
 

 

 

ANTIBIOTIC RESISTANCE IN 

DAIRY FARM SOIL: A 

METAGENOMIC SURVEY FROM 

SLURRY TO FIELD 

 

 

Alexander D. Williams 

B.Sc. (Hons) 2015 

 

 

 

Thesis submitted to the University of Nottingham for the degree of 

Doctor of Philosophy 



2 
 

Acknowledgements 

Firstly, I would like to thank my supervisors; Dr Helen West, Professor Dov Stekel, 

Professor Christine Dodd, Dr Lisa Avery, Dr Rupert Hough and Dr Steve Hooton for their 

support and insight throughout my studies. I am also very grateful to my internal 

assessor Dr Jon Hobman, for his valuable comments during assessment meetings.  

I would like to thank Andrew Warry for his advice and willingness to discuss the shifting 

sands of bioinformatics. I am very grateful to Dr Andrew Millard and the CLIMB-BIG-

DATA project for providing access to compute resources. 

I am deeply grateful to Dr Matthew Kent for his willingness to help me hone my use of R 

statistical software and bash command language. 

I would also like to thank the Biosciences Technical Staff, including Dr Saúl Vázquez 

Reina, Laura Holt and John Corrie, without whom laboratories would cease to function. 

Special thanks are given to the STARS CDT and NERC (NE-M009106-1), which provided 

the funding and opportunity to make this project possible. I am very grateful to the 

STARS CDT for the training, encouragement and community atmosphere they have 

fostered throughout my studies.  

On a personal level, I wish to thank my friends and colleagues who have enriched my 

experience at The University of Nottingham, my family for their encouragement and  

Martha Ledger for her companionship and patience.         

 

"Nothing is built on stone; all is built on sand,  

but we must build as if the sand were stone."  

Jorge Luis Borges 

 



3 
 

Abstract 

Burgeoning antibiotic resistance (AR) threatens to undermine global human health by 

rendering antibiotic treatments ineffective. The rapid development of AR is widely 

attributed to excessive antibiotic use, and a greater proportion of global antibiotic sales 

are associated with livestock relative to human clinical use. In line with the One Health 

concept, increasing focus has been placed on studying the spread of AR in agricultural 

environments, including contamination of the human food chain. Livestock waste is a 

valuable resource for fertilising agricultural land worldwide; however, it also represents a 

source of unmetabolised antibiotics, assorted antimicrobials and antibiotic resistant 

bacteria (ARB). In the UK, cattle slurry comprises a substantial proportion of animal 

waste applied to fields. Consequently, the dispersal of AR on UK dairy farms and their 

environs warrants investigation.   

The body of work presented here therefore aimed to characterise the dynamic spread of 

AR on a large, high-performance commercial dairy farm in the UK. More specifically, the 

occurrence and prevalence of AR determinants and bacterial taxa in slurry-amended field 

soil were evaluated over the course of a year, with sampling occurring in May, July, 

September and October 2017, as well as January and May 2018. On-site slurry samples 

were  also characterised  monthly, between June and October 2017. During the period of 

study, additional sampling was also carried out in January and May 2018, from a nearby 

field site with no history of livestock waste application. Environmental DNA was 

extracted from all samples, processed, and sequenced to produce metagenomic libraries. 

Bioinformatic analyses were carried out to annotate, quantify, and visualise the ARG 

profile (resistome) and taxonomic composition of samples.  

By bringing together antibiotic usage records, soil physiochemistry, meteorological and 

metagenomic data, the current work produced a uniquely comprehensive temporal 

evaluation of AR in field soil following successive amendments of slurry at realistic rates 

of application.   
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Through analyses of metagenomic data it was shown that while both slurry and soil 

contained a diverse array of antibiotic resistance genes (ARGs), the ARG profiles of soil 

were distinct from those of slurry, irrespective of the origin of the soil in the context of 

the sites sampled. This is further reflected in the microbial composition of soils which 

also demonstrated robust correspondence with ARG profiles. Together, these data 

allowed the identification of slurry biomarkers (ARGs and taxa). ARG slurry biomarkers 

included gene groups belonging to macrolide, lincosamide and tetracycline resistance 

gene categories. Furthermore, the wider genetic context of slurry ARGs was 

characterised by metagenome assembly. Specifically, the beta-lactamase resistance 

gene cfxA was associated with NBU-1-like elements, while the tetracyline resistance 

gene tetM was embedded within Tn916-like transposable mobile elements. Similarly, 

certain ARGs such as aph(6) (aminoglycosides), aph(3”) (aminoglcosides) and sul2 

(sulfonamides) were co-resident on contigs. 

Taxonomic slurry biomarkers included members of phylum Bacteroidetes, Firmicutes, 

Synergistetes, Tenericutes and Sphaerocheata. In particular, both unassembled read 

data and metagenomes-assembled genomes (MAGs) indicated Proteiniphilum sp. 

(Bacteroidetes) was a biomarker of slurry application.     

Temporal analyses showed that the slurry biomarkers exhibited two distinct lifecycles in 

soil, one of which appeared to be further modified by season. Firstly, select ARGs were 

consistently more abundant in soil with a long-term history of slurry application relative 

to soil from the 'untreated' site (e.g. tetM), indicating their prevalence related to long-

term enrichment. In contrast, another set of ARGs exhibited transient increases following 

the first application of slurry in May 2017 (e.g. lnuB, mefB). These ARGs declined to pre-

treatment levels within eight weeks. In contrast, the same ARGs persisted for >12 

weeks after the first application of slurry in February 2018. This suggests the timing of 

the first slurry application of the season can influence the survival of select slurry 

associated ARGs and taxa. Given current UK guidelines, the latter scenario may result in 

the contamination of grass-cut for silage intended for use as cattle-feed and may lead to 
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a positive feed-back loop of AR in cattle, although this was beyond the scope of the 

current work. Further field-based and laboratory experiments should be carried out to 

confirm the broader scalability of these findings.  

In summary, the present work explored relationships between taxa, ARGs and mobile 

genetic elements, as well as the dynamic nature of ARGs within soils on a working dairy 

farm. Analyses enabled identification of candidate biomarkers of slurry exposure (ARGs 

and taxa), which can be used to develop more targeted studies in the future.  
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Chapter 1 

Introduction 

1.1 Antibiotic Resistance: A Global Dilemma 

The emergence and spread of antibiotic resistance (AR) have become issues of urgent 

global concern. Over the last decade, AR has been the subject of many national and 

international reports, all of which underscore our current reliance on antibiotics to deliver 

effective healthcare services as a primary motivator for action (O'Neill, 2014, WHO, 

2014, FAO, 2016, GOV.UK, 2019, ECDC, 2020). Accordingly, the UK government report 

into antimicrobial resistance (AMR) estimates that if drug resistance continues to develop 

unabated, as many as 10 million lives a year could be lost to AMR by 2050, resulting in a 

7% reduction in global GDP (O'Neill, 2014). It is important to note that while AMR 

technically encompasses drugs active against members of any microbial domain, 

including protozoa and fungi; the work conducted by O'Neill (2014) places emphasis on 

antibiotic resistant bacteria (ARB), which are the focus of the present work. The 

significance of ARB can be further demonstrated by the creation of the Global Priority 

Pathogen List (GPPL) by the WHO (2017b). The list was compiled to galvanise the 

development of novel antibiotic therapeutics targeting the most internationally 

concerning antibiotic resistant bacteria (WHO, 2017b). Many bacteria listed under 

‘critical’ and ‘high’ concern on the GPPL overlap with the ESKAPE group (Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter spp.), as previously recognised by the 

Infectious Diseases Society of America for their increasing capacity to ‘escape’ existing 

treatment strategies (Rice, 2008, Boucher et al., 2009, Pendleton et al., 2013). 

Specifically, the ESKAPE pathogens A. baumanii and P. aeruginosa, as well as 

carbapenem and 3rd generation cephalosporin-resistant Enterobacteriaceae (including K. 

pneumoniae and Enterobacter spp.) are assigned to the highest GPPL tier of ‘critical’ 
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concern, while Enterococcus faecium and Staphylococcus aureus fall under the second 

highest tier of ‘high’ concern (WHO, 2017b).  

Extensively drug resistant  Mycobacterium tuberculosis was not incorporated into the 

GPPL  on the grounds that this organism was already an established  pathogen of 

concern for which new treatments were being actively sought (WHO, 2017b).  

The ascent of ARB as a threat to modern healthcare systems can be explained by the 

ubiquity of bacteria in our shared environment (including our own bodies) and our 

dependence on antibiotics to prevent or mitigate bacterial infections which might arise as 

a result of invasive surgery or immunosuppression (e.g. chemotherapy, AIDS).  The vital 

importance of antibiotics to modern healthcare systems is readily demonstrable. For 

example, an international meta-analysis by Smaill and Grivell (2014) indicated antibiotic 

prophylaxis could reduce the incidence of maternal infection following caesarean-section 

by 60-70%. If the efficacy of antibiotic prophylaxis were reduced by only 30%, Teillant 

et al. (2015) estimated an additional 120,000 surgical site and post-chemotherapy 

infections would occur in the US annually, of which 6,300 would likely prove fatal.  

Although AMR constitutes a clear public healthcare burden, de Kraker et al. (2016)  

cautioned that the calculations behind the loss of life projected by O'Neill (2014) were 

poorly defined and were not submitted to independent scientific review prior to 

publication. The authors go on to highlight several assumptions common to burden 

estimates which can inflate or otherwise distort the prevalence of AMR and attributable 

mortality (de Kraker et al., 2016). Similarly, a meta-analysis by Naylor et al. (2018) 

underscores marked variability in both economic and health-orientated burden 

estimates. For example, projected annual increases in AMR-related healthcare costs 

were shown to extend from no significant increase through to $1 billion 2013 USD 

(Naylor et al., 2018). Nonetheless, there are many reasons to suspect the true cost of 

AMR is often underestimated and steadily growing.  
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Specifically, disability-adjusted life years (DALYs) attempt to quantify important aspects 

of disease burden which are not encapsulated by mortality figures alone. As defined by 

WHO (2020), DALYs consider both the years of life lost due to premature death and 

years of full health lost. DALYs would therefore incorporate the impact of prolonged 

hospitalisation due to AR infections as well as instances where amputation is necessary 

to control severe AR infections. In a recent study, Cassini et al. (2019) estimated the 

contribution of antibiotic resistant infections to DALYs across the EU and European 

Economic Area (EEA) in 2015 was comparable to the combined DALY rate of HIV, 

tuberculosis and seasonal influenza. Tacconelli and Pezzani (2019) remarked that while 

such methods still harbour limitations, the work by Cassini et al. (2019) reiterated the 

potential societal impact of AR in way which few studies to date have made clear.      

Finally, concerns surrounding AR have been further compounded as the rate of novel 

antibiotic development is unable to match emerging healthcare demands (Freire-Moran 

et al., 2011, Smith and Coast, 2013, WHO, 2019, Butler and Paterson, 2020). The 

stewardship of existing antibiotics through careful use and optimisation are therefore 

archetypal of recommendations made by national and international action plans for 

managing AR (WHO, 2015, O'Neill, 2016, GOV.UK, 2019).  

 

1.2 The Mechanics of AR: An Overview 

1.2.1 Acquisition and Dispersal of ARGs  

In bacteria, antibiotic resistance genes (ARGs) emerge and spread by hereditary, 

spontaneous mutation and horizontal gene transfer (HGT) (Levy and Marshall, 2004, 

Perichon and Courvalin, 2009). Acquisition by HGT encompasses processes where ARGs 

are disseminated outside the confines of 'vertical', parent-to-progeny lineages (Levy and 

Marshall, 2004, Perichon and Courvalin, 2009). Forms of HGT include the uptake of 

naked DNA from the local environment via transformation, intra- and inter-species 
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exchange of resistance-encoding mobile genetic elements (MGEs) through conjugation 

(Levy and Marshall, 2004, Frost et al., 2005, Perichon and Courvalin, 2009), and the 

insertion of ARGs by bacteriophage, known as transduction (Frost et al., 2005, Balcazar, 

2014).  

The conjugal transfer of MGEs is thought to dominate ARG dispersal (Von Wintersdorff et 

al., 2016). Studies reviewing the development of AR in pathogens of critical concern 

within healthcare settings (e.g. ESKAPE group) further underpin the significance of MGEs 

(Hegstad et al., 2010, Partridge et al., 2018, De Oliveira et al., 2020). Moreover, recent 

research in China has empirically demonstrated links between MGEs and ARGs over large 

geographic areas, including aquatic and terrestrial environments (Yao et al., 2020, 

Zhang et al., 2020). Considering their importance in the dissemination of ARGs, MGEs 

will be briefly explored in more detail.  

There is a plethora of terms used to categorise MGEs with varying degrees of specificity, 

and their ability to interact with one another can lead to mosaic structures which defy 

simple categorisation (Juhas et al., 2009, Bellanger et al., 2014, Johnson and Grossman, 

2015, Partridge et al., 2018).  

However, one way in which MGEs can be broadly classified is by the extent to which they 

encode their own inter-cellular mobility. For example, ICEs (integrative conjugative 

elements), sometimes referred to as conjugative transposons, are self-transmissible by 

conjugation and are capable of integrating into the host genome or other MGEs such as 

plasmids or even other ICEs (Bellanger et al., 2014, Johnson and Grossman, 2015, 

Partridge et al., 2018). Although conjugative plasmids are also self-transmissible, they 

differ from ICEs in that they are extrachromosomal (Partridge et al., 2018, Botelho and 

Schulenburg, 2020). Consequently, while both ICEs and conjugal plasmids can be 

disseminated through vertical transfer to daughter cells and horizontal transfer, plasmids 

may be exposed to potential loss by segregation during cellular division unless their 

within-cell copy number is properly maintained (Partridge et al., 2018, Botelho and 
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Schulenburg, 2020). Conjugative plasmids and ICEs have been described as the major 

facilitators of conjugal HGT (Koraimann, 2018, Botelho and Schulenburg, 2020). 

ICEs have been implicated in the spread of tetracycline and vancomycin resistance in 

Enterococci (Hegstad et al., 2010, Roberts and Mullany, 2011) as well as carbapenem 

resistance in Pseudomonas aeruginosa (Ding et al., 2018). Meanwhile, conjugative 

plasmids have been shown to harbour carbapenem and beta-lactam-resistances 

including Klebsiella pneumoniae carbapenamases (KPCs) (Navon-Venezia et al., 2006, 

Wei et al., 2007, Dang et al., 2020) and extended spectrum beta-lactamases (ESBLs) 

(Freitag et al., 2017, Poidevin et al., 2018, Liu et al., 2019a). 

Other MGEs such as gene cassettes and transposable elements (transposons and 

insertion sequences) lack the genetic modules necessary for inter-cellular transport, 

however they can exhibit intra-cellular mobility (Johnson and Grossman, 2015). 

Integrons (particularly class 1) can accrue a single ARG (gene cassette) or amass several 

in tandem to form gene cassette arrays (Partridge et al., 2009, Domingues et al., 2012, 

Partridge et al., 2018). Integrons can therefore function as repositories for multiple 

ARGs. While integrons themselves are not intrinsically mobile, they can be embedded 

within transposable elements and plasmids (Holmes et al., 2003, Martínez et al., 2007, 

Domingues et al., 2012, Gillings, 2014). In this regard, genetic elements with limited 

mobility can 'piggy-back' within those readily capable of either intra- or inter-cellular 

transfer (Bellanger et al., 2014, Johnson and Grossman, 2015).   

Lastly, it should be noted that MGEs do not exclusively shuttle ARGs; they host any 

number of genes with various functions (Frost et al., 2005, Juhas et al., 2009, Rankin et 

al., 2011), some of which, such as virulence factors are also of significant concern in 

their own right, especially when co-resident with ARGs.  
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1.2.2 AR Mechanisms and Their Selection 

Having summarised the manner in which ARGs can be acquired and propagated, the 

mechanisms of AR remain to be discussed. Antibiotics are diverse in their specificity of 

antimicrobial activity and mode of action, however microorganisms have evolved equally 

diverse mechanisms to negate their effects (Table 1.1). Principally, these mechanisms 

include antibiotic inactivation by alteration or degradation, antibiotic target modification 

(typically due to chromosomal mutation) and the ejection of antibiotics by efflux (Levy 

and Marshall, 2004, Madigan et al., 2006). Examples of ARGs associated with antibiotic 

inactivation include the widely distributed and diverse group of CTX-M ESBLs, which 

confer hydrolytic activity against the third-generation cephalosporin cefotaxime (Cantón 

et al., 2012). Meanwhile resistance to quinolone antibiotics can be mediated by 

mutations in the target enzymes (Shenagari et al., 2018, Ostrer et al., 2019) or through 

expression/over-expression of efflux pumps (Pérez-Varela et al., 2018, Azargun et al., 

2020). It is therefore evident that the activity of an antibiotic class or even an individual 

antibiotic may be circumvented by a range of different mechanisms and each mechanism 

may be represented by an equally diverse array of ARGs (Levy and Marshall, 2004). On 

the other hand, the glycopeptide antibiotic vancomycin does not enter bacterial cells 

(negating efflux pumps), nor does it target proteins as many other antibiotics do; 

accordingly, very specific mechanisms for resistance in the form of van genes have 

worryingly come to the fore in clinical Enterococci and Staphylococci which disrupt the 

binding of vancomycin to the peptidoglycan membrane of Gram-positive bacteria 

(Reygaert, 2018, Stogios and Savchenko, 2020). While covering the full gamut of ARGs 

and the mechanisms by which they confer AR is beyond the practical scope of this 

introduction, mechanisms associated with specific ARGs of interest will be described in 

further detail where relevant in subsequent chapters.   

 

 



22 
 

 

Table 1.1 Summary of major antibiotic categories, including subgroups, their mode of 
action and spectrum of activity. Examples of bacterial resistance mechanisms are also 

indicated. Based on Levy and Marshall (2004), Madigan et al. (2012) and Roberts et al. 

(2012). 

 

It is also important to acknowledge some groups of bacteria are naturally resistant to 

particular antibiotics; for instance, the outer membrane of Gram-negative bacteria 

renders most impermeable to penicillin (Madigan et al., 2006, Cox and Wright, 2013).  

Likewise, antibiotic producing bacteria necessarily possess mechanisms to protect them 

from their own antibiotic arsenal (Peterson and Kaur, 2018). However, Jayaraman 

(2009) also highlights many ARGs are likely to serve a multitude of functions which are 

not strictly limited to antibiotic protection, a point illustrated by the export of virulence-

factors by select multidrug-resistance (MDR) efflux pumps (Piddock, 2006, Alcalde-Rico 

et al., 2016). Likewise, a review by Okada and Seyedsayamdost (2017) suggests 

antibiotics themselves may serve as signalling molecules depending on ecological 

context.  
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Selection for antibiotic resistance has occurred for millennia. Studies have identified 

ARGs redolent of those found in clinical isolates in deep soil cores pre-dating widespread 

antibiotic use by thousands of years (D’Costa et al., 2011), prairies with no documented 

history of anthropogenic antibiotic contamination (Durso et al., 2016), and in the gut 

microbiomes of remote, previously un-contacted indigenous tribes people who have not 

received modern antibiotic treatment (Clemente et al., 2015). Likewise, Paun et al. 

(2021) revealed pan-drug-resistant Pseudomonad strains recovered from 13000 year-old 

cave ice also possessed marked antibacterial activity against clinically relevant 

pathogens. The possibility that at least some antibiotics and AR mechanisms arose for 

purposes other than microbial chemical warfare (Jayaraman, 2009), may go some way 

to explaining their extensive evolutionary prehistory, however it is the strength of more 

recent anthropogenic antibiotic selection which is of crucial concern to many (Levy and 

Marshall, 2004, Davies and Davies, 2010, Laxminarayan et al., 2013, Ventola, 2015, 

Aslam et al., 2018).  

Indeed, Levy and Marshall (2004) asserted that it is the collective exposure of humans 

(and other animals) to antibiotic treatments which drive the selection and eventual  

dominance of ARB over susceptible bacteria at the population level. However, it is 

equally important to acknowledge that the use of antibiotics can exert considerable 

selective pressure within individuals. In particular, consider the empirical use of broad-

spectrum antibiotics to treat ICU patients for whom a delay in antibiotic treatment could 

undermine survival (Karam et al., 2016). The use of broad-spectrum rather than narrow-

spectrum antibiotics may increase the risk of selecting for multidrug resistance (Fjalstad 

et al., 2018) and also enrich AR traits in non-target organisms;  a process known as 

bystander-selection (Tedijanto et al., 2018). More generally, antibiotic treatment has 

also been shown to stimulate HGT in the human gut (Li et al., 2019). Alternatively, sub-

clinical exposure to antibiotics also has the potential to contribute to AR (Gullberg et al., 

2011, Sandegren, 2014). It is therefore thought that the replacement of selected AR 

phenotypes in a population with susceptible equivalents is a slow process, even when 
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exposure to the original selecting antibiotic is greatly reduced (Levy and Marshall, 2004, 

Andersson and Hughes, 2011). Lastly, non-antibiotic agents can also indirectly select for 

AR via co- and cross-selection (Baker-Austin et al., 2006, Wales and Davies, 2015, 

Davies and Wales, 2019). Briefly, co-selection refers to the acquisition of ARGs because 

they are located on the same genetic element as functionally unrelated genes which are 

subject to selection, meanwhile cross-selection describes a scenario where AR 

phenotypes (such as non-specific efflux pumps) also provide protection from non-

antibiotic compounds (Baker-Austin et al., 2006). Nevertheless, while there are many 

ways in which AR can be selected, Waglechner and Wright (2017) stress all bacteria are 

not resistant to all antibiotics, highlighting many barriers to AR must also exist. 

Ultimately, the selection of AR within the wider environment represents complex 

interplay between natural and anthropogenic factors which research is only beginning to 

elucidate mechanistically (Singer et al., 2016, Tiedje et al., 2019).  

In summary, the majority of national and international reports acknowledge that while 

AR can arise naturally within the environment, the accelerated development of AR is 

predominantly attributed to the overuse, misuse and abuse of antibiotics in medicine and 

to a varying degree, agriculture (FAO, 2016; O'Neill Report, 2016).  

 

1.3 The Role of Agriculture in AR 

1.3.1 Antibiotic Use in Agriculture 

It is often asserted that extensive use of antibiotics in agriculture can act as a significant 

selective pressure for the genesis and maintenance of resistance in agricultural 

environments, with potential impact in clinical settings though contamination of the food 

chain (Soulsby, 2007, Aarestrup et al., 2008, Marshall and Levy, 2011, Meek et al., 

2015, Collignon and McEwen, 2019) and adjoining environmental compartments such as 

watercourses (Singer et al., 2016, Qiao et al., 2018). These concerns are enshrined with 
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the concept of ‘One Health’, which aims to imbue stakeholders with an awareness of the 

interactions between humans, other animals and the wider environment (McEwen and 

Collignon, 2018, GOV.UK, 2019, Hernando-Amado et al., 2019, Tiedje et al., 2019).  

A substantial quantity of global antibiotic consumption corresponds with antibiotic growth 

promotion, a practice which arose following evidence in the 1940s that the 

supplementation of animal feed with subtherapeutic levels of antibiotics increases yield 

regardless of overt animal health (reviewed by Dibner and Richards, 2005). Until 

recently, antibiotic growth promotion was widely adopted in both the US (FDA, 2019) 

and China (Hu and Cowling, 2020), however, establishing the extent of historic antibiotic 

growth promotion in China remains problematic due to data paucity (Collignon and Voss, 

2015, Krishnasamy et al., 2015). Regardless, it is thought the emergence and global 

dissemination of plasmid-mediated colistin resistance genes (mcr-1) in swine and 

humans (Liu et al., 2016) relates to such agricultural praxis. Critically, colistin is a ‘last 

line’ or ‘last resort’ polymyxin antibiotic (Kaye et al., 2016) for which resistance was 

previously thought to be restricted to chromosomal mutation (Liu et al., 2016). 

Moreover, a subsequent correspondence report identified mcr-1 in Escherichia coli 

isolated from Chinese poultry during the 1980s, around the time when colistin was first 

utilised in agriculture; however, the recovery of mcr-1-positive isolates was shown to be 

relatively stable until 2009, after which there was a year-on-year increase in the 

proportion of positive isolates (Shen et al., 2016). This suggests that it may take several 

years of nascent circulation before an emergent ARG reaches critical mass and spreads 

rapidly. Lastly, studies from around the world have also established positive correlations 

between veterinary antibiotic sales and AR on farms (Asai et al., 2005, Chantziaras et 

al., 2014).  

There are others however, who believe the evidence regarding the role of agricultural 

antibiotic use is less conclusive. For instance, Singer and Williams-Nguyen (2014) 

contended that while it is clear that agricultural facilities can provide an environment 

conducive to the development of AR, studies which identify resistant isolates from farm 
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environments where antibiotics are used demonstrate correlation as opposed to 

causation. They go on to state that there are many other non-antibiotic compounds 

which may contribute to AR. For example, biocides and heavy metals, which are 

routinely encountered in husbandry practice, have been identified as potential co-

selective agents for resistance (Baker-Austin et al., 2006, Wales and Davies, 2015, Zhou 

et al., 2016, Davies and Wales, 2019). Research also raises the possibility that these co-

selective agents can select for AR even more strongly than antibiotics. For instance, 

Song et al. (2017) found that soil microcosms spiked with copper and zinc yielded 

significant increases in overall bacterial community tolerance to tetracycline and 

produced a toxic effect on bacterial growth. In contrast, soils spiked with tetracycline (in 

excess of concentrations realistically encountered in the environment) had limited impact 

on bacterial community tolerance (Song et al., 2017). However, it is important to 

appreciate that the behaviour of antibiotic residues in soil may differ markedly depending 

on soil type (Tasho and Cho, 2016). Another study, this time focusing on the abundance 

of antibiotic resistance genes (ARGs) in soils amended with cattle manure, found that 

ARGs increased in soils irrespective of whether the manure was from antibiotic-treated 

or antibiotic-free animals (Kyselková et al., 2013). This finding was further validated by 

an additional study where faeces spiked with high and low doses of chlortetracycline 

yielded similar ARG levels in amended soil; the authors therefore concluded that ARGs 

can accrue within animal waste-amended soils independent of this antibiotic selective 

pressure (Kyselková et al., 2015b). Schmitt et al. (2006) also found a diverse array of 

ARGs in manure regardless of whether intensive or restricted antibiotic treatment 

regimens were in place. There is therefore ample evidence (as discussed in AR 

mechanisms and selection), that AR is both a natural phenomenon existing in the 

absence of anthropogenic input and that antibiotic exposure is not the sole means by 

which anthropogenic activity can select for AR. It is therefore unsurprising that the 

significance of controlling antibiotic use in agriculture remains an issue of contention for 

some groups, as outlined by Hoelzer et al. (2017). Indeed, Ghosh and LaPara (2007) 

found little to distinguish between the AR patterns of soil collected from 10 farms 
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employing either therapeutic or subtherapeutic antibiotic treatment regimens. However, 

the aforementioned study relied exclusively on culture techniques to enumerate resistant 

bacteria and only tetracycline resistance genes were considered. On the other hand, 

many of the reviews highlighting insufficient causal evidence linking antibiotic use in 

agriculture with impacts on human health (Phillips et al., 2004, Singer and Williams-

Nguyen, 2014, Chang et al., 2015) pre-date the discovery of mobilised resistance to 

colistin within Chinese swine farms in 2016. 

Despite remaining equivocations, there have been concerted efforts to minimise global 

antibiotic use in agriculture. After several years of phased removal, an EU-wide ban in 

2006 prohibited all use of antibiotics for growth promotion in livestock (EC, 2003). More 

recently, the U.S. Food and Drug Administration (FDA) issued recommendations to 

remove 'growth promotion' from the listed applications of antibiotics and revoke 'over-

the-counter' access to medically important antimicrobials in favour of prescription under 

licensed veterinarians (FDA, 2013). Indeed, the FDA (2019) indicated a 26% reduction in 

the overall use of medically important antimicrobials in food-producing animals between 

2016-2019; however a 3% increase (largely due to swine production) was reported 

between 2018-19. Meanwhile China has launched its own action plan to reduce antibiotic 

use in clinical and agricultural settings (People's Republic of China, 2017, Hu and 

Cowling, 2020). However, the global consumption of antibiotics by food animals is 

expected to increase by 11.5% between 2017-2030, signalling that the drivers behind 

antibiotic use in these sectors may be beyond the immediate control of many nations or 

their desire/ability to enforce regulations.  

 

1.3.2 Animal Waste as a Reservoir of AR and Associated 
Selection Pressures 

The UK government has expedited a 43% reduction in the total volume of antibiotics 

sold for animal use between 2015-2019 (UK-VARSS, 2020) through improved animal 

husbandry and welfare initiatives (e.g. appropriate stocking density, improved nutrition, 
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and disease monitoring) (Evans and Border, 2018). However, managing the fate of 

administered antibiotics in the environment should also be considered in plans to 

address AR. Specifically, animal waste is a potential reservoir for many described 

resistance factors, including excreted antibiotics (Tasho and Cho, 2016), which can 

represent as much as 10-90% of the original dose administered to livestock (reviewed in  

Kumar et al., 2005b). It therefore follows that ARB exhibiting phenotypic resistances to 

veterinary antibiotics have been recovered from animal waste (Asai et al., 2005, Ibrahim 

et al., 2016). Likewise, livestock waste is often replete in ARGs and MGEs (Durso et al., 

2011, Ma et al., 2016, Lima et al., 2020, Yang et al., 2020). On the other hand, current 

methods for remediating antibiotic residues and ARGs in animal waste are unlikely to be 

completely effective (Gros et al., 2019). As a result, land application of livestock waste 

may facilitate the spread of AR, with the soil-waste interface acting as a hotspot for  

transfer of ARGs from manure-derived bacteria to indigenous soil microbes (Heuer et al., 

2011, He et al., 2020). 

Indeed, Andrews Jr et al. (2004) conducted a microcosm experiment which suggested 

the transfer of tn916 ICE from slurry-borne bacteria to autochthonous soil bacteria, 

while Musovic et al. (2014) demonstrated long-term application of manure could 

promote plasmid transfer. Studies have also demonstrated the application of animal 

waste can enrich ARG concentrations in soils (Sengeløv et al., 2003, Byrne-Bailey et al., 

2009, Heuer et al., 2011, McKinney et al., 2018, Dungan et al., 2019, Zhao et al., 

2019). However, waste from animals receiving negligible or no antibiotic treatment has 

also been shown to elevate ARGs in amended soils, highlighting the importance of non-

antibiotic treatment-related factors (Udikovic-Kolic et al., 2014, Kyselková et al., 2015b, 

Hu et al., 2016).  

Another layer of complexity is introduced when considering the processing of animal 

waste on farms, whereby waste can pass through several distinct environmental 

compartments before being applied to fields for the purpose of fertilisation (Figure 1.1). 

These compartments possess a unique set of conditions, which may promote or hinder 



29 
 

AR development, and can exhibit varying degrees of spatiotemporal dynamism. Many 

variables have been identified as factors influencing the survival of manure-derived 

bacteria, the abundance of ARGs and/or putative (co) selective pressures. These factors 

can include: the duration of waste storage (Joy et al., 2014, Baker et al., 2016, 

Muurinen et al., 2017), the texture (Srinivasan and Sarmah, 2014, Blau et al., 2018) 

and moisture (Wang et al,. 2004) of fields receiving slurry, and the method by which 

slurry is applied (Hutchison et al., 2004, Hodgson et al., 2016). The slurry application 

method can also impact the transport of ARGs in runoff, as reported by Joy et al. (2013). 

Meanwhile, liquid-solid separation (LSS) of farmyard animal waste, a common waste-

management practice, has been shown to promote the development of distinct bacterial 

communities in the different fractions (Pandey et al., 2018). 

In order to devise effective mitigation strategies, it is therefore essential that agricultural 

sources of AR, with special reference to animal waste, are studied within the context of 

the entire farm environment and not merely a single factor, such as antibiotic use.



30 
 

 

Figure 1.1 Infographic showing the various environmental compartments (slurry tank, slurry lagoon, manure heap and fields) animal 

waste enters while on a commercial dairy farm.  Abiotic and biotic factors which may influence antibiotic resistance in the slurry tank are 

also highlighted (infographic courtesy of Dov Stekel). 
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1.4 Dairy Farms and AR 

1.4.1 Contextual Significance of UK Dairy Farms 

Studies into AR in agriculture frequently centre on livestock operations, which have 

become routinely associated with intensive farming and high antibiotic use; namely 

swine and poultry. Although dairy farms typically use fewer antibiotics, they are of 

interest for several reasons.  

Firstly, a number of studies have highlighted that the minimum selective concentration 

(MSC) for certain antibiotics is substantially less than that of the minimum inhibitory 

concentration (MIC) (Gullberg et al., 2011, Andersson and Hughes, 2012, Sandegren, 

2014); suggesting that it is possible for AR to arise in environments due to limited, but 

persistent antibiotic contamination, as might be the case on dairy farms. 

The expected productive lifespan of cattle on dairy farms far exceeds that of both swine 

and poultry (approximately 4 years, 5-6 months and 5-7 weeks respectively) (FTP, 

2020). As such, while the dairy industry as a whole consumes smaller quantities of 

antibiotics than swine or poultry operations, dairy cattle are likely to receive antibiotics 

over a longer timeframe. Their longer farm lifespan may also provide extended 

opportunity for AR to develop within their gut microbiomes in response to antibiotic 

dosage or increase the probability of acquiring naturally resistant pathogens from the 

immediate environment. Furthermore, once an animal presents ARB it may continue to 

shed these in faeces until successful treatment or removal from the population. As 

animal waste is an established reservoir of AR, it is noteworthy that dairy cattle are 

estimated to comprise 80% (~67Mt) of annual UK animal waste production (Smith and 

Williams, 2016), with more cattle waste applied to fields in England and Wales than 

swine and poultry combined (DEFRA, 2016). This is astonishing as swine numbers 

greatly outnumber dairy cattle (DEFRA, 2016). 
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According to survey estimates, the number of UK dairy farms has more than halved (-

55.14%) between 2000 and 2018, while the average size of dairy cattle herds nearly 

doubled during the same period (+45.59%) (AHDB, 2020a, AHDB, 2020b). 

The largest UK herds can exceed 900 (Hanks and Kossaibati, 2019). This appears to 

reflect the general trend that many smaller dairy farms are being replaced by fewer, 

larger dairy farming operations, likely in response to intensifying competition and 

overhead costs. The continued development of large scale, intensive farming in the dairy 

sector could have implications for AR. For instance, larger herds producing greater 

volumes of waste may be more likely to contaminate the local environment with waste-

borne resistance determinants. Furthermore, it stands to reason that larger farms may 

hire more employees, potentially increasing contact events between AR-carrying cattle 

and different members of staff, facilitating resistance gene dissemination. Alternatively, 

larger dairy operations may increase automation thereby reducing human-animal 

interaction. Nonetheless, a number of studies have also shown that disease prevalence 

and/or persistence can increase with herd size (Bartlett et al., 1992, Brooks-Pollock and 

Keeling, 2009), which may exacerbate AR indirectly through greater antibiotic and 

biocide use. However, in US dairy farms, Hill et al. (2009) reported that within-herd 

disease prevalence tended to decrease with increasing herd size. This may correspond to 

larger farms being able to make greater investment in prevention and mitigation 

strategies (Hoe and Ruegg, 2006, Haskell et al., 2009). However, Hill et al. (2009) also 

found that larger farms used broad-spectrum antibiotics more frequently than smaller 

farms, which could potentially aid selection for resistance in a wider array of bacteria.  
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Mastitis is one of the most common afflictions affecting dairy cattle (Bradley, 2002, 

Hillerton and Berry, 2005), and the second most costly disease to the UK dairy industry 

(CHAWG, 2020). Accordingly, cases of mastitis make a substantial contribution to 

antibiotic use in the EU (De Briyne et al., 2014). Treatment predominantly involves beta-

lactam antibiotics such as penicillin, 1st and 2nd generation cephalosporins and to a 

lesser extent, antibiotics considered of critical importance to human medicine (De Briyne 

et al., 2014). These include 3rd and 4th generation cephalosporins and macrolide 

antibiotics (Brunton et al., 2012, De Briyne et al., 2014). The aetiology of mastitis is 

often associated with both Gram-negative and Gram-positive bacteria, namely 

Escherichia coli and Streptococcus uberis (Bradley et al., 2007). However, over 100 

possible causal agents have been documented (Watts, 1988). Evidence of increasing AR 

in mastitis pathogens as a result of antibiotic use on dairy farms remains elusive (Oliver 

and Murinda, 2012). Nonetheless, a US study demonstrated the recovery of mastitis 

pathogens resistant to beta-lactam antibiotics declined following the transition of one 

dairy farm from conventional to organic antibiotic usage practices (Park et al., 2012). 

