Can an inhibitor of a multidrug pump become a substrate?

Ella Hutchison

Thesis submitted to the University of Nottingham for the

degree of Master of Research

COVID-19 impact statement

The research for this thesis was performed October 2019-March 2020 followed by a 7-month interruption to studies and then finished November 2020-May-2021. This was due to closure of the university labs and the break also had the impact of additional work for lab shutting down and lab set up (freezing cell lines, thawing and reviving cells etc, all adding time and further disruption).

After returning in November, safety measures limited lab occupancy to 5 people and only permitted coming into the lab when absolutely necessary for lab work. This was challenging because working from home for all non-laboratory activities required me to pre-plan all lab work from home which was difficult without access to all the lab resources e.g., checking stock of reagents. This also resulted in reduced flexibility for working in general. Additional cleaning requirements and social distancing measures both made day to day work more challenging and time consuming.

As an early stage career researcher social distancing was particularly impactful on my learning and productivity as training and supervision were both limited. This required me to work more independently and change my plans, for example I was planning to use confocal microscopy but the machine I was trained on was no longer in use due to COVID-19 restrictions.

i

ii

Abstract

ABCG2 is an ATP binding cassette (ABC) transporter that is involved in multidrug resistance, particularly anti-cancer drugs such as methotrexate and mitoxantrone. Distinguishing between substrates and inhibitors is important for rational design of drugs that won't be transported by ABCG2 and inhibitors that prevent transport of existing ABCG2 substrates. In this project, the hypothesis being proposed is that ligands with a higher affinity for ABCG2 act as inhibitors and the transient conformational changes required for transport do not occur. Whereas transported substrates have a lower affinity for ABCG2 and the conformational changes can occur. Therefore, if the affinity for a widely used inhibitor, Ko143, was reduced, would it become a substrate that is transported by ABCG2? A series of mutants (T435A, N436A, F439A, S440W, M549E, A397S/V401A/L539A and L405A/I543A/V546A) were designed using cryo-EM structures of ABCG2 bound to MZ29 (a Ko143 analogue) and mutational studies of substrate transport. The aim was to reduce affinity of ABCG2 for Ko143. All mutant proteins, except M549E, were successfully expressed in HEK293T cells and trafficked to the cell membrane. Using flow cytometry, cellular accumulation of fluorescent Ko143 derivatives (Ko143-Cy5 and Ko143-X-BY630) was measured which indicates whether they are exported by ABCG2 or not. Ko143-Cy5 fluorescence was significantly higher in WT-ABCG2 expressing cells compared with the untransfected control and the other ABCG2 mutants, except for A397S/V401A/L539A. Ko143-X-BY630 showed a similar pattern but without significance. The reduction in cellular accumulation of the fluorescent Ko143 derivatives in the mutants could be caused by the reduced affinity leading to ABCG2-mediated transport or increased diffusion out of the cell. Transport of Ko143-Cy5 or Ko143-X-BY630 cannot be ruled out but it is not detectable in this

iii

experiment. Consideration of the data in this thesis alongside emerging structural and functional data from other laboratories will continue to shed light on the interaction of substrates and inhibitors with ABCG2.

Acknowledgements

I would like to thank Dr Ian Kerr for his guidance and support throughout my research project. This support and advice has been especially appreciated in writing this thesis. I would also like to add gratitude for encouraging my development as a researcher during challenging times and having faith in me to contribute to a review article.

I also want to thank Deb Briggs for all her help and patience when teaching me new techniques and giving me advice when running my experiments.

I am thankful to my fellow lab members Dr James Mitchell-White, Joe Morris and Hannan Azmir for their moral support and for all of the advice and help in the lab. I also appreciated and enjoyed our lunch time chats. I would also like to thank Dr James Mitchell-White for his contribution to the monolayer transport assay.

Thanks to Dr David Onion and Nicola Croxall (University of Nottingham Flow Cytometry Facility) for giving me the training, advice and use of equipment for this project.

Also, a huge thank you to my boyfriend, Joe Davies, for being a constant source of motivation and for encouraging me to do a Master's in the first place.

Declaration

This thesis, "Can an inhibitor of a multidrug pump become a substrate?", is the result of my own work undertaken during my period of registration at the University of Nottingham under the supervision of Dr Ian Kerr. Technical assistance, and collaborations where relevant, has been acknowledged.

Ella Hutchison

Student ID: 20214453

May 2021

Abbreviations

ABC	ATP-binding cassette
ABCG2	ATP-binding cassette subfamily G member 2
ABCG5/G8	ABCG5 heterodimerised with ABCG8
ADP	Adenosine diphosphate
AMP-PNP	Adenylyl-imidodiphosphate
ANOVA	Analysis of variance
APS	Ammonium persulfate
АТР	Adenosine triphosphate
BLAST	Basic local alignment search tool
bp	Base pair
BSA	Bovine serum albumin
CFTR	Cystic fibrosis transmembrane conductance regulator
CMV	Cytomegalovirus
Cryo-EM	Cryogenic electron microscopy
DHEAS	Dehydroepiandrosterone sulfate
DMEM	Dulbecco's modified eagle medium
DMSO	Dimethyl sulfoxide
DNA	Deoxyribose nucleic acid
dNTP	Deoxynucleotides
E1S	Estrone 3-sulfate
E3040S	E3040 sulfate
EC ₅₀	Concentration at which a drug evokes half maximal response
EDTA	Ethylenediaminetetraacetic acid
FACS	Fluorescence-activated cell sorting
FBS	Foetal bovine serum
FSC	Forward scatter
FTC	Fumitremorgin C
GFP	Green fluorescent protein
GPCR	G protein-coupled receptor
HBSS	Hank's balanced salt solution
HDL	High density lipoprotein
HEK293S	Human embryonic kidney 293S cell line

HEK293T	Human embryonic kidney 293S cell line		
IC ₅₀	Half-maximal inhibitory concentration		
lgG	Immunoglobulin G		
kb	Kilo bases (1000 base pairs)		
kDa	Kilo Daltons		
LB	Luria-Bertani		
NBD	Nucleotide binding domain		
NCBI	National Center for Biotechnology Information		
PBS	Phosphate buffered saline		
PBS-T	Phosphate buffered saline with 0.1% (v/v) Tween-20		
PCR	Polymerase chain reaction		
PEI	Polyethyleneimine		
Pi	Inorganic phosphate		
SDS	Sodium dodecyl sulfate		
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis		
SEM	Standard error of the mean		
SSC	Side scatter		
SV40	Simian vacuolating virus 40		
ТВЕ	Tris/borate/EDTA		
TEMED	N,N,N',N'-tetramethylethane-1,2-diamine		
TLC-S	Taurolithocholate sulfate		
ТМ	Transmembrane helix		
TMD	Transmembrane domain		
UV	Ultraviolet		
WT	Wild type		
4-MUS	4-methylumbelliferone sulfate		
ΔMFI	Change in median fluorescence intensity		

Contents

Chapter	1 Int	roduction1
1.1	Memb	prane transporters 1
	1.1.1	Facilitated diffusion vs active transport2
	1.1.2	ATP-binding cassette transporters
1.2	ABCO	G subfamily
	1.2.1	Overview4
	1.2.2	ABCG2 function and clinical implications5
	1.2.3	ABCG2 structure and mechanism7
	1.2.4	Inhibitors 11
1.3	Projec	ct aims
Chapter	2 Ma	terials and Methods13
2.1	Mater	ials and reagents 13
2.2	Molec	cular biology
	2.2.1	Site-directed mutagenesis
	2.2.2	<i>DpnI</i> digest and transformation
	2.2.3	Plasmid preparation
	2.2.4	Sequencing15
2.3	Cell c	ulture
	2.3.1	Maintenance of cell cultures 16
	2.3.2	Transfection 17
	2.3.3	Zeocin [™] selection
	2.3.4	Epifluorescence microscopy 18
	2.3.5	Long-term storage
2.4	SDS-I	PAGE and western blotting18
	2.4.1	Cell harvesting and lysis

		2.4.2	Protein concentration determination	19
		2.4.3	Sample preparation and SDS-PAGE	19
		2.4.4	Western blotting	20
	2.5	Flow o	cytometry	20
		2.5.1	Cell surface expression	20
		2.5.2	Transport assay	21
	2.6	Monol	ayer transport assay	22
	2.7	Data a	analysis	24
Chap	ter 3	B Re	sults	25
(3.1	Hypot	hesis formation	25
ć	3.2	Mutan	it design	28
		3.2.1	A397S/V401A/L539A – Mut1	30
		3.2.2	L405A/I543A/V546A – Mut2	31
		3.2.3	T435A and M549E	33
		3.2.4	N436A, F439A and S440W	34
		3.2.5	Summary	35
	3.3	Const	ruct generation	36
	3.4	Protei	n expression	42
	3.5	Confir	mation of protein localisation by flow cytometry	45
	3.6	Trans	port assays	48
		3.6.1	Monolayer transport assay	50
		3.6.2	Flow cytometry	55
Chap	ter 4	l Dis	scussion	59
2	4.1	Summ	nary of results	59
2	4.2	Altern	ate ideas and support of the hypothesis	62
2	4.3	Future	e experiments	65
4	4.4	Concl	usion	68

Chapter 5	References	69
Chapter 6	Appendix	75

List of Tables

Table 2.1 Forward primers used in the generation of the mutant ABCG2 constructs.	
	4
Table 2.2 PCR thermocycling parameters1	4
Table 2.3 Sequencing primers1	6
Table 2.4 Monolayer transport assay incubation steps2	:3
Table 3.1 Apparent affinities of substrates and inhibitors	26
Table 3.2 ABCG2 mutants and their desired effect on Ko143 binding	6
Table 3.3 Details of Ko143 and its fluorescent derivatives4	.9
Table 3.4 Summary of flow cytometry transport assay results.	8

List of Figures

Figure 1.1 Schematic of the cell membrane.	2
Figure 1.2 The NBDs of the ABC transporter Sav1866	4
Figure 1.3 ABCG2 topology and structure	8
Figure 1.4 Mechanism of substrate transport by ABCG2.	10
Figure 1.5 Structure of inhibitor-bound ABCG2	12
Figure 3.1 Cavity 1 completely collapses to promote substrate transport	28

Figure 3.2 Comparison of the structures of Ko143 and MZ29
Figure 3.3 ABCG2 residues interacting with Ko143
Figure 3.4 Schematic of the template construct used for mutagenic PCR
Figure 3.5 Confirmation of successful PCR by gel electrophoresis
Figure 3.6 Sequencing chromatograms to confirm the desired mutation within the mutant ABCG2 constructs
Figure 3.7 Confirmation of GFP fluorescence as an indicator of transfection efficacy.
Figure 3.8 Western blots showing mutant and WT-ABCG2 expression in stable cell lines
Figure 3.9 Schematic representation of flow cytometry45
Figure 3.10 Cell surface ABCG2 expression was confirmed by flow cytometry 47
Figure 3.11 Ko143-X-BY630 inhibits Hoechst 33342 transport by ABCG251
Figure 3.12 Ko143-Cy5 does not inhibit Hoechst 33342 transport by ABCG2 53
Figure 3.13 Cellular accumulation of fluorescent Ko143 derivatives in mutant cell lines

Chapter 1 Introduction

1.1 Membrane transporters

All forms of life have a lipid membrane of some sort to contain their molecular components to allow biochemical reactions to take place. Without membranes, the compartmentalisation necessary for the vast majority of cellular processes cannot occur. Archaea, bacteria and eukaryotes have lipid bilayers which act as a barrier so that what enters and exits the cell can be controlled. In eukaryotic organisms, different cellular processes are facilitated and regulated by their spatial separation in organelles.

Integral membrane proteins have sections that are inserted into the cell membrane and can perform a variety of roles (Figure 1.1). For example, flippases and floppases can alter the shape and lipid composition of the cell membrane by transferring lipids from the inner layer to the outer layer or vice versa. Receptors such as G-protein coupled receptors (GPCRs) can aid in the communication between cells, for example by triggering signalling cascades when a signal molecule binds. Transporter and channel proteins control what enters and exits the cell or organelle. This can include transport of charged ions, for example cystic fibrosis transmembrane conductance regulator (CFTR) exports CI⁻ from endothelial cells to control mucus consistency and in neurons Na⁺ influx can trigger an electrical impulse. Larger molecules such as peptides, amino acids, nucleotides and phospholipids can also be transported. Transporters can also have a protective effect by exporting potentially harmful xenobiotics back into the lumen of the gastrointestinal tract or away from the foetus when expressed in the placenta (Horsey et al., 2016). This is the role of the membrane transporter, ABCG2, studied in this thesis.

Figure 1.1 Schematic of the cell membrane. The lipid bilayer (blue spheres and tails) contain different types of membrane proteins involved in signalling, enzymology and substrate flux. Image retrieved from (Zhang et al., 2020)

1.1.1 Facilitated diffusion vs active transport

Some molecules can cross the cell membrane unaided because they are small and hydrophobic so can easily diffuse through the hydrophobic lipid bilayer. Movement of these molecules occurs down the concentration gradient, from a more concentrated cytosol to the less concentrated extracellular space, or vice versa. More polar compounds (e.g. water) or ions (e.g. Na⁺ or H⁺) cannot diffuse across the cell membrane without the help of channels or carrier proteins by facilitated diffusion. These proteins selectively facilitate the diffusion of chemical entities through a more suitable chemical environment. Flux can be controlled, for example voltage gated Na⁺ channels undergo conformational changes to open the channel when membrane depolarisation occurs (de Lera Ruiz and Kraus, 2015).

Active transport can be against a concentration gradient and the transported compound is "pumped" in or out of the cell. An important step in the transport cycle of primary active transporters is ATP hydrolysis, which provides the energy for movement against the concentration gradient. An example of proteins that perform active transport are ATP-binding cassette (ABC) transporters which are described in more detail below. The subject of this project, ABCG2, is part of this family of proteins. The true substrate of active transport proteins is ATP because its hydrolysis to produce ADP and P_i is catalysed by the transporter protein, however, in this thesis, the substrate will refer to the transported compound as opposed to an inhibitor of the pump.

1.1.2 ATP-binding cassette transporters

The ABC family of proteins are mostly membrane proteins: in humans ABCA, ABCB, ABCC, ABCD and ABCG subfamilies are membrane associated but ABCE and ABCF are not (Kerr et al., 2011). The basic structure of an ABC transporter is two nucleotide binding domains (NBDs) and two transmembrane domains (TMDs), however some ABC transporters, named "half-transporters", must dimerize in order to achieve this formation. The NBDs are highly conserved, even between eukaryotic and prokaryotic transporters of otherwise unrelated function. They contain several motifs that are essential for ATP-hydrolysis, which is what drives the active transport. Figure 1.2 shows that the P loop (or Walker-A motif) from one NBD and the LSGGQ motif (or C-loop) from the other NBD contact the nucleotide, resulting in two ATP molecules bound at two separate points along the NBD:NBD interface (Jones and George, 1999, Hollenstein et al., 2007). The Walker-B motif contains a catalytic glutamate which is capable of performing a nucleophilic attack on ATP via a water molecule (Hollenstein et al., 2007). The TMDs, which span the cell membrane, are less conserved and relate more to the specificity for the transport substrate and perform conformational changes required for substrate transport. TMDs contain a coupling helix (black helices, Figure 1.2) that contact the NBD (Q loops) to couple ATP hydrolysis to the conformational changes required for substrate transport

(Hollenstein et al., 2007). ATP binding and hydrolysis is coupled to inward and outward facing conformations of the transporter TMDs which in the case of exporters, allows binding of substrate on the intracellular side and release on the extracellular side (Hollenstein et al., 2007, Manolaridis et al., 2018).

Figure 1.2 The NBDs of the ABC transporter Sav1866. The NBDs of Sav1866 crystallised with bound AMP-PNP, a non-hydrolysable ATP analogue, shown in stick representation. There are 2 bound AMP-PNP molecules per NBD dimer. The NBDs are shown as if looking down from the membrane. The 2 NBDs are in green and yellow and mechanistically important sequence motifs are shown with single letter: red P (P-loop), yellow B (Walker-B motif), purple Q (Q-loop), blue C (LSGGQ or C-loop. Bound AMP-PNP is shown as grey sticks and coupling helices from the TMDs are the short black helices. Figure adapted from Hollenstein et al. (2007)

1.2 ABCG subfamily

1.2.1 Overview

The ABCG subfamily is part of the ABC family of proteins and the 5 members of this

subfamily all share a common ancestral gene. Besides the conserved ABC motifs,

there is very little protein sequence homology between the ABCG proteins, except

G1 and G4 which have 72% homology (Kerr et al., 2011). This plays down to the

TMDs being largely non-conserved, for substrate selectivity (Hollenstein et al., 2007). The ABCG family all transport lipids and, with the exception of ABCG2, have a narrower functionality than other ABC subfamilies (Kerr et al., 2011, Kerr et al., 2021). All ABCG proteins are half-transporters because they only consist of one TMD and one NBD which requires them to at least dimerize to function. This is so that the ATP binding site can form at the interface between two NBDs (section 1.1.2). ABCG5 and ABCG8 form an obligate heterodimer to complete this binding site whereas ABCG2 homodimerises but higher order oligomeric structures have been observed (Wong et al., 2016, Kerr et al., 2011). ABCG1 and ABCG4 can homodimerise but have also been shown to heterodimerise with each other *in vitro* (Hegyi and Homolya, 2016).

ABCG1 has widespread expression and is located in the brain alongside ABCG4 and both contribute to cholesterol and desmosterol efflux to high-density lipoprotein (HDL) from astrocytes (Wang et al., 2008). ABCG5/G8 is involved in limiting absorption of dietary sterols by localising in the apical membranes of hepatocyte canaliculi and gall bladder epithelial cells. ABCG2 has a broad specificity, having a wide range of substrates structurally unrelated to each other. This is useful in its protective role against xenobiotics (Kerr et al., 2011). Its function, structure and mechanism are described in more detail below.

1.2.2 ABCG2 function and clinical implications

ABCG2 is an important protein to study because of its role in multidrug resistance. Its natural role as a defence against environmental toxins means that some drugs fall victim to this multidrug pump. Expression of ABCG2 on apical membranes of epithelial cells of the gastrointestinal tract, liver canalicular membranes and the apical

membrane of proximal tubular cells in the kidneys, contributes to limiting absorption and promoting excretion of xenobiotics (Horsey et al., 2016). Expression in placental syncytiotrophoblasts and in mammary glands have contradictory roles, with ABCG2 pumping xenobiotics away from the foetus and into milk respectively. Along with reduced uptake and increased excretion, ABCG2 contributes to the failure of some anti-cancer drugs by its overexpression in cancer cells. ABCG2 expression has been linked to poor outcome in acute myeloid leukaemia, diffuse large B-cell lymphoma, and lung and oesophageal cancer (Horsey et al., 2016). Overexpression of ABCG2 has also been found in other cancer cells exhibiting a multidrug resistance phenotype, including topotecan-selected ovarian tumour cell line T8 and gefitinibresistant non-small cell lung cancer (NSCLC) cells (Mo and Zhang, 2012). This is why it is so important to study ABCG2 further, to be able to design drugs that won't be exported by this multidrug transporter. Drugs that have been shown to be transported by ABCG2 include: methotrexate, mitoxantrone, pheophorbide A. topotecans, flavopiridol, imatinib, gefitinib, nilotinib and others (Homolya et al., 2011, Volk and Schneider, 2003, Kapoor et al., 2018, Robey et al., 2005). Multidrug resistance is caused because ABCG2 limits absorption, increases excretion and lowers cellular concentration of these drugs. An endogenous substrate is urate and successful transport by ABCG2 leads to urate excretion. A naturally occurring single nucleotide polymorphism, rs2231142, which results in Q141K mutant ABCG2, is a loss of function mutation causing an increased level of serum urate which is linked to hyperuricemia and gout (Woodward et al., 2009).

1.2.3 ABCG2 structure and mechanism

ABCG2 contains one transmembrane domain (TMD), which consists of six transmembrane helices (TM1-TM6), and one nucleotide binding domain (NBD), which is cytoplasmic (Kapoor et al., 2018). Since two NBDs are required for ATP hydrolysis to occur, dimerisation is required for the protein to be functional. Higher forms of oligomerisation, such as tetramers, have been observed, although the physiological relevance is unclear (Wong et al., 2016). In the TM5-TM6 extracellular loop region (Figure 1.3) there is an intramolecular disulfide bond (C592 and C608), an intermolecular disulfide bond (C603 from each monomer) and a glycosylation site (N596) (Diop and Hrycyna, 2005, Henriksen et al., 2005, Kapoor et al., 2018). The mutation of C603 does not prevent surface expression of the protein or affect its function so presumably the C603 inter-molecular disulfide bond just has a small stabilising effect. However, mutation of C592 or C608 did impact stability and trafficking of ABCG2 to the cell membrane (Henriksen et al., 2005). Mutation of N596 prevents glycosylation which leads to increased ubiquitin-mediated proteasomal proteolysis (Nakagawa et al., 2009).

Figure 1.3 ABCG2 topology and structure. (A) Schematic representation of the topology of ABCG2 within the cell membrane. The transmembrane helices 1-6 (TM1-TM6) are shown in different colours. Key residues for intramolecular (C592 and C608) and intermolecular (C603) disulfide bonds and glycosylation (N596) are shown. **(B)** Cartoon representation of the ABCG2 dimer from PDB 6ETI (Jackson et al., 2018). TM1-6 are the same colours as in A. Rotation by 90° gives a clearer view of the "access site" which is surrounded by TM2, TM3 and TM6b. The bottom right panel shows the "leucine plug" (L554, red), cavity 1 and cavity 2. Figure taken from (Kapoor et al., 2018).

There are multiple binding sites for substrates, shown in Figure 1.3. The main site

that the substrate binds to before being transported is cavity 1, which is located

between the two ABCG2 monomers and surrounded by TM2 and TM5 (László et al.,

2016). Cavity 2 is on the extracellular side of ABCG2 and is the final binding site before the substrate is released into the extracellular space. Cavity 1 and cavity 2 are separated by a "leucine plug" which consists of L554 from each ABCG2 monomer and blocks movement of the substrate into cavity 2 before conformational changes occur (Taylor et al., 2017). Both these cavities are described by structural biology data (see below). A third binding site, referred to as the "access site" and predicted by mutagenesis studies and molecular modelling, is located between TM2, TM3 and TM6 and includes the residue R482 which has been linked to substrate specificity (Kapoor et al., 2018). The R482G mutation leads to broader substrate specificity, with drugs such as doxorubicin, daunorubicin and rhodamine 123 becoming transported when they otherwise would not (Ozvegy-Laczka et al., 2005, Tamura et al., 2007). Another substrate binding site (not shown) has also been predicted by molecular docking (László et al., 2016).

In recent years, cryo-EM structures have become available which has helped elucidate the structure and mechanism of ABCG2. The first was published by Taylor et al. (2017), which showed ABCG2 locked in an inward facing conformation by an inhibitory anti-ABCG2 antibody, 5D3, on the extracellular side. The NBDs did not interact to form the "ATP sandwich dimer" as no nucleotide was bound (as described in Figure 1.2) but were still in contact through a novel ABCG-family specific NBD:NBD interaction surface, consistent with other inward facing structures (Manolaridis et al., 2018, Jackson et al., 2018). Manolaridis et al. (2018) solved two further structures of ABCG2: the E211Q mutant (ABCG2_{E211Q}) bound to either the transport substrate estrone 3-sulfate (E₁S) or to the catalytic substrate ATP. This helped shed light on the mechanism of transport by ABCG2. As seen in Figure 1.4, the E₁S-bound ABCG2_{E211Q} adopts an open, inward facing conformation with the

substrate located in cavity 1. The ATP-bound ABCG2_{E211Q} shows a closed, outward facing conformation, where cavity 1 is completely closed, forcing the substrate towards cavity 2 and then the substrate is released on the extracellular side. The NBDs in this structure do dimerise in the classical fashion (Figure 1.2) with ATP-bound at the interface (Manolaridis et al., 2018). This structure is consistent with the idea that conformational change and transport of substrate occurs on ATP binding and not on ATP hydrolysis, as previously predicted by radioligand binding studies (McDevitt et al., 2008). ATP hydrolysis likely resets the inward facing conformation (Manolaridis et al., 2018).

Figure 1.4 Mechanism of substrate transport by ABCG2. Cartoon representation of E₁S (substrate)-bound (left, PDB 6HCO) and ATP-bound (right, PDB 6HBU) ABCG2_{E211Q}. ABCG2_{E211Q} monomers are displayed in blue and orange. Figure taken from Manolaridis et al. (2018).

1.2.4 Inhibitors

Inhibitors of ABCG2 prevent transport of substrates and therefore increase their cellular accumulation. This would also apply to drug molecules which are substrates, helping prevent multidrug resistance. There are currently no clinically available ABCG2 inhibitors but Ko143 is widely used in research. Ko143 is derived from a fungal toxin, fumitremorgin C (FTC), which is highly neurotoxic. Ko143 is more potent and less toxic, although still not clinically utilisable (Allen et al., 2002, Toyoda et al., 2019). Jackson et al. (2018) published the only current structures of ABCG2 bound to inhibitors: MZ29 (PDB 6ETI) and MB136 (PDB 6FEQ). MZ29 is a Ko143 derivative and binds to cavity 1, just as substrates do (Figure 1.5). Two MZ29 molecules bind between TM1b and TM2 of one monomer and TM5a of the other and vice versa. This was concordant with data indicating that a 2:1 inhibitor:ABCG2 molar ratio was required for full inhibition of ATPase activity (Jackson et al., 2018). The larger MB136 binds in the same location but only one molecule fits in cavity 1 and a 1:1 ratio is sufficient for maximum inhibition (Jackson et al., 2018). Since stable electron densities were found for these inhibitors in absence of the stabilizing antibody, 5D3, transport of these molecules is minimal. Binding of other inhibitors, such as febuxostat and elacridar, has not been structurally determined so it is unclear whether they inhibit allosterically (i.e. at a site distinct from cavity 1) or orthosterically (i.e. at cavity 1)(Toyoda et al., 2019).

Figure 1.5 Structure of inhibitor-bound ABCG2. (A) Cartoon representation of the ABCG2 homodimer from PDB 6ETI. MZ29 (green sticks), a Ko143 derivative, is bound between the two ABCG2 monomers (pink and blue) in cavity 1. (B) Rotated (45°) view of the bound MZ29 molecules (green sticks) with their electron microscopy density (blue). The dotted line represents the two-fold symmetry axis. Both A and B were retrieved from Jackson et al. (2018).

1.3 Project aims

Distinguishing the features of ABCG2 inhibitor binding from features of ABCG2 substrate binding would be an important step in tackling multidrug resistance. The aim of this project is to use the cryo-EM structures of inhibitor-bound ABCG2 to identify key residues involved in inhibitor binding. Then relevant mutations of ABCG2 will be made and assessed for whether the mutations prevent inhibition or even transforms the inhibitor into a substrate.

Chapter 2 Materials and Methods

2.1 Materials and reagents

All molecular biology reagents were purchased from New England Biolabs (NEB, Hitchin, UK) and Promega (Southampton, UK), unless stated otherwise. The primers for site directed mutagenesis were ordered from Sigma-Aldrich (Poole, UK). All other cell culture materials and reagents, except Zeocin[™] (Invitrogen) and polyethyleneimine (PEI, Polyscience Inc.), were obtained from Sigma-Aldrich or Thermo Fisher Scientific unless otherwise mentioned.

2.2 Molecular biology

2.2.1 Site-directed mutagenesis

Mutations were introduced into a WT-ABCG2 expression vector by performing mutagenic polymerase chain reactions (PCR). These were set up using mutagenic primers shown in Table 2.1 (0.5 μ M), dNTPs (0.2 mM),

pcDNA[™]3.1/Zeo(+)_SNAP_ABCG2¹ template (50ng), Pfu polymerase (1.0-1.5 U), and polymerase buffer made up to 50 µL. Denaturation, annealing and elongation steps were performed using a SensoQuest Thermocycler and cycled 18 times at the temperatures shown in Table 2.2 (with the annealing temperature varied until successful amplification was observed). Presence of amplified PCR product was confirmed by agarose gel electrophoresis. PCR products were mixed with Gel

¹ Zeo(+) refers to presence of a Zeocin[™] resistance gene (BleoR). SNAP refers to the SNAP-tag® which is a modified alkylguanine DNA alkyltransferase which can specifically and covalently bind to benzyl guanine fluorophores as a way of tagging the protein of interest (Tirat et al., 2006). However, labelling of ABCG2 was not used in this project.

Loading Dye and loaded onto a 1% (w/v) agarose gel which was prepared in TBE

buffer (10.8% (w/v) Tris, 5.5% (w/v) boric acid, 20 mM Na₂EDTA) and contained ~1

 μ g/mL ethidium bromide. The resolved gels were then viewed under UV light (using a

Syngene GeneGenius gel imaging system).

Table 2.1 Forward primers used in the generation of the mutant ABCG2 constructs. Codon changes that result in an amino acid change are highlighted in yellow, uppercase letters indicate bases that are different from the template and lowercase letters identical to the template. The complementary reverse primers are not shown but have identical length, T_m and GC.

Name	Sequence (5'-3')	Length	Tm	GC
		(bp)	(°C)	(%)
T435A	cttcttcctgacg <mark>GcT</mark> aaccagtgtttc	28	68.95	50.0
N436A	cttcctgacgacc <mark>GCc</mark> cagtgtttc	25	71.82	60.0
F439A	gaccaaccagtgt <mark>GCc</mark> agcagtgtttc	27	71.78	55.56
S440W	caaccagtgtttT <mark>TgG</mark> agtgtttcagcc	28	70.13	46.43
M549E	ctgttttgtgttCatg <mark>GAg</mark> attttttcaggtctg	34	72.81	38.24
A397S/V401A	gcctctata <mark>Tct</mark> cagatcatt <mark>gCc</mark> acagtcgtactg	36	74.46	47.22
L539A	ctgtagcaaca <mark>GCt</mark> ctTatgaccatctg	28	65.17	46.43
L405A	gtcacagtcgta <mark>GCg</mark> ggactggttatag	28	67.79	53.56
I543A/V546A	cttctcatgacc <mark>GCc</mark> tgtttt <mark>gCC</mark> tttatgatgatt	36	77.65	41.67

Table 2.2 PCR thermocycling parameters. Steps 2-4 were cycled 18 times before proceeding to step 5, as demonstrated by the arrow. Annealing temperatures were varied (50-65 °C) if these standard parameters were unsuccessful.

Step	Temperature (°C)	Time (min)	Number of cycles
1. Heat	95	1	1
2. Denature	95	1	18
3. Anneal	55	1	18
4. Extend	72	12	18 🗁
5. Extend	72	10	1
6. Cool	10	∞	1

2.2.2 Dpnl digest and transformation

To remove template DNA, PCR products were digested with *DpnI* (20 units) for 90 minutes at 37 °C. The enzyme was then deactivated by incubating at 80 °C for 20 min. *DpnI* digested-PCR product was transformed into DH5 α competent *E. coli*. First 100 µL of DH5 α cells were thawed on ice and 5 µL of the *DpnI* digested PCR product was added. The competent cell mixture was then incubated on ice for 1 hour, heat

shocked at 42 °C for 1 min, and then placed back on ice for 2 min. The cells were then supplemented with 250 μ L Luria-Bertani (LB) medium (1% (w/v) tryptone, 1% (w/v) NaCl, 0.5% (w/v) yeast extract) and shaken at 37 °C for 1 hour. All 350 μ L was subsequently spread onto LB-agar plates (1.5% (w/v) agar, 100 μ g/mL ampicillin) and incubated overnight at 37 °C.

2.2.3 Plasmid preparation

Single colonies from LB-agar plates were grown overnight at 37 °C with shaking, after being picked and inoculated into 5 mL of ampicillin-supplemented (100 μ g/mL) LB medium. For long-term storage, the resultant bacterial cultures were stored at -80 °C as glycerol stocks (500 μ L of bacterial culture, 500 μ L of 30% (v/v) glycerol). The remainder of the cultures were centrifuged for 5 mins at ~3000 x g and the supernatants were discarded. Plasmid DNA was then extracted from the resulting bacterial pellet using a NucleoSpin® Plasmid kit (Macherey-Nagel). The manufacturer's protocol was followed except instead of centrifuging at 11,000 x g, the samples were centrifuged at 13,000 x g.

DNA plasmid concentration and purity were determined using the Nanodrop 2000® (Thermo Fisher Scientific). The purity was confirmed by the A260/A280 ratio, where a value of >1.7 was deemed acceptable for future transfection.

2.2.4 Sequencing

To confirm presence of the desired experimental mutations and absence of other mutations, the purified DNA underwent Sanger sequencing. The mutant constructs were sent to Source Bioscience (Nottingham, UK) along with the primers shown in Table 2.3. The quality of the chromatograms was analysed in Chromas

(Technelysium Pty Ltd) and the sequences were aligned with the template sequence

using BLAST (NCBI) to ensure only the desired mutation was incorporated plasmid

DNA.

Table 2.3 Sequencing primers. A series of primers were used to sequence the fullSNAP-ABCG2 coding region (bases 1026-3543 of the

pcDNA[™]3.1/Zeo(+)_SNAP_ABCG2 plasmid). "Region sequenced" refers to the minimum region where sequencing data was of a high quality for all mutants.

Primer name	Sequence (5'-3')	Region sequenced (bp)
T7 promoter (F)	TAATACGACTCACTATAGGG	978-1992
SeqF1	CACAGGTGGAGGCAAATCTT	1935-2852
SeqF2	GCAGGGACGAACAATCATCT	2361-3310
Seq482	AACTCTTTGTGGTAGA	3028-3749

2.3 Cell culture

2.3.1 Maintenance of cell cultures

HEK293T cells were grown in T25 (25 cm²) flasks at 37 °C, 5% CO₂ in Dulbecco's modified eagle medium (DMEM, 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate) supplemented with 10% (v/v) foetal bovine serum (FBS) and 1% (v/v) penicillin-streptomycin (P/S, 100 U/mL penicillin, 100 μ g/mL streptomycin). Once cells reached 70-90% confluency based on visual inspection, the cultures were passaged (typically twice a week). Media was removed, cells were washed once with pre-warmed phosphate buffered saline (PBS) and incubated with 0.5 mL trypsin/EDTA for 1-3 min. The trypsin/EDTA was then quenched with 4.5 mL of DMEM and cells were then detached by repeated pipetting, before being centrifuged 225-250 x g for 5 min. The cell pellets were then resuspended in DMEM and reseeded at a typical dilution of 1/10.

Materials and Methods

2.3.2 Transfection

Cells were seeded at 1.25×10^5 cell/mL (determined using a haemocytometer) into a 6-well plate, ~24 hours prior to transfection. Two hours before transfecting, the media was replaced with 5% serum media (DMEM, 5% FBS, 0.5% P/S). Cells were transfected using linear polyethyleneimine (PEI) at a molar PEI nitrogen:DNA phosphorus ratio of 15:1. Transfection mixtures were made by the addition of 9 µL of PEI (from a 10 mM working stock solution) to 2 µg DNA, as described by Cox et al. (2018), and were left no longer than 5 minutes before adding 100 µL of media and dropwise addition to the HEK293T cells. 24 hours later media was replaced with 10% FBS-supplemented media.

2.3.3 Zeocin[™] selection

Transfected cells were transferred to T25 flasks by trypsinization (described in 2.2.1 and scaled down appropriately). Flasks contained 5 mL DMEM (10% FBS, 1% P/S) and approximately 5 hours later, Zeocin[™] was added to total concentration of 200 µg/mL. Media was changed every 2-3 days and Zeocin[™] concentration was maintained at 200 µg/mL for several weeks until growth of Zeocin[™] resistant colonies was observed. Transfected cells expressing sfGFP-ABCG2 were employed as a control for Zeocin[™] selection. sfGFP tagged proteins were chosen because protein expression (fluorescence) could be monitored under an epifluorescence microscope without addition of fluorescent reagents. This helped confirm when the other cells lines were stably transfected. At this point, Zeocin[™] concentration was dropped to 40 µg/mL.

2.3.4 Epifluorescence microscopy

Expression of GFP-ABCG2 in pcDNA[™]3.1/Zeo(+)_sfGFP_ABCG2 transfected HEK293T cells was monitored with epifluorescence microscopy. Images were obtained using the Zeiss Axiovert S100 microscope and Zeiss AxioCam MRm monochrome digital camera and processed with AxioVision version 4.8.2 SP3.

2.3.5 Long-term storage

For long-term storage, 80% of cells in a T25 flask were resuspended in 4 mL ice cold freezing medium (10% (v/v) DMSO in FBS) and aliquoted into 1 mL cryovials. The other 20% were maintained as described in 2.2.1. The cryovials were then frozen slowly (.1 °C/min) by storage in a precooled (4 °C) Mr Frosty[™] (containing isopropanol) in a -80 °C freezer. Frozen cryovials were transferred to liquid nitrogen for longer term storage. When needed, cells were rapidly thawed by pipetting up and down with warm media, centrifuged at 225-250 x g, resuspended in 5 mL DMEM (10% FBS, 1 %P/S) and maintained in a T25 flask as described in 2.2.1.

2.4 SDS-PAGE and western blotting

2.4.1 Cell harvesting and lysis

Cell culture monolayers were washed once with PBS, detached with Trypsin/EDTA and centrifuged at 235 x g for 5 minutes (as described in 2.2.1). The pellet was then washed once with PBS and stored at -80 °C if not required immediately. Pellets were resuspended in 250 μ L ice cold lysis buffer consisting PBS supplemented with 10% (v/v) glycerol and EDTA-free protease inhibitor cocktail III (Calbiochem, 1:200 dilution). Cells were then sonicated at 40% output for 4 x 5 seconds, being stored on ice for at least 2 minutes between bursts.

2.4.2 Protein concentration determination

To ensure equal protein loading in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis, a modified Lowry assay was performed. Using a Bio-Rad DC protein assay kit and a standard curve of 0-10 µg bovine serum albumin (BSA), total protein concentration of the cell lysates was determined. All samples and the standard curve were analysed in duplicate.

