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Abstract 

Proliferative kidney disease (PKD) has been identified as a main driver of 

decline in brown trout (Salmo trutta) populations across Europe. 

Tetracapsuloides bryosalmonae is the causative agent of PKD, leading to 

yearly aquaculture losses of >20%, costing the UK around £2.5 million per 

year. This study collates primary presence records of T. bryosalmonae’s 

primary host, the freshwater bryozoan Fredericella sultana. This data is 

utilised in species distribution modelling to identify areas predicted to be of 

high habitat suitability for F. sultana to infer species presence. Warming 

temperatures are known to exacerbate symptoms of PKD, making this an 

important system to study in the context of climate change. Therefore, data 

from the 6th phase of the Coupled Model Intercomparison Project (CMIP6) of 

the latest climate models are employed in this study to predict species range 

shifts, and inform on the potential of PKD spread across the UK in the coming 

decades. Maximum entropy modelling predicts optimal winter temperatures for 

F. sultana between 2-4°C, with a summer tolerance threshold of 16°C. The 

models also revealed that the future climates may increase habitats suitable for 

bryozoans in the north of the UK, with fewer areas of optimal winter climates 

in the south between the years 2041-2060. This information is essential in 

understanding the possible future threats of PKD, to tackle the issue of food 

insecurity and economic loss that will inevitably grow with global climate 

warming. 

 

Introduction 

The Earth’s surface temperature in the last three decades has been warmer than 

any year since 1850 (Rodriguez et al, 2015). In an age where the human race is 

becoming increasingly connected online, the climate crisis is at the forefront of 

many conversations concerning economic growth, human health, food security, 

and water availability. One of the most cited climate papers of 2020, ‘World 

Scientists’ Warning of a Climate Emergency’ gathers over 11,000 scientists’ 

signatures from around the world to declare a climate emergency (Ripple et al, 

2019). The most recent IPCC report has declared a ‘code red’ for humanity 

(IPCC, 2021), stating that global temperatures have already risen by 1.1°C 

since pre-industrial times. Such growing media attention to the climate crisis 

continues to call for further scientific research surrounding potential future 

climate scenarios, and the risks the warming planet faces.  

In a business-as-usual climate scenario, the temperature experienced by an 

average human is projected to change more in the coming decades than it has 

over the past six millennia (Xu et al, 2020). Currently, economic and 



population growth are among the greatest drivers of CO2 increase (Ripple et 

al, 2019). Therefore, the possible detrimental effects of increasing global 

temperatures are beginning to motivate a change in economic and population 

policies in favour of measures designed to tackle or adapt to climate change. 

Most recently, international efforts have attempted to limit the increase of 

global mean temperature by 1.5°C, as decided in the Paris Agreement (Tong et 

al, 2019). These constant changes in climate policy (alongside other 

anthropogenic influences) all impact the way climate will evolve over the 

coming years.  

Mapping future climate change scenarios is challenging due to considerable 

uncertainty of predictions regarding the evolution of climate within the next 

century. As we enter a new geological epoch dubbed the Anthropocene 

(Crutzen & Stoermer, 2000), humans continue to transform the abiotic and 

biotic conditions on Earth (Turner & Clark, 1990; Steffen et al, 2004; 

Millenium Ecosystem Assessment, 2005). The future global climate is 

dependent on anthropogenic and natural drivers, for example, the direction of 

technological advancement, land use change, policy choices, and international 

cooperation and competition (Collins et al, 2013). As global mean 

temperatures continue to rise in the coming decades, ecosystems will find 

adapting to these rapidly changing climate conditions difficult (Fischlin et al, 

2007). Therefore, future ecological systems will differ greatly from present, a 

notion described as ‘ecological novelty’ (Kueffer, 2015). 

Novel ecological systems, and the rate of adaptation in agriculture and farming 

will strongly influence global food security, which remains at the head of 

climate conversations. Research has shown that human populations have 

resided in a narrow part of the global climatic envelope for millennia, in mean 

annual temperatures averaging around 11°C to 15°C (Xu et al, 2020). Crops 

and livestock thrive in these milder conditions (Xu et al, 2020), fuelling 

economic success in Europe, large parts of Asia and North America (Hwa, 

1989). Global temperature warming will have its strongest effects in these 

hotspots of global food production, with severe negative knock-on effects on 

all systems of agriculture and farming. We must therefore study the impact of 

increasing temperatures on these systems in order to predict future impacts, and 

forge solutions to the ever-growing issue of food insecurity.  

Climate change affects food security and ecosystem services on a global scale, 

partly by altering disease distribution and transmission among agricultural and 

natural systems. Reports of disease outbreaks in marine ecosystems are 

increasing (Ward et al, 2004), and the interplay of warming temperature and 

increasing host density is a likely driver of disease transmission (Rohr & 

Cohen, 2020). Freshwater systems in particular are under increasing pressure 

from rising water temperatures, and increasing host densities in aquaculture 

increase the chances of disease emergence and largescale transmission 

(Woodward et al, 2010). In freshwater ecosystems, parasite and pathogen 

transmission, and host distributions may be altered further as river flow 



regimes are predicted to change in addition to temperature increases (Döll & 

Zhang, 2010). 

In some cases, climate change can provoke disease emergence by driving 

species range shifts that bring novel hosts and/or pathogens into contact. In 

other cases, increasing temperatures can alter existing host-parasite 

interactions, susceptibility and virulence to shift non-pathogenic parasites into 

disease causing agents (Okamura & Feist, 2011). Climate change can also 

disrupt pathogen development through temperature dependent effects on 

parasite survival time, potentially leading to a decrease in disease prevalence 

(Noden et al, 1995). Understanding the temperature dependence of parasite and 

disease development, and the climate change driven shifts in host and parasite 

distributions are therefore required in order to understand the possible future 

impacts of climate change on host-parasite interactions that ultimately impact 

both wild and managed freshwater species.  

Freshwater fish biodiversity is severely threatened (Su et al, 2021) mainly 

through river fragmentation and environmental change and the introduction of 

invasive species. In addition, disease emergence has contributed to the decline 

of many fish species of particular conservation interest, such as salmonid fish. 

The ‘Fischnetz’ project in Switzerland (Burkhardt-Holm, 2007) has identified 

multiple factors responsible for the declining populations of brown trout 

(Salmo trutta), with Proliferative Kidney Disease (PKD) being one of the main 

drivers alongside poor habitat quality and increased water temperature. PKD 

has emerged as one of the major factors of brown trout decline across Europe 

(Gorgoglione et al, 2016; Lewisch et al, 2018; Sudhagar et al, 2019). In North 

America, PKD causes outbreaks among native salmonids, including the 

threatened mountain whitefish Prosopium williamsoni (Hutchins et al, 2021). 

Brown trout are native salmonids, widespread in the UK, and heavily reliant on 

cold-water habitats for their spawning and development. PKD occurs in the 

UK, with infected fish reported by both the Environment Agency in England 

and Wales, as well as the Scottish Environment Protection Agency 

(unpublished, pers. comm. Hartikainen). Although mass mortalities in wild fish 

due to PKD have not been reported in the UK, the inland aquaculture industry 

suffers yearly losses of >20% due to PKD (pers. comm. O. Robinson). PKD 

clearly is a major disease of wild and farmed salmonids in the UK, which can 

impact the UK’s rapidly expanding fish farming industry. The economic 

impacts of PKD are estimated to cost around £2.5 million a year (Morris & 

Adams, 2008). 

It is expected that the PKD outbreaks will constitute an increased threat to 

salmonids in the future, due to climate change and expected increasing water 

temperatures (Mo & Jørgensen, 2017; Strepparava et al, 2017; Sudhagar et al, 

2019; Tops et al, 2006). This is because PKD emergence and spread is largely 

driven by increasing water temperatures - the disease develops in all species of 

salmonids across their global distribution range when temperatures increase 

above 15°C, often resulting in mortality (Okamura & Feist, 2011). The 

causative agent of PKD is Tetracapsuloides bryosalmonae, an endoparasitic 

cnidarian, which develops within the fish kidney. Spores released in fish urine 



are infective to freshwater bryozoans, in particular Fredericella sultana, its 

main invertebrate host. T. bryosalmonae spores produced in F. sultana are 

infective to salmonid fish, and it is notable that no fish-to-fish transmission 

takes place. This indicates that the bryozoan host is in a key role in driving the 

emergence of PKD. 