Although growth promotion is presently prohibited in the UK, antibiotic dry cow therapy 

remains permissible (Biggs et al., 2016, Higgins et al., 2017). Antibiotic dry cow therapy 

relates to the practice of  administering groups of ostensibly healthy, non-lactating cows 

with  preventative antibiotic treatment for mastitis during periods of heightened disease 

risk. Dry cow therapy can involve a variety of beta-lactam antibiotics ranging from 

simple penicillin to 4th generation cephalosporins (see Cephaguard DC, Orbenin Dry 

Cow, Orbenin Extra Dry Cow and Ultrapen LA in Table 2.1).  However, following calls to 

adopt more selective use of antibiotics during the drying-off period (Breen et al., 2014, 

Biggs et al., 2016, Higgins et al., 2017) the dairy industry appears to be discouraging 

this practice (CHAWG, 2020). 

Meanwhile, antimicrobial metals (e.g. copper, zinc) and biocides, which have the 

potential to co-select for antibiotic resistance (Pal et al., 2015, Davies and Wales, 2019) 

are used to prevent and treat lameness (Griffiths et al., 2018) which is the most costly 

disease in UK dairy farms (CHAWG, 2020). These agents can contaminate livestock 
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stalls, and may even be directly disposed of in slurry tanks. Consequently, UK dairy farm 

environments may be consistently exposed to various antibiotic (co) selective pressures. 

 

1.4.2 AR in Cattle Waste-amended Soils 

Many studies concerning antibiotic resistance in soils and crops following animal waste 

amendment have focussed on swine and poultry; the key aspects and findings of 

investigations involving dairy cattle waste will now be discussed.  

A number of studies have demonstrated a transient increase in the concentration of 

ARGs and/or resistance-associated MGEs in soil amended with cattle waste (Fahrenfeld 

et al., 2014, Hu et al., 2016, Nõlvak et al., 2016, Muurinen et al., 2017, Macedo et al., 

2020). The duration of elevated ARG concentrations in soils post-amendment is variable. 

For instance, although some studies suggest  concentrations approach or a return to 

background levels within 2 months (Fahrenfeld et al., 2014, Muurinen et al., 2017), 

others demonstrate elevation in ARGs can persist for >5 months (Hu et al., 2016, Nõlvak 

et al., 2016). In contrast, another study found the long-term application of cattle 

manure had minimal impact on the ARG profile of soil when compared to other livestock 

waste (Peng et al., 2017). On the other hand, a study by McKinney et al. (2018) 

demonstrated a significant increase in tetracycline and sulphonamide ARGs within soil 

following application of dairy manure. There is also evidence to suggest that different 

ARGs do not exhibit the same decay rates (Fahrenfeld et al., 2014, Kyselková et al., 

2015b, Sandberg and LaPara, 2016, Lin et al., 2019); however, their behaviour is not 

always consistent across studies (Kyselková et al., 2013, Fahrenfeld et al., 2014, Macedo 

et al., 2020). The large range of environmental conditions represented in the literature 

and variation in experimental design (e.g., field or microcosm scale) as well as the lack 

of a standardised definition of what constitutes the baseline abundance of resistance 

determinants in the environment (Rothrock Jr et al., 2016) may explain the lack of 

congruence to some degree.  
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Site-specific management practice can also govern environmental exposure to antibiotic 

resistance determinants. For example, the duration of manure storage has been linked 

to ARG concentrations in models and site studies (Baker et al., 2016, Ruuskanen et al., 

2016, Muurinen et al., 2017). The latter study indicates some ARGs can accumulate in 

waste over extended storage periods (Muurinen et al., 2017). However, few studies have 

assessed changes in resistome structure over time in situ. One such study by Hurst et al. 

(2019) documented seasonal shifts in cattle manure-associated ARGs, thereby alluding 

to possible interaction effects between the length of storage and when storage occurs.  

Similarly, application method may play a role in ARG and ARB survival. Joy et al. (2013) 

identified that broadcast application of swine slurry leads to a greater prevalence of 

ARGs in run-off than incorporation methods at a single field site. Meanwhile Hodgson et 

al. (2016) showed the survivability of faecal bacteria in soil following shallow injection of 

diary slurry was increased compared to broadcast application, although ARGs 

abundances were not evaluated. Given that HGT of ARGs from exogenous bacteria in 

dairy waste to indigenous soil bacteria is thought to contribute to the maintenance of 

ARGs in soil (Heuer et al., 2011), the prolonged survival of introduced organisms is of 

relevance as it would afford greater opportunity for transfer events to occur. Indeed, 

although Peng et al. (2017) found that long-term animal waste failed to generate 

significant changes in pathogen community structure, manures were broadcast rather 

than injected. 

Further research is needed to clarify the role of soil physiochemical properties in 

determining the fate of antibiotic resistance determinants in applied waste. For example, 

cattle waste can affect soil pH, while the abundance of sulfonamide resistance genes and 

proxies for horizontal gene transfer (HGT) such as intl1 and intl2 have been correlated 

with specific pH levels in slurry-amended soils (Nõlvak et al., 2016). The association of 

soil properties with proxies for HGT is particularly relevant as the authors of a study 

modelling AMR in slurry tanks cite the rate of HGT as a significant driver of AMR (Baker 

et al., 2016). Similarly, soil texture has been shown to impact both faecal coliform 

survival (Cools et al., 2001) and post-amendment ARG concentrations (Blau et al., 2018, 
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Zhang et al., 2018a). Likewise, Guron et al. (2019) reported soil texture affected the 

composition and abundance of ARGs detected on vegetables grown in field plots fertilised 

with cattle manure. 

Another vital facet to consider is the means by which the occurrence of AR is estimated 

in soil receiving cattle-derived waste. This has been borne out by a recent study which 

sought to compare and contrast the most popular methods for characterising antibiotic 

resistance measures in dairy waste-amended soil. Specifically, these included shotgun 

metagenomics, qPCR and selective culture (Wind et al., 2020). Molecular techniques 

tend to dominate this area of research, primarily because <1% of environmental 

prokaryotic species are thought to be cultivatable (Rastogi and Sani, 2011), and clinically 

significant AR phenotypes may be present within a small proportion of the total bacterial 

population. The latter can be circumvented by antibiotic selection, but this raises its own 

quandaries and opportunity for bias (e.g., which media and selecting antibiotic to 

employ). On the other hand, metagenomic and PCR-based techniques offer the 

opportunity to access the genetic material of a much greater section of bacterial 

communities (total environmental DNA, in theory). On the other hand, the genotypic 

resistance traits identified by qPCR and metagenomics may not confer phenotypic 

resistance. Likewise, not all phenotypes may possess fully described reference genotypes 

(Davis et al., 2011). Additionally, molecular techniques rarely distinguish between the 

genetic material of living and dead organisms (Carini et al., 2016), however when 

considering the possibility of transformation (uptake of extracellular DNA), this material 

could remain relevant to the study of environmental ARGs. 

While several studies have assessed cattle-manure impacted soil using qPCR (Nõlvak et 

al., 2016, Muurinen et al., 2017, Zhang et al., 2017b, McKinney et al., 2018, Chen et al., 

2019b), the adoption of a metagenomic approach can enable the genetic 

contextualisation of ARGs and provide a more robust association between ARGs and host 

organisms. This added context can be particularly useful when assessing the mobility of 

specific ARGs (Slizovskiy et al., 2020) and developing mitigation strategies to pinpoint 

emergent bacteria of concern. Finally, although qPCR can be more sensitive (reviewed in 
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Waseem et al., 2019), metagenomic techniques do not require the assembly of target-

limiting gene arrays. It is therefore unsurprising that Wind et al. (2020) recommended a 

combined approach to determining AR in the soil environment. It is noteworthy that such 

multi-technique studies remain rare.   

 

1.5 Research Aim and Objectives 

Aim: The overall aim of this project was to explore the composition and temporal 

succession of antibiotic resistance determinants and bacterial taxa in soil and slurry 

associated with a commercial UK dairy farm over the course of a year. 

By combining a field sampling campaign with a metagenomics approach, the main aim 

was addressed by the following specific objectives: 

1. Quantify the ARGs present in the farm slurry tank, in field soil amended with 

slurry, and in ‘clean’ field soil with no history of slurry amendment over a year. 

Chapter 2 addresses this objective.  

2. To determine if slurry application and season resulted in taxonomic shifts in the 

field soils and slurry tank. This objective is the focus of Chapter 3. 

3. To evaluate associations between the ARGs, bacterial taxa and the mobilome. 

Chapter 4 addresses this objective. 

4. To attempt to quantify how the studied facets of the resistome impact the risk 

posed by AR in the dairy farm environment. This objective is addressed in 

Chapter 4. 

5. To consolidate the data and examine the findings of the work in the context of 

government policy. This is discussed in Chapter 5.   
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Chapter 2 

Evaluating ARGs in Soil and Slurry Metagenomes 

2.1 Introduction 

The extent to which the application of animal waste to agricultural soil can enhance the 

soil resistome has been subject to intensive research and numerous reviews (Heuer et 

al., 2011, Williams‐Nguyen et al., 2016, Xie et al., 2018b, Tyrrell et al., 2019). Typically, 

the addition of animal waste coincides with the enrichment of antibiotic resistance genes 

(ARGs) in soil (Heuer et al., 2011, Sandberg and LaPara, 2016, Zhang et al., 2017b, 

McKinney et al., 2018). However, only transient increases in entrained ARGs are 

generally observed, with most studies indicating that introduced ARGs fail to establish in 

the environment under normal agricultural application rates (Sengeløv et al., 2003, 

Ghosh and LaPara, 2007, Hu et al., 2016, Liu et al., 2017, Muurinen et al., 2017, Chen 

et al., 2019a, Cheng et al., 2019). On the other hand, studies have also reported that 

long-term exposure to animal waste can result in the accumulation of associated ARGs in 

soil (Peng et al., 2017, Xie et al., 2018a, Dungan et al., 2019, Lu et al., 2020).  

Comparative studies have demonstrated that the impact of swine and poultry waste on 

the soil resistome is greater than that of cattle waste and dissipates more slowly 

(Sandberg and LaPara, 2016, Peng et al., 2017, Zhang et al., 2017b). In addition , swine 

and poultry waste has been shown to harbour a more diverse and populous resistome 

than dairy cattle waste (Wang et al., 2016a, Peng et al., 2017, Zhang et al., 2017b, Qian 

et al., 2018, He et al., 2020). Whether these trends correspond to antibiotic practice or 

other factors such as species-specific physiology is still unclear (Sandberg and LaPara, 

2016, He et al., 2020).  

Although cattle waste may represent a modest pool of ARGs relative to swine and 

poultry waste, the impact of its use as fertiliser should not be dismissed. For example, 

Wichmann et al. (2014) used functional metagenomics to demonstrate that cattle 
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manure resistomes encompass a wide range of antibiotic resistance determinants, 

including novel chloramphenicol ARGs. In addition, Hu et al. (2016) found that while 

dairy cattle waste-derived ARGs were transient, amendment resulted in the elevation of 

resident soil beta-lactamases for at least four months, thus highlighting that the 

composition of the introduced resistome is not the sole determinant of risk to the 

environment and human health. Lastly, cattle waste comprises the greatest proportion of 

animal waste applied to land in England and Wales (DEFRA, 2016). 

Having highlighted the potential significance of dairy waste land-application to AMR in 

the UK, it is therefore surprising that there do not appear to be any UK-based temporal 

studies evaluating the impact of repeated dairy waste application to field soil. There are 

however, a number of studies investigating antibiotic usage (Brunton et al., 2012, Jones 

et al., 2015, Hyde et al., 2017) and the occurrence of antibiotic resistant isolates in UK 

dairy systems (Piddock et al., 2000, Scott et al., 2009, Ibrahim et al., 2016). While 

these areas are important from a husbandry perspective, they do not assess a major 

route by which dairy cattle waste may disseminate antibiotic resistance in the wider 

environment.  In addition, few studies have been conducted on the application of dairy 

cattle waste to soil on waste collected from farms with antibiotic regulations comparable 

to the UK. China and the US dominate AMR publications, including those investigating 

dairy cattle waste amendment and represent countries which regulate agricultural 

antibiotic use differently from the UK and Europe as a whole (Zhang et al., 2006, Qiao et 

al., 2018). Nonetheless, there are exceptions, such as a study documenting ARGs on 

cattle and swine farmland in Finland, where antibiotic use is regulated in accordance with 

EU law (Muurinen et al., 2017). From a technical perspective, the majority of cattle 

waste-orientated studies employ qPCR, with few using metagenomic techniques, which 

are capable of screening thousands of ARGs across multiple databases rather than user-

defined arrays limited to hundreds of genes. A review of existing literature suggests 

many qPCR-based investigations studying cattle waste focus on fewer than 10 ARGs 

(Fahrenfeld et al., 2014, Kyselková et al., 2015b, Nõlvak et al., 2016, Dungan et al., 
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2019), while an increasing number employ large arrays consisting of 80 or more ARGs 

(Hu et al., 2016, Muurinen et al., 2017, Zhang et al., 2017b, Chen et al., 2019b).  

Although the impact of cattle waste application on the soil resistome has been addressed 

by several microcosm-based studies (Kyselková et al., 2015b, Sandberg and LaPara, 

2016, Zhang et al., 2017b, Chen et al., 2019a), a limited number carried out field-scale 

surveys. Field studies currently available typically provide data for soil ARGs at various 

points before and after cattle waste application, however, few trace the abundance of 

ARGs over multiple fertilisation events.  Although Nõlvak et al. (2016) assessed the 

effects of mineral fertiliser, cattle slurry and slurry digestate on a small number of ARGs 

over three application events, the experimental plots used had no prior history of animal 

waste application and therefore do not provide an insight into the effects of cattle slurry 

application over a prolonged period of many years. On the other hand, a study using a 

large qPCR array with >300 ARGs followed the effects of cattle and swine waste 

application on fields with an extensive history of manure amendment, although the 

effects of multiple applications were not directly characterised (Muurinen et al., 2017). A 

survey of several field sites suggested that those subject to long-term dairy cattle waste 

amendment contained an increased abundance of ARGs relative to sites with no history 

of exposure, however only 6 ARGs were evaluated and the temporal succession of ARGs 

following fertilisation was not measured (Dungan et al., 2019). While another field study 

using experimental plots showed that application rate had a more significant impact on 

ARGs than application number (McKinney et al., 2018), only three ARGs were quantified 

and it is important to understand the effects of regular dairy cattle waste fertilisation on 

a working dairy farm using conventional application rates. More recently, studies from 

China have assessed the long-term impact of animal waste application on fields, 

although these typically involve anaerobic digestate or manure originating from swine 

farms (Xie et al., 2018a, Liu et al., 2020, Lu et al., 2020). Finally, recent reviews have 

underscored that a number of areas require further research, including the temporal 

effect of animal waste application on grassland soils, the impact of conventional storage 

methods on the resistome and applied studies characterising farming systems to 
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establish the scalability of existing laboratory-based findings (Tyrrell et al., 2019, Oliver 

et al., 2020a).  

The present study aims to address some of the knowledge gaps previously outlined by 

thoroughly sampling a semi-permanent grassland soil, which frequently receives cattle 

slurry from an adjacent dairy farm. To provide a comprehensive picture of the resistome 

and microbiome, metagenomic sequencing was carried out on DNA extracted from soil 

samples obtained at regular intervals over a 12-month period. Sampling encompassed 

regular slurry applications and silage cuts. Furthermore, slurry was sampled periodically 

to quantify parallel temporal changes in slurry and soil. In addition, a nearby permanent 

grassland with no history of cattle waste application was also sampled as a comparison 

with the primary site, which received cattle slurry amendments. The aim of the current 

study was to characterise and quantify field-scale changes across time and over multiple 

slurry applications with reference to concurrent changes in on-site cattle slurry.  

Sampling multiple fields in such detail was logistically and financially impossible; 

however, to my knowledge, this is the first such study in the UK, and represents one of 

the few to provide temporal metagenomic data with intensive within-field replication.  

 

2.2 Materials and Methods 

2.2.1 Approach and Sampling  

2.2.1.1 Sample Sites 

Both field sites are situated in Sutton Bonington, East Midlands; a designated nitrate 

vulnerable zone (NVZ). The farm is a research farm, but it operates commercially and 

management practices are therefore largely representative of a conventional medium-

sized UK farm. The main field site is a semi-permanent pasture adjoining the dairy unit, 

which housed >250 Holstein Friesian cattle at the time of study. The field is regularly 

fertilised with cattle slurry and grass is routinely cut for silage production. Slurry is 



42 
 

managed on site via a sump system connected to an open-topped 3M L main tank and a 

9M L overflow lagoon. The slurry solid fraction (fibre) is removed by a screw-press prior 

to collection in the main tank. The lagoon aids storage during the NVZ closed period 

between 15th October and 31stJanuary (GOV.UK, 2020b). All slurry samples were 

obtained from the 3M L main slurry tank. 

A second field site with no history of agricultural animal waste application was also 

utilised in this study. This site is a nearby, permanent grassland with silty clay loam soil 

texture. Soil Antibiotic use at the dairy unit is shown in Table 2.1.  

Table 2.1 On-site antibiotic use (adult herd) at the study farm dairy unit (2015-2017). 

Note: tulathromycin (a macrolide antibiotic) was occasionally administered to calves.

 

2.2.1.2 Sampling 

Soil samples were taken from the slurry-fertilised semi-permanent grassland on seven 

occasions from May 2017 to May 2018, corresponding to an entire season of slurry 

application, the winter closed period for 2017 and the beginning of slurry application in 

2018. Soil from the unslurried permanent grassland was collected on two occasions 
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(January and May 2018). Slurry was sampled each month from June to October 2017. 

For a detailed timeline of the sampling scheme see Figure 2.1. 

 

Sampling of the soil and slurry was not coupled as tightly as originally intended because 

the farm manager prioritised commercial operations over research requirements. While 

this means data are representative of a typical UK dairy farm (i.e. a real world scenario), 

the study had to accommodate unforeseen changes to the animal waste application 

regimen relating to evolving management practices and weather patterns.   

Soils were sampled from five points, each 20m apart, along a 'W' transect taking care to 

avoid field edges and isolated trees. In an attempt to capture local heterogeneity three 

soil cores were taken around each point on the ‘W’ at a depth of 10cm, using an auger 

sterilised with ethanol wipes between collections. Samples were deposited in sterile re-

sealable bags and transported directly to laboratory facilities. Transect sub-samples were 

then pooled, homogenised and sieved to 3mm, giving five discrete samples per site at 

each sampling time. Subsamples of the homogenised soil were processed immediately 

for culture-based analyses whilst soil for metagenomic shotgun sequencing was frozen at 

-80˚C until DNA extraction (Lear et al., 2018). Remaining soil was stored overnight at 

4˚C for physiochemical analyses. 

Figure 2.1 Experimental timeline detailing soil and slurry collection, in addition to 

slurry application events.  
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Slurry samples were collected by lowering a sterilised bucket into the main tank and 

decanting the contents into sterile Duran bottles. Slurry was then homogenised with a 

sterile spatula and sub-sampled before being stored as described above.  

 

2.2.2 Extraction of DNA and Sequencing 

In an attempt to ensure downstream analysis reflected the diversity of recovered soils, 

three separate DNA extractions were carried out for each homogenised subsample (135 

soil extractions). Environmental DNA was extracted from 0.25g of soil using the DNeasy 

PowerSoil Kit (Qiagen) as per the manufacturer's instructions. Slurry samples were 

processed with an equivalent kit for faecal matter; QIAamp Powerfecal Kit (Qiagen). 

Subsequently, the quality and yield of extracts was quantified using a spectrophotometer 

(NanoDrop, Thermo Scientific) and fluorometer (Qubit, Invitrogen), respectively. Low 

quality extracts were discarded. The three extractions per soil sample were pooled (n = 

45), quality checked (260/280 = 1.83 ± 0.03, 260/230 = 1.61 ± 0.16, DNA conc. = 

39.4 ng/µL ± 9.80) and refrigerated at 4˚C until sequencing. Lastly, negative controls 

(sterile water extractions) were also sent for sequencing.  

The DNeasy PowerSoil kit was selected for a several reasons. Firstly, the kit has an 

established precedent of use in soil microbial studies (Lear et al., 2018), and therefore 

may offer greater opportunity for comparison against existing research. Furthermore, 

widespread use has encouraged a number of reviews on DNA extraction methods to 

include the PowerSoil kit in comparisons (Mahmoudi et al., 2011, Vishnivetskaya et al., 

2014, Zielińska et al., 2017), leading to a better understanding of biases associated with 

this kit. In addition, the kit appears to offer an acceptable balance between per sample 

cost, extraction yield and convenience of use (Zielińska et al., 2017, Lear et al., 2018).  

Metagenomic shotgun sequencing of extracted soil and slurry DNA was performed and 

demultiplexed by Edinburgh Genomics using the Illumina NovaSeq platform (NextaraXT 

150 bp paired end libraries, >30M paired reads  per sample). Prior to downstream 
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analysis all read libraries were quality checked with FastQC (Andrews, 2015) before and 

after the removal of adapters and low quality bases with Trim Galore (Krueger, 2012). 

  

2.2.3 Annotation of ARGS 

ARGs were annotated using DeepARG (Arango-Argoty et al., 2018). DeepARG employs a 

machine learning algorithm trained on multiple ARG databases to detect ARGs and ARG-

like sequences. In this respect, DeepARG differs from many ARG annotation tools 

currently available, which rely on homology-based searches alone (McArthur and Tsang, 

2017).  

A short-read and long-read pipeline is available for DeepARG. The developers of 

DeepARG indicate the precision and recall of metagenomic library annotations can be 

maximised by using the long-read algorithm, which must be run on open reading frames 

obtained from assembled contigs. The potential advantage of using contigs is intuitive as 

these longer sequences increase the query length and therefore information available for 

analysis (Arango-Argoty et al., 2018, Ayling et al., 2020). However, the benefit of this 

approach relies heavily on the quality and completeness of the assembly. Furthermore, 

ARGs encoded on plasmids and within genomic islands may be lost from the final 

assembly as it has been shown assemblers often struggle to reconstruct these stretches 

of sequence (Maguire et al., 2020). 

The choice of DeepARG pipeline was therefore determined after evaluating the 

completeness and contiguity of de novo assemblies constructed with Megahit (Li et al., 

2015b). Megahit was selected for metagenome assembly since while it exhibits greater 

assembly accuracy at the expense of contig length (Ayling et al., 2020) it has also been 

shown to outperform other leading assemblers such as MetaSPAdes when annotating 

genes in highly complex soil communities (Quince et al., 2017).  

Despite making use of settings designed specifically for complex metagenomes (e.g. 

reducing k-mer step size) only 53.4 ± 1.3%  of reads, on average, were properly paired 
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and mapped to the resulting assemblies generated from individual soil samples, in 

contrast to slurry samples (80.5% ± 0.59%). To maximise use of soil sequence data, 

ARGs were therefore annotated using unassembled reads and the short-read DeepARG 

pipeline, with default settings (identity ≥ 80%, probability ≥ 0.8, e-value < 1e-10).  

 

2.2.4 Data Analysis and Statistical Methods 

2.2.4.1 Determining ARG Associations by Site: Data Exploration 

Initial data exploration was performed using principal component analysis (PCA), non-

metric multidimensional scaling (NMDS) and t-distributed stochastic neighbour 

embedding (tSNE). The aforementioned methods all have particular strengths and 

weaknesses with regard to their interpretative power and suitability for these data. It 

was hoped that by using a combination of methods their individual shortcomings could 

be overcome, with greater confidence being placed in common patterns. PCA is often 

considered a routine method of data exploration, enabling researchers to carry out 

reproducible dimension reduction by distinguishing variables which describe the greatest 

variation in a dataset (principle components) (Holmes and Huber, 2018). PCA is also 

effective at describing global data structure (Nguyen and Holmes, 2019). However, the 

mathematical basis of PCA concerns linear relationships, rather than those which  are 

non-linear (Holmes and Huber, 2018). NMDS ordination offers an alternative to PCA with 

improved capacity for handling polynomial interactions, albeit with an emphasis on local 

structure (Nguyen and Holmes, 2019). Unfortunately, NMDS of the full data set at the 

ARG group level failed to converge. This could be explained by the detection of many 

ARGs unique to slurry samples, leading to a disconnected, irresolvable NMDS plot. A 

similar occurrence has been reported in microbial community data elsewhere (Bell et al., 

2018). Lastly, tSNE was used with the intention of finding a non-linear means of 

visualising the entire data-set at the ARG group level. At a high level, tSNE differs from 

NMDS in that it adopts a flexible, probabilistic approach which allows the user to balance 

local and global data structure. Optimisation of tSNE was carried out by increasing the 
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number of iterations until stable clustering was achieved using a suitable perplexity 

(between 5 and 50).  

 

2.2.4.2 Determining ARG Associations by Site: Differential Abundance Analysis and 

Feature Selection 

A cross-validated, model-based approach was adopted to test which ARGs were 

significantly associated with slurry, slurry-amended and untreated sites. Firstly, this 

involved the use of Corncob (count regression for correlated observations with the beta-

binomial) to characterise differentially abundant ARGs (Martin et al., 2020). Corncob was 

selected in preference to more frequently used software such as DeSeq2 as in addition to 

addressing uneven sequencing depth, the former attempts to account for several other 

perennial statistical issues associated with sequence count data, including over-

dispersion, zero-inflation, and within-group correlations (Martin et al., 2020). Corncob 

was also used to investigate site-specific seasonal differences in ARG abundance. The 

strength of ARG associations with specific sites were independently validated through 

use of the Boruta feature selection algorithm (Kursa and Rudnicki, 2010) and LEfSe 

(linear discriminant analysis effect size) biomarker identification (Segata et al., 2011).  

In data science, feature selection is commonly used to determine important variables in 

datasets with high dimensionality and inherent noise, where the relevance of many 

variables for classification purposes is unknown in advance (Bolón-Canedo et al., 2015, 

Rudnicki et al., 2015). It is therefore unsurprising that feature selection has been used in 

a range of research domains including bioinformatics (Aagaard et al., 2012, Ditzler et al., 

2015, Colaco et al., 2019). Boruta is a Random Forest wrapper algorithm which works by 

generating models which include features ordered by their estimated importance relative 

to the classifier outcome (e.g. site association) and duplicate 'shadow features' which 

have been randomly shuffled. Features are sequentially removed depending on whether 

they exceed the importance of their equivalent 'shadow features'. The process is 
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repeated until all features are confirmed as either important or unimportant (Kursa and 

Rudnicki, 2010, Degenhardt et al., 2019). 

Most feature selection methods focus on identifying the optimum minimum variable set, 

whereas Boruta aims to establish all-relevant variables (Kursa and Rudnicki, 2010, 

Rudnicki et al., 2015). The significance of this distinction is that while the optimum 

minimum defines only strongly relevant variables (the fewest variables needed for 

classification), an all-relevant approach also includes weakly relevant variables which 

would otherwise be masked by their redundancy to stronger selection features (Rudnicki 

et al., 2015, Göpfert et al., 2018, Degenhardt et al., 2019). 

LEfSe was included in analysis because it was developed specifically for the identification 

of biomarkers in metagenomic datasets (Segata et al., 2011) and has been widely used 

in publications (Looft et al., 2014, Chen et al., 2016b, Morrison et al., 2020, Tango et 

al., 2020). LEfSe also provides a useful comparison to Boruta, since it incorporates 

variable effect size into the evaluation step, thus leaning towards describing the 

optimum minimum.  

 

2.2.4.3 Hierarchical Cluster Analysis and Heatmap 

Cluster analysis was carried out on ARG groups shown to be both differentially abundant 

by Corncob and Boruta. Boruta was used in preference to LEfSe selections as it avoids 

discarding subtly relevant site descriptors. The resulting clusters were visualised and 

annotated using a modified heatmap.2 script in R (R Core Team, 2020).   

2.2.4.4 Changes in ARG Abundance Following Slurry Application 

In order to determine whether the application of slurry induced transient or persistent 

changes in the treated soil resistome, LEfSe biomarker identification was carried out. To 

this end, the resistome of background samples collected five days before the first 

application of slurry in 2017 were compared with samples collected within 24 hours of 

the first slurry application in May 2017 and 56 days after slurry application. The 
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described samples represent the window between the first and second application of 

slurry in 2017. 

  

2.2.4.5 ARG Richness and Diversity Estimations by Site 

ARG richness and alpha diversity was estimated with iNEXT (Hsieh et al., 2016). The 

estimates calculated by iNEXT are based on effective number of species (bootstrapped 

Hill numbers) and therefore attempt to account for incomplete sampling which traditional 

calculation methods often neglect to consider (Chao et al., 2014). Specifically, Shannon's 

and Inverse Simpson's Diversity measures were estimated for alpha diversity. Briefly, 

both Shannon's (q1) and Simpson's  Diversity index (q2) take into account species 

richness and evenness (abundance), however Simpson's Diversity places more emphasis 

on dominant taxa. Richness (q0) relates to the estimated number of unique species with 

no weighting relating to abundance.  In the context of this Chapter ARGs are the 

'species' under consideration.  

After checking both homogeneity of variance between site groups and within-group 

normality, significance testing was conducted. Briefly, if assumptions were met one-way 

ANOVA was performed and if significant (p <0.05) pair-wise TukeyHSD tests were 

carried out. In cases of non-normality a Kruskall-Wallis test was performed instead. 

Significant Kruskall-Wallis tests were followed by a Dunn pair-wise test (implemented in 

the R package FSA v0.9.1). In cases where heterogeneity of variance was observed a 

Welch-adjusted ANOVA was carried out and if significant, followed by the Games-Howell 

test (implemented in R package PMCMRplus v1.9.3). Lastly, p-values were adjusted for 

multiple comparisons. 

Beta diversity (Bray-Curtis distance estimates) of ARGs were estimated using the R 

package vegan v2.5-6. PERMANOVA was carried out for beta-diversity in PRIMER (Clarke 

and Gorley, 2006).  
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2.2.4.6 ARG-ARG Network Construction 

To compliment differential abundance analysis intra-site ARG-ARG associations were 

explored with SpiecEasi; a network construction and visualisation package which aims to 

provide a tractable solution to the problem of network inference with compositional and 

underpowered datasets (Kurtz et al., 2015).  

Arguments against using traditional correlation-based analyses for network construction 

with compositional data were outlined by Lovell et al. (2015). However it has also been 

shown that alternative methods like SpiecEasi do not necessarily outperform correlation-

based analysis (Hirano and Takemoto, 2019). For this reason, it was decided to carry out 

additional testing using Spearman's Rank correlation analysis accounting for multiple 

testing with fdr (false discovery rate) adjusted p-values.  

To limit the detection of random associations between rare ARGs, only those which 

occurred at least once in more than half the samples from a given site were included in 

analysis. 

It is important to emphasise that the correlation-based networks presented in the 

current and subsequent chapters represent putative associations between variables, 

which require further validation before they can be categorically established. Indeed, in 

Chapter 4 specific ARG-ARG as well as ARG-taxon associations are examined without the 

use of correlation-based inferences using assembled contigs. Furthermore, where 

possible and practical, existing literature has been examined to provide possible 

biological explanations for specific correlations where further validation through 

experimentation was beyond the scope of the present work. In summary, while the 

included networks are a useful tool for data exploration and hypothesis formation, it is 

vital they are used responsibly in tandem with other methods. 
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2.3 Results 

2.3.1 Determining ARG Associations by Site 

DeepARG annotated a total of 454 ARG groups representing 23 antibiotic resistance 

categories. Given the number of ARG groups detected, only those which were identified 

as differentially abundant or are of particular clinical interest are discussed in detail. 

Figure 2.2 summarises the extent to which ARG groups were shared across sites, 

showing that 30.4% of ARG groups were only detected in a single site, with slurry-

amended soil possessing the greatest number of uniquely detected groups (n = 69). 

However, a similar number of ARG groups were shared by all sites (32.4%). 

 

Figure 2.2 UpSet plot created using Intervene (Khan and Mathelier, 2017), illustrating 
the extent to which ARGs were shared across sample types (detected or undetected). 

Solid vertical lines connecting sites on the x-axis denote ARG group detection across 

multiple sites. Single dots on the x-axis denote groups which were detected in only one 

site. Set size relates to the total number of unique ARG groups identified within a given 
site. In this context, site includes the slurry tank in addition to the two field sites.    
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In contrast, all but three ARG categories were shared across the three sites. Specifically, 

oxazolidinones were consistently identified in slurry alone, sulfonamides in slurry and 

sporadically slurry-amended soil, while tetracenomycins were exclusively detected in soil 

samples (regardless of treatment history).  

PCA of antibiotic category data highlighted a clear dissociation between slurry and soil 

samples across PC1 (57.5% variance), and a less pronounced difference between the 

two soil sites across PC2 (7.4% variance) as shown in Figure 2.3. Untreated soil shows 

greater variance than amended soil along PC2, whereas the latter is more variable along 

PC1. A similar pattern was observed at the ARG level. 

 

Figure 2.3 PCA biplot of 16S rRNA-normalised ARG category abundances. Colours 

correspond to sample origin (blue, slurry; orange, untreated soil; green, slurry-amended 

soil).  Ellipses represent 0.9 normal probability. Data are scaled and centred. Arrows 
represent ARG categories. The direction of arrows reflect relative association with a 

principal component, while length indicates increasing values (relative abundance). The 

peptide category was divided on the basis of activity against Gram negative and Gram 

positive bacteria. 

 

NMDS was used to further explore differences in resistome structure. At the ARG 

category level, NMDS was broadly similar to PCA.  Initially all data were included in ARG 
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group analysis, however the full dataset failed to converge. Upon excluding slurry data 

from NMDS, and focussing on directly comparable soil data from January and May 2018, 

a robust analysis of this subset was achieved (k = 2, stress = 0.047). The resulting plot 

suggested seasonal variation between soil sites during these months, in addition to site 

differences previously described by PCA at the ARG category level (Figure 2.4). Seasonal 

divergence in ARG group ordination appears to increase in May relative to January. A 

similar trend was shown by plotting the average relative abundances of dominant ARG 

categories over the same period (Figure 2.5). Permutational multivariate analysis of 

variance (PERMANOVA) returned significant results for site and site-month interaction 

effects (p = 0.001 and p = 0.048, respectively).  However, these inferences should be 

treated with caution as a test for dispersal with the betadisper function (R package, 

vegan) indicated heterogeneity across sample sites (p < 0.05), with untreated soil 

samples exhibiting significantly greater dispersion than slurry impacted soil samples. 

