
,−
1
2
; 2; <

𝑅 − 𝑑
𝑅 + 𝑑>

.

K	

≈ 8(𝑅 − 𝑑).(𝑅 + 𝑑) ∙
1
2
𝜋
2
∙ 1	
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≈ 2𝜋(𝑅 − 𝑑).(𝑅 + 𝑑) (𝐵5.8) 

Since: 

𝑑 =
𝑅 + 𝑅cos(𝜃)

2
 

the expression for 𝑉! in Equation B5.8 can be written as: 

𝑉! ≈ 2𝜋(𝑅. − 𝑑.)(𝑅 − 𝑑)	

≈ 2𝜋𝑅/ J
3 − 2cos(𝜃) − cos.(𝜃)

4
KJ

1 − cos(𝜃)
2

K 

Finally, rearranging the equation above gives: 

𝑉! ≈
𝜋𝑅/

4
(cos/(𝜃) + cos.(𝜃) − 5cos(𝜃) + 3) (𝐵5.9) 

To understand the error associated with this approximation, 3D modelling software was 

used to construct the shape of the intersection between two orthogonally crossed 

cylinders with varying 𝜃. Using the software, the volume of intersection was evaluated 

numerically, and this was then compared with the approximated values evaluated by 

Equation B5.9. As can be seen from Figure B.3, the differences between the 

normalised wear volume, 𝑣! (where 𝑣! =
6K(
E@'

), calculated by these two methods are 

negligible across the whole range of 𝜃. It is therefore reasonable to assert that Equation 

B5.9 derived from the simplification of Equation B5.7 well describes the relationship 

between 𝑉! and 𝜃 for the crossed-cylinder contact. 
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Figure B.3: Plot of normalised wear volume evaluated numerically via 3D modelling 
software compared with equivalent values calculated from Equation B5.9. 
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Appendix C 

Dimensional analysis of the form of wear equations 

Due to the nature of fretting, the slip amplitude is small compared to the size of the 

worn surface. This observation is crucial as it leads to the accurate approximation to 

relate 𝑉! , 𝑅 and 𝜃 by a pure geometric relationship. Such geometric relationship is 

assumed to be true for all the cylinder-on-flat (CF), sphere-on-flat (SF) and crossed-

cylinders (CC) contact configurations, which can be approximated by adopting Taylor 

expansion (see Appendix B) to acquire the form of: 

𝑉! ≅ 𝐿D𝑅`𝜃a (𝐶. 1) 

where 𝑎, 𝑏 and 𝑐 are integer exponents. 

The dimension of 𝑉! (denoted as [𝑉!]) is 𝐋/ (𝐋, the dimensional symbol for length), and 

likewise, [𝐿] = 𝐋 and [𝑅] = 𝐋 while 𝜃 is a dimensionless quantity, indicating that: 

𝑎 + 𝑏 = 3 (𝐶. 2) 

The CF contact produces a line contact where the length of wear scar is a constant, 

limited by the width of specimens (as described in Section 3.1), and thus 𝑎 = 1 and 𝑏 = 

2. In contrast, for both the SF and CC contact generating a point contact, only 𝑅 is 

relevant when calculating the wear volume, which leads to 𝑎 = 0 and 𝑏 = 3. The Taylor 

approximation as outlined in Appendix B indicates that 𝑐 = 3 for the CF contact, and 𝑐 

= 4 for both the SF and CC contact. Values of 𝑎, 𝑏 and 𝑐 are summarised in Table C.1. 

It can be observed from Table C.1 that: 

𝑐 = 𝑏 + 1 (𝐶. 3) 
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Such relationship is safe to declare within the scope of this work, since: (i) the values 

of 𝑎, 𝑏 and 𝑐 are obtained by the Taylor approximation for the geometric relationship 

between 𝑉! and 𝜃, where the approximation has a high accuracy which makes those 

approximations almost equal to the exact equations; (ii) although 𝑏  and 𝑐  are not 

related to each other through rigorous mathematical derivation, the observation made 

in Equation C.3 holds true for all the cases discussed in this work, which has covered 

the most commonly-adopted non-conforming contact configurations for research in 

fretting, namely the cylinder-on-flat, sphere-on-flat and crossed-cylinders.  

Table C.1: Summary of integer exponents for CF, SF and CC contact for the Taylor 
approximation of the geometric relationship as indicated by Equation C.1. 

Contact configurations 𝑎 𝑏 𝑐 

Cylinder-on-flat 1 2 3 

Sphere-on-flat 0 3 4 

Crossed-cylinders 0 3 4 
 

The derivative of 𝑉! with respect to 𝜃 can be easily found as follows: 

𝑑𝑉!
𝑑𝜃 ≅ 𝐿D𝑅`𝜃a#$ (𝐶. 4) 

Two forms of governing equations were proposed in this work which state that the 

instantaneous wear rate is inversely proportional to the characteristic wear scar width 

(Equation C.5a for all three cases) or wear scar area (Equation C.5b for CF contact, 

and Equation C.5c for SF; as demonstrated by Figure 5.8, the wear scar area for CC 

contact is complex, therefore the equation of the wear scar area in terms of 𝑅 and 𝜃 for 

CC contact cannot be readily defined). The validity of these assumptions has been 

discussed in Appendix B. 
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𝑑𝑉!
𝑑𝐸%

=
ℎ$

𝑅sin(𝜃)
(𝐶. 5𝑎) 

𝑑𝑉!
𝑑𝐸%

=
ℎ.