 

With this knowledge, this study will focus on the UK distribution of the 

bryozoan Fredericella sultana, the primary host of T. bryosalmonae.  F. 

sultana are sessile, aquatic, colonial invertebrates found in cryptic, protected 

areas and low light conditions (Brown, 1933) (e.g. attached to submerged 

branches and roots). They reside in freshwater environments and have been 

recorded in lakes and rivers throughout Europe, north America, Asia, Australia 

and New Zealand (Kipp et al, 2010; Wood & Okamura, 2005). The occurrence 

of F. sultana is correlated with nutrient rich waters at temperatures between 

8°C to 15°C, particularly at lower elevations. Surveys in Norway provide 

evidence of habitat preference in calcium rich, hard water at pH>5.4, and rich 

vegetation (Økland & Økland, 2001).  A recent study in Germany further 

indicated that coniferous forest and wooded grasslands were negatively 

correlated with F. sultana presence (Ros et al, 2021). F. sultana reproduces 

asexually through colony fragmentation, which allows for dispersal along 

rivers. In temperate regions such as the UK, bryozoan colony growth is highest 

during warmer months by budding new zooids – each have tentacular crowns 

used for suspension feeding (Wood & Okamura, 2005).   

 

PKD in brown trout 
kidney 

T. bryosalmonae (Tb) F. sultana (Fs) 

+Tb 

- Tb 

Figure 1. Images of PKD in brown trout (Salmo trutta) kidney, the bryozoan 

(Fredericella sultana) and its parasite (Tetracapsuloides bryosalmonae). 



 

F. sultana produces dormant overwintering statoblasts (Bushnell, 1966), which 

enclose germinal tissue and hatch as temperatures rise in spring. This 

overwintering strategy allows the species to persist during the winter, though 

they can also survive in the colder months as live colonies in some sites 

(Raddum & Johnsen, 1983). The bryozoan has a high tolerance for low 

temperatures (Raddum & Johnsen, 1983) and can survive in fluctuating 

conditions due to the desiccation resistant statoblasts, providing it a malleable 

life history strategy. The influence of climate change on F. sultana and its 

parasite T. bryosalmonae is therefore a particularly interesting topic of study as 

the parasite cycles between two developmental stages within the bryozoans, 

resulting in covert and overt infections. Covert infections are more likely to 

occur in the cooler months, and have no detectable effect on host growth or 

their ability to produce statoblasts (Tops et al, 2009).  

In contrast, overt infections occur at higher temperatures in late spring and 

autumn when the bryozoan host is in prime condition and is able to support this 

energetically costly stage (Tops et al, 2009). Overt infections are highly 

virulent, increasing mortality within colonies, reducing growth and statoblast 

production, as well as promoting overwintering in live colonies. (Tops et al, 

2009). The process of overt infection involves the development of spores 

within multicellular sacs that circulate within the body cavity (Tops & 

Okamura, 2003; McGurk et al, 2005) – these are released into river systems 

and infect the inhabiting salmonids with PKD (Feist et al, 2001). In some 

cases, infection may also lead to difference in overwintering strategy by 

altering the statoblast production propensity of infected colonies (Tops et al, 

Figure 2. Drawings and images of F. sultana – a) drawing of a branching 

colony, b) drawing of zooid anatomy, c) photograph of abundant statoblast 

production within a colony of Plumatella repens, d) a hatching statoblast. The 

newly emerging zooid is called an ancestrula, and will initiate an entirely new 

colony. Photo credit: H. Hartikainen, drawings Wood and Okamura, 2005). 



2009). The effects of climate change may therefore result in adaptation of F. 

sultana’s life history strategy, as warming waters may increase the likelihood 

of overwintering of a growing number of live colonies in the coming decades. 

Additionally, warming temperature causes statoblasts to hatch in spring, 

therefore the effects of anthropogenic climate warming may result in faster 

production of new bryozoan colonies, and longer seasons of overt infection.  

F. sultana is abundant in British rivers, although few studies have 

systematically recorded their presence. Bryozoans in general are largely missed 

in macrobenthic surveys, due to their cryptic habitats and sessile life-style, 

which makes them inaccessible to most, e.g. kick-survey base methods.  The 

new availability of bryozoan records from environmental DNA sampling 

allows niche models to be developed for bryozoans, and in this study, 

maximum entropy approaches implemented in the MaxEnt program were used. 

MaxEnt is a machine-learning algorithm based on principles of maximum 

entropy (Jaynes, 1957). It builds SDMs by training the algorithm with species 

occurrence data and their associated environmental variables that influence 

distribution. The algorithm can then predict other locations of habitat 

suitability. The central theory behind species distribution modelling lies in 

ecological niche theory, an idea formulated by Joseph Grinell (1917) and 

distinguished by G. Evelyn Hutchinson (1957). The fundamental niche 

describes an ‘n’ dimensional hypervolume of all abiotic environmental 

conditions that would permit a species to exist with positive population growth. 

The realised niche are the parts of a fundamental niche where a species can 

survive despite biotic factors, for example the presence of competitors. 

Therefore, the realised niche is smaller than the fundamental niche as a result 

of negative interspecific interactions. SDM allows us to empirically model a 

portion of the realised niche that has not yet been sampled, producing vital 

information describing these dynamic species ranges. This is a particularly 

powerful novel tool in mapping the distribution of host species to understand 

the potential future of disease emergence and range shifts under climate 

change. 

In this study, species distribution modelling was employed to extrapolate future 

climate scenarios, and observe how changes in temperature and precipitation 

may influence the potential spread of PKD in coming decades, based on the 

distribution of bryozoa. Research into this host-parasite system is important in 

improving food security and disease management, especially as global 

temperatures will inevitably rise in coming years. The specific research 

questions addressed in this work were: (1) What is the prevalence of the host 

bryozoan species occurrence in the UK? (2) Through MaxEnt modelling, 

which environmental variables have the greatest influence on bryozoan 

survival and fecundity? (3) How will future climate scenarios of changing 

temperature and precipitation influence the distribution of the bryozoan across 

the UK, and therefore the potential presence of PKD among salmonid 

populations? 



Based on existing literature, it was hypothesised that: (1) F. sultana occurrence 

would correlate with warmer temperature environments; (2) future F. sultana 

distribution would expand into areas of higher temperature and precipitation in 

the coming decades; (3) predicted climate change would foster a spread of the 

bryozoan host, and therefore potentially amplify the prevalence of PKD across 

the UK. 

 

Methods 

F. sultana occurrence was derived from primary sources, following a search of 

published literature (Supplementary Table 1). The main data source was Fontes 

(2015), where bryozoan presence was recorded using a visual search during a 

survey conducted by wading, and via environmental DNA sampling. Briefly, 

the presence and abundance of F. sultana was assessed by searching a stretch 

of river between 30-50 metres for a period of 20 minutes by two people. Areas 

with structures suitable for bryozoan colonisation were especially searched, for 

example tree roots, dead wood, and boulders. In addition, 1L of river water was 

collected on each site using methods described in Fontes (2015). The bryozoan 

detection used a F. sultana specific qPCR in the DNA extracted from the water 

sample, supplementing the visual search records. To search for occurrence 

records in the literature, a Google Scholar search using the terms 

“Fredericella”, “F. sultana”, and “Fredericella sultana” were used. 

Additionally, non-indexed literature were searched manually, focussing on 

monographs of phylactolaemate species, obtained from the Natural History 

Museum (pers. comm. Mary Spencer-Jones).  

The collection of environmental variables assessed with respect to bryozoan 

distribution was conducted through literature searches, and implemented in the 

software ArcGIS (version 10.8.1). ArcGIS is a geographic information system 

for working with interactive maps to connect locations and data. 

The occurrence points must all be mapped in the same coordinate system, to 

define the location of species presences with precision. Therefore, all 

coordinates were transformed in ArcGIS from the most common coordinate 

system, WGS84 (World Geodetic System 1984), to OSGB36 (British National 

Grid). This is a local coordinate reference system that will more accurately fit 

the Geoid at the smaller, more local scale of just the United Kingdom. This 

ensured that all species occurrence points were projected in their precise 

locations in the same coordinate reference system for later analysis and 

processing tasks. The coordinates of 102 species presence records were taken 

from ArcGIS in ‘shapefile’ format, and inputted into R (version R-4.0.3) via 

the RStudio interface (version 1.1.463) – this number of records was high 



enough to reduce sample size effects in later modelling. The study area is 

defined as mainland UK, excluding Ireland and Northern Ireland. 

 

The final variables selected for niche modelling were bioclimatic variables 

available on the WorldClim website (http://www.worldclim.org, Hijmans et al, 

2005) and Human Influence Index (HII) (Last of the Wild Data Version 2, 

2005). HII is a composite measure of anthropogenic impacts on the 

environment, providing a gradient from near-natural to disturbed environments.  

A number of other environmental variables were considered for inclusion, 

particularly carbon and elevation (see Supplementary Document). Carbon 

represented carbon dioxide, emitted compiled from 11 different sectors. 