2.4.3 Sample preparation and SDS-PAGE

SDS-PAGE was performed as described by Laemmli (1970). Equal quantities of cell lysate (typically 20-100 µg) were incubated with protein loading buffer (50 mM Tris-HCl pH 6.8, 2% (w/v) SDS, 10% (v/v) glycerol, 0.1% (w/v) bromophenol blue, 100 mM 2-mercaptoethanol) at 37 °C for 30 minutes. Resolving gels (10% (w/v) polyacrylamide, 0.175% (w/v) SDS, 0.15% (w/v) ammonium persulfate (APS), 0.05% (v/v) N,N,N',N'-tetramethylethane-1,2-diamine (TEMED), 375 mM Tris base pH 8.8) and stacking gels (4% (w/v) polyacrylamide, 0.175% (w/v) SDS, 0.15% (w/v) APS, 0.06% (v/v) TEMED, 125 mM Tris base pH 6.8) were prepared before being placed in an electrophoresis tank filled with protein running buffer (25 mM Tris Base, 192 mM glycine, 3.5 mM SDS). Samples were loaded alongside a molecular weight marker (Invitrogen[™] SeeBlue[™] Plus2 Pre-stained Protein Standard) and electrophoresed at constant current (30 mA) until loading dye had fully eluted. Gels were then either used in a western blot (section 2.4.4) or stained with InstantBlue[™] by rocking at room temperature for 2 hours. An ABCG2-positive sample was run on every gel as a control for the western blots.

Materials and Methods

2.4.4 Western blotting

Proteins were transferred from the polyacrylamide gel (section 2.4.3) to a nitrocellulose membrane by electrophoresis (200 mA, 2 hours, 4 °C) in transfer buffer (25 mM Tris base, 192 mM glycine, 20% (v/v) methanol), first described by Towbin et al. (1979). Transient staining of the nitrocellulose with Ponceau S solution (0.1% (w/v) Ponceau S, 1% (v/v) acetic acid) allowed confirmation of effective transfer of proteins. Membranes were washed with PBS-T (0.1% (v/v) Tween-20 in PBS) for 5 minutes, then incubated with non-fat milk (5% (w/v)) in PBS-T) at room temperature for 1 hour to prevent antibody from binding to non-specific sites. The blots were subsequently incubated with the primary antibody (anti-ABCG2 antibody BXP-21, 1:2000 dilution in non-fat milk) overnight at 4 °C. Then the blots were washed with PBS-T several times over a period of 15-20 minutes to remove any unbound primary antibody and then incubated with the secondary antibody (rabbit anti-mouse horseradish peroxidase, 1:5000 dilution in non-fat milk) at room temperature for 1 hour. The 15-20-minute washes were then repeated before incubating with the chemiluminescence substrate (SuperSignal[™] West Pico PLUS, Thermo Fisher Scientific) for 1 minute and imaging with the LAS-3000 mini (Fujifilm).

2.5 Flow cytometry

2.5.1 Cell surface expression

ABCG2-transfected and untransfected HEK293T cells were seeded at 1 x 10^{6} cells/mL in FACS buffer (0.2-1.0% fatty acid-free BSA in PBS or Hank's balanced salt solution, HBSS) and incubated for 30 mins on ice with 5D3 antibody (1.82-5.00 µg/mL, Millipore), isotype control (1 µg/mL anti-TRP1, Santa Cruz Biotechnology or 3 µg/mL mouse IgG isotype control, Invitrogen) or nothing (negative control). Cells
Materials and Methods

were then centrifuged at 350 x g for 5 min at 4 °C and the supernatant was discarded. Cell pellets were washed twice by resuspending in FACS buffer and spun down at 350 x g for 5 min at 4 °C, twice. Then, the 5D3 and isotype control cells were incubated with AlexaFluor647 (5-10 μ g/mL goat anti-Mouse IgG (H+L) Alexa Fluor 647, Invitrogen) in 1 mL FACS buffer for 1 hour on ice. Cells were then centrifuged at 350 x g for 5 min at 4 °C, the supernatant was discarded and washed twice. Finally, cells were resuspended in FACS buffer and fluorescence was measured by flow cytometry using the Beckman Coulter Astrios EQ Cell Sorter (channel 640-671/30).

Data was initially analysed using Kaluza 2.1. Firstly, side scatter height (channel 488-SSC) was plotted against forward scatter height (channel 488-FSC1) and was gated to exclude debris from live cells. Then side scatter height was plotted against side scatter area and gated to allow monodispersed cells to be separated from doublets. Then a histogram of AlexaFluor647 fluorescence vs number of cells was plotted and the gate placed at the edge of the isotype control peak was used to determine percentage of positive cells i.e. percentage of cells with more fluorescence with 5D3 than with the isotype control.

2.5.2 Transport assay

ABCG2-transfected and untransfected HEK293T cells were seeded at 1 x 10⁶ cells/mL in phenol red-free DMEM and incubated at 37 °C, 5% CO₂ for 1 hour with either DMSO (0.1% (v/v)) or fluorescent derivatives of Ko143 (2 μ M, Ko143-Cy5 or Ko143-X-BY630; synthesized by Sarah Mistry, School of Pharmacy, University of Nottingham). After the incubation, cells were kept on ice. Cells were then centrifuged at 350 x g for 5 min at 4 °C and the supernatant was discarded. Cell pellets were then resuspended in phenol red-free DMEM and spun down again at 350 x g for 5 min 2.50 x g for

min at 4 °C. Finally, cells were resuspended in phenol red-free DMEM and fluorescence was measured by flow cytometry using the Beckman Coulter Astrios EQ Cell Sorter (channel 640-671/30). Flow cytometry is capable of simultaneously measuring ABCG2 function and expression for each cell in suspension. This allows the gating out of lower ABCG2-expressing cells when looking at the transport data, however, it was not possible in this project.

Data was gated for monodispersity as in 2.5.1. Then, the median fluorescence of the DMSO control was subtracted from the median fluorescence of the fluorescent Ko143-treated cells. This removes background fluorescence giving a value for Δ MFI (change in median fluorescence intensity).

$$\Delta MFI = MFI_{Fluorescent Ko143} - MFI_{DMSO}$$

2.6 Monolayer transport assay

A 96-well plate was pre-treated with poly-L-lysine (10 μ g/mL, 100 μ L in each well) for 1 hour, then aspirated and left to dry. Subsequently, 3 x 10⁴ HEK293S cells (HEK293 cells adapted for growth in suspension (Lin et al., 2014)), expressing WT-ABCG2 or not, were seeded. 48 hours later, media was removed and cells were incubated at 37 °C with either DMSO; substrate (Hoechst 33342) in the presence or absence of inhibitor (Ko143 or a fluorescent Ko143 derivative); or a fluorescent Ko143 derivative in the presence or absence of Ko143. Concentrations are shown in Table 2.4. After 45 min, media was removed and cells were incubated with either DMSO (1:1000), fluorescent Ko143 derivative (1 μ M), or Ko143 (1 μ M) as shown in Table 2.4. Then, after another 45 min, media was replaced with HBSS. Hoechst 33342 fluorescence (excitation 350 ± 10 nm, emission 460 ± 20 nm) and Ko143-X-BY630 fluorescence (excitation 620 ± 10 nm, emission 660 ± 20 nm) or Ko143-Cy5 fluorescence

Materials and Methods

(excitation 610 ± 30 nm, emission 675 ± 50 nm) was measured with the CLARIOstar microplate reader (BMG Labtech). The CLARIOstar microplate reader measures average fluorescence of each well so it is not possible to separate low ABCG2-expressing cells from higher expressing cells. All dilutions were made with HBSS and DMSO concentration was the same in each well. Fluorescent derivatives used above were Ko143-X-BY630 or Ko143-Cy5. Data was collected in collaboration with James Mitchell-White (Kerr Lab, School of Life Sciences, University of Nottingham). Background fluorescence was considered by subtracting the average DMSO fluorescence value from each datapoint.

 $Fluorescence = Fluorescence_{Raw} - Average Fluorescence_{DMSO}$

Where $Fluorescence_{Raw}$ is the Hoechst 33342 or fluorescent Ko143 derivative

fluorescence for an individual datapoint and Average $Fluorescence_{DMSO}$ is the mean

fluorescence value of DMSO treated cells for each plate and cell line.

Table 2.4 Monolayer transport assay incubation steps First incubation step
involves substrate, inhibitors or DMSO control diluted with HBSS. The corresponding
second incubation step is also shown. For Ko143-Cy5 experiments, Ko143-Cy5 was
used in place of Ko143-X-BY630.

First incubation	Second Incubation
DMSO	DMSO
Hoechst 33342 (3 µM)	DMSO
Hoechst 33342 (3 µM) + Ko143-X-BY630 (1 µM)	Ko143-X-BY630 (1 µM)
Hoechst 33342 (3 µM) + Ko143 (1 µM)	Ko143 (1 µM)
Ko143-X-BY630 (1 µM)	DMSO
Ko143-X-BY630 (1 µM) + Ko143 (1 µM)	Ko143 (1 µM)

Materials and Methods

2.7 Data analysis

All data were analysed using GraphPad Prism 9.1.0. Multiple data sets were compared with WT and untransfected HEK293T cells using a one-way ANOVA with a Dunnett's multiple comparisons test. All experiments were repeated a minimum of 3 independent occasions for statistical analysis and figure legends confirm the number of technical repeats (n). The monolayer transport assay data was analysed with a two-way ANOVA with Tukey's multiple comparisons test.

Chapter 3 Results

3.1 Hypothesis formation

The hypothesis studied in this project was based around the question, "what makes an inhibitor and not a substrate that is transported by ABCG2?". This could potentially be explained by differences in affinity, with inhibitors having much higher affinity or potency than substrates, whether that be measured by dissociation constants or by IC₅₀ values, as suggested by Jackson et al. (2018). Further investigation of the literature, provided some evidence for this, with inhibitors having between 3-fold and ~2000-fold higher affinity than substrates (Table 3.1) The only apparent exceptions to this are TLC-S and sulfasalazine. Sulfasalazine has been used as a substrate and an inhibitor in various research (Miyata et al., 2016, Karlsson et al., 2010). TLC-S (taurolithocholate sulfate) is a bile acid which at certain concentrations can disrupt the cell membrane which could explain its slight inhibitory effect but low affinity for ABCG2 (Chiang, 2003). The apparent affinity values, shown in Table 3.1, are the concentration at which either half maximal transport occurred or half maximal inhibition was achieved (K_m or IC₅₀). These values cannot be directly compared and IC₅₀ values will vary depending on the specific conditions used in the assay but can act as a guide to how strongly these compounds bind to ABCG2. Jackson et al. (2018) also found a ~3,000-fold difference in affinity between their fluorescent Ko143 derivative (inhibitor) and the substrate E₁S.

Compound name	Substrate or Inhibitor	Apparent affinity (µM)	Reference	
Fumitremorgin C	Inhibitor	0.731 ± 0.092	(Ochoa-Puentes et al., 2013)	
Ko143	Inhibitor	0.128 ± 0.017	(Kohler and Wiese, 2015)	
Benzbromarone	Inhibitor	0.20	(Miyata et al., 2016)	
Topiroxostat	Inhibitor	0.18	(Miyata et al., 2016)	
Febuxostat	Inhibitor	0.027	(Miyata et al., 2016)	
Sulfasalazine	Substrate/Inhibitor	0.6	(Karlsson et al., 2010)	
TLC-S	Inhibitor	37	(Suzuki et al., 2003)	
Rosuvastatin	Substrate	2.3	(Miyata et al., 2016)	
E₁S	Substrate	16.6 ± 3.4	(Suzuki et al., 2003)	
Mitoxantrone	Substrate	61	(Suzuki et al., 2003)	
DHEAS	Substrate	55	(Suzuki et al., 2003)	
4-MUS	Substrate	12.9 ± 2.1	(Suzuki et al., 2003)	
E3040S	Substrate	26.9 ± 4.0	(Suzuki et al., 2003)	
SN-38	Substrate	4.0	(Nakatomi et al., 2001)	
SN-38- glucuronide	Substrate	26	(Nakatomi et al., 2001)	

Table 3.1 Apparent affinities of substrates and inhibitors

The difference in affinity can be rationalised by the cryo-EM structures determined by Manolaridis et al (2018). The substrate-bound (E₁S), inward facing ABCG2 structure (PDB 6HCO) showed that F439 from opposite monomers are 8 Å apart and interacting with the bound substrate. In ATP-bound, outward facing structure (PDB 6HBU) these residues are only 3.5 Å apart (Figure 3.1). This means the substrate must be released from cavity 1 before it completely collapses, suggesting transient conformational changes which push out the substrate, resembling a peristaltic motion (Manolaridis et al., 2018). The resulting hypothesis is that inhibitors have a higher affinity for cavity 1 which means they are less likely to be released to allow the

transient conformational changes to occur. In other words, high affinity inhibitors are proposed to lock ABCG2 in the inward facing conformation.

One extension of this theory is that there would be an inverse relationship between binding affinity and maximal transport, suggested by Manolaridis et al. (2018). This group removed the hydrogen bond potential in a T435A mutant causing an increase in E₁S transport. This could indicate that reducing affinity for a compound increases substrate character (i.e. increased transport) and increasing affinity increases inhibitor character (less transport, more inhibition).

If inhibitors have high affinity and substrates have lower affinity, will reducing the affinity of an inhibitor cause it to become a substrate which is transported? To test this hypothesis a series of experimental mutants were made with the goal of reducing affinity for the most commonly used inhibitor Ko143.

Figure 3.1 Cavity 1 completely collapses to promote substrate transport. When the substrate E_1S is bound in cavity 1 of human ABCG2 (top left, PDB 6HCO), the F439 residues from each monomer are 8.0 Å apart (bottom left). ATP binding triggers conformational changes which lead to E_1S being extruded into the extracellular space (top right, PDB 6HBU) and cavity 1 collapses so that F439 residues are only 3.5 Å apart (bottom right). Cross sections (top left and top right) and stick models (bottom left and bottom right) of each monomer are shown in orange and blue. The leucine plug residue is L554. Figure adapted from Manolaridis et al. (2018).

3.2 Mutant design

In order to decide which experimental mutations to make, the structure of ABCG2 was visualised in PyMOL. This allowed determination of residues that are involved in the binding of Ko143 and provided information for the design of mutants that would have a reduced affinity for Ko143. The structure used was the cryo-EM structure published by Jackson et al. (2018) of ABCG2 bound to MZ29, a derivative of Ko143. MZ29 and Ko143 only differ in one place: the methoxy group of Ko143 is replaced by an O-cyclopentyl group (Figure 3.2). First, all residues with atoms within 4.0 Å of

MZ29 were identified; a total of fifteen were found. Three of these residues (F431, F432 and L555, shown in white in Figure 3.3 B and C) were excluded since they only interacted with the O-cyclopentyl group of MZ29 and would be too far away (4.7-5.9 Å) to interact with the carbon of the methoxy group in Ko143. Also, Manolaridis et al. (2018) found that no functional protein was expressed with L555A because it is likely to have structural importance, so mutations to different residues could have the same issue. The remaining residues are shown in Figure 3.3 A, where their interactions with specific parts of Ko143 are also shown.

Figure 3.2 Comparison of the structures of Ko143 and MZ29. The red dashed squares highlight the difference between Ko143 and MZ29: a methoxy group and O-cyclopentyl group respectively. Structures are from Jackson et al. (2018).

In an attempt to narrow down the important residues further, the human ABCG2 protein sequence was aligned with ABCG2 sequences from other mammals (rabbit, cow and mouse) where Ko143 has been shown to be an inhibitor (Weidner et al., 2015, Manzini et al., 2017, Wei et al., 2012, Halwachs et al., 2016). All residues with atoms within 4.0 Å of MZ29 were fully conserved (Figure 3.3 D-F), in fact most residues in ABCG2 are conserved (81.61-86.28% sequence identity compared with

human ABCG2). Therefore, all highlighted residues could play a role in binding, and none can be ruled out at this stage based off the sequence alignments alone.

3.2.1 A397S/V401A/L539A - Mut1

A397, V401 and L539 interact with the *tert*-Butyl ester (blue in Figure 3.3 A) via van der Waals forces. Mutating these residues to reduce hydrophobicity could reduce the affinity of ABCG2 for Ko143. This is supported by the research performed by Weidner et al. (2015) where the acid metabolite of Ko143, lacking the tert-Butyl ester, has no inhibitory effect on mitoxantrone transport by ABCG2. V401A and L539A would lower affinity for Ko143 since mutation to alanine would introduce a smaller hydrophobic group which would form fewer or weaker van der Waals interactions. However, this approach could not be applied to A397 which cannot be mutated to anything smaller, besides glycine which would add flexibility to α -helix 1b (Figure 3.3) B, C and D), potentially causing unwanted effects to the overall protein structure (Högel et al., 2018). For this reason and to further decrease affinity, the mutation to the polar residue serine was introduced in this triple mutant. Of the three residues interacting with the *tert*-Butyl ester, A397S is the furthest away from the oxygens and is therefore the least likely to hydrogen bond but could still cause a hydrophobic/hydrophilic repulsion that would result in a decrease in affinity. Making the triple mutant, A397S/V401A/L539A, will ensure the hydrophobicity is sufficiently reduced to have an impact on the affinity for Ko143's tert-Butyl ester. This mutant will be referred to as Mut1 throughout this thesis.

3.2.2 L405A/I543A/V546A – Mut2

The isobutyl group, highlighted by the green circle in Figure 3.3 A, forms van der Waals interactions with V401, L405, I543 and V546. Another triple mutant was designed to target these hydrophobic interactions: L405A/I543A/V546A (Mut2). Cox et al. (2018) made the single mutants L405A and I543A, both of which showed a significant reduction in mitoxantrone and pheophorbide A transport. It is, therefore, feasible these residues will also play a role in the binding of inhibitors. V546A, however, compared to WT had no change in E₁S transport but did double the EC₅₀ of E₁S-induced ATPase activity (Manolaridis et al., 2018). This means the V546A mutant reduces the affinity for the substrate E₁S but perhaps not enough for reduced transport. By combining V546A with L405A and I543A the hydrophobicity will be lowered to a greater extent which will have a larger effect on reducing the affinity, when applied to Ko143.

Figure 3.3 ABCG2 residues interacting with Ko143. Schematic showing ABCG2 residues interacting with Ko143. Four chemical features of Ko143 are involved in interactions: methoxy (pink), polycyclic core (yellow), *tert*-Butyl ester (blue), isobutyl (green). Carbons 3, 9 and 12 are labelled (Jackson et al., 2018) **(B and C)** MZ29-bound ABCG2 with interacting residues shown as sticks (within 4.0 Å). Polar interactions (hydrogen bonds) shown as black dotted lines. Residues interacting with one feature of MZ29 are coloured as in A. V401 (blue) is coloured to match the other residues interacting with the *tert*-Butyl ester (triple mutant) but it also interacts with the isobutyl group. V546 (green) is coloured in the same manner but also interacts with the polycyclic core. F431, F432 and L555 (white) interact with *O*-cyclopentyl group of MZ29 but not Ko143. Some residues from TM1b and TM5a (opposite monomers) are hidden for clarity. PDB 6ETI was used (Jackson et al., 2018) **(D-F)** Partial sequences from the alignment of ABCG2 from human, rabbit, cow and mouse. Shows conservation of residues interacting with Ko143 in TM1b (D), TM2 (E) and TM5a (F) (highlighted with same colours as in B and C).

3.2.3 T435A and M549E

Single mutants were made to target the affinity for the methoxy group of Ko143 (pink in Figure 3.3). This is because the methoxy group has been shown to be a key component of potent inhibitors, with Ko143 being four times more potent than its demethoxy analogue Ko134 when measuring inhibition of ABCG2-mediated mitoxantrone efflux (Allen et al., 2002). Demethoxy fumitremorgin C is also 10 times less potent than native fumitremorgin C (He et al., 1999, as cited in Allen et al., 2002) so small changes to the interactions with the methoxy will potentially have a greater effect than with other groups. This is supported by Jackson et al. (2018). They found that changing the substituent at C9 (the methoxy group, Figure 3.3 A) had a large influence on binding affinity and suggested that the removal of the T435 hydrogen bond causes a reduction in affinity. For these reasons, the mutation T435A was made which removes the hydrogen bond.

M549 also interacts with the methoxy group via van der Waals forces and has been shown to be important in substrate transport. In previous studies, M549A decreased mitoxantrone and pheophorbide A transport but not E₁S transport (Haider et al., 2015, Manolaridis et al., 2018). Jackson et al. (2018) found that the addition of hydrophilic groups to C9 of the polycyclic core of Ko143 caused the inhibitor to become inactive. They suggest this is due to the hydrophobicity at the bottom of cavity 1, nevertheless, it would be interesting to see the effect of mutating M549 to a glutamic acid which is a similar sized but hydrophilic residue. This mutation would remove the hydrophobic interactions without adding a hydrogen bond between the carboxyl and the methoxy (4.7 Å between 2 closest oxygen atoms). In addition, since

M549A had no effect on E_1S transport, a more drastic change (M549E) is more likely to have an effect on affinity for Ko143.

3.2.4 N436A, F439A and S440W

The polycyclic core of Ko143 (yellow in Figure 3.3 A) has 5 amino acids interacting with it: N436, F439, S440, T542 and V546. N436 hydrogen bonds via the carbonyl oxygen of the side chain with the NH of the indole ring in Ko143 (Figure 3.3 C). Mutating to an alanine removes this hydrogen bond and minimizes advantageous hydrophobic interactions with the polycyclic core. Previous mutation of N436A led to depleted E₁S transport activity and there was also no E₁S-induced ATPase activity suggesting it is important for substrate binding, therefore, the mutation N436A could reduce affinity for Ko143 (Manolaridis et al., 2018).

F439 forms stacking interactions with the benzene ring in the polycyclic core of Ko143, this is a stronger bond than van der Waals but weaker than hydrogen bonds so would be interesting to mutate. Removing the aromaticity of phenylalanine would eliminate this interaction. Mutating to any other amino acid, besides tryptophan or tyrosine, would do this but introduction of other interactions must also be avoided. This is why mutation to alanine was made: no hydrogen bonds are introduced and hydrophobic interactions are minimized. Previous data on the F439A mutant has shown that it had an effect on E₁S transport and E₁S-induced ATPase activity so could also have an effect on Ko143 affinity (Manolaridis et al., 2018).

S440 has been shown to be involved in mitoxantrone and pheophorbide A transport, with mutation to alanine causing a significant reduction in transport compared with the WT (Cox et al., 2018). However, the hydroxyl group of S440 is pointing away from MZ29 in the 6ETI structure (Figure 3.3 C) so would not form any polar

interactions with MZ29 nor Ko143, based on the assumption that they bind in the same manner. Perhaps the orientation of S440 is different when binding to substrates (although S440 also points away in the E₁S-bound structure, 6HCO) or the hydrophilicity of this residue contributes to creating an environment suitable for binding. Since S440A will not necessarily have a clear effect on the affinity for Ko143, a tryptophan mutation was made. The idea was to mutate to the largest amino acid to cause steric hindrance so that Ko143 can no longer sit in the pocket in a way that optimises the other interactions. This could have major ramifications on binding by causing too much steric hindrance or removing too many other interactions. On the other hand, interactions could be introduced including π - π stacking and hydrogen bonds with the NH of tryptophan.

T542 forms van der Waals interactions with the polycyclic core of Ko143, however, this residue was not mutated. Removing one van der Waals interaction would likely have very little effect on the total affinity especially since there are 4 other amino acids interacting with the polycyclic core, including a stronger hydrogen bond and stacking interaction. Furthermore, there was no literature to support its involvement in Ko143 or substrate binding. Since the aim of this project is to assess the importance of affinity for inhibitor function, there is no need to mutate this residue unnecessarily.

3.2.5 Summary

In summary, the mutants designed are: Mut1 (A397S/V401A/L539A), Mut2 (L405A/I543A/V546A), T435A, M549E, N436A, F439A and S440W. These mutations target different functional groups of Ko143 and are proposed to affect the affinity in different ways (Table 3.2). For example, Mut1 and Mut2 remove multiple weaker interactions, whereas T435A and N436A remove stronger hydrogen bonds. M549E

and S440W are mutating residues that are potentially less important for affinity, to more extreme mutations designed to disrupt binding. In future experiments, if the triple mutations had a functional impact, there would be value in assessing the contribution of each residue to Ko143 binding and transport. However, for this project the compounded effect of three minor changes in both Mut1 and Mut2 is more likely to noticeably impact Ko143 binding.

Table 3.2 ABCG2 mutants and their desired effect on Ko143 binding.Mut1 andMut2 are A397S/V401A/L539A and L405/I543A/V546A triple mutants respectively.

Mutant	Ko143	Desired effect
	functional group	
T435A	Methoxy group	Removes hydrogen bond
M549E	Methoxy group	Removes hydrophobic interaction; Introduces hydrophilicity
N436A	Polycyclic core	Removes hydrogen bond
F439A	Polycyclic core	Removes stacking interactions
S440W	Polycyclic core	Increases steric hindrance
Mut1	tert-Butyl ester	Reduces hydrophobic interactions
Mut2	Isobutyl group	Reduces hydrophobic interactions

3.3 Construct generation

Mutant ABCG2 constructs were created by performing mutagenic PCR with

pcDNA™3.1/Zeo(+)_SNAP_ABCG2 plasmid as the template DNA which is shown

Figure 3.4. Key features of this plasmid include an ampicillin resistance gene (AmpR)

for bacterial selection; a Zeocin[™] resistance gene (BleoR) for mammalian cell

selection; and the cytomegalovirus (CMV) promoter for enhanced expression of the

protein of interest, SNAP-tagged ABCG2.

Figure 3.4 Schematic of the template construct used for mutagenic PCR. The pcDNA[™]3.1/Zeo(+) backbone contains the coding region for twin-strep and SNAP-tagged ABCG2. Key features are shown including AmpR and BleoR to confer ampicillin and Zeocin[™] resistance respectively and a CMV promoter for enhanced expression. Primers used in sequencing are shown in purple.

In order to make the mutant constructs, mutagenic PCR was performed using primers containing the mutant codon. The primers were designed to optimise the following factors: ΔG of self-dimer formation greater than -10 kcal/mol; ΔG of hairpin formation greater than -5 kcal/mol; GC content between 40% and 60%; and a score higher than 75% (all found using Premier Biosoft's Netprimer). For the triple mutants Mut1 and Mut2, two sets of primers were designed. The first set made two mutations relatively close in sequence to each other (A397S and V401A for Mut1, I543A and V546A for Mut2). The second set included the final mutation (L539A for Mut1, L405A for Mut2).

PCRs were performed as described in 2.2.1 and resulting DNA was confirmed on agarose gel electrophoresis, shown in Figure 3.5. For the single mutants, S440W, M549E, N436A and T435A have clear bands between 4.0 kb and 10.0 kb which correlates with the construct being 7.6 kb. There is no band, however, for F439A so a gradient PCR was conducted at a range of annealing temperatures (4 temperatures 50.5-65.0 °C), all of which were successful (Figure 3.5 C). Two rounds of PCR were performed for the triple mutants, Mut1 and Mut2. First, the double mutant primers were used (A397S/V401A and I543A/V546A, Table 2.1) on the WT template shown in Figure 3.4. A397S/V401A was successful at the original annealing temperature (55.0 °C, Figure 3.5 B) and I543A/V546A was successful at 50.5 °C (Figure 3.5 C). Once successful PCR was confirmed (Figure 3.5 B and C) and sequences were checked by Sanger sequencing (see below), the PCR products were used as the template in the second round of PCR with the second set of primers (L539A for Mut1 and L405A for Mut2). The resulting PCR products were confirmed by agarose gel electrophoresis shown in Figure 3.5 D.

Figure 3.5 Confirmation of successful PCR by gel electrophoresis. PCR was performed using the pcDNATM3.1/Zeo(+)_SNAP_ABCG2 plasmid as the template DNA and the mutagenic primers shown in Table 2.1. (A) For the single mutants, all but F439A have undergone successful PCR (B) First round of PCR for Mut1 and Mut2, using the double mutant primers to create A397S/V401A and I543A/V546A respectively. A397S/V401A was successful but I543A/V546A was not. (C) PCR was performed at a range of annealing temperatures (50.5-65.0 °C) for F439A and I543A/V546A. F439A was successful at all temperatures and I543A/V546A at 50.5 °C (D) Second round of PCR for Mut1 and Mut2, using the A397S/V401A and the I543A/V546A (50.5 °C) PCR products respectively as the templates, was successful.

The PCR products were then treated with *DpnI* to break down the methylated template DNA (WT), leaving only the mutated DNA intact. The PCR products were then transformed into DH5α competent *E. coli* and following plasmid isolation, the DNA was sequenced by Source BioScience (Nottingham). Sanger sequencing was performed using a series of primers that covered the entire region of interest (SNAP-labelled ABCG2). Primers used, as well as the region they cover, are shown in Table 2.3 and the position they bind on the plasmid is shown in Figure 3.4. Sequence chromatograms were first viewed in Chromas to confirm quality of the data and then

sequences were compared with the WT construct by aligning in BLAST to see if the mutation was successfully incorporated (Appendix, section 6.2). Successful mutagenesis can be observed for N436A (Figure 3.6, top panel) and similar data for all other single and triple experimental mutants was obtained (Appendix, section 6.1). For N436A there was one unexpected difference between WT and observed sequence (Figure 3.6, bottom panel): an adenine to guanine which changed the TCA codon to TCG. Both these codons code for serine so the construct was still able to be used. Strictly speaking this mutant is N436A/S622S but will be referred to as N436A throughout this thesis. All the other mutant constructs were exactly as expected.

Figure 3.6 Sequencing chromatograms to confirm the desired mutation within the mutant ABCG2 constructs. The top panel shows a portion of the N436A sequencing data obtained using the SeqF2 primer, with the desired mutation highlighted by the red box. The bottom panel shows the additional mutation (red box) in the N436A construct (data collected using the Seq482 primer). The other mutant constructs showed similar results to the top panel, with no additional mutations.

3.4 **Protein expression**

The mammalian expression system used in this study was HEK293T cells. They are derived from HEK293 cells which were created from normal human embryonic kidney (HEK) cells exposed to sheared fragments of human adenovirus type 5 DNA, making them more infectious. They also contain the temperature-sensitive SV40 T-antigen tsA1609 which activates replication of vectors with the SV40 origin of replication (Figure 3.4). This allows high levels of expression of the protein of interest, SNAP-tagged ABCG2 (Graham et al., 1977, DuBridge et al., 1987, Rio et al., 1985).

HEK293T cells, which have no endogenous ABCG2 expression, were transiently transfected with WT and mutant pcDNA[™]3.1/Zeo(+)_SNAP_ABCG2 plasmids using the PEI transfection method described by Boussif et al. (1995). The molar PEI nitrogen: DNA phosphorus ratio was 15:1 (section 2.3.2). Stable cell lines were generated by Zeocin[™]-mediated selection. Zeocin[™] concentration in the media was maintained at 200 µg/mL for 36-43 days before reducing to 40 µg/mL. This kills the cells that have not taken up the plasmid, while successfully transfected cells are resistant due to the newly acquired Zeocin[™]-resistance gene, BleoR (Figure 3.4). The SNAP-labelled ABCG2 is not particularly conducive to rapid observations of expression in live cells; therefore, as a guide for zeocin selection efficacy, the pcDNA[™]3.1/Zeo(+) sfGFP_ABCG2 plasmid, coding for GFP-tagged WT-ABCG2, was transfected alongside the WT and mutant plasmids described above. This allowed the expression of ABCG2 to be monitored by epifluorescence microscopy. Figure 3.7 shows that, even after 5 days of Zeocin[™] selection, most of the GFP-ABCG2 cells are fluorescent meaning that they are expressing GFP-ABCG2. Observation of untransfected HEK293T cells confirmed that cell death was not

complete until several weeks of exposure. Once stable cell lines were generated,

aliquots were frozen in liquid nitrogen for long term storage.

Figure 3.7 Confirmation of GFP fluorescence as an indicator of transfection efficacy. pcDNATM3.1/Zeo(+)_sfGFP_ABCG2 plasmid was transfected into HEK293T cells alongside the WT and mutant constructs described in section 3.2. After 5 days of ZeocinTM-selection, epifluorescence microscopy was used to view the GFP-ABCG2 fluorescence of the cells. Fluorescence of these cells indicates that transfection was successful. Cells that are rounded and intensely fluorescent (red arrowheads) are dying/dead cells, presumably reflecting cells that have not taken up the plasmid and so now suffering the cytotoxic effects of zeocin. Scale bars represent approximately 20 μ m.

To determine expression levels of ABCG2 in the WT and mutant cell lines, western blotting was performed (Figure 3.8). First cells were harvested, then lysed in ice cold buffer by sonication. 35 µg of cell lysate was resolved electrophoretically on 10% polyacrylamide gel and transferred to nitrocellulose or stained with InstantBlue[™]. Blots were then probed against the anti-ABCG2 antibody, BXP-21. Figure 3.8 A shows bands of varying intensity between 98 kDa and 148 kDa, which is a larger apparent molecular weight than the expected size of ABCG2 (72.3 kDa) tagged with SNAP-tag[®] (19.4 kDa) and twin strep tag (3.4 kDa). However, many membrane proteins have mobility differences on SDS-PAGE due to increased interactions with SDS molecules, increasing their apparent molecular weight compared with the

globular protein standards (Rath et al., 2009). F439A and M549E have weak BXP-21 reactive bands alongside lower protein loading demonstrated by the gels stained with InstantBlue[™]. Increasing the protein loading to 70 µg (Figure 3.8 B) confirmed that F439A was expressed but showed that M549E still had minimal expression of ABCG2. As a result, this mutant was discounted from further experiments. Very low/absent expression of M549E might result from the extreme nature of this mutation, with a hydrophobic methionine being replaced by a hydrophilic glutamic acid, since M549A was successfully expressed in other work (Haider et al., 2015, Manolaridis et al., 2018).

Figure 3.8 Western blots showing mutant and WT-ABCG2 expression in stable cell lines. $35 \ \mu g$ (A) or 70 μg (B) of whole cell lysates underwent SDS-PAGE and immunoblotted against the anti-ABCG2 antibody, BXP-21. Untransfected HEK293T cells were used as a negative control. Change in relative expression of F439A compared to WT can be explained by lower protein loading of F439A and M549E in A and lower protein loading of WT in B. The molecular weights of pre-stained standard proteins were identified from the nitrocellulose.

3.5 Confirmation of protein localisation by flow cytometry

Western blots can confirm total expression of a protein, however, exclusively using this technique for membrane proteins does not provide any information on localisation with the cell. Activity of membrane proteins is influenced by its lipid bilayer surroundings (Lee, 2004, Szilagyi et al., 2017) so localisation on the cell membrane must be confirmed. This is especially true for transporters such as ABCG2, where substrates can only be exported if the protein is correctly localised. In this thesis, flow cytometry was used to quantify the proportion of cells with significant cell surface expression of ABCG2. The monoclonal antibody 5D3 recognises a cell surface epitope within the extracellular loop 3 of ABCG2 and can therefore be used to measure cell surface localisation of ABCG2 (Ozvegy-Laczka et al., 2008). In this project, cells were incubated with 5D3 antibody or isotype control and then the Alexafluor647 secondary antibody and fluorescence was measured by flow cytometry.

During flow cytometry, a single stream of cells is produced which allows a laser to illuminate each cell as if flows past (Figure 3.9). The light from the laser is scattered by the cell in all directions but is only detected in the forward direction (same direction as the laser) and at 90° angle from the laser beam (Jaroszeski and Radcliff, 1999). This is referred to as forward scatter (FSC) and side scatter (SSC) respectively. If the cells are fluorescent, either through fluorescent antibodies or proteins (e.g. GFP), the laser will excite the fluorophore and the emitted light will be detected in one of the fluorescent detectors (FL1, FL2, FL3), 90° from the laser. Different wavelengths of emitted light will be either reflected or passed through optical filters so that they are detected by the correct detector.

Side scatter values relates to granularity/structure and forward scatter is proportional to size (Jaroszeski and Radcliff, 1999). This means that different types of cell will appear in different positions when SSC and FSC are plotted against each other and data points can be gated to separate data from each type. This is shown in Figure 3.10 A, where the clear cluster is HEK293T cells and datapoints outside this gate are likely to represent damaged cells and cell debris. Side scatter height plotted against side scatter area can separate monodispersed cells from doublets. Figure 3.10 B shows the gating for singlets, for the untransfected HEK293T cells. This particular sample shows very few doublets but they would appear in a cluster shifted to the right of the one gated. It is important that doublets are gated out because they could give falsely high fluorescence values.

Figure 3.10 Cell surface ABCG2 expression was confirmed by flow cytometry. Cells were treated with either 5D3 (extracellular binding anti-ABCG2 antibody) or isotype control and then AlexaFluor647 secondary antibody. Negative control cells were not treated with any antibody. (A and B) Data was first gated to exclude debris from live cells by plotting side scatter height against forward scatter height (A). Side scatter height was then plotted against side scatter area to separate singlets from doublets (B). Number of cells in each gate is shown. Untransfected HEK293T (negative control) is shown and is representative of all data. Density plots are shown, with grey being the sparsest datapoints and red/green being the densest. (C) After gating, histograms of cell count vs AlexaFluor647 fluorescence were plotted. C shows the overlay of WT histograms (5D3, isotype control and negative control) for one repeat. It is representative of the remaining data. The right-hand edge of the isotype control peak was used as a threshold for positive cell surface expression for each cell line and repeat. (D) Mean percentage of cell surface ABCG2 expression (n=4) of untransfected HEK293T cells (HEK), WT and mutants, derived from 5D3 histograms and isotype control set thresholds. % cell surface expression is the percentage of cells with fluorescence over the threshold set in C. Error bars depict standard error of the mean (SEM). Colours of the bars represent which functional group of Ko143 the mutants interact with (as in Figure 3.3): methoxy (pink), polycyclic core (yellow), *tert*-Butyl ester (blue), isobutyl (green). Control cell lines (HEK and WT) are shown in grey.

Once data was gated for cells and singlets, histograms for Alexafluor647 fluorescence for each cell line were plotted (Figure 3.10 C). Thresholds for positive cell surface expression were set using the isotype controls for each cell line with any cell displaying greater AlexaFluor647 fluorescence than the 99th centile of the isotype control considered as ABCG2-expressing (Figure 3.10 C). Figure 3.10 D shows the mean percentage of cells with fluorescence over the threshold (% cell surface expression) for all cell lines over 4 repeats. ABCG2 is localised to the plasma membrane to varying degrees but all cell lines (except for untransfected HEK293T cells) have at least 60% cell surface expression and are not significantly different from each other (p > 0.05). This is sufficient for use in the transport assays.