This is interesting, as the reduced variability seen in slurry impacted soil samples relative 

to samples collected from the site with no history of slurry application could reflect the 

impact of agricultural management practices on the resistome.  

For instance, the routine application of slurry as well as other farm-associated 

management practices could lead to the development of a more stable resistome relative 

to the site with no history of large-scale organic fertilisation. The untreated site may 

therefore be more variable because it is governed by more random environmental 

effects.       
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Figure 2.4 NMDS plot comparing 16S rRNA-normalised ARG group abundances in 
slurry-amended (F31) and untreated soils (ARB) recovered in January and May 2018 (k 

= 2, stress = 0.047, non-metric fit R2 = 0.998, metric fit = 0.99). Placement of site 

labels reflect group centroids (averages). Point colours correspond to month (red: 

January, blue: May 2018). 
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Figure 2.5 Average 16S rRNA–normalised abundance  of ARGs for samples collected 

from slurry-impacted and untreated sites in January and May 2018. Standard error 

shown. 
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tSNE analysis showed different clustering patterns at the ARG group and ARG category 

level (Figure 2.6). For ARG groups, all slurry samples clustered together, while soil 

samples fell into two potential clusters; one containing amended soil samples only, and 

the other containing all untreated soil samples together with remaining slurry-amended 

soil samples. However, samples within the 'mixed' cluster were clearly divided by site. 

The same analysis carried out at the category level yielded different results. Only two 

clear clusters emerged. One cluster contained most slurry-amended soil samples 

together with all untreated soil samples, while the other contained all slurry samples 

together with a small subset of slurry-amended soil samples. Slurry-amended soil 

samples which clustered with slurry belonged to sample sets collected in May 2017 (n = 

2), September 2017 (n = 1) and May 2018 (n = 2). tSNE analysis found similar patterns 

to NMDS for soil data in 2018 (not shown).  

A 

B 

Figure 2.6 tSNE plots of ARG class (A) and group  (B) data. For both plots 

perplexity was set to 15 and iterations 1500. Black = slurry, blue = treated soil 

site, red = untreated soil site. 
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2.3.2 Site Differential Abundance 

Data exploration supported the hypothesis that slurry and soil resistomes were distinct, 

however the analyses were not suitable for statistically identifying and visualising which 

of the 454 ARG groups distinguished between sites. Furthermore, the degree of slurry-

associated ARG enrichment in amended-soils remained unclear. Corncob was used in 

conjunction with cluster analysis to address these questions.  

 

Controlling for dispersion in site data, Corncob identified 218 ARG groups and 21 ARG 

categories that were differentially abundant across sites. For complete Corncob analysis 

plot including all differentially abundant ARG groups see Supplementary file 1. Feature 

selection with Boruta and LEfSe was carried out with the aim of independently identifying 

differentially abundant ARG groups as well as those, which discriminated between sites 

most effectively.  Encouragingly, Corncob encompassed over 95% of ARG groups 

identified by selection methods. Boruta retained more than half the ARG groups shown 

to be differentially abundant by Corncob (Figure 2.7). As expected LEfSe was more 

stringent, however, it largely selected a subset of groups already confirmed by Boruta.

Figure 2.7 Venn diagram showing the intersection between differentially 

abundant ARG groups (by site) based on Corncob, Boruta and LEfSe 

methods. 
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Figure 2.8 Heatmap of differentially abundant ARGs by site (based on intersection between Corncob and Boruta). Colour gradient represents 

increasing relative 16S rRNA-normalised abundance from blue (lower) through to yellow (higher). Each column represents a single ARG group 

and rows denote samples. Clusters a-c denote samples, while clusters I-III denote ARGs. The y-axis annotation bar indicates season, while 

the x-axis annotation bar refers to ARG category (see key for colour descriptions). 
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Hierarchical cluster analysis of differentially abundant ARG groups showed distinct 

clusters for all three sites, with slurry samples clustered at a greater distance from both 

soil site samples (Figure 2.8). Furthermore, specific ARG categories dominated site 

clusters. For instance, slurry contained an assortment of tetracycline, aminoglycoside, 

beta-lactam and macrolide-lincosamide (MLS) resistance genes with greater relative 

abundance in comparison to soil clusters. In contrast, soil clusters contained many 

different multidrug efflux pump gene groups. However, the detection levels of 

glycopeptide, rifamycin and tetracycline resistance genes in slurry-amended soil appear 

to distinguish amended soil from untreated soil. A small group of ARG groups were also 

consistently more abundant in slurry-amended soil than untreated soil (Figure 2.9). 

 

 

Figure 2.9 Candidate slurry associated ARG groups suggestive of long-term enrichment 

(standard error shown).  
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In summary, several analytical methods and visualisation techniques were used to 

identify  differentially abundant ARGs which help to explain the differences between sites  

first shown by initial data exploration.  

 

2.3.3 Seasonal Differences in ARG Abundance  

 

Figure 2.10 Differential abundance of ARGs by season. Slurry-impacted soil (A). Slurry 

(B). Points to the right of the central dotted line represent ARGs with increased 

abundance in spring/summer relative to autumn/winter, while those to the left are more 

abundant in autumn/winter relative to spring/summer. Error bars denote 95% 

confidence intervals. 
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Corncob identified a small subset of ARGs that were differentially abundant across 

season in slurry (n = 24) and slurry-amended soil (n = 17). In slurry, MLS resistance 

genes were consistently more abundant in spring/summer compared to autumn/winter 

(Figure 2.10B). ARGs, which were comparatively less abundant over the same period, 

belonged predominantly to the aminoglycoside and multidrug resistance groups. In 

slurry-amended soil tetracycline and glycopeptides resistance genes were more 

abundant in spring/summer, while multidrug resistance genes were significantly less 

abundant (Figure 2.10A). In contrast, no detected ARGs exhibited significant differences 

in abundance based on season in samples from untreated soil (analyses not shown).   

 

2.3.4 Changes in ARG Abundance Following Slurry Application 

LEfSe analysis showed the relative abundance of 23 ARGs was significantly greater in soil 

collected within 24 hours of slurry amendment relative to samples obtained five days 

prior to application (Figure 2.11A). Over half of these ARGs were consistently abundant 

in slurry; namely eight MLS genes and two tetracycline resistance genes. Furthermore 

the MLS resistance genes lsaE, lnuB and mefB, as well as the two tetracycline resistance 

genes tetT and tet(36), were among the top 20 most abundant ARGs detected in slurry 

(average relative abundance). In contrast, after 56 days none of these genes were 

significantly increased in soil relative to pre-application samples (Figure 2.11B). In 

addition, only two genes out of the 18 ARGs elevated in soil 56 days after treatment 

were convincingly associated with slurry. These were the multidrug resistance genes 

marR and adeC. Irrespective of whether samples were taken less than 24 hours, or 56 

days after slurry application, fewer gene groups were significantly less abundant than 

more abundant, and ARGs with reduced abundance were rarely considered markers for 

slurry.  
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Figure 2.11 LEfSe analyses comparing 16S rRNA-normalised relative abundance of ARGs in soils before and after slurry application in May 
2017 (A – B) and 2018 (C) (slurry-impacted site). Reference to ‘minus’ and ‘plus’ denotes days before and after slurry application, 

respectively. Green bars represent ARGs which had a greater relative abundance following slurry application, red bars those with greater 

relative abundance prior to slurry application (relative to the pre-application samples being assessed).   
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NMDS analysis (Figure 2.12) largely supported these findings indicating the composition 

of the resistome altered immediately after slurry application, but became more similar to 

the pre-treatment configuration within 56 days (PERMANOVA, time as factor: p = 0.02).  

 

Figure 2.12 NMDS plot (k = 2, stress = 0.1) of the slurry-treated soil resistome five 

days before the first slurry application of 2017 (red squares), zero days after slurry 

treatment (black circles) and 56 days after treatment (blue triangles). PERMANOVA 

indicated time was a significant factor (R2 = 0.30, p < 0.05), and assumption for 
homogeneity of dispersion was met (betdisper = p > 0.05). Placement of time-course 

labels reflect group centroids (averages). 

  

It appeared that certain beta-lactamases were also elevated following the addition of 

slurry to soil, although these genes were not consistently detected in slurry. On day 

zero, class C beta-lactamases were more abundant, and both class A and C beta-

lactamase resistance genes were more abundant in soil 56 days after slurry amendment.    

 

2.3.5 ARG Diversity Estimations by Site 

Estimates of mean richness (iNEXT q0) indicate that both slurry and slurry-impacted soil 

have significantly greater richness of ARG subgroups (p <0.001) relative to soil with no 
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history of slurry application. The elevated ARG richness estimates for slurry-impacted 

soil relative to untreated soil possibly indicate the introduction of slurry-associated ARGs. 

In contrast, both Shannon (iNEXT q1) and Inverse Simpson's Diversity (iNEXT q2) 

measures show that while slurry is significantly different from both soil sites, no 

significant difference was detected between soil sites. This suggests that slurry exhibits a 

greater diversity of ARG subtypes than soil samples based on moderate (q1) and low 

weighting (q2) of rare taxa, while soils exhibited similar levels of diversity (in particular, 

no significant change in dominant ARGs). The greater diversity of dominant ARG 

subtypes in slurry relative to soil is likely due to the intensity of exposure to various 

anthropogenic selection pressures within slurry (e.g. antibiotics, heavy metals and 

biocides).   

Bray-Curtis distance estimates for beta diversity indicated that soil samples showed 

significant separation by site (p < 0.001, average distance between soil sites < 0.2), 

however all soil samples were also highly dissimilar from slurry at the ARG group level (p 

< 0.001, average distance from either soil site group > 0.8), in accordance with initial 

data exploration. Diversity measure comparisons are summarised in Table 2.2.  

Table 2.2 Pair-wise comparisons of ARG group richness, alpha diversity measure 

estimates according to iNEXT and beta diversity (Bray-Curtis distances). 
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2.3.6 ARG-ARG Network Analysis 

The connectivity and composition of ARG networks differed by site (Figure 2.13). Slurry 

samples had the fewest isolated nodes (n = 11), followed by soil networks (n = 28). This 

is reflected by the degree distributions, which describe the probability of nodes sharing 

an increasing number of edges. It is clear that while most nodes in slurry and untreated 

soil networks have fewer than three connections, several nodes in slurry-amended soil 

have between four and eight connections, which may represent hubs. 
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Figure 2.13 SpiecEasi network analysis of ARGs. Slurry samples (A), slurry-impacted soil (B) and untreated soil (C). Blue lines denote 

positive correlations, orange dashed lines negative correlations. Node size is proportional to relative abundance. 
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Potential hubs (≥4 positive edges) identified in slurry-amended soil include mexF, vanR, 

muxB, muxC, rosB and efpA. In the slurry network, only adeJ had more than three 

positive edges, while none was present in untreated soil.  

Some concordance was present between soil sites. For example, muxB and mdtB, muxB 

and muxC as well as vanR and rphA are associated in both soil networks. The 

aforementioned associations were also cross-validated by significant Spearman's Rank 

correlations (fdr p-value <0.05). 

 

2.4 Discussion  

2.4.1 Slurry Resistome 

With few exceptions, the core resistome of dairy cattle slurry in this study broadly 

reflects the findings of previous research, whether experiments considered solid manure, 

liquid slurry or involved cattle farming systems in different countries. For example, 

Kyselková et al. (2015a) identified that the tetracycline genes tetW, tetQ and tetO 

formed the core faecal resistome of dairy cattle, while tetA, tetM, tetY and tetX were also 

detected intermittently. In the current study, which used metagenomic methods rather 

than qPCR, both tetW and tetQ were in the top 25 ARGs detected in slurry based on 

average 16S-normalised abundances. Additionally, tetM, tetA, tetQ and tetO were also 

more abundant in slurry than soil irrespective of treatment. Similarly, other authors 

using metagenomic (Noyes et al., 2016, Zhou et al., 2016) and qPCR-based approaches 

(Fahrenfeld et al., 2014, Sandberg and LaPara, 2016, Wang et al., 2016a, Muurinen et 

al., 2017, Lin et al., 2019) identified tetW as one of the most abundant tetracycline 

resistance genes in cattle waste. 

Cross-study agreement is not limited to tetracycline resistance genes; cfxA genes 

belonging to the Class A beta-lactamase resistance gene group have been frequently 

associated with cattle waste resistomes (Chambers et al., 2015, Zhou et al., 2016, 
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Muurinen et al., 2017). As has been reported elsewhere, little evidence was found in the 

current study to suggest many other beta-lactamases were highly prevalent in cattle 

waste (Muurinen et al., 2017, Zhang et al., 2017b, Qian et al., 2018), aside from oxa 

(class D beta-lactamase) which has been associated with cattle waste water in another 

study (Agga et al., 2015). A similar pattern was also observed in swine manure (Li et al., 

2015a).   

Startlingly, the high prevalence of cfxA genes appears to be unaffected by the restricted 

use of antibiotics employed by the study dairy farm and the Finnish dairy farm described 

by Muurinen et al. (2017). However, the extent to which increased antibiotic use impacts 

the resistome of cattle and farming environments remains equivocal (Oliver et al., 2011, 

Noyes et al., 2016, Rovira et al., 2019, Feng et al., 2020). It remains unclear whether 

the observed prevalence of cfxA genes reflects an endemic presence in the gut 

microbiome or implies limited antibiotic selection is required for proliferation. 

With respect to sulphonamide resistance genes (namely the sul genes associated with 

mutations in dihydropteroate synthases), the results suggest they are consistently 

present in cattle waste, but generally occur at lower incidence than tetracycline 

resistance genes, with particular reference to genes encoding ribosomal protection 

proteins (RPPs). The fact that both Muurinen et al. (2017) and Noyes et al. (2016) found 

RPP tetracycline genes were typically more abundant in cattle waste relative to 

sulphonamide resistance genes offers support to this inference. On the other hand, while 

Wang et al. (2016a) similarly reported RPP tetracycline genes were more abundant than 

those tetracycline efflux pumps; sulphonamide resistance genes were shown to 

predominate over tetracycline genes in that study. It is possible these discrepancies 

reflect differences in antibiotic use, other aspects of animal husbandry practice, 

environmental factors or methodology.  

Another study involving tetracycline and sulphonamide resistance genes found that tetW 

(RPP) had a greater average relative abundance in cattle slurry compared to sul1 and 

sul2, while the occurrence of tetG (efflux) and tetO (RPP) was similar to the 
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sulphonamide ARGs assessed (Fahrenfeld et al., 2014). These findings are also in 

agreement with the results presented here. Finally, while Nõlvak et al. (2016) detected 

sul1 at somewhat higher relative abundances than tetA  (efflux) in cattle manure, the 

latter was the only tetracycline ARG evaluated. Likewise, in the current study, sul1 had a 

slightly higher average abundance than tetA; with tetracycline genes as a group having a 

much higher average relative abundance than sulphonamides.  

Macrolide, lincosamide and streptogramine (MLS) resistance genes represented the 

dominant antibiotic resistance category in cattle slurry metagenomes screened in the 

current study, followed by tetracycline resistance genes (based on average 16S-

normalised abundance). MLS genes have been routinely identified among the more 

abundant resistance genes in cattle waste and associated run-off (Agga et al., 2015, Hu 

et al., 2016, Noyes et al., 2016, Zhang et al., 2017b, Gou et al., 2018). However, while 

one study suggests MLS resistance may be more abundant than tetracycline ARGs in 

cattle waste (Hu et al., 2016), others suggest vice versa (Zhou et al., 2016). On the 

other hand, other studies reported that aminoglycoside ARGs were dominant over MLS 

and tetracycline ARGs in cattle manure (Muurinen et al., 2017, Gou et al., 2018). 

Regardless, the generally high abundance of MLS, tetracycline and aminoglycoside ARGs 

in cattle slurry is widely evidenced, and some variability is to be expected due to both 

genuine site differences and experimental biases (e.g. the scope of qPCR arrays and DNA 

extraction kit choice). 

Considering the different methods used in various studies, the overall consistency of 

these data suggest certain ARGs are indicative of cattle waste and therefore likely 

represent a resistome common to the cattle intestinal tract. It has been proposed that 

herd-wide core resistomes may exist irrespective of adult antibiotic treatment 

(Wichmann et al., 2014, Kyselková et al., 2015a) and that the core faecal resistome is 

largely dependent on host microbiota formed by diet during early development (Liu et 

al., 2019b). Further support for the concept of a core resistome was provided by Thomas 

et al. (2017) who demonstrated aminoglycoside ARGs were prevalent in the gastro-

intestinal tracts of North American beef cattle regardless of whether animals had 
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received prophylactic antibiotic feed additives at the finishing stage. The characterisation 

and validation of the core cattle waste resistome is vital because it allows the 

development of gene-marker sets which can be used to robustly determine 

dissemination of ARGs in the environment in a standardised manner, while also enabling 

greater replication at reduced cost. 

Indeed, despite the existence of notable parallels among previous publications it should 

be stressed that many of the aforementioned studies relied on qPCR arrays which were 

variable in size, ranging from several genes (Fahrenfeld et al., 2014, Kyselková et al., 

2015a, Sandberg and LaPara, 2016) to hundreds (Muurinen et al., 2017). While the 

validity of a targeted approach is often desirable, it is important to bear in mind that 

studies which assessed a very limited selection of ARGs without first conducting pilots 

with large arrays or alternatively, referring to studies which have done so are more likely 

to provide a distorted picture of what constitutes the 'core resistome'. In particular, this 

could have implications for which resistance genes in a given category are considered 

the best markers for a specific resistome. For this reason, comparisons with existing 

literature have focussed on the relationship between groups of resistance genes, rather 

than the diversity of the cattle waste resistome as a whole. 

For example, although tetW was among the most abundant resistance gene groups 

detected in slurry, tetM was the most prevalent tetracycline subgroup, followed by tet44, 

tetT and tetW. A review of existing publications shows a number did not include some 

(Fahrenfeld et al., 2014, Sandberg and LaPara, 2016), or all of these highly abundant 

genes (Hu et al., 2016, Nõlvak et al., 2016) in their analyses. Interestingly, Wang et al. 

(2016a) evaluated a range of tetracycline resistance genes in cattle manure including 

genes encoding RPPs: tetM, tetO, tetQ, tetT and tetW, as well as efflux pumps: tetA, 

tetC and tetG. Not only did Wang et al. (2016a) provide further evidence that RPP 

tetracycline genes are typically preponderant over efflux pump tetracycline resistance 

genes in cattle waste, the data also illustrates that studies which only considered 

tetracycline efflux pumps (Agga et al., 2015, Hu et al., 2016) (tetA and tetB) would miss 

this nuance. Other studies have also found evidence that tetracycline RPPs are generally 
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more abundant in cattle waste than tetracycline resistance genes encoding efflux pumps 

(Noyes et al., 2016, Muurinen et al., 2017). A similar trend has been reported in soil 

(Wang et al., 2016a).  

In this regard metagenomic or high through-put qPCR can excel, although neither of 

these methods is exhaustive, being dependent on the quality of selected databases and 

probes respectively. Ideally, it may be most appropriate to initially obtain a small 

collection of relevant metagenomes, and then design a bespoke qPCR array based on the 

most relevant genes. Finally, virtually all current molecular methods suffer from 

compositionality and extraction bias. It is ultimately encouraging however, that overall 

patterns are broadly similar between qPCR and metagenomic studies with regard to the 

resistome of cattle waste. 

In attempting to identify potential slurry markers it is also important to acknowledge 

that the most abundant resistance genes in slurry were not necessarily slurry-specific. 

The fact that the rifamycin resistance gene rpoB2 was the most abundant ARG in all 

sample types infers it is likely endemic to the wider environment and therefore a poor 

marker for cattle waste contamination. Furthermore, the validity of annotating rpoB2 

based on short-reads is somewhat circumspect owing to the fact that resistance of this 

type is conferred primarily by point mutations in wild-type rpoB (Goldstein, 2014). A 

similar pattern of occurrence was evident for the polypeptide resistance gene bacA. 

Furthermore, the rifamycin category as a whole represented only a minor contribution to 

the slurry resistome relative to the most widely represented ARG categories. In contrast, 

resistance genes such as aadA (aminoglycoside), tetM (tetracycline) and mefA (MLS) 

were in the top 10 slurry ARGs, originated from the dominant categories and were 

comparatively less prevalent in soil metagenomes. Importantly, these examples are 

supported by both the average relative abundances across samples and differential 

abundance modelling with corncob.  

In summary, in the present study, MLS, tetracycline and aminoglycoside ARGs dominate 

cattle slurry at the resistance gene group and category level; this is largely in agreement 



72 
 

with characterisations of cattle waste resistomes described in existing literature. The 

relationship between these categories is described as follows: 

MLS>tetracycline>aminoglycoside. This is reflected by the gene groups identified in the 

top 20 most abundant ARGs (16S-normalised average relative abundance): MLS (n = 8), 

tetracycline (n = 5) and aminoglycoside (n = 3). These data demonstrate candidate 

biomarkers for slurry contamination in the environment include the following MLS genes: 

mefA, lnuC, lsaE, lnuB, lnuD, mphB, mefB and vatB. Meanwhile candidate tetracycline 

genes include RPP encoding genes: tetM, tet44, tetT, tetW and tet36. Aminoglycoside 

candidate biomarkers are represented by: aadE, aadA and ant(9)-1. A limited selection 

of beta-lactamase resistance genes were identified as strongly associated with slurry, 

namely cfxA group (ambler class A) and oxa (ambler class D). Lastly, the peptide 

resistance gene ugd was frequently identified among most abundant ARGs in slurry, and 

was considerably less abundant in soil metagenomes.  

 

2.4.2 Persistence of Slurry ARGs in Slurry-treated Soil 

Many of the ARGs shown to be highly abundant in slurry metagenomes can confer 

resistance to antibiotic categories listed as highly (tetracyclines and lincosamides) or 

critically (macrolides, aminoglycosides and beta-lactam cephalosporins) important to 

human health by the WHO (Collignon et al., 2016). Furthermore, similar macrolide 

(mefA), tetracycline (tet36), aminoglycoside (aadA11) and cephalosporin (cfxA2) ARGs 

have recently been shown to dominate the resistome of untreated hospital wastewater 

(Petrovich et al., 2020), albeit at relative abundances an order of magnitude higher than 

the discussed slurry metagenomes. It is therefore essential that the persistence of these 

ARGs in the environment is comprehensively evaluated.   

In this study, the long-term application of dairy cattle slurry to soil had limited potential 

to permanently elevate the abundance of slurry-associated ARGs above levels found in 

soil with no history of cattle waste amendment. This is consistent with a study which 

determined the prevalence of ARGs at a site which had received dairy manure over a 
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period of 30 years (Peng et al., 2017). Similarly, a qPCR-based study comprising 296 

probes found cattle manure obtained from 'antibiotic-free' animals had a negligible 

impact on ARG abundance in soil (Zhang et al., 2017b). Many slurry-associated ARGs 

were not detected in soil from either site, or their abundance was not significantly 

influenced by a history of slurry amendment (Figure 2.8). On the other hand, a small 

subset of slurry-associated ARGs were consistently detected with greater frequency in 

treated soil, regardless of proximity to slurry application date. 

In most cases only transient increases in slurry-associated ARGs were detected in soil 

immediately after slurry treatment (Figure 2.11A), and these genes (n = 23) returned to 

pre-treatment abundances within 56 days (Figure 2.11B). Nine MLS resistance genes 

were significantly increased within 24 hours of slurry application relative to samples 

obtained five days previously. Of these MLS ARGs, eight were closely associated with the 

slurry resistome, while three (mefB, lnuB and lsaE) are among the dominant ARGs in 

slurry which have already been suggested as appropriate biomarkers for indicating slurry 

contamination. Accordingly, five of these MLS ARGs (including the three suggested 

biomarkers) were never detected in soils from the untreated site. Temporary enrichment 

of select MLS resistance genes in cattle-waste amended soils has been documented in 

previous field (Muurinen et al., 2017) and microcosm (Chen et al., 2019a) studies. One 

such study showed the relative abundance of mefA and lnuB, which was significantly 

increased one day after manure application declined towards control levels within 120 

days (Chen et al., 2019a). Muurinen et al. (2017) found the abundance of mefA, lnuB 

and ermB MLS ARGs returned to background levels within 14-42 days of cattle manure 

amendment, suggesting rapid attenuation. Similarly, a field study which used 

fluorescence in situ hybridization (FISH) to detect MLS resistance in soils amended with 

swine manure was unable to demonstrate persistent increases in this resistance type 

(Zhou et al., 2010). Furthermore, significant increases in mefA, mefB and lnuB in soil the 

following year (May 2018) were observed; 84 days after the first slurry application of the 

season (Figure 2.11C). Although this supports the idea that the abundance of ARGs 
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fluctuate in a cyclical manner, it also indicates the decline of MLS ARGs can take longer 

than 56 days.  

One MLS gene, the macrolide efflux pump oleC was not detected in slurry, but was an 

order of magnitude more abundant in treated soil relative to control site soil. However, 

this gene did not significantly increase after slurry application. Whether this is due to 

innate differences in the soil resistome of the two sites, or indicates that slurry 

application indirectly selects for this gene over an extended period is unclear. 

Interestingly, Muurinen et al. (2017) found oleC was also consistently abundant in soil 

before treatment, was not frequently detected in dairy cattle manure and was not 

immediately affected by manure amendment. Unfortunately, no data from a site without 

a history of manure application was included in the aforementioned study for 

comparison. In any case oleC is evidently an ARG indigenous to the wider soil resistome. 

The relative abundance of two slurry-associated tetracycline genes also increased 

significantly within 24 hours of slurry application. Both tet36 and tetT are RPPs and 

represent strong indicators of slurry contamination, as shown by the analysis of slurry 

metagenomes. The persistence of these two genes is reminiscent of the MLS ARGs 

already described, with neither being significantly elevated in treated soil 56 days after 

exposure in 2017. Indeed, ephemeral spikes in tet36 and tetT were reported in another 

study already mentioned in relation to MLS ARGs (Muurinen et al., 2017). However, as 

with select MLS ARGs, tet36 remained elevated above pre-treatment levels 84 days after 

slurry application in the following year. Again, this indicates that while enriched ARGs 

can decay rapidly (<56 days), it is also possible for them to persist at elevated levels for 

longer periods.  

Despite providing evidence that specific slurry-associated MLS and tetracycline genes 

can remain enriched within slurry-amended soil for at least 84 days, it remains apparent 

these ARGs are unlikely to become entrenched within the autochthonous soil bacterial 

community. Critically, the aforementioned MLS and tetracycline ARGs were undetected in 

any soil samples obtained in January 2018, suggesting these ARGs are largely eliminated 
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in impacted soil prior to slurry application recommencing in spring. Indeed, Muurinen et 

al. (2017) inferred the elevation of ARGs was transient and that elevated ARGs would 

decline towards background levels by winter. It should be noted repeated reference to 

this work has been made since few metagenomic studies have been conducted on cattle-

waste amended soil in a European country with restricted antibiotic use, and while the 

authors employed qPCR, one of the more comprehensive ARG arrays with over 300 

probes was used. Furthermore, the Finnish winter precludes the application of fertiliser 

during the winter months, thus providing a useful parallel to the NVZ restrictions in place 

at the UK dairy farm investigated in the present work.  

Various mechanisms have been postulated to explain why the soil resistome may be 

resilient to change following manure amendment. One prominent school of thought is 

that the competitive action of indigenous soil microbiota constrains the dissemination 

and survival of ARGs. Existing laboratory-scale studies appear to support this theory 

(Peng et al., 2016, Chen et al., 2017, Klümper et al., 2019, Pérez-Valera et al., 2019). 

On the other hand, Udikovic-Kolic et al. (2014) reported that addition of cattle manure 

derived from animals with no prior antibiotic treatment induced the proliferation of beta-

lactamase resistant soil bacteria (Pseudomonas sp.) for up to 130 days, indicating 

indigenous bacteria can also drive soil resistome enrichment. The decay rate of 

antibiotics and their sorption properties in soil may also contribute to the persistence or 

loss of ARGs in soil (See Cycoń et al., 2019, and references therein). However, factors 

influencing the rate of antibiotic degradation and persistence in soil are in turn 

determined by soil physiochemical properties (Srinivasan and Sarmah, 2014) and local 

climatic conditions (Kim et al., 2011, Joy et al., 2013, Cycoń et al., 2019), suggesting 

some soil textures (Blau et al., 2018) may possess enhanced or reduced 'resistome 

resilience'.  

Since the slurry application window coincides approximately with the changing of the 

seasons (spring/summer: open; autumn/winter: closed), it is possible the rise and fall in 

the discussed ARG abundances relate to changing climatic conditions rather than slurry 

application. However, several slurry-associated ARGs were only detected in slurry 
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impacted soil. Furthermore, while the resistome of the untreated and slurry-impacted 

sites were similar in composition during the closed period (January 2018), they diverged 

antagonistically following the resumption of slurry application in May 2018 (Figure 2.4, 

Figure 2.5). Category-wide analysis of tetracycline ARGs in 2018 corroborates this 

inference, as the prevalence of tetracycline resistance genes were significantly increased 

relative to the untreated site in May 2018, but not in January 2018. Consequently, the 

corncob model indicates site differences in tetracycline genes are only significant when 

taking into account the period of sampling (site-month interaction p = 0.0299, site only 

p = 0.5). 

Although clear differences in slurry-associated ARGs were detected immediately before 

and after slurry application in May 2017, the significant changes at the category level 

found 84 days after slurry application in May 2018 were not apparent. One potential 

explanation for this could be that the first slurry application of the season in 2017 took 

place in May rather than February, as in 2018. It is possible the environmental changes 

in soil moisture content and ambient temperature are responsible for the differences in 

ARG persistence; i.e. a change in the receptivity of the environment to entrained ARGs.  

Alternatively, these differences may correspond to variation in the resistome of the 

applied slurry, i.e. a change in system input. Even though the resistome was largely 

consistent across slurry samples at the category level, certain ARGs were identified with 

significantly greater frequency in the autumn and winter slurry libraries than in spring 

and summer (typically aminoglycoside ARGs such as aadA; Figure 2.10). The fact that 

slurry sampled toward the end of the open season contained greater abundances of 

genes like aadA might explain why these genes were increased after the earlier February 

application in 2018, and not in May 2017. This could be a compelling explanation were it 

not the case that select MLS ARGS including lnuB (also increased in May 2018) were 

significantly less abundant in slurry during the same period. Unfortunately, ARG data for 

the slurry applied in February 2018 are lacking, and therefore clarification is not 

possible. On the other hand, the environmental conditions in February 2018 relative to 
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May 2017 may have been more conducive to enabling particular ARGs to persist; namely 

reduced irradiation and topsoil temperature (top 10cm).      

The effect of storing animal waste on antibiotic resistance is uncertain, with some studies 

indicating ARGs can increase in abundance during storage (Muurinen et al., 2017), while 

others have shown the response of ARGs in swine slurry during storage is gene-specific 

(Joy et al., 2014). Unpublished modelling data based on a cattle slurry microcosm 

experiment using slurry from the study farm revealed ARGs generally declined over time 

during storage. 

To date, few studies appear to have collected data from farming environments across 

multiple seasons. Further testing combining controlled, multi-year microcosm studies 

and stored slurry/manure are likely to further explain the observed differences.  

The temporal pattern of the slurry-associated ARGs previously discussed provides strong 

evidence that slurry ARGs rarely become embedded within soil and proliferate, implying 

these genes would quickly disappear from the soil resistome in the absence of annual 

slurry application. In contrast, a few slurry-associated ARGs appear to have become 

fixed in treated soil at levels significantly above their abundance in soil with no history of 

cattle slurry application. Specifically, these ARGs include the tetracycline resistance gene 

tetM, the peptide resistance gene ugd, and the multidrug efflux pump mexT (Figure 2.9).  

According to corncob modelling, all three of these genes were significantly elevated in 

treated soil relative to the control site, and their greater abundance occurred 

independent of seasonal effects, indicating the prevalence of these ARGs is not 

dependent on regular slurry application. Indeed, of these genes only ugd significantly 

increased in May 2018 relative to January 2018, and no immediate increase in any of 

these genes was identified within 24 or 56 days of slurry application in May 2017. It is 

therefore possible these ARGs are intrinsically more abundant at the treated site for 

reasons other than slurry application. Alternatively, these 'autochthonous ARGs' could 

have been selected for over many years through the application of slurry, proliferating 



78 
 

over time until they reached an elevated, albeit stable 'carrying capacity' within the soil 

resistome. 

Perhaps the most convincing evidence of this is displayed by the RPP encoding gene 

group tetM. Firstly, several studies have demonstrated the frequent occurrence of tetM 

in the excreta of cattle (Kyselková et al., 2015a, Zhou et al., 2016, Muurinen et al., 

2017) and other livestock animals (Chee-Sanford et al., 2001, Jurado-Rabadán et al., 

2014, Wang et al., 2016a, Muurinen et al., 2017). Accordingly, tetM is one of the most 

commonly detected tetracycline resistance determinants in enterococci isolated from 

livestock (Aarestrup et al., 2000, Roberts, 2005); a genus typical of mammalian 

intestinal microflora (Byappanahalli et al., 2012). The tetM ARGs have also been 

identified in other faecal indicator organisms, such as E. coli (Bryan et al., 2004, Jurado-

Rabadán et al., 2014). Furthermore, a metagenomic study revealed tetM genes are 

generally more abundant in livestock waste, human faeces and sewage treatment plant 

influent than in soils and watercourses (Li et al., 2015a). 

However, tetM has a broad host range of Gram positive and Gram negative bacteria 

which are widespread in the environment (Roberts, 2005, Van Hoek et al., 2011). This is 

often attributed to the association of tetM with promiscuous mobile genetic elements, 

namely Tn916 and Tn916-like transposons (Agersø et al., 2006a, Roberts and Mullany, 

2011, Ciric et al., 2013). Consequently tetM has been found in agricultural soil with no 

recent history of animal waste application (Dungan et al., 2019) and garden soil (Agersø 

et al., 2004). 

Despite its detection in undisturbed populations, various studies have shown tetM is 

increased in animal waste-impacted sites relative to untreated soils (Agersø et al., 2004, 

Agersø et al., 2006b, Kyselková et al., 2015a, Peng et al., 2017, Dungan et al., 2019). 

The studies carried out by Peng et al. (2017) and Dungan et al. (2019) are of particular 

relevance as they both used sites subject to long-term fertilisation with dairy cattle 

manure. This corresponds with the present study, which shows tetM genes are increased 

in soils with a history of repeated exposure to dairy cattle waste.  
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Evidence therefore suggests that although tetM is not uncommon in soil, application of 

manure can facilitate the acquisition and subsequent enrichment of these genes in the 

resident soil bacteria, likely through conjugal transfer from introduced bacteria as 

proposed by Agersø and colleagues (Agersø et al., 2004, Agersø et al., 2006b). This is 

further supported by studies which successfully demonstrated or indicated conjugal 

transfer of tetM between introduced donors and resident soil bacteria in microcosm 

experiments (Natarajan and Oriel, 1992, Andrews Jr et al., 2004). In contrast, tet36 

ARGs which are known to have a limited host range relative to tetM (Whittle et al., 2003, 

Roberts, 2005) were only sporadically detected in treated soil within the slurry 

application season and were undetected in samples derived from the untreated site. On 

the other hand, tetW has a reasonably broad host range but had a similar pattern of 

occurrence to tet36, implying factors other than transfer potential determine the 

distribution of these gene groups. 

Finally, it should be apparent that there is a considerable body of literature dedicated to 

the prevelance of tetM in soil, whereas the same cannot be said for the other two slurry-

associated gene groups shown to be more abundant in treated soil; ugd and mexT. 