Carbon highly skewed results when included in the models, perhaps due to its 

correlation with HII, which represents similar emissions as anthropogenic 

influence. Elevation was highly correlated with bioclimatic variables relating to 

cooler temperatures, therefore this was removed from the final dataset to avoid 

skewed results due to high levels of intercorrelation. Elevation is known to be 

an important explanatory variable for PKD presence in other studies. 

Therefore, for comparison, a model including elevation was run alongside the 

final model. The results of this can be found in the supplementary 

documentation (Supplementary Figure 2). 

To assess levels of collinearity among environmental variables, a Pearson’s 

correlation was run in R with package ‘ggplot2’ (Wickham et al, 2016) (Fig.4). 

This was set to a cutoff of 0.7, where 1 represents perfect correlation and 0 

represents the absence of any correlation (positive or negative). The most 

relevant environmental variable to bryozoan survival was chosen from each 

intercorrelated group, and was included in the final raster stack. This 

minimised collinearity among variables to ensure model accuracy. The final 

uncorrelated 10 bioclimatic variables were selected and bound into a 

Figure 3. The study area of this project is the United Kingdom. Crosses are 

plotted on an elevation map of the UK, indicating F. sultana occurrence 

records across the landscape. Map created in R via the RStudio interface, using 

package ‘rworldmap’.  

http://www.worldclim.org/


rasterstack with HII, including: annual mean temperature (bio1), mean diurnal 

range (bio2), isothermality (bio3), temperature seasonality (bio4), mean 

temperature of wettest quarter (bio8), mean temperature of driest quarter 

(bio9), mean temperature of warmest quarter (bio10), mean temperature of 

coldest quarter (bio11), annual precipitation (bio12), and precipitation of 

warmest quarter (bio18). All variables in the final raster stack had a resolution 

of 2670, 4640 (x, y) and extent of -87855.11, 686444.9, -18027.31, 1248693 

(xmin, xmax, ymin, ymax). Bio1 and bio11 were reported to be correlated, 

however both were included in the study as they both describe important and 

slightly different aspects of climate. 

Figure 4. Tree diagram depicting results from the Pearson’s correlation, 

constructed in R via the RStudio interface, with package ‘ggplot2’. With a 0.7 

cut off, groups of intercorrelated variables are indicated by red boxes. 

Variables included in the final model are indicated by ‘*’. 

 

To assess the potential distribution in the fundamental niche (Hutchinson, 

1957) of F. sultana, background samples were created and bound into a data 

frame to employ a presence-background density estimation method (Phillips et 

al, 2009) in the R package ‘dismo’ (Hijmans et al, 2013). The K-fold was set to 

5, with the data in 75/25 split for training/testing. The background samples are 

useful in assessing whether the organism occurs in environments at rates either 

more or less frequently than the environments themselves occur in the 

landscape. For example, the method can be used to assess if areas with higher 

precipitation are more common across the landscape. These can then be 

compared against the 102 species occurrence records to determine the weight 

of influence of each environmental variable relative to their density across the 

landscape.  



Mahalanobis distance based methods were employed in the package ‘raster’ 

(Hijmans et al, 2013) in R. This was implemented to measure the mean 

conditions of the location a species occurs to all other locations in an area, 

finding suitable similar environments where the bryozoan could also occur. 

This ordination method accounts for correlation between variables and 

distances in scale, reducing collinearity between environmental variables to a 

further extent. The Mahalanobis probability of species presence was then 

converted to a p-value, and graphically displayed at presence >0.5, >0.7 and 

>0.95.  

To deal with spatial sampling bias, a raster reflecting the sampling density of 

F. sultana in the study region was created using kernel density estimation 

(KDE), using the package ‘sm’ (Bowman & Azzalini (1997) (Fig. 5). A final 

MaxEnt model was decided through trialling combinations of a number of 

different model settings, including linear, quadratic, hinge and product 

features, as well as thresholds. These were all run in MaxEnt through the 

package ‘dismo’ in R, via R studio interface. The final decided model includes 

linear and quadratic features, with a bias corrected background from the KDE. 

Model suitability and reliability was determined through formal model 

comparison of AUC values. Hinge and product features were turned off in the 

final model for simplicity of results by removing any background noise that 

may arise and skew results in highly complex models. 10,000 iterations were 

selected using probabilistic target-group sampling from the KDE bias surface. 

These were run through 5 folds of the K-Fold cross validation, and were further 

replicated 5 times to allow us to maximise the use of our data sample and 

reduce the effects of overfitting and sampling bias.   

 

Figure 5. Kernel density estimation (KDE) with background and presence 

training and testing points. KDE reflects the sampling density bias of the 

occurrence data, with green being the highest density, orange as intermediate, 

and grey being the lowest. Created in R via the RStudio interface, package ‘sp’.  

Presence training points  

Presence testing points  

Background training points  

Background testing points  



 

To determine feature complexity, a beta regularization coefficient was 

employed in MaxEnt. It is designed to limit overfitting – values nearer to 1 

reduce the complexity, creating a linear curve to show the organism’s response 

to the environment. A number of different AUC values were trialled, including: 

0.25, 0.5, 0.75, and 1. These were then compared to select one final model.  

To forecast probable future bryozoan distributions, the final models were 

projected to the years 2041-2060, according to predicted climate predictions 

from WorldClim. A way to combat the uncertainty of future climate change 

projections, is through mapping multiple climate scenarios with alternatives 

that span a range of future possibilities, therefore three different scenarios were 

modelled in this project. Climate models are constantly updated to incorporate 

finer spatial resolutions and Earth system processes to improve the accuracy of 

projections (Eyring et al, 2019). The 6th phase of the Coupled Model 

Intercomparison Project (CMIP6) of future climate scenarios consists of model 

results from around 100 distinct climate models, produced across 49 different 

modelling groups.  CMIP6 uses socioeconomic pathways (SSPs), with the 

scenario premises of the previous CMIP5 version (O’ Neill et al, 2014), to 

ensure more realistic future scenarios – therefore this method of climate 

modelling was implemented in this project. 

The MaxEnt model was projected onto these three climate scenarios, including: 

SSP2-4.5 as an optimistic scenario of 3°C by 2100, SSP3-7.0 as a ‘middle of 

the road’ scenario, and SSP5-8.5 as a worst case emissions scenario among all 

other possible ‘no climate policy’ outcomes. These three were selected to 

provide a clear range of possible outcomes of F. sultana’s future distribution, 

ranging from optimistic to pessimistic. In line with the study of Ros et al, 2021, 

the bioclimatic variables from the MRI-ESM2-0 model were used in this 

project. This is to allow comparability of results for future studies, and 

hopefully compile similarly analysed data to the literature.  

MaxEnt was run using the exact same methods, model settings, and parameters 

as the current environmental variables. The model was then projected onto 

SSP2-4.5, SSP3-7.0 and SSP5-8.5 individually to produce the final results for 

analysis. 

 

Results 

The Mahalanobis model suggested that large areas of the UK contain suitable 

climatic conditions for the presence of F. sultana, representing p-values of 

probability of presence along a scale of 0-1 (Fig. 6). All AUC values ranged 

above 0.7, inferring high model performance. Probability of presence plotted at 

>0.5, >0.7, and >0.95 (Fig. 7), indicated that the areas of highest habitat 



suitability and probability of presence occur in the East of England, as well as 

at the border of Wales, and in some areas near the Yorkshire Dales and Lake 

District. This is most likely due to the lack of industrialisation, and the 

abundance of freshwater river systems in these rural areas, as identified in the 

HII layer of the raster stack. Conversely, areas identified as currently 

unsuitable for bryozoans were located around Scotland. This area is therefore 

an interesting target of observation, as it is the clearest area to distinguish 

obvious species range shifts. 

 

Figure 6. Probability of F. sultana presence along a scale to 1, calculated using 

mahalanobis distance modelling in R via the RStudio interface, package 

‘raster’. Zero or lower probability of presence (white and pink) indicates areas 

less suitable. Higher probability of presence (green) indicates areas of highest 

suitability.  Presence testing (red) and training (black) points indicate species 

occurrence records. Prediction of probability of presence is based on current 

UK climatic conditions. 

Figure 7. Presence-absence maps, at values of presence a) >0.5, b) >0.7, and c) 

>0.95. Green indicates presence of F. sultana, while grey indicates no presence 

at these probabilities. Prediction of probability of presence is based on current 

UK climatic conditions. 

a) 
b) c) 



 

A final model of quadratic and linear features with a sampling bias background 

was implemented in MaxEnt. A raw output format was used to visualise maps, 

as this is under less strong assumptions than the cloglog format and therefore 

produces more accurate and probable predictions. The RAW format is 

presented in log scale in the figures for easier viewing and interpretation of the 

graphs. After trialling a number of different beta values, a value of 0.5 was 

decided for this model due to its relatively high AUC value of 0.751. Further, it 

had a low standard deviation, and the results of variable contribution most fit 

the observable trend, increasing confidence in this beta value being an 

appropriate complexity. The MaxEnt algorithm identified the environmental 

variables that contribute most to the survival and fecundity of F. sultana, 

displayed in Figure 8. The model identified four main contributors that 

determine probability of F. sultana presence, with mean temperature of the 

coldest quarter (bio11) at 21.3%, mean temperature of the driest quarter (bio9) 

at 19.6%, precipitation of the warmest quarter (bio18) at 19.6%, and mean 

temperature of the wettest quarter (bio8) at 13.6%.  