3.6 Transport assays

Transport assays have often been performed using flow cytometry and take advantage of many ABCG2 substrates being fluorescent e.g. mitoxantrone, pheophorbide A and Hoechst 33342 (Cox et al., 2018, Kapoor et al., 2020). When cells expressing WT-ABCG2 are incubated with fluorescent substrates, ABCG2 will pump out the substrate leaving a low level of fluorescence in the cell. When treated with inhibitors or using ABCG2 mutants that do not transport the substrate, the substrate will accumulate in the cell giving a higher fluorescence. Ko143, however, is not fluorescent. In order to measure its transport, fluorescent derivatives of Ko143 were used (kindly synthesized by Sarah Mistry, School of Pharmacy, University of Nottingham). Two derivatives, Ko143-X-BY630 and Ko143-Cy5, are shown in Table 3.3 and consist of Ko143 tagged with a fluorophore at the *tert*-Butyl ester end. These will likely bind to ABCG2 in a similar manner to Ko143 with the Ko143-like regions of the fluorescent derivatives binding to cavity 1. All the experimental mutants (except

for Mut1) are designed to reduce affinity for functional groups that are common between Ko143, Ko143-X-BY630 and Ko143-Cy5. Therefore, the effect on binding/transport of the fluorescent derivatives compared with untagged Ko143 should be minimal. However, Mut1 has 3 mutations (A397S/V401A/L539A) all focused around reducing the affinity for the *tert*-Butyl ester of Ko143 (Figure 3.3) but for both fluorescent derivatives the *tert*-Butyl ester is replaced by a fluorescent tag (Table 3.3). Ko143-X-BY630 and Ko143-Cy5 are less hydrophobic than Ko143 in the equivalent region, meaning the experimental mutations would have less of an effect on the affinity than originally intended. In addition, any reduction in affinity caused by a decrease in hydrophobicity, could be cancelled out by the possible formation of a hydrogen bond between A397S and the amides present in the fluorescent Ko143 derivatives.

Name	Structure	Excitation wavelength (nm)	Emission wavelength (nm)
Ko143		N/A	N/A
Ko143-X- BY630	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & $	636	651
Ko143- Cy5	$ \begin{array}{c} 0, s \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	649	666

Table 3.3 Details of Ko143 and its fluorescent derivatives.

3.6.1 Monolayer transport assay

Before analysing whether the fluorescent Ko143 derivatives are transported by the mutant ABCG2 proteins, their inhibitory activity compared to Ko143 must be determined. To accomplish this, a monolayer transport assay was performed in collaboration with James Mitchell-White (Kerr Lab, School of Life Sciences, University of Nottingham) using suspension growth-adapted HEK293 (HEK293S) cells which were untransfected or expressing WT-ABCG2 (Lin et al., 2014). Similar to Haider et al. (2015), HEK293S cells were treated with either Hoechst 33342 in the presence or absence of inhibitor (Ko143 or fluorescent derivative). Hoechst 33342 is a fluorescent substrate of ABCG2 whose excitation and emission wavelength (361/497 nm) does not overlap with that of the fluorescent Ko143 derivatives (Table 3.3). The HEK293S and WT cells were also treated with a fluorescent Ko143 derivative (Ko143-X-BY630 or Ko143-Cy5) in the presence or absence of Ko143 (also in absence of Hoechst 33342). The purpose of this is to confirm that the fluorescent derivatives are able to enter HEK293 cells.

Figure 3.11 Ko143-X-BY630 inhibits Hoechst 33342 transport by ABCG2. (A) Hoechst 33342 fluorescence was measured in untransfected HEK293S and WT expressing HEK293S cells treated with Hoechst 33342 in the presence or absence of an inhibitor (Ko143 or Ko143-BY630). Hoechst 33342 treated WT-ABCG2 expressing cells have significantly less Hoechst 33342 fluorescence than untransfected HEK293S cells. Ko143 and Ko143-X-BY630 inhibit ABCG2 causing a significant increase in Hoechst 33342 accumulation in WT-ABCG2 expressing cells. **(B)** Ko143-X-BY630 fluorescence was measured in untransfected HEK293S and WT expressing HEK293S cells treated with Ko143-X-BY630 in presence or absence of Ko143. All conditions were significantly different from zero showing that Ko143-X-BY630 enters HEK293S and WT-ABCG2 expressing cells. Data also shows no significant Ko143inhibitable transport of Ko143-BY630. Data was collected on 3 separate occasions. Background fluorescence was accounted for by subtracting the average DMSO fluorescence from each data point (section 2.6). Error bars depict standard error of the mean (SEM).

Figure 3.11 shows the results of the monolayer transport assay for Ko143-X-BY630. When measuring Hoechst 33342 fluorescence (Figure 3.11 A), WT-ABCG2 expressing cells have a significantly different fluorescence (p < 0.0001, comparing the two blue bars) to the HEK293S cells because ABCG2 pumps Hoechst 33342 out of the cell. Treatment with Ko143 restores cellular accumulation of Hoechst 33342 giving a higher fluorescence that is not significantly different from the equivalent HEK293S cells. This is because Ko143 inhibits ABCG2 so Hoechst 33342 was not exported. Figure 3.11 A shows that Ko143-X-BY630 acts as inhibitor to almost the same extent as untagged Ko143. Hoechst 33342 transport by WT-ABCG2 expressing cells treated with Ko143-X-BY630 was not significantly different from those treated with Ko143 (compare red and yellow bars, right hand side, Figure 3.11 A) but the magnitude of inhibition appears slightly lower with Ko143-X-BY630. As seen in Figure 3.11 B, Ko143-X-BY630 successfully enters the cell since the Ko143-X-BY630 fluorescence in HEK293S and WT cells is significantly different from zero (p < 0.0001). Also, in this case, the addition of the fluorescent tag to Ko143 does not cause it to be transported by WT-ABCG2. This is demonstrated by no significant difference in Ko143-X-BY630 fluorescence between HEK293S and WT cells. In addition, there is no significant difference between Ko143-BY630 treated WT cells in absence or presence of Ko143. This means that, unlike with Hoechst 33342 transport, Ko143 does not affect Ko143-X-BY630 accumulation.

Figure 3.12 Ko143-Cy5 does not inhibit Hoechst 33342 transport by ABCG2. (A) Hoechst 33342 fluorescence was measured in untransfected HEK293S and WT-ABCG2 expressing HEK293S cells treated with Hoechst 33342 in the presence or absence of an inhibitor (Ko143 or Ko143-Cy5). Hoechst 33342 treated WT-ABCG2 expressing cells have significantly less Hoechst 33342 fluorescence than untransfected HEK293S cells. Ko143 inhibits ABCG2 causing a significant increase in Hoechst 33342 accumulation in WT-ABCG2 expressing cells. Ko143-Cy5 does not inhibit Hoechst 33342 transport because fluorescence is not significantly different form WT cells treated with just Hoechst 33342. **(B)** Ko143-Cy5 fluorescence was measured in untransfected HEK293S and WT-ABCG2 expressing HEK293S cells treated with Ko143-Cy5 in presence or absence of Ko143. All conditions were not significantly different from zero showing that Ko143-Cy5 did not enter HEK293S and WT cells. Data was collected on 3 separate occasions. Background fluorescence was accounted for by subtracting the average DMSO from each data point (section 2.6). Error bars depict standard error of the mean (SEM). The monolayer transport assay was repeated with Ko143-Cy5 instead of Ko143-X-BY630 (Figure 3.12). In contrast to the data for Ko143-X-BY630, Ko143-Cy5 did not act as an inhibitor in the monolayer transport assay. As shown in Figure 3.12 A, there is low cellular accumulation of Hoechst 33342 in WT-ABCG2 expressing cells treated with Ko143-Cy5, which is not significantly different from WT cells treated with Hoechst 33342 alone. This is explained by Figure 3.12 B, where Ko143-Cy5 fluorescence was not significantly different from zero in WT and HEK293S cells. This indicates that Ko143-Cy5 may not successfully enter the cell. Perhaps this is due to the more hydrophilic nature of Ko143-Cy5 compared with Ko143-BY630, having more charged atoms (Table 3.3). This would make it more difficult to cross the largely hydrophobic lipid bilayer of the cell membrane. From this data, it is not possible to determine whether Ko143-Cy5 acts as an inhibitor or not because Ko143-Cy5 did not successfully enter the cell. A membrane-based activity assay, such as the one described in Kapoor et al. (2020) would be able to confirm this ambiguous result.

In summary, the monolayer transport assay measured the cellular accumulation of fluorescent Hoechst 33342 (ABCG2 substrate) and the fluorescent Ko143 derivatives. Ko143-X-BY630 successfully enters the HEK293S cells; inhibits Hoechst 33342 transport by ABCG2 to the same extent as untagged Ko143; and is not transported by ABCG2. Ko143-Cy5, however, did not successfully enter the HEK293S cells and therefore, it is not possible to assess the impact the fluorescent tag has on ABCG2 inhibition.

3.6.2 Flow cytometry

Using the same principle of cellular accumulation as in section 3.6.1, flow cytometry was used to measure whether the mutant cell lines transported the fluorescent Ko143 derivatives. The overarching hypothesis is that if the mutant ABCG2 proteins now recognise Ko143 as a substrate rather than an inhibitor then the accumulation of the fluorescent Ko143 derivatives in those cell lines will be lower. Although the monolayer transport assay indicated that Ko143-Cy5 did not enter cells, the preliminary data suggested that the flow cytometry assay could detect intracellular Ko143-Cy5. Therefore, both fluorescent Ko143 derivatives were used in flow cytometry. The underlying technical differences between the two assays are discussed in Chapter 4.

For the flow cytometry transport assay, mutant cell lines were incubated for 1 hour with 2 μ M Ko143-Cy5 or Ko143-X-BY630 and then fluorescence was measured by flow cytometry. WT-ABCG2 expressing cells and untransfected HEK293T (HEK) cells were used as controls as well cells expressing the inactive mutant, E211Q, which has the catalytic glutamic acid in the Walker-B sequence of the NBD mutated to glutamine (Haider et al., 2015), a kind gift of Joseph Morris (Kerr Lab, School of Life Sciences, University of Nottingham). To account for autofluorescence/background fluorescence, control cells for each cell line were treated with DMSO for 1 hour. After gating out debris and doublets (as described in section 3.5), the median fluorescence for each DMSO sample was subtracted from the median fluorescence of the fluorescence intensity (Δ MFI) which were averaged over at least 3 repeats and shown in Figure 3.13.

For Ko143-Cy5 (Figure 3.13 A and Table 3.4), WT-ABCG2 expressing cells have a significantly higher (p < 0.0001) Δ MFI than HEK293T cells. This difference is not due to transport of Ko143-Cy5 because HEK293T does not express functionally detectable levels of ABCG2. However, the higher fluorescence of WT cells could be explained by Ko143-Cy5 binding to cavity 1 of ABCG2 leading to cellular retention of the fluorescent inhibitor. All of the cavity 1 mutant cell lines (described in section 3.2), except for Mut1, show significantly different Ko143-Cy5 fluorescence compared to WT-ABCG2 expressing cells (p < 0.001) but the same Ko143-Cy5 fluorescence as HEK293T cells. This is possibly due to reduced binding to ABCG2 caused by the designed/purposeful reduction in affinity for Ko143. With this explanation, Ko143-Cy5 would diffuse out of the mutant ABCG2-expressing cells more easily than with the WT-ABCG2 expressing cells, giving a similar fluorescence to HEK293T cells. Altered expression levels of ABCG2 in the mutant cell lines does not appear to be an explanation as Ko143-Cy5 fluorescence does not correlate with expression level of ABCG2 (Figure 3.8). For example, N436A expression was higher than WT-ABCG2 so cannot explain why ΔMFI of N436A expressing cells is lower than WT-ABCG2 expressing cells. The triple mutant Mut1 has a Δ MFI significantly higher than HEK (p < 0.001) but not significantly different from WT. As mentioned in section 3.6, the experimental mutations made in Mut1 are focused around reducing the affinity of the tert-Butyl ester of Ko143, which is not present in fluorescent Ko143 derivatives. This explains why Mut1 has similar fluorescence to WT cells and supports the idea that the other cavity 1 mutants have reduced binding.

Figure 3.13 Cellular accumulation of fluorescent Ko143 derivatives in mutant cell lines. After gating for monodispersity (see Figure 3.10 A and B), median fluorescence intensity (MFI) was measured for mutant, WT and untransfected cell lines, treated with a fluorescent Ko143 derivative, Ko143-Cy5 (A) or Ko143-X-BY630 (B). Background fluorescence (DMSO control) was subtracted to give Δ MFI. Data was collected on 3 separate occasions for A and 4 separate occasions for B (except F439A where n=3). Colours of the bars represent which functional group of Ko143 the mutants interact with (as in Figure 3.3): methoxy (pink), polycyclic core (yellow), *tert*-Butyl ester (blue), isobutyl (green). Control cell lines (HEK, WT and E211Q) are shown in grey. The lines labelled with * (p < 0.05), *** (p < 0.001) or **** (p < 0.0001) represent mutant cell lines that have a significantly different Δ MFI from HEK293T cells (HEK). Error bars depict standard error of the mean (SEM).

For the Ko143-X-BY630 transport assay (Figure 3.13 B and Table 3.4), the fluorescence level for each cell line shows a similar pattern to the Ko143-Cy5 data. However, S440W is an exception to this and the Δ MFI for all mutant cell lines and HEK293T cells are not significantly different from WT-ABCG2 expressing cells. WT-ABCG2 expressing cells have a Δ MFI that is slightly higher than HEK293T cells along with T435A, N436A, F439A and Mut2 expressing cells having a similar fluorescence to HEK293T cells. As before, Mut1 has a significantly higher Δ MFI than HEK293T cells (p < 0.05) but this time the fluorescence is higher (but not significantly) than WT cells. As with Ko143-Cy5, this can be explained by the addition of the fluorescent tag which could the diminish the effect of the hydrophobicityreducing experimental mutations. S440W has significantly more Ko143-X-BY630 accumulation than HEK cells (p < 0.05, despite the greater variability of this data set),

with a fluorescence more similar to Mut1.

Table 3.4 Summary of flow cytometry transport assay results. Significantdifferences are shown in red (lower) and green (higher) and p values are also shown.Where differences were not significant the phrase "trend to lower/higher" is used.

	Ко143-Су5		Ko143-X-BY630	
Cell Line	Compared to WT	Compared to HEK	Compared to WT	Compared to HEK
HEK293T	Lower (p < 0.0001)	N/A	Trend to lower	N/A
WT	N/A	Higher (p < 0.0001)	N/A	Trend to higher
E211Q	Lower (p < 0.01)	Trend to higher	Trend to lower	Trend to lower
T435A	Lower (p < 0.001)	Trend to higher	Trend to lower	Trend to lower
N436A	Lower (p < 0.0001)	Trend to higher	Trend to lower	Trend to lower
F439A	Lower (p < 0.001)	Trend to higher	Trend to lower	Trend to lower
S440W	Lower (p < 0.001)	Trend to higher	Trend to higher	Higher (p < 0.05)
Mut1	Trend to lower	Higher (p < 0.001)	Trend to higher	Higher (p < 0.05)
Mut2	Lower (p < 0.001)	Trend to higher	Trend to lower	Trend to higher

In summary, Ko143-Cy5 has significantly higher accumulation in WT-ABCG2 expressing cells compared to HEK293T cells and the other ABCG2 mutants, excluding Mut1. Ko143-X-BY630 shows similar results but without a significant difference (Table 3.4). The exception is S440W which, along with Mut1, has a significantly higher Δ MFI than HEK293T cells. Both Ko143-Cy5 and Ko143-X-BY630 data support the idea that reduced affinity of the mutants for fluorescent Ko143 derivatives causes a decrease in "stickiness" that leads to a lower Δ MFI. Transport of Ko143-Cy5 or Ko143-X-BY630 cannot be ruled out but it is not detectable in this experiment.

Chapter 4 Discussion

At the beginning of this project, a hypothesis was proposed that inhibitors of ABCG2 have a higher affinity for cavity 1 than substrates. It was speculated that reducing the affinity of ABCG2 for Ko143, a well-known inhibitor, would cause it to be transported instead of inhibiting. Data collected was inconclusive with regards to the hypothesis, however, it makes way for additional experiments which could further interrogate the hypothesis. Distinguishing between substrates and inhibitors is important from an academic perspective as well as a clinical one. Not only does it allow better characterisation of substrates which allows drugs to be rationally designed to avoid transport by ABCG2, but also aids development of selective ABCG2 inhibitors. Multidrug resistance is large problem and there are currently no clinically available inhibitors of ABCG2. Known inhibitors such as fumitremorgin C, which is extremely neurotoxic, and Ko143, which is less toxic, are not suitable *in vivo* (Toyoda et al., 2019). If this hypothesis is further validated, ABCG2 inhibitors could be designed by altering non-toxic, selective substrates to have a stronger binding affinity to the transporter. This provides a more guided approach to inhibitor design but also increases the chances of it being clinically suitable since the structurally related substrates have already been approved.

4.1 Summary of results

On a whole, the Ko143-X-BY630 and Ko143-Cy5 flow cytometry data show similar patterns which could be rationalised by the cavity 1 mutants having lower fluorescent Ko143 derivative binding than the WT-ABCG2. However, the flow cytometry data does not rule out the possibility that Ko143-Cy5 or Ko143-X-BY640 are transported by the cavity 1 mutants (except Mut1). If Δ MFI was significantly lower than in

HEK293T cells, this would indicate that the fluorescence Ko143 derivatives were pumped out. Therefore, a reduction in Δ MFI to a value significantly lower than in WT-ABCG2 expressing cells, as observed with most mutants for Ko143-Cy5, could mean that it is transported or that a reduced level of binding to ABCG2 occurs due to the mutations made to cavity 1.

Work by Gose et al. (2020), published after the cavity 1 mutants were designed (section 3.2), confirms a reduction in affinity for Ko143 in ABCG2 mutants F439A and N436A. An aromatic residue 439 was found to be essential for substrate binding and transport, with the authors calling the residue an "aromatic clamp" (Gose et al., 2020). In their work, F439A lost Hoechst 33342 and pheophorbide A transport ability in contrast to their F439W and F439Y mutants. In addition, their thermal stabilisation assay indicated that F439A-ABCG2 reduced binding of multiple substrates and inhibitors including Ko143. Similarly, Manolaridis et al. (2018) found that F439 could be essential for substrate transport because the two F439 residues from both monomers come together which causes cavity 1 to completely collapse. Mutating to a smaller residue could in fact stop substrates being forced out of cavity 1. So, even if it is possible to make Ko143 into a substrate by reducing affinity, this mutant might not be able to transport it regardless. This confirms that in the case of F439A, the most likely scenario is that the fluorescent Ko143 derivatives do not bind ABCG2. This explains why cellular accumulation of Ko143-Cy5 and Ko143-X-BY630 was comparable to untransfected HEK293T cells.

Mutation of N436A by Gose et al. (2020) showed less impact than the F439A mutation in their thermostability assay. This indicated that this residue contributed less to the binding of Ko143, which might be comparable to the lower fluorescence

for Ko143-X-BY630 in the N436A mutant compared to the F439A mutant in the flow cytometry assay (Figure 3.13), although this difference did not reach significance. Therefore, Ko143-X-BY630 could be transported by N436A-ABCG2. Transport by this mutant is possible for some substrates: Hoechst 33342 and pheophorbide A transport activity of N436A is similar to WT but E₁S transport is strongly reduced (Gose et al., 2020, Manolaridis et al., 2018). This supports the idea that difference in fluorescent Ko143 accumulation is due to differences in binding affinity as opposed to increased transport. Gose et al. (2020) suggest that N436A binding selectively to ligands could be due to altered cholesterol modulation of activity or a conformational change which may affect interactions with certain ligands. This could explain why the difference in fluorescence between N436A and F439A is not seen for Ko143-Cy5 but is seen for Ko143-X-BY630.

When treated with Ko143-Cy5, S440W expressing cells showed significantly lower fluorescence than WT-ABCG2 expressing cells and a more comparable fluorescence to untransfected HEK293T cells. In contrast, when treated with Ko143-X-BY630, S440W expressing cells had significantly higher fluorescence than HEK293T cells. This is the exception to the pattern, which on whole matches that of the Ko143-Cy5 flow cytometry data. It is unlikely that there are differences in affinity between the two fluorescent Ko143 derivatives that are not noticed in the other mutants. This is because residue 440 is located in cavity 1 and the structures of Ko143 and both fluorescent Ko143 derivatives would be the same in this location. However, the variability of the data for this particular mutant is high and it is not significantly different from WT-ABCG2 expressing cells, as are the other mutants. The E211Q mutant is not expected to transport anything since the catalytic residue required for ATP hydrolysis has been mutated (Haider et al., 2015, Hollenstein et al., 2007). Its

lower ΔMFI may be partially explained by this mutant consistently expressing at a lower level than WT, meaning fewer ABCG2 protein molecules for Ko143-Cy5 to bind to (Cox, 2019, Kapoor, 2020).

There was a discrepancy between the monolayer transport assay (section 3.6.1) and the flow cytometry transport assay (section 3.6.2) with regards to Ko143-Cy5 fluorescence. The monolayer transport assay had no significant accumulation of Ko143-Cy5 which suggests that Ko143-Cy5 did not enter the cell. This result alone could be rationalised by the altered hydrophobicity of Ko143 by adding the fluorescent tag (Table 3.3). However, Ko143-Cy5 did successfully enter the cell in flow cytometry, suggesting cell permeability is merely reduced and not abolished. The assays differ in terms of Ko143-Cy5 concentration (2 µM in flow cytometry vs 1 µM in monolayer transport assay), total duration of Ko143-Cy5 incubation and subsequent washes and second incubations. Additionally, flow cytometry is more sensitive than the monolayer transport assay so it is a better technique for distinguishing low fluorescence levels from the background compared with the microplate reader (Basiji et al., 2007). This could mean that for both techniques, Ko143-Cy5 entered the cells equally well but flow cytometry was just more capable of measuring it. Future work will include performing a Hoechst 33342 transport assay with flow cytometry to assess the inhibitory capability of Ko143-Cy5 and is explained in more detail in section 4.3.

4.2 Alternate ideas and support of the hypothesis

As mentioned in section 3.1, E₁S transport was increased when T435 was mutated to alanine, which suggests that there in an inverse relationship between affinity and maximal transport (Manolaridis et al., 2018). The same mutant was made in this

project but instead of E₁S transport, the potential transport of fluorescent Ko143 derivatives was studied. The accumulation of Ko143-X-BY630 and Ko143-Cy5 in T435A expressing cells in the flow cytometry experiment (Figure 3.13) was lower than in WT-ABCG2 expressing cells and as stated before, this suggests less binding to ABCG2 but does not rule out the possibility of transport. Since T435A has already shown to increase transport of a substrate, it seems plausible that transport of Ko143 is also possible, especially in conjunction with the flow cytometry data. Gose et al. (2020) found that there was a strong correlation between binding affinity of kinase inhibitors for ABCG2 and their IC_{50} for transport inhibition. This supports the idea that there is a spectrum of inhibitors to substrates, where the higher the affinity of a compound, the more inhibitor character it has (Table 3.1). This suggests that perhaps Ko143 can be turned into a substrate and that the lower fluorescence of the cavity 1 mutants (except Mut1) compared with the WT-ABCG2 expressing cells in Figure 3.13

However, there are some other ideas. Kapoor et al. (2018) hypothesised that substrates enter cavity 1 via a surface "access site", binding to which triggers conformational changes required for ATP binding and hydrolysis. In contrast, they propose that inhibitors bind directly to cavity 1 so ATP hydrolysis does not occur and the inhibitor is not transported. If this is true then reducing the affinity for an inhibitor will only reduce IC₅₀ (Gose et al., 2020) and won't make it a substrate. However, with the hypothesis in this project, ATP hydrolysis would also be inhibited because without the release of the inhibitor from cavity 1, the transport cycle cannot reset. However, phenolic indenoindole inhibitors of ABCG2 stimulate ATPase activity while also inhibiting mitoxantrone transport (Gozzi et al., 2015). Gozzi et al. (2015) suggest that this is due to multiple binding sites but perhaps they enter cavity 1 via the access site

which allows the conformational changes to occur. By combining these ideas, it is possible that some inhibitors can enter via the access site, activating ATPase activity, and others cannot. In relation to the hypothesis in this project, maybe it is only possible for an inhibitor to become a substrate (by decreasing affinity), if it enters via the access site.

Cholesterol has a unique relationship between structure and function when it comes to binding to and modulating ABCG2. At least 20% (w/w) cholesterol in the cell membrane is required for function of ABCG2 (Storch et al., 2007) and Telbisz et al. (2013) found that depletion of cholesterol in Madin Darby canine kidney cells inhibits pheophorbide A transport. In their cryo-EM structures, Jackson et al. (2018) found ordered cholesterol molecules peripheral to ABCG2, which are potentially involved in modulation. Two cholesterol molecules are observed in cavity 1 in the cryo-EM structures by Taylor et al. (2017) and bind in the same location as MZ29, the Ko143 derivative (Jackson et al., 2018, Kerr et al., 2021). The outcome of this binding is unknown since cholesterol is not considered to be a substrate for transport. Perhaps it can act as an inhibitor in cavity 1, preventing the protein from hydrolysing ATP in a so-called "futile cycle" and is also an allosteric modulator at the sites on the protein periphery (Kerr et al., 2021).

New cryo-EM structures of ABCG2 show that part of the transmembrane helix 2 (TM2, residues 434-438) is unwound in the apo-state compared with the substrate/inhibitor-bound state where this region is fully helical (Orlando and Liao, 2020, Jackson et al., 2018, Manolaridis et al., 2018). This unravelling positions some residues important for ligand binding (e.g. F439) away from cavity 1 which is sealed off in this conformation. Since R482, which is situated in the access site and is known

for affecting substrate specificity, interacts with the unravelled portion of TM2, it has been suggested that control over the conformation of TM2 could be a factor in distinguishing between inhibitors and substrates (Orlando and Liao, 2020, Kapoor et al., 2018).

Egido et al. (2015) found that compounds that activate ABCG2 ATPase activity tend to be hydrophilic, non-amphiphilic and highly charged. On the other hand, inhibitors tend to be hydrophobic, amphiphilic and moderately charged to non-charged. In contrast to the hypothesis suggested in this thesis, they propose that the molecular properties relating to amphiphilicity, hydrophobicity, ionisation indicate whether a compound is an inhibitor or substrate (Egido et al., 2015). So, you would be able to predict where the compound falls on the substrate-inhibitor spectrum based on its properties. It would be interesting to examine how these properties correlate to affinity for ABCG2.

4.3 Future experiments

Some experiments are already underway in the Kerr lab with the aim to provide more data to support or disprove the hypothesis. Since flow cytometry had more success with Ko143-Cy5 cell permeability than the monolayer transport assay, a Hoechst 33342 transport assay will be performed using a combined approach of both assays (section 2.5.2 and 2.6). This will include WT and untransfected HEK cells treated with Hoechst 33342 in absence or presence of Ko143 or Ko143-Cy5 as described in Table 2.4 and in Cox et al. (2018) and in Kapoor et al. (2020). If this shows a different result to the monolayer transport assay, a dose response curve will be produced with flow cytometry by measuring inhibition by Ko143, Ko143-Cy5 and Ko143-X-BY630 at different concentrations. This produces a value for half maximal inhibition

concentration (IC₅₀). Comparison of this value for the original Ko143 with the modified derivatives would indicate whether they were more or less potent inhibitor of ABCG2. For the cavity 1 mutants, IC₅₀ of untagged Ko143 will be calculated by performing a plate reader accumulation assay as described by Horsey et al. (2020) and measuring mitoxantrone transport at a range of Ko143 concentrations. This would enable quantification of the impact of any one mutant on the interaction of ABCG2 with Ko143.

As for the flow cytometry transport assay (section 2.5.2 and 3.6.2), perhaps adding fluorescent Ko143 in excess will negate the effect of WT having increased binding to fluorescent Ko143. The overall fluorescence of the cell would be higher in non-transporting cell lines so the impact of the "stickiness" of fluorescent Ko143 derivatives to ABCG2 would be decreased. This could potentially decrease the difference between HEK293T cells and the WT-ABCG2 expressing cells and could help clarify whether the decrease in fluorescence from mutant to WT-ABCG2 expressing cells is due to transport of fluorescent Ko143 derivatives or not.

Another method distinguishing between transport and decreased binding would be to prepare inside-out vesicles from cells overexpressing WT and mutant ABCG2 (Karlsson et al., 2010, Toyoda et al., 2019). ABCG2 would then pump substrates and potentially the fluorescent Ko143 derivatives into the vesicle and the fluorescence of these vesicles could be measured to find the accumulation of the fluorescent Ko143 derivatives inside the vesicle. The benefit of this approach is that the cell permeability of Ko143-Cy5 would not be an issue. Ko143-Cy5 in the media would be able interact with cavity 1 of ABCG2 without having to cross the cell membrane first. Also, the medium can be treated with reagents for ATP regeneration or with a non-

hydrolysable ATP analogue AMP-PNP, which allows the measurement of ATPdependent transport (Karlsson et al., 2010, Toyoda et al., 2019). The difference between vesicle fluorescence in the presence of ATP or AMP-PNP would show how much the fluorescent Ko143 derivatives are transported.

In an ideal world, affinity measurements of the mutant ABCG2 proteins for Ko143 could be compared to WT and a range of substrates, perhaps by measuring thermal shift of ligand binding as described by Gose et al. (2020). This is because there will be a minimum affinity threshold at which transport is no longer possible. It could be possible that the mutations made in this project are too strong and resultant affinity of the Ko143 derivatives is too low to bind, let alone be transported. So even if it is possible to make a substrate out of an inhibitor, we do not know if these experimental mutations are too extreme.

Ko143-X-BY630 inhibits Hoechst 33342 transport to almost the same extent as unmodified Ko143 which means in terms of affinity Ko143-X-BY630 is a good model for how Ko143 would behave in the same circumstances. Yet, the fluorescent tag might still have an impact on transport, potentially being too large or even restricting the conformational changes required for transport. Ko143-Cy5 behaves similarly to Ko143-X-BY630 in the flow cytometry but even after the inhibitory capability is confirmed the tag could prevent transport. Perhaps some inhibitors can never be substrates for the same reason and the hypothesis in this project might only apply to some inhibitors. Radiolabelling Ko143 with a radioactive atom, such as ³H, would be a suitable method to overcome the effect of the large fluorescent tags.

If the hypothesis in this project is ever supported by more conclusive data, the next step would be to make chemical modifications to existing substrates to increase

affinity for ABCG2. Not only does this have the potential for creating non-toxic inhibitors from substrates such as E₁S, but perhaps altering drugs that are affected by multidrug resistance (e.g. mitoxantrone or methotrexate, (Doyle and Ross, 2003)) might also prevent their own transport.

4.4 Conclusion

Without further experiments there is currently ambiguity about whether the mutants made lead to Ko143 transport. However, it is likely that lower fluorescence of the cavity 1 mutants is due to reduced binding to the fluorescent Ko143 derivatives or perhaps a small level of transport. Data from Gose et al. (2020) compliments the hypothesis in this thesis, showing more potent inhibitors have a higher affinity than weaker inhibitors. Mutations to introduce a smaller reduction in affinity or measuring the affinity for Ko143 in the current mutants will help clarify if the experimental mutations are too strong to transport. It is potentially possible for inhibitors to become substrates but other factors, such as access site binding, could also influence substrate/inhibitor quality which prevents some inhibitors being substrates.

Chapter 5 References

- AAT BIOQUEST. 2019. Fundamentals of Flow Cytometry [Online]. Available: <u>https://www.aatbio.com/resources/assaywise/2019-8-1/fundamentals-of-flow-cytometry</u> [Accessed 30/04/2021].
- ALLEN, J. D., VAN LOEVEZIJN, A., LAKHAI, J. M., VAN DER VALK, M., VAN TELLINGEN, O., REID, G., SCHELLENS, J. H., KOOMEN, G. J. & SCHINKEL, A. H. 2002. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. *Mol Cancer Ther*, **1**, 417-25.
- BASIJI, D. A., ORTYN, W. E., LIANG, L., VENKATACHALAM, V. & MORRISSEY, P. 2007. Cellular image analysis and imaging by flow cytometry. *Clin Lab Med*, 27, 653-70, viii.
- BOUSSIF, O., LEZOUALC'H, F., ZANTA, M. A., MERGNY, M. D., SCHERMAN, D., DEMENEIX, B. & BEHR,
 J. P. 1995. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. *Proc Natl Acad Sci U S A*, 92, 7297-301.
- CHIANG, J. Y. 2003. Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. *Am J Physiol Gastrointest Liver Physiol,* 284, G349-56.
- COX, M. H. 2019. *ABCG2: the lateral slice hypothesis as a model for multidrug transport.* PhD Thesis, University of Nottingham.
- COX, M. H., KAPOOR, P., BRIGGS, D. A. & KERR, I. D. 2018. Residues contributing to drug transport by ABCG2 are localised to multiple drug-binding pockets. *Biochem J*, 475, 1553-1567.
- DE LERA RUIZ, M. & KRAUS, R. L. 2015. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. *J Med Chem*, 58, 7093-118.
- DIOP, N. K. & HRYCYNA, C. A. 2005. N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. *Biochemistry*, 44, 5420-9.
- DOYLE, L. & ROSS, D. D. 2003. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). *Oncogene*, 22, 7340-58.
- DUBRIDGE, R. B., TANG, P., HSIA, H. C., LEONG, P. M., MILLER, J. H. & CALOS, M. P. 1987. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. *Molecular and Cellular Biology*, 7, 379-387.
- EGIDO, E., MÜLLER, R., LI-BLATTER, X., MERINO, G. & SEELIG, A. 2015. Predicting Activators and Inhibitors of the Breast Cancer Resistance Protein (ABCG2) and P-Glycoprotein (ABCB1) Based on Mechanistic Considerations. *Mol Pharm*, 12, 4026-37.
- GOSE, T., SHAFI, T., FUKUDA, Y., DAS, S., WANG, Y., ALLCOCK, A., GAVAN MCHARG, A., LYNCH, J., CHEN, T., TAMAI, I., SHELAT, A., FORD, R. C. & SCHUETZ, J. D. 2020. ABCG2 requires a single aromatic amino acid to "clamp" substrates and inhibitors into the binding pocket. *Faseb j*, 34, 4890-4903.

- GOZZI, G. J., BOUAZIZ, Z., WINTER, E., DAFLON-YUNES, N., HONORAT, M., GURAGOSSIAN, N., MARMINON, C., VALDAMERI, G., BOLLACKE, A., GUILLON, J., PINAUD, N., MARCHIVIE, M., CADENA, S. M., JOSE, J., LE BORGNE, M. & DI PIETRO, A. 2015. Phenolic indeno[1,2-b]indoles as ABCG2-selective potent and non-toxic inhibitors stimulating basal ATPase activity. *Drug Des Devel Ther*, 9, 3481-95.
- GRAHAM, F. L., SMILEY, J., RUSSELL, W. C. & NAIRN, R. 1977. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. *Journal of General Virology*, 36, 59-72.
- HAIDER, A. J., COX, M. H., JONES, N., GOODE, A. J., BRIDGE, K. S., WONG, K., BRIGGS, D. & KERR, I. D.
 2015. Identification of residues in ABCG2 affecting protein trafficking and drug transport, using co-evolutionary analysis of ABCG sequences. *Biosci Rep*, 35.
- HALWACHS, S., KNEUER, C., GOHLSCH, K., MULLER, M., RITZ, V. & HONSCHA, W. 2016. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization. *Placenta*, 38, 8-15.
- HEGYI, Z. & HOMOLYA, L. 2016. Functional Cooperativity between ABCG4 and ABCG1 Isoforms. *PLoS One,* 11, e0156516.
- HENRIKSEN, U., FOG, J. U., LITMAN, T. & GETHER, U. 2005. Identification of intra- and intermolecular disulfide bridges in the multidrug resistance transporter ABCG2. *J Biol Chem*, 280, 36926-34.
- HÖGEL, P., GÖTZ, A., KUHNE, F., EBERT, M., STELZER, W., RAND, K. D., SCHARNAGL, C. & LANGOSCH,
 D. 2018. Glycine Perturbs Local and Global Conformational Flexibility of a Transmembrane
 Helix. *Biochemistry*, 57, 1326-1337.
- HOLLENSTEIN, K., DAWSON, R. J. & LOCHER, K. P. 2007. Structure and mechanism of ABC transporter proteins. *Curr Opin Struct Biol*, 17, 412-8.
- HOMOLYA, L., ORBÁN, T. I., CSANÁDY, L. & SARKADI, B. 2011. Mitoxantrone is expelled by the ABCG2 multidrug transporter directly from the plasma membrane. *Biochim Biophys Acta*, 1808, 154-63.
- HORSEY, A. J., BRIGGS, D. A., HOLLIDAY, N. D., BRIDDON, S. J. & KERR, I. D. 2020. Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. *Biochim Biophys Acta Biomembr*, 1862, 183218.
- HORSEY, A. J., COX, M. H., SARWAT, S. & KERR, I. D. 2016. The multidrug transporter ABCG2: still more questions than answers. *Biochem Soc Trans*, 44, 824-30.
- JACKSON, S. M., MANOLARIDIS, I., KOWAL, J., ZECHNER, M., TAYLOR, N. M. I., BAUSE, M., BAUER, S., BARTHOLOMAEUS, R., BERNHARDT, G., KOENIG, B., BUSCHAUER, A., STAHLBERG, H., ALTMANN, K. H. & LOCHER, K. P. 2018. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. *Nat Struct Mol Biol*, 25, 333-340.
- JAROSZESKI, M. J. & RADCLIFF, G. 1999. Fundamentals of flow cytometry. *Mol Biotechnol*, 11, 37-53.
- JONES, P. M. & GEORGE, A. M. 1999. Subunit interactions in ABC transporters: towards a functional architecture. *FEMS Microbiol Lett*, 179, 187-202.
- KAPOOR, P. 2020. Elucidating the molecular mechanism of drug binding and translocation by the multidrug transporter ABCG2. PhD Thesis, University of Nottingham.

