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Abstract 

 

Hydropower interacts heavily with river temperature to; meet regulations, maximise profits, 

and maintain dam safety. Often the operational decisions that dictate this interaction are made 

without monitoring of river temperature, and so it is proposed that satellite remote sensing 

may provide a quasi-regular cost-effective method to improve this. This dissertation assesses 

the viability of using Google Earth Engine cloud computing and Landsat 8 Thermal Infrared 

satellite measurements to provide actionable insights for hydropower managers. The method 

was tested in three large rivers (the Saint John River in Canada, the Colorado River in the 

USA, and the Ganges in India) to assess transferability. No previous study has attempted to 

extract river temperature from multiple sites in a single study. Three different methods were 

tested to find the most accurate atmospheric correction algorithm for the task of river 

temperature measurement. The Statistical Mono-Window algorithm was found to produce the 

most accurate comparison to kinetic temperature loggers on the Saint John River (±2oc) with 

a R2 value of 0.96 (n=40, p<0.001). However, this method was not transferable to the Colorado 

River indicating application in rivers without validation data should be carried out with caution. 

A Python Package named SatTemp (Valman, 2021b) was developed to assist hydropower 

operators in implementing the method along with a dashboard app to disseminate results 

(Valman, 2021a). Concerns were raised with the “black box” nature of Google Earth Engine 

and this App, meaning that errors and nuances in the method may be missed. These would 

need to be addressed before this method can be provided to hydropower operators.  
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1.0 Introduction 

 

Globally, there are many cases of freshwater systems exhibiting a long-term warming trend 

as a result of climate change (Van Vliet et al., 2013, Kędra, 2020). On a local scale 

anthropogenic operations have been shown to impact river water temperature by extracting, 

diverting, or discharging water in the system (Kędra and Wiejaczka, 2018, Olden and Naiman, 

2010). This means that river water temperature is a highly dynamic variable and an important 

social, economic, and environmental resource. 

The most obvious example of the multiple entangled factors of river temperature, where 

different drivers can cool or warm rivers simultaneously, is the construction and operation of 

dams. On the one hand, dams produce the electrical and economic stimuli for development, 

especially in isolated rural areas (Shi et al., 2019, Chen et al., 2016), without actively producing 

carbon dioxide. The lack of greenhouse gasses being produced during operation suggests 

that dams are ‘green’ energy (Moore et al., 2010) and as such could help to combat global 

climate change and therefore river warming. On the other hand, hydropower is not universally 

seen as a positive tool due to the negative social and environmental consequences entailed, 

especially for freshwater systems (Wu et al., 2019). One adverse effect is the reduction of river 

temperature caused by releasing water that is colder than seasonally expected from the 

bottom of the reservoir (known as the hypolimnion; Daniels and Danner, 2020). This can have 

serious impacts on fish stocks and other environmental factors by smoothing seasonal water 

temperature variability (Zhao et al., 2020). Water temperature also influences the safety of 

dams for humans. Concrete dam structures are more vulnerable to high water temperature 

and therefore maintenance and safety needs to take this into account (Tatin et al., 2018, 

Tabari et al., 2020). Similarly, reservoir and downstream drinking water is susceptible to algal 

blooms or bacterial infections if the water temperature stays too high for too long (Choi et al., 

2002), something that requires careful management by dam operators.  

The ability to release cooler water from dams (often during the night time), can combat the 

long-term warming effects discussed and has been “used for decades” (Weber et al., 2017). 

To some extent, this mitigation can be seen as a driver for the return of dam construction 

(Boelens et al., 2019), making dams a source of resilience to help adapt to climate change 

(Ahmad and Hossain, 2020). As a result, local, regional, and national governments currently 

regulate temperature changes caused by hydropower and other water users to combat the 

extent of thermal pollution (EPA, 2020) and, to potentially combat the impact of climate 

change. In the context of hydroelectric power, this dictates how much water can be released 

and when based on the natural range of seasonal thermal trends expected. In turn this has 
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financial ramifications for hydropower operators if they constrain water releases (and thus, 

energy generation) to meet these regulations rather than balancing solely on electrical 

demand and optimum commercial operation. This in turn also impacts water storage, flood 

storage and abstraction dynamics of the reservoirs (Ahmad and Hossain, 2020).  

For all these reasons it is vital that decision makers, operators and regulators have access to 

accurate water temperature data to optimise water releases for greatest and safest overall 

productive gain. However, river temperature is difficult to obtain and is often a neglected 

variable (Pavelsky et al., 2014), despite its clear importance. While in-situ temperature loggers 

are placed in some streams to provide accurate, regular temperature values, these are a costly 

solution that work best on small rivers due to the spatial variability in temperature and the risk 

of loggers being washed away during high flows. These small streams rarely have sufficient 

flow for hydropower, with the exception of small run-of-river impoundments that rarely alter 

temperature (Lange et al., 2018). Temperature data collected by these loggers are often not 

freely shared, inhibiting their inclusion in hydropower regulatory frameworks (Hannah et al., 

2011). Instead, the majority of hydropower facilities currently rely on water temperature as a 

function of air temperature or use empirical temperature curves to understand the seasonal 

water temperature regimes of their catchments (Kang et al., 2019, Shi et al., 2021, Tabari et 

al., 2020, Tatin et al., 2018). Some of these extrapolate from in-situ loggers, but in these cases, 

they are specific to the dam in question and these models cannot be used elsewhere (Wright 

et al., 2009). The lack of at-dam water temperature data collection is surprising given the large 

economic decisions based on these models, particularly so given increasing moves to retrofit 

Selective Withdrawal Systems (which can extract different temperature water from different 

reservoir heights to better meet temperature demands; Rheinheimer et al., 2015, Sherman, 

2000) to existing dams. Indeed, despite the fact that these installations can be extremely costly 

($100-200 million), the lack of sufficient monitoring means that there is currently no detailed 

understanding of their effectiveness of financial viability once implemented (Wright et al., 

2009). There is therefore an urgent need to develop new methods capable of providing 

accurate river temperature data for the efficient operation of hydroelectric dams in a world 

threatened by emissions from fossil fuels. 

Here it was proposed that satellite-based thermal remote sensing is now poised to be the 

opportune way to monitor river temperature for this purpose. The global extent, relatively 

regular return period, and the large spatial coverage per image make this method ideal for 

monitoring long-stream river temperature above and below dams (Piégay et al., 2020). 

Moreover, satellite imagery is increasingly open source, allowing industries and academics to 

focus on developing specialised algorithms to get the most out of the available data (GEE, 

2021e). This is especially true of the Landsat programme, images from which have been 
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available for free since 2013 (USGS, 2021a) and now include ~4 million thermal images going 

back to 1984 (He et al., 2018) allowing pre-dam flows to be accounted for. Indeed, Google 

Earth Engine (GEE) and Cloud Computing mean that it is now theoretically possible for anyone 

with a standard laptop and internet connection to carry out satellite-based river temperature 

analysis for anywhere in the world (Gorelick et al., 2017). GEE therefore has clear potential 

for improving dam operations, particularly in the developing world where data availability has 

not kept pace with rapid hydropower development (Ahlers, 2020).  

Although previous studies have used thermal infrared (TIR) data to extract river temperature 

data (mostly using techniques pioneered by airborne TIR), these primarily rely on 

offline/standalone processing of imagery (Ling et al., 2017, Zhao et al., 2020, Yadav et al., 

2020, Al-Murib et al., 2019, Xiong et al., 2020). While these examples have demonstrated that 

it is possible to extract viable river temperature data, such methods are relatively 

computationally intensive and time consuming. Furthermore, none of these techniques are 

particularly amenable to the generation of river temperature data for dam operators, who often 

require quasi-real time access to water temperature data and also rarely have the remote 

sensing expertise necessary to acquire these data themselves. 

Instead, this thesis evaluates the viability of cloud-based methods (i.e., GEE) for the extraction 

of global river temperature data from Landsat TIR imagery in a manner that is accessible to 

dam operators. It is proposed that a self-contained user interface could be created utilising 

GEE and Heroku apps (Danielsson et al., 2021) to produce a dashboard with actionable 

information for dam operational managers. This would allow river temperature data to be 

calculated for a chosen catchment with the user only needing to choose the catchment and 

extraction methodology from a given list without needing to know in-depth information on TIR 

remote sensing. This draws on the success of HR Wallingford’s recent Dam-Sat system 

(HRW, 2021) which provides independent modules for different aspects of dam safety 

depending on what the structure requires.  

This dissertation will also have a focus on building a method which is transferable to other 

large rivers globally as this is vital to creating a global ability to measure water temperature. A 

benefit of providing global coverage is that the results from this study will be transferable to 

other industries beyond hydropower. Durmayaz and Sogut (2006) used satellite TIR sensors 

to carry out a suitability analysis for a nuclear power plant. Colder water extracted for cooling 

would provide efficiency and economic improvements in this scenario. It is infeasible to use 

in-situ loggers at multiple sites for this purpose, but the method presented here could provide 

water temperature trend analysis in large rivers to dictate where sewage treatment works, 

industrial factories or power plants should be place in order to minimise the costs of meeting 
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regulations or maximise the efficiency of processes.  A rigorous, repeatable, and accurate 

method for the extraction of global river temperature would therefore be of great benefit for 

better understanding and monitoring of rivers and the socio-environmental benefits they 

deliver in a world threatened by climate change.  

 

2.0 Research aims 

 

2.1 Aim 

 

Assess the viability of using Google Earth Engine for the extraction of river temperature 

outputs for assisting dam and industrial operating procedures globally. 

  

2.2 Objectives 

 

Objective 1: Verify the ability of GEE as a tool for calculating river surface temperature from 

satellite TIR inputs to produce an interactive tool for extracting river temperature.   

Objective 2: Validate the accuracy of the results against different river types to infer the 

transferability of the method 

Objective 3: Compare different atmospheric correction methods to assess which produces the 

most accurate results 

 

3.0 Literature review 

 

3.1 Water temperature and hydropower operation  

 

Dams have been shown to cool rivers (Daniels and Danner, 2020), an impact which is 

especially pronounced in summer causing the flattening of seasonal variability (Xiong et al., 

2020). The negative impacts on fish and the environment (Heggenes et al., 2018) quickly 

propagate into social and economic damages. In more developed countries this is mainly 

found as an impact on recreation and the environment (Chapra et al., 2017). In less developed 
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countries, where reliance on subsistence fishing is greater (Wu et al., 2019), it can have much 

more extreme consequences. For example, the world’s most productive inland fishery, the 

Mekong  (Jensen, 2001), is under threat from its dams and their current modes of operation 

(Bonnema et al., 2020). It is estimated that the financial losses as a result of these dams stand 

at a potential loss of $500 million a year (Grumbine and Xu, 2011).  

However, climate change is driving higher summer air and water temperatures (Liu et al., 

2020, Ouellet et al., 2020) which may in part be mitigated by the cooling properties of these 

dams, if managed appropriately (Kędra and Wiejaczka, 2018). In this context, dams would 

provide increased resilience for fish stocks by managing rising temperatures (Ouellet-Proulx 

et al., 2017, Wilby et al., 2010). Environmental Engineering is already used to manage many 

issues (Board et al., 2019) but with hydropower, careful management and modelling would be 

required to meet water temperature regulations whilst also maintaining water supplies and 

profits (Foley et al., 2010). For example, designing operational models around downstream 

fish stocks without appropriate monitoring can create an unstable reservoir environment 

harming valuable reservoir fish stocks (Eloranta et al., 2018). 

Reservoir level should also be included in water release plans because it can be likened to a 

large battery (Mäkinen et al., 2020), providing resilience to a power grid that relies on 

renewable energy (Liu et al., 2019). This facilitates the use of wind and solar energy which 

are inherently variable (Bloom and Novacheck, 2017). Most models, which show dam 

operation and help to define power grid policy, “do not comprehensively represent the 

constraints on hydropower operations” (Stoll et al., 2017). This will be increasingly important 

due to the need to incorporate climate change and drought into energy production predictions 

(Meng et al., 2020).  

Using water for cooling needs to be accounted for in Production Cost Models. These models 

define water releases in the short term to meet daily/hourly demand and the diurnal 

temperature curves (Foley et al., 2010, Shree et al., 2021). Use of water for river cooling also 

needs to be combined with long term climatic factors. This is done in Capacity Expansion 

Models which dictate how well a hydropower system will operate in the future (Foley et al., 

2010) relying on past and future trends (Xiong et al., 2020). 

