
Statistical analysis of agricultural soils

climate data to aid food security under

environmental change

Emily Grace Mitchell

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

November 30, 2021



Acknowledgements

First of all, I would like to thank my supervisors Professor Andrew Wood, Dr Gilles

Stupfler, Professor Neil Crout and Professor Paul Wilson for their continuous support,

encouragement and patience throughout my PhD and allowing me the opportunity to

work with them. I would also like to thank Dr Karthik Bharath for stepping in and

supervising me over the critical final years of my PhD. The knowledge I have gained

from them is immense and I am extremely grateful to have worked with them all. I

would also like to express my gratitude to the Leverhulme Trust for providing me with

the financial support without which this PhD would not be possible.

I would like to thank the Probability and Statistics group in the School of Mathematical

Sciences and statisticians further afield for making my PhD such a pleasurable experience.

I would like to thank the Modelling and Analytics for a Sustainable Society (MASS)

community and Prof Markus Owen for allowing me to be part of a fantastic group of

scholars, both mathematically and socially.

I would also like to thank Conal, to whom has had to put up with me writing a thesis

during a global pandemic, and to my brother Jack for the inspiration to pursue a career

in Statistics. Finally, I would like to thank my parents - Nichola and William, for their

endless love and encouragement.

i



Abstract

Wheat is one of the most important food crops in the world for human consumption,

livestock feed and biofuels. Demand for wheat has increased due to a rising population

and crop growth concerns resulting from a changing climate. By exploring novel uses of

data gathered on farming practices from the Farm Business Survey, this thesis aims to

identify key farming practices which are most associated with high yields.

The first part of this thesis is concerned with modelling wheat yield based on a linear

combination of data from the Farm Business Survey, such as annual crop protection costs,

labour costs and organic status of the farms, and data from the UK Met Office, such

as annual monthly rainfall. We compute coefficient estimates in the linear model using

quantile regression, linear regression and principal component regression. We also take a

two-step approach by fitting a linear regression model after selecting variables based on

either forward stepwise regression, with and without orthogonalisation after every step,

or Lasso regression. Variable selection methods consistently select organic status, crop

protection and rainfall in June to be included in the model first. Comparing all models

based on their mean squared prediction error for an average year, we find that a model

created based on linear regression applied to a subset of variables selected with forward

stepwise regression with orthogonalisation after every step achieves the smallest mean

squared prediction error. This model included the majority of the variables corresponding

to farming practices and a small number of weather conditions.

To account for the uncertainty at both the variable selection stage and the parame-

ter estimation stage, focus is next shifted to Bayesian shrinkage priors as a means of

simultaneous model selection and inference. If uncertainty is only accounted for after
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variable selection, the confidence intervals of the coefficient estimates will be unrealisti-

cally narrow and lead us to be overconfident about our estimates. The Bayesian Lasso,

which is the analogue of the frequentist Lasso, and the horseshoe prior provide credible

intervals for the parameters of the linear model. In order to apply these shrinkage priors,

we use the Gibbs sampler when the global shrinkage parameter is allowed to vary and

Hamiltonian Monte Carlo when the global shrinkage parameter is fixed. We find that

these methods also consistently select organic status, crop protection and rainfall in

June to be important factors when modelling wheat yields. However, the horseshoe prior

finds appropriate credible intervals capturing the combined uncertainty of the model

selection and parameter estimation stages for these factors which the two-step frequentist

approach aims to account for, but fails to do.

The second part of this thesis is specifically concerned with modelling the highest yields

under current technologies and growing conditions. We address this by performing an

extreme value analysis, which in our context translates to modelling the highest-yielding

farms. We find that wheat yields have an upper finite bound estimated at 17.60 tonnes

per hectare and therefore the scope to improve yields for high-yielding farms diminishes

when yields per hectare approach this bound. Furthermore, we find there is no difference

between the maximum attainable yields for macro-regions west England and Wales, north

England and east England. Lastly, we show that the difference between the maximal

yields of medium and high spenders on crop protection and fertilisers is not statistically

significant.
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1 | Introduction

1.1 Wheat production

Wheat is one of the most important food crops in the world. Current global annual

production levels of wheat stand at 756.8 million tonnes (FAO (2018)), two-thirds of which

is used for human consumption in food staples such as bread. As a result of sustained

improvements to crop varieties and agricultural technology, there was a progressive and

very large increase in wheat yields over the second half of the last century (Calderini and

Slafer (1998)). Despite this, there are concerns for the future growth of crop yield, the

main one arguably being climate change. Recent literature has focused on forecasting the

behaviour of crops in a changing climate (Asseng et al. (2013), Challinor et al. (2009),

Iizumi et al. (2017), Olesen and Bindi (2002)), and found that a global temperature

increase may lead to a yield reduction in cereal crops in certain regions. At the same

time, current projections point to major increases in demand for food and livestock feed,

as well as rising demand for biofuels due to a progressive shift of major economic powers

to generating energy via renewable sources (Spiertz and Ewert (2009)). Understanding

the factors associated with crop yield is of crucial importance to successfully address the

challenge of global food security.

We look to understand the factors associated with UK wheat yields with two different

perspectives. The first part of this thesis investigates factors associated with an average

yield. Although association does not necessarily imply causation, the identification of

factors largely associated with yields can provide actionable information on which farming

practices may improve wheat yields in England and Wales. The second part looks at

1



Figure 1.1: Crop areas in the UK between 1984 and 2017.

modelling the highest yields under current technologies and growing conditions. Figure

1.1 shows crop areas have remained approximately constant over the last two decades,

therefore if wheat yields have stagnated, then a rising population may not be fully catered

for. This thesis looks to address these with novel uses of the Farm Business Survey data,

about which we give details in the next section.

1.2 Data

1.2.1 Farm Business Survey

The Farm Business Survey collects information about farm businesses in England and

Wales, to give a yearly overall perspective of the agricultural and economic performance

of farms. Each year, approximately 2300 farms take part in the survey. On average, 695

were involved with the production of winter wheat from 2006 to 2015, each reporting 76

observed variables, among which were yield per hectare, region, and fertiliser and crop

protection costs. To be able to share our results, we must ensure anonymity of the farms

in the survey. Therefore no variables can be used in our analysis such that the location

of the farm can be determined. Table 1.1 describes the variables to be extracted from

the Farm Business Survey, including those used when modelling yield per hectare.

Throughout the thesis, yield per hectare will be modelled instead of total yield. If total

2



Variable Description
Yield Yield (tonnes/hectare)
Net margin Net margin (£/hectare)
Seeds Seeds costs (£/hectare)
Fert Fertiliser costs (£/hectare)
Sprays Crop protection costs (£/hectare)
OtherVC Other variable costs (£/hectare)
Fuel Fuel costs (£/hectare)
Labour Labour costs (£/hectare)
Contract Contract work costs (£/hectare)
Machinery Machinery costs (£/hectare)
TOFC Total other fixed costs (£/hectare)
LAND Land costs (£/hectare)
UAA Utilised agricultural area
Organic Organic status
Education 1 GCSE level or equivalent education
Education 2 A level or equivalent education
Education 3 College level or equivalent education
Education 4 Degree level or equivalent education
Education 5 Postgraduate level, Apprenticeship and other education

Table 1.1: Variables in the Farm Business Survey

yield was modelled to assess performance, this would be determined by the size of the

farm rather than how productive a farm is regardless of its size.

To take inflation into account, the financial data are adjusted to their 2010 equivalent

(DEFRA (2018)). Analysis on this dataset has been scarce. Stochastic frontier analysis

has been conducted to model the variation of technical inefficiency based on managerial

objectives of UK potato producers (Wilson et al. (1998)) and winter wheat producers

in the east of England and Wilson et al. (2001) find there is little potential for eastern

England farmers to improve their technical efficiency. Since this thesis is concerned

with identifying key farming practices which are most associated with high yields rather

than taking a business perspective, we shall not be concerned with this kind of analysis.

Ritchie (2015) combines variables from the Farm Business Survey, including those in

Table 1.1, and monthly UK Met Office data in a forward stepwise algorithm to identify

important variables for modelling yield and compares the results to a mechanistic model,

however their work does not consider other regression or variable selection techniques

to construct the parameter estimates. Furthermore, they do not critique the variable

selection algorithm and assess the model fit for yields departing from the average (i.e.

3



high and low yields).

In our analyses, we shall also use the variables from the Farm Business Survey in Table

1.1 alongside the following Met Office data.

1.2.2 UK Met Office

The Met Office provides daily reports on weather and climate conditions in the UK to

inform the public such that precautions can be put in place to minimise risk. Monthly

averages of mean daily temperature (◦C), daily rainfall (mm) and daily sunshine hours can

be extracted from their high-dimensional database. If monthly weather conditions for each

individual farm location are used in our analyses and identifies key weather conditions

which may be associated with a larger yield, this will not preserve the anonymity of these

farms. To ensure anonymity of these farms, the monthly averaged climate variables are

also averaged over each of the Nomenclature of Territorial Units for Statistics 1 (NUTS1)

administrative regions, such as east England, south west England and north east England,

in Figure 1.2. If the number of farms located within each of these regions are too small

to perform analyses based on, the data will first need to be cleaned to accommodate

for this by either removing these regions (as in Chapters 2 and 3) or aggregating these

regions (as in Chapter 4). The following section looks at any data cleaning required prior

to performing the analyses in Chapter 2 and 3.

1.2.3 Data cleaning

Data cleaning involves preparing the data in advance of performing the analyses such

that our modelling is not biased towards these anomalies. Data cleaning is required for

our analyses Chapters 2 and 3, whilst no data cleaning is required for Chapter 4.

First, a very small proportion of farms taking part in the Farm Business Survey are in

Wales. To avoid Welsh farms having a large influence on our linear model, these farms

are removed from the analyses in Chapters 2 and 3. Farms in Wales are not an issue

for Chapter 4 because we combine the NUTS1 regions into larger regions according to

whether they are in west England and Wales, east England and north England to ensure
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Figure 1.2: Administrative subdivision of the UK in NUTS1 regions (source: Met
Office).

our sample sizes within each region are sufficiently large.

Furthermore, any farm spending considerably more on aspects of farming practices, out

of line with similar farm businesses in the Farm Business Survey is also removed in

Sections 2 and 3. Again, this is to avoid certain farms having a large influence on our

modelling when looking at typical yields.

1.3 Aims of the thesis

This thesis aims to explore novel uses of the dataset from the Farm Business Survey on

farming practices alongside the UK Met Office dataset on weather conditions to focus
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on two main problems:

• Determine which farming practices or environmental conditions are most associ-

ated with an average yield. This will involve fitting linear models using different

minimisation criteria and assessing their predictive performance. We shall assess

the importance of variables in modelling yields according to their t-statistic for

regression methods and their order of entry for variable selection techniques. This

thesis will also aim to fully account for parameter uncertainty in our best fitting

model. This will involve estimating the coefficients in the linear model instead

using Bayesian shrinkage priors.

• Determine whether a finite upper bound for wheat yields exists and estimate this

upper bound, to act as a target for wheat producers and indicate whether there is

room to improve on their current yield. This will involve modelling the high yields

between 2006 and 2015 and not as a curve of maximum yield through time. We

also compare the finite upper bound estimated under various scenarios of location

and input use.

1.4 Structure of the thesis

Chapter 2 concerns determining important variables for modelling typical wheat yields

using methods familiar to non-specialists but yet to be used with the Farm Business

Survey data. Quantile regression and linear regression are applied in Section 2.4.1, where

their coefficients are compared to ensure we can use the normality assumption of the

residuals. Section 2.4.2 applies principal component regression by modelling yields based

on a linear combination of the covariates which captures the largest variation. Rather

than applying standard regression techniques, Sections 2.6.1 and 2.6.2 apply variable

selection techniques instead, namely forward stepwise and Lasso regression. Models at

all steps of the variable selection method are compared and we end with a comment on

the model which achieves the smallest mean squared prediction error.

Chapter 3 looks to use Bayesian shrinkage priors to find credible intervals for variables

selected which will account for the uncertainty associated with parameter estimation and
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the uncertainty associated with variable selection. If uncertainty is only accounted for

after variable selection, the confidence intervals of the coefficient estimates will be unre-

alistically narrow and lead us to be overconfident about our estimates and overconfident

about our predictions based on the parameter estimates. For the amount of shrinkage

both varying and fixed, we apply the Bayesian Lasso (Sections 3.3.4 and 3.3.5) and the

horseshoe prior (Sections 3.5.3 and 3.5.4) and comment on their behaviour when shrink-

ing coefficients in Section 3.4. We comment on the posterior predictive distributions for

yield for each Bayesian shrinkage prior in their respective applications.

Chapter 4 focuses on modelling the highest yields in an extreme value framework to

find a target yield per hectare for wheat producers to indicate whether there is room

to improve on their current yield. Section 4.3.2 finds the maximum attainable yield.

Sections 4.3.3 and 4.3.4 find the maximum attainable yield conditional on geographical

regions and agricultural inputs. Furthermore, we look at what happens for net financial

margins in Section 4.3.5. Final remarks are made in Chapter 5.
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2 | Exploratory data analysis, re-

gression and variable selection

2.1 Introduction

UK crop yields are known to be influenced by the climate and the farming practices

employed. Predictions for crop yields often involve mechanistic models based on complex

interactions of biophysical processes e.g. Vanuytrecht et al. (2014) and Mirschel et al.

(2014), however these do not give a sense of how each factor in the model marginally

influences wheat yield. Complex simulation models have been used in the past to predict

outputs (Absalom et al. (2001), Walter and Heimann (2000)), yet more recently these

have been found to be over-parameterised (Crout et al. (2009), Cox et al. (2006), Crout

et al. (2014), Tarsitano et al. (2011), Gibbons et al. (2010)). Although these do not

attempt to predict wheat yields, these suggest a suitable initial model for wheat yields

would be to start with a linear model and compare to models with increasing complexity.

Non-linear regression models have also been studied for maize yields (see Hawkins et al.

(2013)), but these too can lead to overparameterised systems.

Lobell and Burke (2010) combined farming practices of Sub-Saharan Africa maize farmers

and simulated weather conditions in a regression model to simulate maize yields and

assess the impact climate change will have on these yields in the future. Qian et al. (2009)

used stepwise regression to select variables based on weather conditions and simulated soil

properties, such as water content, at key growth stages of spring wheat in the Canadian

prairie province. These studies recognise a model for yields must incorporate weather
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conditions and farming practices, however both consider crops in a different climate to

that experienced in the UK.

Landau et al. (1998) and Landau et al. (2000) both predicted UK wheat yields using

a statistical regression framework on monthly climatic data in the UK, with the latter

incorporating climate-yield mechanistic models from other studies, however neither in-

clude factors representing farming practices. More recently, Nkurunziza et al. (2020) used

socio-ecological factors to determine crop performance of spring barley in Sweden using

partial least squares however do not take account of the climate in which the barley is

grown. Ritchie (2015) performed forward selection on farming practices from the Farm

Business Survey and monthly weather conditions from the UK Met Office to assess their

influence on wheat yields, however lacked in critique of the model fit for yields departing

from the average, such as high or low yields.

We will use a variety of parameter estimation and variable selection techniques for the

coefficients in the linear model using monthly weather conditions from the UK Met Office

and the agronomic and socio-ecological factors from the Farm Business Survey to model

per hectare wheat yields, critique the statistical methods and comment on their model

fits.

This chapter consists of the following: Section 2.2 looks at the distribution and the

marginal influence of variables on yield per hectare. Sections 2.3 and 2.4 discuss and apply

parameter estimation methods for the linear model. We will model the conditional median

using quantile regression (Section 2.3.1), the conditional mean using linear regression

(Section 2.3.2) and apply principal component regression (Section 2.3.3) to predict wheat

yields. In the second half of this chapter, we look at forward stepwise regression (Section

2.5.2) and Lasso regression (Section 2.5.3) to model yield per hectare based on a select

few covariates.

2.2 Exploratory data analysis

We first analyse the variables to be included in our linear model for yield per hectare,

perform data pre-processing, and comment on their marginal influence on yield and the
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dependencies amongst the variables. This will ensure the distributional assumptions

of the methods in Section 2.3 hold and give an insight of which variables the variable

selection methods in Section 2.6 will most likely select for our model.

2.2.1 Wheat yields

The distribution of wheat yields per hectare recorded in the Farm Business Survey

(Figure 2.1) has a slight negative skew with a median of 8.006 tonnes per hectare. Figure

2.2 shows the distribution of yields per hectare annually from 2006 to 2015. In terms of

productivity, 2012 was a year of low wheat yields as a result of poor weather conditions,

according to the UK Department for Environmental, Food and Rural Affairs (DEFRA)

report (see DEFRA (2012)). In 2015, DEFRA (2015) reported wheat yields reached their

highest level since 1990; that year, the crops benefited from optimal growing conditions

during the spring and summer months.

Extreme cold temperatures were experienced during the winter of 2009 (see Prior and

Kendon (2011)) when the winter wheat sprouts are underground, but there are no reports

of further exceptional weather conditions during the rest of the growing year. Comparing

the yields per hectare in other years to those attained in 2009, Figure 2.2 suggests yields

per hectare in 2009 are representative of typical yields. When assessing the model fit,

we shall look to predict yields for 2009 given this chapter is concerned with linearly

modelling a typical yield.

Yields between farms are assumed to be independent and since farms are allowed to

enter and leave the survey, it is also reasonable to assume the yields within each farm are

also independent. The following section looks at agronomic and socio-ecological factors

from the Farm Business Survey to be used in our model for a typical wheat yield.
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Figure 2.1: Violin plot for per hectare yields in the Farm Business Survey.
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Figure 2.2: Annual yield boxplots using the Farm Business Survey data.

12



2.2.2 Farm Business Survey variables

Section 1 discussed the data available on farming practices from the Farm Business

Survey to be incorporated in a linear model for wheat yield. This section takes a closer

look at the variables the model will be based on. We also consider whether any variables

would be more suited under a transformation to model yield, or whether an interaction

term should be included to capture the relationship between two variables.

First we look at the densities of the variables as they appear in the Farm Business Survey

and their marginal influence on yield. The marginal densities will give an insight into the

spread of the data for each of the variables to be included in the model and the range of

values they take. These variables will be referred to as the main effects henceforth.

The use of fertilisers and crop protection are correlated as a consequence of farmers either

using intensive amounts of each in the hope of attaining a larger yield or adopting organic

farming practices and using neither fertiliser or crop protection. Figure 2.3 shows the

distributional similarities between fertiliser use and crop protection. Both density plots

have a positive skew with peaks approximately at their respective medians and another at

zero. Further to modelling with fertiliser and crop protection costs, an indicator variable

for the farms’ organic status (i.e. whether a farm uses crop protection) is created to

account for the two peaks identified in the violin plots. Once stratified by organic status

for yield per hectare, Figure 2.4 indicates wheat yields are generally much smaller for

organic farms compared to conventional farms.

Figure 2.3 shows all other continuous variables taken from the Farm Business Survey

also have a positive skew. Any farms spending considerably more on aspects of their

farming practices, out of line with similar farm businesses in the survey, will be removed

when fitting linear models in Sections 2.4.

One final variable proposed to use in the model for yield is the education status of the

farmer. There are 6 possibilities for educational status: school only, GCSE or equivalent,

A level or equivalent, college, degree or other. The other category captures those who

have studied to postgraduate level, learnt through an apprenticeship, or through an

unconventional pathway. The boxplots in Figure 2.5 suggest there is no noticeable
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Seeds -0.0927 LAND 0.0748
Fert 0.2621 UAA 0.1240
Sprays 0.3680 Organic -0.4000
OtherVC 0.0834 Education 1 -0.0358
Fuel 0.0276 Education 2 -0.0079
Labour 0.1219 Education 3 0.0363
Contract -0.0070 Education 4 0.0282
Machinery 0.0684 Education 5 -0.0065
TOFC -0.0096

Table 2.1: Correlations between yield per hectare and variables from the Farm Business
Survey to be incorporated in the linear model as main effects.

difference between the 25%, 50% and 75% quantiles of yield for each education status.

Calculating the correlation between each of the covariates discussed in this section and

yield will give an indication of which variables marginally influence yield and are most

likely to be included in our model. Table 2.1 contains the Pearson’s correlation product

moment coefficients

ρxjy =
∑n
i=1(xij − x̄j)(yi − ȳ)√∑n

i=1(xij − x̄j)2
√∑n

i=1(yi − ȳ)2
(2.1)

calculated for each variable xj proposed from the Farm Business Survey and yield

per hectare y. The Point-Biseral correlation coefficient for the categorical variables is

calculated in the same manner, provided they are first decomposed as variable indicators

for each category. When modelling yield per hectare, it would be reasonable for the linear

model to be largely based on the variables with a large correlation, in absolute value,

with yield.

Most variables have approximately no correlation with yield per hectare, however fer-

tilisers, crop protection, labour and utilised agricultural area have positive correlations

with yield per hectare. Organic status is negatively correlated with yield as already

seen in Figure 2.4. Although both fertiliser and crop protection are correlated with the

yield, they are also correlated with one another. Partial correlation finds the correlation

between the response and a variable, given another variable is already included to model

the response. The partial correlation of a covariate x and the response y, controlling for

covariate z, is found by calculating the correlation between the residuals from linearly

regressing z onto y and linearly regressing z onto the variable of interest x. Conditional

14



on crop protection already being in the model, the partial correlation between fertiliser

and yield per hectare is 0.1194, which is less than the correlation with yield per hectare

without considering the influence of crop protection. We shall see whether both variables

appear individually in our model for yield when using variable selection techniques on

the main effects in Section 2.6.
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Figure 2.3: Violin plots of the continuous Farm Business Survey variables.
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Figure 2.4: Violin plots of yield per hectare stratified according to organic status.
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Figure 2.5: Boxplots for yield per hectare stratified about education status.
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So far the relationship between the variables from the Farm Business Survey and yield

per hectare has been assumed to be linear. Here, we look to see if there are any which

could have a non-linear relationship with yield.

Figure 2.6 shows fertiliser costs, crop protection costs and utilised agricultural area have

the strongest non-linear terms with yield per hectare. A sharp increase in yield per hectare

is seen for small fertiliser costs and small utilised agricultural areas but the increase in

yield per hectare becomes negligible as both fertiliser costs and utilised agricultural

area increase beyond £100 per hectare and 500 hectares respectively. This may indicate

fertiliser contributes to a larger yield per hectare overall however the increase in benefit

diminishes as the amount of fertiliser increases. As for utilised agricultural area, Figure

2.6 shows the contrast of yield attained by small scale farms and conventional industrial

farms, yet once the utilised agricultural area is already above 1000 hectares, little benefit

will be gained from increasing the area of the farm beyond this.

Overall crop protection costs also increase yield per hectare, however when crop protection

costs per hectare exceed approximately £300 per hectare, yield per hectare begins to

decrease again. This could be a result of applying an excessive amount of crop protection

since it is one of the only factors the farmer can control to try and improve yields yet

there may be other factors that can not be controlled which will also influence yield.

Table 2.2 shows the Pearson’s correlation product moment coefficients between yield and

these non-linear effects, taken to be squared terms. The correlation between yield and

the squared terms for fertiliser, crop protection and utilised agricultural area, 0.1892,

0.2634 and 0.0786 respectively, are smaller compared to the correlation between yield

per hectare and their respective linear terms previously investigated.

To capture these non-linear relationships with yield per hectare, we can incorporate

squared terms into another linear model for fertiliser costs, crop protection costs and

utilised agricultural area with the main effects already discussed. In addition to non-

linear terms, the linear model may also benefit from including interaction terms for those

variables who have strong relationships amongst themselves.

20



0 100 300

2
4

6
8

1
0

1
2

1
4

Fertiliser (£/hectare)

Y
ie

ld
 (

to
n
n
e
s
/h

e
c
ta

re
)

0 100 300 500

2
4

6
8

1
0

1
2

1
4

Crop protection (£/hectare)

Y
ie

ld
 (

to
n
n
e
s
/h

e
c
ta

re
)

0 1000 2000

2
4

6
8

1
0

1
2

1
4

UAA (hectares)

Y
ie

ld
 (

to
n
n
e
s
/h

e
c
ta

re
)

Figure 2.6: Plots of yield per hectare versus fertiliser costs per hectare, crop protection
costs per hectare and utilised agricultural area with general trend superimposed.

Figure 2.4 showed there is a striking difference in yield per hectare between organic and

non-organic farms. Here we look to see whether there are any differences in the Farm

Business Survey variables between organic and non-organic farms that should be taken

account of in our linear model. Figure 2.7 shows the difference in seed costs, fertiliser

costs and utilised agricultural area between organic and non-organic farms. Organic

farms may spend more on seeds by spreading more in an attempt to gain a larger crop

due to not applying crop protection. If a farm is organic, then they will apply very little

fertiliser compared to conventional farms and in general much smaller in size.