- KAPOOR, P., BRIGGS, D. A., COX, M. H. & KERR, I. D. 2020. Disruption of the Unique ABCG-Family NBD:NBD Interface Impacts Both Drug Transport and ATP Hydrolysis. *Int J Mol Sci*, 21.
- KAPOOR, P., HORSEY, A. J., COX, M. H. & KERR, I. D. 2018. ABCG2: does resolving its structure elucidate the mechanism? *Biochem Soc Trans*, 46, 1485-1494.
- KARLSSON, J. E., HEDDLE, C., ROZKOV, A., ROTTICCI-MULDER, J., TUVESSON, O., HILGENDORF, C. & ANDERSSON, T. B. 2010. High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. *Drug Metab Dispos*, 38, 705-14.
- KERR, I. D., HAIDER, A. J. & GELISSEN, I. C. 2011. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. *Br J Pharmacol*, 164, 1767-79.
- KERR, I. D., HUTCHISON, E., GERARD, L., ALEIDI, S. M. & GELISSEN, I. C. 2021. Mammalian ABCGtransporters, sterols and lipids: To bind perchance to transport? *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids*, 1866, 158860.
- KIM, Y. & CHEN, J. 2018. Molecular structure of human P-glycoprotein in the ATP-bound, outwardfacing conformation. *Science*, 359, 915-919.
- KOHLER, S. C. & WIESE, M. 2015. HM30181 Derivatives as Novel Potent and Selective Inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2). J Med Chem, 58, 3910-21.
- LAEMMLI, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227, 680-5.
- LÁSZLÓ, L., SARKADI, B. & HEGEDŰS, T. 2016. Jump into a New Fold-A Homology Based Model for the ABCG2/BCRP Multidrug Transporter. *PLoS One*, 11, e0164426.
- LEE, A. G. 2004. How lipids affect the activities of integral membrane proteins. *Biochim Biophys Acta*, 1666, 62-87.
- LIN, Y. C., BOONE, M., MEURIS, L., LEMMENS, I., VAN ROY, N., SOETE, A., REUMERS, J., MOISSE, M., PLAISANCE, S., DRMANAC, R., CHEN, J., SPELEMAN, F., LAMBRECHTS, D., VAN DE PEER, Y., TAVERNIER, J. & CALLEWAERT, N. 2014. Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. *Nat Commun*, 5, 4767.
- MANOLARIDIS, I., JACKSON, S. M., TAYLOR, N. M. I., KOWAL, J., STAHLBERG, H. & LOCHER, K. P. 2018. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. *Nature*, 563, 426-430.
- MANZINI, L., HALWACHS, S., GIROLAMI, F., BADINO, P., HONSCHA, W. & NEBBIA, C. 2017. Interaction of mammary bovine ABCG2 with AFB1 and its metabolites and regulation by PCB 126 in a MDCKII in vitro model. *J Vet Pharmacol Ther*, 40, 591-598.
- MCDEVITT, C. A., CROWLEY, E., HOBBS, G., STARR, K. J., KERR, I. D. & CALLAGHAN, R. 2008. Is ATP binding responsible for initiating drug translocation by the multidrug transporter ABCG2? *Febs j*, 275, 4354-62.

- MIYATA, H., TAKADA, T., TOYODA, Y., MATSUO, H., ICHIDA, K. & SUZUKI, H. 2016. Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. *Front Pharmacol*, **7**, 518.
- MO, W. & ZHANG, J. T. 2012. Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol, 3, 1-27.
- NAKAGAWA, H., WAKABAYASHI-NAKAO, K., TAMURA, A., TOYODA, Y., KOSHIBA, S. & ISHIKAWA, T. 2009. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. *Febs j*, 276, 7237-52.
- NAKATOMI, K., YOSHIKAWA, M., OKA, M., IKEGAMI, Y., HAYASAKA, S., SANO, K., SHIOZAWA, K., KAWABATA, S., SODA, H., ISHIKAWA, T., TANABE, S. & KOHNO, S. 2001. Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. *Biochem Biophys Res Commun*, 288, 827-32.
- OCHOA-PUENTES, C., BAUER, S., KUHNLE, M., BERNHARDT, G., BUSCHAUER, A. & KONIG, B. 2013. Benzanilide-Biphenyl Replacement: A Bioisosteric Approach to Quinoline Carboxamide-Type ABCG2 Modulators. *ACS Med Chem Lett*, *4*, 393-6.
- ORLANDO, B. J. & LIAO, M. 2020. ABCG2 transports anticancer drugs via a closed-to-open switch. *Nat Commun*, 11, 2264.
- OZVEGY-LACZKA, C., KÖBLÖS, G., SARKADI, B. & VÁRADI, A. 2005. Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. *Biochimica et biophysica acta*, 1668, 53-63.
- OZVEGY-LACZKA, C., LACZKÓ, R., HEGEDUS, C., LITMAN, T., VÁRADY, G., GODA, K., HEGEDUS, T., DOKHOLYAN, N. V., SORRENTINO, B. P., VÁRADI, A. & SARKADI, B. 2008. Interaction with the 5D3 monoclonal antibody is regulated by intramolecular rearrangements but not by covalent dimer formation of the human ABCG2 multidrug transporter. *J Biol Chem*, 283, 26059-70.
- RATH, A., GLIBOWICKA, M., NADEAU, V. G., CHEN, G. & DEBER, C. M. 2009. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. *Proc Natl Acad Sci U S A*, 106, 1760-5.
- RIO, D. C., CLARK, S. G. & TJIAN, R. 1985. A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. *Science*, 227, 23-8.
- ROBEY, R. W., STEADMAN, K., POLGAR, O. & BATES, S. E. 2005. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. *Cancer Biol Ther*, 4, 187-94.
- STORCH, C. H., EHEHALT, R., HAEFELI, W. E. & WEISS, J. 2007. Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. *J Pharmacol Exp Ther*, 323, 257-64.
- SUZUKI, M., SUZUKI, H., SUGIMOTO, Y. & SUGIYAMA, Y. 2003. ABCG2 transports sulfated conjugates of steroids and xenobiotics. *J Biol Chem*, 278, 22644-9.
- SZILAGYI, J. T., VETRANO, A. M., LASKIN, J. D. & ALEKSUNES, L. M. 2017. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity. *Placenta*, 55, 29-36.

- TAMURA, A., WAKABAYASHI, K., ONISHI, Y., TAKEDA, M., IKEGAMI, Y., SAWADA, S., TSUJI, M., MATSUDA, Y. & ISHIKAWA, T. 2007. Re-evaluation and functional classification of nonsynonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. *Cancer Sci*, 98, 231-9.
- TAYLOR, N. M. I., MANOLARIDIS, I., JACKSON, S. M., KOWAL, J., STAHLBERG, H. & LOCHER, K. P. 2017. Structure of the human multidrug transporter ABCG2. *Nature*, 546, 504-509.
- TELBISZ, Á., ÖZVEGY-LACZKA, C., HEGEDŰS, T., VÁRADI, A. & SARKADI, B. 2013. Effects of the lipid environment, cholesterol and bile acids on the function of the purified and reconstituted human ABCG2 protein. *Biochem J*, 450, 387-95.
- TIRAT, A., FREULER, F., STETTLER, T., MAYR, L. M. & LEDER, L. 2006. Evaluation of two novel tagbased labelling technologies for site-specific modification of proteins. *Int J Biol Macromol*, 39, 66-76.
- TOWBIN, H., STAEHELIN, T. & GORDON, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc Natl Acad Sci U S A*, 76, 4350-4.
- TOYODA, Y., TAKADA, T. & SUZUKI, H. 2019. Inhibitors of Human ABCG2: From Technical Background to Recent Updates With Clinical Implications. *Front Pharmacol*, 10, 208.
- VOLK, E. L. & SCHNEIDER, E. 2003. Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. *Cancer Res,* 63, 5538-43.
- WANG, N., YVAN-CHARVET, L., LÜTJOHANN, D., MULDER, M., VANMIERLO, T., KIM, T. W. & TALL, A. R. 2008. ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. *Faseb j,* 22, 1073-82.
- WEI, J., GEALE, P. F., SHEEHY, P. A. & WILLIAMSON, P. 2012. The impact of ABCG2 on bovine mammary epithelial cell proliferation. *Anim Biotechnol,* 23, 221-4.
- WEIDNER, L. D., ZOGHBI, S. S., LU, S., SHUKLA, S., AMBUDKAR, S. V., PIKE, V. W., MULDER, J., GOTTESMAN, M. M., INNIS, R. B. & HALL, M. D. 2015. The Inhibitor Ko143 Is Not Specific for ABCG2. J Pharmacol Exp Ther, 354, 384-93.
- WONG, K., BRIDDON, S. J., HOLLIDAY, N. D. & KERR, I. D. 2016. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques. *Biochim Biophys Acta*, 1863, 19-29.
- WOODWARD, O. M., KÖTTGEN, A., CORESH, J., BOERWINKLE, E., GUGGINO, W. B. & KÖTTGEN, M. 2009. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. *Proc Natl Acad Sci U S A*, 106, 10338-42.
- ZHANG, H., CATANIA, R. & JEUKEN, L. J. C. 2020. Membrane Protein Modified Electrodes in Bioelectrocatalysis. *Catalysts*, 10, 1427.

References

Chapter 6 Appendix

6.1 Sequencing chromatograms

Portions of the sequencing chromatograms of the remaining mutant ABCG2 constructs (N436A is shown in Figure 3.6) are shown below. The SeqF2 primer was used for T435A, F439A, S440W, A397S/V401A (Mut1) and L405A (Mut2). The Seq482 primer was used for M549E, L539A (Mut1) and I543A/V546A (Mut2). The red box highlights the desired mutation and no other mutations were found.

6.2 Sequence alignments

The sequence alignments of the WT construct (Query) aligned with the sequence determined by Sanger sequencing (Sbjct) is shown below for each primer.

6.2.1 T435A

T7 promoter (F)

Score		Exp	pect	Identities		Gaps	Strand	
2508 b	oits(135	B) 0.0)	1373/1383(99%)	2/1383(0%) Plus/P	us
Query	912	AGCTGGTACCO		ATGGCATGGA	SCCACCCACAG	TTCGAGAAGGGA	GGTGGAAGCGG	971
SDJCt	16	AGCTGGTACCO	CCACC	ATGGCATGGA	JCCACCCACAG	TTCGAGAAGGGA	GGTGGAAGCGG	75
Query Sbjct	972 76	TGGAGGCTCAG	GAGGC	AGCGCATGGT		TTTGAAAAGCTT 	GCCACCATGGA	1031 135
Ouerv	1032	CAAAGACTGCO	5444TG		CCTGGATAGO	CCTCTGGGCAAG	CTGGAACTGTC	1091
Sbjct	136	CAAAGACTGCG	GAAATG	AAGCGCACCA	CCTGGATAGO	CCTCTGGGCAAG	CTGGAACTGTC	195
Query	1092	TGGGTGCGAAC	AGGGC	CTGCACGAGA	TCAAGCTGCTG	GGCAAAGGAACA	TCTGCCGCCGA	1151
Sbjct	196	TGGGTGCGAAC	AGGGC	CTGCACGAGA	TCAAGCTGCTG	GGCAAAGGAACA	TCTGCCGCCGA	255
Query	1152	CGCCGTGGAAG	TGCCT			GGACCAGAGCCA	CTGATGCAGGC	1211
Sbjct	256	CGCCGTGGAAG	TCAAC	SCCCCAGCCG	CCGTGCTGGGC	GGACCAGAGCCA	CTGATGCAGGC	315
Christ	216							375
Query	1272	AGCCCTGCACO		GTGTTCCAGC	AGGAGAGCTTT	ACCCGCCAGGTG	CTGTGGAAACT	1331
Sbjct	376	AGCCCTGCACC		GTGTTCCAGC	AGGAGAGCTTT	ACCCGCCAGGTG	CTGTGGAAACT	435
Query	1332	GCTGAAAGTGG	TGAAG	TTCGGAGAGG	TCATCAGCTAC	CAGCAGCTGGCC	бесствессее	1391
Sbjct	436	GCTGAAAGTGG	TGAAG	TTCGGAGAGG	TCATCAGCTAC	CAGCAGCTGGCC	GCCCTGGCCGG	495
Query	1392	CAATCCCGCCG	GCCACC	GCCGCCGTGA		AGCGGAAATCCC	GTGCCCATTCT	1451
Sbjct	496	CAATCCCGCCG	SCCACC	SCCGCCGTGA/	AAACCGCCCTG	AGCGGAAATCCC	GTGCCCATTCT	555
Query	1452	GATCCCCTGCC				GTGGGGGGCTAC	GAGGGCGGGCT	1511
Ouerv	1512	CGCCGTGAAAG	ACCGG					1571
Sbjct	616	CGCCGTGAAAG	AGTGG		ACGAGGGCCAC	AGACTGGGCAAG		675
Query	1572	CGAATTCATG	сттсо	AGTAATGTCG	AGTTTTTATC	CCAGTGTCACAA	GGAAACACCAA	1631
Sbjct	676	CGAATTCATG	сттсс	AGTAATGTCG	AAGTTTTTATC	CCAGTGTCACAA	GGAAACACCAA	735
Query	1632	TGGCTTCCCCG	GACA	GCTTCCAATG/	ACCTGAAGGCA	TTTACTGAAGGA	GCTGTGTTAAG	1691
Sbjct	736	TGGCTTCCCCC	GCGACA	GCTTCCAATG	ACCTGAAGGCA	TTTACTGAAGGA	GCTGTGTTAAG	795
Query	1692	TTTTCATAACA	TCTGC	TATCGAGTAA	AACTGAAGAGT	GGCTTTCTACCT	TGTCGAAAACC	1751
Sbjct	796	TTTTCATAACA	tċtĠċ	TÁTCGÁGTÁÁ	AACTGAAGAGT	GGCTTTCTACCT	TGTCGAAAACC	855
Query	1752					ATGAAACCTGGT		1811
Ouerv	1812	CCT666ACCCA	CAGGT	SGAGGCAAATA		GATGTCTTAGCT	GCAAGGAAAGA	1871
Sbjct	916	CCTGGGACCCA	ACAGGT	GAGGCAAAT		GATGTCTTAGCT	GCAAGGAAAGA	975
Query	1872	TCCAAGTGGAT	TATCT	GGAGATGTTC	TGATAAATGGA	GCACCACGACCT	GCCAACTTCAA	1931
Sbjct	976	TCCAAGTGGAT	TATCT	GGAGATGTTC	TGATAAATGGA	GCACCACGACCT	GCCAACTTCAA	1035
Query	1932	ATGTAATTCAG	GTTAC	GTGGTACAAG/	ATGATGTTGTG	ATGGGCACTCTG	ACGGTGAGAGA	1991
Sbjct	1036	ATGTAATTCAG	GTTAC	GTGGTACAAG/	ATGATGTTGTG	ATGGGCACTCTG	ACGGTGAGAGA	1095
Query	1992	AAACTTACAGT		GCAGCTCTTC	GCTTGCAACA	ACTATGACGAAT	CATGaaaaaaaa	2051
Sbjct	1096	AAACTTACAGT	TCTCA	GCAGCTCTTC	GGCTTGCAACA	ACTATGACGAAT	CATGAAAAAAA	1155
Query	2052	CGAACGGATTA	ACAGG	GTCATTCAAG/	AGTTAGGTCTG	GATAAAGTGGCA	GACTCCAAGGT	2111
Sbjct	1156	CGAACGGATTA	ACAGG	GTCATTCAAG/	AGTTAGGTCTG	GATAAAGTGGCA	NACTCCAAGGT	1215
Query	2112	TGGAACTCAGT			CTGGAGGAGAA	AG-AAAAAGGAC	TAGTATAGGAA	2170
Sbjct	1216	TGGAACTCAGT	TTATC	CGTGGTGTGTGT	TGGAGGAGAA	ANNAAAAAGGAC	TAGTNTAGGAA	1275
Query	2171	TGGAGCTTATC	ACTGA			TGAGCCTACAAC	TGGCTTAGACT	2230
ourses	12/0	CAAGCACACCO	ALTOA	GTOCTUTE	TOTTOTALA	CATGTCTACCO		1335
Query	1336					GATGTCTAAGCA	GGGGANNAACA	1395
Ouerv	2290	ATC 2292						
Sbjct	1396	 ATC 1398						

Score		Expect	Identities	Gaps	Strand	
2362 b	its(127	9) 0.0	1334/1365(98%)	9/1365(0%)	Plus/Pl	US
Query	1877	GTGGATTATCTGGAG/	ATGTTCTGATAAATGG	AGCACCACGACCTGCCAACTT	CAAATGTA	1936
Shict	24					83
o o o o o o o o o o o o o		and an interest of the				
Query	1937	ATTCAGGTTACGTGG		GATGGGCACTCTGACGGTGAG		1996
Sbjct	84	ATTCAGGTTACGTGG	TACAAGATGATGTTGT	GATGGGCACTCTGACGGTGAG	AGAAAACT	143
Query	1997	TACAGTTCTCAGCAG	CTCTTCGGCTTGCAAC	AACTATGACGAATCATGaaaa	aaaCGAAC	2056
Sbjct	144	TACAGTTCTCAGCAG	CTCTTCGGCTTGCAAC	AACTATGACGAATCATGAAAA	AAACGAAC	203
Query	2057	GGATTAACAGGGTCAT	TTCAAGAGTTAGGTCT	GGATAAAGTGGCAGACTCCAA	GGTTGGAA	2116
Sbjct	204	GGATTAACAGGGTCA	TCAAGAGTTAGGTCT	GGATAAAGTGGCAGACTCCAA	GGTTGGAA	263
Ouerv	2117	CICAGITIATCCGIG	STGTGTCTGGAGGAGA	AAGAAAAAGGACTAGTATAGG	AATGGAGC	2176
Chiert	200					2270
SDJCt	264	CICAGITIATCCGIG	a la la la la la la daga daga daga daga	AAGAAAAAGGACTAGTATAGG	IAA I GGAGC	323
Query	2177	TTATCACTGATCCTTC	CCATCTTGTTCTTGGA	TGAGCCTACAACTGGCTTAGA		2236
Sbjct	324	TTATCACTGATCCTT	CCATCTTGTTCTTGGA	TGAGCCTACAACTGGCTTAGA	ĊŤĊĂĂĠĊĂ	383
Query	2237	CAGCAAATGCTGTCCT	TTTTGCTCCTGAAAAG	GATGTCTAAGCAGGGACGAAC	AATCATCT	2296
Sbjct	384	CAGCAAATGCTGTCC	TTTTGCTCCTGAAAAG	GATGTCTAAGCAGGGACGAAC	AATCATCT	443
Query	2297	TCTCCATTCATCAGCO	CTCGATATTCCATCTT	CAAGTTGTTTGATAGCCTCAC	CTTATTGG	2356
Sbict	444	TCTCCATTCATCAGCO	TCGATATTCCATCTT	CAAGTTGTTTGATAGCCTCAC	CTTATTGG	503
Quary	2357	CETCAGGAAGACTTA	IGTICCACGGGCCTGC	TEAGGAGGEETTGGGATAETT	TGAATCAG	2416
query	2337					2410
SDJCT	504	CCTCAGGAAGACTTA	IGTICCACGGGCCIGC	TCAGGAGGCCTTGGGATACTT	TGAATCAG	563
Query	2417	CTGGTTATCACTGTG	AGGCCTATAATAACCC	TGCAGACTTCTTCTTGGACAT	CATTAATG	2476
Sbjct	564	CTGGTTATCACTGTG/	AGGCCTATAATAACCC	TGCAGACTTCTTCTTGGACAT	CATTAATG	623
Query	2477	GAGATTCCACTGCTG	TGGCATTAAACAGAGA	AGAAGACTTTAAAGCCACAGA	GATCATAG	2536
Sbjct	624	GAGATTCCACTGCTG	IGGCATTAAACAGAGA	AGAAGACTTTAAAGCCACAGA	GATCATAG	683
Query	2537	AGCCTTCCAAGCAGG	ATAAGCCACTCATAGA	AAAATTAGCGGAGATTTATGT	CAACTCCT	2596
Sbjct	684	AGCCTTCCAAGCAGGA	ATAAGCCACTCATAGA	AAAATTAGCGGAGATTTATGT	CAACTCCT	743
Ouerv	2597	CCTTCTACAAAGAGA		TCAACTTTCCGGGGGGGGGGAGAA	GAAGAAGA	2656
Chiet	744					903
abjec	744	CETTETACAAAdAdada			ADAADAAD	005
Query	2657					2/16
Sbjct	804	AGATCACAGTCTTCA	AGGAGATCAGCTACAC	CACCTCCTTCTGTCATCAACT	CAGATGGG	863
Query	2717	TTTCTAAGCGTTCAT	TCAAAAACTTGCTGGG	TAATCCCCAGGCCTCTATAGC	TCAGATCA	2776
Sbjct	864	TTTCTAAGCGTTCAT	TCAAAAACTTGCTGGG	TAATCCCCAGGCCTCTATAGC	TCAGATCA	923
Query	2777	TTGTCACAGTCGTACT	TGGGACTGGTTATAGG	TGCCATTTACTTTGGGCTAAA	AAATGATT	2836
Sbjct	924	TTGTCACAGTCGTACT	IGGGACTGGTTATAGG	TGCCATTTACTTTGGGCTAAA	AAATGATT	983
Query	2837	CTACTGGAATCCAGA	ACAGAGCTGGGGTTCT	CTTCTTCCTGACGACCAACCA	GTGTTTCA	2896
Sbict	984	CTACTGGAATCCAGAA	ACAGAGCTGGGGTTCT	CTTCTTCCTGACGGCTAACCA	GTGTTTCA	1043
Ouerv	2897	GCAGTGTTTCAGCCG	IGGAACTETTTGTGGT	ΔGΔGΔΔGΔΔGCTCTTCΔTΔCΔ	TGAATACA	2956
Chiet	1044					1102
SUJCE	1044	GCAGTGTTTCAGCCG	IGGAACTCTTTGTGGT.		TGAATACA	1105
Query	2957	TCAGCGGATACTACAG		CCTTGGAAAACTGTTATCTGA		3016
Sbjct	1104	TCAGCGGATACTACAG	GAGTGTCATCTTATTT	CCTTGGAAAACTGTTATCTGA	TTTATTAC	1163
Query	3017	CCATGAGGATGTTAC	CAAGTATTATATTTAC	CTGTATAGTGTACTTCATGTT	AGGATTGA	3076
Sbjct	1164	CCATGAGGATGTTAC	CAAGTATTATATTTAC	CTGTATAGTGTACTTCATGTT	AGGATTGA	1223
Query	3077	AGCCAAAGGCAGATGO	CTTCTTCGTTATGAT	-GTTTACCCTTATGATGGTGG	CTTATTCA	3135
Sbjct	1224	AGCCAAAGGCAGATG	CCTTCTTCGTTATGAA	NGTTTACCCTTATGANGGTGG	CTTATTCA	1283
Ouerv	3136	GCCAGTTCCATGG-C	ACTGG-CCATAGCAGC	-AGGTCAGAGT-GTGGTTTCT	GTAGCAAC	3191
Shict	1284					1242
aujee	1204				NO T MANERARE	1040
Query	3192			ATGAT-GATTITTT 3232		
Sbjct	1344	NNTTNCTNNGGACCA	ICTGGTTTTGGGGTTT	AAGAANGAATTTTT 1388		

Jey	. 2		* de - 1991		-	
Score 2457 b	oits(133	Expect 0) 0.0	Identities 1363/1384(98%)	Gaps 1/1384(0%)	Strand Plus/Pl	us
Query	2325	CTTCAAGTTGTTTGAT	AGCCTCACCTTATTGGCCT	CAGGAAGACTTATGTTCC/		2384
Sbjct	16	CTTC-AGTTGTTTGAT	AGCCTCACCTTATTGGCCT	CAGGAAGACTTATGTTCC	ceeecc	74
Query	2385	TGCTCAGGAGGCCTTC	GGATACTTTGAATCAGCTG	GTTATCACTGTGAGGCCTA		2444
Sbjct	75	TGCTCAGGAGGCCTTG	GGATACTTTGAATCAGCTG	GTTATCACTGTGAGGCCT	ΑΤΑΑΤΑΑ	134
Query	135					2504
Ouerv	2505		GCCACAGAGATCATAGAGC	CTTCCAAGCAGGATAAGCO	ACTCAT	2564
Sbjct	195	AGAAGAAGACTTTAA	AGCCACAGAGATCATAGAGC	CTTCCAAGCAGGATAAGC	ACTCAT	254
Query	2565	AGAAAAATTAGCGGAG	ATTTATGTCAACTCCTCCT	TCTACAAAGAGACAAAAG	TGAATT	2624
Sbjct	255	AGAAAAATTAGCGGAG	ATTTATGTCAACTCCTCCT	TCTACAAAGAGACAAAAG	TGAATT	314
Query	2625	ACATCAACTTTCCGGG	GGTGAGAAGAAGAAGAAGA	TCACAGTCTTCAAGGAGA1	CAGCTA	2684
Sbjct	315	ACATCAACTTTCCGGG	GGTGAGAAGAAGAAGAAGAAGA	TCACAGTCTTCAAGGAGA	CAGCTA	374
Query	2685	CACCACCTCCTTCTGT	CATCAACTCAGATGGGTTT	CTAAGCGTTCATTCAAAAA		2744
Sbjct	375	CACCACCTCCTTCTG	CATCAACTCAGATGGGTTT	CTAAGCGTTCATTCAAAA/	léttéét	434
Query	2745	GGGTAATCCCCAGGCC	TCTATAGCTCAGATCATTG	TCACAGTCGTACTGGGAC	GGTTAT	2804
Sbjct	435	GGGTAATCCCCAGGCC		TCACAGTCGTACTGGGACT	GGTTAT	494
Shict	495				TGGGGT	554
Query	2865	TCTCTTCTTCCTGACG	ACCAACCAGTGTTTCAGCA	GTGTTTCAGCCGTGGAACT	CTTTGT	2924
Sbjct	555	TCTCTTCTTCCTGACG	GCTAACCAGTGTTTCAGCA	GTGTTTCAGCCGTGGAACT	CTTTGT	614
Query	2925	GGTAGAGAAGAAGCT	TTCATACATGAATACATCA	GCGGATACTACAGAGTGTC	АТСТТА	2984
Sbjct	615	GGTAGAGAAGAAGCTC	TTCATACATGAATACATCA	GCGGATACTACAGAGTGTC	ATCTTA	674
Query	2985	TTTCCTTGGAAAACTG	TTATCTGATTTATTACCCA	TGAGGATGTTACCAAGTA	TATATT	3044
Sbjct	675	TTTCCTTGGAAAACTG	TTATCTGATTTATTACCCA	TGAGGATGTTACCAAGTA	TATATT	734
Query	3045	TACCTGTATAGTGTAC	TTCATGTTAGGATTGAAGC	CAAAGGCAGATGCCTTCT	CGTTAT	3104
Sbjct	735	TACCTGTATAGTGTAC	TTCATGTTAGGATTGAAGC	CAAAGGCAGATGCCTTCTI	CGTTAT	794
Query	795					3164
Ouerv	3165	AGGTCAGAGTGTGGTT		IGACCATCIGITITIGIGI	TATGAT	3224
Sbjct	855	AGGTCAGAGTGTGGTT	TCTGTAGCAACACTTCTCA	TGACCATCTGTTTTGTGT	TATGAT	914
Query	3225	GATTTTTTCAGGTCTG	TTGGTCAATCTCACAACCA	TTGCATCTTGGCTGTCATC	IGCTTCA	3284
Sbjct	915	GATTTTTTCAGGTCTG	TTGGTCAATCTCACAACCA	TTGCATCTTGGCTGTCATC	GCTTCA	974
Query	3285	GTACTTCAGCATTCCA	CGATATGGATTTACGGCTT	TGCAGCATAATGAATTTT	GGGACA	3344
Sbjct	975	GTACTTCAGCATTCCA	CGATATGGATTTACGGCTT	TGCAGCATAATGAATTTT	IGGGACA	1034
Query	3345	AAACTTCTGCCCAGGA	CTCAATGCAACAGGAAACA	ATCCTTGTAACTATGCAAC	ATGTAC	3404
Sbjct	1035	AAACTTCTGCCCAGGA	ACTCAATGCAACAGGAAACA	ATCCTTGTAACTATGCAA	ATGTÁC	1094
Query	3405					3464
Overv	3465					3524
Sbict	1155				ATTGTT	1214
Query	3525	ATTICTTAAAAAATAT	TCTTAAATTGGATTCTAGA	GGGCCCGTTTAAACCCGCT	GATCAG	3584
Sbjct	1215	ATTTCTTAAAAAATAT	TCTTAAATTGGATTCTAGA	GGGCCCGTTTAAACCCGC	GATCAG	1274
Query	3585	CCTCGACTGTGCCTTC	TAGTTGCCAGCCATCTGTT	етттесссстсссссатес	сттсст	3644
Sbjct	1275	CCTCGACTGTGCCTTC	TAGTTGCCAGCCATCTGTT		CTTCCT	1334
Query	3645	TGACCCTGGAAGGTGC	CACTCCCACTGTCCTTTCC	TAATAAAATGAGGAAATTO	CATCGC	3704
Sbjct	1335	TGACCCTGGAAGGGGG	CONTECCENTINNECTTEC	AAAAAAANGGAGGAAATTO	CATCGC	1394
Query	3705	ATTG 3708				
Sbjct	1395	ÁTTG 1398				

Seq482

Score		Exper	t Ident	ities	Gaps	Strand	
2283 b	its(1236	5) 0.0	1285	5/1310(98%	b) 12/1310(0%)	Plus/P	us
Query	2960	GCGGATACTACA	GAGTGTCA		CTTGGAAAACTGTTATCTGATT	TATTACCCA	3019
Sbjct	13	GCGGNNACTACA	GAGTGTCA	TCTTATTTC	CTTGGAAAACTGTTATCTGATT	TATTACCCA	72
Query	3020	TGAGGATGTTAC	CAAGTATT		TGTATAGTGTACTTCATGTTAG	GATTGAAGC	3079
Ouenu	2000	CAAAGGCAGATG	CONTENT	GTTATGATG	TTACCCTTATGATGGTGGCTT	ATTCAGCCA	2120
Sbjct	133			GTTATGATG	TTTACCCTTATGATGGTGGCT	ATTCAGCCA	192
Query	3140	GTTCCATGGCAC	TGGCCATA	GCAGCAGGT	CAGAGTGTGGTTTCTGTAGCAA	CACTTCTCA	3199
Sbjct	193	GTTCCATGGCAC	TGGCCATA	GCAGCAGGT	CAGAGTGTGGTTTCTGTAGCAA	CACTTCTCA	252
Query	3200	TGACCATCTGTT	TTGTGTTT	ATGATGATT	TTTTCAGGTCTGTTGGTCAATC	TCACAACCA	3259
Sbjct	253	TGACCATCTGTT	ttgtgttt	ATGATGATT	TTTTCAGGTCTGTTGGTCAATC	TCACAACCA	312
Query	3260	TTGCATCTTGGC	TGTCATGG	CTTCAGTAC	TTCAGCATTCCACGATATGGAT	TTACGGCTT	3319
Sbjct	313	TTGCATCTTGGC	TGTCATGG	CTTCAGTAC	TTCAGCATTCCACGATATGGAT	TTACGGCTT	372
Query	3320	TGCAGCATAATG		GGACAAAAC	TTCTGCCCAGGACTCAATGCAA	CAGGAAACA	3379
Sbjct	373	TGCAGCATAATG	AATTTTG	ĠĠĂĊĂĂĂĂĊ	TTCTGCCCAGGACTCAATGCAA	ĊĂĠĠĂĂĂĊĂ	432
Query	3380	ATCCTTGTAACT	ATGCAACA	TGTACTGGC	GAAGAATATTTGGTAAAGCAGG	GCATCGATC	3439
Sbjct	433	ATCCTTGTAACT	ATGCAACA	TGTACTGGC	GAAGAATATTTGGTAAAGCAGG	GCATCGATC	492
Query	3440	TCTCACCCTGGG	GCTTGTGG	AAGAATCAC	GTGGCCTTGGCTTGTATGATTG	TTATTTTCC	3499
Sbjct	493	TCTCACCCTGGG	GCTTGTGG	AAGAATCAC	GTGGCCTTGGCTTGTATGATTG	TTATTTTCC	552
Query	3500	TCACAATTGCCT	ACCTGAAA	TIGTTATT	сттааааататтсттаааттб	GATTCTAGA	3559
Sbjct	553	TCACAATTGCCT	ACCTGAAA	TTGTTATTT	CTTAAAAAATATTCTTAAATTG	GATTCTAGA	612
Query	3560	GGGCCCGTTTAA	ACCCGCTG	ATCAGCCTC	GACTGTGCCTTCTAGTTGCCAG	CCATCTGTT	3619
Sbjct	613	GGGCCCGTTTAA	ACCCGCTG	ATCAGCCTC	GACTGTGCCTTCTAGTTGCCAG	CCATCTGTT	672
Query	3620	GTTTGCCCCTCC	сссатасс	TTCCTTGAC	CCTGGAAGGTGCCACTCCCACT	GTCCTTTCC	3679
Sbjct	673	GTTTGCCCCTCC	сссатасс	TTCCTTGAC	CCTGGAAGGTGCCACTCCCACT	GTCCTTTCC	732
Query	3680	TAATAAAATGAG	GAAATTGC	ATCGCATTG	TCTGAGTAGGTGTCATTCTATT	CTggggggt	3739
Sbjct	733	TAATAAAATGAG	GAAATTGC	ATCGCATTG	TCTGAGTAGGTGTCATTCTATT	CTGGGGGGT	792
Query	3740	ggggtggggCAG	GACAGCAA	GGGGGGAGGA	TTGGGAAGACAATAGCAGGCAT	GCTGGGGAT	3799
Sbjct	793	GGGGTGGGGCAG	GACAGCAA	GGGGGGAGGA	TTGGGAAGACAATAGCAGGCAT	GCTGGGGAT	852
Query	3800				AAGAACCAGCTGGGGCTCTAGG		3859
Sbjct	853	GCGGTGGGCTCT	ATGGCTTC	TGAGGCGGA	AAGAACCAGCTGGGGCTCTAGG	GGGTATCCC	912
Query	3860						3919
SDJCt	913	CAUGUGUEUTGI	AGCGGCGC	ATTAAGEGO		AGEGTGACE	972
Query	3920 973						1032
Ouerv	3980	ACGTTCGCCGGC	TTTCCCC	TCAAGCTCT		TICCGATT	4030
Shict	1033						1002
Ouerv	1033	ACTOCITIACOG	CACCTOGA	CCCCAAAAA	ACTTGATTAGGGTGATGGTTCA	CGTAGTOGG	4000
Query	1002						4099
SUJEE	1095	CONTROCTOR	TACACCO		ACTIGATIAGO GATO TCA	CTTTAATAG	4150
Query	4100						4158
Ougou	4150	TGG_ACTOTTCT	TCCAAACT	GG_AACAAC		TATTC TT	4212
shict	4109						4212
Ouenu	4213	TGA_TTTATAAG	GGA-TTTT	GGGGA TTT	COCC_TATICS TTAAAAAA	A257	12/2
Shict	4213					1300	
JUJUL	44/3	- See LETATAA0	WARMAN FEEL	SECONDATE 1	CONCECTATIOUUTTAAAAAA	1366	

6.2.2 N436A/S622S

T7 promoter (F)

Score		5)	Expect	Identities	Gaps 0/1222(0%)	Strand Dlug /Dlug	-
2300 0	nts(124	5)	0.0	1293/1323(98%)	9/1323(0%)	Plus/Plus	5
Query Sbjct	912 16	AGCTGGTAC AGCTGGTAC	CGCCACC	ATGGCATGGAGCCAC	CCACAGTTCGAGAAGGGAGGTGG	AAGCGG 9	971 75
Ouerv	972	TGGAGGCTC	AGGAGGO	AGCGCATGGTCCCAC	CCCCAGTTTGAAAAGCTTGCCAG	CATGGA 1	1031
Sbjct	76	TGGAGGCTC	AGGAGGO	AGCGCATGGTCCCAC		CATGGA 1	135
Query	1032	CAAAGACTO	CGAAATO	AAGCGCACCACCCTG	GATAGCCCTCTGGGCAAGCTGG/	ACTGTC 1	1091
Sbjct	136	CAAAGACTO	CGAAATO	AAGCGCACCACCCTG	GATAGCCCTCTGGGCAAGCTGG/	ACTGTC 1	195
Query	1092	TGGGTGCGA	ACAGGG	CTGCACGAGATCAAG	CTGCTGGGCAAAGGAACATCTG	CGCCGA 1	1151
Sbjct	196	TGGGTGCGA	ACAGGG	CTGCACGAGATCAAG	CTGCTGGGCAAAGGAACATCTG	CGCCGA 2	255
Query	1152	CGCCGTGGA	AGTGCCT	GCCCCAGCCGCCGTG	CTGGGCGGACCAGAGCCACTGA	GCAGGC 1	1211
Sbjct	256	CGCCGTGGA	AGTGCCT	GCCCCAGCCGCCGTG	CTGGGCGGACCAGAGCCACTGA	IGCAGGC 3	315
Query	1212		GCTCAAC	GCCTACTTTCACCAG	CCTGAGGCCATCGAGGAGTTCC		1271
Sbjct	316	CACCGCCTG	GCTCAAC	GCCTACTTTCACCAG	CCTGAGGCCATCGAGGAGTTCC	TGTGCC 3	375
Query	1272	AGCCCTGCA		GTGTTCCAGCAGGAG	AGCTTTACCCGCCAGGTGCTGT	igaaact 1	1331
Sbjct	376	AGCCCTGCA	CCACCCA	GTGTTCCAGCAGGAG	AGCTTTACCCGCCAGGTGCTGT	iGAAACT 4	435
Query	1332	GCTGAAAGT	GGTGAAG	TTCGGAGAGGTCATC	AGCTACCAGCAGCTGGCCGCCC	reeccee 1	1391
Sbjct	436	GCTGAAAGT	GGTGAAG	TTCGGAGAGGTCATC	AGCTACCAGCAGCTGGCCGCCC	reeccee 4	495
Query	1392	CAATCCCGC	CGCCACO	GCCGCCGTGAAAACC	GCCCTGAGCGGAAATCCCGTGC	CATTCT 1	1451
Sbjct	496	CAATCCCGC	CGCCACO	GCCGCCGTGAAAACC	GCCCTGAGCGGAAATCCCGTGC	CATTCT	555
Query	1452	GATCCCCT	CCACCGO	GTGGTGTCTAGCTCT	GGCGCCGTGGGGGGGCTACGAGG	ICGGGCT 1	1511
Sbjct	556	GATCCCCT	CCACCGO	GTGGTGTCTAGCTCT	GGCGCCGTGGGGGGGCTACGAGG	ссобост е	615
Query	1512	CGCCGTGAA	AGAGTGO	CTGCTGGCCCACGAG	GGCCACAGACTGGGCAAGCCTG	GCTGGG 1	1571
Sbjct	616	CGCCGTGAA	AGAGTGO	CTGCTGGCCCACGAG	GGCCACAGACTGGGCAAGCCTG	астаба е	675
Query	1572	CGAATTCAT	GTCTTCC	AGTAATGTCGAAGTT	TTTATCCCAGTGTCACAAGGAA	CACCAA 1	1631
Sbjct	676	CGAATTCAT	GTCTTCC	AGTAATGTCGAAGTT	TTTATCCCAGTGTCACAAGGAA	ACACCAA 7	735
Query	1632	TGGCTTCCC	CGCGACA	GCTTCCAATGACCTG	AAGGCATTTACTGAAGGAGCTG	IGTTAAG 1	1691
Sbjct	736	TGGCTTCCC	CGCGACA	GCTTCCAATGACCTG	AAGGCATTTACTGAAGGAGCTG	IGTTAAG 7	795
Query	1692	TTTTCATAA	CATCTGO	TATCGAGTAAAACTG	AAGAGTGGCTTTCTACCTTGTC	JAAAACC 1	1751
Sbjct	796	TTTTCATAA	CATCTGO	TATCGAGTAAAACTG	AAGAGTGGCTTTCTACCTTGTCC	SAAAACC 8	855
Query	1752	AGTTGAGAA	AGAAATA	TTATCGAATATCAAT	GGGATCATGAAACCTGGTCTCA	CGCCAT 1	1811
Sbjct	856	AGTTGAGAA	AGAAATA	TTATCGAATATCAAT	GGGATCATGAAACCTGGTCTCA/	CGCCAT 9	915
Query	1812	CCTGGGACC	CACAGGT	GGAGGCAAATCTTCG	TTATTAGATGTCTTAGCTGCAA	igaaaga 1	1871
Sbjct	916	CCTGGGACC	CACAGGT	GGAGGCAAATCTTCG	TTATTAGATGTCTTAGCTGCAA	IGAAAGA 9	975
Query	1872	TCCAAGTGG	ITTATC1	GGAGATGTTCTGATA	AATGGAGCACCACGACCTGCCA/	ACTTCAA 1	1931
Sbjct	976	TCCAAGTGO	ATTATCT	GGAGATGTTCTGATA	AATGGAGCACCACGACCTGCCA/	CTTCAA 1	1035
Query	1932	ATGTAATTO	AGGTTAC	GTGGTACAAGATGAT	GTTGTGATGGGCACTCTGACGG	GAGAGA 1	1991
Sbjct	1036	ATGTAATTO	AGGTTAC	GTGGTACAAGATGAT	GTTGTGATGGGCACTCTGACGG	GAGAGA 1	1095
Query	1992						2051
SDJCt	1096	AAACTTACA	GITCICA	GCAGETETTEGGETT	GC-ACAACTATGACGAATCATG		1153
Query	2052					CAAGGT 2	2111
Sojet	1154	CGAACGGAT	TANNAGO	GTCATTCAGAANTTA	GOTE TODAT - AAGTGGCAGACTO	.CAAGGT 1	1212
Query	2112					AGGAAT 2	1260
ourse	1213	CONCETTO	CACTOR		TTEEATEACECTACAACTACIN		1209
Query	1272						1226
Oueru	2222		I ANC LOAT	cerreenwintrarite	r-ddardacen mea-erdderi	ACA-IC 1	1 3 2 0
Query Shict	1227	AAG 1224					
Suger	1327	MAG 1025					