Discussion of mexT is avoided as it is a multidrug resistance gene and the developers of 

DeepARG acknowledge the algorithm may conflate gene annotations where no clear 

antibiotic category is evident (many multidrug resistance genes share tracts of 

sequences with each other and other genes unrelated to antibiotic resistance function). 

With regard to the ugd polypeptide resistance gene group, there have been few studies 

of its prevalence in soil, manure-contaminated or otherwise. However, a metagenomic 

study reported the presence of ugd in a metagenome assembled genome (MAG) 

recovered from hospital waste-water influent (Petrovich et al., 2020). The extent to 

which animal waste application impacts the abundance of the ugd gene group requires 

further investigation. 

Taken together, these findings indicate that slurry-associated ARGs can become 

permanently enriched within autochthonous soil bacterial communities, though this 

rarely occurs, and tends to involve pre-existing soil ARGs with a broad host range.  
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Another finding of the current study worthy of mention is the transient increase of select 

beta-lactamase ARGs following the application of cattle slurry in May 2017. According to 

LEfSe analysis (Figure 2.11A), Class C beta-lactamases were significantly elevated in soil 

within 24 hours of slurry application relative to samples taken five days prior to 

treatment. Furthermore, Class C beta-lactamases were still significantly increased 56 

days afterward, in addition to Class A beta-lactamses (Figure 2.11B). These ARGs were 

virtually undetectable in cattle slurry, as discussed in the previous section. Interestingly, 

other studies have described similar increases in the abundance of beta-lactamases in 

soil following application of cattle manure derived from animals with no history of 

antibiotic treatment (Udikovic-Kolic et al., 2014, Hu et al., 2016). As in the present 

study, Hu et al. (2016) detected low prevalence of most beta-lactamases, except select 

Class D ARGs. Both aforementioned studies therefore propose the observed increases in 

beta-lactamase genes related to the propagation of intrinsic soil bacteria, rather than the 

introduction of bacteria resident in cattle manure. Some caution should be exercised with 

regard to this interpretation when considering the present study, since no significant 

increases in beta-lactamases were discernible in May 2018. Although this could be 

explained by the earlier application date in 2018, Muurinen et al. (2017) was also unable 

to demonstrate a similar response.  

It also is important to acknowledge that Class D beta-lactamases were more abundant in 

samples from the untreated site than the treated site (corncob model: p <0.01). At first 

glance this result was unexpected, given oxa genes were common in slurry and could be 

considered a biomarker for slurry contamination. Indeed, a q-PCR-based study showed 

oxa genes could be enriched in Danish agricultural soils receiving swine manure relative 

to inorganically fertilised soil (Graham et al., 2016). Existing information on oxa genes 

could offer some explanation for this result. Firstly, oxa-type genes are a diverse ARG 

subtype with between 150 - >300 variants described to date (Walther-Rasmussen and 

Høiby, 2006, Poirel et al., 2010, Antunes et al., 2014). In addition, these variants can be 

further divided into those which confer narrow or broad-spectrum (carbapenem) 

resistance (Walther-Rasmussen and Høiby, 2006, Poirel et al., 2010); though the precise 
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composition of these two groups is subject to debate (Antunes et al., 2014). The 

variation of these genes is of note as DeepARG appears unable to distinguish between 

oxa variants, and so the composition of slurry, treated soil and untreated soil oxa genes 

could be very different in this regard. Furthermore, oxa-type genes have been identified 

in Actinetobacter sp. (Reviewed by Doughari et al., 2009), Aeromonas sp. (Janda and 

Abbott, 2010) and Pseudomonas aeruginosa (Walther-Rasmussen and Høiby, 2006) 

which are known to occur in the soil environment and represent a natural reservoir of 

these ARGs. However, this does not necessarily explain the greater abundance of oxa 

genes in the untreated site. Further research is required to clarify the extent to which 

these clinically important ARGs (namely the carbapenemases) are abundant in soils 

devoid of livestock contamination. 

Finally, many studies have reported sulfonamide ARGs are abundant in soil and/or 

enriched by the addition of animal waste (Fahrenfeld et al., 2014, Nõlvak et al., 2016, 

Zhou et al., 2016, Muurinen et al., 2017, Lin et al., 2019) In contrast, the present study 

showed that while sulfonamide ARGs were consistently detected in cattle slurry they 

were seldom detected in treated soil and were not detected in any soil samples from the 

site with no history of slurry application. On the other hand, another metagenomic study 

was unable to detect sulfonamide resistance genes in soil, despite detection in cattle 

manure (Noyes et al., 2016). Likewise a study conducted on Chinese arable soil with 

long-term swine manure exposure found negligible evidence of sulfonamide resistance 

genes in treated soils (Cheng et al., 2019). It is likely a multitude of factors explain 

these differences. Firstly, variation in soil texture can influence the sorption of 

sulfonamide antibiotics (Thiele‐Bruhn et al., 2004) and therefore modulate selection 

pressure. Secondly, on-site sulfonamide use is also likely to vary between farms. Lastly, 

the DeepARG database contains few sulfonamide ARGs and the curators acknowledge 

this may impair assignment to this category (Arango-Argoty et al., 2018). Given the 

complex nature of the soil matrix and influencing factors, it is perhaps unsurprising that 

data regarding animal waste-impacted soil is less consistent than findings confined to 

animal waste.  
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2.4.3 Network Analysis   

Co-occurrence networks have been used in multiple publications to infer and visualise 

associations between ARG groups as well as MGEs and bacterial community members (Li 

et al., 2015a, Hu et al., 2016, Zhang et al., 2017b, Chen et al., 2019b). Here, focus is 

placed on ARG-ARG group associations, as ARG-taxon associations will be explored in 

subsequent Chapters. 

The networks for each environmental location (slurry tank, treated field site and 

untreated field site) were assembled individually in order that comparisons could be 

made between different sites. The resulting networks are sparse, although it should be 

stressed that many ARG groups were excluded from network construction as they were 

detected in fewer than half the samples representing a given location. The decision to 

exclude these was taken to minimise the recovery of spurious associations. Reducing the 

exclusion threshold can have a dramatic effect on networks. For example, if the 

threshold is reduced to include ARG groups which occur in >30% of samples, nodes 

representing tetT and mefA can be found linked together in treated soil, but not 

untreated soil. This is worthy of note since these ARG group associations are also 

common to the slurry network and represent gene groups which were sporadically 

increased in slurry treated soils. Consequently, the reported networks are best 

considered to be representations of the core resistome. With this in mind, the utility of 

the networks was restricted to inferring dominant ARG-ARG associations which might 

distinguish between the sampled sites. (Figure 2.13). For example, a putative 

association between the rifamycin ARG group rphA and the glycopeptide ARG group 

vanR was independently identified in both soil networks yet these nodes were not 

connected in the slurry network. In addition, an association between bacitracin ARG 

group rosB and multidrug ARG group oqxB was identified in both soil networks. Similarly, 

muxB and muxC multidrug resistance gene groups co-occurred in both soils. 

Interestingly, muxB and muxC form part of a resistance nodulation cell division (RND)-

type efflux pump, and so their association is not lacking biological basis (Mima et al., 



83 
 

2009). In addition mdtB co-occurred with muxB in both soils, which corresponds with 

literature indicating the aforementioned ARG groups exhibit sequence homology and 

similar function (Górecki and McEvoy, 2020). On the other hand, the developers of 

DeepARG advise caution regarding the annotation of multidrug resistance genes owing to 

extent of homology between genes within this category. In any case, the fact that the 

machine learning model distinguished between these gene groups suggests annotations 

in this category are not entirely unreliable (given the shared sequence homology it might 

be expected the two groups would be conflated). It should be acknowledged that the 

lower connectivity of slurry and untreated soil networks relative to amended soil may be 

an artefact of smaller sample size. However, the detection of the same associations in 

two independent soil sites support the veracity of these networks. 

The network analysis of slurry ARG groups inferred the co-occurrence of tetracycline 

efflux and sulfonamide ARGs (tetY, tetA and sul2 respectively).  Associations between 

these ARG categories have been previously reported (Gow et al., 2008). Finally, cfxA 

beta-lactamase gene groups are associated with each other and their co-occurrence is 

further demonstrated by the heatmap where they are assigned to the same cluster.  

Overall, the networks display limited complexity, although this may be largely due to 

insufficient sequencing depth and the assumption of network sparsity implemented by 

SpiecEasi. In future studies a greater and equal number of samples might be taken from 

sites to improve both network resolution and comparability, however this is accompanied 

by considerable increase in cost and computational requirements. Despite these 

limitations the networks imply the presence of biologically plausible associations which 

are consistent in soil irrespective of slurry amendment. 
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2.5 Conclusion  

In summary, the present study has shown that dairy cattle slurry harbours a range of 

ARG groups conferring resistance to clinically significant antibiotics, namely MLS, 

aminoglycosides and tetracyclines. Of further note, these findings largely corroborate 

cattle waste resistomes described in previous studies which have used assorted 

molecular techniques (in particular qPCR) and were carried out at farm sites which vary 

in antibiotic treatment regimen, geographical location and waste management. The 

extent of cross-study agreement therefore lends support to the output of the machine-

learning algorithm used for putative ARG annotation whilst also suggesting the existence 

of a core resistome common to cattle waste irrespective of antibiotic use. The high 

prevalence of MLS ARGs in slurry despite a lack of recent MLS antibiotic use on the farm, 

as well as an inability to detect MLS antibiotics in the slurry underscores the difficulty in 

determining the drivers of AMR in real-world systems. As expected, analyses 

demonstrated strong overall separation between slurry and soil resistomes. 

With regard to the impact of slurry application on the soil resistome, it is evident that the 

majority of the slurry-associated ARG groups fail to become either enriched or 

entrenched within the soil environment, as has been found in other studies examining 

sites with long-term exposure to cattle waste. The current study has shown slurry ARG 

groups are detectable in soil immediately after slurry application, though their presence 

is ephemeral, with most becoming undetectable in less than 8 weeks, though some may 

persist for longer. The transient nature of these periodic fluxes is supported by multiple 

ordination methods illustrating the divergence of the treated soil resistome relative to 

untreated soil during the open period of slurry application. However, the role of seasonal 

changes in environmental factors unrelated to slurry application requires clarification, 

ideally through a combination of controlled microcosm studies and multi-year surveys 

which are currently lacking. On the other hand, results indicate a small assemblage of 

slurry-associated ARG groups are more abundant in treated soil than soil with no history 

of cattle waste exposure; however, their relative abundance did not vary according to 
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season. Consequently, it is proposed that introduced ARGs with high mobility may 

occasionally become enriched and maintained throughout the year in resident soil 

bacteria as a result of long-term slurry application, while introduced ARGs with a 

restricted host range are rapidly attenuated. In addition, indigenous soil ARGs may also 

become enriched following long-term slurry application.  Whether the accumulation of 

antibiotics plays a role in the maintenance of slurry-borne ARGs is uncertain, since 

antibiotic concentrations in soil were not measured in this study. It should be 

acknowledged that the application of 'whole' cattle manure which has not undergone the 

separation process may produce a different effect. It has been shown that separation 

may reduce ARG load (Oliver et al., 2020b). Lastly, other factors such as application 

method (disc-incorporation and shallow injection), soil type and application rate were not 

explored in this study and could influence bacterial and ARG survival.  

 

While these results largely support the findings of microcosm and 'snapshot' studies 

which previously analysed data from multiple farms, few metagenomic studies have 

combined temporal analysis of soil and on-site slurry over an entire season. In addition, 

this study documents the impact of UK regulations implemented in a nitrate vulnerable 

zone on the soil resistome. Future research would benefit considerably from dedicated 

efforts to validate the use of machine learning algorithms to annotate ARGs in 

environmental metagenomes. The use of metagenomics in conjunction with qPCR could 

greatly refine the use of machine learning algorithms, allowing the gamut of publicly 

available metagenomes to be more confidently analysed. Ultimately this would harness a 

largely untapped resource and make multi-season, pan-farm analyses much more 

feasible. 
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Chapter 3 

Evaluating Soil Bacterial Community Shifts 

Following Cattle Slurry Amendment 

 

3.1 Introduction  

 

While the primary focus of the previous chapter was to assess the diversity and 

prevalence of antibiotic resistance genes (ARGs), the current chapter is concerned with 

bacterial composition and temporal shifts in the surveyed environmental compartments. 

Although the over-arching aim of the work was to evaluate the risk posed by the spread 

of antibiotic resistance genes through fertilisation of grassland with dairy slurry, a grasp 

of bacterial populations in amendments and soil over time is vital as environmental 

resistomes have been shown to reflect bacterial community structure in both habitat and 

microcosm-scale studies (Forsberg et al., 2014, Li et al., 2015a, Hu et al., 2016). 

Furthermore, the dissemination of enteric opportunistic pathogens present in animal 

waste represents an important nexus between the study of antibiotic resistance in the 

environment and both human and animal health (Burgos et al., 2005, Ibrahim et al., 

2016, Leclercq et al., 2016). However, given the complexity of outlining bacterial 

responses in over 50 metagenomes, the interactions and associations between ARGs and 

bacterial taxa will be discussed in the next chapter. 

In the broadest sense, the impact of animal manure on soil microbial communities has 

been, and continues to be, the subject of extensive research (Riber et al., 2014, Leclercq 

et al., 2016, Zhang et al., 2018b, Podmirseg et al., 2019, Coelho et al., 2020). The vast 

majority of studies fail to consider short- and long-term effects at the same site. For 

instance, there are studies which focus exclusively on effects over the short-term 

(weeks/months) (Rieke et al., 2018, Xiong et al., 2018) or the long-term (months/years) 

(Sun et al., 2015, Wang et al., 2016b). Those that attempt to consider both can be 
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single ‘snapshots’ of different (and fundamentally contrasting) sites which have been 

sampled at varying points since a given fertilisation and thus do not represent a true 

temporal continuum (Liu et al., 2017). Another such study examined how differing years 

since the last manure exposure affected the microbial communities within field plots 

(Zhang et al., 2018b). 

Meanwhile, a large proportion of publications incorporating temporal analyses tend to be 

microcosm studies that are not always representative of the farming systems they intend 

to emulate. Although microcosms are valuable in that they allow manipulation of discrete 

variables, Chen et al. (2019a) remarked that numerous experiments have spiked animal 

waste with antibiotics in excess of what would realistically be present as a result of 

typical antibiotic treatment and this is likely to exaggerate, or otherwise distort, both 

resistome and microbiome responses. For example, Zhang et al. (2017b) acknowledged 

that the concentration of tylosin in their antibiotic spiked manure-amended soil 

microcosms was several orders of magnitude higher than concentrations reported in 

field-based studies. Furthermore, the dilution effect of field-scale fertilisation on manure-

borne organisms is unlikely to be replicated in particularly small microcosms. Ideally, 

controlled microcosm experiments would be carried out in conjunction with field studies, 

however the practicality of this is likely to be prohibitive.  

On the other hand, only a subset of studies employ a true metagenomic approach, using 

techniques such as T-RFLP (Abubaker et al., 2013) and DGGE (Blau et al., 2018, 

Podmirseg et al., 2019) which, while certainly valuable, exclusively provide information 

on dominant taxa. The most common molecular technique is 16S-rRNA amplicon 

sequencing which typically provides data to genus level although biases can be 

introduced through choice of 16S region (Bukin et al., 2019). Whilst metagenomics is not 

without bias, it does not rely on marker regions. 

In addition, work examining the persistence of manure-borne organisms in soil typically 

focuses on very specific indicator organisms, which will miss relevant changes in the 

total bacterial community and groups of understudied bacteria. 
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Lastly, a paucity of research considers the impact of repeated manure exposure and the 

consistency of their effect throughout a progression of changing climatic conditions. 

Related to this, only Hodgson et al. (2016) appears to have evaluated how seasonal 

effects interact in a nitrate vulnerable zone (NVZ) despite their abundance in the UK. 

Indeed, approximately 55% of land in England is currently within a designated NVZ 

(GOV.UK, 2020a).  

In light of this, much remains to be addressed and the present experimental design 

represents a unique opportunity to further bolster and refine existing understanding of 

bacterial community dynamics in a field receiving cattle slurry amendment. Therefore, 

the key aim of this chapter was to characterise changes in the soil bacterial community 

composition in response to repeated applications of cattle slurry and describe the key 

abiotic and biotic drivers associated with these changes.  

 

3.2 Materials and Methods 

 

3.2.1 Approach, Sampling and Sequencing  

Taxonomic assignment and downstream analyses were carried out on the same 

metagenomic libraries discussed previously (Chapter 2). Full descriptions of sample 

sites, sampling strategy and sequencing are given in Chapter 2.  

 

3.2.2 Soil Physiochemical Analyses 

For extractable macro- and micro-elemental analysis, 1 g of soil was suspended in 9 mL 

of 1M NH4NO3 and mixed thoroughly by agitation using a rotary shaker for 1 hour. 

Subsequently, samples were centrifuged and 1 mL of the resulting supernatant was 

diluted in 9 mL of 2% nitric acid. Finally, samples were passed through a 0.22 μm filter 
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before being loaded for inductively coupled plasma mass spectrometry (ICP-MS; 

Thermo-Fisher Scientific iCAP-Q; Thermo Fisher Scientific, Bremen, Germany). The total 

extractable carbon (TC), total extractable organic carbon (TOC), and nitrogen (TN) were 

determined using a CN analyser (Model Shimadzu TOC-VCPH, PC-controlled high-

sensitivity model) after extracting the soil samples with 0.5 M K2SO4 solution in the ratio 

of 1:5 and further diluting with ultra-pure water in the ratio of 1:10. 

For pH, 1 g of soil was homogenised in 2.5 mL of water, before taking readings with a 

pH probe (Hanna pH-209). Moisture content was calculated gravimetrically after oven 

drying field moist soil at 105oC until constant weight was obtained (24h) (Black, 1965).  

 

3.2.3 Taxonomic Classification 

Taxonomic classification of all 150bp short-read Illumina NovaSeq libraries was 

performed with Kaiju v1.7.1; a protein-based classification software (Menzel et al., 

2016). Kaiju was run in 'greedy mode' allowing three mismatches. The nr_euk database 

was used (version date 25/06/2019, >100M sequences), which contains all protein 

sequences from the NCBI BLAST database associated with Archaea, Bacteria, protists, 

fungi and viruses.  

An already diverse array of taxonomic classification tools continues to expand as 

bioinformaticians respond to the increasing number and scope of metagenomic studies 

(Breitwieser et al., 2019). Furthermore, software selection is not trivial since reports 

have shown it can have clear implications for downstream interpretation of data 

(Sczyrba et al., 2017, Siegwald et al., 2019). With no universally superior program, 

optimising the choice of tools for classifying metagenomes is a substantial undertaking, 

which typically hinges on the environmental origin of samples, the specific research 

questions being investigated and the computational power available to researchers. 

However, a number of recent attempts have been made to independently benchmark as 
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many as 20 taxonomic classification tools (McIntyre et al., 2017, Gardner et al., 2019, 

Simon et al., 2019).  

Chiefly, these reviews have aimed to determine the precision, recall and computational 

efficiency of software. Where recall metrics aim to reflect the extent to which classifiers 

capture all the unique species genuinely present within a sample, precision metrics place 

emphasis on the prevalence of false positives; together these metrics provide an 

indicator of overall classifier performance (Gardner et al., 2019, Simon et al., 2019).  

The relationship between these two metrics is typically antagonistic, with classifiers 

exhibiting high precision at the expense of recall and vice versa (Gardner et al., 2019). 

It should be noted that benchmarking studies rely almost exclusively on simulated 

datasets (McIntyre et al., 2017, Gardner et al., 2019, Simon et al., 2019), which while 

necessary is important to acknowledge when considering ‘real world’ metagenomes. 

Finally, the continual expansion and revision of reference databases confounds many 

comparisons and limits their future relevance. 

Of the more recent assessments, Kraken is generally ranked favourably (Gardner et al., 

2019, Simon et al., 2019). Kraken uses a k-mer-based system for classification, which is 

an approach widely represented among currently available classification tools 

(Breitwieser et al., 2019). Unlike early local alignment methods, a k-mer-based 

approach involves screening a reference database against sample library sequences for 

exact matches of a predefined nucleotide length referred to as k (default k = 35 in the 

case of Kraken2); this improves computational efficiency when handling large read 

libraries. The accuracy of abundance profiles can be further increased using Bracken, a 

companion program to Kraken which uses Bayesian probabilistic modelling to re-

estimate relative abundance (Lu et al., 2017). 

Although Kraken/Bracken has been shown to perform well in terms of recall and 

precision when analysing synthetic communities, reviews attempting to assess the 

suitability of specific classifiers for complex soil communities are lacking. The immense 

difficulty of simulating a metagenome for benchmarking purposes which approaches an 
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accurate representation of soil - a habitat which is widely regarded as both highly 

heterogenous and microbially diverse (Roesch et al., 2007, Myrold et al., 2014), is one 

possible explanation. Furthermore, soils are purported to encompass a large number of 

low-abundance species which often possess few or no known representatives in 

reference databases (Menzel et al., 2016). As such, estimated recall based on synthetic 

community evaluations may not translate well in practice where soil metagenomes are 

concerned.  

Unlike Kraken, Kaiju is another classification tool, which relies on a pre-configured 

protein database rather than a nucleotide database. The developers of Kaiju indicate a 

protein-based classification system could improve recall and reduce the impact of 

sequencing errors. These advantages are attributed to the enhanced conservation of 

translated protein-coding regions (relative to non-coding regions) and the redundancy of 

genetic code (Menzel et al., 2016). Indeed, Menzel et al. (2016) demonstrated Kaiju 

could classify a considerably larger proportion (~40% vs 20%) of real soil metagenome 

reads compared to Kraken.  

On the other hand, Simon et al. (2019) found that Kaiju typically classified fewer 

synthetic reads than Kraken, and reported that even though the overall performance of 

Kaiju largely paralleled Kraken/Bracken, the former was disproportionately susceptible to 

a false positive classifications below 0.01% relative abundance. 

It has been suggested that low abundance (>0.1 or >0.01% relative abundance) taxa 

can be filtered to improve precision, however reviews have also cautioned that in soils, 

where many species are estimated to be present below 0.01%, such a strategy risks 

discarding a large number of true positives (McIntyre et al., 2017). The retention of rare 

taxa may also have relevance for associating ARGs with taxa entrained in soil via animal 

slurry application, since these bacteria may represent a miniscule proportion of the total 

microbiome and recovered reads. 

In an attempt to address the challenge of balancing the need for high recall and 

precision in the current study, all metagenomic libraries were processed with both Kaiju 
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v1.7.1 and Kraken2 v2.0.8-beta/Bracken v2.5.0. Every effort was made to ensure the 

most contemporary, comprehensive and accurate databases were used with each tool. It 

should be noted that the RefSeq database (including 'complete' and 'representative' 

sequences for Archaea, Bacteria, protists, fungi, viruses and the human genome) used 

for Kraken (50-60M nucleotide sequences) was somewhat smaller than the protein 

database used for Kaiju (>100M protein sequences). A larger database including 

incomplete/draft genomic sequences is available for Kraken, however this was not used 

in favour of RefSeq-curated sequences due to limited compute resources. Perhaps 

unsurprisingly, Kraken only classified 9.31% ± 0.28 of slurry and 26.21% ± 0.19 of soil 

sample reads to species level, whereas Kaiju assigned between 30.26% ± 0.44 and 

45.34% ± 0.13, respectively.  

It is therefore likely that Kraken substantially underrepresented species richness (across 

all domains: n = 4126 ± 6, 4086 ± 3 slurry and soil respectively), while Kaiju classified 

a much larger contingent (n = 19811 ± 21, 18638 ± 73 slurry and soil respectively). 

Interestingly, a large pyrosequencing survey by Roesch et al. (2007) indicated soil 

microbiomes contain between 26000-53000 unique OTUs (operational taxonomic units).  

Even so, without knowing the "ground truth" of species in each sample, it was decided 

that differential taxa reported by both Kaiju and Kraken should be compared to assess 

the potential impact that Kaiju's false positive rate may have on data interpretation. 

Comparisons of taxa shared by both databases at both genus and species level were 

largely in agreement, with most disparities emerging at family level due to differing 

database structure as opposed to estimated relative abundances. The output of Kaiju 

was therefore used for the final analyses in place of Kraken2/Bracken.   

Future soil metagenome studies would benefit from using an equivalent database 

compatible with Kraken2/Bracken for evaluation. The challenge regarding false positives 

has also been acknowledged by the team behind Kaiju, who have since released a 

revised program Kaiju-Core, which aims to address the issue further (Tovo et al., 2020). 
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3.2.4 Data Analysis and Statistical Methods 

3.2.4.1 Determining Bacterial Associations by Site: Data Exploration 

To enable consistent inferences across taxonomic ranks, all reported analyses focus 

exclusively on reads assigned to species level and above. Preliminary analyses indicated 

that the exclusion of reads which did not meet this criterion had minimal impact on 

overall inter-sample relationships and did not alter dominant taxa. Site-based taxonomic 

data exploration was carried out using many of the techniques outlined previously 

(Chapter 2), with minor modifications. In brief, PCA was carried out on genus and 

phylum level centre-log ratio (CLR) transformed count data as suggested by Gloor et al. 

(2017). Visualisation with tSNE was also applied to CLR transformed count data, while 

NMDS was performed on relative abundances (taxon-specific counts as a proportion of 

total reads), since the Bray-Curtis dissimilarity index is unable to handle the negative 

values produced by CLR transformation. One limitation of the Bray-Curtis dissimilarity 

index is that while abundances are evaluated, the phylogenetic relatedness of taxa is not 

considered. However, weighted UniFrac distance takes into account both abundance and 

phylogenetic relatedness (Lozupone et al., 2007). To further inspect the relationship 

between sample groups, weighted UniFrac distances were calculated for a) all sites and 

b) soil samples collected in 2018 using the R package GUniFrac v1.3. (Chen and Chen, 

2018). In order to calculate the UniFrac distance it is necessary to provide a 

phylogenetic tree containing tips representing each identified taxon. This is can be based 

on 16S rRNA reference sequences (Lozupone and Knight, 2005). Due to the large 

number of unique species identified by Kaiju, which included many uncultured organisms 

for which a curated 16S rRNA sequence was not readily available it was deemed 

impractical to construct a phylogenetic tree based on these data. Instead, the smaller 

Kraken classification dataset was screened against a 16S rRNA reference tree based on a 

sequence database downloaded from https://github.com/bowmanjeffs/paprica (accessed 

September 2021). Of the 4274 unique taxa identified by Kraken it was possible to match 

3484 tips in the reference tree (>80%), the latter of which were used in UniFrac 
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calculations. Weighted UniFrac distance matrices were visualised via principal coordinate 

analysis (PCoA) in PRIMER v6 (Clarke and Gorley, 2006). Analysis of multivariate 

homogeneity of variance and PERMANOVA was also performed with the PERMANOVA+  

add-on  for PRIMER (Anderson et al., 2008).  

An equivalent analysis was not performed for ARGs as there is no universally shared 

sequence region that could be used as a marker for comparisons across gene families 

and resistance categories. 

        

3.2.4.2 Physiochemical Associations With Taxa 

Physiochemical properties were initially explored by site with PCA. Based on site 

differences indicated by Corncob, relationships between key physiochemical properties 

and taxa (phyla-level only) were subsequently analysed with Spearman's Rank 

correlation testing using CLR-transformed count data (only correlations with fdr-adjusted 

p < 0.05 were considered significant).   

 

3.2.4.3 Differential Abundance Analysis 

Differential abundance analysis was performed on genus and phylum level data using 

Corncob as described previously (Chapter 2). Select species of interest were also 

individually modelled (e.g. faecal indicator organisms such as E. coli). Factors including 

site and season were considered. Feature selection was carried out as described 

previously for ARGs, however, the resulting matrix effectively duplicated the clustering 

patterns shown within the previous chapter and is therefore not shown here. Briefly, this 

suggests it is possible identify both ARG and taxon biomarkers which distinguish slurry, 

slurry-impacted soil and untreated soil from each other (see results and discussion for 

candidate biomarker taxa based on differential abundance analysis).      
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3.2.4.4 Changes in Taxon Abundance Following Slurry Application 

As with the equivalent analysis of ARGs (Chapter 2), the immediate impact of slurry 

application on soil taxa was investigated by examining samples collected from the slurry-

treated site between the first and second slurry application in 2017. However, Corncob 

was used in preference to LEfSe. While the transient occurrence of many ARGs during 

the aforementioned period prevented effective modelling of ARGs with Corncob, bacterial 

taxa typically exhibited consistent occurrence (but variable abundance) across samples. 

It was therefore possible to model changes in taxa at genus and phylum level using 

Corncob. 

   

3.2.4.5 Bacterial Richness and Diversity Estimations by Site 

Richness and alpha diversity estimates were calculated at the species level using iNEXT 

as described previously (Chapter 2). However, for beta-diversity the weighted UniFrac 

distances were used in preference to Bray-Curtis distances (UniFrac method previously 

described in this chapter). This decision was taken because the incorporation of 

phylogenetic relatedness by UniFrac was deemed more biologically informative. Pair-wise 

comparisons for diversity measures were carried out as described in Chapter 2. 

 

3.2.4.6 Bacterial Network Construction 

Phylum level networks were constructed using SpiecEasi as previously described 

(Chapter 2). Genus-level network analysis could not be carried out using SpiecEasi due 

to compute memory requirements. Alternatively, a global (i.e. samples from all sites) 

genus-level network was constructed with CoNet (Faust and Raes, 2016) and visualised 

with Cytoscape (Smoot et al., 2011). The CoNet network was constructed with the 

following settings: genus minimum occurrence = 10 samples, Spearman's Rank R >0.8, 

fdr-adjusted p <0.05, bootstrapping = 100 iterations. 
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3.3 Results 

3.3.1 Determining Bacterial Community Composition by Site: 
Data Exploration 

 

Across the entire dataset, Kaiju classified a total of 26356 unique species belonging to 

134 phyla. Of these unique species, 7.64% were assigned to a single read within the 

dataset. Most species were shared among all three sample sites (76.14%), while a small 

proportion (11.26%) were specific to a single site. Few genera (2.58%) were site-

specific and no discriminatory phyla were observed (Figure 3.1). Rarefaction curves 

(produced with vegan) showed unique species recovery plateaued for all samples, 

irrespective of site (Figure 3.2). Sequencing depth was therefore deemed sufficient to 

characterise these environments based on the reference database used, although a large 

proportion of soil (<60%) and slurry reads (<75%) remained unclassified to species 

level (Figure 3.3A). 
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Figure 3.1 UpSet plot created using Intervene, illustrating the extent to which taxa were shared across sample types (detected or 

undetected). Genus (A), species (B). Solid vertical lines connecting sites on the x-axis denote taxa detection across multiple sites. Single dots 

on the x-axis denote taxa which were detected in only one site. Set size relates to the total number of unique taxa identified within a given 

site. 



98 
 

 

Figure 3.2 Rarefaction curves based on the number of species identified by Kaiju. 

Produced in R with rarefy function in vegan.    

 

Differences in overall bacterial composition were explored by identifying dominant taxa 

according to site. Dominant taxa were considered as those constituting the top 10 most 

abundant taxa at any given taxonomic rank (dominant phyla and genera are shown in 

Figure 3.3B and C). Clear distinctions were demonstrated between the classified fraction 

of soil and slurry reads at both phylum and genus level. Specifically, the most prevalent 

phyla identified in slurry were Firmicutes, Bacteroidetes and Spirochaetes, respectively. 

In contrast, both soil sites were primarily represented by Proteobacteria, Actinobacteria 

and Acidobacteria. Actinobacteria formed a larger proportion of reads relative to 

Acidobacteria in slurry-treated soil, while the reverse was displayed in untreated soils. 

Untreated and slurry-treated sites were further distinguished by the ninth dominant 

phyla, which were Nitrospirae and Gemmatimonadetes respectively. On average, the top 

10 dominant phyla comprised >90% of all reads assigned to species level irrespective of 

sample origin. 
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Figure 3.3 Stacked barcharts detailing taxonomic composition of reads. Untreated refers to field site soil with no history of slurry application, 

treated refers slurry-impacted site soil and slurry refers to slurry from the slurry tank. Breakdown of all reads by domain, including those 

unclassified by Kaiju (A). Top 10 phyla associated with bacterial reads assigned to species level (B). Top 10 genera associated with bacterial 

reads assigned to species level (C). Summary of Proteobacterial class based on reads assigned to Proteobacterial species (D). 
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At the genus level, the distinction between soil and slurry samples was also pronounced; 

only a single genus (Pseudomonas) was common to the top 10 dominant genera in soil 

and slurry samples (Figure 3.3C). Slurry samples were characterised by the 

preponderance of Sphaerochaeta, followed by Clostridium and Bacteroidetes. Meanwhile, 

the principal genera in soil samples included Bradyrhizobium, followed by Streptomyces 

and Mycobacterium.  

The differences between dominant phyla in soil sites were also discernible at genus level. 

The inclusion of Nocardioides (Actinobacteria) and Gemmatimonas (Gemmatimonadetes) 

among dominant taxa in treated soil and their lower relative abundance in untreated soil 

reflects this. Likewise, Nitrospira (Nitrospirae) formed a larger proportion of reads in 

untreated soil relative to treated soil. 

On average, the top 10 dominant genera contributed <12.5% of all reads assigned to 

species level in soil, whereas the equivalent genera formed more than 25% of these 

reads in slurry samples. The differing proportion of bacterial species associated with 

dominant genera likely alludes to a more diverse community in soils relative to slurry. 

PCA of bacterial phyla and genera depicted largely similar trends regarding site. As 

shown in Figure 3.4A and B, data are most notably split along PC1 (75.4% and 78.8% 

variance for phyla and genera, respectively), with slurry clearly separated from the two 

soil sites. In addition, the variance along PC2 of the untreated site was consistently 

greater than that of the slurry-impacted site for both phylum and genus level.  

In contrast, the variance of slurry along PC2 was substantially reduced for genera 

compared to phyla, while the opposite was apparent for treated soil samples. The 

separation between slurry-impacted and untreated site samples was also more 

pronounced at genus than phylum level (discrete clustering at 90% confidence), 

although the explained variance on PC2 was marginally reduced (3.9% and 7.0% 

variance, respectively). Lastly, the position of treated soil and slurry samples on PC2 

were closer at the genus, rather than phylum level. 
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Figure 3.4 PCA of CLR (centre log ratio)-transformed data for phyla (A) and genera (B). Data are scaled and centred. Ellipses represent 0.9 

probability. Colours represent samples; blue (slurry), green (slurry-treated soil) and orange (untreated soil).    
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NMDS of phylum and genus-level soil data for 2018 illustrates samples were clustered by 

site (Figure 3.5). In addition, treated soil samples were more tightly clustered than those   

from the untreated site (dispersion only significantly different for genus level data, p < 

0.04), with potential site-month interactions also visible. Homogeneity of variance within 

site and month factors were confirmed in phylum level data only. PERMANOVA of phylum 

level data confirmed site and site-month interaction effects (p <0.01 and 0.037, 

respectively). Ordination plots of bacterial composition were therefore somewhat 

consistent with equivalent analysis of resistome data (Chapter 2). Of particular note, 

Bray-Curtis distances for bacterial genera and ARG subtypes indicate significantly 

greater dispersion is present among soil samples collected from the untreated site 

relative to those from the slurry impacted site.    