Part of the difficulty in managing these models is the large number of stakeholders who dictate 

how much water can be released, when it is released, how much energy is sold, and whose 

water rights need to be met. Stakeholder research has shown that the provision of information 

to all parties is a key factor in gaining meaningful and lasting teamwork and success (Wang 

et al., 2019b). In the past there has clearly been a lack of information sharing, especially in 
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regard to river temperature (Hannah et al., 2011), making its inclusion in modelling  and 

stakeholder frameworks very difficult.   

Balanced operational models require the appreciation of coincident impacts from water 

releases.  Withdrawing too much cold water from a dam reduces dissolved oxygen by causing 

an upwelling of nutrients encouraging algal blooms (Chapra et al., 2017). In turn this reduces 

the ability to use dam water for drinking water weakening profit structures and climate 

resilience (Weber et al., 2017). Algal blooms can also be caused if the reservoir flow is 

inhibited to the extent that the reservoir warms too much which can also cause cyanobacteria 

issues (Cha et al., 2017) further damaging drinking water quality (Srinivasan and Sorial, 2011). 

Another reservoir temperature concern is dam safety, where temperature and reservoir 

volume can control displacement and therefore structural stability (Dufour et al., 2015). 

Temperature profiles change at depth (Pilla et al., 2021) and so does their influence on the 

structure (Dufour et al., 2015). Only recently have models of dam displacement and safety 

begun to take this into account (Tatin et al., 2018). Most current models are based on 

traditional hydrostatic-season-time models developed in the 1960s (Gamse et al., 2018) which 

assume a perfectly seasonal evolution (Tatin et al., 2018). However, advancing these requires 

temperature loggers, which as noted are not always available. So these models still often rely 

heavily or solely on air temperature (Kang et al., 2019). Therefore, the application of satellite 

remote sensing of water temperature could increase the uptake of these more advanced 

models and improve dam safety procedures.  Whilst attempting to not reduce downstream 

temperature too much, operators also need to make sure they do not overfill the reservoir 

causing potential failure (Tabari et al., 2020). Instead, satellite data could feed into existing 

automated early warning systems and enabling early capacity reduction (Xie, 2021). 

The complexity of designing water temperature releases in regard to physical, regulatory, and 

financial restraints may have contributed to the current lack of uptake in utilising Kędra and 

Wiejaczka’s (2018) work. Therefore, it is important for river temperature releases to be 

regulated to ensure it is one of the variables accounted for (EPA, 2020). Regulation has been 

shown to create a positive feedback loop with technological investment which leads to better 

stringency (Schmid et al., 2020) and it appears as though hydropower is also starting to follow 

this trend. Change is likely to be less efficient in hydropower than in previous examples 

(Schmid et al., 2020) due to the construction of dams in pollution havens where environmental 

regulation is more relaxed (Mulatu et al., 2010). Therefore, technology needs to reduce the 

complexity of improving water temperature releases to make it feasible globally.  
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3.2 Methods of recording and modelling river temperature 

 

3.2.1 Modelling 

 

River temperature is primarily collected as a proxy from air temperature (Piccolroaz et al., 

2016, Arismendi et al., 2014, Toffolon and Piccolroaz, 2015, Johnson et al., 2021). This has 

also been done at the global scale (Van Vliet et al., 2013) using climate to predict stream 

temperature with additional logger data, where available, from UN GEMSTAT dataset (Färber 

et al., 2018). Although this database holds a lot of records these are often less extensive for 

river temperature than might be assumed (Van Vliet et al., 2013). These can be used to 

bounder or show the likelihood of outlier results in the data collected, using expected 

temperature boundaries (e.g., Mohseni et al., 1998). This is not the most accurate way of 

measuring temperature and ignores any anthropogenic causes that decouple river 

temperature from air temperature (Liu et al., 2020).  

Models can also be programmed to account for various physical processes which impact river 

temperature, but these are still limited by the input meteorological data they are based on 

(Dugdale et al., 2017). This is especially true of some dam temperature models which rely on 

logger data at a point to understand temperature changes (Voichick and Wright, 2007). These 

can create effective temperature models for certain tasks but are inherently specific to the 

catchment they are produced in (Wright et al., 2009). But even in developed countries this 

limited logger point data is often not available thus returning operators to rely on these air 

temperature General Linear Models to define release schedules (Weber et al., 2017).  

 

3.2.2 in-situ temperature loggers   

In-situ temperature loggers have been implemented in the field for a long time, but the focus 

has been on smaller rivers (e.g., Johnson and Wilby, 2015). Issues such as the time consumed 

by checking logger batteries, downloading, and cross calibrating this data (Caissie and El-

Jabi, 2020) reduce its effectiveness and uptake by industries in larger rivers. When data is 

collected there are often issues with data sharing and access especially in developing nations 

(Hannah et al., 2011) compounding uptake issues. Despite the difficulties associated with 

placing these loggers in larger rivers, there is a “clear rational for supporting large scale river 

archives” (Hannah et al., 2011). Including the ability to validate and train models or remote 

sensing data with highly accurate point data.  
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Dataloggers have come down in price considerably over the last few decades providing sub 

hour recordings that operate for a year at a time (Daigle et al., 2017) allowing for networks 

such as RivTemp consisting of 478 permanent stations (Boyer et al., 2016). However, the 

claim that this has “democratised” river temperature science (Ouellet et al., 2020) may be 

premature as the 5 such networks described were all in the more developed Global North.  

 

3.2.3 Airborne remote sensing methods 

 

Expanding the spatial coverage of river temperature measurements through remote sensing 

has allowed for larger rivers to be monitored and studied (Piégay et al., 2020). This also 

provides continuous spatial data (Dugdale et al., 2019) enabling the mapping of different 

temperature zones or longitudinal trend analysis. This is enhanced by the sub-metre accuracy 

(Dauwalter et al., 2017) which reduces the chance of non-water objects from influencing the 

results because these will be clearly delineated. This airborne coverage also reduces the need 

for access which can prevent in-situ temperature loggers being placed in streams and does 

not suffer the risk of these loggers being swept away or damaged by channel movement 

(Sowder and Steel, 2012).  

Remote sensing of river temperature relies on TIR cameras which are increasingly becoming 

miniaturised, more effective, and more affordable (Kelly et al., 2019). Mounting these cameras 

in aircraft is still the most accurate way to produce river temperature (Handcock et al., 2006) 

and cover a large area but requires a large economic outgoing to own, outfit and operate an 

aircraft (Dauwalter et al., 2017).  

Increasingly Uncrewed Aerial Vehicles (UAVs) also known as drones (Dugdale et al., 2019) 

are being used to provide some of the benefits of airborne remote sensing without the cost 

associated with aircraft. These are a tenth of the price or less in some cases and can still cover 

a relatively large continuous spatial area. (Dugdale et al., 2019). These enable increased 

sampling opportunities as a result of their efficiency but do not have the range to monitor the 

very large river systems that are most likely to have large dams (Dugdale et al., 2019). By 

lacking multi-kilometre scale coverage makes them inappropriate for this task, regardless of 

their ease of use.  

Moreover, both UAVs and airborne remote sensing require considerable image pre-

processing and reliability assessments to counter drift and environmental conditions (Abolt et 

al., 2018). In airborne remote sensing this may involve the addition of an expensive GNSS 

and IMU unit (Johann et al., 2019) or it can require ground control points to georeferenced 
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images. Both these methods take time and resources meaning that personnel-hours required 

to record stream temperature through these airborne remote sensing methods are not 

drastically reduced from those required to implement a logger programme. Without an IMU 

images may need to be discounted where the viewing angle is low (off Nadir) because an 

angle of incidence with the water surface which is too high will invalidate results through the 

reflection of energy.  

While these remote sensing techniques collect images over a large spatial extent, remote 

sensing only acquires a snapshot temporally which makes it very expensive and difficult to 

maintain quasi-regular recordings (Dugdale, 2016) for use in dam operations.  

It is clear that the drawbacks of airborne remote sensing discount it from use in this study 

based on cost, coverage and return period. Nevertheless, the results produced here should 

be comparable and interoperable with these higher resolution methods. Enabling the output 

to be checked with higher resolution at areas of interest or validated against airborne remote 

sensing results.  

 

3.3 Thermal Infrared sensors and emissivity values 

 

All the airborne methods discussed have been a part of the process developing the hardware 

and algorithms used with satellite sensors which also relies on TIR cameras. TIR remote 

sensing utilises the 8-12µm wavelength and captures radiant water temperature (Torgersen 

et al., 2001), this means it is only able to measure the first 100µm of the water surface (Abolt 

et al., 2018). While this may not seem enough to appropriately monitor water temperature it 

has been shown to correlate strongly to mean water temperature (Handcock et al., 2012). For 

most tasks this is not needed and instead it is only the comparative difference in water 

temperature such as above and below dams which is appropriate (Zhao et al., 2020). There 

is some risk in larger waterbodies with little mixing that thermal stratification, where 

temperature alters over water depth, may be significant and therefore results will differ from 

the water column (Daniels and Danner, 2020). However, the majority of rivers have high levels 

of turbidity which considerably reduces this thermal stratification (Talke et al., 2013).  

TIR sensing records the energy emitted by an object. To do this requires a knowledge of the 

efficiency with which an object emits energy in comparison to a theoretical black body which 

would absorb all incident radiation and re-emit it perfectly (Handcock et al., 2012). This 

theoretical black body is given the emissivity value of 1 (Sobrino et al., 2008). The emissivity 

of water is very close to a black body often found to be around 0.9- 0.98 (Bonnema et al., 
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2020, Martí-Cardona et al., 2019). Emissivity can be calculated based on NDVI (Avdan and 

Jovanovska, 2016) or separate satellite missions (GU et al., 2018) but in rivers it is often 

assumed to be a constant (Lamaro et al., 2013). This ignores factors such as suspended 

sediment, roughness of the water surface, and floating vegetation which may have effects on 

this emissivity value (Handcock et al., 2012) so these may be aspects to consider in the case 

of unexpected results. All methods that take this emissivity value and the sensor recordings 

and turn them into river temperature require Planck’s Law (Jiménez-Muñoz et al., 2014, 

Jiménez-Muñoz et al., 2008) which describes the spectral (satellite measured response) of an 

object based on its emissivity value and temperature (Planck, 1914). Therefore, with a known 

emissivity value and spectral response, the temperature value can be calculated.  

One of the benefits of TIR is that it can be flown at night (Granero-Belinchon et al., 2020) 

because it measures energy emitted from an object rather than energy reflected from an object 

during daylight optical remote sensing (Torgersen et al., 2001). However, mixed pixels can 

produce erroneous values where non-water objects are influencing results (Martí-Cardona et 

al., 2019).  This includes floating algae, moving channel bars and overhanding/shading 

riparian vegetation. Therefore, airborne remote sensing is usually coupled up with some form 

of photogrammetry or optical sensor and the benefit of being able to fly at night is rarely utilised 

especially where it reduces the ability of a satellite to carry multiple sensors.  

 

3.4 Satellite measured river temperature 

 

Satellite TIR has been used for many decades in oceanic studies (Schluessel et al., 1990) but 

only within the last 10 years has it become a viable option for quasi-regular operational 

temperature readings (Piégay et al., 2020). The main reasons for this are the increase in freely 

available satellite data, the increase in computational power, and cloud computing (Zhu et al., 

2019, Gorelick, 2013). For example, the United States Geological Survey (USGS) made data 

from all their missions freely available in 2013 (USGS, 2021a) meaning more scientists could 

employ it for research.  

Satellite TIR imagery can be found at 90m from the ASTER sensor (Despini and Teggi, 2013) 

and 100m (before resampling) from the Landsat 8 TIR sensor (USGS, 2020). While this is 

much better than the 1000m pixels returned by the MODIS satellite (Handcock et al., 2012), 

often used in ocean studies (Díaz et al., 2019) it still limits satellite analysis to the main river 

branches (Donchyts et al., 2016). The increase in resolution of concurrent optical bands such 

as the 30m of Landsat 8s Operational Land Imager (USGS, 2020) has provided the ability to 

better delineate the channel (Yang et al., 2019). This maximises the proportion of streams that 
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can be measured without pixels becoming mixed by including land and water, which would 

impact the temperature values returned (Martí-Cardona et al., 2019). There is disagreement 

over minimum viable river width, with early studies suggesting that just widths of at least 180m 

would be needed (Handcock et al., 2006) whereas later studies have incorporated alternative 

bands to produce methods which are claimed to produce viable results at 120m (Martí-

Cardona et al., 2019) and 60m resolution (Despini and Teggi, 2013). 

Landsat is the most commonly used remote sensing satellite data (Wang et al., 2020a) which 

is unsurprising given it has a continuous record from 1984 to the present (Young et al., 2017). 