Score		Expect	Identit	ies	Gaps	Strand	
2362 b	its(127	9) 0.0	1318/	/1340(98%)	6/1340(0%)	Plus/Pl	US
Query	1873	CCAAGTGGATTATCT	GGAGAT	GTTCTGATAAA			1932
SDJCt	20	CCNAGTGGATTATCT	GGAGAT	GIICIGATAAA	IGGAGEACEACGACEIGEG	AACIICAAA	79
Query Sbjct	1933 80	TGTAATTCAGGTTAC	GTGGTA	CAAGATGATGT CAAGATGATGT	IGTGATGGGCACTCTGACC	GTGAGAGAA GTGAGAGAA	1992 139
Ouerv	1993	AACTTACAGTTCTCA	GCAGCT	CTTCGGCTTGC		GaaaaaaaC	2052
Sbjct	140	AACTTACAGTTCTCA	GCAGCT		ACAACTATGACGAATCA	GAAAAAAAC	199
Query	2053	GAACGGATTAACAGG	GTCATT	CAAGAGTTAGG	CTGGATAAAGTGGCAGAG	TCCAAGGTT	2112
Sbjct	200	GAACGGATTAACAGG	GTCATT	CAAGAGTTAGG	I CTGGATAAAGTGGCAGAG	TCCAAGGTT	259
Query	2113	GGAACTCAGTTTATC	CGTGGT	GTGTCTGGAGG/	AGAAAGAAAAAGGACTAG	ATAGGAATG	2172
Sbjct	260	GGAACTCAGTTTATC	cataat	GTGTCTGGAGG/	AGAAAGAAAAAGGACTAG	TATAGGAATG	319
Query	2173	GAGCTTATCACTGAT			GATGAGCCTACAACTGG	TTAGACTCA	2232
Sbjct	320	GAGCTTATCACTGAT	CCTTCC	ATCTTGTTCTT	GGATGAGCCTACAACTGG	TTAGACTCA	379
Query	2233	AGCACAGCAAATGCT	GTCCTT	TTGCTCCTGAA	AAGGATGTCTAAGCAGGG/	CGAACAATC	2292
Sbjct	380	AGCACAGCAAATGCT	GTCCTT	TTGCTCCTGAA	AAGGATGTCTAAGCAGGG/	CGAACAATC	439
Query	2293	ATCTTCTCCATTCAT	CAGCCT	CGATATTCCAT	TTCAAGTTGTTTGATAG	CTCACCTTA	2352
Sbjct	440	ATCTTCTCCATTCAT	CAGCCT	CGATATTCCAT	TTCAAGTTGTTTGATAG	CTCACCTTA	499
Query	2353	TTGGCCTCAGGAAGA	CTTATG	TTCCACGGGCC	GCTCAGGAGGCCTTGGG/	TACTTTGAA	2412
Sbjct	500	TTGGCCTCAGGAAGA	CTTATG	TTCCACGGGCC	IGCTCAGGAGGCCTTGGG/	TACTITGAA	559
Query	2413	TCAGCTGGTTATCAC	TGTGAG	GCCTATAATAA	CCTGCAGACTTCTTCTTC	GACATCATT	2472
Sbjct	560	TCAGCTGGTTATCAC	TGTGAG	GCCTATAATAA	CCTGCAGACTTCTTCTT	GACATCATT	619
Query	2473	AATGGAGATTCCACT	GCTGTG	GCATTAAACAG/	AGAAGAAGACTTTAAAGCO	ACAGAGATC	2532
Sbjct	620	AATGGAGATTCCACT	GCTGTG	GCATTAAACAG/	AGAAGAAGACTTTAAAGC	ACAGAGATC	679
Query	2533	ATAGAGCCTTCCAAG	CAGGAT	AAGCCACTCAT	AGAAAAATTAGCGGAGATI	TATGTCAAC	2592
Sbjct	680	ATAGAGCCTTCCAAG	CAGGAT	AAGCCACTCAT	AGAAAAATTAGCGGAGAT	TATGTCAAC	739
Query	2593	тсстссттстасааа	GAGACA	AAAGCTGAATT	ACATCAACTTTCCGGGGG	GAGAAGAAG	2652
Sbjct	740	TCCTCCTTCTACAAA	GAGACA	AAAGCTGAATT	ACATCAACTTTCCGGGGG	GAGAAGAAG	799
Query	2653	AAGAAGATCACAGTC	TTCAAG	GAGATCAGCTA	CACCACCTCCTTCTGTCA	CAACTCAGA	2712
Sbjct	800	AAGAAGATCACAGTC	TTCAAG	GAGATCAGCTA	CACCACCTCCTTCTGTCA	CAACTCAGA	859
Query	2713	TGGGTTTCTAAGCGT	TCATTC/	AAAAACTTGCT	GGTAATCCCCAGGCCTC	ATAGCTCAG	2772
Sbjct	860	TGGGTTTCTAAGCGT	TCATTC	AAAAACTTGCT	GGTAATCCCCAGGCCTC	ATAGCTCAG	919
Query	2773	ATCATTGTCACAGTC	GTACTO	GGACTGGTTAT	AGGTGCCATTTACTTTGG	стададат	2832
Sbjct	920	ATCATTGTCACAGTC	GTACTO	GGACTGGTTAT	AGGTGCCATTTACTTTGG	СТААААААТ	979
Query	2833	GATTCTACTGGAATC	CAGAAC	AGAGCTGGGGT	CTCTTCTTCCTGACGACG	AACCAGTGT	2892
Sbjct	980	GATTCTACTGGAATC	CAGAAC	AGAGCTGGGGT	TCTCTTCTTCCTGACGACG	GCCCAGTGT	1039
Query	2893	TTCAGCAGTGTTTCA	бссете	GAACTCTTTGT	GTAGAGAAGAAGCTCTT	ATACATGAA	2952
Sbjct	1040	TTCAGCAGTGTTTCA	GCCGTG	GAACTCTTTGT	GGTAGAGAAGAAGCTCTT	ATACATGAA	1099
Query	2953	TACATCAGCGGATAC	TACAGA	GTGTCATCTTA	TTCCTTGGAAAACTGTT/	TCTGATTTA	3012
Sbjct	1100	TACATCAGCGGATAC	TACAGA	GTGTCATCTTA	TTCCTTGGAAAACTGTT	TCTGATTTA	1159
Query	3013	TTACCCATGAGGATG	TTACCA	AGTATTATATT	ACCTGTATAGTGTACTTO	ATGTTAGGA	3072
Sbjct	1160	TTACCCATGAGGATG	TTACCA	AGTATTATATT	TACCTGTATAGTGTACTT	ATGTTAGGA	1219
Query	3073	TTGAAGCCAAAGGCA	GATGCC	TTCTTCGTTAT	SATGTTTACCCTTATGAT	GT-GGCTTA	3131
Sbjct	1220	TTGAAGCCAAAGGCA	GATGCC	TTCTTCGTTAT	GATGTTTACCCTTATGAA	GGNGGCTTA	1279
Query	3132	TTCAGCCAGTTCCAT	-GGCAC	TGGCCATAGCA	C-AGGTCAGAGTG-TGG	TTCTG-TAG	3187
Sbjct	1280	TTCAGCCAGTTCCAT	NGGCAC	TGGCCATANNA		TNCNGGTAA	1339
Query	3188	CAACACTT-CTCATG	ACCAT	3206			
Sbjct	1340	CAANCCTTTCTCAGG	IIIII ACCAT	1359			

Score		Expect	Identities	Gaps	Strand	
2492 t	bits(134	9) 0.0	1396/1427(98%)	5/1427(0%) Plus/Pl	US
Query Sbict	2324 14	TCTTCAAGTTGTTTG	ATAGCCTCACCTTATTG	GCCTCAGGAAGACTTAT	GTTCCACGGGC	2383 72
Ouerv	2384	CTGCTCAGGAGGCCT	TGGGATACTTTGAATCA	GCTGGTTATCACTGTGA	GGCCTATAATA	2443
Sbjct	73	CTGCTCAGGAGGCCT	TGGGATACTTTGAATCA	GCTGGTTATCACTGTG4	IIIIIIIIIII GGCCTATAATA	132
Query	2444	ACCCTGCAGACTTCT	TCTTGGACATCATTAAT	GGAGATTCCACTGCTG	GGCATTAAACA	2503
Sbjct	133	ACCCTGCAGACTTCT	TCTTGGACATCATTAAT	GAGATTCCACTGCTG	GGCATTAAACA	192
Query	2504	GAGAAGAAGACTTTA	AAGCCACAGAGATCATA	GAGCCTTCCAAGCAGGA		2563
Sbjct Ouerv	193 2564		AAGCCACAGAGATCATA	GAGCCTTCCAAGCAGGA		252
Sbjct	253	TAGAAAAATTAGCGG	AGATTTATGTCAACTCC	TCCTTCTACAAAGAGAG	AAAAGCTGAAT	312
Query	2624	TACATCAACTTTCCG	GGGGTGAGAAGAAGAAG	AAGATCACAGTCTTCAA	GGAGATCAGCT	2683
Sbjct	313	TACATCAACTTTCCG	GGGGTGAGAAGAAGAAG	AAGATCACAGTCTTCAA	AGGAGATCAGCT	372
Query	2684	ACACCACCTCCTTCT	GTCATCAACTCAGATGG	GTTTCTAAGCGTTCATT	CAAAAACTTGC	2743
Sbjct	373	ACACCACCTCCTTCT	GTCATCAACTCAGATGG	GTTTCTAAGCGTTCATT	CAAAAACTTGC	432
Query	2744	TGGGTAATCCCCAGG	CCTCTATAGCTCAGATC/	ATTGTCACAGTCGTACT	GGGACTGGTTA	2803
Sbjct	433	TGGGTAATCCCCAGG	CCTCTATAGCTCAGATC/	ATTGTCACAGTCGTACT	GGGACTGGTTA	492
Sbict	493	TAGGTGCCATTTACT	TTGGGCTAAAAAATGAT			552
Query	2864	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTTC	AGCAGTGTTTCAGCCGT	GGAACTCTTTG	2923
Sbjct	553	TTCTCTTCTTCCTGA	CGACCGCCCAGTGTTTC	AGCAGTGTTTCAGCCGT	GGAACTCTTTG	612
Query	2924	TGGTAGAGAAGAAGC	TCTTCATACATGAATACA	ATCAGCGGATACTACAG	AGTGTCATCTT	2983
Sbjct	613	TGGTAGAGAAGAAGC	TCTTCATACATGAATAC	ATCAGCGGATACTACAG	AGTGTCATCTT	672
Query	2984	ATTTCCTTGGAAAAC	TGTTATCTGATTTATTA	CCATGAGGATGTTACC	AAGTATTATAT	3043
Sbjct	673	ATTTCCTTGGAAAAC	TGTTATCTGATTTATTA	CCATGAGGATGTTACC	AAGTATTATAT	732
Query	3044			AAGCCAAAGGCAGATGC		3103
Ouerv	3104	TGATGTTTACCCTTA	TGATGGTGGCTTATTCA	SCCAGTTCCATGGCACT	GGCCATAGCAG	3163
Sbjct	793	TGATGTTTACCCTTA	TGATGGTGGCTTATTCA	GCCAGTTCCATGGCACT	GGCCATAGCAG	852
Query	3164	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACTT	TCATGACCATCTGTT	TGTGTTTATGA	3223
Sbjct	853	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACTT	CTCATGACCATCTGTTT	TGTGTTTATGA	912
Query	3224	TGATTTTTTCAGGTC	TGTTGGTCAATCTCACA	ACCATTGCATCTTGGC1	GTCATGGCTTC	3283
Sbjct	913	TGATTTTTTCAGGTC	TGTTGGTCAATCTCACA	ACCATTGCATCTTGGCT	GTCATGGCTTC	972
Sbjct	973	AGTACTTCAGCATTC		SCTTTGCAGCATAATGA	ATTTTTGGGAC	1032
Query	3344	AAAACTTCTGCCCAG	GACTCAATGCAACAGGA	ААСААТССТТӨТААСТА	TGCAACATGTA	3403
Sbjct	1033	AAAACTTCTGCCCAG	GACTCAATGCAACAGGA	AACAATCCTTGTAACTA	TGCAACATGTA	1092
Query	3404	CTGGCGAAGAATATT	TGGTAAAGCAGGGCATCO	GATCTCTCACCCTGGGG	CTTGTGGAAGA	3463
Sbjct	1093	CTGGCGAAGAATATT	TGGTAAAGCAGGGCATCO	SATCTCTCGCCCTGGGG	CTTGTGGAANA	1152
Query	3464	ATCACGTGGCCTTGG	CTTGTATGATTGTTATT	TTCCTCACAATTGCCTA	CCTGAAATTGT	3523
Sbjct	1153	ATCACGTGGCCTTGG	CTTGTATGATTGTTATT	TTCCTCACAATTGCCT#	CCTGAAATTGT	1212
Query	3524		ATTCTTAAATTGGATTC	AGAGGGCCCGTTTAAA	CCCGCTGATCA	3583
Suger	1213		ATTCTTAAATTGGATTC			1272
Sbict	1273					1332
Query	3644	TTGACCCTGGAAGGT	GCCACTCCCACTGTCCT	TTCCTAATAAAAT-GAG	GAAATTGCATC	3702
Sbjct	1333	TTGACCCTGGAAGGT	GCCNNNCCNN-TNNCCT	TCC-AATAAAANGGAG	GAAATTGCATC	1390
Query	3703	GCATTGTCTG-AGTA	GGTGTCATTCTATTCTg	gggggtggggtgggg	3748	
Sbjct	1391	GCATTGGCCGNANTA	GGTNNCATTNNNTTCGG	566666666666666666666666666666666666666	1437	

Seq482

Score		-0	Expect	Identities	Gaps	Strand	
2052 6	its(111	1)	0.0	1143/1166(98	%) 2/1166(0%)	Plus/Pl	us
Query	2960	GCGGATAC	TACAGAGT	GTCATCTTATTT	CTTGGAAAACTGTTATCTGATT	ATTACCCA	3019
SDJCT	11	GEGGNNAE	I ACAGAG I	GICATCTIATIT		ATTACCCA	70
Query	3020	TGAGGATG			TGTATAGTGTACTTCATGTTAG	ATTGAAGC	3079
Sbjct	71	TGAGGATG	TTACCAAG	TATTATATTTAC	TGTATAGTGTACTTCATGTTAG	ATTGAAGC	130
Query	3080	CAAAGGCAG	SATGCCTT	CTTCGTTATGAT	TTTACCCTTATGATGGTGGCTT4	TTCAGCCA	3139
Sbjct	131	CAAAGGCA	GATGCCTT	CTTCGTTATGAT	STTTACCCTTATGATGGTGGCTT#	TTCÁGCCA	190
Query	3140	GTTCCATG	GCACTGGC	CATAGCAGCAGG	CAGAGTGTGGTTTCTGTAGCAAC	ACTTCTCA	3199
Sbjct	191	GTTCCATG	SCACTGGC	CATAGCAGCAGG	CAGAGTGTGGTTTCTGTAGCAAG	ACTTCTCA	250
Query	3200	TGACCATC	IGTTTTGT	GTTTATGATGAT	TTTTCAGGTCTGTTGGTCAATC	CACAACCA	3259
Sbjct	251	TGACCATC	GTTTTGT	GTTTATGATGAT	TTTTTCAGGTCTGTTGGTCAATCT	CACAACCA	310
Query	3260	TTGCATCT		ATGGCTTCAGTA	TTCAGCATTCCACGATATGGAT	TACGGCTT	3319
Sbjct	311	TTGCATCT	reacterc	ATGGCTTCAGTAG	TTCAGCATTCCACGATATGGAT	TACGGCTT	370
Query	3320	TGCAGCAT	AATGAATT	TTTGGGACAAAA	TTCTGCCCAGGACTCAATGCAA	AGGAAACA	3379
Sbjct	371	TGCAGCAT	AATGAATT	TTTGGGACAAAA	TTCTGCCCAGGACTCAATGCAA	AGGAAACA	430
Query	3380	ATCCTTGT	AACTATGC	AACATGTACTGG	GAAGAATATTTGGTAAAGCAGG	CATCGATC	3439
Sbjct	431	ATCCTTGT	AACTATGC	AACATGTACTGG	GAAGAATATTTGGTAAAGCAGGG	CATCGATC	490
Query	3440	TCTCACCC	IGGGGCTT	GTGGAAGAATCA	GTGGCCTTGGCTTGTATGATTG	TATTTTCC	3499
Sbjct	491	TCTCGCCC	IGGGGCTT	GTGGAAGAATCA	GTGGCCTTGGCTTGTATGATTG	TATTTTCC	550
Query	3500	TCACAATTO	SCCTACCT	GAAATTGTTATT	CTTAAAAAATATTCTTAAATTGO	ATTCTAGA	3559
Sbjct	551	TCACAATTO	SCCTACCT	GAAATTGTTATT	CTTAAAAAATATTCTTAAATTG	ATTCTAGA	610
Query	3560	GGGCCCGT	ГТАААССС	GCTGATCAGCCT	GACTGTGCCTTCTAGTTGCCAG	CATCTGTT	3619
Sbjct	611	GGGCCCGT	ГТАААССС	GCTGATCAGCCT	GACTGTGCCTTCTAGTTGCCAG	CATCTGTT	670
Query	3620	GTTTGCCCC	тссссс	TGCCTTCCTTGA	CCTGGAAGGTGCCACTCCCACTC	TCCTTTCC	3679
Sbjct	671	GTTTGCCCC	тссссс	TGCCTTCCTTGA	CCTGGAAGGTGCCACTCCCACTC	tcctttcc	730
Query	3680	ΤΑΑΤΑΑΑΑ	TGAGGAAA	TTGCATCGCATTO	STCTGAGTAGGTGTCATTCTATTC	Tggggggt	3739
Sbjct	731	TAATAAAA	rgaggaaa	TTGCATCGCATTO	STCTGAGTAGGTGTCATTCTATTC	TGGGGGGT	790
Query	3740	ggggtggg	ZCAGGACA	GCAAGGGGGGAGG	ATTGGGAAGACAATAGCAGGCAT	CTGGGGAT	3799
Sbjct	791	GGGGTGGG	GCAGGACA	GCAAGGGGGGAGG/	ATTGGGAAGACAATAGCAGGCAT	CTGGGGAT	850
Query	3800	GCGGTGGG	TCTATGG	CTTCTGAGGCGG/	AAGAACCAGCTGGGGCTCTAGG	IGGTATCCC	3859
Sbjct	851	GCGGTGGG	CTCTATGG	CTTCTGAGGCGG/	AAGAACCAGCTGGNGCTCTAGN	IGGTATCCC	910
Query	3860	CACGCGCC	TGTAGCG	GCGCATTAAGCG	GGCGGGTGTGGTGGTTACGCGCA	GCGTGACC	3919
Sbjct	911	CACGCGCCC	TGTAGCG	GCGCATTAAGCG	GGCGGGTGTGGTGGTTACGCGCA	GCGTGACC	970
Query	3920	GCTACACT	IGCCAGCG	CCCTAGCGCCCG	TCCTTTCGCTTTCTTCCCTTCCT	TTCTCGCC	3979
Sbjct	971	GCTACACT	IGCCAGCG	CCCTANCGCCCG	TCCTTTCGCTTTCTTCNCTTCC	TTCTCGCC	1030
Query	3980	ACGTTCGC	GGCTTTC	CCCGTCAAGCTC	AAATCGGGG-CATCCCTTTAGG	TTCCGATT	4038
Sbjct	1031	ACGTTCGC	GGCTTTC	CCCGTCGAGCTC	AAATCGGGGGGNCTCCCTTTAGG	ITTCCGATT	1090
Query	4039	TAGTGCTT	TACGGCAC	стсбассссааа	A-ACTTGATTAGGGTGATGGTTC	ACGTAGTG	4097
Sbjct	1091	TAGTGCTT	TACGGCAC	CTCNACCCCNAA	ANACTTGATTAGGGTGAAGGTTG	ACGTANTG	1150
Query	4098	GGCCATCG	сстбата	GACGGTTTTT	123		
Sbjct	1151	GGCCATCN	NCCTGAAN	NACGGCTTTT :	1176		

6.2.3 F439A

T7 promoter (F)

Score 2558 H	uite(138	Expect 5) 0.0	Identities 1414/1436(98%)	Gaps 3/1436(0%)	Strand Dive/Dive	
0.000	007	ACTIVACTICATACC	CCCACCATCCCATCCACC	CACCCACACATEGAGAAGGGA		<i>cc</i>
Sbjct	15		GCCACCATGGCATGGAGC	CACCCACAGTTCGAGAAGGGA/	GGTGGA 7	4
Query	967	AGCGGTGGAGGCTCA	GGAGGCAGCGCATGGTCC	CACCCCCAGTTTGAAAAGCTT	GCCACC 1	026
Sbjct	75	AGCGGTGGAGGCTCA	GGAGGCAGCGCATGGTCC	CACCCCCAGTTTGAAAAGCTT	GCCACC 1	34
Query	1027	ATGGACAAAGACTGC	GAAATGAAGCGCACCACC	CTGGATAGCCCTCTGGGCAAG	CTGGAA 1	086
Sbjct	135	ATGGACAAAGACTGC	GAAATGAAGCGCACCACC	CTGGATAGCCCTCTGGGCAAG	CTGGAA 1	94
Query	1087	CTGTCTGGGTGCGAA		AAGCTGCTGGGCAAAGGAACA	TCTGCC 1	146
Ouerv	195	GCCGACGCCGTGGAA	GTGCCTGCCCCAGCCGCC	GTGCTGGGCGGACCAGAGCCA	CTGATG 1	206
Sbjct	255	GCCGACGCCGTGGAA	GTGCCTGCCCAGCCGCC	GTGCTGGGCGGACCAGAGCCA	CTGATG 3:	14
Query	1207	CAGGCCACCGCCTGG	CTCAACGCCTACTTTCAC	CAGCCTGAGGCCATCGAGGAG	TTCCCT 1	266
Sbjct	315	CAGGCCACCGCCTGG	CTCAACGCCTACTTTCAC	CAGCCTGAGGCCATCGAGGAG	ттссст з	74
Query	1267	GTGCCAGCCCTGCAC	CACCCAGTGTTCCAGCAG	GAGAGCTTTACCCGCCAGGTG	CTGTGG 1	326
Sbjct	375	GTGCCAGCCCTGCAC	CACCCAGTGTTCCAGCAG	GAGAGCTTTACCCGCCAGGTG	CTGTGG 4	34
Sbict	435	AAACTGCTGAAAGTG	GTGAAGTTCGGAGAGAGGTC		GCCCTG 4	94
Query	1387	GCCGGCAATCCCGCC	GCCACCGCCGCCGTGAAA	ACCGCCCTGAGCGGAAATCCC	атассс 1	446
Sbjct	495	GCCGGCAATCCCGCC	GCCACCGCCGCCGTGAAA	ACCGCCCTGAGCGGAAATCCC	GTGCCC 5	54
Query	1447	ATTCTGATCCCCTGC	CACCGGGTGGTGTCTAGC	TCTGGCGCCGTGGGGGGCTAC	SAGGGC 1	506
Sbjct	555	ATTCTGATCCCCTGC	CACCGGGTGGTGTCTAGC	tctggcgccgtggggggctAc	SÁGGGC 6	14
Query	1507	GGGCTCGCCGTGAAA	GAGTGGCTGCTGGCCCAC	GAGGGCCACAGACTGGGCAAG		566
Ouerv	1567	CTGGGCGAATTCATG	TCTTCCAGTAATGTCGAA	GTTTTTATCCCAGTGTCACAA	GGAAAC 1	626
Sbjct	675	CTGGGCGAATTCATG	TCTTCCAGTAATGTCGAA	GTTTTTATCCCAGTGTCACAA	GGAAAC 7	34
Query	1627	ACCAATGGCTTCCCC	GCGACAGCTTCCAATGAC	CTGAAGGCATTTACTGAAGGA	остото 1	686
Sbjct	735	ACCAATGGCTTCCCC	GCGACAGCTTCCAATGAC	CTGAAGGCATTTACTGAAGGA	GCTGTG 7	94
Query	1687	TTAAGTTTTCATAAC	ATCTGCTATCGAGTAAAA	CTGAAGAGTGGCTTTCTACCT	TGTCGA 1	746
Sbjct	795	TTAAGTTTTCATAAC	ATCTGCTATCGAGTAAAA	CTGAAGAGTGGCTTTCTACCT	TGTCGA 8	54
Query	855					805
Query	1807	GCCATCCTGGGACCC	ACAGGTGGAGGCAAATCT	TCGTTATTAGATGTCTTAGCT	GCAAGG 1	866
Sbjct	915	GCCATCCTGGGACCC	ACAGGTGGAGGCAAATCT	TCGTTATTAGATGTCTTAGCT	GCAAGG 9	74
Query	1867	AAAGATCCAAGTGGA	TTATCTGGAGATGTTCTG	ATAAATGGAGCACCACGACCT	SCCAAC 1	926
Sbjct	975	AAAGATCCAAGTGGA	TTATCTGGAGATGTTCTG	ATAAATGGAGCACCACGACCT	GCCAAC 1	034
Query	1927		GGTTACGTGGTACAAGAT	GATGTTGTGATGGGCACTCTG	ACGGTG 19	986 994
Ouerv	1987	AGAGAAAAACTTACAG	TTCTCAGCAGCTCTTCGG	CTTGCAACAACTATGACGAAT	CATGaa 20	034
Sbjct	1095	AGAGAAAACTTACAG	TTCTCAGCAGCTCTTCGG	CTTGCAACAACTATGACGAAT	CATGAA 1	154
Query	2047	aaaaaCGAACGGATT	AACAGGGTCATTCAAGAG	TTAGGTCTGGATAAAGTGGCA	GACTCC 2	106
Sbjct	1155	AAAAACGAACGGATT	AACAGGGTCATTCAAGAG	TTAGGTCTGGATAAAGTGGCA	SACTCC 1	214
Query	2107	AAGGTTGGAACTCAG	TTTATCCGTGGTGTGTGTCT	GGAGGAGAAAGAAAAA-GGAC	TAGTAT 2	165
Sbjct	1215	AAGGTTGGAACTCAG	TTTATCCGTGGTGTGTCT	GGAGGAGAANGAAAAAGGGAC	TAGTAT 1	274
Query Sbict	1275					334
Query	2226	AGACTCAAGCACAGC	AAATGCTGTCCTTTTGCT	CCTGAAAAGGATGTCTAAGCA	GGGACG 2	285
Sbjct	1335	AGACTCAAGCNNAGC	AAATGCTGTCCTTTTGCT	CCTGAAAAGGATGTCTAAGCA	GGGANN 1	394
Query	2286	AACAATCATCTTCT-	CCATTCATCAGCCTCG-A	TATTCCATCTTCAAGTTGTTT	GA 2339	
Sbict	1395	AACAATCANCTTNNN	CCATTCATCNNCCNCCNA	NNTTCCATCTTCAAGTTNNTT	GA 1450	

Score		Expect	Identities	Gaps	Strand
2386 b	its(129	2) 0.0	1333/1353(99%)	8/1353(0%)	Plus/Plus
Ouerv	1870	GATCCAAGTGGATT	ATCTGGAGATGTTCTGA	TAAATGGAGCACCACGACCTGC	AACTTC 1929
Sbjct	17	GATCCAAGTGGATT	ATCTGGAGATGTTCTGA	TAAATGGAGCACCACGACCTGC	AACTTC 76
Query	1930	AAATGTAATTCAGG	TACGTGGTACAAGATG	ATGTTGTGATGGGCACTCTGAC	GTGAGA 1989
Sbjct	77	AAATGTAATTCAGG	TACGTGGTACAAGATG	ATGTTGTGATGGGCACTCTGAC	GTGAGA 136
Query	1990	GAAAACTTACAGTT	CTCAGCAGCTCTTCGGC	TTGCAACAACTATGACGAATCA	Gaaaaa 2049
Sbjct	137	GAAAACTTACAGTT	TCAGCAGCTCTTCGGC	TTGCAACAACTATGACGAATCA	GAAAAA 196
Query	2050	aaCGAACGGATTAA	CAGGGTCATTCAAGAGT	TAGGTCTGGATAAAGTGGCAGA	CTCCAAG 2109
Sbjct	197	AACGAACGGATTAA	CAGGGTCATTCAAGAGT	TAGGTCTGGATAAAGTGGCAGAG	TCCAAG 256
Query	2110				
Sbjct	257	GTTGGAACTCAGTT	TATCCGTGGTGTGTCTG	GAGGAGAAAAGAAAAAGGACTAG	TATAGGA 316
Query	2170				.TTAGAC 2229
Sbjct	317	ATGGAGCTTATCAC	TGATCCTTCCATCTTGT	TCTTGGATGAGCCTACAACTGG	TTAGAC 376
Query	2230	TCAAGCACAGCAAA	IGCTGTCCTTTTGCTCC	TGAAAAGGATGTCTAAGCAGGG/	ACGAACA 2289
Sbjct	377	TCAAGCACAGCAAA	IGCTGTCCTTTTGCTCC	TGAAAAGGATGTCTAAGCAGGG/	ACGAACA 436
Query	2290	ATCATCTTCTCCAT	CATCAGCCTCGATATT	CCATCTTCAAGTTGTTTGATAG	CTCACC 2349
Sbjct	437	ATCATCTTCTCCAT	TCATCAGCCTCGATATT	CCATCTTCAAGTTGTTTGATAG	CTCACC 496
Query	2350	TTATTGGCCTCAGG	AGACTTATGTTCCACG	GCCTGCTCAGGAGGCCTTGGG	ATACTTT 2409
Sbjct	497	TTATTGGCCTCAGG	AAGACTTATGTTCCACG	GGCCTGCTCAGGAGGCCTTGGG/	TACTTT 556
Query	2410	GAATCAGCTGGTTA	TCACTGTGAGGCCTATA	ATAACCCTGCAGACTTCTTCTT	GACATC 2469
Sbjct	557	GAATCAGCTGGTTA	TCACTGTGAGGCCTATA	ATAACCCTGCAGACTTCTTCTT	GACATC 616
Query	2470	ATTAATGGAGATTC	CACTGCTGTGGCATTAA	ACAGAGAAGAAGACTTTAAAGCO	ACAGAG 2529
Sbjct	617	ATTAATGGAGATTC	CACTGCTGTGGCATTAA	ACAGAGAAGAAGACTTTAAAGCO	ACAGAG 676
Query	2530	ATCATAGAGCCTTC	CAAGCAGGATAAGCCAC	TCATAGAAAAATTAGCGGAGAT	TATGTC 2589
Sbjct	677	ATCATAGAGCCTTC	CAAGCAGGATAAGCCAC	TCATAGAAAAATTAGCGGAGAT	TATGTC 736
Query	2590	AACTCCTCCTTCTA	CAAAGAGACAAAAGCTG	AATTACATCAACTTTCCGGGGG	GAGAAG 2649
Sbjct	737	AACTCCTCCTTCTA	CAAAGAGACAAAAGCTG	AATTACATCAACTTTCCGGGGG	IGAGAAG 796
Query	2650	AAGAAGAAGATCAC	AGTCTTCAAGGAGATCA	GCTACACCACCTCCTTCTGTCA	CAACTC 2709
Sbjct	797	AAGAAGAAGATCAC	AGTCTTCAAGGAGATCA	GCTACACCACCTCCTTCTGTCA	ICAACTC 856
Query	2710	AGATGGGTTTCTAA	GCGTTCATTCAAAAACT	TGCTGGGTAATCCCCAGGCCTC	TATAGCT 2769
Sbjct	857	AGATGGGTTTCTAA	SCGTTCATTCAAAAACT	TGCTGGGTAATCCCCAGGCCTC	ATAGCT 916
Query	2770	CAGATCATTGTCAC	AGTCGTACTGGGACTGG	TATAGGTGCCATTTACTTTGG	БСТАААА 2829
Sbjct	917	CAGATCATTGTCAC	AGTCGTACTGGGACTGG	TTATAGGTGCCATTTACTTTGG	GCTAAAA 976
Query	2830				CAACCAG 2889
Ouerv	2890	TGTTTCAGCAGTGT		TGTGGTAGAGAAGAAGCTCTT	AACCAG 1030
Sbjct	1037	TGTGCCAGCAGTGT	TCAGCCGTGGAACTCT	TGTGGTAGAGAGAAGATCTT	ATACAT 1096
Query	2950	GAATACATCAGCGG	ATACTACAGAGTGTCAT	CTTATTTCCTTGGAAAACTGTT	ATCTGAT 3009
Sbjct	1097	GAATACATCAGCGG	ATACTACAGAGTGTCAT	CTTATTTCCTTGGAAAACTGTT/	 ATCTGAT 1156
Query	3010	TTATTACCCATGAG	GATGTTACCAAGTATTA	TATTTACCTGTATAGTGTACTT	ATGTTA 3069
Sbjct	1157	TTATTACCCATGAG	GATGTTACCAAGTATTA	TATTTACCTGTATAGTGTACTT	ATGTTA 1216
Query	3070	GGATTGAAGCCAAA	GGCAGATGCCTTCTTCG	TTATGATGTTTACCCTTATGAT	-GGTGGC 3128
Sbjct	1217	GGATTGAAGCCAAA	GCAGATGCCTTCTTCG	TTATGATGTTTACCCTTATGAA	GGTGGC 1276
Query	3129	TTATTCAGCCAGTT	CCATGG-CACTGG-CCA	TAGC-AGCAGGTCAG-AGT-GT	GTTTCT 3183
Sbjct	1277	TTATTCAGCCAGTT		TAGCNACCAGGTCNGNAANNGT	GTTTCT 1336
Query	3184	GTAGCAACACTTCT	-ATGACCATCTG-TTT	TG 3214	
Sbjct	1337	GTAACAACACTTNC	CNAGGACCATCCGGTTT	TG 1369	