Overall, tSNE analysis was consistent across phyla and genera (Figure 3.6), and 

reflected the global structure of PCA. Accordingly, all sample types were discretely 

clustered, with spatial separation greatest between soil and slurry samples. This pattern 

was preserved at all iterations and perplexities evaluated and suggests a reliable 

representation of the data. In simple terms, the perplexity value controls how much 

emphasis is placed on preserving local or global data structure in two dimensions 

(Wattenberg et al., 2016). By using a range of perplexity values is it possible to establish 

the relative stability of the visualisations.  

PCoA of UniFrac comparisons for both soil sites and slurry indicate a clear separation of 

soils and slurry across PCO1 (97.4% variance) and minor separation of soil groups over 

PCO2 (1.1% variance) (Figure 3.7A). This largely reflects patterns previously shown by 

PCA. Group differences were further evaluated by PERMANOVA (site, p < 0.001) and 

pair-wise tests (all site combinations p < 0.001). This suggests the taxa which 

distinguish between samples groups are phylogenetically distinct. Heterogeneity of 

variance was detected between slurry and both soil sites (PERMDISP, p < 0.001), but 

not between soils. Interestingly, slurry possessed the  greatest within group standard 

error (± 0.005), which alludes to more pronounced differences in the abundance and 

phylogenetic relatedness of detected taxa between batches of slurry relative to soil, 
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where within group differences may correspond to more closely related taxa (based on 

the placement of reference 16S rRNA genes).  

PCoA of UniFrac distances for soil data collected in January and May 2018 (Figure 3.7B) 

exhibit similarities to NMDS/Bray-Curtis distance plots for Kaiju data. Specifically, 

samples clustered by site (PERMANOVA, p < 0.001) and displayed possible site-month 

interactions (PERMANOVA, p = 0.007).  

Heterogeneity of variance was identified between samples collected in January and May 

(PERMDISP, p = 0.002), with more variability in UniFrac distances exhibited between soil 

samples acquired in May relative to January. This is not surprising considering the 

increase in biological activity which typically accompanies the onset of spring.      

Homogeneity of variance was identified across untreated and slurry-impacted soil 

(PERMDISP, p > 0.2), which contrasts with genus-based NMDS/Bray-Curtis distances for 

Kaiju genera (Figure 3.5B shows greater variability in untreated soil 'ARB' than slurry-

impacted soil 'F31'). This may suggest the differences in dispersion based on Bray-Curtis 

distances correspond to taxa which are not phylogenetically distant. 

However, it should be noted that the UniFrac distances presented are based on a subset 

of the Kraken count data and that Kaiju classified many more reads. It is not possible to 

determine the significance of omitted taxa and consequently comparisons with 

ordinations relying on the Kaiju data should be treated with caution. Nonetheless, this 

analysis does not deviate strongly from the PCA and NMDS/Bray-Curtis distance outputs 

based on the Kaiju data and therefore provides phylogeny-based evidence to further 

support them.      
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Figure 3.5 Taxa NMDS plots for slurry-impacted (F31) and untreated site (ARB) in January and May 2018. Phyla (non-metric R2 = 0.995, 

linear R2 = 0.977, stress = 0.07) (A), genera (non-metric R2 = 0.995, linear R2 = 0.975, stress = 0.07) (B). Colour/shape corresponds to 

month of sample collection; red/diamond = January, blue/circle = May.    
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Figure 3.6 tSNE plots depicting CLR-transformed taxa data for phyla (A) and genera (B). Colours indicate sample type; blue = untreated site, 
red = slurry-impacted site, black = slurry). Perplexity = 10, iterations =1500. 
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Fig 3.7  PCoA of weighted UniFrac distances across site (A), PCoA of weighted UniFrac distances for 2018 soil data (B). Phylogeny based on 

placement of 16S rRNA reference sequences. Where applicable, colours represent sample type; blue (slurry), green (slurry-treated soil) and 
orange (untreated soil). Where applicable, letters denote month of sample collection; J (January 2018) and M (May 2018).
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3.3.2 Site Differential Abundance 

After controlling for the effect of site on dispersion, Corncob reported 1904 genera (see 

Supplementary file 2) and 124 phyla were differentially abundant across sites (untreated 

site used as baseline). Differential taxa broadly echoed patterns inferred from the 

relative abundance of site-specific dominant taxa. For instance, relative to untreated soil, 

Actinobacteria and Gemmatimonadetes were elevated in the slurry-impacted site and 

significantly less abundant in slurry. Likewise, Firmicutes and Bacteroidetes were 

increased in slurry relative to soil.  

However, Corncob additionally highlighted substantial site differences in many less 

abundant taxa. For example, Candidatus Eisenbacteria and most other differentially 

abundant phyla were more abundant in untreated soil relative to slurry-impacted soil 

(Figure 3.8). Conversely, only five other phyla were convincingly more abundant or 

differentially variable in treated soil relative to untreated soil. These include Tenericutes, 

Chlorobi, Candidatus Saccharibacteria, Chloroflexi and Bacteroidetes. Of these, only 

Bacteroidetes was among the dominant phyla. Predictably, slurry possessed many phyla 

which were highly abundant relative to soil (~75). In addition to the dominant phyla 

already described (Figure 3.3B), these include Fusobacteria, Candidatus Falkowbacteria 

and Candidatus Riflebacteria. Approximately 40 phyla are significantly less abundant in 

slurry compared to untreated soil, with the most prominent differences exhibited by 

Candidatus Eisenbacteria, Acidobacteria and Candidatus Rhokubacteria. 
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Figure 3.8 Corncob differential abundance plot comparing phyla relative abundance by 

sample type. Rows represent taxa. Untreated soil was used as the baseline for 

abundance and is represented by the central vertical dashed lines at 0. Taxa to the left 

of the dashed lines are less abundant relative to untreated soil, while those to the right 

are more abundant. Left panel compares slurry-impacted soil (F31) to untreated soil, 

while the right panel compares slurry to untreated soil. Bars denote 95% confidences. 
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Note: all taxa which were significantly different in at least one pair-wise comparison are 

shown, hence some confidence intervals may overlap zero where significance was not 

present for all comparisons.   

As shown with phyla (Figure 3.8), differences between the top 10 genera in soils (Figure 

3.3C) did not always signify the most differentially abundant taxa by field site. Although 

Nitrospira and Rhodoplanes were more abundant in untreated soil than in slurry-treated 

soil, Simkania, Vermiphilus and Halobacteriovorax were most differentially abundant; p 

< 0.05, effect size > 0.5 (note: taxa with extremely low and inconsistent read counts 

were excluded due to model instability). Data are not shown for logistical reasons related 

to size of Figure. Similarly, the relative abundance of Nocardioides and Gemmatimonas 

in treated soil samples compared to untreated soil was surpassed by Terrabacter, 

Monashia and Intrasporangium among others (p < 0.05, effect size > 1). Interestingly, 

the three genera associated with slurry-treated soil all belong the family 

Intrasporangiaceae, in turn, a member of the Actinobacteria. 

The most differentially abundant genera positively associated with slurry included 

Sphaerochaeta followed by Acholeplasma, Sarcina, Fermentimonas and Sedimentibacter 

(p < 0.05, effect size >5).  Unlike within the soil, dominant genera were among the 

most differentially abundant. However, despite the much greater prevalence of 

Clostridium in slurry compared to soil, modelling indicated less abundant genera 

displayed a larger difference in population size. Genera underrepresented in slurry when 

contrasted with soil included Rhodoplanes, Pseudolbrys, Pseudorhodoplanes and 

Candidatus Solibacter among others (p < 0.05, effect size >5). The most negatively 

differentially abundant genera share the order Rhizobiales (Rhodoplanes, Pseudolbrys 

and Pseudorhodoplanes). 

Lastly, effect sizes associated with differential abundance were generally much larger 

when comparing slurry to soil than when contrasting soil samples. A similar pattern was 

observed in resistome data.  

 

 



110 
 

3.3.3 Changes in Taxon Abundance Following Slurry Application 

Using pre-application samples as a baseline (5 days prior to amendment), shifts in the 

abundance of phyla and genera were observed in soil samples collected immediately 

after the first slurry application of 2017 (<24 hours post-application). In some instances, 

the immediate effects of slurry application diminished over the course of 56 days, while 

other taxa appeared to display a delayed response. In total, Corncob predicted 10/134 

differentially abundant phyla (Figure 3.9) and 631/2232 genera (Supplementary file 3). 

Owing to the large number of differentially abundant taxa highlighted by Corncob, only 

those which exhibited the largest and most consistent effect sizes are discussed in detail. 

 

Figure 3.9 Differentially abundant phyla according to Corncob <24 hours after slurry 

application (left panel) and 56 days following slurry application (right panel) in May 

2017. Here the base-line for effect size is represented by soil sample data obtained from 

the slurry-impacted site five days before the first application of slurry in 2017 (i.e., 

points left of the dashed lines are less abundant than baseline data, while those to the 

right are more abundant). Bars indicate 95% confidences. Note: all taxa which were 

significantly different in at least one pair-wise comparison are shown, hence some 

confidence intervals may overlap zero where significance was not present for all 

comparisons.    
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Candidatus Falkowbacteria was the most strongly enriched phylum both on the day of 

slurry application and 56 days later (p = 0.0017 and p = 0.037, respectively). However, 

this increase in Candidatus Falkowbacteria declined over 56 days. A similar, albeit less 

pronounced increase was observed in Tenericutes immediately after slurry application, 

with enrichment still evident 56 days later (p = 0.0053 and p =0.040, respectively). The 

candidate phyla Candidatus Falkowbacteria was first proposed by Brown et al. (2015) 

following extensive phylogenetic analyses of metagenome assembled genomes which 

were shown to share unique features indicative of symbionts (these genomes collectively 

form the putative Candidate Phyla Radiation). Further studies have since identified 

Candidatus Falkowbacteria genomes in aquifers, suggesting its association with a specific 

ecological niche (Anantharaman et al., 2018). A number of phyla which were unaffected 

immediately after slurry application were shown to have declined in abundance 56 days 

later. These included Bacteroidetes (p = 0.0059) and Balneolaeota (p = 0.0019). In 

contrast, Chloroflexi appeared to be negatively impacted by slurry application initially (p 

= 0.014) and then recovered, exceeding the baseline abundance 56 days after 

fertilisation (p = 0.014).  

Analysis indicated that a distinct assemblage of genera was increased within 24 hours of 

slurry application. Most prominently, these included Fermentimonas, Petrimonas, 

Sedimentibacteria, Proteiniphilum and Sphaerochaeta (listed in decreasing order of effect 

size). After 56 days a subset of these, namely Fermentimonas, Petrimonas and 

Proteiniphilum, were still significantly enriched relative to soil sampled before the first 

slurry application of the same year. Nonetheless, the abundance of these genera clearly 

declined over 56 days. Corncob modelling of these five genera throughout the period of 

study are shown in Figure 3.10. Other genera such as Pseudolabrys and Bradyrhizobium 

were also comparably increased 56 days after slurry application, despite a lack of 

enrichment evident on the day of slurry application. 
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Figure 3.10 Corncob model output plots for slurry biomarker genera which increased following slurry application (slurry-impacted field site 

only). Fermentimonas sp. (A), Petrimonas sp. (B), Proteiniphilum sp. (C), Sphaerochaeta sp. (D) and Sedimentibacter sp. (E). Samples are 

ordered chronologically on x-axis from T1 to T7. Estimated relative abundance as modelled by Corncob displayed on y-axis. Colours denote 

sampling time-points (refer to legend for further details about specific time-points). 
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3.3.4 Seasonal Differences in Bacterial Communities by Site 

Focussing on broad-scale shifts in bacterial communities according to season 

(spring/summer compared to autumn/winter), Corncob identified 65, 10 and 8 

differentially abundant phyla in slurry, untreated soil and slurry-impacted soil, 

respectively (Figure 3.11). Interestingly, although the untreated site and slurry-impacted 

site showed limited dynamism at the phylum level, according to Corncob; 670 genera 

were differentially abundant by season in slurry-impacted soil compared to only 57 

genera in untreated soil. This may parallel patterns described in Chapter 2 regarding 

seasonal changes in ARGs. Furthermore, it is apparent that microbial communities in 

slurry (most likely due to the limited protection from environmental conditions afforded 

by the open-topped tank) experience numerous phylum-level disturbances, in contrast to 

soil. Genus-level seasonality data are not discussed further, however Corncob plots are 

available (Supplementary file 4, 5 and 6). These results are included primarily to 

demonstrate the presence of seasonal shifts, and as the primary focus is on the 

dissemination of slurry-borne bacteria, such shifts will not be discussed in greater detail. 
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Figure 3.11 Differentially abundant phyla based on season. Slurry (A), untreated site soil (B) and slurry-treated site soil (C). Here the base-

line for effect size is represented by spring/summer (i.e., points left of the dashed lines are less abundant in spring/summer, while those to 

the right are more abundant). Bars indicate 95% confidences. 
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3.3.5 Physiochemical Correlations With Taxa 

Initial exploration of soil physiochemical properties suggested the presence of trends 

between the two sites (Figure 3.12). While the site with no history of slurry addition was 

associated of extractable caesium, cadmium and zinc; the treated site had a higher pH in 

combination with extractable calcium, magnesium and sodium. TOC, TC and barium 

were also distinguishing properties; however, Corncob analyses showed that pH 

explained the greatest proportion of variation in taxa between sites (Figure 3.13). A 

significant difference in pH between the two sites was further confirmed with a Welch 

two sample t-test (p = 0.0053). Lastly, correlations between pH and phyla were 

analysed using Spearman's Rank testing (see Figure 3.14 for selected plots). See 

Appendix 1 for a summary table of physiochemical data. 
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Figure 3.12  Log-normalised PCA of selected soil physiochemical properties by site (all units mg kg-1 except moisture which is given as 

percent). C_N = C/N ratio. Data are scaled and centred. Ellipses represent 0.9 probability. Arrows denote direction of greatest change, while 

length indicates strength of change. Colour corresponds to site; slurry-impacted soil (blue) and untreated site soil (orange). 



117 
 

 

 

Figure 3.13 Corncob analysis output plot showing differentially abundant bacterial phyla 

with pH as a covariate. Only soil data are displayed. Rows represent taxa. Points left of 

the dotted line are associated with reducing pH, while those right of the dashed line are 

associated with increasing pH. Bars denote 95% confidences.  
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Figure 3.14 Correlations between Bacteroidetes (R2 = 0.31, R = 0.55, p <0.01) (A), Gemmatimonadetes (R2 = 0.32, R = 0.57, p <0.01) (B) 

and pH. CLR-transformed count data for both sites are displayed; untreated field site (circles), slurry-impacted field site (triangle). Bands 

denote 95% confidence intervals. 
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3.3.6 Bacterial Richness and Diversity Estimations by Site 

 

Estimates of bacterial species richness calculated by iNEXT indicated differences between 

slurry and soil samples in line with raw richness estimates. On average, slurry-impacted 

soil and untreated soil samples had greater species richness compared to slurry, while no 

significant difference was observed between soil sites (see Table 3.1). Both estimated 

alpha-diversity measures also suggest that soils were more diverse than slurry, while no 

significant difference was detected between soil sites. Soil is known to be a highly 

structurally and biologically diverse environment with many unique low-abundance 

microbial taxa, whereas the slurry tank represents a comparatively hostile environment 

with likely fewer ecological niches to occupy. It is therefore unsurprising that soil is more 

diverse than slurry, even when focussing on the diversity of dominant taxa (as with q2). 

Beta-diversity estimates with weighted UniFrac distances further demonstrate contrasts 

between soil and slurry, , showing that while soil sites were indeed distinct from each 

other  in terms of community composition (p <0.001, mean distance < 0.04), slurry was 

considerably more divergent (p < 0.001, mean distance from either soil site >0.3).   

Table 3.1 Pair-wise comparisons of species richness and alpha diversity measure 

estimates according to iNEXT. Beta-diversity estimates based on   weighted UniFrac 
distance . 
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3.3.7 Network Analysis 

The structure, connectivity and potential hubs of bacterial networks differed by site, 

despite the absence of site-discriminant phyla (Figure 3.15). Connectivity corresponds to 

the number of correlations between nodes. Connectivity was greatest in slurry, with 

most nodes (phyla) connected to between three to four other nodes. Meanwhile slurry-

impacted soil and untreated soil nodes were typically connected to between two to three 

and one to two nodes respectively. The slurry-impacted soil network possessed the node 

with the most positive connections; Candidatus Aminicenantes (n = 8). Candidatus 

Aminicenantes therefore represents a hub node in slurry-impacted soil; defined as a 

phylum connected (correlated) with many more phyla than average within a network.  It 

is difficult to infer the true significance of these hub nodes without further experimental 

validation of the putative relationships. However, hub node phyla provide potential leads 

for future investigations aiming to identify ecologically important taxa in specific 

environments. There were many potential hub nodes in slurry, although none had more 

than five positive edges. In untreated soil, Ignavibacteriae was the most connected node 

(n = 6). While all networks contain between 73 and 80 negative edges, slurry had the 

most positive edges (n = 141), closely followed by slurry-impacted soil (n = 130) and 

untreated soil (n = 93). Core phyla ubiquitous in both field sites shared few connections, 

although Proteobacteria and Bacteroidetes were associated in both field sites. 

Interestingly, Bacteroidetes and Balneolaestona were associated in both slurry and 

slurry-impacted soil networks, but not in untreated soil. Additional cross-over could be 

found in the shared association between Kiritimatiellaeota and Lentisphaerae. 

Lastly, given the difference in sampling effort between field sites caution should be 

exercised when comparing these networks directly and where possible, inferences should 

be supported with other analyses which do not rely solely on correlation. 
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Figure 3.15 SpiecEasi networks depicting slurry (A), slurry-impacted site soil (B), and untreated site soil (C) phyla. Yellow nodes indicate top 

10 most abundant phyla, all others are coloured green. Node size is proportional to relative abundance. Blue lines represent positive 

correlations. Orange-dashed lines indicate negative correlations. Correlations fulfil fdr-adjusted p<0.05. 
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The 'global' genus-level network constructed using CoNet suggests robust clustering at 

the phylum-level (Figure 3.16). In addition, the two major clusters appear to broadly 

separate phyla according to those dominant in specific sample types. For example, the 

majority of Actinobacteria and Proteobacteria (soil-dominant), are clustered separately 

from Firmicutes (slurry-dominant). While the former may not be surprising, it is 

interesting that Bacteroidetes is split into two clear clusters which appear to associate 

with either the soil-dominant cluster or the slurry dominant-cluster. This may suggest a 

functional division within this phylum in relation to the two environments sampled. 

Furthermore, it is interesting that alpha-Proteobacteria cluster strongly, while the beta 

and gamma-Proteobacteria are intermingled; perhaps alluding to interactions between 

beta and gamma- Proteobacteria which are not shared with alpha-Proteobacteria.    

Candidates for bacterial transfer from slurry to soil were isolated from the global network 

while preserving nearest neighbour connections. The resulting 'module' shows some of 

these bacteria are highly correlated with other members of this group (Figure 3.17). 
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Figure 3.16 Genus-level network analysis of all samples (slurry, slurry-impacted soil and soil from the untreated site) produced with CoNet 

and visualised in Cytoscape. Node size is fixed. Connections (grey lines) indicate correlations; p <0.05, R >0.8. Colours in the key refer to the 
corresponding phyla of each genus. 
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Figure 3.17 Putative slurry-borne bacterial biomarkers based on network analysis of all samples (see Figure 3.16). Node size is proportional 

to the number of connections. Connections indicate correlations p <0.05, R >0.8. Colours in the key denote the phylum of each genus.  
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3.4 Discussion 

 

3.4.1 Bacterial Composition by Site 

3.4.1.1 Slurry 

The taxonomic composition of soil and slurry metagenomes characterised in this study 

broadly reflects previous research investigating these environments, irrespective of 

whether 16S rRNA amplicon or whole genome shotgun techniques have been 

implemented. For example, numerous studies determined that Firmicutes and 

Bacteroidetes are among the most abundant phyla in both solid cattle manure (Shanks 

et al., 2011, Sun et al., 2015) and liquid slurry (Li et al., 2014b, Habtewold et al., 2018). 

As shown in the present study, Firmicutes is typically preponderant over Bacteroidetes in 

cattle waste, however the reverse has also been reported (Pandey et al., 2018). Studies 

have also identified similar phyla (e.g. Firmicutes) are prevalent in swine faecal material, 

indicating these phyla inhabit core functional niches common to the gastro-intestinal 

tract of mammals (Sun et al., 2015, Rieke et al., 2018, Wolters et al., 2018, Lim et al., 

2020). The effective use of taxa belonging to these two phyla as indicators of 

mammalian faecal contamination further illustrates the consistency of this association 

(Unno et al., 2010, Fisher et al., 2015). On the other hand, Reese and Dunn (2018) 

demonstrated that contrasting gut physiologies are associated with differing levels of 

microbial species diversity (ruminant vs. monogastric, respectively) and so are likely to 

contain distinct species despite sharing similar characteristics at the phylum level. It is 

also important to remember that slurry samples represent the herd as a population, 

rather than a profile of the gut contents of discrete individuals.     

Nonetheless, many slurry-associated genera have also been reported in other studies 

evaluating swine and/or cattle faecal matter. These genera include but are not limited to 

Clostridium (Pandey et al., 2018, Wolters et al., 2018), Bacteroides (Fisher et al., 2015, 

Pandey et al., 2018), Acholeplasma (Wolters et al., 2016, Pandey et al., 2018), 

Prevotella (Fisher et al., 2015, Wolters et al., 2018) and Alistipes (Fisher et al., 2015, 
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Pandey et al., 2018). On the other hand, Sphaerochaeta, which was the most abundant 

genus in slurry according to the present study, was only identified among prevalent taxa 

in liquid cattle manure and not in solid manure according to previous research by Pandey 

et al. (2018). Sphearochaeta is unusually chimeric; representative genomes have been 

shown to share more unique genes with Clostridia than members of their parent phyla 

(Caro-Quintero et al., 2012). It has been proposed these shared genes relate to a 

succession of horizontal gene transfer events. It may therefore be reasonable to find 

Sphaerochaeta in locations with an abundance of Clostridia. Since the slurry tank 

essentially undergoes slow anaerobic digestion, the putative fermentative lifestyle of 

Sphaerochaeta inferred by Caro-Quintero et al. (2012) would be well suited to this 

environment. Finally, Wolters et al. (2018) found the phylum Spirochaetes to which 

Sphaerochaeta belongs, was significantly more abundant in swine waste matter 

compared to soil.  

Overall, while a comparable range of genera were frequently recovered from faecal 

environments, the proportional relationship among them varies between studies. This is 

unsurprising given that Pandey et al. (2018) demonstrated the practice of separating the 

liquid and solid fraction of cattle waste could result in significantly different microbial 

communities at lower taxonomic ranks despite their shared influent of origin. Indeed, the 

microbial assemblage of animal waste has been shown to vary according to many factors 

including species, animal age, health status, storage method, time and ambient 

environmental conditions (Furet et al., 2009, Li et al., 2014b, Habtewold et al., 2018) 

Interestingly, while Wolters et al. (2016) found the most abundant genera in raw swine 

slurry differed from those in its anaerobic digestate; the dominant phyla (Firmicutes and 

Bacteroidetes) remained unchanged. In a later study Wolters et al. (2018) also reported 

differences at the phylum level, with Tenericutes exhibiting increased abundance in 

anaerobic digestate relative to raw slurry. Nonetheless, all faecal-derived samples 

clustered together in distance analyses, and were clearly discrete from soil samples at 

phylum and genus level (Wolters et al., 2018). In summary, the slurry-associated taxa 
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identified in the present study are consistent with literature assessing samples of faecal 

origin, although site-specific variables and species are influential factors at lower 

taxonomic ranks.  

It is important to establish the merits of considering mammalian livestock waste in a 

broad sense since there are a limited number of high-throughput microbiome surveys 

which specifically address cattle manure application to soil and even fewer consider 

liquid slurry. Consequently, the discussion will draw on studies which evaluate the effects 

of solid manure as well as swine manure on soils. A number of differentially abundant 

taxa in the present work have not been identified as such in previous studies. Given that 

these are often putative candidate taxa (e.g. Candidatus Falkowbacteria) and are yet to 

be formally accepted (Brown et al., 2015, Anantharaman et al., 2018), the absence of 

these taxa from other studies may be attributed either to their deliberate exclusion or to 

the rapid rate of reference database revision and growth.   

 

3.4.1.2 Soil 

Regardless of management history, soils possessed a dramatically different bacterial 

community structure and diversity compared to slurry (Figures 3.4 and 3.6). 

Proteobacteria and Actinobacteria were dominant phyla across both field sampling sites 

and the prominence of these phyla in agricultural soil is well established (Spain et al., 

2009, Aislabie et al., 2013, Sun et al., 2015, Liu et al., 2017, Zhang et al., 2017c, Zhang 

et al., 2018b, Wang et al., 2019). Furthermore, the proportions of Proteobacterial 

classes were similar in both soils, with Alpha and Beta-protobacteria forming the 

principal members. Interestingly, Spain et al. (2009) reviewed several publications 

concerning soils from a range of climates across the American continent and found that 

while Proteobacterial classes were variable, Alpha and Beta-proteobacteria were 

generally more abundant than Gamma-Proteobacteria. In contrast, slurry Proteobacteria 

chiefly belonged to Gamma-proteobacteria and to a lesser degree Epsilon-
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proteobacteria; the latter of which are comparably scarce in soil (Spain et al., 2009, 

Wolters et al., 2018). Gamma-proteobacteria include the Enterobacteriaceae family such 

as E. coli (Köhler and Dobrindt, 2011) and Enterobacter cloacae (Keller et al., 1998) 

which are gut commensals as well as opportunistic pathogens; their abundance in the 

slurry tank is therefore expected to be greater than in soils. Likewise, Epsilon-

proteobacteria are known to encompass metabolically diverse non-pathogenic bacteria 

(Nakagawa and Takaki, 2009), in addition to opportunistic enteric pathogens including 

Campylobacter sp. (Inglis et al., 2010), Helicobacter sp. (Fujimura et al., 2002) and 

Arcobacter sp. (Giacometti et al., 2015), all of which have been documented in raw dairy 

products or bovine manure. Meanwhile, phyla such as Acidobacteria and Bacteroidetes 

are also known to comprise a significant proportion of core soil bacterial communities 

(Aislabie et al., 2013, Zhang et al., 2018b, Podmirseg et al., 2019).  

The ecological function of many bacteria associated with major soil phyla is poorly 

understood since a large proportion are known through culture-independent analyses 

alone (Janssen, 2006, Spain et al., 2009). Nonetheless, the categorisation of bacterial 

phyla into ecological groups based on observed 'life strategies' has been proposed on 

several occasions (reviewed by Ho et al., 2017), and putatively linked to fundamental 

soil processes such as carbon storage (Trivedi et al., 2013). One such method includes 

the division of phyla into copiotrophic (typified by consumption of labile carbon and rapid 

growth rates) and oligotrophic (characterised by the utilisation of recalcitrant carbon and 

slow growth) groups (Fierer et al., 2007, Trivedi et al., 2013). However, in meta-

analyses, Ho et al. (2017) underscored that such broad categorisations can be 

misleading or inconsistent and suggest greater taxonomic resolution (i.e. to family and 

genus level) may be necessary to accurately discern community responses to 

environmental change.   

In the current study, two principal groups of differentially abundant taxa emerged in soil 

under different management practice; those that were differentially abundant by site and 

those which were temporally variable within sites. While the former are likely to 
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represent the cumulative impact of contrasting management, the latter are taken to 

reflect the short-term influence of episodic slurry applications in amended soil. Although 

seasonal effects were detected in both soils and slurry, the data have sufficient 

resolution to demonstrate the proposed impact of slurry application is not merely an 

artefact of unrelated seasonal factors. This is most clearly evidenced by the marked 

increase in the relative abundance of slurry biomarker genera following slurry application 

in May 2017 (Figure 3.10).  

 

3.4.2 Bacterial Differential Abundance  

Firstly, phylum level differences between slurry-impacted and untreated soil will be 

discussed. The apparent enrichment of Bacteroidetes in slurry-impacted soil relative to 

untreated soil is in agreement with several publications assessing the impact of animal 

manure application on soil bacterial communities. These included experiments examining 

both short-term and long-term exposure effects of swine or cattle manure (Chaudhry et 

al., 2012, Wang et al., 2016b, Zhang et al., 2017c, Rieke et al., 2018, Xiong et al., 

2018). Based on responses to carbon mineralisation rates, Fierer et al. (2007) concluded 

Bacteroidetes exhibit copiotrophic (fast growing) rather than oligotrophic (slow growing) 

life strategies. It may therefore be expected that the addition of cattle manure would be 

accompanied by an increase in the abundance of these bacteria; as shown by Wang et 

al. (2016b).  

 

Considering the abundance of Bacteroidetes in cattle slurry, it could be possible their 

prevalence in amended soil reflects the direct addition and survival of these bacteria in 

soil. However, while Bacteroidetes were significantly more abundant in the slurry-

impacted site compared to the untreated site overall (Figure 3.8), their abundance in the 

treated site was negatively affected by the first slurry application of 2017 for at least 56 

days (Figure 3.9).  
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Surprisingly, other phyla which were ostensibly enriched in treated soil such as 

Actinobacter and Gemmatimonadetes also declined following slurry application, although 

the Actinobacterial population recovered within 56 days. Nonetheless, 

Gemmatomonadetes have been associated with long-term exposure to cattle manure in 

previous publications (Chaudhry et al., 2012, Zhang et al., 2018b), while increases in 

Actinobacteria have been shown to occur in soil after organic and inorganic fertilisation 

(Chen et al., 2016a, Dai et al., 2018, Rieke et al., 2018). On the other hand, others have 

reported cattle and pig manure has a negative effect on Actinobacteria (Liu et al., 2017, 

Xiong et al., 2018, Zhang et al., 2018b, Chen et al., 2019b). In contrast, Tenericutes 

was clearly enriched in impacted soil following slurry application (Figure 3.9) and also 

contributed a greater proportion of reads in impacted soil samples compared to 

untreated site soils overall (Figure 3.8).  

 

One explanation for the immediate negative impact on certain phyla may be that 

introduced bacteria temporarily suppress indigenous populations through increased 

competition. The fact that Chen et al. (2017) found members of Bacteroidetes were 

enriched in soils amended with irradiated pig manure more so than raw manure 

potentially supports this concept. Furthermore, contaminants such as antibiotics 

(Hammesfahr et al., 2011, Cleary et al., 2016) and high concentrations of ammonia in 

cattle slurry may cause transient toxicity (Unc and Goss, 2004). Heavy metal- 

contaminants in cattle slurry (Nicholson et al., 2003, Franco-Uría et al., 2009) are also 

likely to disrupt soil bacterial communities following fertilisation (Giller et al., 2009, Xu et 

al., 2019). Intriguingly, no significant difference in available TOC was observed between 

the two sites which indicates other edaphic factors are the primary driver(s) behind 

differences in bacterial community structure at these locations.  

 

Accordingly, a series of publications have reported that soil pH is a critical determinant of 

bacterial community structure (Lauber et al., 2009, Rousk et al., 2010, Liu et al., 2018). 

Moreover, Actinobacteria and Bacteroidetes are typically positively correlated with pH 
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(Lauber et al., 2009, Zhang et al., 2017c, Wang et al., 2019) and it is known that the 

addition of animal waste can increase soil pH (Hammesfahr et al., 2011, Abubaker et al., 

2013, Zhang et al., 2017c). Principal component analysis of soil physiochemical 

properties (Figure 3.12) is consistent with the notion that pH is a key factor 

distinguishing the two sites. Extractable calcium and magnesium, representing major 

exchangeable cations in soil were correlated with pH, in addition to sodium. The latter is 

unsurprising since cattle manure can contain a substantial quantity of soluble salts (Hao 

and Chang, 2002, Unc and Goss, 2004). Finally, Spearman's Rank correlation analysis 

inferred significant, albeit weak positive associations between Gemmatimonadetes, 

Bacteroidetes and pH (Figure 3.14). While there was a trend between Actinobacteria and 

pH, this was not deemed significant after false discovery rate adjustment. Analysis of 

differential abundance based on physiochemical covariates with Corncob modelling 

indicated pH was the primary determinant of phylum level differences between sites 

(Figure 3.13). Indeed, Zhang et al. (2017c) proposed fertilisation alters soil microbial 

communities through pH change; a thought echoed by Liu et al. (2018) who suggested 

the influence of pH exceeds the impact of fertilisation-associated nutrient input in acidic 

soils. 

 

Despite indications that pH and related factors explain some of the key differences in 

phyla in slurry-impacted and untreated soil, no significant change in pH was identified in 

soil shortly after slurry application events. As the average pH of treated soil (~7.1) was 

not dissimilar from that of the applied cattle slurry (~7.4), this potentially signifies a 

steady state has been reached whereby no further gains in pH are possible. However, 

without historic data extending back before fertilisation commenced at the site, it is 

impossible to confirm this supposition. It remains important to acknowledge that the 

distinction in pH may in fact relate to inherent differences in the soil substrate such as 

clay content, and bear no relation to slurry application.  

 



132 
 

According to differential abundance analysis, Acholeplasma was the only genus 

representative of Tenericutes elevated in slurry-impacted soil relative to untreated soil. 

Similarly, only Gemmatimonas and Gemmatirosa of Gemmatimonadetes were more 

prevalent in treated soil compared to untreated soil. Conversely, many Actinobacteria 

were apparently enriched in treated soil, although these generally belonged to 

Micrococcales or Propionibacteriales. Within in these orders, members of 

Intrasporangiaceae and Nocardiaceae, respectively were most notably increased. 

Meanwhile, the most differentially abundant genera belonging to Bacteroidetes included 

members of the family Porphyromonadacea; Fermentimonas and Petrimonas specifically. 

 

When considering the comparative relative abundance of these genera in slurry, some 

interesting patterns become visible. For instance, Acholeplasma, Fermenitmonas and 

Petrimonas are all genera which are markedly more abundant in slurry, to such an 

extent that their increased prevalence in slurry-impacted soil could indicate bacterial 

transfer. Consequently, while phylum level differences can be useful to gauge broad 

contrasts in bacterial communities, these findings imply few genera within these phyla 

are largely responsible for some of the described contrasts between sites. Examination of 

genus level data immediately before, after and 56 days following the first application of 

slurry in 2017 shows slurry-borne bacteria were successfully detected in treated soil. 

Analyses also demonstrated the populations of all enriched bacteria declined within 56 

days, however some remained above pre-treatment levels. The most compelling 

putative taxonomic markers of slurry application will now be discussed. 

 

Fermentimonas, Petrimonas, Sedimetibacter, Proteiniphilum and Sphaerochaeta 

exhibited the largest increase in relative abundance within 24 hours of slurry application 

and therefore represent convincing biomarkers of slurry contamination (Figure 3.10). 

Furthermore, all of the aforementioned genera were highly abundant in slurry samples 

(Figure 3.8). Moreover, Sphaerochaeta, Fermentimonas and Sedimentibacter were 

among the most over-represented genera in slurry relative to untreated soil. A subset of 
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these slurry biomarker genera were recently discovered and are closely related members 

of Porphyromonadacea, which have been recovered from broadly comparable 

environments (Hahnke et al., 2016). On the one hand, Proteiniphilum, Petrimonas and 

Fermentimonas have previously been found in cattle slurry  (Pandey et al., 2018, Coelho 

et al., 2020, Im et al., 2020), while Fermentimonas sp. are also known to occur in the 

human gut (Beye et al., 2018). These three genera were additionally identified in 

mesophillic biogas reactors; which often utilise pig and cattle manure as feedstock 

(Hahnke et al., 2016, Wolters et al., 2016, Tomazetto et al., 2018, Im et al., 2020, Prem 

et al., 2020). Similarly, Sedimentibacter were reportedly associated with biogas reactors 

and cattle slurry (Wolters et al., 2016, Habtewold et al., 2018, Prem et al., 2020).  The 

occurrence of Sphaerochaeta in cattle slurry has already been discussed. It is therefore 

clear that the proposed slurry-biomarker genera are associated with the gut and faecal 

waste of animals rather than soil.  