Figure 8. Environmental variable contribution to the bryozoan distribution, 

based on MaxEnt modelling. Mean temp. of coldest quarter (21.3%), mean 

temp. of driest quarter (19.6%), precipitation of warmest quarter (19.6%) and 

mean temp. of wettest quarter (13.6%) had the greatest contribution to species 

distribution.  

 

A jackknife model (Fig. 9) identified the variables of greatest importance in F. 

sultana distribution. Jackknife procedure systematically removes each 

observation from the dataset, calculates the estimate, and then finds the average 

of all these calculations. The environmental variable with the highest gain 

when used in isolation is mean temperature of the coldest quarter (bio11), 
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therefore appearing to have the most useful information in determining habitat 

suitability alone. The environmental variable that decreases gain the most when 

omitted was also mean temperature of the coldest quarter (bio11), appearing to 

have the most information that is not present in other variables. Of the four 

highest contributing variables (bio8, 9, 11 and 18), mean temperature of wettest 

quarter (bio8) is the only one with a negative test gain. It also has a relatively 

low AUC, suggesting high variance in this predictor (see supplementary 

document). The overall model gain suggests a relatively good fit between the 

model and the data.   

Figure 9. Jackknife testing data gain of variable importance, produced by 

MaxEnt in package ‘dismo’, in R via the RStudio interface. Values shown are 

averages over replicate runs. The red bar is the model gain with all variables 

included.  

The five folds of the K-Fold cross validation were replicated five times, and 

produced sixteen species distribution maps of the 10,000 iterations. All of these 

maps highlight similar areas of likely bryozoan abundance, with varying 

intensities (data not shown). The mean of the 16 habitat suitability estimates 

(Fig. 10a) highlight the areas of highest habitat suitability across the current 

climatic landscape. This mean map corresponds with the current presence 

coordinate records within our dataset (Fig. 3) - areas with observed presences 

are also highlighted to have greater environmental suitability. The standard 

deviation appears low as the map is mostly dark blue, indicating that the 

replicates all produce similar and therefore generally reliable results. There are 

a few areas in the North and East of the UK with a higher standard deviation, 

which should be treated with caution in interpretation of these maps (Fig. 10b).  

Predictions of habitat suitability are generally highest in the South and around 

the Welsh border (indicated by dark red areas), most likely due to the warmer 

climate. It is notable that areas in the North are predicted to have low habitat 

suitability, indicated by the dark blue. Further, the areas of highest suitability in 

the MaxEnt species distribution model correlate with the mahalanobis maps of 

predicted presence (Fig. 6,7), with areas in the South of England being most 

prevalent across all maps.  
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Figure 10. Ecological niche models showing areas of high habitat suitability of 

F. sultana. Models were projected for the period 1996-2018 (current climatic 

conditions). Fig 3 (a) shows the mean RAW output of all 16 models, with areas 

in red indicating highest suitability, and blue indicating lowest suitability. Fig 3 

(b) is the standard deviation of these 16 models. Presented in log scale for 

easier interpretation. Created using Maxent in R, using package ‘sdm’ via the 

RStudio interface. 

 

Figure 11.  Relationships between four highest contributing environmental 

variables and their effects on the MaxEnt prediction- a) mean temperature of 

wettest quarter (bio8), b) mean temperature of the coldest quarter (bio11), c) 

mean temperature of the driest quarter (bio9), d) precipitation of the warmest 

quarter (bio18). Curves show how the predicted probability of presence 

changes as each environmental variable is varied, keeping all other variables at 

their average sample value. The curves show the mean response of the 5 

replicate MaxEnt runs (red) and the mean +/- one standard deviation (blue). 

Created using Maxent in R, using package ‘sdm’ via the RStudio interface. 

a) 
b) 

c) d) 

a) b) 



The four highest contributing bioclimatic variables to habitat were the mean 

temperatures of the wettest, coldest, and driest quarters of the year, as well as 

the precipitation of the warmest quarter (bio8, 11, 9, and 18) (Fig. 11). The 

wettest and coldest quarters in the UK largely coincide during the last and the 

first few months of the year. Mean temperature during the months with highest 

precipitation (bio8) and lowest temperatures (bio11) thus both have similarly 

shaped response curves, with an optimal mean temperature for bryozoans at 2-

4°C.  

In addition, data on precipitation of the warmest quarter (bio18) and mean 

temperature of the driest quarter (bio9) climatic conditions during the summer 

are also important factors in determining habitat suitability. The habitat 

suitability response curve is bell-shaped relative to summer precipitation, 

showing lower habitat suitability particularly in areas with higher summer 

precipitation. During the warmest quarter, high positive correlation infers that 

habitats with higher mean temperatures (bio9) are further predicted to be 

favoured by F. sultana (Fig. 11c). This suggests that the bryozoan generally 

prefers habitats with warmer summer temperatures, which in the UK tend to 

co-occur with modest summer precipitation conditions (demonstrated by the 

bell-shaped bio18 curve in Fig. 11d). These predictions remained the same 

throughout modelling both current and future climate scenarios.  

a) 

  b) 

b) 

  b) 

a) i) 

b) i) 



   

The MaxEnt model produced results for all three future climate scenarios: 

SSP2-4.5, SSP3-7.0, and SSP5-8.5. These are displayed in Figure 12, along 

with their standard deviations. Habitats with suitable climatic conditions will 

be increasingly found in more northerly parts of the UK. Suitability appears to 

expand from the South to the North, indicated by red colours. Three maps were 

produced to clearly display areas where novel habitat emerges (Fig. 13). Areas 

in red indicate novel habitats, which are focussed around the North of the 

United Kingdom. Darker blue areas indicate areas where habitat suitability will 

decrease, and green areas indicate no change in suitability. 
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Figure 12. Ecological niche models showing areas of high habitat suitability of 

F. sultana. Models were projected for the period 2041-2060, under three 

climatic scenarios: a) SSP2-4.5, b) SSP3-7.0, and c) SSP5-8.5. All figures on 

the right show the RAW output of all 16 models, with areas in red indicating 

highest suitability, and dark blue indicating lowest suitability. Presented in log 

scale for easier interpretation. Figures on the right (i) show the standard 

deviations of each model. Created using Maxent in R, using package ‘sdm’ via 

the RStudio interface. 
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Discussion 

Current distribution: 

Climate change driven temperature increases have a profound effect on species 

distributions and may impact the dynamics of disease emergence through the 

occurrence of disease vectors and reservoir hosts, such as bryozoans. The 

results of this study indicate that under current climatic conditions, most parts 

of England and Wales are suitable habitats for the PKD reservoir host F. 

sultana. The models indicate that presence is most likely in the south of 

England, in areas of warmer summer climates and with optimal winter 

temperatures of around 2-4°C. The models predict highest incidence of 

occurrence particularly in locations around the border of Wales, indicated by 

redder colours. In support of these results, it is apparent that PKD has the 

highest incidence in southern England, where it presents a major economic 

constraint in the trout farming industry (Morris et al, 2008). F. sultana 

preference for lower elevation, and by correlation, warmer sites was also 

reported in a survey in Norway by Økland & Økland (2001). 

An ecological niche model was run including elevation, to compare the 

outcome of its inclusion and exclusion from the final models (see 

Supplementary Document). Elevation was highly correlated with cooler 

temperatures (bio6, 8, 11), which are concentrated in few spots around the UK 

where elevation is increased. The results (Supplementary Figure 2) illustrate 

that when elevation is included, the model results in an artificially high 

prediction of probability of presence. This may be because the high 

unsuitability of colder areas in higher elevation would in comparison make the 

rest of landscape seem to be of relative higher suitability. In addition, the 

Figure 13. Maps to indicate the emergence of novel habitats. Areas in red 

indicate high novel emergence, whereas darker blue indicates little change in 

habitat suitability between the two climatic scenarios. a) difference between 

current and SSP2-4.5 climatic conditions, b) difference between current and 

SSP3-7.0, c) difference between current and SSP5-8.5. Created using Maxent 

in R, using package ‘sdm’ via the RStudio interface. 
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model may predict under stronger assumptions if there is interference between 

these highly correlated variables. Upon analysis of results the decision was 

made to remove elevation from the final raster stack used in MaxEnt 

modelling. 