This record is often longer than traditional data sources available in some river catchments. 

Being popular has created a positive feedback loop where advice, algorithms, and products 

(GEE, 2021e, Chander et al., 2009, Young et al., 2017) are produced for Landsat resulting in 

further advances in its use. Most studies have used the optical sensors and have focused on 

feature extraction, especially at the global scale (Allen and Pavelsky, 2018, Gardner et al., 

2021, Yang et al., 2020). Whereas, in this context, TIR river temperature studies have been 

restricted to case studies. The importance of dams has already been discussed, and these 

are often built on large rivers which has led to the majority of satellite river temperature work 

being centred on this area.  

The majority of these papers used Landsat images, downloaded from USGS Earth Explorer 

(USGS, 2021a) to hard drives and processed in Geographic Information Systems such as 

ArcGIS (Ling et al., 2017, Yadav et al., 2020, Zhao et al., 2020). This is relatively 

computationally costly and very time intensive to carry out, leading to studies using very few 

images (Martí-Cardona et al., 2019). Regardless, the accuracy of this method has been shown 

to be very high with water temperature matching in-situ records within 0.95oc although this 

may fall to 2oc for smaller river widths as a result of the aforementioned mixed-pixel problem 

(Martí-Cardona et al., 2019). The 1000m TIR resolution of MODIS has also been shown to 

produce reliable results (Xiong et al., 2020) which suggests that large dam systems will be 

more than accessible with Landsat resolution images. It should be noted that the lack of in-

situ data causes some of these studies to not validate their results against known river 

temperatures creating uncertainty in the literature (Yadav et al., 2020).  

Satellite TIR creates the ability to carry out forms of analysis which are considerably more 

difficult with traditional field studies. For example, longitudinal and temporal trends can be built 

up utilising the large spatial coverage of satellites (Xiong et al., 2020) and in the case of 

Landsat the temporal record (Yadav et al., 2020).  Moreover, the ability to switch between 

study sites with ease allows other industries to be considered (Wawrzyniak et al., 2012). 

Switching between regions without leaving your desktop also allows for suitability analysis to 
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be carried out. For example, finding a site with the coldest water to increase the efficiency of 

a planned nuclear plant (Durmayaz and Sogut, 2006).  

Satellite monitoring at the scale of Landsat and Aster has the additional drawback of only 

revisiting a site every 16 days which if obstructed by cloud cover (discussed later) can lead to 

considerable time delays between results. This drawback has been shown to be mitigated by 

combining modelling with Landsat TIR input images to provide daily stream temperature 

modelling (Shi et al., 2021). Similarly, satellite data can be used to populate and extend water 

temperature predictions under future climate change scenarios (Al-Murib et al., 2019) 

improving the accuracy of these methods.  

 

3.5 Analysing satellite imagery 

3.5.1 Cloud cover 

 

Cloud cover obscures satellite images preventing viable results being drawn (Chander et al., 

2009). The likelihood of cloud, in an image, changes with region and season meaning some 

sites are more viable for analysis than others (Armitage et al., 2013). Regardless, there is 

always potential for cloudy pixels and so methods have been developed to remove them using 

satellite quality bands, alternative satellite images and ground truthed statistical models 

(Hollstein et al., 2016).  

Using alternative datasets can only work as well as the time period between Landsat and their 

collection periods (Melchiorre et al., 2020). While ground sensors lack the spatial scale to be 

useful (Hollstein et al., 2016). Landsat data is supplied with a considerable amount of quality 

analysis including an estimated scene cloud cover, a simple cloud score algorithm and the 

“BQA” band (USGS, 2020). Landsat currently uses separate algorithms to determine cloud, 

cirrus clouds and snow or ice providing a bitwise indication of pixel cloud cover in this BQA 

band (Foga et al., 2017).   

Increasingly machine learning is used to indicate cloud cover, random forests and Bayesian 

networks have been shown to accurately predict cover with up to 98% accuracy (Hollstein et 

al., 2016). Originally, these were less simple to implement than common decision trees, but 

they have been incorporated into the EEMont package (Montero, 2021) and so can also be 

applied to Landsat data.  

Multiple possibilities are available for cloud reduction and the best use case has to be chosen 

for the desired outcome. Increasing the computing required by using an intensive machine 

learning technique may be worthwhile to gain a few percentages better cover if values are 
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being extracted from a point. But if thousands of pixels are being viewed on a visualisation it 

may be better to rely on the provided quality bands when erroneous pixels will clearly be visible 

when surrounded by cloud free pixels.  

 

3.5.2 temperature extraction algorithms  

 

To convert TIR sensor data from the digital numbers that are supplied by the Landsat satellite 

to water surface temperature requires a number of steps (Young et al., 2017). Firstly, this 

involves conversion from the at sensor digital number to a Top of Atmosphere (ToA) value 

(Chander et al., 2009) which uses band specific constants consistent across time and position 

meaning it can be provided as a pre-processed product (USGS, 2020) for all Landsat images.  

When using Landsat 8 there are two choices which define the algorithm used to extract river 

surface temperature from ToA radiance. Firstly, there are two TIR Bands provided by Landsat 

8 with the intention of facilitating split-window algorithms using both Band 10 and 11 (Jiménez-

Muñoz et al., 2014) which had the potential to provide the most accurate results when using 

artificial data (Rozenstein et al., 2014). However, the choice of band is negated by a calibration 

uncertainty within the sensor, called the stray light phenomenon (Montanaro et al., 2014). This 

stray light issue affects band 11 considerably more than band 10 therefore it is recommended 

not to be used (Barsi et al., 2014, Ermida et al., 2020). There have been attempts to correct 

for this error, (Montanaro et al., 2015) however, the conservative choice is to use single 

channel algorithms only using band 10. 

In some sense it is claimed that using Band 10 alone is preferable due to the narrow 

wavelength excluding the 12 µm region, where absorption and emission from water vapour is 

higher, thus improving retrieval performance (Ermida et al., 2020). These single channel 

algorithms then need to choose if and how they account for the atmosphere and provide a 

mathematical correction for it or not (Wang et al., 2020b). It is possible to not account for the 

impact of the atmosphere and still get values within 3oc of near-surface temperature which 

introduces further error from actual ground temperature (Avdan and Jovanovska, 2016). To 

some extent this can provide a base measure to compare atmospherically corrected methods 

to, although it is likely to be less efficient where air-water moisture is higher (Wang et al., 

2020b). 

There are four main categories of atmospheric correction method, the radiative transfer 

method (Lamaro et al., 2013, Jiménez-Muñoz et al., 2008) used by the majority of the dam 

studies described. This has previously not been possible in GEE because it requires a 
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complex radiative transfer model (Barsi et al., 2003) which was previously not available to be 

batch processed. Upwelling radiation, Downwelling radiation and Transmissibility which this 

model provides are now available on a pixel-by-pixel basis with the Landsat 8 collection 2 pre-

processed data (USGS, 2020). This enables an improvement on the centre of scene method 

employed by previous studies (Ling et al., 2017) but a method is still being developed to 

implement a radiative transfer model in GEE or other cloud computing software.  

The other three methods; Mono-Window algorithms (Qin et al., 2001, Ermida et al., 2020), 

Generalised single-channel algorithms (Jiménez‐Muñoz and Sobrino, 2003) and Practical 

Single Channel (PSC) algorithms (Wang et al., 2020b) all employ atmospheric parameters 

such as water vapour to calculate atmospheric effects. The Statistical Mono-Window (SMW) 

algorithm (Ermida et al., 2020) and PSC (Wang et al., 2020b) have both been presented as a 

GEE workflow to allow global land surface temperature modelling. The PSC algorithm is 

proposed to be the most effective (Wang et al., 2020b), marginally more effective than the 

SMW algorithm. Both the SMW and PSC algorithms relying on the National Centres for 

Environmental Prediction-Global Reanalysis dataset to provide air water moisture content. It 

has been argued that the Modern Era Retrospective-Analysis for Research and Applications 

data produce less bias (Meng and Cheng, 2018), but this is unavailable on the GEE platform.  

Neither the SMW nor the PSC algorithm were explicitly validated against water surface 

temperature so it is unknown how well these will operate in the context of an object with a very 

high emissivity. Moreover, both these methods were written for the JavaScript GEE platform 

which is effective and can be considered more user friendly but lacks the ability to batch 

process images and sites that the Python platform has. Thus, in their present form these 

methods are not as transferable or usable as they have the potential to be. 

 

3.6 Cloud computing  

 

One of the main limitations of satellite remote sensing is the considerable computational power 

needed to manage a large number of images (Tamiminia et al., 2020). Cloud computing has 

provided an opportunity to circumvent this by moving the majority of processing tasks to a 

server and negating the need for a client to download images (Gorelick, 2013). Part of the 

processing speed increase is caused by any calculations or resampling not being carried out 

until data are requested to be displayed. This provides the ability to access vast quantities of 

data very quickly making interactive maps in GEE apps feasible (GEE, 2021a) for engineers 

and scientists to interrogate (Perkel, 2018). 
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This increases the speed and versatility of remote sensing procedures and has the additional 

benefit of making it viable for anyone with a link to the internet to use (Gorelick et al., 2017). 

There is some disagreement about the disconnect between potential uptake of GEE and its 

actual use in less developed countries (Kumar and Mutanga, 2018). There is also some 

debate over the Open-Source nature of GEE because if it is utilised by industry, it requires a 

licence fee paid. Regardless, it has still been influential in well-funded institutions during the 

pandemic where access to high power computing may have been limited (Alashhab et al., 

2021).  

Whether carried out on the cloud or with local computing, calculation and extraction of TIR 

requires a number of steps which should be automated to minimise this risk of user error 

(Avdan and Jovanovska, 2016). This can be done with tools such as model builder in ERDAS 

imagine (Avdan and Jovanovska, 2016) or ArcGIS model builder (ESRI, 2016). Although few 

papers mention this in the methodology it is assumed that they undergo the same process. 

The open-source alternative is to script the automation of this using a programming language.  

GEE allows access to its servers via either a JavaScript or a Python Application Programming 

Interface (API) (GEE, 2021c). Both these APIs promote knowledge exchange by allowing the 

sharing of scripts (Mutanga and Kumar, 2019) reducing development time for new projects 

and providing the ability to check results. While there may be more JavaScript users due to 

the user-friendly code editor (GEE, 2021c) the Python API does not have a single preferred 

visualisation method. The Python API is that it allows GitHub and PiP (Valman, 2021b) based 

open-source package creation. These packages can drastically improve the useability of the 

product and can be advanced to solve problems required (Montero, 2021, Wu, 2020).  

While satellite TIR Riverine papers generally used less than 100 images (Yadav et al., 2020, 

Ling et al., 2017, Al-Murib et al., 2019) and as few as 6 (Martí-Cardona et al., 2019) by 

employing GEE it has been possible to carry out a study with as many as 1364 images 

(Bonnema et al., 2020). The main part of the GEE process that makes this possible is the 

removal of the need for vast data storage (Wang et al., 2018) where a single band of a single 

Landsat scene may otherwise account for 108mb of disk space which adds up very quickly 

(USGS, 2021a). The ability to process large quantities of data at speed has allowed the 

construction of algorithms which can be applied globally (Ermida et al., 2020, Wang et al., 

2020b). 
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4.0 Method 

4.1 Introduction to method chapter 

 

A Python cloud computing function was developed to measure satellite derived river surface 

water temperature which allowed a choice of three different atmospheric correction methods. 

Results were validated using in-situ loggers in the Saint John River, Canada. From this the 

most effective atmospheric correction method was validated against two more rivers to test its 

ability in different areas of the globe with different river types. The results were visualised 

through maps, longitudinal diagrams and an interactive mapping app to meet objective 1; 

assessing the use of GEE as a tool.  

4.2 Input datasets  

4.2.1 Satellite Sensors 

 

The Landsat 8 Collection One TIR product flown by NASA and the USGS (USGS, 2019b) was 

chosen to provide input data and was accessed via the GEE catalogue (GEE, 2021b). This 

provides a global land coverage with a 16-day return period, from April 2013 when it achieved 

operational orbit to present (USGS, 2019b). This choice ensures the opportunity for methods 

to be applicable in future research due to the continuance of the Landsat missions with a 

planned launch of Landsat 9 in fall 2021 (Masek et al., 2020). All methods developed here can 

be extended to previous TIR Landsat missions (starting from Landsat 4 in 1982; USGS, 2018). 