 

Having demonstrated particular slurry-borne bacteria were transferred to soil from the 

slurry and potentially augment existing populations, their long-term fate in soil remains 

to be considered. Interestingly, although the indicator organisms previously highlighted 

are consistently associated with animal waste products, few publications have reported 

their dissemination in soil following fertilisation with these substrates. Nonetheless, in a 

16S rRNA amplicon study, Wolters et al. (2018) showed Proteiniphilum and 

Sedimentibacter were significantly enriched in field plots six days after the addition of 

swine manure or digestate. Meanwhile, Petrimonas was only elevated in manure-

amended soil; presumably due to the comparatively lower abundance reported in 

digestate. Samples collected five months after fertilisation revealed the initial bloom of 

allochthonous bacteria had dissipated, with the exception of certain digestate-associated 

Clostridia. In this regard Wolters et al. (2018) corroborates a pervasive ecological 

paradigm which suggests that indigenous soil microbes typically outcompete those 

introduced through anthropogenic activity; thus soil microbial communities are believed 

to exhibit a degree of resilience to perturbation. In line with this, Podmirseg et al. (2019) 



134 
 

found in a PCR-DGGE-based study that soil community structure was largely unaffected 

by the addition of raw cattle manure or its digestate, and that manure-associated 

pathogens returned to pre-treatment concentrations within three months. The findings of 

an earlier 16S rRNA amplicon microcosm experiment parallels their results, showing the 

rapid loss of manure-borne organisms over two months (Leclercq et al., 2016). Likewise, 

recent field work by Coelho et al. (2020) showed soil fertilisation with cattle manure 

elicited only transient changes in bacterial metagenome libraries. In these studies, there 

appears to be a good level of overall cross-method agreement. Laboratory-based 

inoculation studies have also demonstrated competition with indigenous soil and 

predation by bacterivorous protozoa can attenuate invading bacterial pathogens (Acea et 

al., 1988, Recorbet et al., 1992, Xing et al., 2020). Studies have also shown improved 

survival of introduced bacteria in gamma-irradiated soils (Chen et al., 2017, Podmirseg 

et al., 2019, Xing et al., 2020).  

 

In contrast, others have documented phylum-level changes in soils under long-term 

fertilisation (Sun et al., 2015, Zhang et al., 2018b), while contaminating enteric 

pathogens can survive for weeks to months (Chee‐Sanford et al., 2009). Potential 

explanations for differing findings could relate to the fact that many studies focus 

specifically on faecal indicator organisms and the survival of allochthonous, non-

pathogenic bacteria may have been missed. Alternatively, analyses which only consider 

dominant taxa may not capture subtle, yet significant changes in low abundance bacteria 

(Liu et al., 2017). In addition, Moynihan et al. (2015) provided evidence that while 

enteropathogen survival was governed by interactions with indigenous microbes; these 

varied markedly between site and land-use. Lastly, long-term and short-term effects 

need to be considered in context, since shifts in different indigenous microbial 

community members may occur at different rates (e.g., depending on microbial life 

strategies). Such responses could be further modulated by the frequency of exposure. 

Accordingly, greater attention should be paid to the distinction between short- and long-

term effects of perturbation. Regardless, many factors are likely to play a role in 
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determining the persistence of allochthonous bacteria in amended soils, both directly and 

through modulation of their autochthonous competitors. For example, research 

investigating the response of soil microbial communities to cattle slurry (Abubaker et al., 

2013) and sewage sludge (Zhang et al., 2018a) found the community structure of clay-

based soils were more robust to change compared to sandy soils. 

 

Furthermore, exposure to ionising solar radiation (Unc and Goss, 2004, Hodgson et al., 

2016, Jang et al., 2017), temperature (Cools et al., 2001, Wang et al., 2004, Park et al., 

2016), manure moisture content (Unc and Goss, 2003) and soil moisture (Wang et al., 

2004, Park et al., 2016) are also known to impact the survival of introduced bacteria. It 

is therefore unsurprising that season is similarly important, as it represents interplay 

between nearly all the aforementioned factors. This also underscores the difficulty in 

pinpointing specific environmental drivers behind the data obtained from field studies. 

Nevertheless, it simultaneously establishes the fundamental need for such research. 

Finally, much work on survival places emphasis on model organisms such as Escherichia 

coli, which may not be representative of other manure-borne organisms.  

 

The results of the present study suggest the vast majority of slurry-borne bacteria are 

incapable of establishing in soil. For instance, the relative abundance of typical faecal 

indicator organisms such as E. coli and Enterococcus sp. were not perceptibly elevated in 

amended soil even within 24 hrs of application. Moreover, E. coli was significantly more 

abundant in the untreated site soil than in the slurry-impacted site soil according to 

Corncob analysis (p <0.01). Indeed, the confounding effect of environmental E. coli  on 

the use of this species as a marker for faecal contamination is a topic of discussion (Jang 

et al., 2017).  

 

The comparatively greater moisture availability in the untreated site (Figure 3.12) may 

also explain the disparity, as the proliferation of E. coli is known to benefit from 

increased soil moisture content (Jamieson et al., 2002, Sinton et al., 2007), although 
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saturation may be detrimental (Van Elsas et al., 2011). Alternatively, the substantial 

dilution effect concomitant with slurry application may have rendered the input of these 

organisms undetectable. In a review by van Veen et al. (1997), it was also suggested 

that a high number of viable cells would be necessary to colonise an otherwise hostile 

soil environment. 

 

The finding that Sphaerochaeta was the dominant genus in slurry lends some credence 

to this idea; however, the likes of Petrimonas were comparably abundant to Entrococcus 

in slurry and were still clearly elevated on the day of amendment. Consequently, while it 

is logical to assume the abundance of bacteria in treatments plays a role in their initial 

detection in soil, these findings may indicate fitness potential in soil is still an important 

factor for detection within the first 24 hours in the present work. 

 

Focussing on the relative abundance of the key marker genera as modelled by Corncob, 

it is evident that they behave in a similar fashion throughout the course of the study 

(Figure 3.10). The pronounced spike within 24 hours of slurry application (T2) signifies 

the initial input of slurry bacteria, rather than their proliferation. The variability of 

abundance estimates at T2 probably correspond to the uneven distribution and pooling 

of slurry on the soil surface. Interestingly, variability in data has been linked with 

dysbiosis in animal microbiota associated with disease states (Carding et al., 2015, 

DeGruttola et al., 2016).  

 

A marked reduction in relative abundance was observed 56 days (T3) after slurry 

amendment. Nonetheless, count data modelling suggests many of the marker genera 

were still (albeit weakly) enriched compared to samples taken before the first application 

of the year. Petrimonas is the strongest example of this.    

 

Forty-eight days after the second slurry application of 2017 (T4), certain marker genera 

such as Proteiniphilum, were as prevalent as in T3, which may be expected as the latter 
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represents a comparable passage of time after slurry application. Other genera such as 

Fermentimonas show greater variability. Critically, these data seem to show that slurry 

indicator organisms did not accumulate in a step-wise manner after slurry application 

following an approximate two month window.   

 

Data for the third and final slurry application of 2017 (T5) indicates further decline in the 

relative abundance of all marker genera. At first this appears counterintuitive as samples 

were collected only 17 days after slurry application; however, a few factors could explain 

these findings. Firstly, the rate of slurry application in October 2017 was half that 

broadcast in May (60 m3 hectare-1) and somewhat less than that in July (40 m3 h-1). 

Accordingly, it has been shown that the application rate of swine slurry can influence the 

survival of introduced faecal indicator organisms (FIOs) (Rufete et al., 2006). 

Additionally, the level of solar radiation on the date of the third slurry application was 

higher than any other application date, even when taking into account reduced daylight 

hours. Naturally, it is difficult to quantify the direct biological impact of this exposure 

difference, although it seems plausible that solar radiation would exert its greatest 

influence on bacterial survival in the hours and days directly following application. In any 

case,  Hodgson et al. (2016) showed the survival of FIOs could be enhanced by shallow 

injection, which would circumvent exposure to ionising solar radiation. A similar trend in 

bacterial survival was shown by Hutchison et al. (2004). Hodgson et al. (2016) also 

highlighted the persistence of FOIs were greatest during an October application, when 

mean UV levels were lower than in May. In the present study, application occurred on 

the day of maximal solar radiation exposure in October. Finally, other unconsidered 

variables may also contribute to these unexpected results. 

 

Analyses of indicator data from samples collected towards the end of the closed period in 

January 2018 (T6) largely reflect the cessation of slurry applications for over 98 days. In 

line with expectations, the abundance of most indicator genera is within the range of 

samples taken prior to the first treatment of 2017. Of equal interest is perhaps the 
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reduced dispersion of indicator data relative to other time points, which possibly further 

signifies the absence of anthropogenic disturbance or more general microbial dormancy. 

Regardless, the abundance of indicator genera mirrored a nearby site with no known 

history of animal waste amendment, providing additional evidence of a return to base 

levels.  

 

In contrast to 2017, the first slurry application of 2018 occurred at the end of February. 

This provided an opportunity to examine the effects of commencing slurry applications 

earlier in the year. Differential abundance analyses of samples collected from treated soil 

84 days after exposure (T7) showed a relative increase in the estimated abundance of 

the marker genera compared to both T5 (October 2017) slurry-impacted soil and T6 

(January 2018) untreated soil. Accordingly, NMDS of all genus-level data for both sites in 

January and May 2018 highlighted that samples were typically more dissimilar to 

untreated soil in May than January (Figure 3.5). Taken together, analyses assessing 

within site and between site differences across the two time points in 2018 underpin the 

characterisations of indicator genera already inferred by the slurry-impacted site data for 

2017. Perhaps more interestingly, the enrichment of indicator genera appears to be 

sustained over an extended period of nearly three months subsequent to amendment in 

February 2018, whereas a marked decline was evident over a shorter time span 

following a higher rate of application in May the previous year.  

 

The finding that enrichment was maintained for a prolonged period after amendment in 

February supports prior research highlighting improved survival of allochthonous bacteria 

in autumn and winter (Hodgson et al., 2016). This has been attributed to a range of 

climatic factors, many which have already been mentioned (e.g. increased moisture and 

reduced temperatures and solar radiation). Genus level network analysis of treated soil 

and slurry provides additional evidence of associations between the described marker 

genera, as well as an auxiliary group of bacteria similarly associated with slurry 

(primarily members of Colstridiales - see Figure 3.17). Although these bacteria were also 
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featured in the untreated soil network, the connections shared among the marker genera 

in slurry and slurry-treated soil were not featured.    

 

It is necessary to display caution around the interpretation of less pronounced shifts in 

the data on account of within-field variation and the complexity of the system, however 

the sampling and extraction methods should provide results which capture spatial 

variation more faithfully than studies where one extraction is performed per  

homogenised soil sample  as was done for by Wolters et al. (2018).  Ultimately a greater 

sampling effort would help resolve these changes with more confidence. Another caveat 

pertains to the inability to distinguish extracellular DNA from that contained within living 

(or recently living) cells (Carini et al., 2016). As a result, increased read counts may not 

exclusively represent an increase in living cells. Nonetheless, the context provided by the 

site metadata and temporal sampling supports the interpretations drawn here. Future 

studies stand to benefit from metatranscriptomics, however, even this approach is not 

without its limitations. 

 

3.5 Conclusion 

In summary, the present work demonstrates the intensive sampling strategy was able to 

resolve key indicators associated with slurry in amended soil, chart their subsequent 

decline and propose environmental factors responsible for the observed trends. Field-

scale differences between sites with differing management history were explained most 

effectively by pH, which may or may not have been altered by successive applications of 

slurry. However, these differences were apparently discrete from the short-term impacts 

of slurry addition which were characterised by transient pulses in indicator genera. In 

agreement with published work, select slurry-borne organisms were shown to be 

enriched in soil following fertilisation with slurry. Furthermore, the timings of fertilisation 

events appear likely to modulate the survival of slurry-borne bacteria. Meanwhile, the 

application of slurry in October underscored the difficulty of predicting the behaviour of 
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slurry-borne bacteria in a real-world setting and the importance of collating meta-data 

which are as complete as possible. Carrying out multi-year analyses with three of more 

field sites, including contrasting sites with no history of slurry application, would serve to 

confirm findings about the effects of amendments in winter and whether the indicator 

genera described here are more widely representative of slurry tanks. It is quite possible 

individual farms represent micro-ecological silos which negate the successful use of 

'global' indicator organisms. 
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Chapter 4 

ARG-Taxon Interactions, the Mobilome and Risk 

4.1 Introduction 

Over the last two decades, environmental resistomes and their response to perturbation 

events have become subjects of intensive research. This is especially evident in the 

context of land-application of animal waste products such as solid manure (Kyselková et 

al., 2015b, Hu et al., 2016, Han et al., 2018, Chen et al., 2019a), liquid slurry (Sengeløv 

et al., 2003, Abubaker et al., 2013, Joy et al., 2013, Cheng et al., 2019) and anaerobic 

digestate (Abubaker et al., 2013, Sui et al., 2016). Likewise, similar efforts have also 

been made to characterise shifts in soil bacterial communities following organic 

fertilisation (Parham et al., 2003, Hammesfahr et al., 2011, Johansen et al., 2013). With 

regard to animal waste, especially faecal material, emphasis has often been placed on 

tracking the survival of key human pathogens and faecal indicator organisms (FIOs) in 

soil (Fenlon et al., 2000, Pourcher et al., 2007, Hodgson et al., 2016), since these pose a 

clear, quantifiable risk to human health via contamination of vegetable produce and 

groundwater (Sharma and Reynnells, 2016).  Indeed, FIOs are integrated within water 

quality standards throughout the world (Fewtrell and Bartram, 2001).   

In contrast, a widely adopted framework for defining the risk to human health from 

environmental AMR is lacking (Bengtsson-Palme et al., 2018). Nonetheless, such a 

framework for prioritising risk has frequently been called for and discussed (Larsson et 

al., 2018, Ben et al., 2019). The absence of a standardised means to quantify 'AMR risk' 

can largely be attributed to the complexity of capturing and untangling the morass that 

ARG dispersal represents. In brief, horizontal gene transfer (HGT) enables ARGs to be 

exchanged between bacteria which may originate from different sources or exhibit 

contrasting tendencies for human pathogenicity. To this end, Maeusli et al. (2020) 

demonstrated the transfer of antibiotic resistance plasmids from lettuce-borne 
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Acinetobacter bayllyi (a non-pathogenic environmental bacterium) to clinical E. coli 

isolates which were subsequently able to colonise mice intestines and further 

disseminate the target plasmid to gut-resident Klebsiella pneumoniae. Moreover, rates of 

genetic exchange are not constant across species, and certain colonisation-potentiating 

traits such as capsule production, have been linked to increased rates of HGT and the 

acquisition of ARGs (Rendueles et al., 2018). However, there are apparent limits to HGT, 

since lateral genetic exchange is thought to primarily occur within phyla; with inter-phyla 

HGT occurring only rarely (Jiang et al., 2019). In addition, Lehtinen et al. (2020) 

presents evidence that the occurrence of antibiotic resistance in Streptococcus 

pneumoniae (for which capsule production is incidentally a colonisation factor) may not 

be driven primarily by the rate of HGT between lineages, but rather the environmental 

selection of variants in the host. Such host-based selection pressures include immune 

action, competition with co-resident microbes and exposure to antibiotic therapy.  

Meanwhile, prioritising risk among ARGs is equally problematic. The range of ARGs 

recovered from substrates of ancient origin is continually broadening, with controversial 

indications that even ARGs linked to synthetic drugs could have prehistoric origins 

(Okubo et al., 2019). There is no doubt many ARGs are ancient and seemingly 

environmentally omnipresent (D’Costa et al., 2011, Perry et al., 2016). Consequently, 

the mere detection of ARGs in the environment does not necessarily signify a cause for 

concern. Moreover, Wright (2019) highlights certain multidrug efflux pumps and other 

putative ARGs only confer resistance when over-expressed and therefore their 

significance can only really be defined with access to transcription data. This is not to 

say environmental ARGs should be dismissed, rather that their risk to human health as 

resistance genes is defined by a full awareness of their context (Martínez et al., 2015, 

Wright, 2019). In light of this, Martínez et al. (2015) proposed that intrinsic ARGs and 

multidrug efflux pumps should only be considered in resistome analyses if they could be 

associated with mobile genetic elements.  On the other hand, if the prevalence of a 

multidrug efflux gene were to become fixed at a higher level in the environment, this 
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could surely constitute an elevated risk of mobilisation in the future. Furthermore, the 

emergence of new ARG combinations may potentiate the clinical significance of some 

otherwise intrinsic resistance genotypes. Lastly, the non-specificity of some multidrug 

efflux pumps can have implications for cross-selection via heavy metal and biocide 

exposure (Pal et al., 2015, Zhou et al., 2016, Pal et al., 2017).   

Consequently, calculating the risk posed by ARG-host combinations remains a formidable 

challenge and only serves to underscore the importance of improving the 

characterisation of both the phylogenetic and genetic context of ARGs. 

Despite the rapid expansion of high-throughput metagenomic techniques which have 

opened up opportunities to study the nexus between ARGs, MRGs, MGEs and their hosts, 

many studies employ 16S-rRNA/HT-qPCR amplicon methods which focus on only one of 

these components in isolation, or rely on correlation-dependent analyses to infer 

associations between them (Hu et al., 2016, Zhou et al., 2016, Peng et al., 2017, Zhang 

et al., 2017b, Chen et al., 2019b).  Although valuable, these inferences are rarely 

validated with culture-work or further molecular evidence. Increasing emphasis is 

therefore being placed upon the need to move beyond quantification and correlation 

towards establishing the genetic context of ARGs and MGEs as well as host range (Ma et 

al., 2016, Rice et al., 2020, Zhao et al., 2020). Doing so is likely necessary for the 

creation of a tractable risk assessment system.       

However, even relatively new molecular techniques present many issues to overcome in 

this regard. More specifically, Slizovskiy et al. (2020) highlighted different bioinformatic 

pipelines can yield conflicting associations about the same metagenomic dataset. In 

particular, the assembly of short-reads into contigs was shown to enhance ARG recovery 

when compared to read-based analyses. Additionally, the quality of database curation 

can have a substantial impact on results. Foremost concerns are the presence of 

redundant sequences, gene definitions and biases in scope.  Moreover, the 
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aforementioned considerations apply to all databases, whether they describe ARGs, MGE 

or taxa. 

 

Accordingly, the present work aimed to further elucidate associations between 

antimicrobial resistance genes, MGEs and bacterial taxa in slurry and soil by adopting an 

ensemble approach to analysing short-read metagenome shotgun sequence libraries. 

This involved processing analyses of unassembled read data which were further 

supplemented by interrogating the corresponding assemblies and metagenome-

assembled genomes (MAGs). 

 

4.2 Materials and Methods 

4.2.1 Approach, Sampling and Sequencing 

Antibiotic resistance gene annotation (ARGs) and taxonomic assignment were carried out 

on the same metagenomic libraries discussed previously (Chapters 2 and 3). Full 

descriptions of sample sites, sampling strategy and sequencing are therefore available in 

the aforementioned chapters. 

ARG annotation and taxonomic assignment was performed on short-read libraries as 

discussed in Chapter 2 and 3, respectively. 

 

4.2.2 Exploratory Statistics and Risk Scores 

Procrustes analysis was used to assess the potential relationship between ARG 

subgroups and the bacterial community composition of samples (Forsberg et al., 2014, 

Fang et al., 2019). Using vegan in R, the MetaMDS function (Bray-Curtis distance) was 

applied to 16S-normalised ARG subgroup abundances and bacterial genus relative 
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abundances. Procrustes was then performed on the two NMDS objects (999 

permutations) and significance tested with the protest function. Only soil data from 2018 

were used for this analysis due to MetaMDS non-convergence when attempting to 

include slurry samples.  

MetaCompare (Oh et al., 2018) was used to project individual sample assemblies into a 

3D hazard space representing the cumulative risk posed by the presence of mobile 

genetic elements (MGEs), ARGs and clinically defined pathogens on contigs. To date, 

MetaCompare is the only purpose-built pipeline which attempts to distil 'risk scores' from 

metagenomic data (Slizovskiy et al., 2020).    

 

4.2.3 ARG-Taxonomy Network Analysis 

Bipartite network analysis of short-read ARG and taxonomic data was conducted using 

CoNet and visualised with Cytoscape. Specifically, count data for ARG subgroups and 

bacterial genera were converted into relative abundances (percentage of total reads) 

before association mining with CoNet. CoNet and Cytoscape were used in preference to 

SpiecEasi (see Chapter 2) due to the improved speed and visual handling of very large 

networks. In an attempt to leverage maximal statistical power across the dataset, all 

sample types were included in the analysis (slurry-impacted soil (treated site), 

unamended soil (untreated site) and slurry). However, ARGs and genera which occurred 

in fewer than 10 samples were excluded to minimise spurious associations. Connections 

were only mapped if they were considered significant (p < 0.05) and were correlated via 

Spearman's Rank (R > 0.8). Furthermore, instances where correlations were supported 

by fewer than 10 non-null values were also excluded.  Finally, although CoNet does not 

incorporate a sparsity assumption like SpiecEasi, it does employ a re-normalisation step 

to mitigate the effects of compositionality. 

     



146 
 

4.2.4 Metagenome Assembly 

As previously discussed in Chapter 2, the assembly of short-read metagenomic libraries 

can enhance downstream analyses by generating longer sequences (contigs), which 

ostensibly contain more information (Chen et al., 2020, Pérez-Cobas et al., 2020). This 

can be likened to joining several individual pieces of a puzzle into larger, albeit still 

incomplete sections. However, the process of assembly currently exhibits limited 

proficiency in resolving stretches of sequences with unusual characteristics such 

plasmids (Maguire et al., 2020). Nonetheless, assembly is typically required to extract 

metagenome assembled genomes (MAGs) from short-read libraries. A plethora of 

assembly software is available, each with their own strengths and limitations. For de 

novo assembly, these broadly fall into two dominating heuristic paradigms; De Bruijn 

graph and overlap–layout–consensus (OLC) methods (Pérez-Cobas et al., 2020). The 

former has become favoured for short-read libraries due to the reduced computational 

requirements of the graphing system (Li et al., 2015b, Van der Walt et al., 2017). Even 

among De Bruijn graph assemblers there are a number of options; including Megahit (Li 

et al., 2015b), MetaSPAdes (Nurk et al., 2017) and IDBA-UD (Peng et al., 2012) among 

many others.  

A review of literature suggests that Megahit is capable of resolving complex sequencing 

data such as soil metagenomes (Li et al., 2015b, Van der Walt et al., 2017), although 

MetaSPAdes has been shown to out-perform Megahit to varying degrees in other 

publications (Nurk et al., 2017, Wang et al., 2020b). Overall, Megahit was deemed to 

represent an appropriate trade-off between assembly integrity and computational 

efficiency for this study. 

Megahit was therefore used to generate individual assemblies for each sample library 

(sample-specific contigs) and three co-assemblies of samples with shared origin (slurry-

impacted soil, untreated soil and slurry, respectively). A final 'meta-soil' co-assembly 

including all soil samples from both slurry-impacted and the undisturbed site was 



147 
 

created. Potential benefits of co-assembly include increased read-depth, which may 

enhance recovery of low abundance MAGs (Hofmeyr et al., 2020); however, individual 

assemblies have also been shown to provide improved MAG recovery and strain 

preservation in work involving thousands of metagenomes (Nayfach et al., 2019). 

Individual assemblies were computed using a dedicated preset for complex 

metagenomes termed 'meta-large' as defined in Megahit (Li et al., 2015b). In brief, the 

preset specified a kmer list ranging from 27-87 in intervals of 10 (k-step) and a 

minimum multiplicity for filtering of 2. Co-assemblies of treated soil, untreated soil and 

slurry were run with a kmer list ranging from 29-89 (k-step = 10) and a minimum 

multiplicity for filtering of 2. The 'meta-soil' co-assembly was run with a kmer list 

ranging from 31-97 (first k-step of 9 due to computational constraints; insufficient 

memory to graph k-27 so k-31 was selected). 

 

4.2.5 MAG Recovery 

MAGs were extracted from the separate co-assemblies of treated soil, untreated soil and 

slurry. Firstly, co-assemblies were filtered to remove contigs <1000bp in length. 

Subsequently, the quality control-passed reads used to construct each respective 

assembly were mapped back to the appropriate set of contigs using BWA-mem (Li, 

2013). The output alignments were then converted into BAM (binary alignment map) 

format using SamTools (Li et al., 2009). Contig depth calculations and binning were 

performed with MetaBAT2 (Kang et al., 2019). The quality of bins was assessed with 

CheckM (Parks et al., 2015); only bins meeting an estimated quality score ≥ 50 as 

defined by Parks et al. (2017), were considered for further analysis. To maximise MAG 

recovery from untreated soil samples, MAGs were ultimately acquired by mapping to the 

'meta-soil' co-assembly. This decision was made based on the analyses indicating the 

presence of broadly similar taxa at both sites and an average ~17% improvement in 

read mapping.    
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In an attempt to recover potential candidate MAGs for slurry-to-soil transfer, the above 

protocol was also carried out on BAM files produced after mapping slurry reads to the 

treated soil co-assembly. As a rudimentary control, the same process was performed on 

the untreated soil co-assembly. Lastly, all quality control passed bins were pooled and 

clustered with dRep (Olm et al., 2017). 

 

4.2.6 Annotation of AMR-determinants in MAGs and Contigs 

The presence of assorted antimicrobial resistance determinants in MAGs and contigs was 

evaluated using ABRicate (Seemann, 2020). ABRicate was coupled with the MEGARes 

v2.0 (Doster et al., 2020) database to assess ARGs and metal resistance genes (MRGs), 

while ACLAME v0.4 (Leplae et al., 2010) was used to explore associated MGEs. In an 

attempt to balance stringency with sensitivity, ABRicate was run with an 80% identity 

and 60% gene coverage cut-off. 

 

4.2.7 Taxon Assignment of MAGs and Contigs 

Taxonomic assignment was conducted on the MAG collection using GTDB-Tk (Chaumeil 

et al., 2020). Meanwhile, contigs produced by assembling samples individually were 

assigned a putative taxonomy using Kaiju. However, when supplied a file of contigs, 

Kaiju will only list the 'best hit' within a contig. Consequently, it is possible for a single, 

less representative hit to be reported over many more (potentially marginally) inferior 

hits. Alternatively, Ma et al. (2016) assigned contig taxonomy according to BLAST results 

which achieved agreement across >50% of ORFs (open reading frames) identified within 

a contig. In the present study it was decided combining elements of both these methods 

would be advantageous.  
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Briefly, ORFs were generated for each sample using Prodigal. Where Kaiju assigned a 

clear majority of ORFs to the same taxon; this taxon was considered the most 

appropriate assignment. When no clear winner was apparent, the best match provided 

by Kaiju for the entire contig was selected. In cases where only a single ORF was 

detected, the contig best match was also selected. Finally, when no taxon could be 

identified in ORFs, the contig best match was used. The decision-making process leading 

to final taxon assignment was summarised for each contig, enabling further assessment 

of assignment quality for contigs of particular interest (i.e. instances where a contig best 

match and majority ORF assignment are congruent, represent more confident putative 

identities compared to those which do not). The aforementioned voting system was 

implemented in R.  

The challenge of confidently assigning taxonomy to contigs (or reads) with few closely 

related sequence matches in databases is a perennial issue associated with samples 

obtained from highly complex and poorly resolved environments. The incompleteness 

and fluidity of databases are obstacles discussed extensively by Breitwieser et al. 

(2017). For the purposes of assigning taxonomy to contigs, the single 'best hit' approach 

used by programs such as Kaiju was critiqued by von Meijenfeldt et al. (2019) who 

highlighted a tendency for precision loss when classifying increasingly novel sequences. 

Accordingly, von Meijenfeldt et al. (2019) devised an alternative, termed CAT (contig 

annotation tool). However, the aforementioned study did not implement a post-

processing voting step for Kaiju in benchmarking, unlike the present work. Nonetheless, 

given the currently subjective nature of taxonomic classification, CAT was run on contigs 

of interest in an effort to further cross-validate results.   

 

4.2.8 Contig Result Collation 

Contigs with at least one ARG or MRG as identified by ABRicate were parsed into a single 

data matrix. Mobile genetic elements associated with RG-containing contigs were then 
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appended to the matrix. Similarly, Kaiju vote and CAT taxon assignments were paired 

with respective contigs. This was achieved by assigning a unique ID to each contig 

consistent across all analyses. To aid visualisation, the summary matrix was sorted into 

80 initial clusters using the PAM (partition around medoids) function in the R package 

Cluster. Finally, the matrix was reviewed and manually refined where appropriate. 

Note: a list of all software used thus far is provided in Appendix 2.   

 

4.3 Results 

4.3.1 Exploratory Statistics and Risk Scores 

Significant similarities between bacterial taxa and resistome data in samples collected 

from treated and untreated soils in 2018 were indicated by Procrustes analysis (Figure 

4.1; p <0.001; R = 0.95; M2= 0.094).  

Contrary to expectation, resistome risk scores determined by MetaCompare ranked both 

slurry-impacted soil (22.79 ± 0.06, n = 34) and soil with no history of cattle waste 

amendment (22.87 ± 0.16, n = 10) above that of slurry (21.61 ± 0.06, n = 10). 

Regardless of the ultimate risk score assigned, MetaCompare indicated a greater 

proportion of slurry contigs exhibited co-localisation of ARGs, MGEs and pathogens when 

compared to soil samples (Table 4.1). Conversely, more ARGs, MGEs and pathogens 

were observed per contig in soil samples, however these features consistently occurred 

on separate contigs. While the lack ARG/MGE co-localisation on soil contigs may relate to 

genuine differences between the mobilome and resistome of soil and slurry samples, it is 

also possible that the failure to find co-residence in soil corresponds to the fact that 

much more of the soil data was not contiguously assembled relative to slurry sample 

data as a result of its greater microbial diversity (see MetaCompare Risk Scores in 
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Figure 4.1 Procrustes analyses demonstrating the relationship between bacterial genera 
(circles) and ARG subgroups (triangles) in soil (2018 data only). Black lines reflect 

degree of rotation from dotted lines required to achieve best fit. Blue arrows indicate 

distance between bacterial and ARG data points for the same sample. 999 permutations 

performed. Correlation method: Spearmans'. 

 

Discussion for further explanation). Overall, no significant difference was observed 

between soil risk scores, irrespective of slurry treatment history. Once again, potential 

explanations for this finding include both genuine biological reasons and potentially 

confounding methodological limitations (see MetaCompare Risk Scores in Discussion for 

further explanation).     
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Table 4.1 Metacompare results for all samples including hazard element data. Based on assembled reads, n = number, ‘+’ signifies co-

residence on contigs, ‘/’ denotes division. ARG = antibiotic resistance gene, MGE = mobile genetic element and PAT = pathogen (as 

defined by MetaCompare). Heatmap colours scaled by column (green to red = low to high).  
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4.3.2 ARG-Taxonomy Network Analysis 

Correlation-based co-occurrence analysis of putative ARG subgroups and bacterial 

genera resulted in a large network containing 1233 nodes and 6363 edges (Figure 4.2). 

Two major clusters were formed, together with several minor clusters. The largest 

cluster (cluster I) primarily contained a diverse range of MLS, tetracycline and 

aminoglycoside resistance genes. At the phylum level, cluster I was dominated by 

genera belonging to Firmicutes, followed by Bacteroidetes. The second most populous 

cluster (cluster II), was comprised almost exclusively of Actinobacteria. Cluster II 

contained a select group of glycopeptide, rifamycin and tetracycline ARG subgroups. 

Overall, Proteobacteria were linked to the largest range of unique ARGs subgroups, while 

Firmicutes possessed the most connections.  

Partitioning ARG subtype nodes belonging to the same antibiotic class showed further 

phylum level trends in ARG-taxon associations. For example, over half of all edges (n = 

116) linked to beta-lactam cfxA genes in cluster I represented Bacteroidetes genera. In 

contrast, Firmicutes contributed only 21.7% of edges (n = 44) connected to cfxA genes, 

despite an overall preponderance in cluster I. Similarly, 11 out of 14 edges linked to sul 

genes belonged to Proteobacterial genera. Tetracycline and MLS ARG subgroups were 

predominantly linked to Firmicutes (63.2% and 52.6% of edges, respectively), and 

Bacteroidetes (14.7% and 18.8%, respectively). However, certain subgroups within 

these classes were tightly associated with other phyla. Specifically, tetracycline 

resistance subgroups tet-48 and otrA were unanimously correlated with Actinobacterial 

genera. Likewise, a single MLS subtype ereB was most frequently associated with 

Proteobacteria (67.2% of edges). Interestingly, Delta-proteobacterial nodes were 

restricted to cluster I and most (58.3%, n = 14) were connected to a single MLS ARG 

subtype mefB; alluding to potential class level trends. In contrast, Gamma-

proteobacterial nodes were present in different sub-clusters and were not dominated by 

an affiliation with any one ARG-subtype, although MLS subgroups were the most 

prevalent.  
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Multi-drug efflux pump subgroups were largely dispersed evenly among clusters, 

although individual subtypes appeared to align with specific phyla. In particular, mtrA 

and ABC transporter subtypes were primarily linked to Actinobacterial nodes. Meanwhile, 

over half the nodes identified as Firmicutes (59.3%, n = 219) were associated with efrA. 

However, it is of note that efrB, which is required for efraAB efflux pump functionality 

was not identified in the network (Alcock et al., 2019). The reliability of inferences drawn 

from network analyses and the inclusion of multidrug resistance genes will be subject to 

later discussion. 
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Figure 4.2 ARG-Taxon correlation network. Square nodes represent ARGs and circular nodes denote genera. See legend for colour 
descriptions. Spearman’s Rank correlations R > 0.8, fdr-adjusted p < 0.05. Bootstrapped 100 times; unstable edges removed. Minimum 

occurrence of all nodes is 10 samples. 
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4.3.3 MAG Analyses 

A total of 165 MAGs extracted from soil and slurry samples met quality control 

requirements. According to GTDB-Tk, the majority of these were of bacterial origin (n =  

156), while a small number of MAGs were identified as Archaea (n = 9). Slurry samples 

yielded the largest number of quality-passed bacterial MAGs (n = 130), while soil 

samples (both slurry-impacted and undisturbed samples combined) produced far fewer 

(n = 25). The taxonomy of extracted MAGs can be found in Supplementary file 7.  

Archaeal MAGs in slurry predominantly belonged to the family Methanomethylophilaceae 

of phylum Thermoplasmatota. In contrast, soil archaeal MAGs represented the family 

Nitrososphaeraceae of phylum Crenarchaeota. 

The taxonomy of bacterial MAGs in slurry and soil was largely congruent with dominant 

phyla described by unassembled short-read data analyses (Chapter 3, Figure 3.3). 

Specifically, 68.5% of slurry-derived MAGs were assigned to either Firmicutes (n = 53) 

or Bacteroidetes (n = 36). Meanwhile, Proteobacteria accounted for just under half the 

MAGs recovered from soil samples irrespective of management history. Interestingly, 

MAGs belonging to Gemmatimonadetes and Nitrospirae were only identified in slurry-

treated soil and unamended soil, respectively. On the other hand, no genera were clearly 

dominant as described in short-read data analyses; although the genera identified were 

still indicative of sample type (e.g. Intestimonas sp. and Sphaerochaeta sp. MAGs in the 

slurry collection).  