Our presence data was limited to 102 records, mainly located in south of 

England, with conspicuous absence of records in Scotland. This means that 

some areas identified as high habitat suitability were not sampled. Although 

standard deviations of the model were generally low, interpretation of the 

climatic aspects of habitat suitability in these areas should be done with 

caution, especially around North-West Scotland where standard deviation is 

high. However, the information from these maps may be useful in predicting 

locations of F. sultana and potentially T. bryosalmonae occurrence for follow-

up studies to investigate and sample further. For example, areas around the 

border of Wales should be sampled more extensively in future, as it has been 

predicted to have high bryozoan habitat suitability, although little occurrence 

data is available. It may also be useful for fisheries managers, and fish 

conservation programs to investigate the likelihood of bryozoan presence in the 

specific areas identified by the model. This knowledge would allow disease 

management on farms using pre-exposure and vaccination programs, and help 

with PKD specific surveillance during conservation efforts. 

Response to bioclimatic predictors: 

The results of the niche models revealed that bryozoan distribution at the scale 

of the UK is mostly driven by four main bioclimatic variables. These included: 

mean temperature of the coldest quarter (bio11), mean temperature of the driest 

quarter (bio9), precipitation of the warmest quarter (bio18), and mean 

temperature of the wettest quarter (bio8). These remained consistent 

throughout current and future climate scenarios, suggesting that these climatic 

variables are essential predictors in bryozoan habitat suitability.  

Analysis of the jackknife procedure for model evaluation revealed differing 

results between the training and testing gain. In particular, the mean 

temperature of the wettest quarter (bio8) had a negative testing gain, despite 

having high training gain and percentage of variable contribution. This 

indicates a high variance in the predictions involving bio8. Compared to the 

other three highest contributing variables, bio8 has large error envelopes 

around its response curves, suggesting inconsistency in the results produced by 

this variable. It also had an average AUC gain of 0.67(see supplementary doc). 

This suggest a good model fit, though not perfect – therefore bio8 and the 

overall model should be treated with more caution than bio9, bio11, and bio18 

when interpreting results.  

F. sultana has a strongly seasonal life-cycle, with rapid budding growth of 

adult colonies during summer, and the regression into overwintering statoblast 

stages during winter (Raddum and Johnsen, 1983). Thus, the winter and 



summer climates, their variation and seasonality may determine the climatic 

suitability of certain areas of the UK for bryozoans. The mean temperature of 

the coldest quarter (bio11) and the mean temperature of the wettest quarter 

(bio8) both decreased in probability of F. sultana presence with rising 

temperatures when modelled jointly with the other variables included. When 

their relevance for explaining habitat suitability in absence of other variables 

was assessed, a temperature range of 2-4°C was found as optimal. Particularly 

bio11 indicated that as winter temperatures rise past a mean of 2.5°C, habitat 

suitability begins to decrease. This winter temperature range was extrapolated 

from the results of bio11, as it had greater generalisability than the high 

variance of bio8. Despite our model predicting highest habitat suitability based 

on these optimal winter temperatures of 2-4°C, it should be noted that there are 

a number of other biotic and abiotic factors that influence bryozoan habitat 

preference that we were not able to model in this study (some of the data 

explored for inclusions, and potentially useful for future work are detailed in 

the Supplementary Document). However, the results from this study confirm 

the strong role of bioclimatic variables for bryozoan occurrence, and the 

temperature niche is a good basis of understanding one of the many broad 

factors that influence habitat suitability. 

The two variables mostly related to summer climates (the mean temperature of 

the driest quarter (bio9) and the mean precipitation of the warmest quarter 

(bio18)) indicated that localities with warmer summers and moderate levels of 

rainfall would provide the optimal summer climates for habitats suitable for 

bryozoans. The strongly declining marginal response curve for bio18 suggests 

that habitat suitability decreases when summer precipitation increases. The 

mean temperature of the driest quarter (bio9) is positively correlated with 

probability of presence, suggesting that habitat suitability will increase as 

summer temperatures increase in the coming decades. The model shows that 

this correlation begins to plateau at around 16°C, suggesting that there is a 

temperature threshold after which increasing temperature has a negative impact 

on habitat suitability. This could be due to intrinsic thermal tolerance limits of 

F. sultana, where the combination of increased growth rate and thermal stress 

may be metabolically demanding on the bryozoan, leading to oxidative damage 

to essential biomolecules (Burraco et al, 2020). An alternative explanation may 

arise from altered biotic interactions, such as temperature correlated changes in 

substrate availability and resource competition. This latter scenario would also 

be supported by the analysis of variables bio9 and bio18, which suggest that 

habitats experiencing wetter and colder summers are less likely to provide 

suitable habitat for bryozoans.  F. sultana thus prefers warmer environments to 

a certain threshold, with lower levels of rainfall.  

The responses to these four predictors together suggest that habitat suitability is 

highest when climatic conditions promote warm, moderately dry summers, and 

temperate conditions during the winter at a 2-4°C mean temperature. This 

further suggests that F. sultana is highly sensitive to seasonality and 

temperature (Tops et al, 2009). Positive effects of temperature on F. sultana 



growth have been reported in laboratory studies, with highest per capita growth 

in both infected and uninfected colonies observed at 20°C, as opposed to 10°C 

and 14°C (Tops et al, 2009). The production of statoblasts was observed to 

show an opposite trend, with more statoblasts produced at 10°C and 14°C than 

at 20°C (Tops et al, 2009). It thus appears that bryozoans are well adapted to 

fluctuating conditions, with statoblast production enabling an overwintering 

strategy that makes them particularly suited to seasonal habitats. This makes 

the temperate environment of the UK a suitable environment for F. sultana. 

Therefore, despite possible changes is seasonality in both current and future 

climatic conditions, the bryozoa will have the ability to persist throughout these 

possible changes due to their malleable overwintering and statoblast production 

strategy.   

The results indicate that bio8 and bio11 describe a winter temperature tolerance 

zone between 2-4°C for F. sultana, however this zone can vary as a result of 

phenotypic plasticity (Bowler & Terblanche, 2008). F. sultana has the ability 

to reproduce clonally, and selection may favour colony genotypes with 

particularly high temperature tolerance range as temperatures continue to rise. 

Alternatively, clonally reproducing populations may be unable to adapt rapidly, 

and become extinct as their thermal limits are reached. Although the current 

results indicate that bryozoan habitat suitability is temperature related, with 

clear optimal bioclimatic conditions, the limited knowledge of their phenotypic 

plasticity may bias these predictions. Further, it is currently unclear if clonally 

and sexually reproducing bryozoan populations differ in their thermal tolerance 

and thermal optima. In general, thermal tolerance and temperature-dependent 

effects on performance can shape the distribution patterns of ectotherms. 

Performance, such as growth or reproductive rate often increases with 

temperature, reaches a maximum at an intermediate temperature, then rapidly 

decreases (Huey & Stevenson, 1979; Huey & Kingsolver, 1989; Angilletta et 

al, 2002). An organism’s thermal response curve is typically assessed under 

constant temperature regimes in the lab, therefore, they can be unreliable when 

predicting thermal responses in the wild where temperature fluctuates both 

diurnally and seasonally (Khelifa et al, 2019). In the case of F. sultana, any 

future measurements of thermal tolerance should incorporate both reproductive 

strategy of the colonies, as well as their infection status to better understand the 

potential of climatic variation to influence PKD emergence in the UK.  

Climatic conditions which show seasonality may indicate suitable habitats for 

bryozoans. Seasonality is also described by isothermality (bio3) and 

temperature seasonality (bio4). Both of these variables were included in the 

final model, and would be expected to have a large contribution to bryozoan 

presence as we predict that seasonality is an important driver in suitability. 

Isothermality had a relatively large contribution of 6.2% to habitat suitability, 

describing the size of oscillation between day and night temperatures. 

However, temperature seasonality had only a small contribution of 0.3% to 

habitat suitability. Temperature seasonality is described as the amount of 

temperature variation over a given year based on the standard deviation 



(variation) of monthly temperature averages. It may have a small percentage of 

contribution to habitat suitability as it is highly correlated with mean diurnal 

range (bio2), and therefore made redundant. Additionally, although it is not 

explicitly correlated, the effects of bio8, 9, 11, and 18 are all very similar, and 

may produce conflicting results for bio4. 

Based on these four bioclimatic variables (bio8, 9, 11, and 18) with the highest 

percentage contribution to probability of bryozoan presence, we can conclude 

that temperature seasonality is a great driver of distribution. The mechanism 

for the influence of seasonality cannot be inferred from the variables included 

in this study, but would perhaps arise from competitive interactions with other 

benthic species that compete for substrate and resources in aquatic habitats. 