Thus, potential future temporal extent is the main reason Landsat was chosen over ASTER 

TIR which provides a similar resolution and return period (Table. 1). The raw digital numbers 

provided by Landsat sensors need to be converted through a number of steps to produce river 

water temperature (Jiménez-Muñoz et al., 2014). However, Landsat sensors have a relatively 

narrow field of view meaning they do not need to factor view angle into these calculations 

unlike airborne remote sensing.  
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Table 1: Statistics of thermal infrared satellites available for this study from which Landsat 8 was chosen. The 
Landsat missions no longer recording were excluded from the study, however they are included here to provide 

evidence of the temporal statistics possible if the study was extended 

Satellite/sensor 

name 

Band(s) Wavelength 

(µm) 

Resolution 

(m) 

Return 

Period 

Start and 

End of 

recording 

record 

Reference 

Moderate 

Resolution 

Imaging 

Spectroradiometer 

(MODIS) 

31 

 

10.78-11.28 1000 1-2 

days 

February 

2000 to 

present 

(USGS, 

2021c) 

32 11.77-12.27 1000 

Advanced 

Spaceborne 

Thermal Emission 

and Reflection 

Radiometer 

(ASTER) 

10 8.125-8.475 90 16 

days 

March 

2000 to 

present 

(Abrams, 

1999) 11 8.475-8.825 90 

12 8.925-9.275 90 

13 10.25-10.95 90 

14 10.95-11.65 90 

Landsat 8 10 10.6-11.19 100m* 16 

days 

April 2013 

to present 

(USGS, 

2019b)     11** 11.5-12.51 100m* 

Landsat 7 6 10.4-12.5 60m* 16 

days 

January 

1999- July 

2021 

(USGS, 

2019a) 

Landsat 5 6 10.4-12.5 60m* 16 

days 

 

January 

1984- 

May 2012 

(USGS, 

2018) 

Landsat 4 6 10.4-12.5 60m* 16 

days 

August 

1982-

December 

1993 

(USGS, 

2018) 

* Resampled to 30m 

** Recommended not to be used due to stray light calibration errors 
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4.2.3 Bounding regions 

 

WWF HYDROSHED data, also available from the GEE data catalogue, were used to constrain 

the satellite image and therefore rivers selected. The method was adaptable to alternative 

bounding geometries but the benefit of the HYDROSHED system is that it is based on 

catchment area. Dams may cause premature division to the HYDROSHEDs catchments due 

to their influence on the topography, which makes them useful for dividing the up and 

downstream catchments.  

 

4.2.4 Water surface masks 

 

To produce reliable results pure water pixels are needed and therefore results should have a 

water mask placed on them. Here the Global River Width from Landsat (GRWL; Allen and 

Pavelsky, 2018) was used to constrain channel width to reduce the development time of 

extracting water masks. 30m Optical bands from the Operational Land Imager sensor also 

flown on Landsat 8 make it possible for more traditional water masks such as the Normalised 

Difference Water Index to be added to the method in future experiments. 

 

4.2.5 Cloud Mask Layers 

 

Cloud masking was required to remove pixels effected by cloud, shadow or cirrus which would 

otherwise cause erroneous results. These errors can be quite extreme, prompting some 

studies to remove pixel values below 0oc (Bonnema et al., 2020) instead of predicting cloud 

cover. However, the BQA band provided with Landsat raw images allows optimisation of cloud 

removal without considerable additional processing requirements (USGS, 2019b). A Bitwise 

function was used here to remove the affected pixels based on this BQA band.  

 

4.3 Water surface temperature extraction Algorithms 

 

Three methods of extracting water surface temperature from satellite images were 

implemented to test which was most accurate. These were all single channel methods, one 

with no atmospheric correction (NAC), a Statistical Mono-Window (SMW) algorithm and a 

Practical Single Channel algorithm (PSC). As discussed in the literature review, the stray light 
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effect recommended against split window algorithms (Ermida et al., 2020) and other methods 

required datasets not available in GEE (Wang et al., 2020b). 

 

4.3.1 No atmospheric correction 

 

The NAC method produced originally in ERDAS IMAGINE (Avdan and Jovanovska, 2016) 

provides a control result to compare with other methods. As with the other methods, this 

requires a conversion from digital number to ToA spectral radiance (eq.1). This can be carried 

out using the built in GEE algorithm (GEE, 2021e) or by using the pre-calibrated ToA dataset 

provided by GEE. However, there was a lack of clarity in the GEE metadata (See discussion) 

which led to the conservative approach of calculating ToA from raw values. The resulting 

spectral radiance was then converted to at-sensor brightness temperature, again relying on 

band specific parameters (eq. 2). Finally, using Plancks equation the emissivity value of water 

was included in order to extract river water temperature (eq. 3). A constant emissivity value of 

0.991 was adopted for all methods (Martí-Cardona et al., 2019) 

 

 

𝑳𝝀 = 𝒈𝒂𝒊𝒏 ∗ 𝑫𝑵 + 𝒃𝒊𝒂𝒔 − 𝑶𝒊 

Equation 1: Where gain represents the band-specific multiplicative rescaling factor, DN is the raw image digital 
number values, bias is the band specific additive rescaling factor and Oi is the correction for Band 10 (Barsi et al., 

2014). 

 

𝐵𝑇 =  
𝐾2

ln [(
𝐾1
𝐿𝜆

) + 1]
− 273.15 

Equation 2: Where BT is Brightness temperature, K1 and K2 are band specific thermal constants. 

 

𝑊𝑎𝑡𝑒𝑟 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =  
𝐵𝑇

1 + [(
𝜆𝐵𝑇

𝜌 ) ln (𝜀)]
 

Equation 3: Where λ is the wavelength of emitted radiance, for which 10.895 was used (Markham and Barker, 
1985), ε is emissivity and ρ is a constant based on the Boltzmann and Planck’s constants (Avdan and 

Jovanovska, 2016). 
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4.3.2 Statistical Mono-Window method 

 

The SMW algorithm developed by (Ermida et al., 2020) takes advantage of the already 

calibrated ToA Landsat datasets provided by GEE (GEE, 2021b), although this does not 

include the correction factor Oi in equation 1, it was decided to assess the quality of the SMW 

method required keeping to the process defined by Ermida et al. (2020).  

SMW linearises the radiative transfer equation and then assumes the different radiative values 

based on the relationship between air water moisture and this linearised equation. The 

linearised equation compared total column water vapour from the National Center for 

Environmental Protection and National Center for Atmospheric Research (NCEP/NCAR) 

dataset and radiative transfer values. The initial calibration of this linearised equation was not 

required as the results were made available in the open-source code (Table. 2; Ermida et al., 

2020). For each of ten possible classes for air water moisture, three coefficients were provided 

(Table. 2) which fed into the following equation to turn ToA brightness temperature into 

Surface water temperature (eq. 4).  

 

Table 2: Coefficients of the linearised radiative transfer equation used by the SMW method based on Air Water 
Moisture values (Ermida et al., 2020). Note: Coefficient B (4.2-4.8cm) is does not follow the increasing trend, 

which may be an error by Ermida et al. (2020). 

Total Column 

Water Vapour (cm) 

Coefficient A Coefficient B Coefficient C 

0-0.6  0.9751 -205.8929 212.7173 

0.6-1.2  1.0090 -232.2750 230.5698 

1.2-1.8  1.0541 -253.1943 238.9548 

1.8-2.4  1.1282 -279.4212 244.0772 

2.4-3  1.1987 -307.4497 251.8341 

3-3.6  1.3205 -348.0228 257.2740 

3.6-4.2 1.4540 -393.1718 263.5599 

4.2-4.8 1.6350 -451.0790 268.9405 

4.8-5.4 1.5458 -429.5095 275.0895 

>5.4  1.9403 -547.2681 277.9953 

 

 



29 
 

𝑊𝑎𝑡𝑒𝑟 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝐴𝑖

𝑇𝑏

𝜀
+ 𝐵𝑖

1

𝜀
+ 𝐶𝑖 

Equation 4: Where Ai, Bi and Ci are the coefficients based on NCEP/NCAR water vapour dataset values. Tb is 

Top of Atmosphere brightness and ε is the constant emissivity value of 0.991 chosen. 

 

 

4.3.3 Practical Single Channel method  

 

In previous studies over land the PSC method has been shown to work better than the SMW 

method (Wang et al., 2020b). Both were included to compare their ability to extract water 

surface temperature and to give users more choice within the package created. This method 

is similar to the SMW in a lot of ways but has 8 constants (Table. 3) per satellite band (Landsat 

8 Band 10 in this study) which are entered into Planck’s equation with Air Water moisture 

Equation 5; Wang et al., 2020b, Wang et al., 2019a).  

Table 3: Coefficients of Planck’s model used in the Practical Single Channel method for Landsat 8 band 10 
(Wang et al., 2020b). 

Coefficient  value 

a0 -0.4107 

a1 1.493577 

a2 0.278271 

a3 -1.22502 

a4 -0.31067 

a5 1.022016 

a6 -0.01969 

a7 0.036001 

 

𝑊𝑎𝑡𝑒𝑟 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =

𝐶2
𝜆⁄

ln(
𝐶1

𝜆5 ∗ 𝐵(𝑇𝑠)
+ 1)

 

With 𝐵(𝑇𝑠) =  𝑎0 + 𝑎1𝑤 + (𝑎2 + 𝑎3𝑤 + 𝑎4𝑤2)
1

𝜀
+ (𝑎5 + 𝑎6 + 𝑎7𝑤2)

𝐿𝑠𝑒𝑛

𝜀
 

Equation 5: Where Lsen being at-sensor radiance, ε being the constant emissivity of 0.991 chosen, w is the air 

water vapor content, constants C1 and C2 equalling 1.19104 x 108Wµm4m-2sr-1 and 1.43677 x 104 µmK 

respectively, B(Ts) is Planck’s radiance using a0-7 from Table 3 and λ is the effective wavelength of 10.904µm. 
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4.4 Processing and visualisation Software 

 

GEE cloud computing was used to process Landsat Images from the GEE data catalogue 

using the algorithms described above. This open-source system allowed for images to be used 

without the need to download them and reduced processing and resampling to their minimum 

requirements for the visualisation or data download required. This meant that the entire project 

could be carried out on a relatively affordable 64 bit laptop with internet connection and did 

not need a high-powered machine or access to a computer lab. 

This process was caried out with the Python API in Jupyter Notebooks, using the GEEMap 

package for visualization (Wu, 2020). Using the Python API over the JavaScript API meant 

that batch processing quantities of data from different sites was feasible due to the ability to 

run cells successively reducing processing time and data limitation errors.  

GitHub and PIP were used to produce a packaged version of the method (Valman, 2021b) so 

it could be employed by other developers and researchers without the need to copy code. The 

package was created in the Spyder Python API (Spyder, 2021) because although Jupyter 

Notebooks is effective for visualisation and development it is not capable of providing package 

support.  

QGIS 3.16.5 with the GRASS 7.8.5 extension was employed to vectorise a channel centreline 

when the GRWL centreline product (Allen and Pavelsky, 2018) was seen to not be accurate 

enough for this task. The “v.to.points” tool was used to place points every 100m on this channel 

centreline vector and then the raster to points tool was used to extract values for a longitudinal 

temperature plot.   

Additional Python packages GeoPandas and Pandas were required to georeferenced the 

point locations required to validate this study (McKinney, 2010). Numpy and Scipy packages 

were required to calculate the statistical success of validation measures (Harris et al., 2020, 

Virtanen et al., 2020). Finally, the Matplotlib package was used to visualise the validation 

results and longitudinal diagrams (Hunter, 2007).  

An App based dashboard (Valman, 2021a) was created using Heroku and GEEMap which 

allowed for a direct interactive display of the method to be available online without the need 

to apply programming (Wu, 2020). Ipywidgets were used to provide functionality around this 

product (Munk and Turk, 2020).  
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4.5 Validating the results 

 

The three different algorithms to extract river temperature were first tested to see how well 

they performed at predicting the river water temperature of the Saint John River, New 

Brunswick, Canada. Kinetic stream temperature logger records from 2014 and 2015 using 

HOBO UA-002-64 (Dugdale et al., 2018) were compared to results from each atmospheric 

correction method at 6 locations (Figure. 1). With widths ranging from 330m to 840m making 

edge effects unlikely to impact channel centreline satellite results, thus making this a good 

case study site.  

 

Figure 1: Location of in-situ monitoring locations, 2014-15 used for the study. Red locations are clustered around 

the Mactaquac dam and are surface kinetic temperature loggers, while the orange locations further upstream 

represent deeper loggers with which were in place for less time. 