Mapping slurry sample reads to the treated soil co-assembly resulted in the recovery of a 

single MAG meeting quality control requirements. GTBD-Tk classified the MAG as 

Proteiniphilum sp. and is consistent with the suggested bacterial markers of slurry 

application as indicated by prior differential abundance and network analysis (Chapter 3 

Figures 3.10 and 3.17). Although MAGs are known to represent an agglomeration of 

closely related genomes, MASH-ANI (average nucleotide identity) analysis with dRep 

showed two MAGs clustered at >99.5% similarity (Figure 4.3A). These MAGs were 
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independently generated from the slurry and slurry-impacted soil co-assemblies. 

Furthermore, the single Proteiniphilum sp. MAG acquired from mapping slurry reads to 

the treated-soil co-assembly also fell within this cluster. The aforementioned 

Proteiniphilum sp. MAGs formed the only cluster detected in the collection (Figure 4.3B).  

ABRicate failed to detect any ARGs within the MAG collection. This result remained 

unchanged even when stringencies were relaxed. Consequently, it was decided that 

focus would be placed on analysis of assembled contigs. 
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Figure 4.3 Proteiniphilum sp. ANI cluster plot (A); bin 4 generated from slurry reads mapped to treated soil co-assembly, bin 293 

generated from slurry-impacted soil reads mapped to slurry-impacted soil co-assembly,  bin 127 generated from slurry reads mapped to 

slurry co-assembly). Quality-control passed bacterial MAG cluster analysis based on average nucleotide identity (B).  
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4.3.4 Contig Analyses 

Across the entire dataset only a small proportion of contigs were shown to harbour at 

least one resistance gene according to ABRicate screening (n = 1080; <0.001% of 

contigs). In addition, only 16 contigs contained multiple resistance genes. The frequency 

of contigs containing various combinations of ARGs, MGEs and MRGs is summarised in 

Table 2.2. Only contigs of particular interest will be presented in text. 

Table 4.2 Summary of contigs with at least one ARG or MRG according to ABRicate. 
Note, MGEs are only reported here if they were detected in combination with either an 

ARG or MRG. ABRicate found no MRGs co-resident with ARGs.   

Contig Library  ≥1 ARG  MRG   ARG + MGE  >1 ARG  

Slurry (10.8M)   483  24 57  16  

Treated Soil (57.4M)   420 41  1 NA  

Untreated Soil (16.3M)   102 10 NA  NA  

 

4.3.4.1 Slurry 

Contig screening showed the core resistome of slurry was dominated by the MLS 

resistance gene lnuC (n = 114), followed by ant-6 (n = 39), an aminoglycoside 

resistance gene. A trio of ARGs occurred with lesser frequency; including the cfxA (n = 

29) ambler class A beta-lactam resistance group, mefA (n = 28) MLS resistance group 

and ant-3 (n = 27) aminoglycoside resistance group. The remaining genes featured on < 

20 contigs. Dominant slurry ARGs were infrequently associated with MGEs. For example, 

lnuC was not identified on any contigs containing MGE genes. Nonetheless, MGE genes 

were shown to co-localise with less frequently detected ARGs. The co-presence of tetM 

with several genes associated with Tn916 conjugative transposons exemplifies this. 

The congruence of slurry contig taxonomic assignments harbouring dominant ARGs was 

variable, although Kaiju and CAT were broadly in agreement. For instance, cfxA was 

typically assigned to the order Bacteroidales by Kaiju and more conservatively, phylum 

Bacteroidetes by CAT. In contrast, ant-6 was generally located on contigs which neither 
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Kaiju or CAT could classify beyond the Bacterial domain. Meanwhile, the most prevalent 

ARG on slurry contigs lnuC was associated with various taxa within the phylum 

Firmicutes. Most frequently these belonged to order Clostridiales, although on one 

occasion Kaiju and CAT concurred at species level with Streptococcus uberis.  When 

considering mefA, CAT was often unable to classify contigs carrying this gene, however 

where Kaiju proposed Clostridia intestinales, CAT provided partial corroboration with 

order Clostridiales. Lastly, Kaiju suggested a range of Gamma-proteobacteria carried 

ant-3, however, close agreement was only found between CAT and Kaiju where 

Acinetobacter sp. were concerned. 

 

4.3.4.2 Soil 

The glycopetide resistance gene vanRO was the most frequently identified ARG in soil 

contigs, followed by rifamycin resistance in the form of rbpA. The multidrug resistance 

gene mtrD and trimethoprim resistance gene dfrB were also detected. The 

aforementioned genes represented the four most prevalent ARGs in both sites 

irrespective of slurry application history. The remaining ARGs were identified on <10 soil 

contigs. No robust evidence of MGE-ARG co-localisation was found in soil contigs.   

CAT was unable to classify most vanRO contigs and often failed to agree with Kaiju, even 

at phylum level when an assignment was achieved. However, where CAT and Kaiju 

concurred, an assignment within phylum Actinobacteria was always identified. In 

contrast, rbpA was consistently found on contigs classified within Mycobacteriaceae by 

both CAT and Kaiju. Likewise, mtrA efflux genes were found on Actinobacterial contigs 

classified as Mycobacteriaceae and Pseudonocardiaceae. On the other hand, dfrB was 

located on contigs which CAT was often unable to classify. However, Methylibium sp. 

CF059 was assigned by both CAT and Kaiju in several instances regardless of site origin. 
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4.3.4.3 Metal Resistance Genes 

Contigs containing metal resistance genes (namely copper) were occasionally identified, 

however those found in slurry were distinct (tcr gene cluster) and less diverse than those 

in soil. Furthermore, while soil-related metal resistances were predominantly linked to 

Mycobacteriaceae; in slurry, copper resistance genes were associated with Firmicutes, 

potentially order Lactobacillales. No evidence of ARG co-localisation with MRGs was 

found in contigs using the selected methods. 

 

4.4 Discussion 

4.4.1 Slurry 

4.4.1.1 Beta-lactamase ARGs 

The detection of cfxA beta-lactamase genes on contigs originating from several 

temporally dispersed slurry samples corroborates the unassembled read-based analyses 

presented previously (Chapter 2). Although cfxA genes have been reported in cattle 

faecal waste by qPCR (Muurinen et al., 2017, Feng et al., 2020) and metagenomic 

studies (Chambers et al., 2015, Zhou et al., 2016), few attempted to explicitly 

demonstrate which bacterial taxa in the cattle waste carry this gene group. Contrarily, a 

plethora of publications have associated cfxA genes with bacterial hosts isolated from 

other environments. In particular, the cfxA gene group has been identified in Gram 

negative anaerobes recovered from human oral (Iwahara et al., 2006, Binta and Patel, 

2016) and intra-abdominal (García et al., 2008) infections. Members of order 

Bacteroidales, especially Prevotella sp. and Bacteroides sp. predominate in this context.  

The occurrence of cfxA in Flavobacteria such as Capnocytophaga sp. are also reported in 

relation to periodontitis (gum disease) (Handal et al., 2005). In addition, cfxA genes 

have been shown to be among the most prevalent ARGs in human gut and faecal 

samples by pan-continental metagenomic studies (Hu et al., 2013, Li et al., 2015a). The 
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development of host-specific Bacteroides-Prevotella genetic markers for tracing sources 

of faecal water pollution reiterates a consistent association between documented hosts of 

cfxA and the faecal microbiome of warm-blooded animals (Okabe et al., 2007). 

 

To recapitulate the findings of the current work, contigs bearing cfxA genes were 

typically assigned to the order Bacteroidales (Kaiju) or phylum Bacteroidetes (CAT) and 

were therefore largely concordant with literature hitherto discussed. Although these low-

resolution taxon assignments are robust, network analysis of unassembled reads offers 

compelling, if tentative, indications of genus-level associations which further concur with 

culture-orientated literature. For instance, putative Prevotella sp., Bacteroides sp. and 

Capnoytophaga sp. reads were correlated with >1 cfxA-like gene. Furthermore, isolate-

based evidence exists for other genera linked to cfxA genes in network analyses, 

including Porphyromonas sp. (Binta and Patel, 2016) and Alloprevotella sp. (Arredondo 

et al., 2020). On the other hand, there were numerous occasions where putative 

associations between taxa and cfxA in the network could not be verified within literature; 

this may be due to the obscurity of the organisms concerned or simply read 

misassignment. The cfxA gene group represents an intriguing nexus between 

cephalosporin resistance in livestock and wild animals while also possessing clinical 

significance for humans. The present work has outlined evidence which supports current 

literature regarding likely hosts in intestinal and faecal microbiomes. Limited research is 

available on the extent to which cfxA circulates in animal populations; however, 

understanding this may have minimal impact on managing beta-lactamase resistance in 

humans given this gene group is already ostensibly endemic in humans. However, Hu et 

al. (2013) remarked that while cfxA genes exhibited high prevalence in human gut 

samples across all nationalities analysed, copy number was highly variable between 

individuals. Furthermore, Duan et al. (2020) found the enrichment of cfxA in the gut of 

humans was associated with antibiotic treatment. Likewise, Chambers et al. (2015) 

found cfxA recovery was enhanced in faeces from cattle receiving cephalosporin 
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antibiotics, suggesting proliferation through selection. However, in a subsequent 

publication no significant effect on cfxA was recorded (Feng et al., 2020). 

 

4.4.1.2 MLS ARGs 

The lnuC gene group was the most frequently detected ARG in slurry contigs, and further 

validates the slurry biomarker list compiled based on unassembled read analyses. 

Macrolide and lincosamide antibiotics both target protein synthesis by binding to the 50S 

ribosomal subunit and are primarily geared towards treating Gram positive bacteria 

(Leclercq, 2002, Tenson et al., 2003). However, the lnu gene family confers resistance 

specifically to lincosamides (Leclercq, 2002). Metagenomic studies have previously 

identified lnuC in cattle faeces, though links to taxa were not explored (Feng et al., 

2019, Zaheer et al., 2019). 

 

According to network analyses lnuC was likely to be possessed by a broad range of 

potential hosts, albeit typically members of phylum Bacteroidetes. In contrast, contig-

based analyses suggested taxa largely belonging to Firmicutes were the most likely hosts 

of this ARG-group. Limited overall agreement was therefore found between unassembled 

and assembled read analyses with regard to lnuC. Nonetheless, contig analyses 

produced results consistent with the literature. Firstly, two contigs harbouring lnuC were 

independently classified as Streptococcus uberis by both CAT and Kaiju, while a further 

five were classified as such by Kaiju alone. In correspondence, several isolate surveys 

have demonstrated the carriage of lnu-like genes by Streptococcus sp., including S. 

uberis (Achard et al., 2005, Petinaki et al., 2008, Haenni et al., 2010, Gravey et al., 

2013, Zhao et al., 2014). It is also of note that Streptococcus uberis is well-documented 

in the aetiology of bovine mastitis (Leigh, 1999, Käppeli et al., 2019). Considering the 

licensed use of lincosamides in veterinary practice to treat mastitis (Zhao et al., 2014), it 

is perhaps not surprising to uncover Streptococcal contigs harbouring lincosamide ARGs 

However,  according to available farm usage records (Table 2.1), lincosamides were not 

routinely administered to adult cattle from 2015-17. Regardless, at least two studies 
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have found negligible evidence to support the notion that lincosamide use significantly 

increases the occurrence of lnuC in the faeces of treated cattle (Feng et al., 2019, 

Zaheer et al., 2019). This may indicate the stable maintenance of these genes 

independent of anthropogenic selective pressure. To this end it is quite possible that 

lincosamide-producing organisms, which include Streptomyces spp. (Spížek and 

Řezanka, 2017) maintain these ARGs in the slurry environment. Other host contig 

classifications with support in the literature included Clostridium sp. (Saldanha et al., 

2020) and Lactobacill salvarius (Lee et al., 2017). However, cross-validation of these 

assignments was not achieved and should be treated with due caution. 

 

Phenotypically, mefA could be described as an equal opposite to lnuC, as the former 

confers macrolide resistance while maintaining susceptibility to lincosamides (Leclercq, 

2002). In agreement with unassembled read analyses, the retrieval of mefA from slurry 

contigs suggests they are core constituents of the slurry resistome. Moreover, the 

prominence of mefA in livestock waste is amply evidenced in literature (Agga et al., 

2015, Li et al., 2015a, Noyes et al., 2016, Muurinen et al., 2017, Gou et al., 2018). It 

should also be noted that the dairy farm unit surveyed in the present work recorded 

occasional use of the macrolide antibiotic tulathromycin (Draxxin); it was administered 

to calves but not members of the adult herd. 

As already discussed in relation to other ARGs abundant in cattle slurry, few publications 

have examined the principal slurry-borne taxa carrying mefA. However, Zhang et al. 

(2016) used correlation network analyses to infer 11 putative hosts for mefA in food and 

effluent-derived anaerobic digestate. Five of the genera identified by Zhang et al. (2016) 

(Petrimonas sp., Acholeplasma sp., Tissierella sp., Parabacteroides sp. and 

Sporanaerobacter sp.) were also correlated with mefA in the read-based network 

constructed for the present work. On the other hand, a study performed by Tong et al. 

(2019) determined archaeal taxa were potentially key sources of several ARGs in 

anaerobically digested wastewater, including mefA. However, despite the recovery of 

archaeal MAGs (phyla Thermoplasmatota and Halobacterota) no archaeal slurry contigs 
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could be associated with ARGs in the current study. It is possible correlation analyses 

could reveal archaeal-ARG links, though this was not explored. Accordingly, Tong et al. 

(2019) suggests the archaeal resistome of anaerobic digestate represents an 

understudied area of research.   

  

Thorough validation of specific taxa carrying mefA-like genes was not achieved as these 

contigs were only occasionally classified by both methods. Regardless, three contigs 

were conjunctively assigned to the order Clostridiales by Kaiju and CAT. Furthermore, 

Kaiju identified seven additional contigs as either Clostridium sp. or Lachnospiraceae sp. 

Interestingly, there appears to be little evidence to support an association between 

Clostridium and mefA. Even so, a clinical study found Clostridium difficile (re-named 

Clostridioides) isolates harbouring mefA within a putative MGE (Isidro et al., 2018). 

Meanwhile, Kaiju indicated a single contig belonged to Streptococcus, for which there is 

substantial evidence of mefA carriage (Clancy et al., 1996, Arpin et al., 1999, Ardanuy et 

al., 2005).    

ARGs enabling phenotypic resistance to both macrolides and lincosamides were 

comparatively rare; erm-like genes were identified on 33 slurry contigs. The most 

abundant erm gene, ermB (n = 10) was typically encountered on contigs classified as 

the order Lactobacillales by Kaiju (CAT verification absent). A gene marker for a multi-

drug resistance plasmid (pRE25) first described in Enterococcus feacium RE25, was co-

present on all contigs containing ermB. This may lend further support to the placement 

of these contigs within Lactobacillales, or extends candidates to those known to have 

acquired this plasmid.    

 

4.4.1.3 Aminoglycoside ARGs 

As with the other dominant slurry ARGs previously discussed, the ant(6)-gene family has 

well-documented distribution within livestock waste, encompassing swine, cattle and 

poultry (Muurinen et al., 2017, Zaheer et al., 2019, Lim et al., 2020). 
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In the case of the study by Lim et al. (2020), ant(6) genes were putatively associated 

with Clostridoides sp. and Camplylobacter sp. In the current work, contigs displaying 

ant(6)-like genes were poorly characterised by CAT and Kaiju, although the latter 

indicated >20% of contigs belonged to family Erysipelotrichaceae. This family is known 

to occur in cattle rumen (De Menezes et al., 2011) and is also of increasing interest in 

human gut physiology (Kaakoush, 2015). Interestingly, only three taxa were correlated 

with ant(6)-like genes (aade) and of those a single genus, Iliebacterium, is a 

representative Erysipelotrichaceae. On the other hand, there appear to be no clear links 

between Erysipelotrichaceae and ant(6) genes in existing literature. Consequently, this 

association remains conjecture. Meanwhile, two contigs were classified as 

Camplylobacter sp.,  which has been demonstrated to carry ant(6) (Hormeño et al., 

2018), however these identities require similar verification. 

 

Another aminoglycoside gene family ant(3), was frequently tied to Gamma-

proteobacterial contigs. Focussing on taxon for which there was genus level agreement 

across Kaiju and CAT (n = 4), Acinetobacter sp. were host organisms for these 

resistance genes. Acinetobacter sp. (namely A. baumannii) are of well known clinical 

significance in human (Van Looveren et al., 2004) and veterinary medicine (van der Kolk 

et al., 2019), although their pathogenicity potential is difficult to determine above 

species level. Concomitant with the literature, ant(3)-like genes are widely dispersed 

among Acinetobacter sp. (Nie et al., 2014, Zhang et al., 2017a). Indeed, Zhang et al. 

(2017a) suggests select ant(3) genes facilitate intrinsic resistance to aminoglycosides in 

Acinetobacter sp. and describes the dissemination of these genes among the genus 

through multiple recombination events. Of further note, Acinetobacter sp. have been 

previously implicated in the persistence of ARGs in the soil environment following 

manure application (Leclercq et al., 2016).  
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4.4.2 Soil 

Contig-based analysis suggests the core soil resistome is chiefly comprised of 

glycopeptide (vanRO) and rifamycin (rbpA) resistance genes; in broad agreement with 

unassembled read analyses conducted previously. Furthermore, the dominance of these 

ARGs in soil with no record of livestock waste application indicates their presence in soil 

is intrinsic. Indeed, a recent study by Li et al. (2020) highlighted glycopeptide and 

rifamycin resistance genes predominate in soils collected from a 'pristine' Tibetan 

plateau. In addition, vanO-type regulators (vanRO-vanSO) were the principal 

vancomycin resistance genes in the Tibetan survey. Likewise, Zaheer et al. (2019) 

established that vanO-type regulators were dominant in soil with no history of manure 

application, as well as soils subject to short- and long-term fertilisation with cattle 

manure. Autochthonous soil microbes, especially Actinomycetes, encompass many 

glycopeptide and rifamycin producing organisms (Mahajan and Balachandran, 2012, 

Saxena et al., 2014, Chandra and Kumar, 2017); it is therefore unsurprising that 

corresponding resistance determinants are also abundant. Nonetheless, these antibiotics 

are of significant clinical importance and surveillance of environmental hosts carrying 

related ARGs should not be dismissed. 

 

Interestingly, the rifamycin resistance determinant rbpA is thought to be uniquely active 

in Actinobacteria (Dey et al., 2012) and potentially restricted to Actinomycetes (Paget et 

al., 2001). Consequently, it is encouraging that the majority of rbpA-positive contigs 

were assigned to Actinobacterial taxa (n = 97/99). Moreover, this gene was firmly 

embedded within an Actinobacterial cluster in network analyses. Although rbpA was first 

reported to facilitate rifampicin resistance in Streptomyces coelicolor (Newell et al., 

2006), this gene has also been implicated in mycobacterial rifampicin-resistant 

phenotypes (Verma and Chatterji, 2014). In the current work, rbpA was almost 

exclusively associated with mycobacterial contigs. Based on contig analyses it appears 
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that while there is an abundance of rifamycin ARGs in soil, they exhibit limited mobility 

and are accordingly constrained to a set of specific taxa. 

 

CAT failed to classify the majority of contigs presenting vanO-type genes. However, 

Kaiju consistently returned Streptomyces sp. (34.24%) alongside assorted 

Actinomycetes. As with rbpa, the inducible vanO operon was first described in an 

environmental Actinomycete; Rhodococcus equis (Gudeta et al., 2014). To this end, two 

contigs possessing vanO-like genes were identified as putative Rhodococcus sp. by Kaiju. 

Gudeta et al. (2014) provided evidence that vanO genes were exclusively chromosomal 

and evolutionarily distinct from Enterococcal operons conferring vancomycin resistance. 

This could represent another parallel with rbpA, whereby vanO may be similarly tied to 

actinomycetes, however this currently lacks additional support in literature. 

 

The mtrA-like genes abundant in soil purportedly relate to RND (resistance nodulation 

division) efflux pumps according to databases, although the provenance of this is unclear 

in the literature. Nonetheless, mtrA is thought to be involved in maintaining multidrug 

resistances intrinsic to Mycobacterium tuberculosis (Nguyen et al., 2010). On the other 

hand, Cervantes et al. (2020) was unable to establish any association between mtrA and 

phenotypic drug resistance in M. tuberculosis isolates, indicating some uncertainty about 

the role of mtrA as a bone fide resistance determinant. However, Piddock (2006) 

underscored the potentially multifarious functions of efflux pump genes. Indeed, others 

have demonstrated mtrA expression plays a pivotal role in the persistence of M. bovis 

upon entering host macrophages (Via et al., 1996, Zahrt and Deretic, 2000, Chatterjee 

et al., 2018). Furthermore, mtrA orthologues in Streptomyces sp. have been associated 

with regulation of antibiotic production pathways (Som et al., 2017, Zhu et al., 2020). In 

any case, mtrA was strictly linked to actinobacterial contigs with Mycobacteriaceae 

strongly represented and showing consistent agreement with existing research.   
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Lastly, dfrB is a resistance gene family encoding resistance to trimethoprim, an antibiotic 

commonly administered in combination with sulfamethoxazole to treat broad spectrum 

urinary infections in humans (WHO, 2017a) and animals (Checcucci et al., 2020).  

However, the synergistic effect of these drugs is being undermined by the emergence of 

clinical resistance to this drug combination (Eliopoulos and Huovinen, 2001). Moreover, 

dfrB-family genes are habitually embedded within MGEs, thus aiding their potential for 

environmental dispersal (Alonso and Gready, 2006, Sánchez-Osuna et al., 2020, 

Toulouse et al., 2020). Interestingly, while environmental transfer of dfrA genes is well 

documented (Zhang et al., 2009, Berglund, 2015), this is not the case for dfrB genes, 

which are genetically distinct from dfrA-like genes. Li et al. (2015a) also showed dfrA 

was especially abundant in human and animal waste metagenomes and less abundant in 

soil, which suggests they may be a marker of faecal contamination. Returning to dfrB, 

members of this resistance gene family have been identified in Enterobacteriaceae 

including Escherichia coli (Toulouse et al., 2017) and Salmonella enterica (Levings et al., 

2006). Similarly, Ateba et al. (2020) reported dfrB genes in assorted coliforms recovered 

from water treatment systems. Occurrence in Alcaligenaceae and Aeromonadaceae has 

also been documented (Roberts et al., 2012).  In the present study, contigs containing 

dfrB-like genes were overwhelmingly classified as Pseudomonas putida by Kaiju 

(77.27%), followed by Methylibium sp. Five contigs originating from slurry-treated and 

untreated site samples were also identified as Methylibium sp. by CAT, however most 

dfrB-containing contigs remained unclassified by this program. Methylibium sp. are Beta-

proteobacterial methylotropic organisms first described for their ability to degrade 

methyl tert-butyl ether (MTBE), an environmentally recalcitrant gasoline-additive 

(Nakatsu et al., 2006). There appears to be no evidence of trimethoprim-resistance in 

Methylibium sp. in previous studies, although it is not considered pathogenic and 

consequently received little attention in this regard. In contrast, Pseudomonas putida 

strain T-X16B (NCBI genbank accession: KM382182.1) is known to carry a class one 

integron encoding dfrB4 in addition to the chloramphenicol resistance gene catB3. 

However, no putative P. putida contigs were found to possess catB-like genes. 
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Furthermore, ARG-ARG network analysis failed to show significant correlations between 

dfrB and catB-like genes in any site (Chapter 2 Figure 2.13). It is possible that these 

'missing pieces' of evidence were lost during the assembly process, although given these 

associations were not identified based on unassembled reads, insufficient read-depth 

may be an equally plausible explanation. Alternatively, determining the presently 

unknown origin of dfrB genes (Alonso and Gready, 2006, Toulouse et al., 2017) could 

resolve these findings more clearly. 

In summary, the core soil resistome as described by metagenomic analyses is 

characterised by glycopeptide and vancomycin resistance genes with strong evolutionary 

links to actinomycetes. Furthermore, this study has shown long-term fertilisation with 

dairy cattle manure is unlikely to dramatically alter the core resistome, or associated 

hosts. On the other hand, transient shifts are detectable in unassembled reads, however 

these are likely lost in assembled data due to insufficient sequencing depth. 

 

4.4.3 MetaCompare Risk Scores 

Quantifying the relative risk to human health posed by the environmental resistome 

remains an established priority within AMR research and related policy development 

(Ashbolt et al., 2013, Bengtsson-Palme and Larsson, 2015, Martínez et al., 2015, 

Larsson et al., 2018, Ben et al., 2019). In particular, Martínez et al. (2015) expressed 

the need to rank relative risk potential across different environments. However, it 

appears MetaCompare remains the only software to date which offers a standardised 

approach to calculating 'resistome risk scores' from assembled metagenomic data 

(Slizovskiy et al., 2020). Here, MetaCompare will be discussed within the specific context 

of the metagenomic data collected for the current study, meanwhile wider 

considerations/implications for the continued improvement of 'risk scoring' systems will 

be discussed further in the following chapter. 
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When comparing data for the same period, MetaCompare indicated the resistome risk 

potential of soils were statistically similar whether samples originated from the slurry-

impacted field or the untreated site. Furthermore, samples collected within 24 hours of 

slurry application in May 2017 exhibit no clear elevation in risk potential compared to 

samples collected from the same site five days previously. Considering soil was collected 

within 24 hours of slurry application in May 2017, it is perhaps surprising that no 

significant difference was detected. In contrast, Chen et al. (2019a) reported soil risk 

scores (as calculated by MetaCompare) were significantly increased one day after 

exposure to cattle manure in a replicated microcosm study. The same study also showed 

that risk scores declined to control levels within 120 days. There are several possible 

explanations for why the risk scores calculated here do not correspond with the study 

performed by Chen et al. (2019a); these encompass both biological and technical 

reasons. 

 

Firstly, the present study was conducted at the field-scale in an uncontrolled 

environment which concomitantly introduced a range of factors typically absent in a 

controlled laboratory-scale experiment (e.g. dilution effects); a point acknowledged by 

Chen et al. (2019a). Secondly, the cattle waste collected by Chen and colleagues was 

obtained directly from cattle and underwent neither solid-liquid separation or slow 

anaerobic digestion as occurs in a slurry tank. These processes change the 

physiochemical properties of the waste material while also impacting the microbial 

community (Pandey et al., 2018) and the resistome (Wallace et al., 2018, Tong et al., 

2019). Furthermore, the slurry in the present work was broadcast, and not incorporated 

as in the study by Chen et al. (2019a); the latter practice  has been shown to positively 

influence FIO survival (Hutchison et al., 2004, Hodgson et al., 2016). Finally, the 

average risk score associated with slurry in the present study (21.61 ± 0.06, n = 10) 

was more comparable to that assigned to wastewater treatment plant effluent (20.92 ± 

1.3, n = 3) than to dairy lagoons (25.52 ± 1.1, n = 5)  by Oh et al. (2018). This could 
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imply that slurry from the study dairy farm confers a genuinely reduced risk to human 

health relative to similar or equivalent waste products generated on other farms. 

 

On the other hand, the risk scores may have been confounded by technical decisions and 

limitations inherent to the current configuration of MetaCompare. For instance, 

MetaCompare only normalises the occurrence of 'hazard' features against the total 

number of contigs and does not incorporate a normalisation step to account for 

individual contig length. Although this is acknowledged by Oh et al. (2018) in their paper 

introducing MetaCompare, this could have substantial implications for its use in certain 

scenarios. 

 

To this end, consider two contigs, one 500bp in length and another 2000bp in length. In 

this case, the probability of locating any individual or combination of 'hazard' features is 

likely to be greater on the longer contig, despite the fact contig length is an artefact of 

assembly success and unrelated to biological risk potential. The direct comparison of 

slurry and soil samples in the current study exemplifies this issue. Specifically, although 

the original read libraries of both slurry and soil samples contain a similar number of 

reads (~42M and ~40M reads, respectively), Megahit was typically able to assemble 

fewer, larger contigs (~1.1M) for slurry than for soil (~1.7M). Indeed, on average each 

slurry sample contained 18 contigs with at least one ARG, MGE and pathogen marker, 

while soil samples had <3 on average. Although slurry would be expected to contain 

more contigs with all three of these 'hazard' features (as evidenced by unassembled read 

data), it is not clear to what degree their co-localisation on contigs is due to a greater 

contig length.  

  

The developers of MetaCompare provide options to adjust parameters according to 

assembly quality; however, integrated contig-length normalisation would potentially 

negate the need for this, maintain standardisation and enhance accessibility. 

Alternatively, if one were to filter short contigs (e.g. <1kb) the normalising factor would 
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be manipulated. Doing this may cause further distortion since the distribution of 'hazard' 

features appearing separately is more likely to be skewed towards shorter contigs and so 

these features would be disproportionately lost in lower quality assemblies. Slizovskiy et 

al. (2020) also underscores the absence of a normalisation factor for gene length can 

lead to longer ARGs or MGEs being artificially penalised by a range of ARG-screening 

software. Accordingly, one might expect the risk scores of soil to be significantly smaller 

relative to slurry scores. However, the opposite is the case, with soil consistently 

assigned a greater risk score than slurry. This can be partially explained by the sheer 

number of soil contigs, which carry a single hazard feature type. Moreover, no additional 

weighting appears to be applied to contigs which possess all three 'hazard' features; 

therefore even though MetaCompare identifies that slurry samples have many more 

'high risk' contigs than soil, this information is not incorporated into the final risk score. 

In addition, even soil subject to limited anthropogenic impact has been shown to be 

replete with generic efflux pumps (Van Goethem et al., 2018) which are not necessarily 

meaningful for ascribing risk potential (Martínez et al., 2015). While Oh et al. (2018) 

mention the removal of such genes could improve MetaCompare risk scores, their 

inclusion in the current version could explain the unintuitive results reported here.      

Nonetheless, MetaCompare attempts to address a key knowledge gap that few have 

sought to tackle in practice and attests to the difficulty of doing so. Also of note, the 

intermediary figures calculated by MetaCompare correspond well with the relative 

number of contigs containing MGEs and ARGs as detected by ABRicate. The additional 

function of identifying the frequency with which these features occur on contigs carrying 

pathogen markers is also of interest. For example, according to MetaCompare these data 

show nearly all contigs carrying ARGs and MGEs are also likely to originate from 

pathogens.      

Finally, aside from  Chen et al. (2019a) and Slizovskiy et al. (2020) (although the latter 

did not make use of the risk score function), no other publications to date have used 

MetaCompare; further use will no doubt improve future versions and inspire entirely new 

programs. 
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4.4.4 The Mobilome  

Many publications investigating the composition and perturbation of assorted 

environmental resistomes consider both ARGs and MGEs. However, studies concerning 

land-application of animal waste products often rely on correlation-based analyses to 

infer associations between these elements (Cleary et al., 2016, Muurinen et al., 2017, 

Zhang et al., 2017b, Chen et al., 2019b, Zhao et al., 2019, Wang et al., 2020a); this can 

generally be ascribed to the use of qPCR-based techniques which quantify target genes 

rather than their genetic context. In comparison, MGE-borne ARGs are more frequently 

confirmed and their genetic structures established in wastewater treatment 

environments (Che et al., 2019, Ju et al., 2019, Yin et al., 2019, Zhao et al., 2020).   

Nonetheless, select studies have assessed the structure of ARG-bearing MGEs in animal 

waste (Ma et al., 2016) and surrounding farm environments (Mencía-Ares et al., 2020). 

Moreover, Yang et al. (2020) identified swine slurry as a hotspot for ARGs and MGEs. 

Together with existing network analyses these provide a summary of MGE candidates 

likely to be involved in ARG mobilisation within waste-amended soils. 

 

In the current work, contig-based analyses characterised the co-localisation of specific 

slurry-associated ARGs and MGEs. For example, three slurry contigs contained the 

complete recombination module of the Tn916 conjugative transposon adjacent tetM, a 

core member of the slurry resistome (Figure 4.4).  
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Figure 4.4 Schematic of tetM embedded within Tn916 transposon. pTR = putative 

transcriptional regulator, pRP = putative regulatory protein, pP = putative 
polyribonucleotide, pAP = putative abi-alpha protein, xis-Tn = excisionase, int-Tn = 

integrase. Example contig from the current study is shown as a black line. Alignment 

region shown in grey. Gradient reflects percentage identity. Colours indicate function: 

resistance genes (red), mobilisation (blue) and other (beige).  
 

 

Tn916-like elements typically encode tetM and are known to circulate within a broad 

range of hosts, including Gram positive and Gram negative bacteria (Roberts, 2005, 

Hegstad et al., 2010, Ciric et al., 2013). Potential hosts also encompass pathogens of 

clinical importance to human and veterinary medicine (Roberts and Mullany, 2011, 

Fischer et al., 2013, Pinto et al., 2014). Furthermore, Tn916-like elements can carry a 

diverse repertoire of other resistance determinants, including various combinations of 

macrolide (erm, mef), tetracycline (tet), aminoglycoside (aphA) and occasionally 

mercury (mer) resistance genes (Roberts and Mullany, 2011, Ciric et al., 2013, Pinto et 

al., 2014). Moreover, Pinto et al. (2014) demonstrated in vitro Tn916-mediated transfer 

of macrolide and tetracycline resistance genes from a bovine strain of Streptococcus 

agalactiae to a susceptible recipient of human origin. In the present study Tn916-like 

elements were only co-localised with one other ARG; tetO (n = 4). However, this 

association was limited to a Tn916-family transposase and a complete Tn916-like 

recombination module was not found within these assembled contigs. On the other hand, 

Lu et al. (2020) found the relative abundance of Tn916 in livestock slurry was positively 

correlated with ARGs belonging to various antibiotic classes (tetracycline, macrolide, 

aminoglycoside and sulfonamide ARGs).   
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Interestingly, while both laboratory and plot-scale experiments have reported the 

persistence of Tn916 in animal waste-amended soil (Natarajan and Oriel, 1992, Andrews 

Jr et al., 2004, Lu et al., 2020), a similar trend could not be established based on the 

contigs generated in the present study; it is possible deeper sequencing efforts could 

indicate otherwise. The Class A beta-lactamase gene cfxA was also occasionally co-

localised with MGE markers on contigs (n = 3). Specifically, cfxA genes were found 

alongside an NBU1-like region (Figure 4.5). Indeed, NBUs (non-replicating Bacteroides 

units) are well-characterised integrative elements and have been shown to carry cfxA-

like genes (Li et al., 1993). However, NBUs are not self-transmissible and require the 

presence of a suitable conjugative transposon (CTnDOT-family) to facilitate further 

dispersal (Shoemaker et al., 1996, Rajeev et al., 2006). These transposons were not 

identified among slurry contigs in this study, however lack of detection does not prove 

their absence. Furthermore, CTnDOT transposons carry ermF and tetQ (Waters and 

Salyers, 2013); genes which are at least individually present on slurry contigs.   

 

 

Figure 4.5 Schematic of cfxA and NBU-1-like region. int = integrase, mob = 

mobilisation protein, pmrN = putative primase, mobN1 = mobilisation protein. Example 

contig from the current study is shown as a black line. Alignment is shown in grey. 

Gradient reflects percentage identity. Colours correspond to function: resistance genes 
(red), mobilisation (blue) and other (beige). 
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To this end, mobilisation of NBUs could explain why other studies have shown cfxA is 

prevalent within livestock waste (Zhou et al., 2016) and human faeces (Li et al., 2015a). 