Thus, bryozoans may particularly prefer habitats where winters are sufficiently 

harsh to reduce the abundance of aquatic plants, mosses, sponges, mussels, and 

other substrate occupying organisms during winter. Bryozoans can also rely on 

the rapid hatching of statoblasts already present on suitable substrates to 

reproduce and undertake extensive clonal growth during the early summer. 

Therefore, as temperatures rise in the coming decades, bryozoan distributions 

across the UK may change, and thus influence PKD emergence.  

Future climate scenarios: 

The MaxEnt model was projected onto three future climate scenarios from the 

years 2041-2060 to determine the future of F. sultana distribution. These 

included: SSP2-4.5 optimistically predicting warming of around 3°C by 2100, 

SSP3-7.0 as a ‘middle of the road’ scenario, and SSP5-8.5 as a worst case 

emissions scenario among all possible ‘no climate policy’ outcomes. Across all 

three future scenarios, habitat suitability expands to distributions beyond its 

current range, especially in the North of the UK. This is a clear change in 

potential distribution, as the predicted rising temperatures increase suitability 

across the entire country, demonstrated by areas of light blue, yellow and red 

on the map.  

Interestingly, the standard deviation of all three of these climate scenarios are 

quite high in the North. This suggests that the 16 repeats of the 10,000 iteration 

models all produced slightly different results, and disagree on a final map of 

habitat suitability. This could be because the projections of the future scenarios 

are very different from the current climate scenarios that our occurrence 

records are trained on, so MaxEnt is unfamiliar with how the future 

environmental variables will interact with each other. As temperature rises, the 

bioclimatic variables may become more highly correlated, which would cause 

interference in MaxEnt and result in conflicting results. To address this 

concern, future studies should run a correlation analysis on the future climatic 

predictors, and run the model again removing highly correlated variables. 

Alternately, this problem can be addressed by using multiple algorithms and 

parameters to fit potentially hundreds of models to produce a final outcome. 

Different species distribution modelling algorithms may respond differently in 



the areas where MaxEnt becomes inaccurate, and therefore an exploration of 

this possibility is imperative for future studies.  

To have a clearer understanding of how species distribution will evolve in the 

coming decades, further data is required to improve model accuracy. Our 

future predictions remain somewhat uncertain due to the limited data available, 

therefore the models should be continually trained with updated data over the 

coming years. Further, the future will remain uncertain with unprecedented 

distribution changes, as this is all dependent on the species’ biological 

adaptation to the changing abiotic environment which MaxEnt cannot predict. 

For example, bryozoans may rapidly adapt their overwintering strategy, and 

increasingly persist as adult colonies. This is a likely scenario as declining 

temperatures in the autumn are suggested to act as a cue for statoblast 

production (Tops et al, 2009). The PKD parasite T. bryosalmnoae has been 

observed to be released from adult bryozoans during winter (Gay et al, 2001), 

however, no parasite spores are produced during overwintering as statoblasts. 

Therefore, we can only make inferences on how distribution will change based 

on the MaxEnt model, as F. sultana’s biological response will also play a role 

in distribution that MaxEnt cannot predict. 

This can be further understood with analysis of the results. Models show that 

the SSP3-7.0 scenario has greatest habitat suitability for bryozoans, with the 

reddest surface area on the map. Suitability decreases with the SSP5-8.5 

scenario, suggesting that even higher rising temperatures result in an 

increasingly unsuitable environment for F. sultana. Though some studies 

suggest that species’ and their associated parasites may face extinction under 

climate change (Lafferty & Mordecai, 2016), we can expect the bryozoan to 

persist throughout these environments due to their overwintering and life 

history strategies. Moreover, the dynamic environment of freshwater rivers 

means that the species will still be able to persist in cooler micro-environments, 

especially as they enter statoblast phase. The effects of climate change may 

increase the likelihood of overwintering of live colonies, and result in F. 

sultana generating statoblasts quicker and earlier within the growing season. 

Such life- history changes in the bryozoan host would generate a longer season 

of T. bryosalmonae transmission, with a possible increase in overt infection.  

As global mean temperatures continue to rise as a result of anthropogenic 

influence, few ecosystems will be able to adapt to these new climatic 

conditions (Fischlin et al, 2007). Paleogeological data from past period of rapid 

climate change indicate that species and ecosystems need time to adapt to new 

environmental conditions (Warren et al, 2011). Interactions in host-parasite 

systems will not be able to keep up with this pace of adaptation, and T. 

bryosalmonae may disproportionately benefit from anthropogenic warming at a 

rate that salmonid populations cannot sustain. Symptoms of PKD are known to 

exacerbate with increasing temperature (Ros et al, 2021), therefore, upon 

analysis of these results we can expect higher rates of fish mortality in the 

coming decades.  



Caveats and future directions 

A number of caveats must be kept in mind when interpreting the species 

distribution models generated in this study. The number of presence records for 

F. sultana was limited to 102 occurrence points, and resultantly the MaxEnt 

model may not have been utilised to its fullest potential. Model performance 

and accuracy may have improved with a greater number of species presence 

points, however data on our target species is limited within the UK, and this 

study paves the way in highlighting these issues.  

A practical method of improving the species sampling through environmental 

DNA (eDNA) could be implemented. This is a sampling method where DNA 

is extracted from water samples and the target species DNA is amplified and 

sequenced using general or universal primers in polymerase chain reaction 

(PCR). Such methods have been shown to be effective for F. sultana (Carraro 

et al, 2017, 2018). Through this, more extensive sampling can be achieved by 

identifying possible presences in the environment that may otherwise be 

missed by human error. The technique brings together traditional field-based 

ecology and in-depth molecular methods to allow biomonitoring without 

actually requiring the collection of the organism – a non-invasive practice to 

reduce anthropogenic stress. Further, eDNA sampling is often more cost-

effective than the traditional sampling methods employed in this study (Qu et 

al, 2019).  

The statistical analysis of this data was also limited by the lacking knowledge 

and limited information regarding river networks and connectivity. Covid-19 

impacted our ability to execute field work, including validation sampling, and 

therefore the data used in this study is heavily reliant on online resources. With 

more computing resources, an improvement to this study would be to mask the 

raster stack of variables using a UK river network. The current model 

investigates the climatic conditions on the UK scale that are indicative of 

bryozoan habitat suitability – however, it also includes many areas where no 

freshwater is present. Further, no catchment level approaches were employed, 

and could be conducted in follow up work. The biodiversity of river systems 

can be sensitive to longitudinal connectivity, and other network-like properties 

of river systems such as climatic or human alterations (McCluney et al, 2014). 

Therefore, explicitly including connections between river stretches, and the 

upstream contributing area would refine the estimates proposed here. This 

could allow the incorporation of salmonid records in future records - salmonid 

distribution is known to be impacted by river connectivity, as their distributions 

are highly influenced by variables that change along upstream-downstream 

gradients. For example, water flow, turbidity, nutrient levels (Bjornn & 

Reisner, 1991) and anthropogenic influences such as pollution (Arkoosh et al, 

1998).  

Further, information on river temperature is difficult to ascertain due to the 

complex nature of river connectivity. Therefore, the bioclimatic variables used 



in this study are in reference to air temperature. We can only use this 

information to infer river temperature, though it is not an entirely precise 

method of prediction. With scarce information regarding river connectivity and 

river temperature available online, this aspect of the study is limited to the 

resources at hand. This investigation, and similar studies concerning river 

systems would greatly benefit from an online accessible database where 

researchers can share the data they have collected - for example of river 

connectivity, temperature, eDNA results, and pollution. Shared knowledge 

would result in greater potential for accurate and extensive statistical analysis 

and mapping to characterise rivers across the landscape.  

Alongside adjusting modelling approaches, empirical work could complement 

this area of study. The adaptive potential of bryozoans to changing 

temperatures could be measured experimentally, and gene expression studies 

used to find genetic loci under greatest selection for adaptation to changing 

biotic and abiotic pressures. Understanding the genetic basis of thermal 

adaptation in host-parasite systems in general could aid in mitigation and 

preparing for the climate change driven disease emergence in freshwater 

systems. F. sultana are clonal species, with sexual reproduction observed only 

in some populations. Many clonally production populations may be lacking in 

genetic diversity leading to an evolutionary dead end and higher probability of 

population extinctions (Stebbins, 1957). Our current understanding of the 

mechanisms that underlie F. sultana’s response to temperature change is still 

limited, therefore further investigation into population genetic diversity, life-

history strategies and phenotypic plasticity are required to understand 

adaptation across different timescales in a rapidly changing global climate.  

Summary 

The aims of this study were to find the greatest environmental variable 

contributors to F. sultana habitat suitability, and build a species distribution 

map to infer the areas at highest risk of PKD among trout populations. Utilising 

primary data gathered from a range of sources, this study provides empirical 

evidence regarding the current and projected distribution of our host species F. 

sultana, inferring the possible locations at risk of PKD outbreak. 