To find further interaction terms to include, the Pearson’s correlation product moment

coefficients in Equation 2.1 can again be calculated between each of the continuous

variables with yi = xik for k 6= j. Here, we only look for the correlations between variables

which are amongst the largest (above 0.2 in absolute value) to ensure the number of model

parameters remains on a practical scale. The pairs of variables selected to include an

interaction term between are crop protection and fertiliser costs, and each of the pairwise

correlations between labour, contract costs and machinery costs. From the violin plots

in Figure 2.3, we anticipated there would be a relationship between crop protection and

fertiliser costs and that is confirmed here. The pairwise correlations between contract,

labour and machinery costs could not be seen from the previous violin plots, however
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Figure 2.7: Violin plots of seed costs per hectare, fertiliser costs per hectare and utilised
agricultural area stratified according to organic status.
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the scatterplots in Figure 2.8 show the relationships between these. As a farm increases

their labour and machinery costs, they are less likely to use contractors to undergo work

on the farm since they already have the equipment and labour. Furthermore, as labour

costs increase, machinery costs may also increase due to requiring sufficient equipment

for the workforce.

Looking at the Pearson’s correlation product moment coefficients between yield per

hectare and these interaction terms in Table 2.2, the largest correlations with yield, in

absolute value, are the interaction terms between seed costs and organic status and

utilised agricultural area and organic status. Marginally, these are associated with yield

per hectare, however we shall see in Section 2.3 whether these are still associated with

yield once main effects are accounted for.
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Figure 2.8: Plots of continuous variables with correlation coefficients larger than 0.2 in
absolute value. Top left: fertiliser costs against crop protection costs, top right: labour
costs against contract costs, bottom left: contract costs against machinery costs, bottom
right: labour costs against machinery costs.
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Seeds*Organic -0.3532 Labour*Machinery 0.0611
Fert*Organic -0.1368 Contract*Machinery 0.0076
UAA*Organic 0.3151 Fert*Fert 0.1892
Fert*Sprays 0.2820 Sprays*Sprays 0.2634
Labour*Contract 0.0466 UAA*UAA 0.0786

Table 2.2: Correlations between yield and non-linear and interaction terms for selected
variables from the Farm Business Survey to be incorporated in another linear model
with the main effects.

2.2.3 Climatic variables

Section 1 discussed the impact climate has on crop growth and the data available on

climate conditions from the UK Met Office. We look to incorporate monthly daily rainfall,

mean temperature and sunshine hours into our model for yields per hectare. These are

averaged over each NUTS1 region to protect the farms’ anonymity(see Section 1). Again,

we look at the marginal densities of the climate data and correlations with yield to find

which are marginally associated with yield.

Figure 2.9 shows the densities for rainfall in June and August. Both are examples of the

densities found from the Met Office monthly climate conditions. The density of rainfall in

June is representative of localised extreme weather conditions, whether that be extremely

high in the case of rainfall, or extremely low in the case of sunshine, whereas the density

of rainfall in August is representative of the case when there are no extreme weather

conditions.

The correlation between the monthly climate variables and yield per hectare is calculated

in Table 2.3. The most notable correlations with yield are in December, April, June and

July and may be due to the cold climate in December, April showers and the warmer

summer months of June and July. Figure 2.10 show scatterplots of yield per hectare

against rainfall in December and June with the general trend superimposed. The vertical

lines of points are a result of rounding in the Met Office data. The scatterplot between

yield and rainfall in December is representative of weather variables with a smaller

correlation with yield per hectare, whereas the scatterplot between yield per hectare and

rainfall in June is representative of a larger correlation with yield per hectare. Given

rainfall in June has a correlation with yield per hectare of −0.3050, the largest correlation

in absolute value for the weather conditions in Table 2.3, the scatterplot indicates the
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Figure 2.9: Violin plots for rainfall in June and August.

decrease in yield per hectare can be suitably captured by an increase rainfall in June,

when looking at each variable marginally.
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Month Rainfall Mean temp Sunshine

October 0.0044 -0.0051 -0.0822

November 0.0003 -0.1374 -0.0531

December -0.1899 -0.0874 0.2386

January 0.0099 -0.0927 0.0260

February -0.0022 0.0132 0.1203

March -0.0084 -0.0615 -0.1075

April -0.2249 0.0748 0.1298

May -0.0097 0.0097 0.0115

June -0.3050 0.0724 0.2698

July -0.2081 0.1078 0.0711

August 0.0491 -0.0206 -0.0670

September -0.1212 0.0463 -0.0201
Table 2.3: Correlations between yield and rainfall, yield and mean temperature, and
yield and sunshine hours for each month.
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Figure 2.10: Plots of yield per hectare versus rainfall in December and June with
general trend superimposed.
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Briefly looking at the relationships between the weather variables within each month,

Table 2.4 has, for each month, the pairwise correlations between rainfall, mean tempera-

ture and sunshine hours. The negative correlation between rainfall and sunshine hours

for all months is plausible: it is less likely to rain when the sun is shining. Figure 2.11

shows the scatterplots between rainfall and sunshine hours in December and June with

general trend superimposed. Again, due to the rounding of the Met Office data, points

in the scatterplots may coincide. Since the summer months have longer daylight hours

compared to winter months, the decrease in sunshine hours in June can be attributed

to an increase in rainfall due to cloud cover, hence a larger correlation coefficient in

absolute value. As for December, which will have a smaller number of daylight hours,

the decrease in sunshine hours may not be attributed to rainfall, but instead down to

the time of the year.

Month Rainfall Rainfall Mean temp

& Mean temp & Sunshine & Sunshine

October 0.1237 -0.5437 0.1065

November 0.0941 -0.1475 -0.2220

December 0.4320 -0.2128 0.0979

January 0.3525 -0.1513 0.1873

February 0.3865 -0.1898 0.1790

March -0.4643 -0.4709 0.8964

April -0.6146 -0.7168 0.6240

May 0.1048 -0.7243 -0.0098

June -0.3393 -0.7675 0.5775

July -0.6846 -0.5527 0.8076

August -0.4010 -0.5557 0.1747

September -0.3115 -0.2681 0.2251
Table 2.4: Correlations between each pairwise combination of rainfall, mean tempera-
ture and sunshine for each month.
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Figure 2.11: Plots of rainfall against sunshine hours for December and June.

We shall be incorporating weather conditions in our models as main effects only. Table

2.4 may suggest there should be interaction terms for the weather conditions, however

since this thesis focuses on finding which farming practices are associated with yield,

investigating these interactions to be studied as future work. Incorporating weather

conditions as main effects only will provide a brief insight into whether yield per hectare

still depends on climate conditions conditional on what we know from the Farm Business

Survey variables.

2.3 Regression methods

So far we have looked at the marginal influence of each covariate from either the Farm

Business Survey in Section 2.2.2 or the UK Met Office in Section 2.2.3 on yield per

hectare. This section looks to combine these variables in one linear model with main

effects only and one linear model with main effects, non-linear terms and interaction

terms, using quantile regression, linear regression and principal component regression.

Quantile regression is robust to high yielding farms. Linear regression may skew the
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model to accommodate for outliers, however if these models approximately agree, linear

regression is preferred since the ordinary least squares estimator has the smallest variance

amongst all linear unbiased estimators. This is an advantage when fitting the model,

however this could produce estimates far from the observed yields when testing the

model on out-of-sample data. Principal component regression is based on capturing the

largest variation between the explanatory variables rather than capturing the largest

association with yield per hectare.

All of these methods are formulated from the following linear model. Suppose a set of

fixed covariates x1, ...,xp ∈ Rn are to be used to describe a response y ∈ Rn, then a

linear model takes the form y = α +
∑p
j=1 βjxj + ε = α1n +Xβ + ε where β ∈ Rp is

the vector of parameter coefficients, X = (x1, ...,xp) ∈ Rn×p, α the intercept parameter,

1n being the vector of length n composed of ones for the intercept term, and ε ∈ Rn is a

zero-mean error term with constant covariance matrix σ2In, with In being the identity

matrix.

The following sections look at different methods to find estimates for the coefficients β

using various minimisation criteria. We shall compare the predictions from each model

with their mean squared prediction error (Section 2.3.4).

2.3.1 Quantile regression

Quantile regression models the conditional quantiles of yield, Qτ (Y |X) = α(τ)1n +

Xβ(τ), see Koenker and Bassett (1978), where α(τ) and β(τ) are estimated by

(α̂(τ), β̂(τ)) = argmin
α,β


∑

i∈{i:yi≥α+xTi β}
τ
∣∣∣yi − α− xTi β∣∣∣
+

∑
i∈{i:yi<α+xTi β}

(1− τ)
∣∣∣yi − α− xTi β∣∣∣

 ,
and | · | denotes taking the absolute value. The minimisation problem allows for different

weightings of the residuals through τ . For each i, if the residual yi−α+xTi β is positive,

then the residual is weighted by τ , otherwise it is weighted by 1 − τ . As τ increases,
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our estimates for α and β would be largely based on the upper quantiles of yield. As τ

decreases, our estimates would be based on the lower quantiles of yield. Taking τ = 0.5

gives the residuals equal weighting, corresponding to the conditional median, minimising

the absolute loss

(α̂, β̂) = argmin
α,β

{|Y − α1n −Xβ|1} ,

where | · |1 denotes the Euclidean L1 norm

|r|1 =
n∑
i=1
|ri| , r ∈ Rn. (2.2)

This ensures the parameter estimates for α and β are robust to outliers.

No distributional assumptions about the residuals are required for quantile regression. If

the error in our model is normally distributed, it would be preferable to use an estimator

utilising this assumption to achieve smaller confidence intervals for our model parameters.

2.3.2 Linear regression

Linear regression models the conditional mean, E(Y |X) = α1n+Xβ, where the asymp-

totic normality assumption of the residuals leads to desirable properties such as asymp-

totic normality, unbiasedness, and on most occasions a small variance for parameter

estimates, whilst still being interpretable for non-specialists.

To fit a linear model, ordinary least squares finds α̂ and β̂ which will minimise the

residual sum of squares

RSS := (y − ŷ)T (y − ŷ) , (2.3)

with ŷ = α̂1n+Xβ̂. LettingX∗ = (1n,x1, ...,xp) and β∗ = (α, β1, ..., βp) be the merged

coefficient vector, then β̂∗ =
(
X∗TX∗

)−1
X∗Ty, and so ŷ = X∗β̂∗, where P is the

projection matrix X∗
(
X∗TX∗

)−1
X∗T .

A normality assumption for y conditioned on X∗β∗ allows for inferences to be made

about the coefficient estimates. To show y conditioned on X∗β∗ is approximately dis-

tributed according to a Normal distribution, the sample quantiles of the standardised
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residuals should be approximately equal to the theoretical quantiles of a standard Normal

distribution with zero mean and unit variance. A vector r is standardised by subtracting

its mean r̄ then dividing through by its standard deviation sr, where

r̄ = 1
n

n∑
i=1

ri and sr =

√√√√ 1
n

n∑
i=1

(ri − r̄)2. (2.4)

A histogram of the standardised residuals should also appear as a standard Normal

distribution. If the standardised residuals appear to be skewed, Box and Cox (1964)

suggest first correcting for the skew by applying the Box-Cox transform

y
(λ)
i =


yλi −1
λ , λ 6= 0,

log(yi), λ = 0,

to the ith observed yield yi, where λ is estimated using profile likelihood.

Given the normality assumption for y conditioned on X∗β∗ holds,X∗β∗ is non-random,

ε ∼ Nn(0, σ2In), where In is the n× n identity matrix, the distribution of Y takes the

same distributional form as the residuals, Y ∼ Nn(X∗β∗, σ2In), with density function

π(y|X∗,β∗, σ2) = (2πσ2)−n/2exp
(
− 1

2σ2 (y −X∗β∗)T (y −X∗β∗)
)
. (2.5)

The result for β can also be found using maximum likelihood estimation. Our distribu-

tional assumption for Y and the properties of the multivariate Normal distribution gives

E(β̂∗) = β∗ and var(β̂∗) = σ2(X∗TX∗)−1, therefore

β̂∗ ∼ Np

(
β∗, σ2(X∗TX∗)−1

)
(2.6)

allows for confidence intervals to be constructed for the intercept α and the variable

coefficients β. The relevant hypothesis test statistic for testing the null hypothesis of a

coefficient equalling zero, H0 : β∗j = 0, is β̂∗j /s
√
dii, where s is the standard error of the

residuals using Equation 2.4 and dii is the iith element of the matrix
(
XTX

)−1
. The

test statistic is compared to a t-distribution with n−p degrees of freedom. As the sample
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size n increases, the t-distribution approximately resembles a Normal distribution. In

this case, the (1− α)% confidence intervals will be

β̂∗j ± Φ−1(1− α/2)× s
√
dii, (2.7)

where Φ−1 is the inverse of the cumulative distribution function for the Normal distribu-

tion. With α = 0.05, this will correspond to the 95% confidence interval. These confidence

intervals will also allow variable importance to be determined at the α significance level.

If a variable is not important to model the yield per hectare then zero will be contained

in the confidence interval and the null hypothesis would be accepted. Varying α will vary

our tolerance to what is an important variable.

Although linear regression will achieve the smallest variance in the coefficient estimates,

all of the data available is used to fit a linear model. This will capture the subtle differences

in our dataset. For out-of-sample data which may not contain these subtle differences,

predictions may be far from what was observed. Instead, the following section looks to fit

a model to a projection of the data which captures the largest proportion of the variation

in our training data.

2.3.3 Principal component regression

Assuming the columns of X have been standardised (see Equation 2.4), principal com-

ponent regression first reduces the dimension of the standardised covariate matrix X

by projecting the covariates onto the orthonormal columns of matrix Q which in turn

maximise the correlation of the observations not already captured by the previous or-

thonormal vectors (see Figure 2.12). These are referred to as the principal component

loadings, the projected covariates XQ are referred to as the principal component scores

and the original covariates are referred to as the raw scores. Principal component regres-

sion involves linearly regressing upon a subset of principal component scores rather than

the raw scores as done in the previous section.
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Figure 2.12: Projection of X onto the first principal component Q1.

Finding the principal component loadings and scores reduces down to finding the eigen-

values and eigenvectors of the correlation matrix XTX. Given XTX is symmetric, we

can find the spectral decomposition

XTX = QΛQT ,

where Λ = diag {λ1, ..., λp} is the diagonal matrix of decreasing eigenvalues of the matrix

XTX and Q is the matrix of corresponding orthonormal eigenvectors.

The first principal component loading is the eigenvector of the covariance matrix XTX

which corresponds to the largest eigenvalue. This will capture the largest proportion

of correlation, the second principal component loading will capture the second largest

proportion, and so on. Rather than regressing on all of the principal component scores,

equivalent to using linear regression from Section 2.3.2, a subset of the principal compo-

nent scores can be used to capture most of the correlation whilst reducing the dimension.

Suppose the first k < p principal component scores are to be used, that is W k = XQk,

where Qk is the p × k matrix of the first k principal component loadings, we linearly

regress the principal component scores onto the centred response y through the linear

model y = W kγ + e, where e ∈ Rn is a zero-mean error term analogous to ε in the

original linear model, to find an estimate for γ. Furthermore, if we want to see how this

translates back to the original formulation, β̂ = Qkγ̂ where γ̂ is the vector of estimated

coefficients of the principal component scores and β̂ is the estimated coefficients of the
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standardised matrix X.

Since the estimated parameters α̂ and β̂ are estimated from the standardised vectors,

the following transform is used to revert the coefficients back to their original scale:

α̂∗ = ȳ −
p∑
j=1

β̂j x̄j
sxj

β̂∗j = β̂j
sxj

, (2.8)

where β̂j , j = 1, ..., p are the estimated parameters from the standardised vectors and α̂∗,

β̂∗j , j = 1, ..., p, are the transformed estimated parameters, ȳ is the sample mean of y and

x̄j and sxj are the mean and standard deviation of the original xj before standardising.

The estimated coefficients β̂j of the standardised vectors and the estimated coefficients β̂∗j

in the original model differ by a scale factor depending on the scale of their corresponding

variable xj .

Although principal component regression reduces the dimension of the matrix X to

capture the largest variation in X, the model may still include variables which have little

association with yield per hectare.

2.3.4 Prediction accuracy

All of the previous sections discussed different methods to find intercept and coefficient

estimates α̂ and β̂ to use in the linear model y = α̂1n + Xβ̂ + ε. Linear regression

and principal component regression find β̂ by minimising the residual sum of squares in

Equation 2.3, whether that be with the full set of covariates in linear regression or with

a projected set of covariates in principal component regression.

The following section compares out-of-sample predictions using the different methods

discussed. To assess the accuracy of the out-of-sample predictions, we take the estimates

for α and β and the data from 2009 to find ŷ = α̂1n + Xβ̂ and the mean squared

prediction error,

MSPE := 1
n

(y − ŷ)T (y − ŷ) . (2.9)

This analogous to finding the mean of the residual sum of squares in Equation 2.3 with

out-of-sample data.
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2.4 Application

The methodology from Section 2.3 will be applied to the Farm Business Survey and

UK Met Office data from Section 2.2 to study the relationship between the covariates

and yield, conditional on other variables already being included in the models. Both the

model with main effects only and the model with main effects, non-linear and interaction

terms will be compared for each parameter estimation method: quantile regression and

linear regression (Section 2.4.1) and principal component regression (Section 2.4.2).

2.4.1 Quantile and linear regression

To model the conditional median, estimates for the coefficients β are found by minimising

the mean absolute difference (see Section 2.3.1). Table 2.5 shows the quantile regression

estimates for each variable in the model with main effects only and the model with

main effects, non-linear and interaction terms from Section 2.2. Comparing these to the

estimates for the coefficients when minimising the residual sum of squares in Equation

(2.3), we find these are approximately equal. Since the least squares estimator achieves

the smaller variance between the two methods, we discuss the coefficients computed

using linear regression and where appropriate, their associated confidence intervals.

Section 2.3.2 discussed checking the standardised residuals to ensure the linear model

is appropriate to conduct inference based on the asymptotic normality property of

ordinary least squares regression. Figure 2.13 indicates both models can be appropriately

modelled linearly; the sample and theoretical quantiles are approximately equal and the

standardised residuals are randomly scattered about zero, therefore there is no need to

apply a Box-Cox transform to the yields per hectare.

Table 2.5 gives the coefficient estimates and their corresponding 95% confidence interval

for each model proposed. If the 95% confidence interval does not contain zero, then the

variable will be important at the α = 0.05 level. This is equivalent to the t-statistic being

larger than 1.96 in absolute value.

From the confidence intervals for the main effects model only, the Farm Business Survey

35



−4 −2 0 2 4

−
4

0
2

4
6

Theoretical Quantiles

S
a

m
p
le

 Q
u
a
n
ti
le

s

2 4 6 8 10 12

−
4

0
2

4
6

Fitted values

S
ta

n
d

a
rd

is
e
d
 r

e
s
id

u
a

ls

−4 −2 0 2 4

−
4

0
2

4
6

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

2 4 6 8 10 12
−

4
0

2
4

6

Fitted values

S
ta

n
d
a

rd
is

e
d
 r

e
s
id

u
a
ls

Figure 2.13: Left: plots of theoretical quantiles of the standard Normal distribution
against sample quantiles of the standardised residuals from the linear model for, top:
main effects only, bottom: main effects, non-linear and interaction terms. Right: plots
of standardised residuals against fitted values for the linear model for, top: main effects
only, bottom: main effects, non-linear and interaction terms.

variables indicated as not being important are all of the education levels except college

level or equivalent, fuel and TOFC. For the model with main effects, non-linear and

interaction terms, the main effects from the Farm Business Survey variables indicated as

not being important remain the same. Even with the non-linear and interaction terms

now being included, the main effects included in the non-linear and interaction terms

are still important. Since the interaction terms between organic status and seed costs,

fertiliser costs and utilised agricultural area have now been included in the model, the

coefficient for organic status as a main effect has now decreased, since some of the

marginal association between organic status and yield is now captured by the interaction

terms.

The mean squared prediction error for the main effects model is 2.704 and for the

model with main effects, non-linear and interactions terms is 3.155, hence we look at
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the predictions for the main effects model. Figure 2.15 shows the predictions of yield

per hectare using the linear regression coefficients for the main effects model. These

predictions appear to capture the yields around the mean sufficiently well but struggle to

predict yields departing from the mean. Although linear regression shows how a variable

behaves in the presence of other variables in the model, the coefficients will capture

subtle differences in the data the model is trained on. The following section looks to

capture the largest variation in our data and neglects these nuances.

2.4.2 Principal component regression

Section 2.3.3 discusses the advantages to dimension reduction techniques as opposed

to linear regression. Principal component regression assumes the columns of X have

been standardised and y has been centred to compute the principal component loadings.

Response vector y is centred by subtracting its mean. To standardise X, each column

is subtracted by their mean and divided by their standard deviation (see Equation 2.4).

Basing our principal component analysis on the correlation matrix ensures the projections

are not determined by the units of the covariate vectors.

We first look at principal components for the main effects model. Before regressing on

the principal component scores, we look at the projections for each principal component.

Figure 2.14 shows the contributions each covariate has in the first 2 principal components.

For our data, the first principal component, accounting for 12.54% of the correlation

in the observations, is composed of weather conditions. This may be down to weather

conditions changing each year whereas farming practices often remain the same. The

second principal component is also composed of the weather conditions. The first 2

principal components account for 23.87% of the total variation.

Comparing the mean squared prediction error (Equation 2.9) for each model of increas-

ing number of principal components used in the modelling, the smallest mean squared

prediction error is 1.944 when 32 principal components are used to model wheat yield,

however there is little difference in the mean squared prediction error between using 10

and 32 principal components once the principal components are regressed upon. When

we regress upon the first 10 principal components, capturing 66.02%, the mean squared
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prediction error is 2.080. This is smaller than 2.704 which is the mean squared prediction

error achieved using linear regression.

Looking at the principal component for the model with main effects, non-linear and

interaction terms, the first 2 principal components are still composed of the weather

conditions but now capture 20.14% of the total variation. The reduction in total variation

is down to now including non-linear and interaction terms using data from the Farm

Business Survey, yet these additional terms are not included in the first 2 principal

components. The smallest mean squared prediction error is found using the first 42

principal components, however the mean squared prediction error is, again, not very

different to using the first 10 principal components, now capturing 63.05%, achieving a

MSPE of 2.124.

Predicting yields per hectare using the first 10 principal components for both models

gives the coefficient estimates in Table 2.5 and the predictions for the main effects model

are in Figure 2.15, since this achieves a smaller MSPE compared to the model with

non-linear and interaction terms. The predictions appear to model the mean sufficiently

well, but still overestimate lower yields.