 

As noted, the literature claims that mixing within riverine systems is significant enough to 

account for thermal stratification which causes the water surface temperature to differ from 

temperature at depth (Talke et al., 2013). This was checked here by the inclusion of the 

upstream loggers which were placed at a deeper depth and compared separately.  
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Local time deltas in the results were converted to Greenwich Mean Time which is the same 

as the Zulu time Landsat operates on. Values were then extracted using all three temperature 

algorithms and matched for date and time. The accuracy of these different algorithms was 

measured using Root Mean Squared Error (RMSE), Bias and Pearson’s correlation test. 

Scatter graphs were also created to check results met the linear requisite of Pearson’s test. 

Finally, Fischer’s Z test was used to compare the different correlations to analyse if they were 

statistically significantly different.   

The most effective validation method was trialled in two other rivers to test its ability to respond 

to different river systems and climate zones. There is a paucity of freely available in-situ 

temperature measurements which played a large part in dictating the choice of river.  

The Colorado River, below Glen Canyon Dam, Arizona USA provided a river running through 

a desert climate with water temperature that fluctuate between 0 and 30oc (Voichick and 

Wright, 2007).  StowAway XT132 and HOBO H2O logger results were provided by the Grand 

Canyon Monitoring and Research Center (USGS, 2021b) and run consistently throughout the 

Landsat 8 recording period (Figure. 2). River widths ranged from 85m to 200m which enabled 

testing of the minimum river width appropriate for satellite TIR monitoring.  

 

Figure 2: In-situ temperature logger positions on the Colorado River, Arizona, USA. Only the results from logger 
9404200 as it produces the strongest correlation between satellite sensing results and observations, but all other 

results are presented in Appendix B. 

In lieu of available temperature logged data, results from the method were also validated 

against previous satellite TIR studies on the River Ganges (Figure. 3). Longitudinal diagrams 
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were created for February 2015, 2017, and 2018 and compared to those in the Yadav et al. 

(2020) study. This allowed assessment in direct comparison to other methods as well as the 

ability to test the method in an Asian glacial and monsoon fed river. All Landsat 8 images used 

in this study can be found in Appendix A with some of their metadata.  

 

 

Figure 3: Centreline of the mid-portion of the River Ganges near the city of Varanasi, where longitudinal profiles 

were calculated using the method presented here and by Yadav et al. (2020).  

 

 

5.0 Results 

 

5.1 Derived water surface temperature maps 

 

GEE was shown to be a capable of calculating and producing river temperature visualisations 

and results from Landsat 8 imagery (which has some potential to subsequently be used by 

hydropower operators; Figure. 4). These visualisations allowed for the selection of a WWF 

HYDROSHEDs Watershed geometry relevant to the user and then the calculation of river 
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temperature for all stream segments which intersected this geometry (Figure. 5). The method 

allowed for any number of Landsat 8 images between April 2013 and the present to be 

selected and their river temperature data extracted; the full list of the 156 Landsat scenes and 

their metadata used in this study are available in appendix A.  

 

 

Figure 4: Surface water temperature output for Saint John River, New Brunswick, Canada on 23rd May 2020 

(using the Statistical Mono-Window method and the GEEMap/Jupyter Notebook visualisation tool). The image is 
downstream of the Mactaquac Dam (near Fredericton, New Brunswick) and could be compared to expected 
temperatures or areas of interest as the dam operators wished. Missing pixels exist where the cloud cover 

algorithm has removed them. 
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Figure 5: An example of the interactive sliding map in the Ganges River basin. On the right a WWF 
HYDROSHED River basin can be interrogated for its ID which is then fed into the left-hand map. The slider can 

then be pulled across to visualise the same site with the river surface temperature calculated using the Statistical 
Mono-Window method. In this case on the 08th of June 2015. Note the cross, bottom right, which converts this 

split map into a single map once the WWF HYDROSHED is no longer needed. 

 

5.2 Interactive App Dashboard 

 

An interactive dashboard was created (Valman, 2021a) to display river temperature to a user 

without expertise in programming or GEE. The dashboard has widgets which allow the user 

to select a date range, atmospheric correction technique and alter the image symbology 

(Figure. 6). These widgets are customisable and therefore additional functionality can be built 

in, including graphs and options to change the map position. The built-in functionality of 

GEEMap allows the user to interrogate pixels or build a histogram over a drawn transect 

making it viable for a variety of purposes.  
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Figure 6: A screen grab of the interactive dashboard (Valman, 2021) which is displaying river surface 
temperature from the Ganges Basin on the 2nd March 2017. Functionality can be added and removed from this 

app to specialise it for different users. 

 

5.3 Generation of river temperature long profiles 

 

When combined with QGIS, the GEE method was shown capable of generating longitudinal 

river temperature profiles which can provide a useful output to understand impacts of a dam 

on the upstream and downstream reaches of a river, along with how far the dam’s impact 

persists downstream (Figure. 7).  
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Figure 7: Longitudinal profile of Saint John River, New Brunswick, Canada on 23rd May 2020 using the Statistical 

Mono-Window Method. Values extracted every 100m from the channel centreline measured from the Mactaquac 

dam. Temperature ‘spikes’ values are likely the result of in channel bars or shallow warmer zones. 

 

The application of longitudinal profile diagrams in India (Figure. 8a) also allowed some 

subjective validation against previous satellite TIR studies (Yadav et al., 2020; Figure. 8b). 

This was carried out because there was no in-situ logger data in a large river in a developing 

country that could be accessed for use in this study. The method used here was shown to 

produce similar results to the temperature values produced by Yadav et al. (2020) especially 

with regards to the 4oc difference between images collected in February 2015 and February 

2017. Results show a different bias to those produced with the radiative transfer method but 

without logger data it is difficult to know which is more accurate. The results produced here do 

show more extreme values than those produced by Yadav et al. (2020), possibly as a result 

of the use of a single centreline delineated using the 2015 Landsat image which was not 

changed and therefore did not account for channel change. Yadav et al. (2020) delineated 

new channel centrelines for each image date reducing the impact of channel change. 
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Figure 8: Comparison of longitudinal river temperature analysis carried out on the Ganges. Plot A employs the 

Statistical Mono-Window method in Google Earth Engine and uses one centre line vectorised on QGIS over the 

February 2015 results. Plot B is from (Yadav et al., 2020) and utilises ArcGIS and the radiative transfer method.  

The increase in extreme values in plot b in comparison to plot A is attributed to changes in river planform over 

time in a highly dynamic stream and infers a new centre line would be needed for each Landsat image. 
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5.4 Validating results using temperature loggers 

 

5.4.1 Saint John River, New Brunswick, Canada 

 

A more informative validation was carried out on the Saint John River, New Brunswick 

between July 2014 and December 2015 using in-situ (kinetic) stream temperature data 

acquired at a series of locations using HOBO UA-002-64 temperature loggers (Dugdale et al., 

2018). Significant strong correlations between temperature logger values and satellite 

observations (Table. 4) at all sites (as evidenced by high R2 values). RMSE ranged between 

1oc and 5 oc degrees with a negative bias found across most sites (Figure. 9). Some loggers 

further upstream were placed at a greater depth and were included to test the robustness of 

the method. These also produced relatively strong correlations (Figure. 10) although they had 

a larger RMSE (Table. 4).  
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Table 4: Validation statistics comparing the results of different atmospheric correction methods on the St Johns 
River. NAC stands for the Non-Atmospherically Corrected method (Avdan and Jovanovska, 2016), SMW stands 

for the Statistical Mono-Window algorithm developed by (Ermida et al., 2020) and PSC is the Practical Single 
Channel method developed by (Wang et al., 2020b). N relates to number of satellite images/dates and differs 
between methods due to availability of atmospheric datasets needed for the PSC method. Pearson’s R tests 

were applied to test for correlation and the significance of this correlation Validation results from Saint John River 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Indicates significance at alpha value of 0.05 

 

Temperature logger site NAC SMW PSC 

Jewett Island    

n 13 13 13 

R2 0.970 0.967 0.860 

P-score <0.001* <0.001* <0.001* 

Bias -5.42 -0.676 -5.69 

RMSE 5.50 1.36 4.83 

Longs Creek    

n 13 13 12 

R2 0.939 0.940 0.827 

P-score <0.001* <0.001* <0.001* 

Bias -5.69 -0.773 -0.884 

RMSE 5.85 1.67 4.68 

Mactaquac Causeway    

n 14 14 13 

R2 0.949 0.945 0.845 

P-score <0.001* <0.001* <0.001* 

Bias -6.30 -1.48 -1.68 

RMSE 6.47 2.29 4.83 

Combined Below Dam    

n 40 40 38 

R2 0.948 0.956 0.837 

P-score <0.001* <0.001* <0.001* 

Bias -5.82 -0.990 -1.01 

RMSE 5.96 1.82 4.78 

Combined above dam    

n 19 19 11 

R2 0.864 0.872 0.150 

P-score <0.001* <0.001* 0.239 

Bias -3.77 1.08 -3.55 

RMSE 4.19 2.42 7.15 
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Figure 9: Comparison between satellite and in-situ logger river temperature values downstream of the Mactaquac 
Dam on the St John’s River. Markers used to visual different logger locations, using the Statistical Mono-Window 

method with the ‘BQA’ band cloud algorithm. 
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Figure 10: Satellite and sensor comparison upstream of the Mactaquac Dam on the St John’s River. Markers 
used to visual different logger locations. These loggers are at deeper locations so display the impact of only 

measuring the water surface on the ability of the method to represent water temperature. 

 

5.4.2 Colorado River, Arizona, USA 

 

The method was not able to be successfully validated at all sites. At some sites this is because 

the channel has moved and instead, values are returned from in-channel bars (Figure. 8). In 

others when matching against logger data the results were weaker than other sites.  The 

Colorado river below Glen Canyon dam produced visualisations that on the surface looked 

like the accurate images produced at other sites (Figure. 11). Pearson’s R2 values of 0.287 

(p=<0.001, n=134) highlighted a much weaker correlation between the values recorded by the 

temperature loggers and satellite observations (Figure. 12). Site 9404200 produced the 

highest correlation of all loggers in this section of the Colorado with a RMSE of 13.1oc with a 

bias of 8.32oc, all other logger results are available in Appendix B. Further, this indicates that 

the GEE method may not always be applicable to all rivers and requires further investigation. 
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Figure 11: Colorado River using SMW river temperature method. Without comparing these values to actual river 
temperature, it would appear this image is similar to Figure. X.5.1 but in fact this represents an erroneous record 

of temperature 10oC warmer than observed at the site. 
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Figure 12: Lack of correlation between satellite surface water temperature and in-situ loggers in at the Colorado 
River below Glen Canyon. Note the increase in points is due to extended period of validation data available and 

the relative lack of cloud at this site. 

 

5.6 Atmospheric Correction 

 

The three atmospheric correction methods produced similar results (Table. 4) but the 

correlation coefficients were found to exhibit significant differences the PSC and other 

methods (Table. 5) using the Fisher-Z Transformation. The SMW method produced the 

highest Pearson’s correlation which was found to be significantly better than the PSC method. 

It also produced much lower values for RMSE and Bias which may separate it from the NAC 

method despite the correlations not being significantly different (Figure. 13). The PSC method 

also copped worse with the 3 upstream loggers on the Saint John River, which were set deeper 

in the water column, and produced much poorer RMSE (Table. 4).   
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Table 5: Comparison between the different methods, using the 2-tailed Fisher-Z transformation, found significant 

difference between the Non-Atmospherically Corrected (NAC) method and the Practical Single Chanel (PSC) 
methods. As well as significant difference between the Statistical Mono-Window (SMW) and the PSC method. 

This used 3 downstream loggers on the St John’s River between 2014 and 2015. 

Comparison Z-score P-score 

NAC-SMW -0.37 0.711 

NAC-PSC 2.55 0.011* 

SMW-PSC 2.91 0.004* 

* Considered significant at the 0.05 Alpha level set 

 

 

Figure 13: A comparison displaying the different results obtained using different atmospheric correction methods. 
The methods can be altered to account for the bias they are currently showing but the error and scatter is harder 

to improve upon. 
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6.0 Discussion 

 

As the results have shown, all three objectives were met. An assessment was made of the 

ability of GEE to enhance the speed and usability of satellite TIR river temperature, by using 

rapid visualisation tools to disseminate results. Some misgivings about relying on GEE were 

unearthed and are discussed here. Results were validated in a number of different scenarios 

which proved the method worked, but care needs to be taken because the tool was found not 

to be universally transferable. Suggestions are presented on how these erroneous catchments 

can be managed and where improvements in accuracy can be made. Using the structure built 

by the first two objectives, the Statistical Mono-Window (SMW) atmospheric correction method 

was found to be more accurate than the Practical Single-Channel (PSC) method or analysis 

with no atmospheric correction (NAC), and the causes for this are discussed.  