This study employs first-hand primary presence records of F. sultana across 

the UK. This is the first study utilising this data in analysis, to provide us a 

better understanding of the primary host of T. bryosalmonae, and its 

distribution across the UK landscape. The results suggested an optimal winter 

temperature range for bryozoan habitat suitability at 2-4°C, and a possible 

summer threshold of 16°C. Predictions based on future climate models suggest 

potential range shifts of bryozoan distribution, increasing habitat suitability in 

the North, and fewer optimally suited locations in the South. It can be inferred 

that the spread of PKD could follow these distribution trends of its primary 

host in the following decades, especially as the severity of PKD in fish 

increases with temperature. 



The threat of PKD for inland trout aquaculture continues to increase as the fish 

farming industry expands to meet growing food demand globally. With rapidly 

emerging research and attention to climate change science, the results of this 

study are yet another warning of the possible detriments of a warming planet. 

Following the latest IPCC report (IPCC, 2021), the threat of food insecurity 

and economic loss is growing blaringly urgent – the impacts of PKD in the UK 

is just a small scale example of a macroscale problem. 

 

 

References 

1. Angilletta, M., Niewiarowski, P. & Navas, C. (2002). The evolution of 

thermal physiology in ectotherms. Journal of Thermal Biology, 27, 249-

268. 

2. Arkoosh, M.R. et al. (1998). Effect of pollution on fish diseases: 

potential impacts on salmonid populations. Journal of Aquatic Animal 

Health 10, 182-190. 

3. Bjornn, T.C. & Reiser, D.W. (1991). Habitat requirements of salmonids 

in streams. In W. R. Meehan ed. Influences of forest and rangeland 

management of salmonid fishes and their habitats. American Fisheries 

Society, 83-138. 

4. Bowler, K. & Terblanche, J. (2008). Insect thermal tolerance: what is 

the role of ontogeny, ageing and senescence? Biological Reviews, 83, 

339-355. 

5. Bowman, A. & Azzalini, A. (1997). Applied smoothing techniques for 

data analysis. Oxford: Oxford University Press. 

6. Brown, C. (1933). A Limnological Study of Certain Fresh-Water 

Polyzoa with Special Reference to Their Statoblasts. Transactions of 

the American Microscopical Society, 52, 271. 

7. Burkhardt-Holm, P. (2007). Project Fischnetz: Decline of fish catch in 

Switzerland. Aquatic Sciences, 69, 1-2. 

8. Burraco, P., Orizaola, G., Monaghan, P. & Metcalfe, N. (2020). 

Climate change and ageing in ectotherms. Global Change Biology, 26, 

5371-5381. 

9. Bushnell, J.H. (1966). Environmental relations of Michigan Ectoprocta, 

and dynamics of natural populations of Plumatella repens. Ecological 

Monographs. 36, 95-123.  

10. Carraro, L., Bertuzzo, E., Mari, L., Fontes, I., Hartikainen, H. et al. 

(2017). Integrated field, laboratory, and theoretical study of PKD 

spread in a Swiss prealpine river. Proceedings of the National Academy 

of Sciences, 114, 11992–11997.  



11. Carraro, L., Mari, L., Gatto, M., Rinaldo, A., & Bertuzzo, E. (2018). 

Spread of proliferative kidney disease in fish along stream networks: A 

spatial metacommunity framework. Freshwater Biology, 63, 114–127. 

12. Clark, W.C., Kates, R.W., Richards, J.F., Mathews, J.T., Meyer, W.B., 

Turner II, B.L. (ed.), (1990). The Earth as Transformed by Human 

Action. Cambridge: University Press.  

13. Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. 

Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. 

Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term 

Climate Change: Projections, Commitments and Irreversibility. In: 

Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. 

Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.) Climate 

Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA. 

14. Crutzen, P. & Stoermer, E. (2000). The Anthropocene. IGBP 

Newsletter. 41, 17-18. 

15. Döll, P. & Zhang, J. (2010). Impact of climate change on freshwater 

ecosystems: a global-scale analysis of ecologically relevant river flow 

alterations. Hydrology and Earth System Sciences, 14, 783-799. 

16. Esperón-Rodríguez, M., Bonifacio-Bautista, M. & Barradas, V. (2015). 

Socio-economic vulnerability to climate change in the central 

mountainous region of eastern Mexico. Ambio, 45, 146-160. 

17. ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: 

Environmental Systems Research Institute. 

18. Eyring, V., Cox, P.M., Flato, G.M. et al. (2019). Taking climate model 

evaluation to the next level. Nature Climate Change, 9, 102–110. 

19. Feist, S.W., Longshaw, M., Canning, E.U. & Okamura, B. (2001). 

Induction of proliferative kidney disease (PKD) in rainbow trout 

Oncorhynchus mykiss via the bryozoan Fredericella sultana infected 

with Tetracapsula bryosalmonae. Diseases of Aquatic Organisms, 45, 

61-68. 

20. Fischlin, A., Midgley, GF., Price, JT. et al. (2007) Ecosystems, their 

properties, goods and services. In: Parry ML, Canziani OF, Palutikof JP 

et al (eds) Climate change 2007: impacts, adaptation and vulnerability. 

Contribution of working group II to the fourth assessment report of the 

intergovernmental panel of climate change (IPCC). Cambridge: 

Cambridge University Press, 211–272 

21. Fontes, I. et al. (2015). Life history, distribution and invertebrate host- 

parasite interactions of the causative agent of proliferative kidney 

disease (PKD), Tetracapsuloides bryosalmonae. University of 

Aberdeen. 



22. Gay, M., Okamura, B. & de Kinkelin, P. (2001) Evidence that 

infectious stages of Tetracapsula bryosalmonae for rainbow trout, 

Oncorhynchus mykiss, are present throughout the year. Diseases of 

Aquatic Organisms, 46, 31–40. 

23. Gorgoglione, B., Kotob, M. & El-Matbouli, M. (2016). Migrating 

zooids allow the dispersal of Fredericella sultana (Bryozoa) to escape 

from unfavourable conditions and further spreading of Tetracapsuloides 

bryosalmonae. Journal of Invertebrate Pathology, 140, 97-102. 

24. Grinnell, J. (1917). The Niche-Relationships of the California Thrasher. 

The Auk, 34, 427-433. 

25. Hijmans, R.J. (2013). raster: Geographic data analysis and modeling. R 

package version 2.1-49. 

26. Hijmans, R.J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. 

(2005). Very high resolution interpolated climate surfaces for global 

land areas. International Journal of Climatology, 25, 1965–1978.  

27. Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2013) dismo: 

Species distribution modeling. R package version 0.9-1. 

28. Huey, R. & Kingsolver, J. (1989). Evolution of thermal sensitivity of 

ectotherm performance. Trends in Ecology & Evolution, 4, 131-135. 

29. Huey, R. & Stevenson, R. (1979). Integrating Thermal Physiology and 

Ecology of Ectotherms: A Discussion of Approaches. American 

Zoologist, 19, 357-366. 

30. Hutchins, P.R., Sepulveda, A.J., Hartikainen, H., Staigmiller, K.D., 

Opitz, S.T., et al. (2021). Exploration of the 2016 Yellowstone River 

fish kill and proliferative kidney disease in wild fish populations. 

Ecosphere, 12, p.e03436. 

31. Hutchinson, G.E. (1957). A Treatise on Limnology. Wiley, 1. 

32. IPCC (2021). Climate Change 2021: The Physical Science Basis. 

Contribution of Working Group I to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. 

Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, 

L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. 

Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. 

Zhou (eds.)]. Cambridge University Press. In Press. 

33. Jaynes, E.T. (1957). Information Theory and Statistical Mechanics. The 

Physical Review, 106, 620-630. 

34. Khelifa, R., Blanckenhorn, W., Roy, J., Rohner, P. & Mahdjoub, H. 

(2019). Usefulness and limitations of thermal performance curves in 

predicting ectotherm development under climatic variability. Journal of 

Animal Ecology, 88, 1901-1912. 

35. Kipp, R., Bailey, S.A., MacIsaac, H., & Ricciardi, A. (2010). 

Transoceanic ships as vectors for nonindigenous freshwater bryozoans. 

Diversity and Distributions, 16, 77-83. 



36. Kueffer C. (2015). Ecological Novelty: Towards an interdisciplinary 

understanding of ecological change in the anthropocene. Pages 19–37 

in Greschke H, Tischler J, eds. Grounding Global Climate Change. 

Springer. Hwa EC. (1989) The Contribution of Agriculture to 

Economic Growth: Some Empirical Evidence. In: Williamson J.G., 

Panchamukhi V.R. (eds) The Balance between Industry and 

Agriculture in Economic Development. International Economic 

Association Series. London: Palgrave Macmillan. 