Calculating coefficients based on a subset of principal component scores has reduced

the mean squared prediction error, compared to those from linear regression, however

variables in the principal component projections are those which capture the largest

variation in the data rather than those which have the largest association with yield per

hectare. The following section looks at methods to construct a linear model based on

Farm Business Survey and Met Office variables which are most associated with yield per

hectare.
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Figure 2.14: Principal component loadings for the 1st and 2nd principal components of the main effects model. Weather variable names with
numbers 1 to 12 correspond to the months of the growing year, e.g. Rainfall1 corresponds to rainfall in October.
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Main effects model Model with interactions

Variable β̂
(QT )
j β̂

(LR)
j β̂

(PC)
j β̂

(QT )
j β̂

(LR)
j β̂

(PC)
j

Intercept α 4.1852 5.8600 (3.3432, 8.3762) * 6.7156 3.3932 4.7164 (2.2447, 7.1881) * 3.8229

Seeds −0.0036 −0.0043 (−0.0058,−0.0028) * −0.0047 −0.0027 −0.0035 (−0.0051,−0.0019) * −0.0021

Fert 0.0033 0.0036 (0.0029, 0.0042) * 0.0036 0.0076 0.0072 (0.0046, 0.0097) * 0.0012

Sprays 0.0061 0.0065 (0.0057, 0.0072) * 0.0056 0.0176 0.0200 (0.0174, 0.0226) * 0.0023

OtherVC 0.0020 0.0026 (0.0017, 0.0035) * 0.0004 0.0021 0.0027 (0.0018, 0.0035) * 0.0003

Fuel 0.0039 0.0032 (−0.0033, 0.0097) 0.0098 0.0021 0.0009 (−0.0054, 0.0073) 0.0038

Labour 0.0005 0.0005 (0.0002, 0.0008) * 0.0007 0.0021 0.0021 (0.0017, 0.0026) * 0.0006

Contract 0.0013 0.0014 (0.0011, 0.0017) * −0.0009 0.0027 0.0026 (0.0022, 0.0030) * −0.0004

Machinery 0.0015 0.0014 (0.0012, 0.0016) * −0.0001 0.0024 0.0022 (0.0019, 0.0025) * 0.0002

TOFC −0.0005 −0.0004 (−0.0011, 0.0003) −0.0010 −0.0006 −0.0005 (−0.0012, 0.0003) 0.0001

LAND 0.0013 0.0010 (0.0007, 0.0013) * −0.0004 0.0012 0.0011 (0.0008, 0.0014) * 2.825.10−5

UAA 0.0007 0.0006 (0.0005, 0.0007) * 0.0001 0.0020 0.0019 (0.0017, 0.0022) * 0.0002

Organic −2.4896 −2.1358 (−2.3690,−1.9026) * −2.1239 −1.3770 −0.8366 (−1.3714,−0.3018) * −0.9710

Education 1 −0.1172 −0.0745 (−0.2035, 0.0545) 0.0719 −0.0821 −0.0458 (−0.1717, 0.0802) 0.0092

Education 2 0.0858 0.0389 (−0.1232, 0.2011) 0.0652 0.1013 0.0615 (−0.0970, 0.2200) 0.0499

40



Education 3 0.1526 0.1182 (0.0285, 0.2079) * 0.0738 0.1456 0.1197 (0.0321, 0.2073) * −0.0413

Education 4 0.1049 0.1007 (−0.0115, 0.2129) −0.1534 0.1641 0.1166 (−0.0068, 0.2263) 0.0469

Education 5 −0.0700 0.0378 (−0.1450, 0.2206) −0.1435 0.0155 0.0286 (−0.1500, 0.2073) 0.0145

Seeds*Organic 0.0023 −0.0014 (−0.0024, 0.0051) −0.0087

Fert*Organic −0.0023 −0.0023 (−0.0090, 0.0043) −0.0173

UAA*Organic Interaction −0.0006 −0.0009 (−0.0019, 0.0001) −0.0030

Fert*Sprays terms −3.6.10−6 −1.1.10−6 (−1.2.10−5, 9.7.10−6) 6.0.10−6

Labour*Contract −3.6.10−6 −2.5.10−6 (−4.3.10−6,−6.7.10−7) * 1.1.10−6

Labour*Machinery −2.0.10−6 −1.9.10−6 (−2.4.10−6,−1.4.10−6) * 5.5.10−7

Contract*Machinery −2.6.10−6 −1.9.10−6 (−3.4.10−6,−4.0.10−7) * −1.1.10−7

Fert*Fert −1.2.10−5 −1.2.10−5 (−1.9.10−5,−4.9.10−6) * 2.5.10−6

Sprays*Sprays Non-linear terms −3.2.10−5 −3.8.10−5 (−4.5.10−5,−3.0.10−5) * 5.3.10−6

UAA*UAA −7.6.10−7 −7.6.10−7 (−9.2.10−7,−6.0.10−7) * 1.2.10−7

Rainfall October 0.0004 −0.0008 (−0.0046, 0.0030) −0.0011 −0.0008 −0.0007 (−0.0044, 0.0031) −0.0002

Rainfall November −0.0085 −0.0086 (−0.0116, 0.0057) 0.0002 −0.0090 −0.0083 (−0.0112,−0.0054) * 0.0007

Rainfall December 0.0048 0.0047 (0.0013, 0.0082) * −0.0028 0.0036 0.0040 (0.0006, 0.0074) * −0.0007

Rainfall January 0.0022 0.0005 (−0.0034, 0.0045) 0.0012 0.0025 0.0002 (−0.0037, 0.0041) 0.0009
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Rainfall February 0.0027 0.0011 (−0.0023, 0.0045) −0.0008 0.0040 0.0019 (−0.0013, 0.0052) 0.0008

Rainfall March −0.0029 0.0006 (−0.0040, 0.0052) 0.0008 −0.0018 0.0002 (−0.0043, 0.0047) −0.0001

Rainfall April −0.0166 −0.0149 (−0.0208,−0.0090) * −0.0035 −0.0170 −0.0134 (−0.0191,−0.0076) * −0.0010

Rainfall May −0.0030 −0.0031 (−0.0069, 0.0007) 0.0007 −0.0030 −0.0028 (−0.0065, 0.0010) −0.0016

Rainfall June −0.0087 −0.0082 (−0.0111,−0.0053) * −0.0033 −0.0081 −0.0082 (−0.0110,−0.0054) * −0.0019

Rainfall July −0.0091 −0.0087 (−0.0120,−0.0054) * −0.0016 −0.0078 −0.0081 (−0.0113,−0.0048) * −0.0021

Rainfall August 0.0061 0.0043 (−0.0004, 0.0089) 0.0011 0.0063 0.0033 (−0.0012, 0.0078) 0.0028

Rainfall September 0.0041 0.0046 (0.0004, 0.0087) * −0.0024 0.0031 0.0038 (−0.0003, 0.0078) −0.0001

Mean temp October 0.3739 0.4735 (0.2792, 0.6678) * −0.0309 0.3571 0.5072 (0.3174, 0.6970) * 0.0010

Mean temp November −0.3053 −0.2948 (−0.5294,−0.0602) * −0.0384 −0.2856 −0.2618 (−0.4910,−0.0326) * −0.0098

Mean temp December 0.0544 0.0438 (−0.1673, 0.2550) −0.0114 0.0737 0.0377 (−0.1684, 0.2438) −0.0182

Mean temp January −0.3392 −0.3359 (−0.5287, 0.1431) 0.0103 −0.2875 −0.2949 (−0.4831,−0.1068) * −0.0171

Mean temp February −0.4473 −0.4199 (−0.5771,−0.2627) * 0.0452 −0.5077 −0.4620 (−0.6154,−0.3085) * 0.0190

Mean temp March −0.0657 −0.0057 (−0.1559, 0.1444) −0.0079 −0.0792 −0.0657 (−0.2125, 0.0812) 0.0089

Mean temp April −0.0704 0.0845 (−0.1982, 0.3672) 0.0317 −0.0502 0.1180 (−0.1579, 0.3940) 0.0207

Mean temp May −0.2070 −0.2847 (−0.5094,−0.0600) * 0.0459 −0.1961 −0.2399 (−0.4593,−0.0205) * 0.0444

Mean temp June 0.1838 0.0116 (−0.3053, 0.3285) −0.0017 0.1786 −0.0631 (−0.3726, 0.2465) 0.0612
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Mean temp July −0.9848 −0.8384 (−1.1239,−0.5528) * −0.0040 −1.0257 −0.8175 (−1.0965,−0.5386) * 0.0302

Mean temp August 0.4569 0.3047 (0.1193, 0.4902) * −0.0044 0.4306 0.2553 (0.0735, 0.4371) * 0.0054

Mean temp September 0.8485 0.7179 (0.4688, 0.9670) * −0.0434 0.9174 0.7429 (0.4997, 0.9862) * 0.0271

Sunshine October −0.0034 0.0012 (−0.0063, 0.0087) −0.0005 −0.0048 −0.0006 (−0.0079, 0.0068) −0.0003

Sunshine November −0.0070 −0.0069 (−0.0136,−0.0001) * −0.0033 −0.0146 −0.0086 (−0.0152,−0.0020) * −0.0014

Sunshine December 0.0055 0.0029 (−0.0045, 0.0103) 0.0126 0.0059 0.0020 (−0.0053, 0.0092) 0.0036

Sunshine January 0.0044 0.0008 (−0.0101, 0.0118) 0.0034 0.0081 0.0021 (−0.0086, 0.0128) −0.0022

Sunshine February 0.0528 0.0526 (0.0436, 0.0616) * 0.0072 0.0506 0.0520 (0.0432, 0.0608) * 0.0012

Sunshine March 0.0119 0.0081 (0.0022, 0.0140) * −0.0015 0.0120 0.0082 (0.0025, 0.0140) * −0.0005

Sunshine April 0.0099 0.0081 (0.0022, 0.0140) * 0.0029 0.0098 0.0083 (0.0025, 0.0141) * 0.0010

Sunshine May −0.0053 −0.0027 (−0.0079, 0.0026) 0.0001 −0.0059 −0.0021 (−0.0072, 0.0030) 0.0031

Sunshine June −0.0069 −0.0049 (−0.0087,−0.0012) * 0.0035 −0.0065 −0.0046 (−0.0083,−0.0009) * 0.0027

Sunshine July 0.0005 0.0015 (−0.0038, 0.0068) −0.0002 0.0026 0.0014 (−0.0037, 0.0066) 0.0002

Sunshine August −0.0055 −0.0050 (−0.0101, 0.0001) −0.0029 −0.0081 −0.0067 (−0.0117,−0.0017) * −0.0023

Sunshine September −0.0127 −0.0117 (−0.0173,−0.0061) * −0.0022 −0.0156 −0.0140 (−0.020,−0.0085) * −0.0012

Variable β̂
(QT )
j β̂

(LR)
j β̂

(PC)
j β̂

(QT )
j β̂

(LR)
j β̂

(PC)
j

Main effects model Model with interactions

Table 2.5: Linear model coefficient estimates with quantile regression β̂
(QT )

, linear regression β̂
(LR)

with 95% confidence interval and principal
component regression β̂

(P C)
based on 10 principal components. Stars represent significance at the α = 0.05 according to their confidence intervals.
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Figure 2.15: Observed yield per hectare versus predicted yield per hectare for the main
effects model using, top: linear regression, bottom: principal component regression based
on 10 principal components. The predictions using principal component regression with
10 principal components achieves a smaller mean squared prediction error compared to
the predictions using linear regression, hence is better to model yield per hectare.
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2.5 Variable selection methods

The previous sections looked at regression methods for linearly modelling yield per

hectare using all of the covariates available. Here we use stepwise methods to reduce

the set of covariates down to only include the variables which are most associated with

yields.

Forward stepwise regression and Lasso regression in the following chapters require the

covariates X to first be standardised and the response y to be centred by subtracting its

mean (see Equation 2.4). This is to avoid shrinking and selecting variables based on the

magnitude of each variables rather than their relationship with the response. Equation

2.8 discusses how to transform the coefficients from forward stepwise regression or Lasso

regression back to their original scale.

2.5.1 Best subsets regression

Best subsets regression searches all 2p combinations of inclusion and exclusion of the p

variables in the linear model to estimate the conditional mean. For each k ∈ {1, ..., p},

best subset regression finds the subset of k explanatory variables which minimises the

residual sum of squares amongst all subsets of size k. The advantage of this method is

parsimonious models can be found which achieve a small residual sum of squares. There

are p!/((p − k)!k!) different combinations of explanatory variables to create subsets of

size k. When p increases, the number of combinations to compute the residual sum of

squares will increase exponentially, hence the calculations will quickly become infeasible

for large p.

2.5.2 Forward stepwise regression

Forward stepwise regression looks to search amongst the 2p possible combinations of

covariates by sequentially adding variables which achieve the largest covariance with the

residuals. Forward stepwise regression searches the combinations methodically, whereas

best subset regression searched the combinations exhaustively. The covariates are stan-
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dardised and the response vector is centred such that the selected variables do not depend

on the centre of the response nor the magnitude of the observed variable.

At the first step, the variable Xj is selected if it minimises the residual sum of squares in

Equation 2.3 with ŷ = Xj β̂j , over all j, where β̂j is the coefficient from linearly regressing

Xj onto centred y as in Section 2.3.2, without an intercept term. Consequently, the first

variable j1 to be selected satisfies

(j1, s1) = argmax
j=1,...,p,s∈{−1,1}

sXT
j y

||Xj ||2
, (2.10)

where s1 is the corresponding sign of the coefficient ofXj1 . With rA1 = y−Xj1 β̂j1 from

the previous step, the next step looks to find the variable Xj , j 6= j1, which minimises

the residual sum of squares in Equation 2.3 now with y = rA1 and ŷ = Xj β̂j , j 6= j1.

Ak−1 refers to the set of variables already selected up to step k.

For general step k, the variable which enters the model at the kth step satisfies

(jk, sk) = argmax
j /∈Ak−1,s∈{−1,1}

sXT
j rAk−1

||Xj ||2
= argmax

j /∈Ak−1,s∈{−1,1}

sXT
j P
⊥
Ak−1y

(XT
j Xj)−1/2 , (2.11)

where P⊥Ak−1 = I − PAk−1 is the projection on the space orthogonal to XAk−1 . This

continues until all variables are included in the model, assuming X is of full rank.

Usually forward selection does not involve orthogonalising after each step. Tibshirani et al.

(2016) introduced the idea of orthogonalising at each step such that fewer parameters

are included to achieve predictions close to those from using linear regression. These

methods are only guaranteed to produce the same path of active coefficients if all of the

covariates are orthonormal. Furthermore, the residual sum of squares using the variables

selected from orthogonalising after each step will always be smaller than or equal to the

residual sum of squares from not orthogonalising. This alternative method starts in the

same manner, where j1 and s1 satisfy Equation 2.10. When orthogonalising after each

step, the general kth term becomes
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(jk, sk) = argmax
j /∈Ak−1,s∈{−1,1}

sX̃
T
j rAk−1

||X̃j ||2
= argmax

j /∈Ak−1,s∈{−1,1}

sXT
j P
⊥
Ak−1y(

XT
j P
⊥
Ak−1Xj

)1/2 , (2.12)

where X̃j isXj orthogonalised with respect to the variables already included in the model,

X̃j = P⊥Ak−1Xj . We will apply both these variations of forward stepwise regression on

the Farm Business Survey and UK Met Office data and compare the sequences in which

the variables are selected.

Although orthogonalising at each step in forward stepwise finds a suitable linear com-

bination of variables which have a strong association with yield, forward stepwise is

a greedy variable selection technique, going as far as possible in one direction before

looking for another to include in the model. Progressing in a greedy manor means some

of the variables which are highly correlated with yield per hectare are not selected.

2.5.3 Lasso regression

Rather than following as far as possible in the direction spanned by the variables included

in the model before adding in another variable, Lasso regression (see, Tibshirani (1996)

and Hastie et al. (2008)) selects variables according to their correlation with the residuals,

gradually increasing the coefficient parameters until another variable is equicorrelated

with the residual (Figure 2.16).
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Figure 2.16: (a) Steps taken in forward stepwise regression. The coefficient increases
as far as possible in the direction of the variable with the largest correlation with the
response y, X1 in this toy example. (b) Steps taken in Lasso regression. The coefficient
increases until another variable is equicorrelated with the residual. Solid line represents
the path taken, thick dashed line represents the shortest route between (0, 0) and y
and the thin dashed line represents the direction when the variables X1 and X2 are
equicorrelated.

Tibshirani (1996) showed this can be formulated as an optimisation problem, aiming to

solve

β̂ = argmin
β

{1
2 (y −Xβ)T (y −Xβ)− λ|β|1

}
(2.13)

where λ is the shrinkage parameter to restrict the length of the coefficient vector β.

Consequently, λ also controls the number of variables included in the model. Figure 2.17

shows how using an L1 penalty on the size of the coefficient applies both shrinkage and

selection. Figure 2.17(a) illustrates selecting a large enough λ such that only 1 variable

is selected, whereas Figure 2.17(b) selects a smaller λ which includes both coefficients in

our resulting model but shrinks the coefficients down. When λ = 0, the linear regression

coefficients are retrieved. We shall see in Section 2.6.2 the order in which the variable

are selected when decreasing λ.
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Figure 2.17: Constraint plots for Lasso regression. (a) large λ to only select 1 variable.
(b) smaller λ to shrink the coefficients.

2.6 Application

We first note with p = 53, Section 2.5.1 suggests best subsets regression is not feasible due

to the computing power required to calculate the coefficient estimates for 253 different

combinations of the 53 variables. Instead, forward stepwise regression would be feasible

by sequentially searching through the models by adding variables in according to their

covariance with the residuals from the previous step (see Section 2.5.2).

2.6.1 Forward stepwise regression

The order in which each variable enters the model shall determine the variable’s impor-

tance in the model. Performing forward stepwise for our main effects model until all

covariates are in the model, Tables 2.6 and 2.7 show the variables in order of entry for

the non-orthogonalised forward stepwise approach and the orthogonalised approach at-

tributed to Tibshirani et al. (2016). These methods select the same variables for the first 6

steps: organic, rainfall June, sprays, rainfall December, rainfall January and

machinery. Organic status being selected first confirms what was seen in Section 2.2;

organic status has the largest marginal influence on wheat yields and so enters the model

first. Rainfall in June, December and January may be indicative of rain at key stages of
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the crop’s growing cycle. A large number of variables representing farming practices lie in

the first half of the table for both forward stepwise applications. This could be a feature

of the association of each of the weather conditions with yield per hectare potentially

being encapsulated by another weather condition if they are highly correlated, hence

pushing them further down the list. One final point to make is education of the farmer

is not deemed important according to the order of the variables entering the model.
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Order Variable Order Variable

1 Organic 28 Education 3

2 Rainfall June 29 Education 4

3 Sprays 30 Sunshine October

4 Rainfall December 31 Mean temp July

5 Machinery 32 Mean temp October

6 Rainfall January 33 Mean temp November

7 Sunshine January 34 Rainfall May

8 Rainfall April 35 Sunshine May

9 UAA 36 Sunshine November

10 Sunshine February 37 Rainfall March

11 Mean temp August 38 Rainfall August

12 Contract 39 Rainfall October

13 LAND 40 TOFC

14 OtherVC 41 Sunshine September

15 Rainfall November 42 Mean temp September

16 Mean temp December 43 Sunshine March

17 Labour 44 Mean temp June

18 Fert 45 Sunshine June

19 Rainfall September 46 Sunshine August

20 Sunshine April 47 Mean temp April

21 Rainfall February 48 Education 2

22 Education 1 49 Mean temp March

23 Seeds 50 Education 5

24 Mean temp May 51 Mean temp February

25 Mean temp January 52 Rainfall July

26 Sunshine December 53 Sunshine July

27 Fuel
Table 2.6: Order of appearance for variables using forward stepwise regression without
orthogonalisation after each step.
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Order Variable Order Variable

1 Organic 28 Mean temp July

2 Rainfall June 29 Mean temp September

3 Sprays 30 Labour

4 Rainfall December 31 Sunshine September

5 Rainfall January 32 Mean temp February

6 Machinery 33 Mean temp November

7 Rainfall April 34 Sunshine August

8 Sunshine February 35 Sunshine March

9 Fert 36 Education 3

10 Mean temp January 37 Education 4

11 UAA 38 Mean temp June

12 Contract 39 Rainfall August

13 LAND 40 Education 1

14 Seeds 41 Sunshine May

15 OtherVC 42 Sunshine November

16 Mean temp August 43 TOFC

17 Rainfall November 44 Sunshine December

18 Sunshine April 45 Fuel

19 Rainfall September 46 Rainfall February

20 Sunshine January 47 Sunshine July

21 Mean temp December 48 Mean temp April

22 Mean temp October 49 Rainfall October

23 Mean temp May 50 Education 2

24 Rainfall May 51 Education 5

25 Rainfall March 52 Sunshine October

26 Sunshine June 53 Mean temp March

27 Rainfall July
Table 2.7: Order of appearance for variables using forward stepwise regression with
orthogonalisation after each step.
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The minimum mean squared prediction error (see Section 2.3.4) found with main effect

models constructed using forward stepwise regression without orthogonalising after every

step is 2.045 achieved with the first 5 variables. With orthogonalisation after every step,

the smallest mean squared prediction was 1.873, using the first 17 variables selected from

Table 2.7 given in Table 2.8 .

Running both forward stepwise algorithms on the model with main effects, non-linear

and interaction terms, the smallest mean squared prediction error 1.913 are achieved

by selecting 15 variables from applying the forward stepwise procedure with orthogo-

nalisation after every step. This is not smaller than the mean squared prediction error

calculated using the first 17 selected from the model with the main effects only, hence

the analyses based on the model of higher complexity are omitted.

Table 2.8 gives the coefficients estimated if we looked at the data once to perform variable

selection and then a second time to linearly regress with the subset of covariates selected,

with the predictions using these estimated coefficients in Figure 2.18. Confidence intervals

here are computed based on the asymptotic normality assumption in Section 2.3.2 but

for the selected variables only. We provide these confidence intervals with a caution that

they will not capture the uncertainty associated with the variable selection algorithm

(see Chapter 3).

We also calculate the increase in the R2 value at each step when another variable is added.

The R2 value is calculated by subtracting the residual sum of squares (Equation 2.3),

using the linear regression coefficients, from the total sum of squares (i.e. Equation 2.3

with intercept only α̂ = ȳ) and dividing by the total sum of squares. This will measure

the proportion of variation explained by the linear model, therefore finding the increase

in R2 will determine how much more variation is explained compared to the previous

model. The largest noticeable increase in R2 is for the organic variable and the increase

in R2 diminishes as less important variables are included in the model.
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Order Variable β̂LR R2 increase

- Intercept α 8.4081 (7.5363, 9.2799) -

1 Organic −2.1192 (−2.3534,−1.8850) 0.1600

2 Rainfall June −0.0054 (−0.0066,−0.0042) 0.0908

3 Sprays 0.0064 (0.0057, 0.0072) 0.0352

4 Rainfall December −0.0088 (−0.0102,−0.0075) 0.0248

5 Rainfall January 0.0032 (0.0017, 0.0046) 0.0164

6 Machinery 0.0015 (0.0013, 0.0017) 0.0138

7 Rainfall April −0.0092 (−0.0104,−0.0079) 0.0091

8 Sunshine February 0.0234 (0.0208, 0.0260) 0.0118

9 Fert 0.0037 (0.0031, 0.0044) 0.0126

10 Mean temp January −0.1768 (−0.2176,−0.1360) 0.0086

11 UAA 0.0006 (0.0005, 0.0008) 0.0079

12 Contract 0.0012 (0.0009, 0.0016) 0.0066

13 LAND 0.0011 (0.0008, 0.0014) 0.0048

14 Seeds −0.0048 (−0.0062,−0.0034) 0.0042

15 OtherVC 0.0028 (0.0019, 0.0037) 0.0038

16 Mean temp August −0.1415 (−0.1948,−0.0883) 0.0020

17 Rainfall November −0.0031 (−0.0044,−0.0018) 0.0021
Table 2.8: Linear regression coefficients for the first 17 variables selected by forward
stepwise regression with orthogonalisation. The 95% confidence intervals and increase
in R2 are computed based on performing linear regression on the selected variables.
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Order Variable Order Variable

1 Organic 28 Rainfall May

2 Sprays 29 Mean temp October

3 Rainfall June 30 Education 4

4 Sunshine June 31 Rainfall September

5 Rainfall April 32 Rainfall March

6 Rainfall December 33 Sunshine January

7 Sunshine December 34 TOFC

8 Sunshine February 35 Mean temp November

9 Fert 36 Sunshine September

10 UAA 37 Sunshine July

11 Machinery 38 Sunshine May

12 OtherVC 39 Mean temp February

13 Mean temp August 40 Mean temp July

14 LAND 41 Rainfall August

15 Labour 42 Mean temp September

16 Seeds 43 Mean temp January

17 Mean temp December 44 Sunshine March

18 Sunshine November 45 Education 2

19 Contract 46 Rainfall October

20 Education 1 47 Education 5

21 Rainfall November 48 Rainfall February

22 Rainfall July 49 Sunshine August

23 Mean temp May 50 Rainfall January

24 Education 3 51 Mean temp April

25 Fuel 52 Mean temp June

26 Sunshine April 53 Mean temp March

27 Sunshine October
Table 2.9: Order of appearance for variables using Lasso regression.
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2.6.2 Lasso regression

The order of appearance of the variables from applying Lasso regression (Section 2.5.3)

is slightly different to the order found by applying forward stepwise regression to the

model with main effects only. Table 2.9 shows the variables in order of appearance in

the lasso regression path, with organic status, crop protection and rainfall in June again

appearing as the first three. They are now followed by sunshine June, rainfall April

and rainfall December.

The mean squared prediction error again can be calculated using Equation 2.9 for each

model constructed along the Lasso path. The minimum mean squared prediction error,

1.903, is achieved with 18 variables, with those selected being listed in Table 2.10. Again,

repeating the analysis for the model with main effects, non-linear and interaction terms,

the same model is selected. Therefore even though non-linear and interaction terms were

allowed to be included in the model, non-linear and interaction terms were not required

to minimise the MSPE. The minimum mean squared prediction error achieved here is

larger than that achieved using forward stepwise regression with orthogonalisation in

the previous section due to selecting different important variables to be included in

the modelling according to their respective variable selection algorithms. Section 2.5.3

suggested Lasso regression is preferable when creating a model based on the variables with

the largest association with yield per hectare for the training data, however predictions

made using the out-of-sample data may be further away from their observed yields per

hectare.

Estimated coefficients in Table 2.10 are those from linearly regressing the selected 18

variables onto yield per hectare. Again, confidence intervals here are computed based on

the asymptotic normality assumption in Section 2.3.2 for the selected variables only but

again, these need to be examined with caution due to not accounting for uncertainty

when selecting the model, which we are to investigate in the following chapter.