Score		Expect	Identities	Gaps	Strand
2396 b	its(129	7) 0.0	1323/1338(99%)	2/1338(0%)	Plus/Plus
Query	2325	CTTCAAGTTGTTTGAT	AGCCTCACCTTATTG	GCCTCAGGAAGACTTATGTTCC	ACGGGCC 2384
Sbjct	16	CTTC-AGTTGTTTGAT	AGCCTCACCTTATTG	GCCTCAGGAAGACTTATGTTCC	ACGGGCC 74
Query	2385	TGCTCAGGAGGCCTTG	GGATACTTTGAATCA	GCTGGTTATCACTGTGAGGCCT	ATAATAA 2444
Sbjct	75	TGCTCAGGAGGCCTTG	GGATACTTTGAATCA	GCTGGTTATCACTGTGAGGCCT	ATAATAA 134
Query	2445	CCCTGCAGACTTCTTC	TTGGACATCATTAAT	GGAGATTCCACTGCTGTGGCAT	TAAACAG 2504
Sbjct	135	ccctgcAgActtcttc	TTGGACATCATTAAT	GGAGATTCCACTGCTGTGGCAT	TAAACAG 194
Query	2505	AGAAGAAGACTTTAAA	GCCACAGAGATCATA	GAGCCTTCCAAGCAGGATAAGC	CACTCAT 2564
Sbjct	195	AGAAGAAGACTTTAAA	GCCACAGAGATCATA	GAGCCTTCCAAGCAGGATAAGC	CACTCAT 254
Query	2565				TGAATT 2624
Ouerv	255		GGTGAGAAGAAGAAGAAG		TCAGCTA 2684
Sbict	315		GGTGAGAAGAAGAAGAAG		1111111 1CAGCTA 374
Ouerv	2685	CACCACCTCCTTCTGT	CATCAACTCAGATGG	GTTTCTAAGCGTTCATTCAAAA	ACTTGCT 2744
Sbjct	375	CACCACCTCCTTCTGT	CATCAACTCAGATGG	GTTTCTAAGCGTTCATTCAAAA	ACTTGCT 434
Query	2745	GGGTAATCCCCAGGCC	TCTATAGCTCAGATC	ATTGTCACAGTCGTACTGGGAC	IGGTTAT 2804
Sbjct	435	GGGTAATCCCCAGGCC	TCTATAGCTCAGATC	ATTGTCACAGTCGTACTGGGAC	IGGTTAT 494
Query	2805	AGGTGCCATTTACTTT	GGGCTAAAAAATGAT	TCTACTGGAATCCAGAACAGAG	CTGGGGT 2864
Sbjct	495	AGGTGCCATTTACTTT	GGGCTAAAAAATGAT	TCTACTGGAATCCAGAACAGAG	CTGGGGT 554
Query	2865	TCTCTTCTTCCTGACG	ACCAACCAGTGTTTC	AGCAGTGTTTCAGCCGTGGAAC	ICTTTGT 2924
Sbjct	555	tététtéttétékég	ACCAACCAGTGTGCC	AGCAGTGTTTCAGCCGTGGAAC	ictitigt 614
Query	2925	GGTAGAGAAGAAGCTC	TTCATACATGAATAC	ATCAGCGGATACTACAGAGTGT(CATCTTA 2984
Sbjct	615	GGTAGAGAAGAAGCTC	TTCATACATGAATAC	ATCAGCGGATACTACAGAGTGT	CATCTTA 674
Query	2985				
Ouerv	3945		TTCATGTTAGGATTG		ICGTTAT 3194
Sbjct	735	TACCTGTATAGTGTAC	TTCATGTTAGGATTG	AAGCCAAAGGCAGATGCCTTCT	IIIIII ICGTTAT 794
Query	3105	GATGTTTACCCTTATG	ATGGTGGCTTATTCA	GCCAGTTCCATGGCACTGGCCA	TAGCAGC 3164
Sbjct	795	GATGTTTACCCTTATG	ATGGTGGCTTATTCA	GCCAGTTCCATGGCACTGGCCA	TAGCAGC 854
Query	3165	AGGTCAGAGTGTGGTT	TCTGTAGCAACACTT	CTCATGACCATCTGTTTTGTGT	TATGAT 3224
Sbjct	855	AGGTCAGAGTGTGGTT	TCTGTAGCAACACTT	CTCATGACCATCTGTTTTGTGT	TATGAT 914
Query	3225	GATTTTTTCAGGTCTG	TTGGTCAATCTCACA	ACCATTGCATCTTGGCTGTCAT	GCTTCA 3284
Sbjct	915	GATTTTTTCAGGTCTG	TTGGTCAATCTCACA	ACCATTGCATCTTGGCTGTCAT	SGCTTCA 974
Sbict	975				 GGGACA 1034
Query	3345	AAACTTCTGCCCAGGA	CTCAATGCAACAGGA	AACAATCCTTGTAACTATGCAA	CATGTAC 3404
Sbjct	1035	AAACTTCTGCCCAGGA	CTCAATGCAACAGGA	AACAATCCTTGTAACTATGCAA	CATGTAC 1094
Query	3405	TGGCGAAGAATATTTG	GTAAAGCAGGGCATC	GATCTCTCACCCTGGGGCTTGT	GAAGAA 3464
Sbjct	1095	TGGCGAANAATATTTG	GTAAAGCAGGGCATC	GATCTCTCACCCTGGGGGCTTGT	GAANAA 1154
Query	3465	TCACGTGGCCTTGGCT	TGTATGATTGTTATT	TTCCTCACAATTGCCTACCTGA	AATTGTT 3524
Sbjct	1155	TCACGTGGCCTTGGCT	TGGATGATTGTTATT	TTCCTCACAATTGCCTACCTGA	ATTGTT 1214
Query	3525	ATTTCTTAAAAAATAT	TCTTAAATTGGATTC	TAGAGGGCCCGTTTAAACCCGC	IGATCAG 3584
Sbjct	1215	ΑΤΤΤΟΤΤΑΑΑΑΑΑΤΑΤ	TCTTAAATTGGATTC	TAGAGGGCCCGTTTAAACCCGC	rgatcag 1274
Query	3585	CCTCGACTGTGCCTTC	TAGTTGCCAGCCATC		3CCTTCC 3643
Sbjct	1275	CTCCAACTNTGCCTTC	NAGTTGCCAGCCATC	TGTTGTTTGCCCCNTCCCCGG	SCCTTCC 1334
Query	1225		CC 3661		
aujet	1000	- LONCENT GOAAGGGG	CC 1332		

Seq482

Score		Expect	Identities	(Gaps	Strand	
2300 b	its(124	5) 0.0	1301/133	0(98%)	16/1330(1%)	Plus/Pl	us
Ouery	2966	ACTACAGAGTGTG	ATCTTATTTCC	TGGAAAACTGTTAT	CTGATTTATTACC	CATGAGGA	3025
Shict	20						79
a sec	2026	Terraconstant			TOTACCATTCA	continues	2005
Query	3026						3085
Sbjct	80	TGTTACCAAGTAT	TATATTTACCT	STATAGTGTACTTCA	ATGTTAGGATTGAA	GCCAAAGG	139
Query	3086	CAGATGCCTTCTT	CGTTATGATGT	TACCCTTATGATG	TGGCTTATTCAGC	CAGTTCCA	3145
Sbjct	140	CAGATGCCTTCTT	CGTTATGATGT	TACCCTTATGATG	TGGCTTATTCAGC	CAGTTCCA	199
Query	3146	TGGCACTGGCCAT	AGCAGCAGGTC	GAGTGTGGTTTCTC	TAGCAACACTTCT	CATGACCA	3205
Sbjct	200	TGGCACTGGCCAT	AGCAGCAGGTC	GAGTGTGGTTTCT	TAGCAACACTTCT	CATGACCA	259
Query	3206	тстотттототт	TATGATGATTT	TTCAGGTCTGTTG	тсаатстсасаас	CATTGCAT	3265
Sbjct	260	TCTGTTTTGTGTT	TATGATGATTT	TTCAGGTCTGTTG	STCAATCTCACAAC	CATTGCAT	319
Query	3266	CTTGGCTGTCATO	GCTTCAGTACT	CAGCATTCCACGAT	ATGGATTTACGGC	TTTGCAGC	3325
Sbict	320		GCTTCAGTACT	I CAGCATTCCACGA	TATGGATTTACGGC	TTTGCAGC	379
Ouerv	3326	ΑΤΑΑΤGΑΑΤΤΤΤΙ	GGGACAAAACT	CTGCCCAGGACTC		CAATCOTT	3385
chiet	200	ÎIIIIIIIIIIIIII					420
SUJEE	200		UUUACAAAAC I			CAATCOTT	459
Query	3386						3445
Sbjct	440	GTAACTATGCAAC	ATGTACTGGCG	AGAATATTTGGTAA	AGCAGGGCATCGA	TCTCTCAC	499
Query	3446	CCTGGGGCTTGTG	GAAGAATCACG	regecettegeettet	ATGATTGTTATTTT	CCTCACAA	3505
Sbjct	500	cctadadcttata	GAAGAATCACG	réécéttéééttét/	ATGATTGTTATTT	ĊĊŦĊĂĊĂĂ	559
Query	3506	TTGCCTACCTGAA	ATTGTTATTTC	TAAAAAATATTCT	AAATTGGATTCTA	GAGGGCCC	3565
Sbjct	560	TTGCCTACCTGAA	ATTGTTATTTC	TAAAAAATATTCT	TAAATTGGATTCTA	GAGGGCCC	619
Query	3566	GTTTAAACCCGCT	GATCAGCCTCG	ACTGTGCCTTCTAG	TGCCAGCCATCTG	TTGTTTGC	3625
Sbjct	620	GTTTAAACCCGCT	GATCAGCCTCG	ACTGTGCCTTCTAG	TGCCAGCCATCTG	TTGTTTGC	679
Query	3626	ссстсссссата	CTTCCTTGACC	TGGAAGGTGCCACT	CCCACTGTCCTTT	ССТААТАА	3685
Sbjct	680	CCCTCCCCGTGC	CTTCCTTGACC	TGGAAGGTGCCACT	CCCACTGTCCTTT	ССТААТАА	739
Query	3686	AATGAGGAAATTG	CATCGCATTGT	TGAGTAGGTGTCAT	TCTATTCTggggg	gtggggtg	3745
Sbjct	740	AATGAGGAAATTG	CATCGCATTGT	TGAGTAGGTGTCA	TCTATTCTGGGGG	GTGGGGTG	799
Query	3746	gggCAGGACAGCA	AGGGGGAGGAT	GGGAAGACAATAG	CAGGCATGCTGGGG	ATGCGGTG	3805
Sbjct	800	GGGCAGGACAGCA	AGGGGGAGGAT	GGGAAGACAATAG	AGGCATGCTGGGG	ATGCGGTG	859
Ouerv	3896	GGCTCTATGGCTT	CTGAGGCGGAA		TCTAGGGGGTATC	CCCACGCG	3865
Shict	869						919
Ouerv	2966	CCCTGTAGCGGCG	CATTAAGCGCG	COCOLOGICO		CEGETACA	2025
chict	020						070
Sujee	320	contraction	TACCCCCCCC		CONTRACTOR	COLLECTION	373
Query	3920						3985
Sbjct	980	CTTGCCAGCGCCC	TAGCGCCCGCT	CTITCGCTITCITC		CCACGTTC	1039
Query	3986	GCCGGCTTTCCCC	GTCAAGCTCTA		TTAGGGTTCCGAT	TTAGTGCT	4045
Sbjct	1040	GCCGGCTTTCCCC	GTCAAGCTCTA	ATCGGGGGCTCNCT	TTAGGGTTCCGAT	TTAGTGCT	1099
Query	4046	TTACGGCACCTCG		TTGATTAGGGTGA	GGTTCACGTAGTG	GGCCATCG	4105
Sbjct	1100	TTACGGCACCTCO	ACCCCAAAAAAA	TTGATTAGGGTGA	GGTTCACGTAGTG	GGCCATCG	1159
Query	4106	CCCTGATAGACGO	TTTTTCGCCCT	TGACGTTGGAGTC	ACGTTCTTTAATA	GTGGACTC	4165
Sbjct	1160	CCCTGATAGACGO	TTTTCGCCCT	TGACGTTGGAGTC	ANGTTCTTTAATA	GNGGACTC	1219
Query	4166	TTGTTCCAAACTG	G-AACAACAC-	CAACCCTATCT	GG-TCTATTC-TT	TTGA-TTT	4218
Sbjct	1220	TTGTTCCAAACTG	I II IIII IGNAANAACACC	CAACCCTANNNCT	GGGTCTATTCCTT	TTGAATTT	1279
Query	4219	ATAAGGGA-TTTT	GGGGA-TTTC-	GCCTATTGG-TTA	AAAAT-G-AG-CT	GATTT-AA	4270
Sbjct	1280	ANAAGGGAATTTT	GNCNAATTTCC	GCCTATTGGGTTA	AAAANNGNANNCT	GATTTTAA	1339
Querv	4271	CAAAAA-TTT 4	279				
Sbjct	1340	CAAAAANTTT 1	349				

6.2.4 S440W

T7 promoter (F)

Score		Expect	Identities	Gaps	Strand
2497 b	its(135	2) 0.0	1368/1380(99%)	1/1380(0%)	Plus/Plus
Query Shict	914 20		TGGCATGGAGCCACCCA		GCGGTG 973
Sujee	20	CHORTACCOCCACCA			
Query Sbjct	974 80			CAGTTTGAAAAGCTTGCCACCA	TGGACA 1033 TGGACA 139
Query	1034	AAGACTGCGAAATGA	AGCGCACCACCCTGGAT	AGCCCTCTGGGCAAGCTGGAAC	TGTCTG 1093
Sbjct	140	AAGACTGCGAAATGA	AGCGCACCACCCTGGAT	AGCCCTCTGGGCAAGCTGGAAC	 TGTCTG 199
Query	1094	GGTGCGAACAGGGCC	TGCACGAGATCAAGCTG	CTGGGCAAAGGAACATCTGCCG	CCGACG 1153
Sbjct	200	GGTGCGAACAGGGCC	TGCACGAGATCAAGCTG	CTGGGCAAAGGAACATCTGCCG	CCGACG 259
Query	1154	CCGTGGAAGTGCCTG	CCCCAGCCGCCGTGCTG	GGCGGACCAGAGCCACTGATGC	AGGCCA 1213
Sbjct	260	CCGTGGAAGTGCCTG		GGCGGACCAGAGCCACTGATGC	ÁGGCCA 319
Query	1214	CCGCCTGGCTCAACG	CCTACTTTCACCAGCCT	GAGGCCATCGAGGAGTTCCCTG	TGCCAG 1273
Sbjct	320	CCGCCTGGCTCAACG	CCTACTTTCACCAGCCT	GAGGCCATCGAGGAGTTCCCTG	TĠĊĊĂĠ 379
Query	1274	CCCTGCACCACCCAG	TGTTCCAGCAGGAGAGAG	TTTACCCGCCAGGTGCTGTGGA	AACTGC 1333
Sbjct	380	CCCTGCACCACCCAG	TGTTCCAGCAGGAGAGC	TTTACCCGCCAGGTGCTGTGGA	ÁÁCTGC 439
Query	1334	TGAAAGTGGTGAAGT	TCGGAGAGGTCATCAGC	TACCAGCAGCTGGCCGCCCTGG	CCGGCA 1393
Sbjct	440	TGAAAGTGGTGAAGT	TCGGAGAGGTCATCAGC	TACCAGCAGCTGGCCGCCCTGG	CCGGCA 499
Query	1394	ATCCCGCCGCCACCG	CCGCCGTGAAAACCGCC	CTGAGCGGAAATCCCGTGCCCA	TTCTGA 1453
Sbjct	500	ATCCCGCCGCCACCG	CCGCCGTGAAAACCGCC	CTGAGCGGAAATCCCGTGCCCA	TTCTGA 559
Query	1454	TCCCCTGCCACCGGG	TGGTGTCTAGCTCTGGC	GCCGTGGGGGGGCTACGAGGGCG	GGCTCG 1513
Sbjct	560	TCCCCTGCCACCGGG	TGGTGTCTAGCTCTGGC	GCCGTGGGGGGGCTACGAGGGCG	GGCTCG 619
Query	1514	CCGTGAAAGAGTGGC	TGCTGGCCCACGAGGGC	CACAGACTGGGCAAGCCTGGGC	TGGGCG 1573
Sbjct	620	CCGTGAAAGAGTGGC	TGCTGGCCCACGAGGGC	CACAGACTGGGCAAGCCTGGGC	TGGGCG 679
Query	1574	AATTCATGTCTTCCA	GTAATGTCGAAGTTTTT	ATCCCAGTGTCACAAGGAAACA	CCAATG 1633
Sbjct	680	AATTCATGTCTTCCA	GTAATGTCGAAGTTTTT	ATCCCAGTGTCACAAGGAAACA	CCAATG 739
Query	1634	GCTTCCCCGCGACAG	CTTCCAATGACCTGAAG	GCATTTACTGAAGGAGCTGTGT	TAAGTT 1693
Sbjct	740	GCTTCCCCGCGACAG	CTTCCAATGACCTGAAG	GCATTTACTGAAGGAGCTGTGT	TAAGTT 799
Query	1694	TTCATAACATCTGCT	ATCGAGTAAAACTGAAG	AGTGGCTTTCTACCTTGTCGAA	AACCAG 1753
Sbjct	800	TTCATAACATCTGCT	ATCGAGTAAAACTGAAG	AGTGGCTTTCTACCTTGTCGAA	AACCAG 859
Query	1754	TTGAGAAAGAAATAT	TATCGAATATCAATGGG	ATCATGAAACCTGGTCTCAACG	CCATCC 1813
Sbjct	860	TTGAGAAAGAAATAT	TATCGAATATCAATGGG	ATCATGAAACCTGGTCTCAACG	ĊĊĂŤĊĊ 919
Query	1814	TGGGACCCACAGGTG	GAGGCAAATCTTCGTTA	TTAGATGTCTTAGCTGCAAGGA	AAGATC 1873
Sbjct	920	tégéácccacaégté	GAGGCAAATCTTCGTTA	TTAGATGTCTTAGCTGCAAGGA	ÁÁGÁTC 979
Query	1874	CAAGTGGATTATCTG	GAGATGTTCTGATAAAT	GGAGCACCACGACCTGCCAACT	TCAAAT 1933
Sbjct	980	CAAGTGGATTATCTG	GAGATGTTCTGATAAAT	GGAGCACCACGACCTGCCAACT	TCAAAT 1039
Query	1934	GTAATTCAGGTTACG	TGGTACAAGATGATGTT	GTGATGGGCACTCTGACGGTGA	GAGAAA 1993
Sbjct	1040	GTAATTCAGGTTACG	TGGTACAAGATGATGTT	GTGATGGGCACTCTGACGGTGA	GAGAAA 1099
Query	1994	ACTTACAGTTCTCAG	CAGCTCTTCGGCTTGCA	ACAACTATGACGAATCATGaaa	aaaaCG 2053
Sbjct	1100	ACTTACAGTTCTCAG	CAGCTCTTCGGCTTGCA	ACAACTATGACGAATCATGAAA	AAAACG 1159
Query	2054	AACGGATTAACAGGG	TCATTCAAGAGTTAGGT	CTGGATAAAGTGGCAGACTCCA	AGGTTG 2113
Sbjct	1160	AACGGATTAACAGGG	TCATTCAAGAGTTAGGT	CTGGATAAAGTGGCAGACTCCA	AGGTTG 1219
Query	2114	GAACTCAGTTTATCC	GTGGTGTGTGTCTGGAGGA	GAAAGAAAAAGGACTAGTATAG	GAATGG 2173
Sbjct	1220	GAACTCAGTTTATCC	GTGGTNTGTCTGGAGGA	GAANNAAAAAGGACTAGTATAG	GAATGG 1279
Query	2174	AGCTTATCACTGATC	CTTCCATCTTGTTCTTG	GATGAGCCTACAACTGGCTTAG	-ACTCA 2232
Sbjct	1280	AGCTTATCACTGATC	CTTCCATCTTGTTCTTG	GATGAACCTACAACTGGCTTAT	AACTCA 1339
Query	2233	AGCACAGCAAATGCT	GTCCTTTTGCTCCTGAA	AAGGATGTCTAAGCAGGGACGA	ACAATC 2292
Sbjct	1340	AGCNNAGCAAATGCT	GTCCTTTTGCTCCTGAA	AAGGATGTCTAANCAGGGANNA	ÁNÁÁŤĊ 1399

Score		Expect	Identities	Gaps	Strand	
2392 b	its(129	5) 0.0	1358/1391(98%)	11/1391(0%)	Plus/Pl	us
Query	1869	AGATCCAAGTGGATT	ATCTGGAGATGTTCT	GATAAATGGAGCACCACGACCTG	CCAACTT	1928
Sbjct	16	AGATCC-AGTGGAT	ATCTGGAGATGTTCT	GATAAATGGAGCACCACGACCTG	CCAACTT	74
Query	1929	CAAATGTAATTCAG	TTACGTGGTACAAGA	TGATGTTGTGATGGGCACTCTGA	CGGTGAG	1988
Sbjct	75	CAAATGTAATTCAG	TTACGTGGTACAAGA	TGATGTTGTGATGGGCACTCTGA	CGGTGAG	134
Query	1989	AGAAAACTTACAGT	CTCAGCAGCTCTTCG	GCTTGCAACAACTATGACGAATC	ATGaaaa	2048
Sbjct	135	AGAAAACTTACAGT	CTCAGCAGCTCTTCG	GCTTGCAACAACTATGACGAATC	ATGAAAA	194
Query	2049	aaaCGAACGGATTAA	CAGGGTCATTCAAGAG	GTTAGGTCTGGATAAAGTGGCAG	ACTCCAA	2108
Sbjct	195	AAACGAACGGATTAA	CAGGGTCATTCAAGAG	STTAGGTCTGGATAAAGTGGCAG	ACTCCAA	254
Query	2109	GGTTGGAACTCAGT	TATCCGTGGTGTGTC	TGGAGGAGAAAAAAAAGGAC TA	GTATAGG	2168
Sbjct	255	GGTTGGAACTCAGT	TATCCGTGGTGTGTGTC	rggaggagaaaagaaaaaaggac ta	GTATAGG	314
Query	2169	AATGGAGCTTATCAG	TGATCCTTCCATCTTC	GTTCTTGGATGAGCCTACAACTG	GCTTAGA	2228
Sbjct	315	AATGGAGCTTATCAG	TGATCCTTCCATCTTC	STTCTTGGATGAGCCTACAACTG	GCTTAGA	374
Query	2229					2288
Sbjct	375	CTCAAGCACAGCAA	TOCTOTCCTTTTGCT	CCTGAAAAGGATGTCTAAGCAGG	GACGAAC	434
Query	425					2348
Ouenu	435	CTTATTOGCCTCAG		CONCEPTION CONCEPTION	GATACTT	3494
Sbict	495					554
Ouerv	2489	TGAATCAGCIGGTU	TEACTGTGAGGEETA	TAATAACCCTGCAGACTTCTTCT	IGGACAT	2468
Sbjct	555	TGAATCAGCTGGTTA	TCACTGTGAGGCCTA	TAATAACCCTGCAGACTTCTTCT	TGGACAT	614
Query	2469	CATTAATGGAGATTO	CACTGCTGTGGCATT	AAACAGAGAAGAAGACTTTAAAG	CCACAGA	2528
Sbjct	615	CATTAATGGAGATTO	CACTGCTGTGGCATT	AAACAGAGAAGAAGACTTTAAAG	CCACAGA	674
Query	2529	GATCATAGAGCCTT	CAAGCAGGATAAGCC	ACTCATAGAAAAATTAGCGGAGA	TTTATGT	2588
Sbjct	675	GATCATAGAGCCTTC	CAAGCAGGATAAGCC	ACTCATAGAAAAATTAGCGGAGA	TTTATGT	734
Query	2589	CAACTCCTCCTTCT	CAAAGAGACAAAAGC	TGAATTACATCAACTTTCCGGGG	GTGAGAA	2648
Sbjct	735	CAACTCCTCCTTCTA	CAAAGAGACAAAAGC	TGAATTACATCAACTTTCCGGGG	GTGAGAA	794
Query	2649	GAAGAAGAAGATCAG	AGTCTTCAAGGAGAT	CAGCTACACCACCTCCTTCTGTC	ATCAACT	2708
Sbjct	795	GAAGAAGAAGATCAG	AGTCTTCAAGGAGAT	CAGCTACACCACCTCCTTCTGTC	ATCAACT	854
Query	2709	CAGATGGGTTTCTA	GCGTTCATTCAAAAA	CTTGCTGGGTAATCCCCAGGCCT	CTATAGC	2768
Sbjct	855	CAGATGGGTTTCTA	GCGTTCATTCAAAAAA	CTTGCTGGGTAATCCCCAGGCCT	CTATAGC	914
Query	2769		AGTCGTACTGGGACT	GTTATAGGTGCCATTTACTTTG	GGCTAAA	2828
Ouerv	2820			IGGGGTTCTCTCTTCTTGACGA		2888
Sbjct	975	AAATGATTCTACTG	AATCCAGAACAGAGC	IGGGGTTCTCTTCTTCCTGACGA		1034
Query	2889	GTGTTTCAGCAGTG	TTCAGCCGTGGAACT	CTTTGTGGTAGAGAAGAAGCTCT	TCATACA	2948
Sbjct	1035	GTGTTTTTGGAGTG	TTCAGCCGTGGAACT	CTTTGTGGTAGAGAAGAAGCTCT	TCATACA	1094
Query	2949	TGAATACATCAGCGG	ATACTACAGAGTGTC	ATCTTATTTCCTTGGAAAACTGT	TATCTGA	3008
Sbjct	1095	TGAATACATCAGCG	GATACTACAGAGTGTC/	ATCTTATTTCCTTGGAAAACTGT	TATCTGA	1154
Query	3009	TTTATTACCCATGAG	GATGTTACCAAGTAT	TATATTTACCTGTATAGTGTACT	TCATGTT	3068
Sbjct	1155	TTTATTACCCATGA	GATGTTACCAAGTAT	TATATTTACCTGTATAGTGTACT	TCATGTT	1214
Query	3069	AGGATTGAAGCCAA	GGCAGATGCCTTCTT	CGTTATGATGTTTACCCTTATGA	TGGT-GG	3127
Sbjct	1215	AGGATTGAAGCCAA	AGGCAGATGCCTTCTT	CGTTATGATGTTTACCCTTATGA	AGGGNGG	1274
Query	3128	CTTATTCAGCCAGT	CCATGGCACTGG-CC	ATAGCAGCAGGTCAGAGT-GTGG		3185
Sbjct	1275	CTTATTCAGCCAGT	CCATGGCNCTGGNCC	ATAGCANCAGGTCAGANNNGTGG	tttctigg	1334
Query	3186	AGCAACACTTCTC-A	TGACCATCTG-TTTTC	STGTTT-ATG-ATGA-TTTTTC	AGG-TCT	3239
Sbjct	1335	ANCAANCCTTTNNNA	TGACCATCTGGTTTT	GGGGTTNAANNAAGAATTTTTTC	Addatca	1394
Query	3240	GTTGG-TCAAT 32	249			
Sbjct	1395	GTTGGGTCAAT 14	105			

Score		Expect	Identities	Gaps	Strand
2466 t	oits(133	5) 0.0	1372/1397(98%)	4/1397(0%)	Plus/Plus
Query	2325	CTTCAAGTTGTTTGA	TAGCCTCACCTTATTGG	CCTCAGGAAGACTTATGTTCCA	CGGGCC 2384
Sbjct	15	cttc-AgttgtttgA	TAGCCTCACCTTATTGG	CCTCAGGAAGACTTATGTTCC/	CGGGCC 73
Query	2385	TGCTCAGGAGGCCTT	GGGATACTTTGAATCAG	CTGGTTATCACTGTGAGGCCTA	TAATAA 2444
Sbjct	74	TGCTCAGGAGGCCTT	GGGATACTTTGAATCAG	CTGGTTATCACTGTGAGGCCTA	TAATAA 133
Query	134				AAACAG 2504
Ouerv	2505	AGAAGAAGACTTTAA	AGCCACAGAGATCATAG	AGCCTTCCAAGCAGGATAAGCC	ACTCAT 2564
Sbjct	194	AGAAGAAGACTTTAA	AGCCACAGAGATCATAG	AGCCTTCCAAGCAGGATAAGCC	ACTCAT 253
Query	2565	AGAAAAATTAGCGGA	GATTTATGTCAACTCCT	CCTTCTACAAAGAGACAAAAG	TGAATT 2624
Sbjct	254	AGAAAAATTAGCGGA	GATTTATGTCAACTCCT	CCTTCTACAAAGAGACAAAAG	TGAATT 313
Query	2625	ACATCAACTTTCCGG	GGGTGAGAAGAAGAAGA	AGATCACAGTCTTCAAGGAGAT	CAGCTA 2684
Sbjct	314	ACATCAACTTTCCGG	GGGTGAGAAGAAGAAGA	AGATCACAGTCTTCAAGGAGAT	CÁGCTÁ 373
Query	2685				CTTGCT 2744
Ouerv	2745	GGGTAATCCCCAGGC	CTCTATAGCTCAGATGG	TTGTCACAGTCGTACTGGGACT	GGTTAT 2804
Sbjct	434	GGGTAATCCCCAGGC	CTCTATAGCTCAGATCA	TTGTCACAGTCGTACTGGGACT	GGTTAT 493
Query	2805	AGGTGCCATTTACTT	TGGGCTAAAAAATGATT	CTACTGGAATCCAGAACAGAGG	TGGGGT 2864
Sbjct	494	AGGTGCCATTTACTT	TGGGCTAAAAAATGATT	CTACTGGAATCCAGAACAGAG	TGGGGT 553
Query	2865	TCTCTTCTTCCTGAC	GACCAACCAGTGTTTCA	GCAGTGTTTCAGCCGTGGAACT	CTTTGT 2924
Sbjct	554	TCTCTTCTTCCTGAC	GACCAACCAGTGTTTTT	GGAGTGTTTCAGCCGTGGAACT	CTTTGT 613
Query	2925		CTTCATACATGAATACA 	TCAGCGGATACTACAGAGTGTG	ATCTTA 2984
Ouerv	2985	TTTCCTTGGAAAACT	GTTATCTGATTTATTAC	CCATGAGGATGTTACCAAGTAT	TATATT 3044
Sbjct	674	TTTCCTTGGAAAACT	GTTATCTGATTTATTAC	CCATGAGGATGTTACCAAGTA	TATATT 733
Query	3045	TACCTGTATAGTGTA	CTTCATGTTAGGATTGA	AGCCAAAGGCAGATGCCTTCTT	CGTTAT 3104
Sbjct	734	TACCTGTATAGTGTA	CTTCATGTTAGGATTGA	AGCCAAAGGCAGATGCCTTCT	CGTTAT 793
Query	3105	GATGTTTACCCTTAT	GATGGTGGCTTATTCAG	CCAGTTCCATGGCACTGGCCAT	AGCAGC 3164
Sbjct	794	GATGTTTACCCTTAT	GATGGTGGCTTATTCAG	CCAGTTCCATGGCACTGGCCAT	ÁGCÁGC 853
Query	3165				TATGAT 3224
Query	3225	GATTTTTTCAGGTCT	GTTGGTCAATCTCACAA	CCATTGCATCTTGGCTGTCATG	IGCTTCA 3284
Sbjct	914	GATTTTTTCAGGTCT	GTTGGTCAATCTCACAA	CCATTGCATCTTGGCTGTCATG	IIIII GCTTCA 973
Query	3285	GTACTTCAGCATTCC	ACGATATGGATTTACGG	CTTTGCAGCATAATGAATTTT	GGGACA 3344
Sbjct	974	GTACTTCAGCATTCC	ACGATATGGATTTACGG	CTTTGCAGCATAATGAATTTT	GGGACA 1033
Query	3345	AAACTTCTGCCCAGG	ACTCAATGCAACAGGAA	ACAATCCTTGTAACTATGCAAC	ATGTAC 3404
Sbjct	1034	AAACTTCTGCCCAGG	ACTCAATGCAACAGGAA	ACAATCCTTGTAACTATGCAAC	ATGTAC 1093
Query	1094				GAAGAA 3464
Query	3465	TCACGTGGCCTTGGC	TIGTATGATIGTTATT	TCCTCACAATTGCCTACCTGAA	ATTGTT 3524
Sbjct	1154	TCACGTGGCCTTGGC	TTGGATGATTGTTATTT	TCCTCACAATTGCCTACCTGAA	ATTGTT 1213
Query	3525	ΑΤΤΤΟΤΤΑΑΑΑΑΑΤΑ	TTCTTAAATTGGATTCT	AGAGGGCCCGTTTAAACCCGCT	GATCAG 3584
Sbjct	1214	ΑΤΤΤΟΤΤΑΑΑΑΑΑΑΤΑ	TTCTTAAATTGGATTCT	AGAGGGCCCGTTTAAACCCGCT	GATCAG 1273
Query	3585	CCTCGACTGTGCCTT	CTAGTTGCCAGCCATCT		CCTTCC 3643
Sbjct	1274	CCTCGACTGTGCCTT	CNAGTTGCCÁGCCÁTNN	GNTNGTTTGCCCCTCCCCGG	CCTTCC 1333
Query	3644	TTGACCCTGGAAGGT	GCCACTCCCACTGT-CC	TTTCCTAATAAAATGAGGAAAT	TGCATC 3702
Ouerv	3703	GCATTGTCTGAGTAG	GT 3719	TTTCC-AATAAANINAQQAANI	TOCATE 1592
Sbjct	1393	GCATTGTCTGANTAG	 GT 1409		
Score		Expect	Identities	Gaps	Strand
--------	---------	-----------------	------------------	--------------------------	--------------
2287 b	its(123	8) 0.0	1303/1337(97%) 17/1337(1%)	Plus/Plus
Ouerv	2960	GCGGATACTACAGAG	TGTCATCTTATTTCC	TTGGAAAACTGTTATCTGATTTA	TTACCCA 3019
Sbjct	12	GCGGNNACTACAGAG	TGTCATCTTATTTCC	TTGGAAAACTGTTATCTGATTTA	TTACCCA 71
Query	3020	TGAGGATGTTACCAA	GTATTATATTTACCT	GTATAGTGTACTTCATGTTAGGA	TTGAAGC 3079
Sbjct	72	TGAGGATGTTACCAA	GTATTATATTTACCT	GTATAGTGTACTTCATGTTAGGA	TTGAAGC 131
Query	3080	CAAAGGCAGATGCCT	TCTTCGTTATGATGT	TTACCCTTATGATGGTGGCTTAT	TCAGCCA 3139
Sbjct	132	CAAAGGCAGATGCCT	TCTTCGTTATGATG	TTACCCTTATGATGGTGGCTTAT	TCAGCCA 191
Query	3140	GTTCCATGGCACTGG	SCCATAGCAGCAGGTC	AGAGTGTGGTTTCTGTAGCAACA	CTTCTCA 3199
Sbjct	192	GTTCCATGGCACTGG	CCATAGCAGCAGGTC	AGAGTGTGGTTTCTGTAGCAACA	CTTCTCA 251
Query	3200	TGACCATCTGTTTTG	TGTTTATGATGATT	TTTCAGGTCTGTTGGTCAATCTC	ACAACCA 3259
Sbjct	252	TGACCATCTGTTTTG	TGTTTATGATGATT	TTTCAGGTCTGTTGGTCAATCTC	ACAACCA 311
Query	3260	TTGCATCTTGGCTGT	CATGGCTTCAGTACT	TCAGCATTCCACGATATGGATTT	ACGGCTT 3319
Sbjct	312	TTGCATCTTGGCTGT	CATGGCTTCAGTACT	TCAGCATTCCACGATATGGATTT	ACGGCTT 371
Query	3320	TGCAGCATAATGAAT	TTTTGGGACAAAACT	TCTGCCCAGGACTCAATGCAACA	GGAAACA 3379
Sbjct	372	TGCAGCATAATGAAT	TTTTGGGACAAAACT	TCTGCCCAGGACTCAATGCAACA	GGAAACA 431
Query	3380	ATCCTTGTAACTATG	CAACATGTACTGGCG	AAGAATATTTGGTAAAGCAGGGC	ATCGATC 3439
Sbjct	432	ATCCTTGTAACTATO	CAACATGTACTGGCG	AAGAATATTTGGTAAAGCAGGGC	ATCGATC 491
Query	3440	TCTCACCCTGGGGCT	TGTGGAAGAATCACG	TGGCCTTGGCTTGTATGATTGTT	ATTTTCC 3499
Sbjct	492	TCTCACCCTGGGGCT	TGTGGAAGAATCACG	TGGCCTTGGCTTGTATGATTGTT	ATTTTCC 551
Query	3500	TCACAATTGCCTACC	TGAAATTGTTATTTC	TTAAAAAATATTCTTAAATTGGA	TTCTAGA 3559
Sbjct	552	TCACAATTGCCTACC	TGAAATTGTTATTTC	TTAAAAAATATTCTTAAATTGGA	TTCTAGA 611
Query	3560	GGGCCCGTTTAAACC	CGCTGATCAGCCTCG	ACTGTGCCTTCTAGTTGCCAGCC	ATCTGTT 3619
Sbjct	612	GGGCCCGTTTAAACC	CGCTGATCAGCCTCG	ACTGTGCCTTCTAGTTGCCAGCC	ATCTGTT 671
Query	3620	GTTTGCCCCTCCCCC	GTGCCTTCCTTGACC	CTGGAAGGTGCCACTCCCACTGT	CCTTTCC 3679
Sbjct	672	GTTTGCCCCTCCCCC	GTGCCTTCCTTGACC	CTGGAAGGTGCCACTCCCACTGT	CCTTTCC 731
Query	3680	TAATAAAATGAGGAA	ATTGCATCGCATTGT	CTGAGTAGGTGTCATTCTATTCT	ggggggt 3739
Sbjct	732	TAATAAAATGAGGAA	ATTGCATCGCATTGT	CTGAGTAGGTGTCATTCTATTCT	GGGGGGT 791
Query	3740	ggggtggggCAGGAC	AGCAAGGGGGAGGAT	TGGGAAGACAATAGCAGGCATGC	TGGGGAT 3799
Sbjct	792	GGGGTGGGGCAGGAC	AGCAAGGGGGGAGGAT	TGGGAAGACAATAGCAGGCATGC	TGGGGAT 851
Query	3800	GCGGTGGGCTCTATG	GCTTCTGAGGCGGAA	AGAACCAGCTGGGGCTCTAGGGG	GTATCCC 3859
Sbjct	852	GCGGTGGGCTCTATO	GCTTCTGAGGCGGAA	AGAACCAGCTGGGGCTCTAGGGG	STATCCC 911
Query	3860	CACGCGCCCTGTAGC	GGCGCATTAAGCGCG	GCGGGTGTGGTGGTTACGCGCAG	CGTGACC 3919
Sbjct	912	CACGCGCCCTGTAGC	GGCGCATTAAGCGCG	GCGGGTGTGGTGGTTACGCGCAG	CGTGACC 971
Query	3920	GCTACACTTGCCAGO	GCCCTAGCGCCCGCT	CCTTTCGCTTTCTTCCCTTCCTT	TCTCGCC 3979
Sbjct	972	GCTACACTTGCCAGO	GCCCTAGCGCCCGCT	cctttcgctttcttcccttcctt	TCTCGCC 1031
Query	3980	ACGTTCGCCGGCTTT	CCCCGTCAAGCTCTA	AATCGGGGCATCCCTTTAGGGTT	CCGATTT 4039
Sbjct	1032	ACGTTCGCCGGCTTT	CCCCGTCAAGCTCTA	AATCGGGGGGCTCCCTTTAGGGTT	CCGATTT 1091
Query	4040	AGTGCTTTACGGCAC	CTCGACCCCAAAAAA	CTTGATTAGGGTGATGGTTCACG	TAGTGGG 4099
Sbjct	1092	AGTGCTTTACGGCAC	CTCGACCCCAAAAAA	CTTGATTAGGGTGATGGTTCACG	TAGTGGG 1151
Query	4100	CCATCGCCCTGATAG	ACGGTTTTTCGCCCT	TTGACGTTGG-AGTCCACGTTCT	TTAATAG 4158
Sbjct	1152	CCATCGCCCTGATAN	ACGGTTTTTCGCCCT	TTGACGTTGGAAGTCCACGTTCT	TTAATAG 1211
Query	4159	TGG-ACTCTTGTTCC	AAACTGGAA-CAACA	CT-CAACCCTATCT-CGG-TCTA	421
Sbjct	1212	TGGAACTCTTGTTCC	AANCTGGAAACAANN	INTTCAACCCTATCCNCGGNTCTA	1271
Query	4214	-GATTTATAA-GGGA	-TTTTGGGGA-TTTC	-GGCCTATTGG-TTAAAAAA-TG	AGC-TG- 4264
Sbjct	1272	TGATTTNNAAAGGGA	ATTTTGCCNAATTTC	CGGCCTATTGGGTTAAAAAAATGI	NNCCTGG 1331
Query	4265	ΑΤΤΤ-ΑΑCAAAAA-Τ	TT 4279		
Sbjct	1332	ATTTTAACAAAAANT	TT 1348		