 

6.1 Potential and limitations of GEE 

 

It is clear from the results that the potential of GEE meets many of the claims made for 

increasing the ease with which difficult computing tasks can be managed (Gorelick et al., 

2017). It provides a powerful tool to carry out the computationally expensive task of converting 

TIR data and atmospheric data from multiple sources into a river surface temperature without 

needing to download or store any hard drive data (Bonnema et al., 2020).  

Before the limitations that have been noticed here are presented, it should be acknowledged 

that the tool is still in relative infancy. Less than a decade ago the images used in this study 

were proprietary data, therefore, to be able to calculate and analyse hundreds of images on a 

standard laptop is a significant development over previous methods. This is especially true of 

the app created (Valman, 2021a) which if carefully managed could provide a useful tool for 

rapid interactive river temperature assessment without the requirement for knowledge of 

remote sensing or programming.  

However, it is precisely this proposed ability to reduce the need for advanced remote sensing 

knowledge that has provided the most misgivings in this study. GEE creates a ‘black box’ 

(Loyola-Gonzalez, 2019) computing environment where much of the calculations are carried 

out server side. This can leave many of the key assumptions of methods missing. One 

example of this is the difficulty in scrolling through images to check that the georeferencing is 
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exact enough to be extracting and comparing the same pixel in every attempt. To scroll 

through images requires conversion to a list and then converting each item back to an image 

and plotting them to a map individually. If the user does not have a good knowledge of the 

mixed-pixel problem (Kale et al., 2017) or contextual knowledge of channel change (Boothroyd 

et al., 2021) then this can lead to erroneous results which are acted upon without knowledge.  

Similarly, the flip side of GEE encouraging speed of visualisation is that it makes it very difficult 

to extract temperature values and general statistics. Processing and resampling are not 

carried out until the user “calls” for it, either by zooming in the visualisation or by extracting a 

point (Navarro, 2017). This means that it is not easy to extract max or minimum points from a 

scene. Often these statistics meet the MaxPixel Error which limits the number of pixels that 

can be extracted to protect the GEE servers from being overloaded, and causes the coding 

script to fail (GEE, 2021d). It also limits the ability to extract entire scenes of GEE and check 

their georeferencing in traditional GIS software, therefore only sections can be compared to 

images directly downloaded from the USGS (USGS, 2021a). This means that the pre-

processing carried out by GEE had to be trusted.  

Moreover, extracting data points is much more time consuming than visualising the data. This 

is because of the server-side cloud computing nature of the method which does not carry out 

any computations or resampling until called to do so. This “call” happens when the user either 

scrolls in to get a closer view on a map or when they interrogate a cell for a value. While these 

are not significant drawbacks and are integral to the speed and power of GEE, they require 

the user to have more knowledge of remote sensing than might otherwise be assumed by the 

friendly nature of the method and the ease of using freely available scripts made by 

researchers.  

This need to trust GEE extends to much of the documentation and many of the algorithms 

which are built into GEE (GEE, 2021e). For example, unsuccessful attempts to reduce the 

required computations and implement the radiative transfer equation technique met the simple 

risk of not checking secondary metadata on the GEE catalogue (GEE, 2021b) against the 

original Landsat metadata (USGS, 2020). The band rescaling factor for the transmissibility 

band was out by an order of magnitude, which was fixed after I alerted GEE developers 

(Ilyushchenko, 2021). However, without bringing this to the attention of developers it is difficult 

to know if it is a metadata error or a difference between the original data and that provided by 

GEE.  

This is the case with the ToA algorithm which was applied in some of the cases here. The 

algorithm was only required by the non-atmospherically corrected method as both the PSC 

and SMW methods used pre-processed ToA data. The calculation was re-written here 
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because the GEE version did not include the -0.31 correction constant defined in the literature 

(Chander et al., 2009, Avdan and Jovanovska, 2016). Again, this is another example, of the 

black box nature of GEE as the correction factor is also not included in the pre-processed ToA 

product. It was decided that the PSC and SMW methods would not be altered in this case so 

that each algorithm matched its original source.  

 

6.1.2 The SatTemp Python Package 

 

Despite the limitations presented above, the package developed here (Valman, 2021b) can 

provide significant time and knowledge short cuts to enable dam operators to obtain river 

temperature data for their own sites. It is downloadable through PiP (instructions in repository) 

and therefore can be used with whichever version of the Python API is desired, such as 

Jupyter Notebooks, Qpy, or traditional Python interpreters. With the correct metadata to 

understand the choices that are being made and the equations being used in this package it 

allows a researcher to simply plug in the dates and geometry of their chosen study site and 

collect results that they are able to test for accuracy and start work on.  

The package detaches users further from the programming decisions made but calculations 

are written as text-string GEE expressions to ease transparency. The package is downloaded 

from an open-source GitHub repository meaning these calculations can be seen and 

commented on, consequently if later versions contain typing errors these can be picked up on 

by the user and changes requested as opposed to guessing the contents of GEE algorithms.  

As will be discussed, some of the limitations of the study will be built into future package 

versions including more options for cloud cover analysis, channel centreline prediction, river 

water mask options, and longitudinal graph options.  

 

6.1.3 Enhanced dissemination: “RiverTemperatureApp” 

 

The app developed here, named “RiverTemperatureApp” (Valman, 2021a), is the most 

contentious part of the project because it incorporates all the limitations which have been 

presented here. It allows the user to select the date and area, and then produce visualisations 

of river temperature without the need to validate these or the ability to see the code beneath. 

However, should this be made proprietary it would be a useful tool for those with the 

knowledge to customise outputs where it is known to work. This would produce a dashboard 

of important findings for operators to use which could be pre-checked by an expert to make 
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sure it works in that context. The widgets used could also be constrained to fit its area of use, 

for example building regular longitudinal plots which compare river temperature to past 

temperatures at a similar time of year. These longitudinal plots would be especially important 

to enable dam operators to co-ordinate releases where multiple large dams exist in a 

sequence (Skalak et al., 2013) and temperature effects from each can last up to 260km 

downstream (Xiong et al., 2020).  All these factors suggest that as a working concept the app 

is successful but due to the limitations and difficulties within the data it should be rolled out 

very carefully only to sites it where some form of validation and contextual knowledge is 

available.  

 

6.1.4 Automation or application of community datasets  

 

While many of the limitations with using GEE in a project like this are universal and can be 

applied to other time stacked cloud computed dissemination studies, the large rivers on which 

hydropower and large industry operate create some specific problems that need accounting 

for.  

As argued in the literature review, river temperature can change over diurnal cycles but a 16-

day return period from Landsat data is sufficient to obtain readings appropriate for dam 

operations. It was found that images at the same site usually occurred within a 5-minute 

window of the same time of the day each pass over (appendix A), so the temporal aspect was 

relatively well controlled. To accurately judge the impact that dams are having would require 

some form of release schedule so that river temperature readings could reflect how much 

water is being released. For the same reason, air temperature should also be included in river 

temperature readings to enable investigation of whether changes in river temperature are 

climatic or anthropogenic in nature.  

Another way to increase the usability of results would be to include ASTER which has a similar 

return period thus doubling the available data during the Landsat 8 Recording interval (Despini 

and Teggi, 2013). This would make it more feasible to compare temporally as there would be 

more likelihood of having results from the same month in previous years to compare to. 

ASTER TIR data is usually analysed using a split-window algorithm due having multiple 

thermal bands. Therefore, any combination of the different satellites would require an 

understanding of the different errors caused by having two different algorithms.   

The Global River Width from Landsat (GRWL; Allen and Pavelsky, 2018) has been shown to 

be very useful in helping to delineate and visualise the results here. These global datasets do 
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have some problems in the context of highly dynamic river systems. Channel change occurs 

in single storms and floods which can occur between monitoring periods, thus especially with 

channel avulsion the channel can rapidly no longer represent the GRWL map provided. It is 

suggested that future studies should include the raw algorithms (Allen and Pavelsky, 2018, 

Yang et al., 2019, Boothroyd et al., 2021) in order to extract the river shape from each Landsat 

image used. This may create continuity issues for comparing rivers globally but for the context 

of dam operators, single points of time would usually be visualised rather than mean values.  

The importance of automated channel feature extraction is greater for the extraction of data 

values to graphs and results. By recalculating river width with each image, an error would be 

thrown if a logger point was no longer a clear pixel which would help manage the possibility of 

mixed pixels. The mixed-pixel issue would also be managed in longitudinal diagrams where 

in channel bars were likely to be the cause of errors in the River Ganges (Figure. 8) 2017 and 

2018 results. This is because the channel was likely to have moved since the original 

centreline was drawn in 2015 and is expected to be the cause of the error. This is especially 

important in the study of dams which have the ability to flush sediment, maintaining 

downstream supply and preventing the reservoir from silting up, which can rapidly impact 

downstream morphology (Fruchard and Camenen, 2012). This can impact a river very easily 

between two records, especially if suggestions to coincide sediment releases with flood peaks 

(Dahal et al., 2021) are met. Thus, it is important to recalculate channel centreline with each 

image rather than rely on global products that may be updated annually or less. While this is 

more important in a study of this kind, the premise is likely to be true for many of the major 

datasets on landcover or habitat (Roy, 2020) type which can quickly become outdated, and it 

is recommended that best practise is to provide the algorithm in an easy-to-use format so 

results can be revaluated with successive studies rather than a dataset which needs constant 

updating and version control.  

 

6.2. Relationships between in-situ kinetic loggers and satellite TIR 

 

Objective 2 required that the study was validated in a number of streams to assess how 

accurate the method was at matching real-world data. In doing so, it has been shown that the 

method produces accurate results in two large rivers with very different climates (the Saint 

John River and the Ganges) and one case study where it does not work (the Colorado River). 

Arguably, it has been useful to have a river where the method is not appropriate because it 

gives some idea of the limitations of the method.  
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6.2.1. Validation statistics 

 

Three main validation factors were used: Pearson’s R2, RMSE and bias. To meet the objective 

set out, R2 and RMSE were considered more important because they assess method accuracy 

whereas users can simply include a constant to counteract a known bias. For example, the 

SMW method produced bias levels in the three downstream river reaches that were similar 

with a range of just 0.8oc suggesting this might be a constant underestimation. In this context 

it would be useful to obtain water temperature logger results from other large streams to 

assess if the bias is impacted by different climate zones. To some extent, the Ganges 

longitudinal plots (Figure. 8) can be used for this because the general trend is towards values 

1.5oc lower than the Yadav et al. (2020) study. Regardless, values from temperature loggers 

would be preferable, even with the expense of field surveys, to provide empirical comparable 

results.  

If bias is consistent, R2 and RMSE can tell us how accurate the method is at predicting river 

surface temperature because it shows how likely it is to under or over predict temperature. In 

the Saint John River, a highly significant (n=40, p<0.001, α=0.05), strong correlation of 0.96 

was found. This is similar to other studies which found R2 correlations of 0.92 (Bonnema et 

al., 2020). Moreover, the RMSE of 1.82oc was only slightly higher than studies with similar 

river widths (Martí-Cardona et al., 2019) but lower than land surface temperature studies 

carried out without atmospheric correction (Avdan and Jovanovska, 2016). When compared 

to airborne remote sensing, which can have an RMSE of ~0.5oc (Dole-Olivier et al., 2019), the 

results are very good considering the almost complete reduction in costs of applying this 

method in comparison to flying an aerial survey.  

Despite positive results, it is important to understand what might be driving error in satellite-

derived values, indications of which may be found in the upstream loggers (n= 19, R2: 0.87, 

p<0.001, RMSE: 2.42oc). The loggers in this upstream cluster are lower in the water column 

and so are providing kinetic temperature that is impacted by thermal stratification at depth, 

even if, as this literature claims, this does not have a large impact on results (Talke et al., 

2013) it will have some impact. In a similar way, many of the other studies are not assessing 

the success of their methods in a standardised manner. All TIR satellite methods measure 

stream radiant temperature, the exchange of heat from a surface, therefore this is likely to 

differ from the kinetic water temperature that temperature loggers measure (Jensen et al., 

2014). Other studies use local air temperature to assess their results which may account for 

their lower accuracy (Avdan and Jovanovska, 2016) or use hand-held spectrometers which 

also record radiant water surface temperature and therefore are more similar to satellite values 

(Martí-Cardona et al., 2019). This means that any comparison between studies should be 
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aware of these possible discrepancies. It is important to remember that kinetic temperature is 

the variable that directly relates to dam operation, fish stocks, and algal blooms. Therefore, 

the error in predicting this variable is the salient information to collect for engineers and 

managers to justify decisions based on satellite TIR.   