Figure 2.18 shows the predictions from the linear model consisting of the variables selected

using Lasso regression with their coefficients estimated using linear regression. There

is little difference between the predictions using Lasso regression and forward stepwise
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with orthogonalisation from the previous section. Comparing these to the predictions

using linear regression and principal component regression based on the first 10 principal

components in Figure 2.15, there is also little difference however the models based on

variable selection algorithms will be based on fewer variables, hence allows stakeholders

to focus on key variables to improve wheat yields.
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Figure 2.18: Observed yield versus predicted yield for the main effects model using,
left: linear regression after selecting variables based on forward stepwise regression
with orthogonalisation, right: linear regression after selecting variables based on Lasso
regression.
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Order Variable β̂OLS R2 increase

- Intercept α 8.8585 (7.8971, 9.8198) -

1 Organic −2.1670 (−2.4037,−1.9302) 0.1600

2 Sprays 0.0062 (0.0054, 0.0069) 0.0392

3 Rainfall June −0.0056 (−0.0069,−0.0043) 0.0867

4 Sunshine June 0.0020 (0.0005, 0.0035) 0.0076

5 Rainfall April −0.0076 (−0.0089,−0.0064) 0.0144

6 Rainfall December −0.0070 (−0.0082,−0.0059) 0.0178

7 Sunshine December 0.0058 (0.0017, 0.0100) 0.0020

8 Sunshine February 0.0210 (0.0186, 0.0233) 0.0198

9 Fert 0.0036 (0.0029, 0.0043) 0.0101

10 UAA 0.0006 (0.0005, 0.0007) 0.0066

11 Machinery 0.0010 (0.0008, 0.0012) 0.0147

12 OtherVC 0.0029 (0.0020, 0.0037) 0.0058

13 Mean temp August −0.2049 (−0.2478,−0.1619) 0.0115

14 LAND 0.0012 (0.0009, 0.0015) 0.0052

15 Labour 0.0005 (0.0002, 0.0008) 0.0010

16 Seeds −0.0044 (−0.0059,−0.0030) 0.0022

17 Mean temp December −0.0623 (−0.0954,−0.0291) 0.0048

18 Sunshine November −0.0068 (−0.0100,−0.0037) 0.0017
Table 2.10: Linear regression coefficients for the first 18 variables selected by Lasso
regression. The 95% confidence intervals are computed based on performing linear
regression on the selected variables.

2.7 Conclusion

Our analysis from applying different regression and variable selection techniques to the

data from the Farm Business Survey and UK Met Office found various interesting aspects

of our data. Linear regression found how important each variable was conditional on

all of the other variables being included in the model. This indicated which farming

practices and weather conditions are most associated with yield per hectare by assessing
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whether each variable should be included in the model, given all of the other variables are

already included. Instead of using all of the data, we used principal component regression

to first create vectors which will capture the largest correlation in the variables instead

and then regress upon these. The first few principal components was based on weather

conditions only. This achieved a smaller MSPE compared to linear regression, however

principal component regression is not designed to include the variables most associated

with yield. Forward stepwise and Lasso regression are designed to find the model which

will capture the largest association with yield per hectare, both finding organic status,

crop protection and rainfall in June are to be included in a model for yield per hectare.

The model which achieves the closest prediction to the observed yields, according to mean

squared prediction error, is found using the main effects with forward stepwise regres-

sion with orthogonalisation, which includes most of the variables taken from the Farm

Business Survey (seeds, fert, sprays, otherVC, contract, machinery, LAND, utilised

agricultural area, organic status) and a small number of weather variables (monthly

rainfall in November, December, January, June and April, monthly mean temperature

in January and August, monthly sunshine hours in February). A model with interaction

terms was also considered for each regression and variable selection method, however

these did not achieve a smaller mean squared prediction error than the one described

using main effects only. The coefficients for seed costs and organic status are found to

be negatively associated with yield per hectare. This is a result of farmers applying

excessive amounts of seeds in an attempt to achieve a better yield regardless of other

factors which may influence wheat yield. Organic farms are found to do this more often

due to not applying crop protection. All of the remaining farming practices from the

model achieving the smallest mean squared prediction are positively associated with

yield per hectare.

2.8 Discussion

To incorporate weather conditions into our model, we only considered the weather con-

ditions as main effects and combined these with our variables from the Farm Business
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Survey. This gave a brief insight into how weather may be associated with yield per

hectare, however from previous studies, the interactions between weather conditions are

often key to predicting wheat yield in a changing climate. Further work would involve

looking at potential interaction terms within the weather conditions. Furthermore on

reflection of our work, it is difficult to attribute an increase in annual yield to a monthly

climate variable. Preferably, we would like to incorporate a measure of how much the

yield has grown during each month and examine the association of growth with weather

conditions, however this is difficult to observe whilst the crop grows, in particular when

the crop is still underground. Future research would investigate potential simulation

methods to incorporate this into our model.

Throughout this chapter, we looked to predict yields per hectare for 2009 since the yields

per hectare attained during this year are representative of typical yields, hence we built

a model based on the remaining 9 years of data. Due to the weather conditions being

highly correlated, predicting a different year will most likely result in a different set of

variables being selected in the variable selection algorithms. This is indicative of the

ordering of our model selection stage being unstable to the choice of year. An fruitful

avenue of future work would be to cross-validate in our regression and variable selection

methods by predicting each year in turn or subsets of observations from each year.

Finally, here we only look at the confidence intervals based on the linear regression but

emphasise this will only account for uncertainty in the parameter estimation and will not

account for uncertainty in the variable selection stage. Appendix A discusses capturing

both of these stages of uncertainty by conditioning on a polyhedral set (Tibshirani

(1996)), however finds if the ordering of the variables selected is unstable, that is the

ordering of the variables change when the training data changes, then the confidence

intervals for the parameter estimates may be ±∞. Again, this motivates trying to fit a

model based on cross-validating our data in the future to first confirm our ordering of

the variables is robust to different subsets of data, and hence whether it is possible to

conduct inference based on conditioning on a polyhedron.
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3 | Bayesian inference for model

selection coefficients

3.1 Introduction

Uncertainty in our predictions accumulates at two stages of our analysis: performing

model selection and parameter estimation. Predictions of UK wheat yields should be

accompanied by the associated uncertainty to assess a model’s predictive performance

and not solely rely on point estimates. In agricultural studies, uncertainty is often not

fully accounted for by taking a two-step approach by fitting a regression model after

selection (e.g. Landau et al. (1998), Landau et al. (2000)). Tibshirani et al. (2016) made

progress on frequentist approaches to post-selection inference by visualising conditional

polyhedrons, however Tibshirani et al. (2019) subtly mentioned this method computes

unreasonable confidence intervals when the coefficient estimate using linear regression

falls close to one of the edges of the conditional polyhedron; the tails of the truncated

normal distribution are too short to find a confidence interval. Appendix A gives further

details on this method. This manifests itself in the variable selection algorithm when two

or more variables are equally important to model yields and enter the model in quick

succession. This may occur more often for datasets with a large number of variables.

In the previous chapter, uncertainty was calculated for the selected variables based on

the parameter estimation stage using the asymptotic normality assumption of linear re-

gression coefficient estimates. This did not take account of the uncertainty in the model

selection stage. In this chapter, we address this problem using Bayesian shrinkage priors
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to induce sparsity and construct credible intervals accounting for both the uncertainty of

model selection and the uncertainty of the parameters simultaneously. Bayesian analysis

has been used in wheat genomics (e.g. Montesinos-López et al. (2018)) and field experi-

ments (e.g. Besag and Higdon (1999)), however it is yet to be used for UK crop yields as

a linear model of monthly weather conditions and agronomic and socio-ecological factors

when producing wheat due to scarce datasets on UK farming practices. This is now

possible using data from the Farm Business Survey.

We will apply two Bayesian shrinkage priors which have gained recent attention: the

Bayesian Lasso (Park and Casella (2008)) and the horseshoe prior (Carvalho et al. (2009),

Carvalho and Polson (2010)). The former is the Bayesian analogue of the frequentist

Lasso and the latter is a modified version of the Bayesian Lasso prior hierarchy more

suited to perform variable selection and account for uncertainty.

The structure of this chapter is as follows. Sections 3.1.1, 3.1.2, 3.1.3 and 3.1.4 discuss

the preliminary methodology to perform Bayesian inference. Section 3.2 introduces the

hierarchical prior structure for shrinkage. Section 3.3 details the sampling schemes for

the Bayesian Lasso with applications in Sections 3.3.4 and 3.3.5. Section 3.4 exposes the

overshrinkage feature of the Bayesian Lasso and how the horseshoe prior can rectify this.

Finally, Section 3.5 discusses the horseshoe prior hierarchy and sampling schemes with

applications in Sections 3.5.3 and 3.5.4.

3.1.1 Bayesian inference

Bayesian inference uses Bayes theorem to combine data and prior beliefs of the model

parameters to find the posterior density of the set of parameters θ = (θ1, ..., θp) to be

estimated in the likelihood π(y|θ). The posterior density of θ,

π(θ|y) = π(y|θ)π(θ)∫
θ π(y|θ)π(θ)dθ ∝ π(y|θ)π(θ),

is calculated from a combination of the likelihood density π(y|θ), assumed from the

distribution of the data and the prior density π(θ) of the model parameters. The prior

distribution π(θ) incorporates knowledge about the parameter vector θ, before the anal-
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ysis is undertaken. The posterior density in most practical cases can only be calculated

up to proportionality due to the integral in the denominator often being difficult to

evaluate.

Furthermore, given the posterior distribution π(θ|y), the posterior predictive distribution

π(ỹ|y) =
∫
θ
π(ỹ|θ)π(θ|y)dθ

in the present context finds the distribution of a new yield (per hectare) ỹ, given what we

have already seen from the sample of yields y through the posterior distribution. Credible

intervals of the posterior predictive distribution can be compared to the observed values

for ỹ to assess the performance of our model for new values.

3.1.2 Bayesian linear regression

In Section 2.3.2 for a set of fixed covariates x1, ...,xp ∈ Rn, linear regression assumed

the response y ∈ Rn is distributed according to y ∼ Nn(α1n + Xβ, σ2In), where

α ∈ R is the unknown intercept parameter, β ∈ Rp is the unknown coefficient vector,

X = (x1, ..,xp) ∈ Rn×p, 1n is the vector of ones of length n, σ2 ∈ R+ is the unknown

constant error variance and In is the n× n identity matrix. Bayesian linear regression

looks to estimate the intercept α, coefficient vector β and error variance σ2 whilst

incorporating prior information on the model parameters θ = (α,β, σ2) through the

prior density π(α,β, σ2). Using Bayes theorem, the joint posterior distribution of these

will be

π(α,β, σ2|y,X) ∝ π(y|X, α,β, σ2)π(α,β, σ2),

where π(α,β, σ2) is the joint prior distribution of the parameters of interest and

π(y|X, α,β, σ2) is the likelihood density assumed to be normally distributed with mean

α1n +Xβ and variance σ2In. For Bayesian linear regression, little is known about the

coefficients or the error variance σ2 a priori except their respective supports. This leads

to the parameters α, β and σ2 assumed to have independent prior distributions π(α),
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π(β) and π(σ2), taken to be non-informative

π(α) ∼ N(0, ν2), π(βj) ∼ N(0, λ2), π(σ−2) ∼ Gamma(b1, b2),

for j ∈ {1, ..., p}, ν2 large, λ2 large and b1 and b2 being close to zero, equivalently

expressed as

π(α) ∝ 1, π(βj) ∝ 1, π(σ2) ∝ 1/σ2,

to be used when finding the conditional posterior distributions. Section 3.2 will look

at using a different prior distribution for β to induce sparsity, whilst keeping the same

priors for α and σ2.

In practice, the posterior distribution is difficult to sample from directly. The following

section looks at how to approximately sample from the posterior distribution using

Markov Chain Monte Carlo.

3.1.3 MCMC methods

Markov Chain Monte Carlo (MCMC) methods allow approximate samples to be gen-

erated from a target distribution, in our case the posterior distribution, by sampling

from a proposal distribution. The proposal distribution only depends on the previous

value drawn hence forming a Markov Chain. Since its inception, the Metropolis-Hastings

algorithm (Metropolis et al. (1953), Hastings (1970)) underpins current extensively used

MCMC methods including the Gibbs sampler and Hamiltonian Monte Carlo discussed

here. Algorithm 1 describes the Metropolis-Hastings algorithm to sample from the pos-

terior distribution π(θ|y) for the model parameter θ = (θ1, ..., θp).
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Algorithm 1: Metropolis-Hastings sampler

1. Initialise: θ(0) = (θ(0)
1 , ..., θ

(0)
p )

2. Iterate: Propose a new vector θ∗ from proposal distribution q(θ∗|θt−1).

Set θt = θ∗ with probability

α = min
(
1, π(θ∗|y)q(θt−1|θ∗)

π(θt−1|y)q(θ∗|θt−1)

)
else θt = θt−1.

3. Repeat: Repeat step 2 M times.

The resulting samples θ(1), ...θ(M) will approximately come from the posterior distribu-

tion π(θ|y). When the proposal distribution q is symmetric, q
(
θt−1|θ∗

)
= q

(
θ∗|θt−1

)
,

this is referred to as the Metropolis algorithm (Metropolis et al. (1953)).

So far all samples generated from the Metropolis-Hastings algorithm θ(1), ..,θ(M) are

used to approximate the posterior distribution π(θ|y). If no prior knowledge of the target

distribution is used to initialise the sampler, the samples generated at the start of the

Markov Chain may be far away from the target distribution. There can also be high

dependency between sequential samples due to the transition kernel q. To ensure our

samples are independent and approximately drawn from the target distribution, a burn-

in period is used to correct for the initial samples and the resulting sample is thinned to

remove dependency between the samples. We shall also initialise the sampler numerous

times and combine the resulting samples to be sure our sampler has thoroughly searched

the parameter space of the target distribution.

The Metropolis-Hastings algorithm also relies on a suitably chosen proposal distribution

q to thoroughly search the parameter space. If not chosen appropriately, the sampled

values of θ will be far from the target distribution π(θ|y). The following two approaches

to MCMC avoid selecting a proposal distribution.

Gibbs Sampler

The Gibbs sampler (Geman and Geman (1984)) selects the proposal distribution q in

the Metropolis-Hastings algorithm so the proposed new value θ∗ is always accepted. To
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sample from the posterior distribution π(θ), the Gibbs sampler samples from each of

the full conditional distributions in a deterministic order. Given the set of parameters

θ = (θ1, ..., θp), the Gibbs sampling algorithm is described in Algorithm 2.

Algorithm 2: Gibbs sampler

1. Initialise: θ(0) = (θ(0)
1 , ..., θ

(0)
p )

2. Iterate: Draw from the following conditional distributions

• θ
(t)
1 ∼ π(θ1|θ(t−1)

2 , ..., θ
(t−1)
p )

...

• θ
(t)
j ∼ π(θj |θ(t)

1 , ..., θ
(t)
j−1, θ

(t−1)
j+1 , ..., θ

(t−1)
p )

...

• θ
(t)
p ∼ π(θp|θ(t)

1 , ..., θ
(t)
p−1)

3. Repeat: Repeat step 2 M times.

For most applications, the full conditionals are common distributions which are easy to

sample from. If not, the Gibbs sampler can be computationally expensive. The following

solution avoids finding full conditionals.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (Neal (2011), Betancourt and Girolami (2013)) uses Hamil-

tonian dynamics to sample from the posterior distribution π(θ|y) by first introducing

momentum variables φj ∈ R for each of the positions of the parameters of interest θj ∈ R,

j = 1, ..., p, and defines a Hamiltonian, H(θ,φ|y),

H(θ,φ|y) = −log(π(θ,φ|y)),

= −log(π(φ|θ,y))− log(π(θ|y)),
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where θ = (θ1, ..., θp) ∈ Rp and φ = (φ1, ..., φp) ∈ Rp. Assuming φ is independent of θ

and the data y, then the Hamiltonian becomes

H(θ,φ|y) = −log(π(φ))− log(π(θ|y))

= K(φ) + V (θ|y),

where K(φ) is referred to as the kinetic energy of the system and V (θ|y) is referred to

as the potential energy of the system (Neal (2011)). With momentum vector φ and mass

matrix T ∈ Rp×p, kinetic energy is commonly defined to be

K(φ) = 1
2φ

TT−1φ,

which conveniently corresponds to minus log probability density of the zero-mean Gaus-

sian distribution with covariance matrix T , hence

φ ∼ Np(0,T ),

where T is typically a diagonal matrix (Neal (2011)) such that the components of φ

are also independent. The Hamiltonian system H(θ,φ|y) will then be governed by the

Hamiltonian equations

dθj
dt

= ∂H

∂φj
= ∂K(φ)

∂φj
=
[
T−1φ

]
j
,

dφj
dt

= −∂H
∂θj

= −∂V (θ|y)
∂θj

= ∂ log π(θ|y)
∂θj

.

Hamiltonian Monte Carlo alternates between taking step size of ε ∈ R from θ along its

gradient dθ/dt and a step of size ε for φ along its gradient dφ/dt, i.e.

φ+ ε

2
dφ

dt
= φ+ ε

2∇ log π(θ|y),

θ + ε
dθ

dt
= θ = θ + εT−1φ,
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where

∇ log π(θ|y) =
(
∂ log π(θ|y)

∂θ1
, ...,

∂ log π(θ|y)
∂θd

)
.

After iterating between these a fixed number of times to propose a new value θ∗, this

process manifests itself as the Markov Chain transitions, previously seen through kernel q

for the Metropolis-Hastings algorithm. Neal (2011) found these Markov Chain transitions

to be reversible hence a Metropolis acceptance step is used to sample from the posterior

distribution π(θ|y). With discretization step ε, the Hamiltonian Monte Carlo algorithm

is given in its entirety in Algorithm 3.

Algorithm 3: Hamiltonian Monte Carlo

1. Initialise: Randomly generate θ(0) = (θ(0)
1 , ..., θ

(0)
p ). Draw φ ∼ Np(0,T ).

2. Iterate

φ← φ+ ε
2∇ log π(θ|y),

θ ← θ + εT−1φ,

φ← φ+ ε
2∇ log π(θ|y),

3. Repeat: Repeat step 2 L times.

4. Metropolis acceptance step:

Propose a new vector θ∗ = θ.

Set θt = θ∗ with probability α = min
(
1, π(θ∗|y)π(φ∗)

π(θt−1|y)π(φt−1)

)
else θt = θt−1.

5. Repeat: Repeat steps 2-4 M times.

3.1.4 Posterior predictive distribution for Bayesian linear regression

Once one of the MCMC methods in Section 3.1.3 has been used to create a sample

approximately coming from the posterior distribution, we can also sample approximately

from the posterior predictive distribution for a new observation. Suppose

θ(t) ∼ π(θ|y,X), θ(t) = (α(t),β(t), σ2(t))

is the tth sample from the (approx) posterior distribution, for t = 1, ...,M , where y ∈ Rn
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and Xn×p are the samples used in the modelling. Given a new set of covariates x̃ to

predict a new response ỹ, a sample approximately coming from the posterior predictive

distribution is sampled from the likelihood π(y|x = x̃,θ) ∼ N(α + x̃Tβ, σ2) with

θ = (α,β, σ2) replaced with their respective sample quantities θ(j) =
(
α(j),β(j), σ2(j)

)
randomly drawn from the posterior distribution with probability 1/M . For draw i from

the posterior predictive distribution, i = 1, ..., N ,

ỹ(i) ∼ N(α(j) + x̃Tβ(j), σ2(j)),

where after each draw from the posterior predictive distribution, θ(j) is redrawn from

the posterior distribution with probability 1/M . The resulting sample ỹ(1), ..., ỹ(N) will

approximately come from the posterior predictive distribution for the new response ỹ,

conditional on the associated set of covariates x̃. In the present context, we shall find the

posterior predictive distribution of a new yield (per hectare) conditional on the associated

set of covariates from the Farm Business Survey and the UK Met Office.

3.2 Bayesian inference with shrinkage priors

Bayesian linear regression in Section 3.1.2 took the prior densities for the coefficients β

to be distributed as

π(βj |λ) ∼ N(0, λ2), j = 1, ..., p, (3.1)

with λ2 large. Instead, suppose the shared error variance λ2 is small such that the prior

on βj for all j = 1, .., p has a peak at zero. This will shrink the coefficients at the same

rate by placing a larger weight at zero. Solely using a fixed global shrinkage parameter

will not only shrink the error signals to zero, but it will shrink all coefficients regardless

of their importance to model the response. Furthermore, if each βj , j = 1, ..., p, had their

own variance parameter λ2
j , then strict prior knowledge would be needed about each

fixed λ2
j , which would be difficult in most cases.

Ideally, with little prior knowledge, we would like to use a prior density for the coefficients

which will shrink the error signals but not apply unnecessary shrinkage to the parameter

69



coefficients corresponding to the important variables. This will perform variable selec-

tion and estimate coefficients which will take account of the variable selection already

performed. For this to be the case, a suitable prior will have a large sharp peak at zero

and be flat for βj away from zero. Examples with these properties are shown in Figure

3.1 with their associated prior densities in Table 3.1.
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Figure 3.1: Left: normal prior density for β, centre: Laplace prior density for β, right: horseshoe prior density for β. All prior densities are
proportional. Grey density represents the normal prior density in all three plots.

Shrinkage prior Conditional prior density Conditional prior density Hyperprior density

π(βj |...) π(βj |τj ...) π(τ2
j ) or π(τj)

Normal π(βj |λ) = 1√
2πλ2 exp

(
− β2

j

2λ2

)
NA NA

Laplace π(βj |λ, σ) =
√

2
λσ exp

(
−
√

2|βj |
λσ

)
π(βj |τj , λ, σ) = 1√

2πσ2λ2τ2
j

exp
(
− β2

j

2σ2λ2τ2
j

)
π(τ2

j ) = exp
(
−τ2

j

)
Horseshoe Not analytically tractable π(βj |τj , λ, σ) = 1√

2πσ2λ2τ2
j

exp
(
− β2

j

2σ2λ2τ2
j

)
π(τj) = 2

(
π
(
1 + τ2

j

))−1
, τj ≥ 0

Table 3.1: Common shrinkage prior densities for βj , j = 1, ..., p. Where required for MCMC sampling, the conditional prior density for βj is
decomposed into a conditional prior density π(βj |τj , ...) and hyperprior density for τ2

j (Laplace) or τj (horseshoe).
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Another suitable prior would be to use a scale mixture of two Normal distributions

(Mitchell and Beauchamp (1988), George and McCulloch (1993)),

π(βj |νj) = νjN(0, λ2) + (1− νj)N(0, ε2),

referred to as a spike-and-slab prior (Ishwaran and Rao (2005)), where νj is a zero-one

latent variable, λ2 > 0 is fixed to be suitably large and ε2 > 0 is fixed to be suitably small,

often taken to equal zero such that N(0, ε2) becomes a delta spike at zero (Piironen

and Vehtari (2017a)). Although the spike-and-slab prior is a popular choice for Bayesian

variable selection, Piironen and Vehtari (2017a) found the horseshoe prior, a natural

extension to the Laplace shrinkage prior, has comparable performance to the spike-and-

slab prior. Since the Laplace shrinkage prior has analogous links to the frequentist Lasso

in Chapter 2, the following section will look closer at the Laplace prior for βj .

From here on in, λ will be referred to as the global shrinkage parameter. Furthermore, to

avoid shrinking based on the magnitude of each variable rather than their relationship

with the response, we will first find parameter estimates α̂, β̂ and σ̂2 using the standard-

ised responses y, with mean ȳ and standard deviation sy, and the standardised covariates

xj , with mean x̄j and standard deviation sxj . Standardised responses y and standardised

covariates xj are further divided by
√
n to ensure the global shrinkage parameter λ is on

a practical scale whilst not influencing our coefficient estimates. Estimating parameters

from standardised vectors might not be a good idea since the coefficients will no longer

reflect the magnitude of each variable. After finding parameter estimates α̂, β̂ and σ̂2

using the standardised vectors, the parameters are transformed back to reflect their

original scales

α̂∗ = ȳ + sy

α̂√n− p∑
j=1

β̂j x̄j
sxj

 β̂∗j = sy
β̂j
sxj

σ̂∗ = syσ̂
√
n,

where α̂, β̂j , j = 1, ..., p, and σ̂ are the estimated parameters from the standardised

vectors and α̂∗, β̂∗j , j = 1, ..., p, and σ̂∗ are the transformed estimated parameters.
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3.3 Bayesian Lasso

Section 2.5.3 discussed the frequentist Lasso to perform model selection by shrinking

coefficients down to zero, such that variables of little importance become zero and only

those important variables remain. The Bayesian analogue of the Lasso (see Park and

Casella (2008)) induces sparsity by weighting the coefficients β towards zero using a

Laplace prior on β

π(β|ω) ∝ exp
(
−|β|
ω

)
, (3.2)

i.e. Laplace distribution with mean zero and scale parameter ω. Figure 3.1 compares

the Normal prior for β to the Laplace prior. The Bayesian Lasso has flatter tails for

the densities of β, hence a smaller amount of shrinkage will be applied to important

covariates.