6.2.5 M549E

T7 promoter (F)

Score		Expect	Identities	100(000()	Gaps	Strand	
2499 t	oits(135)	3) 0.0	1382/14	400(99%)	4/1400(0%)	Plus/Pl	us
Query Shict	909 14	TTAAGCTGGTACCGC			CCACAGTTCGAGAAGGGAGG		968 73
00000	060	CONTROLOGO	ACCORCO	CATGGTCCCAC	CCCCAGITIGANANGCITG	CACCAT	1029
Sbjct	74	CGGTGGAGGCTCAGG	AGGCAGCG				133
Query	1029	GGACAAAGACTGCGA	AATGAAGC	GCACCACCCTG	GATAGCCCTCTGGGCAAGC	IGGAACT	1088
Sbjct	134	GGACAAAGACTGCGA	AATGAAGC	GCACCACCCTG	GATAGCCCTCTGGGCAAGC	IGGAACT	193
Query	1089	GTCTGGGTGCGAACA	GGGCCTGC	ACGAGATCAAG	CTGCTGGGCAAAGGAACAT	TGCCGC	1148
Sbjct	194	GTCTGGGTGCGAACA		ACGAGATCAAG	CTGCTGGGCAAAGGAACATO	TGCCGC	253
Sbjct	254	CGACGCCGTGGAAGT	GCCTGCCC	CAGCCGCCGTG	CTGGGCGGACCAGAGCCAC	IIIIII IGATGCA	313
Query	1209	GGCCACCGCCTGGCT	CAACGCCT	ACTTTCACCAG	CCTGAGGCCATCGAGGAGT	гссстат	1268
Sbjct	314	GGCCACCGCCTGGCT	CAACGCCT	ACTTTCACCAG	CCTGAGGCCATCGAGGAGT	ГСССТСТ	373
Query	1269	GCCAGCCCTGCACCA	CCCAGTGT	TCCAGCAGGAG	AGCTTTACCCGCCAGGTGC	GTGGAA	1328
Sbjct	374	GCCAGCCCTGCACCA	CCCAGTGT	TCCAGCAGGAG	AGCTTTACCCGCCAGGTGC	IGTGGAA	433
Query	1329		GAAGTTCG				1388
Sbjct	434		GAAGTTCG	GAGAGGTCATC	AGCTACCAGCAGCTGGCCG	CCTGGC	493
Sbjct	494	CGGCAATCCCGCCGC	CACCGCCG	CCGTGAAAACC	GCCCTGAGCGGAAATCCCG	IIIII	553
Query	1449	TCTGATCCCCTGCCA	ссбббтбб	TGTCTAGCTCT	GGCGCCGTGGGGGGCTACG	AGGGCGG	1508
Sbjct	554	TCTGATCCCCTGCCA	ссееетее	TGTCTAGCTCT	GGCGCCGTGGGGGGCTACG/	leeecee	613
Query	1509	GCTCGCCGTGAAAGA	бтебстес	TGGCCCACGAG	GGCCACAGACTGGGCAAGC	TGGGCT	1568
Sbjct	614	GCTCGCCGTGAAAGA	бтобстос	TGGCCCACGAG	GGCCACAGACTGGGCAAGC	TGGGCT	673
Query	1569	GGGCGAATTCATGTC	TTCCAGTA	ATGTCGAAGTT	TTTATCCCAGTGTCACAAG	JAAACAC	1628
Sbjct	674	GGGCGAATTCATGTC	TTCCAGTA	ATGTCGAAGTT	TTTATCCCAGTGTCACAAG	AAACAC	733
Query	1629	CAATGGCTTCCCCGC	GACAGCTT	CCAATGACCTG	AAGGCATTTACTGAAGGAGG	TGTGTT	1688
Sbjct	734	CAATGGCTTCCCCGC	GACAGCTT	CCAATGACCTG	AAGGCATTTACTGAAGGAGG	TGTGTT	793
Query Sbjct	794	AAGTTTTCATAACAT	CTGCTATC	GAGTAAAACTG	AAGAGTGGCTTTCTACCTTC	TCGAAA	853
Query	1749	ACCAGTTGAGAAAGA	ΑΑΤΑΤΤΑΤ	CGAATATCAAT	GGGATCATGAAACCTGGTC	CAACGC	1808
Sbjct	854	ACCAGTTGAGAAAGA		CGAATATCAAT	GGGATCATGAAACCTGGTC	IIIIII ICAACGC	913
Query	1809	CATCCTGGGACCCAC	AGGTGGAG	GCAAATCTTCG	TTATTAGATGTCTTAGCTG	AAGGAA	1868
Sbjct	914	CATCCTGGGACCCAC	AGGTGGAG	GCAAATCTTCG	TTATTAGATGTCTTAGCTG	AAGGAA	973
Query	1869	AGATCCAAGTGGATT	ATCTGGAG	ATGTTCTGATA	AATGGAGCACCACGACCTG	CAACTT	1928
Sbjct	974	AGATCCAAGTGGATT	ATCTGGAG	ATGTTCTGATA	AATGGAGCACCACGACCTG	CAACTT	1033
Query	1929	CAAATGTAATTCAGG	TTACGTGG	TACAAGATGAT	GTTGTGATGGGCACTCTGA	GGTGAG	1988
Sbjct	1034	CAAATGTAATTCAGG	TTÁCGTGG	TACAAGATGAT	GTTGTGATGGGCACTCTGAG	GGTGAG	1093
Query	1989	AGAAAACTTACAGTT	CTCAGCAG		GCAACAACTATGACGAATC	ATGaaaa	2048
Sbjct	1094	AGAAAACTTACAGTT	CTCAGCAG	CTCTTCGGCTT	GCAACAACTATGACGAATC/	TGAAAA	1153
Query	2049	aaaCGAACGGATTAA	CAGGGTCA	TTCAAGAGTTA	GGTCTGGATAAAGTGGCAG/		2108
Sbjct	1154	AAACGAACGGATTAA	CAGGGTCA	TTCAAGAGTTA	GGTCTGGATAAAGTGGCAG/	ACTCCAA	1213
Query	2109	GGTTGGAACTCAGTT	TATCCGTG		GGAGAAAGAAAAAGGACTAG	TATAGG	2168
Sbjct	1214	GGTTGGAACTCAGTT	TATCCGTG	GTGNGTCTGGA	GGAGAAAGAAAAAGGACTAC	TATAGG	1273
Query	2169	AATGGAGCTTATCAC	I	CCATCTTGTTC	TTGGATGAGCCTACAACTG	CTTAG-	2227
Sbjct	1274	AATGGAGCTTATCAC	IGATCCTT	CCATCTTGGTC	TTGGATGAACCTACAACTG	AAATTC	1333
Query	2228	ACTCAAGCACAGCAA	AT-GCTGT		TGAAAAGGATGTCTAAGCAG	GGACGA	2286
Sbjct	1334	ACTCAAGCACAGCAA	ANGGCTGT	CETTINGNNEC	TGAAAAGGATGTCTAACCN	GACAA	1393
Query	2287	AC-AATCATC-TTCT	CCATT 2	304			
Sbjct	1394	ANNAATCANCNTTNT	CCATT 1	413			

Score		Europe	Identifies	Cane	Strand	
2348 b	oits(127	1) 0.0	1303/1320(99%)	7/1320(0%)	Plus/Plu	JS
Query	1872	TCCAAGTGGATTATC	TGGAGATGTTCTGATAA	TGGAGCACCACGACCTGCCA	ACTTCAA	1931
Sbjct	19	TCCNAGTGGATTATC	TGGAGATGTTCTGATAA	TGGAGCACCACGACCTGCCA	ACTTCAA	78
Query	1932	ATGTAATTCAGGTTA	CGTGGTACAAGATGATG	TGTGATGGGCACTCTGACGG	TGAGAGA	1991
Sbjct	79	ATGTAATTCAGGTTA	CGTGGTACAAGATGATG	TGTGATGGGCACTCTGACGG	TGAGAGA	138
Query	1992	AAACTTACAGTTCTC	AGCAGCTCTTCGGCTTG	CAACAACTATGACGAATCATG	iaaaaaaa 	2051
Sbjct	139	AAACTTACAGTTCTC	AGCAGCTCTTCGGCTTG			198
Query	100					2111
Ouerv	2112	TGGAACTCAGTTTAT	CGTGGTGTGTGTCTGGAG		TAGGAAT	2171
Sbjct	259	TGGAACTCAGTTTAT		AGAAAGAAAAAGGACTAGTA	TAGGAAT	318
Query	2172	GGAGCTTATCACTGA	ICCTTCCATCTTGTTCT	GGATGAGCCTACAACTGGCT	TAGACTC	2231
Sbjct	319	GGAGCTTATCACTGA	TCCTTCCATCTTGTTCT	GGATGAGCCTACAACTGGCT	TAGACTC	378
Query	2232	AAGCACAGCAAATGC	TGTCCTTTTGCTCCTGA	AAGGATGTCTAAGCAGGGAC	GAACAAT	2291
Sbjct	379	AAGCACAGCAAATGC	TGTCCTTTTGCTCCTGA	AAGGATGTCTAAGCAGGGAG	GAACAAT	438
Query	2292	CATCTTCTCCATTCA	TCAGCCTCGATATTCCA	CTTCAAGTTGTTTGATAGCO	TCACCTT	2351
Sbjct	439	CATCTTCTCCATTCA	TCAGCCTCGATATTCCA	CTTCAAGTTGTTTGATAGCO	TCACCTT	498
Query	2352	ATTGGCCTCAGGAAG	ACTTATGTTCCACGGGC	TGCTCAGGAGGCCTTGGGA	ACTTTGA	2411
Sbjct	499	ATTGGCCTCAGGAAG	ACTTATGTTCCACGGGC	TGCTCAGGAGGCCTTGGGA	ACTTTGA	558
Query	2412					2471
Ouerv	2472		TGCTGTGGGCATTAACA			2531
Sbict	619	TAATGGAGATTCCAC	TGCTGTGGCATTAAACA			678
Query	2532	CATAGAGCCTTCCAA	GCAGGATAAGCCACTCA	AGAAAAATTAGCGGAGATTT	ATGTCAA	2591
Sbjct	679	CATAGAGCCTTCCAA	GCAGGATAAGCCACTCA	AGAAAAATTAGCGGAGATTI	ATGTCAA	738
Query	2592	стестесттетасаа	AGAGACAAAAGCTGAAT	ACATCAACTTTCCGGGGGTG	iAGAAGAA	2651
Sbjct	739	стестесттетасаа	AGAGACAAAAGCTGAAT	ACATCAACTTTCCGGGGGT	AGAAGAA	798
Query	2652	GAAGAAGATCACAGT	CTTCAAGGAGATCAGCTA		AACTCAG	2711
Sbjct	799	GAAGAAGATCACAGT	CTTCAAGGAGATCAGCTA	ACACCACCTCCTTCTGTCATC	AACTCAG	858
Query	2712	ATGGGTTTCTAAGCG	TTCATTCAAAAACTTGC	GGGTAATCCCCAGGCCTCTA	TAGCTCA	2771
Sbjct	859	ATGGGTTTCTAAGCG	TTCATTCAAAAACTTGC	GGGTAATCCCCAGGCCTCTA	TAGCTCA	918
Query	2//2					2831
Ouerv	2832	TGATTCTACTGGAAT				2891
Sbjct	979	TGATTCTACTGGAAT		TCTCTTCTTCCTGACGACCA	ACCAGTG	1038
Query	2892	TTTCAGCAGTGTTTC	AGCCGTGGAACTCTTTG	GGTAGAGAAGAAGCTCTTCA	TACATGA	2951
Sbjct	1039	TTTCAGCAGTGTTTC	AGCCGTGGAACTCTTTG	GGTAGAGAAGAAGCTCTTCA	TACATGA	1098
Query	2952	ATACATCAGCGGATA	CTACAGAGTGTCATCTT	ATTTCCTTGGAAAACTGTTA1	CTGATTT	3011
Sbjct	1099	ATACATCAGCGGATA	CTACAGAGTGTCATCTTA	ATTTCCTTGGAAAACTGTTAT	CTGATTT	1158
Query	3012	ATTACCCATGAGGAT	GTTACCAAGTATTATAT	TACCTGTATAGTGTACTTCA	TGTTAGG	3071
Sbjct	1159	ATTACCCATGAGGAT	GTTACCAAGTATTATAT	TACCTGTATAGTGTACTTCA	TGTTAGG	1218
Query	3072	ATTGAAGCCAAAGGC	AGATGCCTTCTTCGTTAT	GAT-GTTTACCCTTATGAT-	GGTGGCT	3129
Sbjct	1219	ATTGAAGCCAAAGGC	AGATGCCTTCTTCGTTA	GAAGGTTTACCCTTATGAAG	GGTGGCT	1278
Query	3130		ATGGC-ACTGG-CCATA0	SCAGC-AGGTCAGAGTGTC		3184
SUJCT	1279	TATTCNOCCAGTTCC	A LOOONAC LOOGCCATAN	ICHINECAGG ECAGAANNGG TO	anncia	1338

Score		Expect	Identities	Gaps	Strand
2348 b	its(127	1) 0.0	1327/1363(97%)	7/1363(0%)	Plus/Plus
Query	2324	TCTTCAAGTTGTTTG		GGCCTCAGGAAGACTTATGTTCC	ACGGGC 2383
Sojee		exected and the	TAGETTACT		
Query Sbjct	2384 73			AGCTGGTTATCACTGTGAGGCC	TATAATA 2443
Query	2444	ACCCTGCAGACTTCT	TCTTGGACATCATTAA	TGGAGATTCCACTGCTGTGGCA	TTAAACA 2503
Sbjct	133	ACCCTGCAGACTTCT	TCTTGGACATCATTAA	TGGAGATTCCACTGCTGTGGCA	TAAACA 192
Query	2504	GAGAAGAAGACTTTA	AAGCCACAGAGATCAT	AGAGCCTTCCAAGCAGGATAAG	CACTCA 2563
Sbjct	193	GAGAAGAAGACTTTA	AAGCCACAGAGATCAT	AGAGCCTTCCAAGCAGGATAAG	CACTCA 252
Query	2564	TAGAAAAATTAGCGG	AGATTTATGTCAACTC	CTCCTTCTACAAAGAGACAAAAG	CTGAAT 2623
Sbjct	253	TAGAAAAATTAGCGG	AGATTTATGTCAACTC	CTCCTTCTACAAAGAGACAAAA	ICTGAAT 312
Query	2024				
Sbjct	313	TACATCAACTTTCCG	GGGGTGAGAAGAAGAA	GAAGATCACAGTCTTCAAGGAG/	ATCAGCT 372
Query	2684		GTCATCAACTCAGATG	GGTTTCTAAGCGTTCATTCAAAA	VACTTGC 2743
Sbjct	373	ACACCACCTCCTTCT	GTCATCAACTCAGATG	GGTTTCTAAGCGTTCATTCAAA/	ACTTGC 432
Query	2744	TGGGTAATCCCCAGG	CCTCTATAGCTCAGAT	CATTGTCACAGTCGTACTGGGA	TGGTTA 2803
Sbjct	433	TGGGTAATCCCCAGG	CCTCTATAGCTCAGAT		TGGTTA 492
Query	2804				
Sbjct	493	TAGGTGCCATTTACT	TTGGGCTAAAAAATGA	TTCTACTGGAATCCAGAACAGA	iCTGGGG 552
Query	2864	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTT	CAGCAGTGTTTCAGCCGTGGAA	TCTTTG 2923
Sbjct	553	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTT	CAGCAGTGTTTCAGCCGTGGAA	TCTTTG 612
Query	2924	TGGTAGAGAAGAAGC	TCTTCATACATGAATA	CATCAGCGGATACTACAGAGTG	CATCTT 2983
Sbjct	613	TGGTAGAGAAGAAGC	TCTTCATACATGAATA	CATCAGCGGATACTACAGAGTG	CATCTT 672
Query	2984	ATTTCCTTGGAAAAC	TGTTATCTGATTTATT	ACCCATGAGGATGTTACCAAGT	ATTATAT 3043
Sbjct	673	ATTTCCTTGGAAAAC	TGTTATCTGATTTATT	ACCCATGAGGATGTTACCAAGT	ATTATAT 732
Query	3044	TTACCTGTATAGTGT	ACTTCATGTTAGGATT	GAAGCCAAAGGCAGATGCCTTC	TCGTTA 3103
Sbjct	733	TTACCTGTATAGTGT	ACTTCATGTTAGGATT	GAAGCCAAAGGCAGATGCCTTC	TCGTTA 792
Query	3104	TGATGTTTACCCTTA	TGATGGTGGCTTATTC	AGCCAGTTCCATGGCACTGGCC	\TAGCAG 3163
Sbjct	793	TGATGTTTACCCTTA	TGATGGTGGCTTATTC	AGCCAGTTCCATGGCACTGGCC	TAGCAG 852
Query	3164	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACT	TCTCATGACCATCTGTTTTGTG	TTATGA 3223
Sbjct	853	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACT	TCTCATGACCATCTGTTTTGTG	TCÁTGG 912
Query	3224	TGATTTTTTCAGGTC	TGTTGGTCAATCTCAC	AACCATTGCATCTTGGCTGTCA	IGGCTTC 3283
Sbjct	913	AGATTTTTTCAGGTC	TGTTGGTCAATCTCAC	AACCATTGCATCTTGGCTGTCA	IGGCTTC 972
Query	3284	AGTACTTCAGCATTC	CACGATATGGATTTAC	GGCTTTGCAGCATAATGAATTT	TGGGAC 3343
Sbjct	973	AGTACTTCAGCATTC	CACGATATGGATTTAC	GGCTTTGCAGCATAATGAATTT	TGGGAC 1032
Query	3344	AAAACTTCTGCCCAG	GACTCAATGCAACAGG	AAACAATCCTTGTAACTATGCA	ACATGTA 3403
Sbjct	1033	AAAACTTCTGCCCAG	GACTCAATGCAACAGG	AAACAATCCTTGTAACTATGCA	ACATGTA 1092
Query	3404	CTGGCGAAGAATATT	TGGTAAAGCAGGGCAT	CGATCTCTCACCCTGGGGCTTG	IGGAAGA 3463
Sbjct	1093	CTGGCGAAGAATATT	TGGTAAAGCAGGGCAT	CGATCTCTCACCCTGGGGCTTG	GGAANA 1152
Query	3464	ATCACGTGGCCTTGG	CTTGTATGATTGTTAT	TTTCCTCACAATTGCCTACCTG/	AATTGT 3523
Sbjct	1153	ATCACGTGGCCTTGG	CTTGGATGATTGTTAT	TTTCCTC-CAATTGCCTACCTG/	AATTGT 1211
Query	3524	ТАТТТСТТААААААТ	ATTCTTAAATTGGATT	CTAGAGGGCCCGTTTAAACCCG	TGATCA 3583
Sbjct	1212	TATTTCTTAAAAAAA	NTTCTTAAATTGGATT	CTAGAGGGCCCGTTTAAACCCG	TGATCA 1271
Query	3584	GCCTCGACTGTGCCT	TCTAGTTGCCAGCCAT	CTGTTGTTTGCCCCTCCCCGT	CCTTCC 3643
Sbjct	1272	GCCTCAANNNGGCCT	TNNA-TTGCCNGCCAN	CTGTTGTTNGCCNNNCCCC-GT0	-CTTCC 1328
Query	3644	TTGACCCTGGAAGGT	GCCACTCCCACTGTCC	TTTCCTAATAAA 3686	
Sbjct	1329	TTGACCNNGGAAGGG	GCC-CNNCCCNGGTCC	TTTCC-AATAAA 1369	

Score		Expect	Identities	Gaps	Strand
2375 b	its(128	6) 0.0	1309/1323(99%)	0/1323(0%)	Plus/Plus
Query	2960	GCGGATACTACAGAG	TGTCATCTTATTTCCT	TGGAAAACTGTTATCTGATTTA	TACCCA 3019
Sbjct	13	GCGGANACTACAGAG	TGTCATCTTATTTCCT	TGGAAAACTGTTATCTGATTTA	TACCCA 72
Query	3020	TGAGGATGTTACCAA	GTATTATATTTACCTG	TATAGTGTACTTCATGTTAGGA	TGAAGC 3079
Sbjct	73	TGAGGATGTTACCAA	GTATTATATTTACCTG	TATAGTGTACTTCATGTTAGGA	TGAAGC 132
Query	3080	CAAAGGCAGATGCCT	TCTTCGTTATGATGTT	TACCCTTATGATGGTGGCTTAT	CAGCCA 3139
Sbjct	133	CAAAGGCAGATGCCT	TCTTCGTTATGATGTT	TACCCTTATGATGGTGGCTTAT	rcágccá 192
Query	3140	GTTCCATGGCACTGG	CCATAGCAGCAGGTCA	GAGTGTGGTTTCTGTAGCAACA	TTCTCA 3199
Sbjct	193	GTTCCATGGCACTGG	GCCATAGCAGCAGGTCA	GAGTGTGGTTTCTGTAGCAACA	TTCTCA 252
Query	3200				ACAACCA 3259
SDJCt	253	TGACCATCIGITIIG	I G I I CA I GGAGA I I I I		ACAALLA 312
Query	3260				1000011 3319
Ouenv	2220	TGCAGCATAATGAAT	TTTTGGGACAAAACTT	CAGCATTCCACGATATGGATTT	COUCTI 572
Shict	373				
Oueeu	2200		CANCATGIACIGGGG		TCCATC 3430
Sbict	433				11041C 3439
Query	3440	TETEACCETGGGGET	TGTGGAAGAATCACGT	GECTIGECTIGIATEATIGT	TTTTCC 3499
Sbict	493	TCTCACCCTGGGGCT	TGTGGAAGAATCACGT	GCCTTGGCTTGTATGATTGTT	1111111 ATTTTCC 552
Ouerv	3500	TCACAATTGCCTACC	TGADATTGTTATTTCT	ταδαδαστάττετταδάττοσα	TCTAGA 3559
Sbjct	553	TCACAATTGCCTACC	TGAAATTGTTATTTCT	TAAAAAATATTCTTAAATTGGA	TCTAGA 612
Query	3560	GGGCCCGTTTAAACC	CGCTGATCAGCCTCGA	CTGTGCCTTCTAGTTGCCAGCC	ATCTGTT 3619
Sbjct	613	GGGCCCGTTTAAACC	CGCTGATCAGCCTCGA	CTGTGCCTTCTAGTTGCCAGCC/	ATCTGTT 672
Query	3620	GTTTGCCCCTCCCCC	GTGCCTTCCTTGACCC	TGGAAGGTGCCACTCCCACTGT	CTTTCC 3679
Sbjct	673	GTTTGCCCCTCCCCC	GTGCCTTCCTTGACCC	TGGAAGGTGCCACTCCCACTGT	CTTTCC 732
Query	3680	TAATAAAATGAGGAA	ATTGCATCGCATTGTC	TGAGTAGGTGTCATTCTATTCT	gggggt 3739
Sbjct	733	TAATAAAATGAGGAA	ATTGCATCGCATTGTC	TGAGTAGGTGTCATTCTATTCT	GGGGGGT 792
Query	3740	ggggtggggCAGGAC	AGCAAGGGGGGAGGATT	GGGAAGACAATAGCAGGCATGC	GGGGAT 3799
Sbjct	793	GGGGTGGGGCAGGAC	AGCAAGGGGGGGGGGGAGGATT	GGGAAGACAATAGCAGGCATGC	GGGGGAT 852
Query	3800	GCGGTGGGCTCTATG	GCTTCTGAGGCGGAAA	GAACCAGCTGGGGCTCTAGGGG	STATCCC 3859
Sbjct	853	GCGGTGGGCTCTATG	GCTTCTGAGGCGGAAA	GAACCAGCTGGGGCTCTAGGGG	TATCCC 912
Query	3860	CACGCGCCCTGTAGC	GGCGCATTAAGCGCGG		GTGACC 3919
Sbjct	913	CACGCGCCCTGTAGC	GGCGCATTAAGCGCGG	CGGGTGTGGTGGTTACGCGCAG	CGTGACC 972
Query	3920				
Ouerv	3980	ACGTICGCCGGCTTT		ATCGGGGCATCCCTTTAGGGTT	CGATTT 4039
Sbjct	1033	ACGTTCGCCGGCTTT	CCCCGTCAAGCTCTAA	ATCGGGGGCTCCCTTTAGGGTT	CGATTT 1092
Query	4040	AGTGCTTTACGGCAC	CTCGACCCCAAAAAAA	TTGATTAGGGTGATGGTTCACG	AGTGGG 4099
Sbjct	1093	AGTGCTTTACGGCAC	CTCGACCCCAAAAAAC	TTGATTAGGGTGATGGTTCACG	TAATGGG 1152
Query	4100	CCATCGCCCTGATAG	ACGGTTTTTCGCCCTT	TGACGTTGGAGTCCACGTTCTT	TAATAGT 4159
Sbjct	1153	CCATCGCCCTGATAG	ACGGTTTTTCGCCCTT	TGACGTTGGAGTCCACGTTCTT	TAATAGT 1212
Query	4160	GGACTCTTGTTCCAA	ACTGGAACAACACTCA	ACCCTATCTCGGTCTATTCTTT	GATTTA 4219
Sbjct	1213	GGACTCTTGTTCCAA	ACTGGAACAACACTCA	ACCCTATCTCGGTCTATTCTTT	IGATITN 1272
Query	4220	TAAGGGATTTTGGGG	ATTTCGGCCTATTGGT	TAAAAAATGAGCTGATTTAACA	AAAATTT 4279
Sbjct	1273	NAAGGGATTTTGCCN	IATTTCGGCCTATTGGT	TAAAAAATGACCTGATTTAACA	AAATTN 1332
Query	4280	AAC 4282			
Sbjct	1333	AAC 1335			

6.2.6 A397S/V401A/L539A - Mut1

T7 promoter (F)

Score 2519 b	its(136	Expect 4) 0.0	Identities 1377/1387(99%)	Gaps 1/1387(0%)	Strand Plus/Plus
0.000	012				AAGCGG 071
Sbict	17				AAGCGG 971
Query	972	TGGAGGCTCAGGAGG	CAGCGCATGGTCCCACC	CCCAGTTTGAAAAGCTTGCCAC	CATGGA 1031
Sbjct	77	TGGAGGCTCAGGAGG	CAGCGCATGGTCCCACC	CCCAGTTTGAAAAGCTTGCCAC	CATGGA 136
Query	1032	CAAAGACTGCGAAAT	GAAGCGCACCACCCTGG	ATAGCCCTCTGGGCAAGCTGGA	ACTGTC 1091
Sbjct	137	CAAAGACTGCGAAAT	GAAGCGCACCACCCTGG	ATAGCCCTCTGGGCAAGCTGGA	ACTGTC 196
Query	1092				CGCCGA 1151
Query	1152	CGCCGTGGAAGTGCC	TGCCCCAGCCGCCGTGC	TGGGCGGACCAGAGCCACTGAT	GCAGGC 1211
Sbjct	257	CGCCGTGGAAGTGCC	TGCCCCAGCCGCCGTGC	TGGGCGGACCAGAGCCACTGAT	GCAGGC 316
Query	1212	CACCGCCTGGCTCAA	CGCCTACTTTCACCAGC	CTGAGGCCATCGAGGAGTTCCC	TGTGCC 1271
Sbjct	317	CACCGCCTGGCTCAA	CGCCTACTTTCACCAGC	CTGAGGCCATCGAGGAGTTCCC	TGTGCC 376
Query	1272	AGCCCTGCACCACCC	AGTGTTCCAGCAGGAGA	GCTTTACCCGCCAGGTGCTGTG	GAAACT 1331
Ouerv	1332	GCTGAAAGTGGTGAA		GCTACCAGCAGCTGGCCGCCCT	GGCCGG 1391
Sbjct	437	GCTGAAAGTGGTGAA	GTTCGGAGAGGTCATCA	GCTACCAGCAGCTGGCCGCCCT	 GGCCGG 496
Query	1392	CAATCCCGCCGCCAC	CGCCGCCGTGAAAACCG	CCCTGAGCGGAAATCCCGTGCC	CATTCT 1451
Sbjct	497	CAATCCCGCCGCCAC	CGCCGCCGTGAAAACCG	CCCTGAGCGGAAATCCCGTGCC	CATTCT 556
Query	1452	GATCCCCTGCCACCO	GGTGGTGTCTAGCTCTG	GCGCCGTGGGGGGGCTACGAGGG	CGGGCT 1511
Sbjct	1512	GATCCCCTGCCACCO	GGTGGTGTCTAGCTCTG	GCGCCGTGGGGGGCTACGAGGG	CGGGCT 616
Sbjct	617	CGCCGTGAAAGAGTG	GCTGCTGGCCCACGAGG	GCCACAGACTGGGCAAGCCTGG	IIIIII GCTGGG 676
Query	1572	CGAATTCATGTCTTC	CAGTAATGTCGAAGTTT	TTATCCCAGTGTCACAAGGAAA	CACCAA 1631
Sbjct	677	CGAATTCATGTCTTC	CAGTAATGTCGAAGTTT	TTATCCCAGTGTCACAAGGAAA	CACCAA 736
Query	1632	TGGCTTCCCCGCGAC	AGCTTCCAATGACCTGA	AGGCATTTACTGAAGGAGCTGT	GTTAAG 1691
Sbjct	737	TGGCTTCCCCGCGAG	AGCTTCCAATGACCTGA	AGGCATTTACTGAAGGAGCTGT	ĠŤŤĂĂĠ 796
Query	1692 797		CTATCGAGTAAAACTGA		AAAACC 1751
Query	1752	AGTTGAGAAAGAAAT	ATTATCGAATATCAATG	GGATCATGAAACCTGGTCTCAA	CGCCAT 1811
Sbjct	857	AGTTGAGAAAGAAAT	ATTATCGAATATCAATG	GGATCATGAAACCTGGTCTCAA	CGCCAT 916
Query	1812	CCTGGGACCCACAGG	TGGAGGCAAATCTTCGT	TATTAGATGTCTTAGCTGCAAG	GAAAGA 1871
Sbjct	917	CCTGGGACCCACAGG	TGGAGGCAAATCTTCGT	TATTAGATGTCTTAGCTGCAAG	GAAAGA 976
Query	1872		TGGAGATGTTCTGATAA	ATGGAGCACCACGACCTGCCAA	CTTCAA 1931
Ouery	1932	ATGTAATTCAGGTTA	CGTGGTACAAGATGATG	TTGTGATGGGCACTCTGACGGT	GAGAGA 1991
Sbjct	1037	ATGTAATTCAGGTTA	CGTGGTACAAGATGATG	TTGTGATGGGCACTCTGACGGT	 GAGAGA 1096
Query	1992	AAACTTACAGTTCTC	AGCAGCTCTTCGGCTTG	CAACAACTATGACGAATCATG	aaaaaa 2051
Sbjct	1097	AAACTTACAGTTCTC	AGCAGCTCTTCGGCTTG	CAACAACTATGACGAATCATGA	AAAAAA 1156
Query	2052	CGAACGGATTAACAG	GGTCATTCAAGAGTTAG	GTCTGGATAAAGTGGCAGACTC	CAAGGT 2111
Sbjct	2112		GGTCATTCAAGAGTTAG	GTCTGGATAAAGTGGCAGACTC	CAAGGT 1216
Sbjct	1217	TGGAACTCAGTTTAT	CCGTGGTGTGTGTCTGGAG	GAGAANNAAAAAGGACTAGTAT	AGGAAT 1276
Query	2172	GGAGCTTATCACTGA	TCCTTCCATCTTGTTCT	TGGATGAGCCTACAACTGGCTT	AGACTC 2231
Sbjct	1277	GGAGCTTATCACTGA	TCCTTCCATCTTGTTCT	TGGATGAACCTACAACTGGCTT	AGACTC 1336
Query	2232	AAGCACAGCAAATGC	TGTCCTTTTGCTCCTGA	AAAGGATGTCTAAG-CAGGGAC	GAACAA 2290
Sbjct	1337	AAGNNCAGCAAATGO	TGTCCTTTTGCTCCTGA	AAAGGATGTCTAANCCAGGGAC	NAANAA 1396
Query	2291	TCATCTT 2297			
Jugue	1337	1CMMC11 1403			

Jey							
Score 2333 b	its(126	3)	Expect 0.0	Identities 1289/1302(99%)	Gaps 5/1302(0%)	Strand Plus/Pl	us
Query	1876	AGTGGAT	TATCTGGA	GATGTTCTGATAAATGGA	GCACCACGACCTGCCAACTT	CAAATGT	1935
Sbjct	24	AGTGGAT	TATCTGGA	GATGTTCTGATAAATGGA	GCACCACGACCTGCCAACTT	CAAATGT	83
Query	1936	AATTCAG	GTTACGTG	STACAAGATGATGTTGTG	ATGGGCACTCTGACGGTGAG	AGAAAAC	1995
Sbjct	84	AATTCAG	GTTACGTG	STACAAGATGATGTTGTG	ATGGGCACTCTGACGGTGAG	AGAAAAC	143
Query	1996	TTACAGT	TCTCAGCA	GCTCTTCGGCTTGCAACA	ACTATGACGAATCATGaaaa;	aaaCGAA	2055
Sbjct	144	TTACAGT	TCTCAGCA	GCTCTTCGGCTTGCAACA	ACTATGACGAATCATGAAAA	AAACGAA	203
Query	2056	CGGATTA	ACAGGGTC/	ATTCAAGAGTTAGGTCTG	GATAAAGTGGCAGACTCCAA	GTTGGA	2115
Sbjct	204	CGGATTA	ACAGGGTC	ATTCAAGAGTTAGGTCTG	GATAAAGTGGCAGACTCCAA	GGTTGGA	263
Query	2116	ACTCAGT		GTGTGTCTGGAGGAGAA	AGAAAAAGGACTAGTATAGG/	AATGGAG	2175
Sbjct	264	ACTCAGT	TTATCCGT	GTGTGTCTGGAGGAGAA	AGAAAAAGGACTAGTATAGG	AATGGAG	323
Query	2176				GAGCCTACAACTGGCTTAGA	CTCAAGC	2235
SDjct	324		LIGATCCT	ICCATCTIGTTCTTGGAT	GAUCCTACAACTGGCTTAGA		383
Query Shirt	2235						2295
Oueru	2204	TTCTCCA	TTCATCAC			TTATTO	2255
Shict	444						583
Ouerv	2356	GEETEAG	GAAGACTT			IGAATCA	2415
Sbict	504	GCCTCAG	GAAGACTT				563
Ouerv	2416	GCTGGTT	ATCACTGT	GAGGCCTATAATAACCCT	GCAGACTTCTTCTTGGACAT	CATTAAT	2475
Sbjct	564	GCTGGTT	ATCACTGT	GAGGCCTATAATAACCCT	GCAGACTTCTTCTTGGACAT		623
Query	2476	GGAGATT	CCACTGCT	GTGGCATTAAACAGAGAA	GAAGACTTTAAAGCCACAGA	GATCATA	2535
Sbjct	624	GGAGATT	CCACTGCT	GTGGCATTAAACAGAGAA	GAAGACTTTAAAGCCACAGA	GATCATA	683
Query	2536	GAGCCTT	CCAAGCAG	SATAAGCCACTCATAGAA	AAATTAGCGGAGATTTATGT	CAACTCC	2595
Sbjct	684	GAGCCTT	CCAAGCAG	GATAAGCCACTCATAGAA	AAATTAGCGGAGATTTATGT	CAACTCC	743
Query	2596	тссттст	ACAAAGAG	ACAAAAGCTGAATTACAT	CAACTTTCCGGGGGGTGAGAA	GAAGAAG	2655
Sbjct	744	tccttct	ACAAAGAG	ACAAAAGCTGAATTACAT	CAACTTTCCGGGGGGGGAGAA	GAAGAAG	803
Query	2656	AAGATCA	CAGTCTTC	AAGGAGATCAGCTACACC	ACCTCCTTCTGTCATCAACT	CAGATGG	2715
Sbjct	804	AAGATCA	CAGTCTTC	AAGGAGATCAGCTACACC	ACCTCCTTCTGTCATCAACT	CAGATGG	863
Query	2716	GTTTCTA	AGCGTTCA	TTCAAAAACTTGCTGGGT	AATCCCCAGGCCTCTATAGC	TCAGATC	2775
Sbjct	864	GTTTCTA	AGCGTTCA	TTCAAAAACTTGCTGGGT	AATCCCCAGGCCTCTATATC	TCAGATC	923
Query	2776	ATTGTCA	CAGTCGTA	CTGGGACTGGTTATAGGT	GCCATTTACTTTGGGCTAAA	AAATGAT	2835
Sbjct	924	ATTĞCĊĂ	CAGTCGTA	CTGGGACTGGTTATAGGT	GCCATTTACTTTGGGCTAAA	AAATGAT	983
Query	2836	TCTACTG	GAATCCAG	AACAGAGCTGGGGTTCTC	TTCTTCCTGACGACCAACCA		2895
Sbjct	984	TCTACTG	GAATCCAG/	AACAGAGCTGGGGTTCTC	TTCTTCCTGACGACCAACCA	STGTTTC	1043
Query	2896	AGCAGTG		STGGAACTCTTTGTGGTA	GAGAAGAAGCTCTTCATACA	IGAATAC	2955
Sbjct	1044	AGCAGTG	TTCAGCC	GIGGAACTCTTTGTGGTA	GAGAAGAAGCTCTTCATACA	IGAATAC	1103
Query	2956						3015
SDjct	1104	ATCAGCG	GATACTAC/				1163
Query Shict	1164						10075
Ouery	3074	AAGCCAA	AGGEAGAT	SCETTETTESTTATEATE	TTACCC_TTATGAT_GGTG	SCITATI	3122
Shict	1224						1283
Ouerv	3134	CAGCCAG	TTCCATGG	-CACT-GGCCATAGCAGC	-AGGTCAGA 3172		
Sbict	1284		TTCCATGG		CAGGTENGA 1325		
Jugue	4104	CHARLENG	- recented	CITC THOSE CAT POLICARE	enadicition 1020		