37. Lafferty, K. & Mordecai, E. (2016). The rise and fall of infectious 

disease in a warmer world. F1000Research, 5, 2040. 

38. Last of the Wild Data Version 2 (2005). Wildlife Conservation Society-

WCS, and Center for International Earth Science Information Network-

CIESIN-Columbia University. 

http://sedac.ciesin.columbia.edu/data/collection/wildareas-v2 

39. Lewisch, E., Unfer, G., Pinter, K., Bechter, T. & El-Matbouli, M. 

(2018). Distribution and prevalence of T. bryosalmonae in Austria: A 

first survey of trout from rivers with a shrinking population. Journal of 

Fish Diseases, 41, 1549-1557. 

40. McCluney, K.E. et al. (2014). Riverine macrosystems ecology: 

sensitivity, resistance, and resilience of whole river basins with human 

alterations. Frontiers in Ecology and the Environment, 12, 48-58. 

41. McGurk, C., Morris, D.J. & Adams, A. (2005). Microscopic studies of 

the link between salmonid proliferative kidney disease (PKD) & 

bryozoans. Fish Veterinary Journal, (8), 62-71. 

42. Millennium Ecosystem Assessment (2005). Ecosystems and Human 

Well-being: Synthesis. Washington, DC: Island Press. 

43. Mo, T. and Jørgensen, A. (2017). A survey of the distribution of the 

PKD-parasite Tetracapsuloides bryosalmonae (Cnidaria: Myxozoa: 

Malacosporea) in salmonids in Norwegian rivers - additional 

information gleaned from formerly collected fish. Journal of Fish 

Diseases, 40, 621-627. 

44. Morris, D.J. & Adams, A. (2008). Sporogony of Tetracapsuloides 

bryosalmonae in the brown trout Salmo trutta and the role of the tertiary 

cell during the vertebrate phase of myxozoan life cycles. Parasitology, 

135, 1075-1092. 

45. Morris, D.J., McGurk, C. & Butterfield, G. (2008). Current research on 

PKD at Stirling. Finfish News. Weymouth/Lowestoft: Cefas.  

46. Noden, B., Kent, M., & Beier, J. (1995). The impact of variations in 

temperature on early Plasmodium falciparum development in 

Anopheles stephensi. Parasitology, 111, 539-545. 

47. O’Neill, B., Kriegler, E., Riahi, K., Ebi, K., Hallegatte, S. et al. (2014). 

A new scenario framework for climate change research: the concept of 

shared socioeconomic pathways. Climatic Change, 122, 387-400. 



48. Okamura, B., and Feist, S. (2011). Emerging diseases in freshwater 

systems. Freshwater Biology, 56, 627-637. 

49. Økland, K.A. & Økland, J. (2001). Freshwater bryozoans (Bryozoa) of 

Norway II: distribution and ecology of two species of Fredericella. 

Hydrobiologia, 459, 103-123.  

50. Phillips, S., Dudík, M., Elith, J., Graham, C., Lehmann, A., et al. 

(2009). Sample selection bias and presence-only distribution models: 

implications for background and pseudo-absence data. Ecological 

Applications, 19, 181-197. 

51. Qu, C. & Stewart, K. (2019). Evaluating monitoring options for 

conservation: comparing traditional and environmental DNA tools for a 

critically endangered mammal. The Science of Nature, 106(3-4). 

52. R Core Team (2013). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria.  

URL  http://www.R-project.org/. 

53. Raddum, G.G. & Johnsen, T.M. (1983). Growth and feeding of 

Fredericella sultana (bryozoa) in the outlet of a humic acid lake. 

Hydrobiologia, 101, 115-120.  

54. Ripple, W., Wolf, C., Newsome, T., Barnard, P. & Moomaw, W. 

(2019). World Scientists’ Warning of a Climate 

Emergency. BioScience, 70, 8-12. 

55. Rohr, J. & Cohen, J. (2020). Understanding how temperature shifts 

could impact infectious disease. PLoS Biology, 18, p.e3000938. 

56. Ros, A., Baer, J., Basen, T., et al. (2021). Current and projected impacts 

of the parasite Tetracapsuloides bryosalmonae (causative to 

proliferative kidney disease) on Central European salmonid populations 

under predicted climate change. Freshwater Biology. 00, 1–18. 

57. RStudio Team (2015). RStudio: Integrated Development Environment 

for R, Boston, MA. URL http://www.rstudio.com/. 

58. Stebbins, G. (1957). Self Fertilization and Population Variability in the 

Higher Plants. The American Naturalist, 91, 337-354. 

59. Steffen, W., Sanderson, A., Tyson, P. D., Jäger, J., Matson, P. A., et al 
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inclusion in ecological niche modelling, along with their sources. 

 

2. Supplementary Figure 1: Diagnostic plots for MaxEnt model, showing 

jackknife evaluation of variable contributions of Fredericella sultana 

habitat suitability. 

 

3. Supplementary Figure 2: Ecological niche models including elevation 

added as an explanatory variable. 

 

 

Supplementary Table 1. Environmental variables considered for inclusion in 

ecological niche modelling. Time constraints and Covid-limited access to 

computers with higher processing power meant that they were removed from 

final raster stack. Variables were selected based on the literature and field data. 

Variable name, file type and source link are provided for follow-up studies to 

access.  

Environmental 

variable  

File type Source link  

Ammonia  ASCII 

Grid 

National Atmospheric Emissions Inventory:  

https://naei.beis.gov.uk/data/map-uk-

das?pollutant_id=21&emiss_maps_submit=naei-

20210830163051 

Carbon dioxide 

as Carbon  

ASCII 

Grid 

National Atmospheric Emissions Inventory: 

https://naei.beis.gov.uk/data/map-uk-

das?pollutant_id=2&emiss_maps_submit=naei-

20210830163051 

Copper ASCII 

Grid 

National Atmospheric Emissions Inventory:  

https://naei.beis.gov.uk/data/map-uk-

das?pollutant_id=13&emiss_maps_submit=naei-

20210830163051 

Elevation 

(Digital Terrain 

Model at 50cm 

spatial 

resolution)  

Shapefile  Digimap:  https://digimap.edina.ac.uk/lidar 

Fertiliser 

(2010-2015): 

including 

nitrogen, 

phosphorous 

and potassium 

TIFF Digimap:  

https://digimap.edina.ac.uk/environment 



a) 

 

Geological 

indicators of 

flooding 

Shapefile Digimap:  https://digimap.edina.ac.uk/geology 

Land cover plus 

crops 

ESRI 

Shapefile  

UK Centre for Ecology and Hydrology:  

https://www.ceh.ac.uk/services/ceh-land-cover-

plus-crops-2015 

Lead ASCII 

Grid 

National Atmospheric Emissions Inventory:  

https://naei.beis.gov.uk/data/map-uk-

das?pollutant_id=17&emiss_maps_submit=naei-

20210830163051 

Nitrogen oxides 

(NOx as NO2) 

ASCII 

Grid 

National Atmospheric Emissions Inventory:  

https://naei.beis.gov.uk/data/map-uk-

das?pollutant_id=6&emiss_maps_submit=naei-

20210830163051 

Soil parent 

material model 

Shapefile  Digimap:  https://digimap.edina.ac.uk/geology 

b) 

HII 

HII 



   

Supplementary Figure 6. Jackknife output of variable importance, produced by 

MaxEnt in the R package ‘dismo’, version 3.4.1 via the RStudio interface. a) 

training gain for species, b) testing gain for species, c) AUC to reveal model 

fit, d) marginal response curve with error envelope (in blue) of mean 

temperature of the wettest quarter (bio8). Values shown are averages over 

replicate runs. The x axis is the model gain, suggesting how much ‘better-than-

random’ the model fit is. A high model gain therefore suggests greater 

predicted value of the variable/model. The red bar is the model gain with all 

variables included – a 0.67 gain of the AUC is just above average, indicating a 

good model fit, though not perfect. This suggests some variability in the model 

runs and the bioclimatic variables. Results should therefore be treated with 

caution. 

HII HII 

c) 

d) 

HII 



a) 

 

Supplementary Figure 7. Ecological niche models showing areas of high 

habitat suitability of F. sultana including elevation in the final raster stack. 

Models were projected for the period 1996-2018 (current climatic conditions). 

Supplementary Figure 2 (a) shows the mean RAW output of all 16 models, 

with areas in red indicating highest suitability, and blue indicating lowest 

suitability. Supplementary Figure 2 (b) is the standard deviation of these 16 

models. Presented in log scale for easier interpretation. Created using Maxent 

in R, using package ‘sdm’ via the RStudio interface. 
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