𝐿𝑅sin(𝜃)
(𝐶. 5𝑏)	

𝑑𝑉!
𝑑𝐸%

=
ℎ.

𝜋𝑅. sin.(𝜃)
(𝐶. 5𝑐) 

where ℎ$ and ℎ. are functions of fretting parameters but are treated as constants in the 

current study. Please note that ℎ$ and ℎ. have different dimensions as follows where 

𝐌 is the dimensional symbol for mass, and 𝐓 is the dimensional symbol for time: 

[ℎ$] =
𝐋.𝐓.

𝐌
 

[ℎ.] =
𝐋/𝐓.

𝐌
 

Taylor approximations can be applied to Equation C.5 to yield: 

𝑑𝑉!
𝑑𝐸%

=
ℎ$

𝑅sin(𝜃)
			→ 			

𝑑𝑉!
𝑑𝐸%

≅
ℎ$
𝑅𝜃

(𝐶. 6𝑎)	

𝑑𝑉!
𝑑𝐸%

=
ℎ.

𝐿𝑅sin(𝜃)
			→ 			

𝑑𝑉!
𝑑𝐸%

≅
ℎ.
𝐿𝑅𝜃

(𝐶. 6𝑏)	

𝑑𝑉!
𝑑𝐸%

=
ℎ.

𝜋𝑅. sin.(𝜃)
			→ 			

𝑑𝑉!
𝑑𝐸%

≅
ℎ.

𝜋𝑅.𝜃.
(𝐶. 6𝑐) 

C1 Linear basis of the governing equation 

When the linear basis of the governing equation is considered, combining Equation 

C.6a with Equation C.4 yields the following expression for 𝐸%: 

𝑑𝐸%
𝑑𝜃

≅
𝐿D𝑅`>$𝜃a

ℎ$
	

𝐸% ≅
𝐿D𝑅`>$	𝜃a>$

(𝑐 + 1)ℎ$
(𝐶. 7) 
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Eliminating the internal variable 𝜃  (so that Equation C.1 and Equation C.7 can be 

combined) yields: 

𝑉! ≅ (𝑐 + 1)
a

a>$	ℎ$
a

a>$	𝐿D#
Da
a>$	𝑅`#

(`>$)a
a>$ 	𝐸%

a
a>$	

≅ (𝑐 + 1)
a

a>$	ℎ$
a

a>$	𝐿
D
a>$	𝑅

`#a
a>$	𝐸%

a
a>$	

≅ (𝑐 + 1)"	ℎ$"	𝐿B 	𝑅I	𝐸%" (𝐶. 8) 

where 𝑘 = D
a>$

, 𝑚 = `#a
a>$

 and 𝑛 = a
a>$

. 

At this stage, 𝑉! can be expressed as a function of 𝐿, 𝑅 and 𝐸%, and the dimensions of 

both sides of Equation C.8 must be the same. Substituting the dimensions of each 

quantity into Equation C.8 yields: 

J
𝐋.𝐓.

𝐌
K
"

	𝐋B 	𝐋I 	J
𝐌𝐋.

𝐓.
K
"

= 𝐋/	

𝑘 + 𝑚 + 4𝑛 = 3	

𝑎
𝑐 + 1

+
𝑏 − 𝑐
𝑐 + 1

+
4𝑐
𝑐 + 1

= 3	

𝑎 + 𝑏 + 3𝑐
𝑐 + 1

= 3 

which can be satisfied with Equation C.2. 

With the relationship declared in Equation C.3 that 𝑐 = 𝑏 + 1, 𝑚 can be expressed as: 

𝑚 =
𝑏 − 𝑐
𝑐 + 1

=
𝑐 − 1 − 𝑐
𝑐 + 1

=
−1
𝑐 + 1

= 𝑛 − 1 

Thus, Equation C.8 can be rewritten as: 

𝑉! ≅ (𝑐 + 1)"	ℎ$"	𝐿B 	𝑅"#$	𝐸%" (𝐶. 9) 
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C2 Area basis of the governing equation for CF contact 

With the basis of the governing equation, combining Equation C.6b with Equation C.4 

yields the following expression for 𝐸%: 

𝑑𝐸%
𝑑𝜃

≅
𝐿D>$𝑅`>$𝜃a

ℎ.
	