Of additional note, the conjugal transfer of CTnDOT-like transposons can be enhanced by 

exposure to low levels of tetracycline (Waters and Salyers, 2013). Speculatively, the 

prominence of cfxA in slurry may therefore relate to tetracycline use and exposure to 

sub-inhibitory residues. Consequently, horizontal gene transfer between Bacteroides sp. 

represents a plausible route for the propagation of cfxA genes within slurry. 

A subset of ten contigs contained the ermB MLS resistance gene in close proximity to a 

Tn3 family transposase and recombinase (Figure 4.6). More specifically, the 

configuration resembles (identity = 99.96%, coverage = 90%) Tn917 first described in 

Enterococcus faecalis by Shaw and Clewell (1985). This is also consistent with the 

putative assignment of order Lactobacillales by Kaiju. However, although Enterococci are 

documented nosocomial human pathogens, emergent vancomycin rather than 

erythromycin resistance is of greater clinical concern (Werner et al., 2020).    

 

 
 

Figure 4.6 Schematic of ermB and Tn3-like region. R-fp = recombinase family protein, 

Tn3-ft = Tn3 family transposase. Example contig from the current study is shown as a 

black line. Alignment is shown in grey. Gradient reflects percentage identity. Colours 
correspond to function: resistance genes (red), mobilisation (blue) and other (beige).  

 

Previous research has established animal faecal material is often associated with 

aminoglycoside and sulfonamide resistance genes (Nõlvak et al., 2016, Noyes et al., 

2016, Muurinen et al., 2017, Checcucci et al., 2020). In the current work, 15 contigs 

contained aph(3") and aph(6) streptomycin resistance genes, while an additional contig 
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included these in combination with sul2 and an MGE marker gene (Figure 4.7). The 

aph(3") and aph(6) genes (synomymous with strA-strB), commonly co-occur with sul2 

on plasmids recovered from isolates of human, animal and environmental origin (Sundin 

and Bender, 1996, Anantham and Hall, 2012). Furthermore, the sul2-strA-strB motif has 

recently been reported in previously undisturbed Antarctic ice cores, suggesting its 

emergence pre-dates antibiotic use (Okubo et al., 2019). Despite the apparent global 

distribution of strA-strB motifs, other studies have indicated their environmental 

prominence responds to anthropogenic activity. In particular, Ludvigsen et al. (2018) 

showed the incidence of strA-strB was higher in the gut of honeybees in the US relative 

to Norway where agricultural use of streptomycin is comparatively limited. Lastly, Zhao 

et al. (2020) also highlighted a variety of strA-strB configurations in antibiotic production 

wastewater. These also included different accessory genes such as bla and sul ARGs. In 

the current work, a single contig encoding strA-strB was also co-localised with tetY, 

although no MGE markers were additionally detected. 

 

Figure 4.7 Schematic of aph(6), aph(3”) and sul2 containing region. Example contig 

from the current study is shown as a black line. Alignment is shown in grey. Gradient 

reflects percentage identity. Colours correspond to function: resistance genes (red), 
mobilisation (blue) and other (beige).  

 

A different aminoglycoside resistance gene cluster was identified on another contig in the 

form of ant(6)-1a (synonymous with aadE) and an ant(9)-subgroup gene (Figure 4.8). 

Analysis with NCBI-BLAST showed the contig concerned had 100% query coverage and 

identity with several conjugative transposons and chromosomal sequences belonging to 
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various members of Firmicutes. Furthermore, network analysis on unassembled read 

data also alluded to an association between the aforementioned genes (see Chapter 2, 

Figure 2.13A).  

 

 

Figure 4.8 Schematic of ant(9), ant(6)-1a containing region. Example contig from the 

current study is shown as a black line. Alignment is shown in grey. Gradient reflects 

percentage identity. Colours correspond to function: resistance genes (red), mobilisation 
(blue) and other (beige).  

  

Although limited discussion about this specific ARG pairing is evident in publications, the 

dissemination of multiple co-resident aminoglycoside resistances genes does not appear 

uncommon, as already outlined with regard to strA-strB. Accordingly, van Overbeek et 

al. (2002) postulated multiple aminoglycoside ARGs may be maintained on MGEs due to 

host-specific expression of certain ARGs. In this way, ostensibly redundant genes could 

maximise the range of hosts to which an MGE confers a selective advantage. 

In contrast to slurry, evidence of ARG-MGE co-occurrence could not be established in soil 

contigs (based on ABRicate screening), this was likely due to a combination of 

insufficient sequencing depth, reduced average contig length (assembly efficiency) and 

the dilution of slurry-associated MGE sequences in soil.    
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4.4.5 Tracking Slurry-borne MAGs 

To the author's knowledge no previously published studies have traced MAGs in slurry 

amendments directly to slurry amended soil. The recovery of a slurry MAG with high 

average nucleotide identity (>99.5%) to a MAG derived from amended soil is indicative 

of transfer. Although the detection of a genetically similar MAG in slurry and slurry-

treated soil may not seem especially significant, this belies its importance from the 

perspective of validation. In particular, both differential abundance and network analysis 

conducted on unassembled reads had already highlighted Proteiniphilum sp. as key 

indicators of slurry application. Mapping back the Proteiniphilum sp. MAG recovered from 

slurry to the read libraries of each soil sample further corroborates, albeit crudely, the 

transient increase in slurry-associated Proteiniphillum sp. within treated soil (e.g. 22.7 ± 

1.2% increase in mapped reads <24hrs after slurry application in May 2017). Lastly, at 

least one other study has also found evidence of manure-mediated increases in the 

relative abundance of Proteiniphilum sp. within soil (Wolters et al., 2018). In addition, 

metagenomics was capable of detecting changes in these populations despite their 

relatively low abundance in the soil studied.  

 

Meanwhile, Proteiniphilum sp. are obligately anaerobic (Hahnke et al., 2016) and 

therefore not likely to be inherently populous within well-drained soils. Consequently, 

their elevated detection in treated soil underscores a wider point that there are many 

potential markers of animal waste contamination which could be utilised when using 

metagenomics rather than classical culture techniques. Likewise, the present study 

showed traditional markers of faecal contamination, namely E. coli, proved 

comparatively poor indicators, with greater relative abundances often detected in soil 

devoid of systemic livestock waste amendment (discussed in Chapter 3). This likely 

occurred due to the presence of environmental E. coli with no association with slurry. 
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The ultimate purpose of recovering MAGs was to establish and validate the specific hosts 

of ARGs as indicated by network analysis of unassembled reads. Unfortunately, this was 

not possible as ARGs could not be detected within the MAGs generated (including those 

belonging to Proteiniphilum sp.) using the bioinformatic methods employed. As 

mentioned previously, this may correspond to assembly failing to resolve genomic 

islands and plasmids bearing ARGs (Maguire et al., 2020), insufficient sequencing depth 

or the genuine absence of these genes. However, contig-based analysis suggests the 

latter is not the case. In contrast, several other publications have successfully identified 

resistance determinants within MAGs (Kantor et al., 2019, Stamps and Spear, 2020, Tan 

et al., 2021). 

 

4.5 Conclusion 

In summary, the current chapter successfully contextualised various links between 

ARGs, putative associations with bacterial taxonomy and provided additional insight into 

the composition and structure of the cattle slurry mobilome. This was achieved and 

partially validated through using a combination of methods which interrogated the 

sequence data at different levels, namely the unassembled reads and assembled contigs.  

Interestingly, while the experimental data presented here clearly indicates bacterial 

community composition is a key determinant of the resistome, analysis of the mobilome 

underscored MGEs are integral to the dispersal of abundant slurry ARGs, such as tetM 

which were not correlated with specific taxa. Furthermore, this chapter indicates 

members of Bacteroidales and Lactobacillales may be especially important for the 

propagation and maintenance of ARG-harbouring MGEs in slurry.  

 

On the other hand, metagenome assembly was unable to provide information about the 

composition and genetic structure of ARG-harbouring MGEs in soil samples. In addition, 

the episodic and transient increase in slurry-associated ARGs detected within soil as 

evidenced by unassembled read data in previous chapters, could not be validated by 
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assembled contigs. Nonetheless, agreement between read-based and contig-based 

analysis could be demonstrated for at least one taxon enriched in soil following slurry 

application. Carrying out deeper sequencing to better characterise the spread of animal 

waste-borne ARGs in soil, their respective hosts and related MGE complements is vital to 

establishing appropriate risk management strategies. Complementary to this, the 

continued development of tractable risk scores which can be derived directly from 

metagenomic data should be an area of further research, especially as the software 

currently available was unable to handle the combination of different environmental 

compartments evaluated here.  
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Chapter 5 

Final Discussion 

5.1 Summary of Key Findings 

The primary objective of the study was to characterise and track the response of the soil 

resistome following multiple applications of dairy cattle slurry in order to better 

understand the extent to which activities at a conventional (model) dairy farm might 

pose a risk to human health through the dissemination of antibiotic resistant bacteria. 

The source of slurry was also sampled to inform the distinction between autochthonous 

and introduced ARGs/bacteria. A site with no history of livestock waste application was 

also studied to provide an ecological baseline. Various meta-data were also collected to 

further assist the determination of key factors which might influence the soil resistome.  

Changes in bacterial communities were considered, as well as the relationship between 

specific taxa and antimicrobial resistance determinants. Critically, popular correlation 

analyses were complemented with assembly-based analyses to provide robust linkage 

between ARGs and their hosts.  

In Chapter 2, the composition of soil and slurry resistomes were shown to be distinct 

from each other, irrespective of whether soil originated from sites with a history of 

exposure to dairy cattle slurry. Consequently, it became apparent that the long-term 

application of slurry had not dramatically altered the composition of dominant ARGs in 

soil. Nonetheless, a core member of the slurry resistome, tetM was significantly more 

abundant in slurry-impacted soil relative to the untreated site. Literature suggests this 

tetracycline resistance gene was most likely circulating on transposons such as Tn916 

and Tn1545. Subsequent examination of tetM-containing contigs confirmed Tn916 

carriage (Chapter 4, Figure 4.4). Interestingly, while an increased abundance of 

tetM/Tn916 has previously been associated with long- and short-term exposure to 

livestock waste, soil samples collected within 24 hours of slurry application did not 
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exhibit a significant increase in tetM. It was therefore proposed that repeated exposure 

events had led to the saturation of soil carrying capacity for these genes at this site. On 

the other hand, a number of ARGs identified as slurry biomarkers were transiently 

enriched within soil after slurry application in May 2017 and were otherwise present at 

similar relative abundances in the undisturbed site (Chapter 2, Figure 2.11). This 

suggested that few slurry-associated ARGs possessed the capacity for naturalisation. In 

contrast, an earlier application (late winter) of slurry in 2018 appeared to increase the 

detection period of some slurry-borne ARGs by at least two months (Chapter, Figure 

2.11). 

Likewise, the response of the soil bacterial community to slurry-amendment described in 

Chapter 3 highlighted very few slurry indicator taxa were significantly enriched in soil 

immediately after application events. Furthermore, these enriched organisms are not 

classically considered indicators of faecal contamination. Meanwhile, pH was shown to 

correlate with phylum-level differences between the treated and untreated sites, which 

may correspond to alkalising effects of long-term slurry application.  

Network analyses were used to consider ARG-ARG and taxon-taxon correlations based 

on unassembled reads in Chapters 2 and 3. Subsequent contig-based analysis with 

ABRicate demonstrated that correlations between select aminoglycoside ARGs (ant6 and 

ant9, aph3 and aph6) were indeed due to their co-occurrence on slurry contigs. 

Furthermore, certain taxon-ARG correlations were also corroborated by contig-based 

annotations (Mycobacteriaceae and rbpA, cfxA and Bacteroides sp./Bacteroidetes). In 

contrast, there were also many putative associations which could not be validated by 

contig analyses. Although it is far from ideal for so many un-validated inferences to 

remain, this is unfortunately indicative of studying bacterial assemblages (particularly in 

soil) where such much biological context is yet to be properly understood. Lastly, it is 

important to remember that a considerable quanitity of data is lost during assembly; 

network analyses offer some means by which to harness (if imperfectly) unassembled 

short-read data for association mining.  
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Analysis of both unassembled and assembled data (Chapter 1 and 4, respectively) 

showed that aspects of the core slurry resistome were consistent with the literature 

concerning dairy cattle, but also pigs. This is of interest as it implies a core-gut 

resistome may exist even across species with very different digestive physiology (i.e. 

ruminant vs. monogastric) and antibiotic therapy requirements; mastitis  in cattle and 

respiratory disease in pigs (De Briyne et al., 2014). Indeed, penicillins and tetracyclines 

have found widespread use across livestock industries (Dibner and Richards, 2005). In 

contrast, extensive research has also demonstrated clear differences between these 

animals with respect to the prevalence of specific ARG-subgroups (swine manure 

typically has a more diverse resistome). 

 

5.2 Informing Policy: Best Practice and One Health 

The following discussion focuses on framing the results of the present study within the 

context of existing UK government guidelines and policy regarding dairy farming and the 

threat of emergent AMR.  

It would be impossible to discuss the UK's approach to tackling AMR without making 

reference to the global recommendations outlined by O'Neill (2016), which have clearly 

influenced successive policy decisions regarding this subject. One core tenet of the 

aforementioned report concerns the reduction of antibiotic use in agriculture, with 

particular focus on the highest priority - critically important antimicrobials (HP-CIAs), as 

defined by the WHO (2017a). Accordingly, UK-VARSS (2020) showed UK veterinary sales 

of HP-CIAs declined by ~74% between 2015-2019. Furthermore, a survey covering 34%  

UK dairy cattle revealed HP-CIA use reduced by 87% between 2017-2019 (UK-VARSS, 

2020). Accordingly, the model farm used in the current study reflects this trend in policy 

(Chapter 2, Table 2.1). Specifically, the frequency and range of third and fourth 

generation cephalosporin use on the farm diminished greatly between 2015-2017, with 

total doses of HP-CIAs falling by 75% over three years. In addition, the survey 
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presented in the UK-VARSS (2020) report included farms with a mean herd size of 215, 

which is similar to that of the study dairy farm (~250) at the time of study. On the other 

hand, the overall UK mean is only 148, although there is a trend towards fewer, larger 

dairy farms (AHDB, 2020a). It has been shown that the short-term effects of Brexit may 

lead to a contraction in the herd size of some dairy operations due to the loss of key 

workers from the European Union (NFU, 2017). In the long-term, this may precipitate 

the acceleration of automation, subsequent expansion and further loss of smaller dairy 

farms unable to diversify or afford automation. 

Consequently, the semi-automated dairy farm studied here gives an insight into the 

environmental impacts of slurry fertilisation under stringent antibiotic stewardship at a 

scale which is likely to remain relevant into the future. Although there are shortcomings 

to focussing on a single farm (e.g., unusual local factors may skew data interpretation) it 

is proposed that in this case the depth of temporal analysis at a commercial farm with 

open access to clearly defined operating procedures offered an unparalleled opportunity 

to assess in situ management practice with a level of detail scarcely found in existing 

literature. Furthermore, the noise inherent to real-world environmental data has been 

placed in check by ensuring it is viewed with an awareness of studies which have opted 

for a small-scale, controlled (artificial) and highly replicated approach to tackling a 

similar question. 

Less than three months after the release of the final report from the Review on 

Antimicrobial Resistance (O'Neill, 2016), the UK government issued new guidance on the 

handling of manure and slurry to reduce antibiotic resistance (GOV.UK, 2016).  

One proposed mitigation strategy discourages slurry application on grazing pasture or 

land which is cropped for feed production (i.e. silage). However, where this takes place it 

is recommended that fields are withdrawn from grazing or cropping for at least eight 

weeks (GOV.UK, 2016). The primary objective of this measure is to minimise the 

likelihood of livestock consuming feed contaminated with antibiotic resistant bacteria, 
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pathogens and possibly unmetabolised antibiotics or bioactive degradation products. 

Indeed, in the current study, the first application of slurry in spring 2017 was 

accompanied by a transient increase in the detection of slurry-associated ARGs, which 

declined to pre-treatment levels within eight weeks. Contrarily, select slurry-associated 

ARGs were elevated above the field baseline 12 weeks after the resumption of organic 

fertilisation the following year in February. This indicates slurry-borne ARGs could 

contaminate cut-grass at least four weeks after the advised eight week wait-period. 

Moreover, the current study also showed tetM-like reads were consistently more 

prevalent in soil subject to long-term slurry exposure compared to soil with no history of 

amendment. As a result, contamination of cut grass with tetM-carrying organisms may 

represent a persistent risk. Although soil rather than cut grass was sampled, the 

contamination of ensiling material with soil organisms is an acknowledged hazard 

(Drouin and Lafrenière, 2012, Queiroz et al., 2018). It is thought that the contamination 

of cut grass with soil organisms, including those introduced by animal waste 

amendments is more likely to occur when a lower cut-height is employed (Drouin and 

Lafrenière, 2012).  

Studies evaluating silage contamination typically involve organisms, which might 

compromise nutritional quality or represent a direct risk to livestock and human health; 

including Clostridium spp, Listeria spp and Bacillus spp (Driehuis and Elferink, 2000, 

Drouin and Lafrenière, 2012, Driehuis et al., 2018, Queiroz et al., 2018). Meanwhile, the 

potential for silage to act as a reservoir for ARGs on farms has largely escaped attention. 

Although Wu et al. (2020) found tetracycline and macrolide resistance genes dominated 

sweet corn kernel silage and described the effects of various silage additives, it appears 

no work to date clarifies the extent to which contamination with soil and animal waste 

amendments may influence the resistome of ensiled material. The likelihood of antibiotic 

residues contaminating silage in the same fashion is equally unclear. While crop plants 

destined for human consumption have been shown to absorb small quantities of 
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antibiotics within 6 weeks of exposure, including chlortetracycline  (Kumar et al., 2005a) 

and sulfamethazine (Dolliver et al., 2007), little information is available for silage.              

Assuming grass cut after eight weeks of slurry application could be contaminated with 

slurry-borne ARGs, it might be supposed that the fermentation stage of silage production 

could limit the proliferation of bacteria carrying slurry ARGs. Secondly, unlike slurry, 

which is neutral to alkaline, silage is often acidic and this may represent an additional 

obstacle to the survival of these bacteria. Alternatively, Lactobacillus sp. form a major 

component of silage and select species are often used as inoculants to enhance 

fermentation and silage quality (Ellis et al., 2016, Selwet, 2020). Indeed, based on 

unassembled data slurry-borne Lactobacillus sp. were among those bacteria, which 

persisted at elevated levels within soil 12 weeks after slurry application. Furthermore, 

mobile elements with a broad-host range like tetM may not require the prolonged 

survival of their original host to proliferate. Interestingly, Enterococci are also commonly 

used as LAB (lactic acid bacteria) for inoculating silage and while current evidence 

suggests pathogenic Enterococci are distinct from probiotic strains, debate exists about 

their safe use in view of transferable ARGs like tetM (Hanchi et al., 2018, Santos et al., 

2020).      

While it remains to be determined whether contaminated cut grass poses a credible 

route for ARG dispersal, it could be argued that even if slurry-associated ARGs were to 

be ingested by cattle, this would not dramatically change their resistome and therefore 

constitute negligible risk. Another perspective is that it could present an additional 

opportunity for cattle ARGs to make their way into humans through handling of silage. 

Furthermore, any antibiotic residues in the silage would effectively act as a 

subtherapeutic dose with the potential to exert selection pressure at herd level. The 

most likely means by which contaminated silage might promote AMR is if it contains 

pathogens that go on to cause illness in livestock and necessitate antibiotic therapy. In 

any case, it is interesting to note best practice stipulates material for feed should not be 

cropped within eight weeks of slurry application on the basis that antibiotic resistant 
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bacteria might be present (GOV.UK, 2016), while the likelihood of silage becoming 

contaminated with ARB is still largely untested.  

Where the direct quantification of risk remains elusive, as in the case of AMR transfer 

from the environment to humans, Manaia (2017) highlighted the virtues of the 

precautionary principle and stresses measures should be implemented pre-emptively to 

contain potential hazards. Given the widely endorsed concept of "One Health" (Davis et 

al., 2017, Collignon and McEwen, 2019, Tiedje et al., 2019), it therefore seems 

appropriate to extend the precautionary principle to livestock feed production. Although 

evidence of this can be seen in the UK guidelines previously discussed, it is interesting to 

note that following the application of animal waste to land, there is a disparity of 40 

weeks between the recommended wait-period for harvesting silage for animal feed and 

when ready-to-eat crops should be collected for human consumption. It is possible the 

wait-period guidelines for animal feed are not as strict simply because the produce is not 

destined for direct human consumption. Alternatively, the wait-period may take into 

account the additional processing animal feed undergoes during ensiling.     

The present work also highlighted variability in the rate at which both slurry-borne ARGs 

and bacteria decline after slurry application. As a result, it may be difficult to firmly 

establish fixed recommendations for when material for livestock or human consumption 

may be safely harvested. In the present work, it was proposed that the variability relates 

to prevailing environmental conditions at the time of slurry application, and is likely to 

reflect season. Since seasonal effects are challenging to replicate and delineate at the 

field scale, few studies have explored the relationship between ARGs, taxa and season. 

Nonetheless, studies have shown surface transport of ARGs can be enhanced during 

rainfall events (Joy et al., 2013, Huang et al., 2019), while others indicated increased 

dispersal via run-off during the growing season (Neher et al., 2020). In light of the 

consistent relationship between ARGs and taxa in the current work, it is also pertinent to 

note that the survival of faecal bacteria in soil (especially FIOs), is modulated by 
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environmental conditions such as temperature (Van Elsas et al., 2011, Park et al., 2016) 

and rewetting events (Zaleski et al., 2005) which are liable to change with the seasons.  

However, seasonal conditions in the UK are far from uniform, and there is a danger that 

aberrant climate events can confound the benefits of policies defined by the calendar. 

Indeed, a government report raised similar concerns from farmers regarding the 

inflexibility of UK NVZ closed-period policy (DEFRA, 2013).  

Alternatively, current government guidelines also suggest shallow injection of slurry can 

reduce the spread of antibiotic resistant bacteria to leafy crops whether destined for 

animal feed or human consumption (GOV.UK, 2016). Although shallow injection may 

limit wildlife exposure, minimise surface transport of ARGs, and even curtail methane 

emissions when compared to broadcast methods, Hodgson et al. (2016) demonstrated 

sub-surface injection increased FIO survival by several weeks. Shallow injection was not 

practiced at the farm studied in the current work and slurry applied to the soil surface 

was subject to UV exposure and the consequent effects of that.  

UK best practice, which was likely informed by the work of Marti et al. (2014), 

recommends a wait-period of 12 months before spreading untreated manure or slurry on 

land where ready-to-eat produce is cultivated (GOV.UK, 2016). Despite the absence of a 

12-month cessation in slurry application, the 14 week (3.5 months) NVZ closed period 

was sufficient for almost all detected slurry-associated ARGs to decline to levels 

commensurate with samples collected over the same period from a site with no history 

of slurry application. One of the few exceptions to this was ugd-like ARGs, which 

remained enriched relative to the untreated site for the duration of the survey. 

In summary, the present study illustrated the eight week withdrawal period suggested 

by the UK government may not always be sufficient to prevent silage from becoming 

contaminated with slurry-borne ARGs and bacteria. Meanwhile, the current work also 

showed many ARGs can dissipate rapidly over the 14 week closed period. Ultimately, 

exploration of UK policy and wider scientific literature shows those seeking to devise 
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evidence-based policy for tackling AMR in agriculture have the unenviable task of 

delivering safe and tractable industry recommendations that accommodate the high 

degree of uncertainty remaining in this research area.  

 

5.3 Challenges for Evaluating Resistome Risk 

As already identified in Chapter 4, establishing the relative risk posed by the land 

application of dairy cattle slurry can be problematic. More specifically, developing a 

standardised measure for quantifying risk which remains meaningful when applied across 

environmental compartments is especially challenging. The principal hindrances to doing 

so will now be discussed, with reference to the current work and more general research. 

 

5.3.1 Defining Pathogens in the Context of Resistome Risk 

While it is widely accepted that the emergence of multidrug resistant human pathogens 

should be considered the primary hazard, there are many nuances to consider when 

calculating how the environment contributes to the risk of this occurring. For instance, 

ARGs are abundant in commensals residing in healthy humans and other animals (Poeta 

et al., 2006, Card et al., 2014, Li et al., 2014a) as well as environmental bacteria which 

are only rarely pathogenic to humans (Martinez, 2009). Environmental bacteria may 

therefore act as vectors for ARGs, especially if they are associated with MGEs, which 

may facilitate the transfer of these genes to bona fide human pathogens. Alternatively, 

commensals can become pathogenic under certain circumstances. For example, Proença 

et al. (2017) demonstrated a single transposon insertion event enabled macrophage 

evasion by commensal E. coli; thus promoting pathogen-like traits. Finally, the 'silent 

colonisation' of healthy humans with ARG-carrying environmental bacteria or 
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commensals may manifest pathogenically in scenarios where these individuals become  

immune-compromised (Manaia, 2017).   

In the context of the present study, Aeromonas sp. represent a useful example to 

illustrate and further explore some of the aforementioned challenges. Aeromonads are 

generally described as autochthonous environmental bacteria, which are found in a 

diverse array of terrestrial and aquatic settings (Janda and Abbott, 2010, Batra et al., 

2016). It is therefore unsurprising that Aeromonas sp. were detected in metagenomic 

samples collected from both soil sites and slurry. However, select species of Aeromonas 

are increasingly implicated in human infections including septicaemia and gastroenteritis 

(Merino et al., 1995, Janda and Abbott, 2010, Fernández-Bravo and Figueras, 2020). 

Moreover, the incidences of Aeromonad-related infections are not limited to immune-

compromised individuals (Janda and Abbott, 2010, Batra et al., 2016). Despite this, they 

are not included within the PATRIC database of pathogenic organisms used by 

MetaCompare to calculate risk scores for the current work.  

Other aspects worthy of consideration include sanitation infrastructure and changing 

climatic context, the importance of which is also exemplified by Aeromonas sp. In 

particular, infections with Aeromomas sp. are known to be associated with untreated 

water resources (Carvalho et al., 2012). Similarly, infections have been linked to natural 

disasters which cause severe flooding and damage to sanitation systems, such as 

hurricanes and tsunamis (Hiransuthikul et al., 2005, Presley et al., 2006). With specific 

reference to agriculture and the storage of slurry, increasing flood events pose a genuine 

risk to uncovered slurry lagoons which may become overwhelmed by rainfall or 

subsumed by uncontrolled floodwaters. This also raises larger questions about how 

global climate change may force researchers to reconsider which antibiotic resistant 

organisms in the environment represent a cause for concern in the future. In this regard, 

researchers should guard against the tendency to focus exclusively on the 'usual 

suspects' and be wary of database bias.   
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Aeromonads may also be relevant from a One Health perspective, as antibiotic resistant 

isolates have been recovered from the faeces of healthy sheep, cattle and horses 

(Ceylan et al., 2009), in addition to wild animals (Dias et al., 2018). The authors of the 

aforementioned studies also make specific reference to risk to human health.  

In the current work, a slurry sample contig had high BLAST homology with a plasmid-

borne region (pAB5S9b) associated with Aeromonas sp. (sequence length = 3kb, identity 

99.97%, e-value = 0.0). This contig harboured a combination of strA\B and sul2, a 

widespread ARG combination previously discussed (Chapter 4, Figure 4.7). In addition, 

culture-based analysis of soil samples collected from the slurry-impacted site (data not 

shown because the thesis focus is on the metagenomic aspects of the study), resulted in 

the isolation of an Aeromonad exhibiting phenotypic resistance (via disc diffusion assays) 

to ceflexin, ceftiofur (first and third generation cephalosporin, respectively), ampicillin 

(penicillin), nalidixic acid (flouroquinolone), florfenicol (phenicol) and nitrofurantoin 

(nitrofuran). Although resistance to ampicillin and narrow spectrum cephalosporins are 

thought to be common among Aeromonads, the other phenotypes described here are 

believed to be less common in clinical isolates (Janda and Abbott, 2010).  

Defining what constitutes an organism of concern is therefore complex and will likely 

continue to frustrate attempts to quantify the risk AMR in the environment poses to 

human and animal health. 

  

5.3.2 Defining ARGs and Other AMR Determinants in the 

Context of Resistome Risk 

Although touched on when discussing Metacompare in Chapter 4, defining what 

constitutes an ARG and which are relevant for environmental risk assessment is a 

complex and often subjective undertaking. One of the most widely cited expositions on 

defining ARGs in the context of risk was authored by Martínez et al. (2015). In brief, the 
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opinion article contends researchers should be wary of considering ARG database 

entries, which relate to mutated gene variants, predicted ARGs based on partial 

sequence homology, intrinsic multidrug efflux pumps and host-antibiotic defence 

mechanisms. Similar recommendations are echoed elsewhere (Bengtsson-Palme et al., 

2017, Wright, 2019).  

With particular reference to mutant gene variants, Bengtsson-Palme et al. (2017) 

highlighted the ease of conflating rifampicin-susceptible rpoB  genes with genetically 

similar rifampicin-resistant rpoB2 mutants. Indeed, analyses of unassembled short reads 

are unlikely to resolve these differences, and so the wisdom of including rpoB2 in 

DeepARG screening for the present work could be questioned.  

Additionally, several groups have expressed concern about the number of predicted 

ARGs in databases lacking further functional validation (Bengtsson-Palme and Larsson, 

2015, Martínez et al., 2015, Bengtsson-Palme et al., 2017). To this end, CARD is one 

database which consciously avoids including putative ARGs, although predicted variants 

of confirmed ARGs are curated separately (Alcock et al., 2019). However, while it may 

be justifiable to exclude predicted ARGs when evaluating well-characterised resistomes 

such as the human gut, perhaps such stringency is less appropriate for more microbially 

diverse environments like soil, which are thought to be a reservoir of many 

uncharacterised ARGs (D’Costa et al., 2007).  

Interestingly, it has been proposed that intrinsic resistances could still be considered 

important contributors to environmental resistome risk when they become de-

contextualised with the aid of mobilisable elements (Martínez et al., 2015, Bengtsson-

Palme et al., 2017). However, Waglechner and Wright (2017) argue that such a view 

places an unnecessary restriction on the study of the wider resistome. 

Ultimately, Martínez et al. (2015) suggested the presence of mobilisable ARGs in known 

pathogens poses the greatest risk to human health, whereas Bengtsson-Palme and 

Larsson (2015) argue this framework underestimates the risk posed by mobilisable ARGs 
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present in non-pathogenic organisms. The inherent short-comings already outlined of 

attempting to define pathogen lists, only serve to further reinforce the value of a more 

holistic approach. Nevertheless, the importance of establishing the genetic context of 

ARGs has been reiterated on numerous occasions (Bengtsson-Palme and Larsson, 2015, 

Martínez et al., 2015, Wright, 2019, Rice et al., 2020) and this information presently 

remains scarce with regard to soil resistomes in particular.      

Other sources of confusion include the terminology used to distinguish ARGs from genes 

conferring resistance to other substances which also select bacterial resistance 

mechanisms (Singer et al., 2016). Certainly, genes which specifically confer metal 

resistance should not be called ARGs, although in instances where these genes are non-

specific efflux pumps, they may straddle these definitions and lead to inconsistent 

annotations in databases. Furthermore, while the framework outlined by Martínez et al. 

(2015) refers to mobilisable elements, MRGs are not discussed, despite the fact one 

could argue they are equally part of the resistome in toto. Aside from possible cross-

selection, MRGs are relevant since heavy metal-based materials are increasingly being 

trialled as antimicrobial surfaces in clinical healthcare settings (Page et al., 2009, Weber 

and Rutala, 2013, García and Parga-Landa, 2021). 

 

5.3.3 Biomarkers as a Tool for Risk Assessment  

Resistance gene databases typically include thousands of genes and accordingly their 

manual curation is an arduous, if nigh on impossible task for researchers to undertake 

individually. Although some databases are actively curated by the wider scientific 

community (e.g. CARD), no single database is likely to cover all resistance determinants 

of interest such as MGEs and MRGs, necessitating database merging and the possible 

introduction of errors. An alternative approach could involve the identification of 

biomarkers or indicators. Biomarkers could act as routine indicators for a wider range of 

resistance determinants which signify an environmental risk of AMR dispersal (Li et al., 
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2015a, Jiao et al., 2018, Cacace et al., 2019, Ishii, 2020), or allow metagenomic studies 

to focus on characterising the genetic context of specific gene targets associated with 

high clinical risk.  

For example, elevated recovery of cfxA genes have been associated with antibiotic 

exposure in newborn infants (Zain et al., 2018, Loo et al., 2020) and adult humans 

(Duan et al., 2020). As previously mentioned in Chapter 2 and 4, cfxA was strongly 

associated with dairy slurry in the present study and previous publications. In this regard 

cfxA may represent an excellent biomarker for faecal contamination of the environment 

where antibiotic selection occurs. However, literature concerning cfxA selection in cattle 

is less consistent (discussed in Chapter 4). Of further note, cfxA was not detectable in 

soil within 24 hours of slurry application, which may impair its use as a long-term 

indicator of manure exposure.  

Likewise, although tetM is a well-established biomarker of animal waste contamination, 

long-term application of slurry appeared to mask any immediate increases in soil 

following amendment. On the other hand, genes like tet36, mefB and mefA, showed 

initial increases directly after slurry application and degradation over time. 

Consequently, a combination of slurry biomarkers which allow the differentiation of 

short- and long-term exposure could be developed, although further validation would be 

required. In any case, the current work refines and consolidates the host of potential 

biomarkers which are likely to signify the dispersal of animal waste-associated ARGs in 

the environment.   

The identification of biomarkers which might signify the presence of larger gene clusters 

has been practiced in the past using network analysis (Li et al., 2015a, Chen et al., 

2019b). On the other hand, the sensitivity of methods must be taken into account. For 

instance, while ARG-ARG network analysis successfully demonstrated connections 

between aph3 and aph6, which could be verified by the literature and was later further 

validated by assembled contigs; sul2 was also shown to co-occur with these genes on 
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assembled contigs even though network analysis failed to detect this association. It 

therefore remains evident that such methods are neither infallible nor comprehensive. 

Consequently, an ensemble approach which uses assembled metagenomic data to 

support HT-qPCR or unassembled short-read data offers the greatest opportunity for 

selecting meaningful biomarkers. Finally, the development of concise biomarker arrays 

could enable the massive parallelisation of future environmental risk surveillance efforts 

by reducing the need for costly, high-depth metagenomics and extremely large q-PCR 

arrays.   

         

5.4 Further Research and New Directions 

The results of the current work highlight several areas of research that require further 

attention to clarify policy and make thorough risk assessment practical. Firstly, the 

presented work suggests an eight week wait-period is not always sufficient to reduce 

slurry-borne ARGs and bacteria to baseline levels in field soil receiving dairy cattle slurry. 

In line with the concept of One Health, further work should investigate the likelihood that 

cut-grass and other material for ensiling can act as a vector for the transfer of 

antimicrobial resistance determinants to livestock and whether in doing so, there is a 

potential to exacerbate AMR in the wider farming environment. Secondly, although the 

present work was able to provide genetic context for the most abundant ARGs in slurry, 

it was not possible to glean the same for ARGs in soil. As discussed, the acquisition of 

this information is vital if the behaviour and evolution of ARGs in the soil environment is 

to be properly understood and the associated risks evaluated. The importance of moving 

beyond quantification towards genetic context (with special attention to the mobilome) 

cannot be underestimated. An improved comprehension of how ARGs are configured 

within the environment can then be used to inform the assembly of quick, affordable, 

biomarker assays which can be incorporated into routine site-based risk assessment. 
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Appendices 

Appendix 1 Summary of soil physiochemical data, SE = standard error. 
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Appendix 2 List and description of key software used for bioinformatic processing and analyses. Versions given where available. 
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