Briefly looking at the conditional distribution for β,

π(β|y,X, α, λ, σ2) ∝ exp
(
− 1

2σ2 (y − α1n −Xβ)T (y − α1n −Xβ)− 1
ω
|β|
)
,

it is not possible to sample from this distribution in a Gibbs sampling scheme; the condi-

tional posterior distribution for βj is not analytically tractable with the prior hierarchy

in its current form. However a Gibbs sampling scheme does exist if the prior hierarchy

is expanded using distributional properties of the Laplace distribution. Andrews and

Mallows (1974) showed a centred Laplace distribution with scale 1/A can be decomposed

into a centred normal distribution with variance a, and an exponential hyperprior on a

with rate A2/2, that is

π(x|A) =
∫ ∞
a=0

π(x|a)π(a|A)da

=
∫ ∞
a=0

1√
2πa

exp
{
−x2/(2a)

} A2

2 exp
{
−A2a/2

}
da

= A2

2 exp(−A|x|) · 1
|x|

∫ ∞
a=0

a
|x|√
2πa3

exp
(
−A

2|x|2 (a− |x|/A)2

2|x|2a

)
da

= A

2 exp (−A|x|) .
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Using this property, the Laplace prior in Equation (3.2) can be written as the prior

hierarchy

βj |ψ2
j ∼ N(0, ψ2

j ), ψ2
j |ω ∼ Exponential

( 1
2ω2

)
. (3.3)

To get rid of all dependencies in the hyperpriors for the variance parameters, after a

change of variable ψ2
j = 2ω2τ2

j , Makalic and Schmidt (2016) showed the prior hierarchy

can also be written as

βj |τ2
j , ω ∼ N(0, 2ω2τ2

j ), τ2
j ∼ Exponential (1) . (3.4)

The Bayesian Lasso literature has selected ω in various forms: Park and Casella (2008)

take ω = σ/λ to ensure a unimodal maximum and Makalic and Schmidt (2016) chose

ω = λσ/
√

2 to make the conditional prior distribution of βj comparable to other shrinkage

priors. The posterior mode of βj when ω = σ2/λ and λ fixed, will approximately lead

to the frequentist Lasso estimates from Hastie et al. (2008), however Gibbs sampling

cannot be used since the full conditional for σ2 will not be analytically tractable. Since

we would like to compare what happens with different local shrinkage priors, we will use

ω = λσ/
√

2 and continue to refer to λ as the global shrinkage parameter.

3.3.1 Gibbs sampling conditional posterior distributions for the

Bayesian Lasso

To approximately sample from the posterior distribution using the Gibbs sampler, the

closed forms of the full conditionals first need to be found. Makalic and Schmidt (2016)

showed the prior hierarchy of the Bayesian Lasso is

βj |τ2
j , λ, σ

2 ∼ N(0, σ2λ2τ2
j ), τ2

j ∼ Exponential (1) , α ∼ 1 σ2 ∼ 1
σ2 , (3.5)

where α, βj for j = 1, ..., p and σ2 are the parameters in the normality assumption for

the linear model

y ∼ Nn(α1n +Xβ, σ2In),
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τj is the local shrinkage parameter for the jth variable and λ is the global shrinkage

parameter. α and σ2 have the same priors here as in Section 3.1.2 such that shrinkage

is not applied to these nor are the priors informative. From the likelihood and the scale

mixture of Normals prior for β,

π(β|y,X, τ , λ, σ2) ∝ exp
{
− 1

2σ2 (y − α1n −Xβ)T (y − α1n −Xβ)− 1
2σ2λ2β

Tτ−1β

}
∝ exp

{
− 1

2σ2

(
βT

(
XTX + λ−2τ−1

)
β − 2βTXT (y − α1n)

)}

therefore β ∼ N(µ′,Σ′), where Σ′ = (XTX − λ−2τ−1)−1 and µ′ = Σ′XT (y − α1n).

Similarly, for α

π(α|y,X,β, σ2) ∝ exp
{
− 1

2σ2 (y − α1n −Xβ)T (y − α1n −Xβ)
}

∝ exp
{
− n

2σ2

(
α2 − 2α

n

n∑
i=1

yi − xTi β
)}

therefore α ∼ N
(
σ2/n, 1

n

∑n
i=1 yi − xTi β

)
, and for σ2,

π(σ2|y,X, α,β, τ , λ)

∝
(
σ2
)−n/2

exp
{
− 1

2σ2 (y − α1n −Xβ)T (y − α1n −Xβ)
}

×
(
σ2
)−p/2

exp
{
− 1

2σ2λ2β
Tτ−1β

}
×
(
σ2
)−1

∝
(
σ2
)−(n+p)/2−1

exp
{
−1
σ2

(
(y − α1n −Xβ)T (y − α1n −Xβ)

2 + βTτ−1β

2λ2

)}
,

therefore σ2 is inverse Gamma with shape parameter (n+ p)/2 and scale parameter

1
2
[
(y − α1n −Xβ)T (y − α1n −Xβ) + βTτ−1β/λ2

]
.

The full conditionals for α, β and σ2 hold for any shrinkage priors which can be written

as a scale mixture of Normals.
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From the priors for the coefficients and their respective local shrinkage parameters,

π(τ2
j |y,X, β2

j , λ, σ
2) ∝

(
τ2
j

)−1/2
exp

{
−

β2
j

2σ2λ2τ2
j

− τ2
j

}

∝
(
τ−2
j

)1/2
exp

{
−
τ2
j β

2
j

2λ2σ2

[
1
τ4
j

+ 2λ2σ2

β2
j

]}
,

where after making a change of variables, µ′ =
√

2λ2σ2

β2
j

and λ′ = 2,

π(
(
τ2
j

)−1
|y,X, β2

j , λ, σ
2) ∝ 1√

2πσ2

(
τ−2
j

)−3/2
exp

{
− λ′

2 (µ′)2 τ−2
j

(
τ−2
j − µ

′
)2
}

shows 1/τ2
j has an inverse-Gaussian distribution with mean µ′ and variance λ′. The full

conditional for 1/τ2
j changes depending on the prior for the local shrinkage parameter.

3.3.2 Choice for global shrinkage parameter

So far the global shrinkage parameter λ has been assumed constant. The smaller λ is,

the larger the level of shrinkage. However it is not clear what a suitable global shrinkage

parameter should be to balance the trade-off between shrinking the error signals to zero

but keeping the strong signals.

Fixed λ

In the first of our cases, we assume λ is fixed to control how much shrinkage to perform.

However, Piironen and Vehtari (2017b) find there can be computational difficulties

associated with using a point estimate for λ. For λ close to zero, the Gibbs sampler

can not sample from the conditional posterior for β due to the collapse of the variance

(XTX − λ−2τ−1)−1 to zero. One possible solution is to change the MCMC method

used such that we can approximately sample from the posterior distribution using an

acceptance step, such as Hamiltonian Monte Carlo (see Section 3.3.3). Alternatively,

a prior can be used for λ to continue using a Gibbs sampling scheme, which is now
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considered.

Prior on λ

Gelman (2006) proposes the half-Cauchy distribution for the global shrinkage parameter

due to its non-zero density for λ → 0 (Figure 3.2) compared to the inverse-gamma

conjugate prior for λ2 (Polson and Scott (2011)). Given that the dependency on the

error variance σ2 has been moved further up the prior hierarchy (see Equation (3.4)),

the prior for the global shrinkage parameter is

λ ∼ C+(0, 1)

where C+ denotes the half-Cauchy distribution henceforth.

0 5 10 15 20

0
.0

0
0

.0
4

0
.0

8

λ

D
e

n
s
it
y

Figure 3.2: Plot of C+(0, 1) for λ ∈ (0, 20).

To use the Gibbs sampling scheme with this prior for λ, Makalic and Schmidt (2015)

makes use of the fact that the half-Cauchy distribution can be expressed as a scale

mixture of inverse-gamma distributions (see Wand et al. (2011)). With

X2|a ∼ IG(1/2, 1/a) and a ∼ IG(1/2, 1/A2),

77



π(x|A) =
∣∣∣∣∣d(x2)

dx

∣∣∣∣∣
∫
a>0

π(x2|a)π(a|A)da

= 2x
∫
a>0

( 1
a)

1
2

Γ(1
2)

(x2)−
1
2−1exp

{
− 1
ax2

} ( 1
A2 )

1
2

Γ(1
2)
a−

1
2−1exp

{
− 1
A2a

}
da

∝ 1
Ax2

∫
a>0

1
a2 exp

{
−1
a

( 1
x2 + 1

A2

)}
da

= 1
A
(
1 + x2

A2

) ,
then X ∼ C+(0, A). In our case, a new auxiliary hyperparameter γ is introduced into

the prior hierarchy such that

λ2|γ ∼ IG(1/2, 1/γ) and γ ∼ IG(1/2, 1),

and added to the Gibbs sampling scheme in Section 3.3.1 with the full conditionals

π(λ2|y,X,β, γ, σ2) ∝
(
λ2
)−p/2

exp

− 1
2σ2λ2

p∑
j=1

β2
j

τ2
j

(λ2
)−1/2−1

exp
{
− 1
λ2γ

}

∝
(
λ2
)−(p+1)/2−1

exp

− 1
λ2

1
γ

+ 1
2σ2

p∑
j=1

β2
j

τ2
j



i.e. λ2 ∼ IG

(
p+1

2 , 1
γ + 1

2σ2
∑p
j=1

β2
j

τ2
j

)
and γ ∼ (1, 1

λ2 + 1). The Gibbs sampling scheme

discussed can be implemented using the bayesreg package in R (see Schmidt and Makalic

(2021) for documentation).

3.3.3 Gradient vector for Hamiltonian Monte Carlo using the

Bayesian Lasso

Section 3.3.2 showed for λ fixed close to zero, the Gibbs sampler can not sample from the

conditional posterior for β due to the variance term collapsing to zero. An alternative is

to use Hamiltonian Monte Carlo with a small step size for efficient sampling (Betancourt

and Girolami (2013)). Section 3.1.3 showed the posterior density is used in the Hamilton
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Monte Carlo algorithm through the gradient of the log posterior densities for θ,

∇ log π(θ|y) =
(
∂ log π(θ|y)

∂θ1
, ...,

∂ log π(θ|y)
∂θp

)
,

in the governing Hamiltonian equations (Neal (2011)), where for the case of the linear

model, θ = (α, β1, ..., βp, τ
2
1 , ..., τ

2
p , σ

2). Given the log posterior distribution

log π(θ|y,X) ∝ −n2 log(σ2)− 1
2σ2

n∑
i=1

(yi − α− xTi β)2 − p

2log(σ2)− p

2log(λ2)

− 1
2

p∑
j=1

log(τ2
j )− 1

2σ2λ2

p∑
j=1

β2
j

τ2
j

−
p∑
j=1

τ2
j − σ2,

the partial derivatives with respect to α, βj for j = 1, .., p and σ2, namely

∂ log π(θ|y,X)
∂α

= 1
σ2

n∑
i=1

(yi − α− xTi β),

∂ log π(θ|y,X)
∂βj

= − 1
σ2

n∑
i=1

(
x2
ijβj + xij(yi − α)

)
− 1
σ2λ2

βj
τ2
j

,

∂ log π(θ|y,X)
∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − α− xTi β)2 − p

2σ2 + 1
2σ4λ2

p∑
j=1

β2
j

τ2
j

− 1

remain the same regardless of the priors for the local shrinkage parameters τj , j = 1, ..., p.

For the Bayesian Lasso,

∂ log π(θ|y,X)
∂τ2

j

= − 1
2τ2
j

+ 1
2σ2λ2

β2
j

τ4
j

− 1.

These partial derivatives are then plugged into the Hamiltonian Monte Carlo algorithm

in Section 3.1.3. The computer language Stan through the R interface (see Guo et al.

(2020)) can be used to generate samples using the HMC once the prior hierarchy has

been specified.
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3.3.4 Application: Bayesian Lasso with fixed λ

Section 2.6.2 used the frequentist Lasso to produce coefficient estimates by manually

selecting a value of λ such that only a small number of variables are selected and using

linear regression whilst ignoring the uncertainty associated with the variable selection

stage. Often overlooked by agricultural studies, our goal is to first produce credible

intervals for our parameters estimates to find the agronomic, socio-ecological and climatic

variables from Chapter 1 which are most associated with wheat yields, regardless of the

other variables included in the model. These will not only capture the uncertainty from

the parameter estimation, but they will also capture the uncertainty from the model

selection algorithm. Finding credible intervals which capture both stages of uncertainty

will also enable predictions to also capture both stages of uncertainty, and therefore will

not lead us to be overconfident in our predictions.

Reducing the model to include organic status, crop protection costs and rainfall in June,

the first 3 covariates to be selected with the frequentist Lasso, their linear regression

coefficients are −2.8298, 0.0063 and −0.0118 respectively. Here we use the Bayesian

analogue to only determine 3 covariates as being important and construct credible

intervals about their coefficients. Note the global shrinkage parameter λ in the frequentist

Lasso is proportional to the reciprocal of the global shrinkage parameter taken here (see

Section 3.3). To only select 3 variables as being important, the global shrinkage parameter

here is set to λ = 0.01. Section 3.3.2 discussed the computational difficulties using a

Gibbs sampler for small values of λ. Instead, a Hamiltonian Monte Carlo scheme is

implemented with a small step size to avoid divergent sampling.

The HMC sampling scheme is repeated 11,000 times for the first chain, where the first

1,000 samples are used as a burn-in period, and of the remaining 10,000 samples, every

5th sample is used to approximate the posterior distribution. This is repeated 4 times

to ensure the chains are well mixed. Diagnostics of chain convergence can be seen in

Appendix B.

Table 3.2 shows the effect the small global shrinkage parameter λ has on the credible

intervals. The lower and upper bounds are the 2.5% and 97.5% sample quantiles of the
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samples approximately coming from the posterior distribution. The credible intervals

constructed from the Bayesian Lasso for the coefficients associated with organic status,

crop protection costs and rainfall in June are closer to zero in comparison to the linear

regression estimates. To give an indication of how far away from zero the credible intervals

lie and the variable importance, the mean of the posterior samples for each βj are divided

by their respective standard deviations, which we refer to as the importance statistic

for each variable. The stars represent whether the 90%, 95% and 99% credible interval

contains zero with 1, 2 or 3 stars respectively. The stars will also indicate how far away

from zero the credible interval lies and whether the coefficient for βj should be non-zero

for j = 1, ..., p.

Reassuringly, the 3 variables important at the 95% level with fixed λ = 0.01 using

the Bayesian Lasso are organic status, crop protection and rainfall in June. The same

justifications as Section 2.6.2 hold here as to why these variables are selected. Organic

status and crop protection being selected highlights the reduction in yield when using

more organic farming practices, whilst rainfall in June negatively impacting yield is

indicative of too much rain and consequently a lack of sun as the crop approaches

maturity.

The Bayesian Lasso not only determines which variables are important, but also allows

for credible intervals to be constructed using the MCMC samples. The widest 95%

credible interval of the coefficient parameters is for organic status. This fluctuation of the

coefficient parameter may be indicative of the knowledge and resources a farmer needs

in order to run a high-yielding organic farm compared to conventional farming methods.

To assess the performance of the model, we look at the posterior predictive distribution

for each farm record in 2009 and find whether each credible interval for yield captures the

true observed yield. Section 3.1.4 discusses how to sample from the posterior predictive

distribution given the posterior samples for each of the parameters α, β and σ2 in the

linear model. Using 2000 samples from their respective posterior predictive distributions,

Figure 3.5 shows the 95% credible intervals predicted for every yield in 2009 given their

respective set of covariates on farming practices and environmental conditions.

There is little difference between the posterior predictive distributions for each new yield
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in 2009 above 7 tonnes per hectare, with respect to the subset of significant variables

found here. The credible intervals for the significant variables are (−1.9668,−1.4533) for

organic, (0.0026, 0.0042) for sprays and (−0.0055,−0.0030) for rainfall June and the

approximate posterior predictive distributions for the yields per hectare in 2009 are in

Figure 3.5. The approximate posterior prediction distributions show our model suitably

captures larger yields but often over estimates smaller yields.

Since our approximate posterior predictive distributions are sampled from the likelihood

π(y|x = x̃) ∼ N(α+ x̃Tβ, σ2),

shrinking and selecting the coefficients such that only 3 variables are deemed important

means less variation in the response is captured by the term x̃Tβ and instead captured

through the variance term σ2. Therefore, our approximate confidence intervals for the

new value of ỹ will be much wider than had we not applied as much shrinkage. Figure

3.3 shows the approximate posterior distribution of the error variance with approximate

maximum a posteriori estimate at 2.88. We shall see how this compares when using a

prior for λ in the next section.
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Lower Upper Importance

Variable bound bound statistic

Organic -1.9668 -1.4533 12.9533 ***

Sprays 0.0026 0.0042 8.3269 ***

Rainfall June -0.0055 -0.0030 6.5378 ***

Rainfall April -0.0016 3.3463.10−5 1..5032

Sunshine June −3.5390.10−5 0.0019 1.4191

Rainfall December -0.0013 3.2504.10−5 1.3338

Sunshine December -0.0002 0.0028 1.0830

Fert −3.4951.10−5 0.0003 0.9740

Sunshine February -0.0001 0.0006 0.8010

UAA −9.2483.10−6 4.3444.10−5 0.7611

Sunshine April -0.0001 0.0003 0.7598

Rainfall July -0.0003 0.0001 0.7550

Mean temp November -0.0081 0.0018 0.7485

Labour −2.0324.10−5 0.0001 0.7288

Machinery −1.3044.10−5 4.8100.10−5 0.6703

OtherVC -0.0001 0.0002 0.6154

LAND −2.7467.10−5 0.0001 0.5988

Mean temp April -0.0018 0.0049 0.5890

Rainfall September -0.0003 0.0001 0.5640

Seeds -0.0003 0.0001 0.5529

Mean temp December -0.0037 0.0016 0.5447

Sunshine August -0.0002 0.0001 0.4783

Sunshine October -0.0003 0.0002 0.4355

Mean temp August -0.0074 0.0031 0.4136

Sunshine January -0.0003 0.0006 0.3558

Mean temp February -0.0027 0.0043 0.3544

Education 4 -0.0102 0.0150 0.3191
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Education 1 -0.0182 0.0121 0.3104

Sunshine March -0.0002 0.0001 0.2924

Rainfall August -0.0001 0.0002 0.2681

Mean temp January -0.0034 0.0022 0.2670

Education 3 -0.0082 0.0109 0.2662

Fuel -0.0007 0.0011 0.2633

Rainfall November -0.0001 0.0001 0.2421

Sunshine November -0.0003 0.0003 0.2413

Sunshine September -0.0002 0.0002 0.1810

Mean temp June -0.0044 0.0056 0.1745

Rainfall January -0.0001 0.0001 0.1728

Sunshine May -0.0002 0.0002 0.1371

Rainfall October -0.0001 0.0001 0.1183

Mean temp May -0.0038 0.0043 0.1155

Mean temp July -0.0026 0.0032 0.1154

Contract −3.1623.10−5 4.0269.10−5 0.0913

Mean temp March -0.0030 0.0025 0.0875

Mean temp September -0.0033 0.0034 0.0772

Education 2 -0.0200 0.0191 0.0588

Rainfall March -0.0002 0.0002 0.0560

Mean temp October -0.0031 0.0033 0.0401

Education 5 -0.0225 0.0209 0.0393

TOFC -0.0001 0.0001 0.0372

Rainfall February -0.0001 0.0001 0.0316

Rainfall May -0.0001 0.0002 0.0187

Sunshine July -0.0001 0.0001 0.0093

Variable Lower Upper Importance

bound bound statistic
Table 3.2: Bayesian Lasso with fixed λ = 0.01. Variables have been ranked according to
their importance statistic, i.e. mean of the posterior samples divided by their respective
standard deviation. Lower and upper bounds are the 95% credible intervals. Stars
indicate whether the 90% (*), 95% (**) and 99% (***) credible intervals contain zero.
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Figure 3.3: Approximations to the posterior densities for α and σ2 using the Bayesian
Lasso for fixed λ = 0.01. Vertical lines represent the 2.5% quantile, maximum a posteriori
estimate and the 97.5% quantile.

3.3.5 Application: Bayesian Lasso with prior λ

Section 3.3.1 details the Gibbs sampling scheme in addition to Section 3.3.2 when using a

prior for λ. Again, 4 chains are used, all with a burn-in period of 1,000 samples, thinning

of every 5th sample, resulting in a sample of size 8, 000 to approximate the posterior

distribution.

Table 3.3 shows a larger number of variables are now considered important when varying

the level of regularisation. The three variables from the fixed λ case, organic, sprays

and rainfall June are still deemed important here.

With 95% credible intervals far away from zero, mean temperature in September and

October positively influence yield whilst mean temperature in February and July nega-

tively influence yield. Again, this may be an indicator of a high mean temperature being

a good environment for growing wheat during the initial growth phase, but in the latter

stages, a high mean temperature can bring the wheat to maturity quicker and dry the

crop out before harvest.

For those parameters with 95% credible intervals close to but not including zero, machinery,
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contract and labour may indicate better equipment and more experienced labourers

lead to larger yields. Utilised agricultural area positively influencing yield may indicate

larger farms often attain larger yields due to efficient farming practices, and fertiliser to

provide crops with additional nutrients required for growth. There also appears to be

a positive relationship between education to college level or equivalent, which may be

indicative of the farmer’s knowledge in growing crops.

Of the important Farm Business Survey variables, seeds is the only one with a 95%

credible interval whose bounds are negative. This may be due to farmers applying

excessive amounts of seeds to cover any crops lost during the year without due care for

the other factors influencing wheat yields. All other weather conditions deemed important

could again be indicative of desirable environmental conditions for the wheat production

cycle at each stage.

Comparing the list of important variables found here in Table 3.3 to those found in Section

2.9, the frequentist Lasso is restricted to the variables selected according to the stepwise

algorithm as the level of shrinkage decreases and suggests a variable is important to model

yield if it captures the largest proportion with the response, conditional on the preceding

variables already being included in the model. Instead, and more preferable, the Bayesian

Lasso indicates variable importance regardless of the other variables included in the model

by varying the amount of shrinkage applied to each individual coefficient in an MCMC

sampling scheme and examines the credible intervals for each coefficient. Additional

weather variables were not considered important in the frequentist Lasso yet are indicated

as important when using the Bayesian Lasso. This could be due to other variables already

included in the stepwise model already capturing these variables’ relationships with the

response, yet the Bayesian Lasso picks out these variables’ relationships with the response

by considering a model without these variables who have a stronger relationship with

the response.

Using a prior for λ allows the Gibbs sampler to sample with a smaller level of shrinkage.

Figure 3.4 shows the approximate posterior distribution for λ, with very few samples

being close to zero. According to the 95% credible interval, indicated by two stars

in Table 3.3, 27 are now deemed important, compared to 21 when considering 99%
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credible intervals to indicate importance. Without manually controlling for λ ourselves,

the number of significant variables may now be too many. Section 3.5 will look at an

alternative shrinkage prior which allows for λ to be selected manually but will not

overshrink the coefficients.

If we were to use model selection to only select those important parameters whose 99%

credible intervals contain zero, the number of important variables would be smaller,

however the credible intervals would be wider. Assuming the Gibbs sampler is run for

long enough such that the posterior samples lying outside of the 99% credible intervals are

sufficiently large, then using a prior for λ would avoid shrinking the active coefficients to

zero, as done in the fixed λ case, but widens our credible intervals to show our uncertainty

when reducing the number of important variables in the model.

The maximum a posteriori estimate for α still approximately equals 8 tonnes per hectare,

however the width of the 95% credible interval for α has now increased significantly. This

might be seen as a consequence of the variables for the farming practices and environmen-

tal conditions having a larger role in modelling the yields, and α responding accordingly

rather than solely modelling the mean. The maximum a posteriori estimate for σ2 is

much smaller than the fixed λ case, yet the posterior variance of σ2 is approximately the

same. Again, this could be a consequence of capturing some of the strong signals that

was previously taken as error, yet the spread of the variance remaining approximately

the same since the variables do not play a role in the variance of the yields according to

our linear model assumption in Section 3.1.2, y ∼ Nn(α1n +Xβ, σ2In).

For yields in 2009, the posterior predictive distribution can be found with respect to their

covariates, where Figure 3.5 gives the 95% credible intervals. The posterior predictive

distributions for many large yields underestimates the yield observed. Possible reasons

include the linear model assumption which is not suited for modelling high yields. The

significant covariates may also not capture the increase in yield for these farms.