𝐸% ≅
𝐿D>$𝑅`>$	𝜃a>$

(𝑐 + 1)ℎ.
(𝐶. 10) 

Eliminating the internal variable 𝜃 yields: 

𝑉! ≅ (𝑐 + 1)
a

a>$	ℎ.
a

a>$	𝐿D#
(D>$)a
a>$ 	𝑅`#

(`>$)a
a>$ 	𝐸%

a
a>$	

≅ (𝑐 + 1)
a

a>$	ℎ.
a

a>$	𝐿
D#a
a>$ 	𝑅

`#a
a>$	𝐸%

a
a>$	

≅ (𝑐 + 1)"	ℎ."	𝐿B 	𝑅I	𝐸%" (𝐶. 11) 

where 𝑘 = D#a
a>$

, 𝑚 = `#a
a>$

 and 𝑛 = a
a>$

. 

Substituting the dimensions of each quantity into Equation C.11 to assert its validity: 

J
𝐋/𝐓.

𝐌
K
"

	𝐋B 	𝐋I 	J
𝐌𝐋.

𝐓.
K
"

= 𝐋/	

𝑘 + 𝑚 + 5𝑛 = 3	

𝑎 − 𝑐
𝑐 + 1

+
𝑏 − 𝑐
𝑐 + 1

+
5𝑐
𝑐 + 1

= 3	

𝑎 + 𝑏 + 3𝑐
𝑐 + 1

= 3 

which, again, is satisfied with Equation C.2. 

Since the expression of 𝑚 and 𝑛 are identical to those in the previous section (Section 

C3), the relationship that 𝑚 = 𝑛 − 1 holds, which allows Equation C.11 to be rewritten 

as: 
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𝑉! ≅ (𝑐 + 1)"	ℎ."	𝐿B 	𝑅"#$	𝐸%" (𝐶. 12) 

Notice here that, although Equation C.12 may seem similar to Equation C.9 (particularly 

where the expressions of 𝑛 are the same), the dimension of ℎ. is different from that of 

ℎ$ and the expression for 𝑘 changes from D
a>$

 for Equation C.9 to D#a
a>$

 for Equation C.12. 

C3 Area basis of the governing equation for SF contact 

Combining Equation C.6c with Equation C.4 yields the following expression for𝐸%: 

𝑑𝐸%
𝑑𝜃

≅
𝜋𝐿D𝑅`>.𝜃a>$

ℎ.
	

𝐸% ≅
𝜋𝐿D𝑅`>.	𝜃a>.

(𝑐 + 2)ℎ.
(𝐶. 13) 

Eliminating the internal variable 𝜃 yields: 

𝑉! ≅ (𝑐 + 2)
a

a>.	ℎ.
a

a>.	𝜋
#a
a>.	𝐿D#

Da
a>.	𝑅`#

(`>.)a
a>. 	𝐸%

a
a>.	

≅ (𝑐 + 2)
a

a>.	ℎ.
a

a>.	𝜋
#a
a>.	𝐿

.D
a>.	𝑅

.(`#a)
a>. 	𝐸%

a
a>.	

≅ (𝑐 + 2)"	ℎ."	𝜋#"𝐿B 	𝑅I	𝐸%" (𝐶. 14) 

where 𝑘 = .D
a>.

, 𝑚 = .(`#a)
a>.

 and 𝑛 = a
a>.

. 

Substituting the dimensions of each quantity into Equation C.14 to assert its validity (𝜋 

is a dimensionless quantity): 

J
𝐋/𝐓.

𝐌
K
"

	𝐋B 	𝐋I 	J
𝐌𝐋.

𝐓.
K
"

= 𝐋/	

𝑘 + 𝑚 + 5𝑛 = 3	

2𝑎
𝑐 + 2

+
2(𝑏 − 𝑐)
𝑐 + 2

+
5𝑐
𝑐 + 2

= 3	

2𝑎 + 2𝑏 + 3𝑐
𝑐 + 2

= 3 
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which, again, is satisfied with Equation C.2. 

With the relationship declared in Equation C.3 that 𝑐 = 𝑏 + 1, 𝑚 can be expressed as: 

𝑚 =
2(𝑏 − 𝑐)
𝑐 + 2

=
2(𝑐 − 1 − 𝑐)

𝑐 + 2
=

−2
𝑐 + 2

= 𝑛 − 1 

Thus, Equation C.14 can be rewritten as: 

𝑉! ≅ (𝑐 + 2)"	ℎ."	𝜋#"	𝐿B 	𝑅"#$	𝐸%" (𝐶. 15) 
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Appendix D 

Detail drawings of specimens 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

 

Figure D.1: Detail drawings showing the dimensions of: (a) raw specimen blanks before 
the heat treatment; (b) flat specimens; (c) 𝑹𝟔 cylindrical specimens; (d) 𝑹𝟏𝟓 cylindrical 
specimens; (e) 𝑹𝟖𝟎 cylindrical specimens; (f) 𝑹𝟏𝟔𝟎 cylindrical specimens after the heat 
treatment and surface finishing. 