Stream temperature models can produce similar RMSE and once produced can be used with 

similar lack of cost (Piotrowski et al., 2021). However, they still rely on meteorological point 

data which makes their effectiveness in different systems and in the context of anthropogenic 

alterations hard to manage (Dugdale et al., 2017). As such, temperature models trained on 

satellite derived river temperature can be produced from results such as those found here 

(Tavares et al., 2020). These assimilation models may take both the benefits of accurate, 

regular temperature prediction and continuously updated satellite images to detect changes 

within the system and its operation.  

 

6.2.2. Sources of error unique to the Colorado River 

 

The method was shown to not work on the Colorado River, Arizona USA. This can help us 

collect a list of scenarios where the method may not work which can be tested in future studies. 

The first and most likely reason is the impact of mixed pixels on the results due to this river 

being considerably less wide than the other two in the study with logger sites ranging from 

200m to 85m (as opposed to 840m to 330m in the Saint John River). However, even without 

the pixel-unmixing strategies presented (Martí-Cardona et al., 2019) the wider sections of this 

river should have been wide enough to meet the upper estimates required for satellite TIR 

river temperature monitoring, which suggest river widths of at least 180m (Handcock et al., 

2006).  

Therefore, further research should look into the other possible causes of the weaker 

correlation and higher RMSE found on the Colorado River. The logger types are similar to 

those used on the Saint John River, so it is unlikely to be a measurement artifact caused by 

the loggers. Turbulent “whitewater” has been shown to be capable of significantly altering 

emissivity values (Talke et al., 2013) and while there are considerable examples of this in the 

Grand Canyon, none of the logger sites exhibit this. Moreover, in future studies it is worth 

noting that these turbulent sections are more likely to occur at narrow points in the channel 

rather than wide points and therefore smaller river reaches may be avoided for temperature 

extraction regardless.  
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The main two factors beyond width which separate the Colorado from other rivers in this study 

is the increased temperature difference between night and day (Voichick and Wright, 2007). 

There has been a lack of research into the speed with which this may impact temperature in 

the water column, and how quickly the measured radiant water surface temperature may 

increase in comparison. The other factor that could be the cause or contribute to the large 

error in results is the fact that this in geomorphological terms this is a valley confined river 

(Brierley and Fryirs, 2013). In terms of engineering this makes it a good place to build a dam 

because the valley walls can anchor the structure (Bruce, 2005) however it is proposed that 

these same valley walls may create effects similar to that of cloud shadow and thus disrupt 

the emitted radiation recorded. It is also proposed that these valleys could confine 

concentrations of air-water vapour which are not accounted for by atmospheric correction. 

This should be tested for in future studies because it would have substantial implications for 

current projects for dams as well as implications for future higher resolution satellite remote 

sensing (Mo et al., 2018) for other uses including urban heat effects (Ali et al., 2017).   

 

6.3 Strategies for increasing accuracy 

 

A RMSE score below 2oc is positive but there are some areas in which it could be improved. 

The integration of more advanced cloud masking techniques and automated channel design 

is one way of reducing outlying results. Moreover, the improvement of pixel quality and 

resolution through the introduction of pixel unmixing strategies (Martí-Cardona et al., 2019) 

and sharpening water algorithms (Despini and Teggi, 2013) should be investigated for their 

ability to improve RMSE, especially in thinner river channels.  

Emissivity may also play a role in reducing the RMSE of the results. Emissivity is taken as a 

constant here and the possible alternative values used in the literature are very similar to those 

used here (e.g., Lamaro et al., 2013) and are therefore unlikely to create large error 

differences. Especially, as the value here matched the value used for the most accurate 

satellite TIR river temperature paper discussed (Martí-Cardona et al., 2019). Therefore, to 

significantly improve the emissivity part of the calculation it may be appropriate to test a 

fluctuating emissivity value based on suspended sediment approximated by the river water 

colour (Gardner et al., 2021) or by feature extraction floating vegetation and different surface 

water dynamics (Handcock et al., 2012).  
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6.3.1 Cloud cover improvements 

 

The cloud cover algorithm applied here was one of the simplest options relying on the analysis 

already carried out by Landsat (Foga et al., 2017). This was also the method originally used 

in the SMW algorithm when it was first developed by Ermida et al. (2020). It was considered 

reasonably successful for the task at hand, especially where cloud creates noticeably extreme 

negative temperature readings alerting the user to errors (Bonnema et al., 2020). However, it 

was found that cirrus cloud was harder to detect and may have been part of the cause for 

some erroneous points on the Colorado River. These errors only accounted for a few points 

and therefore cannot have been the sole cause of the weak correlation found using the 

Colorado River (Figure. 12). Still the best way to manage cloud is to open a RGB optical 

satellite image and manually look for it (Zhu and Woodcock, 2012). Again, if these methods 

had been carried out in traditional GIS software images would have been visualised upon 

downloading, making it possible to notice where cloud had not been appropriately retracted 

but the GEE method does not provide these visual processing steps unless manually 

implemented. In future studies, more advanced cloud cover algorithms should be employed 

to maintain the benefits of cloud computing but improve cloud cover removal (Hollstein et al., 

2016).  

 

6.4. Extending river temperature extraction to more rivers 

 

The majority of values returned from the Colorado river are between 10 and 20 degrees 

Celsius and therefore without validation or expected temperature intervals created from air 

temperature models (Mohseni et al., 1998) an unskilled practitioner using my app could make 

assumptions based on these results. If future work on the project enables users to transfer the 

method anywhere then it should include some form of confidence bounds.  

Error brackets, defining the likelihood of a remotely sensed water temperature value being 

correct based on modelling expected water temperature from air temperature, would help 

identify river systems that are not compatible with this satellite river temperature measurement 

method. Validating the results in each new river system would provide more assurance that it 

is a viable system to monitor through satellite remote sensing. This would also allow dam 

operators an estimate of the error and bias in the results which they can act upon. The results 

from the Saint John River show that a two-year interval with a limited number of loggers is 

appropriate to provide this validation. With temperature loggers becoming more affordable, 

with a 1-year battery life it may be appropriate to carry out validation in more sites and 
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thereafter rely on satellite remote sensing. Aerial and UAV TIR remote sensing methods may 

also be viable methods for creating validation data especially where other studies are also 

occurring, however this would be a comparison between two sources of radiant river water 

temperature and therefore the issues highlighted earlier will still need to be addressed here.  

 

 

6.5 Atmospheric correction and potential  

 

Testing the different atmospheric correction algorithms resulted in finding the SMW method to 

be the most effective method used in this study. This is interesting because the PSC method 

had otherwise been proven to be more effective at matching near ground temperature values 

in a direct comparison between the two methods (Wang et al., 2020b).  

What is perhaps more interesting is that the method with NAC produced relatively good 

results. Applying a method without atmospheric correction to a water context has been shown 

to be reasonable with on clear days of no humidity but to produce increasing errors as air 

water moisture content increases (Wang and De Liberty, 2005). The ability of the method to 

provide a strong correlation could be attributed to the high emissivity value chosen, by being 

so close to a black body object its almost perfect emittance makes the atmosphere a smaller 

but not entirely negligible factor. Thus, in some cases the methods correct for this atmospheric 

interference but in others, due to the high emissivity value they can overcorrect. The NAC 

RMSE value around 5oc reduces the usability of this data but it does allow the quantification 

of the improvement or overestimates provided by the atmospheric correction algorithms. In 

this case the SMW may reduce the error by nearly 4oc, whilst the PSC only reduces error by 

1oc.  

Bias results from this study differ from similar studies (Martí-Cardona et al., 2019) in that they 

do not show an overprediction of temperature expected from Landsat sensors (Barsi et al., 

2014). The cause of this may be the radiative transfer equation and model applied in other 

studies (e.g., Zhao et al., 2020), When an approximation of values were built based on a linear 

version of this radiative transfer model for the SMW method (Ermida et al., 2020), it is possible 

the overcorrection from this model was accounted for. To test this, the recently released 

Landsat Collection 2 product which relies on a similar but different model to produce upwelling 

radiance, downwelling radiance and transmissibility (USGS, 2020) should be built into a GEE 

radiative transfer equation method to test against those presented here. Should this prove a 

better algorithm it could be entered into the SatTemp package as another option.  
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Increasing the atmospheric correction methods in the package and testing these against those 

presented here would help continuously improve temperature monitoring. Some of the most 

effective methods are not yet available on GEE (Meng and Cheng, 2018) but with ever 

increasing data availability the accuracy of these methods may still be improvable.  

 

7.0 Conclusion 

 

The research has aimed to discover to what extent GEE is a viable tool for the extraction of 

river temperature, to be used in dam operating procedures, globally. It has been shown that 

GEE is capable of rapidly calculating river temperature from a collection of time stacked 

Landsat 8 images. I have displayed the ability Python API to generate packages of functions 

(Valman, 2021b) which reduce the time taken for operators to apply these methods. GEE has 

also been used to create an interactive app (Valman, 2021a) for users to apply these methods 

without needing programming knowledge. However, it is felt that the black box nature of GEE, 

and the products delivered here, necessitate more research into the appropriate ways in which 

these findings are disseminated, in order to reduce the risk of misleading users who are not 

privy to all the decisions and appropriate error statistics in these methods.  

Meeting objective two has shown that the method is capable accurately monitoring river 

temperature, as it did in the Saint Johns River. Accuracy was found to be within 2oc which is 

considered very successful for measuring kinetic river temperature. Comparisons with other 

sites and studies need to account for how validation data is collected, be it the depth of logger 

or the method of collection. The paucity of available in-situ temperature readings made it 

difficult to test the transferability of the method. It is clear that in some cases, such as the 

Colorado River, the method is not yet appropriate. This may be because of the climate, high 

walled valley-confined stream type, or narrow river channel width. Further research is required 

to detect which cause is responsible and if these causes are site specific to the Colorado River 

or universal rules that should be applied to all river satellite TIR sensing.  For now, it is 

recommended that the method is not used without at least 2 years validation data as shown 

on the Saint Johns River.  

The third objective was to assess the need for an atmospheric correction technique in this 

context and compare this against the Statistical-Mono Window and Practical Single-Channel 

methods. It was found that results were producible without atmospheric correction, but the 

most accurate method was to correct for atmospheric effects using the SMW algorithm. This 
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algorithm reduced RMSE by nearly 4oc. Clear assessment of how well the different methods 

work in different biomes would require the availability of more validation data from which to 

find correlation, bias and RMSE values. In the wider literature it appears that there are other 

more successful atmospheric correction factors which require datasets which are not currently 

available on GEE (Meng and Cheng, 2018, GEE, 2021b). Future research should aim to 

include these in the SatTemp package as soon as they are available and compare them to 

current methods to enable a continuous maximisation of monitoring accuracy.  

The project has created multiple exciting avenues for future research to produce dam 

operational benefits. The results can be extended temporally because the SMW method is 

also compatible with Landsat 4, 5 and 7, meaning trends in river temperature change could 

be used for regulators to govern rules of cold water dam releases. For dam operators 

increasing the current temporal resolution would enable more regular outputs with which to 

populate the dashboard. This could be achieved through inclusion of ASTER TIR sensors or 

building assimilative models trained on this satellite data. At the moment the method presented 

here still requires personnel with contextual knowledge of the river system in question, and 

some background in remote sensing to acknowledge the decision made in these processes.  