87



Lower Upper Importance

Variable bound bound statistic

Organic -2.3748 -1.9021 17.7468 ***

Sprays 0.0057 0.0072 17.2368 ***

Machinery 0.0012 0.0016 12.7231 ***

Sunshine February 0.0356 0.0507 11.3061 ***

Fert 0.0028 0.0042 10.0739 ***

UAA 0.0005 0.0008 9.1795 ***

Contract 0.0011 0.0017 8.4204 ***

LAND 0.0007 0.0013 6.4998 ***

Mean temp October 0.3552 0.6817 6.1460 ***

Seeds -0.0057 -0.0028 5.6851 ***

Other VC 0.0016 0.0034 5.4502 ***

Rainfall November -0.0096 -0.0044 5.2291 ***

Rainfall June -0.0096 -0.0043 5.1177 ***

Rainfall April -0.0159 -0.0066 4.7209 ***

Rainfall July -0.0102 -0.0040 4.4955 ***

Sunshine September -0.0154 -0.0053 4.0594 ***

Mean temp February -0.4421 -0.1498 3.9948 ***

Mean temp September 0.1789 0.6218 3.5792 ***

Sunshine April 0.0037 0.0130 3.5304 ***

Mean temp July -0.6711 -0.1827 3.5283 ***

Labour 0.0002 0.0008 3.4794 ***

Mean temp May -0.4208 -0.0609 2.6409 ***

Mean temp November -0.4582 -0.0674 2.5765 ***

Education 3 0.0210 0.1961 2.4988 **

Rainfall May -0.0071 -0.0003 2.1035 **

Sunshine November -0.0128 -0.0003 2.0609 **

Sunshine March 0.0003 0.0106 2.0356 **
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Education 4 -0.0152 0.1985 1.7371 *

Mean temp January -0.2868 0.0177 1.6827

Rainfall September -0.0009 0.0057 1.4086

Mean temp August -0.0458 0.2778 1.4041

Mean temp December -0.2590 0.0404 1.3509

Sunshine June -0.0055 0.0008 1.3240

Rainfall August -0.0010 0.0061 1.2591

Rainfall December -0.0011 0.0048 1.2195

Education 1 -0.2020 0.0509 1.1335

Fuel -0.0024 0.0102 1.0875

TOFC -0.0011 0.0003 1.0604

Sunshine May -0.0060 0.0020 0.9451

Rainfall March -0.0021 0.0057 0.8621

Mean temp June -0.3214 0.1126 0.8051

Rainfall February -0.0015 0.0041 0.7853

Sunshine August -0.0052 0.0027 0.6375

Sunshine July -0.0055 0.0026 0.6117

Rainfall October -0.0042 0.0023 0.5113

Education 2 -0.1196 0.1941 0.4560

Rainfall January -0.0023 0.0035 0.3430

Education 5 -0.1437 0.2045 0.3286

Mean temp March -0.1303 0.0915 0.3100

Sunshine October -0.0064 0.0050 0.2329

Sunshine January -0.0087 0.0099 0.1887

Sunshine December -0.0058 0.0067 0.1157

Mean temp April -0.1621 0.1697 0.0817

Variable Lower Upper Importance

bound bound statistic
Table 3.3: Bayesian Lasso with half-Cauchy prior on λ. Variables have been ranked
according to their importance statistic. Lower and upper bounds are the 95% credible
intervals. Stars indicate whether the 90% (*), 95% (**) and 99% (***) credible intervals
contain zero.
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Figure 3.4: Approximations to the posterior densities for α, σ2 and λ2 using the
Bayesian Lasso with a half-Cauchy prior for λ. Vertical lines represent the 2.5% quantile,
maximum a posteriori estimate and the 97.5% quantile.
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Figure 3.5: 95% credible intervals for each of the posterior predictive distributions of yields in 2009 with respect to their farming practices and
environmental conditions, from the posterior samples of the Bayesian Lasso. Top: fixed λ = 0.01, bottom: prior λ. Credible intervals indicated in
black do not contain their observed yields.
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3.4 Implied shrinkage coefficient prior

Manually selecting λ in the Bayesian Lasso has shown the extent to which shrinkage

can be influential. Provided λ > 0, the Bayesian Lasso will always apply shrinkage to all

coefficients regardless of their associated variable’s importance to model the response.

Preferably, we would like apply a shrinkage prior that would shrink negligible coefficients

to zero but would also allow for the possibility of coefficients being left alone. Shrinkage

behaviour can be better understood by looking at the shrinkage profile of the implied

shrinkage coefficient prior (see Carvalho et al. (2009), Carvalho and Polson (2010),

Piironen and Vehtari (2017b)).

Still assuming X has been standardized and σ2 = 1, then

βj |y, α, τ2
j ∝ exp

(
−1

2

n∑
i=1

(yi − α− xijβj)2
)
exp

(
− 1

2λ2τ2
j

β2
j

)

∝ exp
(
−

1 + λ2τ2
j

2λ2τ2
j

[
β2
j − 2βj

λ2τ2
j

1 + λ2τ2
j

n∑
i=1

(yi − α)xij

])

Therefore, E(βj |y, α, λ, τ2
j ) = (λ2τ2

j /(1+λ2τ2
j ))

∑n
i=1(yi−α)xij , where (λ2τ2

j /(1+λ2τ2
j ))

is the weight placed on xTj (y − α1n) and 1 − (λ2τ2
j /(1 + λ2τ2

j )) = 1/(1 + λ2τ2
j ) is the

weight placed on 0. Letting κj = 1/(1 + λ2τ2
j ),

E(βj |y, α, τ2
j ) = (1− κj)xTj (y − α1n) = (1− κj)uj ,

and since κi ∈ [0, 1],

E(βj |uj) =
∫ 1

0
(1− κj)ujπ(κj |uj)dκj = [1− E(κj |uj)]uj ,

a linear function of uj , and so a linear function of yi (Carvalho et al. (2009), Bhadra

et al. (2019)). This holds for all hierarchical priors where βj is expressed in the same

form as Equation (3.4), a scale mixture of Normals. With σ2 = 1 and

π(τ2
j ) ∝ exp(−τ2

j )
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in the case of the Bayesian Lasso. With κj = 1/(1 + λ2τ2
j ), a change of variables yields

π(κj) ∝
1

λ2κ2
j

exp
(
− 1
λ2κj

)
, κj ∈ (0, 1).

Figure 3.6 shows the shrinkage profiles for p(κj) for various levels of shrinkage. Although

all three levels of shrinkage have non-zero probabilities to fully shrink a coefficient to

zero, as κj → 0, π(κj) → 0 hence the Bayesian Lasso will always shrink coefficients

regardless of their signal.
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Figure 3.6: Shrinkage profiles when τ2
j ∼ Exp(1) with λ = 1, λ = 0.5 and λ = 0.01.

Ideally, shrinkage profiles should have large probability densities for no shrinkage (κj = 0)

and full shrinkage (κj = 1). This would leave the strong signals and shrink the error

signals to zero.
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Figure 3.7: Proportional prior densities for the implied shrinkage coefficient κ when τ2
j

is exponentially distributed with shape parameter 1 (left) and τ2
j distributed according

to a half-Cauchy with 0 and 1 (right).

One such choice is the Beta(1/2, 1/2) density π(κj) ∝ κ
−1/2
j (1 − κj)−1/2 in Figure 3.7.

With κj = 1/(1 + τ2
j ) as before, when λ = 1,

π(τj) = (1 + τ2
j )1/2

(
τ2
j

1 + τ2
j

)−1/2

τj

(
1

1 + τ2
j

)2

= 1
1 + τ2

j

,

i.e. C+(0, 1). The prior hierarchy with τj ∼ C+(0, 1) instead of an exponential with rate

1 is aptly named the horseshoe prior hierarchy after the shape of its shrinkage profile.

3.5 Horseshoe

To avoid overshrinking the coefficients β towards zero, the horseshoe estimator (Carvalho

et al. (2009), Carvalho and Polson (2010)) replaces the exponential prior for the local

shrinkage parameters τj with a half-Cauchy prior in the prior hierarchy

βj |τ2
j ∼ N(0, τ2

j ), τj |λ ∼ C+(0, λ) λ|σ ∼ C+(0, σ) σ2 ∝ 1
σ2 (3.6)

where λ is the global shrinkage parameter. Makalic and Schmidt (2015) showed this
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prior hierarchy can be reformulated as

βj |τ2
j ∼ N(0, σ2λ2τ2

j ), τj ∼ C+(0, 1) λ ∼ C+(0, 1) σ2 ∝ 1
σ2 , (3.7)

and hence the difference between the Bayesian Lasso and the horseshoe prior can be

seen through the prior distribution for the local shrinkage parameter τj . The prior for

τ2
j was exponential whereas now the prior for τj is half-Cauchy. The half-Cauchy has

a larger peak at zero and a heavier tail compared to the exponential, making it more

desirable as a shrinkage prior.

Section 3.4 showed the local shrinkage behaviour of the horseshoe prior with σ2 = λ = 1.

Here we now look at the influence of the global shrinkage parameter λ has on the

shrinkage profile for the horseshoe. If we use a scale parameter in the prior distribution

for the local parameter τ2
j then the implied prior distribution for κj will be

π(κj |λ) ∝ κ−1/2
j (1− κj)−1/2

(
λ

(λ2 − 1)κj + 1

)
.
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Figure 3.8: Shrinkage profiles when τ2
j ∼ C+(0, 1) with λ = 1, λ = 0.5 and λ = 0.01.

Figure 3.8 shows the shrinkage profile for varying levels of λ. For λ = 0.01, the horseshoe

prior always has a non-zero probability at κj = 0, hence always allows for the case of no

shrinkage. Piironen and Vehtari (2017a) discuss how to manually select λ to reflect the
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effective number of non-zero coefficients to be in the model. Again, an alternative is to

use a half-Cauchy prior for λ as done for the Bayesian Lasso.

3.5.1 Conditional posterior distributions for Gibbs

The only difference between the Bayesian Lasso and the horseshoe is the prior on τj ,

therefore the only conditional posterior distribution which needs to change for the Gibbs

sampling scheme is for τj (Makalic and Schmidt (2016)). Section 3.3.2 showed the centred

half-Cauchy with scale 1 can be decomposed into a scale mixture of inverse-gamma

distributions

τ2
j |δ ∼ IG(1/2, 1/δ) and δ ∼ IG(1/2, 1),

with full conditionals in the Gibbs sampling scheme as

τ2
j |βj , τj , λ, σ, δ ∝

(
τ2
j

)−1/2
exp

{
−

β2
j

2τ2
j σ

2λ2

}(
τ2
j

)−1/2−1
exp

{
− 1
δτ2
j

}

∝
(
τ2
j

)−1−1
exp

{
− 1
τ2
j

(
1
δ

+
β2
j

2σ2λ2

)}
,

hence τ2
j ∼ IG

(
1, 1

δ + β2
j

2σ2λ2

)
and

δ|τj ∝ δ−1/2exp
{
− 1
τ2
j

}
(δ)−1/2−1 exp

{
−1
δ

}

∝ δ−2exp
{
−1
δ

(
1
τ2
j

+ 1
)}

,

hence δ ∼ IG
(

1, 1
τ2
j

+ 1
)
. These are added to the other full conditionals in Section 3.3.1

for the full horseshoe Gibbs sampling scheme.

3.5.2 Gradient vector for Hamiltonian Monte Carlo using the

horseshoe prior

Since the only difference between the prior hierarchies for the Bayesian Lasso and the

horseshoe prior is the prior for the local shrinkage parameters τj , the only difference in
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the set of partial derivatives in Section 3.3.3 is the gradient for τj

∂ log π(θ|y,X)
∂τj

= − 1
τj

+ 1
σ2λ2

β2
j

τ3
j

− 2τj
1 + τ2

j

.

3.5.3 Application: Horseshoe for fixed λ

Section 3.4 discussed the advantage of using the horseshoe prior as a shrinkage prior

due to its desirable shrinkage properties. Sampling with Hamiltonian Monte Carlo with

λ = 0.01, Table 3.4 gives the importance statistics for the agronomic and climatic

variables.

Using a fixed λ here does not shrink parameters as much as the Bayesian Lasso due

to the non-zero probability at zero for the shrinkage profile in Figure 3.8. This allows

for the likelihood to dominate the shrinkage prior if the data is in favour of keeping

the variable in the model. According to the 99% credible intervals, the variables said to

be important here are the same as those in the Bayesian Lasso case with prior λ (see

Section 3.3.5 for justifications).

However, the horseshoe prior allows for full shrinkage to be applied to coefficients of

unimportant variables. In this case, only mean temperature in May remains when looking

at the 95% credible intervals, whereas before, education to college level or equivalent,

mean temperature in November and January, sunshine in November and rainfall in May

were also important. Similarities between the Bayesian Lasso with prior for λ and this

analysis can also be seen in the approximate posterior distributions for α and σ2 in

Figure 3.9 and the posterior predictive distributions in Figure 3.11.

Although selecting λ = 0.01 here proves more fruitful in keeping strong signals away

from zero compared to the Bayesian Lasso, uncertainty in this arbitrary choice for λ is

not taken account of. If there is no justifiable reason to fix λ, a prior should be placed

on λ, as we shall do in our final analysis.
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Lower bound Upper Importance

Variable bound bound statistic

Organic -2.3819 -1.9117 17.9447 ***

Sprays 0.0058 0.0073 17.2917 ***

Sunshine February 0.0374 0.0505 13.0689 ***

Machinery 0.0012 0.0016 12.6657 ***

Fert 0.0028 0.0042 9.9094 ***

UAA 0.0005 0.0008 9.2732 ***

Contract 0.0010 0.0017 8.2822 ***

Mean temp October 0.3740 0.6743 6.9044 ***

LAND 0.0007 0.0013 6.3243 ***

Rainfall November -0.0090 -0.0043 5.5677 ***

Seeds -0.0055 -0.0026 5.4602 ***

Rainfall June -0.0097 -0.0047 5.4494 ***

Rainfall April -0.0152 -0.0064 4.9919 ***

Sunshine September -0.0174 -0.0076 4.9636 ***

Other VC 0.0013 0.0032 4.8802 ***

Rainfall July -0.0095 -0.0035 4.1527 ***

Mean temp February -0.4612 -0.1599 3.9792 ***

Mean temp July -0.7178 -0.2412 3.9074 ***

Mean temp September 0.2121 0.6840 3.608 ***

Sunshine April 0.0026 0.0125 3.0887 ***

Labour 0.0001 0.0007 2.8561 ***

Mean temp May -0.4035 0.0046 2.1354 *

Education 3 -0.0046 0.1664 1.7256

Mean temp November -0.3663 0.0163 1.6586

Rainfall May -0.0059 0.0003 1.5837

Sunshine November -0.0111 0.0008 1.4205

Mean temp January -0.3057 0.0185 1.3266
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Mean temp December -0.2815 0.0219 1.1501

Education 1 -0.1878 0.0316 1.0825

Sunshine March -0.0009 0.0077 1.0330

Education 4 -0.0343 0.1584 1.0256

Rainfall August -0.0008 0.0048 0.9885

Mean temp June -0.3810 0.0384 0.9651

Rainfall September -0.0009 0.0046 0.8787

Sunshine June -0.0044 0.0008 0.8198

Fuel -0.0027 0.0079 0.7869

Rainfall February -0.0010 0.0033 0.6860

Mean temp August -0.0453 0.2566 0.6582

TOFC -0.0008 0.0003 0.6491

Rainfall December -0.0009 0.0033 0.6310

Sunshine August -0.0048 0.0016 0.6102

Rainfall January -0.0011 0.0028 0.5471

Mean temp March -0.0940 0.0448 0.3727

Sunshine December -0.0057 0.0032 0.3264

Rainfall October -0.0028 0.0017 0.3156

Sunshine July -0.0041 0.0024 0.2726

Education 2 -0.0953 0.1392 0.2012

Sunshine January -0.0071 0.0050 0.1956

Sunshine May -0.0027 0.0022 0.1913

Sunshine October -0.0031 0.0043 0.1432

Education 5 -0.1213 0.1417 0.1163

Mean temp April -0.1015 0.0953 0.0198

Rainfall March -0.0023 0.0027 0.0086

Variable Lower Upper Importance

bound bound statistic
Table 3.4: Horseshoe prior hierarchy with fixed λ = 0.01. Variables have been ranked
according to their importance statistic. Lower and upper bounds are the 95% credible
intervals. Stars indicate whether the 90% (*), 95% (**) and 99% (***) credible intervals
contain zero.
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Figure 3.9: Approximations to the posterior densities for α and σ2 using the horseshoe
prior with fixed λ. Vertical lines represent the 2.5% quantile, maximum a posteriori
estimate and the 97.5% quantile.

3.5.4 Application: Horseshoe for prior λ

Using a prior for λ instead, the same variables appear to be important when looking at the

99% credible intervals. However, if we do not know for sure what level of regularisation

we would like to apply, using a prior for λ allows for other variables which may not

indicated as important for the 99% credible intervals to be highlighted for narrower

credible intervals. Compared to the fixed λ case in Section 3.5.3, mean temperature in

May and November and education to college level or equivalent are also identified when

using the 95% credible interval to determine importance. Again, there is little difference

in the approximate posterior distributions for α and σ2. Comparing the approximate

posterior distribution for λ here to that in Section 3.3.5 under the Bayesian Lasso

framework, the density is concentrated closer to zero leading to more samples with a

stricter shrinkage enforced.

Although the horseshoe prior hierarchy is slightly more complex in its exposition com-

pared to the Bayesian Lasso, the horseshoe prior hierarchy performs the inference agri-

cultural studies attempt to quantify but now fully accounts for all stages of uncertainty.

Furthermore, using a prior for λ is advisable when there is no prior knowledge for the
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shrinkage parameter λ, hence the parameter estimates for λ will not be restricted and

will respond to the data in our model.
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Lower Upper Importance

Variable bound bound statistic

Organic -2.3729 -1.9165 18.1077 ***

Sprays 0.0058 0.0072 17.1836 ***

Machinery 0.0012 0.0016 12.7386 ***

Sunshine February 0.0375 0.0523 11.8616 ***

Fert 0.0028 0.0042 10.0168 ***

UAA 0.0005 0.0008 9.2094 ***

Contract 0.0010 0.0017 8.3407 ***

Mean temp October 0.3681 0.6898 6.4051 ***

LAND 0.0007 0.0013 6.3771 ***

Seeds -0.0056 -0.0027 5.6002 ***

Rainfall November -0.0095 -0.0045 5.4395 ***

Rainfall June -0.0099 -0.0045 5.1947 ***

Other VC 0.0015 0.0033 5.1518 ***

Rainfall April -0.0165 -0.0071 4.8692 ***

Sunshine September -0.0169 -0.0068 4.5361 ***

Rainfall July -0.0100 -0.0038 4.4225 ***

Mean temp February -0.4833 -0.1802 4.2055 ***

Mean temp July -0.7765 -0.2797 4.0806 ***

Mean temp September 0.2454 0.7190 3.9348 ***

Sunshine April 0.0034 0.0128 3.4052 ***

Labour 0.0002 0.0008 3.1898 ***

Mean temp May -0.4124 -0.0219 2.3495 **

Education 3 0.0061 0.1852 2.1290 **

Mean temp November -0.4082 0.0031 2.0580 *

Mean temp January -0.3295 0.0118 1.8475

Rainfall May -0.0061 0.0003 1.7195

Sunshine November -0.0118 0.0006 1.7104

Sunshine March -0.0006 0.0094 1.5850
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Education 4 -0.0184 0.1884 1.3480

Rainfall September -0.0008 0.0053 1.2310

Sunshine June -0.0054 0.0008 1.1681

Rainfall August -0.0009 0.0054 1.1622

Mean temp August -0.0462 0.2854 1.1439

Education 1 -0.1953 0.0424 1.1057

Rainfall December -0.0008 0.0045 1.0251

Mean temp December -0.2516 0.0430 0.9870

Mean temp June -0.3482 0.0729 0.9428

Fuel -0.0029 0.0090 0.8800

Sunshine August -0.0056 0.0018 0.8560

TOFC -0.0010 0.0003 0.8173

Rainfall February -0.0011 0.0038 0.8168

Rainfall January -0.0016 0.0032 0.5184

Sunshine May -0.0044 0.0023 0.4874

Mean temp March -0.1186 0.0645 0.4062

Rainfall October -0.0037 0.0021 0.3986

Education 2 -0.1158 0.1608 0.3052

Sunshine July -0.0047 0.0030 0.2526

Education 5 -0.1370 0.1731 0.2029

Rainfall March -0.0032 0.0036 0.1689

Mean temp April -0.1266 0.1565 0.0987

Sunshine December -0.0058 0.0051 0.0952

Sunshine October -0.0043 0.0051 0.0466

Sunshine January -0.0079 0.0080 0.0311

Variable Lower Upper Importance

bound bound statistic
Table 3.5: Horseshoe prior hierarchy with half-Cauchy prior on λ. Variables have been
ranked according to their importance statistic. Lower and upper bounds are the 95%
credible intervals. Stars indicate whether the 90% (*), 95% (**) and 99% (***) credible
intervals contain zero.
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Figure 3.10: Approximations to the posterior densities for α, σ2 and λ2. Vertical lines
represent the 2.5% quantile, maximum a posteriori estimate and the 97.5% quantile.
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Figure 3.11: 95% credible intervals for each of the posterior predictive distributions of yields in 2009 with respect to their farming practices and
environmental conditions, from the posterior samples of the horseshoe prior. Top: fixed λ = 0.01, bottom: prior λ. Credible intervals indicated in
black do not contain their observed yields.

105



3.6 Conclusion

Our analysis using the Bayesian Lasso and the horseshoe prior hierarchy has found

credible intervals for each variable in the Farm Business Survey data set and weather

variables from the UK Met Office, assessed their importance once subject to regularisation

and provided uncertainty intervals for all variables regardless of their importance. Using

the horseshoe prior hierarchy due to its efficiency at removing the error signal and keeping

coefficients of significant variables for modelling yields away from zero,

• organic status, crop protection and rainfall in June are indicated as significant

variables when predicting wheat yields.

• the credible interval for organic status indicates a strong negative relationship with

yields as expected from previous studies.

• other important variables which have credible intervals lying further away from

zero are mean temperature in September and October, positively influencing, and

February and July, negatively influencing yields as a result of growing towards

maturity at a faster rate.

The horseshoe prior hierarchy captures the uncertainty for the parameter estimation

stage and the uncertainty for the variable selection stage, which the two-step frequentist

approach aims to account for, but fails to do. Accounting for all uncertainty means

the credible intervals will be wider than the credible intervals constructed from the

uncertainty in the parameter estimates, and not lead to overconfidence in the predictions

for wheat yields. Furthermore, using a prior for λ is recommended when there is no prior

knowledge on how much shrinkage to apply.

3.7 Discussion

All criticisms of modelling the conditional mean for yields from Section 2 still hold

here. To use the Bayesian Lasso and horseshoe prior hierarchy, Section 3.1.2 made the
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distributional assumption that the yields follow a normal distribution with the mean as

a linear combination of the Farm Business Survey and Met Office covariates. This was

suitable for modelling average yields, since the coefficients were estimated to minimise

the mean squared error, however failed to model large yields, where the observed yields

often fell outside of the credible interval. This can be a result of there being no deciding

factor in our linear model distinguishing large yields from the average yields. A separate

analysis can be done specifically for large yields but it needs to be emphasised this would

no longer be suitable to model average yields.

The Bayesian Lasso and the horseshoe prior hierarchy were selected due to their efficient

shrinkage properties and their natural extensions to Chapter 2. Section 3.2 suggested

a popular alternative prior for the coefficients, with comparable performance to the

horseshoe prior, is the spike-and-slab prior (Ishwaran and Rao (2005)) using a scale

mixture of normal distributions. The spike-and-slab prior is a weighted sum of a point

mass at zero (i.e. the spike) and a centred normal distribution with a large variance (i.e.

the slab). Therefore, rather than shrinking the coefficients of the unimportant variables

down to approximately zero, the spike-and-slab prior would weigh the coefficients in

favour of the point mass at zero. An interesting question would be to find out whether

the same parameters are considered important as those using a regularized version of the

horseshoe prior, found to closely resemble the spike-and-slab prior (Piironen and Vehtari

(2017a)). Other methods for Bayesian model selection using an additional prior for the

model space (e.g. Forte et al. (2018)) are computationally infeasible when the number

of model parameters is large. An efficient sampler would be required (e.g. Clyde et al.

(2011), García-Donato and Martínez-Beneito (2013)), hence these methods are avoided

in our study but could also be studied to follow up on to this work.

To assess the variable importance in our analyses, we calculate the posterior mean divided

by the posterior standard deviation (Makalic and Schmidt (2016)) and in this work refer

to the outcome as the importance statistic. Makalic and Schmidt (2016) suggested this

is in fact an estimate for the t-statistic, however care needs to be taken as to whether

these should be referred to as the t-statistic since this suggests a hypothesis test can be

constructed by comparing each approximate t-statistic to the t-distribution. Bayesian
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estimates in a frequentist framework. A final fruitful avenue of work would be to look at

whether a t-test is in fact valid when the estimates for the coefficients are found using

MCMC methods.
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4 | Extreme value analysis

4.1 Introduction

UK wheat yields have risen from a little over 2 tonnes per hectare in the early 20th

century (Brassley (2000)) to current averages of approximately 8 tonnes per hectare

(DEFRA (2017)). Knight et al. (2012) suggested there has been a lack of progression

in wheat yields which has led us to question whether wheat yields have stagnated at a

maximal level under current technologies and growing conditions. We address this using

extreme value analysis, a statistical framework used to model extreme events which occur

with a very small probability.

In the first of our contexts, the extreme value analysis of yields translates to modelling

the highest yields over all farms and over all years. We carry out this analysis on winter

wheat yields collated by the Farm Business Survey between 2006 and 2015. Each yield

used in our analysis is each farm’s highest yield attained over this time period. Let us

highlight here that our objective is not to estimate the notion of yield potential, which

is equal to the yield of a crop under ideal conditions (no pest, disease, nutrient or water

stresses), or the related notion of water-limited yield potential (see e.g. van Ittersum et al.