Score 2410 H	hite(130	Expect 5) 0.0	Identities 1362/1394(98%)	Gaps 10/1394(0%)	Strand Dlue/Dlue
0	2224		1302/1354(50/8)	10,1334(0.0)	
Query Sbjct	2324 14			GGCCTCAGGAAGACTTATGTTCC/	ACGGGC 2383
Query	2384	CTGCTCAGGAGGCCT	TGGGATACTTTGAATC	AGCTGGTTATCACTGTGAGGCCT	TAATA 2443
Sbjct	73	CTGCTCAGGAGGCCT	TGGGATACTTTGAATC	AGCTGGTTATCACTGTGAGGCCT/	ATAATA 132
Query	2444	ACCCTGCAGACTTCT	TCTTGGACATCATTAA	TGGAGATTCCACTGCTGTGGCAT	TAAACA 2503
Sbjct	133	ACCCTGCAGACTTCT	TCTTGGACATCATTAA	TGGAGATTCCACTGCTGTGGCAT	AAACA 192
Sbjct	193	GAGAAGAAGACTTTA	AAGCCACAGAGATCAT	AGAGCCTTCCAAGCAGGATAAGC	ACTCA 2503
Query	2564	TAGAAAAATTAGCGG	AGATTTATGTCAACTC	CTCCTTCTACAAAGAGACAAAAG	TGAAT 2623
Sbjct	253	TAGAAAAATTAGCGG	AGATTTATGTCAACTC	CTCCTTCTACAAAGAGACAAAAG	TGAAT 312
Query	2624	TACATCAACTTTCCG	GGGGTGAGAAGAAGAA	GAAGATCACAGTCTTCAAGGAGA	CAGCT 2683
Sbjct	313	TACATCAACTTTCCG	ĠĠĠĠŦĠĂĠĂĂĠĂĂĠĂĂ	GAAGATCACAGTCTTCAAGGAGA	rcágct 372
Query	2684	ACACCACCTCCTTCT	GTCATCAACTCAGATG	GGTTTCTAAGCGTTCATTCAAAA	ACTTGC 2743
Sbjct	373		GTCATCAACTCAGATG	GGTTTCTAAGCGTTCATTCAAAA	ACTTGC 432
Sbjct	433	TGGGTAATCCCCAGG		CATTGCCACAGTCGTACTGGGAC	IIIIII IGGTTA 492
Query	2804	TAGGTGCCATTTACT	TTGGGCTAAAAAATGA	TTCTACTGGAATCCAGAACAGAG	TGGGG 2863
Sbjct	493	TAGGTGCCATTTACT	TTGGGCTAAAAAATGA	TTCTACTGGAATCCAGAACAGAG	TGGGG 552
Query	2864	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTT	CAGCAGTGTTTCAGCCGTGGAAC	CTTTG 2923
Sbjct	553	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTT	CAGCAGTGTTTCAGCCGTGGAAC	CTTTG 612
Query	2924	TGGTAGAGAAGAAGC	TCTTCATACATGAATA	CATCAGCGGATACTACAGAGTGT	CATCTT 2983
Sbjct	613	TGGTAGAGAAGAAGC	TCTTCATACATGAATA	CATCAGCGGATACTACAGAGTGT	CATCTT 672
Query	2984			ACCCATGAGGATGTTACCAAGTA 	
Ouerv	3044	TTACCIGIATAGIGI		SAAGCCAAAGGCAGATGCCTTCT	CGTTA 3183
Sbjct	733	TTACCTGTATAGTGT	ACTTCATGTTAGGATT	GAAGCCAAAGGCAGATGCCTTCT	IIIII ICGTTA 792
Query	3104	TGATGTTTACCCTTA	TGATGGTGGCTTATTC	AGCCAGTTCCATGGCACTGGCCA	AGCAG 3163
Sbjct	793	TGATGTTTACCCTTA	TGATGGTGGCTTATTC	AGCCAGTTCCATGGCACTGGCCA	AGCAG 852
Query	3164	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACT	TCTCATGACCATCTGTTTTGTGT	TATGA 3223
Sbjct	853	CAGGTCAGAGTGTGG	TTTCTGTAGCAACAGC	TCTTATGACCATCTGTTTTGTGT	TÁTGÁ 912
Query Sbict	3224 913	TGATTTTTTCAGGTC	TGTTGGTCAATCTCAC	AACCATTGCATCTTGGCTGTCATC	GCTTC 3283
Query	3284	AGTACTTCAGCATTC	CACGATATGGATTTAC	GGCTTTGCAGCATAATGAATTTT	rgggac 3343
Sbjct	973	AGTACTTCAGCATTC	CACGATATGGATTTAC	GGCTTTGCAGCATAATGAATTTT	[[]]] [GGGAC 1032
Query	3344	AAAACTTCTGCCCAG	GACTCAATGCAACAGG	AAACAATCCTTGTAACTATGCAA	ATGTA 3403
Sbjct	1033	AAAACTTCTGCCCAG	GACTCAATGCAACAGG	AAACAATCCTTGTAACTATGCAA	ATGTA 1092
Query	3404	CTGGCGAAGAATATT	TGGTAAAGCAGGGCAT	CGATCTCTCACCCTGGGGCTTGTC	GAAGA 3463
Sbjct	1093	CTGGCGAAGAATATT	TGGTAAAGCAGGGCAT	CGATCTCTCACCCTGGGGCTTGT	GAANA 1152
Query	3464	ATCACGTGGCCTTGG			ATTGT 3523
Sbjct	1153	ATCACGTGGCCTTGG	CTIGIAIGATIGITAT	TTTCCTCACAATTGCCTACCTGA	ATTGT 1212
Sbjct	1213				GATCA 3583
Query	3584	GCCTCGACTGT-GCC	TTCTAGTTGCCAGCCA	TCTGTT-GTTTGCCCCTCCCC-	STGCCT 3640
Sbjct	1273	GCCTCGACTGTNGCC	TTCTAGTTGCCNGCCA		GGCCT 1332
Query	3641	TCCTTG-ACCCTGGA	A-GGTGCCACTCCCAC	TGT-CCTTTCCTAATAAAA-TGA	G-AAA 3695
Sbjct	1333	TCCTTGGACCCTGGA	AAGGTGCCCNNCCNNN	TGGNCCTTTCCNAAAAAAANTGA	GNAAA 1392
Query	3696	TTGCAT-CGCATTG	3708		
Sbjct	1393	TTGCATNCCCATTG	1406		

Score		Expect	Identities	Gaps	Strand	
2427 t	oits(1314	4) 0.0	1354/1380(98%)	2/1380(0%)	Plus/Plu	US
Query	2960	GCGGATACTACAGAGT	GTCATCTTATTTCCTTG	GAAAACTGTTATCTGATTTAT		3019
SUJEE	15	TCACCATCTACAGAG			TACCCA	12
Sbjct	73				TGAAGC	132
Ouerv	3080	CAAAGGCAGATGCCTT	CTTCGTTATGATGTTTA	CCCTTATGATGGTGGCTTATT	CAGCCA	3139
Sbjct	133	CAAAGGCAGATGCCT1	CTTCGTTATGATGTTTA	CCCTTATGATGGTGGCTTATT	[]]]]] [CAGCCA	192
Query	3140	GTTCCATGGCACTGGC	CATAGCAGCAGGTCAGA	GTGTGGTTTCTGTAGCAACAG	TTCTCA	3199
Sbjct	193	GTTCCATGGCACTGGC	CATAGCAGCAGGTCAGA	GTGTGGTTTCTGTAGCAACAG	ILLI	252
Query	3200	TGACCATCTGTTTTG	GTTTATGATGATTTTTT	CAGGTCTGTTGGTCAATCTCA		3259
Sbjct	253	TGACCATCTGTTTTG	GTTTATGATGATTTTT	CAGGTCTGTTGGTCAATCTC	CAACCA	312
Query	3260	TTGCATCTTGGCTGTC	CATGGCTTCAGTACTTCA	GCATTCCACGATATGGATTTA		3319
Sbjct	313	TTGCATCTTGGCTGTC	CATGGCTTCAGTACTTCA	GCATTCCACGATATGGATTTA	CGGCTT	372
Query	3320			GCCCAGGACTCAATGCAACAG	IGAAACA	3379
Sbjct	373	TGCAGCATAATGAATT	TTTGGGACAAAACTTCT	GCCCAGGACTCAATGCAACAG	IGAAACA	432
Query	3380			AA TA TTTGG TAAAGCAGGGCA		3439
Sbjct	433	ATCCTTGTAACTATG	AACATGTACTGGCGAAG	AATATTTGGTAAAGCAGGGCA	TCGATC	492
Query	3440	TCTCACCCTGGGGCT	GTGGAAGAATCACGTGG	CCTTGGCTTGTATGATTGTT		3499
Sbjct	493	TCTCACCCTGGGGCT1	GTGGAAGAATCACGTGG	CCTTGGCTTGTATGATTGTTA	TTTTCC	552
Query	3500	TCACAATTGCCTACCT	GAAATTGTTATTTCTTA	AAAAATATTCTTAAATTGGAT	TCTAGA	3559
Sbjct	553	TCACAATTGCCTACCT	GAAATTGTTATTTCTTA	AAAAATATTCTTAAATTGGAT	TCTAGA	612
Query	3560	GGGCCCGTTTAAACCC	GCTGATCAGCCTCGACT	GTGCCTTCTAGTTGCCAGCCA		3619
Sbjct	613	GGGCCCGTTTAAACCC	GCTGATCAGCCTCGACT	GTGCCTTCTAGTTGCCAGCC/	TCTGTT	672
Query	3620	GTTTGCCCCTCCCCC	TGCCTTCCTTGACCCTG	GAAGGTGCCACTCCCACTGTC		3679
Sbjct	673	GTTTGCCCCTCCCCC	TGCCTTCCTTGACCCTG	GAAGGTGCCACTCCCACTGTC	CTTTCC	732
Query	3680	TAATAAAATGAGGAAA	ATTGCATCGCATTGTCTG	AGTAGGTGTCATTCTATTCT	gggggt	3739
Sbjct	733	TAATAAAATGAGGAAA	ATTGCATCGCATTGTCTG	AGTAGGTGTCATTCTATTCTG	IGGGGGT	792
Query	3740	ggggtgggCAGGACA	AGCAAGGGGGGAGGATTGG	GAAGACAATAGCAGGCATGCT	GGGGAT	3799
Sbjct	793	GGGGTGGGGCAGGAC	AGCAAGGGGGGAGGATTGG	GAAGACAATAGCAGGCATGC1	GGGGAT	852
Query	3800	GCGGTGGGCTCTATG	SCTTCTGAGGCGGAAAGA	ACCAGCTGGGGCTCTAGGGGG		3859
Sbjct	853	GCGGTGGGCTCTATG	GCTTCTGAGGCGGAAAGA	ACCAGCTGGGGCTCTAGGGGG	TATCCC	912
Query	3860	CACGCGCCCTGTAGCG	GCGCATTAAGCGCGGCG	GGTGTGGTGGTGGTTACGCGCAGC	GTGACC	3919
Sbjct	913	CACGCGCCCTGTAGCG	GCGCATTAAGCGCGGCG	GGTGTGGTGGTTACGCGCAGC	GTGACC	972
Query	3920	GCTACACTTGCCAGCO				3979
Sbjct	973	GCTACACTTGCCAGCO	SCCCTAGCGCCCGCTCCT	TTCGCTTTCTTCCCTTCCTTT	CTCGCC	1032
Query	3980 1033				CGATTT	4039
Ouerv	4040	AGTGCTTTACGGCACO	TCGACCCCAAAAAACTT	GATTAGGGTGATGGTTCACGT	AGTGGG	4099
Sbjct	1093	AGTGCTTTACGGCACO	TCGACCCCAAAAAACTT	GATTAGGGTGATGGTTCACGT	AGTGGG	1152
Query	4100	CCATCGCCCTGATAG	ACGGTTTTTCGCCCTTTG	ACGTTGGAGTCCACGTTCTTT	AATAGT	4159
Sbjct	1153	CCATCGCCCTGATAGA	ACGGTTTTTTCGCCCTTTG	ACGTTGGAGTCCACGTTCTT	AATAGT	1212
Query	4160	GGACTCTTGTTCCAA		CCTATCTCGGTCTATTCTTT	GATTTA	4219
Sbjct	1213	GGACTCTTGTTCCAA	ACTGGAACAACNNTCAAC	CCTATCTCGGTCTATTCTTT	GATTTA	1272
Query	4220	TAAGGGATTTTGGGGA	ATTTCGGCCTATTGGTTA	AAAAATGAGCTGATTTAACAA		4279
Sbjct	1273	TAAGGGAATTTGCCAA	ATTTCGGCCTATTGGTTA	AAAAATGNNCTGATTTAACAA	AAATTT	1332
Query	4280	AACGCGAATTAATTCI	GTGGAATGTGT-GTCAG	TTAGGGTGTGGGAAAGTCCCCA		4338
Sbjct	1333	ACNGCGAATTAATTCO	NTGGAATG-GTGGTCNN	TTAGGGTNTGGAAAGTNCCCA	GONTCC	1391

6.2.7 L405A/I543A/V546A - Mut2

T7 promoter (F)

Score			Expect	Identities	Gaps	Strand	
2518 0	nts(136	3)	0.0	13/9/1391(99%)	0/1391(0%)	PIUS/PI	us
Query Sbjct	914 16				AGTTCGAGAAGGGAGGTGGA AGTTCGAGAAGGGAGGTGGA	AGCGGTG AGCGGTG	973 75
Query	974	GAGG	TCAGGAGG	CAGCGCATGGTCCCACCCCC	AGTTTGAAAAGCTTGCCACC/	ATGGACA	1033
Sbjct	76	GAGG	TCAGGAGG	CAGCGCATGGTCCCACCCCC	AGTTTGAAAAGCTTGCCACC/	TGGACA	135
Query	1034	AAGA	TGCGAAAT	SAAGCGCACCACCCTGGATAG	CCCTCTGGGCAAGCTGGAAG		1093
Sbjct	136	AAGA	TGCGAAAT	SAAGCGCACCACCCTGGATAG	SCCCTCTGGGCAAGCTGGAA	төтстө	195
Query	1094						1153
Ouerv	1154	CCGT	GAAGTGCC				1213
Sbict	256		GAAGTGCC	ICCCCAGCCGCCGTGCTGG			315
Query	1214	CCGC	TGGCTCAA	GCCTACTTCACCAGCCTG	AGGCCATCGAGGAGTTCCCT	STGCCAG	1273
Sbjct	316		TGGCTCAA	GCCTACTTTCACCAGCCTG	AGGCCATCGAGGAGTTCCCT	GTGCCAG	375
Query	1274	сссто	SCACCACCC	AGTGTTCCAGCAGGAGAGCT1	TACCCGCCAGGTGCTGTGG	AAACTGC	1333
Sbjct	376	cccto	SCACCACCC	AGTGTTCCAGCAGGAGAGCT	TACCCGCCAGGTGCTGTGG/	AAACTGC	435
Query	1334	TGAA	AGTGGTGAA	STTCGGAGAGGTCATCAGCTA		SCCGGCA	1393
Sbjct	436	TĠĂĂ	AGTGGTGAA	STTCGGAGAGGGTCATCAGCT/		SCCGGCA	495
Query	1394					ATTCTGA	1453
Sbjct	496	ATCC			IGAGEGGAAATEEEGTGEEEC	ATTCTGA	1512
Sbict	556						615
Query	1514	CCGT	GAAAGAGTG	GCTGCTGGCCCACGAGGGCC/		TGGGCG	1573
Sbjct	616		GAAAGAGTG	SCTGCTGGCCCACGAGGGCCA		TGGGCG	675
Query	1574	AATTO	ATGTCTTC	CAGTAATGTCGAAGTTTTTA	CCCAGTGTCACAAGGAAAC/	ACCAATG	1633
Sbjct	676	AATTO	ATGTCTTC	CAGTAATGTCGAAGTTTTTA	CCCAGTGTCACAAGGAAAC/	ACCAATG	735
Query	1634	GCTTO		AGCTTCCAATGACCTGAAGG	ATTTACTGAAGGAGCTGTG	TAAGTT	1693
Sbjct	736	ĠĊŤŤ	CCCGCGAC	AGCTTCCAATGACCTGAAGG	ATTTACTGAAGGAGCTGTG	TAAGTT	795
Query	1694		FAACATCTG	CTATCGAGTAAAACTGAAGAG	TGGCTTTCTACCTTGTCGA/	AAACCAG	1753
Sbjct	796	TTCA	TAACATCTG	CTATCGAGTAAAACTGAAGAG	TGGCTTTCTACCTTGTCGA/	AACCAG	855
Shict	856						915
Ouerv	1814	TGGG	ACCCACAGG	IGGAGGCAAATCTTCGTTATI	AGATGTCTTAGCTGCAAGG	AAAGATC	1873
Sbjct	916	 TGGG/	ACCCACAGG	IGGAGGCAAATCTTCGTTAT	AGATGTCTTAGCTGCAAGG	AAAGATC	975
Query	1874	CAAG	GGATTATC	IGGAGATGTTCTGATAAATGO	AGCACCACGACCTGCCAACT	TCAAAT	1933
Sbjct	976	CAAG	IGGATTATC	IGGAGATGTTCTGATAAATG	SAGCACCACGACCTGCCAAC	TCAAAT	1035
Query	1934	GTAA'		GTGGTACAAGATGATGTTG	GATGGGCACTCTGACGGTG/	AGAGAAA	1993
Sbjct	1036	GTAA	TCAGGTTA	GTGGTACAAGATGATGTTG	GATGGGCACTCTGACGGTGA	GAGAAA	1095
Query	1994	ACTT/	ACAGTTCTC	AGCAGCTCTTCGGCTTGCAAG	AACTATGACGAATCATGaaa	aaaaaCG	2053
Sbjct	1096	ACTT/		AGCAGCTCTTCGGCTTGCAAC	AACTATGACGAATCATGAA	AAAAACG	1155
Query	2054	AACG					2113
Overv	2114	GAAC				GAATGG	2173
Sbict	1216	GAAC	CAGTTTAT	CCGTGGTGTGTGTCTGGAGGAGA		GAATGG	1275
Query	2174	AGCT	TATCACTGA	ICCTTCCATCTTGTTCTTGG/	TGAGCCTACAACTGGCTTAC	ACTCAA	2233
Sbjct	1276	AGC T	TATCACTGA	ICCTTCCATCTTGTTCTTGG	TGAACCTACAACTGGCTTA	GACTCAA	1335
Query	2234	GCAC	GCAAATGC	IGTCCTTTTGCTCCTGAAAAG	GATGTCTAAGCAGGGACGA/		2293
Sbjct	1336	GNCC/	AGCAAATGC	IGTCCTTTTGCTCCTGAAAAG	GATGTCTAANCNGGGACAA	ICAATCA	1395
Query	2294	тстто	TCCATT	2304			
Sbjct	1396	NCTT	NCCATT :	1406			

Score		Expect	Identities	Gaps	Strand
2409 b	oits(130	4) 0.0	1342/1364(98%)	6/1364(0%)	Plus/Plus
Query	1876	AGTGGATTATCTGGA	GATGTTCTGATAAATGGA	GCACCACGACCTGCCAACT	TCAAATGT 1935
Sbjct	21	AGTGGATTATCTGGA	GATGTTCTGATAAATGGA	GCACCACGACCTGCCAACT	TCAAATGT 80
Query	1936	AATTCAGGTTACGTG	GTACAAGATGATGTTGTG	ATGGGCACTCTGACGGTGA	GAGAAAAC 1995
Sbjct	81	AATTCAGGTTACGTG	GTACAAGATGATGTTGTG	ATGGGCACTCTGACGGTGA	GAGAAAAC 140
Query	1996	TTACAGTTCTCAGCA	GCTCTTCGGCTTGCAACA	ACTATGACGAATCATGaaa	aaaaCGAA 2055
Sbjct	141	TTACAGTTCTCAGCA	GCTCTTCGGCTTGCAACA	ACTATGACGAATCATGAAA	AAAACGAA 200
Query	2055				AGGTTGGA 2115
Ouerv	201		GGTGTGTCTGGAGGAGAA		
Sbict	261		GGTGTGTCTGGAGGAGAA	AGAAAAAGGACTAGTATAG	GAATGGAG 320
Query	2176	CTTATCACTGATCCT	TCCATCTTGTTCTTGGAT	GAGCCTACAACTGGCTTAG	ACTCAAGC 2235
Sbjct	321	CTTATCACTGATCCT	TCCATCTTGTTCTTGGAT	GAGCCTACAACTGGCTTAG	ACTCAAGC 380
Query	2236	ACAGCAAATGCTGTC	CTTTTGCTCCTGAAAAGG	ATGTCTAAGCAGGGACGAA	CAATCATC 2295
Sbjct	381	ACAGCAAATGCTGTC	CTTTTGCTCCTGAAAAGG	ATGTCTAAGCAGGGACGAA	CAATCATC 440
Query	2296	TTCTCCATTCATCAG	CCTCGATATTCCATCTTC	AAGTTGTTTGATAGCCTCA	CCTTATTG 2355
Sbjct	441	TTCTCCATTCATCAG	CCTCGATATTCCATCTTC	AAGTTGTTTGATAGCCTCA	CCTTATTG 500
Query	2356	GCCTCAGGAAGACTT	ATGTTCCACGGGCCTGCT	CAGGAGGCCTTGGGATACT	TTGAATCA 2415
Sbjct	501	GCCTCAGGAAGACTT	ATGTTCCACGGGCCTGCT	CAGGAGGCCTTGGGATACT	TTGÁÁTCÁ 560
Query	2416	GCTGGTTATCACTGT	GAGGCCTATAATAACCCT	GCAGACTTCTTCTTGGACA	TCATTAAT 2475
Sbjct	561	GCTGGTTATCACTGT	GAGGCCTATAATAACCCT	GCAGACTTCTTCTTGGACA	TCATTAAT 620
Query	2476				
Ouerv	2536	GAGCCTTCCAAGCAG	GATAAGCCACTCATAGAA		
Sbjct	681	GAGCCTTCCAAGCAG	GATAAGCCACTCATAGAA	AAATTAGCGGAGATTTATG	TCAACTCC 740
Query	2596	TCCTTCTACAAAGAG	ACAAAAGCTGAATTACAT	CAACTTTCCGGGGGGTGAGA	AGAAGAAG 2655
Sbjct	741	TCCTTCTACAAAGAG	ACAAAAGCTGAATTACAT	CAACTTTCCGGGGGGTGAGA	AGAAGAAG 800
Query	2656	AAGATCACAGTCTTC	AAGGAGATCAGCTACACC	ACCTCCTTCTGTCATCAAC	TCAGATGG 2715
Sbjct	801	AAGATCACAGTCTTC	AAGGAGATCAGCTACACC	ACCTCCTTCTGTCATCAAC	TCAGATGG 860
Query	2716	GTTTCTAAGCGTTCA	TTCAAAAACTTGCTGGGT	AATCCCCAGGCCTCTATAG	CTCAGATC 2775
Sbjct	861	GTTTCTAAGCGTTCA	TTCAAAAACTTGCTGGGT	AATCCCCAGGCCTCTATAG	CTCAGATC 920
Query	2776	ATTGTCACAGTCGTA	CTGGGACTGGTTATAGGT	GCCATTTACTTTGGGCTAA	AAAATGAT 2835
Ouerv	2836	TCTACTGGAATCCAG		TTCTTCCTGACGACCAACC	AGAATGATTC 2895
Sbict	981			TTCTTCCTGACGACCAACC	AGTGTTTC 1040
Query	2896	AGCAGTGTTTCAGCC	GTGGAACTCTTTGTGGTA	GAGAAGAAGCTCTTCATAC	ATGAATAC 2955
Sbjct	1041	AGCAGTGTTTCAGCC	GTGGAACTCTTTGTGGTA	GAGAAGAAGCTCTTCATAC	 ATGAATAC 1100
Query	2956	ATCAGCGGATACTAC	AGAGTGTCATCTTATTTC	CTTGGAAAACTGTTATCTG	ATTTATTA 3015
Sbjct	1101	ATCAGCGGATACTAC	AGAGTGTCATCTTATTTC	CTTGGAAAACTGTTATCTG	ATTTATTA 1160
Query	3016	CCCATGAGGATGTTA	CCAAGTATTATATTTACC	TGTATAGTGTACTTCATGT	TAGGATTG 3075
Sbjct	1161	CCCATGAGGATGTTA	CCAAGTATTATATTTACC	TGTATAGTGTACTTCATGT	TAGGATTG 1220
Query	3076	AAGCCAAAGGCAGAT	GCCTTCTTCGTTATGATG	TTTACCCTTATGAT-GGTG	GCTTATTC 3134
Sbjct	1221	AAGCCAAAGGCAGAT	GCCTTCTTCGTTATGATG	TTTACCCTTATGATGGGTG	GCTTATTC 1280
Query	3135	AGCCAGTTCCATGG-	CACTGG-CCATAGCAGCA	GGTCAGAGTGT-GGTTTCT	GTAGCAAC 3191
Sbjct	1281	AGCCAGTTCCATGGG	CACTGGNCCATAGCAGCA	GGTCAGANNNNGGGTTTCN	GNAGCAAN 1340
Query	3192				
SUJCE	1041	NUMBER	CETATITIQUETTIATON	ANAVAILLEL 1384	

Score		Expect	Identities	Gaps	Strand
2386 b	its(129	2) 0.0	1338/1365(98%)	2/1365(0%)	Plus/Plus
Query Shict	2324 14	TCTTCAAGTTGTTTG	ATAGCCTCACCTTATTG	GCCTCAGGAAGACTTATGTTC	CACGGGC 2383
Query Sbjct	2384 73	CTGCTCAGGAGGCCT	TGGGATACTTTGAATCA 	GCTGGTTATCACTGTGAGGCG	TATAATA 2443
Query	2444	ACCCTGCAGACTTCT	TCTTGGACATCATTAAT	GGAGATTCCACTGCTGTGGCA	ATTAAACA 2503
Sbjct	133	ACCCTGCAGACTTCT	TCTTGGACATCATTAAT	GGAGATTCCACTGCTGTGGCA	TTAAACA 192
Query	2504	GAGAAGAAGACTTTA	AAGCCACAGAGATCATA	GAGCCTTCCAAGCAGGATAAG	CCACTCA 2563
Sbjct	193	GAGAAGAAGACTTTA	AAGCCACAGAGATCATA	GAGCCTTCCAAGCAGGATAAG	SCCACTCA 252
Query	2564	TAGAAAAATTAGCGG	AGATTTATGTCAACTCC	TCCTTCTACAAAGAGACAAAA	GCTGAAT 2623
Sbjct	253	TAGAAAAATTAGCGG	AGATTTATGTCAACTCC	tccttctacaaagagacaaa	GCTGAAT 312
Query	2024				
Sbjct	313	TACATCAACTTTCCG	GGGGTGAGAAGAAGAAG	AAGATCACAGTCTTCAAGGAG	ATCAGCT 372
Query	2004				
Sbjct	373	ACACCACCTCCTTCT	GTCATCAACTCAGATGG	GTTTCTAAGCGTTCATTCAAA	AACTTGC 432
Query	2744	TGGGTAATCCCCAGG	CCTCTATAGCTCAGATC	ATTGTCACAGTCGTACTGGG/	CTGGTTA 2803
Sbjct	433	TGGGTAATCCCCAGG	CCTCTATAGCTCAGATO	ATTGTCACAGTCGTAGCGGGA	CTGGTTA 492
Query	2804	TAGGTGCCATTTACT	TTGGGCTAAAAAATGAT	TCTACTGGAATCCAGAACAGA	GCTGGGG 2863
Sbjct	493	TAGGTGCCATTTACT	TTGGGCTAAAAAATGAT	TCTACTGGAATCCAGAACAGA	IGCTGGGG 552
Query	2864	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTTC	AGCAGTGTTTCAGCCGTGGA	CTCTTTG 2923
Sbjct	553	TTCTCTTCTTCCTGA	CGACCAACCAGTGTTTC	AGCAGTGTTTCAGCCGTGGAA	CTCTTTG 612
Query	2924	TGGTAGAGAAGAAGC	TCTTCATACATGAATAC	ATCAGCGGATACTACAGAGT	TCATCTT 2983
Sbjct	613	TGGTAGAGAAGAAGC	TCTTCATACATGAATAC	ATCAGCGGATACTACAGAGTO	TCATCTT 672
Query	2984	ATTTCCTTGGAAAAC	TGTTATCTGATTTATTA	CCCATGAGGATGTTACCAAG	ATTATAT 3043
Sbjct	673	ATTTCCTTGGAAAAC	TGTTATCTGATTTATTA	CCCATGAGGATGTTACCAAG	ATTATAT 732
Query	3044	TTACCTGTATAGTGT	ACTTCATGTTAGGATTG	AAGCCAAAGGCAGATGCCTTO	TTCGTTA 3103
Sbjct	733	TTACCTGTATAGTGT	ACTTCATGTTAGGATTG	AAGCCAAAGGCAGATGCCTTO	TTCGTTA 792
Query	3104	TGATGTTTACCCTTA	TGATGGTGGCTTATTCA	GCCAGTTCCATGGCACTGGC	ATAGCAG 3163
Sbjct	793	TGATGTTTACCCTTA	TGATGGTGGCTTATTCA	GCCAGTTCCATGGCACTGGCC	ATAGCAG 852
Query	3164	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACTT	CTCATGACCATCTGTTTTGTC	TTTATGA 3223
Sbjct	853	CAGGTCAGAGTGTGG	TTTCTGTAGCAACACTT	CTCATGACCGCCTGTTTTGCC	TTTÁTGÁ 912
Query	3224	TGATTTTTTCAGGTC	TGTTGGTCAATCTCACA		1166CTTC 3283
Sbjct	913	TGATTTTTTCAGGTC	TGTTGGTCAATCTCACA	ACCATTGCATCTTGGCTGTC	TGGCTTC 972
Query	3284	AGTACTTCAGCATTC	CACGATATGGATTTACG	GCTTTGCAGCATAATGAATT	TTGGGAC 3343
Sbjct	973	AGTACTTCAGCATTC	CACGATATGGATTTACG	GCTTTGCAGCATAATGAATT	TTGGGAC 1032
Query	3344	AAAACTTCTGCCCAG	GACTCAATGCAACAGGA	AACAATCCTTGTAACTATGC	ACATGTA 3403
Sbjct	1033	AAAACTTCTGCCCAG	GACTCAATGCAACAGGA	AACAATCCTTGTAACTATGC	ACATGTA 1092
Query	3404	CTGGCGAAGAATATT	TGGTAAAGCAGGGCATC	GATCTCTCACCCTGGGGCTTC	TGGAAGA 3463
Sbjct	1093	CTGGCGAANAATATT	TGGTAAAGCAGGGCATC	GATCTCTCACCCTGGGGCTTC	TGGAAGA 1152
Query	3464	ATCACGTGGCCTTGG	CTTGTATGATTGTTATT	TTCCTCACAATTGCCTACCTC	AAATTGT 3523
Sbjct	1153	ATCACGTGGCCTTGG	CTTGGATGAATGTTATT	TTCCTCACAATTGCCTACCTC	AAATTGT 1212
Query	3524	ТАТТТСТТААААААТ	ATTCTTAAATTGG-ATT	CTAGAGGGCCCGTTTAAACCC	GCTGATC 3582
Sbjct	1213	ТАТТТСТТААААААТ	ATTCTTAAATTGGAATT	CTAGAGGGCCCGTTTAAACCC	GCTGATC 1272
Query	3583	AGCCTCGACTGTGCC	TTCTAGTTGCCAGCCAT	CTGTTGTTTGCCCCTCCCCC	TGCCTTC 3642
Sbjct	1273	AGCCTCGACGGGGCC	TTNNNGTTGCCNGCCAT	controtttocccctccccc	TGCCTTC 1332
Query	3643	CTTGACCCTGGAAGG	TGCCACTCCCACTGTCC	TTTCCTAATAAAA 3687	
Sbjct	1333	CTTGACCCTGGAAGG	GĠĊĊĊŊŊĊĊĊĊĊŢŊŊĊĊ	TTTCCCAAAAAAA 1377	

Score 2398 b	its(129	Expect 8) 0.0	Identities 1352/1383(98%)	Gaps 8/1383(0%)	Strand Plus/Plus
Sbjct	12	GCGGNNACTACAGAGT	GTCATCTTATTTCCTT	GNAAACTGTTATCTGATTTAT	TACCCA 71
Query	3020	TGAGGATGTTACCAAG	TATTATATTTACCTGT	ATAGTGTACTTCATGTTAGGAT	TGAAGC 3079
Sbjct	72	TGAGGATGTTACCAAG	TATTATATATTACCTGT	ATAGTGTACTTCATGTTAGGAT	TGAAGC 131
Query	3080	CAAAGGCAGATGCCTT	CTTCGTTATGATGTTT	ACCCTTATGATGGTGGCTTATT	CAGCCA 3139
Ouery	3140	GTTCCATGGCACTGGC	CATAGCAGCAGGTCAG	AGTGTGGTTTCTGTAGCAACAC	TTCTCA 3199
Sbjct	192	GTTCCATGGCACTGGC	CATAGCAGCAGGTCAG	AGTGTGGTTTCTGTAGCAACAC	TTCTCA 251
Query	3200	TGACCATCTGTTTTGT	GTTTATGATGATTTTT	TCAGGTCTGTTGGTCAATCTCA	CAACCA 3259
Sbjct	252	tGACCGCCTGTTTTGC	CTTTATGATGATTTTT	TCAGGTCTGTTGGTCAATCTCA	CÁÁCCÁ 311
Query	3260			AGCATTCCACGATATGGATTTA 	CGGCTT 3319
Query	3320	TGCAGCATAATGAATT	TTTGGGACAAAACTTC	TGCCCAGGACTCAATGCAACAG	GAAACA 3379
Sbjct	372	TGCAGCATAATGAATT	TTTGGGACAAAACTTC	TGCCCAGGACTCAATGCAACAG	GAAACA 431
Query	3380	ATCCTTGTAACTATGC	AACATGTACTGGCGAA	SAATATTTGGTAAAGCAGGGCA	TCGATC 3439
Sbjct	432	ATCCTTGTAACTATGC	AACATGTACTGGCGAA	SAATATTTGGTAAAGCAGGGCA	TCGATC 491
Sbict	3440 492			SCCTTGGCTTGTATGATTGTTA 	
Query	3500	TCACAATTGCCTACCT	GAAATTGTTATTTCTT	AAAAAATATTCTTAAATTGGAT	TCTAGA 3559
Sbjct	552	TCACAATTGCCTACCT	GAAATTGTTATTTCTT	AAAAAATATTCTTAAATTGGAT	TCTAGA 611
Query	3560	GGGCCCGTTTAAACCC	GCTGATCAGCCTCGAC	IGTGCCTTCTAGTTGCCAGCCA	TCTGTT 3619
Sbjct	612 3620	GGGCCCGTTTAAACCC	GCTGATCAGCCTCGAC	IGTGCCTTCTAGTTGCCAGCCA	TCTGTT 671
Sbjct	672	GTTTGCCCCTCCCCG	TGCCTTCCTTGACCCT	GGAAGGTGCCACTCCCACTGTC	CTTTCC 731
Query	3680	TAATAAAATGAGGAAA	TTGCATCGCATTGTCT	GAGTAGGTGTCATTCTATTCTg	gggggt 3739
Sbjct	732	TAATAAAATGAGGAAA	TTGCATCGCATTGTCT	GAGTAGGTGTCATTCTATTCTG	GGGGGT 791
Query	3740	ggggtggggCAGGACA	GCAAGGGGGGAGGATTG	GGAAGACAATAGCAGGCATGCT	GGGGAT 3799
Ouerv	792 3800	GGGGTGGGGCAGGACA	GCAAGGGGGGGGGGGAGGATTG		GGGGAT 851
Sbjct	852	GCGGTGGGCTCTATGG	CTTCTGAGGCGGAAAG	AACCAGCTGGGGCTCTAGGGG	TATCCC 911
Query	3860	CACGCGCCCTGTAGCG	GCGCATTAAGCGCGGC	GGGTGTGGTGGTTACGCGCAGC	GTGACC 3919
Sbjct	912	CACGCGCCCTGTAGCG	GCGCATTAAGCGCGGC	GGTGTGGTGGTGGTTACGCGCAGC	GTGACC 971
Query Sbict	3920 972	GCTACACTTGCCAGCG			CTCGCC 3979
Query	3980	ACGTTCGCCGGCTTTC	CCCGTCAAGCTCTAAA	TCGGGGCATCCCTTTAGGGTTC	CGATTT 4039
Sbjct	1032	ACGTTCGCCGGCTTTC	CCCGTCAAGCTCTAAA	TCGGGGGCTCCCTTTAGGGTTC	CGATTT 1091
Query	4040	AGTGCTTTACGGCACC	TCGACCCCAAAAAACT	IGATTAGGGTGATGGTTCACGT	AGTGGG 4099
Sbjct	1092	AGTGCTTTACGGCACC	TCGACCCCAAAAAACT	IGATTAGGGTGATGGTTCACGT	AATGGG 1151
Sbict	1152			SACGTTGGAGTCCACGTTCTT	AATAGI 4159
Query	4160	GGACTCTTGTTCCAAA	CTGGAACAACACTCAA	CCTATCTCGGTCTATTCTTT	GATTTA 4219
Sbjct	1212	GAACTCTTGTTCCAAA	CTGGAACAACACTCAA	CCTATCTCGGTCTATTCTTT	GATTTA 1271
Query	4220	TAAGGGATTTTGGGGA	-TTTC-GGCCTATTGG	TT-AAAAAATGAGCTGATTTAA	CAAAAA 4276
Sbjct	1272	TAAGGGATTTTGCCNA	ATTTCNGGCCTATTGG	TTAAAAAAATGAGCTGATTTAA	CAAAAA 1331
Sbjct	42/7			GTCAG-TTAGGGTGTGGAAA-G	 TCCCCC 1391
Query	4332	AGG 4334			
Sbjct	1392	AGG 1394			