Regardless of the direction that future research takes, it has been demonstrated that it is 

possible for GEE and Landsat 8 to produce river temperature measurements and be used as 

a tool to increase the speed of dissemination of these results. To the best of my knowledge, 

this is the first study to compare atmospheric correction techniques solely in river systems, 

with the goal of providing actionable insight. It is also the first to build a package that can 

seamlessly transition between atmospheric correction methods using the same input data by 

selecting the method from a list. This has built a foundation for further automated algorithms 

to be built in to improve the accuracy of the method and create meaningful dashboard insights 

such as automated longitudinal profiles which can be added to the app to manage water 

releases.  
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Appendix A 

 

N Date Time Row Path Cloud 
Cover (%) 

 2013-04-22 18:11:10 35 38 0 
 2013-05-24 18:11:26 35 38 7 
 2013-06-09 18:11:24 35 38 0 
 2013-06-25 18:11:20 35 38 0 
 2013-07-27 18:11:22 35 38 65.3 
 2013-08-12 18:11:24 35 38 6.5 
 2013-08-28 18:11:26 35 38 11.3 
 2013-09-13 18:11:22 35 38 3.7 
 2013-09-29 18:11:16 35 38 0.1 
 2013-10-15 18:11:15 35 38 2.7 
 2013-10-31 18:11:07 35 38 0.3 
 2013-12-02 18:11:01 35 38 0.1 
 2014-01-03 18:10:45 35 38 0.2 
 2014-01-19 18:10:32 35 38 6.8 
 2014-02-04 18:10:24 35 38 15.6 
 2014-02-20 18:10:11 35 38 0.3 
 2014-03-08 18:09:57 35 38 0.4 
 2014-04-09 18:09:29 35 38 46.1 
 2014-04-25 18:09:13 35 38 24.2 
 2014-05-27 18:08:56 35 38 1.3 
 2014-06-12 18:09:05 35 38 0.5 
 2014-06-28 18:09:07 35 38 0 
 2014-07-30 18:09:20 35 38 12.4 
 2014-08-15 18:09:27 35 38 7.4 
 2014-08-31 18:09:29 35 38 0 
 2014-09-16 18:09:31 35 38 1.8 
 2014-10-02 18:09:34 35 38 0 
 2014-10-18 18:09:37 35 38 55.7 
 2014-11-03 18:09:36 35 38 9.5 
 2014-12-05 18:09:33 35 38 60.6 
 2014-12-21 18:09:31 35 38 42.8 
 2015-01-06 18:09:26 35 38 2.1 
 2015-01-22 18:09:20 35 38 0.4 
 2015-03-27 18:08:53 35 38 0.4 
 2015-04-12 18:08:46 35 38 0.1 
 2015-04-28 18:08:40 35 38 7.4 
 2015-05-30 18:08:29 35 38 4.3 
 2015-06-15 18:08:41 35 38 7.8 
 2015-07-01 18:08:47 35 38 0 
 2015-07-17 18:08:57 35 38 1.9 
 2015-08-02 18:09:00 35 38 23.5 
 2015-08-18 18:09:08 35 38 0.3 
 2015-09-03 18:09:12 35 38 1.5 
 2015-09-19 18:09:21 35 38 0 
 2015-11-06 18:09:30 35 38 0.6 
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 2015-11-22 18:09:32 35 38 0.2 
 2015-12-08 18:09:30 35 38 1.1 
 2015-12-24 18:09:32 35 38 44.3 
 2016-01-09 18:09:27 35 38 15.1 
 2016-01-25 18:09:28 35 38 0.2 
 2016-02-26 18:09:17 35 38 0.4 
 2016-03-13 18:09:14 35 38 13.4 
 2016-03-29 18:09:04 35 38 54.9 
 2016-06-01 18:09:03 35 38 0.4 
 2016-06-17 18:09:06 35 38 0 
 2016-07-19 18:09:22 35 38 32 
 2016-08-20 18:09:30 35 38 3.5 
 2016-09-05 18:09:36 35 38 0.1 
 2016-10-07 18:09:41 35 38 0 
 2016-10-23 18:09:44 35 38 38.3 
 2016-11-08 18:09:43 35 38 0 
 2016-11-24 18:09:44 35 38 0.1 
 2016-12-10 18:09:41 35 38 9.6 
 2016-12-26 18:09:37 35 38 4.4 
 2017-01-11 18:09:34 35 38 36.8 
 2017-01-27 18:09:28 35 38 0.2 
 2017-02-28 18:09:15 35 38 36.3 
 2017-03-16 18:09:06 35 38 0.3 
 2017-04-01 18:08:58 35 38 28.2 
 2017-04-17 18:08:49 35 38 34.5 
 2017-05-03 18:08:40 35 38 0 
 2017-05-19 18:08:52 35 38 0.1 
 2017-06-04 18:09:01 35 38 2.8 
 2017-06-20 18:09:07 35 38 3 
 2017-07-06 18:09:11 35 38 8.4 
 2017-07-22 18:09:17 35 38 3.7 
 2017-08-07 18:09:24 35 38 14 
 2017-08-23 18:09:28 35 38 15.8 
 2017-09-24 18:09:35 35 38 0.1 
 2017-10-10 18:09:40 35 38 0 
 2017-10-26 18:09:41 35 38 1.5 
 2017-11-11 18:09:39 35 38 1.4 
 2017-12-13 18:09:33 35 38 2.4 
 2018-01-14 18:09:27 35 38 0 
 2018-02-15 18:09:12 35 38 0.3 
 2018-03-03 18:09:04 35 38 65.3 
 2018-03-19 18:08:55 35 38 17.2 
 2018-06-07 18:08:11 35 38 2.9 
 2018-06-23 18:08:22 35 38 0 
 2018-07-25 18:08:37 35 38 0 
 2018-08-10 18:08:47 35 38 8.7 
 2018-09-11 18:09:04 35 38 0.2 
 2018-09-27 18:09:11 35 38 0 
 2018-11-14 18:09:6 35 38 0 
 2018-12-16 18:09:20 35 38 17.6 
 2019-01-01 18:09:25 35 38 0.2 
 2019-03-22 18:09:31 35 38 50.4 
 2019-04-07 18:09:35 35 38 18.3 
 2019-04-23 18:09:40 35 38 3.2 
 2019-05-25 18:09:44 35 38 1.7 



70 
 

 2019-06-10 18:09:47 35 38 0.3 
 2019-06-26 18:09:47 35 38 5.3 
 2019-07-12 18:09:43 35 38 72.4 
 2019-07-28 18:09:42 35 38 17.2 
 2019-08-13 18:09:36 35 38 0 
 2019-08-29 18:09:32 35 38 0 
 2019-09-14 18:09:27 35 38 0 
 2019-09-30 18:09:24 35 38 0 
 2019-10-16 18:09:10 35 38 0.4 
 2019-11-01 18:09:01 35 38 0 
 2019-11-17 18:08:54 35 38 0 
 2019-12-03 18:08:47 35 38 53 
 2020-01-04 18:08:51 35 38 26.5 
 2020-01-20 18:09:01 35 38 95.7 
 2020-02-05 18:08:54 35 38 28.7 
 2020-02-21 18:08:47 35 38 1.5 
 2020-03-24 18:08:51 35 38 3.7 
 2020-04-09 18:09:01 35 38 33.4 
 2020-04-25 18:09:09 35 38 0.1 
 2020-05-11 18:09:15 35 38 0.6 
 2020-05-27 18:09:20 35 38 0.2 
 2020-06-12 18:09:24 35 38 0 
 2020-06-28 18:09:32 35 38 7.8 
 2020-07-14 18:09:38 35 38 0.1 
 2020-07-30 18:09:42 35 38 0.1 
 2020-08-15 18:09:43 35 38 0.1 
 2020-08-31 18:09:42 35 38 2.4 
 2020-09-16 18:09:44 35 38 0.4 
 2020-10-02 18:09:25 35 38 0 
 2020-10-18 18:09:17 35 38 0 
 2020-11-19 18:09:14 35 38 0.2 
 2020-12-05 18:08:57 35 38 0.1 
 2021-02-23 18:09:02 35 38 0.4 
 2021-07-01 18:09:31 35 38 18.8 
      
 2014-07-26 15:13:27 28 10 21.4 
 2014-07-26 15:13:36 28 10 6.2 
 2014-08-27 15:13:38 28 10 49.6 
 2014-09-12 15:13:42 28 10 3.5 
 2014-09-28 15:13:41 28 10 0 
 2014-10-14 15:13:47 28 10 23.8 
 2014-10-30 15:13:43 28 10 29 
 2015-06-27 15:12:54 28 10 10.2 
 2015-07-13 15:13:05 28 10 6.8 
 2015-07-29 15:13:10 28 10 8.5 
 2015-08-14 15:13:15 28 10 19.9 
 2015-09-15 15:13:29 28 10 18.4 
 2015-12-04 15:13:41 28 10 20.8 
 2015-07-13 15:13:05 28 10 6.8 
 2015-07-29 15:13:10 28 10 8.5 
 2014-08-11 15:13:36 28 10 6.2 
 2015-08-30 15:13:21 28 10 50.8 
 2014-11-15 15:13:46 28 10 57.4 
 2015-09-06 15:19:35 28 11 0 
 2015-10-08 15:19:45 29 11 6.8 
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 2015-02-16 04:54:44 42 142 0 
 2017-02-21 04:54:50 42 142 0.6 
 2018-02-24 04:54:40 42 142 13.1 
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Appendix B 

 

Validation results from Glen Canyon, the lack of strong correlations are discussed in section 6.2.2. As the highest correlation, only site 9404200 

was chosen to represent these results within the text.  

 

 

 

 

* Significant at the 0.05 alpha level 

Site 9379901 9380000 9383050 9383100 9402352 9402500 9403270 9404120 9404200 9404220 

N 
images 

144 284 148 147 145 142 256 132 134 129 

R2 0.002 0.022 0.086 0.135 0.163 0.264 0.206 0.195 0.287 0.224 
P 0.561 0.013* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* <0.001* 
RMSE 7.88 9.32 13.5 11.3 12.8 11.2 14.4 11.1 13.1 13.1 
Bias 4.56 5.87 9.19 7.91 9.53 7.85 9.73 6.27 8.32 9.31 
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Project Management Plan 
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Data Management Plan 
 

Research title, aims and objectives 

Title  

An assessment of the potential for cloud computing and satellite thermal infrared 

sensing to produce meaningful river temperature insights for hydropower operations  

 

Aim 

Assess the viability of using Google Earth Engine for the extraction of river temperature 

outputs for assisting dam and industrial operating procedures globally. 

  

Objectives 

Objective 1: Verify the ability of GEE as a tool for calculating river surface temperature from 

satellite TIR inputs to produce an interactive tool for extracting river temperature.   

Objective 2: Validate the accuracy of the results against different river types to infer the 

transferability of the method 

Objective 3: Compare different atmospheric correction methods to assess which produces the 

most accurate results 

Methodology and data types produced  

 

River temperature measurement values will be produced from freely available Landsat 8 

images. With the exception of 6 tiff files used for longitudinal diagrams. This data will not be 

stored, instead the Python Jupyter Notebook scripts will be stored to recompute the results 

using Google Earth Engine Servers.  

Processing requires multiple Jupyter Notebook files written with Python 3 for the majority of 

the project. The Python package will be written in the Spyder API to facilitate the possibility 

of uploading it to PiP to be freely installed by other users. A Heroku app will also be 

produced which is powered through a GitHub repository.  

Landsat scenes used can be found in Appendix A of this document.  

 

Metadata content and format 
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Metadata was based on the EU INSPIRE metadata standards.  

All files will be saved with the following metadata and be backed up by a version control 

system (GitHub) to establish order and timing of changes: 

- Filename 

- Item type (e.g. tif) 

- Size (mb or GEE pixels) 

- Description of script task/aim 

- dependencies (requirements.txt file) 

- Creation timestamp 

- Last edit  

- Location = (long lat or geometry) 

- Owner and copyright or access agreements 

 

Project structure and storage 

All data will be saved on the University OneDrive which is backed up by the central 

University IT System. This will have a secondary GitHub back up procedure to a repository 

to provide better versioning control. This push request will be carried out at the end of every 

day.  

Code and validation data repository: https://github.com/SamValman/MRes_2021 

SatTemp package repository: https://github.com/SamValman/rtemp 

Access will have to be requested from these weblinks and the primary author will confirm 

access.  

 

All filenames will start with the date “YYYY_MM_DD_”  

Folders in a package will be structured hierarchically starting with “00” 

The site and method will be used to indicate the objective of these folders, whilst the task will 

be used to indicate the objective of scripts.  

Data sharing at project completion 

During the project, including the duration of the PhD (until October 2024) data will be shared 

between the principal researcher and supervisors, along with collaborators and CDT 

directors upon request.  

Dissemination projects will be shared through apps and GitHub packages which are 

currently set to private until project completion. Validation data (.csv files) will be placed in a 

repository so results can be confirmed upon completion of the project.  

Data selection and long-term preservation 

Python scripts with the dependencies made clear in the metadata will enable the 

reproducibility of the results using opensource software which can later be rolled back to 

versions used during the project if required.  

Validation data and data used for figures published in these projects will be placed in open 

access archives to enable preservation and transparency.  

https://github.com/SamValman/MRes_2021
https://github.com/SamValman/rtemp
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Responsibilities of the Data Management Plan 

The first and final responsibility of implementing the data management plan is the lead 

researcher in this project (Sam Valman). Access to the Nottingham University OneDrive or 

personal Github repository will be required to enact this plan. Supervisors will be given 

contributor rights to this Github account to enable their contribution if required.  

 

If the project changes from what is presented here in this MRes then this data management 

plan and the data storage/data sharing options will be re-evaluated accordingly.  