(2013); van Wart et al. (2013)). The estimation of these quantities typically requires the

use of sophisticated computer models to simulate crop growth in specified conditions,

see for example Chen et al. (2017) and Gobbett et al. (2017); our goal in Section 4.3.2 is

rather to estimate the distribution of the highest yields attained in a real-world setting

and under observed farming practices in order to estimate a practical upper bound on

yield given current technology and conditions.
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Our analysis of the highest wheat yields can also be refined to take account of growing

conditions. In the literature, forecasts for winter wheat yields have been calculated for

geographical regions, such as the Nomenclature of Territorial Units for Statistics level 1

(NUTS1) regions in Germany and France (de Wit et al. (2005)) or administrative regions

in the UK defined by the Met Office (Cho et al. (2012)). This makes it possible to assess

the variation in yield levels depending on climate and practices. The effect of the use of

agricultural inputs, mainly fertilisers and crop protection, on average yield levels is also of

interest; it is important, in this respect, to assess the trade-off between an improvement

in yield and potential damage to the environment that may result from excessive use

of those inputs. It has thus been found in the literature that the use of crop protection

and fertiliser does indeed generally improve yield, but that a moderate level of these

inputs typically brings the same improvement as higher levels without incurring the same

risks to the environment and human health (see e.g. Damalas (2009); Ecobichon (2001);

Pimentel et al. (1993)). Sections 4.3.3 and 4.3.4 use further information contained in the

Farm Business Survey database to carry out extreme value analyses of winter wheat yield

depending on location and level of crop protection and fertiliser use. We then compare

the conclusions of each of these analyses, and contrast them with the interpretation of

the extreme value analysis of the full, non-stratified sample of yields.

So far we have proposed to look at modelling highest yields without any regard to the

financial implications to attain the yield such as labour and seed costs. Net margin is

the profit gained from selling wheat after removing costs contributing to production.

Since a high yielding farm does not necessarily imply a high performing farm from a

business perspective, our final application of extreme value theory is based on the net

margins to find what we expect the top performing farms to be achieving as an annual

income. Section 4.3.5 concludes by assessing whether UK winter wheat production is

able to provide a sustainable income and whether average performing farms allocate

their spending differently to top performing farms.

The structure of this chapter is as follows. Section 4.1.1 gives a brief account of fields

extreme value theory has already been used in. Section 4.2 discusses the available methods
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to perform an extreme value analysis. Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4 are based on

the published paper (Mitchell et al. (2020)), which details the implementation of those

techniques first on the full data set, then on the data stratified by location and spending

on agricultural inputs for maximum yield levels. Finally, Section 4.3.5 instead analyses

high net margins. The chapter concludes with a reflection on the analyses and discusses

future directions in Sections 4.4 and 4.5.

4.1.1 Example applications of extreme value theory

Extreme value theory has found applications in numerous fields, the most prominent

examples being environmental science (see e.g. Coles and Walshaw (1994); Eastoe and

Tawn (2009); Katz (1999)) and insurance and finance (see e.g. Embrechts et al. (1997);

Hao et al. (2005); Marimoutou et al. (2009)). Other applications include engineering (see

e.g. Holmes and Moriarty (1999); Steinkohl et al. (2013)) and toxicology (see Tressou

et al. (2004)). More recently, extreme value analysis has been used in epidemiology to

estimate the probability of severe pneumonia and influenza epidemics (see Thomas et al.

(2016)), and in the field of demography with a discussion of whether there is a finite

upper bound on human lifespan (see e.g. Rootzén and Zholud (2017)). Applications of

extreme value analysis in the agricultural sciences have concentrated on financial aspects,

for instance commodity price fluctuations (see e.g. Fretheim and Kristiansen (2015);

Gong et al. (2015)), rather than agronomic factors such as yield. Our published work

is the first to use agricultural yields in an extreme value framework (see Mitchell et al.

(2020)). Extreme value theory has also been widely used on financial data, such as net

margin (see e.g. Embrechts et al. (1997), Resnick (2007)), however there are, to the best

of our knowledge, currently no applications of extreme value theory on the incomes of

agricultural producers once expenditure has been accounted for.

4.2 Methods

Extreme value analysis methods are required in order to model the highest yields within

each scenario and estimate a practical upper bound for each case. This section reviews
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the foundational and theoretical aspects of extreme value theory needed (see de Haan

and Ferreira (2006) and Beirlant et al. (2004)) to perform an extreme value analysis; the

univariate case will be considered throughout.

4.2.1 Limiting distribution of the sample maxima

Extreme value analysis concerns the behaviour of the maximum of a sample X1, ..., Xn

as sample size n→∞. SupposingX1, ..., Xn is an independent and identically distributed

sample from a distribution F with possibly infinite right endpoint x∗ = sup {x : F (x) ≤ 1},

then

max (X1, X2, ..., Xn) P→ x∗ as n→∞; (4.1)

a necessary and sufficient condition for the existence of a linearly normalised version of

this maximum to converge to a nondegenerate distribution Hγ is

lim
t→x∗

1− F (t+ xf(t))
1− F (t) = (1 + γx)−1/γ = 1−Hγ(x) (4.2)

where f is a positive nondecreasing function, γ ∈ R (see de Haan and Ferreira (2006),

Theorem 1.1.6). It follows that as t → x∗, the exceedances Y = X − t approximately

follow a generalised Pareto distribution

P (X − t ≤ y|X > t) ≈ Hγ,σ(t)(y) := 1−
(

1 + γy

σ(t)

)−1/γ
, (4.3)

for all y > 0 such that 1 + γy/σ(t) > 0. de Haan and Ferreira (2006) add that the shape

parameter γ ultimately determines what type of tail our data exhibits, while σ(t) is a

positive scale parameter. If γ < 0, then the approximate distribution of the exceedances

in Equation 4.3 will be short tailed and a finite maximum can be found. If γ > 0, then the

approximate distribution of the exceedances will be heavy tailed and a finite maximum

will not exist. For γ = 0, Hγ,σ(t)(y) becomes Hσ(t)(y) = 1− exp (−y/σ(t)). The following

section looks at methods to estimate γ to determine whether a finite maximum exists.
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4.2.2 Parameter estimators for the generalised Pareto distribution

Consistent for all γ ∈ R, the moment estimator (Dekkers et al. (1989)) takes a semi-

parametric approach to estimate the shape parameter γ using log-moments

γ̂ := M (1)
n + 1− 1

2

1−

(
M

(1)
n

)2

M
(2)
n


−1

, (4.4)

with M (j)
n := 1

k

k−1∑
i=0

(logXn−i,n − logXn−k,n)j , j = 1, 2,

given the sequence of integers k = k(n) satisfying k(n)→∞, k(n)/n→ 0. Here Xj,n is

the jth largest observation in the sample of size n and k is the index corresponding to

threshold t such that Xn−k,n = t. k can also be seen as the sample size above threshold

t, hence k will be referred to as the effective sample size henceforth. Furthermore, it is

known that (de Haan and Ferreira (2006)) as n→∞

γ̂k ≈ N
(
γ,

1
k
V

)
, V =


γ2 + 1, γ ≥ 0,

(1− γ)2(1− 2γ)(1− γ + 6γ2)
(1− 3γ)(1− 4γ) , γ < 0,

(4.5)

where the bias is assumed to be zero from carefully selecting the effective sample size

k. To select a suitable effective sample size, the shape parameters are estimated for

increasing effective sample sizes k and plotted against each other. We find the first

stable region reached as k increases and find the corresponding threshold. Increasing

k is equivalent to increasing the number of observations the parameter estimate is

based on. Consequently, as the index increases, the width of the associated confidence

intervals decreases; nevertheless, this also increases bias in the estimate from involving

less-extreme observations. To fulfil this bias-variance tradeoff, the largest threshold such

that the corresponding index k produces an estimate γ̂k contained in the stability region

is selected, and in which case, we can assume the bias to be approximately zero.

de Haan and Ferreira (2006) also provide the corresponding estimate for the scale pa-

rameter σ,

σ̂ = Xn−k,nM
(1)
n (1− γ̂−), γ̂− = γ̂ −M (1)

n ,
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where M (1)
n is defined in Equation 4.4.

Given the estimates for γ and σ in the generalised Pareto distribution approximation of

the exceedances (Equation 4.3), Coles (2001) suggests the generalised Pareto assump-

tion can be checked by plotting the sample quantiles containing the data against the

theoretical quantiles of the generalised Pareto distribution,

{(
t+H−1

γ̂,σ̂

(
k − i
k + 1

)
, xn−i,n

)
: i = 0, ..., k − 1

}
,

where xn−i,n is the ith largest observation in the sample of size n and k is the number

of large values ultimately taken in the analysis. If the generalised Pareto assumption is

appropriate, the sample quantiles should approximately equal the theoretical quantiles.

Section 4.3 will check the generalised Pareto assumption holds for each dataset introduced.

Another method to test the generalised Pareto assumption is to compare the estimates

found using the moment estimator and the estimates found using an estimator which relies

more on the generalised Pareto assumption, namely the maximum likelihood estimator.

If these are approximately equal, then the generalised Pareto assumption holds.

Being a popular choice for parameter estimation, the maximum likelihood estimator,

used in previous studies including Eastoe and Tawn (2009), Steinkohl et al. (2013) and

Walshaw and Anderson (2000), achieves narrow confidence intervals as a consequence

of using a parametric approach. Zhou (2009) found the maximum likelihood estimator

exists and is consistent for γ > −1. The likelihood function of the scaled generalised

Pareto distribution to approximate the exceedances is

L(γ, σ|xn−k,n, ..., xn,n) =
k∏
i=1

hγ,σ(xn−i+1,n − xn−k,n), (4.6)

where hγ,σ(x) = ∂Hγ,σ(x)/∂x. The maximum likelihood estimates of γ and σ cannot be

found analytically.

Given k = k(n) → ∞ and k/n → 0, for γ > −1/2 Drees et al. (2004) proved the

asymptotic normality for this estimator takes the form
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 γ̂k

σ̂k/σk

 ≈ N2


 γ

1

 , 1
k

V

 , with V =

 (1 + γ)2 −(1 + γ)

−(1 + γ) 1 + (1 + γ)2

 . (4.7)

The small variance associated with the ML estimator is a desirable property, however the

maximum likelihood estimator is only consistent for γ > −1. For γ < −1, the likelihood

function for the scaled generalised Pareto distribution in Equation 4.6 tends to ∞.

If both estimators discussed here approximately agree on a shape parameter, the maxi-

mum likelihood estimate will be used in the quantile estimator in Section 4.2.4 to achieve

narrower confidence intervals.

4.2.3 Hypothesis testing for distributional differences

After fitting generalised Pareto distributions to two sets of observations, a test for dif-

ferences in the tail behaviour between these will determine whether the samples above

threshold t can in fact reasonably be thought to come from the same distribution, or

whether two separate extreme value analyses would be best to describe their distinct

behaviours. Based on classical likelihood ratio tests (Silvey (1970), Cox and Hinkley

(1974)), Coles (2001) suggested for two different samples A and B:

(i) fit two generalised Pareto models separately to the two groups A and B using

maximum likelihood from Section 4.2.2, to find (γ̂A, σ̂A) and (γ̂B, σ̂B). The two

maximised likelihoods are calculated separately L(γ̂A, σ̂A|xA) and L(γ̂B, σ̂B|xB),

and finally L = L(γ̂A, σ̂A|xA) × L(γ̂B, σ̂B|xB) is computed. This represents the

maximum likelihood under the full model, with 4 parameters, describing A and B

jointly.

(ii) fit a single generalised Pareto model to the combined data xA∪B = (xA,xB) using

maximum likelihood to find (γ̂A∪B, σ̂A∪B). The corresponding maximum likelihood

L0 = L(γ̂A∪B, σ̂A∪B|xA∪B) is computed, representing the maximum likelihood un-

der the restricted model where A and B can be described by the same distribution.
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Finally, the relevant likelihood ratio test statistic for testing the null hypothesis of equal

models H0 : (γA, σA) = (γB, σB) is the deviance D = −2 log(L0/L), to be compared to

the 95% quantile of the χ2 distribution with 4 (from (i)) −2 (from (ii)) = 2 degrees of

freedom, equal to 5.99.

4.2.4 Quantile estimators

Given an estimate of the shape parameter is made using one of the estimators in Section

4.2.2, plugging the estimates of the shape and scale parameters into Equation (4.3) will

provide an approximate distribution to model the tail. Furthermore, the estimate of γ

will also determine whether a finite maximum exists; de Haan and Ferreira (2006) show

γ < 0 indicates a finite maximal value x∗ exists, whereas γ > 0 indicates a finite maximal

value does not exist; however, we can still construct 100(1− pn)% quantiles with pn 6= 0

as the exceedance probability.

Recall Equation (4.3) where the exceedances Y = X − t are assumed to approximately

follow a generalised Pareto distribution Hγ,σ(t)(y) for large n. To find the quantiles,

Beirlant et al. (2004) suggest inverting

P (X − t ≥ y) = P (X > t) [1− P (X − t ≤ y|X > t)] ≈ k

n

(
1 + γy

σ

)−1/γ
,

where pn := P (X − t ≥ y) is the probability of exceedance, giving

x̂pn := t+ σ̂k
γ̂k

[(
k

npn

)γ̂k
− 1

]
, (4.8)

where t is the selected threshold such that P (X > t) = k/n, σ̂k and γ̂k are the estimates of

the scale and shape parameters respectively based on the k largest observations and total

sample size n. As n→∞, de Haan and Ferreira (2006) give the asymptotic distribution:

√
k

(x̂pn − xpn)
σ̂qγ̂(dn)

d→ Γ + (γ−)2B − γ−Λ− λ γ−
γ− + ρ

, (4.9)
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where (Γ,Λ, B) are jointly Normal random variables corresponding to the shape, scale

and location parameters of H respectively, γ− = min(0, γ). For dn = k/(npn) → ∞,

de Haan and Ferreira (2006) also show

qγ̂(dn) =


(dn)γ̂ log(dn)/γ̂, γ̂ > 0,

1/γ̂2 γ̂ < 0,

since qγ̂(dn) converges to qγ(dn), which is used to ensure the limit distribution of Equation

(4.9) is a linear combination of the limit distributions already found for the parameters.

For γ̂ < 0, Equation (4.8) allows pn to be replaced by zero without being undefined to

produce the finite endpoint estimator

x̂∗k = tk −
σ̂k
γ̂k
, (4.10)

and qγ̂(dn) = 1/γ̂2 in Equation (4.9) with asymptotic distribution

x̂∗k ≈ x∗ + 1√
k
× σ̂k
γ̂2
k

×N(0, Vγ̂) (4.11)

where Vγ̂ = Var
(
Γ + (γ̂−)2B − γ̂−Λ

)
. When γ is estimated using the maximum likelihood

estimator, the covariance matrix of the bivariate distribution (Γ,Λ) is known from

Equation (4.7), and B, independent of Γ and Λ, is asymptotically standard normal.

Independence between B and (Γ,Σ) is due to maximum likelihood estimator for γ and

σ being built on exceedances above the threshold rather than the location parameter

Xn−k,n itself. For the maximum likelihood estimate of x̂∗,

x̂∗k ≈ x∗ + 1√
k
× σ̂k
γ̂2
k

×N(0, 1 + 4γ̂ + 5γ̂2 + 2γ̂3 + 2γ̂4). (4.12)

For γ̂ > 0 and (npn/k)−γ̂k to exist, pn can not equal zero. Instead, quantiles in less

extreme regions compared to the 100% quantile can be looked at. Sample quantile

estimates for these cases would be unsuitable due to the average number of observations

above each quantile being small. For γ̂ > 0, de Haan and Ferreira (2006), Theorem 1.2.5
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states a simpler form of the quantile estimate in Equation (4.8), which uses the fact if the

limit relation in Equation (4.2) holds for some f > 0, then it also holds with f(t) = γt,

where by rearrangement

lim
t→∞

1− F (tx)
1− F (t) = x−1/γ . (4.13)

Now

P
(
X

t
≥ y

)
= P

(
X

t
≥ y|X > t

)
P (X > t) ≈ k

n

(
y−1/γ

)

where P
(
X
t ≥ y

)
is now the exceedance probability pn. Inverting gives

x̂pn = tkd
γ̂k
n , (4.14)

where dn = k/(npn). Using the general asymptotic distribution in Equation (4.9) with

γ > 0, the asymptotic distribution for x̂pn is

x̂pn ≈ xpn
(

1 + log (dn)√
k
×N(0, Vγ)

)
, (4.15)

where using the maximum likelihood estimator for γ becomes

x̂pn ≈ xpn
(

1 + log (dn)√
k
×N(0, (1 + γ)2)

)
. (4.16)

From Section 4.2.2, if the parameter estimates approximately agree on a shape parameter,

then the maximum likelihood estimate is carried forward, however if we would prefer to

not rely on the generalised Pareto assumption, the moment estimate can be used instead.

For γ > 0, Vγ = γ2 + 1 from Equation (4.5). For γ < 0,

Var(Γ,Λ) = (1− γ)2

(1− 3γ)(1− 4γ)

 (1− 2γ)(1− γ + 6γ2) −1 + 4γ − 12γ2

−1 + 4γ − 12γ2 2−16γ+51γ2−69γ3+50γ4−24γ5

(1−γ)2(1−2γ)

 ,

(see de Haan and Ferreira (2006), Corollary 4.2.2) B remains independent of Γ but

Cov(Λ, B) = γ when γ is estimated using the moment estimator.
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Figure 4.1: Left: plot of yield per hectare versus net margin per hectare for all 6951
observations. Vertical line is at 10.69 tonnes per hectare equivalent to the threshold
taken in Section 4.3.2 for the extreme value analysis. Right: yield versus net margin for
observations with yield above threshold 10.69 tonnes per hectare.

4.3 Application

Using data from the Farm Business Survey, we perform an extreme value analysis of

wheat yields with techniques from Section 4.2 in order to estimate a practical upper

bound on yield, if one exists. This will indicate whether wheat yields have stagnated

under current technologies and growing conditions. The maximum yield under various

scenarios is also estimated by performing an extreme value analysis separately for each

case, where Section 4.3.3 concerns geographical location and Section 4.3.4 concerns input

levels. Comparing the estimated maximums will indicate whether it is possible to achieve

a larger yield by changing farming practices. Mitchell et al. (2020) is composed of Sections

4.3.2, 4.3.3 and 4.3.4. Figure 4.1 shows a high yielding farm does not necessarily go on

to achieve a high net margin, therefore we also perform an extreme value analysis on

net margins in Section 4.3.5. First, we explain how we select unique observations from

the data set to use in the extreme value analyses.

4.3.1 Data selection

Section 1 gave details of the information collected which constitutes the Farm Business

survey. To decide which out of the 6951 observations should be used to make up the
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Figure 4.2: Histogram of yields for all 6951 observations with yields above 11 tonnes
per hectare indicated in the tail of the distribution.

sample of high-yielding farms, intuitively all of the yields can initially be aggregated

together without taking account of what years each yield is achieved, and extreme value

techniques could be applied to the tail of the distribution of yield in Figure 4.2. However

the selected observations exceeding the threshold may contain yields from the same

high-yielding farms and therefore will not accurately represent all of the high-yielding

farms across England and Wales.

Alternatively, each set of annual yields between 2006 and 2015 could be used in separate

extreme value analyses to take account of temporal dependence. Even though this will

ensure each farm attaining a high yield will only contribute one observation to the annual

sample to carry out extreme value analysis, it needs to be emphasised that interest lies

with finding the best yield possible over this time period by combining the observations

and not the curve of maximum yield through time.

Instead, for each farm which took part in the Farm Business Survey, the maximum yield

each farm attained between 2006 and 2015 is retained for the analyses in Sections 4.3.2,

4.3.3 and 4.3.4. This ensures the same high achieving farms are not duplicated in our

analyses. If a farm consistently attains high yield, then our analysis would be biased

towards this farm if yields are combined across years. Section 4.3.2 is based on yields
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without stratification. Section 4.3.3 performs 3 separate analyses by splitting the highest

yields into 3 groups according to location: west England and Wales, north England and

east England. Section 4.3.4 performs 3 separate analyses by splitting the highest yields

into 3 groups according to input use: low, medium and high. Since Section 4.3.5 concerns

the high-income farms, the maximum net margin for each farm between 2006 and 2015

is retained instead.

4.3.2 Extreme value application on maximum wheat yields

To estimate the maximum value of yield, the threshold for our extreme value modelling

of yield is chosen first, or equivalently the number k of high data points employed. This

is done by representing the curve of ML estimates of the shape parameter γ as a function

of k in Figure 4.4 and suggests the ML estimate γ̂k is stable for k between 100 and 250,

implying that the largest 250 observed yields constitute a suitable sample of data on which

to base our analysis of high yields. The choice k = 250 corresponds to taking the threshold

t = t250 = 10.69 tonnes per hectare, and the ML estimate for the shape parameter γ is

then γ̂250 = −0.11 with 95% confidence interval (−0.22, 0.00) (throughout, all confidence

intervals are calculated at the approximate 95% confidence level). The corresponding

ML estimate for the scale parameter is σ̂250 = 0.76 (0.65, 0.91). Since the moment

estimator gave a shape parameter estimate close to the ML estimate, the generalised

Pareto assumption holds and estimates using maximum likelihood are preferred due

to their narrower confidence intervals. Figure 4.3 also confirms the generalised Pareto

assumption holds since the sample quantiles of maximal yields above threshold t = 10.69

approximately equal the theoretical quantiles found using the ML estimates for γ and

σ. With the negative shape parameter estimate, using Equation (4.10), a finite right

endpoint estimate is x̂∗250 = t250 − σ̂250/γ̂250 = 17.60 (11.44, 23.75) tonnes per hectare.

Confidence intervals have been calculated according to the asymptotic distribution of

the endpoint estimator (Equation 4.12).

Since the lower bound of the Gaussian confidence interval is not constrained to be larger
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Figure 4.3: Plot of sample quantiles of the yields above the threshold t = 10.69
against the theoretical quantiles of the generalised Pareto distribution with the estimates
γ̂ = −0.11 and σ̂ = 0.76.

than the maximum value in the sample, the interval

(
max

[
t0, x̂

∗
k −

1.96√
k
× σ̂k
γ̂2
k

×
√

1 + 4γ̂k + 5γ̂2
k + 2γ̂3

k + 2γ̂4
k

]
,

x̂∗k + 1.96√
k
× σ̂k
γ̂2
k

×
√

1 + 4γ̂k + 5γ̂2
k + 2γ̂3

k + 2γ̂4
k

)
(4.17)

(Mitchell et al. (2020)) is used as an approximate 95% confidence interval for the max-

imum yield x∗, where t0 denotes the maximum value in the sample. Truncating the

interval at level t0 does not affect its coverage probability in practice because, by defini-

tion, the true value x∗ of the right endpoint must be larger than t0 with probability 1.

Using Equation (4.17) instead gives the confidence interval for the endpoint estimate as

(14.02, 23.75). These results, along with those of the subsequent analyses of maximum

yields, are shown in Table 4.2. This estimate of a finite upper bound for winter wheat

yield agrees with the physical intuition that yield per hectare should be bounded by a

maximum yield which cannot be exceeded.

The current verified records for UK and worldwide wheat yields are 16.52 (observed in
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Figure 4.4: Left: plot of the ML estimate of the shape parameter γ, right: plot of the
estimate of the endpoint x∗. Both plots give the estimates as a function of the effective
sample size k taken for the estimation, with corresponding approximate 95% Gaussian
confidence intervals. Estimates for sample sizes smaller than 15 and greater than 400
are omitted due to large variance and large bias respectively.

2015) and 17.40 (observed in New Zealand in 2020 and confirmed by Guinness World

Records) tonnes per hectare, suggesting that our estimated value of 17.60 tonnes per

hectare is a sensible estimate of this maximum possible yield. Although this extreme

value analysis of winter wheat yield provides an estimate of the maximum attainable

yield per hectare, this does not give any idea of the potential variation of wheat yields

depending on geography or growing conditions. These two questions are the focus of the

next two refined analyses.

4.3.3 Difference in geographical regions

Section 1 stressed the importance to carry out regional analyses of yield. We group farms

using the macro-regions west England and Wales, north England and east England. This

results in sample sizes of, respectively, 435, 331 and 770. These are adequately large

sample sizes which ensure after each sample has been thresholded, there will still be a

sufficiently large effective sample size to perform an extreme value analysis. We also note

that, in addition to containing the highest number of farms, east England has a larger

average yield per hectare figure compared to the other two regions.
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Based on this geographical subdivision, we carry out an extreme value analysis similar to

the global analysis of the previous section to model regional high yields. This is justified

by likelihood ratio tests based on the generalised Pareto model from Section 4.2.3, which

show that the model appropriate to the description of high yields depends indeed on the

chosen region; see Table 4.1. The regional shape parameter estimates, as a function of

effective sample size, are plotted in Figure 4.5.

As Table 4.2 shows, all three regions reassuringly give negative shape parameter esti-

mates, albeit with wider confidence intervals; this was expected since stratifying decreases

the available sample size and therefore increases uncertainty. Together with matching

estimates of the regional scale parameter, Figure 4.7 indicates the generalised Pareto

assumption is appropriate for all three cases. These shape and scale parameter esti-

mates make it possible to produce estimates of regional upper bounds for yield using

Formula (4.10). These estimates are 17.68 (13.25, 29.11) tonnes per hectare for west Eng-

land and Wales, 15.91 (13.59, 21.20) for north England, and 17.81 (14.02, 26.98) for east

England.

The wide confidence intervals on these extreme value estimates make it impossible to

suggest that, at the 95% level, there are regional differences between maximal yields

across the three considered regions, although we do mention that the point estimate

of maximal yield is noticeably lower for north England. We conclude this analysis by

mentioning that although the point estimates of maximal yield in west England and

Wales and east England are slightly higher than the point estimate across the whole data

set, the increase is statistically insignificant and appears to be due to the fluctuations

of the maximum yield estimate as a function of the effective sample size k. There is

therefore no inconsistency between these stratified results and our earlier global analysis.

4.3.4 Difference in inputs

The effects of fertiliser and crop protection use for large-scale agricultural activities

on public and the environment motivates our idea of assessing whether the effect of

agricultural inputs on maximal wheat yield levels can be identified. We divide the sample
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Figure 4.5: ML estimates of γ, for west England and Wales (top left), north England
(top right) and east England (bottom).

of n = 1536 farms into three equally sized groups according to their expenditure on

fertilisers and crop protection: low (less than £271.50 per hectare per year, corresponding

to the bottom third in terms of expenditure), medium (between £271.50 and £370.10
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per hectare per year, corresponding to the middle third), and high (greater than £370.10

per hectare per year, corresponding to the top third). An extreme value analysis based

on organic farms only is not appropriate because the sample size is not large enough

to threshold the data and still include enough data points to satisfy the bias-variance

tradeoff in Section 4.2.2.

Based on this stratification by spending, and in view of the results of the likelihood

ratio tests in Table 4.1 indicating that the appropriate model for high yields indeed

depends on input level, we carry out an extreme value analysis for each scenario similar

to the above regional analysis. Shape parameter estimates are represented in Figure 4.6.

Figure 4.8 indicates the generalised Pareto assumption is valid, since the sample quantiles

within each scenario are approximately equal to the quantiles of the generalised Pareto

distribution with their respective parameter estimates from Table 4.2.

All three categories give negative shape parameter estimates, although the estimate

for low input levels lies outside the confidence interval for the estimate of the shape

parameter estimate of the full yield data, suggesting a significant difference in the be-

haviour of high yields for low spenders. The associated upper limit estimates for yield are

14.27 (12.85, 16.52), 16.40 (13.28, 24.99) and 19.18 (14.02, 33.58) for low, medium and

high use of inputs, respectively. The value and uncertainty on the maximal yield esti-

mates for low spending on inputs do suggest that the use of fertiliser and crop protection

improves the maximum attainable yield; however, and despite a point estimate of maxi-

mal yield being higher for the biggest consumers of these inputs than for average users,

the uncertainty on our estimates does not provide significant evidence that spending

a larger amount of capital on fertiliser and crop protection improves maximal yield levels.
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Case Deviance D Conclusion
Tests for geographical regions
A = North England, B = West England & Wales 107 Reject H0
A = North England, B = East England 262 Reject H0
A = West England & Wales, B = East England 240 Reject H0

Tests for input use
A = Low input, B = Medium input 113 Reject H0
A = Low input, B = High input 173 Reject H0
A = Medium input, B = High input 71.7 Reject H0
Table 4.1: Likelihood ratio test statistics when testing if the samples come from the
same distribution, H0 : (γA, σA) = (γB , σB) (see Section 4.2.3). The likelihood ratio
statistics are compared to the 95% quantile of the χ2 distribution with 2 degrees of
freedom, equal to 5.99.
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Figure 4.6: ML estimates of γ, for low input levels (top left), medium input levels (top
right) and high input levels (bottom).
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Figure 4.7: Plot of sample quantiles of the yields for low input levels (left), medium in-
put levels (centre) and high input levels (right) above their respective thresholds against
the theoretical quantiles of the generalised Pareto distribution with their respective
parameter estimates for γ and σ in Table 4.2. For example, the sample quantiles of the
yield for low input levels above threshold t = 9.93 is plotted against the theoretical
quantiles of the generalised Pareto distribution with γ̂ = −0.23 and σ̂ = 0.99.
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Figure 4.8: Plot of sample quantiles of the yields for west England and Wales (left),
north England (centre) and east England (right) above their respective thresholds against
the theoretical quantiles of the generalised Pareto distribution with their respective
parameter estimates for γ and σ in Table 4.2. For example, the sample quantiles of
the yield for west England and Wales above threshold t = 9.76 is plotted against the
theoretical quantiles of the generalised Pareto distribution with γ̂ = −0.10 and σ̂ = 0.80.
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Variable n k t Shape estimate γ̂ Scale estimate σ̂ x̂∗ = t− σ̂/γ̂
Yield 1536 250 10.69 −0.11 (−0.22, 0.00) 0.76 (0.65, 0.91) 17.60 (14.02, 23.75)
Location
West England and Wales 435 115 9.76 −0.10 (−0.27, 0.06) 0.80 (0.65, 1.07) 17.68 (13.25, 29.11)
North England 331 68 10.58 −0.16 (−0.36, 0.03) 0.87 (0.67, 1.27) 15.91 (13.59, 21.20)
East England 770 125 10.84 −0.11 (−0.26, 0.05) 0.74 (0.60, 0.96) 17.81 (14.02, 26.98)
Inputs
Low (Input < 271.5) 512 90 9.93 −0.23 (−0.39,−0.07) 0.99 (0.79, 1.34) 14.27 (12.85, 16.52)
Medium (271.5 ≤ Input < 370.1) 512 80 10.67 −0.11 (−0.31, 0.08) 0.65 (0.50, 0.92) 16.40 (13.28, 24.99)
High (Input > 370.1) 512 100 10.96 −0.09 (−0.27, 0.09) 0.75 (0.60, 1.03) 19.18 (14.02, 33.58)

Table 4.2: Maximum yield level estimates x̂∗ for the full data set and the data stratified with respect to region or spending on agricultural inputs,
along with a summary of sample sizes, threshold choices, shape estimates γ̂ and scale estimates σ̂. Numbers in brackets next to shape, scale and
maximum yield estimates represent approximate 95% confidence intervals.
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4.3.5 Extreme value application on net margin

Since yield does not take account of the financial implications of agricultural inputs, we

instead look to estimate what we expect the top performing farms to achieve financially.

Rather than using the maximum attained yields, we take the maximum attained net

margin for each farm across the all of the years in which the farm took part in the survey

and construct extreme quantile estimates of net margin for the top performing 1%, 0.5%

and 0.1% farms.

To estimate the extreme quantiles for income, we initially follow a similar procedure to es-

timating maximum yields in Section 4.3.2 by selecting a threshold using a plot of the shape

parameter estimates γ̂ against the effective sample size k. The curve in Figure 4.9 is stable

for k between 100 and 140 indicating our extreme value modelling may be based on the

largest 140 net margins. The maximum likelihood estimate for γ with k = 140 is γ̂ = 0.138

(−0.050, 0.327). In this case (γ > 0), a quantile estimate will be found since endpoint es-

timates do not exist for positive shape parameters. Given the shape parameter estimated

using the moment estimator is approximately equal to the shape parameter estimated

using the maximum likelihood estimator, we will continue to use the maximum likelihood

estimate due to its narrow confidence intervals. For p = 0.01, 0.005 and 0.001 correspond-

ing to the 99%, 99.5% and 99.9% quantiles for net margin, we estimate the top 1%, 0.5%

and 0.1% of farms to achieve £655.17(£462.45,£1, 123.25), £721.12(£466.01,£1, 593.38)

and £901.00(£486.79,£6, 043.95) per hectare where asymptotic 95% confidence inter-

vals are constructed using the asymptotic distribution of quantile estimates in Equation

(4.16).

Reflecting on our analysis, we have only been concerned with figures per hectare and

not necessarily the financial result of the entire farm. Averaging over the number of

hectares attributed to growing wheat for each farm in England and Wales, a typical farm

is assumed to be approximately 160 hectares. Supposing a farm of this size achieves a net

margin in the top 1% of all farms, estimated to be at least £655.17, then an estimated

profit for the wheat enterprise alone is £104, 827.64 per year, or equivalently £8, 735.55

per month; four times the average wage in the UK. While comparing net margins with
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Figure 4.9: ML estimate of the shape parameter γ for net margins.

average wages does not provide identical like-for-like comparatives of return to a farmer,

the net margin return in this context provides a measure of the return to the farmers

managerial input to the running of the business. Analysing this figure in relation to

society as a whole, this would place a top 1% performing farm amongst the top 3% in

the UK in terms of annual salaries, according to HM Revenue and Customs (2017). Even

though the income for a top 1% performing average-sized farm falls short of the top 1%

annual salaries in the UK, we cannot imply the average income of average-sized farms

falls short of the average UK salary from our extreme value application which models

highest net margins.

We can however look at which expenditure top performing farms prioritise to achieve

a high yield compared to average performing farms. By grouping seed, fertiliser and

pesticide expenditure under the term “agricultural inputs”, and labour, machinery and

contracting costs under “labour inputs” from the Farm Business Survey data discussed in

Section 1, Figure 4.10 indicates the top-performing farms may not attribute their costings

any differently to other farms, and spend approximately the same per hectare. The cause

of the difference in yields between top performing farms and average performing farms

across England and Wales remains unknown from our analyses in the previous sections,

yet here costing allocations appear to not play a role.

132



Agricultural inputs 30%
Other variable costs 2%

Labour inputs 44%

Other fixed costs 7%

Land costs 16%

Top−performing farms: £1,014.35

Agricultural inputs 30%
Other variable costs 2%

Labour inputs 42%

Other fixed costs 8%

Land costs 18%

Average farms: £1,152.60

Figure 4.10: Average annual spending of top-performing farms and the remaining farms.
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4.4 Conclusion

Our analysis of ten years of recent winter wheat production data, collected in England

and Wales by the Farm Business Survey, indicates that annual winter wheat yields per

hectare have a finite upper bound which we estimate to be 17.60 tonnes. Our model,

based on the use of a generalised Pareto distribution suggested by the framework of

extreme value analysis, was also adapted to the estimation of regional maximal yields

and maximal yields as a function of spending on agricultural inputs. These estimates

seem plausible, and show that:

• Although the maximum yield point estimate for north England is lower than the

corresponding ones for west England and Wales and east England, there is insuf-

ficient statistical evidence to suggest that north England farms cannot reach the

estimated maximum yield of 17.60 tonnes per hectare;

• There is an increase in maximum yield from low to high use of fertiliser and crop

protection, although the difference between the maximal yields of medium and

high spenders on these inputs is not statistically significant.

Furthermore, our analysis of annual net margins to assess performance financially in-

dicates the top 1% of farms are expected to earn at least £655.17 per hectare when

producing winter wheat, placing them amongst the top 3% earners in society as a whole,

yet they do not allocate their spending any differently to average performing farms.

4.5 Discussion

To use our ML estimators of the shape and scale parameters, and then deduce an estimate

of the right endpoint of yield, we had to make the distributional assumption that yields

above a sufficiently high threshold approximately follow a generalised Pareto distribution.

The quality of this approximation is a critical factor in the performance of the estimators,

and may lead to poor estimates if the underlying distribution of high yields is too far from

our model. The moment estimator is flexible in the sense that its validity is not rooted
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in the generalised Pareto assumption, but the price to pay for this is a higher asymptotic

variance compared to the ML estimator. In this work we checked the generalised Pareto

assumption by examining quantile-quantile plots and comparing the maximum likelihood

estimates to the moment estimates. Further tests on the validity of the generalised Pareto

assumption have been proposed by de Haan and Ferreira (2006) and Hüsler and Li (2006)

which can be used as alternatives to those used in this chapter.

The second part of our analysis was an effort to assess the dependence of the maximum

yield on location of a farm. The point estimate of maximal yield in north England, which

is 15.91 tonnes per hectare, is actually lower than the verified record for this region, which

is also the UK record of 16.52 tonnes per hectare, attained in a Northumberland farm

in 2015. This data point, which is not part of the data from the Farm Business Survey

and hence not taken into account in our methodology, is well within the confidence

interval calculated for the maximum yield in north England and thus not inconsistent

with our results. Analysing the reasons behind this extremely high yield reveals that,

while the north of England typically suffers from increased rainfall, lower temperatures

and limited sunshine compared to the southern part of the UK, this was not the case in

2015 (DEFRA (2015)).

The third part of our extreme value analysis, stratified with respect to spending on

agricultural inputs, suggested that there is not a statistically established increase in

maximum yield arising from a large use of crop protection and fertilisers. Our findings,

consistent with previous studies (Reader et al. (2018), Wilson et al. (2001)), indicate

the potential for an upper-level marginal input use reduction while still obtaining high

yields, providing high food production potential, increased farmer profit and reduced

environmental footprint. Our statistical analyses demonstrate no significant difference

in extreme yield between medium and high input use, and that additionally there was

no significant difference in maximum yield across the three regions within the dataset,

implying that soil type and weather variation are, on aggregate, not the main drivers of

high yields within the data. It would also be informative to re-test the hypothesis of the

difference in maximum attainable yields against different fertiliser and crop protection

input use levels from a larger sample of data, for example, drawn from European wide
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data or from the USA. This would reduce the width of the confidence intervals for the

estimates of maximum yield stratified according to spending in agricultural inputs. The

potentially large yield gains to be made, starting from average yield levels, imply that

detailed farm level studies of agricultural practice with statistically relevant numbers of

observations would be worthwhile.

The models based on wheat yields alone and various stratifications of input level and

location were discussed in Mitchell et al. (2020). For this work, separate analyses were

conducted for each scenario independently, where each case may have a different shape

and scale parameter. Furthermore, the input levels were segmented into discrete classes

rather than the original input value from the Farm Business Survey. An interesting

question, which is beyond the scope of this work and to be addressed in future research,

is to find a precise model for the description of high levels of yield as a function of

agricultural input use and location. This could be done by, for instance, letting the shape

or scale parameter (or both) of the generalised Pareto distribution vary smoothly as a

function of input level or geographical coordinates, for example γ = γ(x) or σ = σ(x)

where x is the continuous variable influencing yield, as described for instance in Chavez-

Demoulin et al. (2016). This would allow the shape or scale parameter to vary with input

use, hence the endpoint estimate would also vary with input use. Such an analysis would

allow for the prediction of the high and maximum levels of yield attainable under various

biological and physical circumstances, and would thus be important for agricultural policy

and decision-making.

Another fruitful avenue of further work to build on Mitchell et al. (2020) would be

to incorporate the agronomic, socio-ecological and climate variables from Chapters 2

and 3 to design a model which includes the influence of these variables in an extreme

value analysis. Chapters 2 and 3 used regression and model selection techniques to

model typical yields. Recent literature has looked to develop the Bayesian Lasso in the

extreme value framework (de Carvalho et al. (2021)) to take account of the dependence of

covariates on the variable of interest. In our case, we would look to model maximum yield

depending on the covariates in Chapters 2 and 3. Furthermore, it would be interesting to

compare the variables selected using Bayesian model selection to model a typical yield
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and a maximal yield. Such a model would also be very useful when accounting for the

effect of climate change on maximal yield levels.

The final part based on net margins suggested there is no difference between how the

average performing farms and the top performing farms allocate their spending annually,

however little is known about the timings of spending throughout the year. Attention to

detail in agricultural production practice has been previously cited as a key profitability

driver (Wilson (2014)), and exploring the managerial drivers of performance with an

extreme value theory approach represents a potentially fruitful area of research work.

The Farm Business Survey is undertaken annually; if we are to investigate the precision

of farming practices, then data would need to be collected on the farmers’ technical and

business management decisions and practices each year.
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5 | Summary

This thesis aimed to explore novel uses of the datasets from the Farm Business Survey

and the UK Met Office to identify key farming practices which are most associated with

high yields.

Sections 2 and 3 used data from the Farm Business Survey and UK Met Office to

quantify the impact of important agronomic and climatic variables for modelling yield to

inform stakeholders on how they can change their farming practices accordingly. Section

2 used statistical modelling techniques already frequently used in agronomical studies

to provide insights into this dataset. The linear model with the smallest mean squared

prediction error gave the 3 most important variables from our dataset to model yield as

organic status, crop protection and rainfall in June. To allow for limitations in frequentist

post-selection inference, Section 3 used a Bayesian framework for simultaneous model

selection and inference to finding the 3 most important variables to be organic status,

crop protection and machinery and reduced the importance of climatic variables. Both

of the frequentist and Bayesian approaches show overall crop protection, and organic

versus conventional status, to have a strong influence on winter wheat yields, and climatic

variables indicative of environmental conditions during the wheat production cycle.

The models in sections 2 and 3 predict average yields accurately according to their

squared prediction errors and posterior predictive distributions respectively. However,

these models consistently underestimate yields achieved for top-performing farms. All

models proposed in sections 2 and 3 suggest pesticide use increases yield. This confirms

what has been found in past studies, however this analysis does not confirm whether a

reduction in pesticide use will not significantly reduce crop yields.
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The second of our contexts, Section 4 performed an extreme value analysis to model

high yields, estimate a maximum attainable yield, and assess whether this maximum

changes under different scenarios. One such scenario found maximum attainable yield is

improved if spending on fertiliser and crop protection is increased for low spenders, but

there is no significant evidence spending a larger amount on fertiliser and crop protection

improves maximal yields otherwise. Using the macro-regions west England and Wales,

north England and east England as a proxy for climate from the previous sections, there

is also no difference in maximum attainable yield between these regions. Performing

an extreme value analysis on net margins instead also suggests there is no difference in

expenditure allocation between the top-performing farms and average farms.

From this analysis, we are still unable to distinguish between farms achieving large yields

and those achieving average yields using the data from the Farm Business Survey. A

potential area of future research would be to incorporate climate data in an extreme

value framework, taking account of any extreme weather events occurring during the

wheat production cycle and the timing of the events.

All of our analyses have been restricted to the variables available from the Farm Business

Survey and the UK Met Office. Soil quality and components is also known to influence

yield. Another avenue of future work would be to look at the interaction between soil

quality, extreme weather events and farming practices to achieve larger yields. Future

research would also benefit from making use of data on a smaller time scale, with more

precise measurements. Currently, the Farm Business Survey collects limited annual data

on farming practices. Specifically this does not capture precise farming practices during

the wheat production cycle and only gives total expenditure each year. One such example

being the amount of crop protection applied at specific stages of the wheat production

process. An exception is the yields attained which will only be known at the end of the

harvest year. The same criticism holds for the UK Met Office data taken to be monthly

averages. This will fail to account for extreme fluctuations in weather conditions. A final

criticism of the agronomic variables in the Farm Business Survey is they are recorded in

financial metrics. Therefore, a larger expenditure may not necessarily translate to a larger

application, but could reflect quality of the product instead, or differential product pricing
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across businesses. Further studies would benefit from explicitly measuring quantities.

Finally, all 3 sections assumed each agronomic and climatic factors influenced yield

linearly. This is not realistic due to the complex nature of climate models in the literature,

however our analyses favoured simplicity over accuracy for ease of communication to

stakeholders.
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A | Post-selection inference using

conditional polyhedron

Recent literature has conducted inference for the linear regression coefficients after vari-

able selection by characterising the selection events as a polyhedral set (Tibshirani et al.

(2016), Lee et al. (2016)) and visualising y ∈ R falling into this conditional polyhedron.

This allows for conditional hypothesis tests to be constructed based on this polyhedron

and will capture both the uncertainty associated with parameter estimation and the

uncertainty associated with variable selection.

Sections 2.3, 2.3.2 and 2.5.2 already discussed the linear model, linear regression and

variable selection procedures respectively hence this work will be omitted here. Here we

shall only discuss forward selection since the polyhedral sets follow on from the procedure

discussed in the main body of the thesis.

Assuming X has been standardised and y is centred, Section 2.5.2 finds the first and

kth steps in the forward selection procedure satisfy

s1X
T
j1y

||Xj1 ||2
≥ ±

XT
j y

||Xj ||2
and

skX̃
T
jk
r

||X̃jk ||2
≥ ±

X̃
T
j r

||X̃j ||2

respectively, where variable j1 is selected as the first variable to enter the model as a

result of achieving the smallest residual sum of squares when regressed upon to model

the response, and jk is selected at the kth step due to achieving the smallest residual sum

of squares when regressing upon to model the residuals r (see Section 2.5.2). Tibshirani

et al. (2016) found these events can be expressed in the form Γy ≥ 0, where each
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inequality is appended as rows in a matrix with the previous inequalities, and therefore

describes a polyhedron {y : Γy ≥ 0}. Figure A.1 provides an illustration of the polyhedra

conditioned on when selecting 2 variables out of the 3 from a variable selection algorithm.
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x1

x2

x3

Ak = [2, 3]

sAk = [+,+]

Ak = [2, 3]

sAk = [−,−]

Figure A.1: Partitions of the space R2 into polyhedra when selecting 2 variables
(x2,x3) out of the 3 (x1,x2,x3) from a variable selection algorithm. sAk

denotes to signs
of the coefficients selected (Lee et al. (2016)). The space in which the polyhedra are
partitioned is visualised by the red dotted parallelogram.
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Tibshirani et al. (2016) defines the boundaries of this conditional polyhedron in the

direction of the kth standard basis vector ek to satisfy

νlo = max
j:(Γν)j>0

− (Γy)j · ||ν||
2
2/(Γν)j + νT y,

νup = max
j:(Γν)j<0

− (Γy)j · ||ν||
2
2/(Γν)j + νT y. (A.1)

where ν = XAk(XT
Ak
XAk)−1ek is the kth coefficient from regressing the selected variables

Ak onto the response y and Γ in the conditioning polyhedron can easily found from the

sets of inequalities above.

Now the bounds have been established to condition on, we look to the hypothesis test

to conduct based on this polyhedron. Tibshirani et al. (2016) find, conditional on the

polyhedral set, to perform the hypothesis tests

H0 : νT θ = 0 against H1 : νT θ 6= 0,

for each standard basis vector ek, and hence for each individual coefficient β∗k, where

θ = Xβ∗ is the set of true coefficients. Therefore the α level confidence intervals will

satisfy, based on the first k variables being selected

P
(
νT θ ∈ [δα/2, δ1−α/2]

∣∣∣Âk(y) = Ak, ŝAk = sAk

)
= 1− α,

where, under H0, the confidence bounds for βk, δα/2 and δ1−α/2, are defined to satisfy

1− F [νlo,νup]
δα/2,σ2||ν||22

(νT y) = α/2

1− F [νlo,νup]
δ1−α/2,σ2||ν||22

(νT y) = 1− α/2 (A.2)

where the truncated Gaussian distribution

F
[a,b]
µ,σ2(x) = Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ) (A.3)

is a pivotal statistic, with mean µ, variance σ2 and truncation bounds a and b. This
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approach to post-selection inference is suitable if the observed statistic νT falls well

within the conditional polyhedral set.

Tibshirani et al. (2016) states in their code for post-selection inference based on poly-

hedral selection that at least one of the conditional confidence bounds δα/2 and δ1−α/2

will be ±∞ if the observed statistic νT y is close to one of the truncation bounds νlo or

νup, hence fails to provide confidence in our coefficient estimates. From Equation A.1,

this happens if Γy is close to zero or Γν is close to ∞. We shall focus on the former case

here for where this method collapses.

Supposing the forward stepwise algorithm is at step k, if Γy is close to zero then

skX̃
T
jk
r

||X̃jk ||2
≈ ±

X̃
T
j r

||X̃j ||2
,

for one of the remaining j, where the residual sum of squares are approximately equal

for two variables, one to be included in the model, jk and one to be excluded. When

considering the path of a variable selection algorithm, this will occur when two variables

enter the model in quick succession and the model selection algorithm is unstable, i.e. the

ordering of the variables can quickly switch depending on the data used. This becomes

a particular issue as the number of variables in the model increase, since it becomes

more likely two variables will achieve approximately the same residual sum of squares

once the residual decreases as more variables are included. Cross-validating the data

may be a solution, as discussed in Section 2.8, however with an increased interest in

high-dimensional datasets, this may still become an issue when dealing with a model

containing many more variables than we have included in our work.
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B | MCMC convergence

To ensure the samples taken from the posterior distribution are well mixed, Figure B.1

shows the 2000 sampled coefficients from each of the 4 chains. By selecting a small step

size in the HMC algorithm and thinning the sample, the chains in Figures B.1 and B.3

appear to be well mixed. For the Gibbs sampling schemes in Figures B.2 and B.4 also

appear well mixed and converged.
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Figure B.1: Chains for the variables seeds, organic, rainfall in January and mean
temperature in October for the Bayesian Lasso with fixed λ.
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Figure B.2: Chains for the variables seeds, organic, rainfall in January and mean
temperature in October for the Bayesian Lasso with prior λ.
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Figure B.3: Chains for the variables seeds, organic, rainfall in January and mean
temperature in October for the horseshoe prior hierarchy with fixed λ.
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Figure B.4: Chains for the variables seeds, organic, rainfall in January and mean
temperature in October for the horseshoe prior hierarchy with prior λ.
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